
Oracle Private Cloud Appliance
Concepts Guide

F74803-10
March 2024

Oracle Private Cloud Appliance Concepts Guide,

F74803-10

Copyright © 2022, 2024, Oracle and/or its affiliates.

Contents

 Preface

Audience xii

Feedback xii

Conventions xii

Documentation Accessibility xiii

Access to Oracle Support for Accessibility xiii

Diversity and Inclusion xiii

1 Architecture and Design

Introduction to Oracle Private Cloud Appliance 1-1

Compatibility with Oracle Cloud Infrastructure 1-1

Enclaves and Interfaces 1-3

Enclave Boundaries 1-3

Access Profiles 1-4

Layered Architecture 1-5

Hardware Layer 1-5

Platform Layer 1-5

Infrastructure Services Layer 1-6

Platform Layer Overview 1-6

Fundamental Services 1-6

Hardware Management 1-7

Service Deployment 1-7

Common Service Components 1-7

Physical Resource Allocation 1-9

High Availability 1-10

Hardware Redundancy 1-10

System Availability 1-10

Compute Instance Availability 1-11

Continuity of Service 1-12

iii

2 Hardware Overview

Base Rack Components 2-1

X10 Rack Configuration 2-1

X9 Rack Configuration 2-3

Servers 2-5

Management Nodes 2-5

Compute Nodes 2-5

Server Components 2-6

Network Infrastructure 2-6

Device Management Network 2-7

Data Network 2-7

Uplinks 2-7

Physical Connection 2-8

Reference Topologies 2-8

Logical Connection 2-10

Uplink Protocols 2-11

Administration Network 2-13

Reserved Network Resources 2-13

Oracle Exadata Integration 2-14

Storage 2-15

Oracle ZFS Storage Appliance ZS9-2 2-15

Additional Storage 2-15

3 Appliance Administration Overview

Administrator Access 3-1

Authorization Groups and Their Policies 3-1

Authorization Families 3-3

Status and Health Monitoring 3-4

Monitoring 3-4

Fault Domain Observability 3-5

System Health Checks 3-6

Centralized Logging 3-7

Upgrade 3-7

Upgrade Plan and History 3-8

Pre-Checks 3-8

Single Component Upgrade 3-9

Full Management Node Cluster Upgrade 3-10

Patching 3-11

Backup and Restore 3-11

Disaster Recovery 3-12

iv

Serviceability 3-14

4 Identity and Access Management Overview

Users and Groups 4-1

User Credentials 4-2

Account Passwords 4-2

API Signing Keys 4-2

Federating with Identity Providers 4-3

Supported Identity Providers 4-3

Experience for Federated Users 4-3

Federation Process Overview 4-3

Instance Principals 4-4

Organizing Resources in Compartments 4-4

Understanding Compartments 4-4

Considerations for Granting Resource Access 4-5

Examples of Compartment Organization 4-5

All Resources in the Root Compartment 4-6

Separately Managed Project Compartments 4-6

Working with Compartments 4-7

Creating Compartments 4-7

Compartment Access Control 4-7

Adding Resources to Compartments 4-7

Moving Resources Between Compartments 4-7

Deleting Compartments 4-8

Moving a Compartment to a Different Parent Compartment 4-8

Policy Implications 4-8

Tagging Implications 4-9

How Policies Work 4-9

Policy Basics 4-9

Resource Types 4-10

Policy Attachment 4-10

Policy Syntax 4-10

Subject 4-11

Verb 4-11

Resource Type 4-12

Location 4-13

Conditions 4-13

Common Policies 4-14

Let the help desk manage users 4-14

Let auditors inspect your resources 4-15

v

Let network admins manage a cloud network 4-15

Let users launch compute instances 4-15

Let users manage compute instance configurations, instance pools, and cluster
networks 4-15

Let volume admins manage block volumes, backups, and volume groups 4-16

Let volume backup admins manage only backups 4-16

Let boot volume backup admins manage only backups 4-17

Let users create a volume group 4-17

Let users clone a volume group 4-18

Let users create a volume group backup 4-18

Let users restore a volume group backup 4-18

Let users create, manage, and delete file systems 4-18

Let users create file systems 4-19

Let object storage admins manage buckets and objects 4-19

Let users write objects to object storage buckets 4-19

Let users download objects from object storage buckets 4-20

Let users manage their own credentials 4-20

Let a compartment admin manage the compartment 4-20

Advanced Policy Features 4-20

Conditions 4-20

Permissions 4-22

Cross-Tenancy Policies 4-23

Policy Reference 4-24

5 Tagging Overview

Tag Types 5-1

Categorization with Defined Tags 5-2

Tag Namespaces and Keys 5-2

Permissions for Working with Defined Tags 5-3

Tag Management Features 5-3

Retiring and Reactivating Tag Definitions 5-3

Moving Tag Namespaces 5-4

Deleting Tag Definitions 5-4

Using Predefined Values 5-4

Using Tag Variables 5-5

Tag Defaults 5-5

Tag-Based Access Control 5-6

Important Notes and Limitations 5-7

Example Using Tags Applied to a Group 5-8

vi

Example Using Tags Applied to a Target Resource's Compartment 5-9

6 Virtual Networking Overview

Virtual Cloud Network 6-1

Subnets 6-1

Route Tables 6-2

Public Network in Private Cloud 6-2

Instance Connectivity 6-3

Virtual Network Interface Cards (VNICs) 6-4

IP Addressing 6-5

Primary and Secondary IP Addresses 6-5

Private IPs 6-6

Public IPs 6-7

DHCP Options 6-8

Name Resolution 6-10

Domains and Host Names 6-10

Host Name Validation and Generation 6-11

Public DNS Zones 6-11

Traffic Management Steering Policies 6-14

Network Gateways 6-15

Dynamic Routing Gateway 6-15

NAT Gateway 6-15

Internet Gateway 6-16

Local Peering Gateway 6-16

Policies 6-17

Routing and Traffic Control 6-17

Security Rules 6-17

Service Gateway 6-18

Virtual Firewall 6-18

Security Rules 6-19

Parts of a Security Rule 6-19

Stateful and Stateless Rules 6-20

Best Practices for Security Rules 6-21

Security Lists 6-22

Network Security Groups 6-23

Network Security 6-24

Ways to Secure Your Network 6-24

Access Control 6-24

Using Compartments with Network Resources 6-25

Using IAM Policies for Networking 6-25

vii

Networking Scenarios 6-26

Private Subnet with Data Center Ingress and Egress Traffic 6-26

Private Subnet with Data Center Egress Traffic Only 6-28

Public Subnet with Data Center Ingress and Egress Traffic 6-29

Public Subnet with Mixed Data Center Connectivity 6-30

Public and Private Subnet with Separate Routing 6-32

7 Compute Instance Concepts

Components for Launching Instances 7-1

Compute Shapes 7-2

Storage for Compute Instances 7-3

Compute Instance Lifecycle 7-4

Compute Instance Connections 7-5

Compute Images 7-5

Custom Images Created From Instances 7-5

Bring Your Own Image (BYOI) 7-6

Linux Source Image Requirements 7-6

Microsoft Windows Source Image Requirements 7-7

Boot Volumes 7-8

Custom Boot Volume Sizes 7-9

Boot Volume Backups 7-9

Boot Volume Backup Size 7-9

Restoring a Boot Volume 7-10

Cloning a Boot Volume 7-10

Instance Backup and Restore 7-10

Simplifying Compute Instance Management 7-12

Instance Configurations 7-12

Instance Pools 7-12

Instance Pool Lifecycle States 7-13

Container Engine for Kubernetes 7-13

Extending Compute Resources 7-14

Expanding Volumes 7-14

Offline Resizing of Block Volumes Using the Compute Web UI 7-14

Rescanning the Disk for a Block Volume or Boot Volume 7-14

Adding Another Network Interface 7-15

8 Block Volume Storage Overview

Block Volume Performance Options 8-1

Block Volume Scenarios 8-2

viii

Block Volume Groups 8-3

Volume Backups and Clones 8-4

9 File Storage Overview

File Storage Objects 9-2

File Storage Paths 9-3

VCN Security Rules for File Storage 9-4

File Storage Network Ports 9-5

Export Options for File Storage 9-6

Export Options 9-6

NFS Export Option Defaults 9-7

NFS Access Control Scenarios 9-8

Scenario A: Control Host Based Access 9-8

Scenario B: Limit the Ability to Write Data 9-10

Scenario C: Improve File System Security 9-10

File System Snapshots 9-11

File System Clones 9-11

10

Object Storage Overview

Object Storage Resources 10-1

Object Naming Prefixes and Hierarchies 10-2

Object Names 10-2

Optional Response Headers and Metadata 10-3

Multipart Uploads 10-3

Pre-Authenticated Requests 10-4

Required Permissions 10-5

Types of Pre-Authentication Requests 10-5

Scope and Constraints 10-6

Retention Rules 10-6

Scope and Constraints 10-7

Interaction Between Retention and Other Object Storage Features 10-8

Troubleshooting Retention Rules 10-8

Object Versioning 10-9

Object Version Deletion 10-9

Scope and Constraints 10-9

Interaction Between Versioning and Other Object Storage Features 10-9

Troubleshooting Versioning 10-10

ix

11

Load Balancing Overview

Load Balancer Essentials 11-1

Frontend Configuration 11-2

Load Balancer Types 11-2

Private Load Balancer 11-3

Public Load Balancer 11-3

Load Balancing Policies 11-3

Listeners 11-5

Cipher Suites 11-5

Predefined Cipher Suites 11-5

Custom Cipher Suites 11-9

Supported Ciphers 11-9

Request Routing 11-14

Virtual Host Names 11-14

Path Route Sets 11-15

Backend Configuration 11-16

Backend Sets 11-16

Backend Servers 11-17

Load Balancer Health Checks 11-17

Interpreting Load Balancer Health Issues 11-18

Common Side Effects of Load Balancer Health Check Misconfiguration 11-19

Load Balancer SSL Certificates 11-20

SSL Traffic Handling Configuration 11-21

Uploading Certificate Chains 11-21

Peer Certificate Verification 11-22

SSL Key Issues 11-22

Session Persistence 11-23

Connection Timeout Settings 11-26

12

Network Load Balancing Overview

Network Load Balancer Essentials 12-2

Frontend Configuration 12-3

Network Load Balancer Types 12-4

Load Balancing Policies 12-4

Listeners 12-5

Backend Configuration 12-5

Backend Sets 12-5

Backend Servers 12-5

x

Network Load Balancer Health Checks 12-6

xi

Preface

This publication is part of the customer documentation set for Oracle Private Cloud
Appliance Release 3.0. Note that the documentation follows the release numbering
scheme of the appliance software, not the hardware on which it is installed. All Oracle
Private Cloud Appliance product documentation is available at https://
docs.oracle.com/en/engineered-systems/private-cloud-appliance/index.html.

Oracle Private Cloud Appliance Release 3.x is a flexible general purpose Infrastructure
as a Service solution, engineered for optimal performance and compatibility with
Oracle Cloud Infrastructure. It allows customers to consume the core cloud services
from the safety of their own network, behind their own firewall.

Audience
This documentation is intended for owners, administrators and operators of Oracle
Private Cloud Appliance. It provides architectural and technical background
information about the engineered system components and services, as well as
instructions for installation, administration, monitoring and usage.

Oracle Private Cloud Appliance has two strictly separated operating areas, known as
enclaves. The Compute Enclave offers a practically identical experience to Oracle
Cloud Infrastructure: It allows users to build, configure and manage cloud workloads
using compute instances and their associated cloud resources. The Service Enclave is
where privileged administrators configure and manage the appliance infrastructure that
provides the foundation for the cloud environment. The target audiences of these
enclaves are distinct groups of users and administrators. Each enclave also provides
its own separate interfaces.

It is assumed that readers have experience with system administration, network and
storage configuration, and are familiar with virtualization technologies. Depending on
the types of workloads deployed on the system, it is advisable to have a general
understanding of container orchestration, and UNIX and Microsoft Windows operating
systems.

Feedback
Provide feedback about this documentation at https://www.oracle.com/goto/
docfeedback.

Conventions
The following text conventions are used in this document:

Preface

xii

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/index.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/index.html
https://www.oracle.com/goto/docfeedback
https://www.oracle.com/goto/docfeedback

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, code in
examples, text that appears on the screen, or text that you enter.

$ prompt The dollar sign ($) prompt indicates a command run as a non-root
user.

prompt The pound sign (#) prompt indicates a command run as the root user.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Preface

xiii

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Architecture and Design

Welcome to Oracle Private Cloud Appliance. This chapter provides an overview of Oracle's
platform for building cloud services and applications inside your own data center.

Introduction to Oracle Private Cloud Appliance
Oracle Private Cloud Appliance is engineered to deliver a comprehensive suite of cloud
infrastructure services within the secure environment of your on-premises network. The
system integrates all required hardware and software components, and has been tested,
configured and tuned for optimal performance by Oracle engineers. In essence, it is a flexible
general purpose IaaS (Infrastructure as a Service) solution in the sense that it supports the
widest variety of workloads. Its pluggable platform provides an excellent foundation to layer
PaaS (Platform as a Service) and SaaS (Software as a Service) solutions on top of the
infrastructure.

This release of Private Cloud Appliance provides API compatibility with Oracle's public cloud
solution, Oracle Cloud Infrastructure. You access the core IaaS services using the same
methods, tools and interfaces as with Oracle Cloud Infrastructure. An installation of Private
Cloud Appliance represents a customer region. Workloads are portable between your private
and public cloud environments, but the private cloud is disconnected from Oracle Cloud
Infrastructure and thus runs its own control plane components in order to host its set of
compatible services.

As an engineered system, Private Cloud Appliance complies with the highest business
continuity and serviceability requirements. It has the capabilities to monitor all components,
detect potential problems, send out alerts, and automatically log a service request.
Subsequent troubleshooting and repair can be performed without affecting the uptime of the
environment.

System upgrades are also designed for minimum disruption and maximum availability. Health
checks are performed before an upgrade to ensure that all components are in an acceptable
state. The upgrade process is modular and allows components – such as firmware, operating
systems, containerized services or the system's main database – to be upgraded individually
or as an integrated multi-component workflow.

Compatibility with Oracle Cloud Infrastructure
A principal objective of Private Cloud Appliance is to allow you to consume the core Oracle
Cloud Infrastructure services from the safety of your own on-premises network, behind your
own firewall. The infrastructure services provide a foundation for building PaaS and SaaS
solutions; the deployed workloads can be migrated between the public and the private cloud
infrastructure with minimal or no modification required. For this purpose, Private Cloud
Appliance offers API compatibility with Oracle Cloud Infrastructure.

As a rack-scale system, Private Cloud Appliance can be considered the smallest deployable
unit of Oracle Cloud Infrastructure, aligned with the physical hierarchy of the public cloud
design:

1-1

Hierarch
y
Concept

Oracle Cloud Infrastructure Design Oracle Private Cloud Appliance
Mapping

Realm A Realm is a superset of Regions, and
the highest physical subdivision of the
Oracle cloud. There are no cross-
realm features. Oracle Cloud
Infrastructure currently consists of a
Realm for Commercial Regions and a
Realm for Government Cloud Regions.

The concept of a Realm exists in
Private Cloud Appliance, but it has no
practical function. It allows the
appliance to participate in any Realm.

Region A Region is a geographic area. An
Oracle Cloud Infrastructure Region is
composed of at least three Availability
Domains. It is possible to migrate or
replicate data and resources between
Regions.

Private Cloud Appliance is designed
as a single Region. Because this
private region is disconnected from
any other systems, it has no practical
function.
Domain and system identifiers are
used in system configuration instead,
and mapped to the region and realm
values.

Availabili
ty
Domain

An Availability Domain consists of
one or more data centers. Availability
Domains are isolated from each
other; they have independent power
and cooling infrastructure and
separate internal networking. A
failure in one Availability Domain is
highly unlikely to impact others.
Availability Domains within the same
region are interconnected through an
encrypted network with high
bandwidth and low latency. This is a
critical factor in providing high
availability and disaster recovery.

Each Private Cloud Appliance is
configured as an Availability Domain.
Multiple installations are distinct
from each other: they do not function
as Availability Domains within the
same region.

Fault
Domain

A Fault Domain is a grouping of
infrastructure components within an
Availability Domain. The goal is to
isolate downtime events due to
failures or maintenance, and make
sure that resources in other Fault
Domains are not affected.
Each Availability Domain contains
three Fault Domains. Fault Domains
provide anti-affinity: the ability to
distribute instances so that they do
not run on the same physical
hardware.

Private Cloud Appliance adheres to
the public cloud design: each
Availability Domain contains three
Fault Domains. A Fault Domain
corresponds with one or more
physical compute nodes.

Private Cloud Appliance also aligns with the logical partitioning of Oracle Cloud
Infrastructure. It supports multiple tenancies, which are securely isolated from each
other by means of tunneling and encapsulation in the appliance underlay network.
Tenancies are hosted on the same physical hardware, but users and resources that
belong to a given tenancy cannot interact with other tenancies. In addition, the
Compute Enclave – which refers to all tenancies collectively, and to the cloud
resources created and managed within them – is logically isolated from the Service

Chapter 1
Compatibility with Oracle Cloud Infrastructure

1-2

Enclave, from where the appliance infrastructure is controlled. Refer to Enclaves and
Interfaces for more information.

The Compute Enclave interfaces provide access in the same way as Oracle Cloud
Infrastructure. Its CLI is identical while the browser UI offers practically the same user
experience. API support is also identical, but limited to the subset of cloud services that
Private Cloud Appliance offers.

The consistency of the supported APIs is a crucial factor in the compatibility between the
public and private cloud platforms. It ensures that the core cloud services support resources
and configurations in the same way. More specifically, Private Cloud Appliance supports the
same logical constructs for networking and storage, manages user identity and access in the
same way, and offers the same compute shapes and images for instance deployment as
Oracle Cloud Infrastructure. As a result, workloads set up in a private cloud environment are
easily portable to Private Cloud Appliance and vice versa. However, due to the disconnected
operating mode of the private cloud environment, workloads must be migrated offline.

Enclaves and Interfaces
From a cloud user perspective, the Private Cloud Appliance Compute Enclave offers a
practically identical experience to Oracle Cloud Infrastructure. However, the appliance also
runs its own specific and separate administration area known as the Service Enclave. This
section describes the boundaries between the enclaves and their interfaces, which are
intended for different groups of users and administrators with clearly distinct access profiles.

Enclave Boundaries
The Compute Enclave was deliberately designed for maximum compatibility with Oracle
Cloud Infrastructure. Users of the Compute Enclave have certain permissions to create and
manage cloud resources. These privileges are typically based on group membership. The
Compute Enclave is where workloads are created, configured and hosted. The principal
building blocks at the users' disposal are compute instances and associated network and
storage resources.

Compute instances are created from a compute image, which contains a preconfigured
operating system and optional additional software. Compute instances have a particular
shape, which is a template of virtual hardware resources such as CPUs and memory. For
minimal operation, a compute instance needs a boot volume and a connection to a virtual
cloud network (VCN). As you continue to build the virtual infrastructure for your workload, you
will likely add more compute instances, assign private and public network interfaces, set up
NFS shares or object storage buckets, and so on. All those resources are fully compatible
with Oracle Cloud Infrastructure and can be ported between your private and public cloud
environments.

The Service Enclave is the part of the system where the appliance infrastructure is
controlled. Access is closely monitored and restricted to privileged administrators. It runs on a
cluster of three management nodes. Because Private Cloud Appliance is operationally
disconnected from Oracle Cloud Infrastructure, it needs a control plane of its own, specific to
the design and scale of the appliance. The API is specific to Private Cloud Appliance, and
access is very strictly controlled. Functionality provided by the Service Enclave includes
hardware and capacity management, service delivery, monitoring and tools for service and
support.

Both enclaves are strictly isolated from each other. Each enclave provides its own set of
interfaces: a web UI, a CLI and an API per enclave. An administrator account with full access

Chapter 1
Enclaves and Interfaces

1-3

to the Service Enclave has no permissions whatsoever in the Compute Enclave. The
administrator creates the tenancy with a primary user account for initial access, but
has no information about the tenancy contents and activity. Users of the Compute
Enclave are granted permission to use, manage and create cloud resources, but they
have no control over the tenancy they work in, or the hardware on which their virtual
resources reside.

Access Profiles
Each enclave has its own interfaces. To access the Compute Enclave, you use either
the Compute Web UI or OCI CLI. To access the Service Enclave, you use either the
Service Web UI or Service CLI.

Note:

You access the graphical interfaces of both enclaves using a web browser.
For support information, please refer to the Oracle software web browser
support policy.

The properties of your account determine which operations you are authorized to
perform and which resources you can view, manage or create. Whether you use the
web UI or the CLI makes no difference in terms of permissions. All operations result in
requests to a third, central interface of the enclave: the API. Incoming requests from
the Service API or Compute API are evaluated and subsequently authorized or
rejected by the API service.

Different categories of users interact with the appliance for different purposes. At the
enclave level we distinguish between administrators of the appliance infrastructure on
the one hand, and users managing cloud resources within tenancies on the other
hand. Within each enclave, different access profiles exist that offer different
permissions.

In the Service Enclave, only a select team of administrators should be granted full
access. There are other administrator roles with restricted access, for example for
those responsible specifically for system monitoring, capacity planning, availability,
upgrade, and so on. For more information about administrator roles, see Administrator
Access. Whenever Oracle accesses the Service Enclave to perform service and
support operations, an account with full access must be used.

When a tenancy is created, it has only one Compute Enclave user account: the
tenancy administrator, who has full access to all resources in the tenancy. Practically
speaking, every additional account with access to the tenancy is a regular Compute
Enclave user account, with more or less restrictive permissions depending on group
membership and policy definitions. It is the task of the tenancy administrator to set up
additional user accounts and user groups, define a resource organization and
management strategy, and create policies to apply that strategy.

Once a resource management strategy has been defined and a basic configuration of
users, groups and compartments exists, the tenancy administrator can delegate
responsibilities to other users with elevated privileges. You could decide to use a
simple policy allowing a group of administrators to manage resources for the entire
organization, or you might prefer a more granular approach. For example, you can
organize resources in a compartment per team or project and let a compartment

Chapter 1
Enclaves and Interfaces

1-4

https://www.oracle.com/middleware/technologies/browser-policy.html
https://www.oracle.com/middleware/technologies/browser-policy.html

administrator manage them. In addition, you might want to keep network resources and
storage resources contained within their own separate compartments, controlled respectively
by a network administrator and storage administrator. The policy framework of the Identity
and Access Management service offers many different options to organize resources and
control access to them. For more information, refer to the chapter Identity and Access
Management Overview.

When creating scripts or automation tools to interact directly with the API, make sure that the
developers understand the authentication and authorization principles and the strict
separation of the enclaves. Basic API reference documentation is available for both enclaves.

To view the API reference, append /api-reference to the base URL of the Compute Web UI
or Service Web UI. For example:

• Service Web UI base URL: https://adminconsole.myprivatecloud.example.com.

Service Enclave API reference: https://adminconsole.myprivatecloud.example.com/api-
reference.

• Compute Web UI base URL: https://console.myprivatecloud.example.com.

Compute Enclave API reference: https://console.myprivatecloud.example.com/api-
reference.

Layered Architecture
For the architecture of Oracle Private Cloud Appliance a layered approach is taken. At the
foundation are the hardware components, on which the core platform is built. This, in turn,
provides a framework for administrative and operational services exposed to different user
groups. The layers are integrated but not monolithic: they can be further developed at
different rates as long as they maintain compatibility. For instance, supporting a new type of
server hardware or extending storage functionality are enhancements that can be applied
separately, and without redeploying the entire controller software stack.

Hardware Layer
The hardware layer contains all physical system components and their firmware and
operating systems.

• The three management nodes form a cluster that runs the base environment for the
controller software.

• The compute nodes provide the processing capacity to host compute instances.

• The storage appliance provides disk space for storage resources used by compute
instances. It also provides the storage space required by the appliance internally for its
operation.

• The network switches provide the physical connections between all components and the
uplinks to the public (data center) network.

Platform Layer
Private Cloud Appliance uses a service-based deployment model. The product is divided into
functional areas that run as services; each one within its own container. The platform
provides the base for this model. Leveraging the capabilities of Oracle Cloud Native

Chapter 1
Layered Architecture

1-5

Environment, the management node cluster orchestrates the deployment of the
containerized services, for which it also hosts the image registry.

In addition, the platform offers a number of fundamental services of its own, that are
required by all other services: message transport, secrets management, database
access, logging, monitoring, and so on. These fundamental services are standardized
so that all services deployed on top of the platform can plug into them in the same
way, which makes new service integrations easier and faster.

The platform also plays a central role in hardware administration, managing the data
exchange between the hardware layer and the services. Information about the
hardware layer, and any changes made to it, must be communicated to the services
layer to keep the inventory up-to-date. When operations are performed at the service
layer, an interface is required to pass down commands to the hardware. For this
purpose, the platform has a tightly secured API that is only exposed internally and
requires the highest privileges. This API interacts with management interfaces such as
the server ILOMs and the storage controllers, as well as the inventory database and
container orchestration tools.

For additional information about this layer in the appliance architecture, refer to
Platform Layer Overview.

Infrastructure Services Layer
This layer contains all the services deployed on top of the platform. They form two
functionally distinct groups: user-level cloud services and administrative services.

Cloud services offer functionality to users of the cloud environment, and are very
similar in operation to the corresponding Oracle Cloud Infrastructure services. They
constitute the Compute Enclave, and enable the deployment of customer workloads
through compute instances and associated resources. Cloud services include the
compute and storage services, identity and access management, and networking.

The administrative services are either internal or restricted to administrators of the
appliance. These enable the operation of the cloud services and provide support for
them. They constitute the Service Enclave. Administrator operations include system
initialization, compute node provisioning, capacity expansion, tenancy management,
upgrade, and so on. These operations have no externalized equivalent in Oracle
Cloud Infrastructure, where Oracle fulfills the role of the infrastructure administrator.

Platform Layer Overview
In the Oracle Private Cloud Appliance architecture, the platform layer is the part that
provides a standardized infrastructure for on-premises cloud services. It controls the
hardware layer, enables the services layer, and establishes a secure interface that
allows those layers to interact in a uniform and centralized manner. Common
components and features of the infrastructure services layer are built into the platform,
thus simplifying and accelerating the deployment of those microservices.

Fundamental Services
To fulfill its core role of providing the base infrastructure to deploy on-premises cloud
services, the platform relies on a set of fundamental internal services of its own. This
section describes their function.

Chapter 1
Platform Layer Overview

1-6

Hardware Management
When a system is initialized, low level platform components orchestrate the provisioning of
the management node cluster and the compute nodes. During this process, all nodes,
including the controllers of the ZFS Storage Appliance, are connected to the required
administration and data networks. When additional compute nodes are installed at a later
stage, the same provisioning mechanism integrates the new node into the global system
configuration. Additional disk trays are also automatically integrated by the storage
controllers.

The first step in managing the hardware is to create an inventory of the rack's components.
The inventory is a separate database that contains specifications and configuration details for
the components installed in the rack. It maintains a history of all components that were ever
presented to the system, and is updated continuously with the latest information captured
from the active system components.

The services layer and several system components need the hardware inventory details so
they can interact with the hardware. For example, a component upgrade or service
deployment process needs to send instructions to the hardware layer and receive responses.
Similarly, when you create a compute instance, a series of operations needs to be performed
at the level of the compute nodes, network components and storage appliance to bring up the
instance and its associated network and storage resources.

All the instructions intended for the hardware layer are centralized in a hardware
management service, which acts as a gateway to the hardware layer. The hardware
management service uses the dedicated and highly secured platform API to execute the
required commands on the hardware components: server ILOMs, ZFS storage controllers,
and so on. This API runs directly on the management node operating system. It is separated
from the container orchestration environment where microservices are deployed.

Service Deployment
Oracle Private Cloud Appliance follows a granular, service-based development model.
Functionality is logically divided into separate microservices, which exist across the
architectural layers and represent a vertical view of the system. Services have internal as well
as externalized functions, and they interact with each other in different layers.

These microservices are deployed in Kubernetes containers. The container runtime
environment as well as the registry are hosted on the three-node management cluster. Oracle
Cloud Native Environment provides the basis for container orchestration, which includes the
automated deployment, configuration and startup of the microservices containers. By design,
all microservices consist of multiple instances spread across different Kubernetes nodes and
pods. Besides high availability, the Kubernetes design also offers load balancing between the
instances of each microservice.

Containerization simplifies service upgrades and functional enhancements. The services are
tightly integrated but not monolithic, allowing individual upgrades on condition that
compatibility requirements are respected. A new version of a microservice is published to the
container registry and automatically propagated to the Kubernetes nodes and pods.

Common Service Components
Some components and operational mechanisms are required by many or all services, so it is
more efficient to build those into the platform and allow services to consume them when they
are deployed on top of the platform. These common components, add a set of essential

Chapter 1
Platform Layer Overview

1-7

features to each service built on top of the platform, thus simplifying service
development and deployment.

• Message Transport

All components and services are connected to a common transport layer. It is a
message broker that allows components to send and receive messages written in
a standardized format. This message transport service is deployed as a cluster of
three instances for high availability and throughput, and uses TLS for
authentication and traffic encryption.

• Secret Service

Secrets used programmatically throughout the system, such as login credentials
and certificates, are centrally managed by the secret service. All components and
services are clients of the secret service: after successful authentication the client
receives a token for use with every operation it attempts to execute. Policies
defined within the secret service determine which operations a client is authorized
to perform. Secrets are not stored in a static way; they have a limited lifespan and
are dynamically created and managed.

During system initialization, the secret service is unsealed and prepared for use. It
is deployed as an active/standby cluster on the management nodes, within a
container at the platform layer, but outside of the Kubernetes microservices
environment. This allows the secret service to offer its functionality to the platform
layer at startup, before the microservices are available. All platform components
and microservices must establish their trust relationship with the secret service
before they are authorized to execute any operations.

• Logging

The platform provides unified logging across the entire system. For this purpose,
all services and components integrate with the Fluentd data collector. Fluentd
collects data from a pre-configured set of log files and stores it in a central
location. Logs are captured from system components, the platform layer and the
microservices environment, and made available through the Loki log aggregation
system for traceability and analysis.

• Monitoring

For monitoring purposes, the platform relies on Prometheus to collect metric data.
Since Prometheus is deployed inside the Kubernetes environment, it has direct
access to the microservices metrics. Components outside Kubernetes, such as
hardware components and compute instances, provide their metric data to
Prometheus through the internal network and the load balancer. The management
nodes and Kubernetes itself can communicate directly with Prometheus.

• Analytics

Logging and monitoring data are intended for infrastructure administrators. They
can consult the data through the Service Web UI, where a number of built-in
queries for health and performance parameters are visualized on a dashboard.
Alerts are sent when a key threshold is exceeded, so that appropriate
countermeasures can be taken.

• Database

All services and components store data in a common, central database. It is a
MySQL cluster database with instances deployed across the three management
nodes and running on bare metal. Availability, load balancing, data synchronization
and clustering are all controlled by internal components of the MySQL cluster. For

Chapter 1
Platform Layer Overview

1-8

optimum performance, data storage is provided by LUNs on the ZFS Storage Appliance,
directly attached to each of the management nodes. Access to the database is strictly
controlled by the secret service.

• Load Balancing

The management nodes form a cluster of three active nodes, meaning they are all
capable of simultaneously receiving inbound connections. The ingress traffic is controlled
by a statically configured load balancer that listens on a floating IP address and
distributes traffic across the three management nodes. An instance of the load balancer
runs on each of the management nodes.

In a similar way, all containerized microservices run as multiple pods within the container
orchestration environment on the management node cluster. Kubernetes provides the
load balancing for the ingress traffic to the microservices.

Physical Resource Allocation
When users deploy compute instances – or virtual machines – these consume physical
resources provided by the hardware layer. The hypervisor manages the allocation of those
physical resources based on algorithms that enable the best performance possible for a
given configuration.

The compute nodes in Private Cloud Appliance have a Non-Uniform Memory Access (NUMA)
architecture, meaning each CPU has access not only to its own local memory but also the
memory of the other CPUs. Each CPU socket and its associated local memory banks are
called a NUMA node. Local memory access, within the same NUMA node, always provides
higher bandwidth and lower latency.

In general, the memory sharing design of NUMA helps with the scaling of multiprocessor
workloads, but it may also adversely affect virtual machine performance if its resources are
distributed across multiple NUMA nodes. Hypervisor policies ensure that a virtual machine's
CPU and memory reside on the same NUMA node whenever possible. Using specific CPU
pinning techniques, each virtual machine is pinned to one or multiple CPU cores so that
memory is accessed locally on the NUMA node where the virtual machine is running. Cross-
node memory transports are avoided or kept at a minimum, so the users of compute
instances benefit from optimal performance across the entire system.

If a virtual machine can fit into a single NUMA node on a hypervisor host then this NUMA
node is used for pinning, referred to as strict pinning. If a virtual machine cannot fit into single
NUMA node on a hypervisor host, but can fit into multiple NUMA nodes, then multiple NUMA
nodes are used for pinning, referred to as loose pinning.

Caution:

The CPU pinning applied through the hypervisor to optimize CPU and memory
allocation to compute instances is not configurable by an appliance administrator,
tenancy administrator or instance owner.

Private Cloud Appliance detects the NUMA topology of compute nodes during their
provisioning (or any upgrade path from one release to another) and stores this information for
use during the deployment of compute instances. The NUMA details of each compute
instance are stored in the instance configuration. The NUMA settings are preserved when
compute instances are migrated to another host compute node, but they might be overridden

Chapter 1
Physical Resource Allocation

1-9

and dynamically adjusted if the target compute node is unable to accommodate that
particular configuration.

Compute instances running on a Private Cloud Appliance that is not yet NUMA-aware,
can take advantage of the optimization policies as soon as the system has been
patched or upgraded. There is no action required from the administrator to align
instances with NUMA topology; the existing instance configurations are made
compatible as part of the process.

High Availability
Oracle Engineered Systems are built to eliminate single points of failure, allowing the
system and hosted workloads to remain operational in case of hardware or software
faults, as well as during upgrades and maintenance operations. Private Cloud
Appliance has redundancy built into its architecture at every level: hardware, controller
software, master database, services, and so on. Features such as backup, automated
service requests and optional disaster recovery further enhance the system's
serviceability and continuity of service.

Hardware Redundancy
The minimum base rack configuration contains redundant networking, storage and
server components to ensure that failure of any single element does not affect overall
system availability.

Data connectivity throughout the system is built on redundant pairs of leaf and spine
switches. Link aggregation is configured on all interfaces: switch ports, host NICs and
uplinks. The leaf switches interconnect the rack components using cross-cabling to
redundant network interfaces in each component. Each leaf switch also has a
connection to each of the spine switches, which are also interconnected. The spine
switches form the backbone of the network and enable traffic external to the rack.
Their uplinks to the data center network consist of two cable pairs, which are cross-
connected to two redundant ToR (top-of-rack) switches.

The management cluster, which runs the controller software and system-level
services, consists of three fully active management nodes. Inbound requests pass
through the virtual IP of the management node cluster, and are distributed across the
three nodes by a load balancer. If one of the nodes stops responding and fences from
the cluster, the load balancer continues to send traffic to the two remaining nodes until
the failing node is healthy again and rejoins the cluster.

Storage for the system as well as for the cloud resources in the environment is
provided by the internal ZFS Storage Appliance. Its two controllers form an active-
active cluster, providing high availability and excellent throughput at the same time.
The ZFS pools are built on disks in a mirrored configuration for optimum data
protection. This applies to the standard high-capacity disk tray as well as an optional
SSD-based high-performance tray.

System Availability
The appliance controller software and services layer are deployed on the three-node
management cluster, and take advantage of the high availability that is inherent to the
cluster design. The Kubernetes container orchestration environment also uses
clustering for both its own controller nodes and the service pods it hosts. Multiple
replicas of the microservices are running at any given time. Nodes and pods are

Chapter 1
High Availability

1-10

distributed across the management nodes, and Kubernetes ensures that failing pods are
replaced with new instances to keep all services running in an active/active setup.

All services and components store data in a common, central database. It is a MySQL cluster
database with instances deployed across the three management nodes. Availability, load
balancing, data synchronization and clustering are all controlled by internal components of
the MySQL cluster.

A significant part of the system-level infrastructure networking is software-defined, just like all
the virtual networking at the VCN and instance level. The configuration of virtual switches,
routers and gateways is not stored and managed by the switches, but is distributed across
several components of the network architecture. The network controller is deployed as a
highly available containerized service.

The upgrade framework leverages the hardware redundancy and the clustered designs to
provide rolling upgrades for all components. In essence, during the upgrade of one
component instance, the remaining instances ensure that there is no downtime. The upgrade
is complete when all component instances have been upgraded and returned to normal
operation.

Compute Instance Availability
At the level of a compute instance, high availability refers to the automated recovery of an
instance in case the underlying infrastructure fails. The state of the compute nodes,
hypervisors, and compute instances is monitored continually. Each compute node is polled
with a 5 minute interval. When compute instances go down, by default the system attempts to
recover them automatically.

By default, the system attempts to restart instances in their selected fault domain but will
restart instances in other fault domains if insufficient resources are available in the selected
fault domain. The selected fault domain is the fault domain that is specified in the instance
configuration. You can configure the Compute service to restart instances only in their
selected fault domain, and stop instances if insufficient resources are available in the
selected fault domain. See "Configuring the Compute Service for High Availability" in the
Hardware Administration chapter of the Oracle Private Cloud Appliance Administrator Guide
to configure strict fault domain enforcement.

If a compute node goes down because of an unplanned reboot, when the compute node
successfully returns to normal operation, by default instances are restarted. This behavior is
configurable. At the next polling interval, by default if instances are found that should be
running but are in a different state, the start command is issued again. If any instances have
crashed and remain in that state, the hypervisor attempts to restart them up to 5 times.
Instances that were not running before the compute node became unavailable, remain shut
down when the compute node is up and running again.

If a compute node is lost due to a failure, by default the system attempts to live migrate
running compute instances from the failed compute node to other compute nodes. Actual
behavior depends on how you have configured the Compute service, as described in
"Configuring the Compute Service for High Availability" in the Hardware Administration
chapter of the Oracle Private Cloud Appliance Administrator Guide.

A compute node is considered failing when it has been disconnected from the data network
or has been in powered-off state for more than 10 minutes. This 10-minute timeout
corresponds with two unsuccessful polling attempts, and is the threshold for placing the
compute node in FAIL state and its agent in EVACUATING state. This condition is required
before the reboot migration can start.

Chapter 1
High Availability

1-11

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-hardware.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-hardware.html

Reboot migration implies that all compute instances from the failing compute node are
stopped and restarted on another compute node. When migration is complete, the
failing compute node's agent indicates that instances have been evacuated. If the
compute node eventually reboots successfully, it must go through a cleanup process
that removes all stale instance configurations and associated virtual disks. After
cleanup, the compute node can host compute instances again. If automatic resolve is
enabled on the Compute service, instances that were migrated to a different fault
domain can be migrated back to their selected fault domain.

During the entire reboot migration, the instances remain in "moving" configuration
state. Once migration is completed, the instance configuration state is changed to
"running". Instances that were stopped before the failure are not migrated, since they
are not associated with any compute node.

By default, fault domain preference is not strictly enforced with instance migration. This
is another preference that you can configure as described in "Configuring the Compute
Service for High Availability" in the Hardware Administration chapter of the Oracle
Private Cloud Appliance Administrator Guide.

In case of planned maintenance, the administrator must first disable provisioning for
the compute node in question, and apply a maintenance lock. When the compute node
is under a provisioning lock, the administrator can live-migrate all running compute
instances to another compute node as described in "Migrating Instances from a
Compute Node" in the Hardware Administration chapter of the Oracle Private Cloud
Appliance Administrator Guide. Maintenance mode can only be activated when there
are no more running instances on the compute node. You can specify the force option
to stop any instances that cannot be migrated. All compute instance operations on this
compute node are disabled. A compute node in maintenance mode cannot be
provisioned or deprovisioned.

Continuity of Service
Private Cloud Appliance offers several features that support and further enhance high
availability. Health monitoring at all levels of the system is a key factor. Diagnostic and
performance data is collected from all components, then centrally stored and
processed, and made available to administrators in the form of visualizations on
standard dashboards. In addition, alerts are generated when metrics exceed their
defined thresholds.

Monitoring allows an administrator to track system health over time, take preventative
measures when required, and respond to issues when they occur. In addition, systems
registered with My Oracle Support provide phone-home capabilities, using the
collected diagnostic data for fault monitoring and targeted proactive support.
Registered systems can also submit automated service requests with Oracle for
specific problems reported by the appliance.

To mitigate data loss and support the recovery of system and services configuration in
case of failure, consistent and complete backups are made regularly. A backup can
also be executed manually, for example to create a restore point just before a critical
modification. The backups are stored in a dedicated NFS share on the ZFS Storage
Appliance, and allow the entire Service Enclave to be restored when necessary.

Optionally, workloads deployed on the appliance can be protected against downtime
and data loss through the implementation of disaster recovery. To achieve this, two
Private Cloud Appliance systems need to be set up at different sites, and configured to
be each other's replica. Resources under disaster recovery control are stored
separately on the ZFS Storage Appliances in each system, and replicated between the

Chapter 1
High Availability

1-12

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-hardware.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-hardware.html
https://support.oracle.com/portal/

two. When an incident occurs at one site, the environment is brought up on the replica
system with practically no downtime. Oracle recommends that disaster recovery is
implemented for all critical production systems.

Chapter 1
High Availability

1-13

2
Hardware Overview

This chapter provides an overview of the hardware components that the Oracle Private Cloud
Appliance comprises: a base rack with servers, switches and storage. Different sections
describe the role of each component. Special attention is given to the appliance network
infrastructure, and the way it integrates with the data center environment and, optionally, an
Oracle Exadata system.

Base Rack Components
Each Private Cloud Appliance consists of an Oracle Rack Cabinet 1242 base, populated with
network, compute, and storage components. The appliance storage and compute capacity is
customized to meet your capacity requirements. The control software is factory-installed on
the 3 clustered management nodes.

Release 3.0.1 introduced the flex bay concept for rack space management. Flex bays are
dedicated 4 rack unit sections within the rack that can be used for flexible expansion. A flex
bay can house either storage or compute resources, but not both in the same bay.

Private Cloud Appliance exists in the following rack configurations:

Oracle Private Cloud Appliance X10
The X10 rack configuration is shipping as of December 2023. It comes with factory-installed
software version 3.0.2-b1001356 or newer, and contains Oracle Server X10 compute nodes
(2U).

Oracle Private Cloud Appliance X9-2
The X9 rack configuration ships with factory-installed software version 3.0.1 or 3.0.2. It
contains Oracle Server X9-2 compute nodes (1U).

The component order and cabling are slightly different between these rack configurations.
The storage and network infrastructure components are the same. In terms of compute
capacity, a 2U compute node is comparable to two 1U compute nodes.

X10 Rack Configuration
The Private Cloud Appliance hardware platform in X10 configuration, is factory-installed with
appliance software release 3.0.2-b1001356 or newer. Its hardware components are identified
in the figure below. This figure shows a fully populated rack, however you can customize your
rack configuration to include different storage or compute capacity as needed.

The flex bays are dedicated 4 rack unit sections within the rack that can be used for flexible
expansion. For each flex bay, you can choose to add 1-2 compute nodes, 1 Oracle Storage
Drive Enclosure DE3-24C, or 1-2 Oracle Storage Drive Enclosure DE3-24P. A flex bay can
house either storage or compute resources, but not both in the same bay.

Rack units 39 and 40 are reserved for systems with 6 or more compute nodes: 3 default
nodes plus 3 or more expansion nodes. Compute nodes 4 and 5 are installed in the flex bay
directly above the management nodes (rack units 14-17), and compute node 6 is installed in
the reserved 2U space.

2-1

Chapter 2
Base Rack Components

2-2

Figure Legend

Callout Quantity Description

A 1 reserved space for 6th compute node

B 1 - 4 flex bay
can accommodate 1-2 compute nodes, or 1-2
storage enclosures

C 2 spine switch

D 1 Oracle Storage Drive Enclosure DE3-24C disk
shelf

E 1 management switch

F 2 leaf switch

G 3 compute nodes
3 required for minimum configuration

H 3 management nodes

I 2 storage controllers

X9 Rack Configuration
The Private Cloud Appliance hardware platform in X9 configuration, is factory-installed with
appliance software release 3.0.1 or 3.0.2. Its hardware components are identified in the figure
below. This figure shows a fully populated rack, however you can customize your rack
configuration to include different storage or compute capacity as needed.

The flex bays are dedicated 4 rack unit sections within the rack that can be used for flexible
expansion. For each flex bay, you can choose to add 1-4 compute nodes, 1 Oracle Storage
Drive Enclosure DE3-24C, or 1-2 Oracle Storage Drive Enclosure DE3-24P. A flex bay can
house either storage or compute resources, but not both in the same bay.

Chapter 2
Base Rack Components

2-3

Chapter 2
Base Rack Components

2-4

Figure Legend

Callout Quantity Description

A 1 - 4 flex bay
can accommodate 1-4 compute nodes, or 1-2
storage enclosures

B 2 spine switch

C 1 Oracle Storage Drive Enclosure DE3-24C disk
shelf

D 1 management switch

E 2 leaf switch

F 1 - 5 can accommodate 1 - 5 compute nodes

G 3 compute nodes
3 required for minimum configuration

H 3 management nodes

I 2 storage controllers

Servers
These sections describe the management and compute nodes employed by Private Cloud
Appliance.

Management Nodes
At the heart of each Private Cloud Appliance installation are three management nodes. They
are installed in rack units 5, 6 and 7 and form a cluster for high availability: all servers are
capable of running the same controller software and system-level services, have equal
access to the system configuration, and all three servers manage the system as a fully active
cluster. For details about the management node components, refer to Server Components.

The management nodes, running the controller software, provide a foundation for the
collection of services responsible for operating and administering Private Cloud Appliance.
Responsibilities of the management cluster include monitoring and maintaining the system
hardware, ensuring system availability, upgrading software and firmware, backing up and
restoring the appliance, and managing disaster recovery. For an overview of management
node services, refer to Appliance Administration Overview. See the Oracle Private Cloud
Appliance Administrator Guide for instructions about performing management functions.

The part of the system where the appliance infrastructure is controlled is called the Service
Enclave, which runs on the management node cluster and can be accessed through the
Service CLI or the Service Web UI. Access is closely monitored and restricted to privileged
administrators. For more information, see Administrator Access. Also refer to the chapter
Working in the Service Enclave in the Oracle Private Cloud Appliance Administrator Guide.

Compute Nodes
The compute nodes in the Private Cloud Appliance are part of the hardware layer and
provide the processing power and memory capacity to host compute instances. Management
of the hardware layer is provided by the platform and services layer of the appliance. For
more details about the Layered Architecture approach, see Architecture and Design.

Chapter 2
Servers

2-5

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-service-enclave.html

When a system is initialized, compute nodes are automatically discovered by the
admin service and put in the Ready-to-Provision state. Administrators can then
provision the compute nodes through the Service Enclave, and they are ready for use.
When additional compute nodes are installed at a later stage, the new nodes are
discovered, powered on, and discovered automatically by the same mechanism.

As an administrator, you can monitor the health and status of compute nodes from the
Private Cloud Appliance Service Web UI or Service CLI, as well as performing other
operations such as assigning compute nodes to tenancies and upgrading compute
node components. For general administration information see Appliance
Administration Overview . For more information about managing compute resources,
see Compute Instance Concepts.

The minimum configuration of the base rack contains three compute nodes, but it can
be expanded by three nodes at a time up to 18 compute nodes, if you choose to use
all of your flex bay space for compute nodes. The system can support up to 20
compute nodes total, with two slots reserved for spares that you can request through
an exception process. Contact your Oracle representative about expanding the
compute node capacity in your system. For hardware configuration details of the
compute nodes, refer to Server Components.

Server Components
The following table lists the components of the server models that might be installed in
a Private Cloud Appliance rack and which are supported by the current software
release.

Oracle Server X9-2
Management Node

Oracle Server X9-2 Compute
Node

Oracle Server X10 Compute
Node

2x Intel Xeon Gold 5318Y
CPU, 24 core, 2.10GHz, 165W

2x Intel Xeon Platinum 8358
CPU, 32 core, 2.60GHz, 250W

2x AMD EPYC 9J14 CPU, 96
core, 2.60GHz, 400W

16x 64 GB DDR4-3200
DIMMs (1TB total)

16x 64 GB DDR4-3200
DIMMs (1TB total)

24x 96 GB DDR5-4800
DIMMs (2.3 TB total)

2x 240GB M.2 SATA boot
devices configured as RAID1
mirror

2x 240GB M.2 SATA boot
devices configured as RAID1
mirror

2x 480GB M.2 NVMe SSD
boot devices configured as
RAID1 mirror

2x 3.84 TB NVMe SSD
storage devices configured
as RAID1 mirror

1x Ethernet port for remote
management

1x Ethernet port for remote
management

1x Ethernet port for remote
management

1x Dual-port 100Gbit
Ethernet NIC module in
OCPv3 form

1x Dual-port 100Gbit
Ethernet NIC module in
OCPv3 form

2x Dual-port 100Gbit
Ethernet NIC modules

2x Redundant power
supplies and fans

2x Redundant power
supplies and fans

2x Redundant power
supplies and fans

Network Infrastructure
For network connectivity, Private Cloud Appliance relies on a physical layer that
provides the necessary high-availability, bandwidth and speed. On top of this, a
distributed network fabric composed of software-defined switches, routers, gateways

Chapter 2
Network Infrastructure

2-6

and tunnels enables secure and segregated data traffic – both internally between cloud
resources, and externally to and from resources outside the appliance.

Device Management Network
The device management network provides internal access to the management interfaces of
all appliance components. These have Ethernet connections to the 1Gbit management
switch, and all receive an IP address from each of these address ranges:

• 100.96.0.0/23 – IP range for the Oracle Integrated Lights Out Manager (ILOM) service
processors of all hardware components

• 100.96.2.0/23 – IP range for the management interfaces of all hardware components

To access the device management network, you connect a workstation to port 2 of the 1Gbit
management switch and statically assign the IP address 100.96.3.254 to its connected
interface. Alternatively, you can set up a permanent connection to the Private Cloud
Appliance device management network from a data center administration machine, which is
also referred to as a bastion host. From the bastion host, or from the (temporarily) connected
workstation, you can reach the ILOMs and management interfaces of all connected rack
components. For information about configuring the bastion host, see the "Optional Bastion
Host Uplink" section of the Oracle Private Cloud Appliance Installation Guide.

Note that port 1 of the 1Gbit management switch is reserved for use by support personnel
only.

Data Network
The appliance data connectivity is built on redundant 100Gbit switches in two-layer design
similar to a leaf-spine topology. The leaf switches interconnect the rack hardware
components, while the spine switches form the backbone of the network and provide a path
for external traffic. Each leaf switch is connected to all the spine switches, which are also
interconnected. The main benefits of this topology are extensibility and path optimization. A
Private Cloud Appliance rack contains two leaf and two spine switches.

The data switches offer a maximum throughput of 100Gbit per port. The spine switches use 5
interlinks (500Gbit); the leaf switches use 2 interlinks (200Gbit) and 2x2 crosslinks to each
spine. Each server node is connected to both leaf switches in the rack, through the bond0
interface that consists of two 100Gbit Ethernet ports in link aggregation mode. The two
storage controllers are connected to the spine switches using 4x100Gbit connections.

For external connectivity, 5 ports are reserved on each spine switch. Four ports are available
to establish the uplinks between the appliance and the data center network; one port is
reserved to optionally segregate the administration network from the data traffic.

Uplinks
The connections between the Private Cloud Appliance and the customer data center are
called uplinks. They are physical cable connections between the two spine switches in the
appliance rack and one or – preferably – two next-level network devices in the data center
infrastructure. Besides the physical aspect, there is also a logical aspect to the uplinks: how
traffic is routed between the appliance and the external network it is connected to.

Chapter 2
Network Infrastructure

2-7

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/install/

Physical Connection
On each spine switch, ports 1-4 can be used for uplinks to the data center network.
For speeds of 10Gbps or 25Gbps, the spine switch port must be split using an MPO-
to-4xLC breakout cable. For speeds of 40Gbps or 100Gbps each switch port uses a
single MPO-to-MPO cable connection. The correct connection speed must be
specified during initial setup so that the switch ports are configured with the
appropriate breakout mode and transfer speed.

The uplinks are configured during system initialization, based on information you
provide as part of the installation checklist. Unused spine switch uplink ports, including
unused breakout ports, are disabled for security reasons. The table shows the
supported uplink configurations by port count and speed, and the resulting total
bandwidth.

Uplink
Speed

Number of Uplinks per Spine
Switch

Total Bandwidth

10 Gbps 1, 2, 4, 8, or 16 20, 40, 80, 160, or 320 Gbps

25 Gbps 1, 2, 4, 8, or 16 50, 100, 200, 400, or 800 Gbps

40 Gbps 1, 2, or 4 80, 160, or 320 Gbps

100 Gbps 1, 2, or 4 200, 400, or 800 Gbps

Regardless of the number of ports and port speeds configured, you also select a
topology for the uplinks between the spine switches and the data center network. This
information is critical for the network administrator to configure link aggregation (port
channels) on the data center switches. The table shows the available options.

Topology Description

Triangle In a triangle topology, all cables from both spine switches are
connected to a single data center switch.

Square In a square topology, two data center switches are used. All
outbound cables from a given spine switch are connected to
the same data center switch.

Mesh In a mesh topology, two data center switches are used as
well. The difference with the square topology is that uplinks
are created in a cross pattern. Outbound cables from each
spine switch are connected in pairs: one cable to each data
center switch.

Reference Topologies
The physical topology for the uplinks from the appliance to the data center network is
dependent on bandwidth requirements and available data center switches and ports.
Connecting to a single data center switch implies that you select a triangle topology. To
increase redundancy you distribute the uplinks across a pair of data center switches,
selecting either a square or mesh topology. Each topology allows you to start with a
minimum bandwidth, which you can scale up with increasing need. The maximum
bandwidth is 800 Gbps, assuming the data center switches, transceivers and cables
allow it.

Chapter 2
Network Infrastructure

2-8

The diagrams below represent a subset of the supported topologies, and can be used as a
reference to integrate the appliance into the data center network. Use the diagrams and the
notes to determine the appropriate cabling and switch configuration for your installation.

Diagram Notes

On the appliance side there are two spine switches that must be connected to the data center
network. Both spine switches must have identical port and cable configurations. In each
example, the spine switches are shown at the bottom, with all uplink ports identified by their
port number. The lines represent outgoing cable connection to the data center switches,
which are shown at the top of each example without port numbers.

Cabling Pattern and Port Speed

There are six examples in total, organized in two rows by three columns.

• The top row shows cabling options based on full-port 100Gbps or 40Gbps connections.
The bottom row shows cabling options using breakout ports at 25Gbps or 10Gbps
speeds; the smaller boxes numbered 1-4 represent the breakout connections for each of
the four main uplink ports per spine switch.

• The third column shows a triangle topology with full-port connections and breakout
connections. The difference with column two is that all uplinks are connected to a single
data center switch. The total bandwidth is the same, but the triangle topology lacks data
center switch redundancy.

• There are no diagrams for the square topology. The square cabling configuration is like
the mesh examples, but without the crossing patterns. Visually, all connectors in the
diagrams would be parallel. In a square topology, all outgoing cables from one spine
switch are connected port for port to the same data center switch. Unlike mesh, square
implies that each spine switch is peered with only one data center switch.

Link Count

When connecting the uplinks, you are required to follow the spine switch port numbering.
Remember that both spine switches are cabled identically, so each uplink or connection
corresponds with a pair of cables.

• With one cable per spine port, using 100 or 40 Gbps transceivers, the first uplink pair
uses spine switch ports numbered "1", the second uses port 2, and so on. In this
configuration, the maximum number of uplinks is four per spine switch.

• When breakout cables are used, with 25 or 10Gbps port speeds, the first uplink pair uses
port 1/1. With two or four uplinks per spine switch there is still only one full port in use.

Chapter 2
Network Infrastructure

2-9

When you increase the uplink count to 8 per spine switch, ports 1/1-2/4 are in use.
At 16 uplinks per spine switch, all breakout connections of all four reserved ports
will be in use.

• In a mesh topology, a particular cabling pattern must be followed: connect the first
half of all uplinks to one data center switch, and the second half to the other data
center switch. For example: if you have four uplinks then the first two go to the
same switch; if you have eight uplinks (not shown in the diagrams) then the first
four go to the same switch; if you have 16 uplinks then the first eight go to the
same switch.

Mesh Topology Implications

• In a mesh topology, the spine switch configuration expects that the first half of all
uplinks is connected to one data center switch, and the second half to the other
data center switch. When you initially connect the appliance to your data center
network, it is straightforward to follow this pattern.

• However, if you increase the number of uplinks at a later time, the mesh cabling
pattern has a significant implication for the existing uplinks. Compare the diagrams
in the first two columns: when you double the uplink count, half of the existing
connections must be moved to the other data center switch. For 100/40Gbit
uplinks, re-cabling is only required when you increase the link count from 2 to 4.
Due to the larger number of cables, 25/10Gbit uplinks require more re-cabling:
when increasing uplink count from 2 to 4, from 4 to 8, and from 8 to 16.

Logical Connection
The logical connection between the appliance and the data center is implemented
entirely in layer 3. In the OSI model (Open Systems Interconnection model), layer 3 is
known as the network layer, which uses the source and destination IP address fields in
its header to route traffic between connected devices.

Private Cloud Appliance supports two logical connection options: you must choose
between static routing and dynamic routing. Both routing options are supported by all
three physical topologies.

