
Oracle® Database
Spring Data SDK Developers Guide

Release 23.1
F58555-07
May 2023

Oracle Database Spring Data SDK Developers Guide, Release 23.1

F58555-07

Copyright © 2022, 2023, Oracle and/or its affiliates.

Primary Author: Vandana Rajamani

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Oracle NoSQL Database SDK for Spring Data

About the Oracle NoSQL Database SDK for Spring Data 1-1

Example: Accessing Oracle NoSQL Database Using Spring Data Framework 1-2

Setting TTL values 1-6

Using SpEl expressions in NosqlTable.tableName annotation 1-7

Components of Oracle NoSQL Database SDK for Spring Data 1-9

Projections 1-10

Persistence Model 1-12

Transactional Model 1-28

Setting up the Connection 1-28

Defining a Repository 1-31

Starting the Application 1-32

Queries 1-33

PagingAndSortingRepository Interface 1-33

Derived Queries 1-33

Supported Keywords in Derived Queries 1-37

Native Queries 1-38

Activating Logging 1-39

Index

iii

List of Figures

1-1 Components of Oracle NoSQL Database SDK for Spring Data 1-10

1-2 Persistence Model 1-13

iv

List of Tables

1-1 Using SpEL Expressions 1-7

1-2 Attributes in NosqlTable Annotation 1-14

1-3 Mapping Between Java and Oracle NoSQL Database Types 1-22

1-4 Attributes in NosqlId Annotation 1-24

1-5 Mapping Between Java and NoSQL JSON Types 1-25

1-6 Supported Keywords for Prefix 1-37

1-7 Supported Keywords for Body 1-37

v

1
Oracle NoSQL Database SDK for Spring Data

Learn about how to access the Oracle NoSQL Database from the Spring Data Framework
(Spring-based programming model for data).

Prerequisites:

This chapter assumes that the user has a good understanding of the following:

• Maven

• Spring Data Framework

About the Oracle NoSQL Database SDK for Spring Data
Connect to the Oracle NoSQL Database with applications using the Spring Data Framework
(Spring-based programming model for data) and the Oracle NoSQL Database SDK for Spring
Data. The Spring Data Framework provides a familiar and consistent, Spring-based
programming model for data access. For more information on Spring Data Framework, see
Spring Data.

The Oracle NoSQL Database SDK for Spring Data provides POJO (Plain Old Java Object)
centric modeling and integration between the Oracle NoSQL Database and the Spring Data
Framework. One of the key benefits available to the Java programmer is the ability to write
your code as a repository style data access layer, while the Spring Data Framework maps
those repository style data access operations to Oracle NoSQL Database API calls.

The Oracle NoSQL Database SDK for Spring Data is available in Maven Central repository,
details available here. The main location of the project is in GitHub.

You can get all the required files for running the Spring Data Framework with the following
POM file dependencies.

<dependencies>
 <dependency>
 <groupId>com.oracle.nosql.sdk</groupId>
 <artifactId>spring-data-oracle-nosql</artifactId>
 </dependency>
</dependencies>

Note:

The Oracle NoSQL Database SDK for Spring Data requires an Oracle NoSQL
Database Proxy to connect to an Oracle NoSQL Database cluster. For more
information on setting up an Oracle NoSQL Database Proxy, see Oracle NoSQL
Database Proxy in the Administrator's Guide.

1-1

Supported Features

The following features are currently supported by the Oracle NoSQL Database SDK
for Spring Data.

• Generic CRUD operations on a repository using methods in the CrudRepository
interface. For more information on CrudRepository interface, see CrudRepository.

• Pagination and sorting operations using methods in the
PagingAndSortingRepository interface. For more information on
PagingAndSortingRepository interface, see PagingAndSortingRepository.

• Derived Queries.

• Native Queries.

Example: Accessing Oracle NoSQL Database Using Spring
Data Framework

The following example demonstrates how to access Oracle NoSQL Database from
Spring using Oracle NoSQL Database SDK for Spring Data. In this example, using the
Spring Data Framework, you set up a connection with Oracle NoSQL Database non-
secure store, insert a row in the Student table, and then retrieve the data from the
Student table.

In this example, you set up a Maven Project and then add the following classes/
interfaces:

• Student class

• StudentRepository interface

• AppConfig class

• App class

After that, you will run the Spring application to get the desired output. The following
steps discuss this in detail.

1. Set up a Maven project with the following POM file dependencies.

<dependencies>
 <dependency>
 <groupId>com.oracle.nosql.sdk</groupId>
 <artifactId>spring-data-oracle-nosql</artifactId>
 </dependency>
</dependencies>

2. Create a new package and add the following Student entity class to persist. This
entity class represents a table in the Oracle NoSQL Database and an instance of
this entity corresponds to a row in that table.

import com.oracle.nosql.spring.data.core.mapping.NosqlId;
import com.oracle.nosql.spring.data.core.mapping.NosqlTable;

/*The @NosqlTable annotation specifies that

Chapter 1
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

1-2

 this class will be mapped to an Oracle NoSQL Database table.*/
@NosqlTable
public class Student {
 /*The @NosqlId annotation specifies that this field will act
 as the ID field. And the generated=true attribute specifies
 that this ID will be auto-generated by a sequence.*/
 @NosqlId(generated = true)
 long id;
 String firstName;
 String lastName;
 /* public or package protected constructor required when retrieving
from database */
 public Student() {
 }
 /*This method overrides the toString() method, and then
 concatenates id, firstname, and lastname, and then returns a
String*/
 @Override
 public String toString() {
 return "Student{" +
 "id=" + id + ", " +
 "firstName=" + firstName + ", " +
 "lastName=" + lastName +
 '}';
 }
}

3. Create the following StudentRepository interface. This interface must extend the
NosqlRepository interface and provide the entity class and the data type of the primary
key in that class as sub-typing to the NosqlRepository interface. This NosqlRepository
interface provides methods that could be used to retrieve data from the database.

import com.oracle.nosql.spring.data.repository.NosqlRepository;

/*The Student is the entity class, and Long is the data type of the
 primary key in the Student class. This interface implements a derived
query
 findByLastName and returns an iterable instance of the Student class.*/
public interface StudentRepository extends NosqlRepository<Student, Long>
{
 /*The Student table is searched by lastname and
 returns an iterable instance of the Student class.*/
 Iterable<Student> findByLastName(String lastname);
}

4. Create the following AppConfig class that extends AbstractNosqlConfiguration class to
provide the connection details of the database.

import oracle.nosql.driver.kv.StoreAccessTokenProvider;

import com.oracle.nosql.spring.data.config.AbstractNosqlConfiguration;
import com.oracle.nosql.spring.data.config.NosqlDbConfig;
import
com.oracle.nosql.spring.data.repository.config.EnableNosqlRepositories;

Chapter 1
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

1-3

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

/*The @Configuration annotation specifies that this class can be
 used by the Spring Data Framework as a source of bean
definitions.*/
@Configuration
//annotation to enable NoSQL repositories.
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 public static NosqlDbConfig nosqlDBConfig =
 new NosqlDbConfig("hostname:port", new
StoreAccessTokenProvider());

/*The @Bean annotation tells the Spring Data Framework that the
returned object
 should be registered as a bean in the Spring application.*/
@Bean
 public NosqlDbConfig nosqlDbConfig() {
 return nosqlDBConfig;
 }
}

Note:

See Setting up the Connection section to know more about connecting to
an Oracle NoSQL Database secure store.

