ORACLE
PeopleSoft

PeopleTools 8.61: SQR for
PeopleSoft Developers

January 2024

ORACLE

PeopleTools 8.61: SQR for PeopleSoft Developers
Copyright © 1988, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement
or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,

any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users

are "commercial computer software," "commercial computer software documentation," or "limited rights data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained
in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by
the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create a
risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as
set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit https://
docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Preface: Preface ix
Understanding the PeopleSoft Online Help and PeopleBoOoKS...........ccceeviieriieiciieiiiecieeciee e X
Hosted PeopleSoft Online Help........coovveeiieiiiieieec ettt ve e s X
Locally Installed PeopleSoft Online Help..........cccuvieiiiiiiiiiiiiii e X
Downloadable PeopleBook PDF Files........cccciiiiiiiiiiiiiecieeie ettt X
Common Help DOCUMENTALION.ccccviiiiieiiieeiiie et eeiee et e st e ereeeteeetaeeseaeeseaeesssaeesseessseeennes X

Field and Control DefiNitions.......c..eeiierieriireeniiesieitt ettt ettt et sb e e e e e ens X
TypographiCal CONVENTIONS.cccuieiiieeiieeitieeiieesiteerteeereeereeeteeeseeeseeesseessseessseessseesssesassseesseenens X

ISO Country and CUrrency COAES.........eeivieriieeiiieeiiieeiiesieesreeesteeeteeestreessseesseesseessseeessseessseenns xi
Region and Industry IAeNtfIers........cccuiiiiiiiiiiiccie ettt et eetae e e e s eree e xi
Translations and Embedded Help........ccoooiiiiiieiiiiccce ettt xii

Using and Managing the PeopleSoft Onling Help........ccccccuvveeiieiiiiiiiiii e xii
PeopleTools Related LINKS.........cocviiiiiiiiieciieeiie ettt ettt e st eetee e taeestaeeseaeesssaesssaesnseeas xii
COMEACE US ..ttt ettt ettt ettt e bt e bt e bt e bt et e et e e bt e bt e bt et e enbe e beenbe e bt ebeenbeenbeenbeenseenne xii
FOLLOW S, ettt ettt et e bt e bt e bt et e emteemteeabeeabeembeeateenteenteans xiii
Chapter 1: Getting Started with SQR for PeopleSoft 15
SQR fOr PeoPIES0ft OVEIVIEW.....oieiiieiiiieiiiecie ettt ettt ettt sae e s b e e s beeebeeessaeesaeessseesssasssseaans 15
Understanding Transparent Application Failover for SQR........ccccoiiiiiiciiiiiiieieceeeecee e 15
SQR for PeopleSoft IMPlemMENtation..........cccviieiiieeciieeiieeiieeieeeieeereeette e sbeesreesreessseeesseessseesssens 16
Other Sources of INFOrMAatioN.eeiuiiiiiiiiiee ettt ettt et 16
Chapter 2: Introducing a Sample Structured Query Report Program 17
USING ThiS GUIAC.eiicuiiiiiiieiiiecieeette ettt eee ettt ettt e e st e e e beessbeeestaeessaeessseessseessseesssaessseeasseeeseeanes 17
Setting Up the Sample Database..........c.eeccuiiiiiiiiiiiiieeciieeiie ettt sre e re e sbe e raessbeeeeaeesseenes 19
Considerations fOr DB Xottt st sttt st st 20
Understanding the Sample Program for Printing a Text String.........ccceeeveeeeieeniieniienieesiee e 20
Creating and Running a Sample SQR Program............cccccuveeiiiiiiiiiieniiecie e 21
Creating an SQR Programi..........ccceeiiiiiiiiiiiecie ettt et sre e v e esbaeesaeenens 21
Running an SQR Programi............cccuiiiiiieciiiiiieeie et eeee ettt et e et e esveesveessseesssaessseesnneeenes 21
VIEWINZ SQR OULPUL.....eeitiiiiiiecie ettt ette et et e et e esteesbeesseessseessaeessseessseessseessseassseesssseessseessseenns 22
Chapter 3: Creating Headings and Footings 23
Understanding SQR Pages..........ooiiiiiiieiiieeieeie ettt ettt et e et eete e eete e beesbeessseessseessseesssseenseens 23
Creating Page Headings and FOOINES......c..coovuiiiiiiiiieiiieeiie ettt eteeetae v e essseeesseeeanas 23
Understanding the Heading and Footing Code Example...........ccccoeeeiiiiiiiiiiiiiniiecieeciee e 23
Adding Page HeEadings.......c.coooviiiiiieiiieiieeeieeeieeste ettt tae e siae e stveesbeeesveessteeesaeesaeessseesssaessseeas 24
AddIng Page FOOLINES.....c.ccoiiiiiiiiiiieciie ettt erte et s e e s vt esreeesteeestaeesseessseesssaasssaessseesnseeanes 24
Chapter 4: Selecting Data from the Database 27
Understanding the Sample Program for Listing and Printing Data...........c.ccccoveviieniienciieniee e, 27
Creating SQR Select Paragraphis..........cccuiiciieiiiiiiieciie ettt sttt et eete e etae e eveesaveessbeessbeessseeens 28
Chapter 5: Using Column Variables 31
Using Column Variables in CONAItIONS.........cccveeiieeiiiieeeiieeiieeeieesieesreeereeeeeeestaeeseseessseesseessseessseeenes 31
Changing Column Variable INAMES.........c..ccciiiriiieiiieeieeeieeeieeeiee e esreesreesreeereeeeaeessaeessseessseessseas 31
Chapter 6: Using Break Logic 33
Understanding Break LOZIC.......cuiiiiiiiiiiiiiieciie ettt ettt sve e te e st e steeetaeestaeessaeesssaessseessseeenses 33
Using the ON-BREAK OPtION......ccccuiiiiiiiiiieiiieiieesieeeeieeeseeeseeeseveesseessseesseessssesssssesssessssessssesssseeans 34
SKipping Lines BetWeen GIOUPS........cecvieiiieiiieiiieeiiieesieeesteesteesveesseesseesseeessseessseesssessssessssessssessnes 35
Arranging Multiple Break COIUMMS...........cooviiiiiiiiieiiieciie et esreesvee s vee s reeeeaeessveeseneas 35

1l

Copyright © 1988, 2024, Oracle and/or its affiliates.

Contents

Using Break Processing EnhanCements..........cccuveviieiiieiiiieiciie e eieceesesee e e sveesveesveessseeeseaeessneenes 36
Controlling Page Breaks and Calculating Subtotals and Totals..........c.ccccceeeiieiiieriieniiecieeeieeas 36
Handling Page Breaks........occiiiiiiiii ettt et e s e seb e e s eeateeessaeessaeensneenens 38
Printing the Date........c.occciiiioiiiiii ettt et et e e eeteeesabeesbeessbaessseeessaeesseensseans 38
ODbAINING TOTALS. .. eeetiiiiiieie ettt et e st esbeeeteeestbeesabeessbeessseesssaeesseeensseensseensses 39
Using Hyphens and UnNAEISCOTES.cccuiiicuieiiiieeiieeieierieeeteesveesveeereeeraeessseessseessseesssessssessssesans 40

Setting Break Procedures with BEFORE and AFTER Qualifiers.........ccccoccvvevvieeciieiiieciie e 40

Controlling Page Breaks with Multiple ON-BREAK Columns..........ccccccvveveiieriieiciieecie e e 43

Saving a Value When a Break OCCUIS.........ocviiiiiiiiieciieciie ettt st ereeeeaeeseve e e 44

Using ON-BREAK on a Hidden Colum...........c.ccccuiiiiieiiiieeiie ettt eeve e 44

Performing Break Processing on NUMETIC ValUues........cccueeciiiiiiiiiiiiiiiiiecieeciie et eiee e svee s 46

Chapter 7: Adding Declarations Using the SETUP Section 47

Understanding the SETUP SECHION........cciiiiiiiiiieiiieeie ettt teeeveeeteeesereeseseesbeeeveessseeesseeens 47

Creating @ SETUP SECHIOMN......c..ioiiiiiiiieiiiectieeieeeteesteestteesteesveessveesseessbeesssaeesseessseessseesssesssseesseens 47

Using the DECLARE-LAYOUT ComMmand............cceecovierciieeiieeiieesieesreesveesreesveeesseeesseeessveessseessnes 48
Sample SETUP PrOGIamm.........cccouiiiiieiiieeciie ettt esiveeetee st e eteeesteeeevaessseessseessseesssassssessssennes 48
Defining the SQR Page LayOuLt........c.ccccuiiiiiiiiiiiieie ettt eteeeveeereeseaeesaae e seaeesssaeessaeessaes 48

Overriding Default SEttINES........cccuiieeiiiiiieeiiecieecee ettt ste et e e e teeetee e taeessaeessseesssaessseeensseesses 49

Declaring a Page OrieNtation..........cveeeiieriieiiieiiiescieeeeieeeteesreesereessteessaesseeesseeessseessseessseesssessseesnses 49

Chapter 8: Creating Master and Detail Reports 51

Understanding Master and Detail REPOItS........cccuiiiiieiciieeciiieiiieie ettt 51

Understanding the Sample Program for Master and Detail Reports..........ccccuveeevieeciieecieenieenieeeieenee, 51

COITCIALING SUDQUETIES.eviiiiieiiieeiie et eeteeereesteeeteeeteeestbeessseessseesssaeassesassseessseessseesssaessseeaseeenseeanes 52
Sample Program OULPUL..........cccuieiiieiiieciie ettt e sveesreesteeeabeestaeessseessseesssaessseeessseessseennns 53

Chapter 9: Creating Cross-Tabular Reports 55

Understanding Cross-Tabular REPOITS..........ccccviiiiiiiiiiiieie ettt esre e sve e v e reeereeeene e 55

USINE 11 ATTAY...0eeiiieetieeiteeeeiteesteeeteesteeeteeetteeteeassseessseessseeasseesssesassssensseesssesssseessseessseeassseessseensseensns 56

CTEALING AN ATTAY....ueeecveeeitieeereerteesteeateeateeesteeessseessseessseessseessseeasseessseessseesssessssessssesassesesssessssessssennns 58

GTOUPING DY CalCZOTY .. veeiurieieiieeiieetieeitte ettt esteesreeeteesteeessseessseessseesssaeasssesssseessssessseessseesssessssesasseees 58

USING MUILIPIE ATITAYS.....eeiiiieiiieiieecieeeiieeiee et e etteerteesteesbeessbeesssaeessaeessseessseeasseassseeessseessseessseessses 60

Chapter 10: Printing Mailing Labels 63

Understanding Mailing Label Printing..........ccccoooviiiiiiiiieiiie ettt sveeeree e eeveeseneeeenas 63

Understanding the Sample Program for Printing Mailing Labels............cccceeevieiiiiiiiieniierieeciee s 63

Defining Columns and ROWS........ccccuiiiciiiiiiiiieeiis ettt ae e ve e sve e sste e ssbeesssaeensaeessseenens 64

Running the Print Mailing Labels Program...........cccccueeciiiiiiiiiiiciieciie st esve et sveeevae e 65

Chapter 11: Creating Form Letters 67
DOCUMENT Paragraph..........ccccvieiiieiiieeciie e eeeesits et e st e s teesteeeteeeteeessseessseessseesssesassesssssesssesnsns 67
Sample Program for FOrm Letters.......cccuiiiiiiiiiiiieciieeie ettt eree et e e tve e seveesabeessneeens 67

Chapter 12: Exporting Data to Other Applications 69
Understanding the Sample Program for Exporting Data............ccceeeieiviieeciienieeciiecieecieeeiee e 69
Creating an EXPOTt File......c.ooiiiiiiiiiiiiiiieceeceeeee ettt ettt e et e et e e b e e s sbeesssaeessaeessaeesneas 70

Chapter 13: Using Graphics 71

Understanding the Sample Program for Simple Tabular Reports.........cccceccvveviiiriiinciienciieecee e 71

AddING GIaPRICS.....oiiiuiieiiiieiie ettt ettt et e et e e s bt eeteeestbeestseessseesssaesssaessseeessseessssesseenssesssseennses 72

Sharing Images AMONEZ REPOTTS........eeecuiiiiiiiiiieiiieciieeiee ettt sve e st e e ereeebaeeseae e saeesssaeesseessreennns 74

Printing Bar COdeS.......cccuiiiiuiiiiiieiiiecieesiee ettt e ertteesae et e e sbeesbeessseeesteesssseessseessseessseesssessssessnseeansees 76

Chapter 14: Using Business Charts 77

Understanding Business CRAITS...........ccciiiiiiiiiiiiiiesiee et eieeeieeesee e sveesbeesstaeesaeeeaeessseessseessseenns 77

CreatiNg @ CRATt......cccciiiiiie ittt ete e et e e teeestbeestbeeesbeessbeeessaeessaeessseessaesssaessseessseessssessseensses 77

DEfINING CRAITS......cccciiiiiieiiiece ettt eeete et e e s b e e e beeesbeessteeestbeessbeessseessseaesseeessseensseessseesnsens 80

PrINtING CRATES......tiiiiiiiiie ettt ettt et e et eestaeesebeessbeessbeessseeasseeessseensseessseessaessseessseesnseenn 80

Copyright © 1988, 2024, Oracle and/or its affiliates.

Contents

Running the Program to Create Graphical REPOITS........ccccccviiiiiiiiiiiieiiicieeciec ettt 81
Passing Data t0 CRAITS........ccuiiiiiiiiieiiieciee et este et e e te e s teesteeeteeestbeessbeessseessseasssesassessnsseesees 81
Chapter 15: Changing Fonts 83
SEEING FOMNS.....tiiiiiiiiie ettt ettt e e e st e e s bee s beeesteeestaeessbeesssaesssaessseesssaeensaeensseensseensses 83
POSTHONING TEXL....eeccuiiiiiiieiiieeieeetee ettt et e st e st e e eteeetaeesebeessseessseessseesssseessseessseeasseesssaesssesenseeassen 83
USING the WRAP OPHION.....cciiiiiiiiiiieciie ettt erte et ste et e et e eteeestaeessbeessseessseeasseeessasessseessseesssennns 85
Chapter 16: Writing Printer-Independent Reports 87
Understanding Printer-Independent REPOItS...........cocviiiiiiiiiiiiieiiieeee e 87
Reviewing the Sample Program for Selecting the Printer Type at Runtime............ccccoevvvevvvencneennnnn. 88
Chapter 17: Using Dynamic SQL and Error Checking 89
Using Variables i SQL.......ioiiiiiiieeiieeieeie ettt et eeteeestteeseveesebeessbeessbeeessseesseesseesssesssseesssenans 89
Using Dynamic SQL......ccicuiiiiiiiiiieiieeciee et etee et et e bt e st eesbeesteeesaeeessseessseessseesssessssesassseessseessseenns 90
Using SQL Error ChEeCKING.......ccccuiiiiiiiiieeieeceecee ettt ettt sre e st e e taeetaeessaeessseesssaessseeensseensnens 91
Using SQL and Substitution Variables...........cccuiiciiiiiiiiiiieeieesieeeie et steeeiee e eteeeseaeeseveeseseessveens 92
Chapter 18: Using Procedures and Local Variables and Passing Arguments 95
USING PTOCEAUIES.ccutiiiiiieiiieciee ettt ettt e e re et e e e bt esateeebteesbeessbeesesaessbaesssaaensaeanseeensseesses 95
USING LOCAL VATTADIES......ccviiiiiiiiiieciieeeie ettt sttt e eteeeee e sveeseveessbeessbeeesseeesseeassseessaeessseessseesssennns 95
PaSSING ATGUITIEIIES.ccuvieiiiieiiieiieeeteeeetee ettt estteestteessteeeseeasseeessseessseesssaessseessseeessseassseessseesssessseesssenans 96
Chapter 19: Creating Multiple Reports from One Program 101
Understanding How to Create Multiple REPOItS.......cccueiiciiiiiiiiiiieiiiecieeeee et 101
Understanding the Sample Program for Multiple Reports.........ccccccvvevieeeciiiiiiiiiieie e 101
Defining Heading and FOOtING SECLIONS........cccciiiiiieiiiieiieeiie ettt ettt e et eareesereesbeeeeveeenns 103
Defining Program OULPUL.........cuiiiiieiiieciie et ete et esite et esveesteeeteessaeeeseessseessseessseasssesssseeessseenes 104
Chapter 20: Using Additional SQL Statements with SQR 105
Using SQL Statements in SQR.........c.coiiiiiiiiiiiii ettt et e rreesre e s beesreeereeeseeesseesaseessseas 105
Using the BEGIN-SQL Paragraph..........cccccocueiiiiiiiieiiieecie e eee et esveesveesveesseesseeesaeeseneeens 105
Chapter 21: Working with Dates 107
Understanding Dates and Date ATithmetiC........cc.ceciieiiieriiiriieciiecieeeree e 107
Using Literal Date FOIMatS.........ccuiiiiiiiiiieiciieciie ettt e sttt et eeteeeiveesebeessbeesssaeesseeensseensseessns 109
Using String-t0-Date CONVEISIONS.cccuierrrieeriieerreerteeereessteeeteeessreesseesseessseesssesessessssssessseesssesssses 109
Using Date-t0-String CONVETISIONS.cccuiiirrieertieerreerteeeereessteeeseeessseesseessseessseesssessssessssssessseesssesssses 110
Using Dates with the INPUT Command............cccooviieriieeiieeieeie e erreesreesveeeveeeieeeeveesvaesevee s 110
UsIng Date Edit MasKS.......c.ecoouiiiiiieiiieiiiecieecee ettt sveesteesteesteeetaeesaseessseessseessseesssseessseessseennns 110
Declaring Date Variables..........cccuiiiiieiiiieiieeciiecieesiee ettt et e e sveesveessbeesbeeesaeesaeesseessseessseens 112
Chapter 22: Using National Language Support 115
Understanding LOCAlES..........eiouiiiiiiiiiieccie ettt et et e e e veesebe e sabeeesbeeestaeessaeessaensnas 115
SEIECHING LOCALES.....cciiiieiiieiie ettt ettt ettt e e s tbe e s sbeeesbeeesseeessaeessseesseesssaessseesnseeans 115
Defining a Default LoCal........cccvieiiiiiiieciiecieceeee ettt e e tee e ae e aae e eaeessbaesnreaenseeas 116
SWILCHING LOCAIES.cuviiiiiieiie ettt e et e e s ae e tbeessbeeesbeeesbaeessaeessseesssaessseesnsennns 117
Modifying Locale PreferenCes........ciiiiiiiiiiiiciieeie ettt et ae e b e entaeeeaeesnes 117
Specifying NUMBER, MONEY, and DATE KeyWords..........cccoeeiiieiiieiieeieeeie e svee e 117
Chapter 23: Using Interoperability Features 119
Calling SQR from Another APPIICAtION.ccciiiriieriieeiie et eree et e e e eteeeeaeesebeeseseeenns 119
Invoking an SQR Program by Using the SQR APL.......ccoooiiiiiiiiiieeeeeeeee e 119
Invoking an External Application API by Using the UFUNC.C Interface..........ccccccceevveerreenreennnen. 122
Adding @ USEr FUNCHION.cciiiiiiieciieciie ettt ettt ee et e et eeaee e tteesebeeseseeesseeessaeessaeesseesssesssnes 122
Understanding the UFUNC.C File.......ccoooiiiiiiiiiiciie ettt et eiveesveeseree s 122
Adding a FUnCtion ProtOtyPe........cccuieeciiiiiiieiie ettt eteeetee st e ete e etbeestveessaeeseseessseeesseeensnens 122
ReliNKing SQR......ciiiiiiiiie sttt e e v e e b e e s beesbaessteesstaeessbeessseessaessseessseennsens 123

Using UFUNC in MicroSoft WINAOWS.........c.ceccuieiiiiiiiiieiiie e eeteesreesveesveesveesveeeseeesseeessneessseesnnes 123
Implementing New User Functions in Microsoft Windows...........ccccueevvieriieniieniieeiee e 124

Copyright © 1988, 2024, Oracle and/or its affiliates. v

Contents

Vi

Chapter 24: Testing and Debugging 125
USING the TSt FEATUIE.......viiiiiiiiiieciie ettt ettt et e e st e e e bee e baeestaeessaeessseessseesnseeas 125
Using the #DEBUG COMMANG.........c.ccccuiiiiiiiiiieiiiesieeeieeeteeeieeesieeeiteesveesbeesseessseesssesesseessseesssens 125
Using Compiler Directives for DebUZZINg.......c.ccoviiiriiiiiieiiiecciieeie et eevee v 126
Avoiding Common Programming EITOTS.........c.cccviiiiiiiiiieiiie e eee et esveesveesreesreeeraeseneeseneenes 127

Chapter 25: Increasing Performance and Tuning 129
Understanding SQR Performance and SQL Statements...........ccceevvieriierciieeciieeniie e eseeereesvee e 129
Simplifying Complex Select Paragraphs..........cccoccviiiciiieciieiiieeie ettt 129
Using LOAD-LOOKUP t0 SIMPIify JOINS.....cccviioiieiiiiiiiieeie ettt eree et aee e 130
Improving SQL Performance with Dynamic SQL...........cccoeouiiiiiiiiiieiieciee et 131
Examining SQL CUISOT STATUS......c.cecciieieiieeitieeitieiieesieesteesteesreeeseeereeeseeessseessseessseessseesssesssseesnses 132
Avoiding Temporary Database Tables..........ccciiiiiiiiiiieiieeiieie ettt re e sae e sveesaveeens 132

Understanding Temporary Database Tables.........c.cccveecviiiiiiiiiieeie e 133
USING AN SOITING ATTAYS.....viiieuieeitieeitieeiieesiteesteesteeeteeeseeesseeesseeessseessseessseessseesssesssseesssseensseenes 133
Using and Sorting Flat FIles.........ccciiioiieiiiiiieeie ettt eee e ae e sreessreessveeeneae s 136
Creating Multiple Reports in One Pass..........ccoovuiiiiiieeiiiiiiieeiiesieesee et seveeseveesveesveesnreeens 138
Tuning SQR NUIMCTICS.cccuieiiieiiieeieeecie et et e e steesveesveesbeeebeeesseeessseessseessseessseesssessssseessseenseeensns 138
Compiling SQR Programs and Using SQR EXECULE........ccceocviiriiiiiiiiieiieeee e 139
Setting ProceSSING LIMIES.....cccuviiiiieiieeiiieeieeeiteeieeeriee et e esveesbeesbeeebeeestaeessseessseesssaessseessssesssenssnes 139
Buffering FEtChed ROWS.......cccuiiiiiiiiii ettt et te e s st e e aaeeebeessseessraennseas 140
Running Programs on the Database SEIVer..........ccccieviiieciiiiiiieiiieeie ettt et e veeeevee e 140

Chapter 26: Compiling Programs and Using SQR Execute 141
Understanding Compile FEAtUIES........ccceiieiiiiiiiiiiiieie ettt sreeeteeetee e esae e beessbaessreesnseeans 141
Compiling and Running an SQR Program...........c.cccccueeeiiiiiieniieiiieciee ettt esvee e s 142

Chapter 27: Printing with SQR 143
Specifying Output File Types by Using SQR Command-Line Flags.........c.cccccceveviiiiiriiirenieeieenee. 143
Using the DECLARE-PRINTER Command..........c.cccccueiriiiriieniieniieeiieeieeeiee e esveesveesveeeeee e 144

Chapter 28: Using the SQR Command Line 147
Understanding the SQR Command LINE.........cccveeciiiiiiiiiieiiieeiie ettt e ereeeeeeeseveesene e 147
Specifying Command-Line ATgUMENTS..........ccccviiiuieiiiieiciieeieesreesteesreesreeereeereeeseaeeseaeeeseessseessnes 148

Understanding Command-Line ArgUmENS...........cccveeciieeeieenieerieesieenreesreesreeeseeesseeessseesseenes 148
REIIEVING ATGUITIEILS.ccuviiiiieeiieeiieeeteeeteeeteeeteeeteeeteeesseessseesssaessseessseessseesssesessseesssesssseesssens 149
Specifying Arguments and Argument Files.........cccoccvriciiiiiiiiiiiece et 149
Using an Argument File.......c..cooiiiiiiiiiiiiiiiciieecie ettt e e st eesbe e s beessbeeenaaeensaeens 149
Using Other Approaches to Pass Command-Line Arguments...........ccccveerveerveenveencieeecreeenneenns 150
Using ReSEIrved CharaCters........cccuieiiieiiieiiieeiieeieeeiee ettt esaeesaeesereesaeessreeesaeesaeessseesssessssessnnes 150
Creating an Argument File from a Report.........cceoviiiiiiiiiiiiiieciiccee e 150
USING BAtCh IMOGE......ccciiieiiiciie ettt ettt tee et e et e e s abe e st e e st aeesbaeessaeensaeensaeesseesssaensses 151

Chapter 29: Generating and Publishing HTML from an SQR Program 153
Understanding SQR Capabilities That Are Available with HTML.........c.ccccoivviiiiiiiiiieeieecieeeies 153
Generating HTML OULPUL......cociiiiiiiiiie et esee ettt e esteeeteeetaeeebeessseessseessseessseesssseessseenes 153

Understanding HTIML OULPUL.........cccciiiiiiieiieeieeieeeitesteeeieeeieeeite e veesveessseessseeessaeessseessseenns 154
Producing HTIML OULPUL........cccoiiiiiieeiieeiieciteeteeeiee et esive e seaeeseveeebaessbeessbaeessaeensseessaessseenssens 154
Using -PRINTEREH......co.iiiii ettt st sttt 155
Setting HTML Attributes Under -PRINTER:EH............cccoiiiiiiiiiiieee e 156
Using -PRINTERIHToouiii ettt sttt st sttt 158
BUISHING REPOTES...cutiiiiiiiiiieeiieciteetee ettt et e ste et e e st e e seteeestaeessaeessaeesssaessseessseasssaeassseenssennsnes 158
Setting Attributes with HTML Procedures........c..oocviiiciiiiiiiiiieecieecieeciee ettt seve e 159
Using Additional HTML ProcCedures...........cccoecuieiiieriieniieciieeieeeiee e esveeseveesveeeseeeeneeseneenes 159
Setting OULPUL FIlE TYPES...uiiiiiiiiiie ettt ettt e et e et e e eesre e s veessbeeessaeessseesseessseenns 160
TeSting HTIML OULPUL.......oeiiiiiiiieiiieciieeiee e este et eesireeseveesbeessteeebaeestaeessseessseesssaessseesssesssseens 160

Copyright © 1988, 2024, Oracle and/or its affiliates.

Contents

Using HTML Procedures in an SQR Program............ccccccveiviiiiiieeiie ettt e eeee e 160
Understanding HTML ProCeaUIES.........c.eecvieiiieiiieiiieciieeieeeiteeteesveesveeereesreeseaeessseessseennns 161
USING HTIML PrOCEAUIES.......ccciiieiieeiieeiie ettt e etee et eeteeesteeesiveesebeessbeessbeeessaeessseessseessseesnsenns 161
POSTHONING OBJECES.....uiiiiiieiiieiiieieeste et e et et e et e et e etbeestbeestbeessseessseessseessseeasseeessseessseesssennes 161
Displaying Records i TabIES.........c.eeccuiiiiiiiiieeiiieieeeieecteestee et sve e teesreeeaaeesnaeeneneas 162
Creating Headin@s.......uioiiiiiiieciie ettt e et e et e e tv e e sbeessbeessbaeensaeessseessseessseesnsens 163
HighlIGhting TeXt.....cecciiiiciiiiiecie ettt ettt et e et e et e e stbe e s beeesbeeestaeessaeessseessaeasseensseens 164
Creating LANKS......ccvieiiieiiieiiiecie ettt te et e et e st e e st e e ssteessteeessaeessaeesssaessseesssesasseesnseeenseenn 164
INCIUAING IMAEZES.....viieiiieiiieciie ittt et sre e et e et e e eta e etaeessbeessseessseessseessseeensseensseensns 165
Displaying TeXt 1N LASES.....ccccuieiiiiieciieeiiieiiiecie et esteeetteeteeeteeetteetbeessseessseessseessseesssseessseensses 165
FOrmatting Paragraphis.........cccuieiiieiiiieiie ettt ettt et e et eetbeesabeessbeesssaesssaeenseeeneeeas 166
Incorporating Your OWn HTML Tags.......ccccveiciiieiieeiieiieecieesieesteeereeeereesiveesveesveessaesneeenes 167

Modifying an Existing SQR Program for HTML.........c.ccccoiiiiiiiiiiiiiccieecee et 167

PUDIISHING @ REPOTT.....uiiiiiiiieiiiciie ettt ettt et e ettt e e ve et e e ssbeessseeessaeessaeessseesssaessseenns 169
PUDBIISHING REPOTTS....cccuiiiiiiiiiiieiie ettt ettt e ettt e et e e ete e st e e ssbeeesbeeensaeessaeessseesssaenssens 169
Supporting Older BrOWSELS......cccveiiiiiiiiiiiieeciee et este et esteeereeetteessveessbeessseessseeessseesseessseesssens 169
Viewing Published REPOITS........c.eiiciiiiiiiieiii ettt ettt ree et eeeb e e seveesnraeeareas 170
Publishing by Using an Automated ProCesS..........ccuveviiiriiiiiiiieiiieeiie e ecre et sveesreeeaeeesereenes 170
Publishing by Using @ CGI SCIIPL....cccuiiiiieiiieeciieeiie et eeteesieeereeeteeetaeeseaeessseessseessseesssseessaeens 170

Chapter 30: Generating tagged PDF Output from SQR Program 175

TAZEEA PDEF OVEOIVIEW...c..tiiiiiieiiieiie ettt stte et e st eeteeetteestbeestveesssaessseeassaeessseessseesssaesssesssseesnseeans 175

Sample Program to Create Tagged PDF.........ccoooiiiiiiiiii ettt e 175
SQR Program for using Paragraph in tagged COntent............ccceeevvveerieeriieniriesieeeree e esve e 175
Generating a Tagged Table in @ PDF REPOIT........ccccuiiiiiiiiiiiiiie ettt 175
Generating a Tagged List in @ PDF RePOTt.......ccccvieciiiiiiiiiiee et 176
Generating Alternate Text for @ FiUIC........cooiiiiiiiiiiiciiecieceecee e 177

Tagged PDF in PeopleSoft APPliCAtion.........ccccuviiiieiiiiieiiieie ettt ettt et aaeeseae v e e vee e 177

Using Accessibility ChECKEIS.......cuiiiiiiiiieiiiieiee ettt e e s b e e esteeestaeessae e e 177

Chapter 31: Generating XML Output from SQR Program 179

Generating XML OULPUL.......ecciieeciieeeieeeie et eeieeeteeesteeestaeestaeessbeessseessseeessseessseessseesssesssseesssesessesensns 179

SQR Commands to Generate XIML OULPUL........ccccvieiriiiiiiieiieeeieeeieeeiee e esre et sree e eereeeeaeenes 179

Sample Program to Generate XML OULPUL........c.ccociiiiiiieiiieiiieeieeeiee e eveesreesveesbeesveeesreeesneenes 180

Generating XML Output in PeopleSoft Applications...........cocveeriieriiereiieeciieeiie e esiee e sveesvee e 183

Chapter 32: Creating a Table of Contents 185

Using the DECLARE-TOC ComMANnd............cccueiiuiriiiiieiieeiieesreesieeeieeereesreeeseneeseneeseneesssesssvesssnes 185

Using the TOC-ENTRY Command............ccccueiriieriieiiienieeeiieeiteeesieeereeesireeseseessseessseessseessessssesenens 186

Adding a Table of Contents to the CUST.SQR Sample Program..........cccoecveevvieriienciieecieeeieeieeene 186

Copyright © 1988, 2024, Oracle and/or its affiliates. vii

Contents

viii Copyright © 1988, 2024, Oracle and/or its affiliates.

Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

Hosted PeopleSoft Online Help

You can access the hosted PeopleSoft Online Help on the Oracle Help Center. The hosted PeopleSoft
Online Help is updated on a regular schedule, ensuring that you have access to the most current
documentation. This reduces the need to view separate documentation posts for application maintenance
on My Oracle Support. The hosted PeopleSoft Online Help is available in English only.

To configure the context-sensitive help for your PeopleSoft applications to use the Oracle Help Center,
see Configuring Context-Sensitive Help Using the Hosted Online Help Website.

Locally Installed PeopleSoft Online Help

If you’re setting up an on-premises PeopleSoft environment, and your organization has firewall
restrictions that prevent you from using the hosted PeopleSoft Online Help, you can install the online help
locally. Installable PeopleSoft Online Help is made available with selected PeopleSoft Update Images and
with PeopleTools releases for on-premises installations, through the Oracle Software Delivery Cloud.

Your installation documentation includes a chapter with instructions for how to install the online help

for your business environment, and the documentation zip file may contain a README.txt file with
additional installation instructions. See PeopleSoft 9.2 Application Installation for your database platform,
“Installing PeopleSoft Online Help.”

To configure the context-sensitive help for your PeopleSoft applications to use a locally installed online
help website, see Configuring Context-Sensitive Help Using a Locally Installed Online Help Website.

Downloadable PeopleBook PDF Files

You can access downloadable PDF versions of the help content in the traditional PeopleBook format on
the Oracle Help Center. The content in the PeopleBook PDFs is the same as the content in the PeopleSoft
Online Help, but it has a different structure and it does not include the interactive navigation features that
are available in the online help.

Common Help Documentation

Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

* Application Fundamentals

Copyright © 1988, 2024, Oracle and/or its affiliates. ix

https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_HOSTED
https://edelivery.oracle.com
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_LOCAL
https://docs.oracle.com/en/applications/peoplesoft/index.html

Preface

» Using PeopleSoft Applications

Most product families provide a set of application fundamentals help topics that discuss essential
information about the setup and design of your system. This information applies to many or all
applications in the PeopleSoft product family. Whether you are implementing a single application, some
combination of applications within the product family, or the entire product family, you should be familiar
with the contents of the appropriate application fundamentals help. They provide the starting points for
fundamental implementation tasks.

In addition, the PeopleTools: Applications User's Guide introduces you to the various elements of the
PeopleSoft Pure Internet Architecture. It also explains how to use the navigational hierarchy, components,
and pages to perform basic functions as you navigate through the system. While your application or
implementation may differ, the topics in this user’s guide provide general information about using
PeopleSoft applications.

Field and Control Definitions

PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions

The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign
(+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

... (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Preface

Typographical Convention Description

> This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

ISO Country and Currency Codes

PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY CD TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers

Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

¢ Asia Pacific
* Europe
¢ Latin America

¢ North America

Industry ldentifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

» USF (U.S. Federal)

Copyright © 1988, 2024, Oracle and/or its affiliates. Xi

Preface

* E&G (Education and Government)

Translations and Embedded Help

PeopleSoft 9.2 software applications include translated embedded help. With the 9.2 release, PeopleSoft
aligns with the other Oracle applications by focusing our translation efforts on embedded help. We

are not planning to translate our traditional online help and PeopleBooks documentation. Instead we
offer very direct translated help at crucial spots within our application through our embedded help
widgets. Additionally, we have a one-to-one mapping of application and help translations, meaning that
the software and embedded help translation footprint is identical—something we were never able to
accomplish in the past.

Using and Managing the PeopleSoft Online Help

Select About This Help in the left navigation panel on any page in the PeopleSoft Online Help to see
information on the following topics:

» Using the PeopleSoft Online Help.
» Managing hosted Online Help.

* Managing locally installed PeopleSoft Online Help.

PeopleTools Related Links

PeopleTools 8.61 Home Page

PeopleSoft Search and Insights Home Page

“PeopleTools Product/Feature PeopleBook Index” (Getting Started with PeopleTools)

PeopleSoft Online Help

PeopleSoft Information Portal

PeopleSoft Spotlight Series

PeopleSoft Training and Certification | Oracle University

My Oracle Support

Oracle Help Center

Contact Us

Send your suggestions to psoft-infodev_us@oracle.com.

Please include the applications update image or PeopleTools release that you’re using.

Xii Copyright © 1988, 2024, Oracle and/or its affiliates.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2978466.2
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2205540.2
https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/spotlight.html
https://docs.oracle.com/pls/topic/lookup?ctx=psft_hosted&id=ou
https://support.oracle.com/CSP/ui/flash.html
https://docs.oracle.com/en/
mailto:PSOFT-INFODEV_US@ORACLE.COM

Preface

Follow Us

Link

)
o
3

Watch PeopleSoft on YouTube

[]

Follow @PeopleSoft Info on X.

X

Read PeopleSoft Blogs

Connect with PeopleSoft on LinkedIn

1]
L

Copyright © 1988, 2024, Oracle and/or its affiliates. xiii

http://www.youtube.com/user/PSFTOracle
https://twitter.com/PeopleSoft_Info
https://blogs.oracle.com/peoplesoft
https://www.linkedin.com/groups/4530781/?home=&gid=4530781&trk=anet_ug_hm

Chapter 1

Getting Started with SQR for PeopleSoft

SQR for PeopleSoft Overview

SQR for PeopleSoft is both a language and a set of tools that enables you to create professional reports:

SQR is a programming language for accessing and manipulating data to create custom reports.

SQR has many advantages, including portability across multiple platforms and relational database
management systems and support of SQL data manipulation capabilities. It is also a fourth-generation
language; it is closer to human languages and, therefore, is more intuitive than first-, second-, or
third-generation languages. SQR for PeopleSoft enables you to design report layouts, generate a
variety of output types—including complex tabular reports, multiple page reports, form letters,
mailing labels, and more—and create HTML, PDF, XML, or configured output for laser printers and
phototypesetters.

SQR Execute enables you to run previously compiled SQR programs.
SQR Print enables you to configure reports for most printers.

SQR also provides a library of sample programs and output that you can use both as a learning
tool and as a basis for creating your own reports. These samples reside in the SQR for PeopleSoft
directory <PS_HOME>\bin\sqr\<database platform>\SAMPLE (or SAMPLEW, for Windows).

See SQR Language Reference for PeopleSoft.

Understanding Transparent Application Failover for SQR

This section describes Transparent Application Failover (TAF) for SQR.

TAF is a feature supported by Oracle Call Interface driver (OCI). SQR reports which are mostly read-only
can take advantage of the TAF configuration. This enables the SQR reports to use failover and connect to
the next available DB node to re-execute SQL queries automatically when there is a node failure.

The SQR engine code is modified to reconnect to the available DB nodes in the event of a DB node
failure and execute the SQR Reports session specific variables, which would have been otherwise lost in
the case of a DB node failure.

In addition, the SQR Engine writes informational messages to the SQR report log files to indicate the TAF
fail over details for the SQR report.

See “Working With Oracle Transparent Application Failover” (Data Management).

Copyright © 1988, 2024, Oracle and/or its affiliates. 15

Getting Started with SQR for PeopleSoft Chapter 1

SQR for PeopleSoft Implementation

This section describes the prerequisites for implementing SQR for PeopleSoft.

* You need a sound understanding of SQL and structured programming languages to use the SQR
language.

* You do not need to carry out a separate installation procedure because SQR for PeopleSoft is installed
automatically when you install PeopleTools.

* Typically, you should use Application Engine to run background SQL processing programs. You may
want to explore whether Application Engine can meet your needs before delving into SQR.

See Application Engine.

* You can run SQR programs locally by using the SQR executable (for Microsoft Windows it is SQRW)
and through the PeopleSoft Process Scheduler. For details on installing Process Scheduler and running
SQRs using Process Scheduler,

See “PeopleSoft Process Scheduler” (Process Scheduler) and “Understanding the Management of
PeopleSoft Process Scheduler” (Process Scheduler).