Connection Type Description

Static Routing When static routing is selected, all egress traffic goes through a
single default gateway IP address configured on data center
network devices. This gateway IP address must be in the same
subnet as the appliance uplink IP addresses, so it is reachable
from the spine switches. The data center network devices can use
SVIs (Switch Virtual Interfaces) with VLAN IDs in the range of
2-3899.
All gateways configured within a virtual cloud network (VCN) will
automatically have a route rule to direct all traffic intended for
external destination to the IP address of the default gateway.

Chapter 2
Network Infrastructure

2-10

Connection Type Description

Dynamic Routing When dynamic routing is selected, BGP (Border Gateway
Protocol) is used to establish a TCP connection between two
Autonomous Systems: the appliance network and the data center
network. This configuration requires a registered or private ASN
(Autonomous System Number) on each side of the connection.
Private Cloud Appliance BGP configuration uses ASN 136025 by
default, this can be changed during initial configuration.
For BGP routing, two routing devices in the data center must be
connected to the two spine switches in the appliance rack.
Corresponding interfaces (port channels) between the spine
switches and the data center network devices must be in the
same subnet. It is considered good practice to use a dedicated /30
subnet for each point-to-point circuit, which is also known as a
route hand-off network. This setup provides redundancy and
multipathing.
Dynamic routing is also supported in a triangle topology, where
both spine switches are physically connected to the same data
center network device. In this configuration, two BGP sessions are
still established: one from each spine switch. However, this
approach reduces the level of redundancy.

Supported Routing Designs

The table below shows which routing designs are supported depending on the physical
topology in your data center and the logical connection you choose to implement.

Note that link aggregation across multiple devices (vPC or MLAG) is only supported with
static routing. When dynamic routing is selected, link aggregation is restricted to ports of the
same switch.

When the uplinks are cabled in a mesh topology, a minimum of 2 physical connections per
spine switch applies. To establish BGP peering, 2 subnets are required. If the uplink count
changes, the port channels are reconfigured but the dedicated subnets remain the same.

Logical Connection Physical Topology Routing Design

Single
Subnet

Dual Subnet vPC/MLAG

Static Routing Square Yes Yes Yes

Mesh Yes Yes Yes

Triangle Yes Yes Yes

Dynamic Routing Square Yes – –

Mesh – Yes –

Triangle Yes – –

Uplink Protocols
The uplinks to the data center run a variety of protocols to provide redundancy and reduce
link failure detection and recovery times on these links. These protocols work with the
triangle, square, or mesh topologies.

The suite of uplink protocols include:

Chapter 2
Network Infrastructure

2-11

• Bidirectional Forwarding Detection (BFD)

• Virtual Router Redundancy Protocol (VRRP)

• Hot Spare Router Protocol (HSRP)

• Equal Cost Multi-Path (ECMP)

Each is briefly described in the following sections of this topic.

BFD

In most router networks, connection failures are detected by loss of the “hello” packets
sent by routing protocols. However, detection by this method often takes more than
one second, routing a lot of packets on high-speed links to a destination that they
cannot reach, which burdens link buffers. Increasing the “hello” packet rate burdens
the router CPU.

Bidirectional Forwarding Detection (BFD) is a built-in mechanism that alerts routers at
the end of a failed link that there is a problem more quickly than any other mechanism,
reducing the load on buffers and CPUs. BFD works even in situations where there are
switches or hubs between the routers.

BFD requires no configuration and has no user-settable parameters.

VRRPv3

The Virtual Router Redundancy Protocol version 3 (VRRPv3) is a networking protocol
that uses the concept of a virtual router to group physical routers together and make
them appear as one to participating hosts. This increases the availability and reliability
of routing paths through automatic default gateway selections on an IP subnetwork.

With VRRPv3, the primary/active and secondary/standby routers act as one virtual
router. This virtual router becomes the default gateway for any host on the subnet
participating in VRRPv3. One physical router in the group becomes the primary/active
touter for packet forwarding. However, if this router fails, another physical router in the
group takes over the forwarding role, adding redundancy to the router configuration.
The VRRPv3 “network” is limited to the local subnet and does not advertise routes
beyond the local subnet.

HSRP

Cisco routers often use a redundancy protocol called the Hot Spare Router Protocol
(HSRP) to improve router availability. Similar to the methods of VRRP, HSRP groups
physical routers into a single virtual router. The failure of a physical default router
results in another router using HSRP to take over the default forwarding of packets
without stressing the host device.

ECMP

Equal Cost Multi-Path (ECMP) is a way to make better use of network bandwidth,
especially in more complex router networks with many redundant links.

Normally, router networks with multiple router paths to another destination network
choose one active route to a gateway router as the “best” path and use the other paths
as a standby in case of failure. The decision about which path to a network gateway
router to use is usually determined by its “cost” from the routing protocol perspective.
In cases where the cost over several links to reach network gateways are equal, the
router simply chooses one based on some criteria. This makes routing decisions easy
but wastes network bandwidth as network links on paths not chosen sit idle.

Chapter 2
Network Infrastructure

2-12

ECMP is a way to send traffic on multiple path links with equal cost, making more efficient
use of network bandwidth.

Administration Network
In an environment with elevated security requirements, you can optionally segregate
administrative appliance access from the data traffic. The administration network physically
separates configuration and management traffic from the operational activity on the data
network by providing dedicated secured network paths for appliance administration
operations. In this configuration, the entire Service Enclave can be accessed only over the
administration network. This also includes the monitoring, metrics collection and alerting
services, the API service, and all component management interfaces.

Setting up the administration network requires additional Ethernet connections from the next-
level data center network devices to port 5 on each of the spine switches in the appliance.
Inside the administration network, the spine switches must each have one IP address and a
virtual IP shared between the two. A default gateway is required to route traffic, and NTP and
DNS services must be enabled. The management nodes must be assigned host names and
IP addresses in the administration network – one each individually and one shared between
all three.

A separate administration network can be used with both static and dynamic routing. The use
of a VLAN is supported, but when combined with static routing the VLAN ID must be different
from the one configured for the data network.

Reserved Network Resources
The network infrastructure and system components of Private Cloud Appliance need a large
number of IP addresses and several VLANs for internal operation. It is critical to avoid
conflicts with the addresses in use in the customer data center as well as the CIDR ranges
configured in the virtual cloud networks (VCNs).

These IP address ranges are reserved for internal use by Private Cloud Appliance:

Reserved IP Addresses Description

CIDR blocks in Shared
Address Space

The Shared Address Space, with IP range 100.64.0.0/10, was
implemented to connect customer-premises equipment to the
core routers of Internet service providers.
To allocate IP addresses to the management interfaces and ILOMs
(Oracle Integrated Lights Out Manager) of hardware components,
two CIDR blocks are reserved for internal use: 100.96.0.0/23 and
100.96.2.0/23.

Chapter 2
Network Infrastructure

2-13

Reserved IP Addresses Description

CIDR blocks in Class E
address range

Under the classful network addressing architecture, Class E is the
part of the 32-bit IPv4 address space ranging from 240.0.0.0 to
255.255.255.255. At the time, it was reserved for future use, so it
cannot be used on the public Internet.
To accommodate the addressing requirements of all
infrastructure networking over the physical 100Gbit connections,
the entire 253.255.0.0/16 subnet is reserved. It is further
subdivided into multiple CIDR blocks in order to group IP
addresses by network function or type.
The various CIDR blocks within the 253.255.0.0/16 range are used
to allocate IP addresses for the Kubernetes containers running the
microservices, the virtual switches, routers and gateways
enabling the VCN data network, the hypervisors, the appliance
chassis components, and so on.

Link Local CIDR block A link-local address belongs to the 169.254.0.0/16 IP range, and is
valid only for connectivity within a host's network segment,
because the address is not guaranteed to be unique outside that
network segment. Packets with link-local source or destination
addresses are not forwarded by routers.
The link-local CIDR block 169.254.239.0/24, as well as the IP
address 169.254.169.254, are reserved for functions such as DNS
requests, compute instance metadata transfer, and cloud service
endpoints.

All VCN traffic – from one VCN to another, as well as between a VCN and external
resources – flows across the 100Gbit connections and is carried by VLAN 3900. Traffic
related to server management is carried by VLAN 3901. All VLANs with higher IDs are
also reserved for internal use, and VLAN 1 is the default for untagged traffic. The
remaining VLAN range of 2-3899 is available for customer use.

Oracle Exadata Integration
Optionally, Private Cloud Appliance can be integrated with Oracle Exadata for a high-
performance combination of compute capacity and database optimization. In this
configuration, database nodes are directly connected to reserved ports on the spine
switches of the Private Cloud Appliance. Four 100Gbit ports per spine switch are
reserved and split into 4x25Gbit breakout ports, providing a maximum of 32 total cable
connections. Each database node is cabled directly to both spine switches, meaning
up to 16 database nodes can be connected to the appliance. It is allowed to connect
database nodes from different Oracle Exadata racks.

Once the cable connections are in place, the administrator configures an Exadata
network, which enables traffic between the connected database nodes and a set of
compute instances. These prerequisites apply:

• The Exadata network must not overlap with any subnets in the on-premises
network.

• The VCNs containing compute instances that connect to the database nodes,
must have a dynamic routing gateway (DRG) configured.

• The relevant subnet route tables must contain rules to allow traffic to and from the
Exadata network.

Chapter 2
Network Infrastructure

2-14

The Exadata network configuration determines which Exadata clusters are exposed and
which subnets have access to those clusters. Access can be enabled or disabled per
Exadata cluster and per compute subnet. In addition, the Exadata network can be exposed
through the appliance's external network, allowing other resources within the on-premises
network to connect to the database nodes through the spine switches of the appliance. The
Exadata network configuration is created and managed through the Service CLI.

Storage
Private Cloud Appliance includes an Oracle ZFS Storage Appliance ZS9-2 as the base
storage option, with the capability to expand storage within the rack as needed.

Oracle ZFS Storage Appliance ZS9-2
The Oracle ZFS Storage Appliance ZS9-2, which consists of two controller servers installed
at the bottom of the appliance rack and disk shelf about halfway up, fulfills the role of 'system
disk' for the entire appliance. It is crucial in providing storage space for the Private Cloud
Appliance software.

The default disk shelf in the appliance has 100+ TB of customer usable storage for public
object storage, customer compute images, and customer block storage.

The hardware configuration of the Oracle ZFS Storage Appliance ZS9-2 is as follows:

• Two clustered storage controller heads

• One fully populated disk chassis with twenty 18TB hard disks

• Four cache disks installed in the disk shelf: 2x 200GB SSD and 2x 7.68TB SSD

• Mirrored configuration, for optimum data protection

The storage appliance is connected to the management subnet and the storage subnet. Both
heads form a cluster in active-active configuration to guarantee continuation of service in the
event that one storage head should fail. The storage heads provide two IPs in the storage
subnet: one for the default capacity storage pool, the other to access the optional
performance (SSD) storage pool. Four management IP addresses are provided: one local to
each controller head and one for each storage pool that follows the pool resources between
controllers over takeover or failback events for convenient maintenance access. The primary
mirrored capacity storage pool contains two projects, named PCA and
private_ostore_project.

Additional Storage
You can optionally increase the storage in your system by adding disk shelves to a system
flex bay. The available storage options for expansion are the Oracle Storage Drive Enclosure
DE3-24C and the Oracle Storage Drive Enclosure DE3-24P.

The supported hardware configuration of the Oracle Storage Drive Enclosure DE3-24C is as
follows:

• Fully populated disk chassis with twenty 18TB hard disks

• Four cache disks installed in the disk shelf: 2x 200GB SSD and 2x 7.68TB SSD

The supported hardware configuration of the Oracle Storage Drive Enclosure DE3-24P is as
follows:

Chapter 2
Storage

2-15

• Twenty 7.68TB SSD

• Two cache disks installed in the disk shelf: 2x 200GB SSD

• Two drive bay fillers

Storage devices included in additional Oracle Storage Drive Enclosure DE3-24C
enclosures are automatically added to the primary capacity storage pool, while devices
included in Oracle Storage Drive Enclosure DE3-24P enclosures are automatically
added to the optional high performance storage pool, after the enclosure is installed
and cabled to the storage controller.

When connecting additional storage, refer to Oracle ZFS Storage ZS9-2 HE Clustered
to Oracle Storage Drive Enclosure DE3-24 Disk Shelves (4 HBAs) for cabling
instructions.

Chapter 2
Storage

2-16

https://docs.oracle.com/en/storage/zfs-storage/zfs-appliance/os8-8-x/cabling-guide/oracle-zfs-storage-zs9-2-he-clustered-oracle-storage-drive-enclosure-de3-24-disk-shelves-4-hbas.html#GUID-DF4956B2-E6E4-4938-890A-D4DAF42F546C
https://docs.oracle.com/en/storage/zfs-storage/zfs-appliance/os8-8-x/cabling-guide/oracle-zfs-storage-zs9-2-he-clustered-oracle-storage-drive-enclosure-de3-24-disk-shelves-4-hbas.html#GUID-DF4956B2-E6E4-4938-890A-D4DAF42F546C

3
Appliance Administration Overview

The appliance infrastructure is controlled from a system area that is securely isolated from
the workspace where cloud resources are created and managed. This administration area is
called the Service Enclave, and is available only to privileged administrators. This chapter
describes how administrators access the Service Enclave and which features and functions
are available to configure the appliance and keep it in optimum operating condition.

Administrator Access
An appliance administrator is a highly privileged user with access to the physical components
of Oracle Private Cloud Appliance. There is no functional relationship between an appliance
administrator account and a tenancy administrator account; these are entirely separate
entities. While appliance administrators may be authorized to create and delete tenancies,
their account does not grant any permission to access a tenancy or use its resources. An
appliance administrator has no access whatsoever to user data or instances.

Access to the administrative functionality is provided through separate interfaces: a Service
Web UI, a Service CLI and a Service API, which are all highly restricted. The resources and
functions an administrator can access is controlled by authorization groups, which are
configured for access control using policies. For more information, see the Administrator
Account Management chapter of the Oracle Private Cloud Appliance Administrator Guide.

Appliance administrator accounts can be created locally, but Private Cloud Appliance also
supports federating with an existing identity provider, so people can log in with their existing
id and password. User groups from the identity provider must be mapped to the appliance
administrator groups, to ensure that administrator roles are assigned correctly to each
authorized account.

A single federated identity provider is supported for appliance administrator accounts. The
process of establishing a federation trust with the identity provider is the same as for identity
federation at the tenancy level. This is described in the chapter Identity and Access
Management Overview. Refer to the section Federating with Identity Providers.

Authorization Groups and Their Policies
As an administrator, the specific functions you can perform is dependent on the authorization
group to which you belong. Authorization groups have access control polices attached to
them which define the resources and functions to which you have access. When you write
your access policies (policy statements), you can define resources and functions individually,
or you can use authorization families.

There are three default authorization groups for Oracle Private Cloud Appliance:

• SuperAdmin

Users have unrestricted access to the Service Enclave. They are authorized to perform
all available operations, including the setup of other administrator accounts and
management of authorization groups and families.

• Initial

3-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-accountmgmt.html#adm-accountmgmt
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-accountmgmt.html#adm-accountmgmt
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/

Users have limited access to the Service Enclave. They are authorized to create
the initial administrator account and view information about the appliance, but do
not have read access to any other resources.

• Day0

Users have specific access to operations related to the initial setup of the
appliance – a process also referred to as the "day zero configuration."

When you are configuring additional administrative access, you can use either a
default authorization group or create a new authorization group. Every authorization
group must have at least one policy statement that allows users who belong to this
group access to resources. An authorization group without a policy statement is valid,
but its users would not have access to any resources.

If you are upgrading your appliance from a previous release, you might have users in
legacy authorization groups. These legacy groups still exist after an upgrade. For
continuity, the upgrade process creates the necessary authorization families and
policies to ensure the users in a legacy group retain the same level of access.

The following table lists the legacy authorization groups and the access privileges
associated with each.

Legacy Authorization
Group

Description

Admin The Admin role grants permission to list, create, modify and
delete practically all supported object types. Permissions
excluded from this role are: administrator account and
authorization group management, and disaster recovery
operations.

Monitor Administrators with a Monitor role are authorized to execute
read-only commands. For example, using the get API calls,
they can list and filter for objects of a certain type.
Some objects related to specific features, such as the disaster
recovery items, are excluded because they require additional
privileges.

DR Admin The DrAdmin role grants the same permissions as the Admin
role, with the addition of all operations related to disaster
recovery.

Day Zero Config The Day0Config role only provides specific access to
operations related to the initial setup of the appliance – a
process also referred to as the "day zero configuration".
The state of the system determines which operations an
administrator with this role is allowed to perform. For
example, when the system is ready for the primary
administrator account to be created, only that specific
command is available. Then, when the system is ready to
register system initialization data, only the commands to set
those parameters are available.

Internal This role is reserved for internal system use.

Authorization groups must have associated access control polices. You can create
individual policies for an authorization group or you can use authorization families.
Using an authorization family allows you to create policies that you can reuse across
authorization groups. The default authorization groups use predefined policies, which
are created using authorization families.

Chapter 3
Administrator Access

3-2

You can create policy statements from the Service Web UI or Service CLI. Each policy
statement must contain the following:

• Name - 1 to 255 characters

• Action - Inspect, Read, Use, or Manage

• Resource / Authorization Family - One or more resources or one authorization family

• (Service CLI only) Authorization Group - the ID of the group

The following table contains information about the actions you can take on a resource.

Action Type of Access

inspect Ability to list resources, without access to any confidential information
or user-specified metadata that may be part of that resource.

read Includes inspect plus the ability to get user-specified metadata and
the actual resource itself.

use Includes read plus the ability to work with existing resources. The
actions vary by resource type.

manage Includes all permissions for the resource.

To learn how to create authorization groups and policies, see the "Managing Administrator
Privileges" topic in the Administrator Account Management chapter of the Oracle Private
Cloud Appliance Administrator Guide.

Authorization Families
Authorization groups must have at least one associated access control policy, known as a
policy statement. Each policy statement provides a type of action for one or more resources.
You can list individual resources in your statements or use authorization families.

Authorization families allow you to group resources and functions that make logical sense in
the management of your appliance. There are two types of authorization families you can use
in policy statements:

• Resource families are used to define appliance resources, such as servers, storage, and
network infrastructure.

• Function families are used to define appliance functions, such as compartment, user, and
compute management.

The default authorization groups use predefined resource and function families in their policy
statements. The following table lists these predefined authorization families and how they are
used in the default authorization groups' policies.

Chapter 3
Administrator Access

3-3

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-accountmgmt.html#adm-accountmgmt
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/

Authorization Family
Name

Authorization Family
Type

Used In Policies
For...

Users In Group
Can...

Day0 Function Family SuperAdmin
authorization group

• set Day0 system,
static routing,
dynamic
routing, and
network
parameters

• get management
node, compute
node, and ZFS
health from
ILOM

• unlock and lock
the appliance

Initial Function Family Initial authorization
group

create the initial
admin account

SuperAdmin Function Family SuperAdmin
authorization group

manage all
appliance functions

Day0 Resource Family SuperAdmin
authorization group

read system
information and
networking
configuration

Initial Resource Family Initial authorization
group

read system
information

SuperAdmin Resource Family SuperAdmin
authorization group

manage all resources
on appliance

To learn how to create authorization families, see the "Managing Administrator
Privileges" topic in the Administrator Account Management chapter of the Oracle
Private Cloud Appliance Administrator Guide.

Status and Health Monitoring
The overall health status of the system is continually monitored, using real-time data
from the hardware and platform layers. System health checks and monitoring data are
the foundation of problem detection. When an unhealthy condition is found,
administrators use this information to begin troubleshooting. If necessary, they register
a service request with Oracle for assistance in resolving the problem. If the Private
Cloud Appliance is registered for Oracle Auto Service Request (ASR), certain
hardware failures cause a service request and diagnostic data to be automatically sent
to Oracle support.

Monitoring
Independently of the built-in health checks, an administrator can consult the monitoring
data at any time to verify the overall status of the system or the condition of a
particular component or service. This is done through the Grafana interface, by
querying the system-wide metric data stored in Prometheus.

Grafana provides a visual approach to monitoring: it allows you to create dashboards
composed of a number of visualization panels. Each panel corresponds with a single

Chapter 3
Status and Health Monitoring

3-4

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-accountmgmt.html#adm-accountmgmt
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/

metric query or a combination of metric queries, displayed in the selected format. Options
include graphs, tables, charts, diagrams, gauges, and so on. For each metric panel,
thresholds can be defined. When the query result exceeds or drops below a given threshold,
the display color changes, providing a quick indication of which elements are healthy, require
investigation, or are malfunctioning.

Oracle provides a set of pre-defined dashboards that allow administrators to start monitoring
the system as soon as it is up and running. The default monitoring dashboards are grouped
into the following categories:

Monitoring Dashboard Set Description

Service Advisor Appliance-specific collection of dashboards for monitoring the
Kubernetes container orchestration environment, the
containerized services it hosts, and the system health check
services.

Service Level Monitoring A read-only collection of dashboards that provide statistic data for
all the microservices.

Kubernetes Monitoring An additional collection of dashboards provided by Oracle's cloud
native monitoring and visualization experts. These provide vast
and detailed information about the Kubernetes cluster and its
services.

The default dashboards contain metric data for the system's physical components – servers,
switches, storage providers and their operating systems and firmware – as well as its logical
components – controller software, platform, Kubernetes cluster and microservices, compute
instances and their virtualized resources. This allows the administrator or support engineer to
verify the health status of both component categories independently, and find correlations
between them. For example, a particular microservice might exhibit poor performance due to
lack of available memory. The monitoring data indicates whether this is a symptom of a
system configuration issue, a lack of physical resources, or a hardware failure. The
monitoring system has an alerting service capable of detecting and reporting hardware faults.
The administrator may optionally configure a notification channel to receive alerts based on
rules defined in the monitoring system.

As part of service and support operations, Oracle may ask you to report specific metric data
displayed in the default dashboards. For this reason, the default dashboard configurations
should always be preserved. However, if some of the monitoring functionality is inadvertently
modified or broken, the defaults can be restored. In a similar way, it is possible for Oracle to
create new dashboards or modify existing ones for improved monitoring, and push them to
your operational environment without the need for a formal upgrade procedure.

All the open source monitoring and logging tools described here have public APIs that allow
customers to integrate with their existing health monitoring and alerting systems. However,
Oracle does not provide support for such custom configurations.

Fault Domain Observability
When it comes to keeping the appliance infrastructure, the compute instances and their
related resources running in a healthy state, the Fault Domain is an extremely important
concept. It groups a set of infrastructure components with the goal of isolating downtime
events due to failures or maintenance, making sure that resources in other Fault Domains are
not affected.

In line with Oracle Cloud Infrastructure, there are always three Fault Domains in a Private
Cloud Appliance. Each of its Fault Domains corresponds with one or more physical compute

Chapter 3
Status and Health Monitoring

3-5

nodes. Apart from using Grafana to consult monitoring data across the entire system,
an administrator can also access key capacity metrics for Fault Domains directly from
the Service Enclave:

• Number of compute nodes per Fault Domain

• Total and available amount of RAM per Fault Domain

• Total and available number of vCPUs per Fault Domain

• Unassigned system CPU and RAM capacity

The Fault Domain metrics reflect the actual physical resources that can be consumed
by compute instances hosted on the compute nodes. The totals do not include
resources reserved for the operation of the hypervisor: 40GB RAM and 4 CPU cores
(8 vCPUs).

In addition to the three Fault Domains, the Service CLI displays an "Unassigned"
category. It refers to installed compute nodes that have not been provisioned, and thus
are not part of a Fault Domain yet. For unassigned compute nodes the memory
capacity cannot be calculated, but the CPU metrics are displayed.

System Health Checks
Health checks are the most basic form of detection. They run at regular intervals as
Kubernetes CronJob services, which are very similar to regular UNIX cron jobs. A
status entry is created for every health check result, which is always one of two
possibilities: healthy or not healthy. All status information is stored for further
processing in Prometheus; the unhealthy results also generate log entries in Loki with
details to help advance the troubleshooting process.

Health checks are meant to verify the status of specific system components, and to
detect status changes. Each health check process follows the same basic principle: to
record the current condition and compare it to the expected result. If they match, the
health check passes; if they differ, the health check fails. A status change from healthy
to not healthy indicates that troubleshooting is required.

For the purpose of troubleshooting, there are two principal data sources at your
disposal: logs and metrics. Both categories of data are collected from all over the
system and stored in a central location: logs are aggregated in Loki and metrics in
Prometheus. Both tools have a query interface that allows you to filter and visualize
the data: they both integrate with Grafana. Its browser-based interface can be
accessed from the Service Web UI.

To investigate what causes a health check to fail, it helps to filter logs and metric data
based on the type of failure. Loki categorizes data with a labeling system, displaying
log messages that match the selected log label. Select a label from the list to view the
logs for the service or application you are interested in. This list allows you to select
not only the health checks but also the internal and external appliance services.

In addition, the latest status from each health check is displayed in the Platform Health
Check dashboard, which is part of the Service Advisor dashboard set provided by
default in Grafana.

Private Cloud Appliance runs the health checks listed below.

Chapter 3
Status and Health Monitoring

3-6

Health Check Service Description

cert-checker Verifies on each management node that no certificates have
expired.

flannel-checker Verifies that the Flannel container network service is fully
operational on each Kubernetes node.

kubernetes-checker Verifies the health status of Kubernetes nodes and pods, as well as
the containerized services and their connection endpoints.

mysql-cluster-checker Verifies the health status of the MySQL cluster database.

l0-cluster-services-checker Verifies that low-level clustering services and key internal
components (such as platform API, DHCP) in the hardware and
platform layer are fully operational.

network-checker Verifies that the system network configuration is correct.

registry-checker Verifies that the container registry is fully operational on each
management node.

vault-checker Verifies that the secret service is fully operational on each
management node.

etcd-checker Verifies that the etcd service is fully operational on each
management node.

zfssa-analytics-exporter Reports ZFS Storage Appliance cluster status, active problems, and
management path connection information. It also reports
analytics information for a configurable list of datasets.

Centralized Logging
The platform provides unified logging across the entire system. The Fluentd data collector
retrieves logs from components across the entire system and stores them in a central
location, along with the appliance telemetry data. As a result, all the necessary
troubleshooting and debugging information is maintained in a single data store, and does not
need to be collected from different sources when an issue needs to be investigated. The
overall health of the system is captured in one view, a Grafana dashboard, meaning there is
no need for an administrator to check individual components.

Whenever an issue is found that requires assistance from Oracle, the administrator logs a
service request. A support bundle is usually requested as part of that process. Thanks to the
centralized logging, the support bundle is straightforward to generate, and remains possible
even if system operation is severely compromised. Generating the support bundle is a
scripted operation that produces a single compressed archive file. The administrator does
need to manually upload the archive file containing the consolidated logs and other
diagnostic data.

If the Private Cloud Appliance is registered for ASR, certain hardware failures cause a
service request and diagnostic data to be automatically sent to Oracle support.

Upgrade
Upgrading components of Private Cloud Appliance is the responsibility of the appliance
administrator. The system provides a framework to verify the state of the appliance prior to an
upgrade, and to execute an upgrade procedure as a workflow that initiates each individual
task and tracks its progress until it completes. Thanks to built-in redundancy at all system

Chapter 3
Upgrade

3-7

levels, the appliance components can be upgraded without service interruptions to the
operational environment.

The source content for upgrades – packages, archives, deployment charts and so on –
is delivered through an ISO image. During the preparation of the upgrade
environment, the ISO image is downloaded to shared storage, and the upgrader itself
is upgraded to the latest version included in the ISO. At this stage the appliance is
ready for upgrades to be applied.

The administrator can perform an upgrade either through the Service Web UI or the
Service CLI, and must select one of two available options: individual component
upgrade or full management node cluster upgrade.

Upgrade Plan and History
During the preparation stages of the upgrade environment, the metadata file with the
target component versions is compared to the current installation, and the result of this
metadata comparison is recorded in a detailed upgrade plan. For each item, the plan
contains the current and target versions and builds, and whether upgrade is required
or not. If an item needs upgrading, the plan indicates which infrastructure components
are impacted, whether a reboot is required, and how much time the upgrade takes.

Every reboot can affect the performance and availability of the appliance. For minimum
risk and optimal use of time, the logic to populate the upgrade plan includes detailed
evaluation of new packages. Many packages can be upgraded without a reboot or only
require a service restart. The reboot flag in the upgrade plan is set only if a component
absolutely must be rebooted.

The upgrade plan serves as a checklist that drives all upgrade procedures in a
prescribed order. An upgrade job is started for every upgrade command, but if the plan
indicates that a component is already at the required version, no further action is taken
and the upgrade is skipped. However, a same-version upgrade can be forced if
necessary.

As the upgrade operations progress, the upgrade plan is updated to reflect the current
status, so that an administrator can check at any time which components have already
been upgraded or still need to be upgraded. When current and target versions are
identical for each item in the upgrade plan, the entire system is up-to-date.

For the purpose of long-term tracking, metadata files and upgrade plans are saved,
while detailed information about all component upgrades and patches is captured in
upgrade jobs. The upgrade history feature allows an administrator to drill down into the
upgrade and patching activity on the appliance. The upgrade history presents all
upgrade and patch information in a categorized way so you can see which version
upgrades have been performed, which jobs have been run for each of those upgrades,
and from which source (ISO upgrade or ULN patch). Details include build versions,
component versions before and after, job completion, success or failure, time stamps,
and duration.

Pre-Checks
All upgrade operations are preceded by a verification process to ensure that system
components are in the correct state to be upgraded. For these pre-checks, the
upgrade mechanism relies on the platform-level health checks. Even though health
checks are executed continually for monitoring purposes, they must be run specifically
before an upgrade operation. The administrator is not required to run the pre-checks

Chapter 3
Upgrade

3-8

manually; they are executed by the upgrade code when an upgrade command is entered. All
checks must pass for an upgrade to be allowed to start, even if a single-component upgrade
is selected.

Prerequisite software versions are enforced in releases from January 2024 onward. During
the upgrade or patch preparations, the Upgrader service validates the currently installed
appliance software version against the new target version. If the appliance is not running at
least the minimum required version, the workflow rolls back the environment to its previous
state. You must first install the minimum required version, before proceeding with the
intended target version.

Certain upgrade procedures require that the administrator first sets a provisioning lock and
maintenance lock. While the locks are active, no provisioning operations or other conflicting
activity can occur, meaning the upgrade process is protected against potential disruptions.
Once the upgrade has completed, the maintenance and provisioning locks must be released
so the system returns to full operational mode.

Single Component Upgrade
Private Cloud Appliance upgrades are designed to be modular, allowing individual
components to be upgraded rather than the entire system at once. With single component
upgrade, the following component options are available:

• ILOM firmware

Use this option to upgrade the Oracle Integrated Lights Out Manager (ILOM) firmware of
a specific server within the appliance. After the firmware is upgraded successfully, the
ILOM is automatically rebooted. However, the administrator must manually restart the
server for all changes to take effect.

• Switch firmware

Use this option to upgrade the operating software of the switches. You must specify
which switch category to upgrade: the leaf switches, the spine switches, or the
management switch.

• ZFS Storage Appliance firmware

Use this option to upgrade the operating software on the ZFS Storage Appliance. Both
controllers, which operate in an active-active cluster configuration, are upgraded as part
of the same process.

• Host operating system

Use this option to upgrade the Oracle Linux operating system on a management node. It
triggers a yum upgrade on the selected management node, and is configured to use a
yum repository populated through the ISO image.

• Clustered MySQL database

Use this option to upgrade the MySQL database on all management nodes. The
database installation is rpm-based and thus relies on the yum repository that is populated
through the ISO image. The packages for the database are deliberately kept out of the
host operating system upgrade, because the timing of the database upgrade is critical.
The database upgrade workflow manages the backup operations and the cluster state,
and stops and restarts the relevant services. It ensures all the steps are performed in the
correct order on each management node.

• Kubernetes cluster

Chapter 3
Upgrade

3-9

Use this option to upgrade the Kubernetes cluster, which is the container
orchestration environment where services are deployed. The Kubernetes cluster
runs on all the management nodes and compute nodes; its upgrade involves three
major operations:

– Upgrading the Kubernetes packages and all dependencies: kubeadm, kubelet,
kubectl and so on.

– Upgrading the Kubernetes container images: kube-apiserver, kube-controller-
manager, kube-proxy and so on.

– Updating any deprecated Kubernetes APIs and services YAML manifest files.

• Secret service

The process to upgrade the secret service on all management nodes consists of
two parts. It involves a rolling upgrade of the two main secret service components:
the etcd key value store and the Vault secrets manager. Using the new image files
made available in the podman registry, both are upgraded independently of each
other, but in a mandatory order: etcd first, then Vault.

• Platform services

Use this option to upgrade the containerized services running within the
Kubernetes cluster on the management nodes. The service upgrade mechanism is
based on Helm, the Kubernetes equivalent of a package manager. For services
that need to be upgraded, new container images and Helm deployment charts are
delivered through an ISO image and uploaded to the internal registry. None of the
operations up to this point have an effect on the operational environment.

At the platform level, an upgrade is triggered by restarting the pods that run the
services. The new deployment charts are detected, causing the pods to retrieve
the new container image when they restart. If a problem is found, a service can be
rolled back to the previous working version of the image.

Note:

In specific circumstances it is possible to upgrade certain platform
services individually, by adding an optional JSON string to the command.
This option should not be used unless Oracle provides explicit
instructions to do so.

• Compute node

Use this option to perform a yum upgrade of the Oracle Linux operating system on
a compute node. Upgrades include the ovm-agent package, which contains
appliance-specific code to optimize virtual machine operations and hypervisor
functionality. You must upgrade the compute nodes one by one; there can be no
concurrent upgrade operations.

Full Management Node Cluster Upgrade
Upgrades of individual components are largely self-contained. The full management
node cluster upgrade integrates a number of those component upgrades into a global
workflow that executes the component upgrades in a predefined order. With a single
command, all three management nodes in the cluster are upgraded sequentially and
component by component. This means an upgrade of a given component is executed

Chapter 3
Upgrade

3-10

on each of the three management nodes before the global workflow moves to the next
component upgrade.

The order in which components are upgraded is predefined because of dependencies, and
must not be changed. During the full management node cluster upgrade, the following
components are upgraded:

1. Management node host operating system

2. Clustered MySQL database

3. Secret service (Etcd and Vault)

4. Kubernetes container orchestration packages

5. Platform layer containerized microservices

6. Oracle Cloud Infrastructure images

Patching
Patching refers to the ability to apply security enhancements and functional updates to
Private Cloud Appliance independently of regular product releases. Patches are delivered as
RPM packages through a series of dedicated channels on the Unbreakable Linux Network
(ULN). To gain access to these channels, you need a Customer Support Identifier (CSI) and a
ULN subscription.

The appliance is not allowed to connect directly to Oracle's ULN servers. The supported
process is to set up a ULN mirror on a system inside the data center. The patch channels are
then synchronized on the ULN mirror, where the management nodes can access the RPMs.
Compute nodes need access to a subset of the RPMs, which are copied to a designated
location on the internal shared storage and kept up-to-date.

Patches are installed using a mechanism similar to upgrade. A key difference is that patching
commands include the path to the ULN mirror. The Service CLI provides a separate patch
command for each supported component type. In the Service Web UI the administrator
applies a patch by creating an upgrade request for a given component type, but selecting the
Patch option instead of Upgrade.

ULN patches may be delivered for any of the component types that are part of a traditional
product release: operating system updates for management and compute nodes, platform
updates, microservices updates, firmware updates, compute image updates, and so on.

For more detailed information and step-by-step instructions, refer to the Oracle Private Cloud
Appliance Patching Guide

Backup and Restore
The integrated Private Cloud Appliance backup service is intended to protect the system
configuration against data loss and corruption. It does not create backups of the customer
environment; instead, this backup service stores the data required for system and service
operation so that any crucial service or component can be restored to its last known healthy
state.

The following filesystems are backed up:

• PCA project: obj_share and MGMT_ROOT

Chapter 3
Patching

3-11

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/patch/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/patch/

• public_ostore_project: Filesystems related to each tenancy created on the rack
(for COS operations)

• private_ostore project: Filesystem in private_ostore_project
In line with the microservice-based deployment model, the backup service
orchestrates the various backup operations across the entire system and ensures data
consistency and integrity, but it does not define the individual component backup
requirements. That logic is part of the component backup plugins.

The backup plugin is the key element that determines which files are backed up for a
given system component or service, and how the data is collected. For example, a
simple file copy may work for certain files while a snapshot is required for other data,
or in some cases a service may need to be stopped to allow the backup to be created.
The plugin also determines the backup frequency and retention time. Each plugin
registers with the backup service so that the backup service is aware of the active
plugins and can schedule the required backup operations in a consistent manner as
Kubernetes CronJobs. Plugins are aggregated into a backup profile; the backup profile
is the task list that the backup service executes when a backup job is launched.

The backup data collected through the plugins is then stored by the backup service in
a dedicated NFS share on the internal ZFS Storage Appliance, using ZFS encryption
to ensure that the data at rest is secure. If required, the backup files can optionally be
replicated to an external storage location.

When restoring a service or component from a backup, the service again relies on the
logic provided by the plugin. A component restore process has two major phases:
verification and data management. In the verification phase, the backup is evaluated
for completeness and appropriateness in relation to the current condition of the
component. In the data management phase, the required actions are taken to stop or
suspend a component, replace the data, and restart or resume normal operation. As
with backup, the operations to restore the data are specific to the component in
question.

The default backup and restore implementation is to execute a global backup profile
that covers the MySQL cluster database, the ZFS Storage Appliance configuration, a
snapshot of the ZFS projects on the storage appliance, and all registered component
backup plugins. The default profile is executed daily at midnight UTC and has a 14-
day retention policy. Backups are stored in /nfs/shared_storage/backups/backup_*.
All restore operations must be performed manually on a per-component basis.

Note:

In release 3.0.1 of Private Cloud Appliance, the Backup and Restore service
is not available through the Service Web UI or Service CLI. Administrators
cannot configure the backup schedule.

Automated restore operations based on the backup plugins are not possible.
If a manual restore from a backup is required, contact Oracle for assistance.

Disaster Recovery
The goal of disaster recovery is to provide high availability at the level of an installation
site, and to protect critical workloads hosted on a Private Cloud Appliance against

Chapter 3
Disaster Recovery

3-12

outages and data loss. The implementation requires two Private Cloud Appliance systems
installed at different sites, and a third system running an Oracle Enterprise Manager
installation with Oracle Site Guard.

The two Private Cloud Appliance systems are both fully operational environments on their
own, but at the same time configured to be each other's replica. A dedicated network
connection between the two peer ZFS Storage Appliances – one in each rack – ensures
reliable data replication at 5-minute intervals. When an incident is detected in either
environment, the role of Oracle Site Guard is to execute the failover workflows, known as
operation plans.

Setting up disaster recovery is the responsibility of an appliance administrator or Oracle
engineer. It involves interconnecting all participating systems, and configuring the Oracle Site
Guard operation plans and the replication settings on both Private Cloud Appliance systems.
The administrator determines which workloads and resources are under disaster recovery
control by creating and managing DR configurations through the Service CLI on the two
appliances.

The DR configurations are the core elements. The administrator adds critical compute
instances to a DR configuration, so that they can be protected against site-level incidents.
Storage and network connection information is collected and stored for each instance
included in the DR configuration. With the creation of a DR configuration, a dedicated ZFS
project is set up for replication to the peer ZFS Storage Appliance, and the compute instance
resources involved are moved from the default storage location to this new ZFS project. A DR
configuration can be refreshed at all times to pick up changes that might have occurred to the
instances it includes.

Next, site mapping details are added to the DR configuration. All relevant compartments and
subnets must be mapped to their counterparts on the replica system. A DR configuration
cannot work unless the compartment hierarchy and network configuration exist on both
Private Cloud Appliance systems.

When an incident occurs, failover operations are launched to bring up the instances under
disaster recovery control on the replica system. This failover is not granular but a site-wide
process involving these steps:

1. The site-level incident causes running instances to fail abruptly. They cannot be shut
down gracefully.

2. Reversing the roles of the primary and replica ZFS Storage Appliance.

3. Recovering the affected compute instances of the primary system by starting them on the
replica system.

4. Cleaning up the primary system: removing stopped instances, frozen DR configurations,
and so on.

5. Setting up reverse DR configurations based on the ZFS project and instance metadata.

A failover is the result of a disruptive incident being detected at one of the installation sites.
However, Oracle Site Guard also supports switchover, which is effectively the same process
but manually triggered by an administrator. In a controlled switchover scenario the first step in
the process is to safely stop the running instances on the primary system to avoid data loss
or corruption. Switchover is typically used for planned maintenance or testing. After a failover
or switchover, when both sites are fully operational, a failback is performed to return the two
Private Cloud Appliance systems to their original configuration.

Chapter 3
Disaster Recovery

3-13

Serviceability
Serviceability refers to the ability to detect, diagnose and correct issues that occur in
an operational system. Its primary requirement is the collection of system data:
general hardware telemetry details, log files from all system components, and results
from system and configuration health checks. For a more detailed description of
monitoring, system health and logging, refer to Status and Health Monitoring.

As an engineered system, Private Cloud Appliance is designed to process the
collected data in a structured manner. To provide real-time status information, the
system collects and stores metric data from all components and services in a unified
way using Prometheus. Centrally aggregated data from Prometheus is visualized
through metric panels in a Grafana dashboard, which permits an administrator to
check overall system status at a glance. Logs are captured across the appliance using
Fluentd, and collected in Loki for diagnostic purposes.

When a component status changes from healthy to not healthy, the alerting
mechanism can be configured to send notifications to initiate a service workflow. If
support from Oracle is required, the first step is for an administrator to open a service
request and provide a problem description.

If the Private Cloud Appliance is registered for ASR, certain hardware failures cause a
service request and diagnostic data to be automatically sent to Oracle support. The
collection of diagnostic data is also called a support bundle. A Service Enclave
administrator can also create and send a service request and supporting diagnostic
data separate from ASR. For more information about ASR and support bundles, see
Status and Health Monitoring in the Oracle Private Cloud Appliance Administrator
Guide.

To resolve the reported issue, Oracle may need access to the appliance infrastructure.
For this purpose, a dedicated service account is configured during system initialization.
For security reasons, this non-root account has no password. You must generate and
provide a service key to allow the engineer to work on the system on your behalf.
Activity related to the service account leaves an audit trail and is clearly separated
from other user activity.

Most service scenarios for Oracle Engineered Systems are covered by detailed action
plans, which are executed by the assigned field engineer. When the issue is resolved,
or if a component has been repaired or replaced, the engineer validates that the
system is healthy again before the service request is closed.

This structured approach to problem detection, diagnosis and resolution ensures that
high-quality service is delivered, with minimum operational impact, delay and cost, and
with maximum efficiency.

Chapter 3
Serviceability

3-14

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-healthmonitor.html

4
Identity and Access Management Overview

The Identity and Access Management service (IAM) lets you control who has access to the
cloud resources within your tenancies. It is the task of a tenancy administrator to control what
type of access a user group has, and to which specific resources that access applies. The
responsibility to manage and maintain access control can be delegated to other privileged
users, for instance by granting them full access to a subcompartment of the tenancy.

Appliance administrator accounts are managed separately and provide access to appliance
administration functions. This functionality is not related to the tenancy-level IAM service. For
more information, refer to the section Administrator Access.

In addition to users, instance principals also have authorization to manage resources. See
Instance Principals.

Users and Groups
When a tenancy is created, a default user account is added to allow you to log in and perform
initial setup tasks. This default user is included in a group named Administrators, which
provides full access to all resources and operations within the tenancy. The group cannot be
deleted and must always contain at least one user.

Once logged in, the tenancy administrator can start adding more users and organize them
into groups. A group is a set of users who have the same type of access to a particular set of
resources. The general principle is that users have no access rights at all, unless they have
been explicitly granted permission.

User accounts can be created locally in the tenancy, but Private Cloud Appliance also
supports federating with an existing identity provider. In this configuration, a tenancy
administrator sets up a federation trust relationship between the tenancy and the identity
provider, allowing users to log in with their existing id and password. Each existing user group
from the identity provider can be mapped to a group in the tenancy, so that existing group
definitions can be re-used to authorize access to cloud resources. For more information, see
Federating with Identity Providers.

The permission to access a resource and perform an operation is defined in a policy. The
policy for the Administrators group states that the users in this group are allowed to manage
all resources in the tenancy. For all other user groups as well, a policy must be defined to
manage their specific permissions. For more information, see How Policies Work.

To group and isolate resources, you organize them into compartments. Compartments are
primary building blocks in a tenancy. You can compare them to the directories in a file system
structure, where the tenancy is equivalent to the root directory. Compartments also help
control and secure the access to resources. Unlike administrators, regular users only see the
compartments to which they have access. Policy statements further refine the type of access.
For more information, see Organizing Resources in Compartments.

As an example of how users, groups, compartments, resources and policies interact with
each other, consider the following scenario. You decide to create groups for different teams in
your organization and assign a separate compartment for each team's resources. You allow
each team to create and use instances within their compartment but prevent them from

4-1

accessing the resources of another team. In addition, you might prefer to let a network
administrator manage all network resources in the tenancy. To achieve this, you create
all network-related resources in a dedicated network compartment, which only a
network administrator is allowed to manage. Other users need to be allowed to use the
network resources in their configurations, but they should not have permission to
modify the network setup.

User Credentials
Different types of credentials are managed through the Identity and Access
Management (IAM) service:

• Account password: for signing in to the Compute Web UI to work with cloud
resources in the tenancy. Note that passwords for federated users are not
managed through IAM because the identity provider controls their login activity.

• API signing key: for sending API requests, which require authentication. These
keys must be created in PEM format.

Account Passwords
When creating a new user account, the tenancy administrator generates a one-time
password and delivers it to the user in a secure way. When users sign in for the first
time, they are prompted to change this password. After 7 days the one-time password
expires and an administrator will need to generate a new one.

After signing in successfully with the new password, users can start working with cloud
resources in the tenancy, in accordance with the permissions they have been granted.

All users are allowed to change their own password, which can be done through the
Compute Web UI. Users who forgot their password must request a tenancy
administrator to reset the password for them.

After 10 unsuccessful login attempts in a row, a user is automatically locked out of the
system. A tenancy administrator needs to unblock the account.

API Signing Keys
Users who need to make API requests must add an RSA public key to their user
profile. Both the private and public key must be in PEM format, with a minimum length
of 2048 bits. Users must generate a private/public key pair on their local machine and
upload the public key to their profile.

Alternatively, a tenancy administrator can generate the API keys and complete the
profile setup for all users. This is a requirement for non-human user accounts: systems
that make API requests without human operation. For such systems, the administrator
needs to create a user account with signing keys, but without password.

On the system from where API requests are sent, a directory named .oci must be
created inside the user home directory. The .oci directory must contain a
configuration file with required parameters for interaction with the API server. Make
sure it lists the correct path to where the private key file is stored, if it is not in the
same directory. API requests are signed using the private key.

A user account can contain a maximum of 3 API signing keys at a time. API signing
keys are different from the SSH keys you use to access a compute instance.

Chapter 4
User Credentials

4-2

Federating with Identity Providers
Many companies use an identity provider to manage user logins and passwords and to
authenticate users for access to secure websites, services, and resources. To access the
Private Cloud Appliance Compute Web UI, people must also sign in with a user name and
password. An administrator can federate with a supported identity provider so that each user
can use an existing login and password, rather than having to create new credentials to
access and use cloud resources.

Federation involves setting up a trust relationship between the identity provider and Private
Cloud Appliance. When the administrator has established that relationship, any user who
goes to the Compute Web UI is prompted with a single sign-on experience offered by the
identity provider.

Supported Identity Providers
For identity federation, Private Cloud Appliance supports the Security Assertion Markup
Language (SAML) 2.0 protocol. However, the only identity provider supported in version 3.0.1
is Microsoft Active Directory, via Active Directory Federation Services.

Your organization can have multiple Active Directory accounts; for example one for each
division of the organization. You can federate multiple Active Directory accounts with Private
Cloud Appliance, but each federation trust that you set up must be for a single Active
Directory account. Identity federation is available in the Compute Web UI as well as the
Service Web UI.

Private Cloud Appliance version 3.0.1 does not currently support the System for Cross-
domain Identity Management (SCIM), a standard protocol that enables user provisioning
across identity systems. Without SCIM, user accounts from an identity provider cannot be
automatically provisioned in a tenancy and synchronized. Consequently, the credentials of
federated users cannot be managed within the tenancy.

Experience for Federated Users
When browsing to the Compute Web UI, the user is prompted to enter the name of the
tenancy. Federated users then choose which identity provider to use, and are redirected to
the identity provider's sign-in interface for authentication. After entering the user name and
password that they already set up, they are authenticated by the identity provider, and
redirected back to the Private Cloud Appliance Compute Web UI. From here, they can access
the resources in their tenancy, in accordance with the permissions granted to them.

Federated user accounts are created and managed within the identity provider; they are not
replicated or synchronized within Private Cloud Appliance. Federated users are granted
access based on their membership of identity provider groups that are mapped to Private
Cloud Appliance groups in the tenancy. Unlike local users, federated users cannot manage
their credentials through the Compute Web UI. They have no User Settings page, cannot
change or reset their password, and cannot upload API signing keys to use the API and CLI.

Federation Process Overview
To set up the federation trust between Private Cloud Appliance and an identity provider, you
perform certain steps of the procedure on both systems respectively. In general, identity
federation consists of these steps:

Chapter 4
Federating with Identity Providers

4-3

1. Configuring groups in the identity provider, so they can be mapped to groups in the
Private Cloud Appliance tenancy.

2. Downloading the SAML metadata document from the identity provider and
collecting the names of the groups you intend to map.

3. Setting up the new identity provider in your Private Cloud Appliance tenancy. You
need to upload the identity provider metadata file. Create the group mappings at
this stage, or return to add them later.

4. Downloading the Private Cloud Appliance federation metadata document from the
Federation page in your tenancy.

5. Setting up Private Cloud Appliance as a trusted application or trusted relying party
in your identity provider. You need to upload the Private Cloud Appliance
federation metadata document, or provide the URL to it.

The identity provider SAML authentication response must be configured to include
name ID and groups, which are parameters required by Private Cloud Appliance.

6. Setting up IAM policies for the mapped groups.

7. Providing federated users the name of the tenancy and the URL to the Private
Cloud Appliance Compute Web UI.

Instance Principals
An instance principal is a compute instance that is authorized to perform actions on
service resources. Applications running on an instance principal can call services and
manage resources similar to the way Private Cloud Appliance users call services to
manage resources. The instance is a principal actor just as a user is a principal actor.
When you use instance principals, you do not need to configure user credentials or a
configuration file on the instance to run applications that need to manage service
resources.

To grant authorizations to an instance principal, include the instance as a member of a
dynamic group. A dynamic group provides authorizations to instances just as a user
group provides authorizations to users.

See "Configuring Instances for Calling Services" and "Creating and Managing
Dynamic Groups" in the Identity and Access Management chapter of the Oracle
Private Cloud Appliance User Guide.

Organizing Resources in Compartments
After initial setup, your tenancy only contains a root compartment. A tenancy
administrator needs to perform setup tasks and establish an organization plan. The
plan should include the compartment hierarchy for organizing your resources and the
definitions of the user groups that need access to the resources. These two things
impact how you write policies to manage access, and therefore should be considered
together.

Understanding Compartments
Think carefully about how you want to use compartments to organize and isolate your
cloud resources. Compartments are fundamental to that process. Most resources can

Chapter 4
Instance Principals

4-4

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-identity.html

be moved between compartments. However, it's important to think through your compartment
design for your organization up front, before implementing anything.

When planning your compartment structure, keep the following things in mind:

• You can create a hierarchy up to six compartments deep under the tenancy or root
compartment.

• Compartments are logical, not physical. Related resource components can be placed in
different compartments. For example, your cloud network subnets with access to an
internet gateway can be secured in a separate compartment from other subnets in the
same cloud network.

• Compartments behave like a filter for viewing resources. When you select a
compartment, the Compute Web UI only shows you resources that are in that
compartment. To view resources in another compartment, you must first select that
compartment.

This experience is different when viewing users, groups, and federation providers. Those
reside in the tenancy itself, not in an individual compartment. A policy can be attached to
either the tenancy or a compartment. Where it is attached controls who has access to
modify or delete it.

• The Compute Web UI only displays the compartments and resources that you have
permission to access. Only an administrator can view all compartments and work with all
resources.

• At the time you create a resource (for example, instance, block storage volume, VCN,
subnet), you must decide in which compartment to put it.

Considerations for Granting Resource Access
Another primary consideration when planning the setup of your tenancy is who should have
access to which resources. Defining how different groups of users need to access the
resources helps you plan how to organize your resources most efficiently, making it easier to
write and maintain your access policies.

For example, you might have users who need to:

• View the Compute Web UI, but not be allowed to edit or create resources

• Create and update specific resources across several compartments; for example:
network administrators who need to manage your cloud networks and subnets

• Launch and manage instances and block volumes, but not have access to your cloud
network

• Have full permissions on all resources, but only in a specific compartment

• Manage other users' permissions and credentials

For information on accessing resources across tenancies, see Cross-Tenancy Policies.

Examples of Compartment Organization
This section describes examples of how compartments can be structured to align with your
resource management goals.

Chapter 4
Organizing Resources in Compartments

4-5

All Resources in the Root Compartment
If your organization is small, or if you are still in the proof-of-concept stage, you might
consider placing all of your resources in the root compartment or the tenancy. This
approach makes it easy for you to quickly view and manage all your resources. You
can still write policies and create groups to restrict permissions on specific resources
to only the users who need access.

High-level tasks to set up the single compartment approach:

1. Create a sandbox compartment. Even though your plan is to maintain your
resources in the root compartment, Oracle recommends setting up a sandbox
compartment so that you can give users a dedicated space to try out features. In
the sandbox compartment you can grant users permissions to create and manage
resources, while maintaining stricter permissions on the resources in your tenancy
(root) compartment.

2. Create groups and policies.

3. Add users.

Separately Managed Project Compartments
Consider this approach if your organization has multiple departments that you want to
manage separately, or if several distinct projects exist that would be easier to manage
separately.

In this approach, you can add a dedicated administrators group for each project
compartment who can set the access policies for just that project. Users and groups
still must be added at the tenancy level. You can give one group control over all their
resources, while not allowing them administrator rights to the root compartment or any
other projects. This way, you enable different groups to set up their own "sub-clouds"
for their own resources and manage them independently.

High-level tasks to set up the multi-project approach:

1. Create a sandbox compartment. Oracle recommends setting up a sandbox
compartment so that you can give users a dedicated space to try out features. In
the sandbox compartment you can grant users permissions to create and manage
resources, while maintaining stricter permissions on the resources in your tenancy
and other compartments.

2. Create a compartment for each project. For example: ProjectA, ProjectB.

3. Create an administrators group for each project. For example: ProjectA_Admins.

4. Create a policy for each administrators group. For example:

Allow group ProjectA_Admins to manage all-resources in compartment ProjectA
5. Add users.

6. Let the administrators for ProjectA and ProjectB create subcompartments within
their designated compartment to manage resources.

7. Let the administrators for ProjectA and ProjectB create the policies to manage the
access to their compartments.

Chapter 4
Organizing Resources in Compartments

4-6

Working with Compartments
This section describes the basics of compartment management.

Creating Compartments
When creating a compartment, you must provide a name that is unique within the tenancy. It
can be up to 100 characters long, and include letters, numbers, periods, hyphens, and
underscores. You must also provide a description for the compartment, which must be 1-400
characters long and is non-unique and changeable. The new compartment is automatically
assigned a unique identifier called an Oracle Cloud ID (OCID).

You can create subcompartments within compartments, to create hierarchies that are up to
six levels deep.

Compartment Access Control
After creating a compartment, you need to write at least one policy for it, otherwise it is only
accessible to administrators and users with permissions set at the tenancy level. When
creating a compartment inside another compartment, the subcompartment inherits access
permissions from compartments higher up its hierarchy.

When you create an access policy, you need to specify which compartment to attach it to.
This controls who can later modify or delete the policy. Depending on your compartment
hierarchy design, you might attach it to the tenancy, a parent, or to the specific compartment
itself.

For information on accessing resources across tenancies, see Cross-Tenancy Policies.

Adding Resources to Compartments
When you start working with cloud resources in the Compute Web UI, you must choose from
a list which compartment to work in. That list is filtered to show only the compartments in the
tenancy that you have permission to access.

To place a new resource in a compartment, you simply specify that compartment when
creating the resource. The compartment is one of the required parameters to create a
resource. When working in the Compute Web UI, make sure you are first viewing the
compartment where you want to create the resource.

Keep in mind that most IAM resources reside in the tenancy. This is always the case for users
and groups, but compartments and policies are also often attached to the tenancy. Tenancy-
level resources cannot be created or managed from a specific compartment.

Moving Resources Between Compartments
Most resources can be moved after they are created.

Some resources have attached resource dependencies. When the parent resource is moved
to another compartment, the attached dependencies do not all behave in the same way.
Some are moved immediately with their parent resources, and some are moved
asynchronously, meaning they are not visible in the new compartment until the move is
complete. For other resources, the attached resource dependencies are not automatically
moved to the new compartment. You can move these attached resources independently.

Chapter 4
Organizing Resources in Compartments

4-7

After you move a resource to a new compartment, the policies that govern the new
compartment apply immediately and affect access to the resource. See the service
documentation for individual resources to familiarize yourself with the behavior of each
resource and its attachments.

Deleting Compartments
To delete a compartment, it must be empty of all resources. Before you initiate deleting
a compartment, be sure that all its resources have been moved, deleted, or
terminated, including any policies attached to the compartment.

