
PeopleTools 8.61: Optimization
Framework

January 2024

PeopleTools 8.61: Optimization Framework
Copyright © 1988, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement
or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users
are "commercial computer software," "commercial computer software documentation," or "limited rights data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained
in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by
the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create a
risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as
set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit https://
docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Preface: Preface..vii
Understanding the PeopleSoft Online Help and PeopleBooks.. vii

Hosted PeopleSoft Online Help...vii
Locally Installed PeopleSoft Online Help... vii
Downloadable PeopleBook PDF Files...vii
Common Help Documentation.. vii
Field and Control Definitions... viii
Typographical Conventions...viii
ISO Country and Currency Codes.. ix
Region and Industry Identifiers.. ix
Translations and Embedded Help.. x

Using and Managing the PeopleSoft Online Help... x
PeopleTools Related Links... x
Contact Us...x
Follow Us...xi

Chapter 1: Getting Started with PeopleSoft Optimization Framework.. 13
PeopleSoft Optimization Framework Overview...13
PeopleSoft Optimization Framework Implementation... 13

Chapter 2: Understanding PeopleSoft Optimization Framework.. 15
Optimization.. 15
PeopleSoft Optimization Framework Components.. 15
PeopleSoft Optimization Framework System Architecture..16
Optimization-Based Application Development.. 17

Chapter 3: Designing Analytic Type Definitions.. 19
Understanding Analytic Type Definitions.. 19
Understanding Optimization Application Record Design..19

Optimization Application Records...20
Scenario Management.. 20

Assigning Permissions for Designing Optimization Records.. 21
Creating and Building Optimization Records.. 22
Creating Analytic Type Definitions..23

Defining an Analytic Type...23
Configuring Analytic Type Records.. 27
Configuring Models for Optimization... 30
Associating Analytic Types with Analytic Models... 34
Configuring Analytic Type Transactions... 34

Running the Optimization System Audit... 37
Changing Existing Analytic Type Definitions..38

Changing Optimization Application Records.. 38
Changing Optimization Transactions... 39

Administering Optimization Engines... 39
Setting Up Integration Broker..39

Updating Solver Licenses... 39
Chapter 4: Optimization PeopleCode.. 41

Using Optimization PeopleCode on the Application Server..41
Using Optimization PeopleCode in an Application Engine Program.. 41

Copyright © 1988, 2024, Oracle and/or its affiliates. iii

Contents

Performing Optimization in PeopleCode..42
Creating New Analytic Instances...42
Loading Analytic Instances Into an Analytic Server...43
Running Optimization Transactions...43
Invoking the Optimization PeopleCode Plug-In..44
Shutting Down Optimization Engines... 45
Deleting Existing Analytic Instances... 45
Programming for Database Updates.. 46

Using Lights-Out Mode with Optimization... 46
Understanding Lights-out Mode.. 46
Creating a Request Message.. 48
Creating a Response Message..53
Editing the Request PeopleCode..54
Editing the Response PeopleCode... 57

Optimization Built-in Functions... 59
CreateOptEngine...59
CreateOptInterface.. 61
DeleteOptProbInst...62
GetOptEngine..63
GetOptProbInstList... 64
InsertOptProbInst..66
IsValidOptProbInst..67

OptEngine Class Methods.. 68
CheckOptEngineStatus... 68
FillRowset... 70
GetDate... 72
GetDateArray.. 72
GetDateTime... 73
GetDateTimeArray..74
GetNumber..75
GetNumberArray.. 77
GetString... 77
GetStringArray..78
GetTime...80
GetTimeArray... 80
GetTraceLevel...81
RunAsynch..83
RunSynch..84
SetTraceLevel... 86
ShutDown... 88

OptEngine Class Properties.. 89
DetailMsgs.. 89
DetailedStatus... 90

OptBase Application Class... 91
OptBase Class Methods.. 92

GetParmDate...92
GetParmDateArray..93
GetParmDateTime...93
GetParmDateTimeArray... 94
GetParmNumber... 95
GetParmNumberArray.. 95

iv Copyright © 1988, 2024, Oracle and/or its affiliates.

Contents

GetParmInt..96
GetParmIntArray...96
GetParmString...97
GetParmStringArray... 97
GetParmTime.. 98
GetParmTimeArray...99
Init... 99
OptDeleteCallback.. 100
OptInsertCallback... 100
OptPostUpdateCallback.. 101
OptPreUpdateCallback..102
OptRefreshCallback.. 103
SetOutputParmDate.. 103
SetOutputParmDateArray... 104
SetOutputParmDateTime.. 104
SetOutputParmDateTimeArray...105
SetOutputParmNumber...106
SetOutputParmNumberArray..106
SetOutputParmInt..107
SetOutputParmIntArray.. 107
SetOutputParmString.. 108
SetOutputParmStringArray...108
SetOutputParmTime..109
SetOutputParmTimeArray.. 110

OptInterface Class Methods..110
ActivateModel...110
ActivateObjective..111
DeactivateModel... 112
DumpMsgToLog...113
FindRowNum..114
GetSolution... 115
GetSolutionDetail..116
IsModelActive...118
RestoreBounds.. 118
SetVariableBounds.. 119
SetVariableType.. 121
Solve... 122

Chapter 5: Administering Optimization Server Components.. 125
Administering Optimization Server Components...125

Copyright © 1988, 2024, Oracle and/or its affiliates. v

Contents

vi Copyright © 1988, 2024, Oracle and/or its affiliates.

Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

Hosted PeopleSoft Online Help
You can access the hosted PeopleSoft Online Help on the Oracle Help Center. The hosted PeopleSoft
Online Help is updated on a regular schedule, ensuring that you have access to the most current
documentation. This reduces the need to view separate documentation posts for application maintenance
on My Oracle Support. The hosted PeopleSoft Online Help is available in English only.

To configure the context-sensitive help for your PeopleSoft applications to use the Oracle Help Center,
see Configuring Context-Sensitive Help Using the Hosted Online Help Website.

Locally Installed PeopleSoft Online Help
If you’re setting up an on-premises PeopleSoft environment, and your organization has firewall
restrictions that prevent you from using the hosted PeopleSoft Online Help, you can install the online help
locally. Installable PeopleSoft Online Help is made available with selected PeopleSoft Update Images and
with PeopleTools releases for on-premises installations, through the Oracle Software Delivery Cloud.

Your installation documentation includes a chapter with instructions for how to install the online help
for your business environment, and the documentation zip file may contain a README.txt file with
additional installation instructions. See PeopleSoft 9.2 Application Installation for your database platform,
“Installing PeopleSoft Online Help.”

To configure the context-sensitive help for your PeopleSoft applications to use a locally installed online
help website, see Configuring Context-Sensitive Help Using a Locally Installed Online Help Website.

Downloadable PeopleBook PDF Files
You can access downloadable PDF versions of the help content in the traditional PeopleBook format on
the Oracle Help Center. The content in the PeopleBook PDFs is the same as the content in the PeopleSoft
Online Help, but it has a different structure and it does not include the interactive navigation features that
are available in the online help.

Common Help Documentation
Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

• Application Fundamentals

Copyright © 1988, 2024, Oracle and/or its affiliates. vii

https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_HOSTED
https://edelivery.oracle.com
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_LOCAL
https://docs.oracle.com/en/applications/peoplesoft/index.html

Preface

• Using PeopleSoft Applications

Most product families provide a set of application fundamentals help topics that discuss essential
information about the setup and design of your system. This information applies to many or all
applications in the PeopleSoft product family. Whether you are implementing a single application, some
combination of applications within the product family, or the entire product family, you should be familiar
with the contents of the appropriate application fundamentals help. They provide the starting points for
fundamental implementation tasks.

In addition, the PeopleTools: Applications User's Guide introduces you to the various elements of the
PeopleSoft Pure Internet Architecture. It also explains how to use the navigational hierarchy, components,
and pages to perform basic functions as you navigate through the system. While your application or
implementation may differ, the topics in this user’s guide provide general information about using
PeopleSoft applications.

Field and Control Definitions
PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions
The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign
(+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

. . . (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
 Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
 an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

viii Copyright © 1988, 2024, Oracle and/or its affiliates.

Preface

Typographical Convention Description

⇒ This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

ISO Country and Currency Codes
PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY_CD_TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY_TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers
Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

• Asia Pacific

• Europe

• Latin America

• North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

• USF (U.S. Federal)

Copyright © 1988, 2024, Oracle and/or its affiliates. ix

Preface

• E&G (Education and Government)

Translations and Embedded Help
PeopleSoft 9.2 software applications include translated embedded help. With the 9.2 release, PeopleSoft
aligns with the other Oracle applications by focusing our translation efforts on embedded help. We
are not planning to translate our traditional online help and PeopleBooks documentation. Instead we
offer very direct translated help at crucial spots within our application through our embedded help
widgets. Additionally, we have a one-to-one mapping of application and help translations, meaning that
the software and embedded help translation footprint is identical—something we were never able to
accomplish in the past.

Using and Managing the PeopleSoft Online Help

Select About This Help in the left navigation panel on any page in the PeopleSoft Online Help to see
information on the following topics:

• Using the PeopleSoft Online Help.

• Managing hosted Online Help.

• Managing locally installed PeopleSoft Online Help.

PeopleTools Related Links

PeopleTools 8.61 Home Page

PeopleSoft Search and Insights Home Page

“PeopleTools Product/Feature PeopleBook Index” (Getting Started with PeopleTools)

PeopleSoft Online Help

PeopleSoft Information Portal

PeopleSoft Spotlight Series

PeopleSoft Training and Certification | Oracle University

My Oracle Support

Oracle Help Center

Contact Us

Send your suggestions to psoft-infodev_us@oracle.com.

Please include the applications update image or PeopleTools release that you’re using.

x Copyright © 1988, 2024, Oracle and/or its affiliates.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2978466.2
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2205540.2
https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/spotlight.html
https://docs.oracle.com/pls/topic/lookup?ctx=psft_hosted&id=ou
https://support.oracle.com/CSP/ui/flash.html
https://docs.oracle.com/en/
mailto:PSOFT-INFODEV_US@ORACLE.COM

Preface

Follow Us

Icon Link

Watch PeopleSoft on YouTube

Follow @PeopleSoft_Info on X.

Read PeopleSoft Blogs

Connect with PeopleSoft on LinkedIn

Copyright © 1988, 2024, Oracle and/or its affiliates. xi

http://www.youtube.com/user/PSFTOracle
https://twitter.com/PeopleSoft_Info
https://blogs.oracle.com/peoplesoft
https://www.linkedin.com/groups/4530781/?home=&gid=4530781&trk=anet_ug_hm

Chapter 1

Getting Started with PeopleSoft
Optimization Framework

PeopleSoft Optimization Framework Overview

PeopleSoft Optimization Framework provides a foundation for building applications that use the
optimization-based, decision-making capability in the PeopleTools environment.

This section provides an overview of the conceptual information available about the PeopleSoft
Optimization Framework:

• Understanding PeopleSoft Optimization discusses optimization and the framework components and
architecture, as well as doing optimization-based development.

• Designing Analytic Type Definitions provides overviews of analytic type definitions and optimization
application records.

It also discusses how to use these items and develop your own application-based optimization.

• Optimization PeopleCode contains the reference material for the PeopleCode used in PeopleSoft
Optimization Framework, as well as considerations for creating optimization PeopleCode programs.

• Administering Optimization Server Components provides an overview of optimization administration
and discusses configuring the optimization engines.

Related Links
Creating Analytic Type Definitions
PeopleSoft Optimization Framework Components
PeopleSoft Optimization Framework System Architecture

PeopleSoft Optimization Framework Implementation

The functionality to use the PeopleSoft Optimization Framework, as well as to create your own
Optimization plug-in (OPI), is delivered as part of standard PeopleSoft PeopleTools that are provided with
all PeopleSoft products.

Several activities must be completed before you can use the PeopleSoft Optimization Framework in your
implementation.

• Install your PeopleSoft application according to the installation guide for your database type.

See the product documentation for PeopleSoft 9.2 Application Installation for your database platform.

Copyright © 1988, 2024, Oracle and/or its affiliates. 13

Getting Started with PeopleSoft Optimization Framework Chapter 1

• Establish a user profile that provides access to PeopleSoft Application Designer and any other
processes you will use.

• Follow the general overview and instructions in this document to design your application to take
advantage of PeopleSoft Optimization Framework, populate the appropriate records, build the
application pages, retrieve the result data, as well as configure the application server, the analytic
server, and the optimization engines.

Related Links
PeopleSoft Optimization Framework System Architecture

14 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2

Understanding PeopleSoft Optimization
Framework

Optimization

In the context of PeopleSoft Optimization Framework, optimization means deciding on the best course of
action given a range of alternatives. You use PeopleSoft Optimization Framework and the PeopleTools
environment to build applications that use optimization-based decision-making.

PeopleSoft Optimization Framework enables applications to specify their business objectives, define
the conditions, and set resource constraints. PeopleSoft Optimization Framework then applies advanced
mathematical modeling and solution techniques to find solutions that meet input criteria. In contrast to
sequential, query-based applications, which require users to analyze criteria and make decisions one by
one, the solution generated by optimization exceeds, or at least matches, a solution generated by a person.

PeopleSoft Optimization Framework Components

PeopleSoft Optimization Framework contains the following main elements:

• Optimization application tables.

PeopleSoft database tables that store source data, result data, control parameters, and user state
information.

• Optimization engine.

An instance of the optimization engine is a process managed by a type of PeopleSoft application
server, called an Analytic Server. The optimization engine has a generic interface to bind with
different optimization plug-ins to provide a variety of optimization services. It also brings data from
the optimization application tables into memory. This in-memory data is synchronized with the
database changes with each optimization transaction.

• Optimization dispatcher.

Within the analytic server, the optimization dispatcher provides a generic interface for application
programmers to use PeopleCode to access the optimization engine.

• Optimization plug-in (OPI).

An OPI is created specifically for optimization-based applications, such as consultant scheduling
or supply chain planning and scheduling. The application knowledge and business logic of an
optimization problem resides in the OPI. The OPI implements the optimization transactions that solve
the problem using the source data as input and generating the result data as output. If your application

Copyright © 1988, 2024, Oracle and/or its affiliates. 15

Understanding PeopleSoft Optimization Framework Chapter 2

is delivered with the Optimization PeopleCode plug-in, you are able to adapt the plug-in to a variety
of optimization tasks.

Note: An OPI is created by PeopleTools development with support from PeopleSoft application
development. An OPI is provided with the installed PeopleSoft applications that use PeopleSoft
Optimization Framework. No OPI is in the PeopleTools installation. Your PeopleSoft application
documentation discusses the available plugins and their required implementation steps and
parameters.

PeopleSoft Optimization Framework System Architecture

The following diagram illustrates PeopleSoft Optimization Framework architecture components and
shows the sequence of use during a typical optimization transaction:

The following diagram represents the high level architecture of PeopleSoft Optimization Framework.

When an optimization-based application runs, the following actions occur:

1. The source data is loaded from PeopleSoft application tables into the optimization application records.

Depending on the amount of data, this can typically be done as a batch job.

16 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding PeopleSoft Optimization Framework

2. A web server sends a request through Oracle Tuxedo to have the analytic server perform a PeopleSoft
transaction using optimization.

3. Upon receiving the request, the optimization dispatcher, within the analytic server, locates the correct
optimization engine and sends the optimization transaction to it through Oracle Tuxedo.

4. The optimization engine gets the metadata (optimization transaction name, parameters, and data types
of the parameters) from the analytic type definition in the PeopleSoft application database.

It uses this information to check the integrity of the optimization transaction request. It also
synchronizes the data in memory with changes in the optimization application tables.

5. The optimization engine reads the changed data (all the data, if this is the first time the data is being
read) from the optimization application records into memory.

6. The optimization engine loads the appropriate OPI and passes the optimization transaction request to
it.

The OPI is loaded during the first request to the optimization engine. It remains loaded until the
optimization engine is shut down.

7. The OPI processes the transaction and provides result data in the form of output parameters to the
optimization engine.

The OPI might also change data in memory to be saved to the database.

8. The optimization engine writes the changed data in memory to the optimization application tables.

9. The optimization engine returns the result data to the optimization dispatcher.

10. The application server completes the PeopleSoft transaction with the result data and returns a success
code to the user and to the web server through Oracle Tuxedo.

11. After the user is satisfied with the optimization result data, the result data can be copied from the
optimization application tables to the PeopleSoft application tables.

Optimization-Based Application Development

To build an optimization-based application:

1. Design the analytic type definition.

Define the structure of the optimization application records and the specifications for the optimization
transactions that you need for your application. Use PeopleSoft Application Designer to:

a. Create record definitions for the optimization application records and build them to create the
database tables.

b. Create an analytic type definition, including the record definitions that you created and the
specifications for the optimization transactions.

c. If needed, insert one or more optimization models into the analytic type definition.

Copyright © 1988, 2024, Oracle and/or its affiliates. 17

Understanding PeopleSoft Optimization Framework Chapter 2

Optimization models are developed specifically for, and delivered with, your PeopleSoft
application. Each optimization model is a mathematical representation of the business problem for
the optimization engine to solve.

2. Populate the application records with appropriate source data.

Using standard tools (such as PeopleCode, PeopleSoft Application Engine, and PeopleSoft Integration
Broker), provide a mechanism to populate the optimization application records with source data.
You can also use PeopleSoft application records directly instead of creating special optimization
application records. By accessing the tables directly, you use fewer computer resources. However,
accessing the application tables directly increases the dependency between the application design and
the OPI design.

Note: Though you can populate the source data using PeopleSoft Integration Broker, you cannot
actually access the analytic server or use analytic or optimization PeopleCode in a messaging
PeopleCode program.

3. Build the application pages.

Using PeopleSoft Application Designer, build pages using the optimization application records
to enable users to edit or view the source and result data and to interact with the optimization
application. These pages use the PeopleCode OptEngine or AnalyticInstance class, provided by the
optimization dispatcher, to send optimization transactions to the optimization engine. Building pages
for optimization applications uses the same process as building pages for any PeopleSoft application.

4. Retrieve the result data.

Using standard PeopleTools, provide a mechanism to retrieve the result data in the optimization
application records and copy it to the PeopleSoft application tables.

Note: If you rename any records or record fields that are used by your optimization-based application,
the analytic type and optimization model definitions that use the record or field automatically reflect your
changes. However, you must also ensure that any PeopleCode program, Application Engine program, or
other tools account for those changes as well.

18 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3

Designing Analytic Type Definitions

Understanding Analytic Type Definitions

An analytic type definition groups the optimization application records, the optimization transactions,
and the Optimization plug-in (OPI) together as one entity. The optimization application records contain
the data stored in the database. The data is populated into memory in the optimization engine. The
optimization transactions define the interface between the application server and the OPI, which performs
the optimization computation. Use PeopleSoft Application Designer to create the analytic type definition
for an optimization application.