See the product documentation for PeopleSoft 9.2 Application Installation.

Note: From PeopleTools 8.54 release, the SQR executables, such as, SQRW,SQWT,SQRWP, and
SQRWT are x64 bit binary on Windows platforms.

Other Sources of Information

16

This section provides information to consider before you begin to use SQR for PeopleSoft.

In addition to implementation considerations presented in this section, take advantage of all PeopleSoft
sources of information, including the installation guides, release notes, PeopleBooks, red papers, the
Updates + Fixes area of My Oracle Support, and the PeopleSoft curriculum courses.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2

Introducing a Sample Structured Query
Report Program

Using This Guide

Initial sections of this guide teach the basic uses of SQR. You learn how to:

Create a variety of reports, such as tabular, cross-tabular, and master and detail reports.
Produce mailing labels, form letters, and envelopes.
Enhance your reports with typeset-quality fonts and graphics.

Produce graphs and charts that help you present data and trends visually.

Subsequent sections describe the advanced features and uses of SQR. You learn how to:

Create HTML output and publish reports on the internet, an intranet, or an extranet.

Create reports that can be easily ported between different systems and databases and that support
different printer and display types.

Create reports that format dates, numbers, and money according to local preferences.

Integrate SQR with other software packages, such as front-end user interface tools and spreadsheets.
Extend SQR with procedures and functions that are written in C.

Test and debug programs.

Tune programs for optimum performance.

The code examples demonstrate standard SQR programming style. Use this standard style to make your
code easier for other SQR programmers to understand.

You can run the program examples in this guide without modification against the Oracle database, and
you can run them against other databases with minor modifications.

Audience

This guide was written for programmers who develop reports for relational databases. To use this guide
effectively, you need a working knowledge of SQL and experience writing software programs. You also
must be familiar with your particular database and operating system.

Copyright © 1988, 2024, Oracle and/or its affiliates. 17

Introducing a Sample Structured Query Report Program Chapter 2

How to Use SQR for PeopleSoft Developers

You can just read this book and study the sample programs. However, Oracle encourages you to try these
programs for yourself and to experiment with them. Make some changes to the sample programs and see
how they run.

To use the sample programs, you must first install SQR for PeopleSoft. SQR for PeopleSoft installs
automatically when you install PeopleTools.

If you installed all of the program components, the sample programs are located in the TUTORIAL
directory underneath <PS_HOME>\bin\sqr\<database platform>.

You can run the sample programs on any hardware platform, but you may find it easier to review SQR
program results from the Microsoft Windows platform by using the SQR Viewer or a web browser to
verify your results.

Note: You can set up the sample database and run the sample programs with any username and password,
although you may want to use an account that does not hold important data.

Related Documents

In addition to this developer’s guide, SQR for PeopleSoft includes SQR for PeopleSoft Language
Reference, a complete reference to SQR commands, arguments, and command-line flags.

For information about supported database platforms, see Supported Platforms on My Oracle Support. You
can also consult the PeopleTools Hardware and Software Requirements guide for a snapshot of current
requirements.

Syntax Conventions

Syntax and code examples use the following conventions:

Convention Description
{} Braces enclose required items.
[Square brackets enclose optional items.

Ellipses indicate that the preceding parameter can be repeated.

A vertical bar separates alternatives within brackets, braces, or
parentheses.

18 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2

Introducing a Sample Structured Query Report Program

Convention

Description

A single quote starts and ends a literal text constant or any
argument that has more than one word.

Important! If you are copying code directly from the
examples in the PDF file, make sure that you change the
slanted quotes to regular quotes; otherwise, you will receive an

€rror message.

A comma separates multiple arguments.

0

Parentheses must enclose an argument or element.

UPPERCASE

SQR commands and arguments are uppercase within the
text but lowercase in the code examples. (Note that these

commands are not case-sensitive.)

Variable

Information and values that you must supply appear in

variable style.

hyphen versus underscore

Many SQR commands, such as BEGIN-PROGRAM, use

a hyphen, whereas procedure and variable names use an
underscore. Procedure and variable names can contain either
a hyphen or underscores, but using underscores in procedure
and variable names to distinguish them from SQR commands
is best.

It also prevents confusion when you mix variable names and
numbers in an expression, where hyphens could be mistaken
for minus signs.

Setting Up the Sample Database

To run the sample programs in this guide, you must create a sample database. To do so, run the loadall.sqr

program:

1. Change to the SAMPLE (or SAMPLEW for Microsoft Windows) directory under <PS_HOME>\bin

\sqr\<database platform>.

2. At the command line, enter:

sqr loadall username/password

Copyright © 1988, 2024, Oracle and/or its affiliates.

19

Introducing a Sample Structured Query Report Program Chapter 2

If SQR is installed on Microsoft Windows, you can run loadall.sqr by double-clicking the Loadall icon.
If your system does not display this icon, run loadall.sqr from the SAMPLEW directory of SQR for
PeopleSoft.

If an individual table already exists, you are prompted to enter:

A: Abort the load.

S: Skip the specified table.
* R:Reload the specified table.
* (:Reload all tables.

You can also run this as a batch program by entering the preferred option (4, S, R, or C) at the command-
line. For example:

sqr loadall username/password a

Considerations for DBX

The following considerations apply for DB2 on AIX and DB2 on z/OS.

Db2 on z/0OS

The PSSQR.UNX or PSSQR.INI file should have the following line:

FORCESPACEAFTERCOMMA=TRUE

Understanding the Sample Program for Printing a Text String

20

The first sample program is the simplest SQR program. It prints a text string:

Program exla.sqr
begin-program

print 'Hello, World.' (1,1)
end-program

Note: For your convenience, all of the program examples and their output files are included with the
installation. As mentioned, these samples are in the SQR for PeopleSoft directory <PS HOME>\bin\sqr
\<database platform>\SAMPLE (SAMPLEW for Microsoft Windows).

Take another look at the sample program. This program contains three lines of code, starting with
BEGIN-PROGRAM and ending with END-PROGRAM. These two commands and the code between
them make up the PROGRAM section, which is used to control the order of processing. The PROGRAM
section is required, and you can have only one. It typically goes at or near the top of the program.

The PROGRAM section contains a PRINT command, which in this case prints the text Hello, World. This
text is enclosed in single quotation marks ('), which are used in SQR to distinguish literal text from other
program elements.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Introducing a Sample Structured Query Report Program

The last element of the PRINT command indicates the position on the output page. An output page can be
thought of as a grid of lines and columns. The pair (1,1) indicates line 1, column 1, which is the upper-left
corner of the page.

Note: In SQR, you must place each command on a new line. You can indent SQR commands.

Creating and Running a Sample SQR Program

This section discusses how to:
* Create an SQR program.

* Run an SQR program.

Creating an SQR Program
To create an SQR program:

1. Open a text editor and enter the code in the sample program exactly as shown or open the exla.sqr file
from the TUTORIAL directory.

2. If you are writing the sample program, save your code with the name exla.sqr.

SQR programs usually have a file extension of .sqr.

Running an SQR Program
To run the sample program:

1. Change to the directory in which you saved the program using the command that is appropriate to
your operating system.

2. Enter the appropriate SQR program command at the system command prompt (UNIX/Linux or
Microsoft Windows) or from within the graphical user interface (GUI) of the SQR application, where
available (Microsoft Windows only).

If you are using the command line, use SQR (UNIX/Linux) or SQRW (Microsoft Windows) to invoke
SQR. Enter sqr or sqrw, the SQR program name, and the connectivity string, all on one line, using this
syntax:

[sgr or sgrw] [program] [connectivity] [flags ...] [args ...] [Q@file ...]

In a common configuration, you may be running SQR on Microsoft Windows against an Oracle database
that is located on another machine in the network. Use this command format:

sqrw exla username/password@servername -KEEP

If you correctly replace username, password, and servername with the appropriate information, you
should have a command line like this:

sqrw exla sammy/baker@rome -KEEP

Copyright © 1988, 2024, Oracle and/or its affiliates. 21

Introducing a Sample Structured Query Report Program Chapter 2

To produce the output file for this exercise, the example uses the -KEEP flag, which is defined later in this
guide.

See “SQR for PeopleSoft Tools” (SQR Language Reference for PeopleSoft).

See Specifying Output File Types by Using SQR Command-Line Flags.

Command Line Examples
Here are some examples for running SQR from the command line for different databases and platforms.

DB2 on Microsoft Windows

$PS HOME$\bin\sgr\DB2\BINW\sgrw $PS HOME%\sqgr\xrfwin.sqr T846U1l0/testdb2/t3stdb20
-oc:\sqr out\xrfwin.out -i%$PS HOMES$\sqgr\; -zif%$PS HOME%\sqr\pssqr.ini
-fc:\sqr out\ T846Ul0 T846U10 952 VPl testEnglish

Oracle on Unix

$PS_HOME/bin/sqr/ORA/bin/sqr $PS HOME/sqr/xrfwin.sqr T846U22/T846U22@T846U22
-0$PS _HOME/xrfwin 689.out -i$PS HOME/sqr/ -ZIFS$PS HOME/sqr/pssqr.unx
" f$PS HOME/XJ:len 689.pdf" -printer:pd T846U22 689 VPl PJS

Microsoft SQL Server on Microsoft Windows

$PS HOME%\bin\sqgr\MSS\BINW\sgrw %PS HOME%\sqgr\xrfwin.sqr T846U10/testdb2/t3stdb20
-oc: \sqr out\xrfwin.out -i%PS_HOME% \sqr\; -zif$% PS_HOMES$\sqgr\pssqr.ini
-fc:\sqr out\ T846U10 T846U10 952 VPl testEnglish

Viewing SQR Output

SQR normally places the SQR program output files in the directory from which you run the program. The
output file has the same file name as the SQR file that created it, but the file extension is different.

The output files should appear as soon as your program has finished running. If you specified the -KEEP
argument, one output file is in SQR Portable Format (recognizable by its .spf extension). SQR Portable
Format is discussed later in this guide, but for now, you can view the sample program .spf file output,
<filename>.spf, on Microsoft Windows platforms with the SQR Viewer GUI (sometimes referred to as an
SPF Viewer). Invoke the SQR Viewer by entering sqrw at the command line.

On Microsoft Windows and UNIX/Linux systems, the program also produces an output file with an .lis
extension. You can view this output file type from the command line with such commands as TYPE on
Microsoft Windows systems or CAT, MORE, and VI on UNIX/Linux systems. Use the command that is
appropriate to your system to view or print the .lis file.

The output for the example program looks like this for all platforms:

Hello, World.

You may also see a character such as L or <FF> at the end of this output file. It is the form-feed
character that ejects the last page. This guide does not show form-feed characters.

22 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3

Creating Headings and Footings

Understanding SQR Pages

Typically, every page of a report has some information about the report itself, such as the title, the date,
and the page number. In SQR, the page can be subdivided into three logical areas:

* The top area of the page is the heading, which is where the report title and the date normally print.
* The middle part of the page is the body, which is where the report data prints.
* The bottom area of the page is the footing, which is where the page number normally prints.

The heading, body, and footing of a page each has independent line numbers. You can print in each

of these page areas by using line numbers that are relative to the top corner of that area without being
concerned about the size of the other areas. That is, you can print to the first line of the body by using line
number 1, independent of the size of the heading.

Note: Any space that is reserved for the heading and footing is taken from the body area of the page. With
one line each in the heading and footing, the maximum possible size of the body of the report is reduced
by two lines. Note also that line 1 of the body is actually the first line after the heading.

Creating Page Headings and Footings

This section provides an overview of the heading and footing code example and discusses how to:
* Add page headings.

* Add page footings.

Understanding the Heading and Footing Code Example

Here is an example of the code that is required to add a page heading and footing to a program:

Program ex2a.sqr
begin-program
print 'Hello, World.' (1,1)
end-program
begin-heading 1
print 'Tutorial Report' (1) center
end-heading
begin-footing 1
! print "Page n of m" in the footing
page-number (1,1) 'Page '
last-page () " of "
end-footing

Copyright © 1988, 2024, Oracle and/or its affiliates. 23

Creating Headings and Footings Chapter 3

The output for the ex2a.sqr program is:

Tutorial Report
Hello, World.

Page 1 of 1

Note: The PRINT command places text in memory, not on paper. SQR for PeopleSoft always prepares a
page in memory before printing it to paper, creating the body first and then the HEADING and FOOTING
sections. In this example, Hello, World is run first, followed by Tutorial Report and Page 1 of 1.

Adding Page Headings

Define a page heading in the HEADING section. Begin the section with a BEGIN-HEADING command
and end it with an END-HEADING command. Follow the BEGIN-HEADING command with a number
that represents the number of lines that are reserved for the heading. (In this example, / indicates a
heading of one line.)

In the heading and footing sample program, the heading uses exactly one line and contains the text
Tutorial Report. The CENTER argument ensures that the text is centered on the line.

Adding Page Footings

24

Define the page footing in the FOOTING section. Begin the section with a BEGIN-FOOTING command
and end it with an END-FOOTING command. Follow the BEGIN-FOOTING command with a number
that represents the number of lines that are reserved for the footing. (In this example, the / indicates a
footing of one line.) This line consists of the text Page I of 1.

Adding Comments

Precede comments with an exclamation mark. The comment extends from the exclamation mark to the
end of the line.

In the heading and footing sample program, the first line in the FOOTING section is a comment.

To print an exclamation mark , enter it twice to indicate that it is not the beginning of a comment. For
example:

print 'Hello, World!!"' (1,1)

Adding Page Numbers

Use the PAGE-NUMBER command to print the text Page and the current page number. Use the LAST-
PAGE command to print the number of the last page, preceded by the word of, which is bracketed by
spaces.

In the headings and footings code example, Page I of I appears because only one page exists.

Indicating the Print Position

Include numbers in parentheses following the PRINT, PAGE-NUMBER, and LAST-PAGE commands to
indicate the position for printing. Express a position in SQR language with three numbers in parentheses:
line number, column number (character position), and width of the text.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Creating Headings and Footings

In many cases, a position contains only the line and column numbers. The width is normally omitted
because it is set by default to the width of the text that is being printed. If you also omit the line and
column numbers, then the print position is set by default to the current position, which is the position
following the last printed item.

In the heading and footing sample program, the LAST-PAGE command has the position (), so the current
position is the position following the page number.

The print position is a point within the area of the page or, more precisely, within the heading, body, or
footing. The position (1,1) in the heading is not the same as the position (1,1) in the body. Line 1 of the
body is the first line following the heading. In the program, the heading has only one line, so line 1 of the
body is actually the second line of the page. Similarly, line 1 of the footing is at the bottom of the page. It
is the first line following the body.

Copyright © 1988, 2024, Oracle and/or its affiliates. 25

Creating Headings and Footings Chapter 3

26 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4

Selecting Data from the Database

Understanding the Sample Program for Listing and Printing Data

Here is a sample program that selects data from the database and prints it in columns:

Program ex3a.sqr
begin-program

do list customers
end-program
begin-heading 4

print 'Customer Listing' (1) center
print 'Name' (3,1)
print 'City' (,32)
print 'State' (,49)

print 'Phone' (,55)
end-heading
begin-footing 1
! Print "Page n of m" in the footing
page-number (1,1) 'Page '
last-page () " of "
end-footing
begin-procedure list customers
begin-select
name (,1)
city (,32)
state (,49)
phone (,55)
position (+1) ! Advance to the next line
from customers
end-select
end-procedure ! list customers

The output for the ex3a.sqr program is:

Customer Listing

Name City State Phone

Gregory Stonehaven Everretsville OH 2165553109
John Conway New York NY 2125552311
Eliot Richards Queens NY 2125554285
Isaiah J Schwartz and Company Zanesville OH 5185559813
Harold Alexander Fink Davenport IN 3015553645
Harriet Bailey Mamaroneck NY 9145550144
Clair Butterfield Teaneck NJ 2015559901
Quentin Fields Cleveland OH 2165553341
Jerry's Junkyard Specialties Frogline NH 6125552877
Kate's Out of Date Dress Shop New York NY 2125559000
Sam Johnson Bell Harbor MI 3135556732
Joe Smith and Company Big Falls NM 8085552124
Corks and Bottles, Inc. New York NY 2125550021
Harry's Landmark Diner Miningville IN 3175550948

Page 1 of 1
The PROGRAM section contains a single DO command, which invokes the list customers procedure.

In SQR language, a procedure is a group of commands that is performed one after the other, as a
procedure (or subroutine) is in other programming languages. A DO command invokes a procedure.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Selecting Data from the Database Chapter 4

Break your program logic into procedures and keep the PROGRAM section small. It should normally
contain a few DO commands for the main components of your report.

The HEADING section creates headings for the report columns. In this example, four lines are reserved
for the heading:

begin-heading 4
print 'Customer Listing' (1) center
print 'Name' (3,1)
print 'City' (,32)
print 'State' (,49)
print 'Phone' (,55)
end-heading

The Customer Listing title is printed on line 1. Line 2 is left blank. The first column heading, Name, is
positioned at line 3 of the heading, in character position 1. The rest of the column heading commands
omit the line numbers in their positions and are set by default to the current line. Line 4 of the heading is
left blank.

In this sample program, the footing is the same as the one in the previous sample program.

Creating SQR Select Paragraphs

28

The BEGIN-SELECT command is the principal method of retrieving data from the database and printing
it in a report. Look again at the sample program for listing and printing data, in which the list_customers
procedure starts with BEGIN-PROCEDURE and ends with END-PROCEDURE.

Note the comment following the END-PROCEDURE command. It indicates that the procedure is
being ended, which is helpful when you have a program with many procedures. (You can also omit the
exclamation point, for example, END-PROCEDURE main.)

The procedure itself contains a select paragraph, which starts with BEGIN-SELECT and ends with END-
SELECT.

The select paragraph is unique. It combines a SQL SELECT statement with SQR processing in a seamless
way. The actual SQL statement is:

SELECT NAME, CITY, STATE, PHONE
FROM CUSTOMERS

Syntax of the Select Paragraph

In an SQR select paragraph, the SQL statement SELECT is omitted, and no commas are between the
column names. Instead, each column is on its own line. You can also place SQR commands between the
column names, and these commands are run for every record that the select fetches.

Note: You must name each individual column in a table. The SQL SELECT * FROM statement is not
allowed in SQR.

SQR distinguishes column names from SQR commands in a select paragraph by their indention. You
must place column names at the beginning of a line. You must indent SQR commands at least one space.
In the following example, the POSITION command is indented to prevent it from being taken as a
column name. The word From must be the first word in a line. The rest of the SQR select paragraph is
then written freely, after SQL syntax.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4

Copyright

Selecting Data from the Database

Think of the select paragraph as a loop. The SQR commands, including printing of columns, are run in a
loop, once for each record that Select returns. The loop ends after the last record is returned.

Data Positioning

In a select paragraph, you see positioning after each column name. This positioning implies a PRINT
command for that column. Omitting the line number in the position causes it to be set by default to the
current line.

begin-select
name (,1)
city (,32)
state (,49)
phone (,55)
position (+1) ! Advance to the next line
from customers
end-select

The implied PRINT command is a special SQR feature that is designed to save you coding time. It works
only inside a select paragraph.

After the last column is a POSITION command: POSITION(+1). The plus sign (or minus sign) indicates
relative positioning in SQR. A plus sign moves the print position forward from the current position, and

a minus sign moves it back. The +1 in the sample program specifies one line down from the current line.
This command advances the current print position to the next line.

Note: When you indicate print positions by using plus or minus signs, be sure that your numbers do not
specify a position outside of the page boundaries.

© 1988, 2024, Oracle and/or its affiliates. 29

Selecting Data from the Database Chapter 4

30 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5

Using Column Variables

Using Column Variables in Conditions

You can name database columns with variables and use their values in conditions and commands.

When you select columns from the database in a select paragraph, you can immediately print them by
using a position. For example:

begin-select
phone (,1)
position (+1)
from customers
end-select

This example shows how to use the value of phone for another purpose, for example, in a condition:

begin-program

do list customers
end-program
begin-procedure list customers
begin-select

phone
if &phone = "'
print 'No phone' (,1)
else
print &phone (,1)
end-if

position (+1)
from customers
end-select
end-procedure ! list customers

The phone column is a SQR column variable. Precede column variables with an ampersand (&).

Unlike other program variables, column variables are read-only. You can use their existing value, but you
cannot assign a new value to a column variable.

In the sample program, &phone is a column variable that you can use in SQR commands as if it were a
string, date, or numeric variable, depending on its content. In the example condition, &phone is compared
to "', which is an empty string. If &phone is an empty string, then the program prints No phone.

Changing Column Variable Names

Note that the &phone column variable illustrated in the previous section inherited its name from the
phone column. This value is the default, but you can change it, as this example demonstrates:

begin-select
phone &cust phone
if &cust phone = ''
print 'No phone' (,1)
else

Copyright © 1988, 2024, Oracle and/or its affiliates. 31

Using Column Variables Chapter 5

print &cust phone (,1)
end-if
position (+1)
from customers
end-select

One reason for changing the name of the column variable is to use a selected column in an expression that
has no name. For example:

begin-select
count (name) &cust cnt (,1)
if &cust cnt < 100
print 'Less than 100 customers'
end-if
position (+1)
from customers
group by city, state
end-select

In this example, the expression COUNT (name) is selected. In the program, you store this expression in
the &cust_cnt column variable and refer to it afterwards by that name.

32 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6

Using Break Logic

Understanding Break Logic

A break is a change in the value of a column or variable. Records with the same value—for example,
records with the same value for state—logically belong to a group. When a break occurs, a new group

begins.
Use break logic in a report to:
* Add white space to reports.

* Avoid printing redundant data.

» Perform conditional processing on variables that change.

¢ Print subtotals.

For example, you can use break logic to prepare a sales report with records that are grouped by product,
region, salesperson, or all three. Break logic also enables you to print column headings, count records,

subtotal a column, and perform additional processing on a count or subtotal.

Here is a sample program without break logic:

Program ex5a.sqr
begin-program

do list customers
end-program
begin-heading 2

print 'State' (1,1)
print 'City' (1,7)
print 'Name' (1,24)
print 'Phone' (1,55)

end-heading
begin-procedure list customers
begin-select

state (,1)
city (,7)
name (,24)
phone (,55)
position (+1) ! Advance to the next line

from customers
order by state, city, name
end-select

end-procedure ! list customers

State City Name

IN Davenport Harold Alexander Fink

IN Miningville Harry's Landmark Diner

MI Bell Harbor Sam Johnson

NH Frogline Jerry's Junkyard Specialties
NJ Teaneck Clair Butterfield

NM Big Falls Joe Smith and Company

NY Mamaroneck Harriet Bailey

Copyright © 1988, 2024, Oracle and/or its affiliates.

Phone

3015553645
3175550948
3135556732
6125552877
2015559901
8085552124
9145550144

33

Using Break Logic

NY New York John Conway

NY New York Corks and Bottles, Inc.

NY New York Kate's Out of Date Dress Shop
NY Queens Eliot Richards

OH Cleveland Quentin Fields

OH Everretsville Gregory Stonehaven

OH Zanesville Isaiah J Schwartz and Company

Chapter 6

2125552311
2125550021
2125559000
2125554285
2165553341
2165553109
5185559813

When you sort output by state, city, and name (note the ORDER BY clause in the BEGIN-SELECT
statement), the records are grouped by state. To make the grouping more apparent, you can add a break.

Using the ON-BREAK Option

34

In the following program, the ON-BREAK option of the PRINT command accomplishes two related

tasks: it starts a new group each time the value of state changes,

and it prints state only when its value

changes. Note that ON-BREAK works as well for implicit as for explicit PRINT commands, such as
in the following example, where state, city, name, and phone are implicitly printed as part of the select

paragraph.

The sample program here is identical to ex5a.sqr except for the line that prints the state column, which

appears like this:

Program exbb.sqr
begin-program

do list customers
end-program
begin-heading 2

print 'State' (1,1)
print 'City’ (1,7)
print 'Name' (1,24)
print 'Phone' (1,55)

end-heading

begin-procedure list customers
begin-select

state (,1) on-break

city (,7)
name (,24)
phone (,55)
position (+1) ! Advance to the next line

from customers
order by state,
end-select

end-procedure !

city, name

list customers

The output for the ex5b.sqr program is:

State City Name
IN Davenport Harold Alexander Fink
Miningville Harry's Landmark Diner
MI Bell Harbor Sam Johnson
NH Frogline Jerry's Junkyard Specialties
NJ Teaneck Clair Butterfield
NM Big Falls Joe Smith and Company
NY Mamaroneck Harriet Bailey
New York John Conway
New York Corks and Bottles, Inc.
New York Kate's Out of Date Dress Shop
Queens Eliot Richards
OH Cleveland Quentin Fields
Everretsville Gregory Stonehaven
Zanesville Isaiah J Schwartz and Company

Phone

3015553645
3175550948
3135556732
6125552877
2015559901
8085552124
9145550144
2125552311
2125550021
2125559000
2125554285
2165553341
2165553109
5185559813

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 Using Break Logic

With break processing, the state abbreviation is printed only once for each group.

Skipping Lines Between Groups

You can further enhance the visual effect of break processing by inserting one or more lines between
groups. To do so, use the SKIPLINES qualifier with ON-BREAK. Here is the list_customers procedure
from ex5b.sqr with the modified line shown like this:

begin-select
state (,1) on-break skiplines=1l

city (,7)
name (,24)
phone (,55)
position (+1) ! Advance to the next line

from customers
order by state, city, name
end-select

The output for the modified ex5b.sqr program is:

State City Name Phone

IN Davenport Harold Alexander Fink 3015553645
Miningville Harry's Landmark Diner 3175550948

MI Bell Harbor Sam Johnson 3135556732

NH Frogline Jerry's Junkyard Specialties 6125552877

Arranging Multiple Break Columns

As you can see in the previous example, you can also have multiple customers within a city. You can
apply the same break concept to the city column to make this grouping of customers more apparent. Add
another ON-BREAK to the program so that city is also printed only when its value changes.

When you have multiple breaks, you must arrange them in a hierarchy. In the sample program, the breaks
are for geographical units, so arranging them according to size is logical: first state and then city. This sort
of arrangement is called nesting, and the breaks are considered nested.

To ensure that the breaks are properly nested, use the LEVEL keyword. This argument numbers breaks
by level and specifies that the columns are printed in order of increasing break levels, from left to right.
Number breaks in the same order in which they are sorted in the ORDER BY clause.

See Setting Break Procedures with BEFORE and AFTER Qualifiers.

The LEVEL argument enables you to control the order in which you call break procedures. The next
sample program is identical to ex5a.sqr except for the two lines that print the state and city columns,
which are shown in this way:

Program exbc.sqr
begin-program

do list customers
end-program
begin-heading 2

Copyright © 1988, 2024, Oracle and/or its affiliates. 35

Using Break Logic

print 'State'
print 'City’
print 'Name'
print 'Phone'
end-heading

1
1
1
1

~ N 0~ 0~

N J-

)
)
4
5

)
)

begin-procedure list customers

begin-select

state (,1) on-break level=1l

city

name (,24)

phone (,55)
position

from customers
order by state,

end-select

end-procedure

city,

(,7) on-break level=2

Advance to the next line
name

list customers

The output for the ex5c.sqr program is:

State City

IN Davenport
Miningville

MI Bell Harbor

NH Frogline

NJ Teaneck

NM Big Falls

NY Mamaroneck
New York
Queens

OH Cleveland
Everretsville
Zanesville

Name

Harold Alexander Fink

Harry's Landmark Diner

Sam Johnson

Jerry's Junkyard Specialties
Clair Butterfield

Joe Smith and Company

Harriet Bailey

John Conway

Corks and Bottles, Inc.
Kate's Out of Date Dress Shop
Eliot Richards

Quentin Fields

Gregory Stonehaven

Isaiah J Schwartz and Company

Phone

3015553645
3175550948
3135556732
6125552877
2015559901
8085552124
9145550144
2125552311
2125550021
2125559000
2125554285
2165553341
2165553109
5185559813

Chapter 6

As you can see, three customers are in New York, so the city name for the second and third customers is

left blank.

Using Break Processing Enhancements

Controlling Page Breaks and Calculating Subtotals and Totals

36

This section discusses how to:

* Control page breaks and calculate subtotals and totals.

* Handle page breaks.

¢ Print the date.

¢ Obtain totals.

* Use hyphens and underscores.

When you use break logic, you may want to enhance your report by controlling page breaks or calculating
subtotals and totals for the ON-BREAK column. The following example illustrates these techniques.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6

Copyright

Using Break Logic

The sample program selects the customer's name, address, and telephone number from the database. The

break processing is performed on the state column:

Program exbd.sqgr
begin-program
do list customers
end-program
begin-heading 4
print 'Customers Listed by State' (1) center
print S$current-date (1,1) Edit 'DD-Mon-YYYY'
print 'State' (3,1)
print 'Customer Name, Address and Phone Number'
print '-' (4,1,9) fill
print '-' (4,11,40) fill
end-heading
begin-footing 2
! print "Page n of m"
page—-number (1,1) 'Page '
last-page () " of '
end-footing
begin-procedure state tot
print ' Total Customers for State: '(+1,1)
print #state total () edit 999,999
position (+3,1) ! Leave 2 blank lines.
let fcust_total = #cust total + #state_ total
let #state total = 0
end-procedure ! state tot
begin-procedure list customers
let #state total = 0
let #cust total = 0
begin-select
! The 'state' field will only be printed when it
! changes. The procedure 'state tot' will also be
! executed only when the value of 'state' changes.

state (,l) on-break print=change/top-page after=state tot

name (,11)

addrl (+1 11) ! continue on second line
addr?2 (+1,11) ! continue on third line
city (+1,11) ! continue on fourth line

phone (,+2) edit (xxx)bxxx-xxxx ! Edit for easy reading.

! Skip 1 line between listings.
! Since each listing takes 4 lines, we specify

next-listing skiplines=1 need=4
let #state total = #state total + 1
from customers
order by state, name
end-select
if #cust total > 0

print ' Total Customers: ' (+3,1)

print #cust total () edit 999,999 ! Total customers printed.
else

print 'No customers.' (1,1)
end-if
end-procedure ! list customers

The output for the ex5d.sqr program is:
29-Apr-2004

Customers Listed by State

State Customer Name, Address and Phone Number
IN Harold Alexander Fink

32077 Cedar Street

West End

Davenport (301) 555-3645

© 1988, 2024, Oracle and/or its affiliates.

(,11)

'need=4"'
! prevent a customer's data from being broken across two pages.

37

Using Break Logic Chapter 6

Harry's Landmark Diner
17043 Silverfish Road
South Park

Miningville (317) 555-0948

Total Customers for State: 2

MI Sam Johnson
37 Cleaver Street
Sandy Acres
Bell Harbor (313) 555-6732

Total Customers for State: 1
NH Jerry's Junkyard Specialties
Crazy Lakes Cottages

Rural Delivery #27
Frogline (612) 555-2877

Total Customers for State: 1

Take a close look at the code. The data is printed by using a select paragraph in the list customer
procedure. The state and the customer name are printed on the first line. The customer's address and
phone number are printed on the next three lines.

The program also uses the argument AFTER=STATE TOT. This argument calls the state tot procedure
after each change in the value of state.

See Setting Break Procedures with BEFORE and AFTER Qualifiers

Handling Page Breaks

If a page break occurs within a group, you may want to reprint headings and the value of the break
column at the top of the new page.

To control the printing of the value, use PRINT=CHANGE/TOP-PAGE. With this qualifier, the value of
the ON-BREAK column is printed when it changes and after every page break. In this example, the value
of state is printed not only when it changes, but whenever the report starts a new page.

To format records, use the NEXT-LISTING command. This command serves two purposes: the
SKIPLINES=1 argument skips one line between records and then renumbers the current line as line 1; the
NEED=4 argument prevents a listing from being split over two pages by specifying the minimum number
of lines that are needed to write a new listing on the current page. In this case, if fewer than four lines are
left on a page, SQR starts a new page.

Printing the Date

In the HEADING section, the reserved variable $current-date prints the date and the time. This variable
is initialized with the date and time of the client machine when the program starts to run. SQR provides
predefined, or reserved, variables for a variety of uses.

38 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 Using Break Logic

In this example, the complete command is PRINT S$Scurrent-date (1,1) EDIT 'DD/Mon/
YYYY'. It prints the date and time at position 1,1 of the heading. The EDIT argument specifies an
edit mask, or format, for printing the date. SQR provides a variety of edit masks for use in formatting
numbers, dates, and strings.

See “PRINT” (SQR Language Reference for PeopleSoft).

Note that the PRINT command for the report title precedes the command for the Scurrent-date reserved
variable, even though the date is on the left and the title is on the right. SQR always assembles a page
in memory before printing, so the order of these commands does not matter if you use the correct print
position qualifiers.

The last two commands in the HEADING section print a string of hyphens under the column headings.
Note the use of the FILL option with the PRINT command. This option tells SQR to fill the specified
width with this pattern, which is a useful method to print a line.

The FOOTING section prints Page n of m as in earlier examples.

Related Links
SQR for PeopleSoft Developers

Obtaining Totals

The ex5d.sqr program also prints a subtotal of customers in each state and a grand total of all customers.
These calculations are performed with two numeric variables, one for the subtotal and one for the grand
total. These variables are:

* f#state_total
* #cust total

SQR for PeopleSoft has a small set of variable types. The most common types are numeric variables and
string variables. All numeric variables in SQR are preceded by a pound sign (#), and all string variables
are preceded by a dollar sign ($). An additional SQR variable type is the date variable.

In SQR for PeopleSoft, numeric and string variables are not explicitly declared. Instead, they are
implicitly defined by their first use. All numeric variables start out as zero and all string variables start out
as null, so they do not need to be initialized. The string variables are of varying length and can hold long
and short strings of characters. Assigning a new value to a string variable automatically adjusts its length.

In the list_customers procedure, #state total and #cust total are set to zero at the beginning of the
procedure. This initialization is optional and is done for clarity only. The #state total variable increments
by 1 for every row that is selected.

When the value of state changes, the program calls the state tot procedure and prints the value of
#state total. Note the use of the EDIT 999, 999 edit mask, which formats the number.

This procedure also employs the LET command. LET is the assignment command in SQR for building
complex expressions. Here, LET adds the value of #state total to #cust total. At the end of the
procedure, #state total is reset to zero.

The list_customers procedure contains an example of the SQR if-then-else logic. The condition starts
with IF followed by an expression. If the expression evaluates to true or to a number other than zero,

Copyright © 1988, 2024, Oracle and/or its affiliates. 39

Using Break Logic Chapter 6

the subsequent commands are run. Otherwise, if the IF command has an ELSE command, then those
commands are run. IF commands always end with an END-IF command.

In ex5d.sqr, the value of #cust total is examined. If it is greater than zero, the query has returned rows of
data, and the program prints the string 7otal Customers: and the value of #cust total.

If #cust total is zero, the query has not returned any data. In that case, the program prints the string No
customers.

Using Hyphens and Underscores

Many SQR commands, such as BEGIN-PROGRAM and BEGIN-SELECT, use a hyphen, whereas
procedure and variable names use an underscore.

Procedure and variable names can contain either a hyphen or underscore, but you should use underscores
in procedure and variable names to distinguish them from SQR commands. Doing so also prevents
confusion when you mix variable names and numbers in an expression, where hyphens could be mistaken
for minus signs.

Setting Break Procedures with BEFORE and AFTER Qualifiers

40

When you print variables with ON-BREAK, you can automatically call procedures before and after each
break in a column. The BEFORE and AFTER qualifiers provide this capability. For example:

begin-select
state (,1) on-break before:state_heading after=state tot

The BEFORE qualifier automatically calls the state_heading procedure to print headings before each
group of records of the same state. Similarly, the AFTER qualifier automatically calls the state_tot
procedure to print totals after each group of records.

All BEFORE procedures are automatically invoked before each break, including the first; that is, before
the select paragraph is even processed. Similarly, all AFTER procedures are invoked after each break,
including the last group; that is, upon completion of the select paragraph.

Order of Events

You can define a hierarchy of break columns by using the LEVEL qualifier of ON-BREAK. In the
ex5c.sqr sample program, for example, state was defined as LEVEL=1 and city as LEVEL=2.

When a break occurs at one level, it also forces breaks on variables with higher LEVEL qualifiers. In the
sample program, a break on state also means a break on city.

A break on a variable can initiate many other events. The value can be printed, lines can be skipped,
procedures can be called automatically, and the old value can be saved. Knowing the order of events is
important, particularly when multiple ON-BREAK columns exist.

The following select paragraph has breaks on three levels:

begin-select

state (,1) on-break level=l after=state_tot skiplines=2
city (,7) on-break level=2 after=city tot skiplines=1
zip (,45) on-break level=3 after=zip tot

from customers

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 Using Break Logic

order by state, city, zip
end-select

The system processes breaks in the following way:
1. When zip breaks, the city_tot procedure is run.

2. When city breaks, first the zip_tot procedure is run, and then the city_tot procedure is run and one
line is skipped (SKIPLINES=1).

Both city and zip are printed in the next record.
3. When state breaks, the zip_tot, city tot, and state tot procedures are processed in that order.

One line is skipped after the city_tot procedure is run, and two lines are skipped after the state tot
procedure is run. All three columns—state, city, and zip—are printed in the next record.

The following program (ex5e.sqr) demonstrates the order of events in break processing. It has three ON-
BREAK columns, each with a LEVEL argument and a BEFORE and AFTER procedure. The BEFORE
and AFTER procedures print strings to indicate the order of processing.

Program exbe.sqr
begin-setup
declare-Layout
default
end-declare
end-setup
begin-program
do main
end-program
begin-procedure a
print 'AFTER Procedure for state LEVEL 1' (+1,40)
end-procedure
begin-procedure b
print 'AFTER Procedure city LEVEL 2' (+1,40)
end-procedure
begin-procedure c
print 'AFTER Procedure zip LEVEL 3' (+1,40)
end-procedure
begin-procedure aa
print 'BEFORE Procedure state LEVEL 1' (+1,40)
end-procedure
begin-procedure bb
print 'BEFORE Procedure city LEVEL 2' (+1,40)
end-procedure
begin-procedure cc
print 'BEFORE Procedure zip LEVEL 3' (+1,40)
end-procedure
begin-procedure main local
begin-select
add 1 to #count
print 'Retrieved row #' (+1,40)
print #count (,+10)Edit 9999
position (+1)

state (3,1) On-Break Level=1 after=a before=aa
city (3,10) On-Break Level=2 after=b before=bb
zip (3,25) On-Break Level=3 after=c before=cc Edit xxxxx

next-listing Need=10

from customers

order by state,city,zip
end-select
end-procedure
begin-heading 3

print $current-date (1,1) edit 'DD-MM-YYYY'
page-number (1,60) 'Page '

last-page () ' of '

print 'STATE' (3,1)

Copyright © 1988, 2024, Oracle and/or its affiliates. 41

Using Break Logic

42

print 'CITY' (3,10)
print 'ZIP' (3,25)

print 'Break Processing sequence'

end-heading

The output for the ex5e.sqr program is:

(3,40)

Page 1 of 3

Break Processing sequence

BEFORE Procedure state LEVEL 1

02-05-2004

STATE CITY ZI1P

IN Davenport 62130
Retrieved row #2

Miningville 40622

Retrieved row #3

MI Bell Harbor 40674
Retrieved row #4

NH Frogline 04821

NJ Teaneck 00355

NM Big Falls 87893

02-05-2004

STATE CITY ZI1P
Retrieved row #7

NY Mamaroneck 10833

BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

Retrieved row #1

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

Retrieved row #5

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

Retrieved row #6

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

Page 2 of 3

Break Processing sequence

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2

Chapter 6

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6

Using Break Logic

BEFORE Procedure zip LEVEL 3

The following steps explain the order of processing in detail:

1.