The delete action is asynchronous and initiates a work request, which typically takes
several minutes to complete. While a compartment is in the deleting state it is not
displayed in the compartment picker. If the work request fails, the compartment is not
deleted and it returns to the active state. You can track the progress of a work request
during the operation, or check afterwards whether it completed successfully or if errors
occurred.

After a compartment is deleted, its state is updated to deleted and a random string of
characters is appended to its name. For example, CompartmentA might become
CompartmentA.qR5hP2BD. Renaming the compartment allows you to reuse the
original name for a different compartment. Deleted compartments are listed in the
Compartments page for 365 days, but are removed from the compartment picker. If
any policy statements reference the deleted compartment, these statements are
updated to reflect the new name.

If the work request indicates that the compartment failed to delete, verify that you have
removed all the resources. Verify that there are no policies in the compartment. If you
cannot locate any resources in the compartment, check with your administrator; you
might not have permission to view all resources.

Moving a Compartment to a Different Parent Compartment
To move a compartment, you must belong to a group that has manage all-resources
permissions on the lowest shared parent compartment of the current compartment and
the destination compartment.

You can move a compartment to a different parent compartment within the same
tenancy. When you move a compartment, all its contents, meaning its
subcompartments and resources, are moved with it. This section also describes the
implications of moving a compartment. Ensure that you are aware of these before you
move a compartment.

When moving a compartment, these restrictions apply:

• You cannot move a compartment to a destination compartment with the same
name as the compartment being moved.

• Two compartments within the same parent cannot have the same name. Therefore
you cannot move a compartment to a destination compartment where a
compartment with the same name already exists.

Policy Implications
After you move a compartment to a new parent compartment, the access policies of
the new parent take effect and the policies of the previous parent no longer apply.
Before you move a compartment, ensure that:

Chapter 4
Organizing Resources in Compartments

4-8

• You are aware of the policies that govern access to the compartment in its current
position.

• You are aware of the polices in the new parent compartment that will take effect when
you move the compartment.

Groups with access to resources in the current compartment lose their permissions when the
compartment is moved; groups with permissions in the destination compartment gain access.
Ensure that you are aware not only of what groups lose permissions when you move a
compartment, but also what groups will gain permissions. If necessary, adjust the policy
statements to avoid certain users inadvertently losing access.

Tagging Implications
Tags are not automatically updated after a compartment has been moved. If you have
implemented a tagging strategy based on compartment, you must update the tags on the
resources after moving the compartment.

For example, assume that CompartmentA has a child compartment named CompartmentB.
CompartmentA is set up with tag defaults so that every resource in CompartmentA is tagged
with TagA. Therefore CompartmentB and all its resources are tagged with this default tag,
TagA. When you move CompartmentB to CompartmentC, it will still have the default tags
from CompartmentA. If you have set up default tags for CompartmentC, you need to add
them to the resources in the moved compartment.

How Policies Work
A policy is a document that specifies who can access which cloud resources in your tenancy,
and how. A policy simply allows a group to work in certain ways with specific types of
resources in a particular compartment. If you are not familiar with users, groups, or
compartments, refer to the respective sections in the chapter Identity and Access
Management Overview.

Policy Basics
To govern control of your resources, you need at least one policy. Each policy consists of one
or more policy statements that follow this basic syntax:

Allow group <group_name> to <verb> <resource-type> in compartment <compartment_name>

Policy statements begin with the word Allow. Policies only allow access; they cannot deny it.
Instead, all access is implicitly denied, meaning users can only do what they have been
granted permission for. A tenancy administrator defines the groups and compartments; the
available resource types are determined by Oracle. The use and meaning of verbs in policy
statements is described in Policy Syntax.

If you want a policy to apply to the tenancy and not a compartment inside the tenancy,
change the end of the policy statement as follows:

Allow group <group_name> to <verb> <resource-type> in tenancy

A basic feature of policies is the concept of inheritance: compartments inherit any policies
from their parent compartment. If a group has a particular level of access to certain resource
types in a compartment, then those same permissions apply in all subcompartments of the
compartment where this policy is applied. The simplest example is the Administrators group
in the tenancy: the built-in policy allows the administrators to manage all the resources in the

Chapter 4
How Policies Work

4-9

tenancy root compartment. Because of policy inheritance, the administrators have full
access to all operations and all resources in every compartment.

Resource Types
The resource types that you can use in policies are either individual or family types.
The family resource types make policy writing easier, as they include multiple
individual resource types that are often managed together. For example, the virtual-
network-family type brings together a variety of types related to the management of
VCNs: vcns, subnets, route-tables, security-lists, etc. If you need to write a more
granular policy, use an individual resource type to give access to only those specific
resources. Note that there are other ways to make policies more granular, such as the
ability to specify conditions under which the access is granted.

With future service updates, it is possible that resource type definitions are changed or
added. These are typically reflected automatically in the resource family type for that
service, so your policies remain current.

Some operations require access to multiple resource types. For example, launching an
instance requires the permission to create instances and to work with a cloud network.
Or creating a volume backup requires access to both the volume and the volume
backup. That means you have separate statements to give access to each resource
type.

These individual statements do not have to be in the same policy. A user can gain the
required access from being in different groups. For example, a user could be in one
group that gives the required level of access to the volumes resource type, and in
another group that gives the required access to the volume-backups resource type.
The sum of the individual statements, regardless of their location in the overall set of
policies, allows the user to create a volume backup.

Policy Attachment
Another basic feature of policies is the concept of attachment. When you create a
policy you must attach it to a compartment; or to the tenancy, which is the root
compartment. Where you attach it controls who can then modify it or delete it. If you
attach a policy to the tenancy, it can only be modified by the Administrators group, and
not by users with only access to a subcompartment.

If you instead attach the policy to a child compartment, then anyone with access to
manage the policies in that compartment can change or delete it. In practical terms,
you can give compartment administrators – a group with access to manage all
resources in the compartment – access to manage their own compartment's policies,
without giving them broader access to manage policies that reside in the tenancy.

To attach a policy to a compartment, you must be in that compartment when you
create the policy. As part of a policy statement you specify the compartment it applies
to, so if you try to attach the policy to a different compartment you get an error. Policy
attachment occurs at the time of creation, which means a policy can be attached to
one compartment only.

Policy Syntax
The overall syntax of a policy statement is as follows:

Allow <subject> to <verb> <resource-type> in <location> where <conditions>

Chapter 4
How Policies Work

4-10

Additional spaces or line breaks in the statement have no effect.

Subject
Specify a group by name or OCID. You can specify multiple groups separated by commas. To
cover all users in the tenancy, specify any-user.

These examples show how you can specify the subject in a policy statement.

• To specify a single group by name:

Allow group A-admins to manage all-resources in compartment Project-A
• To specify multiple groups by name (a space after the comma is optional):

Allow group A-admins, B-admins to manage all-resources in compartment Projects
• To specify a single group by OCID (the OCID is shortened for brevity):

Allow group id ocid1.group...........<group1_unique_id>
to manage all-resources in compartment Project-A

• To specify multiple groups by OCID (the OCIDs are shortened for brevity):

Allow
group id ocid1.group...........<group1_unique_id>,
group id ocid1.group...........<group2_unique_id>
to manage all-resources in compartment Projects

• To specify any user in the tenancy:

Allow any-user to inspect users in tenancy

Verb
Specify a single verb.

Allow group A-admins to manage all resources in compartment Project-A

The policy syntax supports the following verbs, ordered by increasing permissions:

Verb Type of Access Target User

inspect Ability to list resources, without access to any
confidential information or user-specified metadata that
may be part of that resource.
Notes:
• The operation to list policies includes the contents of

the policies themselves.
• The list operations for the Networking resource

types return all the information, including the
contents of security lists and route tables.

Third-party
auditors

read Includes inspect plus the ability to get user-specified
metadata and the actual resource itself.

Internal auditors

Chapter 4
How Policies Work

4-11

Verb Type of Access Target User

use Includes read plus the ability to work with existing
resources. The actions vary by resource type.
Includes the ability to update the resource, except for
resource types where the "update" operation has the
same effective impact as the "create" operation; for
example UpdatePolicy, UpdateSecurityList, etc. In
those cases the "update" ability is available only with the
manage verb. In general, the verb use does not include
the ability to create or delete that type of resource.

Day-to-day end
users of resources

manage Includes all permissions for the resource. Administrators

The verb gives a certain general type of access. For example, inspect lets you list
and get resources. You then join that type of access with a particular resource type in
a policy. For example, allow group XYZ to inspect compartments in the tenancy. As a
result, that group gains access to a specific set of permissions and API operations; for
example ListCompartments, GetCompartment.

Resource Type
Specify a single resource-type, which can be:

• An individual resource type; for example: vcns, subnets, instances, volumes, etc.

• A family resource type; for example: virtual-network-family, instance-family,
volume-family, etc.

A family resource type covers a variety of individual resource types that are
typically used together.

• all-resources: Covers all resources in the compartment or tenancy.

These examples show how you can specify the resource type in a policy statement.

• To specify a single resource type:

Allow group HelpDesk to manage users in tenancy
• To specify multiple resource types, use separate statements:

Allow group A-users to manage instance-family in compartment Project-A
Allow group A-users to manage volume-family in compartment Project-A

• To specify all resources in the compartment or tenancy:

Allow group A-admins to manage all-resources in compartment Project-A
Here is an overview of the family resource types can be used in policy statements:

Family Resource Type Description

compute-management-
family

This aggregate resource covers the following individual
resource types: instance-configurations, instance-
pools, cluster-networks.

Chapter 4
How Policies Work

4-12

Family Resource Type Description

instance-family This aggregate resource covers the following individual
resource types: app-catalog-listing, console-histories,
instances, instance-console-connection, instance-
images, volume-attachments.

volume-family This aggregate resource covers all individual resource types
related to block volumes: volumes, volume-attachments,
volume-backups, boot-volume-backups, backup-policies,
backup-policy-assignments, volume-groups, volume-
group-backups.

virtual-network-
family

This aggregate resource covers all individual resource types
related to the networking service. For example: VCNs,
subnets, route tables, gateways, VNICs, network security
groups, and so on.

file-family This aggregate resource covers all individual resource types
related to the file storage service: file-systems, mount-
targets, export-sets.

object-family This aggregate resource covers all individual resource types
related to the object storage service: objectstorage-
namespaces, buckets, objects.

Location
Specify a single compartment by name or OCID. Or simply specify tenancy to cover the
entire tenancy. Remember that users, groups, and compartments reside in the tenancy.
Policies can be attached to either the tenancy or a child compartment.

The location is required in the statement. If you want to attach a policy to a compartment, you
must be in that compartment when you create the policy.

These examples show how you can specify the location in a policy statement.

• To specify a compartment by name:

Allow group A-admins to manage all-resources in compartment Project-A
• To specify a compartment by OCID:

Allow group A-admins to manage all-resources
in compartment id ocid1.compartment.oc1..aaaaaaaaexampleocid

• To specify multiple compartments, use separate statements:

Allow group InstanceAdmins to manage instance-family in compartment Project-A
Allow group InstanceAdmins to manage instance-family in compartment Project-B

Allow group InstanceAdmins to manage instance-family
in compartment id ocid1.compartment.oc1..aaaaaaaayzexampleocid
Allow group InstanceAdmins to manage instance-family
in compartment id ocid1.compartment.oc1..abcabcabcexampledocid

Conditions
Specify one or more conditions. With multiple conditions, use any or all for a logical OR or
AND, respectively.

Chapter 4
How Policies Work

4-13

These are the types of values you can use in conditions:

Value Type Examples

String Single quotation marks are required around the value.
'johnsmith@example.com'
'ocid1.compartment.oc1..aaaaaaaaph...ctehnqg756a'

Pattern /HR*/ - matches strings that start with "HR"

/*HR/ - matches strings that end with "HR"

/*HR*/ - matches strings that contain "HR"

These examples show how you can specify conditions in a policy statement.

Note:

In the example statements, the condition to match group names makes it
impossible for GroupAdmins to list all users and groups. The list operation
does not involve specifying a group, which means there is no value to match
the condition variable target.group.name. To resolve this, a statement
including the inspect verb is added.

• The following policy enables the GroupAdmins group to create, update, or delete
any groups with names that start with "A-Users-":

Allow group GroupAdmins to manage groups in tenancy where target.group.name
= /A-Users-*/
Allow group GroupAdmins to inspect groups in tenancy

• The following policy enables the NetworkAdmins group to manage cloud networks
in any compartment except the one specified:

Allow group NetworkAdmins to manage virtual-network-family in tenancy
where target.compartment.id != 'ocid1.compartment.oc1..aaaaaaaaexampleocid'

• The following policy uses multiple conditions and lets GroupAdmins create,
update, or delete any groups whose names start with "A-", except for the A-
Admins group itself:

Allow group GroupAdmins to manage groups in tenancy
where all {target.group.name=/A-*/,target.group.name!='A-Admins'}
Allow group GroupAdmins to inspect groups in tenancy

Common Policies
This section includes some common policies you might want to use in your
organization. These policies use example group and compartment names. Make sure
to replace them with your own names.

Let the help desk manage users
Type of access: Ability to create, update, and delete users and their credentials. It
does not include the ability to put users in groups.

Chapter 4
How Policies Work

4-14

Where to create the policy: In the tenancy, because users reside in the tenancy.

Allow group HelpDesk to manage users in tenancy

Let auditors inspect your resources
Type of access: Ability to list the resources in all compartments. Be aware that:

• The operation to list IAM policies includes the contents of the policies themselves

• The list operations for Networking resource types return all the information (for example,
the contents of security lists and route tables)

• The operation to list instances requires the read verb instead of inspect, and the
contents include the user-provided metadata

Where to create the policy: In the tenancy. Because of the concept of policy inheritance,
auditors can then inspect both the tenancy and all compartments beneath it. Or you could
choose to give auditors access to only specific compartments if they don't need access to the
entire tenancy.

Allow group Auditors to inspect all-resources in tenancy
Allow group Auditors to read instances in tenancy

Let network admins manage a cloud network
Type of access: Ability to manage all components in Networking. This includes cloud
networks, subnets, gateways, security lists, route tables, and so on.

Where to create the policy: In the tenancy. Because of the concept of policy inheritance,
NetworkAdmins can then manage a cloud network in any compartment. To reduce the scope
of access to a particular compartment, specify that compartment instead of the tenancy.

Allow group NetworkAdmins to manage virtual-network-family in tenancy

Let users launch compute instances
Type of access: Ability to do everything with instances launched into the cloud network and
subnets in compartment XYZ, and attach/detach any existing volumes that already exist in
compartment ABC. The first statement also lets the group create and manage instance
images in compartment ABC.

Where to create the policy: The easiest approach is to put this policy in the tenancy. If you
want the admins of the individual compartments (ABC and XYZ) to have control over the
individual policy statements for their compartments, these policy statements need to be split
across two policies and attached to the compartment they apply to.

Allow group InstanceLaunchers to manage instance-family in compartment ABC
Allow group InstanceLaunchers to use volume-family in compartment ABC
Allow group InstanceLaunchers to use virtual-network-family in compartment XYZ

Let users manage compute instance configurations, instance pools, and cluster
networks

Type of access: Ability to do all things with instance configurations, instance pools, and
cluster networks in all compartments.

Chapter 4
How Policies Work

4-15

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the
instance configurations, instance pools, and cluster networks in a particular
compartment, specify that compartment instead of the tenancy.

Allow group InstancePoolAdmins to manage compute-management-family in tenancy

If a group needs to create instance configurations using existing instances as a
template, and uses the API or CLI to do this, add the following statements to the
policy:

Allow group InstancePoolAdmins to read instance-family in tenancy
Allow group InstancePoolAdmins to inspect volumes in tenancy

If a particular group needs to start, stop, or reset the instances in existing instance
pools, but not create or delete instance pools, use this statement:

Allow group InstancePoolUsers to use instance-pools in tenancy

If resources used by the instance pool contain default tags, add the following
statement to the policy to give the group permission to the tag namespace "oracle-
tags":

Allow group InstancePoolUsers to use tag-namespaces in tenancy where target.tag-
namespace.name = 'oracle-tags'

Let volume admins manage block volumes, backups, and volume groups
Type of access: Ability to do all things with block storage volumes, volume backups,
and volume groups in all compartments with the exception of copying volume backups
across regions. This makes sense if you want to have a single set of volume admins
manage all the volumes, volume backups, and volume groups in all the compartments.
The second statement is required in order to attach/detach the volumes from
instances.

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the
volumes/backups and instances in a particular compartment, specify that compartment
instead of the tenancy.

Allow group VolumeAdmins to manage volume-family in tenancy
Allow group VolumeAdmins to use instance-family in tenancy

Let volume backup admins manage only backups
Type of access: Ability to do all things with volume backups, but not create and
manage volumes themselves. This makes sense if you want to have a single set of
volume backup admins manage all the volume backups in all the compartments. The
first statement gives the required access to the volume that is being backed up; the
second statement enables creation of the backup and the ability to delete backups.
The third statement enables the creation and management of user defined backup
policies; the fourth statement enables assignment and removal of assignment of
backup policies.

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the
volumes and backups in a particular compartment, specify that compartment instead
of the tenancy.

Chapter 4
How Policies Work

4-16

Allow group VolumeBackupAdmins to use volumes in tenancy
Allow group VolumeBackupAdmins to manage volume-backups in tenancy
Allow group VolumeBackupAdmins to manage backup-policies in tenancy
Allow group VolumeBackupAdmins to manage backup-policy-assignments in tenancy

If the group uses the Compute Web UI, extend the policy as shown below for a better user
experience.

Allow group VolumeBackupAdmins to use volumes in tenancy
Allow group VolumeBackupAdmins to manage volume-backups in tenancy
Allow group VolumeBackupAdmins to inspect volume-attachments in tenancy
Allow group VolumeBackupAdmins to inspect instances in tenancy
Allow group VolumeBackupAdmins to manage backup-policies in tenancy
Allow group VolumeBackupAdmins to manage backup-policy-assignments in tenancy

The last two statements are not strictly required. They enable the display of all information
about a particular volume and available backup policies.

Let boot volume backup admins manage only backups
Type of access: Ability to do all things with boot volume backups, but not create and manage
boot volumes themselves. This makes sense if you want to have a single set of boot volume
backup admins manage all the boot volume backups in all the compartments. The first
statement gives the required access to the boot volume that is being backed up; the second
statement enables creation of the backup and the ability to delete backups. The third
statement enables the creation and management of user defined backup policies; the fourth
statement enables assignment and removal of assignment of backup policies.

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the boot
volumes and backups in a particular compartment, specify that compartment instead of the
tenancy.

Allow group BootVolumeBackupAdmins to use volumes in tenancy
Allow group BootVolumeBackupAdmins to manage boot-volume-backups in tenancy
Allow group BootVolumeBackupAdmins to manage backup-policies in tenancy
Allow group BootVolumeBackupAdmins to manage backup-policy-assignments in tenancy

If the group uses the Compute Web UI, extend the policy as shown below for a better user
experience.

Allow group BootVolumeBackupAdmins to use volumes in tenancy
Allow group BootVolumeBackupAdmins to manage boot-volume-backups in tenancy
Allow group BootVolumeBackupAdmins to inspect instances in tenancy
Allow group BootVolumeBackupAdmins to manage backup-policies in tenancy
Allow group BootVolumeBackupAdmins to manage backup-policy-assignments in tenancy

The last two statements are not strictly required. They enable the display of all information
about a particular volume and available backup policies.

Let users create a volume group
Type of access: Ability to create a volume group from a set of volumes.

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the
volumes and volume groups in a particular compartment, specify that compartment instead of
the tenancy.

Chapter 4
How Policies Work

4-17

Allow group VolumeGroupCreators to inspect volumes in tenancy
Allow group VolumeGroupCreators to manage volume-groups in tenancy

Let users clone a volume group
Type of access: Ability to clone a volume group from an existing volume group.

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the
volumes and volume groups in a particular compartment, specify that compartment
instead of the tenancy.

Allow group VolumeGroupCloners to inspect volumes in tenancy
Allow group VolumeGroupCloners to manage volume-groups in tenancy
Allow group VolumeGroupCloners to manage volumes in tenancy

Let users create a volume group backup
Type of access: Ability to create a volume group backup.

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the
volumes/backups and volume groups/volume group backups in a particular
compartment, specify that compartment instead of the tenancy.

Allow group VolumeGroupBackupAdmins to inspect volume-groups in tenancy
Allow group VolumeGroupBackupAdmins to manage volumes in tenancy
Allow group VolumeGroupBackupAdmins to manage volume-group-backups in tenancy
Allow group VolumeGroupBackupAdmins to manage volume-backups in tenancy

Let users restore a volume group backup
Type of access: Ability to create a volume group by restoring a volume group backup.

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the
volumes/backups and volume groups/volume group backups in a particular
compartment, specify that compartment instead of the tenancy.

Allow group VolumeGroupBackupAdmins to inspect volume-group-backups in tenancy
Allow group VolumeGroupBackupAdmins to read volume-backups in tenancy
Allow group VolumeGroupBackupAdmins to manage volume-groups in tenancy
Allow group VolumeGroupBackupAdmins to manage volumes in tenancy

Let users create, manage, and delete file systems
Type of access: Ability to create, manage, or delete a file system. Administrative
functions for a file system include the ability to rename or delete it or disconnect from
it.

Where to create the policy: In the tenancy, so that the ability to create, manage, or
delete a file system is easily granted to all compartments by way of policy inheritance.
To reduce the scope of these administrative functions to file systems in a particular
compartment, specify that compartment instead of the tenancy.

Allow group StorageAdmins to manage file-family in tenancy

Chapter 4
How Policies Work

4-18

Let users create file systems
Type of access: Ability to create a file system.

Where to create the policy: In the tenancy, so that the ability to create a file system is easily
granted to all compartments by way of policy inheritance. To reduce the scope of these
administrative functions to file systems in a particular compartment, specify that compartment
instead of the tenancy.

Allow group Managers to manage file-systems in tenancy
Allow group Managers to read mount-targets in tenancy

The second statement is required when users create a file system through the Compute Web
UI. It enables the UI to display a list of mount targets that the new file system can be
associated with.

Let object storage admins manage buckets and objects
Type of access: Ability to do all things with Object Storage buckets and objects in all
compartments.

Where to create the policy: In the tenancy, so that the access is easily granted to all
compartments by way of policy inheritance. To reduce the scope of access to just the buckets
and objects in a particular compartment, specify that compartment instead of the tenancy.

Allow group ObjectAdmins to manage buckets in tenancy
Allow group ObjectAdmins to manage objects in tenancy

Let users write objects to object storage buckets
Type of access: Ability to write objects to any object storage bucket in compartment ABC.
Consider a situation where a client needs to regularly write log files to a bucket. This includes
the ability to list the buckets in the compartment, list the objects in a bucket, and create a new
object in a bucket. Although the second statement gives broad access with the manage verb,
that access is then scoped down to only the OBJECT_INSPECT and OBJECT_CREATE
permissions with the condition at the end of the statement.

Where to create the policy: The easiest approach is to put this policy in the tenancy. If you
want the admins of compartment ABC to have control over the policy, it needs to be attached
to that compartment.

Allow group ObjectWriters to read buckets in compartment ABC
Allow group ObjectWriters to manage objects in compartment ABC where any
{request.permission='OBJECT_CREATE', request.permission='OBJECT_INSPECT'}

To limit access to a specific bucket in a particular compartment, add the condition where
target.bucket.name='<bucket_name>'. The following policy allows the user to list all the
buckets in a particular compartment, but they can only list the objects in and upload objects
to BucketA:

Allow group ObjectWriters to read buckets in compartment ABC
Allow group ObjectWriters to manage objects in compartment ABC
 where all {target.bucket.name='BucketA', any {request.permission='OBJECT_CREATE',
request.permission='OBJECT_INSPECT'}}

Chapter 4
How Policies Work

4-19

Let users download objects from object storage buckets
Type of access: Ability to download objects from any Object Storage bucket in
compartment ABC. This consists of the ability to list the buckets in the compartment,
list the objects in a bucket, and read existing objects in a bucket.

Where to create the policy: The easiest approach is to put this policy in the tenancy.
If you want the admins of compartment ABC to have control over the policy, it needs to
be attached to that compartment.

Allow group ObjectReaders to read buckets in compartment ABC
Allow group ObjectReaders to read objects in compartment ABC

To limit access to a specific bucket in a particular compartment, add the condition
where target.bucket.name='<bucket_name>'. The following policy allows the user to
list all buckets in a particular compartment, but they can only read the objects in and
download from BucketA:

Allow group ObjectReaders to read buckets in compartment ABC
Allow group ObjectReaders to read objects in compartment ABC where
target.bucket.name='BucketA'

Let users manage their own credentials
No policy is required to let users manage their own credentials. All users have the
ability to change and reset their own passwords and manage their own API keys.

Let a compartment admin manage the compartment
Type of access: Ability to manage all aspects of a particular compartment. For
example, a group called A-Admins could manage all aspects of a compartment called
Project-A, including writing additional policies that affect the compartment.

Where to create the policy: In the tenancy.

Allow group A-Admins to manage all-resources in compartment Project-A

Advanced Policy Features
This section describes policy language features that let you grant more granular
access.

Conditions
As part of a policy statement, you can specify one or more conditions that must be met
in order for access to be granted. Each condition consists of one or more predefined
variables that you specify values for in the policy statement. When someone requests
access to the resource type in question, and the condition in the policy is met, it
evaluates to true and the request is allowed.

There are two types of variables: those that are relevant to the request itself, and
those relevant to the resource being acted upon in the request, also known as the
target. The name of the variable is prefixed accordingly with either request or target
followed by a period. For example, the request variable called request.operation

Chapter 4
How Policies Work

4-20

represents the API operation being requested. This variable lets you write a broad policy
statement, but add a condition based on the specific API operation.

Caution:

Condition matching is case insensitive. This is important to remember when writing
conditions for resource types that allow case-sensitive naming. For example, the
Object Storage service allows you to create both a bucket named "BucketA" and a
bucket named "bucketA" in the same compartment. If you write a condition that
specifies "BucketA", it will also apply to "bucketA", because the condition matching
is case insensitive.

Non-Applicable Variables
As a general rule, if a variable is not applicable to the incoming request, the condition
evaluates to false and the request is declined. This means that a request normally allowed by
the combination of verb and resource type in a policy statement, is declined because it does
not specify a value for the condition variable. If you want to grant the access associated with
the policy statement without the condition, you need to include an additional statement.

For example, the policy statements below allow someone to add and remove users from any
group, as long as they are not members of the Administrators group.

Allow group GroupAdmins to use users in tenancy where target.group.name !=
'Administrators'
Allow group GroupAdmins to use groups in tenancy where target.group.name !=
'Administrators'

If a user in GroupAdmins calls a general API operation such as ListUsers or UpdateUser, the
request is declined even though the operations are covered by use users. This is because
the list and update commands do not involve specifying a group, which means there is no
value to match the target.group.name variable in the condition of the policy statement. The
variable is not applicable to the incoming request, therefore the condition evaluates to false
and the request is declined.

To allow the GroupAdmins to list users, you need to add another policy statement, but without
the condition. In this example, the verb inspect is required to allow the list command.

Allow group GroupAdmins to use users in tenancy where target.group.name !=
'Administrators'
Allow group GroupAdmins to use groups in tenancy where target.group.name !=
'Administrators'
Allow group GroupAdmins to inspect users in tenancy

This general concept also applies to groups, and any other resource type with target
variables.

Tag-Based Access Control
Using conditions and a set of tag variables, you can write policy to scope access based on
the tags that have been applied to a resource. More specifically, access can be controlled
based on the value of a tag that exists on the group to which the requesting user belongs.
Tag-based access control provides additional flexibility to your policies by allowing you to
define access that spans compartments, groups, and resources.

Chapter 4
How Policies Work

4-21

For details about how to write policies to scope access by tags, refer to the section
"Tag-Based Access Control" in the chapter Tagging Overview.

Permissions
Permissions are the atomic units of authorization that control a user's ability to perform
operations on resources. All the permissions are defined in the policy language. When
you write a policy giving a group access to a particular verb and resource type, you are
actually giving that group access to one or more predefined permissions. The purpose
of verbs is to simplify the process of granting multiple related permissions that cover a
broad set of access or a particular operational scenario.

Relation to Verbs
To understand the relationship between permissions and verbs, consider the following
example. A policy statement that allows a group to inspect volumes actually provides
access to a permission called VOLUME_INSPECT. Permissions are always written
with all capital letters and underscores. In general, that permission enables the user to
get information about block volumes.

As you go from inspect > read > use > manage, the level of access generally
increases, and the permissions granted are cumulative, as shown in the table below.
Note that in this case no additional permissions are granted going from inspect to
read.

Inspect Volumes Read Volumes Use Volumes Manage Volumes

VOLUME_INSPECT VOLUME_INSPECT VOLUME_INSPECT
VOLUME_UPDATE
VOLUME_WRITE

VOLUME_INSPECT
VOLUME_UPDATE
VOLUME_WRITE
VOLUME_CREATE
VOLUME_DELETE

For detailed information about permissions covered by each verb for each given
resource type, see the Policy Reference.

Relation to API Operations
Each API operation requires the caller to have access to one or more permissions. For
example:

• To use either ListVolumes or GetVolume, you must have access to a single
permission: VOLUME_INSPECT.

• To attach a volume to an instance, you must have access to multiple permissions,
related to different resource types: volumes, volume-attachments and instances.
Those permissions are, respectively: VOLUME_WRITE,
VOLUME_ATTACHMENT_CREATE , and INSTANCE_ATTACH_VOLUME.

The Policy Reference lists which permissions are required for each API operation.

Understanding a User's Access
The policy language is designed to let you write simple statements involving only verbs
and resource types, without having to state the desired permissions in the statement.

Chapter 4
How Policies Work

4-22

However, there may be situations where a security team member or auditor wants to
understand the specific permissions a particular user has. The Policy Reference lists the
permissions associated with each verb. You can look at the groups the user is in and the
policies applicable to those groups, and from there compile a list of the permissions granted.

However, having a list of the permissions is not the complete picture. Conditions in a policy
statement can scope a user's access beyond individual permissions. Also, each policy
statement specifies a particular compartment and can have conditions that further scope the
access to only certain resources in that compartment.

Scoping Access with Permissions or API Operations
In a policy statement, you can use conditions combined with permissions or API operations to
reduce the scope of access granted by a particular verb. For example, you want group XYZ
to be able to list, get, create, or update groups, but not delete them. To list, get, create, and
update groups, you need a policy with manage groups as the verb and resource type, but this
would include the permission to delete groups.

To restrict access to only the desired permissions, you could add a condition that explicitly
states the permissions you want to allow:

Allow group XYZ to manage groups in tenancy
where any {request.permission='GROUP_INSPECT',
 request.permission='GROUP_CREATE',
 request.permission='GROUP_UPDATE'}

An alternative would be a policy that allows all permissions except GROUP_DELETE:

Allow group XYZ to manage groups in tenancy where request.permission != 'GROUP_DELETE'

However, with this approach, any future new permissions would automatically be granted to
group XYZ. Only GROUP_DELETE would be omitted.

Another alternative would be to write a condition based on the specific API operations:

Allow group XYZ to manage groups in tenancy
where any {request.operation='ListGroups',
 request.operation='GetGroup',
 request.operation='CreateGroup',
 request.operation='UpdateGroup'}

It can be beneficial to use permissions instead of API operations in conditions. In the future, if
a new API operation is added that requires one of the permissions listed in the permissions-
based policy above, that policy already controls the XYZ group's access to that new API
operation.

A user's access to a permission can be scoped even further by also specifying a condition
based on API operation. For example, you could give a user access to GROUP_INSPECT,
but then only to ListGroups.

Allow group XYZ to manage groups in tenancy
where all {request.permission='GROUP_INSPECT',request.operation='ListGroups'}

Cross-Tenancy Policies
Before You Begin

You can write policies to allow tenancy access from other tenancies so you can share
resources across tenancies. The administrators of both tenancies need to create special

Chapter 4
How Policies Work

4-23

policy statements that explicitly state which resources can be accessed and shared.
These special statements use the following special verbs:

Verb Use in a Policy Statement

endorse Describes what work a group in a source tenancy can perform in
other tenancies. You write the endorse statement for the tenancy
that contains the group of users who need to work with another
tenancy's resources.

admit Describes what work a group from other tenancies can perform
in a destination tenancy. You write the admit statement for the
tenancy that is granting permission to access its resources. The
admit statement identifies the group of users from the source
tenancy that requires resource access in the destination tenancy.

define Assigns an alias for a source tenancy OCID, a source group OCID,
and a destination tenancy OCID.
You define a source tenancy alias and a source group alias for use
in admit policy statements. You define a destination tenancy alias
for use in endorse policy statements.

You must include a define statement in the same policy entity as
the endorse or admit statement.

The endorse and admit statements work together. An endorse statement resides in
the source tenancy while an admit statement resides in the destination tenancy.
Without a corresponding statement that specifies access, a particular endorse or
admit statement grants no access. Both tenancies must agree on access and have
policies that allow for access.

In the source tenancy, you write define and endorse policy statements using the
following syntax:

define tenancy destination-tenancy-alias as tenancy_ocid

endorse group group-name to verb resource in tenancy destination-tenancy-alias

In the destination tenancy, you write two define policy statements and an admit policy
statement using the following syntax:

define tenancy source-tenancy-alias as tenancy_ocid

define group source-group-alias as group_ocid

admit group source-group-alias of tenancy source-tenancy-alias to verb resource
in compartment/tenancy

For more information and examples of common statements, see "Writing Policies to
Access Resources Across Tenancies" in the Identity and Access Management in the
Oracle Private Cloud Appliance User Guide.

Policy Reference
Use this section as a source of information to help you write policies for access control
in your tenancy. The table provides reference information as follows:

• It lists all resource types for which policy statements can be written.

Chapter 4
How Policies Work

4-24

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-identity.html

• For each resource type, it lists the API operations that can be allowed or denied through
policy statements.

• For each API operation, it lists the required permissions and the associated verb/
resource combination to be used in policy statements.

Note:

For some API operations the table displays no permission or verb/resource
combination. These empty cells indicate that either no explicit permission is
required for the operation, or the operation is dependent on other API operations
and the permissions associated with those.

The IAM service is only aware of permissions directly associated with an API
operation; it is not aware of further permission dependencies or conditions defined
by other services for their specific resources.

The table may contain resource types and API operations that are not yet supported
by the services available in your tenancy. Those rows can be ignored.