An Optimization Problem Example

To illustrate the steps of creating an optimization-based application, consider the following example:
Create an optimal exercise schedule that makes use of exercise machine availability and satisfies
individuals' exercise preferences. To create an optimization application for this problem, you need input
data about:

• Exercises that burn a set number of calories per minute.

• People who know how long they want to exercise and how many calories they want to burn.

The goal of your application is to generate a list containing an exercise and the duration of exercise
appropriate to each person, based on the input data.

To implement the analytic type definition for this example, you would:

1. Create and populate a set of records containing the input data about the exercises and the participants.

These are the optimization application records for this application.

2. Define a set of optimization transactions and their parameters that, when implemented, process the
optimization application records to achieve the goal.

Note: For this example, assume that an OPI (QEOPT.DLL) already exists that implements these
transactions.

Understanding Optimization Application Record Design

This section discusses:

• Optimization application records.

• Scenario management.

Copyright © 1988, 2024, Oracle and/or its affiliates. 19

Designing Analytic Type Definitions Chapter 3

Optimization Application Records
You use PeopleSoft Application Designer to design optimization application records to contain source
data, result data, and other data. You also decide how the optimization engine uses these records for
synchronization. For each record that you create, decide:

• Which data fields the record should contain.

Among other data, these records contain the data from the PeopleSoft application database that is used
in the optimization process.

• How the optimization engine uses the record for synchronization.

If the record is read once, the optimization engine reads this data during the initial load only. If the
record is readable, the optimization engine checks for updates with every optimization transaction.
If the record is writable, the optimization engine is allowed to modify the data in the database. All
records except read-once records must have a VERSION field.

• Whether the record should be scenario-managed.

A record should be scenario-managed if it contains data pertaining to multiple analytic instances.
Such records must have a PROBINST key field, which the optimization engine uses as an additional
key for storing and retrieving multiple solutions.

Scenario Management
In PeopleSoft Optimization Framework, scenario management is the mechanism to manage different
source and result data sets using the same tables. A set of source data and associated result data is called
an analytic instance. You can break down large optimization problems into smaller, more manageable
problems (or analytic instances) that can each be solved independently. Individual analytic instances can
share common data.

This concept can be extended to what-if scenarios to plan for potential business situations. Separate
analytic instances can be created with what-if data and solved using optimization separately, without fear
of affecting live data.

In terms of the exercise example, any number of people might want exercise schedules using the
optimization application. Exercise goal data and the optimization-generated exercise schedule data are
unique to each person. However, different people share the same set of exercise machines. In this case, it
is logical to treat the generation of an individual person's exercise schedule as a separate analytic instance.

In the exercise example, you would mark the data that is specific to each person (such as exercise goals
and exercise schedules) as scenario-managed, and the data that is shared by all people (such as exercise
machines) as nonscenario-managed. All scenario-managed records must include the PROBINST field
as part of the primary key. This 20-character field identifies data that is specific to an analytic instance.
During runtime, the optimization engine loads data for scenario-managed records based on the user-
specified value for the PROBINST field. At any moment, the optimization engine contains data for only
one analytic instance.

The following record, QE_ROSM_BIODATA, contains the name of a person who exercises, and
physical data about the person. This record is read once and is scenario-managed. Notice the use of the
PROBINST field:

20 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

The following diagram illustrates the Record fields in QE_ROSM_BIODATA Record.

Assigning Permissions for Designing Optimization Records

For users to create and build optimization records, they must have access to the Optimization Model
Designer in PeopleSoft Application Designer. This is accomplished by providing permission list access to
the Optimization Model object.

To assign permissions for designing optimization records:

1. Select PeopleTools, Security, Permission Lists.

The Permission Lists–General page appears.

2. Click the PeopleTools tab.

The Permission Lists–PeopleTools page appears.

3. In the PeopleTools Permissions section under the Application Designer Access check box, click the
Definition Permissions link.

The Definition Permissions page appears.

4. In the Object list, locate the Optimization Model object.

5. From the drop-down list select an option:

• Full Access. Users can read, create and modify optimization records.

• No Access. (Default.) Users cannot view, create, or modify optimization records.

• Read-only Access. Users can view optimization records.

6. Click the OK button.

The Definition Permissions page appears.

7. Click the Save button.

Copyright © 1988, 2024, Oracle and/or its affiliates. 21

Designing Analytic Type Definitions Chapter 3

Creating and Building Optimization Records

To create and build optimization application records:

1. Create the optimization application record definitions using PeopleSoft Application Designer.

a. Select Start > Programs > PeopleSoft 8.xx > Application Designer.

b. Enter your signon information, and click the OK button.

The Application Designer window appears.

c. Select File > New from the tool menu.

d. Select the Record option, and click the OK button.

2. For every optimization application record that is readable, create an optimization delete record by
cloning the optimization application record.

Clone the record by performing a Save As operation on the optimization application record and
renaming the optimization delete record to be similar to the original optimization application record.
Use a naming convention for all optimization delete records. For example, the optimization delete
record for the record QE_R_HOLIDAYS might be named QE_R_HOLIDAYDEL.

Alternatively, use a sub-record definition that is shared by the optimization application record and the
delete record.

Note: Oracle strongly recommends that you keep the optimization application record and its
associated optimization delete record in sync with each other.

3. For every optimization application record that is readable, associate that record with its optimization
delete record using the these steps:

a. In PeopleSoft Application Designer, open the optimization application record.

b. Select File > Definition Properties.

c. Select the Use tab in the Record Properties dialog box.

d. Enter the name of the optimization delete record in the Optimization Delete Record field.

4. Open (or create) a project and insert all the optimization application records and optimization delete
records into the project.

5. Create the tables from these records.

a. Select Build > Project.

The Build dialog box appears, showing the optimization application records and optimization
delete records in the project.

b. Select the Create Tables check box, and make sure that theCreate Triggers check box is clear.

22 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

c. Click the Build button.

6. Create optimization database triggers from these records.

a. Select Build > Project.

The Build page appears, showing the optimization application records and optimization delete
records in the project.

b. Select the Create Triggers check box.

c. Click the Build button.

Note: Optimization delete records can be used by several analytic types. When a record is deleted from an
analytic type, the associated delete record is not needed if this record is not used elsewhere.

Creating Analytic Type Definitions

This section discusses how to:

• Define an analytic type.

• Configure analytic type records.

• Configure models for optimization.

• Associate Analytic Types with Analytic Models.

Note: When working with analytic type definitions, you can use the typical drag-and-drop features
offered by PeopleSoft Application Designer. For example, you can drag record definitions and drop them
into the analytic type record list, which is maintained on the Record tab of the analytic type definition.

Defining an Analytic Type
In PeopleSoft Application Designer, select File > New > Analytic Type. A new analytic type definition
appears, containing tabs for transactions, records, and models. The definition combines these items with
an OPI to form the basis of an optimization application.

This is an example of the analytic type definition:

Copyright © 1988, 2024, Oracle and/or its affiliates. 23

Designing Analytic Type Definitions Chapter 3

This example illustrates the fields and controls on the Analytic Type – Transactions tab.

To complete the analytic type definition, you should configure the analytic type properties, then insert and
configure the records, the optimization models, and the transactions, in that order.

To access the Analytic Type Properties – Attributes dialog:

1. From the Analytic Type – Transaction tab, select File > Definition Properties.

2. Select the Attributes tab.

24 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

This example illustrates the fields and controls on the Analytic Type Properties – Attributes tab. You can
find definitions for the fields and controls later on this page.

Field or Control Description

PeopleCode Plugin Select to indicate that the analytic type should use the
Optimization PeopleCode plug-in.

Select this check box only if the analytic type is to be used
with optimization. If the analytic type is to be used with the
analytic calculation engine, do not select this check box.

Psopidplugin is automatically entered in thePlugin Library
Name field, which is read-only.

If you use this plug-in, you must also use the Package
andClass fields to specify an application class that was
developed to adapt the Optimization PeopleCode plug-in to
your optimization application.

See “Invoking the Optimization PeopleCode Plug-In”
(PeopleCode API Reference).

Copyright © 1988, 2024, Oracle and/or its affiliates. 25

Designing Analytic Type Definitions Chapter 3

Field or Control Description

Plugin Library Name Enter the name of the OPI library.

Enter only the portion of the name that is specific to this
library. Ignore operating system-specific prefixes (such as
lib) and suffixes (such as .dll). In the exercise example, in
Microsoft Windows, the library is libqeopt.dll. You would
enter only qeopt here.

If you selected the PeopleCode Plugin check box, this field
contains the valuepsopidplugin, and is read-only.

Plugin Library Version Enter the application release version of the plug-in. The
optimization engine uses this to confirm that the correct
version of the plug-in library is used at runtime.

Message Set ID Enter the message set ID in the message catalog containing the
messages for the optimization application. The OPI uses this to
access messages from the message catalog.

Plugin Application Class – Package If you selected the PeopleCode Plugin check box, you must
specify here the application package containing the application
class to use with the Optimization PeopleCode plug-in for
your optimization application.

Plugin Application Class – Class If you selected the PeopleCode Plugin check box, you must
specify here the application class containing the optimization
PeopleCode program to use with the Optimization PeopleCode
plug-in for your optimization application.

This class must be a subclass of the PT_OPT_BASE:OptBase
application class.

Analytic Instance Application Class – Package If this analytic type is to be used with the PeopleSoft Analytic
Calculation Engine, specify the application package name to
associate with this analytic type, that contains the functionality
to be used with the analytic type when it is created, deleted, or
copied.

See “Creating, Deleting, and Copying Analytic Instances”
(Analytic Calculation Engine).

Analytic Instance Application Class – Class If this analytic type is to be used with the PeopleSoft Analytic
Calculation Engine, specify the name of the class in the
application package that contains the Create, Copy, and Delete
classes.

Related Links
Understanding Analytic Type Definitions

26 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

Configuring Analytic Type Records
To configure analytic type records, in the analytic type definition, select the Record tab, and then select
Insert > Record.

This example illustrates the fields and controls on the Analytic Type Record Property dialog box. You can
find definitions for the fields and controls later on this page.

Note: You can access the properties of an existing analytic type record by right-clicking the record and
selecting the Analytic Type Record Properties option.

Copyright © 1988, 2024, Oracle and/or its affiliates. 27

Designing Analytic Type Definitions Chapter 3

Field or Control Description

Record Name Select the record to use in the analytic type definition.

Note: If you select a derived/work record, remember that its
scope in optimization PeopleCode is different from that in
other PeopleCode. When you use the CreateOptEngine or
CreateAnalyticInstance function, each derived/work record
is instantiated at level zero of the analytic instance rowset.
 The record persists, and you can continuously modify its
data across multiple transactions, until you shut down the
optimization engine using the ShutDown method.

Synchronization Order Indicates the order in which the optimization engine reads the
optimization application records. If a record has dependencies
on another record, the dependent record should be read
later. For example, the QE_RSM_EXERTGT record
(synchronization order number is 4) depends on data in the QE
_RO_MACH_CALS record (synchronization order number is
1). This order is determined by the application logic.

Read Once Select to have the record read only once during the initial load
of the analytic instance into the optimization engine.

You cannot select the Writeable check box if the Read Once
check box is selected.

The optimization engine reads these records only once during
the initial data load. The assumption is that the data in these
records does not change (or the user doesn't care if it changes)
from the initial load of the optimization engine until shutdown.

For the exercise machine problem, you might create a record
that contains the name of an exercise machine and the number
of calories one can burn on it. This information needs to be
read only once by the optimization engine. Furthermore,
 the information will not change, so a VERSION field is not
required.

28 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

Field or Control Description

Readable Select to have the record checked for updates by the
optimization engine with every optimization transaction.

Readable records, besides being loaded during the initial
load, are checked for updates by the optimization engine at
the beginning of every optimization transaction. For every
readable optimization application record, you must also create
a corresponding optimization delete record and associate
the readable record with the delete record. This process is
explained later in this topic.

Note: Oracle recommends that you keep the analytic type
records in sync with the optimization delete records.

For the exercise machine example, an appropriate readable
record contains the name of a person who exercises, the start
time and duration of the exercise, and the number of calories
that the person wants to burn. This record is readable and
scenario-managed. It has a VERSION field and a PROBINST
field that contain the name of the person. Because this is pure
source data, this data is not writable.

Writable Select to enable the optimization engine to modify rows
for this record. A record can be both readable and writable.
 Records more likely to be readable and writable than just
writable.

A writable record contains result data from the optimization
engine. For the exercise machine example, the system
calculates this data every time you request an exercise
summary. For this reason, it is purely writable.

Scenario Managed Select to indicate that the record will contain data pertaining to
multiple analytic instances.

Note: Scenario-managed records must have a PROBINST key
field.

See Scenario Management.

Copyright © 1988, 2024, Oracle and/or its affiliates. 29

Designing Analytic Type Definitions Chapter 3

Field or Control Description

Callback Select to enable the optimization engine to update its working
data whenever this record changes.

Your analytic type definition might include a record that
you expect to change during the course of the optimization.
 If you want those changes to be taken into account by the
optimization, you can define it as a callback record, so you can
use provided PeopleCode callback methods to dynamically
propagate those changes to the derived data structures of the
optimization. A callback record must be readable and writable.

Warning! If you select this check box for a record, you
must ensure that you override all of the abstract callback
placeholder methods that are defined in the extended PT_OPT
_BASE:OptBase application class, even if it contains only a
Return statement. Otherwise your Optimization PeopleCode
plug-in will fail.

See “OptBase Application Class” (PeopleCode API
Reference).

Record Fields In the Record Fields list, select the fields in this record that
need to be read into the optimization engine.

These are the fields that the OPI can access. Key fields and the
VERSION field (if it exists) are always selected automatically.
 To conserve memory used by the optimization engine, select
only the necessary fields.

When the analytic type definition is saved, if there are
fields that have not been selected but are being mapped to a
cube or dimension, an error message is displayed, and you
must go back and correct the error before you can save the
analytic type definition. If there is a record in the analytic type
definition that has none of its fields mapped to any cube or
dimension, a warning message is displayed when you try to
save the analytic type definition. You can continue to save
the analytic type definition after you have acknowledged the
warning message; you do not have to change anything in the
definition.

Configuring Models for Optimization
You need to specify and configure analytic type models for optimization only if both of the following
conditions are true:

• You selected the PeopleCode Plugin check box in the analytic type properties, indicating that your
analytic type definition should use the Optimization PeopleCode plug-in.

• Your application documentation indicates that an optimization model is necessary for the optimization
application you are developing.

In the analytic type definition, select the Models tab, and then select Insert, Optimization Model.

30 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

The Analytic Type Optimization Model Property dialog box appears.

This example illustrates the fields and controls on the Analytic Type Optimization Model Property dialog
box. You can find definitions for the fields and controls later on this page.

Note: Your application documentation discusses which models to specify, and what configuration settings
to make for each model. You can access the properties of an existing analytic type model by right-clicking
the model and selecting the Analytic Type Model Properties option.

Field or Control Description

Model Name Select the optimization model required to implement an
optimization application with this analytic type.

Copyright © 1988, 2024, Oracle and/or its affiliates. 31

Designing Analytic Type Definitions Chapter 3

Field or Control Description

Solver Settings A solver setting is a collection of solver parameters with
default values that define a particular solver behavior suitable
for the optimization model. Specify one or more solver
settings to make available to your optimization application,
 including:

• Solver Setting.

Enter the name of the solver setting.

• Solver Type.

Select the solver type: LP (linear programming),MIP
(mixed integer programming), or LPMIP (both).

• Active.

Select the active solver setting. Only one solver setting
can be active at a time.

Configuring Solver Parameters

For each solver setting that you specify, you can configure one or more solver parameters.

In the Analytic Type Optimization Model Properties dialog box, double-click a solver setting to access
the Analytic Type Optimization Solver Property dialog box. This dialog box has a grid with two columns:
Parameter ID andParameter Value:

32 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

This example illustrates the fields and controls on the Analytic Type Optimization Solver Property dialog
box.

Each solver type has a different set of available parameters, and each parameter has a default value.
When you select a solver parameter from the Parameter ID drop-down list box, its default value appears
in theParameter Value cell, and a new row appears for adding another parameter. Your application
documentation discusses which parameters to specify for each solver setting, and what value to specify
for each parameter.

Creating Mathematical Formulation Files

In addition to the analytic server log files, you can also create a mathematical formulation file for
debugging. This file is written in either MPS or LP format and can be requested for technical debugging
purposes. The file type is generally LP; however, if the system cannot create an LP file it creates an
MPS file. The filename is either AnalyticType_AnalyticInst.LP or AnalyticType_AnalyticInst.MPS, with
AnalyticType being the name of the analytic type and AnalyticInst being the name of the analytic instance
ID. This file is generally written to the same directory as the application server log. Also, this directory
can be configured in the application server configuration file.

You indicate whether to write this file by specifying a solver parameter.

In the Analytic Type Optimization Model Properties dialog box, double-click a solver setting to access
the Analytic Type Optimization Solver Property dialog box. This dialog box has a grid with two columns:
Parameter ID andParameter Value.

Select the WriteMPS option forParameter ID. In theParameter Value column, enter 1 to write the file or
0 to not write the file.

Copyright © 1988, 2024, Oracle and/or its affiliates. 33

Designing Analytic Type Definitions Chapter 3

Associating Analytic Types with Analytic Models
For PeopleSoft Analytic Calculation Engine, you only need to associate an analytic type with an analytic
mode.

In the analytic type definition, select the Models tab, and then select Insert, Analytic Model.

This screenshot shows the fields and controls on the Analytic Type Analytic Model Property dialog box.

Select the name of the analytic model that you want to associate with the analytic type. If you specify to
add all the records and fields that are used in the model, they are automatically added to the records on the
Records tab.

Configuring Analytic Type Transactions
In the analytic type definition, select the Transactions tab, and then select Insert > Transaction.

34 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

This example illustrates the fields and controls on the Analytic Type Transaction Property dialog box. You
can find definitions for the fields and controls later on this page.

Note: You can access the properties of an existing analytic type transaction by right-clicking the
transaction and selecting the Analytic Type Transaction Properties. option.

Copyright © 1988, 2024, Oracle and/or its affiliates. 35

Designing Analytic Type Definitions Chapter 3

Field or Control Description

Transaction Name Enter the case-sensitive name of the transaction.

If the PeopleCode Plugin check box is selected in the analytic
type properties, this value must match the name of a method
defined in the application class that you specified for this
analytic type.

If the PeopleCode Plugin check box is not selected in the
analytic type properties, this value must match the name of a
service defined in the OPI that you selected in the analytic type
properties.

The transaction name that you specify must be distinct within
an analytic type.

For the exercise machine example, three transactions are
needed. The QEOPT.DLL OPI implements these transactions:

• SOLVE solves the exercise machine problem.