Process BEFORE procedures.

BEFORE procedures are processed in ascending order by LEVEL before the first row of the query is
retrieved. If no data is selected, BEFORE procedures are not run.

Select the first row of data.
Select subsequent rows of data.

Processing of the select paragraph continues. When a break occurs on any column, it also initiates
breaks on columns at the same or higher levels. Events occur in the following order:

a. AFTER procedures are processed in descending order from the highest level to the level of the
current ON-BREAK column.

b. SAVE variables are set with the value of the previous ON-BREAK column.
c¢. BEFORE procedures are processed in ascending order from the current level to the highest level.
d. If SKIPLINES was specified, the current line position is advanced.

e. The value of the new group is printed (unless PRINT=NEVER is specified).

Process AFTER procedures.

After the select paragraph is complete, if any rows were selected, AFTER procedures are processed in
descending order by LEVEL.

See Saving a Value When a Break Occurs.

Controlling Page Breaks with Multiple ON-BREAK Columns

When multiple columns have ON-BREAK, page breaks need careful planning. While having a page break
within a group, you probably would not want to have one within a record.

You can prevent page breaks within a record by following four simple rules:

Place ON-BREAK columns ahead of other columns in the select paragraph.

Place the lower-level ON-BREAK columns ahead of the higher-level ON-BREAK columns in the
select paragraph.

Use the same line positions for all ON-BREAK columns.

Avoid using WRAP and ON-BREAK together on one column.

Copyright © 1988, 2024, Oracle and/or its affiliates. 43

Using Break Logic Chapter 6

Saving a Value When a Break Occurs

In ex5d.sqr, the state_tot procedure prints the total number of customers per state. Because it is called
with the AFTER argument, this procedure is run only after the value of the ON-BREAK column, state,
has changed.

Sometimes, however, you may want to print the previous value of the ON-BREAK column in the AFTER
procedure. For example, you may want to print the state name and the totals for each state. Printing the

value of state will not work because its value will have changed by the time the AFTER procedure is
called.

The solution is to save the previous break value in a string variable. To do this, use the SAVE qualifier of
ON-BREAK. For example:

begin-select
state (,1) on-break after=state tot save:$old_state

You can then print the value of $old_state in the state_tot procedure.

Using ON-BREAK on a Hidden Column

44

In some reports, you may want to use the features of break processing without printing the ON-BREAK
option. For example, you may want to incorporate the ON-BREAK option into a subheading. This format
might make your report more readable. It is also useful when you want to leave room on the page for
additional columns.

To create such a report, you can hide the break option using the PRINT=NEVER qualifier and print it in a
heading procedure that is called by BEFORE.

The following code is based on the ex5b.sqr program, with the key lines shown like this:
Program ex5f.sqgr

begin-program
do list customers
end-program
begin-procedure list customers
begin-select
state () on-break before=state_heading print=never level=1l
city (,1) on-break level=2

name (,18)
phone (,49)
position (+1) ! Advance to the next line

from customers
order by state, city, name
end-select

end-procedure ! list customers
begin-procedure state heading
print 'State: ' (+1,1) bold ! Advance a line and print 'State:'
print &state (,8) bold ! Print the state column here
print 'City' (+1,1) bold ! Advance a line and print 'City'
print 'Name' (,18) bold
print 'Phone' (,49) bold
print '-' (+1,1,58) fill
position (+1) ! Advance to the next line
end-procedure ! state heading

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6

Using Break Logic

Note: This program has no HEADING section. Instead, a procedure prints column headings for each state
rather than at the top of each page. The &state variable can be referenced throughout the program, even
though the state column was not printed as part of the break.

Examine the following line in the program from the select paragraph:
state () on-break before=state heading print=never level=1l

This line defines the break processing for state. The BEFORE qualifier specifies that the state_heading
procedure is automatically called when the state changes. In this program, the break is set to LEVEL=1.

The PRINT=NEVER qualifier hides the state column and specifies that it is not printed as part of the
select paragraph. Instead, it is printed in the state_heading procedure. In this procedure, the state column
is referred to as the &state column variable.

The city column is assigned a LEVEL=2 break.

The output for the ex5f.sqr program is:

State: IN

City Name Phone

Davenport Harold Alexander Fink 3015553645

Miningville Harry's Landmark Diner 3175550948

State: MI

City Name Phone

Bell Harbor Sam Johnson 3135556732

State: NH

City Name Phone

Frogline Jerry's Junkyard Specialties 6125552877

State: NJ

City Name Phone

Teaneck Clair Butterfield 2015559901

State: NM

City Name Phone

Big Falls Joe Smith and Company 8085552124

State: NY

City Name Phone

Mamaroneck Harriet Bailey 9145550144

New York John Conway 2125552311
Corks and Bottles, Inc. 2125550021
Kate's Out of Date Dress Shop 2125559000

Queens Eliot Richards 2125554285

State: OH

City Name Phone

Cleveland Quentin Fields 2165553341

Everretsville Gregory Stonehaven 2165553109

Zanesville Isaiah J Schwartz and Company 5185559813

Copyright © 1988, 2024, Oracle and/or its affiliates.

45

Using Break Logic Chapter 6

Performing Break Processing on Numeric Values

46

You cannot use ON-BREAK with SQR numeric variables. To perform break processing on a numeric
variable, you must first move its value to a string variable and then set ON-BREAK on that. For example:

begin-select

amount received &amount
move &amount to $amount $$9,999.99
print $amount (+1,1) on-break

from cash receipts

order by amount received

end-select

The maximum number of ON-BREAK levels is determined by the ON-BREAK setting in the
[Processing-Limits] section of the PSSQR.INI file. The default is 30, but you can increase this setting. Its
maximum value is 64K-1 (65,535).

Related Links
SQR Language Reference for PeopleSoft

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 7

Adding Declarations Using the SETUP
Section

Understanding the SETUP Section

You place all declarations in a SETUP section. Declarations define certain report characteristics and the
source and attributes of various report components, such as charts and images. The SETUP section is
evaluated when you compile the program, before you run the program. A program is not required to have
a SETUP section, but it can be useful.

Creating a SETUP Section

Place a SETUP section at the beginning of the program, before the PROGRAM section. Begin the section
with a BEGIN-SETUP paragraph and end it with an END-SETUP paragraph.

Use the following commands in the SETUP section:

Command Comment

ALTER-LOCALE Can also appear in a procedure.

ASK Allowed only in a SETUP section.

BEGIN-SQL Can also appear in a procedure. Processed when a runtime file

(with .SQT extension) is loaded.

CREATE-ARRAY Can also appear in a procedure.
DECLARE-CHART NA
DECLARE-IMAGE NA
DECLARE-LAYOUT NA
DECLARE-PRINTER NA
DECLARE-PROCEDURE NA

Copyright © 1988, 2024, Oracle and/or its affiliates. 47

Adding Declarations Using the SETUP Section Chapter 7

Command Comment

DECLARE-REPORT NA

DECLARE-TOC NA

DECLARE-VARIABLE Can also appear in a local procedure.
LOAD-LOOKUP Can also appear in a procedure.

Related Links
SQR Language Reference for PeopleSoft

Using the DECLARE-LAYOUT Command

Use the DECLARE-LAYOUT command to set the page layout and to include important options, such as
the paper size and margins.

Sample SETUP Program

Here is a typical SETUP section:

begin-setup
! Declare the default layout for this report
declare-layout default
paper-size=(8.5,11)
left-margin=1 right-margin=1
top-margin=1 bottom-margin=1
end-declare
end-setup

In the preceding example, the DECLARE-LAYOUT command sets the paper size to 8 1/2 by 11 inches,
with all margins at 1 inch.

In SQR for PeopleSoft, data is positioned on the page using line and character position coordinates. Think
of the page as a grid and each cell in the grid holds one character. With such a grid, in a position qualifier
consisting of (line, column, width), column and width are numbers that denote characters and spaces.

Defining the SQR Page Layout

48

The main attributes of the DECLARE-LAYOUT command affect the structure of a page.

The PAPER-SIZE argument defines the dimensions of the entire page, including the margins. The TOP-
MARGIN, LEFT-MARGIN, BOTTOM-MARGIN, and RIGHT-MARGIN arguments define the margins.
In SQR, you cannot print in the margins.

In the preceding sample program, the left margin uses 10 spaces and the top margin uses 6 lines. The page
width accommodates 65 characters (without the margins) and 54 lines.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 7 Adding Declarations Using the SETUP Section

The default mapping of characters and lines to inches is 10 characters per inch and six lines per inch .
These dimensions mean that each character cell is 1/10 inch wide and 1/6 inch high. These settings are
used when a program does not contain a DECLARE-LAYOUT command.

Overriding Default Settings

Override the default settings by using the LINE-HEIGHT and CHAR-WIDTH arguments in the
DECLARE-LAYOUT command. These arguments adjust the dimensions of a grid, implying a change in
the meaning of column and line. If the DECLARE-LAYOUT paragraph includes the LINE-HEIGHT=1
and CHAR-WIDTH=1 arguments, then the cells in the grid measure 1 point by 1 point (1 point is 1/72
inch or approximately 0.35 millimeters). In that case, column is a dimension described in points. The
length of a string, however, is still described in characters.

Alternatively, you can use the MAX-LINES and MAX-COLUMNS arguments of the DECLARE-
LAYOUT command to specify the number of lines on a page and the number of characters that will fit
across the page. SQR calculates the line height and character width based on these settings and the size of
the page and margins.

Specify coordinates in terms of lines and character positions. The first line from the top is 1, and the first
column (from the left) is 1. No coordinate 0 exists.

Declaring a Page Orientation

Use the DECLARE-LAYOUT command to declare a page orientation. Note that this declaration does
not affect how SQR uses position coordinates. Line and character positions are not transposed when
page orientation is switched. The only effect of the ORIENTATION option of the DECLARE-LAYOUT
command is that SQR switches the printer to the specified orientation: portrait or landscape. The default
mode is portrait.

Copyright © 1988, 2024, Oracle and/or its affiliates. 49

Adding Declarations Using the SETUP Section Chapter 7

50 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8

Creating Master and Detail Reports

Understanding Master and Detail Reports

Master and detail reports show hierarchical information. The information is normally retrieved from
multiple tables that have a one-to-many relationship, such as customers and orders. The customer
information is the master, and the orders are the detail.

Often, you can obtain such information with a single SQR select paragraph. In such a program, the data
from the master table is joined with data from the detail table. You can implement break logic to group
the detail records for each master record. This type of report has one major disadvantage: if a master
record has no associated detail records, then the system does not display it. If you need to show all master
records, whether they have detail records or not, this type of report will not meet your needs.

See Understanding Break Logic.

To show all master records, whether or not they have detail records, create a master and detail report
with one SELECT statement that retrieves records from the master table, followed by separate SELECT
statements that retrieve the detail records that are associated with each master record.

The sample program for Master and Detail Reports produces just such a report. In the example, one
BEGIN-SELECT command returns the names of customers. For each customer, two additional BEGIN-
SELECT commands are run—one to retrieve order information and another to retrieve payment
information.

When one query returns master information and another query returns detail information, the detail query
is nested within the master query.

Understanding the Sample Program for Master and Detail Reports

In the sample program, nested queries are invoked once for each customer, and each one retrieves records
that correspond to the current customer. A bind variable correlates the subqueries in the WHERE clause.
This variable correlates the customer number (cust num) with the current customer record:

Program ex7a.sqr
begin-program

do main
end-program
begin-procedure main
begin-select

Print 'Customer Information' (,1)

Print '-' (+1,1,45) Fill
name (+1,1,25)
city (,+1,16)

state (,+1,2)

cust num
do cash receipts(&cust num)
do orders (&cust num)
position (+2,1)

Copyright © 1988, 2024, Oracle and/or its affiliates. 51

Creating Master and Detail Reports

from customers
end-select
end-procedure ! main
begin-procedure cash receipts (#cust num)
let #any = 0
begin-select
if not #any
print 'Cash Received' (+2,10)

print '---—---——-——- ' (+1,10)
let #any =1
end-1if
date received (+1,10,20) edit 'DD-MON-YY'
amount received (,+1,13) Edit $$$$,5$0.99
from cash receipts a
where a.cust num = #cust num
end-select
end-procedure ! cash receipts

begin-procedure orders (#cust num)
let #any = 0
begin-select
if not #any
print 'Orders Booked' (+2,10)

print '-------———-—- ' (+1,10)
let #any =1
end-if
a.order num
order date (+1,10,20) Edit 'DD-MON-YY'
description (,+1,20)
c.price * b.quantity (,+1,13) Edit $$$$,550.99
from orders a, ordlines b, products c
where a.order num = b.order num
and b.product code = c.product code

and a.cust num = #cust num
end-select
end-procedure ! orders
begin-heading 3
print $current-date (1,1) Edit 'DD-MON-YYYY'
page-number (1,69) 'Page '
end-heading

Correlating Subqueries

52

The ex7a.sqr sample program contains three procedures—main, cash_receipts, and orders—that
correspond to the three queries. The main procedure is the master. It retrieves the customer names. For
each customer, the program invokes the cash receipts procedure to list the cash receipts, if any, and the
orders procedure to list the customer’s orders, if any.

The procedures take the cust_num variable as an argument. As you can see, cash_receipts and orders are
called many times, once for each customer. Each time, the procedures perform the same query with a
different value for the cust_num variable in the WHERE clause.

Note the use of the [F command and the #any numeric variable in these procedures. When the BEGIN-
SELECT command returns no records, SQR does not process the PRINT commands that follow. Thus,
the headings for these procedures appear only for those customers who have records in the detail tables.

The orders procedure demonstrates the use of an expression in the BEGIN-SELECT command. The
expressionis c.price * b.quantity.

Chapter 8

Note: Examine the format of the dollar amount with the argument EDIT $$$$, $50.99. This format
uses a “floating-to-the-right” money symbol. If fewer digits are used than the six that we specified here,
the dollar sign floats to the right and remains close to the number.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Creating Master and Detail Reports

See Using Variables in SQL.

Sample Program Output

The following is the output for program ex7a.sqr:

6-APR-2004 Page 1

Customer Information

Gregory Stonehaven Everretsville OH

Cash Received

01-FEB-03 $130.00

Customer Information

John Conway New York NY

Cash Received

01-MAR-03 $140.00

Customer Information

Eliot Richards Queens NY

Cash Received

16-JAN-03 $220.12
17-JAN-03 $260.00

Orders Booked

02-MAY-03 Whirlybobs $239.19
02-MAY-03 Canisters $3,980.25

Customer Information

Isaiah J Schwartz and Com Zanesville OH

Cash Received

18-JAN-03 $190.00
02-JAN-03 $1,100.00

Orders Booked

02-MAY-03 Hop scotch kits $6,902.00
02-MAY-03 Wire rings $19,872.90

Customer Information

Harold Alexander Fink Davenport IN

Cash Received

01-FEB-03 $1,200.00
01-MAR-03 $1,300.00

Orders Booked

19-MAY-03 Ginger snaps $44.28
19-MAY-03 Modeling clay $517.05

Copyright © 1988, 2024, Oracle and/or its affiliates. 53

Creating Master and Detail Reports Chapter 8

54 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9

Creating Cross-Tabular Reports

Understanding Cross-Tabular Reports

Cross-tabular reports are matrix-like or spreadsheet-like reports. These reports are useful for presenting
summary numeric data. Cross-tabular reports vary in format. The following example shows sales revenue
summarized by product by sales channel:

Revenue by product by sales channel

Product Direct Sales Resellers Mail Order Total
A 2,100 1,209 0 3,309
B 120 311 519 950
C 2 0 924 926
Total 2,222 1,520 1,443 5,185

This report is based on many sales records. The three middle columns correspond to sales channel
categories. Each row corresponds to a product. The records fall into nine groups: three products sold
through three sales channels. Some groups have no sales (such as mail order for product A).

Each category can be a discrete value of some database column or a set of values. For example, Resellers
can be domestic resellers plus international distributors.

A category can also represent a range, as shown in this example:

Orders by Product by Order Size

Product

Category Less than 10 10 to 100 More than 100 Total
Durable 200 120 0 320
Nondurable 122 311 924 1876
Total 322 431 1443 2196

In this example, the rows correspond to the categories Durable and Nondurable. The columns represent
ranges of order size.

For each record that is selected, the program must determine the range to which it belongs and add 1 to
the count for that category. The numbers in the cells are counts, but they could be sums, averages, or any
other expression.

Of course, other types of cross-tabular reports exist. These reports become more complex when the
number of columns is not predefined and when more columns exist than can fit across a page.

Copyright © 1988, 2024, Oracle and/or its affiliates. 55

Creating Cross-Tabular Reports Chapter 9

Using an Array

56

Often, the program must process all of the records before it can begin to print the data. During processing,
the program must keep the data in a buffer where it can accumulate the numbers. This can be done in an
SQR array.

An array is a unit of storage that contains rows and columns. An array is similar to a database table, but it
exists only in memory.

The sample program specifies an array called order qty to hold the sum of the quantity of orders in a
given month. You could program this specific example without an array, but using one can be beneficial.
Data that you retrieve once and store in an array can be presented in many ways without additional
database queries. The data can even be presented in a chart.

The sample program also demonstrates an SQR feature called a three-dimensional array. This type of
array has fields (columns) and rows, and it also has repeating fields (the third dimension). In the order qty
array, the first field is the product description. The second field is the order quantity of each month. The
example includes three months; therefore, this field repeats three times.

SQR references arrays in expressions such as array name.field(subl[, sub2]) . The first
subscript, sub1, is the row number. The row count starts with zero. The second subscript, sub2, is
specified when the field repeats. Repeating fields are also numbered starting with zero. The subscript can
be a literal or an SQR numeric variable.

program ex8a.sqr

#define max products 100
begin-setup
create-array
name=order gty size={max products}
field=product:char field=month gty:number:3
end-setup
begin-program
do select data
do print array
end-program
begin-procedure print array
let #entry cnt = #i

let #1 = 0

while #i <= #entry cnt
let Sproduct = order gty.product (#i)
let #Jjan = order gty.month gty (#i,0)
let #feb = order gty.month gty (#i,1)
let #mar = order gty.month gty (#i,2)
let #prod tot = #jan + #feb + #mar
print S$product (,1,30)
print #3jan (,32,9) edit 9,999,999
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999

()

print #prod tot edit 9,999,999
position (+1)
let #jan total = #jan total + #Jjan
let #feb total = #feb total + #feb
let #mar total = #mar total + #mar
let #1 = #1i + 1
end-while
let #grand total = #jan total + #feb total + #mar total
print 'Totals' (+2,1)
print #jan total () edit 9,999,999
print #feb total (,42,9) edit 9,999,999
print #mar total (,52,9) edit 9,999,999
print #grand total () edit 9,999,999

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Creating Cross-Tabular Reports

end-procedure print array
begin-procedure select data
begin-select
order date
! The quantity for this order
quantity
! the product for this order
description
if #i1i = 0 and order gty.product (#i) = "'
let order gty.product (#i) = &description
end-1if
if order gty.product (#i) != &description
let #1 = #1 + 1
if #i >= {max_products}
display 'Error: There are more than {max products} products'

stop
end-1if
let order gty.product (#i) = &description
end-1if
let #j = to_number (datetostr (&order date, 'MM')) - 1
if #j < 3

let order gty.month gty (#i,#j) =
order gty.month gty (#i,#Jj) + &quantity
end-if
from orders a, ordlines b, products c
where a.order num = b.order num
and b.product code = c.product code
order by description
end-select
end-procedure ! select data
begin-heading 4
print S$current-date (1,1)
print 'Order Quantity by Product by Month' (1,18)
page-number (1,64) 'Page '

print 'Product' (3,1)
print ' January' (,32)
print ' February' (,42)
print ' March' (,52)
print ' Total' (,62)
print '-=' (4,1,70) Fill

end-heading

The following output is for program ex8a.sqr:

11-JUN-04 Order Quantity by Product by Month Page 1
Product January February March Total
Canisters 3 0 0 3
Curtain rods 2 8 18 28
Ginger snaps 1 10 0 11
Hanging plants 1 20 0 21
Hookup wire 16 15 0 31
Hop scotch kits 2 0 0 2
Modeling clay 5 0 0 5
New car 1 9 0 10
Thimble 7 20 0 27
Thingamajigs 17 0 120 137
Widgets 4 0 12 16
Wire rings 1 0 0 1
Totals 60 82 150 292

See Understanding Business Charts.

Copyright © 1988, 2024, Oracle and/or its affiliates. 57

Creating Cross-Tabular Reports Chapter 9

Creating an Array

You must define the size of an array when you create it. The sample program creates the order qty array
with a size of 100.

The #DEFINE MAX PRODUCTS 100 command defines the max_products constant as a substitution
variable. The sample program uses this constant to define the size of the array. Using #DEFINE is a good
practice because it displays the limit at the top of the program source. Otherwise, it would be hidden in
the code.

The SETUP section creates the array by using the CREATE-ARRAY command. All SQR arrays are
created before the program begins running. Their size must be known at compile time. If you do not know
exactly how many rows you have, you must over-allocate and specify an upper bound. In the example, the
array has 100 rows even though the program uses only 12 rows to process the sample data.

The preceding program has two procedures: select_data and print_array. Select_data performs the
database query, as its name suggests. While the database records are being processed, no data prints and
the data accumulates in the array. When the processing is complete, the print_array procedure does two
things: the procedure loops through the array and prints the data, and it also adds the month totals and
prints them at the bottom.

The report summarizes the product order quantities for each month, which are the records ordered by
the product description. The procedure then fills the array one product at a time. For each record that is
selected, the procedure checks to see whether it is a new product; if it is, the array is incremented by row
subscript #1 . The procedure also adds the quantity to the corresponding entry in the array based on the
month.

This program has one complication: how to obtain the month. Date manipulation can vary among
databases, and to write truly portable code requires careful planning.

The key is the datetostr function in the following command:
let #j = to_number (datetostr (&order date, 'MM')) - 1

This function converts the order date column into a string. (The ‘MM’ edit mask specifies that only
the month part be converted.) The resulting string is then converted to a number; if it is less than 3, it
represents January, February, or March and is added to the array.

Grouping by Category

58

The following output is a cross-tabular report that groups the products by price range. This grouping
cannot be done by using a SQL GROUP BY clause. Moreover, to process the records in order of price
category, the program would have to sort the table by price. The sample program shows how to do it
without sorting the data.

The sample program uses an SQR EVALUATE command to determine the price category and assign the
array subscript #1 to 0, 1, or 2. Then it adds the order quantity to the array cell that corresponds to the
price category (row) and the month (column).

Program ex8b.sqr

#define max categories 3

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Creating Cross-Tabular Reports

begin-setup
create-array
name=order gty size={max categories}
field=category:char field=month gty:number:3
end-setup
begin-program
do select data
do print array
end-program
begin-procedure print array
let #1 =0
while #i < {max categories}
let Scategory = order gty.category (#i)

let #jan = order gty.month gty (#i,0)
let #feb = order gty.month gty (#i,1)
let #mar = order gty.month gty (#i,2)
let #category tot = #jan + #feb + #mar
print $category (,1,31)

print #jan 32,9) edit 9,999,999

(s
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999
print #category tot (,62,9) edit 9,999,999
position (+1)
let #jan total = #jan total + #jan
let #feb total = #feb total + #feb
let #mar total = #mar_total + #mar
let #1i = #i + 1
end-while
let #grand total = #jan total + #feb total + #mar total
print 'Totals' (+2,1)
print #jan total (
print #feb total (
print #mar total (
print #grand total (,62,9
end-procedure print array
begin-procedure select data
let order gty.category(0) '$0-$4.99"
let order gty.category(1l) '$5.00-$100.00"
let order gty.category(2) = 'Over $100'
begin-select
order date
! the price / price category for the order
c.price é&price
move &price to #price_num
evaluate #price_num
when < 5.0

,32,9) edit 9,999,999
,42,9) edit 9,999,999
,52,9) edit 9,999,999

) edit 9,999,999

let #1i =0
break
when <= 100.0
let #1i =1
break
when-other
let #1i = 2
break

end-evaluate
! The quantity for this order
quantity
let #j = to_number (datetostr (&order date, 'MM')) - 1
if #3 < 3
let order gty.month gty (#i,#j) =
order gty.month gty (#i,#j) + &quantity

end-if
from orders a, ordlines b, products c
where a.order num = b.order num
and b.product code = c.product code
end-select
end-procedure ! select databegin-heading 5

print S$current-date (1,1)

page-number (1,64) 'Page '

print 'Order Quantity by Product Price Category by Month' (2,11)
print 'Product Price Category' (4,1)

Copyright © 1988, 2024, Oracle and/or its affiliates. 59

Creating Cross-Tabular Reports

Chapter 9

print ' January' (,32)
print ' February' (,42)
print ' March' (,52)
print ' Total' (,62)
print '-' (5,1,70) Fill

end-heading

The following is the output for program ex8b.sqr:

11-JUN-04 Page 1
Order Quantity by Product Price Category by Month

Product Price Category January February March Total

0-4.99 28 45 12 85

5.00-100.00 25 28 138 191

Over 100 7 9 0 16

Totals 60 82 150 292

Using Multiple Arrays

60

Using SQR arrays to buffer data offers several advantages. In the previous example, it eliminated the need
to sort the data. Another advantage is that you can combine the two sample reports into one. With one
pass on the data, you can fill the two arrays and then print the two parts of the report.

The following sample program performs the work that is done by the first two programs. The SETUP
section specifies two arrays: one to summarize monthly orders by product and another to summarize
monthly orders by price range.

Program ex8c.sqr

#define max categories 3
#define max products 100
begin-setup

create-array

name=order gty
field=product:char
create-array
name=order qty2
field=category:char
end-setup
begin-program
do select data
do print array
print '-' (+2,1,70)
position (+1)
do print array?2
end-program

fill

size={max products}
field=month gty:number:3

size={max categories}
field=month gty:number:3

begin-procedure print array

let #entry cnt = #i
let #1 =0
while #i <= #entry cnt

let Sproduct = order gty.product (#i)

let #jan = order gty.month gty (#i,0)
let #feb = order gty.month gty (#i,1)
let #mar = order gty.month gty (#i,2)
let #prod tot = #jan + #feb + #mar

print S$product (,1,30)

print #jan (,32,9) edit 9,999,999
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999
print #prod tot (,62,9) edit 9,999,999

position (+1)
let #1i = #i + 1

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Creating Cross-Tabular Reports

end-while
end-procedure ! print array
begin-procedure print array?2
let #1 =0
while #i < {max_categories}
let Scategory = order gty2.category (#1i)

let #jan = order gty2.month gty (#i,0)
let #feb = order gty2.month gty (#i,1)
let #mar = order gty2.month gty (#1i,2)
let #category tot = #jan + #feb + #mar
print S$category (,1,31)

print #jan 32,9) edit 9,999,999

(G
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999
print #category tot (,62,9) edit 9,999,999
position (+1)
let #jan total = #jan total + #Jjan
let #feb total = #feb total + #feb
let #mar total = #mar total + #mar
let #i = #1 + 1
end-while
let #grand total = #jan total + #feb total + #mar total

print 'Totals' (+2,1)

print #jan total (,32,9) edit 9,999,999
print #feb total (,42,9) edit 9,999,999
print #mar total (,52,9) edit 9,999,999
print #grand total (,62,9) edit 9,999,999

end-procedure ! print array2
begin-procedure select data
let order gty2.category(0)='50-54.99"'
let order gty2.category(l)='$5.00-$100.00"
let order gty2.category(2)='Over $100'
begin-select
order date
! the price / price category for the order
c.price &price
move &price to #price num
evaluate fprice_num
when < 5.0

let #x =0
break
when <= 100.0
let #x =1
break
when-other
let #x = 2
break

end-evaluate
! The quantity for this order
quantity
let #j = to_number (datetostr (&order date, 'MM')) - 1
if #j < 3
let order gty2.month gty (#x,#j) =
order gty2.month gty (#x,#3j) + &quantity

end-1if
! the product for this order
description
if #i = 0 and order gty.product (#i) = "'
let order gty.product (#i) = &description
end-if
if order gty.product (#i) != &description

let #1i = #1i + 1
if #i >= {max products}
display 'Error: There are more than {max products} products'

stop
end-1if
let order gty.product (#i) = &description
end-1if
if #j < 3

let order gty.month gty (#i,#j) =
order gty.month gty (#i,#Jj) + &quantity

Copyright © 1988, 2024, Oracle and/or its affiliates. 61

Creating Cross-Tabular Reports

62

end-if
from orders a, ordlines b, products c
where a.order num = b.order num
and b.product code = c.product code
order by description
end-select
end-procedure ! select data
begin-heading 5
print S$current-date (1,1)

page-number (1,64) 'Page '

Chapter 9

print 'Order Quantity by Product and Price Category by Month' (2,10)

print 'Product / Price Category' (4,1)
print ' January' (,32)

print ' February' (,42)

print ' March' (,52)

print ' Total' (,62)

print '-' (5,1,70) Fill

end-heading

The following is the output for program ex8c.sqr:

11-JUN-04

Order Quantity by Product and Price Category by Month

Product / Price Category January

February

Canisters 3
Curtain rods 2
Ginger snaps 1
Hanging plants 1
Hookup wire 6
Hop scotch kits 2
5
1
7
7
4
1

[

Modeling clay

New car

Thimble

Thingamajigs 1
Widgets

Wire rings

0-4.99 28
5.00-100.00 25
Over 100 7

Totals 60

82

Page 1

March Total
0 3
18 28
0 11

0 21

0 31

0 2

0 5

0 10

0 27
120 137
12 16
0 1
12 85
138 191
0 16
150 292

SQR arrays are also advantageous in programs that produce charts. With the data for the chart already in
an array, presenting this cross-tabular report as a bar chart is easy.

SeeUnderstanding Business Charts .

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10

Printing Mailing Labels

Understanding Mailing Label Printing

An SQR select paragraph retrieves addresses and prints them on a page.

Sometimes you need to print labels in multiple columns. The page then becomes a matrix of rows
and columns of labels. SQR enables you to print in column format with the COLUMNS and NEXT-
COLUMN commands in conjunction with the NEXT-LISTING command.

Understanding the Sample Program for Printing Mailing Labels

The following sample program prints mailing labels in a format of 3 columns by 10 rows. It also counts
the number of labels that is printed and prints that number in the last sheet of the report.

Program ex9a.sqr
#define MAX LABEL_ LINES 10
#define LINES BETWEEN LABELS 3
begin-setup
declare-layout default
paper-size=(10,11) left-margin=0.33
end-declare
end-setup
begin-program
do mailing labels
end-program
begin-procedure mailing labels
let #label count = 0
let #label lines = 0
columns 1 29 57 ! enable columns
alter-printer font=5 point-size=10
begin-select

name (1,1,30)
addrl (2,1,30)
city
state
zip
move &zip to $zip XXXXX-XXXX
let S$last line = s&city || ', ' || &state [| ' ' || Szip

print $last line (3,1,30)
next-column at-end=newline
add 1 to #label count
if #current-column = 1
add 1 to #label lines
if #label lines = {MAX_ LABEL LINES}

new-page
let #label lines = 0
else
next-listing no-advance skiplines={LINES BETWEEN LABELS}
end-if
end-1if

from customers

end-select
use-column 0 ! disable columns
new-page

Copyright © 1988, 2024, Oracle and/or its affiliates.

63

Printing Mailing Labels Chapter 10

print 'Labels printed on ' (,1)

print S$current-date ()

print 'Total labels printed = ' (+1,1)
print #label count () edit 9,999,999

end-procedure ! mailing labels

Defining Columns and Rows

The COLUMNS 1 29 57 command defines the starting position for three columns. The first column starts
at character position 1, the second at character position 29, and the third at character position 57.

The ex9a.sqr program writes the first address into the first column, the second address into the second
column, and the third address into the third column. The program writes the fourth address into the second
row of the first column, following the first label. When 10 lines of labels are complete, a new page starts.
After the last page of labels is printed, the program prints a summary page showing the number of labels
that were printed.

Note the technique for composing the last line of the label. The city, state, and zip columns are moved
to string variables. The command LET $last line = &city || ', ' || &state || '

' || $zip combines the city, state, and zip code, plus appropriate punctuation and spacing, into a
string, which it stores in the $last line variable. In this way, city, state, and zip code are printed without
unnecessary gaps.

The program defines two counters: #label count and #label lines. The first counter, #label count, counts
the total number of labels and prints it on the summary page. The second counter, #label lines, counts the
number of rows of labels that were printed. When the program has printed the number of lines that are
defined by {MAX LABEL LINES}, it starts a new page and resets the #label lines counter.

After each row of labels, the NEXT-LISTING command redefines the print position for the next row of
labels as line 1. NEXT-LISTING skips the specified number of lines (SKIPLINES) from the last line that
was printed (NO-ADVANCE) and sets the new position as line 1.

Note the use of the ALTER-PRINTER command. This command changes the font in which the report is
printed.

The sample program prints the labels in 10-point Times Roman, which is a proportionally spaced font.
In Microsoft Windows, you can use proportionally spaced fonts with any printer that supports fonts or
graphics. On other platforms, SQR directly supports HP LaserJet printers and PostScript printers.

In the sample program, the DECLARE-LAYOUT command defines a page width of 10 inches. This
width accommodates the printing of the third column, which contains 30 characters and begins at
character position 57. SQR assumes a default character grid of 10 characters per inch, which would cause
the third column to print beyond the paper edge if this report used the default font. The 10-point Times
Roman that is used here, however, condenses the text so that it fits on the page. The page width is set at
10 inches to prevent SQR from treating the third-column print position as an error.

See Printing Charts.

64 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Printing Mailing Labels

Running the Print Mailing Labels Program

When you print with a proportionally spaced font, you must use a slightly different technique for running
the program and viewing the output. If you are using a platform such as UNIX/Linux, specify the printer
type with the -PRINTER:xx flag. If you are using an HP LaserJet, enter -PRINTER:HP (or -printer:hp). If
you are using a PostScript printer, enter -PRINTER:PS (or -printer:ps) on the command line.

For example:
sqr ex9a username/password -printer:hp

You can also use the -KEEP command-line flag to produce output in the SQR Portable File format and
print it by using SQR Print. You still need to use the -PRINTER:xx flag when printing.

See Using the DECLARE-PRINTER Command.

The report produces the output in three columns corresponding to the dimensions of a sheet of mailing
label stock. In the preceding example, the report prints the labels from left to right, filling each row of
labels before moving down the page.

You can also print the labels from the top down, filling each column before moving to the next column
of labels. The code to do this is shown next. The differences between this code and the previous one
are shown like this. The output is not printed here, but you can run the file and view it using the same
procedure that you used for the previous example.

Program ex9b.sqgr
#define MAX LABEL LINES 10
#define LINES BETWEEN LABELS 3
begin-setup
declare-layout default
paper-size=(10,11) left-margin=0.33
end-declare
end-setup
begin-program
do mailing labels
end-program
begin-procedure mailing labels
let #Label Count = 0
let #Label Lines = 0
columns 1 29 57 ! enable columns
alter-printer font=5 point-size=10
begin-select

name (0,1,30)
addrl (+1,1,30)
city
state
zip
move &zip to $zip XXXXX—XXXX
let $last line = &city || ', ' || &state || ' ' || $zipprint $last_line (+1,1,30)=>

add 1 to #label count
add 1 to #label lines
if #label lines = {MAX LABEL LINES}
next-column goto-top=1 at-end=newpage
let #label lines = 0
else
position (+1)
position (+{LINES_BETWEEN LABELS})
end-if
from customers
end-select
use-column 0 ! disable columns

Copyright © 1988, 2024, Oracle and/or its affiliates. 65

Printing Mailing Labels

66

new-page
print 'Labels printed on ' (,1)

print S$current-date ()

print 'Total labels printed = ' (+1,1)
print #label count () edit 9,999,999

end-procedure ! mailing labels

Chapter 10

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 11

Creating Form Letters

DOCUMENT Paragraph

To create form letters, use a DOCUMENT paragraph. It starts with a BEGIN-DOCUMENT command
and ends with an END-DOCUMENT command. Between these commands, lay out the letter and insert
variables where you want data from the database to be inserted. SQR inserts the value of the variable
when the document prints. To leave blank lines in a letter, you must explicitly mark them with .b (see the
sample program).

Document markers provide another way to add data to a letter. They are special variables whose names
begin with @ (the at sign). They mark a location in the document where you place data from areas
external to the document paragraph. You can reference document markers defined in DOCUMENT
paragraphs in the POSITION command outside the DOCUMENT paragraph to establish the next printing
position.

The sample program demonstrates the use of variables and document markers. SQR prints the content of
the variable in the position where it is placed in the DOCUMENT paragraph. For example, in the sample
program, the customer’s name is printed on the first line.

Using a document marker gives you more flexibility in positioning the content of variables. The sample
program uses a document marker to position the city, state, and zip code because the city name varies in
length and, thus, affects the position of the state name and zip code.

Sample Program for Form Letters

The following simple form letter program, ex10a.sqr, demonstrates the use of document markers:

Program exl0Oa.sqgr
begin-program

do main
end-program
begin-procedure main
begin-select
name
addrl
addr?2
city
state
zip

do write letter
from customers
order by name
end-select
end-procedure ! main
begin-procedure write letter
begin-document (1,1)
&name
&addrl
&addr2

Copyright © 1988, 2024, Oracle and/or its affiliates. 67

Creating Form Letters

68

@city state zip
.b
.b
Scurrent-date
Dear Sir or Madam:

.b
Thank you for your recent purchases from ACME Inc. We would like
to tell you about our limited-time offer.
During this month, our entire inventory is marked down by 25%.
Yes, you can buy your favorite merchandise and save too.
To place an order simply dial 800-555-ACME.
Delivery is free too, so don't wait.
.b
.b
Sincerely,
Clark Axelotle
ACME Inc.

end-document
position () (@Qcity state zip
print &city ()

print ', ' ()

print &state ()

print ' ' ()

print &zip ()

new-page

end-procedure ! write letter

edit XXXXX—XXXX

Chapter 11

First, SQR performs the main procedure and the select paragraph. Next, it performs the write_letter
procedure and the document paragraph. The POSITION command sets the position to the appropriate
line, which is given by the @city_state zip marker. The program prints the city, and then it continues
printing the other elements to the current position. The state name and zip code automatically print in the

correct positions with appropriate punctuation.

The following sample is the output for program ex10a.sqr:

John Conway

2837 East Third Street
Greenwich Village

New York, NY 10002-1001

10-MAY-2004

Dear Sir or Madam:

Thank you for your recent purchases from ACME Inc. We would like to tell you
about our limited-time offer.

During this month, our entire inventory is marked down by 25%. Yes, you can
buy your favorite merchandise and save too. To place an order simply dial
800-555-ACME. Delivery is free too, so don't wait.

Sincerely,
Clark Axelotle
ACME Inc.

See Adding Graphics.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12

Exporting Data to Other Applications

Understanding the Sample Program for Exporting Data

The following sample program creates an export file that you can load into a document such as a
spreadsheet or word processing file. The tabs create columns in your spreadsheet or word processing
document that correspond to the columns in your database table.