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

users CreateUser USER_CREATE manage users

CreateOrResetU
IPassword

USER_UIPASS_SET manage users

GetUser USER_INSPECT inspect users

ListUsers USER_INSPECT inspect users

ListApiKeys USER_READ read users

UpdateUser USER_UPDATE use users

UpdateUserStat
e

USER_UNBLOCK manage users

UploadApiKey USER_APIKEY_ADD manage users

DeleteUser USER_DELETE manage users

DeleteApiKey USER_APIKEY_REMOVE manage users

AddUserToGrou
p

USER_UPDATE use users

RemoveUserFro
mGroup

USER_UPDATE use users

GetUserGroupM
embership

USER_INSPECT inspect users

ListUserGroup
Memberships

USER_INSPECT inspect users

groups CreateGroup GROUP_CREATE manage groups

GetGroup GROUP_INSPECT inspect groups

ListGroups GROUP_INSPECT inspect groups

UpdateGroup GROUP_UPDATE use groups

DeleteGroup GROUP_DELETE manage groups

Chapter 4
How Policies Work

4-25

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

AddUserToGrou
p

GROUP_UPDATE use groups

RemoveUserFro
mGroup

GROUP_UPDATE use groups

GetUserGroupM
embership

GROUP_INSPECT inspect groups

ListUserGroup
Memberships

GROUP_INSPECT inspect groups

ListIdpGroupM
appings

GROUP_INSPECT inspect groups

CreateIdpGroup
Mapping

GROUP_UPDATE use groups

GetIdpGroupMa
pping

GROUP_INSPECT inspect groups

UpdateIdpGrou
pMapping

GROUP_UPDATE use groups

DeleteIdpGroup
Mapping

GROUP_UPDATE use groups

compartm
ents

ListCompartme
nts

COMPARTMENT_INSPECT inspect compartments

GetCompartme
nt

COMPARTMENT_INSPECT inspect compartments

ListAvailability
Domains

COMPARTMENT_INSPECT inspect compartments

ListFaultDomai
ns

COMPARTMENT_INSPECT inspect compartments

UpdateCompart
ment

COMPARTMENT_UPDATE use compartments

CreateCompart
ment

COMPARTMENT_CREATE manage compartments

DeleteCompart
ment

COMPARTMENT_DELETE manage compartments

RecoverCompar
tment

COMPARTMENT_RECOVER manage compartments

MoveCompartm
ent

MANAGE_ALL_RESOURCES manage all-resources

policies ListPolicies POLICY_READ inspect policies

GetPolicy POLICY_READ inspect policies

UpdatePolicy POLICY_UPDATE manage policies

CreatePolicy POLICY_CREATE manage policies

DeletePolicy POLICY_DELETE manage policies

tag-
defaults

ListTagDefaults TAG_DEFAULT_INSPECT inspect tag-defaults

GetTagDefault TAG_DEFAULT_INSPECT inspect tag-defaults

AssembleEffecti
veTagSet

TAG_DEFAULT_INSPECT inspect tag-defaults

Chapter 4
How Policies Work

4-26

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

CreateTagDefau
lt

TAG_DEFAULT_CREATE manage tag-defaults

UpdateTagDefa
ult

TAG_DEFAULT_UPDATE manage tag-defaults

DeleteTagDefau
lt

TAG_DEFAULT_DELETE manage tag-defaults

tag-
namespac
es

ListTagNamesp
aces

TAG_NAMESPACE_INSPECT inspect tag-namespaces

GetTagNamespa
ce

TAG_NAMESPACE_INSPECT inspect tag-namespaces

ListTags TAG_NAMESPACE_INSPECT inspect tag-namespaces

ListCostTrackin
gTags

TAG_NAMESPACE_INSPECT inspect tag-namespaces

GetTag TAG_NAMESPACE_INSPECT inspect tag-namespaces

GetTaggingWor
kRequest

TAG_NAMESPACE_INSPECT inspect tag-namespaces

ListTaggingWor
kRequests

TAG_NAMESPACE_INSPECT inspect tag-namespaces

ListTaggingWor
kRequestErrors

TAG_NAMESPACE_INSPECT inspect tag-namespaces

ListTaggingWor
kRequestLog

TAG_NAMESPACE_INSPECT inspect tag-namespaces

CreateTag TAG_NAMESPACE_USE use tag-namespaces

UpdateTag TAG_NAMESPACE_USE use tag-namespaces

UpdateTagNam
espace

TAG_NAMESPACE_UPDATE manage tag-namespaces

CreateTagName
space

TAG_NAMESPACE_CREATE manage tag-namespaces

ChangeTagNam
espaceCompart
ment

TAG_NAMESPACE_MOVE manage tag-namespaces

DeleteTagName
space

TAG_NAMESPACE_DELETE manage tag-namespaces

DeleteTag TAG_NAMESPACE_DELETE manage tag-namespaces

tenancies ListRegionSubs
criptions

TENANCY_INSPECT inspect tenancies

GetTenancy TENANCY_INSPECT inspect tenancies

ListRegions TENANCY_INSPECT inspect tenancies

CreateRegionSu
bscription

TENANCY_UPDATE use tenancies

identity-
providers

ListIdentityPro
viders

IDENTITY_PROVIDER_INSPECT inspect identity-providers

GetIdentityProv
ider

IDENTITY_PROVIDER_INSPECT inspect identity-providers

Chapter 4
How Policies Work

4-27

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

UpdateIdentity
Provider

IDENTITY_PROVIDER_UPDATE manage identity-providers

CreateIdentityP
rovider

IDENTITY_PROVIDER_CREATE manage identity-providers

DeleteIdentityP
rovider

IDENTITY_PROVIDER_DELETE manage identity-providers

ListIdpGroupM
appings

IDENTITY_PROVIDER_INSPECT inspect identity-providers

CreateIdpGroup
Mapping

IDENTITY_PROVIDER_UPDATE manage identity-providers

GetIdpGroupMa
pping

IDENTITY_PROVIDER_INSPECT inspect identity-providers

UpdateIdpGrou
pMapping

IDENTITY_PROVIDER_UPDATE manage identity-providers

DeleteIdpGroup
Mapping

IDENTITY_PROVIDER_UPDATE manage identity-providers

work-
requests

ListWorkReque
sts

WORKREQUEST_INSPECT inspect work-requests

GetWorkReques
t

WORKREQUEST_INSPECT inspect work-requests

ListWorkReque
stErrors

WORKREQUEST_INSPECT inspect work-requests

ListWorkReque
stLogs

WORKREQUEST_INSPECT inspect work-requests

instances ListInstances INSTANCE_READ read instances

GetInstance INSTANCE_READ read instances

UpdateInstance INSTANCE_UPDATE use instances

InstanceAction INSTANCE_POWER_ACTIONS use instances

AttachVolume INSTANCE_ATTACH_VOLUME use instances

DetachVolume INSTANCE_DETACH_VOLUME use instances

ChangeInstance
Compartment

INSTANCE_MOVE manage instances

LaunchInstance INSTANCE_CREATE manage instances

TerminateInsta
nce

INSTANCE_DELETE manage instances

AttachVnic INSTANCE_ATTACH_SECONDARY_VN
IC

manage instances

DetachVnic INSTANCE_DETACH_SECONDARY_VN
IC

manage instances

ListVnicAttach
ments

INSTANCE_INSPECT inspect instances

ListShapes INSTANCE_INSPECT inspect instances

CreateImage INSTANCE_CREATE_IMAGE use instances

Chapter 4
How Policies Work

4-28

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

ListInstanceCon
soleConnection
s

INSTANCE_INSPECT inspect instances

INSTANCE_READ read instances

GetInstanceCon
soleConnection

INSTANCE_READ read instances

CreateInstance
ConsoleConnect
ion

INSTANCE_READ read instances

ListVolumeAtta
chments

INSTANCE_INSPECT inspect instances

ListBootVolume
Attachments

INSTANCE_INSPECT inspect instances

GetVolumeAttac
hment

INSTANCE_INSPECT inspect instances

GetBootVolume
Attachment

INSTANCE_INSPECT inspect instances

CreateInstance
Pool

INSTANCE_CREATE manage instances

TerminateInsta
ncePool

INSTANCE_DELETE manage instances

ListConsoleHist
ories

INSTANCE_INSPECT inspect instances

CreateInstance
Configuration

INSTANCE_READ read instances

console-
histories

ListConsoleHist
ories

CONSOLE_HISTORY_INSPECT inspect console-histories

GetConsoleHist
ory

CONSOLE_HISTORY_INSPECT inspect console-histories

ShowConsoleHi
storyData

CONSOLE_HISTORY_READ read console-histories

DeleteConsoleH
istory

CONSOLE_HISTORY_DELETE manage console-histories

CaptureConsole
History

CONSOLE_HISTORY_CREATE manage console-histories

instance-
console-
connectio
n

ListInstanceCon
soleConnection
s

INSTANCE_CONSOLE_CONNECTION_
INSPECT

inspect instance-console-
connection

GetInstanceCon
soleConnection

INSTANCE_CONSOLE_CONNECTION_
READ

read instance-console-
connection

DeleteInstanceC
onsoleConnecti
on

INSTANCE_CONSOLE_CONNECTION_
DELETE

manage instance-console-
connection

CreateInstance
ConsoleConnect
ion

INSTANCE_CONSOLE_CONNECTION_
CREATE

manage instance-console-
connection

UpdateInstance
ConsoleConnect
ion

INSTANCE_CONSOLE_CONNECTION_
CREATE

manage instance-console-
connection

Chapter 4
How Policies Work

4-29

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

INSTANCE_CONSOLE_CONNECTION_
DELETE

manage instance-console-
connection

instance-
images

ListImages INSTANCE_IMAGE_READ read instance-images

GetImage INSTANCE_IMAGE_READ read instance-images

LaunchInstance INSTANCE_IMAGE_READ read instance-images

UpdateImage INSTANCE_IMAGE_UPDATE use instance-images

DeleteImage INSTANCE_IMAGE_DELETE manage instance-images

ChangeImageCo
mpartment

INSTANCE_IMAGE_MOVE manage instance-images

CreateImage INSTANCE_IMAGE_CREATE manage instance-images

CreateInstance
Pool

INSTANCE_IMAGE_READ read instance-images

ExportImage

app-
catalog-
listing

ListAppCatalog
Subscriptions

APP_CATALOG_LISTING_INSPECT inspect app-catalog-listing

CreateAppCatal
ogSubscription

APP_CATALOG_LISTING_SUBSCRIBE manage app-catalog-listing

DeleteAppCatal
ogSubscription

APP_CATALOG_LISTING_SUBSCRIBE manage app-catalog-listing

volume-
attachme
nts-partial

AttachVolume VOLUME_ATTACHMENT_CREATE manage volume-
attachments-partial

DetachVolume VOLUME_ATTACHMENT_DELETE manage volume-
attachments-partial

instance-
configurat
ions

ListInstanceConf
igurations

INSTANCE_CONFIGURATION_INSPEC
T

inspect instance-
configurations

GetInstanceConf
iguration

INSTANCE_CONFIGURATION_READ read instance-
configurations

CreateInstance
Configuration

INSTANCE_CONFIGURATION_CREAT
E

manage instance-
configurations

UpdateInstance
Configuration

INSTANCE_CONFIGURATION_UPDAT
E

manage instance-
configurations

LaunchInstance
Configuration

INSTANCE_CONFIGURATION_LAUNC
H

manage instance-
configurations

DeleteInstanceC
onfiguration

INSTANCE_CONFIGURATION_DELET
E

manage instance-
configurations

ChangeInstance
ConfigurationC
ompartment

INSTANCE_CONFIGURATION_MOVE manage instance-
configurations

instance-
pools

ListInstancePoo
ls

INSTANCE_POOL_INSPECT inspect instance-pools

GetInstancePool INSTANCE_POOL_READ read instance-pools

ListInstancePoo
lInstances

INSTANCE_POOL_READ read instance-pools

ResetInstanceP
ool

INSTANCE_POOL_POWER_ACTIONS use instance-pools

Chapter 4
How Policies Work

4-30

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

SoftresetInstanc
ePool

INSTANCE_POOL_POWER_ACTIONS use instance-pools

StartInstancePo
ol

INSTANCE_POOL_POWER_ACTIONS use instance-pools

StopInstancePo
ol

INSTANCE_POOL_POWER_ACTIONS use instance-pools

UpdateInstance
Pool

INSTANCE_POOL_UPDATE manage instance-pools

ChangeInstance
PoolCompartme
nt

INSTANCE_POOL_MOVE manage instance-pools

CreateInstance
Pool

INSTANCE_POOL_CREATE manage instance-pools

TerminateInsta
ncePool

INSTANCE_POOL_DELETE manage instance-pools

auto-
scaling-
configurat
ions

ListAutoScaling
Configurations

AUTO_SCALING_CONFIGURATION_I
NSPECT

inspect auto-scaling-
configurations

ListAutoScaling
Policies

AUTO_SCALING_CONFIGURATION_I
NSPECT

inspect auto-scaling-
configurations

GetAutoScaling
Configuration

AUTO_SCALING_CONFIGURATION_R
EAD

read auto-scaling-
configurations

GetAutoScaling
Policy

AUTO_SCALING_CONFIGURATION_R
EAD

read auto-scaling-
configurations

ChangeAutoScal
ingConfiguratio
nCompartment

AUTO_SCALING_CONFIGURATION_M
OVE

manage auto-scaling-
configurations

CreateAutoScali
ngConfiguratio
n

AUTO_SCALING_CONFIGURATION_C
REATE

manage auto-scaling-
configurations

UpdateAutoScal
ingConfiguratio
n

AUTO_SCALING_CONFIGURATION_U
PDATE

manage auto-scaling-
configurations

DeleteAutoScali
ngConfiguratio
n

AUTO_SCALING_CONFIGURATION_D
ELETE

manage auto-scaling-
configurations

CreateAutoScali
ngPolicy

AUTO_SCALING_CONFIGURATION_C
REATE

manage auto-scaling-
configurations

UpdateAutoScal
ingPolicy

AUTO_SCALING_CONFIGURATION_U
PDATE

manage auto-scaling-
configurations

DeleteAutoScali
ngPolicy

AUTO_SCALING_CONFIGURATION_D
ELETE

manage auto-scaling-
configurations

dedicated-
vm-hosts

ListDedicatedV
mHosts

DEDICATED_VM_HOST_INSPECT inspect dedicated-vm-hosts

GetDedicatedV
mHost

DEDICATED_VM_HOST_READ read dedicated-vm-hosts

ListDedicatedV
mHostInstances

DEDICATED_VM_HOST_READ read dedicated-vm-hosts

Chapter 4
How Policies Work

4-31

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

UpdateDedicate
dVmHost

DEDICATED_VM_HOST_UPDATE use dedicated-vm-hosts

CreateDedicate
dVmHost

DEDICATED_VM_HOST_CREATE manage dedicated-vm-
hosts

DeleteDedicate
dVmHost

DEDICATED_VM_HOST_DELETE manage dedicated-vm-
hosts

ChangeDedicate
dVmHostCompa
rtment

DEDICATED_VM_HOST_MOVE manage dedicated-vm-
hosts

vcns ListVcns VCN_READ inspect vcns

GetVcn VCN_READ inspect vcns

CreateVcn VCN_CREATE manage vcns

UpdateVcn VCN_UPDATE manage vcns

DeleteVcn VCN_DELETE manage vcns

ChangeVcnCom
partment

VCN_MOVE manage vcns

CreateDhcpOpti
ons

VCN_ATTACH manage vcns

DeleteDhcpOpti
ons

VCN_DETACH manage vcns

CreateInternetG
ateway

VCN_ATTACH manage vcns

DeleteInternetG
ateway

VCN_DETACH manage vcns

CreateLocalPee
ringGateway

VCN_ATTACH manage vcns

DeleteLocalPeer
ingGateway

VCN_DETACH manage vcns

CreateNatGate
way

VCN_READ inspect vcns

VCN_ATTACH manage vcns

DeleteNatGatew
ay

VCN_READ inspect vcns

VCN_DETACH manage vcns

CreateNetwork
SecurityGroup

VCN_ATTACH manage vcns

DeleteNetworkS
ecurityGroup

VCN_DETACH manage vcns

DeleteSubnet VCN_DETACH manage vcns

CreateSubnet VCN_ATTACH manage vcns

CreateServiceG
ateway

VCN_READ inspect vcns

VCN_ATTACH manage vcns

DeleteServiceG
ateway

VCN_READ inspect vcns

VCN_DETACH manage vcns

CreateRouteTab
le

VCN_ATTACH manage vcns

Chapter 4
How Policies Work

4-32

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

DeleteRouteTab
le

VCN_DETACH manage vcns

UpdateRouteTa
ble

VCN_ATTACH manage vcns

VCN_DETACH manage vcns

CreateDrgAttac
hment

VCN_ATTACH manage vcns

DeleteDrgAttac
hment

VCN_DETACH manage vcns

subnets ListSubnets SUBNET_READ inspect subnets

GetSubnet SUBNET_READ inspect subnets

ChangeSubnetC
ompartment

SUBNET_MOVE manage subnets

CreateSubnet SUBNET_CREATE manage subnets

DeleteSubnet SUBNET_DELETE manage subnets

UpdateSubnet SUBNET_UPDATE manage subnets

LaunchInstance SUBNET_ATTACH use subnets

TerminateInsta
nce

SUBNET_DETACH use subnets

AttachVnic SUBNET_ATTACH use subnets

DetachVnic SUBNET_DETACH use subnets

CreateInstance
Pool

SUBNET_ATTACH use subnets

TerminateInsta
ncePool

SUBNET_DETACH use subnets

CreatePrivateIp SUBNET_ATTACH use subnets

CreateMountTa
rget

SUBNET_ATTACH use subnets

DeleteMountTa
rget

SUBNET_DETACH use subnets

route-
tables

ListRouteTables ROUTE_TABLE_READ inspect route-tables

GetRouteTable ROUTE_TABLE_READ inspect route-tables

ChangeRouteTa
bleCompartmen
t

ROUTE_TABLE_MOVE manage route-tables

CreateRouteTab
le

ROUTE_TABLE_CREATE manage route-tables

DeleteRouteTab
le

ROUTE_TABLE_DELETE manage route-tables

UpdateRouteTa
ble

ROUTE_TABLE_UPDATE manage route-tables

CreateDrgAttac
hment

ROUTE_TABLE_ATTACH manage route-tables

UpdateDrgAttac
hment

ROUTE_TABLE_ATTACH manage route-tables

Chapter 4
How Policies Work

4-33

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

CreateLocalPee
ringGateway

ROUTE_TABLE_ATTACH manage route-tables

UpdateLocalPee
ringGateway

ROUTE_TABLE_ATTACH manage route-tables

DeleteSubnet ROUTE_TABLE_DETACH manage route-tables

CreateSubnet ROUTE_TABLE_ATTACH manage route-tables

UpdateSubnet ROUTE_TABLE_ATTACH manage route-tables

ROUTE_TABLE_DETACH manage route-tables

CreateServiceG
ateway

ROUTE_TABLE_ATTACH manage route-tables

UpdateServiceG
ateway

ROUTE_TABLE_ATTACH manage route-tables

network-
security-
groups

CreateNetwork
SecurityGroup

NETWORK_SECURITY_GROUP_CREAT
E

manage network-security-
groups

GetNetworkSec
urityGroup

NETWORK_SECURITY_GROUP_INSPE
CT

inspect network-security-
groups

ListNetworkSec
urityGroups

NETWORK_SECURITY_GROUP_INSPE
CT

inspect network-security-
groups

UpdateNetwork
SecurityGroup

NETWORK_SECURITY_GROUP_UPDA
TE

manage network-security-
groups

DeleteNetworkS
ecurityGroup

NETWORK_SECURITY_GROUP_DELE
TE

manage network-security-
groups

ListNetworkSec
urityGroupVnic
s

NETWORK_SECURITY_GROUP_LIST_
MEMBERS

use network-security-
groups

ChangeNetwork
SecurityGroupC
ompartment

NETWORK_SECURITY_GROUP_MOVE manage network-security-
groups

ListNetworkSec
urityGroupSecu
rityRules

NETWORK_SECURITY_GROUP_LIST_S
ECURITY_RULES

use network-security-
groups

AddNetworkSec
urityGroupSecu
rityRules

NETWORK_SECURITY_GROUP_UPDA
TE_SECURITY_RULES

manage network-security-
groups

UpdateNetwork
SecurityGroupS
ecurityRules

NETWORK_SECURITY_GROUP_UPDA
TE_SECURITY_RULES

manage network-security-
groups

RemoveNetwor
kSecurityGroup
SecurityRules

NETWORK_SECURITY_GROUP_UPDA
TE_SECURITY_RULES

manage network-security-
groups

LaunchInstance NETWORK_SECURITY_GROUP_UPDA
TE_MEMBERS

use network-security-
groups

AttachVnic NETWORK_SECURITY_GROUP_UPDA
TE_MEMBERS

use network-security-
groups

UpdateVnic NETWORK_SECURITY_GROUP_UPDA
TE_MEMBERS

use network-security-
groups

Chapter 4
How Policies Work

4-34

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

security-
lists

ListSecurityList
s

SECURITY_LIST_READ inspect security-lists

GetSecurityList SECURITY_LIST_READ inspect security-lists

UpdateSecurity
List

SECURITY_LIST_UPDATE manage security-lists

ChangeSecurity
ListCompartme
nt

SECURITY_LIST_MOVE manage security-lists

CreateSecurityL
ist

SECURITY_LIST_CREATE manage security-lists

DeleteSecurityL
ist

SECURITY_LIST_DELETE manage security-lists

DeleteSubnet SECURITY_LIST_DETACH manage security-lists

CreateSubnet SECURITY_LIST_ATTACH manage security-lists

UpdateSubnet SECURITY_LIST_ATTACH manage security-lists

SECURITY_LIST_DETACH manage security-lists

dhcp-
options

CreateDhcpOpti
ons

DHCP_CREATE manage dhcp-options

GetDhcpOption
s

DHCP_READ inspect dhcp-options

ListDhcpOption
s

DHCP_READ inspect dhcp-options

UpdateDhcpOpt
ions

DHCP_UPDATE manage dhcp-options

DeleteDhcpOpti
ons

DHCP_DELETE manage dhcp-options

ChangeDhcpOpt
ionsCompartme
nt

DHCP_MOVE manage dhcp-options

DeleteSubnet DHCP_DETACH manage dhcp-options

CreateSubnet DHCP_ATTACH manage dhcp-options

UpdateSubnet DHCP_ATTACH manage dhcp-options

DHCP_DETACH manage dhcp-options

private-
ips

GetPrivateIp PRIVATE_IP_READ inspect private-ips

ListPrivateIps PRIVATE_IP_READ inspect private-ips

ListPublicIps PRIVATE_IP_READ inspect private-ips

GetPublicIp PRIVATE_IP_READ inspect private-ips

GetPublicIpByP
rivateIpId

PRIVATE_IP_READ inspect private-ips

UpdatePrivateI
p

PRIVATE_IP_UPDATE use private-ips

CreatePrivateIp PRIVATE_IP_CREATE use private-ips

PRIVATE_IP_ASSIGN use private-ips

DeletePrivateIp PRIVATE_IP_DELETE use private-ips

Chapter 4
How Policies Work

4-35

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

PRIVATE_IP_UNASSIGN use private-ips

CreateRouteTab
le

PRIVATE_IP_ROUTE_TABLE_ATTACH manage private-ips

DeleteRouteTab
le

PRIVATE_IP_ROUTE_TABLE_DETACH manage private-ips

UpdateRouteTa
ble

PRIVATE_IP_ROUTE_TABLE_ATTACH manage private-ips

PRIVATE_IP_ROUTE_TABLE_DETACH manage private-ips

CreateMountTa
rget

PRIVATE_IP_CREATE use private-ips

PRIVATE_IP_ASSIGN use private-ips

DeleteMountTa
rget

PRIVATE_IP_DELETE use private-ips

PRIVATE_IP_UNASSIGN use private-ips

public-ips GetPublicIp PUBLIC_IP_READ read public-ips

ListPublicIps PUBLIC_IP_READ read public-ips

GetPublicIpByP
rivateIpId

PUBLIC_IP_READ read public-ips

GetPublicIpByI
pAddress

PUBLIC_IP_READ read public-ips

UpdatePublicIp PUBLIC_IP_UPDATE manage public-ips

CreatePublicIp PUBLIC_IP_CREATE manage public-ips

DeletePublicIp PUBLIC_IP_DELETE manage public-ips

ipv6s GetIpv6 IPV6_READ read ipv6s

ListIpv6s IPV6_READ read ipv6s

UpdateIpv6 IPV6_UPDATE manage ipv6s

CreateIpv6 IPV6_CREATE manage ipv6s

DeleteIpv6 IPV6_DELETE manage ipv6s

internet-
gateways

ListInternetGat
eways

INTERNET_GATEWAY_READ inspect internet-gateways

GetInternetGate
way

INTERNET_GATEWAY_READ inspect internet-gateways

UpdateInternet
Gateway

INTERNET_GATEWAY_UPDATE manage internet-gateways

ChangeInternet
GatewayCompa
rtment

INTERNET_GATEWAY_MOVE manage internet-gateways

CreateInternetG
ateway

INTERNET_GATEWAY_CREATE manage internet-gateways

DeleteInternetG
ateway

INTERNET_GATEWAY_DELETE manage internet-gateways

CreateRouteTab
le

INTERNET_GATEWAY_ATTACH manage internet-gateways

DeleteRouteTab
le

INTERNET_GATEWAY_DETACH manage internet-gateways

Chapter 4
How Policies Work

4-36

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

UpdateRouteTa
ble

INTERNET_GATEWAY_ATTACH manage internet-gateways

INTERNET_GATEWAY_DETACH manage internet-gateways

nat-
gateways

ListNatGateway
s

NAT_GATEWAY_READ read nat-gateways

GetNatGateway NAT_GATEWAY_READ read nat-gateways

UpdateNatGate
way

NAT_GATEWAY_UPDATE manage nat-gateways

ChangeNatGate
wayCompartme
nt

NAT_GATEWAY_MOVE manage nat-gateways

CreateNatGate
way

NAT_GATEWAY_CREATE manage nat-gateways

DeleteNatGatew
ay

NAT_GATEWAY_DELETE manage nat-gateways

CreateRouteTab
le

NAT_GATEWAY_ATTACH use nat-gateways

DeleteRouteTab
le

NAT_GATEWAY_DETACH use nat-gateways

UpdateRouteTa
ble

NAT_GATEWAY_ATTACH use nat-gateways

NAT_GATEWAY_DETACH use nat-gateways

service-
gateways

ListServiceGate
ways

SERVICE_GATEWAY_READ inspect service-gateways

GetServiceGate
way

SERVICE_GATEWAY_READ inspect service-gateways

ChangeServiceG
atewayCompart
ment

SERVICE_GATEWAY_MOVE manage service-gateways

AttachServiceId SERVICE_GATEWAY_ADD_SERVICE manage service-gateways

DetachServiceI
d

SERVICE_GATEWAY_DELETE_SERVIC
E

manage service-gateways

CreateServiceG
ateway

SERVICE_GATEWAY_CREATE manage service-gateways

UpdateServiceG
ateway

SERVICE_GATEWAY_UPDATE manage service-gateways

DeleteServiceG
ateway

SERVICE_GATEWAY_DELETE manage service-gateways

CreateRouteTab
le

SERVICE_GATEWAY_ATTACH use service-gateways

DeleteRouteTab
le

SERVICE_GATEWAY_DETACH use service-gateways

UpdateRouteTa
ble

SERVICE_GATEWAY_ATTACH use service-gateways

SERVICE_GATEWAY_DETACH use service-gateways

local-
peering-
gateways

ListLocalPeerin
gGateways

LOCAL_PEERING_GATEWAY_READ inspect local-peering-
gateways

Chapter 4
How Policies Work

4-37

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

GetLocalPeerin
gGateway

LOCAL_PEERING_GATEWAY_READ inspect local-peering-
gateways

CreateLocalPee
ringGateway

LOCAL_PEERING_GATEWAY_CREATE manage local-peering-
gateways

UpdateLocalPee
ringGateway

LOCAL_PEERING_GATEWAY_UPDATE manage local-peering-
gateways

DeleteLocalPeer
ingGateway

LOCAL_PEERING_GATEWAY_DELETE manage local-peering-
gateways

ChangeLocalPe
eringGatewayC
ompartment

LOCAL_PEERING_GATEWAY_MOVE manage local-peering-
gateways

CreateRouteTab
le

LOCAL_PEERING_GATEWAY_ATTACH manage local-peering-
gateways

DeleteRouteTab
le

LOCAL_PEERING_GATEWAY_DETAC
H

manage local-peering-
gateways

UpdateRouteTa
ble

LOCAL_PEERING_GATEWAY_ATTACH manage local-peering-
gateways

LOCAL_PEERING_GATEWAY_DETAC
H

manage local-peering-
gateways

local-
peering-
from

ConnectLocalPe
eringGateways

LOCAL_PEERING_GATEWAY_CONNE
CT_FROM

manage local-peering-from

local-
peering-to

ConnectLocalPe
eringGateways

LOCAL_PEERING_GATEWAY_CONNE
CT_TO

manage local-peering-to

remote-
peering-
connectio
ns

ListRemotePeer
ingConnections

REMOTE_PEERING_CONNECTION_RE
AD

inspect remote-peering-
connections

GetRemotePeeri
ngConnection

REMOTE_PEERING_CONNECTION_RE
AD

inspect remote-peering-
connections

UpdateRemoteP
eeringConnecti
on

REMOTE_PEERING_CONNECTION_UP
DATE

manage remote-peering-
connections

CreateRemoteP
eeringConnecti
on

REMOTE_PEERING_CONNECTION_CR
EATE

manage remote-peering-
connections

DeleteRemoteP
eeringConnecti
on

REMOTE_PEERING_CONNECTION_D
ELETE

manage remote-peering-
connections

ChangeRemote
PeeringConnect
ionCompartme
nt

REMOTE_PEERING_CONNECTION_RE
SOURCE_MOVE

manage remote-peering-
connections

remote-
peering-
from

ConnectRemote
PeeringConnect
ions

REMOTE_PEERING_CONNECTION_C
ONNECT_FROM

manage remote-peering-
from

remote-
peering-to

ConnectRemote
PeeringConnect
ions

REMOTE_PEERING_CONNECTION_C
ONNECT_TO

manage remote-peering-to

drgs ListDrgs DRG_READ inspect drgs

Chapter 4
How Policies Work

4-38

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

GetDrg DRG_READ inspect drgs

CreateDrg DRG_CREATE manage drgs

UpdateDrg DRG_UPDATE manage drgs

DeleteDrg DRG_DELETE manage drgs

ChangeDrgCom
partment

DRG_MOVE manage drgs

CreateDrgAttac
hment

DRG_ATTACH manage drgs

DeleteDrgAttac
hment

DRG_DETACH manage drgs

CreateRouteTab
le

DRG_ATTACH manage drgs

DeleteRouteTab
le

DRG_DETACH manage drgs

UpdateRouteTa
ble

DRG_ATTACH manage drgs

DRG_DETACH manage drgs

drg-
attachme
nts

CreateDrgAttac
hment

DeleteDrgAttac
hment

ListDrgAttachm
ents

DRG_ATTACHMENT_READ inspect drg-attachments

GetDrgAttachm
ent

DRG_ATTACHMENT_READ inspect drg-attachments

UpdateDrgAttac
hment

DRG_ATTACHMENT_UPDATE manage drg-attachments

cpes ListCpes CPE_READ inspect cpes

GetCpe CPE_READ inspect cpes

CreateCpe CPE_CREATE manage cpes

UpdateCpe CPE_UPDATE manage cpes

DeleteCpe CPE_DELETE manage cpes

ChangeCpeCom
partment

CPE_RESOURCE_MOVE manage cpes

ipsec ListIPSecConne
ctions

IPSEC_CONNECTION_READ inspect ipsec

GetIPSecConnec
tion

IPSEC_CONNECTION_READ inspect ipsec

GetIPSecConnec
tionStatus

IPSEC_CONNECTION_READ inspect ipsec

ListIPSecConne
ctionTunnels

IPSEC_CONNECTION_READ inspect ipsec

GetIPSecConnec
tionTunnel

IPSEC_CONNECTION_READ inspect ipsec

Chapter 4
How Policies Work

4-39

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

GetTunnelCpeD
eviceConfig

IPSEC_CONNECTION_READ inspect ipsec

GetTunnelCpeD
eviceTemplateC
ontent

IPSEC_CONNECTION_READ inspect ipsec

GetCpeDeviceTe
mplateContent

IPSEC_CONNECTION_READ inspect ipsec

GetIpsecCpeDev
iceTemplateCon
tent

IPSEC_CONNECTION_READ inspect ipsec

GetIPSecConnec
tionDeviceConfi
g

IPSEC_CONNECTION_DEVICE_CONFI
G_READ

read ipsec

GetIPSecConnec
tionTunnelShar
edSecret

IPSEC_CONNECTION_DEVICE_CONFI
G_READ

read ipsec

UpdateIPSecCo
nnection

IPSEC_CONNECTION_UPDATE manage ipsec

UpdateTunnelC
peDeviceConfig

IPSEC_CONNECTION_UPDATE manage ipsec

UpdateIPSecCo
nnectionTunnel

IPSEC_CONNECTION_UPDATE manage ipsec

CreateIPSecCon
nection

IPSEC_CONNECTION_CREATE manage ipsec

DeleteIPSecCon
nection

IPSEC_CONNECTION_DELETE manage ipsec

cross-
connects

ListCrossConne
cts

CROSS_CONNECT_READ inspect cross-connects

GetCrossConnec
t

CROSS_CONNECT_READ inspect cross-connects

UpdateCrossCo
nnect

CROSS_CONNECT_UPDATE manage cross-connects

CreateCrossCon
nect

CROSS_CONNECT_CREATE manage cross-connects

DeleteCrossCon
nect

CROSS_CONNECT_DELETE manage cross-connects

ChangeCrossCo
nnectCompart
ment

CROSS_CONNECT_RESOURCE_MOVE manage cross-connects

cross-
connect-
groups

ListCrossConne
ctGroups

CROSS_CONNECT_GROUP_READ inspect cross-connect-
groups

GetCrossConnec
tGroup

CROSS_CONNECT_GROUP_READ inspect cross-connect-
groups

UpdateCrossCo
nnectGroup

CROSS_CONNECT_GROUP_UPDATE manage cross-connect-
groups

CreateCrossCon
nectGroup

CROSS_CONNECT_GROUP_CREATE manage cross-connect-
groups

Chapter 4
How Policies Work

4-40

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

DeleteCrossCon
nectGroup

CROSS_CONNECT_GROUP_DELETE manage cross-connect-
groups

ChangeCrossCo
nnectGroupCo
mpartment

CROSS_CONNECT_GROUP_RESOURCE
_MOVE

manage cross-connect-
groups

virtual-
circuits

ListVirtualCircu
its

VIRTUAL_CIRCUIT_READ inspect virtual-circuits

GetVirtualCircu
it

VIRTUAL_CIRCUIT_READ inspect virtual-circuits

ChangeVirtualC
ircuitCompartm
ent

VIRTUAL_CIRCUIT_RESOURCE_MOVE manage virtual-circuits

CreateVirtualCi
rcuit

VIRTUAL_CIRCUIT_CREATE manage virtual-circuits

DeleteVirtualCi
rcuit

VIRTUAL_CIRCUIT_DELETE manage virtual-circuits

vnics GetVnic VNIC_READ inspect vnics

AttachVnic VNIC_ATTACH use vnics

VNIC_CREATE use vnics

UpdateVnic VNIC_UPDATE use vnics

DetachVnic VNIC_DETACH use vnics

VNIC_DELETE use vnics

LaunchInstance VNIC_ATTACH use vnics

VNIC_CREATE use vnics

TerminateInsta
nce

VNIC_DELETE use vnics

CreateInstance
Pool

VNIC_CREATE use vnics

TerminateInsta
ncePool

VNIC_DELETE use vnics

CreateInstance
Configuration

VNIC_READ inspect vnics

CreatePrivateIp VNIC_ASSIGN use vnics

CreateMountTa
rget

VNIC_ASSIGN use vnics

VNIC_CREATE use vnics

VNIC_ATTACH use vnics

DeleteMountTa
rget

VNIC_UNASSIGN use vnics

VNIC_DELETE use vnics

VNIC_DETACH use vnics

vnic-
attachme
nts

GetVnicAttach
ment

VNIC_ATTACHMENT_READ inspect vnic-attachments

ListVnicAttach
ments

VNIC_ATTACHMENT_READ inspect vnic-attachments

Chapter 4
How Policies Work

4-41

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

TerminateInsta
nce

CreateInstance
Configuration

VNIC_ATTACHMENT_READ inspect vnic-attachments

cluster-
networks

ListClusterNetw
orks

CLUSTER_NETWORK_INSPECT inspect cluster-networks

GetClusterNetw
ork

CLUSTER_NETWORK_READ read cluster-networks

ListClusterNetw
orkInstances

CLUSTER_NETWORK_READ read cluster-networks

UpdateClusterN
etwork

CLUSTER_NETWORK_UPDATE manage cluster-networks

ChangeClusterN
etworkCompart
ment

CLUSTER_NETWORK_MOVE manage cluster-networks

CreateClusterN
etwork

CLUSTER_NETWORK_CREATE manage cluster-networks

TerminateClust
erNetwork

CLUSTER_NETWORK_DELETE manage cluster-networks

dns-zones ListZones DNS_ZONE_INSPECT inspect dns-zones

CreateZone DNS_ZONE_CREATE manage dns-zones

CreateChildZon
e

DNS_ZONE_CREATE manage dns-zones

InspectParentZ
one

DNS_ZONE_INSPECT inspect dns-zones

DeleteZone DNS_ZONE_DELETE manage dns-zones

GetZone DNS_ZONE_READ read dns-zones

UpdateZone DNS_ZONE_UPDATE use dns-zones

ChangeZoneCo
mpartment

DNS_ZONE_MOVE manage dns-zones

CreateSteeringP
olicyAttachmen
t

DNS_ZONE_UPDATE use dns-zones

UpdateSteering
PolicyAttachme
nt

DNS_ZONE_UPDATE use dns-zones

DeleteSteeringP
olicyAttachmen
t

DNS_ZONE_UPDATE use dns-zones

GetZoneRecord
s

DNS_ZONE_READ read dns-zones

PatchZoneReco
rds

DNS_ZONE_UPDATE use dns-zones

UpdateZoneRec
ords

DNS_ZONE_UPDATE use dns-zones

Chapter 4
How Policies Work

4-42

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

dns-
records

GetZoneRecord
s

DNS_RECORD_READ read dns-records

PatchZoneReco
rds

DNS_RECORD_UPDATE use dns-records

UpdateZoneRec
ords

DNS_RECORD_UPDATE use dns-records

GetDomainReco
rds

DNS_RECORD_READ read dns-records

DeleteDomainR
ecords

DNS_RECORD_DELETE manage dns-records

PatchDomainRe
cords

DNS_RECORD_UPDATE use dns-records

UpdateDomain
Records

DNS_RECORD_UPDATE use dns-records

DeleteRRSet DNS_RECORD_UPDATE use dns-records

GetRRSet DNS_RECORD_READ read dns-records

PatchRRSet DNS_RECORD_UPDATE use dns-records

UpdateRRSet DNS_RECORD_UPDATE use dns-records

dns-
steering-
policies

ListSteeringPoli
cies

DNS_STEERING_POLICY_INSPECT inspect dns-steering-
policies

CreateSteeringP
olicy

DNS_STEERING_POLICY_CREATE manage dns-steering-
policies

GetSteeringPoli
cy

DNS_STEERING_POLICY_READ read dns-steering-policies

UpdateSteering
Policy

DNS_STEERING_POLICY_UPDATE use dns-steering-policies

DeleteSteeringP
olicy

DNS_STEERING_POLICY_DELETE manage dns-steering-
policies

ChangeSteering
PolicyCompart
ment

DNS_STEERING_POLICY_MOVE manage dns-steering-
policies

CreateSteeringP
olicyAttachmen
t

DNS_STEERING_POLICY_READ read dns-steering-policies

UpdateSteering
PolicyAttachme
nt

DNS_STEERING_POLICY_READ read dns-steering-policies

DeleteSteeringP
olicyAttachmen
t

DNS_STEERING_POLICY_READ read dns-steering-policies

dns-
steering-
policy-
attachme
nts

ListSteeringPoli
cyAttachments

DNS_STEERING_ATTACHMENT_INSP
ECT

inspect dns-steering-policy-
attachments

CreateSteeringP
olicyAttachmen
t

Chapter 4
How Policies Work

4-43

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

GetSteeringPoli
cyAttachment

DNS_STEERING_ATTACHMENT_READ read dns-steering-policy-
attachments

UpdateSteering
PolicyAttachme
nt

DeleteSteeringP
olicyAttachmen
t

dns-tsig-
keys

ListTsigKeys DNS_TSIG_KEY_INSPECT inspect dns-tsig-keys

CreateTsigKey DNS_TSIG_KEY_CREATE manage dns-tsig-keys

GetTsigKey DNS_TSIG_KEY_READ read dns-tsig-keys

UpdateTsigKey DNS_TSIG_KEY_UPDATE use dns-tsig-keys

DeleteTsigKey DNS_TSIG_KEY_DELETE manage dns-tsig-keys

ChangeTsigKey
Compartment

DNS_TSIG_KEY_MOVE manage dns-tsig-keys

dns-views ListViews DNS_VIEW_INSPECT inspect dns-views

CreateView DNS_VIEW_CREATE manage dns-views

GetView DNS_VIEW_READ read dns-views

UpdateView DNS_VIEW_UPDATE use dns-views

DeleteView DNS_VIEW_DELETE manage dns-views

ChangeViewCo
mpartment

DNS_VIEW_MOVE manage dns-views

dns-
resolvers

ListResolvers DNS_RESOLVER_INSPECT inspect dns-resolvers

GetResolver DNS_RESOLVER_READ read dns-resolvers

UpdateResolver DNS_RESOLVER_UPDATE use dns-resolvers

ChangeResolver
Compartment

DNS_RESOLVER_MOVE manage dns-resolvers

dns-
resolver-
endpoint

ListResolverEn
dpoints

DNS_RESOLVER_ENDPOINT_INSPECT inspect dns-resolver-
endpoint

CreateResolver
Endpoint

DNS_RESOLVER_ENDPOINT_CREATE manage dns-resolver-
endpoint

GetResolverEnd
point

DNS_RESOLVER_ENDPOINT_READ read dns-resolver-endpoint

UpdateResolver
Endpoint

DNS_RESOLVER_ENDPOINT_UPDATE use dns-resolver-endpoint

DeleteResolver
Endpoint

DNS_RESOLVER_ENDPOINT_DELETE manage dns-resolver-
endpoint

objectstor
age-
namespac
es

GetNamespace

GetNamespace
Metadata

OBJECTSTORAGE_NAMESPACE_READ read objectstorage-
namespaces

UpdateNamesp
aceMetadata

OBJECTSTORAGE_NAMESPACE_UPDA
TE

manage objectstorage-
namespaces

buckets HeadBucket BUCKET_INSPECT inspect buckets

ListBuckets BUCKET_INSPECT inspect buckets

Chapter 4
How Policies Work

4-44

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

GetBucket BUCKET_READ read buckets

ListMultipartUp
loads

BUCKET_READ read buckets

GetObjectLifecy
clePolicy

BUCKET_READ read buckets

GetRetentionRu
le

BUCKET_READ read buckets

ListRetentionRu
les

BUCKET_READ read buckets

GetReplicationP
olicy

BUCKET_READ read buckets

ListReplication
Policies

BUCKET_READ read buckets

ListReplicationS
ources

BUCKET_READ read buckets

UpdateBucket BUCKET_UPDATE use buckets

DeleteObjectLif
ecyclePolicy

BUCKET_UPDATE use buckets

ReencryptBuck
et

BUCKET_UPDATE use buckets

CreateBucket BUCKET_CREATE manage buckets

DeleteBucket BUCKET_DELETE manage buckets

CreatePar PAR_MANAGE manage buckets

GetPar PAR_MANAGE manage buckets

ListPars PAR_MANAGE manage buckets

DeletePar PAR_MANAGE manage buckets

CreateRetention
Rule

RETENTION_RULE_LOCK manage buckets

UpdateRetentio
nRule

RETENTION_RULE_LOCK manage buckets

DeleteRetention
Rule

RETENTION_RULE_LOCK manage buckets

MakeBucketWri
table

BUCKET_READ read buckets

BUCKET_UPDATE use buckets

CreateReplicati
onPolicy

BUCKET_READ read buckets

BUCKET_UPDATE use buckets

DeleteReplicati
onPolicy

BUCKET_READ read buckets

BUCKET_UPDATE use buckets

PutObjectLifecy
clePolicy

BUCKET_UPDATE use buckets

objects HeadObject OBJECT_INSPECT inspect objects

ListObjects OBJECT_INSPECT inspect objects

Chapter 4
How Policies Work

4-45

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

ListMultipartUp
loadParts

OBJECT_INSPECT inspect objects

CreateObject OBJECT_CREATE manage objects

GetObject OBJECT_READ read objects

ReencryptObjec
t

OBJECT_OVERWRITE use objects

RenameObject OBJECT_CREATE manage objects

OBJECT_OVERWRITE use objects

RestoreObject OBJECT_RESTORE manage objects

DeleteObject OBJECT_DELETE manage objects

DeleteObjectVer
sion

OBJECT_VERSION_DELETE manage objects

CreateMultipart
Upload

OBJECT_CREATE manage objects

OBJECT_OVERWRITE use objects

UploadPart OBJECT_CREATE manage objects

OBJECT_OVERWRITE use objects

CommitMultipa
rtUpload

OBJECT_CREATE manage objects

OBJECT_OVERWRITE use objects

AbortMultipart
Upload

OBJECT_DELETE manage objects

PutObject OBJECT_CREATE manage objects

('PutObject',
'overwrite')

OBJECT_OVERWRITE use objects

CreateCopyReq
uest

OBJECT_READ read objects

OBJECT_CREATE manage objects

OBJECT_OVERWRITE use objects

OBJECT_INSPECT inspect objects

CopyObject OBJECT_READ read objects

OBJECT_CREATE manage objects

OBJECT_OVERWRITE use objects

OBJECT_INSPECT inspect objects

export-
sets

CreateExport EXPORT_SET_UPDATE manage export-sets

GetExport EXPORT_SET_READ read export-sets

ListExports EXPORT_SET_READ read export-sets

UpdateExport EXPORT_SET_UPDATE manage export-sets

DeleteExport EXPORT_SET_UPDATE manage export-sets

CreateExportSet EXPORT_SET_CREATE manage export-sets

GetExportSet EXPORT_SET_READ read export-sets

ListExportSets EXPORT_SET_INSPECT inspect export-sets

UpdateExportSe
t

EXPORT_SET_UPDATE manage export-sets

Chapter 4
How Policies Work

4-46

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

DeleteExportSet EXPORT_SET_DELETE manage export-sets

file-
systems

ListFileSystems FILE_SYSTEM_INSPECT inspect file-systems

GetFileSystem FILE_SYSTEM_READ read file-systems

CreateFileSyste
m

FILE_SYSTEM_CREATE manage file-systems

UpdateFileSyste
m

FILE_SYSTEM_UPDATE manage file-systems

DeleteFileSyste
m

FILE_SYSTEM_DELETE manage file-systems

ChangeFileSyste
mCompartment

FILE_SYSTEM_MOVE manage file-systems

CreateSnapshot FILE_SYSTEM_CREATE_SNAPSHOT manage file-systems

DeleteSnapshot FILE_SYSTEM_DELETE_SNAPSHOT manage file-systems

GetSnapshot FILE_SYSTEM_READ read file-systems

ListSnapshots FILE_SYSTEM_READ read file-systems

UpdateSnapsho
t

FILE_SYSTEM_UPDATE manage file-systems

mount-
targets

ListMountTarge
ts

MOUNT_TARGET_INSPECT inspect mount-targets

GetMountTarge
t

MOUNT_TARGET_READ read mount-targets

UpdateMountTa
rget

MOUNT_TARGET_UPDATE manage mount-targets

ChangeMountT
argetCompartm
ent

MOUNT_TARGET_MOVE manage mount-targets

CreateMountTa
rget

MOUNT_TARGET_CREATE manage mount-targets

DeleteMountTa
rget

MOUNT_TARGET_DELETE manage mount-targets

volumes ListVolumes VOLUME_INSPECT inspect volumes

GetVolume VOLUME_INSPECT inspect volumes

UpdateVolume VOLUME_UPDATE use volumes

GetBootVolume VOLUME_INSPECT inspect volumes

ListBootVolume
s

VOLUME_INSPECT inspect volumes

UpdateBootVolu
me

VOLUME_UPDATE use volumes

DeleteBootVolu
me

VOLUME_DELETE manage volumes

CreateVolume VOLUME_CREATE manage volumes

CreateBootVolu
me

VOLUME_CREATE manage volumes

DeleteVolume VOLUME_DELETE manage volumes

Chapter 4
How Policies Work

4-47

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

AttachVolume VOLUME_WRITE use volumes

DetachVolume VOLUME_WRITE use volumes

TerminateInsta
nce

VOLUME_WRITE use volumes

ListVolumeAtta
chments

VOLUME_INSPECT inspect volumes

ListBootVolume
Attachments

VOLUME_INSPECT inspect volumes

GetVolumeAttac
hment

VOLUME_INSPECT inspect volumes

GetBootVolume
Attachment

VOLUME_INSPECT inspect volumes

ChangeVolume
Compartment

VOLUME_MOVE manage volumes

ChangeBootVol
umeCompartm
ent

BOOT_VOLUME_MOVE manage volumes

TerminateInsta
ncePool

VOLUME_WRITE use volumes

CreateInstance
Configuration

VOLUME_INSPECT inspect volumes

CreateBootVolu
meBackup

VOLUME_WRITE use volumes

UpdateVolumeB
ackup

VOLUME_INSPECT inspect volumes

UpdateBootVolu
meBackup

VOLUME_INSPECT inspect volumes

ListVolumeBack
ups

VOLUME_INSPECT inspect volumes

CreateVolumeG
roupBackup

VOLUME_WRITE use volumes

CreateVolumeG
roup

VOLUME_INSPECT inspect volumes

VOLUME_CREATE manage volumes

VOLUME_WRITE use volumes

UpdateVolume
Group

VOLUME_INSPECT inspect volumes

DeleteVolumeB
ackup

VOLUME_INSPECT inspect volumes

GetVolumeBack
upPolicyAssetA
ssignment

VOLUME_INSPECT inspect volumes

ChangeVolume
GroupCompart
ment

VOLUME_MOVE manage volumes

BOOT_VOLUME_MOVE manage volumes

Chapter 4
How Policies Work

4-48

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

volume-
attachme
nts

ListVolumeAtta
chments

VOLUME_ATTACHMENT_INSPECT inspect volume-
attachments

ListBootVolume
Attachments

VOLUME_ATTACHMENT_INSPECT inspect volume-
attachments

GetVolumeAttac
hment

VOLUME_ATTACHMENT_INSPECT inspect volume-
attachments

GetBootVolume
Attachment

VOLUME_ATTACHMENT_INSPECT inspect volume-
attachments

AttachVolume VOLUME_ATTACHMENT_CREATE manage volume-
attachments

AttachBootVolu
me

VOLUME_ATTACHMENT_CREATE manage volume-
attachments

DetachVolume VOLUME_ATTACHMENT_DELETE manage volume-
attachments

DetachBootVolu
me

VOLUME_ATTACHMENT_DELETE manage volume-
attachments

TerminateInsta
nce

VOLUME_ATTACHMENT_DELETE manage volume-
attachments

TerminateInsta
ncePool

VOLUME_ATTACHMENT_DELETE manage volume-
attachments

CreateInstance
Configuration

VOLUME_ATTACHMENT_INSPECT inspect volume-
attachments

volume-
backups

ListVolumeBack
ups

VOLUME_BACKUP_INSPECT inspect volume-backups

GetVolumeBack
up

VOLUME_BACKUP_INSPECT inspect volume-backups

UpdateVolumeB
ackup

VOLUME_BACKUP_UPDATE use volume-backups

CopyVolumeBac
kup

VOLUME_BACKUP_COPY use volume-backups

CreateVolumeB
ackup

VOLUME_BACKUP_CREATE manage volume-backups

DeleteVolumeB
ackup

VOLUME_BACKUP_DELETE manage volume-backups

CreateVolume VOLUME_BACKUP_READ read volume-backups

CreateVolumeG
roupBackup

VOLUME_BACKUP_CREATE manage volume-backups

CreateVolumeG
roup

VOLUME_BACKUP_READ read volume-backups

DeleteVolumeG
roupBackup

VOLUME_BACKUP_DELETE manage volume-backups

ChangeVolume
BackupCompart
ment

VOLUME_BACKUP_MOVE manage volume-backups

Chapter 4
How Policies Work

4-49

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

ChangeVolume
GroupBackupC
ompartment

VOLUME_BACKUP_MOVE manage volume-backups

boot-
volume-
backups

ListBootVolume
Backups

BOOT_VOLUME_BACKUP_INSPECT inspect boot-volume-
backups

GetBootVolume
Backup

BOOT_VOLUME_BACKUP_INSPECT inspect boot-volume-
backups

CreateBootVolu
me

BOOT_VOLUME_BACKUP_READ read boot-volume-backups

UpdateBootVolu
meBackup

BOOT_VOLUME_BACKUP_UPDATE use boot-volume-backups

CopyBootVolum
eBackup

BOOT_VOLUME_BACKUP_COPY use boot-volume-backups

CreateBootVolu
meBackup

BOOT_VOLUME_BACKUP_CREATE manage boot-volume-
backups

DeleteBootVolu
meBackup

BOOT_VOLUME_BACKUP_DELETE manage boot-volume-
backups

CreateVolumeG
roupBackup

BOOT_VOLUME_BACKUP_CREATE manage boot-volume-
backups

CreateVolumeG
roup

BOOT_VOLUME_BACKUP_READ read boot-volume-backups

DeleteVolumeG
roupBackup

BOOT_VOLUME_BACKUP_DELETE manage boot-volume-
backups

ChangeVolume
BackupCompart
ment

BOOT_VOLUME_BACKUP_MOVE manage boot-volume-
backups

ChangeBootVol
umeBackupCo
mpartment

BOOT_VOLUME_BACKUP_MOVE manage boot-volume-
backups

ChangeVolume
GroupBackupC
ompartment

BOOT_VOLUME_BACKUP_MOVE manage boot-volume-
backups

backup-
policies

ListVolumeBack
upPolicies

BACKUP_POLICIES_INSPECT inspect backup-policies

GetVolumeBack
upPolicy

BACKUP_POLICIES_INSPECT inspect backup-policies

UpdateVolumeB
ackupPolicy

BACKUP_POLICIES_UPDATE use backup-policies

CreateVolumeB
ackupPolicy

BACKUP_POLICIES_CREATE manage backup-policies

DeleteVolumeB
ackupPolicy

BACKUP_POLICIES_DELETE manage backup-policies

backup-
policy-
assignme
nts

GetVolumeBack
upPolicyAssign
ment

BACKUP_POLICY_ASSIGNMENT_INSP
ECT

inspect backup-policy-
assignments

Chapter 4
How Policies Work

4-50

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

GetVolumeBack
upPolicyAssetA
ssignment

BACKUP_POLICY_ASSIGNMENT_INSP
ECT

inspect backup-policy-
assignments

CreateVolumeB
ackupPolicyAssi
gnment

BACKUP_POLICY_ASSIGNMENT_CRE
ATE

manage backup-policy-
assignments

DeleteVolumeB
ackupPolicyAssi
gnment

BACKUP_POLICY_ASSIGNMENT_DEL
ETE

manage backup-policy-
assignments

volume-
groups

ListVolumeGro
ups

VOLUME_GROUP_INSPECT inspect volume-groups

GetVolumeGrou
p

VOLUME_GROUP_INSPECT inspect volume-groups

DeleteVolumeG
roup

VOLUME_GROUP_DELETE manage volume-groups

UpdateVolume
Group

VOLUME_GROUP_UPDATE manage volume-groups

CreateVolumeG
roup

VOLUME_GROUP_CREATE manage volume-groups

CreateVolumeG
roupBackup

VOLUME_GROUP_INSPECT inspect volume-groups

ChangeVolume
GroupCompart
ment

VOLUME_GROUP_MOVE manage volume-groups

volume-
group-
backups

ListVolumeGro
upBackups

VOLUME_GROUP_BACKUP_INSPECT inspect volume-group-
backups

GetVolumeGrou
pBackup

VOLUME_GROUP_BACKUP_INSPECT inspect volume-group-
backups

UpdateVolume
GroupBackup

VOLUME_GROUP_BACKUP_UPDATE manage volume-group-
backups

CreateVolumeG
roupBackup

VOLUME_GROUP_BACKUP_CREATE manage volume-group-
backups

DeleteVolumeG
roupBackup

VOLUME_GROUP_BACKUP_DELETE manage volume-group-
backups

CreateVolumeG
roup

VOLUME_GROUP_BACKUP_INSPECT inspect volume-group-
backups

ChangeVolume
GroupBackupC
ompartment

VOLUME_GROUP_BACKUP_MOVE manage volume-group-
backups

clusters ListClusters CLUSTER_INSPECT inspect clusters

CreateCluster CLUSTER_CREATE manage clusters

GetClusterKube
config

CLUSTER_USE use clusters

GetCluster CLUSTER_READ read clusters

UpdateCluster CLUSTER_UPDATE manage clusters

DeleteCluster CLUSTER_DELETE manage clusters

Chapter 4
How Policies Work

4-51

Resource
Type

API Operation Required Permissions Verb + Resource
Combination

AdministerK8s CLUSTER_MANAGE manage clusters

cluster-
node-
pools

ListNodePools CLUSTER_NODE_POOL_INSPECT inspect cluster-node-pools

CreateNodePool CLUSTER_NODE_POOL_CREATE manage cluster-node-pools

GetNodePool CLUSTER_NODE_POOL_READ read cluster-node-pools

GetNodePoolOp
tions

UpdateNodePoo
l

CLUSTER_NODE_POOL_UPDATE manage cluster-node-pools

DeleteNodePool CLUSTER_NODE_POOL_DELETE manage cluster-node-pools

Chapter 4
How Policies Work

4-52

5
Tagging Overview

Tagging is a way to add metadata to your resources. That metadata consists of keys and
values that you can select and define in accordance with your business requirements. The
tags allow you to categorize resources independently of compartment hierarchy, list them in
an alternate way and track their usage. When you work in the Compute Web UI you also use
tags to filter lists and search for resources.

Tag Types
Private Cloud Appliance supports two kinds of tags:

• Free-form tags are created and applied to resources by users. They contain unmanaged
metadata.

• Defined tags offer a structured approach to tagging. Administrators create and manage
the metadata, while users only have the ability to apply a tag to a resource, and in some
cases add a value.

Most of the tagging features require defined tags. They ensure that the applied metadata is
reliable for managing resources, collecting accurate information and automating certain
operations. With defined tags, the following scenarios become possible:

• Creating default tags that are applied to all resources in compartments.

• Specifying that users must apply tags to resources to successfully create resources in
compartments.

• If you make a typo using defined tags, correct it by editing or even deleting the tag. When
you delete a defined tag, the key and any value for that tag are removed from all
resources.

• Associating a list of predefined values with a defined tag.

• Using system variables to generate values for defined tags or tag defaults automatically.

Both free-form tags and defined tags can be used simultaneously within a tenancy. The table
below shows a feature comparison of the two types.

Feature Free-form Tags Defined Tags

Hierarchy Free-form tags consist of a key and a
value, but do not belong to a
namespace.

Defined tags consist of a tag
namespace, a key, and a value.

Creation and
application

Free-form tags can be applied during
resource creation or to an existing
resource.

The tag namespace and tag key
definition must be set up in advance
by an administrator.
Defined tags can be applied during
resource creation or to an existing
resource.

5-1

Feature Free-form Tags Defined Tags

Predefined keys
and values

Not supported. When applying a defined tag, users
select from the list of tag keys.
Administrators can also create a list
of predefined values to associate
with a tag key. When applying a tag
to a resource, users must select a
value from that list.

Variables Not supported. Variables are used to set the value of
a defined tag. When a user applies
the tag, the variable is resolved and
replaced with the data it represents.

Case sensitivity Free-form tag keys and values are
both case sensitive.

In defined tags, the key is not case
sensitive; only the tag values are case
sensitive.

Free-form tags allow users to quickly and conveniently include relevant information in
the metadata of a resource. However, you should be aware of their limitations:

• When applying a free-form tag, you cannot see a list of existing free-form tags, so
you do not know what tags and values have already been used. It is not possible
to list the free-form tags used in your tenancy. The OCI CLI does allow you to list a
set of resources and view the free-form tags applied to them.

• You cannot control access to resources based on free-form tags. They cannot be
used in IAM policy statements.

• You cannot use predefined tag values or tag variables in free-form tags.

Categorization with Defined Tags
This section describes how defined tags work and which permissions are required.

Tag Namespaces and Keys
Defined tags provide more features and control than free-form tags. Before you create
a defined tag key, you first set up a tag namespace for it. You can think of the tag
namespace as a container for a set of tag keys. Within each namespace, the tag keys
must be unique, but a tag key name can be repeated across namespaces. When you
create the tag key definition, you must choose the type of value, which also
determines how the user applying the tag adds the value:

• You can leave it empty so that a user can fill in the value.

• You can create a list of values so that the user must choose from those values.

To apply a defined tag to a resource, a user first selects the tag namespace, then the
tag key within the namespace, and then they can assign the value. If the tag key
contains a blank value, the user can type in a value or leave it blank. If the tag key
contains a list, the user must select a value from the list.

Defined tags support policy to allow you to control who can apply your defined tags.
The tag namespace is the entity to which you can apply policy. Administrators can
control which groups of users are allowed to use each namespace.

Chapter 5
Categorization with Defined Tags

5-2

Permissions for Working with Defined Tags
Setting up and managing tag namespaces and key definitions is an administrator
responsibility. Full management permissions for tag namespaces are required.

To apply, update, or remove defined tags for a resource, users must be granted use access
for the tag namespaces they need to work with. Users must also have the permission to
update the resource to which they apply a tag. For many resources, the update permission is
granted with the use verb. For example, users who can use instances in CompartmentA can
also apply, update, or remove defined tags for those instances. For resources that do not
include the update permission with the use verb, you can create a policy statement to grant
only the update permission from the manage verb.

Here are a few examples of policy statements related to tagging:

• Administrators must be allowed to define tag namespaces and keys.

Allow group TagAdmins to manage tag-namespaces in tenancy
• Users are granted permission to apply tags from all namespaces in the tenancy, or a

subset.

Allow group GroupA to use tag-namespaces in tenancy

or

Allow group GroupA to use tag-namespaces in tenancy where target.tag-
namespace.name='Operations'

or

Allow group GroupA to use tag-namespaces in tenancy where any {target.tag-
namespace.name='Operations', target.tag-namespace.name='Support'}

• Users are granted permission to update resources in order to apply tags.

Allow group GroupA to use instance-family in compartment CompartmentA

or

Allow group GroupA to use vcns in compartment CompartmentA
Allow group GroupA to manage vcns in compartment CompartmentA where
request.permission='VCN_UDPATE'

Tag Management Features
This section describes the operations available to an administrator who sets up and manages
tag namespaces and key definitions.

Retiring and Reactivating Tag Definitions
You can retire a tag key definition or a tag namespace definition.

When you retire a tag key definition, you can no longer apply it to resources. However, the
tag is not removed from the resources that it was applied to. The tag still exists as metadata
on those resources and you can still call the retired tag in operations such as searching,
listing, sorting, or reporting.

Chapter 5
Tag Management Features

5-3

You can reactivate retired tag key definitions and tag namespace definitions.

• When you reactivate a tag key, it is again available for users to apply to resources.

• When you reactivate a tag namespace, you can create new tag key definitions in
that namespace. However, if you want to use any of the tag key definitions that
were retired with the namespace, you must explicitly reactivate each tag key
definition.

Moving Tag Namespaces
You can move a tag namespace to a different compartment. The tag namespace can
be active or retired when you move it. When you move the tag namespace, all its tag
key definitions are moved along with it.

This functionality is useful if you need to reorganize your compartment hierarchy, or if
you need to delete a compartment that contains a retired tag namespace. Remember
that you cannot delete a compartment that contains resources. A retired tag
namespace, even though it is retired, is still an existing resource. Moving the retired
tag namespace to a different compartment can enable you to delete its original
containing compartment.

To move a tag namespace, you must be allowed to manage tag-namespaces in both
compartments.

Deleting Tag Definitions
You can delete tag key definitions and tag namespaces.

When you delete a tag key definition, you begin a process that removes the tag from
all resources in your tenancy. The delete action is asynchronous and initiates a work
request. Once you start the delete operation, the state of the tag changes to deleting,
and tag removal from resources begins. This process can take several hours
depending on the number of resources that were tagged. When all tags have been
removed, the state changes to deleted. You cannot restore a deleted tag. After the tag
state changes to "deleted", you can use the same tag name again.

To delete a tag key definition, you must first retire it. To delete a tag namespace, you
must first retire the tag namespace. When you retire a tag namespace that contains
tag key definitions, all the tag keys in the namespace are retired, allowing you to
delete the tag keys. The tag namespace can be deleted only after all its tag key
definitions have been deleted.

Using Predefined Values
You can create a list of values and associate that list with a tag key definition. When
users then apply the tag to a resource, they must select a value from the list of
predefined values. Use lists of predefined values to impose limits on the values that
users can apply to tags.

In the OCI CLI and Compute API, predefined values are specified through what is
known as a validator. The validator is a parameter of a defined tag, used to supply the
predefined values in JSON format. The Compute Web UI does not mention the term
"validator", though it follows the same principle.

Chapter 5
Tag Management Features

5-4

You can update existing tags to use predefined values. Every list of predefined values that
you create must contain at least one value. Lists cannot contain duplicate values or blank
entries. With predefined values, users applying tags cannot set the value of a tag to null.

You can use predefined values with defined tags and default tags. In combination with a
default tag, users are required to select a tag value from the predefined list for each resource
they create in the compartment where the default tag is used. This ensures that new
resources contain metadata with values that you expect and can trust.

Using Tag Variables
You can use a variable to set the value of a defined tag. When users add the tag to a
resource, the variable resolves to the data it represents. You can use tag variables in defined
tags and default tags.

Consider the following example:

Operations.CostCenter="${iam.principal.name} at ${oci.datetime}"

Operations is the namespace, CostCenter is the tag key, and the tag value contains two tag
variables ${iam.principal.name} and ${oci.datetime}. When you add this tag to a
resource, the variables resolve to your user name – the name of the principal who applied the
tag – and a time stamp for when you added the tag.

user-name at 2021-04-18T14:32:57.604Z

The variable is replaced with data at the moment the tag is applied to a given resource. If you
later edit the tag, the variable is gone and only the data remains. You can edit the tag value in
all the ways you would edit any other tag value.

To create a tag variable, you must use a specific format. The following tag variables are
supported:

Variable Description

${iam.principal.name} The name of the principal applying the tag to the resource.

${iam.principal.type} The type of principal applying the tag to the resource.

${oci.datetime} The date and time when the tag was created.

Tag Defaults
Tag defaults let you specify tags that are applied automatically to all resources at the time of
creation in a specific compartment. This feature allows you to ensure that appropriate tags
are applied at resource creation without requiring the user creating the resource to have
access to the tag namespaces.

Tag defaults allow tenancy administrators to create secure permissions boundaries between
users concerned with governance and users who need to create and manage resources. Tag
defaults are defined for a specific compartment. A default tag is also applied to child
compartments and the resources created within them. In the Compute Web UI, you manage
tag defaults on the Compartment Details page.

To create or edit a tag default for a compartment, you must be granted the following
combination of permissions:

Chapter 5
Tag Defaults

5-5

• manage tag-defaults access for the compartment where you are adding the tag
default

• use tag-namespaces access for the compartment where the tag namespace
resides

• inspect tag-namespaces access for the tenancy

Tag defaults must include a tag value. If you use a default value, then you must create
it as part of the tag default. This value is applied to all resources. Using a tag variable
is allowed. If you specify that a user-applied value is required, then the user creating
the resource must enter the value for the tag at the time of resource creation. Users
cannot create resources without entering a value for the tag.

Tag defaults can be overridden at the time of resource creation by users who have the
appropriate permissions to both create the resource and to use the tag namespace.
Users with these permissions can also modify the default tags that were applied at
resource creation at any later time.

You can define up to 5 tag defaults per compartment. After a tag default is created in a
compartment, the default tag is applied to any new resources created in that
compartment. Previously existing resources in the compartment are not tagged retro-
actively. If you change the default value of the tag default, existing occurrences are not
updated.

If you delete the tag default from the compartment, existing occurrences of the tag are
not removed from resources. When you delete a tag key definition, existing tag
defaults based on that tag key definition are not removed from the compartment. Until
you delete the tag default in the compartment, it continues to count against your limit
of 5 tag defaults per compartment.

Retired tags cannot be applied to new resources. Therefore, if the tag namespace or
tag key specified in a tag default is retired, when new resources are created, the
retired tag is not applied. As a best practice, you should delete the tag default that
specifies the retired tag.

Tag-Based Access Control
Using conditions and a set of tag variables, you can write policy to scope access
based on the tags that have been applied to a resource. Access can be controlled
based on a tag that exists on the requesting resource or on the target resource or
compartment of the request. Tag-based access control provides additional flexibility to
your policies by allowing you to define access policies with tags that span
compartments, groups, and resources.

Chapter 5
Tag-Based Access Control

5-6

Caution:

If your organization chooses to create policies that use tags to manage access,
then ensure that you have appropriate controls in place to govern who can apply
tags. Also, after policies are in place, keep in mind that applying tags to a group,
user, or resource has the potential to confer access to resources.

Before you create such a policy, ensure that you are aware of all the potential
requestors and target resources that carry the tag.

Before you apply a tag to a resource, ensure that you are aware of any policies in
place that include the tag and could impact who has access to the resource.

You can control access based on the value of a tag applied to a requesting resource. More
specifically, you can write policy statements to grant a user access based on the value of a
tag that is assigned to the group to which the requesting user belongs.

You can also control access based on the value of a tag applied to a target resource, or a
compartment that the target resource resides in.

By using tags in your policy statements to scope access, you can define access for multiple
groups through a single policy statement. You can also confer access and revoke access for
groups by applying or removing tags, without changing the original policies.

The Oracle Private Cloud Appliance User Guide provides a detailed description and
examples of how to use tag variables and operators in your policy syntax. Refer to the
section "Writing Policy Statements" in the chapter Identity and Access Management.

Important Notes and Limitations
This section describes a number of items to take into account when you start writing policies
to control permissions based on resource tags.

Item Description

Permissions to
list resources
must be granted
separately

Policies that scope access based on the tag applied to the target resource
cannot allow the permissions that enable you to return a list of resources.
Therefore, permissions to allow listing a resource must be granted through
an additional policy statement.
This approach improves the tag-based policy because it allows users to see
the resource they want to manage, but still limits the permissions to only
inspect.
Another approach you can use to avoid this limitation is to tag the
compartments that contains the resources you want to grant access to.

Policies requiring
a tag on the target
resource cannot
grant create
permissions

When you write a policy to scope access based on the value of a tag on the
resource, keep in mind that the policy cannot grant create permissions.
For example, a request to create an instance would fail because the target
resource has not been created yet and therefore does not have the
appropriate tag to be evaluated. Using and deleting instances with that tag
would be allowed, but not creating instances.

Chapter 5
Tag-Based Access Control

5-7

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-identity.html

Item Description

Limitations on
characters in tag
namespaces and
tag key
definitions used
in policy
variables

Tag namespaces and tag key definitions support a broader set of characters
than are allowed in policy variables. Therefore, to you use tag namespaces
and tag key definitions in variables, ensure that they only include the
characters also supported by policy variables.
Supported characters are: a-z, A-Z, 0-9, _, @, -, :
If your tag namespaces or tag keys have characters other than these, you
cannot use them in policy variables. Tag namespaces and tag keys cannot
be renamed, so you will have to create new tag namespaces and tag key
definitions.

Considerations
for case

When working with tags in policies, be aware that tag values are case
insensitive.

Compartment
hierarchies

When you write a condition to allow access based on the tag applied to a
target compartment, remember that this policy also allows access to all
compartments nested inside the tagged compartment. All subcompartments
in the tagged compartment are resources in the tagged compartment, and
therefore the policy grants access.

Supported
services

All services support the request.principal.group, and
target.resource.compartment.tag policy variables.

Not all services support the target.resource.tag policy variable. The
supported services are: Compute, Networking, IAM, DNS, File Storage, Block
Storage.

Example Using Tags Applied to a Group
Following is an example that demonstrates how you can use tags applied to user
groups to manage access to resources in a compartment.

Assume you have three compartments: ProjectA, ProjectB, and ProjectC. For each
compartment, there is an admin group set up: A-Admins, B-Admins, and C-Admins.
Each admin group has full access over their compartment through the following
policies:

allow group A-Admins to manage all-resources in compartment ProjectA
allow group B-Admins to manage all-resources in compartment ProjectB
allow group C-Admins to manage all-resources in compartment ProjectC

Your organization has set up the following tag namespace and key to tag each group
by its role: EmployeeGroup.Role. Some values for this tag are 'Admin', 'Developer',
'Test-Engineer'. All your admin groups are tagged with EmployeeGroup.Role='Admin'.

Now you want to set up a Test compartment for members of the three projects to
share. You want to give Admin access to all three of your existing admin groups. To
accomplish this, you can write a policy like:

allow any-group to manage all-resources in compartment Test where
request.principal.group.tag.EmployeeGroup.Role='Admin'

With this policy, all of your existing admin groups with the tag will have access to the
Test compartment. Also, any new or existing groups that you tag with
EmployeeGroup.Role='Admin' in the future will have access to the Test compartment
without having to update the policy statements.

Chapter 5
Tag-Based Access Control

5-8

Example Using Tags Applied to a Target Resource's Compartment
In this example, each of your organization's project compartments contains two child
compartments: Test and Prod. You want to give your test engineers access to the test
compartments across all three projects. To accomplish this, you create a tag,
ResourceGroup.Role='Test', and apply this to the Test compartments in each of your project
compartments.

To allow your group Testers to access the resources across all three test compartments, you
can then use a policy like:

allow group Testers to use all-resources in tenancy where
target.resource.compartment.tag.ResourceGroup.Role='Test'

Chapter 5
Tag-Based Access Control

5-9

6
Virtual Networking Overview

When building a private cloud, one of the first steps is to design and configure a virtual cloud
network for your cloud resources. This chapter provides an overview of the components
made available to you by the Networking service. Several of them are virtual versions of the
traditional network components you might already be familiar with.

The sections in this chapter explain how the Networking service works and how you use it to
design your virtual cloud network, connect it with your on-premises network, control traffic
that flows through it, and so on. The detailed descriptions of typical network scenarios might
provide a good starting point for your own configuration.

Virtual Cloud Network
A virtual cloud network, or VCN, is a software-defined equivalent of a traditional network, with
firewall rules and various types of communication gateways. A VCN resides in the single
region of your Private Cloud Appliance installation and covers one contiguous CIDR block of
your choice.

The size of a VCN is /16 to /30. The CIDR block can NOT be changed after the VCN is
created. The maximum number of private IPs within a VCN is 64,000. Oracle recommends
using a private IP address range as specified in RFC 1918 (10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16). This documentation uses the term private IP address when referring to IP
addresses in your VCN's CIDR.

You can privately connect a VCN to another VCN so that traffic does not leave the secure
network environment of the appliance. However, the CIDRs of the two VCNs must not
overlap. The concept of privately connecting VCNs is called peering. It involves setting up a
type of virtual router known as a Local Peering Gateway. For more information about the use
of gateways in your VCNs, see Network Gateways.

Subnets
A VCN is subdivided into subnets. Each subnet in a VCN consists of a contiguous range of
IPv4 addresses that do not overlap with other subnets in the VCN. Example: 172.16.1.0/24.
The first two IPv4 addresses and the last in the subnet's CIDR are reserved by the
Networking service. You cannot change the size of the subnet after creation.

Subnets act as a unit of configuration: all instances in a given subnet use the same route
table, security lists, and DHCP options. Subnets can be either public or private. This is
defined when the subnet is created, and cannot be changed later. In a private subnet,
instances cannot be assigned a public IP address.

You can think of a compute instance as residing in a subnet. However, to be precise, each
instance is attached to a virtual network interface card (VNIC), which in turn resides in the
subnet and enables a network connection for that instance.

IPv6 addressing is currently not supported in Private Cloud Appliance.

6-1

https://tools.ietf.org/html/rfc1918

Route Tables
Each VCN automatically comes with an empty default route table. Subnets use the
default route table of the parent VCN, unless you explicitly assign them a different
route table. When you add route rules to your VCN, you can simply add them to the
default table if that suits your needs. However, if you need both a public subnet and a
private subnet, you instead create a separate custom route table for each subnet.

The primary routing scenario is for sending a subnet's traffic to destinations outside the
VCN. A subnet has a single route table of your choice associated with it at the time of
creation. All VNICs in that subnet are subject to the rules in the route table. Traffic
within the VCN is automatically handled by the VCN internal routing. No route rules
are required to enable that traffic. You can change which route table the subnet uses
at any time. You can also edit a route table's rules, or remove all the rules from the
table.

A route rule specifies a destination CIDR block and the target, or the next hop, for any
traffic that matches that CIDR. When selecting the target you also specify its
compartment. Supported target types for a route rule are the different VCN gateways.

Route rules must be configured carefully to ensure that the network traffic reaches the
intended destination and is not dropped. Moving route rules between compartments is
not supported.

Public Network in Private Cloud
Oracle Private Cloud Appliance is a private cloud solution. The infrastructure that
provides the necessary services to deploy your cloud workloads, is configured to
operate within the network environment of your data center. During initialization, the
appliance core network components are integrated with your existing data center
network design. Uplink ports in the appliance switches connect to your next-level data
center switches to provide a redundant high-speed and high-bandwidth physical
connection that carries all traffic into and out of the appliance.

This is a critical difference with a public cloud environment, where the infrastructure is
managed by your service provider, who grants you restricted access to systems in
their data center. Because your cloud resources are not inside your own network, you
access them over the internet, using a secure tunneling connection. In this context,
network traffic between your public cloud and locations external to it, is sent over the
internet by definition. In other words, from the perspective of your cloud environment,
the public network is effectively the internet. Compare this with the private cloud
environment, where the public network is your on-premises network, and internet
access is always indirect through your data center edge router.

Private Cloud Appliance is modeled after Oracle's public cloud offering: Oracle Cloud
Infrastructure. This applies not only to the Networking service but to all the major
infrastructure services: they have been optimized for the smaller scale of a single rack,
while offering the same core functionality. One of the main objectives is to maintain
maximum compatibility between both cloud platforms: this provides a very similar user
experience and allows you to efficiently migrate workloads between your private cloud
environment and your Oracle Cloud Infrastructure account.

Because the public cloud network model is applied to a private cloud environment,
where the public network is actually the data center network, certain network
resources or components present a different behavior. You need to be aware of these

Chapter 6
Public Network in Private Cloud

6-2

differences when designing and configuring the virtual cloud networks in Private Cloud
Appliance.

• Access to the on-premises network

The appliance rack is located at your premises: it is set up inside your data center and
connected directly to your on-premises network. There is no need for a secure tunnel
over the internet to allow your cloud resources and your on-premises network to
communicate with each other. Access is enabled through a gateway between your virtual
cloud network (VCN) and your on-premises network.

• Access to the internet

Resources in your cloud environment have no direct internet access. In contrast with a
public cloud environment, no gateway is capable of enabling direct internet connectivity
for a VCN. Public connectivity implies that resources have access to the data center
network. The configuration of the networking components in the data center determines
how cloud resources can connect to the internet and whether they can be reached from
the internet.

• VCN gateways

To manage network traffic into and out of your VCNs several types of gateways are used.
Resources in a VCN can connect to external hosts through either a dynamic routing
gateway (DRG), a NAT gateway or an internet gateway. Technically, each of these
gateways provides a path to your on-premises network. However, a DRG has an
important limitation in that it performs no address translation and thus cannot handle any
overlap between VCNs and the on-premises network.

Although these gateways seem interchangeable to a certain extent, it is important to
configure and use them strictly for their intended purpose. It helps to ensure that your
private cloud network configuration remains compatible with the public cloud network
model. If you move a workload into Oracle Cloud Infrastructure, the data center network
is removed from the equation, meaning the NAT and internet gateways will provide direct
internet access, and a DRG will only provide access to your on-premises network.