5. This example uses the CommandLineRunner interface to create a runner class that
implements the run method and has the main method. You can code the
functionality as per your requirements by implementing any of the various
interfaces that the Spring Data Framework provides. For more information on
setting up a Spring boot application, see Spring Boot.

In the following code, the first two Student entities are created and saved. You
then search for all the rows in the Student table and print the results to the output.

import com.oracle.nosql.spring.data.core.NosqlTemplate;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

/*The @SpringBootApplication annotation helps you to build
 an application using Spring Data Framework rapidly.*/
@SpringBootApplication
public class App implements CommandLineRunner {

 /*The annotation enables Spring Data Framework to look up the

Chapter 1
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

1-4

 configuration file for a matching bean.*/
 @Autowired
 private StudentRepository repo;

 public static void main(String[] args) {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(App.class, args);
 SpringApplication.exit(ctx, () -> 0);
 ctx.close();
 System.exit(0);
 }

 @Override
 public void run(String... args) throws Exception {

 System.out.println("=== Start of App ====");

 //Delete all the existing rows of data, if any, in the Student
table.
 repo.deleteAll();

 //Create a new Student instance and load values into it.
 Student s1 = new Student();
 s1.firstName = "John";
 s1.lastName = "Doe";

 //Save the Student instance.
 repo.save(s1);

 //Create a new Student instance and load values into it.
 Student s2 = new Student();
 s2.firstName = "John";
 s2.lastName = "Smith";

 //Save the Student instance.
 repo.save(s2);

 System.out.println("\nfindAll:");
 /*Selects all the rows in the Student table
 and load it into an iterable instance.*/
 Iterable<Student> students = repo.findAll();

 //Print the values to the output from the iterable object.
 for (Student s : students) {
 System.out.println(" Student: " + s);
 }

 System.out.println("\nfindByLastName: Smith");
 /*The Student table is searched by lastname
 and an iterable instance of the Student class is returned.*/
 students = repo.findByLastName("Smith");

 //Print the values to the output from the iterable instance.
 for (Student s : students) {

Chapter 1
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

1-5

 System.out.println(" Student: " + s);
 }

 System.out.println("=== End of App ====");
 }
}

6. Run the program from the runner class. You will get the following output.

=== Start of App ====
findAll:
 Student: Student{id=5, firstName=John, lastName=Doe}
 Student: Student{id=6, firstName=John, lastName=Smith}

findByLastName: Smith
 Student: Student{id=6, firstName=John, lastName=Smith}
=== End of App ====

Setting TTL values
You can set the table level TTL (Time To Live) by setting the following parameters in
the @NosqlTable annotation of an entity class:

• ttl(): Sets the table level TTL value in either DAYS or HOURS. If not specified,
the default value is set to 0, which means the TTL value is not set.

• ttlUnit(): Sets the TTL unit to either DAYS or HOURS. If not specified, the
default value is set to DAYS.

Example:

Create the Student entity class and set the TTL values to 10 days as follows. When
the ttl() value is provided in the @NosqlTable annotation, the spring data driver
creates the Student table with the specified TTL value.

import com.oracle.nosql.spring.data.core.mapping.NosqlId;
import com.oracle.nosql.spring.data.core.mapping.NosqlTable;

/* The @NosqlTable annotation specifies that this class will be mapped
to an Oracle NoSQL Database table. */

/* Sets the table level TTL to 10 Days. */
@NosqlTable(ttl = 10, ttlUnit = NosqlTable.TtlUnit.DAYS)

public class Student {
 /* The @NosqlId annotation specifies that this field will act as
the ID field.

 The generated=true attribute specifies that this ID will be auto-
generated by a sequence. */
 @NosqlId(generated = true)
 long id;
 String firstName;
 String lastName;

Chapter 1
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

1-6

 /* public or package protected constructor required when retrieving
from database. */
 public Student() {

 }
 /* This method overrides the toString() method, and then concatenates
id, firstname, lastname,
 and then returns a String. */
 @Override
 public String toString() {
 return "Student{" +
 "id=" + id + ", " +
 "firstName=" + firstName + ", " +
 "lastName=" + lastName +
 '}';
 }
}

Using SpEl expressions in NosqlTable.tableName annotation
You can specify the name of the table by setting the tableName parameter in the @NosqlTable
annotation. In the above Student class example, since the tableName is not explicitly
provided, by default an empty value is set and the entity class name is used as the name of
the table by the Spring driver.

Spring Expression Language (SpEl) is a way to evaluate complex expressions at run time.
For more details, see Spring Expression Language.

The @NosqlTable.tableName parameter supports evaluating (SpEl) expressions. You can use
the SpEL expressions while setting the tableName parameter in the @NosqlTable annotation
as shown in the following examples. The expressions are evaluated dynamically at run time.

Table 1-1 Using SpEL Expressions

SpEL expression in the
tableName parameter

Description

@NosqlTable(tableName =
"#{ systemProperties['sys_ns']}:Cust
omer")

The Customer table is created in the namespace defined by
JVM system property sys_ns. If the system property doesn't
exist, the SpEl expression evaluates to empty string, in which
case the table is created in the default namespace,
sysdefault.

The systemProperties attribute is a predefined variable.

To run with the JVM system property use:

java -Dsys_ns=myCustomNamespace ...

Chapter 1
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

1-7

Table 1-1 (Cont.) Using SpEL Expressions

SpEL expression in the
tableName parameter

Description

@NosqlTable(tableName =
"#{ @environment.getProperty('ENV
_NS')}:Customer")

The Customer table is created in the namespace defined by the
environment property ENV_NS. If the environment variable
doesn't exist the table is created in the default namespace,
sysdefault.

To run by setting environment property use:

ENV_NS=myCustomNamespace; java ...

@NosqlTable(tableName = "$
{app.ns}:Customer")

The Customer table is created in the namespace defined by the
app.ns property in application.properties resource file.
An error is thrown if the property does not exist.

@NosqlTable(tableName = "$
{app.ns}:Customer")

The Customer table is created in the namespace defined by the
app.ns property in application.properties resource file. If
the property does not exist, the table is created in the
namespace ns2.

@NosqlTable(tableName =
"#{ systemProperties['sys_ns'] !=
null ? systemProperties['sys_ns'] :
@environment.getProperty('ENV_N
S') != null ?
@environment.getProperty('ENV_N
S') : '${app.ns:srcNs}' }:Customer")

In this example, the namespace is evaluated in the following
order:

1. In the namespace defined by the JVM system property
sys_ns.

2. If sys_ns is not available, then environment variable
ENV_NS is tried.

3. If ENV_NS is not available, then the namespace defined by
the app.ns property in application.properties
resource file is tried.

4. If none of the above are available, the Customer table is
created in the srcNs namespace.

@NosqlTable(tableName =
":Customer")

The starting colon ':' is automatically ignored when SpEl
expressions '#' and '$' are used and result is an "" empty string
namespace.

In this example, an error is returned since neither of them are
present.

For more details on namespace management, see Introducing Namespaces in the
Java Direct Driver Developer's Guide.