• GET_SUMMARY produces a summary of exercises for a
person.

• IS_MACHINE_AVAILABLE returns whether an exercise
machine is available for a specified time.

The transaction name can contain up to 30 characters.

See “OptBase Application Class” (PeopleCode API
Reference).

Lock Flag Select this option to prevent changes to the optimization
application tables while this transaction runs. Typically, this
flag should be set for extremely fast but critical transactions
where data integrity is crucial. In the exercise planning
example, optimization transactions do not need the lock flag.

Important! The lock flag can hamper performance, so use it
with caution.

Parameter Attributes

Each transaction can have any number of parameters.

If the application class method corresponding to this transaction has parameters, you must define a row in
this grid with equivalent attributes for each of the parameters.

36 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

Field or Control Description

Name Enter the name of the parameter. The name must match
the transaction parameter name defined in the OPI, or the
equivalent method parameter defined in the application class
that you specified for this analytic type.

The transaction parameter name can contain up to 20
characters, and it must be distinct within an analytic type.

Type Select the parameter type (String, Integer, Double, Date,
 DateTime, Time, or arrays of these types, or Record Array).
 The type must match the transaction parameter type defined
in the OPI, or the equivalent method parameter type defined in
the application class that you specified for this analytic type.

Note: Do not pass an array of type Integer as a transaction
parameter. Use an array of type Number instead.

Input/Output Select Input, Output, or Both.

Attributes Select Required, Optional, or Default (the parameter has a
default value). This is not applicable to output parameters.

Note: If an input parameter is required, it must be supplied
when you use either the RunSynch or RunAsynch PeopleCode
methods.

Value If the Attributes field is set to Default, enter a default value for
this parameter. If the type is Record Array, enter the name of
the record. Otherwise, leave this blank.

Running the Optimization System Audit

After you have created the analytic type definition, run SYSAUDIT with the optimization options
selected. This ensures that the definition is valid and consistent.

To run the optimization system audit in the PeopleSoft application:

1. Select PeopleTools > Utilities > Audit > Perform System Audit.

2. Enter a run control ID.

3. On the System Audit page, select the Audit Optimization Integrity check box, and click the Run
button.

Copyright © 1988, 2024, Oracle and/or its affiliates. 37

Designing Analytic Type Definitions Chapter 3

4. On the Process Scheduler Request page, ensure that the System Audit check box is selected, select a
server name, and click the OK button.

5. When the System Audit page reappears, click the Process Monitor link (to the left of the Run
button).

6. On the Process List page, at the end of the line for SYSAUDIT, click the Details link.

7. On the Process Detail page, click the View Log/Trace link.

8. On the View Log/Trace page, click the SYSAUDIT_XX file name.

This file contains the audit report for your optimization.

Related Links
“Running SYSAUDIT” (Data Management)

Changing Existing Analytic Type Definitions

This section discusses how to change:

• Optimization application records.

• Optimization transactions.

Changing Optimization Application Records
To change optimization application records in an analytic type definition:

1. Shut down all the running optimization engines that use this analytic type definition.

2. Shut down other optimization engines if record definitions are being shared by other analytic type
definitions.

3. Delete all existing analytic instances using the DeleteOptProbInst PeopleCode function.

See “DeleteOptProbInst” (PeopleCode API Reference).

4. Empty the optimization application tables.

5. Make record definition changes and build the records in PeopleSoft Application Designer.

See Creating and Building Optimization Records.

6. Open the analytic type in PeopleSoft Application Designer, insert any new records or make
appropriate changes to reflect changed record definitions, and save the analytic type.

Run SYSAUDIT with the optimization options selected.

Skip the steps about inserting transactions.

7. Change the OPI to reflect the changes to optimization application records.

38 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Designing Analytic Type Definitions

If the records do not match the plug-in, the program will fail.

8. Call the InsertOptProbInst PeopleCode function to re-create analytic instances.

See “InsertOptProbInst” (PeopleCode API Reference).

Changing Optimization Transactions
To change optimization transactions in an analytic type definition:

1. Shut down all the running optimization engines that use the analytic type definition.

2. Open the analytic type definition in PeopleSoft Application Designer, insert any new transactions or
make appropriate changes to existing ones, and save the analytic type.

Skip the steps about inserting records.

3. Change the OPI to reflect the changes to optimization transactions.

4. Change optimization PeopleCode to reflect the changes (add, remove, and update parameters).

Administering Optimization Engines

An optimization engine is an instance of an analytic server.

You can use the Analytic Server Administration – Analytic Domain Summary page to administer all
optimization engines. To access the Analytic Server Administration – Analytic Domain Summary page
from PIA, select PeopleTools > Utilities > Administration > Analytic Server Administration.

See PeopleSoft Optimization Framework System Architecture.

Setting Up Integration Broker
Before you can use lights-out mode and other optimization features, you must first configure PeopleSoft
Integration Broker for basic messaging.

The only PeopleSoft Integration Broker elements that are specific to optimization engine administration
are two transactions delivered with your PeopleSoft application. One transaction is type InSync, the
other is type OutSync, and both use the OPT_CALL message. Ensure that they are both active on the
Transactions page of the default local node definition.

See “Introduction to PeopleSoft Integration Broker” (Integration Broker).

Updating Solver Licenses

Use the Administer License page to update a solver software license. PeopleSoft Optimization
Framework uses third-party solver software. In some cases, the solver software is activated by a license.

Copyright © 1988, 2024, Oracle and/or its affiliates. 39

Designing Analytic Type Definitions Chapter 3

Note: Currently, no optimization application requires updating the solver license. You should update
solver licenses only on instructions from PeopleSoft.

To update solver licenses:

1. In a browser, select PeopleTools > Utilities > Optimization > Optimization Solver Licenses.

2. Enter an optimization solver type, such as LP/MIP.

The optimization engine identifies the third-party solver software by its solver type.

3. On the Administer License page, enter the new license code in the Encrypted License Code field.

40 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4

Optimization PeopleCode

Using Optimization PeopleCode on the Application Server

While running optimization PeopleCode on the application server, ensure that changed data is committed
to the database before calling the CreateOptEngine optimization function and the following OptEngine
class methods:

• RunSynch

• RunAsynch

• CheckOptEngineStatus

• ShutDown

• SetTraceLevel

• GetTraceLevel

• InsertOptProbInst

• DeleteOptProbInst

Note: The PeopleCode functions CommitWork and DoSaveNow can be called within a step to save
uncommitted data to the database before calling the listed functions and methods. Keep in mind
that forcing a commit on pending database updates is a serious step; it prevents roll-back on error.
CreateOptEngine, ShutDown, InsertOptProbInst, and DeleteOptProbInst calls modify the database, so
take care when terminating the Application Engine program without committing the changes made by
those calls.

Using Optimization PeopleCode in an Application Engine Program

When you write an optimization PeopleCode program in an Application Engine program and you
schedule it in PeopleSoft Process Scheduler, you must set the process definition with a process type of
Optimization Engine. Other process types do not allow optimization PeopleCode in Application Engine
programs.

While using optimization PeopleCode in Application Engine programs, make sure data is committed
before calling the CreateOptEngine optimization function and the following OptEngine class methods:

• RunSynch

• RunAsynch

• CheckOptEngineStatus

Copyright © 1988, 2024, Oracle and/or its affiliates. 41

Optimization PeopleCode Chapter 4

• ShutDown

• SetTraceLevel

• GetTraceLevel

• InsertOptProbInst

• DeleteOptProbInst

Note: You can call the PeopleCode functions CommitWork and DoSaveNow within a step to save
uncommitted data to the database before calling the listed functions and class methods. Keep in mind
that forcing a commit on pending database updates is a serious step; it prevents roll-back on error.
CreateOptEngine, ShutDown, InsertOptProbInst, and DeleteOptProbInst calls modify the database, so
take care when terminating the Application Engine program without committing the changes made by
those calls.

Performing Optimization in PeopleCode

This section discusses how to perform optimization in PeopleCode using analytic instances.

Important! The optimization PeopleCode classes are not supported on IBM z/OS and Linux for IBM
System z platforms.

Creating New Analytic Instances
To create a new analytic instance for an analytic type:

1. Call the function InsertOptProbInst with the analytic type and analytic instance as parameters to create
an analytic instance ID.

2. Use Application Engine or a similar mechanism to load the optimization application tables with data.

Use the analytic instance ID as the key value in scenario-managed optimization application tables.

The analytic instance is now ready to be loaded into an analytic server.

Note: You can load multiple copies of the same analytic instance into multiple instances of an analytic
server, provided that each instance of the analytic server resides in a different application server
domain. Each analytic instance loaded into a given domain must be unique. Within a given domain, you
cannot have the same analytic instance in more than one analytic server. The analytic server maintains
data integrity by checking to see if the data has been altered by another user (refer to the steps in the
optimization system architecture description). Try to maintain data consistency when the same analytic
instance uses the same database in different domains.

Related Links
“PeopleSoft Optimization Framework System Architecture” (Optimization Framework)
InsertOptProbInst

42 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Loading Analytic Instances Into an Analytic Server
Use the CreateOptEngine function to load an analytic server with an analytic instance. It takes analytic
instance ID and a mode parameter with %Synch and %Asynch as possible values and returns a
PeopleCode object of type OptEngine.

You can run the PeopleCode on the application server or from Application Engine.

Loading Analytic Instances by Running PeopleCode on the Application Server

To block PeopleCode from running on the application server until the load is done (synchronous mode),
use the %Synch value for the mode parameter. An error is generated if the load isn't successful. The
application server imposes a timeout beyond which the PeopleCode and optimization engine load are
terminated. Here is a code example:

Local OptEngine &myopt;
&myopt = CreateOptEngine("PATSMITH", %Synch);

To load the analytic server without blocking the PeopleCode from running (asynchronous mode) on
the application server, use the %Asynch value for the mode parameter. The analytic server performs a
preliminary check of the load request and returns the OptEngine object if it is successful or an error if it is
unsuccessful. A successful return does not mean that the load was successful. You must then use repeated
CheckOptEngineStatus methods on the returned OptEngine object to determine whether the analytic
engine is done with the load and whether it was successful. Here is a code example:

Local OptEngine &myopt;
&myopt = CreateOptEngine("PATSMITH", %Asynch);

Loading Analytic Instances by Running PeopleCode in Application Engine

Both synchronous (%Synch) and asynchronous (%Asynch) modes block the PeopleCode from running on
Application Engine until the load is done. Use only %Asynch while loading an optimization engine.

The absolute number of optimization engine instances that may be loaded in a given domain is governed
by a configuration file loaded by Tuxedo during its domain startup.

Related Links
CheckOptEngineStatus

Running Optimization Transactions
You send an optimization transaction to the optimization engine using the RunSynch and RunAsynch
methods. Both are methods on an OptEngine object. The OptEngine object can be created either by
calling CreateOptEngine (if the optimization engine is not loaded already) or by calling GetOptEngine
(if the optimization engine is already loaded). Both RunSynch and RunAsynch have the same signature,
except that RunSynch runs the optimization transaction in synchronous mode and RunAsynch runs it in
asynchronous mode. Both return an integer status code. You can run transactions either on the application
server or with Application Engine.

To invoke an optimization transaction:

1. Use the GetOptEngine function to get the OptEngine object as a handle for the optimization engine
that has loaded an analytic instance ID.

Copyright © 1988, 2024, Oracle and/or its affiliates. 43

Optimization PeopleCode Chapter 4

Use the CreateOptEngine function to create the OptEngine object for a new optimization engine if the
analytic instance has not been loaded.

2. Call RunSynch or RunAsynch to send an optimization transaction to the optimization engine to be run
in synchronous or asynchronous mode.

3. If the transaction is run in synchronous mode (RunSynch), use the OptEngine methods GetString,
GetNumber, and so on, to retrieve the output result from the optimization transaction.

The transaction names, parameter names, and data types are viewable in the analytic type in
Application Designer.

4. If the transaction is run in asynchronous mode, use the OptEngine method CheckOptEngineStatus to
check the status of the optimization transaction in the optimization engine.

After the transaction is done, result data is available in the database for retrieval using standard
PeopleCode mechanisms.

Running Optimization Transactions from the Application Server

To block the PeopleCode from running on the application server until the optimization transaction is
done (synchronous mode) and receives the results, use RunSynch to send an optimization transaction. An
error status code is returned if the transaction isn't successful. If successful, you can use other methods to
retrieve the results from the transaction call. The application server imposes a timeout beyond which the
PeopleCode and optimization engine transaction are terminated.

To run a transaction without blocking PeopleCode from running (asynchronous mode) on the application
server, use RunAsynch to send an optimization transaction. In this mode, the optimization engine
performs a preliminary check of the transaction request and returns a success or failure status code. A
successful return does not mean that the transaction is successful; it means only that the syntax is correct.
You must then use repeated calls to the CheckOptEngineStatus method on the OptEngine object to
determine whether the optimization engine is done with the transaction and whether it is successful.

RunAsynch does not allow transaction output results to be returned. Use this method for long-running
transactions that return results entirely through the database.

Running Optimization Transactions from Application Engine

Both synchronous (RunSynch) and asynchronous (RunAsynch) methods block the PeopleCode from
running on Application Engine until the optimization transaction is done. RunSynch allows output results
to be returned, but it should be used for transactions that are fast (less than 10 seconds). RunAsynch does
not have a time limit, but it does not return output results.

Related Links
RunAsynch

Invoking the Optimization PeopleCode Plug-In
If you're developing an optimization application that uses the Optimization PeopleCode plug-in, you must
do the following to invoke the plug-in:

• Develop a PeopleCode application class that extends the PT_OPT_BASE:OptBase class.

44 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

• Define methods in your application class that use the PeopleCode OptInterface class to perform your
optimization functions.

• Define an analytic type that specifies the Optimization PeopleCode plug-in, by selecting the
PeopleCode Plugin check box in the analytic type properties.

• In the analytic type properties, specify the application package and application class that you
developed.

• Define transactions in your analytic type definition that correspond to the methods you developed in
your application class, with corresponding parameters.

Related Links
“Creating Analytic Type Definitions” (Optimization Framework)
CreateOptInterface
OptBase Application Class
OptInterface Class Methods

Shutting Down Optimization Engines
Use the GetOptEngine function to get the OptEngine object as a handle for the optimization engine that
loaded an analytic instance ID.

Use the OptEngine method named ShutDown to shut down the optimization engine. This ends the
optimization engine process with the current analytic instance ID. Based on application server settings,
the system restarts a new, unloaded optimization engine process that can be loaded with any other analytic
instance.

Related Links
ShutDown

Deleting Existing Analytic Instances
To delete an existing analytic instance for an analytic type:

1. Shut down any optimization engines that have this analytic instance currently loaded.

2. Using Application Engine or a similar mechanism, delete the data in the optimization application
tables pertaining to that analytic instance.

Use the analytic instance ID as the key value to find and delete analytic instance rows from scenario-
managed optimization application tables.

3. Use the function DeleteOptProbInst with the analytic type and analytic instance as arguments to delete
the analytic instance ID from PeopleTools metadata.

Note: If you try to delete an existing analytic instance that is loaded in a running optimization engine,
DeleteOptProbInst returns %OptEng_Fail, and the optional status reference parameter is set to
%OptEng_Exists.

Copyright © 1988, 2024, Oracle and/or its affiliates. 45

Optimization PeopleCode Chapter 4

Related Links
DeleteOptProbInst

Programming for Database Updates
You must plan for uncommitted database changes in your optimization PeopleCode. The PeopleSoft
Optimization Framework detects pending database updates, and generates a failure status if data is not
committed to the database before certain optimization methods are called.

This checking for database updates happens in runtime for the CreateOptEngine function and the
following methods: RunSync, RunAsync, Shutdown, GetTraceLevel, and SetTraceLevel. Ensure
that your PeopleCode performs proper database updates and commits before you execute these
methods. If you use the optional parameter for detailed status that is available for these functions,
or the DetailedStatus property that is available for the methods, you can check for the status of
%OptEng_DB_Updates_Pending to see if there is a pending database update.

Note: The pending database update may have happened considerably earlier in the code. Forcing a
commit within your PeopleCode to avoid this problem prevents roll-back on database error. Forcing a
commit should be used with care.

The InsertOptProbInst and DeleteOptProbInst functions can be called only inside FieldChange,
PreSaveChange and PostSaveChange PeopleCode events, and in Workflow.

This database update checking happens in compile time for the following functions: InsertOptProbInst
and DeleteOptProbInst. Make sure that there are no pending database updates before you execute these
methods.

Using Lights-Out Mode with Optimization

This section provides an overview of lights-out mode, and discusses how to create and edit messages.

Understanding Lights-out Mode
Some optimization applications can take several hours to run. These are typically run as overnight batch
jobs every night when the work load is small to regenerate the optimization solution and have it ready for
end users to use in the morning hence the term lights-out mode.

In the current release, application messages communicate between the Application Engine batch job
and the online optimization engine. After the Application Engine job completes and the optimization
solution has been written to the database, an application message initiates the download of the data from
the database batch job to the online optimization engine.

Lights-out mode uses an Application Engine PeopleCode program within PeopleSoft Process Scheduler
to send requests to an application server and receive responses from it. Within the application server, the
OnRequest PeopleCode runs an optimization engine process.

46 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

This diagram illustrates the lights-out process:

This request and response is in the form of a rowset as shown by the example supplied with optimization,
the OPT_CALL message. Also supplied as an example is an Application Engine message publish
PeopleCode program called PT_OPTCALL.

Important! Application Engine includes an action of type Log Message, which PeopleSoft Process
Scheduler uses to record its activity in the PS_MESSAGE_LOG table. The PeopleCode MessageBox and
WinMessage built-in functions also record their activity in the PS_MESSAGE_LOG table.
During lights-out optimization, these processes can conflict with each other or with the optimization
engine when one process locks a row of the table, and another process tries to access the same row.
To prevent this conflict, pay close attention to where the MessageBox or WinMessage built-in functions
are used in your Application Engine PeopleCode. In general, there can't be any outstanding database
updates pending when communicating with the optimization engine using application messages.

The OPT_CALL Message

The OPT_CALL message is an example of what the lights-out process uses as the message for
optimization. The OPT_CALL message has a structure using a record, PT_OPTPARMS, having the fields
PARMKEY and VALUE which represent a name/value pair. These send requests and responses from the
Application Engine PeopleCode in PeopleSoft Process Scheduler to and from the message OnRequest
PeopleCode in the application server.

The OPT_CALL message also uses a record, PT_OPTDETMSGS, which contains the information needed
for processing a detailed message.

This is an example of the Message Definition page (select PeopleTools > Integration Broker >
Integration Setup > Message Definitions) showing the OPT_CALL message definition:

Copyright © 1988, 2024, Oracle and/or its affiliates. 47

Optimization PeopleCode Chapter 4

This example illustrates the fields and controls on the Message Definition page – OPT_CALL message
definition. You can find definitions for the fields and controls later on this page.