Program exlla.sqr
begin-setup
! No margins, wide enough for the widest record
! and no page breaks
declare-layout default
left-margin=0 top-margin=0
max columns=160 formfeed=no
end-declare
end-setup
begin-program
do main
end-program
begin-procedure main

encode '<009>' into $sep ! Separator character is TAB
let Scust num = 'Customer Number'

let $name = 'Customer Name'

let $addrl = 'Address Line 1'

let $addr2 = 'Address Line 2'

let S$city = 'City'

let $state = 'State'

let $zip = 'Zip Code'

let $phone = 'Phone Number'

let $tot = 'Total'

string $cust num $name Saddrl Saddr2
$city S$state S$zip $phone $tot by $sep into $col hds
print Scol hds (1,1)
new-page
begin-select
cust num
name
addrl
addr2
city
state
zip
phone
tot
string &cust num &name &addrl &addr2
&city &state &zip &phone &tot by $sep into $db cols
print $db cols ()
new-page
from customers
end-select
end-procedure ! main

Copyright © 1988, 2024, Oracle and/or its affiliates. 69

Exporting Data to Other Applications Chapter 12

Creating an Export File

The ENCODE command stores the code for the tab character in the $sep variable. The code <009> is
enclosed within angle brackets to indicate that it is a character that the system does not display. SQR
treats it as a character code and sets the variable accordingly. ENCODE is a useful way to place non-
alphabetical and nonnumeric characters into variables.

The LET command creates variables for the text strings that are used as column headings in the export
file. The STRING command combines these variables in the $col hds variable, with each heading
separated by a tab.

The select paragraph uses the STRING command again, this time to combine the records (named as
column variables) in the $db_cols variable, with each record separated by a tab.

The NEW-PAGE command is used in this example in an unusual way. It causes a new line and carriage
return at the end of each record, resetting the line number to 1. The page is not ejected because of the
FORMFEED=NO argument in the DECLARE-LAYOUT command. Remember that this report is for
exporting, not printing.

You can now load the output file (ex11a.lis) into a spreadsheet or other application.

70 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 13

Using Graphics

Understanding the Sample Program for Simple Tabular Reports

The following sample program produces a simple tabular report, similar to the one shown in the topic
“Selecting Data from the Database.”

Program exl2a.sqr
begin-setup
declare-layout default
end-declare
end-setup
begin-program
do main
end-program
begin-procedure main
begin-select

name (,1,30)
city (,+1,16)
state (,+1,5)
tot (,+1,11) edit 99999999.99

next-listing no-advance need=1

let #grand total = #grand total + &tot

from customers

end-select
print '-' (,55,11) fill
print 'Grand Total' (+1,40)
print #grand total (,55,11) edit 99999999.99
end-procedure ! main
begin-heading 5

print $current-date (1,1) Edit 'DD-MON-YYYY'
page-number (1,60) 'Page '

print 'Name' (3,1

)
print 'City' (,32)
print 'State' (,49)
print 'Total' (,01)

(

’
14
print '-! 4,1,65) fill

end-heading

The SETUP section contains a DECLARE-LAYOUT command that specifies the default layout without
defining any options. The purpose of specifying the default layout is to use its margin settings, which are
defined as 1/2 inch. Without DECLARE-LAYOUT, the report would have no margins.

Note the PRINT command with the FILL option. This command produces dashed lines, which is a simple
way to draw lines for a report that is printed on a line printer. On a graphical printer, however, you can
draw solid lines.

The following is the output for program ex12a.sqr:

06-JUN-04 Page 1
Name City State Total
Gregory Stonehaven Everretsville OH 39.00
John Conway New York NY 42.00
Eliot Richards Queens NY 30.00

Copyright © 1988, 2024, Oracle and/or its affiliates. 71

Using Graphics

Isaiah J Schwartz and Company
Harold Alexander Fink

Harriet Bailey

Clair Butterfield

Quentin Fields

Jerry's Junkyard Specialties
Kate's Out of Date Dress Shop
Sam Johnson

Joe Smith and Company

Corks and Bottles, Inc.
Harry's Landmark Diner

See Adding Graphics.

Zanesville OH
Davenport IN
Mamaroneck NY
Teaneck NJ
Cleveland OH
Frogline NH
New York NY
Bell Harbor MI
Big Falls NM
New York NY
Miningville IN

Grand Total

Chapter 13

Adding Graphics

The following sample program includes graphical features, a logo, solid lines, and a change of font, in the

heading:

Program exl2b.sqgr

begin-setup

declare-layout default
end-declare

end-setup

begin-program

do main

end-program

begin-procedure main

begin-select

name (,1,30)

city (,+1,16)

state (,+1,5)

tot (,+1,11) edit 99999999.99
next-listing no-advance need=1

let #grand total = #grand total + &tot

from customers

end-select

graphic (,55,12) horz-line 20
print 'Grand Total' (+2,40)

print #grand total (,55,11) Edit 99999999.99

end-procedure ! main
begin-heading 11

print $current-date (1,1)
page-number (1,60) 'Page '

alter-printer point-size=14 font=4

print 'Name' (9,1) bold
print 'City' (,32) bold
print 'State' (,49) bold
print 'Total' (,61) bold

alter-printer point-size=12 font=3

graphic (9,1,66) horz-line 20
print-image (1,23)
type=bmp-file
image-size=(21,5)
source="acmelogo.bmp'
end-heading

! switch font

! restore font

The GRAPHIC command draws solid lines with the HORZ-LINE argument. The line is positioned by
using a normal SQR position specifier. Note that the third number in the position specifier is the length of
the line, which is given in characters. (The actual width of a character cell is determined by the CHAR-

WIDTH or MAX-COLUMNS arguments of DECLARE-LAYOUT.)

72

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 13 Using Graphics

The HORZ-LINE argument of the GRAPHIC HORZ-LINE command is the thickness of the line,
specified in decipoints (one inch has 720 decipoints). For example, the graphic (10,1, 66) horz-
line 20 command specifies a horizontal line following line 10 in the report, starting with position 1
(the left side of the report) and stretching for 66 character positions (at 10 characters per inch, this is 6.6
inches). The thickness of the line is 20 decipoints, which is 1/36 of an inch or about 0.7 mm.

You can also use the GRAPHIC command to draw vertical lines, boxes, and shaded boxes. See the
sqrlaser.sqr program in the SAMPLE (or SAMPLEW) subdirectory for an example.

The ALTER-PRINTER command in ex12b.sqr changes the font of the heading. When used a second
time, it restores the normal font for the rest of the report. The FONT option selects a font (typeface) that
is supported by the printer. The font is specified by number, but the number is printer-specific. On a
PostScript printer, for example, font 3 is Courier, font 4 is Helvetica, and font 5 is Times Roman.

The POINT-SIZE option specifies type size in points. You can use a whole number or a fraction (for
example, POINT-SIZE=10.5). The following command changes the font to 14-point Helvetica:

alter-printer point-size=14 font=4 ! switch font

The PRINT-IMAGE command inserts a logo. PRINT-IMAGE is followed by a print position
corresponding to the upper-left corner of the image (line 1, column 19 in the sample program). The TYPE
option specifies the image file type. In the example, the image is stored in Microsoft Windows bitmap
format (bmp file). The size of the image is specified in terms of columns (width) and lines (height). In the
example, the image is 30 characters wide (3 inches) and 7 lines high (1-1/6 inches).

In SQR, images are always stored in external files. The format of the image must match that of the printer
that you are using. These formats are:

* Microsoft Windows: bmp file images.

* PostScript printer or view: eps file.

» HP LaserJet: hpgl file images.

* HTML output: GIF or JPEG formats (gif file or jpeg file).

The SOURCE option specifies the file name of the image file. In the example, the file is Acmelogo.bmp.
The file is assumed to reside in the current directory or in the directory in which SQR is installed (you can
place the logo file in either of these places). The file can reside in any directory, however, as long as you
specify a full path name for the image file.

The output file now contains graphic language commands. SQR can produce output that is suitable for HP
LaserJet printers in a file format that uses the HP PCL language or output that is suitable for PostScript
printers in a file format that uses the PostScript language. SQR can also produce printer-independent
output files in a special format called SQR Portable Format (SPF).

SQR can create a printer-specific output file (an .lis file) or create the output in portable format (SPF).
When you create an .spf file, the name of the image file is copied into it, and the image is processed at
print time, when printer-specific output is generated. When you use .spf files, a change in the contents of
the image file is reflected in the report the next time you print it or view it. You can create printer-specific
output by using SQR or SQR Execute to directly generate an .lis file or by using SQR Print to generate
an .lis file from an .spf file.

See Understanding the Sample Program for Listing and Printing Data.

Copyright © 1988, 2024, Oracle and/or its affiliates. 73

Using Graphics Chapter 13

Related Links
SQR Language Reference for PeopleSoft

Sharing Images Among Reports

74

You can place logos and other images in a report by using only the PRINT-IMAGE command. However,
the DECLARE-IMAGE command is useful if you want several programs to share the definition of an
image.

The ex12c.sqr program prints a simple form letter. It shows how to print a logo by using the DECLARE-
IMAGE and PRINT-IMAGE commands and how to print a signature by using only PRINT-IMAGE.

Because the image is shared among several reports, the DECLARE-IMAGE command is contained in the
acme.inc file:

File acme.inc

declare-image acme logo
type=bmp-file
image-size=(30,7)
source="acmelogo.bmp'

end-declare

This file declares an image with acme-logo as the name. It specifies the logo that is used in the previous
sample program. The declaration includes the type and source file for the image. When the image is
printed, you do not need to specify these attributes again.

Multiple programs can share the declaration and include the acme.inc file. If you later need to change
an attribute, such as the source, you need to change it in only one place. The image size is specified and
provides the default.

To change the size of an image in a particular report, use the IMAGE-SIZE argument of the PRINT-
IMAGE command. It overrides the image size that is specified in DECLARE-IMAGE.

Program exl2c.sqr
begin-setup
#include 'acme.inc'
end-setup
begin-program

do main
end-program
begin-procedure main
begin-select
name
addrl
addr2
city
state
zip
phone

do write letter
from customers
order by name
end-select
end-procedure ! main
begin-procedure write letter
move &city to $csz

concat ', ' with S$csz
concat &state with S$csz
concat ' ' with S$csz

move &zip to $zip XXXXX—XXXX

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 13

concat $zip with S$csz
move &phone to $phone_no (XXX) bxXX—-xXXXX

begin-document (1,1,0)
&name

Using Graphics

! Edit phone number.

@logo

&addrl
&addr2
Scsz
.b
.b
.b
Scurrent-date

Dear &name
.b

Thank you for your inquiry regarding Encore, Maestro!!, our revolutionary
teaching system for piano and organ. If you've always wanted to play an
instrument but felt you could never master one, Encore, Maestro!! is made for
you.
.b

Now anyone who can hum a tune can play one too. Encore, Maestro!! begins
with a step-by-step approach to some of America's favorite songs. You'll learn
the correct keyboarding while hearing the sounds you make through the
headphones provided with the Encore, Maestro!! system. From there, you'll
advance to intricate compositions with dazzling melodic runs. Encore, Maestro!!
can even teach you to improvise your own solos.

.b

Whether you like classical, jazz, pop, or blues, Encore, Maestro!! is the
music teacher for you.
.b

A local representative will be calling you at $phone no
to set up an in-house demonstration, so get ready to play your favorite tunes!!
.b

Sincerely,
@signature
.b
.b
Clark Axelotle
end-document
position () @logo
print-image acme-logo ()
image-size=(16,4)
position () @signature
print-image ()
type=bmp-file
image-size=(12, 3)
source="clark.bmp'
new-page
end-procedure ! write letter

The #INCLUDE command, which is performed at compile time, gets text from another file. In this
program, the #INCLUDE 'acme.inc' command includes the code from the acme.inc file.

The document paragraph begins with a BEGIN-DOCUMENT command and ends with an END-
DOCUMENT command. It uses variables and document markers to print inside the letter. The program
uses variables for the name and address, the date, and the phone number. It uses document markers for the
logo and signature.

Document markers are placeholders in the letter. The program uses the @logo and @signature document
markers in a POSITION command before printing each image. The document markers make unnecessary
specifying the position of these items in the PRINT-IMAGE command. Instead, you print to the current
position.

The date is prepared with the Scurrent-date reserved variable. It is printed directly in the document
paragraph without issuing a PRINT command.

The program uses the CONCAT command to put together the city, state, and zip code. In the document
paragraph, variables retain their predefined sizes. A column variable, for example, remains the width

Copyright © 1988, 2024, Oracle and/or its affiliates. 75

Using Graphics Chapter 13

of the column as defined in the database. You can print the date and phone number directly, however,
because they occur at the end of a line, without any following text.

Printing Bar Codes

SQR supports a wide variety of bar code types, which you can include in an SQR report.

To create a bar code, use the PRINT-BAR-CODE command. Specify the position of the bar code in an
ordinary position qualifier. In separate arguments, specify the bar code type, height, text to be encoded,
caption, and optional check sum. For example:
print-bar-code (1,1)

type=1

height=0.5

text='01234567890"
caption='0 12345 67890"

Arguments to PRINT-BAR-CODE can be variables or literals.

Related Links
SQR Language Reference for PeopleSoft

76 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 14

Using Business Charts

Understanding Business Charts

Business charts are useful tools for presenting summary data. SQR provides two commands for creating
charts: DECLARE-CHART and PRINT-CHART. It also provides a variety of chart types, including:

Line

Pie

Bar

Stacked bar
100 percent bar
Overlapped bar
Floating bar
Histogram
Area

Stacked area
100 percent area
XY scatter plot

High-low close

You can configure many attributes of SQR charts by activating three-dimensional effects or setting titles
and legends. SQR charts are also portable: you can move them from one hardware platform to another.

You can prepare a business chart by using data that is held in an array, just as you would for a cross-
tabular report. If you have already written a cross-tabular report, you need to take one additional step to
create a chart using the data that is already collected in the array.

See Creating a Chart and Printing Charts.

Creating a Chart

The following sample program (ex8c.sqr) builds on the report that you created in the topic “Creating
Cross-Tabular Reports.”. That sample program combined two reports in one program. The following
sample program produces two charts that correspond to the two cross-tabular reports.

Copyright © 1988, 2024, Oracle and/or its affiliates.

7

Using Business Charts

Chapter 14

Here is the code; the lines that were changed or added are shown like this:

Program exl3a.sqr
#define max-categories 3
#define max-products 100
begin-setup
create-array
name=order gty
field=product:char
create-array
name=order qty2
field=category:char

size={max-products}
field=month gty:number:3

size={max-categories}
field=month gty:number:3

declare-chart orders-stacked-bar

chart-size=(70,30)
title='Order Quantity'
legend-title='Month'
type=stacked-bar
end-declare !
end-setup
begin-program
do select data
do print array

print '-' (+2,1,70) fill
position (+1)

do print arrayZ2new-page
let $done = 'YES'

do print_the_charts
end-program
begin-procedure print array

orders-stacked-bar

! Don't need heading any more

let #entry cnt = #i

let #1 =0

while #i <= #entry cnt
let S$product = order gty.product (#i)
let #jan = order gty.month gty (#i,0)
let #feb = order gty.month gty (#i,1)
let #mar = order gty.month gty (#i,2)
let #prod tot = #jan + #feb + #mar
print S$product (,1,30)
print #jan (,32,9) edit 9,999,999
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999
print #prod tot (,62,9) edit 9,999,999
position (+1)
let #1 = #1 + 1

end-while

end-procedure ! print array
begin-procedure print array?2

let #1 =0

while #i < {max_categories}
let Scategory = order gty2.category (#1i)
let #jan = order gty2.month gty (#i,0)
let #feb = order gty2.month gty (#i,1)
let #mar = order gty2.month gty (#1i,2)
let #category tot = #jan + #feb + #mar
print S$category (,1,31)
print #jan (,32,9) edit 9,999,999
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999
print #category tot (,62,9) edit 9,999,999
position (+1)
let #jan total = #jan total + #Jjan
let #feb total = #feb total + #feb
let #mar total = #mar total + #mar

let #1i = #i + 1

end-while
let #grand total

print 'Totals' (+2,1)
print #jan total (,32,9)
print #feb total (,42,9)
print #mar total (,52,9)

78

#jan total +

#feb total + #mar total

edit
edit
edit

9,999,999
9,999,999
9,999,999

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 14

print #grand total (,62,9) edit 9,999,999
end-procedure ! print array?2
begin-procedure select data

let order gty2.category(0)='50-54.99"'

let order gty2.category(l)='$5.00-$100.00"

let order gty2.category(2)='Over $100'
begin-select
order date
! the price / price category for the order
c.price &price

move &price to #price num

evaluate #price num

when < 5.0

let #x = 0
break
when <= 100.0
let #x =1
break
when-other
let #x = 2
break

end-evaluate
! The quantity for this order
quantity
let #j = to_number (datetostr(&order date, 'MM')) - 1
if #3 < 3
let order gty2.month gty (#x,#3j) =
order gty2.month gty (#x,#3j) + &quantity

end-1if
! the product for this order
description
if #i = 0 and order gty.product(#i) = ''
let order gty.product (#i) = &description
end-if
if order gty.product (#i) != &description

let #1 = #i + 1
if #i >= {max_products}

display 'Error: There are more than {max products} products'

stop
end-if
let order gty.product (#i) = &description
end-if
if #3 < 3

let order gty.month gty (#i,#j) =
order gty.month gty (#i,#j) + &quantity
end-if
from orders a, ordlines b, products c
where a.order num = b.order num
and b.product code = c.product code
order by description
end-select
end-procedure ! select data
begin-heading 5if not ($done = 'YES')
print $current-date (1,1)
page-number (1,64) 'Page '
print 'Order Quantity by Product and Price Category by Month'

print 'Product / Price Category' (4,1)
print ' January' (,32)

print ' February' (,42)

print ' March' (,52)

print ' Total' (,62)

Print '-' (5,1,70) Fill

end-if
end-heading
begin-procedure print_the_ charts
print-chart orders-stacked-bar (+2,1)
data-array=order_ gty
data-array-row-count=12
data-array-column-count=4
data-array-column-labels=('Jan', 'Feb',6 'Mar')
sub-title='By Product By Month'

Copyright © 1988, 2024, Oracle and/or its affiliates.

(2,10)

Using Business Charts

79

Using Business Charts Chapter 14

new-page
print-chart orders-stacked-bar (+2,1)
data-array=order_gty2
data-array-row-count=3
data-array-column-count=4
data-array-column-labels=('Jan', 'Feb',6 'Mar')
sub-title='By Price Category By Month'
end-procedure ! print the charts

Defining Charts

The two chart sections in the ex13a.sqr program are specified with the DECLARE-CHART command in
the SETUP section and are named orders-stacked-bar. The width and height of the charts are specified
in terms of character cells. The charts that are generated by this program are 70 characters wide, which
is 7 inches on a default layout. The height of the charts is 30 lines, which translates to 5 inches at 6 lines
per inch. These dimensions define a rectangle that contains the chart. The box that surrounds the chart is
drawn by default, but you can disable it by using the qualifier BORDER=NO.

The title is centered at the top of the chart. The text that is generated by LEGEND-TITLE must fit inside
the small legend box that precedes the categories, so make this description short. Generally, charts look
best when the text items are short. Here is the DECLARE-CHART command:

declare-chart orders-stacked-bar
chart-size=(70,30)
title='Order Quantity'
legend-title="Month'
type=stacked-bar
end-declare ! orders-stacked-bar

The heading prints only on the first page.

Printing Charts

The PRINT-CHART commands are based on the orders-stacked-bar chart that was declared in the
preceding section.

print-chart orders-stacked-bar (+2,1)
data-array=order gty
data-array-row-count=12
data-array-column-count=4

data-array-column-labels=('Jan', 'Feb', 'Mar"')
sub-title='By Product By Month'
new-page

print-chart orders-stacked-bar (+2,1)
data-array=order gty2
data-array-row-count=3
data-array-column-count=4
data-array-column-labels=('Jan', 'Feb', 'Mar"')
sub-title='By Price Category By Month'

The data source is specified by using the DATA-ARRAY option. The named array has a structure that is
specified by the TYPE option. For a stacked-bar chart, the first field in the array gives the names of the
categories for the bars. The rest of the fields are series of numbers. In this case, each series corresponds to
a month.

80 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 14 Using Business Charts

The subtitle follows the title and can be used as a second line of the title. A legend labels the series. The
DATA-ARRAY-COLUMN-LABELS argument passes these labels. The DATA-ARRAY-ROW-COUNT
argument is the number of rows (bars) to chart and DATA-ARRAY-COLUMN-COUNT is the number of
fields in the array that the chart uses. The array has four fields: the product (or price category) field and
the series that specifies three months.

Running the Program to Create Graphical Reports

When you create a graphical report, you must use a slightly different technique for running the program
and viewing the output:
» Ifyou are using a platform such as UNIX/Linux, specify the printer type with the -PRINTER:xx flag.
» Ifyou are using an HP LaserJet, enter -PRINTER:HP (or -printer:hp).
* If you are using a PostScript printer, enter -PRINTER:PS (or -printer:ps) in the command line.

For example:

sqgr test username/password -printer:hp

You can also use the -KEEP command-line flag to produce output in the SQR Portable File format (SPF)
and print it using SQR Print. You still must use the -PRINTER:xx flag when printing.

Printing Charts and Using the DECLARE-PRINTER Command.

Passing Data to Charts

To pass data to a chart, use the first field for the descriptions of bars (or lines or areas), and then use one
or more additional fields with number series. This procedure is common to many chart types, including
line, bar, stacked-bar, 100 percent bar, overlapped bar, histogram, area, stacked-area, and 100 percent
area. You can omit the first field, and SQR uses cardinal numbers (1, 2, 3, and so on) for the bars. Only
text fields are used for these options.

For pie charts, only one series is allowed. Pie charts are a special case because you can specify which
segments to explode, or pull away, from the center of a pie. By using a third field in the array, you can
have a series of Y and N values that indicate whether to explode the segment. If Y is the value in the first
row of the array, then the pie segment that corresponds to the first row is exploded. With pie charts, you
cannot omit the first field with the descriptions. Pie charts cannot have more than 12 segments.

Pie charts display a numeric value next to each segment. The description appears in the legend. In
addition, SQR displays a percentage next to the numeric value. You can disable this feature by using the
qualifier PIE-SEGMENT-PERCENT-DISPLAY=NO.

When data is passed to an xy scatter plot or a floating-bar chart, the series are paired. A pair in a floating-
bar chart represents the base and height of the bars. A pair in an xy scatter plot represents x and y
coordinates. In an xy scatter plot, the first field does not have descriptions. In a floating-bar chart, the first
field may have descriptions for the bars. For both types, you can have one or more pairs of series.

Copyright © 1988, 2024, Oracle and/or its affiliates. 81

Using Business Charts

82

Chapter 14

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15

Changing Fonts

Setting Fonts

To select a font in SQR for PeopleSoft, use the DECLARE-PRINTER and ALTER-PRINTER commands.
The DECLARE-PRINTER command sets the default font for the entire report. The ALTER-PRINTER
command changes the font anywhere in the report, and the change remains in effect until the next
ALTER-PRINTER command.

To set a font for an entire report, use ALTER-PRINTER, which is not printer-specific, at the beginning of
the program. If you are writing a printer-independent report, the attributes that you set with DECLARE-
PRINTER take effect only when you print your report with the printer that you specify with the TYPE
argument. To specify a printer at print time, use the -PRINTER:xx command-line flag.

Related Links
“ALTER-PRINTER” (SQR Language Reference for PeopleSoft)
“DECLARE-PRINTER” (SQR Language Reference for PeopleSoft)

Positioning Text

In SQR for PeopleSoft, you position text according to a grid. That grid is set by default to 10 characters
per inch and 6 lines per inch, but you can give it another definition by altering the CHAR-WIDTH and
LINE-HEIGHT parameters of the DECLARE-LAYOUT command.

Note, however, that character grid and character size function independently of each another. Fonts print
in the size that is set by DECLARE-PRINTER or ALTER-PRINTER, not the size that is defined by the
grid. A character grid is best used for positioning the first character in a string. It can express the width
of a string only in terms of the number of characters that it contains, not in an actual linear measurement,
such as inches or picas.

When you use a proportionally spaced font, the number of letters that you print may no longer match the
number of character cells that the text actually fills. For example, in the following sample code the word
Proportionally fills only 9 cells, although it contains 14 letters.

When you print consecutive text strings, the actual position at the end of a string may differ from the
position that SQR assumes according to the grid. For this reason, concatenate consecutive pieces of text
and print them as one.

For example, do not write code like this:

alter-printer font=5 ! select a proportional font
print &first name () ! print first name

print ' ' () ! print a space

print &last name () ! print the last name
alter-printer font=3 ! restore the font

Copyright © 1988, 2024, Oracle and/or its affiliates. 83

Changing Fonts

84

Instead, write code like this:

alter-printer font=5 ! select a proportional font
! concatenate the name

let $full name = &first name || ' ' || &last name
print $full name () ! print the name
alter-printer font=3 ! restore the font

Chapter 15

The WRAP and CENTER options of the PRINT command also require special consideration when used
with proportional fonts. They both calculate the text length based on the character count in the grid, which

1s not the same as its dimensional width.

Look at the sample program. It contains a list of reminders from the reminders table. It is printed in a mix

of fonts: Times Roman in two different sizes plus Helvetica bold.

Program exl4a.sqr
begin-setup
declare-layout default
paper-size=(10,11)
end-declare
end-setup
begin-program
do main
end-program
begin-procedure main
! Set Times Roman as the font for the report
alter-printer font=5 point-size=12
begin-select
remind date (,1,20) edit 'DD-MON-YY'
reminder (,+1) wrap 60 5
position (+2)
from reminders
end-select
end-procedure ! main
begin-heading 7
print $current-date (1,1) Edit 'DD-MON-YYYY'
page-number (1,60) 'Page '
! Use large font for the title
alter-printer font=5 point-size=24
print 'Reminder List' (3,25)
! Use Helvetica for the column headings
alter-printer font=4 point-size=12
print 'Date' (6,1) bold
print 'Reminder' (6,22) bold
graphic (6,1,66) horz-line
! Restore the font
alter-printer font=5 point-size=12
end-heading

The report uses the default layout grid of 10 characters per inch and 6 lines per inch both for positioning

the text and for setting the length of the solid line.

The font is set at the beginning of the main procedure to font 5, which is Times Roman. The point size is

set to 12. In the HEADING section, its size is set to 24 points to print the title.

The column headings are set to 12-point Helvetica with the ALTER-PRINTER FONT=4 POINT-

SIZE=12 command. The BOLD option of the PRINT command specifies that they be printed in bold.

A solid line is under the column headings. Note that it is positioned at line 6, the same as the column
headings. SQR draws the solid line as an underline. At the end of the HEADING section, the font is

restored to Times Roman.

In an SQR program, the report heading is performed after the body. A font change in the heading does not
affect the font that is used in the body of the current page, although it changes the font that is used in the

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Changing Fonts

body of subsequent pages. Keep track of your font changes and return fonts to their original settings in the
same section in which you change them.

Positioning the title requires careful coding. The CENTER option of the PRINT command does not
work because it does not account for the actual size of the text. Instead, position the title by estimating
its length. In this case, the title should start 2 1/2 inches from the left margin. The character coordinates
are (3,25), which is line 3, character position 25. Remember that the character grid used for positioning
assumes 10 characters per inch; therefore, 25 characters is 2 1/2 inches.

Using the WRAP Option

The WRAP option of the PRINT command prints the text of the reminder column. This option wraps text
based on a given width, which is 60 characters in the sample program.

The WRAP option works only on the basis of the width that is given in the character grid. It does not
depend on the font.

Text that is printed in Times Roman takes about 30 to 50 percent less space than the same text in Courier
(the default font, which is a fixed-size font). This means that a column with a nominal width of 44
characters (the width of the reminder column) can actually hold as many as 66 characters when it is
printed in the Times Roman font. To be conservative, specify a width of 60.

The other argument of the WRAP option is the maximum number of lines. Because the reminder column
in the database is 240 characters wide, at 60 characters per line no more than five lines are needed.
Remember, this setting specifies only the maximum number of lines. SQR does not use more lines than
necessary.

SQR calculates the maximum number of characters on a line by using the page dimensions in the
DECLARE-LAYOUT command (the default is 8 1/2 inches wide). In the sample program, 8 1/2 inches
minus the inch that is used in the margins is 7 1/2 inches, or 75 characters at 10 characters per inch.
Printing 60 characters starting from position 22 could exceed this maximum and cause an error or
undesirable output. To avoid this error, define the page as wider than it actually is. This definition is given
by the argument PAPER-SIZE=(10,11) in the DECLARE-LAYOUT command.

Copyright © 1988, 2024, Oracle and/or its affiliates. 85

Changing Fonts Chapter 15

86 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 16

Writing Printer-Independent Reports

Understanding Printer-Independent Reports

To create a printer-independent report, you must write a program that avoids using any characteristics
that are unique to a specific printer. Although complete printer independence may be too restrictive, make
your report as printer-independent as you can by following these guidelines:

Ensure that your program is free of the following commands:
* GRAPHIC FONT (use ALTER-PRINTER instead).

* PRINTER-INIT, PRINTER-DEINIT, and USE-PRINTER-TYPE (except for using this command
to select a printer at runtime, as demonstrated in the sample program that follows).

* CODE-PRINTER and CODE qualifiers of the PRINT command.
DECLARE-PRINTER and PRINT-DIRECT.

* The SYMBOL-SET argument of the ALTER-PRINTER command.

Ensure that the report is readable if printed on a line printer. Graphics or solid lines printed with the
graphic command are not printed on a line printer. Test your graphical report on a line printer.

Use only a small set of fonts. Font numbers 3, 4, and 5 and their boldface versions are the same
regardless of the type of printer that you use (except for a line printer). Font 3 is Courier, font 4 is
Helvetica, and font 5 is Times Roman. Note that on some HP printers, Helvetica may not be available,
which would reduce the common fonts to fonts 3 and 5 only.

Be aware of certain limitations. EPS-file images can be printed only on PostScript printers. HPGL-
file images can be printed only on HP LaserJet Series 3 or higher or printers that emulate HP PCL at
that level. BMP-file images can be printed using Microsoft Windows only. GIF-file and JPEG-file
images are suitable only for HTML output. PRINT-IMAGE and PRINT-CHART may not work with
old printers that use PostScript Level 1 or HP LaserJet Series II.

If your report is printer-neutral and does not specify a printer, you can specify the printer at runtime in
two ways.

The first method is to use the -PRINTER:xx command-line flag, which specifies the output type for your
report. Use the following commands:

-PRINTER:LP for line-printer output.
-PRINTER:PS for PostScript output.
-PRINTER:HP for HP LaserJet output.

-PRINTER:WP for Microsoft Windows output.

Copyright © 1988, 2024, Oracle and/or its affiliates. 87

Writing Printer-Independent Reports Chapter 16

* -PRINTER:HT for HTML output.

If you are using the system shell, enter this command in the command line:

sqr test username/password -printer:ps

Note: Currently, PRINTER:WP sends output to the default Microsoft Windows printer. To specify a
non-default Microsoft Windows printer, enter the following command: ~-PRINTER:WP: {Printer
Name }. The {Printer Name} is the name assigned to your printer. For example, to send output to a
Microsoft Windows printer named NewPrinter, you would use ~-PRINTER: WP :NewPrinter. If your
printer name has spaces, enclose the entire command in double quotes.

The second method of specifying the printer type is by using the USE-PRINTER-TYPE command.

See SQR for PeopleSoft Implementation.

Reviewing the Sample Program for Selecting the Printer Type at
Runtime

In the following example, the PROGRAM section prompts the user to select the printer type at runtime.
The relevant lines are shown like this:

begin-program

input $p 'Printer type' ! Prompt user for printer type
let $p = lower (Sp) ! Convert type to lowercase
evaluate $p ! Case statement
when = 'hp'
when = 'hplaserjet' ! HP LaserdJet
use-printer-type hp
break
when = 'lp'
when = 'lineprinter' ! Line Printeruse-printer-type 1lp
break
when = 'ps'
when = 'postscript' ! PostScriptuse-printer-type ps
break

when-other
display 'Invalid printer type.'
stop
end-evaluate
do list customers
end-program

In this code, the INPUT command prompts the user to enter the printer type. Because the USE-
PRINTER-TYPE command does not accept a variable as an argument, the EVALUATE command is used
to test for the six possible values and set the printer type accordingly.

The EVALUATE command is similar to a switch statement in the C language. It compares a variable to
multiple constants and carries out the appropriate code.

88 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 17

Using Dynamic SQL and Error Checking

Using Variables in SQL

SQL supports the use of variables. A SQL statement containing variables is considered static. When SQR
runs a static statement several times, it runs the same statement, even if the values of the variables change.
Because SQL allows variables only in places where literals are allowed (such as in WHERE clauses or
INSERT statements), the database can parse the statement before the values for the variables are given.

The ex16a.sqr sample program selects customers from a state that the user specifies:

Program exlb6a.sqr
begin-program

do list customers for state
end-program
begin-procedure list customers for state
input $state maxlen=2 type=char 'Enter state abbreviation'
let $state = upper (Sstate)
begin-select
name (,1)

position (+1)
from customers

where state = $state
end-select
end-procedure ! list customers for state

Note the use of the $state variable in the select paragraph. When you use a variable in a SQL statement in
SQR for PeopleSoft, the SQL statement that is sent to the database contains that variable. SQR binds the
variable before the SQL is run. In many cases, the database needs to parse the SQL statement only once.
The only item that changes between runs of the select paragraph is the value of the variable. This is the
most common example of varying a select paragraph.

In the sample program, the INPUT command prompts the user to enter the value of state. The MAXLEN
and TYPE arguments verify the input, ensuring that the user enters a string of no more than two
characters. If the entry is incorrect, INPUT reprompts.

The sample program converts the contents of the $state variable to uppercase, which enables the user to
enter the state without worrying about the case. In the example, state is uppercase in the database. The
sample program shows the LET command that is used with the SQR upper function.

You can let the SQL perform the conversion to uppercase by using where state =

upper ($Sstate) ifyou are using an Oracle database or by using where state =

ucase ($state) ifyou are using another database. However, SQR enables you to write database-
independent code by moving the use of such SQL extensions to the SQR code.

When you run this program, you must specify one of the states that is included in the sample data for the
program to return any records. At the prompt, enter IN, MI, NH, NJ, NM, NY, or OH. If you enter NY
(the state where most of the customers in the sample data reside), SQR generates the following output:

Output for program exlé6a.sqr
John Conway
Eliot Richards

Copyright © 1988, 2024, Oracle and/or its affiliates. 89

Using Dynamic SQL and Error Checking Chapter 17

Harriet Bailey
Kate's Out of Date Dress Shop
Corks and Bottles, Inc.

Using Dynamic SQL

90

You may find it too restrictive to use variables only where literals are allowed. In the following example,
the ordering of the records changes based on the user’s selection. The program runs the select statement
twice. The first time, the first column is called name and the second column is called city, and the
program sorts the records by name with a secondary sort by city. The second time, the first column is the
city and the second is name, and the program sorts by city with a secondary sort by name. This is the first
select paragraph:

select name, city
from customers
order by name, city

This is the second select paragraph:

select city, name
from customers
order by city, name

These statements are different. SQR constructs the statement each time before running it. This technique
is called dynamic SQL, and the following sample program illustrates it. To take full advantage of the
error-handling procedure, run it with the -CB command-line flag.

Program exl6b.sqr
begin-program
let $coll = 'name'
let $col2 = 'city'
let #pos = 32
do list customers for state
position (+1)
let $coll = 'city'
let $col2 = 'name'
let #pos = 18
do list customers for state
end-program
begin-procedure give warning
display 'Database error occurred'
display $sgl-error
end-procedure ! give warning
begin-procedure list customers for state
let S$my order = $coll || ',' || S$col2
begin-select on-error=give warning
[$coll] &columnl=char (,1)
[$col2] &column2=char (, #pos)
position (+1)
from customers
order by [Smy_ order]
end-select
end-procedure ! list customers for state

When you use variables in an SQL statement in SQR to replace literals and more, you make them
dynamic variables by enclosing them in square brackets. For example, when you use the [$my order]
dynamic variable in the ORDER BY clause of the select paragraph, SQR places the text from the
Smy_order variable in that statement. Each time the statement is run, if the text changes a new statement
is compiled and run.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 17

Using Dynamic SQL and Error Checking

Note: The z/OS operating system does not support square brackets for dynamic variables. Use slashes (/)

instead.

Other dynamic variables are [$coll] and [$col2]. They substitute the names of the columns in the select
paragraph. The &columnl and &column?2 variables are column variables.

You can use dynamic variables to produce reports like this one. The data in the first half of the report is
sorted differently from the data in the second half. Also note the give_warning error-handling procedure,

discussed next.

The following is the output for Program ex16b.sqr:

John Conway New York
Clair Butterfield Teaneck
Corks and Bottles, Inc. New York
Eliot Richards Queens
Gregory Stonehaven Everretsville
Harold Alexander Fink Davenport
Harriet Bailey Mamaroneck
Harry's Landmark Diner Miningville
Isaiah J Schwartz and Company Zanesville
Jerry's Junkyard Specialties Frogline
Joe Smith and Company Big Falls
Kate's Out of Date Dress Shop New York
Quentin Fields Cleveland

Sam Johnson

Bell Harbor

Bell Harbor Sam Johnson

Big Falls Joe Smith and Company
Cleveland Quentin Fields

Davenport Harold Alexander Fink
Everretsville Gregory Stonehaven

Frogline Jerry's Junkyard Specialties
Mamaroneck Harriet Bailey

Miningville Harry's Landmark Diner

New York John Conway

New York Corks and Bottles, Inc.

New York Kate's Out of Date Dress Shop
Queens Eliot Richards

Teaneck Clair Butterfield

Zanesville Isaiah J Schwartz and Company

Using SQL Error Checking

SQR for PeopleSoft checks and reports database errors for SQL statements. When an SQR program is
compiled, SQR checks the syntax of the SELECT, UPDATE, INSERT, and DELETE SQL statements in
the program. Any SQL syntax error is detected and reported at compile time, before the report is run.

When you use dynamic SQL, SQR cannot check the syntax until runtime. In that case, the content of
the dynamic variable is used to construct the SQL statement, which can allow syntax errors to occur in
runtime. Errors could occur if the dynamic variables that are selected or used in a WHERE or ORDER
BY clause are incorrect.

SQR traps any runtime error, reports the error, and ends the program. To change this default behavior, use
the ON-ERROR option of the BEGIN-SELECT or BEGIN-SQL paragraphs:

begin-select on-error=give warning
[$coll] &columnl=char (,1)
[$col2] &column2=char (, #pos)

Copyright © 1988, 2024, Oracle and/or its affiliates. 91

Using Dynamic SQL and Error Checking Chapter 17

position (+1)
from customers
order by [$my order]
end-select

In this sample program, if a database error occurs, SQR invokes a procedure called give warning instead
of reporting the problem and ending. Write this procedure like this:

begin-procedure give warning
display 'Database error occurred'
display $sgl-error

end-procedure ! give warning

This procedure displays the error message but does not stop running the program. Instead, the program
continues at the statement immediately following the SQL or SELECT paragraph. Note the use of the
Ssql-error variable, which is a special SQR-reserved variable. It contains the error message text from the
database and is automatically set by SQR after a database error occurs.