Example:

Create the Student entity class and provide the required table name (Customer) and
the namespace (JVM system property sys_ns) in the @NosqlTable annotation. The
spring driver evaluates the SpEL expressions and the Customer table is created in
sys_ns namespace. If the namespace does not exist, the table is created in the
sysdefault namespace.

import com.oracle.nosql.spring.data.core.mapping.NosqlId;
import com.oracle.nosql.spring.data.core.mapping.NosqlTable;

Chapter 1
Example: Accessing Oracle NoSQL Database Using Spring Data Framework

1-8

/* The @NosqlTable annotation specifies that this class will be mapped to an
Oracle NoSQL Database table. */

/* Sets the table name. */
@NosqlTable(tableName = "#{ systemProperties['sys_ns']}:Customer")

public class Student {
 /* The @NosqlId annotation specifies that this field will act as the ID
field.
 The generated=true attribute specifies that this ID will be auto-
generated by a sequence. */
 @NosqlId(generated = true)
 long id;
 String firstName;
 String lastName;

 /* public or package protected constructor required when retrieving
from database. */
 public Student() {

 }
 /* This method overrides the toString() method, and then concatenates
id, firstname, lastname,
 and then returns a String. */
 @Override
 public String toString() {
 return "Student{" +
 "id=" + id + ", " +
 "firstName=" + firstName + ", " +
 "lastName=" + lastName +
 '}';
 }
}

Components of Oracle NoSQL Database SDK for Spring Data
The Oracle NoSQL Database Proxy should be set up to facilitate a connection between
Oracle NoSQL Database and Spring Data Framework. To set up the Oracle NoSQL
Database Proxy, see Oracle NoSQL Database Proxy in the Administrator's Guide. Once set
up, you then configure the Oracle NoSQL Database Proxy details in the NosqlRepository
interface. You provide the Oracle NoSQL Database connection and authentication (if any)
details in the NosqlDBConfig class. The POJOs (entity) with the @NosqlTable annotation are
mapped to the Oracle NoSQL Database tables by the Oracle NoSQL Database SDK for
Spring Data. The following diagram provides the components of the Oracle NoSQL Database
SDK for Spring Data.

Chapter 1
Components of Oracle NoSQL Database SDK for Spring Data

1-9

Figure 1-1 Components of Oracle NoSQL Database SDK for Spring Data

Projections
Use Projections when the required result is a subset of an entity, that is when the
required result is just a small part of the entity. You can define an interface or a POJO
class with a subset of the properties found in the entity class. Then you use these
interfaces or POJO classes as the parametrized type result of the custom repository
methods.

Examples

The following examples are shown in the context of Student entity class. See
Example: Accessing Oracle NoSQL Database Using Spring Data Framework to get
the details on creating the Student entity class and the StudentRepository interface.

1. Define an interface StudentView and a POJO class StudentProjection.

public interface StudentView {
 String getLastName();
}

public class StudentProjection {
 private String firstName;
 private String lastName;
 public StudentProjection(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;

Chapter 1
Projections

1-10

 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
}

2. The new types (StudentView and StudentProjection) can be used as the result of the
custom find methods in the StudentRepository class.

import java.util.Date;
import com.oracle.nosql.spring.data.repository.NosqlRepository;
public interface StudentRepository
extends NosqlRepository<Student, Long>
{
 Iterable<Student> findByLastName(String lastname);
 Iterable<Student> findByCreatedAtBetween(Date start, Date end);
 Iterable<StudentView> findAllByLastName(String lastName);
 Iterable<StudentProjection> getAllByLastName(String lastName);
}

Since these results contain a subset of the row, if the Id property is not included the
returned set could contain duplicates. If these duplicates are not required then you can
use the Distinct keyword to eliminate them.

Example:

List<StudentView>findAllDistinctByLastName(String lastName);
List<StudentProjection> getAllDistinctByLastName(String lastName);

These methods will generate the following queries:

declare $p_lastName String;
select distinct {'lastName': t.kv_json_.lastName} as kv_json_ from
Student \
 as t where t.kv_json_.lastName = $p_lastName

declare $p_lastName String;
select distinct {'firstName': t.kv_json_.firstName, 'lastName':
t.kv_json_.lastName} as kv_json_ \
from Student as t where t.kv_json_.lastName = $p_lastName

Note:

Only interface and class based projections that contain a subset of entity
properties are supported by NoSQL SDK for Spring Data. Projections using
@Value annotations are not supported. Dynamic projections, when return type
is parametrized, are also not supported.

Chapter 1
Projections

1-11

3. Modify the run method and invoke the custom methods (defined with Projection
interface and POJO Class).

// Using projection interface
System.out.println("\n With projection findAllByLastName: Smith");
repo.findAllByLastName("Smith")
.forEach(c -> System.out.println("StudentView :" + c));
// using projection POJO class here
System.out.println("\n With projection getAllByLastName: Smith");
repo.getAllByLastName("Smith")
.forEach(c -> System.out.println("StudentProjection.firstName :" +
c.getFirstName()
 + " StudentProjection.lastName :" +
c.getLastName()));

Note:

See Example: Accessing Oracle NoSQL Database Using Spring Data
Framework to get more details on the AppConfig class to provide the
connection details of the database and the App class that implements the
run method and has the main method.

4. Run the program from the runner class. You will get the following output.

With projection findAllByLastName: Smith
StudentView :Student{id=0, firstName='null', lastName='Smith',
createdAt='null'}
With projection getAllByLastName: Smith
StudentProjection.firstName :John
StudentProjection.lastName :Smith

Persistence Model
An entity is a lightweight persistence domain object. The persistent state of an entity is
represented through persistent fields using Java Beans / Plain Old Java Objects
(POJOs).

The Spring Data Framework supports the persistence of entities to Oracle NoSQL
Database tables. An entity is mapped to a table. The ID field in that entity is mapped to
the primary key column of that table. All other fields in the entity are mapped to a
JSON column of that table. Each instance of the entity will be stored as a single row in
that table. The value of the ID field in that instance will be stored as the primary key
value of that row. The values of all other fields (including other objects) (see JSON
Column) in that instance will be serialized and stored as values in the JSON column of
that row. Effectively, the table will always have only two columns: a primary key column
and a JSON column.

Chapter 1
Persistence Model

1-12

Figure 1-2 Persistence Model

If a persistent POJO has a reference to another persistent POJO (nested objects) that maps
to a different table, the Spring Data Framework will not serialize objects to multiple tables.
Instead, all the nested objects will be serialized and stored as values in the JSON column.
For more information on JSON Column mappings, see JSON Column.

The following is the syntax of an entity with @NosqlTable and @NosqlId annotations. In the
example below, the Student class with the @NosqlTable annotation will be mapped to a table
named Student in the Oracle NoSQL Database. The ID field with the @NosqlId annotation
will be the primary key field in the Student table. The firstName and lastName fields will be
mapped to a single JSON field named kv_json_ in the Student table.

When retrieving entries from the repository the driver needs to instantiate the entity classes.
These classes need to have a default constructor or an empty constructor that is public or
package protected.

Note:

The classes may have other constructors too.

/*The @NosqlTable annotation specifies that
this class will be mapped to an Oracle NoSQL Database table.*/
@NosqlTable
public class Student {
 //The @NosqlId annotation specifies that this field will act as the ID
field.
 @NosqlId
 public long ID;

 public String firstName;
 public String lastName;

 public Student() {}
}

Table Name

By default, the entity simple class name is used for the table name. You can provide a
different table name using the @NosqlTable annotation. The @NosqlTable annotation enables
you to define additional configuration parameters such as table name and timeout.

