Containerization Guide

Oracle Banking Supply Chain Finance
Release 14.7.2.0.0

Part Number F89725-01

November 2023

ORACLE

Table of Contents

1. PREFACE 1-1
1.1 INTRODUGCTIONooviitieiteeteeteesteesteestesteesseesseesseessesssesssesssesseesseesseassesssesssesseesseesseessesssesssesseesseessesssesseesses 1-1
1.2 ATUDIENCE ...ttt ettt ettt et e bttt et s ae e s bt et e eat e ea et e et e eb e e bt e bt emteemeesetesaee bt emeeem bt esteebee b e enbeenbesnaesanenee 1-1
1.3 DOCUMENTATION ACCESSIBILITY ...couvtiutietenitenieeteenteeteeesenteenteenseessesssessnesueenseenseessesssesssenseensesssesnesnenues 1-1
1.4 RELATED DOCUMENTStiutteiteitetteteeteeitesieenteesteestteateeasestaes st eseessesasesaeesaeesseemseensesasesseenseenseennesanesanenuee 1-1

2. TECHNOLOGIES 2-1
2.1 D 100) 4 23 E OO PP RPRRPRUPRR 2-1

2.1.1 TmAages and COMTAINEIS.....ccueeruiiieiieitierteet ettt ettt e ettt st e b e e st e e bt et e st e ebeesbee bt enbeenaesneesneenae 2-1
2.2 KUBERNETES (K8) ...vteutteutteiiteiie ettt ettt sttt ettt e st e st e bt esseessessaesseenseenseenseessenssenseenseensennsesnnenens 2-1

3. CONTAINERIZATION 3-1
3.1 DOCKER REGISTRY ..cuuiiiiiiiiieiieniienieeie et et st ste et ettt ees st et e bt et sasesaeesaee st emneestesanesteenbeenneesnesanesanenuee 3-1
3.2 DIATABASE ...ttt ettt ettt et et ettt a et b e et et st sae bttt et e aa et h et eanesanenae 3-1
33 BUILDING IMAGE ...ttt ettt ettt h e b e b e et e st s atesat e s bt et e ea bt es e e ebeenbeebeenbeenaesaeenee 3-1

3301 IMAGE CIOATION. ¢ .eutetietieteete ettt ettt ettt et at e et e b e bt e bt e st sate s aeesbe e st e enbeemteeatesbeeebee bt enbeentesneesneenae 3-2
3.3.2 Updating Image for Patch/CustOmiZation............c.eecuereeriieniiesiesiie e ettt eae e seaessee e eseeneeseeeees 33

4. ORACLE BANKING MICROSERVICES ARCHITECTURE PRODUCTS DEPLOYMENT

APPROACHES 4-1
4.1 INSTALLER ...ttt sttt ettt et ettt et et et et st sae e bt et et eeteeasesbs e be e bt enneeanesanesanenaee 4-1
4.2 CONTAINERIZATION OF THE SERVICES USING TOMCATcoitiiiiiiiiiiniieniieniteie ettt sttt 4-1

4.2.1 Using Jib Plugin and TomCat TMaAGE.........ccceeciriiiieeiieiiieeitieeieeeieesieeeieesteeeteesbeeereesssaessseesnseesnseess 4-1
4.2.2 Pipeline Integration in JENKINS.cecuiiieiiiiiiieie ettt ettt st e e e eae 4-3
4.2.3 Using War Artifacts Delivered in OSDC.........ccviiiiiiiiieiieritesie ettt see e e seeenseense e 4-4
4.2.4 Pipeline Integration in JENKINS..........ccuerieriiriiesiieieeiteeeesee st ettt eteeae e ssaeseesessessesseesseenseenseensenns 4-6
43 CONTAINERIZATION OF SERVICES USING WEBLOGICc..eertiiitiieiiienitenitenieeieenteentesteesteenieenseeseseeeseeesees 4-8
4.3.1 Using Pre-Built Weblogic TMAagescccooiiiiiiiiiiiiiiiiieetet ettt 4-8
4.3.2 Running Weblogic Containers Using Weblogic Kubernetes Operator...........cccevveveeeeveevereeneeneeennenne 4-9
4.4 DEPLOYING SERVICES WITHOUT DOCKER IMAGEScccueoiiiiiiniiiniieniieieeieeeeee st 4-10
4.4.1 Deploying Applications to Tomcat without Docker Images............ccceeevieriieniiiencieeniie e 4-10
4.42 Deploying Applications to Weblogic without Docker Imagescccceocevveiiinenieniiniiicceceeeen 4-10
4.5 DEPLOYING SERVICES ON PRIVATE CLOUD USING DOCKER IMAGESc..coceiiiniiniinieiieieeieneenieeneen 4-11