SQR has a number of reserved, or predefined, variables. For example, the $sqr-program variable has the
name of the program that is running. The Susername variable has the user name that was used to sign in to
the database. The #page-count variable has the page number for the current page.

Using SQL and Substitution Variables

92

SQR uses the value of a substitution variable to complete the select paragraph at compile time. Because
the select paragraph is complete at compile time, SQR can check its syntax before running the program.
From this point on, the value of {my order} cannot change and the SQL statement is considered static.

In the following program, the ASK command in the SETUP section prompts the user at compile time.
The value that the user enters is placed in a special kind of variable called a substitution variable. This
variable can be used to substitute any command, argument, or part of a SQL statement at compile time.
This example is less common, but it demonstrates the difference between compile-time and runtime
substitutions:

Program exlé6c.sqr
begin-setup
ask my order 'Enter the column name to sort by (name or city)'
end-setup
begin-program
do list customers for state
end-program
begin-procedure give warning
display 'Database error occurred'
display $sgl-error
end-procedure ! give warning
begin-procedure list customers for state
begin-select on-error=give warning
name (,1)
city (,32)
position (+1)
from customers
order by {my order}
end-select
end-procedure ! list customers for state

In this case, the ASK command prompts the user for the value of the {my order} substitution variable,
which is used to sort the output. If the argument is passed in the command line, no prompt appears. When
you run this program, enter name, city, or both (in either order and separated by a comma). The program
produces a report that is sorted accordingly.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 17 Using Dynamic SQL and Error Checking

You can use the ASK command only in the SETUP section. SQR processes ASK commands at compile
time before running the program. Therefore, all ASK commands are run before any INPUT command.

INPUT is more flexible than ASK. You can use INPUT inside loops. You can validate the length and
type of data input and reprompt if it is not valid. The sample program at the beginning of Using SQL and
Substitution Variables topic contains an example of reprompting .

ASK can be more powerful. Substitution variables that are set in an ASK command enable you to modify
commands that are normally quite restrictive. The following code shows this technique:

begin-setup
ask hlines 'Number of lines for heading'

end-setup
begin-program

print 'Hello, World!!' (1,1)
end-program
begin-heading {hlines}

print 'Report Title' () center
end-heading

In this example, the {hlines} substitution variable defines the number of lines that the heading will
occupy. The BEGIN-HEADING command normally expects a literal and does not allow a runtime
variable. When a substitution variable is used with this command, its value is modified at compile time.

See Creating and Running a Sample SQR Program and SQR for PeopleSoft Implementation.

Copyright © 1988, 2024, Oracle and/or its affiliates. 93

Using Dynamic SQL and Error Checking

94

Chapter 17

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 18

Using Procedures and Local Variables and
Passing Arguments

Using Procedures

The code example in this section shows a procedure that spells out a number. The sample program for
printing checks uses this procedure. When printing checks, you normally need to spell out the dollar
amount.

In the spell.inc code example, the assumption is that the checks are preprinted and that the program has to
print only items such as the date, name, and amount.

SQR procedures that contain variables that are visible throughout the program are called global
procedures. These procedures can also directly reference any program variable.

In contrast, procedures that take arguments, such as the spell_ number procedure in the check printing
sample program in this section, are local procedures. In SQR for PeopleSoft, any procedure that takes
arguments is automatically considered local.

Variables that are introduced in a local procedure are readable only inside the spell.inc procedure. This
useful feature avoids name collisions. The spell_ number procedure is in an include file because you may
want to use it for other reports.

Using Local Variables

When you create library procedures that can be used in many programs, make them local. Then, if a
program has a variable with the same name as a variable that is used in the procedure, a collision will not
occur. SQR treats the two variables as separate.

Declare a procedure as local even if it does not take any arguments. To do this, place the LOCAL
keyword following the procedure name in the BEGIN-PROCEDURE command.

To reference a global variable from a local procedure, insert an underscore between the prefix character
(#, $, or &) and the variable name. Use the same technique to reference reserved variables , such as
#current-line. These variables are always global so that you can reference them from a local procedure.

SQR supports recursive procedure calls, but it maintains only one copy of a local variable. A procedure
does not allocate new instances of the local variables on a stack, as C or Pascal would.

Copyright © 1988, 2024, Oracle and/or its affiliates. 95

Using Procedures and Local Variables and Passing Arguments Chapter 18

Passing Arguments

96

Procedure arguments are treated as local variables. Arguments can be numeric, date, or text variables or
strings. If an argument is preceded with a colon, its value is passed back to the calling procedure.

In the following code example, spell number takes two arguments. The first argument is the check
amount. This argument is a number, and the program passes it to the procedure. The procedure does not
need to pass it back.

The second argument is the result that the procedure passes back to the calling program. We precede
this variable with a colon, which means that the value of this argument is copied back at the end of the
procedure. The colon is used only when the argument is declared in the BEGIN-PROCEDURE command.

Look at the following sample program. It is not a complete program, but it is the spell number
procedure, which is stored in the spell.inc file. The check printing sample program includes this code by
using an #INCLUDE command.

File spell.inc
begin-procedure spell number (#num, :$str)

let S$str = "'

! break the number to it's 3-digit parts

let #trillions = floor (#num / 1000000000000)

let #billions = mod (floor (#num / 1000000000),1000)
let #millions = mod (floor (#num / 1000000),1000)
let #thousands = mod(floor (#num / 1000),1000)

let #ones = mod (floor (#num),1000)

! spell each 3-digit part
do spell 3digit(#trillions,'trillion',$str)
do spell 3digit (#billions, 'billion',S$str)
do spell 3digit(#millions, 'million',S$str)
do spell 3digit (#thousands, 'thousand',6 $str)
do spell 3digit (#ones,'',Sstr)
end-procedure ! spell number
begin-procedure spell 3digit (#num,Spart name, :$str)
let #hundreds = floor (#num / 100)
let #rest = mod (#num, 100)
if #hundreds
do spell digit (#hundreds, $str)
concat 'hundred ' with $str
end-if
if #rest
do spell 2digit (#rest,S$str)
end-if
if #hundreds or #rest
if $part name != "'
concat $part name with S$str
concat ' ' with S$str
end-1if
end-if
end-procedure ! spell 3digit
begin-procedure spell 2digit (#num, :$str)
let #tens = floor (#num / 10)
let #ones = mod (#num, 10)
if #num < 20 and #num > 9
evaluate #num
when = 10
concat 'ten ' with $str
break
when = 11
concat 'eleven
break
when = 12
concat 'twelve
break

' with S$str

' with $str

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 18

when = 13
concat 'thirteen ' with S$str
break
when = 14
concat 'fourteen ' with S$str
break
when = 15
concat 'fifteen ' with $str
break
when = 16
concat 'sixteen ' with S$str
break
when = 17
concat 'seventeen ' with S$str
break
when = 18
concat 'eighteen ' with $str
break
when = 19
concat 'nineteen ' with S$str
break
end-evaluate
else
evaluate #tens
when = 2
concat 'twenty' with $str
break
when = 3
concat 'thirty' with $str
break
when = 4
concat 'forty' with S$str
break
when = 5
concat 'fifty' with $str
break
when = 6
concat 'sixty' with $str
break
when = 7
concat 'seventy' with $str
break
when = 8
concat 'eighty' with $str
break
when = 9
concat 'ninety' with $str
break
end-evaluate
if #num > 20
if #ones
concat '-' with S$str
else
concat ' ' with $str
end-if
end-if
if #ones
do spell digit (#ones, $str)
end-if
end-if
end-procedure ! spell 2digit
begin-procedure spell digit (#num, :Sstr)
evaluate #num
when = 1
concat 'one ' with $str
break
when = 2
concat 'two ' with $str
break
when = 3
concat 'three ' with S$str

Copyright © 1988, 2024, Oracle and/or its affiliates.

Using Procedures and Local Variables and Passing Arguments

97

Using Procedures and Local Variables and Passing Arguments

break

when = 4
concat 'four ' with S$str
break

when = 5
concat 'five ' with $str
break

when = 6
concat 'six ' with $str
break

when = 7
concat 'seven ' with S$str
break

when = 8
concat 'eight ' with S$str
break

when = 9
concat 'nine ' with $str
break

end-evaluate
end-procedure ! spell digit

Chapter 18

The result argument is reset in the procedure because the program begins with an empty string and keeps
concatenating the parts of the number to it. The program supports numbers up to 999 trillion only.

The number is divided into its three-digit parts: trillions, billions, millions, thousands, and ones. Another
procedure spells out the three-digit numbers, such as one hundred twelve. Note that the word and is
inserted only between dollars and cents, but not between three-digit parts. This format is common for

check printing in dollars.

Note the use of math functions, such as floor and mod. SQR for PeopleSoft has a large set of functions
that can be used in expressions. These functions are listed and described under the LET command.

See “SQR Commands” (SQR Language Reference for PeopleSoft).

The series of EVALUATE commands in the number spelling procedures are used to correlate the numbers
that are stored in the variables with the strings that are used to spell them out.

This is the sample program that prints checks:

Program exl7a.sqr
#include 'spell.inc'
begin-setup
declare-layout default
end-declare
end-setup
begin-program
do main
end-program
begin-procedure main
alter-printer font=5 point-size=15
begin-select
name &name
sum(d.price * c.quantity) * 0.10 &refund
do print check (&refund)
from customers a, orders b,
ordlines c, products d
where a.cust num = b.cust num
and b.order num = c.order num
and c.product code = d.product code
group by name

having sum(d.price * c.quantity) * 0.10 >= 0.01

end-select
end-procedure ! main
begin-procedure print check (#amount)

print $ current-date (3,45) edit 'DD-Mon-YYYY'

98

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 18 Using Procedures and Local Variables and Passing Arguments

print & name (8,12)
move #amount to $display amt 9,999,990.99
! enclose number with asterisks for security
let Sdisplay amt = '"**' || ltrim($Sdisplay amt,"' ') []| '**!'
print S$display amt (8,58)
if #amount < 1.00
let $spelled amount = 'Zero dollars '
else
do spell_number(#amount,$spelled_amount)
let #len = length($spelled_amount)
! Change the first letter to uppercase
let S$spelled amount = upper (substr ($spelled amount,1,1))
| | substr($spelled amount,2,#len - 1)
concat 'dollars ' with $spelled amount

end-if
let #cents = round (mod (#amount, 1) * 100, O0)
let $cents_amount = 'and ' || edit(#cents,'00') || ' cents'

concat Scents_amount with S$spelled amount
print $spelled amount (12,12)
print 'Rebate' (16,12)
print ' ' (20)
next-listing need=20
end-procedure ! print check

The main procedure starts by setting the font to 15-point Times Roman. The select paragraph is a join

of several tables. (A join is created when you select data from more than one database table in the same
select paragraph.) The customers table has the customer’s name. The program joins it with the orders and
ordlines tables to get the customer’s order details. It also joins with the products table for the price.

The following expression adds up all of the customer’s purchases and calculates a 10 percent rebate:
sum(d.price * c.quantity) * 0.10

The statement groups the records by the customer name, one check per customer, using the following
clause:

group by name
having sum(d.price * c.quantity) * 0.10 >= 0.01

The having clause eliminates checks for less than 1 cent.

The print_check procedure is a local procedure. Note the way that it references the date and customer
name with & current-date and & name, respectively.

See SQR Language Reference for PeopleSoft.

Copyright © 1988, 2024, Oracle and/or its affiliates. 99

Using Procedures and Local Variables and Passing Arguments Chapter 18

100 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 19

Creating Multiple Reports from One
Program

Understanding How to Create Multiple Reports

You can create multiple reports based on common data, selecting the database records only once and
creating different reports simultaneously. The alternative—writing separate programs for the different
reports—would require you to perform a separate database query for each report. Repeated queries are
costly because database operations are often the most resource consuming or time consuming part of
creating a report. Creating multiple reports from one program can save a significant amount of processing
time.

Understanding the Sample Program for Multiple Reports

The following sample program, ex18a.sqr, shows how SQR for PeopleSoft enables you to write multiple
reports with different layouts and different heading and footing sections. The sample program prints three
reports: the labels from the “Printing Mailing Labels” topic, the form letter from the “Creating Form
Letters” topic, and the listing report from the “Selecting Data from the Database” topic. All three reports
are based on the same data.

Program exl8a.sqgr
#define MAX LABEL LINES 10
#define LINES BETWEEN LABELS 3
begin-setup
declare-layout labels
paper-size=(10,11) left-margin=0.33
end-declare
declare-layout form letter
end-declare
declare-layout listing
end-declare
declare-report labels
layout=labels
end-declare
declare-report form letter
layout=form letter
end-declare
declare-report listing
layout=listing
end-declare
end-setup
begin-program
do main
end-program
begin-procedure main
do init mailing labels
begin-select
name
addrl
addr?2
city

Copyright © 1988, 2024, Oracle and/or its affiliates. 101

Creating Multiple Reports from One Program

state
zip
move &zip to $zip XXXXX—XXXX
phone
do print label
do print letter
do print listing
from customers
end-select
do end mailing labels
end-procedure ! main
begin-procedure init mailing labels
let #label count = 0
let #label lines = 0
use-report labels
columns 1 29 57 ! enable columns
alter-printer font=5 point-size=10
end-procedure ! init mailing labels
begin-procedure print label
use-report labels

print &name (1,1,30)
print &addrl (2,1,30)
let $last line = gcity [', ' || &state

print $last line (3,1,30)
next-column at-end=newline
add 1 to #label count
if #current-column = 1
add 1 to #label lines
if #label lines = {MAX LABEL LINES}

Chapter 19

new-page
let #label lines = 0
else
next-listing no-advance skiplines={LINES BETWEEN LABELS}
end-if
end-if

end-procedure ! print label

begin-procedure end mailing labels
use-report labels
use-column 0 ! disable columns
new-page
print 'Labels printed on '
print S$current-date ()
print 'Total labels printed = ' (+1,1)
print #label count () edit 9,999,999

end-procedure ! end mailing labels

begin-procedure print letter

use-report form letter

begin-document (1,1)

&name

&addrl

&addr2

@city state zip

.b

.b

(1)

Dear Sir or Madam:
.b

Thank you for your recent purchases from ACME Inc.
like to tell you about our limited time offer.
our entire inventory is marked down by 25%.

favorite merchandise and save too.

Scurrent-date

We would
During this month,

Yes, you can buy your

To place an order simply dial 800-555-ACME.

Delivery is free too, so don't wait.
.b
.b

Sincerely,

Clark Axelotle

ACME Inc.
end-document
position () @city state zip
print &city ()

102

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 19 Creating Multiple Reports from One Program

print ', ! (
print &state (
print ' ' (
move &zip to $
print $zip (
new-page
end-procedure ! print letter
begin-heading 4 for-reports=(listing)

1P XXXXX—XXXX

print 'Customer Listing' (1) center
print 'Name' (3,1)
print 'City' (,32)
print 'State' (,49)
print 'Phone' (,55)

end-heading
begin-footing 1 for-reports=(listing)
! Print "Page n of m" in the footing
page—-number (1,1) 'Page '
last-page () " of "
end-footing
begin-procedure print listing
use-report listing
print &name (,1)
print &city (,32)
print &state (,49)
print &phone (,55)
position (+1)
end-procedure ! print listing

The SETUP section defines three layouts and three different reports that use these layouts. The labels
report requires a layout that is different from the default. The other two reports use a layout that is
identical to the default layout. You can save the last layout declaration and use the form letter layout for
the listing. However, unless a logical reason exists why the two layouts should be the same, you should
keep separate layouts. The name of the layout indicates which report uses it.

The main procedure performs the Select command. The <command> is performed only once and includes
all of the columns for all of the reports. The phone column is used only in the listing report, and the addr2
column is used only in the form letter report. The other columns are used in more than one report.

For each record that is selected, three procedures are run. Each procedure processes one record for its
corresponding report. The print_label procedure prints one label, the print_letter procedure prints one
letter, and the print_listing procedure prints one line in the listing report. Each procedure begins by
setting the SQR printing context to its corresponding report. SQR sets the printing context with the USE-
REPORT command.

Defining Heading and Footing Sections

SQR enables you to define HEADING and FOOTING sections for each report. This sample program
defines only the heading and footing sections for the listing report because the other two reports do not
use them. The FOR-REPORTS option of the BEGIN-HEADING and BEGIN-FOOTING commands
specifies the report name. The parentheses are required. The USE-REPORT command is not needed in the
heading or footing sections. The report is implied by the FOR-REPORTS option.

Copyright © 1988, 2024, Oracle and/or its affiliates. 103

Creating Multiple Reports from One Program Chapter 19

Defining Program Output

Most of the code for ex18a.sqr is taken from ex9a.sqr, ex10a.sqr, and ex3a.sqr. Because this program
creates output with proportional fonts, you must run it with the -KEEP or -PRINTER:xx command-line
flags.

When you run ex18a.sqr, you get three output files that match the output files for ex9a, ex10a, and ex3a,
respectively. These output files have the names ex18a.lis (labels), ex18a.101 (form letter), and ex18a.102
(customer listing). If you specify -KEEP, the output files are named ex18a.spf, ex18a.s01, and ex18a.s02,
respectively.

Related Links
Understanding SQR Pages

Understanding Mailing Label Printing
Sample Program for Form Letters

104 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 20

Using Additional SQL Statements with SQR

Using SQL Statements in SQR

Although SELECT may be the most common SQL statement, you can also perform other SQL commands
in SQR. Here are a few examples:

» If the program prints important documents such as checks, tickets, or invoices, you may need to
update the database to indicate that the document was printed.

You can do this in SQR with a SQL UPDATE statement.

* You can use SQR to load data into the database.

SQR can read and write external files and construct records. SQR can also insert these records into the
database by using a SQL INSERT statement.

* To hold intermediate results in a temporary database table, you can create two SQL paragraphs in
the SQR program (CREATE TABLE and DROP TABLE) to create this table at the beginning of the
program and drop the table at the end.

These are only a few examples. SQR can perform any SQL statement, and this feature is used often.

Using the BEGIN-SQL Paragraph

A SQL statement other than a select statement must use the BEGIN-SQL paragraph.

The following sample program loads data from an external file into the database. It demonstrates two
important features of SQR: handling external files and performing database inserts. This sample program
loads the tab-delimited file that is created by the program ex11a.sqr:

Program exl9a.sqr

begin-setup
begin-sqgl

on-error=skip ! table may already exist

create table customers ext (
cust num int not

name
addrl
addr?2
city
state
zip
phone
tot
)

end-sqgl
end-setup

begin-program
do main
end-program

varchar
varchar
varchar
varchar
varchar
varchar
varchar
int

null,

Copyright © 1988, 2024, Oracle and/or its affiliates. 105

Using Additional SQL Statements with SQR Chapter 20

begin-procedure main

encode '<009>' into S$sep
open 'exlla.lis' as 1 for-reading record=160:vary
read 1 into $rec:160 ! skip the first record, column headings
while 1
read 1 into $rec:160
if #end-file
break
end-1if
unstring $rec by S$sep into $Scust num $name
$addrl $addr2 $city S$state $zip S$phone S$tot
move S$cust num to #cust num
move S$tot to #tot
begin-sqgl
insert into customers ext (cust num, name,
addrl, addr2, city, state, zip, phone, tot)
values
(#cust_num, Sname, $Saddrl, S$addr2, S$Scity,
$Sstate, $zip, Sphone, #tot)
end-sgl
end-while

begin-sql
commit
end-sqgl

close 1
end-procedure! main

The sample program begins by creating the customers_ext table. If the table already exists, you receive an
error message. To ignore this error message, use the ON-ERROR=SKIP option.

The program reads the records from the file and inserts each record into the database by using an insert
statement inside a BEGIN-SQL paragraph. The input file format is one record per line, with each field

separated by the separator character. When the end of the file is encountered (if #end-file), the program
branches out of the loop. Note that #end-file is an SQR-reserved variable.

The final step is to commit the changes to the database and close the file. You do this with a SQL
COMMIIT statement inside a BEGIN-SQL paragraph. Alternatively, you can use the SQR COMMIT
command. For Oracle databases, use the SQR COMMIT command.

The code may be database-specific.

See Improving SQL Performance with Dynamic SQL.

See SQR Language Reference for PeopleSoft.

106 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 21

Working with Dates

Understanding Dates and Date Arithmetic

SQR has powerful capabilities in date arithmetic, editing, and manipulation. A date can be represented as
a character string or in an internal format by using the SQR date data type.

The date data type enables you to store dates in the range of January 1, 4712 BC to December 31, 9999
AD. It also stores the time of day with the precision of a microsecond. The internal date representation
always keeps the year as a four-digit value. Keep dates with four-digit year values (instead of truncating
to two digits) to avoid date problems at the turn of the century.

You can obtain date values:

* By selecting a date column from the database.

* By using INPUT to get a date from the user.

* By referencing or printing the Scurrent-date reserved variable.

* By using the SQR date functions dateadd, datediff, datenow, or strtodate.
* By declaring a date variable using the DECLARE-VARIABLE command.

For most applications, you do not need to declare date variables. Date variables are discussed later in the
section.

Many applications require date calculations. You may need to add or subtract a number of days from
a given date, subtract one date from another to find a time difference, or compare dates to determine
whether one date is later, earlier, or the same as another date. SQR enables you to perform these
calculations in your program.

Many databases enable you to perform date calculations in SQL, but doing so can be difficult if you
are trying to write portable code because the syntax varies among databases. Instead, perform those
calculations in SQR; your programs will be portable because they will not rely on a particular SQL

syntax.

The dateadd function adds or subtracts a number of specified time units from a given date. The datediff
function returns the difference between two specified dates in the time units that you specify: years,
quarters, months, weeks, days, hours, minutes, or seconds. Fractions are allowed; you can add 2.5 days
to a given date. Conversion among time units is also allowed; you can add, subtract, or compare dates by
using days and state the difference by using weeks.

The datenow function returns the current local date and time. In addition, SQR provides a reserved date
variable, $current-date, which is automatically initialized with the local date and time at the beginning of
the program.

Copyright © 1988, 2024, Oracle and/or its affiliates. 107

Working with Dates Chapter 21

108

You can compare dates by using the usual operators (<, =, or >) in an expression. The datetostr function
converts a date to a string. The strtodate function converts a string to a date.

The following sample program uses functions to add 30 days to the invoice date and to compare it to the
current date:

begin-select
order num (,1)
invoice date
if dateadd(&invoice date, 'day',30) < datenow()

print 'Past Due Order' (,12)
else

print 'Current Order' (,12)
end-if

position (+1)
end-select

This code example uses the dateadd and datenow functions to compare dates. The dateadd function adds
30 days to the invoice date (&invoice date) . The resulting date is then compared with the current
date, which is returned by datenow. If the invoice is older than 30 days, the program prints the Past Due
Order string. If the invoice is 30 days old or less, the program prints the Current Order string.

To subtract a given number of days from a date, use the dateadd function with a negative argument. This
technique is demonstrated in the next code example. In this example, the IF condition compares the
invoice date with the date of 30 days before today. The condition is equivalent to that of the previous code
example.

if &invoice date < dateadd(datenow(), 'day',-30)

You can also write this condition as follows by using the datediff function. Note that the comparison is
now a simple numeric comparison, not a date comparison:

if datediff (datenow(), &invoice date, 'day') > 30

All three IF statements are equivalent, and they demonstrate the flexibility that is provided by these
functions.

Here is another technique for comparing dates:

begin-select
order date
if sorder date > strtodate('3/1/2004','dd/mm/yyyy")
print 'Current Order' ()
else
print 'Past Due Order' ()
end-if
from orders
end-select

The IF statement has a date column on the left side and the strtodate function on the right side. The
strtodate function returns a date type, which is compared with the &order date column. When the order
date is later than January 3, 2004, the condition is satisfied. If the date includes the time of day, the
comparison is satisfied for orders of January 3, 2004, with a time of day greater than 00:00.

In the next code example, the date is truncated to remove the time-of-day portion of a date:

if strtodate(datetostr(sorder date, 'dd/mm/yyyy'), 'dd/mm/yyyy') >
strtodate ('3/1/2004', 'dd/mm/yyyy")

In this code example, the datetostr function converts the order date to a string that stores only the
day, month, and year. The strtodate function then converts this value back into a date. With these two

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 21 Working with Dates

conversions, the time-of-day portion of the order date is omitted. Now when it is compared with January
3, 2004, only dates that are of January 4 or later satisfy the condition.

Using Literal Date Formats

SQR enables you to specify date constants and date values in a special format that is recognized without
the use of an edit mask. This is called the literal date format. For example, you can use a value in this
format in the strtodate function without the use of an edit mask. This format is independent of any specific
database or language preference.

The literal date format is SYYYYMMDD[HH24[MI[SS[NNNNNNT]]]]. The first S in this format
represents an optional minus sign. If preceded with a minus sign, the string represents a BC date. The
digits that follow represent year, month, day, hours, minutes, seconds, and microseconds.

Note: The literal date format assumes a 24-hour clock.

You can omit one or more time elements from the right part of the format. A default is assumed for the
missing elements. Here are some code examples:

let $Sa
let Sa

strtodate ('20040409")
strtodate ('20040409152000")

The first LET statement assigns the date of April 9, 2004 to the $a variable. The default time portion is
00:00. The second LET statement assigns 3:20 in the afternoon of April 9, 2004 to $a. The outputs (when
printed with the ‘DD-MON-YYYY HH:MI AM’ edit mask) are, respectively:

09-APR-2004 12:00 AM
09-APR-2004 03:20 PM

You can also specify a date format with the SQR_DB_DATE FORMAT environment variable. You can

specify this as an environment variable or in the pssqr.ini file.

Related Links
Understanding the SOQR Command Line

Using String-to-Date Conversions

If you convert a string variable or constant to a date variable without specifying an edit mask that
identifies the format of the string, SQR applies a date format. This implicit conversion takes place with
these commands:

* MOVE.

* The strtodate function.

* The DISPLAY, PRINT, or SHOW commands when used to format a string variable as a date.
SQR attempts to apply date formats in this order:

1. The format specified in SQR_DB_DATE FORMAT.

Copyright © 1988, 2024, Oracle and/or its affiliates. 109

Working with Dates Chapter 21

2. The database-dependent format.

3. The SYYYYMMDD[HH24[MI[SS[NNNNNN]]]] literal date format.

Using Date-to-String Conversions

If you convert a date variable to a string without specifying an edit mask, SQR applies a date format. The
conversion takes place with:

* The MOVE command.

* The datetostr function.

e The DISPLAY, PRINT, or SHOW commands when used to output a date variable.
SQR attempts to apply date formats in this order:

1. The format specified in SQR_DB_DATE FORMAT.

2. The database-dependent format.

Related Links
SQR Language Reference for PeopleSoft

Using Dates with the INPUT Command

The INPUT command also supports dates. You can load a date into a date or string variable. For string
variables, use the TYPE=DATE qualifier. Specify a format for the date. Here is a code example:

input $start date 'Enter starting date' type=date format='dd/mm/yyyy'

In this example, the user is prompted with Enter starting date: (the colon is automatically added). The
user then enters the value, which is validated as a date by using the dd/mm/yyyy format. The value is
loaded into the $start date variable.

Using Date Edit Masks

110

When you print dates, you can format them with an edit mask. For example:

print &order date () edit 'Month dd, YYYY'

This command prints the order date in the specified format. The name of the order date month is printed,
followed by the day of the month, a comma, and four-digit year. SQR for PeopleSoft provides an
extensive set of date edit masks.

See “PRINT” (SQR Language Reference for PeopleSoft).

If the value of the date value being edited is March 14, 2004 at 9:35 in the morning, the edit masks
produce the following results:

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 21 Working with Dates

Edit Mask Result Notes

dd/mm/yyyy 14/03/2004 NA

DD-MON-YYYY 14-MAR-2004 NA

'Month dd, YYYY.' March 14, 2004. An edit mask containing blank space

must be enclosed in single quotes.

MONTH-YYYY MARCH-2004 The name of the month in uppercase,
followed by the 4-digit year.

HH:MI 09:35 NA

'HH:MI AM' 09:35 AM Meridian indicators. An edit mask
containing blank space must be enclosed
in single quotes.

YYYYMMDD 20040314 NA

DD.MM.YY 14.03.99 NA

Mon Mar The abbreviated name of the month.
Day Thursday The day of the week.

DY THU An abbreviation for the day of the week.
Q 1 Quarter.

wWw 11 The week of the year.

w 2 The week of the month.

DDD 74 The day of the year.

DD 14 The day of the month (1-31).

D 3 The day of the week (Sunday is 1).

EY Please see below The Japanese imperial era (Meiji, Taisho,

Showa, Heisei).

ER 16 The year in Japanese imperial era.

Copyright © 1988, 2024, Oracle and/or its affiliates. 111

Working with Dates Chapter 21

The result for EY is:
Field or Control Description
Japanese Imperial Era

Note: The MON, MONTH, DAY, DY, AM, PM, BC, AD, ER, EY, and RM masks are case-sensitive and
follow the case of the mask that is entered. For example, if the month is January, the Mon mask yields
Jan and MON yields JAN. All other masks are case-insensitive and can be entered in either uppercase or
lowercase.

If the edit mask contains other text, it is also printed. For example:
print &order date () edit ’'As of Month dd, YYYY’

This command prints the As of March 14, 2004 string if the order date is March 14, 2004. Because the
words As of are not recognized as date mask elements, they are printed.

A backslash forces the character that follows into the output. This technique is useful to print text that
would otherwise be recognized as a date mask element. For example, a mask of The \mo\nth is Month
results in The month is March as an output string. Without the backslashes, the output string would be The
march is March. The second backslash is needed because # is a valid date edit mask element.

In some cases, combining date edit mask elements can result in ambiguity. One example is the 'DDDD'
mask, which could be interpreted as various combinations of DDD (day of year), DD (day of month), and
D (day of week). To resolve such ambiguity, use a vertical bar as a delimiter between format elements.
For example, DDD followed by D can be written as DDD|D.

In addition, national language support is provided for the following masks: MON, MONTH, DAY, DY,
AM, PM, BC, and AD.

Related Links
SQR Language Reference for PeopleSoft

Declaring Date Variables

112

To hold date values in your program, use date variables. Like string variables, date variables are prefixed
with a dollar sign ($). You must explicitly declare date variables by using the DECLARE-VARIABLE
command.

Date variables are useful for holding results of date calculations. For example:

begin-setup
declare-variable
date S$c
end-declare
end-setup

let $c = strtodate('March 1, 2004 12:00', 'Month dd, yyyy hh:mi')
print $c () edit 'dd/mm/yyyy’

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 21 Working with Dates

In this code example, 3c is declared as a date variable. Later, it is assigned the value of noon on March 1,
2004. The $c variable is then printed with the dd/mm/yyyy edit mask, which yields 01/03/2004.

Date variables can be initialized with date literals as shown in this example:

begin-setup
declare-variable
date S$c
end-declare
end-setup

let $c = '20040409152000"'

The LET statement assigns 3:20 in the afternoon of April 9, 2004 to $c.

Copyright © 1988, 2024, Oracle and/or its affiliates. 113

Working with Dates Chapter 21

114 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 22

Using National Language Support

Understanding Locales

National Language Support (NLS) is provided through the concept of locales. A /locale is a set of local
preferences for language, currency, and the presentation of dates and numbers. For example, one locale
may use English, dollar currency, dates in dd/mm/yy format, numbers with commas separating the
thousands, and a period for the decimal place.

A locale contains:
* Default edit masks for number, money, and date.

Use these edit masks to specify the NUMBER, MONEY (for currency), and DATE keywords,
respectively. You can specify these keywords in the INPUT, MOVE, DISPLAY, SHOW, and PRINT
commands.

» Settings for currency symbol, thousands separator, decimal separator, date separator, and time
separator.

» Settings for not applicable (NA), a.m., p.m., BC, and AD in the language of the locale.
» Settings for names of the days of the week and names of the months in the language of the locale.
» Settings for how to process lowercase and uppercase editing of day and month names.

Starting with PeopleTools 8.54, you can generate region-specific SQR reports without personalizing or
modifying the SQR scripts.

Selecting Locales

SQR provides predefined locales such as US-English, UK-English, German, French, and Spanish. You
can define additional locales by editing any .ini file.

With the ALTER-LOCALE command, you can select a locale at the beginning of the program or
anywhere else. Different parts of a program can use different locales.

Select a locale with a command such as this:

alter-locale locale = 'German'

Copyright © 1988, 2024, Oracle and/or its affiliates. 115

Using National Language Support Chapter 22

Defining a Default Locale

116

You can define a default locale in any .ini file. Most or all of your programs can use the same locale, and
specifying the default locale makes specifying the locale in every program unnecessary.

When you install SQR, the default locale is set to the reserved locale called System. System is not an
actual locale. It defines the behavior of older versions of SQR before NLS was added. The preferences

in the system locale are hard-coded in the product and cannot be set or defined in the pssqr.ini; however,
you can alter system settings at runtime by using ALTER-LOCALE. The date preferences depend on the
database that you are using. Therefore, date format preferences in the system locale are different for every
database that you use with SQR.

Note: If you are running SQR outside of the PeopleSoft Process Scheduler, the PS HOME environment
variable must be set to a proper PeopleSoft installation.

Different sites can have different locales as the default. For example, an office in Paris might use the
French locale, and an office in London might use the UK-English locale. To adapt a program to any
location, use the default locale. The program automatically uses the local preferences, which are specified
in the pssqr.ini file of the machine on which it is run. For example, you can print the number 5120 by
using the following command:

print #invoice total () edit '9,999,999.99"'

The setting of the default locale in the pssqr.ini file controls the format. In London, the result might be
5,120.00 and in Paris it might be 5.120,00. The delimiters for thousands and the decimal—the comma and
the period, respectively—are switched automatically according to the preferences of the locale.

Note: Changing the settings of the default locale can change the behavior of existing programs. For
example, if you change the default locale to French, programs that previously printed dates in English can
now print them in French. Be sure that you review and test existing programs when making a change to
the default locale.

Personalizing a Default Locale

Starting with PeopleTools 8.54, users in different geographical regions can generate personalized SQR
reports specific to the region. However, you can customize only the following default locale settings:

» DECIMAL-SEPARATOR

» THOUSAND-SEPARATOR
* DATE-SEPARATOR

* TIME-SEPARATOR

+ DATE-EDIT-MASK

The default values for each locale setting will be used if personalization is enabled for SQR reports

for a specific user. Personalization of SQR reports will be an option that the administrator will grant.

By default, the feature remains off. To generate a region-specific report, the administrator must enable
Personalize SQR Settings in the PIA. For more information about personalizing user, see “Understanding
System Personalizations” (Security Administration)..

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 22 Using National Language Support

Switching Locales

You can switch from one locale to another any number of times while a program runs. This technique is
useful for writing reports that use multiple currencies, or reports that have different sections for different
locales.

To switch to another locale, use the ALTER-LOCALE command. For example, to switch to the Spanish
locale:

alter-locale locale = 'Spanish'

From this point in the program, the locale is Spanish.

Consider this code example:

begin-procedure print data in spanish
! Save the current locale
let Sold locale = S$sqgr-locale
! Change the locale to "Spanish"
alter-locale locale = 'Spanish'
! Print the data
do print data
! restore the locale to the previous setting
alter-locale locale = $old locale
end-procedure

In this code example, the locale is switched to Spanish and later restored to the previous locale before it
was switched. To do that, the locale setting before it is changed is read in the$sqr-locale reserved variable
and stored in $old locale. The value of $old locale is then used in the ALTER-LOCALE command at the
end of the procedure.

Modifying Locale Preferences

With the ALTER-LOCALE command, you can modify individual preferences in a locale. The ALTER-
LOCALE command affects only the current program. It does not modify the pssqr.ini file.

Here is a code example of how you can modify default preferences in a locale:

alter-locale
date-edit-mask
money-edit-mask

"Mon-DD-YYYY'
'$$,588,889.99!

To restore modified locale preferences to their defaults, select the modified locale again. For example,
suppose that the locale was US-English and the date and money edit masks were modified by using the
preceding code. The following code resets the changed date and money edit masks:

alter-locale locale = 'US-English'

Specifying NUMBER, MONEY, and DATE Keywords

The DISPLAY, MOVE, PRINT, and SHOW commands enable you to specify the NUMBER , MONEY,
and DATE keywords in place of an explicit number or date edit mask. These keywords can be useful in
two cases.

Copyright © 1988, 2024, Oracle and/or its affiliates. 117

Using National Language Support

Chapter 22

The first case is when you want to write programs that automatically adapt to the default locale. By using
the NUMBER, MONEY, and DATE keywords, you instruct SQR to take these edit masks from the

default locale settings.

The second case is when you want to specify number, money, and date formats once at the top of the
program and use these formats throughout the report. In this case, you define these formats with an
ALTER-LOCALE command at the top of the program. When you use the NUMBER, MONEY, and
DATE keywords later in the program, they format number, money, and date outputs with the masks that

you defined in the ALTER-LOCALE command.

Whether you set the locale in the pssqr.ini file or in the program, these keywords have the same effect. In
the following code example, these keywords are used with the PRINT command to produce output for the

US-English and French locales:

let #num var = 123456

let #money var = 123456

let $date_var = strtodate ('20040520152000")
! set locale to US-English

alter-locale locale = 'US-English'
print 'US-English locale' (1,1)
print 'With NUMBER keyword ' (+1,1)
print #num var (,22) NUMBER

print 'With MONEY keyword ' (+1,1)
print #money var (,22) MONEY

print 'With DATE keyword ' (+1,1)
print $date var (,22) DATE! set locale to French
ALTER-LOCALE locale = 'French'
print 'French locale' (+2,1)

print 'With NUMBER keyword ' (+1,1)
print #num var (,22) NUMBER

print 'With MONEY keyword ' (+1,1)
print #money var (,22) MONEY

print 'With DATE keyword ' (+1,1)

print $date var (,22) DATE
Here is the program output:

US-English locale

With NUMBER keyword 123,456.00
With MONEY keyword $ 123,456.00
With DATE keyword May 20, 2004

French locale

With NUMBER keyword 123.456,00
With MONEY keyword 123.456,00 F
With DATE keyword 20 Mai 2004

Related Links
SQR Language Reference for PeopleSoft

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 23

Using Interoperability Features

Calling SQR from Another Application

Applications can run SQR programs by using the SQR application program interface (API). An SQR
program can also call the API of an external application.

To invoke an SQR program from another application, use:
* The SQR command line.

The application initiates a process for running SQR. The SQR command includes all of the necessary
parameters.

« The SQR APIL

The application makes a call to the SQR API. This method is covered in the next section.

See Understanding the SQR Command Line and Compiling SQR Programs and Using SQR Execute.

Invoking an SQR Program by Using the SQR API

The SQR API is provided in Microsoft Windows through a Dynamic Link Library (dll). You can use

the SQR API from any application that is capable of calling dll functions. For C and C++ applications,

a header file (sqrapi.h) and an import library (sqrwin.lib) are provided. SQR requires the following .dll
files to run for Microsoft Windows: sqrw.dll, bclw32.dll, libsti32.dll, and stimages.dll. These dll files are
located in the BINW directory.

On platforms other than Microsoft Windows, the SQR API is provided as a static library (sqr.a or sqr.lib).
For C and C++ applications, a header file (SQRAPLH or sqrapi.h) is provided. Be sure to include the
SQR API library and your database library when you link your C or C++ application. Three additional
libraries are required: sqrlibsti64.a , sqrbcl.a and sqrzlib.a.