Chapter 1
Persistence Model

1-13

For example, an entity named Student will be persisted in a table named Student. If
you want to persist an entity named Student in a table named Learner, you can
achieve that using the @NosqlTable annotation.

If the @NosqlTable annotation is specified, then the following configuration could be
provided.

Table 1-2 Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

tableNa
me

String Optional Optional empty Specifies the name of the table,
simple or namespace-qualified form.

If empty, then the entity class name
will be used.

For more information on the
namespace, see Namespace
Management in the SQL Reference
Guide.

In the Oracle NoSQL Database
Cloud Service, the namespace part,
if provided, is used as the
compartment name. For more
information on using compartments,
see Creating a Compartment in the
Oracle NoSQL Database Cloud
Service Guide.

Chapter 1
Persistence Model

1-14

Table 1-2 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

autoCre
ateTabl
e

boolean Optional Optional true Specifies if the table should be
created if it does not exist.

Note:

The
Spring
Data
Frame
work
looks
for the
reposit
ories
used in
the
applica
tion in
the
init
phase.
If the
table
does
not
exist,
and if
the
@Nosql
Table
annotat
ion has
the
autoCr
eateTa
ble as
true,
then
the
table
will be
created
in the

Chapter 1
Persistence Model

1-15

Table 1-2 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

init
phase.

readUni
ts

int Ignored Required -1 Specifies the maximum read
throughput to be used if the table is
to be created.

For more information on readUnits,
see Plan your service in the Oracle
NoSQL Database Cloud Service.

Note:

In
Oracle
NoSQL
Databa
se
Cloud
Service
, the
readUn
its
parame
ter
should
be set
to a
value
greater
than 0
else it
will
return
an
error.

Chapter 1
Persistence Model

1-16

Table 1-2 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

writeUn
its

int Ignored Required -1 Specifies the maximum write
throughput to be used if the table is
to be created.

For more information on
writeUnits, see Plan your service
in the Oracle NoSQL Database
Cloud Service.

Note:

In
Oracle
NoSQL
Databa
se
Cloud
Service
, the
writeU
nits
parame
ter
should
be set
to a
value
greater
than 0
else it
will
return
an
error.

Chapter 1
Persistence Model

1-17

Table 1-2 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

storage
GB

int Ingored Required -1 Specifies the maximum amount of
storage, in gigabytes, allowed for the
table, if the table is to be created.

For more information on storageGB,
see Plan your service in the Oracle
NoSQL Database Cloud Service.

Note:

In
Oracle
NoSQL
Databa
se
Cloud
Service
, the
storag
eGB
parame
ter
should
be set
to a
value
greater
than 0
else it
will
return
an
error.

Chapter 1
Persistence Model

1-18

Table 1-2 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

timeout int Optional Optional 0 Specifies the maximum time length,
in milliseconds, that the operations
are allowed to take before a timeout
exception is thrown.

If the value for timeout is not set
then the timeout set in
NoSQLHandleConfig class is used.
For information on getting the
timeout from NoSQLHandleConfig
class using the
getTableRequestTimeout()
method, see NoSQLHandleConfig in
the Java SDK API Reference.

The timeout value can also be
changed using
NosqlRepository.setTimeout(i
nt) method. For more information,
see setTimeout in the SDK for Spring
Data API Reference.

Chapter 1
Persistence Model

1-19

Table 1-2 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

consist
ency

String Optional Optional EVENTUA
L

Specifies the consistency used for
read operations.

Valid values are based on
oracle.nosql.driver.Consiste
ncy are EVENTUAL and ABSOLUTE .
See Consistency in the Java SDK
API Reference.

Note:

This is
the
default
for all
read
operati
ons. It
can be
overrid
den by
using
NosqlR
eposit
ory.se
tConsi
stenc
y(Stri
ng).
For
more
informa
tion,
see
setCon
sistenc
y in the
SDK
for
Spring
Data
API
Refere
nce.

Chapter 1
Persistence Model

1-20

Table 1-2 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

durability String Optional Optional COMMIT_
NO_SYNC

Sets the default durability for all the
write operations applied to this table.

Valid values based on
oracle.nosql.driver.Durabili
ty are COMMIT_NO_SYNC,
COMMIT_SYNC, and
COMMIT_WRITE_NO_SYNC. See
Durability in the Java SDK API
Reference.

capacityM
ode

NosqlCap
acityMode
For more
informatio
n, see
NosqlCap
acityMode
.

Optional Optional NosqlCa
pacityM
ode.PRO
VISIONE
D

Sets the capacity mode when the
table is created. This applies only in
cloud or cloud sim scenarios.

A table is created with either
Provisioned Capacity or On-
Demand Capacity. For more
details, see Cloud Concepts in the
Oracle NoSQL Database Cloud
Service.

Set the values for the TableLimits
instance based on the capacity mode
as follows:
• Set capacityMode to

PROVISIONED and all three
TableLimits: readUnits,
writeUnits, and storageGB
to values greater than 0.

• Set capacityMode to
ON_DEMAND and storageGB
to a value greater than 0.

ttl int Optional Optional 0 Sets the default table level Time to
Live (TTL) when the table is created.
The TTL allows the automatic
expiration of table rows after the
elapse of the specified duration.

If the value is not set, the value
Constants.NOTSET_TABLE_TTL is
used, that is, table-level TTL is not
applicable. See
NOTSET_TABLE_TTL in the SDK
for Spring Data API Reference.

This parameter is applicable only
when autoCreateTable is set to true.

Chapter 1
Persistence Model

1-21

Table 1-2 (Cont.) Attributes in NosqlTable Annotation

Paramet
er

Type Ignored/
Optional/
Required
in Oracle
NoSQL
Database

Ingnored
/
Optional/
Required
in Oracle
NoSQL
Database
Cloud
Service

Default Description

ttlUnit TtlUnit Optional Optional NosqlTa
ble.Ttl
Unit.DA
YS

Sets the unit of TTL value. The valid
values are:
NosqlTable.TtlUnit.DAYS and
NosqlTable.TtlUnit.HOURS.

If the value is not set, the default
value of days is used.

This parameter is applicable only
when autoCreateTable is set to true.

Primary Key

The table requires a primary key. The field named ID in the entity will be used as the
primary key. You can select a different field in the entity (a field with a different name
other than ID) to designate as the primary key using the @NosqlId annotation or the
@id annotation.

When an ID field is mapped to a primary key column, the Spring Data Framework will
automatically assign the corresponding data type to the ID field before storing it in the
table. The following is a list of data type mappings between a Java type and an Oracle
NoSQL Database type for the ID field.

The Java types that are provided in the following table are the only valid data types
that can be used for a primary key.

Table 1-3 Mapping Between Java and Oracle NoSQL Database Types

Java Type Oracle NoSQL Database Type

java.lang.String STRING
int
java.lang.Integer

INTEGER

long
java.lang.Long

LONG

Chapter 1
Persistence Model

1-22

Table 1-3 (Cont.) Mapping Between Java and Oracle NoSQL Database Types

Java Type Oracle NoSQL Database Type

double
java.lang.Double
float
java.lang.Float

DOUBLE

Note:

double, java.lang.Double,
float, and java.lang.Float can
be a primary key but it's not a valid
generated=true type

Note:

Since FLOAT in Oracle NoSQL
Database type is not explicitly used
in NoSQL SDK for Java, the Java
float and java.lang.Float are
mapped to the DOUBLE type.

java.math.BigDecimal
java.math.BigInteger

NUMBER

boolean
java.lang.Boolean

BOOLEAN

java.util.Date
java.sql.Timestamp
java.time.Instant

TIMESTAMP (P)

The Spring Data Framework deduces the primary key using the following rules:

• @NosqlId annotation: If @NosqlId annotation is used on a field with a valid data type for
the primary key, then that field is considered as the primary key. If @NosqlId is used on a
field of a type other than a valid data type for the primary key, an error is raised. For more
information, see NosqlId in the SDK for Spring Data API Reference.