The OPT_CALL message is associated with the OPT_CALL service operation. The OPT_CALL service
operation defines the OPT_CALL application package as a handler. This application package implements
the Integration Broker methods needed to handle any messaging PeopleCode.

Creating a Request Message
This section provides an overview of the request message and describes how to create messages that:

• Create an optimization engine.

• Check optimization engine status.

• Run an optimization engine transaction.

• Set the trace level.

• Get the trace level.

• Shutdown an optimization engine.

48 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Understanding the Request Message

For optimization, the Application Engine PeopleCode in PeopleSoft Process Scheduler sends a request
OPT_CALL message. The message uses rowsets built from PT_OPTPARMS records as the request. You
can use the following rowset structures as an example of how to perform certain optimization actions, by
sending them as requests from the application engine program in the process scheduler to the message
notification PeopleCode in the application server.

Creating an Optimization Engine

To create an optimization engine, structure the rowset as follows, using the PT_OPTPARMS record. You
set key values using the PARMKEY field, and then set a value for that key field in the VALUE field.

PARMKEY Field VALUE Field

OPTCMD CREATE

Causes the PeopleCode program implementing the Integration
Broker OnRequest method to load an optimization engine. The
OPT_CALL example executes the CreateOptEngine function.

PROBINST The name of the analytic instance.

PROCINSTANCE The name of the process instance for this process scheduler
job.

SYNCH Y if this optimization engine load is to occur synchronously, N
if asynchronously.

Checking Optimization Engine Status

To check optimization engine status (for example, to see when it finishes loading), structure the rowset as
follows, using the PT_OPTPARMS record.

PARMKEY Field VALUE Field

OPTCMD CHECK_STATUS

Causes the PeopleCode program implementing the Integration
Broker OnRequest method to check the status of an
optimization engine. The OPT_CALL example executes the
CheckOptEngineStatus function.

PROBINST The name of the analytic instance.

Copyright © 1988, 2024, Oracle and/or its affiliates. 49

Optimization PeopleCode Chapter 4

PARMKEY Field VALUE Field

PROCINSTANCE The name of the process instance for this process scheduler
job.

Running a Transaction

To run a transaction, structure the rowset as follows, using the PT_OPTPARMS record.

PARMKEY Field VALUE Field

OPTCMD RUN

Causes the PeopleCode program implementing the Integration
Broker OnRequest method to run an optimization transaction.
 The OPT_CALL example executes the GetOptEngine method
and either the RunSynch or RunAsynch method.

PROBINST The name of the analytic instance.

PROCINSTANCE The name of the process instance for this process scheduler
job.

SYNCH Y for a synchronous transaction, N for asynchronous.

TRANSACTION The name of the transaction to run.

The names of one or more transaction parameters. The value of each named transaction parameter.

Setting the Trace Level

To set a trace level, structure the rowset as follows, using the PT_OPTPARMS record.

PARMKEY Field VALUE Field

OPTCMD SET_TRACE_LEVEL

Causes the PeopleCode program implementing the OnRequest
Integration Broker method to set the severity level at which
events will be logged for an optimization engine. The OPT_
CALL example executes the SetTraceLevel method.

PROBINST The name of the analytic instance.

50 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

PARMKEY Field VALUE Field

PROCINSTANCE The name of the process instance for this process scheduler
job.

COMPONENT One of the following values:

• %Opt_Engine server activity of the running optimization
engine.

• %Opt_Utility low level elements that support the running
optimization engine.

• %Opt_Datacache the in-memory database cache.

• %Opt_Plugin the plug-in being used for the running
optimization engine.

SEVERITY_LEVEL The severity level to log.

The following list starts with the most severe level; the level
you specify includes all higher levels. For example, if you
specify %Severity_Error, it logs %Severity_Fatal, %Severity
_Status, and %Severity_Error messages and filters out the
others.

• %Severity_Fatal

• %Severity_Status

• %Severity_Error

• %Severity_Warn

• %Severity_Info

• %Severity_Trace1

• %Severity_Trace2

Getting the Trace Level

To get a trace level, structure the rowset as follows, using the PT_OPTPARMS record.

Copyright © 1988, 2024, Oracle and/or its affiliates. 51

Optimization PeopleCode Chapter 4

PARMKEY Field VALUE Field

OPTCMD GET_TRACE_LEVEL

Causes the PeopleCode program implementing the OnRequest
Integration Broker method to get the severity level at which
events will be logged for an optimization engine. The OPT_
CALL example executes the GetTraceLevel method.

PROBINST Set to the name of the analytic instance.

PROCINSTANCE Set to the name of the process instance for this process
scheduler job.

COMPONENT One of the following values:

• %Opt_Engine server activity of the running optimization
engine.

• %Opt_Utility low level elements that support the running
optimization engine.

• %Opt_Datacache the in-memory database cache.

• %Opt_Plugin the plugin being used for the current opt
engine.

Shutting Down an Optimization Engine

To shut down an optimization engine, structure the rowset as follows, using the PT_OPTPARMS record.

PARMKEY Field VALUE Field

OPTCMD SHUTDOWN

Causes the PeopleCode program implementing the OnRequest
Integration Broker method to shut down an optimization
engine. The OPT_CALL example executes the Shutdown
method.

PROBINST The name of the analytic instance.

PROCINSTANCE The name of the process instance for this process scheduler
job.

52 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Creating a Response Message
This section provides an overview of the response message and describes how to create messages that:

• Send optimization status.

• Send a detailed message.

Understanding the Response Message

For optimization, the message PeopleCode in application server receives the request messages, performs
an optimization actions, and sends response OPT_CALL messages. One message uses rowsets built from
PT_OPTPARMS records, the other uses rowsets from PT_DETMSGS records. You can use the rowset
structures in the next section (Sending Optimization Status) as an example of how to send responses from
the message notification PeopleCode in the application server to the application engine program in the
process scheduler.

Sending Optimization Status

To send the status of the optimization functions and methods called within the PeopleCode program
implementing the OnRequest Integration Broker method, structure the rowset as follows using the
PT_OPTPARMS record. The optimization functions and messages are called in response to the request
input message. You set key values using the PARMKEY field, and then set a value for that key field in the
VALUE field.

PARMKEY Field VALUE Field

STATUS The return status of the optimization function or method that is
called in the message PeopleCode.

DETAILED_STATUS The optional detailed status returned by many of the
optimization functions and methods.

Sending a Detailed Message

To send a detailed message, structure the rowset as follows, using the PT_DETMSGS record. You set key
values using the PARMKEY field, and then set a value for that key field in the VALUE field.

PARMKEY Field VALUE Field

MSGSET The message set number. In the case of optimization, the
message set number is 148.

MSGNUM The name of the detailed message.

PARMCOUNT The number of message parameters for the detailed message.
 There can be up to five parameters.

Copyright © 1988, 2024, Oracle and/or its affiliates. 53

Optimization PeopleCode Chapter 4

PARMKEY Field VALUE Field

MSGPARM1 The first parameter value.

MSGPARM2 The second parameter value.

MSGPARM3 The third parameter value.

MSGPARM4 The fourth parameter value.

MSGPARM5 The fifth parameter value.

Editing the Request PeopleCode
The PT_OPTCALL Application Engine program serves as a template. It is delivered with all the sections
marked as inactive. You can edit the program to suit your needs, then mark the appropriate sections active
before running it. You can also use the program as a guide to creating your own Application Engine
program.

The program uses these steps to send request messages to perform the following tasks:

1. Load the optimization engine.

2. Wait for the optimization engine load to finish.

3. Run an optimization transaction against the loaded optimization engine.

4. Wait for the optimization transaction to finish running.

5. Set the trace level.

6. Get the trace level.

7. Shut down the optimization engine.

You can edit steps 1 and 3 to run an optimization transaction. You can also use the entire program as a
template to create your own Application Engine program.

Loading an Optimization Engine

In step 1, enter the name of your analytic instance. In this example, the name of the analytic instance is
FEMALE1.

If you have multiple domains, enter the local node name and the machine name and port number for
your application server. In this case, the local node name is %LocalNode and the machine name and port
number are foo111111:9000.

Local Message &MSG;
Local Message &response;

Component string &probid;

54 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Component string &isSync;
Component string &procinst;
Local integer &nInst;
Local string &url;

Local Rowset &rs;
Local Row &row;
Local Record &rec;

Local string &stName;
Local integer &stVal;

&MSG = CreateMessage(OPERATION.OPT_CALL);
&rs = &MSG.GetRowset();

&row = &rs.GetRow(1);
&rec = &row.GetRecord(Record.PT_OPTPARMS);
&rec.PARMKEY.Value = "OPTCMD";
&rec.VALUE.Value = "CREATE";

&rs.InsertRow(1);
&rec = &rs.GetRow(2).PT_OPTPARMS;
&rec.PARMKEY.Value = "PROBINST";
&rec.VALUE.Value = "FEMALE1";
&probid = "FEMALE1";

&rs.InsertRow(2);
&rec = &rs.GetRow(3).PT_OPTPARMS;
&rec.PARMKEY.Value = "PROCINSTANCE";
&nInst = Record.PT_OPT_AET.PROCESS_INSTANCE.Value;
&rec.VALUE.Value = String(&nInst);
&procinst = String(&nInst);

&rs.InsertRow(3);
&rec = &rs.GetRow(4).PT_OPTPARMS;
&rec.PARMKEY.Value = "SYNCH";
&rec.VALUE.Value = "N";
&isSync = "N";

/* Specify the Application Server domain URL (foo111111:9000 in this example)
*/
&response = %IntBroker.SyncRequest(%LocalNode, "//foo111111:9000 e");

If &response.ResponseStatus = 0 Then
 &stName = &response.GetRowset().GetRow(1).GetRecord(Record.PT_OPTPARMS).Get
Field(Field.PARMKEY).Value;
 &stVal = Value(&response.GetRowset().GetRow(1).GetRecord(Record.PT_
OPTPARMS).GetField(Field.VALUE).Value);
 If &stName = "STATUS" And
 &stVal = %OptEng_Fail Then
 /* Check detailed message here */
 throw CreateException(148, 2, "Can not send to OptEngine");
 End-If;
End-If;

Running An Optimization Transaction

In step 3, enter the name of your optimization transaction and its parameter name/value pairs. In
this example, the transaction name is TEST_LONG_TRANS, the first parameter name/value pair is
Delay_in_Secs and 30, and the second parameter name/value pair is Sleep0_Work1 and 0.

The parameter values are stored as strings. You may need to convert them in the OnRequest PeopleCode.

Local Message &MSG;
Local Message &response;

Local Rowset &rs, &respRS;

Copyright © 1988, 2024, Oracle and/or its affiliates. 55

Optimization PeopleCode Chapter 4

Local Row &row;
Local Record &rec, &msgRec;

Component string &probid;
Component string &procinst;
Component string &isSync;
Local string &url = "";
Local integer &parmCount, &msgSet, &msgNum;

&MSG = CreateMessage(OPERATION.OPT_CALL);
&rs = &MSG.GetRowset();

&row = &rs.GetRow(1);
&rec = &row.GetRecord(Record.PT_OPTPARMS);
&rec.PARMKEY.Value = "OPTCMD";
&rec.VALUE.Value = "RUN";

&rs.InsertRow(1);
&rec = &rs.GetRow(2).PT_OPTPARMS;
&rec.PARMKEY.Value = "PROBINST";
&rec.VALUE.Value = &probid;

&rs.InsertRow(2);
&rec = &rs.GetRow(3).PT_OPTPARMS;
&rec.PARMKEY.Value = "PROCINSTANCE";
&rec.VALUE.Value = &procinst;

&rs.InsertRow(3);
&rec = &rs.GetRow(4).PT_OPTPARMS;
&rec.PARMKEY.Value = "SYNCH";
&rec.VALUE.Value = &isSync;

&rs.InsertRow(4);
&rec = &rs.GetRow(5).PT_OPTPARMS;
&rec.PARMKEY.Value = "TRANSACTION";
&rec.VALUE.Value = "TEST_LONG_TRANS";

&rs.InsertRow(5);
&rec = &rs.GetRow(6).PT_OPTPARMS;
&rec.PARMKEY.Value = "Delay_in_Secs";
&rec.VALUE.Value = "30";

&rs.InsertRow(6);
&rec = &rs.GetRow(7).PT_OPTPARMS;
&rec.PARMKEY.Value = "Sleep0_Work1";
&rec.VALUE.Value = "0";

/* SyncRequest will carry a url */
SQLExec("select URL from PSOPTSTATUS where PROBINST=:1 AND URL NOT LIKE '%:0';",
 &probid, &url);
If &url = "" Then
 throw CreateException(148, 2, "Can not send to OptEngine");
End-If;

/* Specify the Application Server domain URL.
 (This was specified in Step 1 in this example.)
*/
&response = %IntBroker.SyncRequest(%LocalNode, &url);

If &response.ResponseStatus = 0 Then
 &stName = &response.GetRowset().GetRow(1).GetRecord(Record.PT_OPTPARMS).Get
Field(Field.PARMKEY).Value;
 &stVal = Value(&response.GetRowset().GetRow(1).GetRecord(Record.PT_
OPTPARMS).GetField(Field.VALUE).Value);

 If &stName = "STATUS" And
 &stVal = %OptEng_Fail Then
 throw CreateException(148, 2, "Can not send to OptEngine");
 End-If;

 /* Check Detailed msg here */

56 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

 If &isSync = "Y" And
 &stVal = %OptEng_Success Then

 &respRS = &response.GetRowset();
 &rowNum = &respRS.ActiveRowCount;
 For &iloop = 1 To &rowNum
 &msgRec = &respRS.GetRow(&iloop).GetRecord(Record.PT_OPTDETMSGS);
 If (&msgRec.GetField(Field.MSGSET).Value <> 0) Then
 &msgSet = Value(&msgRec.GetField(Field.MSGSET).Value);
 &msgNum = Value(&msgRec.GetField(Field.MSGNUM).Value);
 &parm1 = &msgRec.GetField(Field.MSGPARM1).Value;
 &parm2 = &msgRec.GetField(Field.MSGPARM2).Value;
 &parm3 = &msgRec.GetField(Field.MSGPARM3).Value;
 &parm4 = &msgRec.GetField(Field.MSGPARM4).Value;
 &parm5 = &msgRec.GetField(Field.MSGPARM5).Value;
 &string = MsgGetText(&msgSet, &msgNum, "Message Not Found", &parm1,
 &parm2, &parm3, &parm4, &parm5);

 End-If;
 End-For;

 End-If;

End-If;

Editing the Response PeopleCode
The OPT_CALL message definition serves as a template. It is delivered to work with the PT_OPTCALL
Application Engine program. You can edit the program to suit your needs, or use it as a guide when
creating your own response message program.

OPT_CALL Message Program

The OPT_CALL application package implements the Integration Broker method OnRequest. The
PeopleCode in this method shows application messages for lights-out mode.

Depending upon the request message, the OnRequest method PeopleCode calls appropriate optimization
functions and methods to perform these tasks, and sends a response message containing the returned
status and detailed messages from the optimization functions and methods.

You can use the OnRequest method PeopleCode as a template to create your own response message
PeopleCode program. For example, you can edit it to run an optimization transaction, which is shown
below as an example. This example is edited to match the examples for step 1 and step 3 in the
PT_OPTCALL program.

Processing the Transaction Parameters

Edit the OPT_CALL application program OnRequest method to enter the name of your optimization
transaction and the name/value pairs for its parameters. In this example, the transaction name is
TEST_LONG_TRANS, the first parameter name/value pair is &delayParm and &delay (maps to
Delay_in_Secs from the request message), and the second parameter name/value pair is &sleepParm and
&isSleep (maps to Sleep0_Work1 from the request message).

The parameter values are stored as strings in step 3 of the Application Engine program. You may need to
convert them here to your desired format. Here is a section of the application program showing the places
to edit.

If &trans = "TEST_LONG_TRANS" Then
 &REC = &rs.GetRow(6).PT_OPTPARMS;&delayParm = &REC.PARMKEY.Value;&delay = Value(⇒

Copyright © 1988, 2024, Oracle and/or its affiliates. 57

Optimization PeopleCode Chapter 4

&REC.VALUE.Value);

 &REC = &rs.GetRow(7).PT_OPTPARMS;&sleepParm = &REC.PARMKEY.Value;&isSleep = Valu⇒

e(&REC.VALUE.Value);

 &myopt = GetOptEngine(&inst, &detStatus);
 If (&myopt = Null) Then
 &optstatus = %OptEng_Fail;
 End-If;

 If &myopt <> Null And &isSync = "Y" Then
 &optstatus = &myopt.RunSynch(&trans, &delayParm, &delay, &sleepParm, &isSleep⇒

);
 &detStatus = &myopt.DetailedStatus;
 End-If;

 If &myopt <> Null And &isSync = "N" Then
 &myopt.ProcessInstance = &procInst;
 &optstatus = &myopt.RunASynch(&trans, &delayParm, &delay, &sleepParm, &is
Sleep);
 &detStatus = &myopt.DetailedStatus;
 End-If; /* iif myopt=null */
End-If;

Building a Status Response Message

This section shows the a response message to send a status message for the OPT_CALL message in the
application server.

/* Insert detailed status and detailed msgs into Response msg rowset */
&respRS = &response.GetRowset();
&respRS.GetRow(1).GetRecord(Record.PT_OPTPARMS).GetField(Field.PARMKEY).Value =
 "STATUS";
&respRS.GetRow(1).GetRecord(Record.PT_OPTPARMS).GetField(Field.VALUE).Value =
 String(&optstatus);

&respRS.InsertRow(1);
&respRS.GetRow(2).GetRecord(Record.PT_OPTPARMS).GetField(Field.PARMKEY).Value =
 "DETAILED_STATUS";
&respRS.GetRow(2).GetRecord(Record.PT_OPTPARMS).GetField(Field.VALUE).Value =
 String(&detStatus);

Building a Detailed Response Message

This section shows a response message to send a detailed message for the OPT_CALL message on the
application server.