• Public IP addresses

From the perspective of a virtual cloud network, the public network is effectively the data
center network, so a public IP address must be within its CIDR. To accommodate this,
you must reserve an address range within the data center CIDR to be used exclusively
by Private Cloud Appliance. You typically configure the public IP range during initial
system setup. You can extend the range at a later time, but removing IPs is not allowed.
The Networking service uses this range as a pool, from which it assigns public IP
addresses to cloud resources that require them. A public IP makes a resource reachable
from outside the VCN it resides in. In a private cloud context, it allows interaction with
other resources in the data center or the on-premises network. The IPs that are
considered "public" are really part of the data center's private range.

The use of public IPs has different implications when you move a particular workload into
Oracle Cloud Infrastructure, where public IPs are truly unique and publicly routable. True
public IPs are scarce and expensive resources. Take this into account when designing
applications and services in a private cloud environment: use private IPs to enable
connectivity between components and assign public IPs only where true public
connectivity is required.

Instance Connectivity
This section discusses different aspects of instance connectivity.

Chapter 6
Instance Connectivity

6-3

Virtual Network Interface Cards (VNICs)
The compute nodes in the Private Cloud Appliance have physical network interface
cards (NICs). When you create and launch a compute instance on one of the servers,
the Networking service ensures that a VNIC is created on top of a physical interface,
so that the instance can communicate over the network. Each instance has a primary
VNIC that is automatically created and attached during launch. The primary VNIC
resides in the subnet you specify when creating the instance. It cannot be removed
from the instance.

A VNIC enables an instance to connect to a VCN and determines how the instance
communicates with endpoints inside and outside of the VCN. Each VNIC resides in a
subnet within a VCN and includes these items:

• One primary private IPv4 address from the subnet the VNIC is in.

• Up to 31 optional private IPv4 addresses from the subnet the VNIC is in.

• An optional public IPv4 address for each private IP, assigned at your discretion.

• An optional host name for DNS for each private IP address.

• A MAC address.

• A flag to enable or disable the source/destination check on the VNIC's network
traffic.

• Optional membership of one or more network security groups (NSGs).

• An Oracle-assigned identifier (OCID).

• An optional friendly name you can choose and assign.

You can add secondary VNICs to an instance after it is launched. To be able to use a
secondary VNIC, you must also configure the instance OS for it. The maximum
number of VNICs for an instance varies by shape. Each secondary VNIC can be in a
different subnet than the primary VNIC, either within the same VCN or a different one.
A secondary VNIC can also be in the same subnet as the primary VNIC. However,
attaching multiple VNICs from the same subnet CIDR block to an instance can
introduce asymmetric routing, especially on Linux instances.

Note:

To avoid asymmetric routing in a configuration with multiple IP addresses
from the same subnet, Oracle recommends assigning multiple private IP
addresses to one VNIC, or using policy-based routing.

If traffic comes in to a service on the instance through a secondary VNIC and
the service replies, the reply packets automatically have that VNIC's IP
address as the source IP address. Policy-based routing is required for that
reply to go back out on the same interface and find the correct default
gateway.

Secondary VNICs must always be attached to an instance and cannot be moved. The
process of creating a secondary VNIC automatically attaches it to the instance. The
process of detaching a secondary VNIC automatically deletes it. They are

Chapter 6
Instance Connectivity

6-4

automatically detached and deleted when you terminate the instance. An instance's
bandwidth is fixed regardless of the number of VNICs attached. You cannot specify a
bandwidth limit for a particular VNIC on an instance.

By default, every VNIC performs the source/destination check on its network traffic. The VNIC
looks at the source and destination listed in the header of each network packet. If the VNIC is
not the source or destination, then the packet is dropped. If the VNIC needs to forward traffic
– for example, if it needs to perform Network Address Translation (NAT) – you must disable
the source/destination check on the VNIC.

VNICs reside in a subnet but attach to an instance. The VNIC's attachment to the instance is
a separate object from the VNIC or the instance itself. The VNIC and subnet always exist
together in the same compartment, but the VNIC's attachment to the instance always exists
in the instance's compartment. This distinction affects your IAM policies if you set up an
access control scenario where network administrators manage the network and other users
manage instances.

VNICs are rate limited to prevent very active applications from reducing the available
bandwidth of other applications to unacceptable levels. Rate limiting applies to each
instance’s VNIC interface.

The rate is limited to a value below the maximum network bandwidth associated with each
instance shape. Generally, the bandwidth limit increases with the maximum number of VNICs
a shape uses, but there is no maximum bandwidth guarantee.

Users cannot specify the bandwidth limits directly. Rate limiting is a system function. The rate
applied to each VNIC is based on the shape option during instance launch.

IP Addressing
Instances use IP addresses for communication. Each instance has at least one private IP
address and optionally one or more public IP addresses. A private IP address enables the
instance to communicate with other instances inside the VCN, or with hosts in your on-
premises network. A public IP address enables the instance to communicate with hosts
outside of the Private Cloud Appliance network environment.

Certain types of resources in your tenancy are designed to be directly reachable from outside
the secure appliance network environment, and therefore automatically come with a public IP
address. For example: a NAT gateway. Other types of resources are directly reachable only if
you configure them to be. For example: specific instances in your VCN. Direct public
connectivity also requires that the VCN has an internet gateway and that the public subnet
has correctly configured route tables and security lists.

Primary and Secondary IP Addresses
IP addresses are assigned to a network interface. In some networking models, this is the “IP
layer” and in others it’s “Layer 3,” but any network interface needs an IP address to
communicate. An IP packet always includes a source and destination IP address. If the
source and destination IP addresses are on the same IP subnet, packet delivery is direct. If
the source and destination IP addresses are on different IP subnets, packet delivery is
through one or more routers or gateways.

Often, especially in a virtual cloud environments, a network interface needs more than one IP
address. Also called “aliasing,” a network interface with one IP address already can be given
several others, the limit determined mainly by implementation. The initial IP address for the
interface is typically the primary IP interface addresses (this can be changed) and all the
others become secondary IP interface addresses.

Chapter 6
Instance Connectivity

6-5

Secondary IP addresses are useful in many networking scenarios. All layered
protocols allow more than one process to run on top of a particular layer. In TCP/IP,
the IP layer can support more than one TCP layer process and the applications that
run on top of the TCP layer. In other models, this means that Layer 3 can support
more than one Layer 4 and above.

The advantage, which is very useful in virtual environments, is that applications that
require their own IP addresses, such as web sites using SSL certificates, can share a
single IP primary address by linking the web site to a secondary address.

With secondary addresses, a single network interface can support multiple
connections to various applications running above the IP layer. Whenever the interface
receives a packet addressed to one of its multiple secondary IP addresses, the
matching of packet destination address to the list of secondary IP addresses assigned
to the interface means, “This content is important. Process it further.”

If that is the case, and all secondary address destination packets are processed by the
interface, why does one IP address have to be the primary? Because when packets
are sourced, not from an application above the IP layer, but by a service for the IP
layer itself, the packets always use the primary IP address. For example, an interface
reporting a problem or notifying a router of an interface change in MTU or other
parameter, always uses the primary address as the packet source address.

The primary address is the “stable” address for the interface. Secondary addresses
often come and go, but changes to the primary IP address require careful
consideration.

Private IPs
The Networking service defines a private IP object, identified by an Oracle-assigned
OCID, which consists of a private IPv4 address and optional host name for DNS. Each
instance receives a primary private IP object during launch. The Networking service
uses DHCP to assign a private IP address. This address does not change during the
instance's lifetime and cannot be removed from the instance. The private IP object is
terminated when the instance is terminated.

If an instance has any secondary VNICs attached, each of those VNICs also has a
primary private IP. A private IP can have a public IP assigned to it at your discretion. It
is not supported to use a private IP as the target of a route rule in your VCN.

About Secondary Private IPs

After an instance is launched, you can add a secondary private IP to one of its VNICs.
You can add it to either the primary VNIC or a secondary VNIC on the instance. The
secondary private IP address must be in the subnet to which the VNIC belongs. You
can move a secondary private IP from a VNIC on one instance to a VNIC on another
instance on condition that both VNICs belong to the same subnet.

Typical use cases for a secondary private IP include:

• Instance failover: You assign a secondary private IP to an instance. If a problem
occurs with the instance, you can easily reassign its secondary private IP to a
standby instance in the same subnet. In addition, if the secondary private IP has
an associated public IP, that public IP moves along with the private IP.

• Running multiple services or endpoints on a single instance: For example,
you could have an instance that runs multiple container pods, where each pod
uses its own IP address from the VCN's CIDR. The containers have direct

Chapter 6
Instance Connectivity

6-6

connectivity to other instances and services in the VCN. Another example: you could run
multiple SSL web servers with each one using its own IP address.

Secondary private IP addresses have the following properties:

• They are supported for all shapes and OS types.

• They can be assigned only after the instance is launched, or the secondary VNIC is
created and attached.

• They are automatically deleted when you terminate the instance or detach and delete the
secondary VNIC.

• Deleting a secondary private IP from a VNIC returns the address to the pool of available
addresses in the subnet.

• A VNIC can have a maximum of 31 secondary private IPs.

• The instance's bandwidth is fixed regardless of the number of private IP addresses
attached. You cannot specify a bandwidth limit for a particular IP address on an instance.

• A secondary private IP can have a reserved public IP associated with it at your discretion.

Note:

After assigning a secondary private IP to a VNIC, you must configure the instance
OS to use it. For Linux and Microsoft Windows instructions, refer to the Oracle
Private Cloud Appliance User Guide.

Public IPs
In a private cloud model, public IP addresses are not true unique and publicly routable
internet IPs; they are just addresses external to the VCNs in the cloud environment. During
initial setup of the appliance, a pool of addresses from the on-premises network is reserved
for use as public IPs. A small set of these public IPs is required for system use.

You can assign a public IP address to an instance to enable external communication. The
instance is assigned a public IP address from an address pool. Technically, the assignment is
to a private IP object on the instance, and the VNIC that the private IP is assigned to must
reside in a public subnet. A given instance can have multiple secondary VNICs; each with a
(primary) private IP. Consequently, you can assign a given instance multiple public IPs across
their VNICs.

The Networking service defines a public IP object, identified by an Oracle-assigned OCID,
which consists of a private IPv4 address and additional properties that further define the
public IP's type and behavior. There are two types of public IPs:

• An ephemeral public IP is temporary and exists for the lifetime of the instance.

• A reserved public IP is persistent and exists beyond the lifetime of the instance it is
assigned to. It can be unassigned and then reassigned to another instance.

The following table summarizes the differences between both types:

Chapter 6
Instance Connectivity

6-7

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

Characteristics Ephemeral Public IP Reserved Public IP

Allowed
assignment

to a VNIC's primary private IP
limits: one per VNIC, two per
instance

to a VNIC's primary private IP
limit: one per VNIC

Creation Optionally created and assigned
during instance launch or
secondary VNIC creation. You can
create and assign one later if the
VNIC doesn't already have one.

You create one at any time. You
can then assign it when you like.

Unassignment You can unassign it at any time,
which deletes it. You might do this
if whoever launched the instance
included a public IP, but you do
not want the instance to have one.
When you stop an instance, its
ephemeral public IPs remain
assigned to the instance.

You can unassign it at any time,
which returns it to your tenancy's
pool of reserved public IPs.

Moving to a
different
resource

You cannot move an ephemeral
public IP to a different private IP.

You can move it at any time by
unassigning and then reassigning
it to another private IP. Can be in a
different VCN or availability
domain.

Automatic
deletion

Its lifetime is tied to the private
IP's lifetime. Automatically
unassigned and deleted when:
• its private IP is deleted
• its VNIC is detached or

terminated
• its instance is terminated

Never. Exists until you delete it.

Scope Availability domain Regional (can be assigned to a
private IP in any availability
domain in the region)

Compartment
and availability
domain

Same as the private IPs Can be different from the private
IPs

When you launch an instance in a public subnet, the instance gets a public IP by
default, unless you specify otherwise. After you create a given public IP, you cannot
change which type it is. For example, if you launch an instance that is assigned an
ephemeral public IP with address 203.0.113.2, you cannot convert the ephemeral
public IP to a reserved public IP with address 203.0.113.2.

Resources that are designed to be directly publicly reachable automatically get a
public IP address assigned from a pool upon creation. For NAT gateways, the
assigned address is a regional ephemeral public IP. Like other ephemeral public IPs, it
is automatically unassigned and deleted when you terminate its assigned resource.
However, unlike other ephemeral public IPs, you cannot edit it or unassign it yourself.

DHCP Options
The Networking service uses DHCP to automatically provide configuration information
to instances when they boot up. Although DHCP lets you change some settings
dynamically, others are static and never change. For example, when you launch an

Chapter 6
Instance Connectivity

6-8

instance, either you specify the instance's private IP address or the system chooses one for
you. Each time the instance boots up or you restart the instance's DHCP client, DHCP
passes that same private IP address to the instance. The address never changes during the
instance's lifetime.

The Networking service provides DHCP options to let you control certain types of
configuration on the instances in your VCN. You can change the values of these options at
your discretion, and the changes take effect the next time you restart a given instance's
DHCP client or reboot the instance.

Each subnet in a VCN can have a single set of DHCP options associated with it. That set of
options applies to all instances in the subnet. Each VCN comes with a default set of DHCP
options with initial values that you can change. Unless you create and assign a different set of
DHCP options, every subnet uses the VCN's default set.

These are the available DHCP options you can configure:

• Domain Name Server

The default setting is DNS Type = Internet and VCN Resolver.

If instead you set DNS Type = Custom Resolver, you can specify up to three DNS
servers of your choice.

• Search Domain

If you set up your VCN with a DNS label, the default value for the Search Domain option
is the VCN domain name: <VCN_DNS_label>.oraclevcn.com. Otherwise, the Search
Domain option is not present in the default set of DHCP options.

In general, when any set of DHCP options is initially created – the default set or a custom
set –, the Networking service automatically adds the Search Domain option and sets it to
the VCN domain name (<VCN_DNS_label>.oraclevcn.com) if all of these are true:

– The VCN has a DNS label.

– DNS Type = Internet and VCN Resolver.

– You did NOT specify a search domain of your choice during creation of the set of
DHCP options.

After the set of DHCP options is created, you can always remove the Search Domain
option or set it to a different value. You can specify only a single search domain in a set of
DHCP options.

Important notes about your instances and DHCP options:

• Whenever you change the value of one of the DHCP options, you must either restart the
DHCP client on the instance, or reboot the instance for the changes to take effect. This
applies to all existing instances in the subnets associated with that set of DHCP options.

• Keep the DHCP client running so you can always access the instance. If you stop the
DHCP client manually or disable NetworkManager, the instance cannot renew its DHCP
lease and will become inaccessible when the lease expires; typically within 24 hours. Do
not disable NetworkManager unless you use another method to ensure renewal of the
lease.

• Stopping the DHCP client might remove the host route table when the lease expires.
Also, loss of network connectivity to your iSCSI connections might result in loss of the
boot drive.

• Any changes you make to the /etc/resolv.conf file are overwritten whenever the DHCP
lease is renewed or the instance is rebooted.

Chapter 6
Instance Connectivity

6-9

• Changes you make to the /etc/hosts file are overwritten whenever the DHCP
lease is renewed or the instance is rebooted. To persist your changes to the /etc/
hosts file in Oracle Linux or CentOS instances, add the following line to /etc/oci-
hostname.conf: PRESERVE_HOSTINFO=2. If the /etc/oci-hostname.conf file does
not exist, create it.

Name Resolution
The Domain Name System (DNS) translates human-readable domain names to
machine-readable IP addresses. For example, when you type a domain name into
your browser, your operating system queries several DNS name servers until it finds
the authoritative name server for that domain. The authoritative name server then
responds with an IP address or other requested record data; the answer is relayed
back to your browser and the DNS record is resolved to the web page.

For DNS name resolution within your VCN, there are two options. You choose an
option for each subnet in the VCN, using the subnet's set of DHCP options.

The default choice is the Internet and VCN Resolver, an Oracle-provided solution. It
consists of two parts: the Internet Resolver and the VCN Resolver. The Internet
Resolver lets instances resolve host names that are publicly published on the internet,
without requiring the instances to have internet access by way of either an internet
gateway or a connection to the on-premises network. The VCN resolver lets instances
resolve host names, which you can assign, of other instances in the same VCN.

Alternatively, you can use a Custom Resolver. It allows you to use up to three DNS
servers of your choice for name resolution. These could be DNS servers that are
available through the internet, in your VCN, or in your on-premises network, which is
connected to your VCN through a DRG.

Domains and Host Names
When you create a VCN and subnets, you can specify DNS labels for each. Subnet
DNS labels can only be set if the VCN itself is created with a DNS label. The labels,
along with the parent domain of oraclevcn.com form the VCN domain name and
subnet domain name. Next, when you launch an instance, you can assign a host
name. It is assigned to the primary VNIC that is automatically created during instance
launch. Along with the subnet domain name, the host name forms the instance's fully
qualified domain name (FQDN).

• VCN domain name: <VCN_DNS_label>.oraclevcn.com
• Subnet domain name: <subnet_DNS_label>.<VCN_DNS_label>.oraclevcn.com
• Instance FQDN:

<host_name>.<subnet_DNS_label>.<VCN_DNS_label>.oraclevcn.com
The FQDN resolves to the instance's private IP address. The Internet and VCN
Resolver also enables reverse DNS lookup, which lets you determine the host name
corresponding to the private IP address.

If you add a secondary VNIC to an instance, you can specify a host name. The
resulting FQDN resolves to the VNIC's primary private IP address. The resulting
FQDN resolves to that private IP address.

DNS labels and host names must meet these requirements:

Chapter 6
Instance Connectivity

6-10

• VCN and subnet labels must start with a letter and have a maximum length of 15
alphanumeric characters. Hyphens and underscores are not allowed. The value cannot
be changed later.

• Host names can be up to 63 characters in length and must be compliant with RFCs 952
and 1123. The value can be changed later.

• VCN DNS labels must be unique across the VCNs in your tenancy. Subnet DNS labels
must be unique within the VCN, and host names must be unique within the subnet.

Host Name Validation and Generation
If you set DNS labels for VCN and subnet, the host name is validated for compliance during
instance launch. If you have not specified a host name, the system attempts to use the
instance display name. If the display name does not pass validation, or if you did not specify
one, the system generates a DNS-compliant host name. The generated host name is
displayed on the instance’s detail page in the Compute Web UI.

If you launch an instance using the CLI or SDK, and you have not specified a host name or
display name, the system does not generate them for you. This means the instance will not
be resolvable using the Internet and VCN Resolver.

If you add a secondary VNIC to an instance, the system never generates a host name. You
must provide a valid host name if you want the private IP address to be resolvable using the
Internet and VCN Resolver.

Public DNS Zones
To enable DNS name resolution for instances deployed inside your VCNs, from outside the
appliance network environment, Private Cloud Appliance provides configuration support for
public DNS zones. Within your tenancy you create the DNS zones, or sections of the DNS
namespace, you intend to manage through the Compute Web UI. The edge network of the
appliance handles all DNS queries for the domain(s) in question.

When creating a DNS zone, you specify the name of the domain it manages – for example:
example.com. You select whether the zone is primary or secondary. A primary zone contains
its own DNS records, while a secondary zone retrieves its records from another zone. To
access the external zone's records, the secondary zone needs at least one server IP address
for the external zone. In addition, a TSIG (Transaction Signature) key may be required. TSIG
keys are shared secrets used for authentication of secondary DNS zones. You can store
these keys in the compartment of your choice.

Each DNS zone you create automatically contains two essential records:

• The SOA (Start of Authority) record specifies authoritative information about the DNS
zone. This information includes the primary name server, the domain administrator email
address, the domain serial number, and several timers related to refreshing the zone. For
more information about SOA records, see RFC 1035.

• The NS (Name Server) record lists the authoritative name servers for a zone. For more
information about NS records, see RFC 1035.

You configure the DNS zone by adding specific domain information in the form of resource
records. For example, using an address record, you make a domain name resolve to the
public IP address of an instance in a public subnet of a VCN. The public DNS zones in
Private Cloud Appliance support the resource record types described in the table below.

Chapter 6
Instance Connectivity

6-11

https://tools.ietf.org/html/rfc952
https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc1035#page-12
https://tools.ietf.org/html/rfc1035#page-12

Resource
Record Type

Description

A An address record used to point a host name to an IPv4 address. For
more information about A records, see RFC 1035.

AAAA An address record used point a host name at an IPv6 address. For
more information about AAAA records, see RFC 3596.

ALIAS A private pseudo-record that allows CNAME functionality at the apex
of a zone.

CAA A Certification Authority Authorization record allows a domain name
holder to specify one or more Certification Authorities authorized to
issue certificates for that domain. For more information about CAA
records, see RFC 6844.

CDNSKEY A Child DNSKEY moves a CDNSSEC key from a child zone to a parent
zone. The information provided in this record must match the
CDNSKEY information for your domain at your other DNS provider.
This record is automatically created if you enable DNSSEC on a
primary zone in Private Cloud Appliance DNS. For more information
about CDNSKEY, see RFC 7344.

CDS A Child Delegation Signer record is a child copy of a DS record, for
transfer to a parent zone. For more information about CDS records,
see RFC 7344.

CERT A Certificate record stores public key certificates and related
certificate revocation lists in the DNS. For more information about
CERT records, see RFC 2538 and RFC 4398.

CNAME A Canonical Name record identifies the canonical name for a domain.
For more information about CNAME records, see RFC 1035.

CSYNC A Child-to-Parent Synchronization record syncs records from a child
zone to a parent zone. For more information about CNAME records,
see RFC 7477.

DHCID A DHCP identifier record provides a way to store DHCP client
identifiers in the DNS to eliminate potential host name conflicts
within a zone. For more information about DHCID, see RFC 4701.

DKIM A Domain Keys Identified Mail is a special TXT record set up
specifically to supply a public key used to authenticate arriving mail
for a domain. For more information about DKIM records, see RFC
6376.

DNAME A Delegation Name record has similar behavior to a CNAME record,
but allows you to map an entire subtree beneath a label to another
domain. For more information about DNAME records, see RFC 6672.

DNSKEY A DNS Key record documents public keys used for DNSSEC. The
information in this record must match the DNSKEY information for
your domain at your other DNS provider. For more information about
DNSKEY records, see RFC 4034.

DS A Delegation Signer record resides at the top-level domain and points
to a child zone's DNSKEY record. DS records are created when DNSSEC
security authentication is added to the zone. For more information
about DS records, see RFC 4034.

IPSECKEY An IPSec Key record stores public keys for a host, network, or
application to connect to IP security (IPSec) systems. For more
information on IPSECKEY records, see RFC 4025.

Chapter 6
Instance Connectivity

6-12

https://tools.ietf.org/html/rfc1035#page-21
https://tools.ietf.org/html/rfc3596#section-2.1
https://tools.ietf.org/html/rfc6844#section-3
https://tools.ietf.org/html/rfc7344#section-3.2
https://tools.ietf.org/html/rfc7344#section-3.1
https://tools.ietf.org/html/rfc2538
https://tools.ietf.org/html/rfc4398#section-2
https://tools.ietf.org/html/rfc1035#page-13
https://tools.ietf.org/html/rfc7477#section-2
https://tools.ietf.org/html/rfc4701#section-3
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc6672#section-2
https://tools.ietf.org/html/rfc4034#section-2
https://tools.ietf.org/html/rfc4034#section-5
https://tools.ietf.org/html/rfc4025#section-2

Resource
Record Type

Description

KEY A Key record stores a public key that is associated with a domain
name. Currently only used by SIG and TKEY records. IPSECKEY and
DNSKEY have replaced key for use in IPSec and DNSSEC, respectively.
For more information about KEY records, see RFC 4025.

KX A Key Exchanger record identifies a key management agent for the
associated domain name with some cryptographic systems (not
including DNSSEC). For more information about KX records, see RFC
2230.

LOC A Location record stores geographic location data of computers,
subnets, and networks within the DNS. For more information about
LOC records, see RFC 1876.

MX A Mail Exchanger record defines the mail server accepting mail for a
domain. MX records must point to a host name. MX records must not
point to a CNAME or IP address. For more information about MX
records, see RFC 1035.

NS A Nameserver record lists the authoritative nameservers for a zone.
NS records are automatically generated at the apex of each new
primary zone you create. For more information about NS records, see
RFC 1035.

PTR A Pointer record reverse maps an IP address to a hostname. This
behavior is the opposite of an A Record, which forward maps a
hostname to an IP address. PTR records are commonly found in
reverse DNS zones. For more information about PTR records, see RFC
1035.

PX A resource record used in X.400 mapping protocols. For more
information about PX records, see RFC 822 and RFC 2163.

SOA A Start of Authority record specifies authoritative information about a
DNS zone, including:
• the primary nameserver
• the email of the domain administrator
• the domain serial number
• several timers relating to refreshing the zone
An SOA record is generated automatically when a zone is created. For
more information about SOA records, see RFC 1035.

SPF A Sender Policy Framework record is a special TXT record used to
store data designed to detect email spoofing. For more information
about SPF records, see RFC 4408.

SRV A Service Locator record allows administrators to use several servers
for a single domain. For more information about SRV records, see RFC
2782.

SSHFP An SSH Public Key Fingerprint record publishes SSH public host key
fingerprints using the DNS. For more information about SSHFP
records, see RFC 6594.

TLSA A Transport Layer Security Authentication record associates a TLS
server certificate, or public key, with the domain name where the
record is found. This relationship is called a TLSA certificate
association. For more information about TLSA records, see RFC 6698.

Chapter 6
Instance Connectivity

6-13

https://tools.ietf.org/html/rfc4025#section-2
https://tools.ietf.org/html/rfc2230
https://tools.ietf.org/html/rfc2230
https://tools.ietf.org/html/rfc1876
https://tools.ietf.org/html/rfc1035#page-12
https://tools.ietf.org/html/rfc1035#page-12
https://tools.ietf.org/html/rfc1035#page-12
https://tools.ietf.org/html/rfc1035#page-12
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc2163
https://tools.ietf.org/html/rfc1035#page-12
https://tools.ietf.org/html/rfc4408
https://tools.ietf.org/html/rfc2782
https://tools.ietf.org/html/rfc2782
https://tools.ietf.org/html/rfc6594
https://tools.ietf.org/html/rfc6698#section-2

Resource
Record Type

Description

TXT A Text record holds descriptive, human readable text, and can also
include non-human readable content for specific uses. It is commonly
used for SPF records and DKIM records that require non-human
readable text items. For more information about TXT records, see RFC
1035.

Traffic Management Steering Policies
Steering Policies enable you to configure policies to serve intelligent responses to
DNS queries, meaning different answers (endpoints) may be served for the query
depending on the logic defined in the policy. Private Cloud Appliance supports these
types of traffic management steering policies:

Policy Type Description

Load Balancer Load Balancer policies allow distribution of traffic across
multiple endpoints.
Endpoints can be assigned equal weights to distribute traffic
evenly across the endpoints, or custom weights may be
assigned for ratio load balancing.

IP Prefix Steering IP Prefix steering policies enable you to steer DNS traffic
based on the IP Prefix of the originating query.
You can divide users into groups based on the subnets from
where requests originate, and steer them to specific
resources based on the subdivision you made. For example,
you can serve different responses for your internal users as
opposed to external users.

A steering policy contains rules to answer DNS queries. You use those rules to filter
answers based on the properties of the DNS request. When multiple answers are
served in response to DNS queries, that group of answers is called an answer pool.
The answers within a pool are sorted by priority and are marked eligible or ineligible.
Ineligible answers are omitted from the response.

When attached to a DNS zone, a steering policy takes precedence over all resource
records of the zone it covers, and causes DNS responses to be constructed from the
steering policy rules instead. For example, if a steering policy attached to the
example.com DNS zone contains a rule covering the domain application.example.com
and an answer for the A (address) record type, then the steering policy responds with
that answer regardless of any relevant A records that exist in the zone. If a steering
policy has no answer for the record type being requested, the DNS request is passed
on to the next steering policy or the base zone records.

Steering policies only support records of the types A, AAAA, CNAME. A domain can
have at most one steering policy attachment covering a given record type. This means
a DNS zone (example.com) may have multiple attached steering policies covering
different record types for a given domain – for example, one A record policy and one
CNAME record policy for application.example.com. A DNS zone may also have
multiple attached steering policies covering a given record type for different domains –
for example, an A record policy for application.example.com and an A record policy for
database.example.com. However, multiple steering policies for the same domain and

Chapter 6
Instance Connectivity

6-14

https://tools.ietf.org/html/rfc1035#page-12
https://tools.ietf.org/html/rfc1035#page-12

record type are not supported, because the answer can be provided by only one policy.

Network Gateways
To manage traffic to and from a VCN, you can add optional virtual routers, which provide
additional functions. You set up rules in route tables to route traffic from the subnets through
a gateway to destinations outside the VCN. This section describes the role and usage of
each gateway type.

Dynamic Routing Gateway
A dynamic routing gateway, or DRG, provides a path for private network traffic between your
VCN and an on-premises network. In the context of Private Cloud Appliance, this traffic is
routed to the data center network and on to its destination. The data center network is
considered a public network because it is external to the appliance environment. However, no
form of tunneling is required since traffic does not travel over the internet. This is a significant
difference with public cloud environments.

For the purpose of access control, when creating a DRG, you must specify the compartment
where you want the DRG to reside. If you are not sure which compartment to use, put the
DRG in the same compartment as the VCN.

A DRG is a standalone object. To use it, you must attach it to a VCN. In the API, the process
of attaching creates a DRG Attachment object with its own OCID. To detach the DRG, you
delete the attachment object.

A VCN can be attached to only one DRG at a time, though a DRG can be attached to
multiple VCNs. You can detach a DRG and reattach it at any time. After attaching a DRG, you
must update the routing in the VCN to use the DRG. Otherwise, traffic from the VCN will not
flow to the DRG.

The basic routing scenario sends traffic from a subnet in the VCN to the DRG. When sending
traffic from the subnet to your on-premises network, you set up a rule in the subnet's route
table. The rule's destination CIDR is the CIDR for the on-premises network or a subnet within,
and the rule's target is the DRG.

Note:

Communication between VCNs on different DRGs residing on a PCA rack is
possible if route entries and firewall access on the customer data center network
that connects the two VCNs are provided by the customer.

NAT Gateway
A NAT gateway gives cloud resources without a public IP access to the on-premises network,
which is an external public network from the point of view of a VCN, without exposing those
resources. You create a NAT gateway in the context of a specific VCN, so the gateway is
automatically attached to that VCN upon creation. The gateway allows hosts to initiate
connections to the on-premises network and receive responses, but prevents them from
receiving inbound connections initiated from the on-premises network. NAT gateways are
highly available and support TCP, UDP, and ICMP ping traffic. The Networking service

Chapter 6
Network Gateways

6-15

automatically assigns a public IP address to the NAT gateway. You cannot choose its
public IP address.

When a host in the private network initiates a connection to the on-premises network,
the NAT device's public IP address becomes the source IP address for the outbound
traffic. The response traffic from the on-premises network therefore uses that public IP
address as the destination IP address. The NAT device then routes the response back
to the private network, to the host that initiated the connection.

VCN routing is controlled at the subnet level, so you can specify which subnets use a
NAT gateway. Private Cloud Appliance only supports one NAT gateway per VCN.

For the purpose of access control, when creating a NAT gateway, you must specify the
compartment where you want the gateway to reside. If you are not sure which
compartment to use, put the gateway in the same compartment as the VCN.

By default, a NAT gateway allows traffic at the time of creation. However, you can
block or allow traffic through the gateway at any time. Blocking a NAT gateway
prevents all traffic, regardless of any existing route rules or security rules in the VCN.

Internet Gateway
An internet gateway connects the edge of the VCN with the on-premises network. The
ultimate target of the traffic routed through an internet gateway may be the internet.
However, in a private cloud model, the internet gateway routes traffic to the on-
premises network. Traffic to and from the internet is then managed by the routing
configuration in the on-premises network.

You create an internet gateway in the context of a specific VCN, so the gateway is
automatically attached to that VCN upon creation. To use the gateway, the hosts on
both ends of the connection must have public IP addresses for routing. Connections
that originate in your VCN and are destined for a public IP address, either inside or
outside the VCN, go through the internet gateway. Connections that originate outside
the VCN and are destined for a public IP address inside the VCN also go through the
internet gateway.

A given VCN can have only one internet gateway. You control which public subnets in
the VCN can use the gateway by configuring the subnet's associated route table. The
public subnet's security list rules ultimately determine the specific types of traffic that
are allowed to and from the resources in the subnet. An internet gateway can be
disabled, meaning no traffic flows to or from the internet, regardless of any existing
route rules that enable such traffic.

For the purpose of access control, when creating an internet gateway, you must
specify the compartment where you want the gateway to reside. If you are not sure
which compartment to use, put the gateway in the same compartment as the VCN.

Local Peering Gateway
VCN peering is the process of connecting multiple virtual cloud networks (VCNs) so
that resources can communicate using private IP addresses. You can use VCN
peering to divide your network into multiple VCNs, for example, based on departments
or lines of business, with each VCN having direct private access to the others. You can
also place shared resources into a single VCN that all the other VCNs can access
privately. Two peered VCNs can be in the same tenancy or different ones.

The following components are required to set up a peering connection:

Chapter 6
Network Gateways

6-16

• Two VCNs with non-overlapping CIDRs

• A local peering gateway (LPG) on each VCN in the peering relationship

• A connection between the two LPGs

• Route rules to enable traffic over the peering connection to and from the desired subnets
in the respective VCNs

• Security rules to control the types of traffic allowed to and from the instances in the
subnets in question

Policies
Peering between two VCNs requires explicit agreement from both parties in the form of IAM
policies that each party implements for their own VCN's compartment or tenancy. If the VCNs
are in different tenancies, each administrator must provide their tenancy OCID and put in
place special coordinated policy statements to enable the peering.

To implement the IAM policies required for peering, the two VCN administrators must
designate one administrator as the requestor and the other as the acceptor. The requestor
must be the one to initiate the request to connect the two LPGs. In turn, the acceptor must
create a particular IAM policy that gives the requestor permission to connect to LPGs in the
acceptor's compartment. Without that policy, the requestor's request to connect fails. Either
VCN administrator can terminate a peering connection by deleting their LPG.

Routing and Traffic Control
As part of configuring the VCNs, each administrator must update the VCN's routing to enable
traffic to flow between the VCNs. In practice, this looks just like routing you set up for any
gateway, such as an internet gateway or dynamic routing gateway. For each subnet that
needs to communicate with the other VCN, you update the subnet's route table. The route
rule specifies the destination traffic's CIDR and your LPG as the target. Your LPG routes
traffic that matches that rule to the other LPG, which in turn routes the traffic to the next hop
in the other VCN.

You can control packet flow over the peering connection with route tables in your VCN. For
example, you can restrict traffic to only specific subnets in the other VCN. Without terminating
the peering, you can stop traffic flow to the other VCN by simply removing route rules that
direct traffic from your VCN to the other VCN. You can also effectively stop the traffic by
removing any security list rules that enable ingress or egress traffic with the other VCN. This
does not stop traffic flowing over the peering connection, but stops it at the VNIC level.

Security Rules
Each VCN administrator must ensure that all outbound and inbound traffic with the other VCN
is intended, expected and well-defined. In practice, this means implementing security list
rules that explicitly state the types of traffic your VCN can send to the other and accept from
the other. If your subnets use the default security list, there are two rules allowing SSH and
ICMP ingress traffic from anywhere, thus also the other VCN. Evaluate these rules and
whether you want to keep or update them.

In addition to security lists and firewalls, you should evaluate other OS-based configuration
on the instances in your VCN. There could be default configurations that do not apply to your
own VCN's CIDR, but inadvertently apply to the other VCN's CIDR.

Chapter 6
Network Gateways

6-17

Service Gateway
Certain services, such as the object storage service, are exposed internally over a
conceptual Services Network. Normally, these services would use public IP addresses
that can be reached over a public network – or in a public cloud model, over the
internet. Instead, the purpose of a service gateway is to enable a VCN to privately
access the services in the Services Network, meaning resources in a private subnet,
within a tightened down VCN with no external access, can still connect to those
services.

A VCN can have only one service gateway. You create a service gateway in the
context of a specific VCN, so the gateway is automatically attached to that VCN upon
creation. A service gateway allows traffic to and from all subnets at the time of
creation; there is no mechanism to block or disable this traffic.

In Private Cloud Appliance, these services are implemented at the infrastructure level
through the management node cluster. Technically, the service endpoints, which are
fully qualified domain names, are reachable from the entire on-premises network by
default. which means the service gateway has no real function. Specifically for private
cloud use, there is no need to configure a service gateway and associated route rules
to enable private access to the service endpoints. However, in order to maintain
compatibility with Oracle Cloud Infrastructure, the concept of a service gateway does
exist.

The service gateway uses a service CIDR label, which is a string that represents the
endpoints for the service or group of services of interest. This means that you don't
have to know the specific endpoints. If the service's endpoint changes in the future,
you do not need to make any adjustments. You use the service CIDR label when you
configure the service gateway. With Private Cloud Appliance you are allowed to create
the service gateway and configure route rules involving a "Service CIDR Block".
However, remember they serve no purpose other than compatibility.

Because Private Cloud Appliance is set up within the safe boundaries of your data
center network, securing private access to services is much less of a concern,
compared with a public cloud environment like Oracle Cloud Infrastructure. Therefore,
security rules are not implemented for service gateways. For details, see Security
Rules.

Virtual Firewall
The Networking service offers two virtual firewall features that both use security rules
to control traffic at the packet level. They offer different ways to apply security rules to
a set of virtual network interface cards (VNICs).

• Security lists:

A security list defines security rules at the subnet level, which means that all
VNICs in a given subnet are subject to the same rules. Each VCN comes with a
default security containing default rules for essential traffic. The default security list
is automatically used with all subnets, unless a custom security list is specified. A
subnet can have up to five associated security lists.

• Network security groups (NSGs):

A network security group defines security rules based on membership. Its security
rules apply to resources that are explicitly added to the NSG. A VNIC can be

Chapter 6
Virtual Firewall

6-18

added to a maximum of five NSGs. An NSG is intended to provide a virtual firewall for a
set of cloud resources with the same security posture. For example: a group of instances
that perform the same tasks and thus need to use the same set of ports.

Oracle recommends using NSGs instead of security lists because NSGs let you separate the
VCN's subnet architecture from your application security requirements. However, NSGs are
only supported for specific services. It is possible to use both security lists and NSGs
together, depending on your particular security needs.

If you have security rules that you want to enforce for all VNICs in a VCN, the easiest solution
is to put the rules in one security list, and then associate that security list with all subnets in
the VCN. This way you can ensure that the rules are applied, regardless of who in your
organization creates a VNIC in the VCN. Alternatively, you can add the required security rules
to the VCN's default security list.

If you choose to combine security lists and network security groups, the set of rules that
applies to a given VNIC is the union of these items:

• The security rules in the security lists associated with the VNIC's subnet

• The security rules in all NSGs that the VNIC is in

A packet in question is allowed if any rule in any of the relevant lists and groups allows the
traffic, or if the traffic is part of an existing connection being tracked because of a stateful rule.

Security Rules
This section explains important aspects of security rules that you need to understand in order
to implement them as part of security lists or network security groups. How you create,
manage, and apply security rules varies between security lists and network security groups.
Related sections provide more detailed information about each implementation.

Parts of a Security Rule
A security rule allows a particular type of traffic into or out of a VNIC. For example, a
commonly used security rule allows ingress TCP port 22 traffic for establishing SSH
connections to the instance. Without security rules, no traffic is allowed into and out of VNICs
in the VCN.

Each security rule specifies the following items:

• Direction (ingress or egress): Ingress is inbound traffic to the VNIC; egress is outbound
traffic from the VNIC.

The REST API model for security lists is different from network security groups. With
security lists, there is an IngressSecurityRule object and a separate
EgressSecurityRule object. With network security groups, there is only a SecurityRule
object, and the object's direction attribute determines whether the rule is for ingress or
egress traffic.

• Stateful or stateless: If stateful, connection tracking is used for traffic matching the rule.
If stateless, no connection tracking is used. See Stateful and Stateless Rules in this
section.

• Source type and source: For ingress rules only; the source you provide depends on the
source type you choose. These source types are allowed:

Chapter 6
Virtual Firewall

6-19

Source Type Allowed Source

CIDR The CIDR block where the traffic originates from. Use 0.0.0.0/0
to indicate all IP addresses. The prefix is required. For
example, include the /32 if specifying an individual IP address.

• Destination type and destination: For egress rules only; the destination you
provide depends on the destination type you choose. These destination types are
allowed:

Destination Type Allowed Destination

CIDR The CIDR block that the traffic is destined for. Use 0.0.0.0/0 to
indicate all IP addresses. The prefix is required. For example,
include the /32 if specifying an individual IP address.

• IP Protocol: Either a single IPv4 protocol or "all" to cover all protocols.

• Source port: The port where the traffic originates from. For TCP or UDP, you can
specify all source ports, or optionally specify a single source port number, or a
range.

• Destination port: The port where the traffic is destined to. For TCP or UDP, you
can specify all destination ports, or optionally specify a single destination port
number, or a range.

• ICMP type and code: For ICMP, you can specify all types and codes, or optionally
specify a single type with an optional code. If the type has multiple codes, create a
separate rule for each code you want to allow.

• Description: NSG security rules contain an optional attribute to include a
description of the rule. This is currently not supported for security list rules.

Stateful and Stateless Rules
When you create a security rule, you choose whether it is stateful or stateless. The
default is stateful. Stateless rules are recommended if you have a high-volume
internet-facing website, for the HTTP/HTTPS traffic.

Marking a security rule as stateful indicates that you want to use connection tracking
for any traffic that matches that rule. This means that when an instance receives traffic
matching the stateful ingress rule, the response is tracked and automatically allowed
back to the originating host, regardless of any egress rules applicable to the instance.
And when an instance sends traffic that matches a stateful egress rule, the incoming
response is automatically allowed, regardless of any ingress rules.

Marking a security rule as stateless indicates that you do NOT want to use connection
tracking for any traffic that matches that rule. This means that response traffic is not
automatically allowed. To allow the response traffic for a stateless ingress rule, you
must create a corresponding stateless egress rule.

If you use both stateful and stateless rules, and there is traffic that matches both a
stateful and stateless rule in a particular direction, the stateless rule takes precedence
and the connection is not tracked. You would need a corresponding rule in the other
direction, either stateless or stateful, for the response traffic to be allowed.

If you decide to use stateless security rules to allow traffic to/from endpoints outside
the VCN, it is important to add a security rule that allows ingress ICMP traffic type 3
code 4 from source 0.0.0.0/0 and any source port. This rule enables your instances to

Chapter 6
Virtual Firewall

6-20

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

receive Path MTU Discovery fragmentation messages. This rule is critical for establishing a
connection to your instances. Without it, you can experience connectivity issues.

Best Practices for Security Rules
• Use network security groups

Oracle recommends using NSGs for components that all have the same security posture.
For example, in a multi-tier architecture, you would have a separate NSG for each tier. A
given tier's VNICs would all belong to that tier's NSG.

Within a given tier, you might have a particular subset of the tier's VNICs that have
additional, special security requirements. Therefore you would create another NSG for
those additional rules, and place that subset of VNICs into both the tier's NSG and the
NSG with additional rules.

• Understand default security list rules

Each VCN automatically comes with a default security list that contains several default
security rules to help you get started using the Networking service. Those rules exist
because they enable basic connectivity.

Even if you choose not to use security lists or the default security list, get familiar with the
rules so you better understand the types of traffic that your networked cloud resources
require. You might want to use those rules in your NSGs or any custom security lists that
you set up.

There is no default rule to allow ping requests. If you want to ping an instance, add a
stateful ingress rule to specifically allow ICMP traffic type 8 from the source network you
plan to ping from. To allow ping access from the internet, use 0.0.0.0/0 for the source.
Note that this rule for pinging is separate from the default ICMP-related rules in the
default security list. Do not remove those rules.

• Do not delete default security rules indiscriminately

Your VCN might have subnets that use the default security list by default. Do not delete
any of the list's default security rules unless you have first confirmed that resources in
your VCN do not require them. Otherwise, you might disrupt your VCN's connectivity.

• If necessary, add rules to allow ping requests

There is no default rule to allow ping requests. If you want to ping an instance, add a
stateful ingress rule to specifically allow ICMP traffic type 8 from the source network you
plan to ping from. To allow ping access from the internet, use 0.0.0.0/0 for the source.
Note that this rule for pinging is separate from the default ICMP-related rules in the
default security list. Do not remove those rules.

• If necessary, add rules to handle fragmented UDP packets

Instances can send or receive UDP traffic. If a UDP packet is too large for the
connection, it is fragmented. However, only the first fragment from the packet contains
the protocol and port information. If the security rules that allow this ingress or egress
traffic specify a particular (source or destination) port number, the fragments after the first
one are dropped. If you expect your instances to send or receive large UDP packets, set
both the source and destination ports for the applicable security rules to ALL instead of a
particular port number.

• Align OS firewall rules with security rules

Your instances running images provided with Private Cloud Appliance also have OS
firewall rules that control access to the instance. When troubleshooting access to an
instance, make sure that all of the following items are set correctly:

Chapter 6
Virtual Firewall

6-21

– The rules in the network security groups that the instance is in

– The rules in the security lists associated with the instance's subnet

– The instance's OS firewall rules

Security Lists
A security list acts as a virtual firewall for an instance, with ingress and egress rules
that specify the types of traffic allowed in and out. Each security list is enforced at the
VNIC level. However, you configure your security lists at the subnet level, which
means that all VNICs in a given subnet are subject to the same set of security lists.
The security lists apply to a given VNIC whether it is communicating with another
instance in the VCN or a host outside the VCN. Each subnet can have multiple
security lists associated with it, and each list can have multiple rules.

Each VCN comes with a default security list. If you do not specify a custom security list
for a subnet, the default security list is automatically used with that subnet. You can
add and remove rules in the default security list. It has an initial set of stateful rules,
which should in most cases be changed to only allow inbound traffic from authorized
subnets. The default rules are:

• Stateful ingress: Allow TCP traffic on destination port 22 (SSH) from authorized
source IP addresses and any source port.

This rule makes it easy for you to create a new cloud network and public subnet,
launch a Linux instance, and then immediately use SSH to connect to that
instance without needing to write any security list rules yourself.

The default security list does not include a rule to allow Remote Desktop Protocol
(RDP) access. If you are using Microsoft Windows images, make sure to add a
stateful ingress rule for TCP traffic on destination port 3389 from authorized
source IP addresses and any source port.

• Stateful ingress: Allow ICMP traffic type 3 code 4 from authorized source IP
addresses.

This rule enables your instances to receive Path MTU Discovery fragmentation
messages.

• Stateful ingress: Allow ICMP traffic type 3 (all codes) from your VCN's CIDR
block.

This rule makes it easy for your instances to receive connectivity error messages
from other instances within the VCN.

• Stateful egress: Allow all traffic.

This allows instances to initiate traffic of any kind to any destination. This implies
that instances with public IP addresses can talk to any internet IP address if the
VCN has a configured internet gateway. And because stateful security rules use
connection tracking, the response traffic is automatically allowed regardless of any
ingress rules.

The general process for working with security lists is as follows:

1. Create a security list.

2. Add security rules to the security list.

3. Associate the security list with one or more subnets.

4. Create resources, such as compute instances, in the subnet.

Chapter 6
Virtual Firewall

6-22

The security rules apply to all the VNICs in that subnet.

When you create a subnet, you must associate at least one security list with it. It can be
either the VCN's default security list or one or more other security lists that you already
created. You can change which security lists the subnet uses at any time. You can add and
remove rules in the security list. It is possible for a security list to contain no rules.

Network Security Groups
A network security group (NSG) provides a virtual firewall for a set of cloud resources, within
a single VCN, that all have the same security posture. For example: a group of compute
instances that all perform the same tasks and thus all need to use the same set of ports.

Rules in an NSG are enforced on VNICs, but their NSG membership is determined through
their parent resources. Not all cloud services support NSGs. Currently, the following types of
parent resources support the use of NSGs:

• Compute instances: When you create an instance, you can specify one or more NSGs
for the instance's primary VNIC. If you add a secondary VNIC to an instance, you can
specify one or more NSGs for that VNIC. You can also change the NSG membership of
existing VNICs.

• Mount targets: When you create a mount target for a file system, you can specify one or
more NSGs. You can also update an existing mount target to use one or more NSGs.

For resource types that do not yet support NSGs, continue to use security lists to control
traffic to and from those parent resources.

An NSG contains two types of elements:

• VNICs: One or more VNICs; for example, the VNICs attached to the set of compute
instances that all have the same security posture. All the VNICs must be in the VCN that
the NSG belongs to. A VNIC can be in a maximum of five NSGs.

• Security rules: Rules that define the types of traffic allowed into and out of the VNICs in
the group. For example: ingress TCP port 22 SSH traffic from a particular source.

The general process for working with NSGs is as follows:

1. Create an NSG.

When you create an NSG, it is initially empty, without any security rules or VNICs. After
the NSG is created, you can add or remove security rules to allow the types of ingress
and egress traffic that the VNICs in the group require.

2. Add security rules to the NSG.

3. Add parent resources, or more specifically VNICs, to the NSG.

When you manage an NSG's VNIC membership, you do it as part of working with the
parent resource, not the NSG itself. You can do this when you create the parent resource,
or you can update the parent resource and add it to one or more NSGs.

When you create a compute instance and add it to an NSG, the instance's primary VNIC
is added to the NSG. You can create secondary VNICs separately, and optionally add
them to NSGs.

There are some differences in the REST API model for NSGs compared to security lists:

• With security lists, there is an IngressSecurityRule object and a separate
EgressSecurityRule object. With network security groups, there is only a SecurityRule

Chapter 6
Virtual Firewall

6-23

object, and the object's direction attribute determines whether the rule is for
ingress or egress traffic.

• With security lists, the rules are part of the SecurityList object, and you work with
the rules by calling the security list operations; for example: UpdateSecurityList.
With NSGs, the rules are not part of the NetworkSecurityGroup object. Instead
you use separate operations to work with the rules for a given NSG; for example:
UpdateNetworkSecurityGroupSecurityRules.

• The model for updating existing security rules is different between security lists
and NSGs. With NSGs, each rule in a given group has a unique identifier. When
you call UpdateNetworkSecurityGroupSecurityRules, you provide the IDs of the
specific rules that you want to update. With security lists, the rules have no unique
identifier. When you call UpdateSecurityList, you must pass in the entire list of
rules, including rules that are not being updated in the call.

• There is a limit of 25 rules when calling the operations to add, remove, or update
security rules.

Network Security
This section provides information about controlling access and security in your cloud
network. The firewall functionality inside a VCN is described in detail in Virtual Firewall.
Additional topics about secure network access are discussed here.

Ways to Secure Your Network
There are several mechanisms to control security for your cloud network and compute
instances:

• Private subnets: If instances do not require a public IP address, you can
designate a subnet to be private, to prevent instances from obtaining a private IP.

• Firewall rules: To control packet-level traffic into and out of an instance, you can
configure firewall rules directly on the instance itself. Images provided with Private
Cloud Appliance that run Oracle Linux automatically include default rules that
allow ingress on TCP port 22 for SSH traffic. Also, Microsoft Windows images may
include default rules that allow ingress on TCP port 3389 for Remote Desktop
access.

• Gateways and route tables: To control general traffic flow from your cloud
network to outside destinations – the internet, your on-premises network, or
another VCN – you configure your cloud network's gateways and route tables to
allow only the connectivity that is effectively required.

• IAM policies: You can control who has access to the Private Cloud Appliance
interfaces. You can control which cloud resources can be accessed and which
type of access is allowed. For example, you can control who can set up your
network and subnets, or who can update route tables, network security groups, or
security lists.

Access Control
This topic provides basic information about using compartments and IAM policies to
control access to your cloud network.

Chapter 6
Network Security

6-24

Using Compartments with Network Resources
Whenever you create a cloud resource such as a virtual cloud network (VCN) or compute
instance, you must specify which IAM compartment you want the resource to be in. A
compartment is a collection of related resources that can only be accessed by certain groups
that have been given permission by an administrator in the tenancy. The administrator
creates compartments and corresponding IAM policies to control which users in your
organization access which compartments. Ultimately, the goal is to ensure that users can only
access the resources they need.

In an enterprise production environment, you typically divide the tenancy into multiple
compartments to more easily control access to certain types of resources. For example, your
administrator could create Compartment_A for your VCN and other networking components.
The administrator could then create Compartment_B for all the compute instances and block
storage volumes that the HR department uses, and Compartment_C for all the instances and
block storage volumes that the Marketing department uses.

The administrator would then create IAM policies that give users only the level of access they
need in each compartment. For example, HR instance administrators are not entitled to
modify the existing cloud network. So they would have full permissions for Compartment_B,
but limited access to Compartment_A: only what is required to launch instances into the
network. If they try to modify other resources in Compartment_A, the request is denied.

Network resources such as VCNs, subnets, route tables, security lists, service gateways, and
NAT gateways can be moved from one compartment to another. When you move a resource
to a new compartment, inherent policies apply immediately.

Detailed information about the use of compartments, and how to control access to your cloud
resources, is provided in the chapter Identity and Access Management Overview. More
specifically, refer to Organizing Resources in Compartments and How Policies Work.

Using IAM Policies for Networking
A convenient and common approach to granting access to Networking is to grant permission
to a Network Administrators group to manage the VCN and all related networking
components: subnets, security lists, route tables, gateways, and so on. It is useful to also
allow the Network Administrators to launch instances in order to test network connectivity.
Both policies – to manage network resources and to launch instances – are covered in
Common Policies. The required policy statements should look similar to this example:

Allow group NetworkAdmins to manage virtual-network-family in tenancy
Allow group NetworkAdmins to manage instance-family in compartment ABC
Allow group NetworkAdmins to use volume-family in compartment ABC

If you are not yet familiar with IAM policies, refer to How Policies Work in the chapter Identity
and Access Management Overview.

If you prefer a finer-grained approach to access control, you can write policies that focus on
individual resource types. For example, the virtual-network-family resource type includes
individual resource types such as subnets, route-tables, security-lists or local-
peering-gateways. You can grant specific access to these by writing separate policies per
resource type.

In addition, you can write policies that limit the level of access by using a different policy verb;
for example: manage versus use, and so on. If you do, there are some nuances to understand
about the policy verbs for Networking.

Chapter 6
Network Security

6-25

Be aware that the inspect verb not only returns general information about the network
components; for example, the name and OCID of a security list or route table. It also
includes the contents of the component; for example, the actual rules in the security
list, the routes in the route table, and so on.

Also, the following operations are available only with the manage verb, not the use verb:

• Update (enable/disable) internet-gateways
• Update security-lists
• Update route-tables
• Update dhcp-options
• Attach a DRG to a VCN

• Peer two VCNs

Each VCN has various components that directly affect the behavior of the network:
route tables, security lists, DHCP options, internet gateway, and so on. When you
create one of these components, you establish a relationship between that component
and the VCN, which means you must be allowed in a policy to both create the
component and manage the VCN itself. However, the ability to update that component
– to change the route rules, security list rules, and so on – does NOT require
permission to manage the VCN itself, even though changing that component can
directly affect the behavior of the network. This discrepancy is designed to give you
flexibility in granting least privilege to users, and not require you to grant excessive
access to the VCN just so the user can manage other components of the network. Be
aware that by giving someone the ability to update a particular type of component, you
are implicitly trusting them with controlling the network's behavior.

Networking Scenarios
This section describes a number of basic networking scenarios to help you understand
the networking service and how networking components operate together.

Caution:

Regardless of the selected networking scenario, always ensure that the IP
address ranges configured as Private Cloud Appliance public IPs DO NOT
conflict with IP addresses used within the data center network.

When configuring virtual cloud networks (VCNs) with a dynamic routing
gateway (DRG), ensure that the VCN IP address ranges DO NOT overlap
with each other or with the on-premises network.

Private Subnet with Data Center Ingress and Egress Traffic
This section describes a setup consisting of a VCN and a private subnet. Instances in
the subnet can reach and be reached from the on-premises network. For connectivity
to and from your on-premises network, the VCN needs a dynamic routing gateway
(DRG).

Chapter 6
Networking Scenarios

6-26

The subnet uses the default security list, which has default rules that are designed to make it
easy to get started. The rules enable typical required access; for example inbound SSH
connections and any type of outbound connections. Remember that security list rules only
allow traffic. Any traffic not explicitly covered by a security list rule is implicitly denied. In this
scenario, you add additional rules to the default security list. You could instead create a
custom security list for those rules. You would then set up the subnet to use both the default
security list and the custom security list.

The subnet uses the default route table, which contains no rules when the VCN is created. In
this scenario, the table has only a single rule: to route traffic intended for all destinations
(0.0.0.0/0) through the DRG.

The VCN CIDR must not overlap with any IP address range in the data center, or in any other
VCN that uses a DRG. The VCN CIDR also must not overlap with the IP addresses
configured as Private Cloud Appliance public IPs. Overlap with VCNs using a NAT gateway
or internet gateway is allowed.

To set up this networking scenario, you perform the following steps:

1. Create the VCN.

Choose a compartment you have permission to work in. Specify a CIDR block for the
VCN; for example: 172.16.0.0/16. Optionally, enable DNS and specify a DNS label for the
VCN.

2. Create the private subnet.

Specify a single, contiguous CIDR block within the VCN's CIDR block; for example:
172.16.10.0/24. Make the subnet private; the instances you create cannot obtain a public
IP address. Select the default route table. If you enabled DNS at the VCN level, you can
choose to assign host names in the subnet and specify a subnet DNS label as well.

3. Update the default security list.

You set up the subnet to use the VCN's default security list. Now you add security list
rules that allow the types of connections that the instances in the VCN will need.