ORACLE

1.1

1.2

1.3

1.4

1. Preface

Introduction

This document provides information on how to deploy Oracle Banking Microservices Architecture
products by creating a Docker image and deploying it in a Docker container or inside a
Kubernetes (K8) cluster.

Audience

This document is intended for WebLogic admin or ops-web team who are responsible for
installing OFSS Banking Products. The user of the guide should have pre-acquired skills in the
below technologies to perform the steps mentioned in this guide:

e Docker
e Kubernetes
e Jenkins

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/us/corporate/accessibility/index.html.

Related documents

For more information, refer to the following documents:

e Product Installation Guide

1-1 ORACLE

http://www.oracle.com/us/corporate/accessibility/index.html

2. Technologies

2.1 Docker

2.1.1 Images and Containers

An image is a read-only template with instructions for creating a Docker container. Often, an image
is based on another image.

A container is a standard unit of software that packages up code and all its dependencies. Hence,
the application runs quickly and reliably from one environment to another. A Docker Container
Image is a lightweight, standalone, executable package of software that includes everything
needed to run an application - code, runtime, system tools, system libraries, and settings.

Container images become containers at runtime, and in case of Docker containers, the images
become containers when they run on the engine. Containers are available for both Linux and
Windows-based applications. The containerized software will always run the same code,
regardless of the infrastructure. The container isolates software from its environment and ensures
that it works uniformly despite differences for instance between Development, Staging, and
Production.

2.2 Kubernetes (K8)

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management
of containerized applications. It groups containers that make up an application into logical units for
easy management and discovery.

21 ORACLE

3.1 Docker Reqistry

A Docker registry is a service for storing and retrieving Docker images. A registry contains a
collection of one or more Docker image repositories. Each image repository contains one or more
tagged images. Docker provides its own registry, the Docker Hub, but you may also use private or
third-party registries. You need to register yourself in Oracle Container Registry to access images

3.2

3.3

located in this registry.

Database

3. Containerization

Database is not included inside Docker and database feature for High availability should be used.

Building Imaqge

The process of building an image is shown below:

Registry Service
Build Image >
Image Repository
Image(v1)
Image(v2)
:. ___________________________ T Image(Latest)
' |
: 1
' 1
! |
Production UAT
Container Container
Image Image
3-1 ORACLE

https://container-registry.oracle.com/

3.3.1 Image Creation

Image is layered consisting of following components:

e Operating System (OS) Linux from provider Container Registry
¢ Java Runtime from provider Container Registry

e Application Server from provider Container Registry

e Applications from Oracle Banking Microservices Architecture product installer

Provider Container Registry

Application

App Server

Image V1 4i| Registry

Server JRE

Host

Docker Pull

Container

Image

3-2 ORACLE

3.3.2 Updating Image for Patch/Customization

Modified Image is layered consisting of following components:

NOTE: Image needs to be updated from local Container Registry.

me—e—e—————————————-
I
I
I
i Application V2
i Image V2 |——» Registry
I
|
I Image V1
|
I
e
Host
Docker Pull
Container | ™
Image

3-3 ORACLE

4.1

4.2

4.2.1

4. Oracle Banking Microservices Architecture
Products Deployment Approaches

Installer

Oracle banking Oracle Banking Microservices Architecture Installer is available on OSDC for
download, installer does the following:

e |t Generates Deployment Artefacts (web archives) which can be deployed into the Application
Server.

e The database scripts for both DDL and DML are executed with the web archives.