/*Either optcmd or inst is not passed in correctly, or optengine is not loaded
/created correctly */
If &myopt = Null Then
 &msgRec = &respRS.GetRow(1).GetRecord(Record.PT_OPTDETMSGS);
 If &isParmBad = True Then
 &msgRec.GetField(Field.MSGSET).Value = 148;
 &msgRec.GetField(Field.MSGNUM).Value = 505;
 End-If;
End-If;

/* If it is sync transaction, insert DetailMsg to response msg */
If &myopt <> Null And
 &isSync = "Y" And
 &optcmd = "RUN" And
 &optstatus = %OptEng_Success Then
 &arrArray = &myopt.DetailMsgs;
 For &iloop = 1 To &arrArray.Len

58 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

 /* First two rows have been inserted because of PT_OPTPARMS for two status
 codes */
 If &iloop > 2 Then
 &respRS.InsertRow(&iloop - 1);
 End-If;

 &msgRec = &respRS.GetRow(&iloop).GetRecord(Record.PT_OPTDETMSGS);
 &msgRec.GetField(Field.MSGSET).Value = String(&arrArray [&iloop][1]);
 &msgRec.GetField(Field.MSGNUM).Value = String(&arrArray [&iloop][2]);
 &msgRec.GetField(Field.PARMCOUNT).Value = String(&arrArray [&iloop][3]);
 &msgRec.GetField(Field.MSGPARM1).Value = String(&arrArray [&iloop][4]);
 &msgRec.GetField(Field.MSGPARM2).Value = String(&arrArray [&iloop][5]);
 &msgRec.GetField(Field.MSGPARM3).Value = String(&arrArray [&iloop][6]);
 &msgRec.GetField(Field.MSGPARM4).Value = String(&arrArray [&iloop][7]);
 &msgRec.GetField(Field.MSGPARM5).Value = String(&arrArray [&iloop][8]);
 End-For;

End-If;

Optimization Built-in Functions

This section discusses the optimization functions. The functions are discussed in alphabetical order.

CreateOptEngine

Syntax

CreateOptEngine(analytic_inst, {%Synch | %ASynch}[, &detailedstatus] [, processinst⇒

ance])

Description

The CreateOptEngine function instantiates an OptEngine object, loads an optimization engine with an
analytic instance and returns a reference to it.

Parameters

Parameter Description

Analytic_inst Specify the analytic instance ID, which is a unique ID for this
analytic instance in this optimization engine. This is supplied
by users when they request that an optimization be run.

%Synch | %Asynch Specify whether the optimization engine is synchronous or
asynchronous. The values are:

• %Synch: run the optimization engine synchronously.

• %Asynch: run the optimization engine asynchronously.

Copyright © 1988, 2024, Oracle and/or its affiliates. 59

Optimization PeopleCode Chapter 4

Parameter Description

&detailedstatus Specify a variable that the engine uses to give further
information about the evaluation of this function. The value
returned is one of the following:

• %OptEng_Success: The function completed successfully.

• %OptEng_Fail: The function failed.

• %OptEng_Invalid_Aiid: The analytic instance ID passed
to the function is invalid.

• %OptEng_Exists: An optimization engine instance
already exists and is loaded.

• %OptEng_Method_Disabled: A method is disabled or not
valid.

• %OptEng_DB_Updates_Pending: indicates that database
updates are pending.

processinstance Enter the process instance ID. You use this parameter only
with lights-out processing, most likely with the subscription
PeopleCode for application message.

Note: This optional parameter is positional. If you use it, you
must also use the &detailedstatus parameter.

The state record that you use with Application Engine contains
the process instance ID.

See Using Lights-Out Mode with Optimization.

See “Using State Records” (Application Engine).

Returns

If successful, CreateOptEngine returns an OptEngine PeopleCode object. If the function fails, it returns
a null value. Examine the optional status reference parameter in case of a Null return for additional
information regarding the failure.

Example

An OptEngine object variable can be scoped as Local, Component, or Global.

You declare OptEngine objects as type OptEngine. For example:

Local OptEngine &MyOptEngine;
Component OptEngine &MyOpt;
Global OptEngine &MyOptEng;

The following example loads an optimization engine with the analytic instance:

Local OptEngine &myopt;
Local string &probinst;
Local string &transaction;

60 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Local integer &detailedstatus;

&probinst = GetRecord(Record.PSOPTPRBINST).GetField(Field.PROBINST).Value;
&myopt = CreateOptEngine(&probinst, %Synch);

The following example shows the use of the optional status parameter:

&myopt = CreateOptEngine(&probinst, %Synch, &detailedstatus);
if &myopt = Null then
 if &detailedstatus = %OptEng_Invalid_Piid then
 /*perform some action */
 end_if;
end_if;

CreateOptInterface

Syntax

CreateOptInterface()

Description

The CreateOptInterface function instantiates an OptInterface object.

Note: You can use this function and the OptInterface methods only within an application class that you
extend from the OptBase application class, or within PeopleCode that you call from that application class.
This ensures that the OptInterface PeopleCode runs only on the optimization engine.

Parameters

None.

Returns

If successful, CreateOptInterface returns an OptInterface PeopleCode object. If the function fails, it
returns a null value.

Example

You declare OptInterface objects as type OptInterface. For example:

Local OptInterface &MyOptInterface;
Component OptInterface &MyOptInt;
Global OptInterface &MyOptInt;

The following example instantiates an OptInterface object:

Local OptInterface &myInterface;
Int &status;

&myInterface = CreateOptInterface(&addtionalStatus);
if (&myInterface != NULL) then
 &status = &myInterface.ActivateModel("RMO_TEST");
 if (&status = %OptInter_Fail) then
 /* examine &myInterface.DetailedStatus for reason */
 ...
 end-if;

Copyright © 1988, 2024, Oracle and/or its affiliates. 61

Optimization PeopleCode Chapter 4

else
 /* CreateOptInterface has returned NULL */
 /* take some corrective action here */
 ...
end_if;

DeleteOptProbInst

Syntax

DeleteOptProbInst(probinst[, &detailedstatus])

Description

The DeleteOptProbInst function deletes the analytic instance ID from PeopleTools metadata. This
function can be called only inside FieldChange, PreSaveChange and PostSaveChange PeopleCode events,
and in Workflow.

Note: Use this function to delete the analytic instance ID after deleting data in optimization application
tables for this analytic instance.

Parameters

Parameter Description

probinst Enter the analytic instance ID to delete.

&detailedstatus (Optional) This status reference parameter returns an integer
value giving further information about the evaluation of this
function. The value returned is one of the following:

• %OptEng_Success: The function completed successfully.

• %OptEng_Fail: The function failed.

• %OptEng_Invalid_Piid: The analytic instance ID passed
to the function is invalid.

• %OptEng_Sql_Exception: A SQLerror is encountered
when access database.

• %OptEng_Exists: An analytic server loaded with this
analytic instance still exists.

Returns

Returns %OptEng_Success if successful; otherwise returns %OptEng_Fail.

Example

The following example deletes the instance for an analytic type:

62 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Note: Whenever you add records to an analytic type, you must call DeleteOptProbInst to delete the old
analytic type instances and then call InsertOptProbInst to recreate them.

Local string &probinst;
Local string &probtype;
Local integer &ret;
&probinst = "PATSMITH";
&probtype = "QEOPT";
&ret = DeleteOptProbInst(&probinst, &probtype);
If &ret <> %OptEng_Success Then
 QEOPT_WRK.MESSAGE_TEXT = "Delete of analytic instance " | &probinst | "
 failed.";
Else
 QEOPT_WRK.MESSAGE_TEXT = "Analytic Instance " | &probinst | " deleted.";
End-If;

The following example shows the use of the optional status parameter:

Local integer &detailedstatus;
&ret = DeleteOptProbInst(&probinst, &probtype, &detailedstatus);
If &ret <> %OptEng_Success AND &detailedstatus=%OptEng_Invalid_Piid then
 QEOPT_WRK.MESSAGE_TEXT = "Delete of analytic instance " | &probinst | " failed
for bad piid.";
Else
 QEOPT_WRK.MESSAGE_TEXT = "Analytic Instance " | &probinst | deleted.";
End-If;

GetOptEngine

Syntax

GetOptEngine(probinst[,&detailedstatus])

Description

The GetOptEngine function returns a handle to an optimization engine that is already loaded with the
analytic instance.

Note: You cannot call GetOptEngine from a domain other than the application server.

Parameters

Parameter Description

probinst Enter the analytic instance ID, which is unique ID for this
analytic instance in this optimization engine.

Copyright © 1988, 2024, Oracle and/or its affiliates. 63

Optimization PeopleCode Chapter 4

Parameter Description

&detailedstatus (Optional) This status reference parameter returns an integer
value giving further information about the evaluation of this
function. The value returned is one of the following:

• %OptEng_Success: The function completed successfully.

• %OptEng_Fail: The function failed.

• %OptEng_Invalid_Piid: The analytic instance ID passed
to the function is invalid.

Returns

Returns an OptEngine PeopleCode object if successful, a null value otherwise.

Example

The following example causes an optimization engine to shut down its analytic instance:

Global string &probinst;
Local OptEngine &myopt;
Local integer &status;

&myopt = GetOptEngine(&probinst);
If &myopt <> NULL then
&status = &myopt.ShutDown();
QEOPT_WRK.MESSAGE_TEXT = "Analytic Instance ID " | &probinst
 | " has been shutdown successfully.";
End-if;

Or, you can use the optional status parameter:

&myopt = GetOptEngine(&probinst, &detailedstatus);
if &myopt=NULL and &detailedstatus=%OptEng_Invalid_Piid then
 /* perform some action */
End-if;

GetOptProbInstList

Syntax

GetOptProbInstList(ProblemType , OutputErrorCode [, Prefix] [, &detailedstatus])

Description

The GetOptProbInstList function gets the list of all analytic instance IDs in an analytic type.

64 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameters

Parameter Description

ProblemType Enter the name of the analytic type that you created in
Application Designer.

OutputErrorCode Future use. Always returns zero.

Prefix (Optional) Enter a string. If used, this prefix causes the
returned list to include only the analytic instance IDs that start
with this prefix. If not used, all the analytic instance IDs in the
analytic type are returned.

&detailedstatus (Optional) This status reference parameter returns an integer
value giving further information about the evaluation of this
function. The value returned is one of the following:

• %OptEng_Success: The function completed successfully.

• %OptEng_Fail: The function failed.

• %OptEng_Invalid_Piid: The analytic type name passed to
the function is invalid.

Returns

Returns an array of strings containing the optimization analytic instance list.

Example

The following example shows the usage of GetOptProbInstList to fill the display field on a page:

Global string &probinst;
Local integer &detailedstatus;
Local integer &iloop;
Local array of string &instarray;

QEOPT.OPERATOR = %UserId;

&instarray = GetOptProbInstList(QEOPT.PROBTYPE, &ret, &detailedstatus);

If &ret <> %OptEng_Success Then
 QEOPT_WRK.MESSAGE_TEXT = "Could not get analytic instances
 for analytic type " | QEOPT.PROBTYPE ;
Else
 For &iloop = 1 To &instarray.Len
 QEOPT_WRK.MESSAGE_TEXT = QEOPT_WRK.MESSAGE_TEXT | &instarray[&iloop] | " ";
 End-For;
End-If;

The following example shows the use of the optional status parameter:

&instarray = GetOptProbInstList(QEOPT.PROBTYPE, &ret, &detailedstatus);
If &ret <> %OptEng_Success and &detailedstatus=%OptEng_Invalid_Piid Then
 QEOPT_WRK.MESSAGE_TEXT = "Could not get analytic instances for analytic type "
| QEOPT.PROBTYPE | "because bad piid" ;
End-If;

Copyright © 1988, 2024, Oracle and/or its affiliates. 65

Optimization PeopleCode Chapter 4

InsertOptProbInst

Syntax

InsertOptProbInst(probinst, ProblemType[, &detailedstatus] [,Description])

Description

The InsertOptProbInst function inserts a new analytic instance ID into the PeopleTools metadata.

The InsertOptProbInst function can be called only inside FieldChange, PreSave and PostSave PeopleCode
events, and in Workflow.

Note: You must use this function to create the analytic instance ID before inserting data into optimization
application tables for this analytic instance.

Parameters

Parameter Description

probinst Enter the analytic instance ID to be inserted into the analytic
type.

ProblemType Enter the name of the analytic type that you created in
Application Designer.

&detailedstatus (Optional) This status reference parameter returns an integer
value giving further information about the evaluation of this
function. The value returned is one of the following:

• %OptEng_Success: The function completed successfully.

• %OptEng_Fail: The function failed.

• %OptEng_Invalid_Piid: The analytic instance ID passed
to the function is invalid.

Description (Optional) Specify a description for the analytic instance. This
parameter takes a string value.

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

66 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Value Description

%OptEng_Fail Returned if the method fails.

Example
Local string &probinst;
Local string &probtype;
Local integer &ret;
Local integer &detailedstatus;

&probinst = "PATSMITH";
&probtype = "QEOPT";
&probDescr = "New QEOPT instance";
&ret = InsertOptProbInst(&probinst, &probtype, &probDescr);
If &ret <> %OptEng_Success Then
 QEOPT_WRK.MESSAGE_TEXT = "Insert of analytic instance "
 | &probinst | " failed.";
Else
 QEOPT_WRK.MESSAGE_TEXT = "Analytic Instance " | &probinst | " created.";
End-If;

The following example shows the use of the optional status parameter:

&ret = InsertOptProbInst(&probinst, &probtype, &detailedstatus);
If &ret <> %OptEng_Success and &detailedstatus=%OptEng_Invalid_Piid Then
 QEOPT_WRK.MESSAGE_TEXT = "Insert of analytic instance "
 | &probinst | " failed for bad piid.";
End-if;

IsValidOptProbInst

Syntax

IsValidOptProbInst(probinst [, &detailedstatus])

Description

IsValidOptProbInst determines if a given analytic instance exists in the optimization metadata.

Parameters

Parameter Description

probinst Enter the analytic instance ID to be validated.

&detailedstatus (Optional) This status reference parameter returns an integer
value giving further information about the evaluation of this
function. The value returned is one of the following:

• %OptEng_Success: The function completed successfully.

• %OptEng_Invalid_Piid: The analytic type name passed to
the function is invalid.

Copyright © 1988, 2024, Oracle and/or its affiliates. 67

Optimization PeopleCode Chapter 4

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.

Example
Local string &probinst;
Local integer &detailedstatus;
Local integer &ret;

&probinst = "PATSMITH";
&ret = IsValidOptProbInst(&probinst, &detailedstatus);
If &ret <> %OptEng_Success and &detailedstatus=%OptEng_Invalid_Piid Then
 <perform some action>
End-if;

OptEngine Class Methods

This section discusses the optimization methods for the OptEngine PeopleCode class. The methods are
listed in alphabetical order.

CheckOptEngineStatus

Syntax

CheckOptEngineStatus()

Description

The CheckOptEngineStatus method returns the status of the optimization engine, using a combination of
its return value and the DetailedStatus OptEngine class property. Keep the following in mind:

• The value returned by CheckOptEngineStatus is the operational status of the optimization engine.

• The DetailedStatus property indicates the completion status of the OptEngine method call
CheckOptEngineStatus.

For example, CheckOptEngineStatus can return %OptEng_Idle and DetailedStatus is %OptEng_Success.
For CheckOptEngineStatus, DetailedStatus can have the value:

• %OptEng_Success

• %OptEng_Fail

68 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

• %OptEng_Not_Available

Note: Before this method is called, the CreateOptEngine or GetOptEngine must be called.

Returns

Returns an integer for the status of the optimization engine. These numbers are message IDs belonging to
message set 148 in the message catalog.

Numeric Value Constant Value Description

21 %OptEng_Not_Loaded The optimization engine process is
running, but is not currently loaded with
an application problem.

22 %OptEng_Busy_Loading The optimization engine is busy loading
an application problem. It will not
accept transaction requests until loading
completes.

23 %OptEng_Idle The optimization engine is loaded with
an application problem and waiting for a
transaction request.

24 %OptEng_Busy The optimization engine is busy
processing a transaction request for the
loaded application problem. It will not
accept additional transaction requests
until the current one completes.

26 %OptEng_Unknown An error has occurred. The optimization
engine status cannot be determined.

Example

This PeopleCode example shows optimization engine status being checked:

Local OptEngine &myopt;
Local string &probinst;
Local integer &status;
&myopt = GetOptEngine("PATSMITH");
/* Initialize the DESCRLONG field in the QE_FUNCLIB_OPT record to null. */
GetLevel0().GetRow(1).GetRecord(Record.QE_FUNCLIB_OPT).DESCRLONG.Value = "";
&status = &myopt.CheckOptEngineStatus();
GetLevel0().GetRow(1).GetRecord(Record.QE_FUNCLIB_OPT).DESCRLONG.Value = "Opt
Engine status = " | MsgGet(148, &status, "Could not send to the OptEngine.");

You can also retrieve the detailed status:

Local integer &detailedstatus
&status = &myopt.CheckOptEngineStatus();
&detailedstatus = &myopt.DetailedStatus;

Copyright © 1988, 2024, Oracle and/or its affiliates. 69

Optimization PeopleCode Chapter 4

FillRowset

Syntax

FillRowset(PARAM_NAME, &Rowset[, &functionstatus])

Description

This method gets the value of a transaction output parameter that is a rowset. This cannot be used with the
RunAsynch method; RunSynch is needed to make the transaction output parameter values immediately
available.

When using the OptEngine DetailedStatus property, keep the following in mind:

• The value returned by FillRowset is the operational status of the optimization engine.

• The OptEngine DetailedStatus property indicates the completion status of the OptEngine method call
FillRowset.

For example, FillRowset returns %OptEng_Fail, and DetailedStatus is %OptEng_Method_Disabled.

For FillRowset, the DetailedStatus property can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled.

This indicates that the method is disabled or not valid.

• %OptEng_Wrong_Parm_Type

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

&Rowset Enter the rowset containing the values. This rowset must be
a single record rowset, and the record must match the record
name associated with the transaction parameter in the analytic
type definition.

70 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameter Description

&functionstatus (Optional) This status reference parameter returns an integer
value giving further information about the evaluation of this
function. The value returned is one of the following:

• OptEng_Success: The function completed successfully.

• OptEng_Fail: The function failed.

• OptEng_Method_Disabled: A method is disabled or not
valid.

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.

Example

The following PeopleCode example runs a synchronous optimization transaction named
RETURN_MACHINE_UNAVAILABLE. It has these parameters:

• Input: MACHINE_NAME to specify the machine for which we need unavailable times.

• Output: RETURN_TIMES to specify a rowset and MACHINE_WRK record containing the
BEGIN_DATE and END_DATE fields.

This PeopleCode example sets input parameter values and gets an output parameter value:

Local OptEngine &myopt;
Local integer &status;
Local string &machname;
Local Rowset &rs;
&myopt = GetOptEngine("PATSMITH");
&machname = QEOPT_WRK.MACHINE_NAME.Value;
/* Run the RETURN_MACHINE_UNAVAILABLE transaction synchronously with input values.
 */
&status = &myopt.RunSynch("RETURN_MACHINE_UNAVAILABLE", "MACHINE_NAME", &machname);
If Not &status Then
 QEOPT_WRK.MESSAGE_TEXT = " RETURN_MACHINE_UNAVAILABLE transaction failed.";
 Return;
End-If;
/* Get output value from the RETURN_MACHINE_UNAVAILABLE transaction. */
&rs = CreateRowset(Record.MACHINE_WRK);
&status = &myopt.FillRowset("RETURN_TIMES", &rs);

You can also use the [new->] DetailedStatus property as follows:

&status = &myopt.FillRowset("RETURN_TIMES", &rs);
if &status=%OptEng_Fail and &myopt.DetailedStatus=%OptEng_Method_Disabled then

Copyright © 1988, 2024, Oracle and/or its affiliates. 71

Optimization PeopleCode Chapter 4

 /* perform some action */
End-if;

GetDate

Syntax

GetDate(PARAM_NAME[, &status])

Description

This method gets the value of a transaction output parameter with a data type of Date. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The OptEngine DetailedStatus property indicates the completion status of the OptEngine method call
GetDate. For GetDate, DetailedStatus can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns a Date object; use this method when that is the data type of the transaction output parameter
value.