For example, if your subnet contains Microsoft Windows instances and you intend to
access them using RDP, add an ingress rule to the default security list using these
parameters:

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 3389

4. Create a dynamic routing gateway (DRG) and attach it to your VCN.

When you create the DRG, it is in "Provisioning" state for a short period. Ensure that
provisioning is done before continuing. Next, attach the DRG you just created to your
VCN. For this scenario you can ignore the advanced attachment options. The DRG
attachment will be in "Attaching" state for a short period before it is ready.

To allow traffic to flow to the DRG, you must add a route rule.

5. Update the default route table to use the DRG.

Chapter 6
Networking Scenarios

6-27

The default route table starts out with no rules. No route rule is required in order to
route traffic within the VCN itself. You must add a rule that routes all traffic
destined for addresses in your on-premises network to the DRG. Enter these
parameters:

• Target Type: Dynamic Routing Gateway.

The VCN's attached DRG is automatically selected as the target.

• Destination CIDR block: 0.0.0.0/0

This means that all non-intra-VCN traffic that is not already covered by other
rules in the route table goes to the target specified in this rule.

Because the subnet was set up to use the default route table, the DRG now
enables traffic between the resources in the subnet and in your on-premises
network.

6. Create instances.

Your next step is to create one or more instances in the subnet. Each instance
automatically gets a private IP address. With the network setup in this scenario, no
additional configuration is required in order to access the instances from your on-
premises network.

Private Subnet with Data Center Egress Traffic Only
This section describes a setup consisting of a VCN and a private subnet. Instances in
the subnet can reach the on-premises network, but cannot be reached from outside
the VCN. For connectivity to your on-premises network, the VCN needs a NAT
gateway.

The subnet uses the default security list, which has default rules that are designed to
make it easy to get started. Remember that security list rules only allow traffic. Any
traffic not explicitly covered by a security list rule is implicitly denied. In this scenario,
no additional rules need to be added to the default security list.

The subnet uses the default route table, which contains no rules when the VCN is
created. In this scenario, the table has only a single rule: to route traffic intended for all
destinations (0.0.0.0/0) through the NAT gateway.

There are no overlap restrictions for the VCN CIDR in this configuration.

To set up this networking scenario, you perform the following steps:

1. Create the VCN.

Choose a compartment you have permission to work in. Specify a CIDR block for
the VCN; for example: 172.16.0.0/16. Optionally, enable DNS and specify a DNS
label for the VCN.

2. Create the private subnet.

Specify a single, contiguous CIDR block within the VCN's CIDR block; for
example: 172.16.10.0/24. Make the subnet private; the instances you create
cannot obtain a public IP address. Select the default route table. If you enabled
DNS at the VCN level, you can choose to assign host names in the subnet and
specify a subnet DNS label as well.

3. Create a NAT gateway and attach it to your VCN.

Chapter 6
Networking Scenarios

6-28

When you create the NAT gateway, it is enabled immediately. However, you must add a
route rule to allow traffic to flow to the gateway.

4. Update the default route table to use the NAT gateway.

The default route table starts out with no rules. No route rule is required in order to route
traffic within the VCN itself. You must add a rule that routes all traffic destined for
addresses in your on-premises network to the NAT gateway. Enter these parameters:

• Target Type: NAT gateway.

The VCN's attached NAT gateway is automatically selected as the target.

• Destination CIDR block: 0.0.0.0/0

This means that all non-intra-VCN traffic that is not already covered by other rules in
the route table goes to the target specified in this rule.

Because the subnet was set up to use the default route table, the NAT gateway now
enables traffic from the resources in the subnet to your on-premises network.

5. Create instances.

Your next step is to create one or more instances in the subnet. Each instance
automatically gets a private IP address. With the network setup in this scenario,
instances can reach resources in your on-premises network, but your on-premises
network has no direct access to these instances.

Public Subnet with Data Center Ingress and Egress Traffic
This section describes a setup consisting of a VCN and a public subnet. Instances in the
subnet can reach and be reached from the on-premises network. For connectivity to and from
your on-premises network, the VCN needs an internet gateway. The IP addresses used in
this scenario must be public from the appliance perspective. In a private cloud context, this
means a unique address directly reachable from the on-premises network.

The subnet uses the default security list, which has default rules that are designed to make it
easy to get started. The rules enable typical required access; for example inbound SSH
connections and any type of outbound connections. Remember that security list rules only
allow traffic. Any traffic not explicitly covered by a security list rule is implicitly denied. In this
scenario, you add additional rules to the default security list. You could instead create a
custom security list for those rules. You would then set up the subnet to use both the default
security list and the custom security list.

The subnet uses the default route table, which contains no rules when the VCN is created. In
this scenario, the table has only a single rule: to route traffic intended for all destinations
(0.0.0.0/0) through the internet gateway.

There are no overlap restrictions for the VCN CIDR in this configuration.

To set up this networking scenario, you perform the following steps:

1. Create the VCN.

Choose a compartment you have permission to work in. Specify a CIDR block for the
VCN; for example: 172.16.0.0/16. Optionally, enable DNS and specify a DNS label for the
VCN.

2. Create the public subnet.

Specify a single, contiguous CIDR block within the VCN's CIDR block; for example:
172.16.10.0/24. Select the default route table. Make the subnet public, so that instances

Chapter 6
Networking Scenarios

6-29

can obtain public IP addresses. If you enabled DNS at the VCN level, you can
choose to assign host names in the subnet and specify a subnet DNS label as
well.

3. Create the internet gateway.

When you create the internet gateway, it is enabled immediately. However, you
must add a route rule to allow traffic to flow to the gateway.

4. Update the default route table to use the internet gateway.

The default route table starts out with no rules. No route rule is required in order to
route traffic within the VCN itself. You must add a rule that routes all traffic
destined for addresses outside the VCN to the internet gateway. Enter these
parameters:

• Target Type: Internet Gateway

• Destination CIDR block: 0.0.0.0/0

This means that all non-intra-VCN traffic that is not already covered by other
rules in the route table goes to the target specified in this rule.

• Target: The internet gateway you created.

Because the subnet was set up to use the default route table, the resources in the
subnet can now use the internet gateway. The existence of this rule also enables
inbound connections to the subnet, through the internet gateway. The next step is
to specify the types of traffic you want to allow into and out of the instances you
later create in the subnet.

5. Update the default security list.

You set up the subnet to use the VCN's default security list. Now you add security
list rules that allow the types of connections that the instances in the VCN will
need.

For example, if the instances in your subnet are web servers, they likely need to
receive inbound HTTPS connections. To enable that traffic, add an ingress rule to
the default security list using these parameters:

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 443

6. Create instances.

Your next step is to create one or more instances in the subnet. Each instance
automatically gets a private IP address. With the network setup in this scenario,
you must give each instance a public IP address, otherwise you cannot access
them through the internet gateway.

Public Subnet with Mixed Data Center Connectivity
This section describes a setup consisting of a VCN and a public subnet. It contains a
mix of instances with and without a public IP address. Instances with a public IP
address can reach and be reached from the on-premises network through an internet
gateway. Instances with only a private IP address cannot be reached from outside the

Chapter 6
Networking Scenarios

6-30

VCN, but have access to selected resources, for example software repositories, in the on-
premises network through a NAT gateway. In a private cloud context, the public IP addresses
in this scenario are unique and directly reachable within the on-premises network.

The subnet uses the default security list, which has default rules that are designed to make it
easy to get started. The rules enable typical required access; for example inbound SSH
connections and any type of outbound connections. Remember that security list rules only
allow traffic. Any traffic not explicitly covered by a security list rule is implicitly denied. In this
scenario, you add additional rules to the default security list. You could instead create a
custom security list for those rules. You would then set up the subnet to use both the default
security list and the custom security list.

The subnet uses the default route table, which contains no rules when the VCN is created. In
this scenario, the table has two rules:

• to route traffic intended for a particular data center address range (for example
10.25.4.0/24) through the NAT gateway

• to route traffic intended for all other destinations (0.0.0.0/0) through the internet gateway

There are no overlap restrictions for the VCN CIDR in this configuration.

To set up this networking scenario, you perform the following steps:

1. Create the VCN.

Choose a compartment you have permission to work in. Specify a CIDR block for the
VCN; for example: 172.16.0.0/16. Optionally, enable DNS and specify a DNS label for the
VCN.

2. Create the public subnet.

Specify a single, contiguous CIDR block within the VCN's CIDR block; for example:
172.16.10.0/24. Select the default route table. Make the subnet public, so that instances
can obtain public IP addresses. If you enabled DNS at the VCN level, you can choose to
assign host names in the subnet and specify a subnet DNS label as well.

3. Create an internet gateway and a NAT gateway.

When you create these gateways, they are enabled immediately. However, you must add
route rules to allow traffic to flow to the gateways.

4. Update the default route table to use the two gateways.

The default route table starts out with no rules. No route rule is required in order to route
traffic within the VCN itself. You must add rules that route traffic destined for addresses
outside the VCN to the gateways.

a. Add a routing rule for the NAT gateway using these parameters, and replace the
example destination as required:

• Target Type: NAT Gateway

• Destination CIDR block: 10.25.4.0/24

This means that all non-intra-VCN traffic intended for that particular subnet in the
data center goes to the target specified in this rule.

• Target: The NAT gateway you created.

b. Add a routing rule for the internet gateway using these parameters:

• Target Type: Internet Gateway

• Destination CIDR block: 0.0.0.0/0

Chapter 6
Networking Scenarios

6-31

This means that all non-intra-VCN traffic that is not already covered by
other rules in the route table goes to the target specified in this rule.

• Target: The internet gateway you created.

Because the subnet was set up to use the default route table, the resources in the
subnet can now use the internet gateway or NAT gateway.

• Instances with only a private IP address can reach resources in the data
center IP range 10.25.4.0/24. In this example we assume that software
repositories exist in that range, and instances access them to update the
operating system and applications they run. Other traffic outside the VCN is
not allowed.

• Instances with a public IP address also use the NAT gateway when connecting
to resources in that specific data center IP range. For all other outbound traffic,
as well as inbound connections, the internet gateway is used.

The next step is to specify the types of traffic you want to allow into and out of the
instances you later create in the subnet.

5. Update the default security list.

You set up the subnet to use the VCN's default security list. Now you add security
list rules that allow the types of connections that the instances in the VCN will
need.

For example, if the instances with a public IP address in your subnet are web
servers, they likely need to receive inbound HTTPS connections. To enable that
traffic, add an ingress rule to the default security list using these parameters:

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 443

6. Create instances.

Your next step is to create instances in the subnet. Each instance automatically
gets a private IP address. With the network setup in this scenario, you must give
an instance a public IP address if it requires external connectivity through the
internet gateway.

Public and Private Subnet with Separate Routing
This section describes a simple multi-tier setup consisting of a VCN with a public and a
private subnet. The public subnet holds public instances such as web servers, and the
private subnet holds private instances such as database servers. The VCN has a NAT
gateway for connectivity from the private subnet to your on-premises network.
Instances in the public subnet have external access through an internet gateway.

Chapter 6
Networking Scenarios

6-32

Note:

In Private Cloud Appliance the public IP addresses are reserved address ranges
within the boundaries of the on-premises network; not actual unique internet
addresses. The internet gateway in the VCN allows access from the on-premises
network to the public subnet. From an instance in the public subnet you can then
access resources in the private subnet.

Each subnet uses the default security list, which has default rules that are designed to make
it easy to get started. The rules enable typical required access; for example inbound SSH
connections and any type of outbound connections. Remember that security list rules only
allow traffic. Any traffic not explicitly covered by a security list rule is implicitly denied.

Each subnet also has its own custom security list and custom route table with rules specific to
the needs of the subnet's instances. In this scenario, the VCN's default route table, which is
always empty to start with, is not used.

To set up this networking scenario, you perform the following steps:

1. Create the VCN.

Choose a compartment you have permission to work in. Specify a CIDR block for the
VCN; for example: 172.16.0.0/16. Optionally, enable DNS and specify a DNS label for the
VCN.

2. Add the necessary gateways to the VCN.

The instances in the public subnet need an internet gateway for incoming and outgoing
public traffic. The instances in the private subnet need a NAT gateway to be able to reach
the data center network. These gateways are enabled immediately upon creation, but
you must add route rules to allow traffic to flow to them.

3. Create custom route tables for the subnets you will create later.

a. For the public subnet, create a route table and add a rule that routes all traffic
destined for addresses outside the VCN to the internet gateway. Enter these
parameters:

• Target Type: Internet Gateway

• Destination CIDR block: 0.0.0.0/0

This means that all non-intra-VCN traffic that is not already covered by other
rules in the route table goes to the target specified in this rule.

• Target: The internet gateway you created.

b. For the private subnet, create a route table and add a rule that routes all traffic
destined for addresses in your on-premises network to the NAT gateway. Enter these
parameters:

• Target Type: NAT Gateway

• Destination CIDR block: 0.0.0.0/0

This means that all non-intra-VCN traffic that is not already covered by other
rules in the route table goes to the target specified in this rule.

• Target: The NAT gateway you created.

4. Update the default security list.

Chapter 6
Networking Scenarios

6-33

Add security list rules that allow the types of connections that the instances in the
VCN will need.

Edit each of the existing stateful ingress rules so that the Source CIDR is not
0.0.0.0/0, but the CIDR for your on-premises network; in this example:
10.25.0.0/16.

5. Create custom security lists for the subnets you will create later.

a. Create a custom security list for the public subnet and add rules to allow the
types of connections that the public instances will need. For example, web
servers likely need to receive HTTP and HTTPS ingress traffic. For HTTP, use
the settings below. For HTTPS, add another similar rule for TCP port 443.

• Source Type: CIDR

• Source CIDR: 0.0.0.0/0

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 80

b. Create a custom security list for the private subnet and add rules to allow the
types of connections that the private instances will need. For example,
database servers likely need to receive SQL*Net (TCP port 1521) ingress
traffic from clients in the private and the public subnet. For clients in the public
subnet, use the settings below. For clients in the private subnet, add another
similar rule for the CIDR of the private subnet (172.16.1.0/24).

• Source Type: CIDR

• Source CIDR: 172.16.2.0/24

• IP Protocol: TCP

• Source Port Range: All

• Destination Port Range: 1521

6. Create the subnets in the VCN.

• Public subnet:

Specify a single, contiguous CIDR block within the VCN's CIDR block; for
example: 172.16.2.0/24. Make the subnet public, so that instances can obtain
public IP addresses. Select the custom public subnet route table you created
earlier.

Select two security lists: both the default security list and the public subnet
security list you created earlier. If you enabled DNS at the VCN level, you can
choose to assign host names in the subnet and specify a subnet DNS label as
well.

• Private subnet:

Specify a single, contiguous CIDR block within the VCN's CIDR block; for
example: 172.16.1.0/24. Make the subnet private; the instances you create in
this subnet cannot obtain a public IP address. Select the custom private
subnet route table you created earlier.

Select two security lists: both the default security list and the private subnet
security list you created earlier. If you enabled DNS at the VCN level, you can
choose to assign host names in the subnet and specify a subnet DNS label as
well.

Chapter 6
Networking Scenarios

6-34

7. Create instances.

Your next step is to create instances in the subnets. Each instance automatically gets a
private IP address. In the public subnet, assign a public IP address to each instance.
Otherwise, you won't be able to reach the instance from your on-premises network.

Chapter 6
Networking Scenarios

6-35

7
Compute Instance Concepts

Oracle Private Cloud Appliance lets you provision and manage compute instances.

On Private Cloud Appliance, a compute instance is a virtual machine (VM), which is an
independent computing environment that runs on top of physical hardware. The virtualization
makes it possible to run multiple compute instances that are isolated from each other.

When you launch a compute instance, you can select the most appropriate type of compute
instance for your applications based on characteristics such as the number of CPUs, amount
of memory, and network resources.

After you launch a compute instance, you can access it securely from your computer, restart
it, attach and detach volumes, and terminate it when you're done with it.

You can create a pool of compute instances and automatically grow or shrink the pool
according to criteria that you define.

For step-by-step instructions for managing the Compute service, refer to Compute Instance
Deployment in the Oracle Private Cloud Appliance User Guide.

You can create a pool of compute instances (nodes) in a Kubernetes cluster. See Container
Engine for Kubernetes and the Oracle Private Cloud Appliance Container Engine for
Kubernetes Guide.

Components for Launching Instances
These components are required to launch a compute instance:

Tenancy

The root compartment that contains all of your organization's compartments and cloud
resources. The Service Enclave administrator creates the tenancy in which compartments
are created. A tenancy administrator creates compartments in a tenancy where the compute
resources are created. You must have a tenancy to have compartments where instances are
launched.

Compartment

A collection of related resources that are only accessible by certain groups that have been
given permission by an administrator in your organization. Compute instances are created in
compartments. All compartments exist in a tenancy, which is the root compartment.

Virtual Cloud Network (VCN)

A virtual version of a traditional network—including subnets, route tables, and gateways—on
which your compute instance runs. At least one cloud network must be set up by a Compute
Enclave administrator before you launch compute instances.

Key Pair

If the image that is used to launch the instance is configured to require Secure Shell (SSH)
for authentication, then you need an SSH key pair before launching the instance. This

7-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/oke/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/oke/

requirement applies to instances launched from images provided with Private Cloud
Appliance and by most UNIX type images. If the image is configured to use passwords
instead, you need the password instead of the key pair.

Image

A template of a virtual hard drive that determines the operating system and other
software for a compute instance. You can also launch compute instances using these
images:

• Images provided with Oracle Private Cloud Appliance

• Custom images created from other instances

• Import your own image

For more information about images, see Compute Images in the Oracle Private Cloud
Appliance User Guide.

Shape

A template that determines the number of CPUs, amount of memory, and other
resources allocated to a newly created compute instance. You choose the most
appropriate shape when you launch a compute instance.

Compute Shapes
A shape is a template that determines the number of OCPUs, amount of memory, and
number of VNICs that are allocated to a compute instance. You choose a shape when
you create an instance.

Private Cloud Appliance supports two types of shapes:

• Standard shapes: Each shape has a fixed number of OCPUs and memory that
are allocated to an instance when the instance is created.

• Flexible shape: You choose the number of OCPUs and amount of memory that
are allocated to an instance.

Standard Shapes

Standard shapes are designed for general-purpose workloads and suitable for a wide
range of applications and use cases. Standard shapes provide a balance of cores,
memory, and network resources. All standard shapes use block storage for the boot
device.

The following table lists the standard shapes:

Shape OCPUs Memory (GB) Maximum
VNICs

Maximum
Bandwidth
(Gbps)

VM.PCAStandard1.1 1 16 2 24.6

VM.PCAStandard1.2 2 32 2 24.6

VM.PCAStandard1.4 4 64 4 24.6

VM.PCAStandard1.8 8 128 8 24.6

VM.PCAStandard1.16 16 256 16 24.6

Chapter 7
Compute Shapes

7-2

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-image-management.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

Shape OCPUs Memory (GB) Maximum
VNICs

Maximum
Bandwidth
(Gbps)

VM.PCAStandard1.24 24 384 24 24.6

VM.PCAStandard1.32 32 512 24 32.0

VM.PCAStandard1.48 48 768 24 48.0

VM.PCAStandard1.60 60 960 24 100.0

Flexible Shape

A flexible shape lets you customize the number of OCPUs and the amount of memory for an
instance. When you update an instance, you can change these properties of the flexible
shape, and you can change from a fixed shape to a flexible shape. This flexibility lets you
create instances that meet your workload requirements, while optimizing performance and
using resources efficiently.

Private Cloud Appliance platform images support the flex shape.

The VM.PCAStandard.E5.Flex shape can be selected only for Private Cloud Appliance X10
systems.

Shape OCPUs Memory (GB) Maximum
VNICs

Maximum
Bandwidth
(Gbps)

VM.PCAStandard1.Flex 1–32 64 GB
maximum per
OCPU
512 GB
maximum per
instance

1 OCPU: 2
VNICs
2 to 24 OCPUs:
1 VNIC per
OCPU
25 to 32 OCPUs:
24 VNICs

1 to 24 OCPUs:
24.6 Gbps
25 to 32 OCPUs:
1 Gbps per
OCPU

VM.PCAStandard.E5.Flex 1–96 64 GB
maximum per
OCPU
960 GB
maximum per
instance

1 OCPU: 2
VNICs
2 to 24 OCPUs:
1 VNIC per
OCPU
25 to 96 OCPUs:
24 VNICs

1 to 24 OCPUs:
24.6 Gbps
25 to 40 OCPUs:
1 Gbps per
OCPU
41 to 96 OCPUs:
40.0 Gbps

Storage for Compute Instances
You can expand the storage that's available for your compute instances with the following
services:

• Block Volume: Lets you dynamically provision and manage block volumes that you can
attach to one or more compute instances.

• File Storage: A durable, scalable, secure, enterprise-grade network file system that you
can connect to from any compute instance in your virtual cloud network (VCN).

Chapter 7
Storage for Compute Instances

7-3

• Object Storage: An internet-scale, high-performance storage platform that lets
you store a large amount of unstructured data of any content type. This storage
not tied to any specific compute instance.

Compute Instance Lifecycle
This list describes the different lifecycle states for compute instances.

• Launching: Occurs when you create a compute instance. The instance is
displayed in the Compute Web UI in a provisioning state. Expect provisioning to
take several minutes before the state updates to running. After the instance is
running, allow another few minutes for the operating system to boot before you
attempt to connect.

• Connecting: You connect to a running Linux or Oracle Solaris instance using a
Secure Shell (SSH) connection. Most Linux and UNIX-like operating systems
include an SSH client by default.

• Backing up the boot volume: You can back up the boot volume using the Block
Volume backup feature using one of these methods:

– Manual backups: You manually perform create, get, list, rename, and delete
backup commands.

– Automatic backups: You create a backup policy and a backup policy
assignment that specifies the time and frequency of the volume backups. The
system automatically performs the commands that back up the volume.

• Stopping: You can stop an instance using the Compute Web UI, OCI CLI,
Compute API, or using the commands available in the operating system when you
are logged in to the instance.

If the applications that run on the instance take more than 15 minutes to shut
down, they could be improperly stopped. To avoid this situation, shut down the
instance using the commands available in the OS before you stop the instance.

• Starting or restarting: You can start or restart an instance as needed using the
Compute Web UI, OCI CLI, and Compute API.

• Rebooting: You can reboot an instance as needed using the Compute Web UI,
OCI CLI, and Compute API. By default, a reboot gracefully restarts the instance by
sending a shutdown command to the operating system. After waiting 15 minutes
for the OS to shut down, the instance is powered off and then powered back on.

• Terminating: You can permanently terminate (delete) instances that you no longer
need. Any attached VNICs and volumes are automatically detached when the
instance terminates. Eventually, the instance's public and private IP addresses are
released and become available for other instances.

By default, the instance's boot volume is preserved when you terminate the
instance. You can attach the boot volume to a different instance as a data volume,
or use it to launch a new instance. If you no longer need the boot volume, you can
permanently delete as described in Deleting a Boot Volume in the Block Volume
Storage chapter in the Oracle Private Cloud Appliance User Guide.

For more information, see Managing the Lifecycle of an Instance in Compute Instance
Deployment.

Chapter 7
Compute Instance Lifecycle

7-4

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html

Compute Instance Connections
You can connect to a running compute instance using a Secure Shell (SSH) or Remote
Desktop connection.

Most UNIX-style systems include an SSH client by default.

For step-by-step instructions for connecting to an instance, refer to the section titled
Connecting to a Compute Instance in the Compute Instance Deployment chapter in the
Oracle Private Cloud Appliance User Guide.

Compute Images
An image is a template of a virtual hard drive. The image determines the operating system
and other software for a compute instance. You specify an image to use when you launch a
compute instance.

These are the types of images you can use to launch a compute instance:

• Images provided with Oracle Private Cloud Appliance: Private Cloud Appliance
includes some images such as Oracle Linux and Oracle Solaris images. These included
images are called platform images. Platform images are available in every compartment
of every tenancy. Platform images do not need to be downloaded or imported by a
Compute Enclave user in order to access them to create an instance.

To make platform Images available in the Compute Enclave, a Service Enclave
administrator must import images as described in "Providing Platform Images" in the
Hardware Administration chapter of the Oracle Private Cloud Appliance Administrator
Guide.

• Custom images: You can create a custom image of a compute instance's boot disk and
use it to launch other compute instances. Instances you launch from your image include
the customizations, configuration, and software installed when you created the image.
See Custom Images Created From Instances.

• Bring your own image: You can bring your own versions of operating systems to the
cloud as long as the underlying hardware supports it. The Private Cloud Appliance
services do not depend on the OS that you run. See Bring Your Own Image (BYOI).

Note:

Images for Private Cloud Appliance must have paravirtualized network devices and
boot volumes. SR-IOV network devices and iSCSI boot volumes are not supported.

Custom Images Created From Instances
You can create a custom image of a compute instance's boot disk and use it to launch other
compute instances. Instances you launch from your image include the customizations,
configuration, and software installed when you created the image.

Custom images do not include the data from any attached block volumes.

Limitations and Considerations

Chapter 7
Compute Instance Connections

7-5

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-hardware.html

• Certain IP addresses are reserved for Private Cloud Appliance use and might not
be used in your address numbering scheme. For details, refer to Reserved
Network Resources in this guide.

• When you create an image of an instance, the instance must be in the stopped
state. After the custom image is created, you can restart the instance.

• You cannot create extra custom images of a compute instance while the compute
instance is engaged in the image creation process. You can, however, create
images of different compute instances at the same time.

• Custom images are available to all users authorized for the compartment in which
the image was created.

• Custom images inherit the compatible shapes that are set by default from the base
image.

Bring Your Own Image (BYOI)
The Bring Your Own Image (BYOI) feature enables you to import your own versions of
operating systems into Private Cloud Appliance as long as the underlying hardware
supports it. The services do not depend on the OS you run.

The BYOI feature provides these benefits:

• Enables cloud migration projects.

• Supports both old and new operating systems.

• Encourages experimentation.

• Increases infrastructure flexibility.

Important:

You must comply with all licensing requirements when you upload and start
instances based on OS images that you supply.

A critical part of any lift-and-shift cloud migration project is the migration of on-
premises virtual machines (VMs) to the cloud. You can import your on-premises
virtualized root volumes into Private Cloud Appliance using the custom image import
feature, and then launch compute instances using those images.

You can import Microsoft Windows and Linux-based custom images and use them to
launch instances on Private Cloud Appliance.

Linux Source Image Requirements
Custom images must meet the following requirements:

• The maximum image size is 400 GB.

• The image must be set up for BIOS boot.

• Only one disk is supported, and it must be the boot drive with a valid master boot
record (MBR) and boot loader. You can migrate additional data volumes after you
import the image's boot volume.

Chapter 7
Bring Your Own Image (BYOI)

7-6

• The boot process must not require more data volumes to be present for a successful
boot.

• The boot loader must use LVM or a UUID to locate the boot volume.

• The disk image cannot be encrypted.

• The disk image must be a VMDK or QCOW2 file. These images can be converted
to .oci type images.

– Create the image file by cloning the source volume, not by creating a snapshot.

– VMDK files must be either the "single growable" (monolithicSparse) type or the
"stream optimized" (streamOptimized) type, both of which consist of a single VMDK
file. All other VMDK formats, such as those that use multiple files, split volumes, or
contain snapshots, are not supported.

• The network interface must use DHCP to discover the network settings. When you import
a custom image, existing network interfaces are not re-created. Any existing network
interfaces are replaced with a single NIC after the import process is complete. You can
attach more VNICs after you launch the imported instance.

• The network configuration must not hard code the MAC address for the network
interface.

• We recommend that you enable certificate-based SSH, however this recommendation is
optional.

Microsoft Windows Source Image Requirements

• The maximum image size is 400 GB.

• The image must be set up for a BIOS boot.

• Only one disk is supported, and it must be the boot drive with a valid master boot record
(MBR) and boot loader. You can migrate additional data volumes after you import the
image's boot volume.

• The minimum boot volume size is 256 GB.

• The boot process must not require other data volumes to be present for a successful
boot.

• The disk image cannot be encrypted.

• The disk image must be a VMDK or QCOW2 file. Create the image file by cloning the
source volume, not by creating a snapshot. VMDK files must be either the "single
growable" (monolithicSparse) type or the "stream optimized" (streamOptimized) type,
both of which consist of a single VMDK file. All other VMDK formats, such as those that
use multiple files, split volumes, or contain snapshots, are not supported.

• The network interface must use DHCP to discover the network settings. When you import
a custom image, existing network interfaces are not re-created. Any existing network
interfaces are replaced with a single NIC after the import process is complete. You can
attach additional VNICs after you launch the imported instance.

• The network configuration must not hard code the MAC address for the network
interface.

Chapter 7
Bring Your Own Image (BYOI)

7-7

Boot Volumes
When you launch a compute instance based on an Oracle platform image or custom
image, a new boot volume for the compute instance is created in the same
compartment. That boot volume is associated with that compute instance until you
terminate the compute instance.

When you terminate the compute instance, you can preserve the boot volume and its
data. This feature gives you more control and management options for your compute
instance boot volumes, and enables:

• Instance scaling: When you terminate your compute instance, you can keep the
associated boot volume and use it to launch a new compute instance using a
different compute instance type or shape. This flexibility enables you to easily
scale up or down the number of cores for a compute instance.

• Troubleshooting and repair: If you think a boot volume issue is causing a
compute instance problem, you can stop the compute instance and detach the
boot volume. Then you can attach it to another compute instance as a data
volume to troubleshoot it. After resolving the issue, you can then reattach it to the
original compute instance or use it to launch a new compute instance.

Boot volume Encryption

Boot volumes are encrypted by default, the same as other block storage volumes.

Important:

Usually, encryption is not supported for compute instances launched from
custom images imported for "bring your own image" (BYOI) scenarios.

Listing Boot Volumes

You can list all boot volumes in a specific compartment, or list detailed information on a
single boot volume.

Listing Boot Volume Attachments

You can list all the boot volume attachments in a specific compartment. You can also
view detailed information on a single boot volume attachment.

Detaching and Attaching a Boot Volume

If a boot volume has been detached from the associated compute instance, you can
reattach it to the compute instance. If you want to restart a compute instance with a
detached boot volume, you must reattach the boot volume.

If you think a boot volume issue is causing a compute instance problem, you can stop
the compute instance and detach the boot volume. Then you can attach it to another
compute instance as a data volume to troubleshoot it.

If a boot volume has been detached from the associated compute instance, or if the
compute instance is stopped or terminated, you can attach the boot volume to another
compute instance as a data volume.

Chapter 7
Boot Volumes

7-8

Extending a Boot Volume Partition

You can extend the partition for a boot volume for an existing compute instance by resizing a
volume. To take advantage of the larger size, you also need to extend the partition for the
boot volume.

Deleting a Boot Volume

When you terminate a compute instance, you choose to delete or preserve the associated
boot volume.

If a boot volume has been detached from the compute instance, you can delete the boot
volume.

For step-by-step instructions for managing boot volumes, refer to the Block Volume Storage
chapter in the Oracle Private Cloud Appliance User Guide.

Custom Boot Volume Sizes
When you launch a compute instance, you can accept the image's default boot volume size,
or you can specify a custom size up to 16 TB.

For Linux-based images, the custom boot volume size must be larger than the image's
default boot volume size or 50 GB, whichever is higher.

For Microsoft Windows-based images, the custom boot volume size must be larger than the
image's default boot volume size or 256 GB, whichever is higher. The minimum size
requirement for Microsoft Windows images is to ensure that enough space is available for
patches and updates.

If you specify a custom boot volume size, extend the volume to take advantage of the larger
size.

Boot Volume Backups
The backups feature of the Block Volume service lets you make a crash-consistent backup,
which is a point-in-time snapshot of a boot volume without application interruption or
downtime. You can make a backup of a boot volume while it is attached to a running compute
instance, or while it is detached from the compute instance. The backup is a full backup.

You can restore a boot volume from any of your boot volume backups. You only need to keep
the backups taken for the times you care about.

Boot Volume Tags

When a boot volume backup is created, the source boot volume's tags are automatically
included in the boot volume backup.

When you create a compute instance from the boot volume backup, the compute instance
includes the source boot volume's tags.

Boot Volume Backup Size
The boot volume backup size might be larger than the source boot volume size for the
following reasons:

• Any part of the boot volume that has been written to is included in the boot volume
backup.

Chapter 7
Boot Volumes

7-9

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

• Many operating systems write or zero out the content, which results in these
blocks marked as used. The Block Volume service considers these blocks updated
and includes them in the volume backup.

• Boot volume backups also include metadata, which can be up to 1 GB in
additional data.

Restoring a Boot Volume
You can use a boot volume backup to create a compute instance or you can attach it
to another compute instance as a data volume. However before you can use a boot
volume backup, you need to restore it to a boot volume.

You can restore a boot volume from any of your boot volume backups. You only need
to keep the backups taken for the times you care about.

Cloning a Boot Volume
You can create a clone from a boot volume using the Block Volume service. Cloning
enables you to make a copy of an existing boot volume without needing to go through
the backup and restore process.

Any subsequent changes to the data on the source boot volume are not copied to the
boot volume clone. The clone is the same size as the source boot volume unless you
specify a larger volume size when you create the clone.

The clone operation occurs immediately and you can use the cloned boot volume
when the state changes to available.

There is a single point-in-time reference for a source boot volume while it is being
cloned. If you clone a boot volume while the associated compute instance is running,
you need to wait for the first clone operation to complete before creating more clones.
You also need to wait for any backup operations to complete.

You can only create a clone for a boot volume within the same tenant. You can create
a clone of a boot volume in a different compartment from the source volume
compartment if you have the required access permissions.

Instance Backup and Restore
Oracle Private Cloud Appliance provides Compute Enclave APIs that enable you to
back up instances. The commands are flexible to suit a variety of use cases.

Use Cases

• Back up instances and any attached block volumes.

• Store the backups on another server for safekeeping.

• Restore a faulty instance and any attached block volumes.

• Use the backup to create matching instances.

• Use the backup and restore feature to migrate instances to another tenancy, or to
another appliance.

The following sections provide an overview of the backup and restore processes. For
step-by-step instructions, refer to "Backing Up and Restoring an Instance" in the

Chapter 7
Instance Backup and Restore

7-10

chapter Compute Instance Deployment of the Oracle Private Cloud Appliance User Guide.

Instance Backup Process

1. Use the Export operation to create an instance backup in an Object Storage bucket.

The instance backup export operation performs these actions:

• Creates the backup of the instance, which includes the source image, boot volume,
and any attached block volumes.

• Writes the backups into QCOW2 format files.

• Creates an archive that includes all the backup files and metadata of the boot volume
and block volumes.

• Exports the backup to an Object Storage bucket of your choosing.

2. Transfer the backup object from the bucket to another system in your data center for
safekeeping.

Instance Restore Process

1. Transfer the backup from the system in your data center to an Object Storage bucket in
the appliance where you want to restore the instance.

2. Use the Import process to import the instance backup from the bucket to internal
resources of the appliance.

The import function performs these actions:

• Extracts the tar archive to get source image, boot volume, and block volume backups
with attachment data.

• Creates a source image.

• Adds the block volumes to the compartment (unattached).

3. Create an instance, and select the backup boot volume as the image source.

4. Attach any block volumes.

The restored instance has some of the same characteristics as the source instance. For
example:

• The type and version of the OS.

• The OS configuration matches the OS configuration of the source instance. This includes
things like OS user accounts, installed applications, and so on.

• The type of storage, high-performance or balanced-performance, matches the source
instance.

• All the software on the block volumes is available after you attached the block volumes to
the restored instance.

Some aspects of the restored instance differ from the source instance, such as:

• The restored instance and associated components, like boot and block volumes have
unique OCIDs that don't match the source instance.

• The source instance user account SSH keys are not included in the restored instance.

• While creating the restored instance, you can configure the instance in a different
compartment, with a different name, shape, subnet, and all the other attributes that you
configure during the launch.

Chapter 7
Instance Backup and Restore

7-11

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

Simplifying Compute Instance Management
You can simplify the management of your compute instances using these features:

• Instance Configurations: Are templates that define the settings to use when
creating compute instances.

• Instance Pools: are a group of compute instances that are created from the same
compute instance configuration and managed as a group.

For step-by-step instructions for managing the Compute service, refer to the Compute
Instance Deployment chapter in the Oracle Private Cloud Appliance User Guide.

Instance Configurations
A compute instance configuration defines the settings to use when creating compute
instances, including details such as the base image, shape, and metadata. You can
also specify the associated resources for the compute instance, such as block volume
attachments and network configuration.

You can use an instance configuration to create a single compute instance or a set of
compute instances called an instance pool.

For instructions for using instance configurations, refer to "Working with Instance
Configurations" in the Compute Instance Deployment chapter in the Oracle Private
Cloud Appliance User Guide.

Instance Pools
An instance pool defines a set of compute instances that is managed as a group.
Managing instances as a group enables you to more effectively use resources by
efficiently provisioning instances and managing the state of instances.

Creating an instance pool requires an instance configuration and a placement
configuration. If you update the instance configuration or placement configuration,
existing instances are not affected. New instances that are added to the pool use the
new instance and placement configurations.

Caution:

When you delete an instance pool, the resources that were created by the
pool are permanently deleted, including associated instances, attached boot
volumes, and block volumes.

You can define an autoscaling configuration and policies that scale the instance pool in
(remove instances) or out (add instances) or stop, start, or reboot the instances
according to a schedule. Autoscaling a pool enables you to use resources even more
effectively by stopping or removing instances when demand is lower and starting or
adding instances when demand is higher. You can use instance pool autoscaling along
with network load balancing by defining the backend set of servers to be an
autoscaled instance pool. For information about load balancing, see Load Balancing
Overview.

Chapter 7
Simplifying Compute Instance Management

7-12

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

For instructions for using instance pools, refer to "Working with Instance Pools" in the
Compute Instance Deployment chapter in the Oracle Private Cloud Appliance User Guide.

Instance Pool Lifecycle States
The following list describes the different lifecycle states for compute instance pools.

• Provisioning: When you create a compute instance pool, this is the first state the
compute instance pool is in. Instances for the compute instance pool are being
configured based on the specified compute instance configuration.

• Starting: The compute instances are being launched.

• Running: The compute instances are created and running.

• Stopping: The compute instances are in the process of being shut down.

• Stopped: The compute instances are shut down.

• Scaling: When you update the compute instance pool size, the pool goes into this state
while creating compute instances (for increases in pool size) or terminating compute
instances (for decreases in pool size).

• Terminating: The compute instances and associated resources are being terminated.

• Terminated: The compute instance pool, all its compute instances, and associated
resources are terminated.

When working with compute instance configurations and compute instance pools, keep the
following points in mind:

• You can't delete a compute instance configuration if it is associated with at least one
compute instance pool.

• You can use the same compute instance configuration for multiple compute instance
pools. However, a compute instance pool can have only one compute instance
configuration associated with it.

• If you modify the compute instance configuration for a compute instance pool, existing
compute instances that are part of that pool will not change. Any new compute instances
that are created after you modify the compute instance configuration will use the new
compute instance configuration. New compute instances will not be created unless you
have increased the size of the compute instance pool or terminate existing compute
instances.

• If you decrease the size of a compute instance pool, the oldest compute instances are
terminated first.

Container Engine for Kubernetes
Oracle Private Cloud Appliance Container Engine for Kubernetes (OKE) is a scalable, highly
available service that can be used to deploy any containerized application to the cloud. OKE
uses Cluster API Provider (CAPI) and Cluster API Provider for Oracle Cloud Infrastructure
(CAPOCI) to orchestrate the cluster on the Private Cloud Appliance. OKE uses Kubernetes,
the open-source system for automating deployment, scaling, and management of
containerized applications across clusters of hosts. Kubernetes groups the containers that
make up an application into logical units called pods for easy management.

See the Oracle Private Cloud Appliance Container Engine for Kubernetes Guide for
information about how to configure the network, create a Kubernetes cluster, create a node

Chapter 7
Container Engine for Kubernetes

7-13

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-compute.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/oke/

pool, expose containerized applications outside the appliance, and provide persistent
storage for containerized applications. See the OKE Monitoring folder in Grafana for
OKE dashboards.

Extending Compute Resources
The topics in this section describe the compute resources that you can extend and the
implications.

Expanding Volumes
You can expand the size of block volumes and boot volumes. You cannot decrease the
size.

You have several options to increase the size of your volumes:

• Expand an existing volume in place with online resizing.

• Restore from a volume backup to a larger volume.

• Clone an existing volume to a new, larger volume.

• Expand an existing volume in place with offline resizing. See Offline Resizing of
Block Volumes Using the Compute Web UI.

Caution:

Before you resize a boot or block volume, create a backup of the volume.

After a volume has been resized, the first backup of the resized volume will be a full
backup.

For step-by-step instructions for managing the Compute service, refer to the section
titled Resizing Volumes in the Block Volume Storage chapter in the Oracle Private
Cloud Appliance User Guide.

Offline Resizing of Block Volumes Using the Compute Web UI
With offline resizing, you detach the volume from a compute instance before you
expand the volume size. After the volume is resized and reattached, you need to
extend the partition, but you do not need to rescan the disk.

Before you resize a volume, create a full backup of the volume.

Whenever you detach and reattach volumes, there are complexities and risks for both
Linux-based and Microsoft Windows-based compute instances. For more information,
refer to the section titled Resizing Volumes in the Block Volume Storage chapter in the
User Guide.

Rescanning the Disk for a Block Volume or Boot Volume
The Block Volume service lets you expand the size of block volumes and boot
volumes while they are online and attached to compute instances.

Chapter 7
Extending Compute Resources

7-14

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html

After the volume is provisioned, you need to run commands to rescan the disk so that the
operating system identifies the expanded volume size. You run different rescan commands
depending on the operating system of the attached compute instance.

Adding Another Network Interface
You can add additional VNICs to a compute instance. Each additional VNIC can be in a
subnet in the same VCN as the primary VNIC, or in a different subnet that is either in the
same VCN or a different one.

You might add a VNIC to connect a compute instance to subnets in multiple VCNs. For
example, you might set up your own firewall to protect traffic between VCNs, so the compute
instance needs to connect to subnets in different VCNs.

Secondary VNICs are supported for these types of compute instances:

• Linux

• Microsoft Windows

Here are more details about additional VNICs:

• There's a limit to how many VNICs can be attached to a compute instance, and it varies
by shape. See Compute Shapes.

• They can be added only after the compute instance is launched.

• They must always be attached to a compute instance and cannot be moved. The process
of creating an additional VNIC automatically attaches it to the compute instance. The
process of detaching a secondary VNIC automatically deletes it.

• They are automatically detached and deleted when you terminate the compute instance.

• The compute instance's bandwidth is fixed regardless of the number of VNICs attached.
You can't specify a bandwidth limit for a particular VNIC on a compute instance.

• Attaching multiple VNICs from the same subnet CIDR block to a compute instance can
introduce asymmetric routing, especially on instances using a variant of Linux. If you
need this type of configuration, assign multiple private IP addresses to one VNIC, or
using policy-based routing.

For step-by-step instructions for managing the VNICs, refer to the section titled Configuring
VNICs and IP Addressing in the Networking chapter in the Oracle Private Cloud Appliance
User Guide.

Chapter 7
Extending Compute Resources

7-15

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

8
Block Volume Storage Overview

Block Volumes provide high-performance network storage capacity that supports a broad
range of I/O intensive workloads.

You can use block volumes to expand the storage capacity of your compute instances, to
provide durable and persistent data storage that can be migrated across compute instances,
and to host large databases.

The Block Volume service enables you to group multiple volumes in a volume group. Volume
groups simplify the process to create backups and clones. For more information, see Block
Volume Groups.

For step-by-step instructions for managing block volumes, Refer to Block Volume Storage in
the Oracle Private Cloud Appliance User Guide.

Types of Block Volumes

There are two types of volumes:

• Boot volume: A detachable boot volume device that contains the image that is used to
boot a Compute instance. See Boot Volumes.

• Block volume: A detachable block storage device that allows you to dynamically expand
the storage capacity of an instance.

The default size for both types of volumes is 50 GB.

You can create, attach, connect, and move volumes, as well as change volume performance
to meet your storage, performance, and application requirements.

After you attach and connect a volume to a compute instance, you can use the volume like a
regular hard drive. You can also disconnect a volume and attach it to another compute
instance without the loss of data.

Required Components

These components are required to create a volume and attach it to a compute instance:

• Compute Instance: A virtual machine (VM) running in the cloud appliance.

• Volume attachment: A paravirtualized attachment that is available for compute
instances.

• Volume: A block volume or boot volume.

Block Volume Performance Options

Elastic Performance

When you create block storage, you can optionally enable High performance. By default, the
volume will have Balanced performance. The volume performance setting cannot be changed
after the volume is created.

8-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

• Balanced performance: The Balanced performance option is the default for new
and existing block and boot volumes. This performance option provides a good
balance between performance and cost savings for most workloads, including
workloads that perform random I/O such as boot volumes. Balanced performance
is provided by the DE3-24C Disk Shelf.

• High performance: The High performance option is recommended for workloads
with higher I/O requirements. High performance is provided by the DE3-24P Disk
Shelf.

Performance Limitations and Considerations

The following performance results are for unformatted data volumes.

• Throughput performance on compute instances depends on the network
bandwidth that is available to the compute instance, and further limited by that
bandwidth for the volume.

• If Microsoft Defender Advanced Threat Protection (Microsoft Defender ATP) is
enabled in an instance, it has a significant negative impact on disk I/O
performance. However, carefully consider the security implications of disabling
Microsoft Defender ATP.

• Block volume performance is per volume, so when a block volume is attached to
multiple compute instances, the performance is shared across all the attached
compute instances.

Block Volume Scenarios
Adding Storage Capacity

A common use of a block volume is to add storage capacity to an instance. After you
launch an instance and set up your cloud network, you can create a block storage
volume. Then, you attach the volume to a compute instance using a volume
attachment. The volume can then be mounted and used by your compute instance.

Moving a Volume to Another Compute Instance

A block volume can be detached from a compute instance and moved to a different
compute instance without the loss of data. This data persistence enables you to
migrate data between compute instances and ensures that your data is safely stored,
even when it is not connected to a compute instance. Any data remains intact until you
delete the volume.

To move your volume to another compute instance, unmount the drive from the initial
compute instance, detach the block volume, then attach the volume to another
compute instance. From there, you connect and mount the drive from that instance's
guest OS to have access to the data.

Scaling a Compute Instance

When you terminate a compute instance, you can keep the associated boot volume
and use it to launch a new compute instance with a different compute instance type or
shape. This capability enables you to easily scale up or scale down the number of
cores for a compute instance.

Chapter 8
Block Volume Scenarios

8-2

https://docs.oracle.com/en/storage/zfs-storage/zfs-appliance/os8-8-x/service-manual/oracle-storage-drive-enclosure-de3-24.html#GUID-CE8F9137-F397-4172-ABA6-CF49163CFE32
https://docs.oracle.com/en/storage/zfs-storage/zfs-appliance/os8-8-x/service-manual/oracle-storage-drive-enclosure-de3-24.html#GUID-CAD93022-CE92-4E5C-AC09-3EC11BF65E1C
https://docs.oracle.com/en/storage/zfs-storage/zfs-appliance/os8-8-x/service-manual/oracle-storage-drive-enclosure-de3-24.html#GUID-CAD93022-CE92-4E5C-AC09-3EC11BF65E1C

Block Volume Groups
The Block Volume service enables you to group multiple volumes in a volume group.

A volume group can include both types of volumes:

• Boot Volumes: The system disks for compute instances

• Block Volumes: Volumes for data storage

You can use volume groups to create volume group backups and clones that are point-in-time
and crash-consistent.

This simplifies the process to create time-consistent backups of running enterprise
applications that span multiple storage volumes across multiple compute instances. You can
then restore an entire group of volumes from a volume group backup.

Note:

You can also clone an entire volume group in a time-consistent and crash-
consistent manner. A deep disk-to-disk and fully isolated clone of a volume group,
with all the volumes associated in it, becomes available for use within a matter of
seconds. This action speeds up the process of creating environments for
development, quality assurance, user acceptance testing, and troubleshooting.

This capability is available using the Compute Web UI, CLI, or API.

Volume groups and volume group backups are high-level constructs that allow you to group
multiple volumes. When working with volume groups and volume group backups, keep the
following points in mind:

• You can only add a volume to a volume group when the volume status is available.

• You can add up to 32 volumes in a volume group. The maximum Block Volumes
aggregated size is 100 TB.

• Each volume can only be in one volume group.

• When you clone a volume group, a new group with new volumes are created. For
example, if you clone a volume group containing three volumes, after this operation is
complete, you have two separate volume groups and six different volumes with nothing
shared between the volume groups.

• When you update a volume group using the CLI or API, you need to specify all the
volumes to include in the volume group each time you use the update operation. If you do
not include a volume ID in the update call, that volume is removed from the volume
group.

• When you delete a volume group, the individual volumes in the group are not deleted,
only the volume group is deleted.

• When you delete a volume that is part of a volume group, you must first remove it from
the volume group before you can delete it.

• When you delete a volume group backup, all the volume backups in the volume group
backup are deleted.

Chapter 8
Block Volume Groups

8-3

Volume Backups and Clones
Backup and Restore

Backup and restore operations are supported on boot volumes, data volumes, and
volume groups. All backups are full backups, not incremental.

To back up a boot volume, block volume, or volume group, use one of the following
methods:

• Clone: Cloning volumes enables you to create a copy without performing the
backup and restore operations. For more information about clones, see the
"Clones" section and "Differences Between Volume Clones and Backups" table
below. For general information about cloning boot volumes, see Cloning a Boot
Volume.

• Manual backup: These backups are performed one time as soon as you create
the backup. These backups are retained indefinitely, or until a policy-based
(scheduled) backup is created for this volume.

• Scheduled backups: These backups are performed periodically according to a
schedule defined in a backup policy. The policy schedule specifies the frequency
(period) and time of the backups, and how long to retain the backups. You can
create your own backup policies, or you can use Oracle provided backup policies.

Oracle Provided Backup Policies

Oracle defined backup policies cannot be used to back up a volume group. These
policies can be used to back up individual block volumes and boot volumes.

Oracle defined policies cannot be changed. If you need a different backup time or
retention time, for example, create a user defined backup policy as described in
"Managing Backup Policies" in the Block Volume Storage chapter in the Oracle Private
Cloud Appliance User Guide.

The following backup policies are provided by Oracle and available in every
compartment. A resource can have only one backup policy assigned, but a backup
policy can have multiple schedules. The Oracle Bronze policy has one schedule, the
Silver policy has two schedules, and the Gold policy has three schedules. All schedule
times are your regional data center time. All backup types are full backups.

Bronze

1. Monthly backups that run at 00:00 on the first day of the month and are retained
for twelve months.

Silver

1. Weekly backups that run at 00:00 every Monday and are retained for four weeks.

2. Monthly backups that run at 00:00 on the first day of the month and are retained
for twelve months.

Gold

1. Daily backups that run at 00:00 and are retained for seven days.

2. Weekly backups that run at 00:00 every Monday and are retained for four weeks.

Chapter 8
Volume Backups and Clones

8-4

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html

3. Monthly backups that run at 00:00 on the first day of the month and are retained for
twelve months.

The Block Volume service will not run more than one scheduled backup of a particular
resource in one day. When schedules conflict, for example, daily, weekly, and monthly
backups are scheduled to run at the same time, the backup with the longest period runs.

Volume Group Back Up and Restore

You can perform most of the same backup operations and tasks with volume groups that you
can perform with individual block volumes.

Volume group backups enable you to manage the backup settings for several volumes in one
place. This feature simplifies the process to create time-consistent backups of running
enterprise applications that span multiple storage volumes across multiple compute
instances.

You can restore a volume group backup to a volume group, or you can restore individual
volumes in the volume group from volume backups.

Clones

You can create a clone from a volume using the Block Volume service. Cloning enables you
to make a copy of an existing block volume without needing to go through the backup and
restore process.

The clone operation occurs immediately, and you can attach and use the cloned volume as a
regular volume when the state changes to Available. At this point, the volume data is being
copied in the background, and can take up to thirty minutes depending on the size of the
volume.

There is a single point-in-time reference for a source volume while it is being cloned. If the
source volume is attached when a clone is created, you need to wait for the first clone
operation to complete from the source volume before creating additional clones. If the source
volume is detached, you can create up to 10 clones from the same source volume
simultaneously.

You can only create a clone for a volume within the same tenant. You can create a clone of a
volume in a different compartment from the source volume compartment if you have the
required access permissions.

Differences Between Volume Clones and Backups

Consider the following criteria when you decide whether to create a backup or a clone of a
volume.

Comparison Volume Backup Volume Clone

Description Creates a point-in-time backup of
data on a volume. You can restore
multiple new volumes from the
backup later in the future.

Creates an immediately usable copy
of a block volume without having to
go through the backup and restore
process.

Chapter 8
Volume Backups and Clones

8-5

Comparison Volume Backup Volume Clone

Use Case Retain a backup of the data in a
volume, so that you can duplicate an
environment later or preserve the
data for future use.
Meet compliance and regulatory
requirements, because the data in a
backup remains unchanged over
time.
Support business continuity
requirements.
Reduce the risk of outages or data
mutation over time.

Creates an immediately usable copy
of a block volume without having to
go through the backup and restore
process.

Storage Location Block Volume Block Volume
Retention Policy Policy-based backups expire, manual

backups do not expire.
No expiration

Volume Groups Supported. You can back up a
volume group.

Supported. You can clone a volume
group.

Chapter 8
Volume Backups and Clones

8-6

9
File Storage Overview

The File Storage service provides a durable, scalable, secure, enterprise-grade network file
system.

The File Storage service supports these protocols:

• Network File System version 4.1 (NFSv4.1)

• Network File System version 4.0 (NFSv4)

• Network File System version 3.0 (NFSv3)

• Server Message Block (SMBv2 - SMBv3.1) – Requires Active Directory

For step-by-step instructions for managing File Storage, refer to File System Storage in the
Oracle Private Cloud Appliance User Guide.

File Storage Connectivity

You can connect to a File Storage service file system from any instance in your Virtual Cloud
Network (VCN).

Suitable Workloads

The File Storage service is designed to meet the needs of applications and users that need
an enterprise file system across a wide range of use cases, including the following:

• General Purpose File Storage: Access to a pool of file systems to manage growth of
structured and unstructured data.

• Big Data and Analytics: Run analytic workloads and use shared file systems to store
persistent data.

• Lift and Shift of Enterprise Applications: Migrate existing Oracle applications that
need NFS storage, such as Oracle E-Business Suite and PeopleSoft.

• Databases and Transactional Applications: Run test and development workloads with
Oracle, MySQL, or other databases.

• Backups, Business Continuity, and Disaster Recovery: Host a secondary copy of
relevant file systems from on premises to the cloud for backup and disaster recovery
purposes.

• Portable Operating System Interface (POSIX)-compliant file system

• MicroServices and Docker: Deliver stateful persistence for containers. Easily scale as
your container-based environments grow.

Data Protection with Snapshots

The File Storage service supports snapshots for data protection of your file system.
Snapshots are a consistent, point-in-time view of your file systems. Snapshots are copy-on-
write, and scoped to the entire file system. The File Storage service encrypts all file system
and snapshot data at rest. You can take as many snapshots as you need.

For data protection, you can use a tool that supports NFS to copy your data to a different file
system, object storage, or remote location.

9-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

For best performance, use the parallel tar (partar) and parallel copy (parcp) tools
provided in the File Storage Parallel File Toolkit for this purpose. These tools work best
with parallel workloads and requests. The Parallel File Toolkit is available for Oracle
Linux, Red Hat Enterprise Linux, and CentOS. You can use rsync or regular tar for
other operating system types. See Installing the Parallel File Tools for more
information.

File Storage Objects
Mount Target

A mount target is an NFS endpoint in a subnet of your choice. The mount target
provides the IP address that is used in the mount command when connecting NFS
clients to a file system. File systems are exported (made available) through mount
targets.

For an instance to mount a file system, the instance's Virtual Cloud Network (VCN)
must have a mount target. A VCN can only have one mount target.

You can reuse the same mount target to make many file systems available. To reuse
the same mount target for multiple file systems, create an export in the mount target
for each file system.

Export

Exports control how NFS clients access file systems when they connect to a mount
target. File systems are exported (made available) through mount targets. Each mount
target maintains an export set which contains one or many exports. A file system must
have at least one export in one mount target for compute instances to mount the file
system.

Export Set

An export set is a collection of one or more exports that control what file systems the
mount target exports and how those file systems are found using the NFS mount
protocol. Each mount target has an export set. Each file system associated with the
mount target has at least one export in the export set.

Export Path

The export path uniquely identifies the file system within the mount target. The export
path is used by a compute instance to mount (logically attach to) the file system. For
more information, see File Storage Paths.

Export Options

NFS export options are a set of parameters within the export that specify the level of
access granted to NFS clients when they connect to a mount target. An NFS export
options entry within an export defines access for a single IP address or CIDR block
range.

File System

In Private Cloud Appliance, file system refers to a file system that is accessed by one
or more clients over the network. File systems are associated with a single
compartment. File systems must have at least one export in one mount target for any
client to mount and use the file system.

Chapter 9
File Storage Objects

9-2

https://docs.oracle.com/en-us/iaas/Content/File/Tasks/using_file_storage_parallel_tools.htm#install_par_tools

Data is added to a file system from the client that has mounted (has access to) the file
system. A file system can have a quota of up to 8 petabytes.

The total number of file systems is limited to 100 per tenancy.

Virtual Cloud Network (VCN)

A private network that you set up in the Private Cloud Appliance, with firewall rules and
specific types of communication gateways that you can choose to use. A VCN covers a
single, contiguous IPv4 CIDR block of your choice.