Containerization of the Services using Tomcat

This chapter describes the various methods that can be used to containerize a service in the
Oracle Banking Microservices Architecture Product stack.

Using Jib Plugin and Tomcat Image

This approach uses the google Jib plugin to integrate creation of Docker images along with gradle
build. This approach can be used to create Docker images of components where the consulting
or customer teams have access to code generated using Oracle Banking Microservices
Architecture Extensibility framework.
1. Update to build.gradle to include Jib plugin.

id 'com.google.cloud.tools.jib’ version '2.6.0'

4-1 ORACLE

Add Jib task in build.gradle.

jib {
from {
image = 'tomcat:<tag>'
}
to {
auth{
//it is ideal to use credHelper value here instead of
username/passwd if it is configured using the below line
// credHelper = '<credHelper_value>', else username/password to the
// registry can be used
username = ‘'docker_registry_username'’
password = 'docker_registry_passwork'
}
image = <docker_registry_name>/<image_name:image_version>'
}

container {
appRoot = '/usr/local/tomcat/webapps/ROOT’

}
¥
tasks {
build {
dependsOn(tasks.jib)
}
}

Run Gradle build using the below command:

$ gradlew clean build

Test the Docker image as follows:

a) Login to Registry using Docker login ‘registry _name’.

b) Pull the image from repository using:
docker pull <docker _registry _name>/<image name:image_version>.

c) Run the docker image using docker run -d -p 80:8080:
<docker _registry_name>/<image name:image_version>.

d) To pass env variable to your service to start use the below options:

= docker run -d -p <port> -v <Host Path>:/opt/logs/ <image> -e ds_jndi_1=jdbc/PLATO
ds_db_host 1=<DBHOST> ds_db_port_1=<DB_HOST_PORT>
ds_db_serviceid _1=<SID> ds_db_username_1=<USERNAME>
ds_db_password 1=<PASSWORD>

= docker run -d -v <Host Path>:/opt/logs/ --env-file <file> <image>

4-2 ORACLE

4.2.2 Pipeline Integration in Jenkins

The Docker image creation using Jib plugin can be automated in the Continuous integration (CI)
pipeline. The CI Pipeline is usually used to run automated tasks that build a source code at
preconfigure intervals to enable automation of build for an application. The Jenkins pipeline can
then be enhanced to support automated deployment of the Docker images in Continuous
Deployment (CD) pipeline.

4.2.2.1 Pre-requisites

The pre-requisites for pipeline integration in Jenkins are as follows:
1. Jenkins installation
2. Docker engine installation on Jenkins VM
3. Network connectivity between docker registry and Jenkins VM
4. Gradle plugin for Jenkins installation
5. CredHelper Configuration
4.2.2.2 Automated Build — CI

The gradle build step should be added as a stage in Jenkins to trigger automated build for a
service. This will also result in the image getting created and pushed to the mentioned Docker
registry.

stage('Build and Test') {
steps {
dir (ll.ll){

sh './gradlew clean build --refresh-dependencies'

4-3 ORACLE

4.2.2.3 Automated Deployment — CD

The codes used to auto-deploy an image on a VM with a vanilla Docker installation is detailed in
the below Jenkins file.

def docker_image name = "<image_name:image_version>"
def remote = [:]

remote.name = "dkx"

remote.host = "<docker_hostname>"
remote.allowAnyHosts = true

remote.user = "<username>"

remote.password = "<passwd>"

stage('Login to remote box') {
steps {
withCredentials([usernamePassword(credentialsId: 'sshUserAcct’,
passwordVariable: 'password', usernameVariable: ‘'userName')]) {
sshCommand remote: remote, command: 'docker pull
<docker_registry name>/' + docker_image_name
sshCommand remote: remote, command: 'docker run -d -p 80:8080
<docker_registry name>/' + docker_image_name

}

4.2.3 Using War Artifacts Delivered in OSDC

This approach should be used if a consulting or partner installation team does not have access to
source code of a service and wants to containerize the product applications. This approach uses
the war files shipped under the product installer in OSDC portal. The below section details
individual steps to be followed to create the Docker images for each service.