Example

See GetNumber.

GetDateArray

Syntax

GetDateArray(PARAM_NAME)

72 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Description

This method gets the value of a transaction output parameter with a data type Array of Date. This cannot
be used with the RunAsynch method; RunSynch is needed to make the transaction output parameter
values immediately available.

The OptEngine DetailedStatus property indicates the completion status of the OptEngine method call
GetDateArray. For GetDateArray, DetailedStatus can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns an Array of Date object; use this method when that is the data type of the transaction output
parameter value.

Example

See GetStringArray.

GetDateTime

Syntax

GetDateTime(PARAM_NAME)

Description

This method gets the value of a transaction output parameter with a data type of DateTime. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetDateTime. For GetDateTime, DetailedStatus can have the value:

Copyright © 1988, 2024, Oracle and/or its affiliates. 73

Optimization PeopleCode Chapter 4

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns a DateTime object; use this method when that is the data type of the transaction output parameter
value.

Example

See GetNumber.

GetDateTimeArray

Syntax

GetDateTimeArray(PARAM_NAME)

Description

This method gets the value of a transaction output parameter with a data type Array of DateTime.
This cannot be used with the RunAsynch method; RunSynch is needed to make the transaction output
parameter values immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetDateTimeArray. For GetDateTimeArray, DetailedStatus can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

74 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns an Array of DateTime object; use this method when that is the data type of the transaction output
parameter value.

Example

See GetStringArray.

GetNumber

Syntax

GetNumber(PARAM_NAME)

Description

This method gets the value of a transaction output parameter with a data type of Number. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetNumber. For GetNumber, DetailedStatus can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

Copyright © 1988, 2024, Oracle and/or its affiliates. 75

Optimization PeopleCode Chapter 4

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns a Number object; use this method when that is the data type of the transaction output parameter
value.

Example

The following PeopleCode example runs a synchronous optimization transaction named
IS_MACHINE_AVAILABLE. It has these parameters:

• Input MACHINE_NAME to specify the machine.

• Inputs BEGIN_DATE and END_DATE to specify the time slot.

• Output AVAILABLE_FLAG to specify whether the machine is available in that time slot.

This PeopleCode example sets input parameter values and gets an output parameter value:

Local OptEngine &myopt;
Local integer &status;
Local string &machname;
Local datetime &begindate;
Local datetime &enddate;
&myopt = GetOptEngine("PATSMITH");
&machname = QEOPT_WRK.MACHINE_NAME.Value;
&begindate = QEOPT_WRK.BEGIN_DATE.Value;
&enddate = QEOPT_WRK.END_DATE.Value;
/* Run the IS_MACHINE_AVAILABLE transaction synchronously with input values. */
&status = &myopt.RunSynch("IS_MACHINE_AVAILABLE", "MACHINE_NAME",
 &machname, "BEGIN_DATE", &begindate, "END_DATE", &enddate);
If Not &status Then
 QEOPT_WRK.MESSAGE_TEXT = "IS_MACHINE_AVAILABLE transaction failed.";
 Return;
End-If;
/* Get output value from the IS_MACHINE_AVAILABLE transaction. */
QEOPT_WRK.AVAILABLE_FLAG = &myopt.GetNumber("AVAILABLE_FLAG");

You can use the DetailedStatus property as follows:

QEOPT_WRK.AVAILABLE_FLAG = &myopt.GetNumber("AVAILABLE_FLAG");
if &myopt.DetailedStatus=%OptEng_Fail then
 /* perform some action */
End-if;

76 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

GetNumberArray

Syntax

GetNumberArray(PARAM_NAME)

Description

This method gets the value of a transaction output parameter with a data type Array of Number. This
cannot be used with the RunAsynch method; RunSynch is needed to make the transaction output
parameter values immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetNumberArray. For GetNumberArray, DetailedStatus can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: this indicates that the method is disabled or not valid.

Note: Do not pass an array of type Integer as a transaction parameter. Use an array of type Number
instead.

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns an Array of Number object; use this method when that is the data type of the transaction output
parameter value.

Example

See GetStringArray.

GetString

Syntax

GetString(PARAM_NAME)

Copyright © 1988, 2024, Oracle and/or its affiliates. 77

Optimization PeopleCode Chapter 4

Description

This method gets the value of a transaction output parameter with a data type of String. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetString. For GetString, DetailedStatus can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns a String object; use this method when that is the data type of the transaction output parameter
value.

Example

See GetNumber.

GetStringArray

Syntax

GetStringArray(PARAM_NAME)

Description

This method gets the value of a transaction output parameter with a data type Array of String. This cannot
be used with the RunAsynch method; RunSynch is needed to make the transaction output parameter
values immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetStringArray. For GetStringArray, DetailedStatus can have the value:

78 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns an Array of String object; use this method when that is the data type of the transaction output
parameter value.

Example

The following PeopleCode example runs a synchronous optimization transaction named
ARE_MACHINES_AVAILABLE. It has these parameters:

• Inputs BEGIN_DATE and END_DATE to specify the time slot.

• Output MACHINE_NAMES to specify the machines available in that time slot.

This PeopleCode example sets input parameter values and gets an output parameter value:

Local OptEngine &myopt;
Local integer &status;
Local array of string &machnames;
Local datetime &begindate;
Local datetime &enddate;
&myopt = GetOptEngine("PATSMITH");
&begindate = QEOPT_WRK.BEGIN_DATE.Value;
&enddate = QEOPT_WRK.END_DATE.Value;
/* Run the ARE_MACHINES_AVAILABLE transaction synchronously with input values. */
&status = &myopt.RunSynch("ARE_MACHINES_AVAILABLE",
 "BEGIN_DATE", &begindate, "END_DATE", &enddate);
If &status=%OptEng_Fail Then
 QEOPT_WRK.MESSAGE_TEXT = "ARE_MACHINES_AVAILABLE transaction failed.";
 Return;
End-If;
/* Get output value from the ARE_MACHINES_AVAILABLE transaction. */
&machnames = &myopt.GetStringArray("MACHINE_NAMES");

The following example shows the use of the DetailedStatus property:

Local array of string &machnames;
&machnames = &myopt.GetStringArray("MACHINE_NAMES");
if &myopt.DetailedStatus=%OptEng_Fail then
 /* perform some action */

Copyright © 1988, 2024, Oracle and/or its affiliates. 79

Optimization PeopleCode Chapter 4

End-if;

GetTime

Syntax

GetTime(PARAM_NAME)

Description

This method gets the value of a transaction output parameter with a data type of Time. This cannot be
used with the RunAsynch method; RunSynch is needed to make the transaction output parameter values
immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetTime. For GetTime, DetailedStatus can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns a Time object; use this method when that is the data type of the transaction output parameter
value.

Example

See GetNumber.

GetTimeArray

Syntax

GetTimeArray(PARAM_NAME)

80 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Description

This method gets the value of a transaction output parameter with a data type Array of Time. This cannot
be used with the RunAsynch method; RunSynch is needed to make the transaction output parameter
values immediately available.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetTimeArray. For GetTimeArray, DetailedStatus can have the value:

• %OptEng_Success.

• %OptEng_Fail.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

Parameters

Parameter Description

PARAM_NAME Enter a string for the name of the output parameter to get from
the transaction that was just performed with RunSynch. This
parameter must be defined as an output or both (input and
output) in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

Returns an Array of Time object; use this method when that is the data type of the transaction output
parameter value.

Example

See GetStringArray.

GetTraceLevel

Syntax

GetTraceLevel(component)

Description

GetTraceLevel gets the severity level at which events are logged for a given component.

The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
GetTraceLevel. For GetTraceLevel, DetailedStatus can have the value:

• %OptEng_Success.

Copyright © 1988, 2024, Oracle and/or its affiliates. 81

Optimization PeopleCode Chapter 4

This indicates that the function completed successfully.

• %OptEng_Fail.

This indicates that the function failed.

• %OptEng_Method_Disabled.

This indicates that the method is disabled or not valid.

• %OptEng_DB_Updates_Pending.

This indicates that database updates are pending.

Parameters

Parameter Description

component Enter one of the following PeopleCode constants: Opt_Engine,
 Opt_Utility, Opt_Datacache, or Opt_Plugin.

Returns

Returns one of the following.

• %Severity_Fatal

• %Severity_Status

• %Severity_Error

• %Severity_Warn

• %Severity_Info

• %Severity_Trace1

• %Severity_Trace2

Example
Local OptEngine &myopt;
Local integer &tracelevel;

&myopt = GetOptEngine("PATSMITH");

&tracelevel = &myopt.GetTraceLevel(%Opt_Engine);
if &myopt.DetailedStatus = %OptEng_Success then

 if (&tracelevel = %Severity_Info_ then
 winmessage("Severity level for the OptEngine is 'Info'");
 End-if;
End-if;

82 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

RunAsynch

Syntax

RunAsynch(TRANSACTION, PARM_PAIRS)

Description

The RunAsynch method requests the optimization engine to run the transaction in asynchronous mode.

When using the DetailedStatus OptEngine property, keep the following in mind:

• The value returned by RunASynch is the operational status of the optimization engine.

• The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
RunASynch.

For example, RunASynch can return %OptEng_Fail and DetailedStatus is
%OptEng_DB_Updates_Pending. For RunASynch, DetailedStatus can have the value:

• %OptEng_Success: indicates that the function completed successfully.

• %OptEng_Fail: indicates that the function failed.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

• %OptEng_DB_Updates_Pending: indicates that database updates are pending.

Parameters

Parameter Description

TRANSACTION Enter a string for the name of the transaction to run.

PARAM_PAIRS Enter the name and value pairs (string name and value) for
this transaction. Not used if the transaction has no parameters.
 Parameters are defined in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.

Copyright © 1988, 2024, Oracle and/or its affiliates. 83

Optimization PeopleCode Chapter 4

Example

This PeopleCode example runs an asynchronous optimization transaction named SOLVE. It has no input
or output parameters. The SOLVE transaction solves the exercise scheduling problem and puts the results
into the QE_RWSM_EXERSCH table.

Local OptEngine &myopt;
Local integer &status;
&myopt = GetOptEngine("PATSMITH");
/* Run the SOLVE transaction asynchronously with input values. */
&status = &myopt.RunAsynch("SOLVE");
If &status=%OptEng_Fail Then
 QEOPT_WRK.MESSAGE_TEXT = "SOLVE transaction failed.";
 Return;
End-If;

The following example shows the use of the DetailedStatus property.

Local integer &status;
&status = myopt.RunAsynch("SOLVE");
if &status=%OptEng_Fail and &myopt.DetailedStatus=%OptEng_Method_Disabled then
 <perform some action>
End-if;

RunSynch

Syntax

RunSynch(TRANSACTION, PARM_PAIRS)

Description

The RunSynch method requests the optimization engine to run the transaction in synchronous mode.

When using the DetailedStatus OptEngine property, keep the following in mind:

• The value returned by RunSynch is the operational status of the optimization engine.

• The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
RunSynch.

For example, RunSynch can return %OptEng_Fail and DetailedStatus is
%OptEng_DB_Updates_Pending. For RunSynch, DetailedStatus can have the value:

• %OptEng_Success: indicates that the function completed successfully.

• %OptEng_Fail: indicates that the function failed.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

• %OptEng_DB_Updates_Pending: indicates that database updates are pending.

84 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameters

Parameter Description

TRANSACTION Enter a string for the name of the transaction to run.

PARAM_PAIRS Enter the name and value pairs (string name and value) for
this transaction. Not used if the transaction has no parameters.
 Parameters are defined in the analytic type definition.

See “Configuring Analytic Type Transactions” (Optimization
Framework).

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.

Example

The following PeopleCode example runs a synchronous optimization transaction named
IS_MACHINE_AVAILABLE. It has these parameters:

• Input MACHINE_NAME to specify the machine.

• Inputs BEGIN_DATE and END_DATE to specify the time slot.

• Output AVAILABLE_FLAG to specify whether the machine is available in that time slot.

This PeopleCode example sets input parameter values and gets an output parameter value:

Local OptEngine &myopt;
Local integer &status;
Local string &machname;
Local datetime &begindate;
Local datetime &enddate;
&myopt = GetOptEngine("PATSMITH");
&machname = QEOPT_WRK.MACHINE_NAME.Value;
&begindate = QEOPT_WRK.BEGIN_DATE.Value;
&enddate = QEOPT_WRK.END_DATE.Value;
/* Run the IS_MACHINE_AVAILABLE transaction synchronously with input values. */
&status = &myopt.RunSynch("IS_MACHINE_AVAILABLE",
 "MACHINE_NAME", &machname, "BEGIN_DATE", &begindate, "END_DATE", &enddate);
If &status=%OptEng_Fail Then
 QEOPT_WRK.MESSAGE_TEXT = "IS_MACHINE_AVAILABLE transaction failed.";
 Return;
End-If;
/* Get output value from the IS_MACHINE_AVAILABLE transaction. */
QEOPT_WRK.AVAILABLE_FLAG = &myopt.GetNumber("AVAILABLE_FLAG");

Copyright © 1988, 2024, Oracle and/or its affiliates. 85

Optimization PeopleCode Chapter 4

Or, the following example shows the use of the DetailedStatus property.

Local integer &status;
&status = myopt.RunSynch("SOLVE");
if &status=%OptEng_Fail and &myopt.DetailedStatus=%OptEng_Method_Disabled then
 <perform some action>
End-if;

SetTraceLevel

Syntax

SetTraceLevel(component, severity)

Description

SetTraceLevel sets the severity level at which events are logged for a given component.

When using the DetailedStatus OptEngine property, keep the following in mind:

• The value returned by SetTraceLevel is the operational status of the optimization engine.

• The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
SetTraceLevel.

For example, SetTraceLevel can return %OptEng_Fail and DetailedStatus is
%OptEng_DB_Updates_Pending. For SetTraceLevel, DetailedStatus can have the value:

• %OptEng_Success: indicates that the function completed successfully.

• %OptEng_Fail: indicates that the function failed.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

• %OptEng_DB_Updates_Pending: indicates that database updates are pending.

Parameters

Parameter Description

component Use one of the following PeopleCode constants: Opt_Engine,
 Opt_Utility, Opt_Datacache, or Opt_Plugin.

86 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameter Description

severity Use one of the following PeopleCode constants. These options
set the degree to which errors are logged. You can set the
tracing levels differently for various parts of your program.
 This enables you to control the amount of trace information
that your program generates.

The following list shows the order of the severity, starting
with the highest level. For example, %Severity_Error logs
%Severity_Fatal, %Severity_Status, and %Severity_Error
messages, while the system filters out other messages. Keep in
mind that the higher the severity, the greater the performance
overhead.

• %Severity_Fatal

• %Severity_Status

• %Severity_Error

• %Severity_Warn

• %Severity_Info

• %Severity_Trace1

• %Severity_Trace2

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.

Example
Local OptEngine &myopt;
Local integer &status;
Local string &machname;
Local datetime &begindate;
Local datetime &enddate;

&myopt = GetOptEngine("PATSMITH");

&status = &myopt.SetTraceLevel(%Opt_Engine, %Severity_Warn);
if &status = %OptEng_Fail then
 <example: notify user that set trace action has failed>
End-if;

Copyright © 1988, 2024, Oracle and/or its affiliates. 87

Optimization PeopleCode Chapter 4

ShutDown

Syntax

ShutDown()

Description

The ShutDown method requests the optimization engine to shut down.

If the optimization engine cannot be contacted for shutdown, the return status is %OptEng_Fail and the
DetailedStatus property is OptEng_Not_Available.

When using the DetailedStatus OptEngine property, keep the following in mind:

• The value returned by Shutdown is the operational status of the optimization engine.

• The DetailedStatus OptEngine property indicates the completion status of the OptEngine method call
Shutdown.

For example, Shutdown can return %OptEng_Fail and DetailedStatus is
%OptEng_DB_Updates_Pending. For Shutdown, DetailedStatus can have the value:

• %OptEng_Success: indicates that the function completed successfully.

• %OptEng_Fail: indicates that the function failed.

• %OptEng_Method_Disabled: indicates that the method is disabled or not valid.

• %OptEng_DB_Updates_Pending: indicates that database updates are pending.

Note: Before this method is called, CreateOptEngine or GetOptEngine must be called. Call ShutDown to
shut down optimization engines even when running in Application Engine.

Parameters

None.

Returns

This method returns a constant. Valid values are:

Value Description

%OptEng_Success Returned if method succeeds.

%OptEng_Fail Returned if the method fails.

88 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Example

This PeopleCode example shows an optimization engine being shut down:

Local OptEngine &myopt;
Local integer &status;
&myopt = GetOptEngine("PATSMITH");
/* Shut down the optimization engine */
&status = &myopt.ShutDown();
If &status=%OptEng_Fail Then
 QEOPT_WRK.MESSAGE_TEXT = "PATSMITH optimization engine shutdown failed.";
 Return;
Else
 QEOPT_WRK.MESSAGE_TEXT = "PATSMITH optimization engine shutdown successful.";
 Return;
End-If;

The following example shows the use of the DetailedStatus property:

Local integer &status;
&status = myopt.ShutDown();
if &status=%OptEng_Fail and &myopt.DetailedStatus=%OptEng_Method_Disabled then
 <perform some action>
End-if;

OptEngine Class Properties

This section lists the optimization properties for the OptEngine PeopleCode class. The properties are
listed in alphabetical order.

DetailMsgs

Description

The DetailMsgs property returns a list of messages generated by an optimization engine. Use DetailMsgs
after you use the RunAsynch and RunSynch methods to check the status messages for an optimization
transaction.

If the transaction fails, detailed messages are automatically shown to the user. If the transaction succeeds,
warnings and informational messages may be generated by the transaction. Use this property to retrieve
those messages and make them available to the user.

DetailMsgs provides a two-dimensional array containing the message set ID, the message number in the
message catalog, and any arguments. Each row in the two-dimensional array has the following structure:

1. Message set ID.

2. Message number.

3. Number of message arguments.

4. Argument1.

5. Argument2.

6. Argument3.

Copyright © 1988, 2024, Oracle and/or its affiliates. 89

Optimization PeopleCode Chapter 4

7. Argument4.

8. Argument5.

A maximum of five arguments is supported for each message.