Subnet

Subnets are subdivisions you define in a VCN (for example, 10.0.0.0/24 and 10.0.1.0/24).
Subnets contain virtual network interface cards (VNICs), which attach to compute instances.
A subnet consists of a contiguous range of IP addresses that do not overlap with other
subnets in the VCN.

Security Rules

Security rules are virtual firewall rules for your VCN. Your VCN comes with a default security
list, and you can add more. These security lists provide ingress and egress rules that specify
the types of traffic allowed in and out of the compute instances. You can choose whether a
given rule is stateful or stateless. Security list rules must be set up so that clients can connect
to file system mount targets.

Another method for applying security rules is to set them up in a network security group
(NSG), and then add the mount target to the NSG. Unlike security list rules that apply to all
VNICs in the subnet, NSGs apply only to resource VNICs you add to the NSG.

Snapshots

Snapshots provide a consistent, point-in-time view of your file system, and you can take as
many snapshots as you need. Each snapshot reflects only data that changed from the
previous snapshot.

File Storage Paths
The File Storage service uses these kinds of paths:

• Export Paths are part of the information contained in an export that makes a file system
available through a mount target.

The export path is automatically generated when you create an export, and it uniquely
identifies the file system within the mount target.

Note – When you create an export from the CLI, you must specify a --path <path>
argument. The path you specify is recorded but not used for mounting file systems. The
appliance auto-generates a path that is used to mount the file system.

Export path syntax:

/export/<file-system-OCID-unique-string>

where:

– /export/ – Is the beginning of the export path.

– <file-system-OCID-unique-string> – Is the unique character string portion of the file
system's OCID.

Chapter 9
File Storage Paths

9-3

For example, a file system with this OCID . . .

ocid1.filesystem.oc1.pca.d0v812zdp48onybubehhx1c67i4p3mjfth5avt3z2rkn50uqpbce
3fhsa8nm

. . . has an export path that looks like this:

/export/d0v812zdp48onybubehhx1c67i4p3mjfth5avt3z2rkn50uqpbce3fhsa8nm

The export path is used by a file system client to mount (logically attach to) the file
system. This path is unrelated to any path within the file system or the client
instance. It exists solely as a way to distinguish one file system from another within
a single mount target.

Example of an export path in a client's mount command:

sudo mount -t nfs \
 -o nfsvers=4.0 192.0.2.0:/export/
d0v812zdp48onybubehhx1c67i4p3mjfth5avt3z2rkn50uqpbce3fhsa8nm /mnt/fs

In this mount command example, 192.0.2.0 is the mount target IP address./
export/d0v812zdp48onybubehhx1c67i4p3mjfth5avt3z2rkn50uqpbce3fhsa8nm is
the unique export path that was specified when the file system was associated
with a mount target during creation.

Export paths cannot be edited after the export is created.

For more information about export paths and mounting file systems, refer to the
File System Storage in the Oracle Private Cloud Appliance User Guide.

• Mount Point Paths are paths within a client instance to a locally accessible
directory to which the remote file system is mounted.

In this mount command example, /mnt/fs is the path to the directory on the client
instance on which the external file system is mounted.

sudo mount -t nfs \
 -o nfsvers=4.0 192.0.2.0:/export/
d0v812zdp48onybubehhx1c67i4p3mjfth5avt3z2rkn50uqpbce3fhsa8nm /mnt/fs

• File System Paths are paths to directories within the file system, and contain the
contents of the file system. When the file system is mounted, you can create any
directory structure within it.

VCN Security Rules for File Storage
Before you can mount a file system, you must configure security rules to allow traffic to
the mount target's VNIC using specific protocols and ports. Security rules enable traffic
for the following:

• Open Network Computing Remote Procedure Call (ONC RPC) rpcbind utility
protocol

• Network File System (NFS) protocol

• Network File System (MOUNT) protocol

• Network Lock Manager (NLM) protocol

Chapter 9
VCN Security Rules for File Storage

9-4

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

Ways to Enable Security Rules for File Storage

The Networking service offers two virtual firewall features that both use security rules to
control traffic at the packet level. The two features are:

• Security lists: The original virtual firewall feature from the Networking service. When you
create a VCN, a default security list is also created. Add the required rules to the security
list for the subnet that contains the mount target.

• Network security groups (NSGs): A subsequent feature designed for application
components that have different security postures. Create an NSG that contains the
required rules, and then add the mount target to the NSG. Each mount target can belong
to up to five (5) NSGs.

Important:

You can use security lists alone, network security groups alone, or both together. It
depends on your particular security needs.

If you choose to use both security lists and network security groups, the set of rules
that applies to a given mount target VNIC is the combination of these items:

• The security rules in the security lists associated with the VNIC's subnet

• The security rules in all NSGs that the VNIC is in

It doesn't matter which method you use to apply security rules to the mount target
VNIC, as long as the ports for protocols necessary for File Storage are correctly
configured in the rules applied.

For additional conceptual information, see Virtual Firewall.

For instructions on how to create security rules and NSGs for the File Storage service, refer
to the section titled Controlling Access to File Storage in the File System Storage chapter in
the Oracle Private Cloud Appliance User Guide.

For general instructions for creating security lists and NSGs, refer to the sections titled
Controlling Traffic with Security Lists and Controlling Traffic with Network Security Groups in
the Networking chapter in the Oracle Private Cloud Appliance User Guide.

File Storage Network Ports
This table lists the port numbers used for networking services that support File Storage.

When you configure security lists and network security groups for the File Storage service,
use the port numbers for the particular service you are using. For example, for NFS configure
ports 2048–2050 for TCP and UDP.

Service Protocol Port

RPC TCP, UDP 111

NFS TCP, UDP 2048, 2049, 2050

lockd TCP, UDP 4045

Chapter 9
File Storage Network Ports

9-5

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

Service Protocol Port

mountd TCP, UDP 20048

SMB TCP, UDP 445

LDAP TCP, UDP 389

Kerberos TCP, UDP 88

DNS TCP, UDP 53

Export Options for File Storage
NFS export options enable you to create more granular access control than is possible
using security list rules to limit VCN access. You can use NFS export options to specify
access levels for IP addresses or CIDR blocks connecting to file systems through
exports in a mount target. Access can be restricted so that each client’s file system is
inaccessible and invisible to the other, providing better security controls in multi-tenant
environments.

Using NFS export option access controls, you can limit clients' ability to connect to the
file system and view or write data. For example, if you want to allow clients to
consume but not update resources in your file system, you can set access to read-
only. You can also reduce client root access to your file systems and map specified
User IDs (UIDs) and Group IDs (GIDs) to a single anonymous UID/GID of your choice.

Export Options
Exports control how NFS clients access file systems when they connect to a mount
target. File systems are exported (made available) through mount targets.

NFS export options are a set of parameters within the export that specify the level of
access granted to NFS clients when they connect to a mount target. An NFS export
options entry within an export defines access for a single IP address or CIDR block
range. You can have up to 100 options per file system.

Each separate client IP address or CIDR block you want to define access for needs a
separate export options entry in the export. For example, if you want to set options for
NFS client IP addresses 10.0.0.6, 10.0.0.08, and 10.0.0.10, you need to create three
separate entries, one for each IP address.

When there is more than one export using the same file system and same mount
target, the export options that are applied to an instance are the options with a source
that most closely matches the instance IP address. The smallest (most specific) match
takes precedence across all the exports. Therefore, you can determine which export
options are applied to an instance by looking at source value of all the exports.

For example, consider the following two export options entries specifying access for an
export:

Entry 1: Source: 10.0.0.8/32, Access: Read/Write

Entry 2: Source: 10.0.0.0/16, Access: Read-only

In this case, clients who connect to the export from IP address 10.0.0.8 have read/
write access. When there are multiple export options, the most specific match is
applied.

Chapter 9
Export Options for File Storage

9-6

Important:

When more than one file system is exported to the same mount target, you must
export to the mount target with the smallest network (largest CIDR number) first.
For detailed information and instructions, refer to My Oracle Support PCA File
system as a Service Exports (Doc ID 2823994.1).

Important:

File systems can be associated with one or more exports, contained within one or
more mount targets.

If the client source IP address does not match any entry on the list for a single
export, then that export is not visible to the client. However, the file system could be
accessed through other exports on the same or other mount targets. To completely
deny client access to a file system, be sure that the client source IP address or
CIDR block is not included in any export for any mount target associated with the
file system.

For information about how to configure export options for various file sharing scenarios, see
NFS Access Control Scenarios.

For more information about configuring export options, refer to the section titled Setting NFS
Export Options in the File System Storage chapter in the Oracle Private Cloud Appliance
User Guide.

NFS Export Option Defaults
When you create a file system and export, the NFS export options for that file system are set
to the following defaults, which allow full access for all NFS client source connections. These
defaults must be changed if you want to restrict access:

Note – When using the CLI to set the export options, if you set the options with an empty
array (no options specified), the export is not accessible to any clients.

Export Option in
the Web UI

Export Option in the CLI Default Value Description

Source: source 0.0.0.0/0 The IP address or CIDR
block of a connecting NFS
client.

Ports: require-privileged-
source-port

Any Always set to:
• Web UI: Any
• CLI: false

Access: access Read/Write Specifies the source NFS
client access. Can be set to
one of these values:
• READ_WRITE
• READ_ONLY

Chapter 9
NFS Export Option Defaults

9-7

https://support.oracle.com/portal/
https://support.oracle.com/epmos/faces/DocContentDisplay?id=2823994.1
https://support.oracle.com/epmos/faces/DocContentDisplay?id=2823994.1
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

Export Option in
the Web UI

Export Option in the CLI Default Value Description

Squash: identity-squash None Determines whether the
clients accessing the file
system as root have their
User ID (UID) and Group ID
(GID) remapped to the
squash UID/GID. These are
the possible values:
• Root – Only the root

user is remapped.
• None – No users are

remapped.

Squash UID/GID: anonymous-uidand
anonymous-gid

65534 This setting is used along
with the Squash option.
When remapping a root
user, you can use this
setting to change the
default anonymousUid and
anonymousGid to any user
ID of your choice.

NFS Access Control Scenarios
Learn different ways to control NFS access by reviewing these scenarios:

• Scenario A: Provides a managed environment for two clients. The clients share a
mount target, but each has their own file system, and cannot access each other's
data.

• Scenario B: Provides data to clients for consumption, but doesn't allow them to
update the data.

• Scenario C: Increases security by limiting the root user's privileges when
connecting to a file system.

Scenario A: Control Host Based Access
Provide a managed hosted environment for two clients. The clients share a mount
target, but each has their own file system, and cannot access each other's data. For
example:

• Client A is assigned to CIDR block 10.0.0.0/24, and requires read/write access to
file system A, but not file system B.

• Client B is assigned to CIDR block 10.1.1.0/24, and requires read/write access to
file system B, but not file system A.

• Client C is assigned to CIDR block 10.2.2.0/24, and has no access of any kind to
file system A or file system B.

• Both file systems A and B are associated to a single mount target, MT1. Each file
system has an export contained in the export set of MT1.

Because Client A and Client B access the mount target from different CIDR blocks,
you can set the client options for both file system exports to allow access to only a

Chapter 9
NFS Access Control Scenarios

9-8

single CIDR block. Client C is denied access by not including its IP address or CIDR block in
the NFS export options for any export of either file system.

Web UI Example

Set the export options for file system A to allow read/write access only to Client A, who is
assigned to CIDR block 10.0.0.0/24. Client B and Client C are not included in this CIDR
block, and cannot access the file system.

Note:

To learn how to access the NFS export options in the Compute Web UI refer the
section titled Setting NFS Export Options in the File System Storage chapter of the
Oracle Private Cloud Appliance User Guide.

Source Ports Access Squash Squash UID/GID

10.0.0.0/24 Any Read/Write None (not used)

Set the export options for file system B to allow read/write access only to Client B, who is
assigned to CIDR block 10.1.1.0/24. Client A and Client C are not included in this CIDR
block, and cannot access the file system.

Source Ports Access Squash Squash UID/GID

10.1.1.0/24 Any Read/Write None (not used)

CLI Example

Note:

To learn how to access the NFS export options in the OCI CLI, refer the section
titled Setting NFS Export Options in the File System Storage chapter of the Oracle
Private Cloud Appliance User Guide.

Set the export options for file system A to allow Read_Write access only to Client A, who is
assigned to CIDR block 10.0.0.0/24. Client B and Client C are not included in this CIDR
block, and cannot access the file system.

oci fs export update --export-id File_system_A_export_ID --export-options \
'[{"source":"10.0.0.0/24","require-privileged-source-
port":"false","access":"READ_WRITE","identity-squash":"NONE","anonymous-
uid":"65534","anonymous-gid":"65534"}]'

Set the export options for file system B to allow Read_Write access only to Client B, who is
assigned to CIDR block 10.1.1.0/24. Client A and Client C are not included in this CIDR
block, and cannot access the file system.

oci fs export update --export-id File_system_B_export_ID --export-options \
'[{"source":"10.1.1.0/24 ","require-privileged-source-
port":"false","access":"READ_WRITE","identity-squash":"NONE","anonymous-
uid":"65534","anonymous-gid":"65534"}]'

Chapter 9
NFS Access Control Scenarios

9-9

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

Scenario B: Limit the Ability to Write Data
Provide data to customers for consumption, but don't allow them to update the data.

For example, you'd like to publish a set of resources in file system A for an application
to consume, but not change. The application connects from IP address 10.0.0.8.

Web UI Example

Set the source IP address 10.0.0.8 to read-only in the export for file system A.

Note:

To learn how to access the NFS export options in the Compute Web UI refer
the section titled Setting NFS Export Options in the File System Storage
chapter of the Oracle Private Cloud Appliance User Guide.

Source Ports Access Squash Squash UID/GID

10.0.0.8 Any Read-only None (not used)

CLI Example

Note:

To learn how to access the NFS export options in the OCI CLI, refer the
section titled Setting NFS Export Options in the File System Storage chapter
of the Oracle Private Cloud Appliance User Guide.

Set the source IP address 10.0.0.8 to READ_ONLY in the export for file system A.

oci fs export update --export-id File_System_A_export_OCID --export-options \
'[{"source":"10.0.0.8","require-privileged-source-
port":"false","access":"READ_ONLY","identitysquash":"NONE","anonymousuid":"65534"
,"anonymousgid":"65534"}]'

Scenario C: Improve File System Security
To increase security, you'd like to limit the root user's privileges when connecting to
File System A. Use Identity Squash to remap root users to UID/GID 65534.

In UNIX-like systems, this UID/GID combination is reserved for 'nobody', a user with
no system privileges.

Web UI Example

Set the source IP address 10.0.0.8 to read-only in the export for file system A.

Chapter 9
NFS Access Control Scenarios

9-10

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

Note:

To learn how to access the NFS export options in the Compute Web UI refer the
section titled Setting NFS Export Options in the File System Storage chapter of the
Oracle Private Cloud Appliance User Guide.

Source Ports Access Squash Squash UID/GID

0.0.0.0/0 Any Read/Write Root 65534

CLI Example

Note:

To learn how to access the NFS export options in the OCI CLI, refer the section
titled Setting NFS Export Options in the File System Storage chapter of the Oracle
Private Cloud Appliance User Guide.

oci fs export update --export-id File_System_A_export_OCID --export-options \
'[{"source":"0.0.0.0/0","require-privileged-source-
port":"false","access":"READ_WRITE","identitysquash":"ROOT","anonymousuid":"65534","ano
nymousgid":"65534"}]'

File System Snapshots
The File Storage service supports snapshots for data protection of your file system.
Snapshots are a consistent, point-in-time view of your file systems. Snapshots are copy-on-
write, and scoped to the entire file system. The File Storage service encrypts all file system
and snapshot data at rest. You can take as many snapshots as you need.

The snapshot is accessible at .zfs/snapshot/ name.

File System Clones
A clone is a new file system that is created from a snapshot of an existing file system.
Snapshots preserve the state of the data of a file system at a particular point in time. If you
take snapshots of a file system at regular intervals, you can create clones of the file system
as it existed at multiple points in its lifetime.

Cloned file systems are managed in the same way that any other file system is managed.
See File System Storage in the Oracle Private Cloud Appliance User Guide.

A snapshot provides the initial blueprint for a clone. You can clone a parent file system, or
you can clone a clone, as long as there's at least one snapshot available. At the point of
creation, the data included in the clone is identical to the data in the snapshot. After creation,
data changes in the clone aren't included in the original file system. Conversely, any data
changes to the original file system aren’t included in the clone. All file systems operate
independently of each other, regardless of whether they are parent file systems, clones, or
clones of clones.

Chapter 9
File System Snapshots

9-11

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html

Clones are space and time efficient because creating a clone doesn't replicate or
move any data from the parent file system to the clone. Instead, the clone references
the parent file system for any data they share. A file system that is a clone of a clone
also references the original parent file system for any shared data.

Parent File System
A parent file system is a file system that contains data referenced by one or many
clones. When you create a clone, you must specify which file system snapshot is
used as the blueprint for the clone directory hierarchy and file data. The file system
that contains this snapshot is the parent of the clone. The clone continues to
reference the parent file system for any data they share in common.

Source Snapshot
The snapshot used as a blueprint to create a clone. A snapshot is a point-in-time
reference of a file system. You can take as many snapshots of a file system as you
like, as often as you like. A parent file system can have snapshots available for many
points along its lifetime. You can create a clone of your file system as it exists today,
or as it existed in the past, as long as snapshots were taken of the file system at those
times.

File System Clone
A clone is a new file system that is created based on a snapshot of existing file
system. A clone automatically inherits the directory hierarchy and file data of the file
system.

File system properties such as compartment, tags, display name, keys, and mount
target export information are not copied over from the parent. These properties must
be specified manually. You can access the clone by creating an export for it and
mounting it to an instance in the same manner as any other file system.

Clone Tree
A clone tree is a group of clones that all descend from the same root file system.
There is a transitive relationship between the root and the descendant clones. To
delete the root of a clone tree, all its descendants must first be deleted.
In this diagram, B, C, D, E, F, G are all clones. A→ B→ C→D and A→ B→ E→ F→ G
are all part of a clone tree. File system A is the root of this clone tree, and it is the
parent of file system B.

Deleting File System Resources

File Systems
You can delete a file system if it is not a parent file system. If it is a parent file system,
all descendant clones must first be deleted.

Chapter 9
File System Clones

9-12

Snapshots
A parent snapshot can't be deleted. A snapshot that is not a parent can be deleted.

Clones
A parent clone can't be deleted. A clone that is not a parent can be deleted.

Chapter 9
File System Clones

9-13

10
Object Storage Overview

The Private Cloud Appliance Object Storage service is a high-performance storage platform
that offers reliable and cost-efficient data durability. The Object Storage service can store
unstructured data of any content type, including analytic data and rich content, like images
and videos.

Object Storage is not tied to any specific compute instance. You can access data from
anywhere inside or outside the context of the appliance, as long you have internet
connectivity and can access the Object Storage endpoint.

Object Storage offers multiple management interfaces that let you easily manage storage at
scale.

For step-by-step instructions for managing Object Storage, refer to Object Storage in the
Oracle Private Cloud Appliance User Guide.

Object Storage Resources
The Object Storage service uses these components to organize the data stored in object
storage:

Objects

Any type of data, regardless of content type, is stored as an object.

An object is composed of the object itself and metadata about the object. Each object is
stored in a bucket. The object is processed as a single entity.

Buckets

Buckets are logical containers for storing objects.

Users or systems create buckets as needed. A bucket is associated with a single
compartment that has policies that determine what actions a user can perform on a bucket
and on all the objects in the bucket. Buckets cannot be nested.

You determine the bucket names, but each bucket name must be unique within a
namespace.

Namespace

An Object Storage namespace serves as the top-level container for all buckets and objects.

When your tenancy is provisioned, the tenancy is assigned one unique system-generated
and immutable Object Storage namespace name. The namespace spans all compartments
within the tenant.

Within a namespace, buckets and objects exist in flat hierarchy, but you can simulate a
directory structure to help navigate a large set of objects.

Compartment

A compartment is the primary building block used to organize your cloud resources.

10-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-objectstore.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

When your tenancy is provisioned, a root compartment is created for you. You can
then create compartments under your root compartment to organize your resources.
You control access by creating policies that specify what actions groups of users can
take on the resources in those compartments. An Object Storage bucket can only exist
in one compartment.

Object Naming Prefixes and Hierarchies
Within an Object Storage namespace, buckets and objects exist in a flat structure.
However, you can simulate a directory structure by adding a prefix string that includes
one or more forward slashes (/) to an object name. Doing so lets you list one directory
at a time, which is helpful when navigating a large set of objects.

For example:

marathon/finish_line.jpg
marathon/participants/p_21.jpg

If you add prefixes to object names, you can:

• Use the OCI CLI or Compute API to perform bulk downloads and bulk deletes of
all objects at a specified level of the hierarchy.

• Use the Compute Web UI to display a hierarchical view of your objects in virtual
folders. In the previous example, marathon would be displayed as a folder
containing an object named finish_line.jpg and participants would be a
subfolder of marathon, containing an object named p_21.jpg. You can bulk upload
objects to any level of the hierarchy and perform bulk deletes of all the objects in a
bucket or folder.

Bulk operations at a specified level of the hierarchy do not affect objects in any level
above.

When naming objects, you can also use prefix strings without a delimiter. No delimiters
would allow search operations in the Compute Web UI and certain bulk operations in
the OCI CLI or Compute API to match on the prefix portion of the object name. For
example, in the object names below, the string gloves_27_ can serve as a prefix for
matching purposes when performing bulk operations:

gloves_27_dark_green.jpg
gloves_27_light_blue.jpg

When you perform bulk uploads with any of the UIs, you can add a prefix string to the
names of the files you are uploading.

Object Names
Unlike other resources, objects do not have Oracle Cloud Identifiers (OCIDs). Instead,
users define an object name when they upload an object.

Use the following guidelines when naming an object:

• The maximum length for an object and bucket name is 255 characters.

• Valid characters are letters (upper or lower case), numbers, and characters other
than line feed, carriage return, and NULL.

• Bucket names and object names are case-sensitive.

Chapter 10
Object Naming Prefixes and Hierarchies

10-2

• Use only Unicode characters for which the UTF-8 encoding does not exceed 1024 bytes.
Clients are responsible for URL-encoding characters.

• Make the name unique within the bucket.

• Object names can include one or more forward slash (/) characters in the name. See
Object Naming Prefixes and Hierarchies.

Optional Response Headers and Metadata
When you upload objects, you can provide optional response headers and user-defined
metadata. Response headers are HTTP headers sent from Object Storage to Object Storage
clients when objects are downloaded.

User-defined metadata are name-value pairs stored with an object.

You can use the Compute Web UI, Compute API, or OCI CLI to provide these optional
attributes.

Important:

No validation is performed on the response headers or metadata you provide.

You can specify values for the following response headers:

• Content-Disposition

Defines presentation only information for the object. Specifying values for this header has
no effect on Object Storage behavior. Programs that read the object determine what to do
based on the value provided. For example, you could use this header to let users
download objects with custom file names in a browser. For Example:

attachment; filename="fname.ext"
• Cache-Control

Defines the caching behavior for the object. Specifying values for this header has no
effect on Object Storage behavior. Programs that read the object determine what to do
based on the value provided. For example, you could use this header to identify objects
that require caching restrictions. For Example:

no-cache, no-store
Metadata

You specify user-defined metadata in the form of name-value pairs. User-defined metadata
names are stored and returned to Object Storage clients with the mandatory prefix of opc-
meta-.

Multipart Uploads
The Object Storage service supports multipart uploads for more efficient and resilient
uploads, especially for large objects.

You can perform multipart uploads using the Compute API or CLI. The Compute Web UI uses
multipart uploads to upload objects larger than 64 MiB.

Chapter 10
Optional Response Headers and Metadata

10-3

With multipart uploads, individual parts of an object can be uploaded in parallel to
reduce the amount of time you spend uploading. Multipart uploads performed through
the API can also minimize the impact of network failures by letting you retry a failed
part upload instead of requiring you to retry an entire object upload.

Multipart uploads can accommodate objects that are too large for a single upload
operation. For large uploads performed through the API, you have the flexibility of
pausing between the uploads of individual parts, and resuming the upload when your
schedule and resources allow.

Object Parts

With multipart upload, you split the object you want to upload into individual parts.
Individual parts can be as large as 50 GiB. The maximum size for an uploaded object
is 10 TiB.

Decide what part number you want to use for each part. Part numbers can range from
1 to 10,000. You do not need to assign contiguous numbers, but Object Storage
constructs the object by ordering part numbers in ascending order.

Multipart Upload API

Before you use the multipart upload Compute API, you are responsible for creating the
parts to upload. Object Storage provides API operations for the remaining steps.

A multipart upload performed using the API consists of the following steps:

1. Initiate an upload.

2. Upload object parts.

3. Commit the upload.

The service also provides API operations for listing in-progress multipart uploads,
listing the object parts in an in-progress multipart upload, and aborting in-progress
multipart uploads initiated through the API.

Multipart Upload CLI

When you perform a multipart upload using the OCI CLI, you do not need to split the
object into parts as you are required to do by the Compute API. Instead, you specify
the part size of your choice, and Object Storage splits the object into parts and
performs the upload of all parts automatically. You can choose to set the maximum
number of parts that can be uploaded in parallel. By default, the CLI limits the number
of parts that can be uploaded in parallel to three. When using the CLI, you do not have
to perform a commit when the upload is complete.

You can also use the CLI to list in-progress multipart uploads, and to abort multipart
uploads initiated through the API.

Pre-Authenticated Requests
Pre-authenticated requests provide a way to let users access a bucket or an object
without having their own credentials, as long as the request creator has permissions to
access those objects.

For example, you can create a request that lets an operations support user upload
backups to a bucket without owning API keys. Or, you can create a request that lets a
business partner update shared data in a bucket without owning API keys.

Chapter 10
Pre-Authenticated Requests

10-4

When you create a pre-authenticated request, a unique URL is generated. Anyone you
provide this URL to can access the Object Storage resources identified in the pre-
authenticated request, using standard HTTP tools like curl and wget.

Important:

Assess the business requirements and the security ramifications of pre-
authenticated access to a bucket or objects.

A pre-authenticated request URL gives anyone who has the URL access to the
targets identified in the request. Carefully manage the distribution of the URL.

Required Permissions
To Create a Pre-Authenticated Request

You need the PAR_MANAGE permission to the target bucket or object.

You must also have the appropriate permissions for the access type that you are granting.
For example:

• If you are creating a pre-authenticated request for uploading objects to a bucket, you
need the OBJECT_CREATE and OBJECT_OVERWRITE permissions.

• If you are creating a pre-authenticated request for read/write access to objects in a
bucket, you need the OBJECT_READ, OBJECT_CREATE, and OBJECT_OVERWRITE permissions.

Important:

If the creator of a pre-authenticated request is deleted or loses the required
permissions after they created the request, the request will no longer work.

To Use a Pre-Authenticated Request

Permissions of the pre-authenticated request creator are checked each time you use a pre-
authenticated request.

The pre-authenticated request no longer works when any of the following occurs:

• Permissions of the pre-authenticated request creator have changed.

• The user who created the pre-authenticated request is deleted.

• A Federated user who created the pre-authenticated request has lost the user
capabilities that they had when they created the request.

• Pre-authenticated request has expired.

Types of Pre-Authentication Requests
When creating a pre-authenticated request, you have the following options:

Chapter 10
Pre-Authenticated Requests

10-5

• You can specify the name of a bucket that a pre-authenticated request user has
write access to and can upload one or more objects to.

• You can specify the name of an object that a pre-authenticated request user can
read from, write to, or read from and write to.

Scope and Constraints
Understand the following scope and constraints regarding pre-authenticated requests:

• Users can't list bucket contents.

• You can create an unlimited number of pre-authenticated requests.

• There is no time limit to the expiration date that you can set.

• You can't edit a pre-authenticated request. If you want to change user access
options in response to changing requirements, you must create a new pre-
authenticated request.

• The target and actions for a pre-authenticated request are based on the creator's
permissions. The request is not, however, bound to the creator's account login
credentials. If the creator's login credentials change, a pre-authenticated request is
not affected.

• You cannot delete a bucket that has a pre-authenticated request associated with
that bucket or with an object in that bucket.

Important:

The unique URL provided by the system when you create a pre-
authenticated request is the only way a user can access the bucket or object
specified as the request target. Copy the URL to durable storage. The URL is
displayed only at the time of creation and cannot be retrieved later.

Retention Rules
Retention rules provide immutable, WORM-compliant storage options for data written
to Object Storage for data governance, regulatory compliance, and legal hold
requirements.

Retention rules can also protect your data from accidental or malicious update,
overwrite, or deletion. Retention rules can be locked to prevent rule modification and
data deletion or modification even by administrators.

Retention rules are configured at the bucket level and are applied to all individual
objects in the bucket.

Object Storage provides a flexible approach to data retention that supports the
following use cases.

• Regulatory Compliance

Your industry might require you to retain a certain class of data for a defined length
of time. Your data retention regulations might also require that you lock the

Chapter 10
Retention Rules

10-6

retention settings. If you lock the settings, the only change you can make is to increase
the retention duration.

For Object Storage regulatory compliance, you create a time-bound retention rule and
specify a duration. Object modification and deletion are prevented for the duration
specified. Duration is applied to each object individually, and is based on the object's Last
Modified timestamp. Lock the rule as required.

• Data Governance

You might need to protect certain data sets as a part of internal business process
requirements. While retaining the data for a defined length of time is necessary, that time
period could change.

Create a time-bound retention rule and specify a duration. Object modification and
deletion are prevented for the duration specified. Duration is applied to each object
individually, and is based on the object's Last Modified timestamp. To be able to delete
the rule and allow changes to the duration as required, do not lock the rule.

• Legal Hold

You might need to preserve certain business data in response to potential or on-going
lawsuits. A legal hold does not have a defined retention period and remains in effect until
removed.

For Object Storage legal holds, you create an indefinite retention rule. Object modification
and deletion are prevented until you delete the rule. You cannot lock an indefinite
retention rule because the rule has no duration.

It's important to understand retention duration for time-bound rules. Even though you are
creating retention rules for a bucket, the duration of a rule is applied to each object in the
bucket individually, and is based on the object's Last Modified timestamp. Let's say you have
two objects in the bucket, ObjectX and ObjectY. ObjectX was last modified 14 months ago
and ObjectY was last modified 3 months ago. You create a retention rule with a duration of 1
year. This rule prevents the modification or deletion of ObjectY for the next 9 months. The
rule allows the modification or deletion of ObjectX because the retention rule duration (1 year)
is less that the object's Last Modified timestamp (14 months). If ObjectX is overwritten some
time in the coming year, modification and deletion would be prevented for the rule duration
time remaining.

Locking a retention rule is an irreversible operation. Not even a tenancy administrator
can delete a locked rule. There is a mandatory 14-day delay before a rule is locked. This
delay lets you thoroughly test, modify, or delete the rule or the rule lock before the rule is
permanently locked. A rule is active at the time of creation. The lock only controls whether the
rule itself can be modified. After a rule is locked, only increases in the duration are allowed.
Object modification is prevented and the rule can only be deleted by deleting the bucket. A
bucket must be empty before it can be deleted.

Scope and Constraints
• Retention rules can be applied to a bucket in the Object Storage.

• The actions that you can perform on a bucket with active retention rules are limited. You
cannot update, overwrite, or delete objects or object metadata until the retention rule is
deleted (indefinite rule) or for the duration specified (time-bound rules). The duration for
time-bound rules is applied to each object individually, and is based on the object's Last
Modified timestamp.

• You can create multiple retention rules for a bucket. Indefinite retention rule is applied
before any time-bound rule is considered.

Chapter 10
Retention Rules

10-7

• When a retention rule is locked, the rule can only be deleted by deleting the
bucket. A bucket must be empty before it can be deleted.

Interaction Between Retention and Other Object Storage Features
Carefully review the policies and rules that you have in place for the other Object
Storage features that you are using. Some of these policies and rules might not make
sense with retention rules. This section describes some key things you need to know
about the interaction between retention rules and other Object Storage features.

Multipart Uploads

Uncommitted (unfinished or failed) multipart uploads are not protected by retention
rules and can be deleted at any time.

Versioning

• You cannot add retention rules to a bucket that has versioning enabled.

• You cannot enable versioning on a bucket with active retention rules.

• You can add retention rules to bucket that has versioning suspended. However,
you cannot resume versioning with active retention rules.

Troubleshooting Retention Rules
Unable to Create a Retention Rule

If creating a retention rule fails, the most likely cause is missing or incomplete IAM
permissions. Rule creation requires:

• User permissions that let you access the bucket and manage the objects in those
buckets.

• Minimally, BUCKET_UPDATE and RETENTION_RULE_MANAGE permissions.

• Minimally, BUCKET_UPDATE and RETENTION_RULE_MANAGE permissions.

Unable to Lock a Retention Rule

If locking a retention rule fails, the most likely cause is missing or incomplete IAM
permissions. Minimally, BUCKET_UPDATE, RETENTION_RULE_MANAGE, and
RETENTION_RULE_LOCK permissions are required to lock retention rules.

Unable to Delete a Retention Rule

You cannot delete a time-bound retention rule that is locked. When a retention rule is
locked, the rule can only be deleted by deleting the bucket. A bucket must be empty
before it can be deleted.

If deleting an indefinite retention rule fails, the most likely cause is missing or
incomplete IAM permissions. Rule deletion requires:

• User permissions that let you access the bucket and manage the objects in those
buckets.

• Minimally, BUCKET_UPDATE and RETENTION_RULE_MANAGE permissions.

Chapter 10
Retention Rules

10-8

Object Versioning
Object versioning provides data protection against accidental or malicious object update,
overwrite, or deletion.

Object versioning is enabled at the bucket level. Versioning directs Object Storage to
automatically create an object version each time one of these actions takes place:

• A new object is uploaded.

• An existing object is overwritten.

• When an object is deleted.

You can enable object versioning at bucket creation time or later.

A bucket that is versioning-enabled can have many versions of an object. There is always
one latest version of the object and zero or more previous versions.

Object Version Deletion
No object is physically deleted from a bucket that has versioning enabled until you take
explicit action to do so.

When you delete an object without targeting a specific version, the latest object version
becomes a previous object version and a special delete marker is created that marks the
deletion point. A delete marker contains only minimal metadata. If you delete a folder, a
delete marker is created for each object in the folder. You can simply delete the delete marker
to make that deleted version become the latest object version.

When you upload an object with the same name as the delete marker, the uploaded object
becomes the latest version of the object. The delete marker remains. There can be multiple
delete markers for an object and you can recover any of the previous object versions.

Object version deletion is different. When you delete an object version, the version is
permanently deleted. Permanent deletion also happens if you explicitly delete the latest
version by version ID. All delete operations that target a specific object version ID
permanently deletes the data.

Scope and Constraints
• Versioning can be enabled on a bucket in Object Storage.

• You can rename the latest version of an object, but you cannot rename a previous object
version. Renaming an object creates a new object.

Interaction Between Versioning and Other Object Storage Features
This section describes some key things you need to know about the interaction between
object versioning and other Object Storage features.

Copying Objects

If you copy the latest version of an object to a different bucket, only the object is copied. None
of the object's previous versions are copied. You can copy a previous version of an object to
another bucket, but that action creates either the latest version of a new object or a new
object version in the destination bucket.

Chapter 10
Object Versioning

10-9

Retention Rules

• You cannot add retention rules to a bucket that has versioning enabled.

• You cannot enable versioning on a bucket with active retention rules.

• You can add retention rules to bucket that has versioning suspended. However,
you cannot resume versioning with active retention rules.

Troubleshooting Versioning
Unable to Enable Versioning

If enabling versioning fails, the most likely cause is missing or incomplete IAM
permissions. Enabling versioning requires:

• User permissions that let you use the bucket and manage the objects in that
bucket.

• Minimally, BUCKET_UPDATE permissions.

Unable to Delete a Bucket

If deleting a bucket fails, the most likely cause is that the bucket is not empty.

You can permanently delete an empty bucket. You cannot delete a bucket that
contains any of the following:

• Any objects

• Previous versions of an object

• A multipart upload in progress

• A pre-authenticated request

Tip:

When you delete an object in a version-enabled bucket, a previous version of
that object is created. Select Show Deleted Objects to display the object
versions that might prevent you from deleting the bucket.

Unable to Delete a Previous Version

If deleting a previous object version fails, the most likely cause is missing or
incomplete IAM permissions. Object version deletion requires:

• User permissions that let you use the bucket and manage the objects in that
bucket.

• Minimally, OBJECT_VERSION_DELETE permissions.

Chapter 10
Object Versioning

10-10

11
Load Balancing Overview

The Load Balancing service provides automated traffic distribution from one entry point to
multiple servers reachable from your virtual cloud network (VCN). The service offers a load
balancer with your choice of a public or private IP address; provisioned bandwidth is not user-
configurable.

A load balancer improves resource utilization, facilitates scaling, and helps ensure high
availability. You can configure multiple load balancing policies and application-specific health
checks to ensure that the load balancer directs traffic only to healthy instances.

Load Balancer Essentials
When working with load balancers, it is critical that you understand its building blocks and
related key terminology.

Backend Server
An application server responsible for generating content in reply to the incoming TCP or
HTTP traffic.
You typically identify application servers with a unique combination of private IPv4 address
and port – for example: 10.25.4.101:8080, 10.25.4.102:8080, etc.

Backend Set
A logical entity defined by a list of backend servers, a load balancing policy, and a health
check policy.
The backend set determines how the load balancer directs traffic to the collection of backend
servers. SSL configuration is optional.

Load Balancing Policy
A load balancing policy tells the load balancer how to distribute incoming traffic to the
backend servers.
Common load balancer policies include: round robin, least connections, IP hash.

Health Check
A test to confirm the availability of backend servers.
You configure the health check policy when you create a backend set. You can configure
TCP-level or HTTP-level health checks for backend servers. Test results are reported
through health status indicators.

Listener
A logical entity that checks for incoming traffic on the load balancer's IP address.
You configure a listener's protocol and port number, and the optional SSL settings. To handle
TCP and HTTP traffic, you must configure multiple listeners. Supported protocols include:
TCP, HTTP/1.x, HTTP/2.

Cipher Suite
A logical entity for a set of algorithms, or ciphers, using Transport Layer Security (TLS) to
determine the security, compatibility, and speed of HTTPS traffic.

11-1

Path Route Set
A set of path route rules to route traffic to the correct backend set without using
multiple listeners or load balancers.

Session Persistence
A method to direct all requests originating from a single logical client to a single
backend web server.

Shape
A template that determines the load balancer's total pre-provisioned maximum
capacity (bandwidth) for ingress plus egress traffic. Oracle Private Cloud Appliance
only provides the 400 Mbps shape.
Pre-provisioned maximum capacity applies to aggregated connections, not to a single
client attempting to use the full bandwidth.

SSL Certificate
If you use HTTPS or SSL for the listener, you must associate an SSL server certificate
(X.509) with the load balancer. A certificate enables the load balancer to terminate the
connection and decrypt incoming requests before passing them to the backend
servers. Traffic between the load balancer and the backend can also be SSL-
encrypted.

Work Request
An object that reports on the current state of a Load Balancing request.
The Load Balancing service handles requests asynchronously. Each request returns a
work request ID (OCID) as the response. You can view the work request item to see
the status of the request.

Frontend Configuration
In the context of load balancers, the term frontend refers to the components that a
client can see and send requests to. The entry point of client requests is the outward-
facing floating IP address of the load balancer. Incoming traffic is checked by listeners,
which are configured for specific protocols and ports. Different types of rules can be
defined to categorize incoming requests and route them accordingly to different sets of
backend servers.

Load Balancer Types
The Load Balancing service allows you to create a public or private load balancer
within a VCN. Load balancers are deployed in pairs: one active and one standby
instance sharing a floating IP address. A public load balancer has a public IP address
that is accessible from outside the Private Cloud Appliance network environment. A
private load balancer has an IP address from the hosting subnet, which is visible only
within the VCN.

You can configure multiple listeners for an IP address to load balance transport Layer
4 and Layer 7 (TCP and HTTP) traffic. Both public and private load balancers act as
reverse proxies and can route data traffic to any backend server that is reachable from
the VCN.

All load balancers have a backend set to route incoming traffic to compute instances.
The backend set is a logical entity that includes:

• a list of backend servers

Chapter 11
Frontend Configuration

11-2

• a load balancing policy

• a health check policy

• (optional) SSL handling

• (optional) session persistence configuration

The backend servers – compute instances – associated with a backend set can exist
anywhere, as long as the associated network security groups (NSGs), security lists, and
route tables allow the intended traffic flow.

Private Load Balancer
To isolate your load balancer from the network outside the appliance and simplify its security
posture, you can create a private load balancer. The Load Balancing service assigns it a
private IP address that serves as the entry point for incoming traffic.

When you create a private load balancer, the service requires only one subnet to host both
the primary and standby load balancers. The load balancer is accessible only from within the
VCN that contains the host subnet, or as further restricted by your security rules.

The assigned floating private IP address is local to the host subnet. The primary and standby
load balancers each require an extra private IP address from the host subnet.

Public Load Balancer
To accept traffic from a network location outside of the appliance, you create a public load
balancer. A public load balancer must be deployed in a public subnet of a VCN that has an
internet gateway configured. The service assigns the load balancer a public IP address that
serves as the entry point for incoming traffic. You can associate the public IP address with a
friendly DNS name through any DNS provider.

A Private Cloud Appliance is a single Availability Domain by definition, which implies that the
primary and standby load balancers cannot be deployed in separate Availability Domains as it
is done in Oracle Cloud Infrastructure. Therefore, both the primary and standby load balancer
are deployed in the same subnet, and they each are assigned a private IP address from that
host subnet. In addition, a load balancer uses one floating public IP address that can be
reassigned between standby and primary as required.

Load Balancing Policies
After you create a load balancer, you can apply policies to control traffic distribution to your
backend servers. The primary policy types that the Load Balancing service supports, are:
Round Robin, Least Connections, and IP Hash.

Round Robin
The Round Robin policy is the default load balancer policy. This policy distributes incoming
traffic sequentially to each server in a backend set list. After each server has received a
connection, the load balancer repeats the list in the same order.
Round Robin is a simple load balancing algorithm. It works best when all the backend
servers have similar capacity and the processing load required by each request does not
vary significantly.

Chapter 11
Frontend Configuration

11-3

Least Connections
The Least Connections policy routes incoming non-sticky request traffic to the
backend server with the fewest active connections. This policy helps you maintain an
equal distribution of active connections with backend servers. As with the round robin
policy, you can assign a weight to each backend server and further control traffic
distribution.
This policy works best with protocols using long sessions, such as LDAP and SQL. It
is not recommended for short sessions as typically seen in HTTP use cases. If you
select the Least Connections policy for HTTP connections, the load balancer might
instead apply Round Robin internally, and even adjust server weighting dynamically.

Note:

In TCP use cases, a connection can be active but have no current traffic.
Such connections do not serve as a good load metric.

IP Hash
The IP Hash policy uses an incoming request's source IP address as a hashing key to
route non-sticky traffic to the same backend server. The load balancer routes requests
from the same client to the same backend server as long as that server is available.
This policy honors server weight settings when establishing the initial connection.

Note:

You cannot add a backend server marked as Backup to a backend set that
uses the IP Hash policy.

Caution:

Multiple clients that connect to the load balancer through a proxy or NAT
router appear to have the same IP address. If you apply the IP Hash policy
to your backend set, the load balancer routes traffic based on the incoming
IP address and sends these proxied client requests to the same backend
server. If the proxied client pool is large, the requests could flood a backend
server.

When processing load or capacity varies among backend servers, you can refine each
of these policy types with backend server weighting. Weighting affects the proportion
of requests directed to each server. For example, a server weighted '3' receives three
times the number of connections as a server weighted '1.' You assign weights based
on criteria of your choosing, such as each server's traffic-handling capacity. Weight
values must be from 1 to 100.

Load balancer policy decisions apply differently to TCP load balancers, cookie-based
session persistent HTTP requests – also known as sticky requests –, and non-sticky
HTTP requests.

• A TCP load balancer considers policy and weight criteria to direct an initial
incoming request to a backend server. All subsequent packets on this connection
go to the same endpoint.

Chapter 11
Frontend Configuration

11-4

• An HTTP load balancer configured to handle cookie-based session persistence forwards
requests to the backend server specified by the cookie's session information.

• For non-sticky HTTP requests, the load balancer applies policy and weight criteria to
every incoming request and determines an appropriate backend server. Multiple requests
from the same client could be directed to different servers.

Listeners
The listener is a logical entity at the ingress side of the load balancer setup. It is the key
component that detects incoming traffic on the load balancer IP address. It listens for
requests from clients using a particular protocol and port. Requests are subsequently routed
to the appropriate backend servers based on the rules defined in the load balancer
configuration. To handle TCP, HTTP, and HTTPS traffic, you must configure at least one
listener per traffic type.

When you create a listener, ensure that your VCN security rules allow the listener to accept
traffic.

Note:

To accommodate high-volume traffic, Oracle strongly recommends that you use
stateless security rules for your load balancer subnets. For more information, refer
to the section Virtual Firewall in the chapter Virtual Networking Overview.

You can have one SSL certificate bundle per listener. You can configure two listeners, one
each for ports 443 and 8443, and associate SSL certificate bundles with each listener. For
more information about SSL certificates for load balancers, see Load Balancer SSL
Certificates.

Cipher Suites
A cipher suite is a set of algorithms or ciphers that help secure network connections using
Transport Layer Security (TLS). You configure cipher suites for a load balancer to determine
the security, compatibility and speed of HTTPS traffic. All ciphers are associated with at least
one version of TLS (1.0, 1.1, 1.2).

Any cipher suite you use or create must contain individual ciphers that match the TLS version
supported in your environment. For example, if your environment supports TLS version 1.2,
you can use a cipher suite containing ciphers that work with TLS 1.2. You can use predefined
cipher suites or create your own. You add or change the cipher suite associated with a load
balancer as part of the listener configuration.

Predefined Cipher Suites
The Load Balancing service supports these predefined cipher suites.

oci-default-ssl-cipher-suite-v1

This cipher suite contains a restricted set of ciphers that are only supported in TLS version
1.2 and meet stricter compliance requirements.

• ECDHE-RSA-AES128-GCM-SHA256

Chapter 11
Frontend Configuration

11-5

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-vnet-overview.html

• ECDHE-RSA-AES128-SHA256

• ECDHE-RSA-AES256-GCM-SHA384

• ECDHE-RSA-AES256-SHA384

• DHE-RSA-AES256-GCM-SHA384

• DHE-RSA-AES256-SHA256

• DHE-RSA-AES128-GCM-SHA256

• DHE-RSA-AES128-SHA256

oci-modern-ssl-cipher-suite-v1

This cipher suite offers a wider set of ciphers, but still limited to TLS version 1.2 only.

• ECDHE-ECDSA-AES128-GCM-SHA256

• ECDHE-RSA-AES128-GCM-SHA256

• ECDHE-ECDSA-AES128-SHA256

• ECDHE-RSA-AES128-SHA256

• ECDHE-ECDSA-AES256-GCM-SHA384

• ECDHE-RSA-AES256-GCM-SHA384

• ECDHE-ECDSA-AES256-SHA384

• ECDHE-RSA-AES256-SHA384

• AES128-GCM-SHA256

• AES128-SHA256

• AES256-GCM-SHA384

• AES256-SHA256

• DHE-RSA-AES256-GCM-SHA384

• DHE-RSA-AES256-SHA256

• DHE-RSA-AES128-GCM-SHA256

• DHE-RSA-AES128-SHA256

oci-compatible-ssl-cipher-suite-v1

This cipher suite supports the broadest set of ciphers. It contains ciphers supported by
TLS versions 1.1 and 1.2.

• ECDHE-ECDSA-AES128-GCM-SHA256

• ECDHE-RSA-AES128-GCM-SHA256

• ECDHE-ECDSA-AES128-SHA256

• ECDHE-RSA-AES128-SHA256

• ECDHE-ECDSA-AES128-SHA

• ECDHE-RSA-AES128-SHA

• ECDHE-ECDSA-AES256-GCM-SHA384

• ECDHE-RSA-AES256-GCM-SHA384

Chapter 11
Frontend Configuration

11-6

• ECDHE-ECDSA-AES256-SHA384

• ECDHE-RSA-AES256-SHA384

• ECDHE-RSA-AES256-SHA

• ECDHE-ECDSA-AES256-SHA

• AES128-GCM-SHA256

• AES128-SHA256

• AES128-SHA

• AES256-GCM-SHA384

• AES256-SHA256

• AES256-SHA

• DHE-RSA-AES256-GCM-SHA384

• DHE-RSA-AES256-SHA256

• DHE-RSA-AES128-GCM-SHA256

• DHE-RSA-AES128-SHA256

oci-wider-compatible-ssl-cipher-suite-v1

This cipher suite contains all supported ciphers.

TLS version 1.2:

• ECDHE-ECDSA-AES128-GCM-SHA256

• ECDHE-RSA-AES128-GCM-SHA256

• ECDHE-ECDSA-AES128-SHA256

• ECDHE-RSA-AES128-SHA256

• ECDHE-ECDSA-AES256-GCM-SHA384

• ECDHE-RSA-AES256-GCM-SHA384

• ECDHE-ECDSA-AES256-SHA384

• ECDHE-RSA-AES256-SHA384

• AES128-SHA256

• AES256-GCM-SHA384

• AES256-SHA256

• DHE-RSA-AES256-GCM-SHA384

• DHE-RSA-AES256-SHA256

• DHE-RSA-AES128-GCM-SHA256

• DHE-RSA-AES128-SHA256

• DH-DSS-AES256-GCM-SHA384

• DHE-DSS-AES256-GCM-SHA384

• DH-RSA-AES256-GCM-SHA384

• DHE-DSS-AES256-SHA256

Chapter 11
Frontend Configuration

11-7

• DH-RSA-AES256-SHA256

• DH-DSS-AES256-SHA256

• ECDH-RSA-AES256-GCM-SHA384

• ECDH-ECDSA-AES256-GCM-SHA384

• ECDH-RSA-AES256-SHA384

• ECDH-ECDSA-AES256-SHA384

• DH-DSS-AES128-GCM-SHA256

• DHE-DSS-AES128-GCM-SHA256

• DH-RSA-AES128-GCM-SHA256

• DHE-DSS-AES128-SHA256

• DH-RSA-AES128-SHA256

• DH-DSS-AES128-SHA256

• ECDH-RSA-AES128-GCM-SHA256

• ECDH-ECDSA-AES128-GCM-SHA256

• ECDH-RSA-AES128-SHA256

• ECDH-ECDSA-AES128-SHA256

TLS version 1.1:

• ECDHE-ECDSA-AES128-SHA

• ECDHE-ECDSA-AES256-SHA

• ECDHE-RSA-AES128-SHA

• ECDHE-RSA-AES256-SHA

• AES128-GCM-SHA256

• AES128-SHA

• AES256-SHA

• DES-CBC3-SHA

• DHE-RSA-AES256-SHA

• DHE-RSA-AES128-SHA

• DHE-RSA-CAMELLIA256-SHA

• DHE-RSA-CAMELLIA128-SHA

• DHE-RSA-SEED-SHA

• DHE-RSA-AES256-SHA

• DHE-DSS-AES256-SHA

• DH-RSA-AES256-SHA

• DH-DSS-AES256-SHA

• DHE-RSA-CAMELLIA256-SHA

• DHE-DSS-CAMELLIA256-SHA

• DH-RSA-CAMELLIA256-SHA

Chapter 11
Frontend Configuration

11-8

• DH-DSS-CAMELLIA256-SHA

• ECDH-RSA-AES256-SHA

• ECDH-ECDSA-AES256-SHA

• CAMELLIA256-SHA

• PSK-AES256-CBC-SHA

• DHE-RSA-AES128-SHA

• DHE-DSS-AES128-SHA

• DH-RSA-AES128-SHA

• DH-DSS-AES128-SHA

• DHE-RSA-CAMELLIA128-SHA

• DHE-DSS-CAMELLIA128-SHA

• DH-RSA-CAMELLIA128-SHA

• DH-DSS-CAMELLIA128-SHA

• ECDH-RSA-AES128-SHA

• ECDH-ECDSA-AES128-SHA

• CAMELLIA128-SHA

• PSK-AES128-CBC-SHA

• API SPEC

Custom Cipher Suites
Instead of selecting from the predefined cipher suites, you can create a cipher suite of your
own to match the specific requirements of your environment. You build a custom cipher suite
by adding individual ciphers associated with the TLS version(s) used in your configuration. A
custom cipher suite must contain at least one cipher. Include only ciphers for the TLS
version(s) that your environment effectively supports.

Note:

• Ensure compatibility between specified SSL protocols and configured ciphers in the
cipher suite, otherwise the SSL handshake will fail.

• Ensure compatibility between configured ciphers in the cipher suite and configured
certificates. For example: RSA-based ciphers require an RSA certificate, whereas
ECDSA-based ciphers require ECDSA certificates.

Supported Ciphers
The Load Balancing service supports these ciphers.