The following table describes the API functions that are defined for calling SQR:

Function Description

int sqr(char *) Runs an SQR program. Passes the address of a null terminated
string containing an SQR command line, including program
name, connectivity information, flags, and arguments. This
function is a synchronous call. It returns when the SQR
program has finished. This function returns zero if it is
successful.

Copyright © 1988, 2024, Oracle and/or its affiliates. 119

Using Interoperability Features Chapter 23

120

Function Description

void sqrcancel(void) Cancels a running SQR program. The program may not stop
immediately because SQR waits for any currently pending
database operations to finish.

Because the SQR function does not return until the SQR
program has finished, sqrcancel is called by using another
thread or some similar asynchronous method.

int sqrend(void) Releases memory and closes cursors. Cursors can be left
open to speed up repeated running of the same SQR program.
Call this function after the last program has run or optionally
between SQR program runs.

This function always returns zero.

For the benefit of C and C++ programmers, the APIs are declared in the sqrapi.h file. Include this header
file in your source code:

#include 'sqgrapi.h'

When you call SQR from a program, the most recently run SQR program is saved in memory. If the
same SQR program is run again with either the same or different arguments, the program is not scanned
again and the SQL statements are not parsed again. This feature provides a significant improvement in
processing time.

To force SQR to release its memory and database cursors, call sqrend() at any time.

Although memory is automatically released when the program exits, you must call sqrend before the
calling program quits to ensure that SQR properly cleans up any database resources, such as database
cursors and temporarily stored procedures.

To relink SQR on all UNIX/Linux platforms, use the sqrmake and makefile files that are located in
$SQRDIR/../lib. After you invoke sqrmake and optionally select the specific database version to link
with, the SQR executables are re-created.

Check which cc command line is created and invoked for SQR, and adapt it to your program. Each
UNIX/Linux platform and database has its own requirements. Consult your operating system and
database product documentation for specific information.

Check the make files or link scripts that are supplied with SQR for details. You may want to copy and
modify those to link in your program.

To call SQR, call sqr() and pass a command line. For example, in C:

status = sqr ("myprog sammy/baker argl arg2 arg3");
if (status != 0)
...error occurred...

The following table describes the standalone and callable error values that SQR returns:

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 23 Using Interoperability Features

Error Value Description

0 Normal exit.

1 Error exit.

2 Cannot process SQRERR.DAT.

3 Command-line flag in error.

4 Problem creating the .SQT file.

5 Program did not compile.

6 Problem with the .SQR/.SQT file (open/read).
7 Problem with the .LIS file (create/write).

8 Problem with the .ERR file (create/write).

9 Problem with the .LOG file (create/write).

10 Problem with the POSTSCRI.STR file (open/read).
11 Cannot call SQR recursively.

12 Problem with Microsoft Windows.

13 Internal error occurred.

14 Problem with SQRWIN.DLL.

15 Problem with -ZCF file.

Error codes 9 and 12 are applicable to the Microsoft Windows release only.
For more information about linking with SQR, see your installation guide.

See the product documentation for PeopleSoft 9.2 Application Installation.

Copyright © 1988, 2024, Oracle and/or its affiliates. 121

Using Interoperability Features Chapter 23

Invoking an External Application APl by Using the UFUNC.C
Interface

You can extend the SQR language by adding user functions that are written in standard languages, such as
C. This feature enables you to integrate your own code and third-party libraries into SQR. For example,
suppose that you have a library for communication over a serial line, with functions for initiating the
connection and sending and receiving data. SQR enables you to call these functions from SQR programs.

To extend SQR in this way, you must prepare the functions, specify them to SQR, and then link the
objects (and libraries) with the SQR objects and libraries to form a new SQR executable. The new SQR
executable then recognizes the new functions as if they were standard SQR functions.

One example of such an extension would be an initcap function. Oracle users are familiar with this
function. The initcap function changes the first letter of every word to uppercase and changes the rest of
the letters to lowercase. The result value in the following code example would be Mr. Joseph Jefferson:

let $a = initcap('MR. JOSEPH JEFFERSON')

Adding a User Function

This section provides an overview of the ufunc.c file and discusses how to:
e Add a function prototype.

* Add an entry to the USERFUNCS table.

* Add implementation code.

¢ Relink SQR.

Understanding the UFUNC.C File

The code examples in the following sections demonstrate how to extend SQR with an initcap function.

The key to this process is an SQR source file called ufunc.c. This file contains a list of user-defined
functions. It also contains comments with a description of the process of adding a function to SQR.
Ufunc.c is in the lib subdirectory (LIBW in Microsoft Windows).

To add initcap to SQR, you must add it to a global array called userfuncs in ufunc.c.

Adding a Function Prototype

122

Begin by adding a function prototype to the function declaration list:

static void max CC_ARGS ((int, double * >= maxlen) break; /* don't exceed maxlen */
if (isalnum(*ptr)) {
if (flag) *p = islower (*ptr) ?toupper (*ptr) : *ptr;
else *p = isupper (*ptr)?tolower (*ptr) :*ptr;
flag = 0;
} else {
flag = 1;
*p = *ptr;

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 23 Using Interoperability Features

}

pt++; ptr++;
}
*p = '"\0';
return;

}

Note the use of the CC_ARGL, CC_ARG, and CC_LARG macros. You can also write the code as follows
(only the first five lines are shown):

static void initcap(argc,argv,result,maxlen)

int argc; /* Number of actual arguments */
char* argv[]; /* Pointers to arguments: */
char* result; /* Where to store result */

int maxlen; /* Result's maximum length */

Relinking SQR

After you modify ask, you must relink SQR. Use the make file that is provided in the LIB (or LIBW)
subdirectory of SQR. This step is specific to the operating system and database. SQR is linked with the
database libraries, whose names and locations may vary. You may have to modify the make file for your
system.

After SQR is relinked, you are ready to test. Try the following program:
begin-program
let $a = initcap('MR. JOSEPH JEFFERSON')

print $a ()
end-program

The result in the output file should be:

Mr. Joseph Jefferson
See the ufunc.c file for further information about argument types in user-defined functions.

See the product documentation for PeopleSoft 9.2 Application Installation.

Using UFUNC in Microsoft Windows

In Microsoft Windows, ufunc resides in sqrext.dll. You can rebuild sqrext.dll by using any language or
tool, as long as you maintain the appropriate calling protocol. The source code for sqrext.dll is included in
the shipped package (extufunc.c).

When sqrw.dll and sqrwt.dll are loaded, they look for sqrext.dll in the same directory and for any .dlls
that are specified in the SQR Extension section in pssqr.ini. If sqrw.dll and sqrwt.dll find sqrext.dll and
the .dlls that are specified in the pssqr.ini file, they make the following calls in all of the .dlls, passing the
instance handle (of the calling module) and three function pointers:

voilid InitSQRExtension (
HINSTANCE hInstance,
FARPROC lpfnUFuncRegister,
FARPROC lpfnConsole,
FARPROC lpfnError
) ;

Copyright © 1988, 2024, Oracle and/or its affiliates. 123

Using Interoperability Features Chapter 23

Implementing New User Functions in Microsoft Windows

You can implement new user functions in sqrext.dll or any other extension .dll. All of the extension .dlls
must have the InitSQRExtension() function exported. If you implement user functions in sqrext.dll, you
should rebuild the .dll by using the supplied make file, sqrext.mak. If new extension .dlls containing new
user functions are to be used, they must be listed in the SQR Extension section in pssqr.ini in the system
directory.

For any ufunc, you must register it by making the following call in InitSQRExtension():
lpfnUFuncRegister (struct ufnns* ufunc);

The function pointer, IpfnUFuncRegister, is passed in from the calling module. Refer to extufunc.c for
the definition of struct ufnns and the sample user functions.

124 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 24

Testing and Debugging

Using the Test Feature

When developing an SQR program, you frequently test it by running it and examining its output. Often,
you are interested only in the first few pages of a report.

To speed up the cycle of running and viewing a few pages, use the -T command-line flag. The -T flag
enables reports to finish more quickly because all BEGIN-SELECT ORDER BY clauses are ignored.

The database does not sort the data, and the first set of records is selected sooner. Enter the appropriate
number of test pages following the -T flag. For example, -T6 causes the program to stop after six pages of
output are created.

Note: If the program contains break logic, the breaks can occur in unexpected locations because the
ORDER BY clause is ignored.

To test a report file called customer.sqr, enter the following command:

sqr customer username/password -T3
The -T3 flag specifies that the program stops running after three pages are produced.

When the test finishes successfully, check it by displaying the output file on the screen or by printing it.
The default name of the output file is the same as the program file with the .LIS extension. For example,
if the report is named customer.sqr, then the output file is named customer.lis.

When you finish developing the program, run it without the -T flag. The program processes all ORDER
BY clauses and runs to completion. If the program creates more than one report, the -T flag restriction
applies only to the first report.

Using the #DEBUG Command

When debugging a program, you should:

» Display data or show when a procedure or query runs by using temporary SHOW or DISPLAY
commands in key places in the program.

* Isolate problem areas by temporarily skipping the parts of the program that work correctly.
» Temporarily cause additional behavior in questionable areas of the program.
For example, display or modify variables that you suspect are causing a problem.

SQR provides the #DEBUG command to help you make temporary changes to the code. Use the
#DEBUG command to conditionally process portions of the program.

Copyright © 1988, 2024, Oracle and/or its affiliates. 125

Testing and Debugging Chapter 24

Precede the command with #DEBUG, as shown in the following example:
#debug display $s

When the #DEBUG precedes a command, that command is processed only if the -DEBUG flag is
specified in the SQR command line. In this example, the value of $s appears only when you run the
program with -DEBUG.

You can obtain multiple debug commands by using up to 10 letters or digits to differentiate between them.
Indicate which command is to be debugged on the -DEBUG flag, as shown in the following example:

sqr myreport username/password -DEBUGabc

In this example, commands that are preceded by #DEBUG, #DEBUGa, #DEBUGD, or #DEBUG¢c are
compiled when the program is run. Commands that are preceded with #DEBUGA are not compiled
because d was not specified in the -DEBUG command-line flag.

Using Compiler Directives for Debugging

126

You can conditionally compile entire sections of a program by using the five compiler directives:
« #IF

+ #ELSE

* #END-IF or #ENDIF

* #IFDEF

* #IFNDEF

Use the value of a substitution variable, declared by a #DEFINE command, to activate or deactivate a set
of statements, as shown in the following example:

#define DEBUG SESSION Y

#1f DEBUG_SESSION = 'Y'
begin-procedure dump array
let #1 =0

while #i < #counter
! Get data from the array
get $state S$city Sname Sphone from customer array (#i)
print S$state (,1
print S$city (,7
print $name (,2
print $phone (,5
position (+1)
add 1 to #i
end-while
end-procedure ! dump array
#end-if

)
)
4)
5)

The dump_array procedure is used only for debugging. Because DEBUG_SESSION is defined as Y, the
dump_array procedure is included in the program. Later, you can change DEBUG_SESSION to N and
exclude the dump_array procedure from the program.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 24 Testing and Debugging

Avoiding Common Programming Errors

The most common programming error when you are using SQR is misspelling variable names. Because
SQR does not require variables to be declared, it does not issue an error message when variable names are
misspelled. Instead, SQR considers the misspelled variable as if it is another variable.

For example:

let #customer access code = 55
print #customer acess code ()

This example does not print 55 because the variable name is misspelled. One ¢ in access in the PRINT
command is missing.

A related problem involves global versus local variables. If you refer to a global variable in a local
procedure without preceding it with an underscore, SQR does not issue an error message. Instead, it is
taken as a new local variable name. For example:

begin-procedure main

let Sarea = 'North'
do proc
end-procedure ! main
begin-procedure proc local
print $area () ! Should be $_area

end-procedure

In this example, the proc local procedure prints the value of the local $area variable and not the global
Sarea variable. It prints nothing because the local $area variable did not receive a value. To refer to the
global variable, use §_area.

Such small errors are difficult to detect because SQR considers #customer _acess _code as just another
variable with a value of zero.

Copyright © 1988, 2024, Oracle and/or its affiliates. 127

Testing and Debugging Chapter 24

128 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 25

Increasing Performance and Tuning

Understanding SQR Performance and SQL Statements

Whenever a program contains a BEGIN-SELECT, BEGIN-SQL, or EXECUTE command, it performs a
SQL statement. Processing SQL statements typically consumes significant computing resources. Tuning
SQL statements typically yields higher performance gains than tuning any other part of the program.

General tuning of SQL is outside the scope of this PeopleBook because tuning SQL is often specific to
the type of database that you are using: tuning SQL statements for an Oracle database may be different
from tuning SQL statements for DB2. This topic focuses on SQR tools for simplifying SQL statements
and reducing the number of times SQL is run.

Simplifying Complex Select Paragraphs

With relational database design, information is often normalized by storing data entities in separate tables.
To display the normalized information, you must write a select paragraph that joins these tables. With
many database systems, performance suffers when you join more than three or four tables using one select
paragraph.

With SQR, you can perform multiple select paragraphs and nest them. In this way, you can break a large
join into several simpler selects. For example, you can break a select paragraph that joins the orders and
the products tables into two selects. The first select retrieves the orders that you want. For each order that
is retrieved, a second select retrieves the products that were ordered. The second select is correlated to the
first select by a condition such as:

where order num = &order num
This condition specifies that the second select retrieves only products for the current order.

Similarly, if a report is based on products that were ordered, you can make the first select retrieve the
products and the second select retrieve the orders for each product.

This method improves performance in many cases, but not all. To achieve the best performance, you may
need to experiment with the different alternatives.

You can use master and detail reports to perform multiple select paragraphs and nest them.

See Using Dynamic SQL.

Copyright © 1988, 2024, Oracle and/or its affiliates. 129

Increasing Performance and Tuning Chapter 25

Using LOAD-LOOKUP to Simplify Joins

130

Database tables often contain key columns, such as a product code or customer number. To retrieve a
certain piece of information, you join two or more tables that contain the same column. For example,
to obtain a product description, you can join the orderlines table with the products table by using the
product _code column as the key.

With LOAD-LOOKUP, you can reduce the number of tables that are joined in one select. Use this
command with LOOKUP commands.

The LOAD-LOOKUP command defines an array containing a set of keys and values, and loads it into
memory. The LOOKUP command looks up a key in the array and returns the associated value. In some
programs, this technique performs better than a conventional table join.

You can use LOAD-LOOKUP in the SETUP section or in a procedure. If used in the SETUP section, it is
processed only once. If used in a procedure, it is processed each time that it is encountered.

LOAD-LOOKUP retrieves two fields from the database: the KEY field and the RETURN_VALUE field.
Rows are ordered by KEY and stored in an array. The KEY field must be unique and contain no null
values.

When the LOOKUP command is used, the array is searched (using a binary search) to find the
RETURN_VALUE field corresponding to the KEY that is referenced in the lookup.

The following code example illustrates LOAD-LOOKUP and LOOKUP:

begin-setup
load-lookup
name=prods
table=products
key=product code
return value=description
end-setup

begin-select

order num (+1,1)

product code
lookup prods &product code Sdesc
print $desc (,15)

from orderlines

end-select

In this code example, the LOAD-LOOKUP command loads an array with the product code and
description columns from the products table. The lookup array is named prods. The product code column
is the key, and the description column is the return value. In the select paragraph, a LOOKUP on the
prods array retrieves the description for each product code. This technique eliminates the need to join the
products table in the select.

If the orderlines and products tables were joined in the select (without LOAD-LOOKUP), the code would
look like this:

begin-select

order num (+1,1)

ordlines.product code

description (,15)

from ordlines, products

where ordlines.product code = products.product code
end-select

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 25 Increasing Performance and Tuning

Whether a database join or LOAD-LOOKUP is faster depends on the program. LOAD-LOOKUP
improves performance when:

» It is used with multiple select paragraphs.
» It keeps the number of tables being joined from exceeding three or four.

e The number of entries in the LOAD-LOOKUP table is small compared with the number of rows in
the select, and they are used often.

* Most entries in the LOAD-LOOKUP table are used.

Note: You can concatenate columns if you want RETURN_VALUE to return more than one column. The
concatenation symbol is database specific.

Improving SQL Performance with Dynamic SQL

You can use dynamic SQL in some situations to simplify a SQL statement and gain performance:

begin-select
order num
from orders, customers

where order.customer num = customers.customer num
and ($state = 'CA' and order date > S$start date
or $state != 'CA' and ship date > $start date)

end-select

In this example, a given value of $state, order date, or ship date is compared with
$start date. The OR operator in the condition makes such multiple comparisons possible. With
most databases, an OR operator slows processing. It can cause the database to perform more work than
necessary.

However, the same work can be done with a simpler select. For example, if Sstate is ‘CA,’ then the
following select works:

begin-select

order num

from orders, customers

where order.customer num = customers.customer num
and order date > S$start date

end-select

Dynamic SQL enables you to check the value of $state and create the simpler condition:

if $state = 'CA'

let Sdatecol = 'order date'
else

let Sdatecol = 'ship date'
end-if

begin-select

order num

from orders, customers

where order.customer num = customers.customer num
and > S$start_date

end-select

Copyright © 1988, 2024, Oracle and/or its affiliates. 131

Increasing Performance and Tuning Chapter 25

The [$datecol] substitution variable substitutes the name of the column to be compared with
$start date. The select is simpler and no longer uses an OR operator. In most cases, this use of
dynamic SQL improves performance.

See Using Dynamic SQL.

Examining SQL Cursor Status

Because SQR programs select and manipulate data from a SQL database, you should understand how
SQR processes SQL statements and queries.

SQR programs can perform multiple SQL statements. Moreover, they can run the same SQL statement
multiple times.

When a program runs, a pool of SQL statement handles, called cursors, is maintained. A cursor is a
storage location for one SQL statement—for example, SELECT, INSERT, or UPDATE. Every SQL
statement uses a cursor for processing. A cursor holds the context for the execution of a SQL statement.

The cursor pool contains 30 cursors, and you cannot change its size. When a SQL statement is rerun, its
cursor can be immediately reused if it is still in the cursor pool. When an SQR program runs more than 30
different SQL statements, cursors in the pool are reassigned.

To examine how cursors are managed, use the -S command-line flag. This flag displays cursor status
information at the end of a run.

The following information appears for each cursor:

Cursor #nn:
SQL = <SQL statement>

Compiles = nn
Executes = nn
Rows = nn

The listing also includes the number of compiles, which varies according to the database and the
complexity of the query. With Oracle, for example, a simple query is compiled only once, while on
other database platforms, a SQL statement may be compiled before it is first run and recompiled for the
purpose of validation during the SQR compile phase. Therefore, you may see two compiles for a SQL
statement. Later, when the SQL is rerun, if its cursor is found in the cursor pool, then it can proceed
without recompiling.

Avoiding Temporary Database Tables

This section provides an overview of temporary database tables and discusses how to:
» Use and sort arrays.

¢ Use and sort flat files.

132 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 25 Increasing Performance and Tuning

Understanding Temporary Database Tables

Programs often use temporary database tables to hold intermediate results. Creating, updating, and
deleting temporary tables is a resource consuming task, however, and can slow program performance.
SQR provides two alternatives to using temporary database tables:

* Store intermediate results in an SQR array.
e Store intermediate results in a local flat file.

Both techniques can yield a significant performance gain. Use the SQR language to manipulate the data
that is stored in an array or a flat file.

Using and Sorting Arrays

An SQR array can hold as many records as can fit in memory. During the first pass, when records are
retrieved from the database, you can store them in the array. Subsequent passes on the data can be made
without additional database access.

The following code example retrieves records, prints them, and saves them to an array named
customer_array:

create-array name=customer array size=1000
field=state:char field=city:char
field=name:char field=phone:char

let #counter = 0

begin-select

state (,1)

city (,7)

name (,24)

phone (,55)
position (+1)
put &state &city &name &phone into customer array (#counter)
add 1 to #counter

from customers

end-select

The customer_array array has four fields that correspond to the four columns selected from the customer’s
table, and it can hold up to 1,000 rows. If the customer’s table had more than 1,000 rows, you would need
to create a larger array.

The select paragraph prints the data. The PUT command then stores the data in the array. You could use
the LET command to assign values to array fields; however, the PUT command performs the same work
with fewer lines of code. With PUT, you can assign all four fields in one command.

The #counter variable serves as the array subscript. It starts with zero and maintains the subscript of the
next available entry. At the end of the select paragraph, the value of #counter is the number of records in
the array.

The next code example retrieves the data from customer array and prints it:

let #1i = 0

while #i < #counter
get $state $city $name S$phone from customer array (#1i)
print $state (,1)
print $city (,7)
print $name (,24)
print $phone (,55)
position (+1)
add 1 to #i

Copyright © 1988, 2024, Oracle and/or its affiliates. 133

Increasing Performance and Tuning

134

end-while

Chapter 25

In this code example, # goes from 0 to #counter—1. The fields from each record are moved into the

corresponding variables: Sname, $city, $state, and $phone. These values are then printed.

Sorting Arrays

In many cases, intermediate results must be sorted by a different field. The following sample program
shows how to sort customer array by name. The sample program uses a well-known sorting algorithm
called QuickSort. You can copy this code into your program, make appropriate changes, and use it to sort

your array:

Program ex24a.sqr
#define MAX ROWS 1000
begin-setup
create-array name=customer array size={MAX ROWS}
field=state:char field=city:char
field=name:char field=phone:char
!
! Create a helper array that is used in the sort
|
create-array name=QSort size={MAX ROWS}
field=n:number field=j:number
end-setup
begin-program
do main
end-program
begin-procedure main
let #counter = 0
!
! Print customers sorted by state
|
begin-select

state (,1)
city (,7)
name (,24)
phone (,55)

position (+1)
! Put data in the array
put &state &city &name &phone into customer array (#counter)
add 1 to #counter
from customers
order by state
end-select
position (+2)
!
! Sort customer array by name
|
let #last row = #counter - 1
do QuickSort (0, 0, #last row)
!

! Print customers (which are now sorted by name)
i
let #1 = 0
while #i < #counter
! Get data from the array
get $state $city $name Sphone from customer array (#i)
print $state (,
print $city (,7
print $name (,2
print $phone (,5
position (+1)
add 1 to #i
end-while
end-procedure ! main
|

! QuickSort
i

1)
)
4)
5)

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 25

begin-procedure QuickSort (#level,

end-procedure !

begin-procedure QSortSwap (#1i,

end-procedure !

e

Purpose: Sort customer array by name.

This i1s a recursive function. Since SQR does not allocate
local variables on a stack (they are all static), this
procedure uses a helper array.

#level - Recursion level (used as a subscript to the helper

array)
#m - The "m" argument of the classical QuickSort
#n - The "n" argument of the classical QuickSort

#m, #n)
if #m < #n
let #1i = #m
let #3 = #n + 1
! Sort key is "name"
let Skey = customer array.name (#m)
while 1
add 1 to #i
while #i <= #3j and customer array.name (#i) < Skey
add 1 to #i
end-while
subtract 1 from #j
while #j >= 0 and customer array.name (#J)
subtract 1 from #j
end-while
if #i < #j
do QSortSwap (#1i,
else
break
end-if
end-while
do QSortSwap (#m,
add 1 to #level
! Save #j and #n
let QSort.j(#level - 1) =
let QSort.n(#level - 1) =
subtract 1 from #j
do QuickSort (#level,
! restore #j and #n
let #3 = QSort.j (#level - 1)
let #n = QSort.n (#level - 1)
add 1 to #j
do QuickSort (#level, #73,
subtract 1 from #level
end-if

> Skey

#3)

#3)
#3
#n

#m, #3)

#n)

QuickSort

QSortSwap

Purpose: Swaps records #i and #j of customer array
|

- Array subscript

#3 - Array subscript

#3)

get S$state Scity Sname $phone from customer array (#1i)
let customer array.state(#i) = customer array.state (#3j)
let customer array.city(#i) = customer array.city (#J)

let
let
put

customer array.name (#i) = customer array.name (#J)
customer array.phone (#i) = customer array.phone (#J)
$state $city Sname Sphone into customer array (#3j)
QSortSwap

Increasing Performance and Tuning

The QuickSort algorithm uses a recursive procedure, which means that it calls itself. SQR maintains only
one copy of the local variables of the procedure. In QuickSort, the # and #n variables are overwritten
when QuickSort calls itself.

Copyright © 1988, 2024, Oracle and/or its affiliates.

135

Increasing Performance and Tuning Chapter 25

For the algorithm to work properly, the program must save the values of these two variables before
making the recursive call, and then it must restore those values when the call finishes. QuickSort can
call itself recursively many times, so the program may need to save many copies of # and #n. To have
the program do this, add a #/evel variable that maintains the depth of recursion. In this example, a helper
array, Qsort, is used to hold multiple values of # and #n.

The QuickSort procedure takes three arguments. The first is the recursion level (or depth), which is #level,
as previously described. The second and third arguments are the beginning and end of the range of rows
to be sorted. Each time QuickSort calls itself, the range becomes smaller. The main procedure starts
QuickSort by calling it with the full range of rows.

The QSortSwap procedure swaps two rows in customer_array. Typically, rows with a lower key value are
moved up.

The QuickSort and QSortSwap procedures in ex24a.sqr refer to customer_array and its fields. If you plan
to use these procedures to sort an array in your applications, you must change these references to the
applicable array and fields. The QuickSort procedure sorts in ascending order.

SQR and Language-Sensitive Sorting

SQR does not support National Language Sensitive sorting natively. SQR compares characters based
on Unicode codepoint, and sorting based on Unicode codepoint does not correctly sort order language-
sensitive data.

See Understanding the SQR Command Line.

The QuickSort procedure does not support National Language Sensitive character string sorting. The
comparisons are simple string comparisons based on Unicode codepoint used internally in SQR to
represent string data. For instance, the following code lines from the preceding code sample would sort
data in Unicode codepoint order. Unicode codepoints are not ordered to make a correct sorting order of
any language.

while #i <= #J and customer array.name (#i) < Skey
and
while #j >= 0 and customer array.name (#j) > Skey

If you want to sort string data in SQR, you may need to write a National Language Sensitive character
string comparison and add that to SQR. The QuickSort procedure will then be modified in the following
way:

while #i <= #j and NLS_STRING COMPARE (customer_ array.name (#i) , $key)
while #j >= 0 and NLS_ STRING COMPARE (Skey,customer array.name (#3))

Using and Sorting Flat Files

136

An alternative to an array is a flat file. You can use a flat file when the required array size exceeds the
available memory.

The code example in the previous section can be rewritten to use a file instead of an array. The advantage
of using a file is that the program is not constrained by the amount of memory that is available. The
disadvantage of using a file is that the program performs more input and output (I/O). However, it may
still be faster than performing another SQL statement to retrieve the same data.

This program uses the UNIX/Linux sort utility to sort the file by name. This example can be extended to
include other operating systems.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 25 Increasing Performance and Tuning

The following code example is rewritten to use the cust.dat file instead of the array:

Program ex24b.sqr
begin-program
do main
end-program
begin-procedure main
|
! Open cust.dat
!
open 'cust.dat' as 1 for-writing record=80:vary
begin-select

state (,1)
city (,7)
name (,24)
phone (,55)

position (+1)
! Put data in the file
write 1 from &name:30 &state:2 &city:16 &phone:10
from customers
order by state
end-select
position (+2)
i
! Close cust.dat
close 1
! Sort cust.dat by name
i
call system using 'sort cust.dat > cust2.dat' #status
if #status <> 0
display 'Error in sort'
stop
end-1if
|
! Print customers (which are now sorted by name)
i
open 'cust2.dat' as 1 for-reading record=80:vary
while 1 ! loop until break
! Get data from the file
read 1 into $name:30 $state:2 $city:16 S$phone:10
if #end-file
break ! End of file reached
end-if
print $state (
print $city (
print $name (
print $phone (
position (+1)
end-while
|

)
)
4)
5)

N I

’
’
14
14

! close cust2.dat
close 1
end-procedure ! main

The program starts by opening a cust.dat file:
open 'cust.dat' as 1 for-writing record=80:vary

The OPEN command opens the file for writing and assigns it file number 1. You can open as many as
12 files in one SQR program. The file is set to support records of varying lengths with a maximum of 80
bytes (characters). For this example, you can also use fixed-length records.

As the program selects records from the database and prints them, it writes them to cust.dat:

write 1 from &name:30 &state:2 &city:16 &phone:10

The WRITE command writes the four columns into file number 1, the currently open cust.dat. It writes
the name first, which simplifies sorting the file by name. The program writes fixed-length fields. For

Copyright © 1988, 2024, Oracle and/or its affiliates. 137

Increasing Performance and Tuning Chapter 25

example, &name : 30 specifies that the name column uses exactly 30 characters. If the actual name is
shorter, it is padded with blanks. When the program has finished writing data to the file, it closes the file
by using the CLOSE command.

The file is sorted with the UNIX sort utility:
call system using 'sort cust.dat > cust2.dat' #status

The sort cust.dat > cust2.dat command is sent to the UNIX system. It invokes the UNIX sort
command to sort cust.dat and direct the output to cust2.dat. The completion status is saved in #status;
a status of 0 indicates success. Because name is at the beginning of each record, the file is sorted by name.

Next, open cust2.dat for reading. The following command reads one record from the file and places the
first 30 characters in $name:

read 1 into $name:30 $state:2 $city:16 S$phone:10

The next two characters are placed in $state, and so on. When the end of the file is encountered,

the #end-file reserved variable is automatically set to 1 (true). The program checks for #end-file and
breaks out of the loop when the end of the file is reached. Finally, the program closes the file by using the
CLOSE command.

Creating Multiple Reports in One Pass

Sometimes you must create multiple reports that are based on the same data. In many cases, these reports
are similar, with only a difference in layout or summary. Typically, you can create multiple programs and
even reuse code. However, if each program is run separately, the database has to repeat the query. Such
repeated processing is often unnecessary.

With SQR, one program can create multiple reports simultaneously. In this method, a single program
creates multiple reports, making just one pass on the data and reducing the amount of database
processing.

See Understanding the Sample Program for Multiple Reports.

Tuning SQR Numerics

138

SQR for PeopleSoft provides three types of numeric values:
* Machine floating point numbers

* Decimal numbers

* Integers

Machine floating point numbers are the default. They use the floating point arithmetic that is provided by
the hardware. This method is very fast. It uses binary floating point and normally holds up to 15 digits of
precision.

Some accuracy can be lost when you are converting decimal fractions to binary floating point numbers.
To overcome this loss of accuracy, you can sometimes use the ROUND option of commands such as

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 25 Increasing Performance and Tuning

ADD, SUBTRACT, MULTIPLY, and DIVIDE. You can also use the round function of LET or numeric
edit masks that round the results to the needed precision.

Decimal numbers provide exact math and precision of up to 38 digits. Math is performed in the software.
This is the most accurate method, but also the slowest.

You can use integers for numbers that are known to be integers. Using integers is beneficial because they:
* Enforce the integer type by not allowing fractions.

» Adhere to integer rules when dividing numbers.

Integer math is also the fastest method, typically faster than floating point numbers.

If you use the DECLARE-VARIABLE command, the -DNT command-line flag, or the DEFAULT-
NUMERIC entry in the Default-Settings section of the PSSQR.INI file, you can select the type of
numbers that SQR uses. Moreover, you can select the type for individual variables in the program with
the DECLARE-VARIABLE command. When you select decimal numbers, you can also specify the
needed precision.

Selecting the numeric type for variables enables you to fine-tune the precision of numbers in your
program. For most applications, however, this type of tuning does not yield a significant performance
improvement, so selecting decimal is best. The default is machine floating point to provide compatibility
with older releases of the product.

Compiling SQR Programs and Using SQR Execute

Compiling an SQR program can improve its performance. The compiled program is stored in a runtime
(.SQT) file. You can then run it with SQR Execute. Your program runs faster because it bypasses the
compile phase.

See SOR for PeopleSoft Overview and Understanding the SQOR Command Line.

Setting Processing Limits

Use a startup file and the Processing-Limits section of pssqr.ini to define the sizes and limitations of some
of the internal structures that SQR uses. An -M command-line flag can specify a startup file whose entries
override those in pssqr.ini. If you use the -Mb command-line flag, then corresponding sections of the file
are not processed. Many of these settings have a direct effect on memory requirements.

Tuning of memory requirements used to be a factor with older, 16-bit operating systems, such as
Microsoft Windows 3.1. Today, most operating systems use virtual memory, and tuning memory
requirements normally do not affect performance in any significant way. The only case in which you
might need to be concerned with processing limit settings is with large SQR programs that exceed default
processing limit settings. In such cases you must increase the corresponding settings.

Copyright © 1988, 2024, Oracle and/or its affiliates. 139

Increasing Performance and Tuning Chapter 25

Buffering Fetched Rows

When you run a BEGIN-SELECT command, SQR fetches records from the database server. For better
performance, SQR fetches them in groups rather than one at a time—by default in groups of 10 records.
SQR buffers the records, and a program processes these records one at a time. SQR, therefore, performs a
database fetch operation after every 10 records instead of after every single record, which is a substantial
performance gain. If the database server is on another computer, network traffic is also significantly
reduced.

Modify the number of records to fetch together by using the -B command-line flag or, for an individual
BEGIN-SELECT command, by using its -B option. In both cases, specify the number of records to be
fetched together. For example, -B100 specifies that records be fetched in groups of 100. This means that
the number of database fetch operations is further reduced.

This feature is currently available with SQR for Oracle database and SQR for ODBC.

Running Programs on the Database Server

140

To reduce network traffic and improve performance, run SQR programs directly on the database server
machine. The SQR server is available on many server platforms, including Microsoft Windows and
UNIX/Linux.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 26

Compiling Programs and Using SQR
Execute

Understanding Compile Features

The following table lists SQR features that apply at compile time and their possible runtime equivalents.
In some cases, no equivalent exists and you must work around the limitation. For example, you may have
to use substitution variables with commands that require a constant and do not allow a variable. The topic
“Writing Printer-Independent Reports” includes an example that works around the limitation of the USE-
PRINTER-TYPE command, which does not accept a variable as an argument.

See Understanding the Sample Program for Multiple Reports and Understanding Compile Features.

Compile Time

Runtime

Substitution variables

Use regular SQR variables. If you are substituting parts of a
SQL statement, use dynamic SQL instead.

See Improving SQL Performance with Dynamic SQL

ASK INPUT
#DEFINE LET

#IF IF

INCLUDE No equivalent

DECLARE-LAYOUT, margins

No equivalent

Number of heading or footing lines

No equivalent

DECLARE-CHART

PRINT-CHART

DECLARE-IMAGE

PRINT-IMAGE

DECLARE-PROCEDURE

USE-PROCEDURE

DECLARE-PRINTER

ALTER-PRINTER (where possible)

Copyright © 1988, 2024, Oracle and/or its affiliates.

141

Compiling Programs and Using SQR Execute Chapter 26

Compiling and Running an SQR Program

142

For users, running an SQR program is a one-step process. For SQR, however, two steps are involved:
compiling the program and running it. When compiling a program, SQR:

* Reads, interprets, and validates the program.

* Preprocesses substitution variables and certain commands: ASK, #DEFINE, #INCLUDE, #IF, and
#IFDEF.

e Validates SQL statements.

¢ Performs the SETUP section.

Note: Make sure that SQRBIN (defined in pspres.cfg) points to the correct location (PS. HOME/bin/
SQR/<DB>/bin for Unix and PS_ HOME/bin/sqrw/<DB>/BINW for Microsoft Windows) before you run
an SQR program.

SQR enables you to save the compiled version of a program and use it when you rerun a report. That
way, you perform the compile step only once and bypass it in subsequent runs. SQR does not compile
the program into machine language. SQR creates a ready-to-run version of the program that is already
compiled and validated. This file is portable between different hardware platforms and between some
databases.

Run the SQR executable (SQR for UNIX/Linux or SQRW for Microsoft Windows) against the SQR
program file and include the -RS command-line flag to save the runtime file. SQR creates a file with a file
name extension of .sqt . You should enter something like this:

sqrw exla.sqr sammy/baker@rome -RS

Run the SQR executable with the -RT command-line flag to run the .sqt file. It runs faster because the
program is already compiled. Here is an example:

sqgrw exla.sqt sammy/baker@rome -RT

The SQR product distribution includes SQR Execute (the SQRT program). SQR Execute can run .sqt
files, but it does not include the code that compiles an SQR program. (This program is equivalent to
running SQR with -RT.) Here is an example of running SQR Execute from the command line:

sgrwt exla.sqgt sammy/baker@rome

After you save the runtime (.sqt) file, SQR no longer performs any compile-time steps such as running
#IF, #INCLUDE, or ASK commands or performing the SETUP section. These were already performed
when the program was compiled and the runtime file was saved.

You must clearly distinguish between what action is performed at compile time and what action is
performed at runtime. Think of compile-time steps as defining what a report is. Commands such as #IF or
ASK enable you to adapt your report at compile time. For runtime adaptation, use commands such as IF
and INPUT.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 27

Printing with SQR

Specifying Output File Types by Using SQR Command-Line Flags

Except on the Microsoft Windows platform, SQR does not actually print a report. SQR creates an output
file that contains the report, but it does not print it directly. The output file can be a printer-specific file
or an SQR portable file (SPF). SQR portable files have a default extension of .spf or .snn (for multiple

reports).

The following table summarizes SQR command-line flags and the types of output that they produce:

Command-Line Flag Output File Extension File Format Suitable Usage
-PRINTER:EH .htm Enhanced HTML Intranet or internet
-PRINTER:HP lis PCL HP LaserJet printer
-PRINTER:HT .htm HTML Intranet and internet
-PRINTER:LP lis US ASCII Line printer

-PRINTER:PS lis PostScript PostScript printer

-PRINTER:WP None. Not applicable Microsoft Windows
Output goes directly to the
default printer without being
saved to a file. You can set the
default printer by using the
Microsoft Windows Control
Panel.

-NOLIS .spf or .snn SQR Portable file SQR Print and SQR Viewer
can print this file to different
printers.

-KEEP .spf or .snn (in addition to SQR Portable file and the SQR Print and SQR Viewer
the .1is file that is normally format of the .lis file can print this .spf file to
created) different printers.

No flag lis US ASCII, PCL, or PostScript | Line printer, HP LaserJet, or

PostScript, respectively

Copyright © 1988, 2024, Oracle and/or its affiliates.

143

Printing with SQR Chapter 27

Note: When no flags are specified, SQR produces a line printer output unless it is otherwise set in the
SQR program with DECLARE-PRINTER, USE-PRINTER-TYPE, or the PRINTER-TYPE option of
DECLARE-REPORT.

SPF is a printer-independent file format that supports all of the SQR graphical features, including fonts,
lines, boxes, shaded areas, charts, bar codes, and images.

This file format is useful for saving the output of a report. SPFs can be distributed electronically and read
with the SQR Viewer. Producing SPF output also enables you to decide later where to print it. Use SQR
Viewer or SQR Print to print an SPF file.

Using the DECLARE-PRINTER Command

144

The DECLARE-PRINTER command specifies printer-specific settings for the output file types that SQR
supports: line printer, PostScript, HP LaserJet, and HTML. The DECLARE-PRINTER command itself
does not cause the report to be produced for a specific printer. To specify a specific format, use one of
these methods:

* The -PRINTER:xx command-line flag.

For example -PRINTER:PS produces PostScript output. If the program creates multiple reports, such
as the sample program ex18a.sqr, the -PRINTER:xx flag produces the same output format for all of
the reports.

¢ The USE-PRINTER-TYPEcommand.