4.2.3.1 Prerequisites
The pre-requisites are as follows:

1. Docker Engine should be up and running on the VM to perform the following operations
2. Proxy setting in /etc/environment file must be updated using root permissions.

4.2.3.2 Create a sample docker file to run a service in tomcat

Create a sample Docker file as follows:
1. Create a separate directory structure for each service.
$mkdir <service_name>/docker
$cd <service_name>/docker
2. Copy the service's war file from the installer to the path <service_name>/docker

$cp <service_name>.war <service_name>/docker/.

4-4 ORACLE

3. Create a Docker file in the docker directory for the service.

$vi Dockerfile
NOTE: Services Dockerfile should have "tomcat:<tag_name>" as a base image.
FROM tomcat:<tag>

4. Pass the appropriate build arguments to docker.

ARG application_context=<application context name>
ARG war_file name=<microservices war file name>

ARG shutdown_port=<tomcat server shutdown port value>
ARG http_port=<tomcat server http port value>

ARG redirect_port=<tomcat server redirect port value>
ARG ajp_port=<tomcat server redirect port value>

application_context - This value represents the context root of the Plato application. This value
must be passed as an argument in the docker file.

war_file_name - This value represents the name of the war file of the application that is present in
the local system where the docker image is being built.

shutdown_port - Represents the shutdown port in the Tomcat server.

http_port - Represents the HTTP port on which the application will be available for accessing via
REST API.

redirect_port - Represents the redirect port in the Tomcat server.

ajp_port - Represents the AJP port in the Tomcat server.

Note***: The port values are not mandatory to give in case the docker image is getting built for
deployment in Kubernetes but it is mandatory in case of docker-compose because container port
values should unique for the same. The port values are not passed/mentioned in the Dockerfile then
the default will be used for while building the image.

5. Expose the container http_port.
EXPOSE <http_port>

6. The completed service's Docker file is shown below.

FROM tomcat:<tag>

ARG application_context=plato-discovery-service

ARG war_file_name=plato-discovery-service-1.0.3.war
ARG shutdown_port=5008

ARG http_port=5005

ARG redirect_port=5007

ARG ajp_port=5006

COPY plato-discovery-service-1.0.3.war /usr/local/tomcat/webapps/
EXPOSE 5005

CMD ["catalina.sh", "run"

4-5 ORACLE

4.2.3.3 Test the Docker image

Perform the following steps to test the Docker image:

1.

Run the Docker image using the below option:

e docker run -d -p 80:8080 <docker_registry_name>/<image_name:image_version>

2. To pass env variable to your service use the below options:

e docker run -d -p <port> -v <Host Path>:/opt/logs/ <image> -e ds_jndi_1=jdbc/PLATO
ds_db_host_1=<DBHOST> ds_db_port_1=<DB_HOST_PORT> ds_db_serviceid_1=<SID>
ds_db_username_1=<USERNAME> ds_db_password_1=<PASSWORD>

e docker run -d -v <Host Path>:/opt/logs/ --env-file <file> <image>

4.2.4 Pipeline Integration in Jenkins

The Docker image creation can be automated in the Cl pipeline. The Cl Pipeline is used to run
automated tasks that build a source code at pre-configure intervals to enable automation of build
for an application. The Jenkins pipeline can be enhanced to support automated deployment of the

Docker images in CD pipeline.

4.2.4.1 Pre-requisites

The pre-requisites for pipeline integration in Jenkins are as follows:

1.

2
3.
4
5

Jenkins installation

Docker engine installation on Jenkins VM

Network connectivity between Docker registry and Jenkins VM
Gradle plugin for Jenkins installation

CredHelper Configuration

4-6 ORACLE

4.2.4.2 Automated Build — Cli

The gradle build step should be added as a stage in Jenkins to trigger automated build for a
service. This will result in the image getting created, and pushed to the mentioned Docker

registry.

stage('Build and Publish Docker Image') {
steps {
script {
/* provide the Dockerfile and the context of the build which is the
directory which contains the Dockerfile */
def image = docker.build(docker_image name, "-f " + dockerfile_path
+ "/Dockerfile " + dockerfile_path)