Note: To hold the property value returned, you need to declare an array of array of type Any.

Note: Before this method is called, you must call CreateOptEngine or GetOptEngine.

Example
Local OptEngine &myopt;
Local integer &status;
Local string &piid;

Local string &string;
Local array of array of any &arrArray;

&NEWLINE = Char(10);
&string = "";

&piid = GetRecord(Record.PSOPTPRBINST).GetField(Field.PROBINST).Value;
&myopt = GetOptEngine(&piid);

&status = &myopt.RunSynch("TEST_TRANSACTION");

If (&status = %OptEng_Success) then

&arrArray = &myopt.DetailMsgs;
For &iloop = 1 To &arrArray.Len

 &string = &string | &NEWLINE | MsgGetText(&arrArray [&iloop][1] /*message set*
/,
 &arrArray [&iloop][2] /*message id*/, "Message Not Found",&arrArray[&iloop][4],
 &arrArray [&iloop][5],&arrArray [&iloop][6],
&arrArray [&iloop][7],&arrArray[&iloop][8]);

End-For;

GetLevel0().GetRow(1).GetRecord(Record.QE_FUNCLIB_OPT).DESCRLONG.Value = &string;
End-If;

DetailedStatus

Description

The DetailedStatus property contains the detailed execution status of an OptEngine method after the
method is executed.

Example
Local integer &status;
&status = myopt.ShutDown();
if &status=%OptEng_Fail and &myopt.DetailedStatus=%OptEng_Method_Disabled then
 <perform some action>
End-if;

90 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

OptBase Application Class

This PeopleCode application class is part of the PT_OPT_BASE application package. It establishes the
basic framework for developing PeopleCode that invokes the Optimization PeopleCode plug-in. To use
the plug-in, you develop a application class that extends the OptBase application class. OptBase contains
the following types of methods:

• A set of base methods that you can extend for the purpose of handling input and output parameters.

You can use them within any method you develop that corresponds by name to a transaction in an
analytic type definition. These methods apply to the parameters that are defined for the transaction in
the analytic type.

• A set of abstract placeholder methods that you can use to implement callback capability.

You must extend these if you designate one or more records as callback records in your analytic type
definition, even if you don't add any functionality to the methods.

• An abstract placeholder method, Init, that you can extend if you want to do any preprocessing before
your first Optimization PeopleCode plug-in transaction runs.

Note: The analytic type definition to which these methods apply is the one that specifies this derived
application class.
The CreateOptInterface function is the only optimization built-in function that you can use within an
application class that you extend from the OptBase application class, or within PeopleCode that you call
from that application class.

Optbase Callback Methods

PeopleSoft Optimization Framework has a built-in callback functionality when the OptInterface
PeopleCode calls an Optimization PeopleCode plug-in transaction, it first determines whether you
designated one or more records in your analytic type definition as callback records. For each callback
record, the framework determines if any the record's database rows have been inserted, deleted, or
updated since the optimization datacache was populated. If any changes have occurred, the framework
propagates those changes to the datacache before invoking the transaction.

PeopleSoft provides methods that the framework uses to apply its callback functionality. In combination
with the framework's callback changes, you might want to perform additional processing for your own
purposes, including updating any derived data structures that are used by your optimization application.
You can accomplish this by extending the callback methods and adding your own PeopleCode. Each
callback method launches under different circumstances.

Note: Don't call any of these methods in your own PeopleCode. They're called automatically at the
appropriate moment by PeopleSoft Optimization Framework, which enables your added functionality to
run within each method.

Following is a list of the abstract callback placeholder methods documented as part of the
PT_OPT_BASE:OptBase application class:

• OptInsertCallback

Copyright © 1988, 2024, Oracle and/or its affiliates. 91

Optimization PeopleCode Chapter 4

This method launches when the framework propagates to the datacache any database insertions
encountered for a callback record.

• OptDeleteCallback

This method launches when the framework propagates to the datacache any database deletions
encountered for a callback record.

• OptPreUpdateCallback

This method launches before the framework propagates each database update encountered for a
callback record.

• OptPostUpdateCallback

This method launches after the framework propagates each database update encountered for a
callback record.

• OptRefreshCallback

This method launches after the framework propagates all database deletions, insertions, and updates
encountered for all callback records.

Important! If any record in your analytic type definition is designated a callback record, you must ensure
that you extend all of the callback methods in your extended class, even if each extended method contains
only a Return statement. Otherwise your Optimization PeopleCode plug-in will fail.

See “Configuring Analytic Type Records” (Optimization Framework).

OptBase Class Methods

This section discusses the abstract base class placeholder methods for the PT_OPT_BASE:OptBase
application class. The methods are listed in alphabetical order.

GetParmDate

Syntax

GetParmDate(parmName, &parmVal)

Description

The GetParmDate method retrieves a Date parameter value that passed as input by any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

92 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Date variable to contain the value passed as input by
the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmDateArray

Syntax

GetParmDateArray(parmName, &parmVal)

Description

The GetParmDateArray method retrieves a Date array parameter value that passed as input by any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the
transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Date array variable to contain the value passed as
input by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmDateTime

Syntax

GetParmDateTime(parmName, &parmVal)

Copyright © 1988, 2024, Oracle and/or its affiliates. 93

Optimization PeopleCode Chapter 4

Description

The GetParmDateTime method retrieves a DateTime parameter value that passed as input by any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the
transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a DateTime variable to contain the value passed as
input by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmDateTimeArray

Syntax

GetParmDateTimeArray(parmName, &parmVal)

Description

The GetParmDateTimeArray method retrieves a DateTime array parameter value that passed as input
by any method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You
develop the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a DateTime array variable to contain the value passed
as input by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

94 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

GetParmNumber

Syntax

GetParmNumber(parmName, &parmVal)

Description

The GetParmNumber method retrieves a Number parameter value that passed as input by any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Number variable to contain the value passed as input
by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmNumberArray

Syntax

GetParmNumberArray(parmName, &parmVal)

Description

The GetParmNumberArray method retrieves a Number array parameter value that passed as input by any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

Copyright © 1988, 2024, Oracle and/or its affiliates. 95

Optimization PeopleCode Chapter 4

Parameter Description

&parmVal Specify a Number array variable to contain the value passed as
input by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmInt

Syntax

GetParmInt(parmName, &parmVal)

Description

The GetParmInt method retrieves an Integer parameter value that passed as input by any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify an Integer variable to contain the value passed as input
by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmIntArray

Syntax

GetParmIntArray(parmName, &parmVal)

Description

The GetParmIntArray method retrieves a Number array parameter value that passed as input by any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

96 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Number array variable to contain the value passed as
input by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmString

Syntax

GetParmString(parmName, &parmVal)

Description

The GetParmString method retrieves a String parameter value that passed as input by any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a String variable to contain the value passed as input
by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmStringArray

Syntax

GetParmStringArray(parmName, &parmVal)

Copyright © 1988, 2024, Oracle and/or its affiliates. 97

Optimization PeopleCode Chapter 4

Description

The GetParmStringArray method retrieves a String array parameter value that passed as input by any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a String array variable to contain the value passed as
input by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

GetParmTime

Syntax

GetParmTime(parmName, &parmVal)

Description

The GetParmTime method retrieves a Time parameter value that passed as input by any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Time variable to contain the value passed as input by
the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

98 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

GetParmTimeArray

Syntax

GetParmTimeArray(parmName, &parmVal)

Description

The GetParmTimeArray method retrieves a Time array parameter value that passed as input by any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Time array variable to contain the value passed as
input by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

Init

Syntax

Init()

Description

The Init method launches when the CreateOptEngine built-in function loads an analytic instance that uses
the Optimization PeopleCode plug-in.

Use this method to perform additional processing for your own purposes, including checking table data,
or any functionality you want to apply before any plug-in transactions run. You accomplish this by adding
your own PeopleCode to the extended method.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run before any other
code in your extended class.

Note: If you don't extend this method, PeopleSoft Optimization Framework calls its base version from the
OptBase application class.

Copyright © 1988, 2024, Oracle and/or its affiliates. 99

Optimization PeopleCode Chapter 4

Parameters

None.

Returns

A Boolean value: True if the method is successful, False otherwise.

OptDeleteCallback

Syntax

OptDeleteCallback(&Record)

Description

The OptDeleteCallback method launches when PeopleSoft Optimization Framework propagates to the
datacache any database deletions that it encounters for a callback record.

Use this method to perform additional processing for your own purposes, including modifying any
derived data structures that might be affected by the deletion. You accomplish this by adding your own
PeopleCode to the extended method.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must
ensure that you extend this callback method in your derived class, even if the extended method contains
only a Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Parameters

Parameter Description

&Record Specifies a record variable that contains the keys of the data
row to be deleted.

Returns

A Boolean value: True if the method is successful, False otherwise.

OptInsertCallback

Syntax

OptInsertCallback(&Record)

100 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Description

The OptInsertCallback method launches when PeopleSoft Optimization Framework propagates to the
datacache any database insertion that it encounters for a callback record.

Use this method to perform additional processing for your own purposes, including modifying any
derived data structures that might be affected by the insertion. You accomplish this by adding your own
PeopleCode to the extended method.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must
ensure that you extend this callback method in your derived class, even if the extended method contains
only a Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Parameters

Parameter Description

&Record Specifies a record variable that contains the new data row to be
inserted.

Returns

A Boolean value: True if the method is successful, False otherwise.

OptPostUpdateCallback

Syntax

OptPostUpdateCallback(&OldRecord, &NewRecord)

Description

The OptPostUpdateCallback method launches after PeopleSoft Optimization Framework propagates to
the datacache any database update that it encounters for a callback record.

Use this method to perform additional processing for your own purposes, including modifying any
derived data structures that might have been affected by the update. You accomplish this by adding your
own PeopleCode to the extended method. The parameters provide the previous and current content of the
row.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must
ensure that you extend this callback method in your derived class, even if the extended method contains
only a Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Copyright © 1988, 2024, Oracle and/or its affiliates. 101

Optimization PeopleCode Chapter 4

Parameters

Parameter Description

&OldRecord Specifies a record variable that contains the pre-update content
of the data row that was updated.

&NewRecord Specifies a record variable that contains the post-update
content of the data row that was updated.

Returns

A Boolean value: True if the method is successful, False otherwise.

OptPreUpdateCallback

Syntax

OptPreUpdateCallback(&OldRecord, &NewRecord)

Description

The OptPreUpdateCallback method launches before PeopleSoft Optimization Framework propagates to
the datacache any database update that it encounters for a callback record.

Use this method to perform additional processing for your own purposes, including modifying any
derived data structures that might be affected by the update. You accomplish this by adding your own
PeopleCode to the extended method. The parameters provide the current and future content of the row.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must
ensure that you extend this callback method in your derived class, even if the extended method contains
only a Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Parameters

Parameter Description

&OldRecord Specifies a record variable that contains the pre-update content
of the data row to be updated.

&NewRecord Specifies a record variable that contains the post-update
content of the data row to be updated.

102 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Returns

A Boolean value: True if the method is successful, False otherwise.

OptRefreshCallback

Syntax

OptRefreshCallback()

Description

The OptRefreshCallback method launches after PeopleSoft Optimization Framework propagates to the
datacache all database insertions, deletions, and updates that it encounters for all callback records.

Use this method to perform additional processing for your own purposes, including modifying any
derived data structures that might be affected by the modifications. You accomplish this by adding your
own PeopleCode to the extended method.

Don't call this method in your own PeopleCode. It's called automatically at the appropriate moment by
PeopleSoft Optimization Framework, which enables your added functionality to run.

Important! If you designate any record in the analytic type definition as a callback record, you must
ensure that you extend this callback method in your derived class, even if the extended method contains
only a Return statement. Otherwise the Optimization PeopleCode plug-in will fail.

Parameters

None.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmDate

Syntax

SetOutputParmDate(parmName, &parmVal)

Description

Use the SetOutputParmDate method to pass a Date parameter value as output from any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Copyright © 1988, 2024, Oracle and/or its affiliates. 103

Optimization PeopleCode Chapter 4

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Date variable that contains a value to be passed as
output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmDateArray

Syntax

SetOutputParmDateArray(parmName, &parmVal)

Description

Use the SetOutputParmDateArray method to pass a Date array parameter value as output from any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Date array variable that contains a value to be passed
as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmDateTime

Syntax

SetOutputParmDateTime(parmName, &parmVal)

104 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Description

Use the SetOutputParmDateTime method to pass a DateTime parameter value as output from any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the
transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a DateTime variable that contains a value to be passed
as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmDateTimeArray

Syntax

SetOutputParmDateTimeArray(parmName, &parmVal)

Description

Use the SetOutputParmDateTimeArray method to pass a DateTime array parameter value as output
from any method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You
develop the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a DateTime array variable that contains a value to be
passed as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

Copyright © 1988, 2024, Oracle and/or its affiliates. 105

Optimization PeopleCode Chapter 4

SetOutputParmNumber

Syntax

SetOutputParmNumber(parmName, &parmVal)

Description

Use the SetOutputParmNumber method to pass a Number parameter value as output from any method
you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the
transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Number variable that contains a value to be passed
as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmNumberArray

Syntax

SetOutputParmNumberArray(parmName, &parmVal)

Description

Use the SetOutputParmNumberArray method to pass a Number array parameter value as output from any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

106 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameter Description

&parmVal Specify a Number array variable that contains a value to be
passed as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmInt

Syntax

SetOutputParmInt(parmName, &parmVal)

Description

Use the SetOutputParmInt method to pass an Integer parameter value as output from any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify an Integer variable that contains a value to be passed
as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmIntArray

Syntax

SetOutputParmIntArray(parmName, &parmVal)

Description

Use the SetOutputParmIntArray method to pass a Number array parameter value as output from any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

Copyright © 1988, 2024, Oracle and/or its affiliates. 107

Optimization PeopleCode Chapter 4

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Number array variable that contains a value to be
passed as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmString

Syntax

SetOutputParmString(parmName, &parmVal)

Description

Use the SetOutputParmString method to pass a String parameter value as output from any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a String variable that contains a value to be passed as
output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmStringArray

Syntax

SetOutputParmStringArray(parmName, &parmVal)

108 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Description

Use the SetOutputParmStringArray method to pass a String array parameter value as output from any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a String array variable that contains a value to be
passed as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

SetOutputParmTime

Syntax

SetOutputParmTime(parmName, &parmVal)

Description

Use the SetOutputParmTime method to pass a Time parameter value as output from any method you
develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop the transaction
method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Time variable that contains a value to be passed as
output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

Copyright © 1988, 2024, Oracle and/or its affiliates. 109

Optimization PeopleCode Chapter 4

SetOutputParmTimeArray

Syntax

SetOutputParmTimeArray(parmName, &parmVal)

Description

Use the SetOutputParmTimeArray method to pass a Time array parameter value as output from any
method you develop that corresponds to an Optimization PeopleCode plug-in transaction. You develop
the transaction method in an application class that you derive from the OptBase application class.

Parameters

Parameter Description

parmName Specify the name of the parameter as it's defined for the
Optimization PeopleCode plug-in transaction.

&parmVal Specify a Time array variable that contains a value to be
passed as output by the parameter.

Returns

A Boolean value: True if the method is successful, False otherwise.

OptInterface Class Methods

This section discusses the optimization methods for the OptInterface PeopleCode class. The methods are
listed in alphabetical order.

Note: You can use the OptInterface class methods only within an application class that you extend from
the OptBase application class, or within PeopleCode that you call from that application class. This ensures
that the OptInterface PeopleCode runs only on the optimization engine.

ActivateModel

Syntax

ActivateModel(ModelID, SolverSettingID)

Description

The ActivateModel method designates the specified model and solver setting as active. The model and the
solver are initialized and populated with data from the current analytic instance.

110 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Note: This method fails if the specified model (and by extension, one of its solver settings) is already
active. If you want to activate a different solver setting for the same model, you must first deactivate the
model.

See DeactivateModel.

Parameters

Parameter Description

ModelID Specify the name of the optimization model you want
to activate. This must be the name of one of the models
associated with the analytic type definition.

SolverSettingID Specify the name of the solver setting you want to activate.
 This is the name you specified for the solver setting in the
analytic type definition.

Returns

This method returns a constant value. Valid values are:

Value Description

%OptInter_Success Returned if method succeeds.

%OptInter_Fail Returned if the solver fails to solve the problem.

Example
Local integer &result;
Local OptInterface &oi = CreateOptInterface();

&result = &oi.ActivateModel("QE_PSA_MODEL", "abc");

ActivateObjective

Syntax

ActivateObjective(Model_Name, Objective_Name)

Description

Use the ActivateObjective method to activate the specified objective for an optimization model.

Copyright © 1988, 2024, Oracle and/or its affiliates. 111

Optimization PeopleCode Chapter 4

Parameters

Parameter Description

Model_Name Specify the name of the model.

Objective_Name Specify the name of the objective.

Returns

This method returns a constant value. Valid values are:

Value Description

%OptInter_Success Returned if method succeeds.

%OptInter_Fail Returned if the solver fails to solve the problem.

DeactivateModel

Syntax

DeactivateModel(ModelID)

Description

The DeactivateModel method detaches the solver from the specified model.

Parameters

Parameter Description

ModelID Specify the name of the optimization model you want to
deactivate. This must be the name of one of the models
associated with the analytic type definition.

Returns

This method returns a constant value. Valid values are:

Value Description

%OptInter_Success Returned if method succeeds.

112 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Value Description

%OptInter_Fail Returned if the solver fails to solve the problem.

Example
Local integer &result;
Local OptInterface &oi = CreateOptInterface();

&result = &oi.DeactivateModel("QE_PSA_MODEL");

DumpMsgToLog

Syntax

DumpMsgToLog(LogSeverity, Message)

Description

The DumpMsgToLog method writes the specified status message to the optimization engine log file, with
the specified severity.

Parameters

Parameter Description

LogSeverity Specify the severity level of the message, as one of the
following system constants:

• %Severity_Fatal

• %Severity_Status

• %Severity_Error

• %Severity_Warn

• %Severity_Info

• %Severity_Trace1

• %Severity_Trace2

Message Specify as a string the text of the log message.

Returns

None.

Copyright © 1988, 2024, Oracle and/or its affiliates. 113

Optimization PeopleCode Chapter 4

FindRowNum

Syntax

FindRowNum(&Record [, startrow [, endrow [, field_list]]])

Where field_list is a list of field names in the form:

[fieldname1 [, fieldname2]]...

Description

The FindRowNum method determines the row number of a row in the datacache rowset. You provide
a record with key values, and this method finds the row with the same key values and returns its row
number.