You must use this command before you print because SQR cannot switch the printer type in the
middle of a program. USE-PRINTER-TYPE PS, for example, produces PostScript output.

* The PRINTER-TYPE option of the DECLARE-REPORT command.

You normally use the DECLARE-REPORT command when a program generates more than one
report.

For example, the following code example produces PostScript output for the labels report:

declare-report labels
layout=labels
printer-type=ps

end-declare

The DECLARE-PRINTER command defines settings for line printers, PostScript, or HP LaserJet
printers. Specify the type of printer by using the #ype option of the DECLARE-PRINTER command or
one of the predefined printers: DEFAULT-LP, DEFAULT-PS, DEFAULT-HP, and DEFAULT-HT.

A program can have more than one DECLARE-PRINTER command if you define settings for each of the
printer types. The settings for a particular printer take effect only when output is produced for that printer.
When the program generates multiple reports, you can define settings for each printer for each report. To
make a DECLARE-PRINTER command apply to a specific report, use the FOR-REPORTS option.

The output file normally has the same name as the program, but with a different file extension. The
default file extension is .lis for PostScript (PS), HP LaserJet (HP), or Line Printer (LP). If you are
generating an SPF, the default extension is .spf. If you want SQR to use another name for the output file

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 27 Printing with SQR

(including a user-defined file extension), use the -F option on the command line. For example, to use
chapterl.out as the output of the sample program exla.sqr, use this command to run SQR:

sqr exla username/password —-fchapterl.out
When a program creates more than one report, you can name the output file by using multiple -F flags:
sqr ex20a username/password -flabel.lis -fletter.lis -flisting.lis

You cannot directly name .spf files. You can still use the -F command-line flag to name the file, but you
cannot control the file name extension. For example:

sqr ex20a username/password —-flabel.lis -fletter.lis -flisting.lis -nolis

The -NOLIS command-line flag causes SQR to produce .spf files instead of .lis files. The actual file
names are label.spf, letter.s01, and listing.s02. The second .spf file is named .s01 and the third is
named .s02. SQR supplies file extensions such as these when a program generates multiple reports.

Different operating systems require different techniques for printing output. On platforms other than
Microsoft Windows, if output is in SPF format, you first use SQR Print to create the printer-specific file.
For example, the following command invokes SQR Print to create a PostScript file named myreport.lis
from the output file named myreport.spf:

sgqrp myreport.spf -printer:ps

This conversion is one-way—an .spf file can be converted to an .lis file, but an .lis file cannot be
converted to an .spf file.

The following table summarizes the commands and command-line options that you can use on different
systems to send report output to a printer. Consult your operating system documentation for details.

Operating System Command Command-Line Options
UNIX Ip myreport.lis Use -D for printer destination. You can
use the UNIX af command to schedule
Ip myreport.lis -d ... the printing time.
Microsoft Windows SQR prints directly. You can also use Use the Print Setup dialog box in SQR
SQR Viewer. Print or the SQR Viewer to select a

printer destination. Use SQR Print to
print multiple copies.

You can also use the File Manager Copy
command to copy the file to the printer
destination (for example, Ipt1).

Check with your systems administrator about other procedures or commands that are applicable to
printing output files at your site.

Related Links
Understanding the Sample Program for Multiple Reports

Copyright © 1988, 2024, Oracle and/or its affiliates. 145

Printing with SQR Chapter 27

146 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 28

Using the SQR Command Line

Understanding the SQR Command Line

You can use the SQR command line to specify flags and to pass arguments to modify your program at
runtime.

You can enter command-line flags such as -Bnn, -KEEP, or -S in the command line to modify some aspect
of program processing or output. Command-line arguments are typically answers to requests (done in the
SQR program by ASK or INPUT commands) for user input.

The following code example and table describe the syntax of the SQR command line:

SQR [program] [connectivity] [flags ...] [args ...] [@file ...]
Argument Description
program The name of the program. The default file type or extension

is .sqr. If the parameter is entered as a question mark (?) or
omitted, SQR prompts you for the program name. On UNIX/
Linux-based systems, if your shell uses the question mark as a
wildcard character, you must precede it with a backslash (V).

connectivity Oracle: Use [Username]/[Password[(@Database]] as your
username and password for the database. You can also
specify the connection string for the database (for example,
@B:ORASERVER).

The information that SQR needs to connect to the database. If
the parameter is entered as a question mark or omitted, SQR
prompts you for it. The information you enter depends on the
database you are using:

DB2: Use Ssname and SQLid for the subsystem name and
SQL authorization ID.

Informix: Use Database as the name of the database.

ODBC: Use Data_Source Name/[Username]/[Password] as
the name of the ODBC driver when you set up the driver and
your username and password for the database.

flags Any of the flags that are listed in the SQR Language
Reference. Begin command-line flags with a hyphen. When a
flag has an argument, enter the argument directly following the
flag with no intervening space.

See “SQR Command-Line Flags” (SQR Language Reference
for PeopleSoft).

Copyright © 1988, 2024, Oracle and/or its affiliates. 147

Using the SQR Command Line Chapter 28

Argument Description

args... Arguments that are used by SQR while the program is running.
Arguments that are listed here are used by the ASK and
INPUT commands rather than prompting the user. Arguments
must be entered in the command line in the same sequence that
they are expected by the program: first all ASK arguments in
order and then INPUT arguments in order.

@file... File containing program arguments, one argument per line.
Arguments listed in the file are processed one at a time.
You can specify the command-line arguments program,
connectivity, and args in this file.

Specifying Command-Line Arguments

This section provides an overview of command-line arguments and discusses how to:
* Retrieve arguments.

* Specify arguments and argument files.

» Use an argument file.

» Use other approaches to pass command-line arguments.

» Use reserved characters.

* Create an argument file from a report.

Understanding Command-Line Arguments

148

You can pass an almost unlimited number of command-line arguments to SQR at runtime. On some
platforms, the operating system imposes a limit on the number of arguments or the total size of the
command line. Passing arguments is especially useful in automated reports, such as those that are invoked
by scripts or menu-driven applications.

You can pass arguments to SQR on the command line, in files, or with the SQRFLAGS environment
variable. When you pass arguments in a file, reference the file name on the command line and put one
argument on each line of the file. This avoids any limits that are imposed by the operating system.

To reference a file on the command line, precede its name with the @ sign as shown in the following code
example:

sqr myreport sammy/baker argl arg2 @file.dat

In this example, argl and arg? are passed to SQR, followed by the file.dat file. Each line in file.dat has an
additional argument.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 28 Using the SQR Command Line

Retrieving Arguments

When the ASK and INPUT commands run, SQR determines whether you entered any arguments in

the command line or whether an argument file was opened. If either has happened, SQR uses this input
instead of prompting the user. After the available arguments are used, subsequent ASK or INPUT
commands prompt the user for input. If you use the INPUT command with the BATCH-MODE argument,
SQR does not prompt the user but instead returns a status meaning No more arguments.

SQR processes all ASK commands before INPUT commands.

Note: If you compiled the SQR program into an .SQT file, ASK commands will already have been
processed. Use INPUT instead.

Specifying Arguments and Argument Files

You can mix argument files with simple arguments, as shown in the following code example:

sqr rep2 sammy/baker 18 @argfilel.dat "OH" @argfile2.dat "New York"

This command line passes SQR the number 18, the contents of argfilel.dat, the value OH, the contents of
argfile2.dat, and the value New York, in that order.

The OH argument is in quotes to ensure that SQR uses uppercase OH. When a command-line argument is
case-sensitive or contains spaces, you must enclose it within quotes. Arguments that are stored in files do
not require quotes and cannot contain them; the actual strings with uppercase characters and any spaces
are passed to SQR.

Using an Argument File

To print the same report on different printers with different characteristics, you can save values for the
different page sizes, printer initializations, and fonts in separate files and use a command-line argument to

specify which file to use. For example, the following command line code example passes the value 18 to
SQR:

sqr myreport sammy/baker 18

An #INCLUDE command in the report file selects the printer18.dat file based on the command-line
argument:

begin-setup
ask num ! Printer number.
#include 'printer{num}.dat' ! Contains #DEFINE commands for
! printer and paper width and length
declare-layout report
paper-size =({paper width} {paper length})
end-declare
end-setup

In this example, the ASK command assigns the value 18 to the num variable; 18 is a compile-time
argument. The #INCLUDE command then uses the value of num to include the printer18.dat file, which
could include commands like this:

! Printerl8.dat-definitions for printer in Bldg 4.
#define paper length 11

#define paper width 8.5

#define bold font LS12755

#define light font LS13377

Copyright © 1988, 2024, Oracle and/or its affiliates. 149

Using the SQR Command Line Chapter 28

#define init HM"J73011

Using Other Approaches to Pass Command-Line Arguments

SQR examines an argument file for a program name, username, or password if none is provided in the
command line. The following command line omits the program name, username, and password:

sqr @argfile.dat

The first two lines of the argument file for this code example contain the program name and the username
and password:

myreport

sammy/baker

18
OH

If you do not want to specify the report name, username, or password in the command line or in an
argument file, use the question mark (?). SQR prompts the user to supply these. For example:

sgr myreport ? @argfile.dat

In this example, the program prompts the user for the username and password instead of taking them from
the first line in the argument file.

You can use more than one question mark on the command line, as shown in the following code example:
sqgqr ? ? @argfile.dat

In this example, the program prompts the user for the program name and the username and password.

Note: SQR for Microsoft Windows does not accept the SQR program name and database connectivity to
be part of the argument file.

Using Reserved Characters

The hyphen (-) and @ sign characters have special meanings in a command line. The hyphen precedes

an SQR flag, and the @ sign precedes an argument file name. To use either of these characters as the first
character of a command-line argument, enter the character twice to indicate that it is a literal hyphen or @
sign, as shown in the following code example:

sqr myreport ? --17 Qargfile.dat Q@X2H44

In this example, the double hyphen and double @ sign are interpreted as single literal characters.

Creating an Argument File from a Report

150

You can create an argument file for one program from the output of another program. For example, you
can print a list of account numbers to the acctlist.dat file, and then run a second report with the following
command:

sgr myreport sammy/baker @acctlist.dat

End acctlist.dat with a flag such as END, as shown in the following code example:

123344

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 28 Using the SQR Command Line

134455
156664

END
An SQR program can use the numbers in acctlist.dat with an INPUT command, as shown in the following
code example:

begin-procedure get company
next:
input $account batch-mode status = #status
if #status = 3
goto end proc
end-1if
begin-select
cust num, co name, contact, addr, city, state, zip
do print-page ! Print page with
! complete company data
from customers
where cust num = Saccount
end-select
goto next ! Get next account number
end proc:
end-procedure !get company

Using Batch Mode

SQR enables you to run reports in batch mode in:
¢ UNIX/Linux.
* Microsoft Windows.

You can create UNIX/Linux shell scripts or MS-DOS batch (.bat) files to run SQR. Include the SQR
command line in the file as you enter it.

Copyright © 1988, 2024, Oracle and/or its affiliates. 151

Using the SQR Command Line Chapter 28

152 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29

Generating and Publishing HTML from an
SQR Program

Understanding SQR Capabilities That Are Available with HTML

The SQR language has a rich set of features, but some of these features are not available for HTML
output because of the limitations of that format.

The SQR features that are supported for HTML include:
» Images.
* Font sizing.

The SQR language specifies font sizes in points. HTML specifies font sizes in a value from 1 to 6. A
point size that is specified in an SQR program is mapped to an appropriate HTML font size.

» Font styles.
The bold and underline font styles are supported.
* Centering.
The SQR features that are not currently supported for HTML output include:
* Font selection.
* Bar codes.

* Lines and boxes (using -PRINTER:HT).

Note: You can generate professional quality HTML report files with SQR without being an HTML
expert. However, if you want to adapt HTML output by using the SQR HTML procedures, you may want
to learn more about HTML.

Generating HTML Output

This section provides an overview of HTML output and discusses how to:
* Produce HTML output.
* Use -PRINTER:EH.

* Set HTML attributes under -PRINTER:EH.

Copyright © 1988, 2024, Oracle and/or its affiliates. 153

Generating and Publishing HTML from an SQR Program Chapter 29

* Use -PRINTER:HT.

* Burst reports.

* Set attributes with HTML procedures.
* Use additional HTML procedures.

* Set output file types.

e Test HTML output.

Understanding HTML Output

When an SQR program generates HTML output, that output contains HTML tags. An HTML tagis a
character sequence that defines how information appears in a web browser.

Typically, HTML output looks like this:
<HTML><HEAD><TITLE>myreport.lis</TITLE></HEAD><BODY>

This code is only a portion of the HTML output that SQR generates. The tags that it contains indicate the
start and end points of HTML formatting.

For example, in the code example, the <HTML> tag identifies the output that follows as HTML output.
The <TITLE> and </TITLE> tags enclose the report title, in this case, myreport.lis. The <BODY> tag
indicates that the information following it makes up the body of the report.

Producing HTML Output

154

You can produce HTML output from an SQR program by using one of four methods, each of which
provides a different level of HTML features:

* Running an unmodified SQR program with the -PRINTER:EH command-line flag makes the HTML
3.0 or 3.2 output viewable in a web browser.

* Running an unmodified SQR program with the -PRINTER:HT command-line flag makes the HTML
2.0 output viewable in a web browser.

* Using two HTML procedures, html_set head tags and html set body attributes, enables you to
define a title and background image for HTML output.

With this method, you must still use the -PRINTER:HT command-line flag.

» Using additional HTML procedures produces output with a full set of HTML features, including lists,
tables, and links.

With this method, you must still use the -PRINTER:HT command-line flag.

The procedures that are used in the last two options are contained in a file called html.inc. To use HTML
procedures, the SQR program must include this command:

#include 'html.inc'

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

The HTML.INC file is located in the SAMPLE (or SAMPLEW) directory. Use the -1 command-line flag
to specify its path.

Using -PRINTER:EH

You can generate enhanced HTML output from an SQR program by using the -PRINTER:EH command-
line flag. Output that contains HTML formatting tags is produced. All output is displayed as fully
formatted HTML 3.0 or 3.2 text. You can generate high-quality HTML from SQR programs by using -
PRINTER:EH to issue a command like this:

sqrw myreport.sqr sammy/baker@rome -PRINTER:EH

You can control the version of HTML that is used by editing the FullHTML enhanced HTML parameter
in the PSSQR.INI file. Set FullHTML to be equal to TRUE for HTML 3.2 or FALSE for HTML 3.0.
Adjust this setting based on the level of HTML that your web browser supports. The -PRINTER:EH
default output is HTML 3.0.

If you have existing .spf files for which you want to generate enhanced HTML output, you do not need
to rerun your SQR program. You can invoke SQR Print (with SQRP or SQRWP, depending on your
platform) to generate enhanced HTML from .spf files by using a command like this:

sgqrwp myreport.spf -PRINTER:EH

From within the SQR Viewer, you can also generate the same high-quality HTML by selecting File,
Save as HTML. The HTML level output from the SQR Viewer is also determined by the PSSQR.INI file
settings and has the same default value.

You can also generate enhanced HTML files with precompiled SQR program files (.sqt files). Run the .sqt
file against SQR Execute with a command like this:

sqrwt myreport.sqt sammy/baker@rome -PRINTER:EH

As is true when running any .sqt file, you can run it against SQR (or sqrw on Microsoft Windows
platforms) by including the -RT flag. To generate enhanced HTML, use the -PRINTER:EH flag in the
command:

sqrw myreport.sqr sammy/baker@rome -RT -PRINTER:EH

The sample program ex7a.sqr produces a simple master and detail report. By running it with -
PRINTER:EH, you can produce HTML output. A left frame is produced with links to each page of the
report. The right frame features a navigation bar that appears at the top of every page in the report. The
navigation bar enables you to move to the first or last page or to move one page forward or backward
from your relative page viewing position.

With -PRINTER:EH, you can also use additional flags to modify the output, such as:
« -EH CSV

This flag creates an additional output file in comma separated values (CSV) format.
+ -EH _CSVifile

This flag associates the CSV icon with the specified file.

* -EH Icons:dir

Copyright © 1988, 2024, Oracle and/or its affiliates. 155

Generating and Publishing HTML from an SQR Program Chapter 29

This flag specifies the directory in which the HTML should find the referenced icons.
* -EH Scale:{nn}
This flag sets the scaling factor from 50 to 200.

These flags work only with -PRINTER:EH.

Setting HTML Attributes Under -PRINTER:EH

156

In certain cases, you may want additional control over the enhanced HTML code that is generated with
-PRINTER:EH. SQR supports extensions that enable you to control the generated HTML by specifying
titles, background colors and images, links, text colors, and more.

Specifying HTML Titles

The HTML page title normally appears on the caption bar of the browser window and is also used when
you are creating a bookmark for the page. It is placed between the <TITLE> and </TITLE> HTML tags.
Specify the title of the HTML page by using the %%Title extension at the beginning of the SQR program
by entering:

Print-Direct Printer=html '%%Title Monthly Sales'

Specifying Background Colors

Specify a background color for the pages that are generated with -PRINTER:EH by using the %%Body-
BgColor extension. Enter code like this at the beginning of the program:

Print-Direct Printer=html '$%Body-BgColor #000O0FF'
To set the background color for the navigation bar, enter code like this:
Print-Direct Printer=html '%%Nav-Body-BgColor #0000FF'

See “Specifying HTML Colors.”

Specifying Background Images

To use a background image for the report pages that the enhanced HTML generates, insert the %
%Background extension at the beginning of the program:

Print-Direct Printer=html '$%$%Background tile.gif'
To set the background image for the navigation bar, enter code like this:
Print-Direct Printer=html '%%Nav-Background D:\jpegdir\house.jpg’

The background attribute can be any valid URL. If you do not specify the %%Nav-Background extension
while specifying the body background, the background image that you specify for the body is used both in
the body and in the navigation bar. If you do not want an image to appear in the navigation bar, use code
like this:

Print-Direct printer=html '$%Nav-Background EMPTY'

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

Specifying Links

The %%Href extension specifies a link in the report. This extension enables you to make a text, number,
image, or chart object into a link. The object can be the item that you click to activate the link or it can be
the location on the page where the link takes you. Specify the latter by using the %%Anchor extension.
For example:

Print-Direct Printer=html '%$%Href #section2'
Print 'ABC' ()

[N}

Print-Direct Printer=html '%$%Anchor section2'
Print 'XYZ' ()

In this example, clicking the ABC text on the page jumps to the XYZ text. When using frames or multiple
browser windows, you can control which frame displays the target of the link by using the target option of
the %%Href extension. For example, specify on one line:

)

Print-Direct Printer=html '$%Href target="_top" http://www.example.com'

Specifying Text Colors

Use the %%Color and %%ResetColor extensions to change the color of text. The following code example
demonstrates this capability:

If &Salary > 100000

Print-Direct Printer=html '%%Color #FF0000'
End-If

Print &Salary ()

If &Salary > 100000

Print-Direct Printer=html '%%ResetColor'
End-If

In this example, when the value of the column is more than 100,000, it prints in red. The %%Color
extension affects all text (and number) printing from this point on. This behavior is similar to that of the
ALTER-PRINTER command. A subsequent invocation of %%Color with a different color value sets the
current color to a new color. To restore the color to the default (normally, black) use the %%ResetColor
extension.

Specifying HTML Colors

Specifying color as a red-green-blue (RGB) hexadecimal value is the only way to designate color in SQR.
Your browser documentation should contain a listing of supported colors and their hexadecimal values. To
specify color as an RGB hexadecimal value, enter a # character followed by six hexadecimal digits. The
first two digits specify the intensity of the red, the next two specify the green, and the last two specify the
blue. For example, green is #00FF00.

Including Your Own HTML Tags

Enhanced HTML extensions enable you to include your own HTML tags in the output. These tags are
passed through to the output without change. Use this feature to include advanced HTML capabilities
such as JavaScript and <APPLET> tags.

SQR PRINT with CODE-PRINTER=HT enables you to inject any text into the HTML output. SQR does
not check the text that you are printing. This text can contain anything that your browser understands. Do
not use this method for formatting, because your formatting may conflict with -PRINTER:EH-enhanced
HTML formatting. -PRINTER:EH-enhanced HTML uses HTML tables extensively. To fully control

the formatting, use the HTML procedures that are defined in html.inc and that are documented in this

Copyright © 1988, 2024, Oracle and/or its affiliates. 157

Generating and Publishing HTML from an SQR Program Chapter 29

section. By invoking the html on procedure, you instruct the enhanced HTML to perform no formatting.
Specify all formatting by using the HTML procedures in html.inc or by using SQR PRINT with CODE-
PRINTER=HT to insert HTML code. When you use SQR PRINT with CODE-PRINTER=HT, the
enhanced HTML does not translate special symbols that are used in HTML tags, such as <, >, and &.

Related Links
SQR Language Reference for PeopleSoft

Using -PRINTER:HT

Another method for generating HTML output from an SQR program is running a program with the
command-line flag -PRINTER:HT. Alternatively, you can make some simple modifications to the
program. Add either DECLARE-PRINTER with the TYPE=HT argument or USE-PRINTER-TYPE HT.

With these methods, HTML output is generated in the following way:

e All output appears as preformatted text by using the <PRE> and </PRE> HTML tags.

» Text appears on the page at the position coordinates that are specified in the SQR program.
* Text appears in a fixed-width font, such as Courier.

* Font sizes map to HTML font sizes.

» HTML reserved characters map to the corresponding HTML sequence.

The <, >, &, and " characters map to the <, >, &, and ", character sequences,
respectively, thus preventing the web browser from mistaking such output as an HTML sequence.

The sample program ex7a.sqr produces a simple master and detail report. By running it with -
PRINTER:HT, you can produce HTML output. A left frame is produced with links to each page of the
report. The right frame features a navigation bar that appears at the top of every page in the report. The
navigation bar enables you to move to the first or last page or to move one page forward or backward
from your relative page viewing position.

SeeUsing the DECLARE-PRINTER Command and Understanding Printer-Independent Reports.

Bursting Reports

158

With SQR, you can generate HTML format reports by using -PRINTER:EH or -PRINTER:HT command-
line flags. If you want HTML files to be smaller in size for faster load times or to be divided on the basis
of report page ranges, or if you want to preview the table of contents for a report in your web browser
without generating an entire report, use -BURST: {xx} with -PRINTER:EH or -PRINTER:HT.

By using -BURST:P (or BURST:P1) with -PRINTER:EH or by using -BURST:P1 with -PRINTER:HT,
you can generate HTML output files that are burst by report page numbers, one report page per .htm file.
(This practice is frequently referred to as demand paging.) As a result, a 25-page report would be divided
into 25 separate .htm output files. By using -PRINTER:HT, you can also specify the report page ranges
that you want within an HTML file. For example, -BURST:P0,1,3-5 generates an HTML file containing
only report page numbers 1, 3, 4, and 5. You can then focus on information that is truly of interest.

Similarly, if you specify -PRINTER:HT with -BURST:T, only the table of contents file is generated. And
if you specify -PRINTER:HT with -BURST:S, report output is generated according to symbolic table

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

of contents entries. By using -BURST:S, you can specify the numeric level to burst on (for example, -
BURST:S2 bursts on level 2). If you have used DECLARE-TOC and TOC-ENTRY commands in the
SQR program, the table of contents provides more detailed information than just page number links, as
illustrated by the following code example.

To use DECLARE-TOC and TOC-ENTRY to improve the information that is available in generated
HTML output, this example adds the following code example to the beginning of the sample program

ex7a.sqr:

begin-setup

declare-toc common
for-reports=(all)
dot-leader=yes
indentation=2

end-declare
end-setup

The code example also adds this code to the body of the program, in the main procedure immediately
following the begin-select and Print ‘Customer Information’ (,1):

toc-entry text = &name

Setting Attributes with HTML Procedures

Use the SQR HTML procedures html set head tags and html set body attributes to define a title and
background image for a report. To use these procedures, the SQR program must include the html.inc file.
You must also run the program by using the -PRINTER:HT command-line flag.

These procedures must be called at the start of the program. For example:

do html set head tags('<TITLE>Monthly Report</TITLE>")
do html set body attributes ('BACKGROUND="/images/mylogo.gif"")

The first line of this code example displays the Monthly Report title. Specifically, the entire
'<TITLE>Monthly Report</TITLE>' sequence is passed as an argument to the html set head tags
procedure. The argument is enclosed in single quotes.

The second line displays the mylogo.gif background image for the web page. Again, an argument is
passed to the procedure. The entire argument is enclosed in single quotes, and the file name and path are
enclosed in double quotes.

Together, these two lines of code generate the following HTML output:

<HTML><HEAD><TITLE>Monthly Report</TITLE></HEAD>
<BODY BACKGROUND="/images/mylogo.gif">

Using Additional HTML Procedures

Using additional HTML procedures in the SQR program provides enhanced capabilities, including:
» Highlighting , including HTML physical tags and logical markup tags.

HTML physical tags include subscript, superscript, and strikethrough. HTML logical markup tags
include citation, code, keyboard, and sample.

¢ Headings.

Copyright © 1988, 2024, Oracle and/or its affiliates. 159

Generating and Publishing HTML from an SQR Program Chapter 29

* Links.
» Lists, including ordered lists, unordered lists, definition lists, directory lists, and menus.
* Paragraph formatting , including paragraph breaks, line breaks, and horizontal dividers.

e Tables, including captions, rows, columns, and column headings.

Setting Output File Types

An SQR report named myreport.sqr creates a FRAME file (myreport.htm) and report output files. The
OUTPUT-FILE-MODE entry in the Default-Setting section of the PSSQR.INI file controls the report
output file extensions. When this entry is set to SHORT, the report output files use the form myreport.hzz,
and when set to LONG, the files use the form myreport zz.htm. The value of zz ranges from 00 to 99 and
reflects the report number.

The FRAME file displays a list (links) of report pages in one frame and the report text in another frame.
Each report output file contains a list of pages (links) at the end of the file. If myreport.sqr created
multiple reports, then the FRAME file contains a link to each report output file. In addition, each report
output file contains links to the other report output files that were created during the program run.

Testing HTML Output

When an SQR program produces HTML output, you can preview it on a local system. This is a good way
to test the output before you publish it on a website.

To test the output of the program, open the file in the web browser. If your web browser supports the
HTML FRAME construct, open the FRAME file (myreport frm.htm); otherwise, open the report output
file (myreport.h00, myreport 00.htm).

Using HTML Procedures in an SQR Program

160

This section provides an overview of HTML procedures and discusses how to:
* Use HTML procedures.

» Position objects.

* Display records in tables.

* Create headings.

* Highlight text.

* Create links.

* Include images.

* Display text in lists.

* Format paragraphs.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

* Incorporate your own HTML tags.

Related Links
SQR Language Reference for PeopleSoft

Understanding HTML Procedures
To enhance the appearance of HTML output, use HTML procedures in an SQR program.

An SQR program with these procedures generates output as described previously in “Using
PRINTER:HT,” with these exceptions:

* The <PRE> and </PRE> HTML tags are not used.
* Text appears in a proportional font, such as Arial.
» Positioning values that are specified in the SQR program are ignored.

Text, HTML tags, and other information are placed in the HTML output in the order in which they are
generated by the SQR program.

* White space, such as spaces between PRINT commands, is removed.

Using HTML Procedures

When using the HTML procedures, include the html.inc file. As before, you must run the SQR program
with the -PRINTER:HT command-line flag.

The SQR program must also call the html on procedure at the start of the program. The command that
calls this procedure is:

do html on

Additionally, the program must specify a large page length to prevent page breaks. SQR automatically

inserts the page navigation links and an <HR> HTML tag at a page break. If a page break occurs in the

middle of an HTML construct, such as a table, the output can appear incorrectly. Use the DECLARE-

LAYOUT command with a large MAX-LINES setting to prevent page breaks from occurring.
Positioning Objects

When HTML procedures are activated:

* HTML output is generated without the <PRE> and </PRE> tags.

* All position qualifiers in the SQR program are ignored, and program output and HTML tags
are placed in the output file in the order in which they are generated, regardless of their position
qualifiers.

e The text that is printed in a BEGIN-HEADING section does not appear at the top of a page.

Because no positioning is done, text in the heading appears at the bottom.

Copyright © 1988, 2024, Oracle and/or its affiliates. 161

Generating and Publishing HTML from an SQR Program Chapter 29

* White space, such as spaces between PRINT commands, is removed.
Thus, you must use the HTML procedures to format the report.

The following code example does not use the HTML procedures to format the output:

print 'Report summary:' (1,1)
print 'Amount billed:' (3,1)
print #amount amount (3,20)
print 'Total billed:' (4,1)

print #total amount (4,20)
In this case, all of the text appears on the same line and with no spaces between the data.
With the HTML procedures for line breaks and a table, you can format the output properly.

The following code example uses the html br procedure to separate the first two lines of text. The
html_table, html tr, html td, and html_table end procedures display the totals in a tabular format. An
empty string is passed to each procedure as it is called. This empty string is required if no other argument
is passed.

print 'Report summary:' (1,1)
do html br(2,'")
do html table(''")

do html:tr '")

do html td('WIDTH=300")
print 'Amount billed:' (3,1)
do html td('")

print #amount amount (3,20)
do html tr('')

do html td('WIDTH=300")
print 'Total billed:' (4,1)
do html td('"')

print #Eotal_amount (4,20)
do html table end

Displaying Records in Tables

When HTML procedures are activated, all positioning values in the SQR program are ignored. Thus,
the position values cannot be used to display records in a tabular format. To display records in a tabular
format, use the following procedures:

Description Beginning Procedure End Procedure
Create a table. html table html table end
Create a caption. The end is typically html_caption html_caption_end

implied and html_caption_end is
not required, but you can use it for
completeness.

Create rows. The end is typically implied | html_tr html tr end
and html_tr _end is not required, but you
can use it for completeness.

162 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

Description Beginning Procedure End Procedure

Create column headings. The end is html_th html th end
typically implied and html th_end is
not required, but you can use it for
completeness.

Create columns. The end is typically html td html td end
implied and html_td_end is not required,
but you can use it for completeness.

The following sample program uses these table procedures to display information in a tabular format:

Program ex28a.sqr
#include 'html.inc'
begin-program
do main
end-program
! set a large page length to prevent page breaks
begin-setup
declare-layout default
max—-1lines=750
end-declare
end-setup
begin-procedure main
! turn on HTML procedures
do html on
! start the table and display the column headings
do html table('border')
do html caption('")

print 'Customer Records' (1,1)
do html tr('")

do html th('")

print 'Cust No' (+1,1)

do html th('")

print 'Name' (,10)

! display each record
begin-select

do html tr('")
do html td('")

cust num (1,1,6) edit 099999
do html td('")

name (1,10,25)

next-listing skiplines=1 need=1
from customers
end-select
! end the table
do html table end
end-procedure

Creating Headings

The heading procedures display text by using heading levels like those in a book. The available
heading levels range from 1 to 6; a first-level heading is the highest. To use the heading procedures,
call the appropriate heading procedure before the text is generated. After the text is generated, call the
corresponding end procedure.

The following code example displays text as a second-level heading:
do html h2('")

print 'A Level 2 Heading' (1,1)
do html h2 end

Copyright © 1988, 2024, Oracle and/or its affiliates. 163

Generating and Publishing HTML from an SQR Program Chapter 29

Highlighting Text

The highlighting procedures enable you to display text in the various HTML highlighting styles.
Highlighting is also called logical markup.

To use the highlighting procedures, call the appropriate highlighting procedure before the text is
generated. After the text is generated, call the corresponding end procedure.

The following highlighting procedures are available:

Type of Highlighting Beginning Procedure End Procedure
Blink html_blink html_blink end
Citation html cite html cite end
Code html_code html code_end
Keyboard html_kbd html kbd end
Sample html_sample html sample end
Strike html_strike html_strike end
Subscript html sub html sub_end
Superscript html_sup html sup_end

The following code example displays text in the subscript style:

print 'Here is ' (1,1)
do html sub('")

print 'subscript' ()
do html sub end

print ' text' ()

Creating Links

164

The link procedures enable you to create links and link anchors. When a user clicks a link, the web
browser switches to the top of the specified HTML document, to a point within the specified document, or
to a link anchor within the same document. A link can point to the home page of a website, for example.

To insert a link, use the html_a procedure to format the information that is to become the link, and use the
html_a_end procedure to mark the end of the link. Two useful attributes for the html_a procedure are the
HREF and NAME attributes:

» Use the HREF attribute to specify the location to which the link points.

* Use the NAME attribute to specify an anchor to which a link can point.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

These attributes are passed as arguments to the html_a procedure.

The following code example creates an anchor and two links. The anchor is positioned at the top of the
document. The first link points to the HTML home.html document. The second link points to the anchor
named TOP in the current document. Note the # sign in the argument, which indicates that the named
anchor is a point within a document. The third link points to an anchor named POINT1 in the mydoc.html
document.

do html a('HREF=home.html'")
print 'Goto home page' ()
do html a end

do html a ('NAME=TOP')
do html a end

print 'At the top of document' ()
do html br (40, ''")

print 'At the bottom of document' ()
do html p('")

do html a ('HREF=#TOP')
print 'Goto top of document' ()
do html a end

do html a ('HREF=mydoc.html#POINT1'")
print 'Goto pointl in mydoc.html' ()
do html a end

Including Images

You can include an image in an HTML output with the PRINT-IMAGE command or the html img
procedure. Both of these produce the HTML tag.

The PRINT-IMAGE command displays images for all printer types but enables you to specify only the
image type and source. The html img procedure displays images only for the HTML printer type, but it
enables you to specify any of the attributes that are available for an HTML tag.

For HTML output, you can use only Graphics Interchange Format (GIF) or JPEG files. With PRINT-
IMAGE, use the TYPE=GIF-FILE or TYPE=JPEG-FILE argument, respectively.

Displaying Text in Lists

The list procedures display lists. To use these procedures, call the appropriate procedure before the list is
generated. After the list is generated, call the corresponding end procedure.

The following list procedures are available:

List Type Beginning Procedure End Procedure
Definition (terms and their definitions) html dl html dl end
Directory html_dir html_dir_end
Menus html menu html menu_end

Copyright © 1988, 2024, Oracle and/or its affiliates. 165

Generating and Publishing HTML from an SQR Program Chapter 29

List Type Beginning Procedure End Procedure
Ordered (numbered or lettered) html ol html ol end
Unordered (bulleted) html_ul html ul end

To display a list, except for the definition list, call the appropriate list procedure before starting the
output. Call html_Ii to identify each item in the list; you can also call html li _end for completeness. After
specifying the output, call the corresponding end procedure.

The following code example displays an ordered list:

do html ol ('")

do html 1i('")

print 'First item in list' (1,1)
do html 1i end

do html 1i('")

print 'Second item in list' (+1,1)
do html 1i end

do html 1i('")

print 'Last item in list' (+1,1)
do html 1i end

do html ol end

To display a definition list, call html_dl before starting the output. Call html dt to identify a term
and html_dd to identify a definition. After specifying the output, call html dl end. You can also call
html dd end and html dt end for completeness.

The following code example displays a definition list:

do html di('")

do html dt('")

print 'A daisy' (1,1)

do html dt end

do html dd('")

print 'A sweet and innocent flower' (+1,1)
do html dd end

do html dt('")

print 'A rose' (+1,1)

do html dt end

do html dd('")

print 'A very passionate flower' (+1,1)
do html dd end

do html ol end

Formatting Paragraphs

166

The HTML procedures provide various paragraph formatting capabilities. To use these procedures, call
the appropriate paragraph procedure before the list is created.

The following procedures are available:

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

Formatting Type Beginning Procedure End Procedure

Paragraph break html p html p end

Many HTML constructs imply an end
of paragraph; thus, the html th_end
procedure is not needed, but you can use
it for completeness.

Line break html br NA

Horizontal divider (usually a sculpted html_hr NA

line)

Prevent text wrapping html_nobr html nobr_end

The following code example uses the paragraph formatting procedures to format text into paragraphs:

print 'Here is some normal text' (1,1)

do html p ('ALIGN=RIGHT")

print 'Here is right aligned text' (+1,1)

do html br(l,"'")

print 'and a line break' (+1,1)

do html p end

do html hr('")

do html nobr('")

print 'A very long line of text that cannot be wrapped' (+1,1)
do html nobr end

Incorporating Your Own HTML Tags

You can incorporate your own HTML tags into the HTML output. To do so, use the PRINT command
with the CODE-PRINTER=HT argument.

Text that is printed with this argument is placed only in the HTML output that is generated when the
HTML printer type is specified. With all other printer types, the text is not placed in the output. In
addition, the specified text is placed directly in the HTML output without any modifications, such as the
mapping of reserved characters.

The following code example uses the HTML tag to print bold text:

print '' () code-printer=ht
print 'Bold text' ()
print '' () code-printer=ht

Modifying an Existing SQR Program for HTML

In this section, an existing sample program, ex12a.sqr, was modified to use HTML procedures. The
modified program is named program ex28b.sqr. First, examine the output from ex12a.sqr when this
program is run without modifications by using the -PRINTER:HT command-line flag. Three HTML files
are generated: ex12a.htm, ex12a_frm.htm, and ex12a_toc.htm.

Program ex28b.sqr

Copyright © 1988, 2024, Oracle and/or its affiliates. 167

Generating and Publishing HTML from an SQR Program

168

#include 'html.inc'

begin-setup
declare-layout default

max-1ines=10000

end-declare

end-setup

begin-program

do main

end-program

begin-procedure main

do html on
print S$current-date (1,1) edit 'DD-MON-YYYY'
do html p('")
do html table ('BORDER')
do html tr('")
do html th('WIDTH=250")
print 'Name' (3,1)
do html_th('WIDTH:lZO')
print 'City' (,32)
do html th('WIDTH=60")
print 'State' (,49)
do html_th('WIDTH:9OW
print 'Total' (,61)
begin-select

do html tr('")

do html td('")
name (,1,30)

do html td('")
city (,+1,16)

do html td('")

state (,+T,5)
do html td('ALIGN=RIGHT'")
tot (,+1,11) edit 99999999.99
next-listing no-advance need=1
let #grand total = #grand total + &tot
from customers
end-select
do html tr('")
do html tr('")
do html td('COLSPAN=3 ALIGN=RIGHT'")
print 'Grand Total' (+1,40)
do html td('ALIGN=RIGHT'")
print #grand total (,55,11) edit 99999999.99
do html table end
end-procedure ! main

Chapter 29

In this code example, a DECLARE-LAYOUT command with a large page length setting that is specified

in the MAX-LINES argument is issued to prevent page breaks.

The html on procedure activates the HTML procedures.

The html_table, html_tr, html_td, and html_th procedures position the information in a tabular format.

Note the arguments that are passed to the HTML procedures:

* BORDER produces the sculpted border.
* WIDTH defines the width of the columns.

* ALIGN right-aligns the text in the Total column.

* COLSPAN causes the Grand Total label to be spanned beneath three columns of data.

Instead of using a HEADING section, use the html_tr and html_th procedures to display column

headings.

See Displaying Records in Tables.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

Publishing a Report

This section discusses how to:

* Publish reports.

* Support older browsers.

e View published reports.

* Publish by using an automated process.

* Publish by using a Common Gateway Interface (CGI) script.

Publishing Reports

You can publish an SQR report on a website, and then anyone with a web browser can view the report
over the internet or an intranet by specifying its URL.

To publish a report:
1. Run the SQR program.
2. Determine where the report output will be stored on the web server.

The directory must be one that is referenced by a URL on the server. See your webmaster for more
details about creating a URL.