/* once the image is complete, this runs the image and you can verify
if the image is correct by adding tests */
image.inside {
sh 'echo "Put Tests for your new image here"'

/* Replace the docker repo with your repo and the login with a cre-
dential in your Jenkins that has permission to push to your docker repo */
docker.withRegistry('https://' + docker_registry + '/v2/',
docker_registry login) {
image.push(docker_image_version)

4-7 ORACLE

4.2.4.3 Automated Deployment — CD

The codes used to auto-deploy an image on a VM with a vanilla Docker installation is detailed in

the below Jenkins file.

def docker_image name = "<image_name:image_version>"
def remote = [:]

remote.name = "dkx"

remote.host = "<docker_hostname>"
remote.allowAnyHosts = true

remote.user = "<username>"

remote.password = "<passwd>"

stage('Login to remote box') {
steps {

sshCommand remote: remote, command: 'docker pull
<docker_registry name>/' + docker_image name

<docker_registry name>/' + docker_image name

}

withCredentials([usernamePassword(credentialsId: 'sshUserAcct’,
passwordVariable: 'password', usernameVariable: 'userName')]) {

sshCommand remote: remote, command: 'docker run -d -p 80:8080

4.3 Containerization of Services Using Weblogic

In this section, the various options to build service containers using Oracle Weblogic images are

described.

4.3.1 Using Pre-Built Weblogic Images

This section details the steps to deploy the services on a Weblogic Server running in a Docker

container.
4.3.1.1 Prerequisites
The pre-requisites are as follows:

1. Verify proxy settings on the VM where Weblogic image need to run.

2. Log in to the Oracle Container Reqistry portal, and accept the license agreements before

pulling the Docker images.
3. Sudo access to the VM to run commands as root.

Create a file domain.properties with the below content:

username=
password=""

4-8

ORACLE

https://container-registry.oracle.com/pls/apex/f?p=113:10

4.3.1.2 Pull the weblogic Docker image

Run the following command:
docker pull container-registry.oracle.com/middleware/weblogic:12.2.1.4

4.3.1.3 Run the weblogic image

Run the following command:

docker run -d -p 7002:7001 -p 9004:9002 -v $PWD:/u01/oracle/properties container-
registry.oracle.com/middleware/weblogic:12.2.1.3

4.3.1.4 Deploy the application

Access the console at <hostname>:9004/console with admin credentials and deploy the
service.

4.3.1.5 Creating domains in weblogic and deploying applications

Deploy the application in custom domains. For information on deploying applications, refer to
the below documentation:

https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-
home-in-image

4.3.2 Running Weblogic Containers Using Weblogic Kubernetes Operator

4.3.2.1 Prerequisites
The pre-requisites are as follows:

1. Docker engine installation
2. Kubernetes cluster
3. Access to Kubernetes operator

4.3.2.2 Install and manage weblogic domains using Kubernetes operator

An operator is an application-specific controller that extends Kubernetes to create, configure,
and manage instances of complex applications. The Oracle WebLogic Server Kubernetes
Operator simplifies the management and operation of WebLogic domains and deployments. A
detailed guide to installation and management of weblogic domains is in the below link:

https://oracle.github.io/weblogic-kubernetes-operator/

4-9 ORACLE

https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-home-in-image
https://github.com/oracle/docker-images/tree/main/OracleWebLogic/samples/12213-domain-home-in-image
https://oracle.github.io/weblogic-kubernetes-operator/

4.4 Deploying Services without Docker Images

This section details steps to be followed to deploy product services without using Docker images.

4.41 Deploying Applications to Tomcat without Docker Images

4.4.1.1 Prerequisites
The pre-requisites are as follows:

1. Tomcat installation
2. Jenkins installation

4.4.1.2 Manual deployment

1. Download and place the individual war files for services in a common directory.
2. Follow the steps in the below link to deploy the individual service wars:

https://tomcat.apache.org/tomcat-10.0-doc/deployer-howto.html

4.4.1.3 Deployment using scripts

Alternatively, the war files can be configured to be deployed using a Jenkins pipeline. The
deploy to container plugin should be used for configuration.