Chapter 11
Frontend Configuration

11-9

TLS Version 1.2 Ciphers

Certificate Cipher
Suite

Key
Exchan
ge

Encryp
tion

Bits Cipher Suite Name
(IANA)

ECDHE-ECDSA-AES128-
GCM-SHA256

[0xc02
b]

ECDH AESGC
M

128 TLS_ECDHE_ECDSA_WIT
H_AES_128_GCM_SHA256

ECDHE-RSA-AES128-
GCM-SHA256

[0xc02f
]

ECDH AESGC
M

128 TLS_ECDHE_RSA_WITH_
AES_128_GCM_SHA256

ECDHE-ECDSA-AES128-
SHA256

[0xc023
]

ECDH AES 128 TLS_ECDHE_ECDSA_WIT
H_AES_128_CBC_SHA256

ECDHE-RSA-AES128-
SHA256

[0xc027
]

ECDH AES 128 TLS_ECDHE_RSA_WITH_
AES_128_CBC_SHA256

ECDHE-ECDSA-AES256-
GCM-SHA384

[0xc02c
]

ECDH AESGC
M

256 TLS_ECDHE_ECDSA_WIT
H_AES_256_GCM_SHA384

ECDHE-RSA-AES256-
GCM-SHA384

[0xc030
]

ECDH AESGC
M

256 TLS_ECDHE_RSA_WITH_
AES_256_GCM_SHA384

ECDHE-ECDSA-AES256-
SHA384

[0xc024
]

ECDH AES 256 TLS_ECDHE_ECDSA_WIT
H_AES_256_CBC_SHA384

ECDHE-RSA-AES256-
SHA384

[0xc028
]

ECDH AES 256 TLS_ECDHE_RSA_WITH_
AES_256_CBC_SHA384

AES128-GCM-SHA256 [0x9c] RSA AESGC
M

128 TLS_RSA_WITH_AES_128
_GCM_SHA256

AES128-SHA256 [0x3c] RSA AES 128 TLS_RSA_WITH_AES_128
_CBC_SHA256

AES256-GCM-SHA384 [0x9d] RSA AESGC
M

256 TLS_RSA_WITH_AES_256
_GCM_SHA384

AES256-SHA256 [0x3d] RSA AES 256 TLS_RSA_WITH_AES_256
_CBC_SHA256

DHE-RSA-AES256-GCM-
SHA384

[0x9f] DH AESGC
M

256 TLS_DHE_RSA_WITH_AE
S_256_GCM_SHA384

DHE-RSA-AES256-SHA256 [0x6b] DH AES 256 TLS_DHE_RSA_WITH_AE
S_256_CBC_SHA256

DHE-RSA-AES128-GCM-
SHA256

[0x9e] DH AESGC
M

128 TLS_DHE_RSA_WITH_AE
S_128_GCM_SHA256

DHE-RSA-AES128-SHA256 [0x67] DH AES 128 TLS_DHE_RSA_WITH_AE
S_128_CBC_SHA256

DH-DSS-AES256-GCM-
SHA384

[0xa5] DH/DSS AESGC
M

256 TLS_DH_DSS_WITH_AES_
256_GCM_SHA384

DHE-DSS-AES256-GCM-
SHA384

[0xa3] DH AESGC
M

256 TLS_DHE_DSS_WITH_AE
S_256_GCM_SHA384

DH-RSA-AES256-GCM-
SHA384

[0xa1] DH/RSA AESGC
M

256 TLS_DH_RSA_WITH_AES_
256_GCM_SHA384

DHE-DSS-AES256-SHA256 [0x6a] DH AES 256 TLS_DHE_DSS_WITH_AE
S_256_CBC_SHA256

DH-RSA-AES256-SHA256 [0x69] DH/RSA AES 256 TLS_DH_RSA_WITH_AES_
256_CBC_SHA256

DH-DSS-AES256-SHA256 [0x68] DH/DSS AES 256 TLS_DH_DSS_WITH_AES_
256_CBC_SHA256

Chapter 11
Frontend Configuration

11-10

Certificate Cipher
Suite

Key
Exchan
ge

Encryp
tion

Bits Cipher Suite Name
(IANA)

ECDH-RSA-AES256-GCM-
SHA384

[0xc032
]

ECDH/R
SA

AESGC
M

256 TLS_ECDH_RSA_WITH_A
ES_256_GCM_SHA384

ECDH-ECDSA-AES256-
GCM-SHA384

[0xc02e
]

ECDH/
ECDSA

AESGC
M

256 TLS_ECDH_ECDSA_WITH
_AES_256_GCM_SHA384

ECDH-RSA-AES256-
SHA384

[0xc02a
]

ECDH/R
SA

AES 256 TLS_ECDH_RSA_WITH_A
ES_256_CBC_SHA384

ECDH-ECDSA-AES256-
SHA384

[0xc026
]

ECDH/
ECDSA

AES 256 TLS_ECDH_ECDSA_WITH
_AES_256_CBC_SHA384

DH-DSS-AES128-GCM-
SHA256

[0xa4] DH/DSS AESGC
M

128 TLS_DH_DSS_WITH_AES_
128_GCM_SHA256

DHE-DSS-AES128-GCM-
SHA256

[0xa2] DH AESGC
M

128 TLS_DHE_DSS_WITH_AE
S_128_GCM_SHA256

DH-RSA-AES128-GCM-
SHA256

[0xa0] DH/RSA AESGC
M

128 TLS_DH_RSA_WITH_AES_
128_GCM_SHA256

DHE-DSS-AES128-SHA256 [0x40] DH AES 128 TLS_DHE_DSS_WITH_AE
S_128_CBC_SHA256

DH-RSA-AES128-SHA256 [0x3f] DH/RSA AES 128 TLS_DH_RSA_WITH_AES_
128_CBC_SHA256

DH-DSS-AES128-SHA256 [0x3e] DH/DSS AES 128 TLS_DH_DSS_WITH_AES_
128_CBC_SHA256

ECDH-RSA-AES128-GCM-
SHA256

[0xc031
]

ECDH/R
SA

AESGC
M

128 TLS_ECDH_RSA_WITH_A
ES_128_GCM_SHA256

ECDH-ECDSA-AES128-
GCM-SHA256

[0xc02
d]

ECDH/
ECDSA

AESGC
M

128 TLS_ECDH_ECDSA_WITH
_AES_128_GCM_SHA256

ECDH-RSA-AES128-
SHA256

[0xc029
]

ECDH/R
SA

AES 128 TLS_ECDH_RSA_WITH_A
ES_128_CBC_SHA256

ECDH-ECDSA-AES128-
SHA256

[0xc025
]

ECDH/
ECDSA

AES 128 TLS_ECDH_ECDSA_WITH
_AES_128_CBC_SHA256

TLS Version 1.0/1.1 Ciphers Supported in TLS Version 1.2

Certificate Cipher
Suite

Key
Exchan
ge

Encrypt
ion

Bits Cipher Suite Name (IANA)

ECDHE-ECDSA-AES128-SHA [0xc009] ECDH AES 128 TLS_ECDHE_ECDSA_WITH_
AES_128_CBC_SHA

ECDHE-RSA-AES128-SHA [0xc013] ECDH AES 128 TLS_ECDHE_RSA_WITH_AE
S_128_CBC_SHA

ECDHE-RSA-AES256-SHA [0xc014] ECDH AES 256 TLS_ECDHE_RSA_WITH_AE
S_256_CBC_SHA

ECDHE-ECDSA-AES256-SHA [0xc00a] ECDH AES 256 TLS_ECDHE_ECDSA_WITH_
AES_256_CBC_SHA

AES128-SHA [0x2f] RSA AES 128 TLS_RSA_WITH_AES_128_C
BC_SHA

Chapter 11
Frontend Configuration

11-11

Certificate Cipher
Suite

Key
Exchan
ge

Encrypt
ion

Bits Cipher Suite Name (IANA)

AES256-SHA [0x35] RSA AES 256 TLS_RSA_WITH_AES_256_C
BC_SHA

DHE-RSA-AES128-SHA [0x33] DH AES 128 TLS_DHE_RSA_WITH_AES_
128_CBC_SHA

DHE-RSA-CAMELLIA256-
SHA

[0x88] DH Camelli
a

256 TLS_DHE_RSA_WITH_CAM
ELLIA_256_CBC_SHA

DHE-RSA-CAMELLIA128-
SHA

[0x45] DH Camelli
a

128 TLS_DHE_RSA_WITH_CAM
ELLIA_128_CBC_SHA

DHE-DSS-CAMELLIA256-
SHA

[0x87] DH Camelli
a

256 TLS_DHE_DSS_WITH_CAM
ELLIA_256_CBC_SHA

DHE-DSS-CAMELLIA128-
SHA

[0x44] DH Camelli
a

128 TLS_DHE_DSS_WITH_CAM
ELLIA_128_CBC_SHA

DHE-RSA-SEED-SHA [0x9a] DH SEED 128 TLS_DHE_RSA_WITH_SEED
_CBC_SHA

DHE-DSS-SEED-SHA [0x99] DH SEED 128 TLS_DHE_DSS_WITH_SEED
_CBC_SHA

DH-RSA-SEED-SHA [0x98] DH/RSA SEED 128 TLS_DH_RSA_WITH_SEED_
CBC_SHA

DH-DSS-SEED-SHA [0x97] DH/DSS SEED 128 TLS_DH_DSS_WITH_SEED_
CBC_SHA

DHE-RSA-AES256-SHA [0x39] DH AES 256 TLS_DHE_RSA_WITH_AES_
256_CBC_SHA

DHE-DSS-AES256-SHA [0x38] DH AES 256 TLS_DHE_DSS_WITH_AES_
256_CBC_SHA

DH-RSA-AES256-SHA n/a n/a n/a n/a n/a

DH-DSS-AES256-SHA [0x36] DH/DSS AES 256 TLS_DH_DSS_WITH_AES_25
6_CBC_SHA

DH-RSA-CAMELLIA256-
SHA

[0x86] DH/RSA Camelli
a

256 TLS_DH_RSA_WITH_CAME
LLIA_256_CBC_SHA

DH-DSS-CAMELLIA256-SHA [0x85] DH/DSS Camelli
a

256 TLS_DH_DSS_WITH_CAME
LLIA_256_CBC_SHA

ECDH-RSA-AES256-SHA [0xc00f] ECDH/R
SA

AES 256 TLS_ECDH_RSA_WITH_AES
_256_CBC_SHA

ECDH-ECDSA-AES256-SHA [0xc005] ECDH/
ECDSA

AES 256 TLS_ECDH_ECDSA_WITH_A
ES_256_CBC_SHA

CAMELLIA256-SHA [0x84] RSA Camelli
a

256 TLS_RSA_WITH_CAMELLIA
_256_CBC_SHA

PSK-AES256-CBC-SHA [0x8d] PSK AES 256 TLS_PSK_WITH_AES_256_C
BC_SHA

DHE-DSS-AES128-SHA [0x32] DH AES 128 TLS_DHE_DSS_WITH_AES_
128_CBC_SHA

DH-RSA-AES128-SHA [0x31] DH/RSA AES 128 TLS_DH_RSA_WITH_AES_1
28_CBC_SHA

DH-DSS-AES128-SHA [0x30] DH/DSS AES 128 TLS_DH_DSS_WITH_AES_12
8_CBC_SHA

Chapter 11
Frontend Configuration

11-12

Certificate Cipher
Suite

Key
Exchan
ge

Encrypt
ion

Bits Cipher Suite Name (IANA)

DH-RSA-CAMELLIA128-
SHA

[0x43] DH/RSA Camelli
a

128 TLS_DH_RSA_WITH_CAME
LLIA_128_CBC_SHA

DH-DSS-CAMELLIA128-SHA [0xbb] DH/DSS Camelli
a

128 TLS_DH_DSS_WITH_CAME
LLIA_128_CBC_SHA256

ECDH-RSA-AES128-SHA [0xc00e] ECDH/R
SA

AES 128 TLS_ECDH_RSA_WITH_AES
_128_CBC_SHA

ECDH-ECDSA-AES128-SHA [0xc004] ECDH/
ECDSA

AES 128 TLS_ECDH_ECDSA_WITH_A
ES_128_CBC_SHA

SEED-SHA [0x96] RSA SEED 128 TLS_RSA_WITH_SEED_CBC_
SHA

CAMELLIA128-SHA n/a n/a n/a n/a n/a

PSK-AES128-CBC-SHA [0x8c] PSK AES 128 TLS_PSK_WITH_AES_128_C
BC_SHA

DES-CBC3-SHA [0x0701
c0]

RSA 3DES 168 SSL_CK_DES_192_EDE3_CB
C_WITH_SHA

IDEA-CBC-SHA [0x07] RSA IDEA 128 TLS_RSA_WITH_IDEA_CBC_
SHA

ECDHE-RSA-DES-CBC3-SHA [0xc012] ECDH 3DES 168 TLS_ECDHE_RSA_WITH_3D
ES_EDE_CBC_SHA

ECDHE-ECDSA-DES-CBC3-
SHA

[0xc008] ECDH 3DES 168 TLS_ECDHE_ECDSA_WITH_
3DES_EDE_CBC_SHA

DHE-RSA-DES-CBC3-SHA n/a n/a n/a n/a n/a

DHE-DSS-DES-CBC3-SHA n/a n/a n/a n/a n/a

DH-RSA-DES-CBC3-SHA [0x10] DH/RSA 3DES 168 TLS_DH_RSA_WITH_3DES_
EDE_CBC_SHA

DH-DSS-DES-CBC3-SHA [0x0d] DH/DSS 3DES 168 TLS_DH_DSS_WITH_3DES_
EDE_CBC_SHA

ECDH-RSA-DES-CBC3-SHA [0xc00d
]

ECDH/R
SA

3DES 168 TLS_ECDH_RSA_WITH_3DE
S_EDE_CBC_SHA

ECDH-ECDSA-DES-CBC3-
SHA

[0xc003] ECDH/
ECDSA

3DES 168 TLS_ECDH_ECDSA_WITH_3
DES_EDE_CBC_SHA

PSK-3DES-EDE-CBC-SHA [0x8b] PSK 3DES 168 TLS_PSK_WITH_3DES_EDE_
CBC_SHA

KRB5-IDEA-CBC-SHA [0x21] KRB5 IDEA 128 TLS_KRB5_WITH_IDEA_CB
C_SHA

KRB5-DES-CBC3-SHA [0x1f] KRB5 3DES 168 TLS_KRB5_WITH_3DES_ED
E_CBC_SHA

KRB5-IDEA-CBC-MD5 [0x25] KRB5 IDEA 128 TLS_KRB5_WITH_IDEA_CB
C_MD5

KRB5-DES-CBC3-MD5 [0x23] KRB5 3DES 168 TLS_KRB5_WITH_3DES_ED
E_CBC_MD5

ECDHE-RSA-RC4-SHA [0xc011] ECDH RC4 128 TLS_ECDHE_RSA_WITH_RC
4_128_SHA

ECDHE-ECDSA-RC4-SHA [0xc007] ECDH RC4 128 TLS_ECDHE_ECDSA_WITH_
RC4_128_SHA

Chapter 11
Frontend Configuration

11-13

Certificate Cipher
Suite

Key
Exchan
ge

Encrypt
ion

Bits Cipher Suite Name (IANA)

ECDH-RSA-RC4-SHA [0xc00c] ECDH/R
SA

RC4 128 TLS_ECDH_RSA_WITH_RC4
_128_SHA

ECDH-ECDSA-RC4-SHA [0xc002] ECDH/
ECDSA

RC4 128 TLS_ECDH_ECDSA_WITH_R
C4_128_SHA

RC4-SHA [0x05] RSA RC4 128 TLS_RSA_WITH_RC4_128_S
HA

RC4-MD5 [0x04] RSA RC4 128 TLS_RSA_WITH_RC4_128_M
D5

PSK-RC4-SHA [0x8a] PSK RC4 128 TLS_PSK_WITH_RC4_128_S
HA

KRB5-RC4-SHA [0x20] KRB5 RC4 128 TLS_KRB5_WITH_RC4_128_
SHA

KRB5-RC4-MD5 [0x24] KRB5 RC4 128 TLS_KRB5_WITH_RC4_128_
MD5

Request Routing
The Load Balancing service allows you to route incoming requests to different backend
servers based on certain properties of the request. The goal is to optimize the
utilization of backend resources.

When multiple applications are hosted on the backend, several virtual host names can
be associated with the load balancer listeners, so that incoming HTTP requests
matching a particular host name are routed to the right backend servers.

When backend applications use multiple endpoints or content types, represented by a
distinct URI or path, HTTP requests for each of those endpoints can be routed to
different backend servers based on path route rules. These path route rules contain a
string that is matched against the URI of an incoming request to determine the
appropriate backend destination.

Virtual host names and path route rule sets are frequently combined in request routing.
Note that virtual host names take precedence over URI matching.

Virtual Host Names
Virtual host names are assigned to any listener you create as part of your load
balancer configuration. They work in conjunction with records you add to your DNS
system. Host names associated with a listener correspond to the backend sets of that
listener. In the backend, traffic is routed to the servers that host particular applications.

Virtual host names only work with HTTP(S) listeners; they are not supported with TCP
listeners. If a listener has no associated virtual host name, that listener is the default
for the assigned port. If all listeners on a port have virtual host names, the first virtual
host name configured for that port serves as the default listener.

Advantages of using virtual host names include:

• IP address consolidation. Multiple host names, backed by DNS entries in your
name servers, can point to the same load balancer IP address.

Chapter 11
Frontend Configuration

11-14

• Single load balancer. Instead of deploying a load balancer per application, you can use
one load balancer for multiple applications.

• Single load balancer shape. Running multiple applications behind a single load balancer
helps you manage aggregate bandwidth demands and optimize utilization.

• Simpler backend management. Managing a set of backend servers under a single
resource simplifies network configuration and administration.

Virtual host names can be defined as exact names, such as "app.example.com", or as
wildcard names. Wildcard names include an asterisk (*) at the beginning or end of the host
name. Only the asterisk wildcard is supported; regular expressions are not supported. When
searching for a virtual host name, the service chooses the first matching variant in the
following order of priority:

1. Exact name match without wildcard. For example: app.example.com.

2. Longest wildcard name that begins with an asterisk. For example: *.example.com.

Note:

Prefix wildcard names might require a wildcard certificate for HTTPS sites.

3. Longest wildcard name that ends with an asterisk. For example: app.example.*.

Note:

Suffix wildcard names might require a multi-domain Subject Alternative Name
(SAN) certificate for HTTPS sites.

To apply virtual host names to a listener, you first create one or more virtual host names
associated with the load balancer. Virtual host name selection priority is not related to the
listener configuration order. There is a maximum of 16 virtual host names associated with a
load balancer and applied to a single listener.

Path Route Sets
A path route is a string that the load balancer matches against an incoming URI to determine
the appropriate destination backend set. Some applications have multiple endpoints or
content types, each identified by a unique URI path. For example: /admin/, /data/, /video/,
or /cgi/. Path route rules allow traffic to be routed to the correct backend set without
requiring multiple listeners or load balancers.

A path route set includes all path route rules that define the request routing for a particular
listener. Only one path route set can be specified for each listener; a path route set contains a
maximum of 20 path route rules.

A path route rule consists of a path route string and a pattern match type. Strings must not
contain asterisks or regular expressions; string matching is case-insensitive. The pattern
match types are:

EXACT_MATCH
Looks for a path string that exactly matches the incoming URI path.

Chapter 11
Frontend Configuration

11-15

Applies case-insensitive regex: ^<path_string>$

FORCE_LONGEST_PREFIX_MATCH
Looks for the path string with the best, longest match of the beginning portion of the
incoming URI path.
Applies case-insensitive regex: <path_string>.*

PREFIX_MATCH
Looks for a path string that matches the beginning portion of the incoming URI path.
Applies case-insensitive regex: ^<path_string>.*

SUFFIX_MATCH
Looks for a path string that matches the ending portion of the incoming URI path.
Applies case-insensitive regex: .*<path_string>$

Rule Priority

Within a path route set, the match type determines the priority of path route rules. For
sets containing multiple path route rules with different match types, the following order
of priority is applied:

1. EXACT_MATCH

2. FORCE_LONGEST_PREFIX_MATCH

3. PREFIX_MATCH or SUFFIX_MATCH

The order of rules within a path route set is irrelevant for EXACT_MATCH and
FORCE_LONGEST_PREFIX_MATCH. However, if matching cascades down to
PREFIX_MATCH or SUFFIX_MATCH, the system selects the first prefix or suffix rule
that matches the incoming URI path.

To apply path route rules to a listener, you first create a path route set that contains the
rules. The path route set is part of the load balancer configuration. When you create or
update a listener for the load balancer, you specify the path route set to use.

Backend Configuration
In the context of load balancers, the term backend refers to the components that
receive, process, and respond to forwarded client requests. Backend servers are
grouped into backend sets; they receive client requests based on the configured load
balancing policy. Health checks ensure that traffic only goes to healthy backend
servers.

Backend Sets
The backend set in a load balancer configuration consists of a list of backend servers,
a load balancing policy, and a health check script. A backend set must be associated
with one or more listeners. Optionally, you can add session persistence settings and
configure SSL for HTTPS requests.

Chapter 11
Backend Configuration

11-16

Caution:

Changing the backend set's load balancing policy interrupts traffic and may cause
active connections to be dropped.

Backend Servers
When creating a load balancer, you must specify the backend servers to include in each
backend set. Backend servers can be set up as individual compute instances or as instance
pools. The transport protocol of a backend server is configured as part of the backend set.
You can add and remove backend servers without disrupting traffic.

When you add backend servers to a backend set, you specify either the instance OCID or an
IP address for the server to add. An instance with multiple VNICs attached can have multiple
IP addresses pointing to it. If you identify a backend server by OCID, the Load Balancing
service uses the primary VNIC's primary private IP address. If you identify the backend
servers to add to a backend set by their IP addresses, it is possible to point to the same
instance more than once.

The load balancer routes incoming traffic to the backend servers based on the selected load
balancing policy. To route traffic to a backend server, the Load Balancing service requires the
IP address of the compute instance and the relevant application port. If the backend server
resides within the same VCN as the load balancer, Oracle recommends that you specify the
compute instance's private IP address. The private IP address will also work if a local peering
gateway enables traffic between the load balancer's VCN and the backend server's VCN. If
the backend server and load balancer reside in different VCNs without peering connection,
you must specify the public IP address of the compute instance. You must also ensure that
the VCN security rules allow external traffic.

To enable backend traffic, your backend server subnets must have appropriate ingress and
egress security rules. When you add backend servers to a backend set, you can specify the
applicable network security groups (NSGs). If you prefer to use security lists for your VCN,
you can configure them through the Networking service.

Note:

To accommodate high-volume traffic, Oracle strongly recommends that you use
stateless security rules for your load balancer subnets. See Virtual Firewall in the
chapter Virtual Networking Overview.

Load Balancer Health Checks
Load balancer health checks are tests to confirm the availability of backend servers. These
tests occur in the form of a request or a connection attempt depending on the protocol. The
health check policy includes a time interval you specify, to ensure that the backend servers
are continuously monitored. If a server fails a health check, the load balancer takes the
server temporarily out of rotation. If the server later passes the health check, the load
balancer returns it to the rotation.

Chapter 11
Backend Configuration

11-17

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-vnet-overview.html

The health check policy is configured when you create a backend set. You can
configure TCP-level or HTTP-level health checks for your backend servers. For
backend sets configured with SSL the health checks also utilize SSL encryption.

• TCP-level health checks attempt to make a TCP connection with the backend
servers and validate the response based on the connection status.

• HTTP-level health checks send requests to the backend servers at a specific URI
and validate the response based on the status code or entity data (body) returned.

Configure your health check protocol to match your application or service. If you run
an HTTP service, then configure an HTTP-level health check. If you run a TCP-level
health check against an HTTP service, then you might not get an accurate response.
The TCP handshake can succeed and indicate that the service is up even when the
HTTP service is incorrectly configured or having other issues. Although the health
check returns no errors, you might experience transaction failures.

For example:

• The backend HTTP service has issues when communicating with the health check
URL and the health check URL returns 5nn messages. An HTTP health check
catches the message from the health check URL and marks the service as down.
In this case, a TCP health check handshake succeeds and marks the service as
healthy, even though the HTTP service might not be usable.

• The backend HTTP service responds with 4nn messages because of authorization
issues or no configured content. A TCP health check does not catch these errors.

The service provides application-specific health check capabilities to help you increase
availability and reduce your application maintenance window.

Health status indicators are used to report the general health of a load balancer and its
backend servers/sets. The possible statuses are: ok, warning, critical, unknown.
Health status is updated every three minutes. No finer granularity is available.
Historical health data is not provided.

Interpreting Load Balancer Health Issues
At the highest level, load balancer health reflects the status of its components. The
health status indicators provide information you might need to drill down into and
investigate further. Below are several common issues that the health status indicators
can help you detect and correct.

Health check misconfigured
All the backend servers for one or more of the affected listeners report as unhealthy. If
your investigation finds that the backend servers do not have problems, then a
backend set probably includes a misconfigured health check.

Listener misconfigured
All the backend server health status indicators report OK, but the load balancer does
not pass traffic on a listener. The listener might be configured to listen on the wrong
port, use the wrong protocol, or use the wrong policy. If your investigation shows that
the listener is not at fault, check the security rule configuration.

Security rule misconfigured
Health status indicators help you diagnose these cases of misconfigured security
rules:

Chapter 11
Backend Configuration

11-18

• All health status indicators report OK, but traffic does not flow (as with misconfigured
listeners). If the listener is not at fault, check the security rule configuration.

• All health status indicators report as unhealthy. You have checked your health check
configuration and your services run properly on your backend servers. In this case, your
security rules might not include the IP range for the source of the health check requests.
The source IP for health check requests belongs to a compute instance managed by the
Load Balancing service.

Note:

Traffic may also be blocked due to misconfigured route tables in the compute
instances.

Backend server unhealthy
A backend server might be unhealthy or the health check might be misconfigured. To see the
corresponding error code, check the status field in the backend server's details through the
UI or CLI.

Common Side Effects of Load Balancer Health Check Misconfiguration
The misconfiguration scenarios below are known to occur regularly. This page helps with
troubleshooting.

Wrong Port
In this scenario, all backend servers are reported as unhealthy. If you confirmed that there
are no issues with the backend servers, you might have made a mistake setting the port.
Traffic must be allowed, and the backend must be listening on that port.
Error message: errno:EHOSTUNREACH, syscall:connect.

Wrong Path
In this scenario, all backend servers are reported as unhealthy. If you confirmed that there
are no issues with the backend servers, you might have made a mistake setting the path for
the HTTP health check. It needs to match an actual application on the backend.
You can use the curl utility to run a test from a system within the same network. For
example: curl -i http://backend_ip_address/health.
You receive the configured status code in the response: "msg":"invalid
statusCode","statusCode":404,"expected":"200".

Wrong Protocol
In this scenario, all backend servers are reported as unhealthy. If you confirmed that there
are no issues with the backend servers, you might have made a mistake setting the protocol.
The health check protocol needs to match the protocol the backend is configured to listen
for. For example: only TCP and HTTP health checks are supported. If your backend is using
HTTPS, then you should use TCP as the protocol.
Error message: code:EPROTO, errno:EPROTO.

Wrong Status Code
In this scenario, all backend servers are reported as unhealthy. If you confirmed that there
are no issues with the backend servers, for an HTTP health check you might have made a
mistake setting the status code. It must match the actual status code being returned from the
backend. A typical mismatch is when a backend returns a 302 status code while a 200 status
code is expected. This is often caused by the backend directing you to a login page or

Chapter 11
Backend Configuration

11-19

another location on the server. You can either make the backend return the expected
code or use 302 in your health check configuration.
Error message: msg:invalid statusCode, statusCode:nnn,expected:200 (where
nnn represents the actual status code returned).

Wrong Regex Pattern
In this scenario, all backend servers are reported as unhealthy. If you confirmed that
there are no issues with the backend servers, you might have made a mistake setting
a regex pattern that is not consistent with the body, or the backend is not returning the
expected body. In this scenario, you can either change the backend to match the
pattern or correct the pattern to match the backend.
Error message: response match result: failed.

Misconfigured Security Rules
In this scenario, all or some of the backend servers report as unhealthy. If you
confirmed that there are no issues with the backend servers, then you might have
improperly configured either the network security groups, security lists, or local
firewalls (such as firewalld, iptables, or SELinux).
In this scenario, you can use either the curl or netcat utilities to run a test from a
system within the same subnet and network security group (NSG) as your load
balancer instance HTTP. For example: curl -i http://backend_ip_address/health
TCP or nc -zvw3 backend_ip_address 443.
Local firewalls can be verified by using the command: firewall-cmd --list-all --
zone=public. If the expected rules are missing from the firewall configuration, then
add the required service. For example, to add HTTP port 80:

firewall-cmd --zone=public --add-service=http
firewall-cmd --zone=public --permanent --add-service=http

Load Balancer SSL Certificates
You can import and manage SSL certificates through the Load Balancing service, but
the service does not generate any certificates. An SSL certificate can be one issued by
a vendor such as VeriSign or GoDaddy, or a self-signed certificate that you generate
with a tool like OpenSSL or Let's Encrypt.

If you configure HTTPS or SSL for a listener, an SSL server certificate must be
associated with the load balancer. A certificate enables the load balancer to terminate
the connection and decrypt incoming requests before passing them to the backend
servers. You can apply the following SSL configurations to your load balancer:

• SSL termination: The load balancer handles incoming SSL traffic and passes the
unencrypted request to a backend server.

• Point-to-point SSL: The load balancer terminates the SSL connection with an
incoming traffic client, and then initiates an SSL connection to a backend server.

• SSL tunneling: If you configure the load balancer's listener for TCP traffic, the
load balancer tunnels incoming SSL connections to your application servers.

Load Balancing supports the TLS 1.2 protocol with a default setting of strong cipher
strength.

To use standard SSL with a load balancer and its resources, you must supply a
certificate. To use mutual TLS (mTLS) with your load balancer, you must add one or
more certificate authority bundles (CA bundles) to your system. A certificate bundle
includes the public certificate, the corresponding private key, and any associated

Chapter 11
Load Balancer SSL Certificates

11-20

Certificate Authority (CA) certificates. It is recommended that you upload the certificate
bundles before creating the listeners or backend sets you want to associate them with. Only
X.509 certificates in PEM format are accepted.

Load balancers commonly use single domain certificates. However, load balancers with
listeners that include request routing configuration might require a subject alternative name
(SAN) certificate (also called multi-domain certificate) or a wildcard certificate. The Load
Balancing service supports each of these certificate types.

SSL Traffic Handling Configuration
You can configure a load balancer to handle SSL traffic in different ways at different stages of
the secured connection.

Terminating SSL at the Load Balancer

This configuration is known as frontend SSL. Your load balancer can accept encrypted traffic
from a client. No encryption of traffic exists between the load balancer and the backend
servers.

To terminate SSL at the load balancer, you must create a listener at a port such as 443, and
then associate an uploaded certificate bundle with the listener.

Implementing Backend SSL

In a backend SSL configuration, the load balancer does not accept encrypted traffic from
client servers. Traffic between the load balancer and the backend servers is encrypted.

To implement SSL between the load balancer and your backend servers, you must associate
an uploaded certificate bundle with the backend set.

If you want to have more than one backend server in the backend set, sign your backend
servers with an intermediate CA certificate. The intermediate CA certificate must be included
as part of the certificate bundle.

Your backend services must be able to accept and terminate SSL.

Implementing Point-to-Point SSL

In a point-to-point SSL configuration, the load balancer accepts SSL-encrypted traffic from
clients and encrypts traffic to the backend servers.

To implement point-to-point SSL, you must associate uploaded certificate bundles with both
the listener and the backend set.

Uploading Certificate Chains
If there are multiple certificates that form a single certification chain – for example when
intermediate certificate authority (CA) certificates are used –, then include all relevant
certificates in a single PEM file in the correct order before uploading them to the system. The
correct order begins with the certificate directly signed by the trusted root certificate authority
at the bottom of the list. Any additional certificates are pasted above the signed certificate.

Combine the server certificate (ssl-certificate.crt) and the intermediate CA certificate
(intermediate-ca-cert.crt) files into a single, concatenated PEM file:

cat ssl_certificate.crt intermediate-ca-cert.crt >> certbundle.pem

Chapter 11
Load Balancer SSL Certificates

11-21

Peer Certificate Verification
When SSL is set up on the load balancer, the listener responds to an incoming client
request with a certificate that the client can verify for authenticity. Enabling peer
certificate verification adds an extra layer of security: it requires the client (peer) to
present a certificate that the listener can validate. In other words, peer certificate
verification establishes mutual authentication between client and server.

In case peer certificate verification is configured incorrectly, the client is unable to
verify the certificate and returns a client SSL handshake failure. The error message
varies by client type. You can use the OpenSSL utility to check the depth at which the
validation fails:

$ openssl verify -verbose -CAfile root-cert.pem intermediate-cert.pem
error 20 at 0 depth lookup: unable to get local issuer certificate

To resolve these verification errors, confirm that the client certificate and certificate
authority certificate match, and make sure the certificates are included in the correct
order.

SSL Key Issues
The following key-related problems are known to occur when configuring SSL for a
load balancer.

Key Pair Mismatch

If the private and public key do not match, attempting to upload them results in a
mismatch error. Use the following OpenSSL commands to confirm that the public and
private key are part of the same pair:

openssl x509 -in certificate_name.crt -noout -modulus | openssl sha1
openssl rsa -in private_key_name.key -noout -modulus | openssl sha1

The sha1 hash values returned from these commands must match exactly. If they are
different, then the private key is not used to sign the public certificate, and this key
cannot be used.

Private Key Consistency

In general, when errors occur that are related to a private key, you can use the
OpenSSL utility to check the key's consistency. This command verifies that the key is
intact, the passphrase is correct, and the file contains a valid RSA private key:

openssl rsa -check -in private_key.pem

Private Key Decryption

If the system does not recognize the encryption technology used for a private key, you
should decrypt the key and upload the unencrypted version of the key with your
certificate bundle. You can use the OpenSSL utility to decrypt a private key:

openssl rsa -in private_key.pem -out private_key_decrypted.pem

Chapter 11
Load Balancer SSL Certificates

11-22

Session Persistence
Session persistence is a method to direct all requests originating from a single logical client to
a single backend web server. Backend servers that use caching to improve performance, or
to enable log-in sessions or shopping carts, can benefit from session persistence.

You enable session persistence when you create a load balancer or when you create a
backend set. You can also edit an existing backend set to enable, disable, or change the
session persistence configuration.

The Load Balancing service offers two mutually exclusive cookie-based configurations for
enabling session persistence: application cookie stickiness and load balancer cookie
stickiness.

Note:

IP address-driven session persistence
Some products offer session persistence support without cookies. These products
depend on the IP address of the incoming request. ISP proxies and company exit
gateways can issue many requests from a single IP address. In this case, a single
backend server can be subject to high traffic volumes. Your backend fleet can
become overwhelmed, one server at a time, even though effective load balancing is
possible.

Another weakness of IP address-driven session persistence is that the originating
IP address can change. In this case, session persistence can be lost or the request
redirected to the wrong backend server.

Application Cookie Stickiness

To configure application cookie session persistence, you only need to specify a cookie name.
By default, traffic from a persistent session client is redirected to a different backend server
when the original server is unavailable. This fallback behavior cannot be disabled.

The Load Balancing service activates application cookie session persistence (stickiness)
when a backend server sends a Set-Cookie response header containing a recognized cookie
name. The cookie name must match the name specified in the backend set configuration. If
the configuration specifies a match-all pattern ("*") any cookie set by the server activates
session persistence. Unless a backend server activates session persistence, the service
follows the load balancing policy specified when you created the load balancer.

Requirements:

• The load balancer must operate in HTTP mode to support server side, cookie-driven
session persistence.

• The client computer must accept cookies for load balancing session persistence to work.

How It Works:

The Load Balancing service calculates a hash of the configured cookie and other request
parameters, and sends that value to the client in a cookie. The value stored in the cookie
enables the service to route subsequent client requests to the correct backend server. If your

Chapter 11
Session Persistence

11-23

backend servers change any of the defined cookies, the service recomputes the
cookie's value and resends it to the client.

Note:

Oracle recommends that you treat cookie data as an opaque entity. Do not
use it in your applications.

The backend server can stop application cookie persistence by deleting the session
persistence cookie. If you used the match-all pattern, it must delete all cookies. You
can delete cookies by sending a Set-Cookie response header with a past expiration
date. The Load Balancing service routes subsequent requests using the configured
load balancing policy.

Load Balancer Cookie Stickiness

When you configure load balancer cookie stickiness, the load balancer inserts a
cookie into the response. The parameters configured within the cookie enable session
stickiness. This method is useful when you have applications and web backend
services that cannot generate their own cookies.

To configure load balancer cookie session persistence, you specify these parameters
and settings:

The cookie name
If you do not specify a cookie name, the default name is X-Oracle-BMC-LBS-Route.

Note:

Ensure that the cookie name used at the backend application servers is
different from the cookie name used at the load balancer. To minimize the
chance of name collision, Oracle recommends that you use a prefix such as
X-Oracle-OCI-.
If both a backend server and the load balancer insert cookies with the same
name, the client or browser behavior can vary depending on the domain
value associated with the cookie. If the name and domain values of the Set-
cookie header (generated by a backend server) and the Set-cookie header
(generated by the load balancer) are the same, the client or browser treats
them as one cookie. The client returns only one of the cookie values in
subsequent requests. If both Set-cookie names are the same, but the
domain names are different, the client or browser treats them as two
different cookies.

The domain in which the cookie is valid
The Set-cookie header inserted by the load balancer contains a domain attribute with
the specified value. This attribute has no default value. If you do not specify a value,
the load balancer does not insert the domain attribute into the Set-cookie header.

Chapter 11
Session Persistence

11-24

Note:

• RFC 6265 - HTTP State Management Mechanism describes client and
browser behavior when the domain attribute is present or not present in the
Set-cookie header.

If the value of the Domain attribute is example.com in the Set-cookie header,
the client includes the same cookie in the Cookie header when making HTTP
requests to example.com, www.example.com, and www.abc.example.com. If the
Domain attribute is not present, the client returns the cookie only for the domain
to which the original request was made.

• Ensure that this attribute specifies the correct domain value. If the Domain
attribute in the Set-cookie header does not include the domain to which the
original request was made, the client or browser might reject the cookie. As
specified in RFC 6265, the client accepts a cookie with the Domain attribute
value example.com or www.example.com sent from www.example.com. It does
not accept a cookie with the Domain attribute abc.example.com or
www.abc.example.com sent from www.example.com.

The URI path in which the cookie is valid
The Set-cookie header inserted by the load balancer contains a Path attribute with the
specified value. Clients include the cookie in an HTTP request only if the path portion of the
request-uri matches, or is a subdirectory of, the cookie's Path attribute. The default value
is "/".

The amount of time the cookie remains valid
The Set-cookie header inserted by the load balancer contains a Max-Age attribute with the
specified value. The specified value must be at least one second. No default value for this
attribute exists. If you do not specify a value, the load balancer does not include the Max-Age
attribute in the Set-cookie header. Usually, the client or browser retains the cookie until the
current session ends, as defined by the client.

Whether the Set-cookie header should contain the Secure attribute
The Secure attribute directs the client or browser to send the cookie only using a secure
protocol.

Note:

If you set this field to true, you cannot associate the corresponding backend set
with an HTTP listener.

Whether the Set-cookie header should contain the HttpOnly attribute
The HttpOnly attribute limits the scope of the cookie to HTTP requests. This attribute directs
the client or browser to omit the cookie when providing access to cookies through non-HTTP
APIs. For example, it restricts the cookie from JavaScript channels.

Whether to disable fallback for unavailable servers
Refer to the "Fallback" section below.

Chapter 11
Session Persistence

11-25

https://www.ietf.org/rfc/rfc6265.txt

Note:

Path route rules take precedence to determine the target backend server.
The load balancer verifies that session stickiness is enabled for the backend
server and that the cookie configuration is valid for the target. The system
ignores invalid cookies.

Fallback

By default, the Load Balancing service directs traffic from a persistent session client to
a different backend server when the original server is unavailable. You can configure
the backend set to disable this fallback behavior. When you disable fallback, the load
balancer fails the request and returns an HTTP 502 code. The service continues to
return an HTTP 502 until the client no longer presents a persistent session cookie.

Caution:

If fallback is disabled, cookies with a distant future expiration date can cause
a client outage.

Note:

The Load Balancing service considers a server marked drain available for
existing persisted sessions. New requests that are not part of an existing
persisted session are not sent to that server.

Connection Timeout Settings
Load balancers support connection multiplexing. The load balancer can route many
incoming requests from multiple clients to the destination backend server through a
small number (one or multiple) of backend connections.

After your load balancer connects a client to a backend server, the connection can be
closed because of inactivity. You can configure load balancer listeners to control the
maximum idle time allowed during each TCP connection or HTTP request and
response pair.

The following timeout settings affect the load balancer's behavior:

• Keep-alive setting between load balancer and client

• Keep-alive setting between load balancer and backend server

• Idle timeout in seconds

Keep-Alive Settings

The Load Balancing service does not honor keep-alive settings from backend servers.
The load balancer closes backend server connections that are idle for more than 300

Chapter 11
Connection Timeout Settings

11-26

seconds. Oracle recommends that you do not allow your backend servers to close
connections to the load balancer. To prevent possible 502 errors, ensure that your backend
servers do not close idle connections in less than 310 seconds.

The Load Balancing service sets the keep-alive value to maintain the connection until it has
been idle for 65 seconds. The value for this setting cannot be changed.

Idle Timeout Settings

When you create or edit a TCP or HTTP listener, you can specify the maximum idle time in
seconds. This setting applies to the time allowed between two successive receive or two
successive send network input/output operations during the HTTP request-response phase. If
the configured timeout has elapsed with no packets sent or received, the client's connection
is closed. For HTTP and WebSocket connections, a send operation does not reset the timer
for receive operations and a receive operation does not reset the timer for send operations.

Note:

This timeout setting does not apply to idle time between a completed response and
a subsequent HTTP request.

The default timeout values are: 300 seconds for TCP listeners and 60 seconds for HTTP
listeners. The maximum timeout value is 7200 seconds.

Modify the timeout parameter if either the client or the backend server requires more time to
transmit data; for example:

• The client sends a database query to the backend server and the database takes over
300 seconds to run. Therefore, the backend server does not transmit any data within 300
seconds.

• The client uploads data using the HTTP protocol. During the upload, the backend does
not transmit any data to the client for more than 60 seconds.

• The client downloads data using the HTTP protocol. After the initial request, it stops
transmitting data to the backend server for more than 60 seconds.

• The client starts transmitting data after establishing a WebSocket connection, but the
backend server does not transmit data for more than 60 seconds.

• The backend server starts transmitting data after establishing a WebSocket connection,
but the client does not transmit data for more than 60 seconds.

Chapter 11
Connection Timeout Settings

11-27

12
Network Load Balancing Overview

Load balancers improve resource usage, scaling ability, and help with instance availability.
Two types of load balancers are available on the Oracle Private Cloud Appliance:

• Load Balancer as a Service (LBaaS)

• Network Load Balancer (NLB)

The biggest difference between LBaaS and a NLB is that LBaaS provides Layer-7 routing
and the NLB provides Layer-4 pass-through routing. This means that NLB sees only the IP
and TCP headers on a packet, while LBaaS sees all headers inserted before the message
data, including information in the HTML part of the message.

Although the operational layers are the most obvious difference between LBaaS and NLBs,
some features are shared while others differ. For example, both types of LB require a public
network load balancer to accept traffic from the internet, and a public LB can't be in a private
subnet.

The following table summarizes these major differences.

Table 12-1 LBaaS and NLB Major Characteristics Compared

Major Characteristic LBaaS NLB

Visibility Public or Private Public or Private
IP Address Ephemeral or Reserved IP

address
Ephemeral or Reserved IP
address

Policy Parameters Weighted Round Robin, IP
hash, Least Connections

IP hash mapped from 5, 3, or 2
header fields

Layer 4 Functioning Yes Yes
Layer 7 Functioning Yes No
TLS Support Yes No

If a VCN uses network security groups (NSGs), you can associate the load balancer with an
NSG. An NSG has a set of security rules that controls allowed types of inbound and
outbound traffic. The rules apply only to the resources in the group. An NSG isn't a security
list, where the rules apply to all the resources in any subnet that uses the list. See
"Controlling Traffic with Network Security Groups" in the the Networking section in the Oracle
Private Cloud Appliance User Guide for more information about NSGs.

If you prefer to use security lists for the VCN, see "Controlling Traffic with Security Lists" in
the the Networking section of the Oracle Private Cloud Appliance User Guide for more
information about security lists.

We recommend that you distribute backend servers across all availability domains.

Other differences are of an operational nature, or involved in configuration limits. Many of the
NLB limitations are because of the functioning at Layer 4 and no higher. These differences
are listed in the following table.

12-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html

Table 12-2 Other LBaas and NLB Characteristics Compared

Characteristic LBaaS NLB

Routing of Requests Yes No
Persistence of Sessions Yes No
SSL Certificates Yes No
Cipher Suites Yes No
Listener Protocol HTTP, HTTP2, TCP, HTTPS TCP
Health Check Protocol HTTP, TCP HTTP, HTTPS, TCP
IP Address Limit 1 1
Backend Set Limit 16 4
Backend Servers per
Backend Set

512 512

Total Backend Servers Limit 512 1024
Maximum Listeners 16 50
Certificate Support Yes No

Network Load Balancer Essentials
When working with network load balancers (NLBs), understanding the building blocks
and related key terminology is critical.

Backend Server
A network load balancer has a set of backend servers to route incoming traffic to
destinations while balancing the load placed on each individual server in the set.
A backend server is an application server responsible for generating content in reply
to the incoming client traffic. You typically identify application servers with a unique
combination of overlay (private) IPv4 address and port number. For example,
10.10.10.1:8080 and 10.10.10.2:8080.

Note:

The backend server can't function as both a client and a backend
simultaneously as is unable to be a traffic source to the network load
balancer's virtual IP (VIP).

Backend Set
The backend set is a logical entity that includes:

• A list of backend servers (compute instances) that accept traffic from the network
load balancer.

• A network-level load balancing policy to distribute traffic to the backend servers in
a consistent manner.

• A health check policy to decide if the backend servers are functioning and can
accept traffic from the network load balancers.

Chapter 12
Network Load Balancer Essentials

12-2

Network Load Balancing Policy
A network load balancing policy tells the network load balancer how to distribute incoming
traffic to backend servers in the backend set.
A network load balancer uses an IP hash mapped from an n-tuple, which is an ordered and
finite list of elements. These elements are typically drawn from the fields in a packet header
or from items from the grid of a relational database. The n indicates how many fields the
tuple contains.
Allowed network load balancer policies for the IP hash include:

• A hash on 5 fields in the TCP/IP header (called "5-Tuple Hash")

• A hash on 3 fields in the TCP/IP header (called "3-Tuple Hash")

• A hash on 2 fields in the TCP/IP header (called "2-Tuple Hash"

Note:

NLB policies are different than LBaaS policies. NLB policies don't handle IP
addresses and port numbers directly. Hashing is a way to manipulate these and
other packet header fields to provide a number that the NLB can use without
processing the entire packet header. The more tuples that are used for the load
balancing policy, the more processing required for each load balanced packet, but
the wider the range of values that can be used by the NLB to distribute traffic.

Health Check
A health check is a test to confirm the availability of backend servers. A health check can be
a request or a connection try. Based on a time interval you specify, the network load balancer
applies the health check policy to continuously monitor backend servers. If a server fails the
health check, the network load balancer takes the server temporarily out of rotation. If the
server later passes the health check, the network load balancer returns it to the rotation.
You configure a health check policy when you create a backend set. TCP-level health checks
try to make a TCP connection with the backend servers and validate the response based on
the connection status
The health check results update the health status of the network load balancer. The health
status is an indicator that reports the general health of network load balancers and their
components.

Listener
A logical entity that checks for incoming traffic on the network load balancer's IP address.
You configure a listener's port number and various optional settings. When creating a
listener, the VCN's security rules must let the listener accept traffic.

Work Request
An object that reports on the current state of a network load balancer request. Some network
load balancer configuration tasks can take much longer to complete than others. Work
requests let network load balancers handle configuration steps asynchronously and form a
queue. This lets the user issue more configuration commands without waiting for the
completion of a previous configuration directive.

Frontend Configuration
In the context of network load balancers, the term frontend refers to the components that a
client can see and send requests to. The entry point of client requests is the outward-facing
floating IP address of the network load balancer.

Chapter 12
Frontend Configuration

12-3

Three main configuration tasks are needed for the network load balancer frontend:

• Type (public or private)

• Policy (the number of tuples used for the hash value)

• Listeners (Port number and other parameters that the network load balancer uses
when waiting for traffic)

Network Load Balancer Types
There are two types of network load balancers (NLBs): public and private.

Private NLBs use a private IP address to serve as the entry point for incoming traffic.
The load balancing service requires only one subnet to host both the primary and
secondary load balancers. However, the NLB is only accessible from within the VCN
that contains the host subnet, or as further restricted by security rules.

Public NLBs use a public IP address and accept traffic from a network location outside
the Oracle Private Cloud Appliance. However, the public NLB must be deployed in a
public subnet of a VCN that has an internet gateway (IGW) correctly configured.

Load Balancing Policies
A network load balancer policy acts on an n-tuple mapped to an IP hash instead of
directly on the packet header. A tuple is an ordered and finite list of elements. For a
network load balancer, these elements to be hashed are drawn from the fields in a
packet header. The n indicates how many fields the tuple contains.

Allowed network load balancer policies include:

• A default policy based on a hash on 5 fields in the TCP/IP header (called "5-Tuple
Hash")

– Source IP address

– Source port

– Destination IP address

– Destination port

– Protocol

• A policy based on a hash on 3 fields in the TCP/IP header (called "3-Tuple Hash")

– Source IP address

– Destination IP address

– Protocol

• A policy based on a hash on 2 fields in the TCP/IP header (called "2-Tuple Hash"

– Source IP address

– Destination IP address

Hashing generates a smaller number of bits than used in the concatentated fields
before the hashing algorithms isd applied. Packets that have the same hash value are
treated the same way by the network load balancer.

Chapter 12
Frontend Configuration

12-4

The more tuples that are used for the load balancing policy, the more processing required for
each load balanced packet, but the wider the range of values that can be used by the NLB to
distribute traffic.

The IP hash is the "policy in action." The network load balancer uses an incoming requst's
tuple information as a hashing key to consistently route traffic to the same backend server.
This ensures that requests froma particualr client are always directed to the same backend
server if that backend server remains available.

Listeners
A listener is a logical entity at the ingress side of the network load balancer setup. This key
component detects incoming traffic on the network load balancer IP address. It listens for
requests from clients using a particular protocol and port. Requests are then routed to the
appropriate backend servers based on the rules defined in the network load balancer
configuration. You must configure a listener.

When you create a listener, ensure that the VCN security rules let the listener accept traffic.

Note:

To accommodate high-volume traffic, Oracle strongly recommends that you use
stateless security rules for network load balancer subnets. For more information,
see the section Virtual Firewall in the chapter Virtual Networking Overview.

Backend Configuration
In the context of network load balancers, the term backend refers to the components that
receive, process, and respond to forwarded client requests. Backend servers are grouped
into backend sets; they receive client requests based on the configured load balancing policy.
Health checks ensure that traffic only goes to healthy backend servers.

Backend Sets
The backend set in a network load-balancer configuration consists of a list of backend
servers, a network load balancing policy, and a health check script. Backend sets help to
group backend servers together and make them easier to configure and manage form a
network load balancer perspective.

A backend set must be associated with one or more listeners.

Backend Servers
When creating a Network Load Balancer (NLB), you must specify the backend servers to
include in each backend set. Backend servers can be set up as individual compute instances
or as instance pools. You can add and remove backend servers without disrupting traffic.

TCP is the transport protocol of a backend server and is configured as part of the backend
set.

Chapter 12
Backend Configuration

12-5

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-vnet-overview.html

When you add backend servers to a backend set, you specify either the instance
OCID or an IP address for the server to add. An instance with multiple VNICs attached
can have multiple IP addresses pointing to it. If you identify a backend server by OCID,
the NLB uses the primary VNIC's primary private IP address. If you identify the
backend servers to add to a backend set by their IP addresses, it is possible to point to
the same instance more than once.

The NLB routes incoming traffic to the backend servers based on the configured load
balancing policy. To route traffic to a backend server, the NLB requires the IP address
of the compute instance and the relevant application port. If the backend server
resides within the same VCN as the NLB, Oracle recommends that you specify the
compute instance's private IP address. The private IP address also works if a local
peering gateway enables traffic between the NLB's VCN and the backend server's
VCN. If the backend server and NLB reside in different VCNs without a peering
connection, you must specify the public IP address of the compute instance. You must
also ensure that the VCN security rules allow external traffic.

To enable backend traffic, your backend server subnets must have appropriate ingress
and egress security rules. When you add backend servers to a backend set, you can
specify the applicable network security groups (NSGs). If you prefer to use security
lists for your VCN, you can configure them through the Networking service.

Note:

To accommodate high-volume traffic, Oracle strongly recommends that you
use stateless security rules for your load balancer subnets. See Virtual
Firewall in the chapter Virtual Networking Overview.

Network Load Balancer Health Checks
Network Load Balancer (NLB) health checks are tests to confirm the availability of
backend servers. These tests occur in the form of an attempt to make a TCP
connection with the backend servers and validate the response based on the
connection status.

The health check policy includes a time interval you specify, to ensure that the
backend servers are continuously monitored. If a server fails a health check, the NLB
takes the server temporarily out of rotation. If the server later passes the health check,
the NLB returns it to the rotation.

The health check policy is configured when you create a backend set.

The TCP handshake can succeed and indicate that the service is up even when the
HTTP service is incorrectly configured or having other issues. Although the health
check returns no errors, you might experience transaction failures.

The service provides application-specific health check capabilities to help you increase
availability and reduce your application maintenance window.

Health status indicators are used to report the general health of an NLB and its
backend servers/sets. The possible statuses are: ok, warning, critical, unknown.
Health status is updated every three minutes. No finer granularity is available.
Historical health data is not provided.

Chapter 12
Backend Configuration

12-6

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-vnet-overview.html

	Contents
	Preface
	Audience
	Feedback
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Architecture and Design
	Introduction to Oracle Private Cloud Appliance
	Compatibility with Oracle Cloud Infrastructure
	Enclaves and Interfaces
	Enclave Boundaries
	Access Profiles

	Layered Architecture
	Hardware Layer
	Platform Layer
	Infrastructure Services Layer

	Platform Layer Overview
	Fundamental Services
	Hardware Management
	Service Deployment

	Common Service Components

	Physical Resource Allocation
	High Availability
	Hardware Redundancy
	System Availability
	Compute Instance Availability
	Continuity of Service

	2 Hardware Overview
	Base Rack Components
	X10 Rack Configuration
	X9 Rack Configuration

	Servers
	Management Nodes
	Compute Nodes
	Server Components

	Network Infrastructure
	Device Management Network
	Data Network
	Uplinks
	Physical Connection
	Reference Topologies
	Logical Connection

	Uplink Protocols
	Administration Network
	Reserved Network Resources
	Oracle Exadata Integration

	Storage
	Oracle ZFS Storage Appliance ZS9-2
	Additional Storage

	3 Appliance Administration Overview
	Administrator Access
	Authorization Groups and Their Policies
	Authorization Families

	Status and Health Monitoring
	Monitoring
	Fault Domain Observability
	System Health Checks
	Centralized Logging

	Upgrade
	Upgrade Plan and History
	Pre-Checks
	Single Component Upgrade
	Full Management Node Cluster Upgrade

	Patching
	Backup and Restore
	Disaster Recovery
	Serviceability

	4 Identity and Access Management Overview
	Users and Groups
	User Credentials
	Account Passwords
	API Signing Keys

	Federating with Identity Providers
	Supported Identity Providers
	Experience for Federated Users
	Federation Process Overview

	Instance Principals
	Organizing Resources in Compartments
	Understanding Compartments
	Considerations for Granting Resource Access
	Examples of Compartment Organization
	All Resources in the Root Compartment
	Separately Managed Project Compartments

	Working with Compartments
	Creating Compartments
	Compartment Access Control
	Adding Resources to Compartments
	Moving Resources Between Compartments
	Deleting Compartments

	Moving a Compartment to a Different Parent Compartment
	Policy Implications
	Tagging Implications

	How Policies Work
	Policy Basics
	Resource Types
	Policy Attachment

	Policy Syntax
	Subject
	Verb
	Resource Type
	Location
	Conditions

	Common Policies
	Let the help desk manage users
	Let auditors inspect your resources
	Let network admins manage a cloud network
	Let users launch compute instances
	Let users manage compute instance configurations, instance pools, and cluster networks
	Let volume admins manage block volumes, backups, and volume groups
	Let volume backup admins manage only backups
	Let boot volume backup admins manage only backups
	Let users create a volume group
	Let users clone a volume group
	Let users create a volume group backup
	Let users restore a volume group backup
	Let users create, manage, and delete file systems
	Let users create file systems
	Let object storage admins manage buckets and objects
	Let users write objects to object storage buckets
	Let users download objects from object storage buckets
	Let users manage their own credentials
	Let a compartment admin manage the compartment

	Advanced Policy Features
	Conditions
	Non-Applicable Variables
	Tag-Based Access Control

	Permissions
	Relation to Verbs
	Relation to API Operations
	Understanding a User's Access
	Scoping Access with Permissions or API Operations

	Cross-Tenancy Policies
	Policy Reference

	5 Tagging Overview
	Tag Types
	Categorization with Defined Tags
	Tag Namespaces and Keys
	Permissions for Working with Defined Tags

	Tag Management Features
	Retiring and Reactivating Tag Definitions
	Moving Tag Namespaces
	Deleting Tag Definitions
	Using Predefined Values
	Using Tag Variables

	Tag Defaults
	Tag-Based Access Control
	Important Notes and Limitations
	Example Using Tags Applied to a Group
	Example Using Tags Applied to a Target Resource's Compartment

	6 Virtual Networking Overview
	Virtual Cloud Network
	Subnets
	Route Tables

	Public Network in Private Cloud
	Instance Connectivity
	Virtual Network Interface Cards (VNICs)
	IP Addressing
	Primary and Secondary IP Addresses
	Private IPs
	Public IPs

	DHCP Options
	Name Resolution
	Domains and Host Names
	Host Name Validation and Generation
	Public DNS Zones
	Traffic Management Steering Policies

	Network Gateways
	Dynamic Routing Gateway
	NAT Gateway
	Internet Gateway
	Local Peering Gateway
	Policies
	Routing and Traffic Control
	Security Rules

	Service Gateway

	Virtual Firewall
	Security Rules
	Parts of a Security Rule
	Stateful and Stateless Rules
	Best Practices for Security Rules

	Security Lists
	Network Security Groups

	Network Security
	Ways to Secure Your Network
	Access Control
	Using Compartments with Network Resources
	Using IAM Policies for Networking

	Networking Scenarios
	Private Subnet with Data Center Ingress and Egress Traffic
	Private Subnet with Data Center Egress Traffic Only
	Public Subnet with Data Center Ingress and Egress Traffic
	Public Subnet with Mixed Data Center Connectivity
	Public and Private Subnet with Separate Routing

	7 Compute Instance Concepts
	Components for Launching Instances
	Compute Shapes
	Storage for Compute Instances
	Compute Instance Lifecycle
	Compute Instance Connections
	Compute Images
	Custom Images Created From Instances
	Bring Your Own Image (BYOI)
	Linux Source Image Requirements
	Microsoft Windows Source Image Requirements

	Boot Volumes
	Custom Boot Volume Sizes
	Boot Volume Backups
	Boot Volume Backup Size
	Restoring a Boot Volume

	Cloning a Boot Volume

	Instance Backup and Restore
	Simplifying Compute Instance Management
	Instance Configurations
	Instance Pools
	Instance Pool Lifecycle States

	Container Engine for Kubernetes
	Extending Compute Resources
	Expanding Volumes
	Offline Resizing of Block Volumes Using the Compute Web UI
	Rescanning the Disk for a Block Volume or Boot Volume
	Adding Another Network Interface

	8 Block Volume Storage Overview
	Block Volume Performance Options
	Block Volume Scenarios
	Block Volume Groups
	Volume Backups and Clones

	9 File Storage Overview
	File Storage Objects
	File Storage Paths
	VCN Security Rules for File Storage
	File Storage Network Ports
	Export Options for File Storage
	Export Options
	NFS Export Option Defaults
	NFS Access Control Scenarios
	Scenario A: Control Host Based Access
	Scenario B: Limit the Ability to Write Data
	Scenario C: Improve File System Security

	File System Snapshots
	File System Clones

	10 Object Storage Overview
	Object Storage Resources
	Object Naming Prefixes and Hierarchies
	Object Names
	Optional Response Headers and Metadata
	Multipart Uploads
	Pre-Authenticated Requests
	Required Permissions
	Types of Pre-Authentication Requests
	Scope and Constraints

	Retention Rules
	Scope and Constraints
	Interaction Between Retention and Other Object Storage Features
	Troubleshooting Retention Rules

	Object Versioning
	Object Version Deletion
	Scope and Constraints
	Interaction Between Versioning and Other Object Storage Features
	Troubleshooting Versioning

	11 Load Balancing Overview
	Load Balancer Essentials
	Frontend Configuration
	Load Balancer Types
	Private Load Balancer
	Public Load Balancer

	Load Balancing Policies
	Listeners
	Cipher Suites
	Predefined Cipher Suites
	Custom Cipher Suites
	Supported Ciphers

	Request Routing
	Virtual Host Names
	Path Route Sets

	Backend Configuration
	Backend Sets
	Backend Servers
	Load Balancer Health Checks
	Interpreting Load Balancer Health Issues
	Common Side Effects of Load Balancer Health Check Misconfiguration

	Load Balancer SSL Certificates
	SSL Traffic Handling Configuration
	Uploading Certificate Chains
	Peer Certificate Verification
	SSL Key Issues

	Session Persistence
	Connection Timeout Settings

	12 Network Load Balancing Overview
	Network Load Balancer Essentials
	Frontend Configuration
	Network Load Balancer Types
	Load Balancing Policies
	Listeners

	Backend Configuration
	Backend Sets
	Backend Servers
	Network Load Balancer Health Checks