• @org.springframework.data.annotation.Id annotation: If
@org.springframework.data.annotation.Id field annotation is used on a field with a
valid data type for the primary key, then that field is considered as the primary key. If
@org.springframework.data.annotation.Id is used on a field of a type other than a
valid data type for the primary key, an error is raised.

• Not specified: If none of the above two annotations are specified, then the Spring Data
Framework will use the field named ID as the primary key.

An error is raised if:

• No @NosqlId annotation or @org.springframework.data.annotation.Id annotation or
ID field is found in the entity, as no primary key field can be inferred.

Chapter 1
Persistence Model

1-23

• Two or more of @NosqlId or @org.springframework.data.annotation.Id
annotated fields are used in the entity, as multiple primary key fields can be
inferred.

Note:

The name of the fields that take the @NosqlId or
@org.springframework.data.annotation.Id annotations must not be
named kv_json_. It is because the second column of the table created by
the Spring Data Framework will be named as kv_json_ and will be a JSON
column where all attributes in the persistent entity that are not listed as
primary key attributes will be stored.

The @NosqlId field annotation can take the following additional configuration:

Table 1-4 Attributes in NosqlId Annotation

Paramet
er

Type Optional
/
Require
d

Default Description

generat
ed

boolean Optional false Specifies if the ID is auto-generated or not.

• If true, then it is defined as auto-generated by
the program.
– If int/Integer, long/Long, BigInteger

or BigDecimal, then GENERATED ALWAYS
as IDENTITY is used.

– If String, then "String as UUID
GENERATED BY DEFAULT" is used.

• If false, then the value must be managed by
your application.

Note:

Composite primary keys are not supported.

JSON Column

All other fields in the entity other than the primary key field will be converted into a
NoSQL JSON value with the following rules:

• The Java scalar values will be converted to NoSQL JSON atomic values.

• The Java collections and array structures will be converted to a NoSQL JSON
array.

• The Java non-scalar values will be recursively converted to NoSQL JSON objects.

• The Java null values will be converted to NoSQL JSON NULL values.

• The complex values will be converted to NoSQL JSON objects according to the
following table.

Chapter 1
Persistence Model

1-24

Table 1-5 Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON Datatype

java.lang.String STRING
int
java.lang.Integer

INTEGER

long
java.lang.Long

LONG

double
java.lang.Double
float
java.lang.Float

DOUBLE

Note:

Since FLOAT in Oracle NoSQL Database
type is not explicitly used in NoSQL SDK
for Java, Java float, and
java.lang.Float are mapped to the
DOUBLE type.

java.math.BigDecimal
java.math.BigInteger

NUMBER

boolean
java.lang.Boolean

BOOLEAN

byte[] STRING - a binary base64-encoded representation.

java.util.Date
java.sql.Timestamp
java.time.Instant

STRING - an ISO-8601 UTC timestamp encoded representation.

org.springframework.dat
a.geo.Point

GeoJson Point

For more information on GeoJson Data, see About GeoJson Data in
the SQL Reference Guide.

Chapter 1
Persistence Model

1-25

Table 1-5 (Cont.) Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON Datatype

org.springframework.dat
a.geo.Polygon

GeoJson Polygon

For more information on GeoJson Data, see About GeoJson Data in
the SQL Reference Guide .

Note:

Polygons must conform to the following
rules to be well-formed, otherwise they
will be ignored when used in queries.

1. A linear ring is a closed LineString
with four or more positions.

2. The first and last positions are
equivalent, and they must contain
identical values.

3. A linear ring is either the boundary of
a surface or the boundary of a hole in
a surface.

4. A linear ring must follow the right-
hand rule for the area it bounds, that
is, for exterior rings, their positions
must be ordered counterclockwise,
and for holes, their position must be
ordered clockwise.

Before inserting new polygons in the
table, the geo_is_geometry() function
can be used for verification. If polygon
data is indexed an error will be raised if
for some row the value of the index path
is not valid, unless that value is NULL,
json null, or EMPTY.

Chapter 1
Persistence Model

1-26

Table 1-5 (Cont.) Mapping Between Java and NoSQL JSON Types

Java Type Representation within Oracle NoSQL Database JSON Datatype

java.util.ArrayList
java.util.Collection
java.util.List
java.util.AbstractList
java.util.HashSet
java.util.Set
java.util.AbstractSet
java.util.TreeSet
java.util.SortedSet
java.util.NavigableSet
java.util.Array []

ARRAY(JSON)

Note:

• A java.util.ArrayList object is
instantiated for fields of type
java.util.Collection,
java.util.List,
java.util.AbstractList, and
java.util.ArrayList.

• A java.util.HashSet object is
instantiated for fields of type
java.util.Set,
java.util.AbstractSet, and
java.util.HashSet.

• A java.util.TreeSet object is
instantiated for fields of type
java.util.SortedSet,
java.util.NavigableSet, and
java.util.TreeSet.

POJO<f1 T1, f2 T2...> MAP(JSON)
java enum types STRING
java.util.Map
java.util.NavigableMap
java.util.SortedMap
java.util.HashMap
java.util.LinkedHashMap
java.util.Hashtable
java.util.TreeMap

MAP(JSON)

Note:

• A java.util.HashMap is
instantiated for fields of type
java.util.HashMap

• A java.util.LinkedHashMap is
instantiated for fields of type
java.util.Map and
java.util.LinkedHasMap.

• A java.util.TreeMap is
instantiated for fields of type
java.util.NavigableMap,
java.util.SortedMap, and
java.util.TreeMap.

Chapter 1
Persistence Model

1-27

Note:

Java data structures that contain cycles are neither supported nor detected.
That is, if the entity object is traversed from the root down the fields and
encounters the same object twice it becomes a cycle.

Transactional Model
The transaction model for the Oracle NoSQL Database SDK for Spring Data builds on
top of the existing transaction model exposed by the Oracle NoSQL Database. That is,
ACID transactions are only supported for operations that do not span database
shards. From the perspective of your Spring application, you should think about ACID
transactions as being supported for those repository methods that operate over single
objects. Repository methods like deleteAll() are implemented in the Oracle NoSQL
Database SDK for Spring Data to make a "best-effort" to complete across all database
shards but make no ACID guarantees.

The write operations when using save(), saveAll(), delete(), deleteById(),
deleteAll() or write queries will be done based on the default Java driver durability.
For more information on default Java driver durability, see COMMIT_NO_SYNC in the
Java Direct Driver API Reference.

The read operations when using findByID(), findAllById(), findAll(), count() or
select queries will be done based on the default eventual consistency or as specified
in the @NosqlTable annotation. For more information on default eventual consistency,
see getDefaultConsistency in the Java SDK API Reference.