4.4.2 Deploying Applications to Weblogic without Docker Images

4.4.2.1 Prerequisites
The pre-requisites are as follows:

1. Weblogic installation

2. Jenkins installation

4.4.2.2 Manual deployment

Perform the following steps:
1. Download and place the individual war files for services in a common directory

2. Follow the steps in the below link to deploy the individual service wars.
https://docs.oracle.com/cd/E19424-01/820-4807/war-weblogic/index.html

4.4.2.3 Deployment using Jenkins

Alternatively, the war files can be configured to be deployed using a Jenkins pipeline. The
Deploy WebLogic should be used for configuration. It is recommended to see if the version of
the plugin has any vulnerabilities.

4-10 ORACLE

https://tomcat.apache.org/tomcat-10.0-doc/deployer-howto.html
https://docs.oracle.com/cd/E19424-01/820-4807/war-weblogic/index.html

4.5 Deploying Services on Private Cloud using Docker
Images

When deploying the services on Docker image in private cloud, it is important to build custom
images of Weblogic and Tomcat using openjdk 8 unless the appropriate license requirements are
met with the built jdk versions in Weblogic.

For Weblogic use the below steps to build the base weblogic images:
https://github.com/oracle/docker-images/tree/main/OracleWebLogic

For Tomcat use the below steps to build the base tomcat images:
https://hub.docker.com/ /tomcat

The pre-built OpenJDK 8 image is available in this link.

4-11 ORACLE

https://github.com/oracle/docker-images/tree/main/OracleWebLogic
https://hub.docker.com/_/tomcat

ORACLE

Containerization Guide

Oracle Financial Services Software Limited
Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax: +91 22 6718 3001
https://www.oracle.com/industries/financial-services/index.html

Copyright © 2018, 2023, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then
you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure
its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

https://www.oracle.com/industries/financial-services/index.html

	1. Preface
	1.1 Introduction
	1.2 Audience
	1.3 Documentation Accessibility
	1.4 Related documents

	2. Technologies
	2.1 Docker
	2.1.1 Images and Containers

	2.2 Kubernetes (K8)

	3. Containerization
	3.1 Docker Registry
	3.2 Database
	3.3 Building Image
	3.3.1 Image Creation
	3.3.2 Updating Image for Patch/Customization

	4. Oracle Banking Microservices Architecture Products Deployment Approaches
	4.1 Installer
	4.2 Containerization of the Services using Tomcat
	4.2.1 Using Jib Plugin and Tomcat Image
	4.2.2 Pipeline Integration in Jenkins
	4.2.2.1 Pre-requisites
	4.2.2.2 Automated Build – CI
	4.2.2.3 Automated Deployment – CD

	4.2.3 Using War Artifacts Delivered in OSDC
	4.2.3.1 Prerequisites
	4.2.3.2 Create a sample docker file to run a service in tomcat
	4.2.3.3 Test the Docker image

	4.2.4 Pipeline Integration in Jenkins
	4.2.4.1 Pre-requisites
	4.2.4.2 Automated Build – CI
	4.2.4.3 Automated Deployment – CD

	4.3 Containerization of Services Using Weblogic
	4.3.1 Using Pre-Built Weblogic Images
	4.3.1.1 Prerequisites
	4.3.1.2 Pull the weblogic Docker image
	4.3.1.3 Run the weblogic image
	4.3.1.4 Deploy the application
	4.3.1.5 Creating domains in weblogic and deploying applications

	4.3.2 Running Weblogic Containers Using Weblogic Kubernetes Operator
	4.3.2.1 Prerequisites
	4.3.2.2 Install and manage weblogic domains using Kubernetes operator

	4.4 Deploying Services without Docker Images
	4.4.1 Deploying Applications to Tomcat without Docker Images
	4.4.1.1 Prerequisites
	4.4.1.2 Manual deployment
	4.4.1.3 Deployment using scripts

	4.4.2 Deploying Applications to Weblogic without Docker Images
	4.4.2.1 Prerequisites
	4.4.2.2 Manual deployment
	4.4.2.3 Deployment using Jenkins

	4.5 Deploying Services on Private Cloud using Docker Images