3. Copy the generated HTML output files to the selected directory on the web server.

If the output is generated on a client workstation, use a utility such as FTP to transfer the HTML
output files to the web server.

Note: If you select the zip file option, a zip file is created for the generated HTML output in addition
to the files being placed in the file system.

4. Create links on a home page or other website that point to the report files so that users browsing the
network can navigate to the report and view it.

Supporting Older Browsers

To support older web browsers that do not support the HTML FRAME construct, create two separate
links: one pointing to the FRAME file (.htm) and labeled to indicate the frame version, and another
pointing to the report output file and labeled to indicate the nonframe version. If the report was created
with HTML procedures, however, it should contain only a single page. In that case, a listing of report
pages that are contained in the FRAME file is not needed. Only the report output file is required for
publication on a website.

Copyright © 1988, 2024, Oracle and/or its affiliates. 169

Generating and Publishing HTML from an SQR Program Chapter 29

Viewing Published Reports

Use a web browser to view reports that are published on a website. To do this, specify a URL in your web
browser, for example: http://www.myserver.com/myreport.htm.

Publishing by Using an Automated Process

The webmaster can create a program that automates the publishing process. The program should run
the SQR program and copy the output to the appropriate location. You can start the program by using a
scheduling utility to automatically run the program and publish it on the website at specified times.

The sample Bourne shell program:
» Sets the necessary environment variables.

* Runs the /usr2/reports/myreport.sqr program and generates the /usr2/reports/myreport.htm and /usr2/
reports/myreport.h00 output files.

* Specifies /dev/null as the source of standard input to prevent the program from stopping if it requires
input.

» Redirects the standard output to /usr2/reports/myreport.out to capture any status messages.
You can view the output file at a later time to diagnose any problems.

* Copies the generated report files to the /usr2/web/docs directory to publish it on the web server.
(Use the directory name that is appropriate for your server.)

Here is the code example:

#! /bin/sh
set the appropriate environment values
ORACLE SID=oracle7; export ORACLE SID
ORACLE _HOME=/usr2/oracle7; export ORACLE HOME
SQRDIR=/usr2/sqr/bin; export SQRDIR
invoke the SQR program
sqr /usr2/reports/myreport.sqr orauser/orapasswd \
-PRINTER:ht -I$SQRDIR \
> /usr2/reports/myreport.out 2>&l < /dev/null
copy over the output
cp /usr2/reports/myreport.htm /usr2/web/docs
cp /usr2/reports/myreport.h00 /usr2/web/docs

Note: You must adjust the environment variables and the file names to fit your particular environment.
See the documentation of your scheduling software for more details.

Publishing by Using a CGI Script

170

If you use the CGI script method, any user with a web browser can run an SQR and view the output. You
can enable the user to run an SQR by providing a form to fill out.

When a user runs an SQR report through a website:
1. The user navigates to a form.

2. The user enters information on the form and clicks a button to invoke the CGI script.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

3. The CGI script runs the SQR program.

4. The CGI script copies the report output file to the standard output.
5. The user views the report.

This process requires:

* The form

* The CGI script

e The SQR program

Creating the Form
Create an HTML form to enable the user to enter some values and start the request.

The following HTML code example defines a form with three radio buttons and a submit button. The
radio buttons enable the user to specify the sorting criteria. The Submit button invokes the CGI script.

Here is the HTML code:

<HTML>

<TITLE>View Customer Information</TITLE>

<FORM METHOD=POST ACTION="/cgi-bin/myreport.sh">

Select the Field to Sort By<P><DIR>

<INPUT TYPE="radio" NAME="rbl" VALUE="cust num" CHECKED> Number

<INPUT TYPE="radio" NAME="rbl" VALUE="name"> Name

<INPUT TYPE="radio" NAME="rbl" VALUE="city"> City

<P><INPUT TYPE="submit" NAME="run" VALUE="Run Report"></DIR>
</FORM>

</HTML>

The FORM METHOD tag specifies that the /cgi-bin/myreport.sh CGI script is invoked when the Submit
button is clicked. Adjust the URL of the CGI script to fit your particular environment.

In the INPUT tags, the TYPE="radio” attribute defines a radio button. The VALUE attribute of the
selected radio button is passed by the CGI script to the SQR program.

Creating the CGI Script

The CGI script is started when a user makes a request from a form. A CGI script can be any executable
program. Do not call SQR directly as a CGI script—a PERL script, a shell script, or a C program all
provide simpler routines for processing as a CGI script.

The CGI script:

1. Reads the contents of the standard input stream and parses them to obtain the values that were entered
on the form.

If the form has no input fields, this step is not required.

2. Identifies the output as being in HTML format by sending the Content-type: text/html string and an
extra empty line to the standard output stream.

3. Invokes the SQR program.

Copyright © 1988, 2024, Oracle and/or its affiliates. 171

Generating and Publishing HTML from an SQR Program Chapter 29

172

Values that the user entered on the form are passed to the SQR program by the CGI script and the
command line.

Sends the generated .lis file to the standard output stream.
The .htm file is not used because it points to the .lis file with a relative URL.

The relative URL does not specify to the web browser where to find the .lis file. You should make
provisions within your SQR program to send an error message.

The following Bourne shell is an example of a CGI script:

#!

/bin/sh

set the appropriate environment values

ORACLE SID=oracle7; export ORACLE SID
ORACLE_HOME=/usr2/oracle7; export ORACLE HOME
SQRDIR=/usr2/sqr/bin; export SQRDIR

identify the output as being HTML format

echo "Content-type: text/html"

echo m

get values from fill-out form using the POST method
read TEMPSTR

SORTBY="echo STEMPSTR | sed "s;.*rbl=;;

S;&.*; ;"

invoke the SQR program

sqr7 /usr2/reports/myreport.sqr orauser/orapasswd \

if

-PRINTER:ht -f/tmp/myreport$$.lis -I$SQRDIR "S$SORTBY" \
> /tmp/myreport$$.out 2>&1 < /dev/null

[$? -eq 0]; then

display the output

cat /tmp/myreport$$.lis

else

error occurred, display the error
echo "<HTML><BODY><PRE>"

echo "FAILED TO RUN SQR PROGRAM"
cat /tmp/myreport$$.out

echo "</PRE></BODY></HTML>"

fi# remove temp files
rm /tmp/myreport$$.*

The script performs the following tasks:

1.

Sets the necessary environment variables. Then it sends the Content-type: text/html string and an extra
empty line to the standard output stream to identify the text as being HTML format.

Retrieves the value of the selected radio button into the SORTBY variable. The script passes the value
to the SQR program on the command line.

Runs the SQR program. The script uses the /usr2/reports/myreport.sqr report file and generates the /
tmp/myreport$$.1is file. In addition, the script redirects the standard input from /dev/null to prevent
the program from stopping if the program requires any input. It also redirects the standard output to /
tmp/myreport$$.out to capture any status messages. The $$ is the process ID of the program and is
used as a unique identifier to prevent any multiuser problems.

Copies the generated report file to the standard output stream. If an error occurs, the script generates
the status message file instead to enable the user to view the status messages. It then deletes any
temporary files.

Passing Arguments to the SQR Program

You must modify the SQR program to accept values that the user enters on the form.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 29 Generating and Publishing HTML from an SQR Program

The following code example is the main procedure from sample program ex28b.sqr. It was modified to
use the SORT BY value that is passed from the CGI script. The $sortby variable is obtained from the
command line with an INPUT command and is used as dynamic variables in the ORDER BY clause. The
modified lines are shown like this:

begin-procedure main
input $sortby 'Sort by' type=char
do html on
do html table(''")
do html tr('")
do html th('")
print 'Name' (3,1)
do html th('")
print 'City' (,32)
do html th('")
print 'State' (,49)
begin-select
do html tr('")
do html td('")
name (,1,30)
do html td('")
city (,+1,16)
do html td('")
state (,+1,5)
next-listing no-advance need=1
let #grand total = #grand total + &tot
from customers
order by [$sortby]
end-select

Copyright © 1988, 2024, Oracle and/or its affiliates. 173

Generating and Publishing HTML from an SQR Program Chapter 29

174 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 30

Generating tagged PDF Output from SQR
Program

Tagged PDF Overview

PDF is a file that contains a list of text, graphics, bookmarks, links, and other elements that make up an
electronic document.

A PDF file follows a logical reading order that has images with descriptions, tagged tables with a
structure, and tagged contents with headings, lists, and paragraphs, depending on the usage.

Starting with PeopleTools 8.61, SQR uses PDFLib 10.0.1 for Windows, Linux, Aix and Mainframe and
PDFLib 9.1.2 for Solaris and HP to generate the tagged PDF documents by calling the respective tagged
PDF API calls.

Sample Program to Create Tagged PDF

Specifying Heading
The following program describes tagged content with heading:

begin tag heading
print 'SAMPLE HEADING' (+2, {C_MenuName})
end tag heading

SQR Program for using Paragraph in tagged content

The following program is an example of content tagging with paragraph:

begin tag paragraph

print S$test val (+1,1)
print $test vall (+1,1)
print $test val2 (+1,1)
print $test val3 (+1,1)
print $test vald (+1,1)
print $test val5 (+1,1)
end tag paragraph

Generating a Tagged Table in a PDF Report

Consider this sample program:

begin-procedure Report ! Main report processing
uppercase S$test

let #counter =#counter + 1

begin tag table

Copyright © 1988, 2024, Oracle and/or its affiliates. 175

Generating tagged PDF Output from SQR Program

begin table tr

begin tag table head

print 'TableHeaderl' (#counter, {C_MenuName})

end tag table head

begin tag table head
print 'TableHeader?2' (#counter, 50)
end tag table head

end table tr
begin-SELECT
MENUNAME &menuname

begin table tr

move &MenuName to $Field

let #counter =#counter + 1

begin table td

print 'TESTDATAL' (#counter, {C_MenuName})
end table td

begin table td
print 'TESTDATA2' (,50)
end table td

end table tr
FROM PSMENUDEFEN
WHERE PSMENUDEFN.MENUNAME like 'A%'
ORDER BY PSMENUDEFN.MENUNAME
end-SELECT
end tag table
end-procedure

Generating a Tagged List in a PDF Report

The following example describes a Tagged List in a PDF repor:.

begin tag list
begin tag list index

begin tag list label

print $Header4a 1bl (12, {colII}) Bold

end tag list label

begin tag list lbody

print $Header4a lbody (12, {colII LBody}) Bold
end tag list lbody

end tag list index

!Print $Headerb5a (13, {colIl}) Bold

begin tag list index

begin tag list label

Print $Header5a 1bl (13, {colII}) Bold

end tag list label

begin tag list lbody

Print $Headerb5a lbody (13, {colII LBody}) Bold
end tag list lbody

end tag list index

begin tag list index

begin tag list label

Print $Header6ailbl (14, {colIl}) Bold

end tag list label

begin tag list lbody

Print $Header6a lbody (14, {colII LBody}) Bold
end tag list lbody

end tag list index

begin tag list index

Chapter 30

176 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 30

begin tag list label

Print $Headeré6b 1bl (15, {colIIl}) Bold

end tag list label

begin tag list lbody

Print $Header6b lbody (15, {colII LBody}) Bold
end tag list lbody

end tag list index

begin tag list index

begin tag list label

Print $Header8a 1bl (16, {colIIl}) Bold

end tag list label

begin tag list lbody

Print $Header8a lbody (16, {colII LBody}) Bold
end tag list lbody

end tag list index

Generating Alternate Text for a Figure

The following is an example for generating alternate text for a figure:

Begin-Program
Let #Image Length = 6
Let #Image Height = 8
Print 'Look at this flower: ' (2,2)
begin tag alt text figure ‘Fig:Rose-flower’
Print-Image Flower (+2,5)
Image-Size=(#Image Length, #Image Height)
Let #Curr Line Adj = #Image Height +3
end tag alt text figure
Print 'Isn''t it lovely?' (+#Curr Line Adj,2)
End-Program

Tagged PDF in PeopleSoft Application

Enable Option of Tagged PDF in PIA will allow SQR engine to recognize the predefined Tagged PDF
SQR commands.

By default, all SQR programs are in “not Tagged PDF” mode and will produce the normal PDF report.
To enable a tagged PDF option in PIA:
1. Navigate to PeopleTools > Process Scheduler > Process Scheduler Processes.
For example, search for QR report GPINPSO1.
2. Open the process name GPINPS01 and click the Override options tab.

3. Add the flag—PDF_ TAG to the SQR Report. This flag should be added in a similar way as adding —
TB,-S flags for an SQR Report.

Using Accessibility Checkers

Copyright © 1988, 2024, Oracle and/or its affiliates.

Accessibility Checkers available in market can be used to check the tagged pdf report.

Tools that are available in market to check the accessibility of PDF documents are:

Generating tagged PDF Output from SQR Program

177

Generating tagged PDF Output from SQR Program Chapter 30

* PDF accessibility checker
* Adobe Acrobat Pro

Adobe Acrobat Pro can do a Quick full check to identify the accessibility compliance of a PDF report.

178 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 31

Generating XML Output from SQR Program

Generating XML Output

An SQR program that generates XML output contains XML tags, which describe the data. You use the
XML commands to generate XML output.

To generate XML output from an SQR program, you must:

1. Define the structure or template of the XML to be generated. Use DEFINE-XML-TEMPLATE
command to define the template.

You also can create nested XML by adding one template to another. The definition of the child
template should precede that of the parent template.

2. Create XML-RECORD to define the XML template. To create XML-RECORD, you must specify the
data. Each template will have an XML-RECORD to add data. This data is created in memory before
being written to a disk.

If XML templates are nested, you must add child XML-RECORDs before you add the parent XML-
RECORD. Multiple child records can be added to a parent record by repeatedly adding child XML-
RECORDs.

Note: Ensure that child XML-RECORDs are not duplicated..

3. Write the XML records to a disk and use WRITE TO XML FILE to write the XML records to an
XML output file.

Note: The system clears the parent template automatically after the XML records are written, but you
must clear the child templates manually.

Note: XML output format is not applicable for any of the existing reports that are shipped. Only new
SQRs or ones modified with the new commands will generate an XML file.

SQR Commands to Generate XML Output

The following table describes the SQR commands to generate XML output:

SQR Command Description

DEFINE_XML TEMPLATE Defines the structure of the XML.

Copyright © 1988, 2024, Oracle and/or its affiliates. 179

Generating XML Output from SQR Program

Chapter 31

SQR Command

Description

ADD DATA TO XML RECORD

Adds data to XML template to create an XML-RECORD
before writing the XML file.

ADD_CHILD TO XML _RECORD

Adds a child record to the XML template to create an XML-
RECORD in a tree structure before it is pushed to the XML
file.

ADD ATTRIBUTE TO XML RECORD

Adds an attribute to any record or element that has data.

WRITE_TO XML _FILE

Writes the XML records to the XML output file.

(Optional) WRITE_CDATA_TO XML FILE (OPTIONAL) | Adds character data or CDATA to XML files that are not
parsed. A CDATA section starts with "<//CDATA/" and ends

with 77> ".

(Optional) EDIT XML ROOT Modifies the root tag name.

(Optional) ADD COMMENT TO XML _FILE Adds comment as title to the XML file.

(Optional) CLEAR-XML-RECORD Clears parent and child XML records.

Sample Program to Generate XML Output

180

The following program illustrates the use of XML commands to generate XML output:

let S$Spop = '123"
let #num 100.9999999

EDIT XML ROOT 'Progressreport' 'default:student,nl:spacel,n2:space2’

DEFINE XML TEMPLATE 'grand child' 'default'
ADD ELEMENT 'Columnl'

ADD ELEMENT 'Column2'

END XML TEMPLATE

DEFINE XML TEMPLATE 'child' 'default'
ADD ELEMENT 'Columnll'

ADD ELEMENT 'Column22'

ADD AS CHILD 'grand child'

END XML TEMPLATE

ADD DATA TO XML RECORD
ADD DATA TO XML RECORD

'Columnl' 'ABC'
'Column2' '12'

'grand child'
'grand child'

ADD DATA TO XML RECORD 'child' 'Columnll' S$pop
ADD DATA TO XML RECORD 'child' 'Column22' #num
ADD CHILD TO XML RECORD 'child' 'grand child'
WRITE TO XML FILE 'child' 'default'

DEFINE XML TEMPLATE 'nl:subject' 'default'

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 31

ADD ELEMENT 'subject name'
ADD ELEMENT 'subject score'
END XML TEMPLATE

DEFINE XML TEMPLATE 'n2:subject' 'default'
ADD ELEMENT 'subject name2'

ADD ELEMENT 'subject score2'

END XML TEMPLATE

DEFINE XML TEMPLATE 'Address' 'default’
ADD ELEMENT 'Building'

ADD ELEMENT 'Street'

ADD ELEMENT 'ZIP'

ADD ELEMENT FORCE_ EMPTY
ADD ELEMENT 'Non Empty'
END XML TEMPLATE

'Empty column'

Generating XML Output from SQR Program

DEFINE XML TEMPLATE 'student' 'default'’

ADD ELEMENT 'Name'

ADD ELEMENT 'Age'

ADD ELEMENT 'Date'

INHERIT ELEMENTS 'Address'

ADD AS CHILD 'nl:subject’

ADD AS CHILD 'n2:subject'

END XML TEMPLATE

ADD DATA TO XML RECORD 'student' 'Name' 'ABC&'

ADD DATA TO XML RECORD 'student' 'Age' 12

ADD DATA TO XML RECORD 'student' 'Date' '1/1/2013'

ADD DATA TO XML RECORD 'student' 'Building' '123/4D'

ADD DATA TO XML RECORD 'student' 'Street' 'Baker Street'

ADD DATA TO XML RECORD 'student' 'ZIP' 654687

ADD DATA TO XML RECORD 'nl:subject' ‘'subject name' 'Mathematics'
ADD DATA TO XML RECORD 'nl:subject’ 'subject score' '90'

ADD CHILD TO XML RECORD 'student' 'nl:subject'
CLEAR XML RECORD 'nl:subject'

ADD DATA TO XML RECORD 'n2:subject' 'subject name2' 'Science'

ADD DATA TO XML RECORD 'n2:subject'

ADD ATTRIBUTE TO XML RECORD 'n2:subject’

ADD CHILD TO XML RECORD 'student'
ADD COMMENT TO XML FILE
WRITE TO XML FILE 'student'
WRITE CDATA TO XML FILE

'default'
'Test CDATA'

DEFINE XML TEMPLATE
ADD ELEMENT 'MESSAGE SET NBR'
ADD ELEMENT 'MESSAGE NBR'

ADD ELEMENT 'LANGUAGE CD'

ADD ELEMENT 'MESSAGE TEXT'
END XML TEMPLATE

'"MESSAGE CATALOG'

begin-select
MESSAGE_SET NBR
MESSAGE NBR
LANGUAGE_CD
MESSAGE TEXT

&MESSAGE SET NBR
&§MESSAGE_NBR
&§LANGUAGE_CD
&MESSAGE_TEXT

ADD DATA TO_ XML RECORD
ADD DATA TO_ XML RECORD
ADD _DATA TO_ XML _RECORD
ADD_DATA TO_XML_RECORD

'MESSAGE CATALOG'
'MESSAGE CATALOG'
'MESSAGE CATALOG'
'MESSAGE CATALOG'

ADD ATTRIBUTE TO XML RECORD 'MESSAGE CATALOG'

GUAGE_CD

Copyright © 1988, 2024, Oracle and/or its affiliates.

'subject score2'

'Results of students'

'subject score2' 45

'out of' '100"'

'n2:subject’

'default'’

'"MESSAGE_SET NBR'
'MESSAGE_NBR'
" LANGUAGE_CD'
'"MESSAGE TEXT'
'"MESSAGE TEXT'

&MESSAGE _SET NBR

&MESSAGE _NBR
&LANGUAGE CD

&MESSAGE TEXT

'LANGUAGE CD' &LAN=>

181

Generating XML Output from SQR Program

182

ADD ATTRIBUTE TO XML RECORD 'MESSAGE CATALOG' 'MESSAGE TEXT' 'MESSAGE NBR'
SAGE_NBR
WRITE TO XML FILE 'MESSAGE CATALOG' 'default'

CLEAR XML RECORD 'MESSAGE CATALOG'
from psmsgcatlang
where MESSAGE SET NBR = 92
end-select

The following is the sample XML output that is generated:

<?xml version="1.0" encoding="UTF-8"?>

<Progressreport xmlns="student" xmlns:nl="spacel" xmlns:n2="space2">
<child>

<Columnl1>123</Columnll>

<Column22>100.999999</Column22>

<grand child>

<Columnl>ABC</Columnl>

<Column2>12</Column2>

</grand child>

</child>

<!--Results of students-->
<student>

<Name>ABC& </Name>
<Age>12</Age>

<Date>1/1/2013</Date>
<Building>123/4D</Building>

<Street>Baker Street</Street>

<ZIP>654687</ZIP>

<Empty column></Empty column>

<nl:subject>

<subject name>Mathematics</subject name>
<subject score>90</subject score>

</nl:subject>

<n2:subject>

<subject name2>Science</subject name2>

<subject score2 out of="100">45</subject score2>
</n2:subject>

</student>

<! [CDATA[

Test CDATA

11>

<MESSAGE_CATALOG>

<MESSAGE SET NBR>92</MESSAGE SET NBR>

<MESSAGE NBR>1</MESSAGE NBR>
<LANGUAGE_CD>ARA</LANGUAGE_CD>

<MESSAGE TEXT LANGUAGE CD="ARA" MESSAGE NBR="1">3 jgzg API</MESSAGE_TEXT>
</MESSAGE_CATALOG>

<MESSAGE CATALOG>

<MESSAGE SET NBR>92</MESSAGE SET NBR>

<MESSAGE NBR>1</MESSAGE NBR>
<LANGUAGE_CD>ESP</LANGUAGE_CD>

<MESSAGE_TEXT LANGUAGE CD="ESP" MESSAGE_NBR="1">®Tree API®</MESSAGE TEXT>
</MESSAGE CATALOG>

<MESSAGE_CATALOG>

<MESSAGE SET NBR>92</MESSAGE SET NBR>

<MESSAGE NBR>1</MESSAGE NBR>
<LANGUAGE_CD>FRA</LANGUAGE_CD>

<MESSAGE TEXT LANGUAGE CD="FRA" MESSAGE NBR="1">API arbre</MESSAGE_TEXT>
</MESSAGE_CATALOG>

<MESSAGE CATALOG>

<MESSAGE SET NBR>92</MESSAGE SET NBR>

<MESSAGE NBR>1</MESSAGE NBR>
<LANGUAGE_CD>JPN</LANGUAGE CD>

<MESSAGE TEXT LANGUAGE CD="JPN" MESSAGE_NBR:”">WW—API</MESSAGE7TEXT>
</MESSAGE CATALOG>

<MESSAGE_CATALOG>

<MESSAGE SET NBR>92</MESSAGE SET NBR>

<MESSAGE NBR>3260</MESSAGE NBR>
<LANGUAGE_CD>JPN</LANGUAGE_CD>

Chapter 31

&MES=

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 31 Generating XML Output from SQR Program

<MESSAGE TEXT LANGUAGE CD="JPN" MESSAGE_NBR="3260">lA"Zt{]VEX SN KB A TL Iz, </MESSAGE TEXT=>

>
</MESSAGE_CATALOG>
</Progressreport>

Generating XML Output in PeopleSoft Applications

You must schedule a process to generate XML output in PIA.

For more information about scheduling processes, see “Scheduling Process Requests” (Process
Scheduler).

To generate XML output in PIA:

1. Navigate to PeopleTools > Process Scheduler > System Process Request.
2. Click Search and select a run control ID.

3. Click Run.

4. Select XML as the output format.

5. Select the output type.

6. Click OK.

Copyright © 1988, 2024, Oracle and/or its affiliates. 183

Generating XML Output from SQR Program Chapter 31

184 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 32

Creating a Table of Contents

Using the DECLARE-TOC Command

Use DECLARE-TOC to define a table of contents and its attributes. When generating multiple reports
and tables of contents from one SQR program, you can also use the TOC argument of the DECLARE-
REPORT command.

You must issue the DECLARE-TOC command in the SETUP section of the program. For example:

begin-setup
declare-toc toc name

for-reports = (all)
dot-leader = yes
indentation = 2

end-declare

end-setup

Following the DECLARE-TOC command, specify a table of contents name. Use the FOR-REPORTS
argument to specify the reports within the SQR program that use this table of contents. Use (all) if
you want all of the reports to use one table of contents. You need to specify individual report names
only if you are generating multiple reports with different tables of contents from one program. Use
DOT-LEADER to specify whether a dot leader precedes the page number. The default setting is NO,
and the dot leader is suppressed in all HTML output except when you also specify -BURST:T with -
PRINTER:HT. Use INDENTATION to specify the number of spaces by which each level is indented.
(The default setting is 4.)

DECLARE-TOC also supports procedures that are frequently used for setup and initialization purposes,
as described in this table:

Procedure Usage

BEFORE-TOC Specifies a procedure to be run before the table of contents is
generated. If no table of contents is generated, the procedure
does not run.

AFTER-TOC Specifies a procedure to be run after the table of contents is
generated. If no table of contents is generated, the procedure
does not run.

BEFORE-PAGE Specifies a procedure to be run at the start of each page.

AFTER-PAGE Specifies a procedure to be run at the end of each page.

Copyright © 1988, 2024, Oracle and/or its affiliates. 185

Creating a Table of Contents Chapter 32

Using the TOC-ENTRY Command

Use TOC-ENTRY to place an entry into the table of contents and take the mandatory TEXT argument,
which specifies the text to be placed in the table of contents. Legal text includes text literals, variables,
and columns. To include levels in a table of contents, use the LEVEL argument, which specifies the level
at which to place the text. If you do not specify this argument, the value of the previous level is used.

If you are writing programs that generate multiple reports, you can:

* Use the FOR-REPORTS argument of the DECLARE-TOC command to identify the reports to which
the DECLARE-TOC command applies.

* Use the TOC argument of the DECLARE-REPORT command to specify the name of the table of
contents for the report.

A program can have multiple DECLARE-TOC statements and multiple DECLARE-REPORT statements.
However, you must include the FOR-TOCS argument in the DECLARE-TOC statements or the TOC
argument in the DECLARE-REPORT statements.

To specify the name of the table of contents for a given report by using the TOC argument of the
DECLARE-REPORT command, include code in the SETUP section of the program. For example:

begin-setup
declare-report
toc = toc_name
end-declare

end-setup

Earlier, we modified the sample program ex7a.sqr to use the DECLARE-TOC and TOC-ENTRY
commands. Then, we generated HTML output from the modified program by using the -PRINTER:EH
and -PRINTER:HT command-line flags. In HTML, the table of contents file is a linked point of
navigation for the online report.

However, you may also want to generate output files for printing hard-copy reports. The table of contents
features can also perform this task. To test this assertion, run the modified version of the sample program

ex7a.sqr and print it from an .lis file (or use -PRINTER:WP in Microsoft Windows). The table of contents
output contains the traditional dot leaders and necessary page numbers relating to a hard-copy report.

See Using the DECLARE-PRINTER Command and Understanding the Sample Program for Printing
Mailing Labels.

Adding a Table of Contents to the CUST.SQR Sample Program

186

The following program is based on cust.sqr, which is located in the SAMPLE (or SAMPLEW) directory.
The program identifies the table of contents with the specific name of cust_toc. The dot leader is turned
on. Indentation is set to 3. One table of contents level is set by using the LEVEL=1 argument or the TOC-
ENTRY command. The BEFORE-PAGE and AFTER-TOC arguments of the DECLARE-TOC command
are used to print simple messages here.

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 32 Creating a Table of Contents

Table of Contents Sample Program 1

Consider this sample program:

begin-setup
declare-toc cust_toc
for-reports=(all)
dot-leader=yes
indentation=3
after-toc=after toc
before-page=before page
end-declare
end-setup
begin-program
do main
end-program
begin-procedure after toc
position (+1,1)
print 'After TOC' () bold
position (+1,1)
end-procedure
begin-procedure before page
position (+1,1)
print 'Before Page' () bold
position (+1,1)
end-procedure
begin-procedure main
begin-select
print 'Customer Info' ()

print '-' (+1,1,62) Fill
name (+1,1,25)
toc-entry text = &name level =1
cust _num (,35,30)
city (+1,1,106)
state (,17,2)
phone (+1,1,15) edit (xXX)bxxx-xxXXX

position (+2,1)
from customers
order by name
end-select
end-procedure ! main
begin-heading 3
print $current-date (1,1) Edit 'DD-MON-YYYY'
page-number (1,69) 'Page '
end-heading

Table of Contents Sample Program 2

The following program is also based on cust.sqr. It is similar to the previous program but declares two
table of contents levels. This program also creates headings and footings that are specific to the table of
contents. The FOR-TOCS argument of the BEGIN-HEADING and BEGIN-FOOTING commands enable
you to specify, by name, the table of contents to which the particular heading or footing section applies. If
the program is generating multiple reports with multiple tables of contents, then you can apply unique or
common headings and footings to different reports and tables of contents. The table of contents heading
of this program prints Table of Contents and the page number. The page numbers in the table of contents
print as roman numerals. The table of contents footing prints Company Confidential.

begin-setup

declare-report cust

end-declare

declare-toc cust toc
for-reports=(cust)
dot-leader=yes
indentation=3
after-toc=after toc
before-page=before page

Copyright © 1988, 2024, Oracle and/or its affiliates. 187

Creating a Table of Contents

188

end-declare
declare-variable
integer #num toc
integer #num page
end-declare
end-setup
begin-program
use-report cust
do main
end-program
begin-procedure after toc
position (+1,1)
print 'After TOC' () bold
position (+1,1)
end-procedure
begin-procedure before page
position (+1,1)
print 'Before Page' () bold
position (+1,1)
end-procedure
begin-procedure main
begin-select
print 'Customer Info' ()

print '-' (+1,1,62) Fill
name (+1,1,25)
toc-entry text = &name level =1
cust num (,35,30)
city (+1,1,106)
state (,17,2)
phone (+1,1,15) edit (xxx)bxxx-xxXxx

position (+2,1)
do orders (&cust num)
position (+2,1)
from customers
order by name
end-select
end-procedure ! main
begin-procedure orders (#cust num)
let #any = 0
begin-select
if not #any
print 'Orders Booked' (+2,10)
print '-———————————- ' (+1,10)
let #any =1
end-1if
b.order num
b.product code

order date (+1,10,20) Edit 'DD-MON-YYYY'
description (,+1,20)
toc-entry text = &description level=2c.price * b.gquantity

(,+1,13) Edit $$$5,550.99
from orders a, ordlines b, products c
where a.order num = b.order num
and b.product code = c.product code
and a.cust num = #cust num
order by b.order num, b.product code
end-select
end-procedure ! orders
begin-footing 3
for-tocs=(cust_toc)
print 'Company Confidential' (1,1,0) center
print $current-date (1,1) Edit 'DD-MON-YYYY'
end-footing
begin-heading 3
for-tocs=(cust toc)
print 'Table of Contents' (1,1) bold center
let S$page = roman (#page-count)
print 'Page ' (1,69)
print $page ()
end-heading
begin-heading 3

Chapter 32

Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 32 Creating a Table of Contents

print $current-date (1,1) Edit 'DD-MON-YYYY'
page-number (1,69) 'Page '
end-heading

Copyright © 1988, 2024, Oracle and/or its affiliates. 189

Creating a Table of Contents Chapter 32

190 Copyright © 1988, 2024, Oracle and/or its affiliates.

	Legal Notices
	Contents
	Preface
	Understanding the PeopleSoft Online Help and PeopleBooks
	Hosted PeopleSoft Online Help
	Locally Installed PeopleSoft Online Help
	Downloadable PeopleBook PDF Files
	Common Help Documentation
	Field and Control Definitions
	Typographical Conventions
	ISO Country and Currency Codes
	Region and Industry Identifiers
	Translations and Embedded Help

	Using and Managing the PeopleSoft Online Help
	PeopleTools Related Links
	Contact Us
	Follow Us

	Getting Started with SQR for PeopleSoft
	SQR for PeopleSoft Overview
	Understanding Transparent Application Failover for SQR
	SQR for PeopleSoft Implementation
	Other Sources of Information

	Introducing a Sample Structured Query Report Program
	Using This Guide
	Setting Up the Sample Database
	Considerations for DBX
	Understanding the Sample Program for Printing a Text String
	Creating and Running a Sample SQR Program
	Creating an SQR Program
	Running an SQR Program

	Viewing SQR Output

	Creating Headings and Footings
	Understanding SQR Pages
	Creating Page Headings and Footings
	Understanding the Heading and Footing Code Example
	Adding Page Headings
	Adding Page Footings

	Selecting Data from the Database
	Understanding the Sample Program for Listing and Printing Data
	Creating SQR Select Paragraphs

	Using Column Variables
	Using Column Variables in Conditions
	Changing Column Variable Names

	Using Break Logic
	Understanding Break Logic
	Using the ON-BREAK Option
	Skipping Lines Between Groups
	Arranging Multiple Break Columns
	Using Break Processing Enhancements
	Controlling Page Breaks and Calculating Subtotals and Totals
	Handling Page Breaks
	Printing the Date
	Obtaining Totals
	Using Hyphens and Underscores

	Setting Break Procedures with BEFORE and AFTER Qualifiers
	Controlling Page Breaks with Multiple ON-BREAK Columns
	Saving a Value When a Break Occurs
	Using ON-BREAK on a Hidden Column
	Performing Break Processing on Numeric Values

	Adding Declarations Using the SETUP Section
	Understanding the SETUP Section
	Creating a SETUP Section
	Using the DECLARE-LAYOUT Command
	Sample SETUP Program
	Defining the SQR Page Layout

	Overriding Default Settings
	Declaring a Page Orientation

	Creating Master and Detail Reports
	Understanding Master and Detail Reports
	Understanding the Sample Program for Master and Detail Reports
	Correlating Subqueries
	Sample Program Output

	Creating Cross-Tabular Reports
	Understanding Cross-Tabular Reports
	Using an Array
	Creating an Array
	Grouping by Category
	Using Multiple Arrays

	Printing Mailing Labels
	Understanding Mailing Label Printing
	Understanding the Sample Program for Printing Mailing Labels
	Defining Columns and Rows
	Running the Print Mailing Labels Program

	Creating Form Letters
	DOCUMENT Paragraph
	Sample Program for Form Letters

	Exporting Data to Other Applications
	Understanding the Sample Program for Exporting Data
	Creating an Export File

	Using Graphics
	Understanding the Sample Program for Simple Tabular Reports
	Adding Graphics
	Sharing Images Among Reports
	Printing Bar Codes

	Using Business Charts
	Understanding Business Charts
	Creating a Chart
	Defining Charts
	Printing Charts
	Running the Program to Create Graphical Reports
	Passing Data to Charts

	Changing Fonts
	Setting Fonts
	Positioning Text
	Using the WRAP Option

	Writing Printer-Independent Reports
	Understanding Printer-Independent Reports
	Reviewing the Sample Program for Selecting the Printer Type at Runtime

	Using Dynamic SQL and Error Checking
	Using Variables in SQL
	Using Dynamic SQL
	Using SQL Error Checking
	Using SQL and Substitution Variables

	Using Procedures and Local Variables and Passing Arguments
	Using Procedures
	Using Local Variables
	Passing Arguments

	Creating Multiple Reports from One Program
	Understanding How to Create Multiple Reports
	Understanding the Sample Program for Multiple Reports
	Defining Heading and Footing Sections
	Defining Program Output

	Using Additional SQL Statements with SQR
	Using SQL Statements in SQR
	Using the BEGIN-SQL Paragraph

	Working with Dates
	Understanding Dates and Date Arithmetic
	Using Literal Date Formats
	Using String-to-Date Conversions
	Using Date-to-String Conversions
	Using Dates with the INPUT Command
	Using Date Edit Masks
	Declaring Date Variables

	Using National Language Support
	Understanding Locales
	Selecting Locales
	Defining a Default Locale
	Switching Locales
	Modifying Locale Preferences
	Specifying NUMBER, MONEY, and DATE Keywords

	Using Interoperability Features
	Calling SQR from Another Application
	Invoking an SQR Program by Using the SQR API
	Invoking an External Application API by Using the UFUNC.C Interface
	Adding a User Function
	Understanding the UFUNC.C File
	Adding a Function Prototype
	Relinking SQR

	Using UFUNC in Microsoft Windows
	Implementing New User Functions in Microsoft Windows

	Testing and Debugging
	Using the Test Feature
	Using the #DEBUG Command
	Using Compiler Directives for Debugging
	Avoiding Common Programming Errors

	Increasing Performance and Tuning
	Understanding SQR Performance and SQL Statements
	Simplifying Complex Select Paragraphs
	Using LOAD-LOOKUP to Simplify Joins
	Improving SQL Performance with Dynamic SQL
	Examining SQL Cursor Status
	Avoiding Temporary Database Tables
	Understanding Temporary Database Tables
	Using and Sorting Arrays
	Using and Sorting Flat Files

	Creating Multiple Reports in One Pass
	Tuning SQR Numerics
	Compiling SQR Programs and Using SQR Execute
	Setting Processing Limits
	Buffering Fetched Rows
	Running Programs on the Database Server

	Compiling Programs and Using SQR Execute
	Understanding Compile Features
	Compiling and Running an SQR Program

	Printing with SQR
	Specifying Output File Types by Using SQR Command-Line Flags
	Using the DECLARE-PRINTER Command

	Using the SQR Command Line
	Understanding the SQR Command Line
	Specifying Command-Line Arguments
	Understanding Command-Line Arguments
	Retrieving Arguments
	Specifying Arguments and Argument Files
	Using an Argument File
	Using Other Approaches to Pass Command-Line Arguments
	Using Reserved Characters
	Creating an Argument File from a Report

	Using Batch Mode

	Generating and Publishing HTML from an SQR Program
	Understanding SQR Capabilities That Are Available with HTML
	Generating HTML Output
	Understanding HTML Output
	Producing HTML Output
	Using -PRINTER:EH
	Setting HTML Attributes Under -PRINTER:EH
	Using -PRINTER:HT
	Bursting Reports
	Setting Attributes with HTML Procedures
	Using Additional HTML Procedures
	Setting Output File Types
	Testing HTML Output

	Using HTML Procedures in an SQR Program
	Understanding HTML Procedures
	Using HTML Procedures
	Positioning Objects
	Displaying Records in Tables
	Creating Headings
	Highlighting Text
	Creating Links
	Including Images
	Displaying Text in Lists
	Formatting Paragraphs
	Incorporating Your Own HTML Tags

	Modifying an Existing SQR Program for HTML
	Publishing a Report
	Publishing Reports
	Supporting Older Browsers
	Viewing Published Reports
	Publishing by Using an Automated Process
	Publishing by Using a CGI Script

	Generating tagged PDF Output from SQR Program
	Tagged PDF Overview
	Sample Program to Create Tagged PDF
	SQR Program for using Paragraph in tagged content
	Generating a Tagged Table in a PDF Report
	Generating a Tagged List in a PDF Report
	Generating Alternate Text for a Figure

	Tagged PDF in PeopleSoft Application
	Using Accessibility Checkers

	Generating XML Output from SQR Program
	Generating XML Output
	SQR Commands to Generate XML Output
	Sample Program to Generate XML Output
	Generating XML Output in PeopleSoft Applications

	Creating a Table of Contents
	Using the DECLARE-TOC Command
	Using the TOC-ENTRY Command
	Adding a Table of Contents to the CUST.SQR Sample Program