Setting up the Connection
To expose the connection and security parameters to the Oracle NoSQL Database
SDK for Spring Data, you need to create a class that extends the
AbstractNosqlConfiguration class. You could customize this code as per your
requirement. Perform the following steps to set up a connection to the Oracle NoSQL
Database.

Step 1: In your application, create the NosqlDbConfig class. This class will have the
connection details to the Oracle NoSQL Database Proxy. Provide the @Configuration
and @EnableNoSQLRepositories annotations to this NosqlDbConfig class. The
@Configuration annotation tells the Spring Data Framework that the @Configuration
annotated class is a configuration class that should be loaded before running the
program. The @EnableNoSQLRepositories annotation tells the Spring Data Framework
that it needs to load the program and lookup for the repositories that extends the
NosqlRepository interface. The @Bean annotation is required for the repositories to be
instantiated.

Step 2: Create an @Bean annotated method to return an instance of the NosqlDBConfig
class. The NosqlDBConfig class will also be used by the Spring Data Framework to
authenticate the Oracle NoSQL Database.

Step 3: Instantiate the NosqlDbConfig class. Instantiating the NosqlDbConfig class will
cause the Spring Data Framework to internally instantiate an Oracle NoSQL Database
handle by authenticating with the Oracle NoSQL Database.

Chapter 1
Transactional Model

1-28

Note:

You could add an exception code block to catch any connection error that might be
thrown upon authentication failure.

Note:

Creating an Oracle NoSQL Database handle using the above-mentioned steps has
a limitation. The limitation is that the application will not be able to connect to two or
more different clusters at the same time. This is a Spring Data Framework
limitation. For more information on Spring Data Framework, see Spring Core.

Note:

If you have trouble connecting to Oracle NoSQL Database from your Spring
application, you can add an exception block and print the message for debugging.

As given in the following example, you can use the StoreAccessTokenProvider class to configure
the Spring Data Framework to connect and authenticate with an Oracle NoSQL Database.
You need to provide the URL of the Oracle NoSQL Database Proxy with non-secure access.

/*Annotation to specify that this class can be used by the
 Spring Data Framework as a source of bean definitions.*/
@Configuration
//Annotation to enable NoSQL repositories.
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 /*Annotation to tell the Spring Data Framework that the returned object
 should be registered as a bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig() {
 AuthorizationProvider authorizationProvider;
 authorizationProvider = new StoreAccessTokenProvider();
 //Provide the host name and port number of the NoSQL cluster.
 return new NosqlDbConfig("http://<host:port>",
authorizationProvider);
 }
}

The following example modifies the previous example to connect to a secure Oracle NoSQL
Database store. For more details on StoreAccessTokenProvider class, see
StoreAccessTokenProvider in the Java SDK API Reference.

/*Annotation to specify that this class can be used by the
 Spring Data Framework as a source of bean definitions.*/
@Configuration
//Annotation to enable NoSQL repositories.
@EnableNosqlRepositories

Chapter 1
Setting up the Connection

1-29

public class AppConfig extends AbstractNosqlConfiguration {

 /*Annotation to tell the Spring Data Framework that the returned
object
 should be registered as a bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig() {
 AuthorizationProvider authorizationProvider;
 //Provide the username and password of the NoSQL cluster.
 authorizationProvider = new StoreAccessTokenProvider(user,
password);
 //Provide the host name and port number of the NoSQL cluster.
 return new NosqlDbConfig("http://<host:port>",
authorizationProvider);
 }
}

For secure access, the StoreAccessTokenProvider parameterized constructor takes
the following arguments.

• username is the username of the kvstore.

• password is the password of the kvstore user.

For more details on the security configuration, see Creating NoSQL Handle in the
Administrator's Guide.

As given in the following example, you can use the SignatureProvider class to
configure the Spring Data Framework to connect and authenticate with the Oracle
NoSQL Database Cloud Service. See SignatureProvider in the Java SDK API
Reference.

/*Annotation to specify that this class can be used by the
 Spring Data Framework as a source of bean definitions.*/
@Configuration
//Annotation to enable NoSQL repositories.
@EnableNosqlRepositories
public class AppConfig extends AbstractNosqlConfiguration {

 /*Annotation to tell the Spring Data Framework that the returned
object
 should be registered as a bean in the Spring application.*/
 @Bean
 public NosqlDbConfig nosqlDbConfig() {
 SignatureProvider signatureProvider;

 /*Details that are required to authenticate and authorize
access to
 the Oracle NoSQL Database Cloud Service are provided.*/
 signatureProvider = new SignatureProvider(
 <tenantId>, //The Oracle Cloud Identifier (OCID) of the
tenancy.
 <userId>, //The Oracle Cloud Identifier (OCID) of a user
in the tenancy.
 <fingerprint>, //The fingerprint of the key pair used for
signing.

Chapter 1
Setting up the Connection

1-30

 <privateKeyFile>, //Full path to the key file.
 <passphrase> //Optional. A pass phrase for the key, if it is
encrypted.
);
 /*Provide the service URL of the Oracle NoSQL Database Cloud Service
and
 update the 'Region.US_PHOENIX_1' with an appropriate value.*/
 return new NosqlDbConfig(Region.US_PHOENIX_1,signatureProvider);
 }
}

Defining a Repository
The entity class that is used for persistence is discoverable by the Spring Data Framework
either via annotation or inheritance. The NosqlRepository interface allows you to inherit and
create an interface for each entity that will use the Oracle NoSQL Database for persistence.

The NosqlRepository interface extends Spring's PagingAndSortingRepository interface that
provides many methods that define queries.

In addition to those methods that are provided by the NosqlRepository interface, you can
add methods to your repository interface to define derived queries. These interface methods
follow a specific naming pattern for Spring derived queries (for more information derived
queries, see Query Creation) intercepted by the Spring Data Framework. The Spring Data
Framework will use this naming pattern to generate an expression tree, passing this tree to
the Oracle NoSQL Database SDK for Spring Data, where this expression tree is converted
into an Oracle NoSQL Database query, which is compiled and then executed. These Oracle
NoSQL Database queries are executed when you call the repository's respective methods.

If you wish to create your derived queries, this must be done by extending the
NosqlRepository interface and adding your own Java method signatures that conform to the
naming patterns as discussed in the derived queries section.

The following is an example of a code that implements the NosqlRepository interface. You
must provide the bounded type parameters: the entity type and the data type of the ID field.
This interface implements a derived query findByLastName and returns an iterable instance
of the Student class.

import com.oracle.nosql.spring.data.repository.NosqlRepository;

/*The Student is the entity class, and Long is the data type of the
 primary key in the Student class. This interface implements a derived
query
 findByLastName and returns an iterable instance of the Student class.*/
public interface StudentRepository extends NosqlRepository<Student, Long> {

 /*The Student is searched by lastname and
 an iterable instance of the Student class is returned.*/
 Iterable<Student> findByLastName(String lastname);
}

Chapter 1
Defining a Repository

1-31

Starting the Application
After creating the entity and repository, you should write a program to run the Spring
application. You can do that using a Spring boot application or a Spring core
application.

Create an @SpringBootApplication annotated class to run a Spring boot application.
You could override the run method in the CommandLineRunner interface to write your
code.

The following is an example of a Spring boot application.