Parameters

Parameter Description

&Record Specify a record with the same structure as the records that
comprise the rowset, with its key fields populated.

startrow Specify as an integer the starting row number of the search.
 Specify 0 to search from the first row in the rowset.

endrow Specify as an integer the ending row number of the search.
 Specify 0 to search through the last row in the rowset.

fieldname Specify the name of a field in the input record which contains
a value to be matched. You can specify one or more field
names, in any order.

Note: If you use this parameter, the fields specified here are
used to search, instead of the record's key fields. Any value
that doesn't correspond to a field name is ignored.

Returns

The row number of the row containing the specified key values, or 0 if no row is found.

Example

The following example searches the whole scroll to find the partial key OPT_SITE:

Local Record &rec = CreateRecord(Scroll.OPT_TRANSCOST);
Local Optineterface &oi;

&rec.OPT_SITE.value = "New York";
int nRowNum = &oi.FindRowNum(&rec, 0, 0, "OPT_SITE");

114 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

The following example searches from row 5 to row 15 with the full key values New York and San Jose:

Local Record &rec = CreateRecord(Scroll.OPT_TRANSCOST);
Local Optineterface &oi;

&rec.OPT_SITE.value = "New York";
&rec.OPT_STORE.value = "San Jose";
int nRowNum = &oi.FindRowNum(&rec, 5, 15);

GetSolution

Syntax

GetSolution(ModelID, varArrayID, skipZero [, KeyFieldNames, KeyFieldValues [, &Solu⇒

tion]])

Description

The GetSolution method retrieves the model solution values generated by the Solve method.

Parameters

Parameter Description

ModelID Specify as a string the name of the optimization model for
which you want the solution. This is the name used for the
model definition in Application Designer.

varArrayID Specify as a string the name of the variable array being
optimized. Your application documentation should provide this
name.

skipZero Indicate whether solutions with a value of zero should be
fetched. This parameter takes a Boolean value:

• True: Don't fetch solutions with a zero value. This can
increase the performance of the GetSolution method if
zero values aren't meaningful.

• False: Do fetch solutions with a zero value.

KeyFieldNames and KeyFieldValues Specify a set of key field names as an array of string and a set
of key field values as an equal length array of ANY, with one
key field value corresponding to each key field name. You use
these arrays to restrict the set of returned solutions. Solutions
are returned only for model variables with the specified key
field values.

Note: If you provide either of these arrays, you must provide
both. You can include each parameter from the variable array
at most only once.

Copyright © 1988, 2024, Oracle and/or its affiliates. 115

Optimization PeopleCode Chapter 4

Parameter Description

&Solution Specify a rowset to contain the solutions.

Returns

This method returns a constant value. Valid values are:

Value Description

%OptInter_Success Returned if method succeeds.

%OptInter_Fail Returned if the solver fails to solve the problem.

Example
Local array of string &strArray;
Local array of any &valArray;
Local integer &index;
Local Rowset &rowSet;
Local integer &result;
Local string &modelId = "QE_PSA_MODEL";
Local string &varArrayName = "X";
Local boolean &bSkipZero = True;

Local OptInterface &oi = CreateOptInterface();

&strArray = CreateArrayRept("", 0);
&valArray = CreateArrayAny();
&rowSet = CreateRowset(Record.QEOPT_VAL_X_WRK);

&strArray [1] = "EMPLID";
&valArray [1] = 1;
&strArray [2] = "ORDER_ID";
&valArray [2] = 23;

/* fetch only the part of the solution where EMPLID = 1 and ORDER_ID = 23 */
&result = &oi.GetSolution(&modelId, &varArrayName,
 &bSkipZero, &strArray, &valArray, &rowSet);

GetSolutionDetail

Syntax

GetSolutionDetail(ModelID, SolutionType, Name, &Solution)

Description

The GetSolutionDetail method retrieves the model solution detail of the specified type generated by the
Solve method. You can retrieve dual value, slack value, or reduced cost information.

116 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameters

Parameter Description

ModelID Specify as a string the name of the optimization model for
which you want the solution detail. This is the name used for
the model definition in Application Designer.

SolutionType Specify a system constant indicating the type of solution detail
you want to retrieve. The value you specify here determines
the content of the Name and &Solution parameters.

• %OPT_DUAL: Retrieve the dual value attributes of the
specified constraint block.

• %OPT_SLACK: Retrieve the slack value attributes of the
specified constraint block.

• %OPT_RCOST: Retrieve the reduced cost attributes of
the specified variable array.

Name If you specified a SolutionType of %OPT_DUAL or %OPT_
SLACK, specify here the name of a constraint block from the
active model.

If you specified a SolutionType of %OPT_RCOST, specify
here the name of a variable array from the active model.

&Solution Specify a rowset to contain the solution details. The rowset
should have the same key fields as the constraint block or the
variable array you specified with the Name parameter.

Returns

This method returns a constant value. Valid values are:

Value Description

%OptInter_Success Returned if method succeeds.

%OptInter_Fail Returned if solver fails to solve the problem.

Example
Local Rowset &dual_rowset;
Local integer &result;
Local OptInterface &oi = CreateOptInterface();
Local string &modelId = "QE_PSA_MODEL";
Local string &varArrayName = "X";
Local string &constrName = "Constraint_1";

/* fetch dual values for Contraint "Constraint_1"
 in a rowset based on the QEOPT_C1_WRK record */

Copyright © 1988, 2024, Oracle and/or its affiliates. 117

Optimization PeopleCode Chapter 4

&dual_rowset = CreateRowset(Record.QEOPT_C1_WRK);
&result = &oi.GetSolutionDetail(&modelId, %Opt_Dual, &constrName, &dual_rowset);

IsModelActive

Syntax

IsModelActive(ModelID)

Description

Use the IsModelActive method to determine if the model specified by ModelId is active before it is used.

Parameters

Parameter Description

ModelID Specify the model ID as a string. This is the name used for the
model definition in Application Designer.

Returns

A Boolean value: true if the model is active, false otherwise.

RestoreBounds

Syntax

RestoreBounds(modelID [,varArrayID])

Description

The RestoreBounds method returns the bounding values of the specified variable array or arrays to the
current settings in the specified model.

If you previously called the SetVariableBounds method with the changeModelBounds parameter set to
true for any variable or variable array, those bounding values still apply.

Parameters

Parameter Description

modelID Specify as a string the name of the optimization model for
which you want to restore the bounding values. This is the
name used for the model definition in Application Designer.

118 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameter Description

varArrayID Specify as a string the name of a variable array for which
you want to restore the bounding values. Your application
documentation should provide this name. If you don't specify
a variable array name, the bounding values are restored for all
variable arrays in the specified model.

Returns

%OptInter_Success if the method succeeds, %OptInter_Fail otherwise.

SetVariableBounds

Syntax

SetVariableBounds(modelID, varArrayID, boundType, lowerBound, upperBound, &keyRecor⇒

d [, changeModelBounds])

Description

The SetVariableBounds method overrides the bounding values specified for a model variable array, or for
a variable within the array.

Parameters

Parameter Description

modelID Specify as a string the name of the optimization model for
which you want to override the bounding values. This is the
name used for the model definition in Application Designer.

varArrayID Specify as a string the name of the variable array being
optimized. Your application documentation should provide this
name.

Copyright © 1988, 2024, Oracle and/or its affiliates. 119

Optimization PeopleCode Chapter 4

Parameter Description

boundType Specify a system constant indicating which bounding values
to override. The value you specify here determines how the
lowerBound and upperBound parameters are applied to the
specified model.

• %OPT_LOWER_BOUND: Override only the lower
bound as specified by the lowerBound parameter. The
upperBound parameter is ignored.

• %OPT_UPPER_BOUND: Override only the upper
bound as specified by the upperBound parameter. The
lowerBound parameter is ignored.

• %OPT_BOUND_BOTH: Override both the lower bound
and the upper bound as specified by the lowerBound and
upperBound parameters, respectively.

lowerBound Specify as a number the lower bound that should be applied
to a variable or a variable array if the boundType parameter
permits the override. You can also set this parameter to one of
the following system constants:

upperBound Specify as a number the upper bound that should be applied
to a variable or a variable array if the boundType parameter
permits the override. You can also set this parameter to one of
the following system constants:

&keyRecord Specify a record with the same key fields as the variable array
being optimized. To override the bounding values specified
for a single variable within the array, populate the record's key
fields to specify the variable. To override the bounding values
specified for the entire variable array, set all of the record's
fields to a null value.

Note: You must either provide values for all keys, or set them
all to null values.

changeModelBounds Specify a Boolean value:

• true: Indicates that the specified model should be updated
in memory to reflect the specified variable bounds. Any
analytic instance that invokes this model from the active
optimization engine is affected by these settings, which
are propagated to the solver in memory. This is the default
value if you omit this parameter.

• false: Indicates that the specified model should not be
updated in memory, and that the specified variable bounds
apply only to the next time the Solve method is called.

Returns

%OptInter_Success if the method succeeds, %OptInter_Fail otherwise.

120 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Example
Local Record &rec;
Local integer &result;
Local OptInterface &oi = CreateOptInterface();
Local float &objval = 0.0;
Local string &modelId = "QE_PSA_MODEL";
Local string &varArrayName = "X";
Local float &lb = 0.0;
Local float &ub = 0.0;

&rec = CreateRecord(Record.QEOPT_VAL_X_WRK);
&rec.QEOPT_RESINDEX.Value = 1;
&rec.QEOPT_SOLINDEX.Value = 2;
&rec.QEOPT_TIMEINDEX.Value = 3;

&result = &oi.SetVariableBounds(&modelId, &varArrayName,
 %Opt_Upper_Bound, &lb, &ub, &rec, False);

SetVariableType

Syntax

SetVariableType(modelID, varArrayID, varType)

Description

Use the SetVariableType method to change the data type of a model variable array.

Parameters

Parameter Description

ModelID Specify as a string the name of the optimization model for
which you want to change the variable type. This must be the
name of one of the models associated with the analytic type
definition.

varArrayID Specify as a string the name of the variable array for which
you want to change the variable type. Your application
documentation should provide this name.

varType Specify one of the following system constants representing the
new variable type:

• %Opt_Var_Cont: Represents a continuous variable type,
 which can be any floating point value.

• %Opt_Var_Bin: Represents a binary variable type, for
which the value can be only 0 or 1.

• %Opt_Var_Int: Represents an integer variable type, which
can be any integer.

Copyright © 1988, 2024, Oracle and/or its affiliates. 121

Optimization PeopleCode Chapter 4

Returns

%OptInter_Success if the method succeeds, %OptInter_Fail otherwise.

Example
Local OptInterface &oi = CreateOptInterface();
Local string &varArrayName = "X";
Local integer &result;

&result = &oi.SetVariableType("QE_PSA_MODEL", &varArrayName, %Opt_Var_Bin);

If (&result <> %OptInter_Success) Then
 &oi.DumpMsgToLog(%Severity_Status, "Failed to change variable type ");
End-If;

Solve

Syntax

Solve(modelID, SolutionType [, &objValue [, name-value_pairs]])

Where name-value_pairs is a list of solver setting parameter values in the form:

[parmname1, parmvalue1 [, parmname2, parmvalue2]]...

Description

The Solve method solves the specified model using the currently active solver settings, and provides
an objective value as the solution output. You can override the solver setting parameters. The returned
solution status is a predefined system constant.

Parameters

Parameter Description

ModelID Specify as a string the name of the optimization model you
want to solve. This is the name used for the model definition
in Application Designer.

SolutionType Specify a system constant indicating the type of solution detail
you want the model to be solved for.

• %OPT_DUAL: Generate dual value attributes.

• %OPT_SLACK: Generate slack value attributes.

• %OPT_RCOST: Generate reduced cost attributes.

You can also combine any or all of these system constants, by
connecting them with a plus sign (+), for example: %OPT_
DUAL + %OPT_RCOST.

122 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Optimization PeopleCode

Parameter Description

&objValue Specify a reference to a variable of type float. This variable
contains the output objective value produced by the solver
upon successfully solving the specified optimization model.

parmname and parmvalue Specify a solver setting parameter ID and value to override
the original value you specified for the solver setting in the
analytic type definition. You can override any or all of the
solver setting parameter values.

See “Configuring Models for Optimization” (Optimization
Framework).

Returns

One of the following system constants:

%OptInter_Fail: The solver fails to solve the problem.

%Opt_Optimal: The solution is optimal.

%Opt_Infeasible: The solution is infeasible.

%Opt_Unbounded: The solution is unbounded.

%Opt_Timeup: The solver reached the time limit specified in the solver setting.

%Opt_Iterlimit: The solver reached the limit on the number of iterations specified in the solver setting.

%Opt_LP_Max_Sols: The solver generated maximum number of solutions without improvement.

%Opt_Idle: The solution shows no improvement in a specified time limit.

%Opt_Unknown: The solver status is unknown.

%Opt_MIP_NumSolutions: The specified number of solutions corresponding to an MIP solver reached.

%Opt_MIP_NumNodes: The specified number of nodes corresponding to an MIP solver reached.

%Opt_Aborted: The solver aborted.

%Opt_User_Exit: A user exit was encountered.

%Opt_First_LP_NoOpt: While solving an MIP, the first LP solution obtained was not optimal.

Example

Following is an example of the basic use of the Solve method:

Local OptInterface &oi = CreateOptInterface();

Local float &objval = 0.0;
Local integer &result;
Local string &modelId = "QE_PSA_MODEL";
Local string &varArrayName = "X";

Copyright © 1988, 2024, Oracle and/or its affiliates. 123

Optimization PeopleCode Chapter 4

Local integer &solType;

&solType = %Opt_RCost + %Opt_Dual + %Opt_Slack;

/* Solve the problem */
&result = &oi.Solve("QE_PSA_MODEL", &solType, &objval);

If & result = %Opt_Optimal Then
 &oi.DumpMsgToLog(%Severity_Warn, " Solution Status = " Optimal !!!");
Else
 &oi.DumpMsgToLog(%Severity_Warn, " Solution Status = " | &result);
End-If;

Following is an example of a solver setting parameter override:

Local OptInterface &oi = CreateOptInterface();
Local float &objval = 0.0;
Local integer &result;

/* This overrides the solver setting for MPS_Filename and generates
 an MPS file called myfile.mps instead of the name specified
 in the current solver setting parameter. */

&result = &oi.Solve("QE_PSA_MODEL", %Opt_Primal, &objval, "MPS_FileName",
 "myfile");

124 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5

Administering Optimization Server
Components

Administering Optimization Server Components

An analytic server is a type of PeopleSoft application server. An optimization engine is an analytic server
loaded with an optimization analytic instance. You administer optimization engines using the standard
application server tools.

Related Links
“Analytic Servers” (System and Server Administration)

Copyright © 1988, 2024, Oracle and/or its affiliates. 125

Administering Optimization Server Components Chapter 5

126 Copyright © 1988, 2024, Oracle and/or its affiliates.

	Legal Notices
	Contents
	Preface
	Understanding the PeopleSoft Online Help and PeopleBooks
	Hosted PeopleSoft Online Help
	Locally Installed PeopleSoft Online Help
	Downloadable PeopleBook PDF Files
	Common Help Documentation
	Field and Control Definitions
	Typographical Conventions
	ISO Country and Currency Codes
	Region and Industry Identifiers
	Translations and Embedded Help

	Using and Managing the PeopleSoft Online Help
	PeopleTools Related Links
	Contact Us
	Follow Us

	Getting Started with PeopleSoft Optimization Framework
	PeopleSoft Optimization Framework Overview
	PeopleSoft Optimization Framework Implementation

	Understanding PeopleSoft Optimization Framework
	Optimization
	PeopleSoft Optimization Framework Components
	PeopleSoft Optimization Framework System Architecture
	Optimization-Based Application Development

	Designing Analytic Type Definitions
	Understanding Analytic Type Definitions
	Understanding Optimization Application Record Design
	Optimization Application Records
	Scenario Management

	Assigning Permissions for Designing Optimization Records
	Creating and Building Optimization Records
	Creating Analytic Type Definitions
	Defining an Analytic Type
	Configuring Analytic Type Records
	Configuring Models for Optimization
	Associating Analytic Types with Analytic Models
	Configuring Analytic Type Transactions

	Running the Optimization System Audit
	Changing Existing Analytic Type Definitions
	Changing Optimization Application Records
	Changing Optimization Transactions

	Administering Optimization Engines
	Setting Up Integration Broker

	Updating Solver Licenses

	Optimization PeopleCode
	Using Optimization PeopleCode on the Application Server
	Using Optimization PeopleCode in an Application Engine Program
	Performing Optimization in PeopleCode
	Creating New Analytic Instances
	Loading Analytic Instances Into an Analytic Server
	Running Optimization Transactions
	Invoking the Optimization PeopleCode Plug-In
	Shutting Down Optimization Engines
	Deleting Existing Analytic Instances
	Programming for Database Updates

	Using Lights-Out Mode with Optimization
	Understanding Lights-out Mode
	Creating a Request Message
	Creating a Response Message
	Editing the Request PeopleCode
	Editing the Response PeopleCode

	Optimization Built-in Functions
	CreateOptEngine
	CreateOptInterface
	DeleteOptProbInst
	GetOptEngine
	GetOptProbInstList
	InsertOptProbInst
	IsValidOptProbInst

	OptEngine Class Methods
	CheckOptEngineStatus
	FillRowset
	GetDate
	GetDateArray
	GetDateTime
	GetDateTimeArray
	GetNumber
	GetNumberArray
	GetString
	GetStringArray
	GetTime
	GetTimeArray
	GetTraceLevel
	RunAsynch
	RunSynch
	SetTraceLevel
	ShutDown

	OptEngine Class Properties
	DetailMsgs
	DetailedStatus

	OptBase Application Class
	OptBase Class Methods
	GetParmDate
	GetParmDateArray
	GetParmDateTime
	GetParmDateTimeArray
	GetParmNumber
	GetParmNumberArray
	GetParmInt
	GetParmIntArray
	GetParmString
	GetParmStringArray
	GetParmTime
	GetParmTimeArray
	Init
	OptDeleteCallback
	OptInsertCallback
	OptPostUpdateCallback
	OptPreUpdateCallback
	OptRefreshCallback
	SetOutputParmDate
	SetOutputParmDateArray
	SetOutputParmDateTime
	SetOutputParmDateTimeArray
	SetOutputParmNumber
	SetOutputParmNumberArray
	SetOutputParmInt
	SetOutputParmIntArray
	SetOutputParmString
	SetOutputParmStringArray
	SetOutputParmTime
	SetOutputParmTimeArray

	OptInterface Class Methods
	ActivateModel
	ActivateObjective
	DeactivateModel
	DumpMsgToLog
	FindRowNum
	GetSolution
	GetSolutionDetail
	IsModelActive
	RestoreBounds
	SetVariableBounds
	SetVariableType
	Solve

	Administering Optimization Server Components
	Administering Optimization Server Components