//The annotation helps to build an application using Spring Data
Framework rapidly.
@SpringBootApplication
public class BootExample implements CommandLineRunner {

 /*The annotation enables Spring Data Framework to
 look up the configuration file for a matching bean.*/
 @Autowired
 private StudentRepository nosqlRepo;

 @Override
 public void run(String... args) throws Exception {
 ...
 }
}

The following is an example of a Spring core application.

public class CoreExample {
 public static void main(String[] args) {
 ApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);
 NosqlOperations ops =
(NosqlOperations)ctx.getBean("nosqlTemplate");
 ...
 }
}

Note:

The Spring Data Framework will look in the classpath for a class with the
@configuration annotation and contains a method named "NosqlTemplate"
with the @Bean annotation.

Chapter 1
Starting the Application

1-32

Queries
You can use the queries provided in the repository base classes such as the
PagingAndSortingRepository interface, or write your queries. The Spring Data Framework
supports the following types of queries.

1. Generic queries - queries provided by methods in the PagingAndSortingRepository
interface and CrudRepository interfaces.

2. Derived queries - queries derived/generated by Spring SDK from the name of the method
based on the keywords.

3. Native queries - queries provided by user in the SQL for NoSQL Database format.

PagingAndSortingRepository Interface
The NosqlRepository interface extends the PagingAndSortingRepository interface.

The PagingAndSortingRepository interface extends the CrudRepository interface and
provides methods such as:

• Page<T> findAll(Pageable pageable)

• Iterable<T> findAll(Sort sort)

• long count()

• void delete(T entity)

• void deleteAll()

• void deleteAll(Iterable<? extends T> entities)

• void deleteAllById(Iterable<? extends ID> ids)

• void deleteById(ID id)

• boolean existsById(ID id)

• Iterable<T> findAll()

• Iterable<T> findAllById(Iterable<ID> ids)

• Optional<T> findById(ID id)

• <S extends T> S save(S entity)

• <S extends T> Iterable<S> saveAll(Iterable<S> entities)

You can use any of these methods for the required functionality.

For more information on the Spring's PagingAndSortingRepository interface, see
PagingAndSortingRepository.

Derived Queries
Apart from those query methods that are provided by Spring's PagingAndSortingRepository
interface, you could also define derived queries. Spring Data Framework has an inbuilt query
creation feature. Spring Data Framework creates queries directly from the Java method name
alone.

Chapter 1
Queries

1-33

For example, if we have a Java method name with the following construct,

List<Customer> findByFirstName(String firstName);

then the following derived query will be auto-created by the Spring Data Framework.

declare $firstName String;

SELECT * FROM Customer AS c WHERE c.kv_json_.firstName = $firstName;

The only requirement for this derived query to work is that this Java method should be
defined in the interface that extends the NosqlRepository interface. The
NosqlRepository interface extends the Repository interface which is responsible for
the derived queries. The common prefixes from the Java method name are removed
and the constraints of the query are parsed from the rest of the Java method name.
For more information on Spring derived query creation, see Query Creation.

The Java methods with the prefixes find…By, read…By, query…By, count…By, get…By,
exists…By, delete…By, and remove…By are considered as derived query methods by
Spring Data Framework. Apart from these prefixes, the Java method name could also
have other keywords. The following section provides the detailed derived query
snippets that would be generated if the given keywords are used.

And
If a method name has the word and in the following construct,

Iterable<Student> findByFirstNameAndLastName(String firstname, String
lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_firstName String;
$p_lastName String;

SELECT * FROM Student AS s WHERE (
 s.kv_json_.firstName = $p_firstName AND s.kv_json_.lastName
= $p_lastName)

Note:

The Oracle NoSQL Database SDK for Spring Data supports derived queries
that use a combination of the logical operators (and, or). The generated
query will follow the rules of operator precedence defined in the Oracle
NoSQL Database SQL query language. For more information on the
operator precedence in the Oracle NoSQL Database SQL query language,
see Operator Precedence in the SQL Reference Guide.

Chapter 1
Queries

1-34

Or
If a method name has the word or in the following construct,

Iterable<Student> findByFirstNameOrLastName(String firstname, String
lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_firstName String;
$p_lastName String;

SELECT * FROM Student AS s WHERE (
 s.kv_json_.firstName = $p_firstName OR s.kv_json_.lastName = $p_lastName)

Note:

The Oracle NoSQL Database SDK for Spring Data supports derived queries that
use a combination of the logical operators (and, or). The generated query will follow
the rules of operator precedence defined in the Oracle NoSQL Database SQL query
language. For more information on the operator precedence in the Oracle NoSQL
Database SQL query language, see Operator Precedence in the SQL Reference
Guide.

OrderBy (Asc/Desc)
If a method name has the word orderby in the following construct,

Iterable<Student> findByLastNameOrderByFirstNameAsc(String lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_lastName String;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName ORDER BY s.kv_json_.firstName ASC

If a method name has the word orderby in the following construct,

Iterable<Student> findByLastNameOrderByFirstNameDesc(String lastname);

then the following derived query will be auto-created by the Spring Data Framework.

declare $p_lastName String;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName ORDER BY s.kv_json_.firstName
DESC

Chapter 1
Queries

1-35

First
If a method name has the word first in the following construct,

Page<Student> queryFirst5ByLastname(String lastname, Pageable
pageable);

then the following derived query will be auto-created by the Spring Data Framework.

For more information on Page, see Page. For more information on Pageable, see
Pageable.

declare $p_lastName String;
$kv_limit_ Long;
$kv_offset_ Long;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName LIMIT $kv_limit_
OFFSET $kv_offset_

Top
If a method name has the word top in the following construct,

Slice<Student> findTop10ByLastName(String lastname, Pageable pageable);

then the following derived query will be auto-created by the Spring Data Framework.

For more information on Slice, see Slice.

declare $p_lastName String;
$kv_limit_ Long;
$kv_offset_ Long;

SELECT * FROM Student AS s
 WHERE s.kv_json_.lastName = $p_lastName LIMIT $kv_limit_
OFFSET $kv_offset_

For the complete list of supported keywords in query methods in Oracle NoSQL
Database SDK for Spring Data, see Supported Keywords in Query Method.

The following is an example of an Oracle NoSQL Database repository. It must extend
the NosqlRepository interface. The bounded types represent the entity type and the
data type of the ID field.

interface PersonRepository extends NosqlRepository<Person, Long> {
 List<Person> findByFirstNameAndLastName(String firstname, String
lastname);
 List<Person> findByLastNameOrderByFirstNameDesc(String lastname);
}

Chapter 1
Queries

1-36

Supported Keywords in Derived Queries
The following is the list of supported keywords for prefix in the derived query method name.

Table 1-6 Supported Keywords for Prefix

Prefix Keyword Example

findBy List<Customer> findByFirstName(String firstName)
queryBy List<Customer> queryByFirstName(String firstName)
getBy List<Customer> getByFirstName(String firstName)
readBy List<Customer> readByFirstName(String firstName)
countBy long countByFirstName(String firstName) - returns the count of the

matching rows

existsBy boolean existsByLastName(String lastname) - returns true if
returned rows > 0

The following is the list of supported keywords for body in the derived query method name.

Table 1-7 Supported Keywords for Body

Body Keyword No. of
Parts

No. of
Params

Example

fieldname 1 1 List<Customer> findByLastName(String
lastName)

fieldnameReferencef
ieldname

1 1 List<Customer> findByAddressCity(String
city)
class Customer { Address adress; ...}
class Address { String city; ...}

And 2 0 List<Customer>
findByFirstNameAndLastName(String
firstName, String lastName)

Or 2 0 List<Customer>
findByFirstNameOrLastName(String firstName,
String lastName

GreaterThan 1 1 List<Customer> findByAgeGreaterThan(int
minAge)

GreaterThanEqual 1 1 List<Customer>
findByAgeGreaterThanEqual(int minAge)

LessThan 1 1 List<Customer> findByAgeLessThan(int
maxAge)

LessThanEqual 1 1 List<Customer> findByAgeLessThanEqual(int
maxAge)

IsTrue 1 0 List<Customer> findByVanillaIsTrue()
Desc 1 0 List<Customer>

queryByLastNameOrderByFirstNameDesc(String
lastname)

Chapter 1
Queries

1-37

Table 1-7 (Cont.) Supported Keywords for Body

Body Keyword No. of
Parts

No. of
Params

Example

Asc 1 0 List<Customer>
getByLastNameOrderByFirstNameAsc(String
lastname)

In 1 1 List<Customer>
findByAddressCityIn(List<Object> cities) -
param must be a List

NotIn 1 1 List<Customer>
findByAddressCityNotIn(List<String> cities)
- param must be a List

Between 2 2 List<Customer> findByKidsBetween(int min,
int max)

Regex 1 1 List<Customer> findByFirstNameRegex(String
regex)

Exists 1 0 List<Customer> findByAddressCityExists() -
find all that have a city set

Near 1 1 List<Customer>
findByAddressGeoJsonPointNear(Circle
circle) - param must be of
org.springframework.data.geo.Circle type

Within 1 1 List<Customer>
findByAddressGeoJsonPointWithin(Polygon
point) - param must be of
org.springframework.data.geo.Polygon type

IgnoreCase 1 0 List<Customer>
findByLastNameAndFirstNameIgnoreCase(String
lastname, String firstname); -Enable ignore
case only for firstName field

AllIgnoreCase many 0 List<Customer>
findByLastNameAndFirstNameAllIgnoreCase(Str
ing lastname, String firstname); - Enable
ignore case for all suitable properties

Distinct 0 0 List<CustomerView>
findAllDistinctByLastName(String lastName);
- Projection to interface CustomerView
List<CustomerProjection>
getAllDistinctByLastName(String lastName);
- Projection to POJO class CustomerProjection

Native Queries
The @oracle.spring.data.nosql.repository.Query annotation allows you to
execute the native SQL query.

public interface AuthorRepository extends NoSQLRepository<Author,
Long> {
 @Query(value = "DECLARE $firstName STRING;
 SELECT * FROM author WHERE first_name = $firstName")

Chapter 1
Queries

1-38

 List<Author> findAuthorsByFirstName(@Param("firstName") String
firstName);

 @Query("DECLARE $firstName STRING; $last STRING; " +
 "SELECT * FROM Customer AS c " +
 "WHERE c.kv_json_.firstName = $firstName AND " +
 "c.kv_json_.lastName = $last")
 List<Customer> findCustomersWithLastAndFirstNosqlValues(
 @Param("$last") StringValue paramLast,
 @Param("$firstName") StringValue firstName
);
}

Parameters are matched by name using the
@org.springframework.data.repository.query.Param annotation. The @Param annotation
value field must match exactly, including the '$' char, the name of the declared bind variable.
If @Param annotation is not used an exception is thrown. All the parameters will get mapped
according to the mapping rules mentioned in the Persistence Model section.

Note:

The second method findAuthorsWithLastAndFirstNosqlValues works with
oracle.nosql.driver.values.StringValue. All FieldValue sub-classes are
supported for query parameters. FieldValue is the base class of all data items in
the NoSQL SDK for Java. Each data item is an instance of FieldValue allowing
access to its type and its value as well as additional utility methods that operate on
FieldValue. On top of that, parameters of type FieldValue are also supported. For
more information on FieldValue, see FieldValue.

For details on full query support in the Oracle NoSQL Database, see SQL Reference Guide.

Activating Logging
To enable logging in Oracle NoSQL Database SDK for Spring Data, you must include the
following parameter when running the application.

-Dlogging.level.com.oracle.nosql.spring.data=DEBUG

The following are the logging levels that you could provide:

• ERROR: The ERROR level logging includes any unexpected errors.

• DEBUG: The DEBUG level logging includes generated SQL statements that the module
generates internally.

The following example contains the code to run the application with logging.

To run the application with Nosql module logging at DEBUG level
$ java -cp $CP:target/example-spring-data-oracle-nosql-1.3-SNAPSHOT.jar
 -Dlogging.level.com.oracle.nosql.spring.data=DEBUG org.example.App
...
020-12-02 11:50:18.426 DEBUG 20325 --- [main]

Chapter 1
Activating Logging

1-39

 c.o.n.spring.data.core.NosqlTemplate : DDL: CREATE TABLE IF NOT
EXISTS
 StudentTable (id LONG GENERATED ALWAYS as IDENTITY (NO CYCLE),
 kv_json_ JSON, PRIMARY KEY(id))
2020-12-02 11:50:19.334 INFO 20325 --- [main]
 org.example.App : Started App in 2.464 seconds (JVM running for
2.782)
=== Start of App ====
2020-12-02 11:50:19.340 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: DELETE FROM StudentTable
Saving s1: Student{id=0, firstName='John', lastName='Doe'}
2020-12-02 11:50:19.362 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : execute insert in table
StudentTable
Saving s2: Student{id=0, firstName='John', lastName='Smith'}
2020-12-02 11:50:19.387 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : execute insert in table
StudentTable

findAll:
2020-12-02 11:50:19.392 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: SELECT * FROM
StudentTable t
Student: Student{id=1, firstName='John', lastName='Doe'}
Student: Student{id=2, firstName='John', lastName='Smith'}

findByLastName: Smith
2020-12-02 11:50:19.412 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : Q: declare $p_lastName
String;
 select * from StudentTable as t where t.kv_json_.lastName
= $p_lastName
Student: Student{id=2, firstName='John', lastName='Smith'}
2020-12-02 11:50:19.426 DEBUG 20325 --- [main]
 c.o.n.spring.data.core.NosqlTemplate : DDL: DROP TABLE IF EXISTS
StudentTable
=== End of App ====

To enable Nosql module logging when running tests
$ mvn test -Dlogging.level.com.oracle.nosql.spring.data=DEBUG
...

You can enable additional logging and client statistics at the NoSQL Java SDK level.
For more details, see Logging in the SDK and Logging internal SDK statistics in the
oracle.nosql.driver package.

Chapter 1
Activating Logging

1-40

Glossary

Glossary-1

Index

Index-1

	Contents
	List of Figures
	List of Tables
	1 Oracle NoSQL Database SDK for Spring Data
	About the Oracle NoSQL Database SDK for Spring Data
	Example: Accessing Oracle NoSQL Database Using Spring Data Framework
	Setting TTL values
	Using SpEl expressions in NosqlTable.tableName annotation

	Components of Oracle NoSQL Database SDK for Spring Data
	Projections
	Persistence Model
	Transactional Model
	Setting up the Connection
	Defining a Repository
	Starting the Application
	Queries
	PagingAndSortingRepository Interface
	Derived Queries
	Supported Keywords in Derived Queries
	Native Queries

	Activating Logging

	Glossary
	Index

