Oracle Private Cloud Appliance
Kubernetes Engine

F81950-08
May 2025
ORACLE

Oracle Private Cloud Appliance Kubernetes Engine,
F81950-08

Copyright © 2024, 2025, Oracle and/or its affiliates.

Contents

Preface

Audience Vi
Feedback Vi
Conventions Vi
Documentation Accessibility Vi
Access to Oracle Support for Accessibility Vil
Diversity and Inclusion Vii

1 Overview of Kubernetes Engine

2 OKE Workflow

Private Cloud Appliance Administrator Tasks 2-1
Creating an OKE Users Group 2-2
Creating a Cluster Dynamic Group 2-2
Updating the Certificate Authority Bundle 2-5

Cluster Administrator Tasks 2-5

Creating the OraclePCA-OKE.cluster_id Tag 2-6

Creating OraclePCA Tags 2-9

3 OKE Best Practices

4 Creating OKE Network Resources

Public and Private Clusters 4-1
OKE Cluster Management with Administration Network 4-3
Creating Flannel Overlay Network Resources 4-4
Workload Cluster Network CIDR Ranges for Flannel Overlay Networking 4-5
Workload Cluster Network Ports for Flannel Overlay Networking 4-5
Example Terraform Scripts for Flannel Overlay Network Resources 4-6
Creating a Flannel Overlay VCN 4-15
Creating a Flannel Overlay Worker Subnet 4-20

ORACLE" il

Creating a Flannel Overlay Worker Load Balancer Subnet 4-23

Creating a Flannel Overlay Control Plane Subnet 4-25
Creating a Flannel Overlay Control Plane Load Balancer Subnet 4-28
Creating VCN-Native Pod Networking Resources 4-31
Workload Cluster Network CIDR Ranges for VCN-Native Pod Networking 4-32
Workload Cluster Network Ports for VCN-Native Pod Networking 4-33
Example Terraform Scripts for VCN-Native Pod Networking Resources 4-34
Creating a VCN-Native Pod Networking VCN 4-47
Creating a VCN-Native Pod Networking Pod Subnet 4-52
Creating a VCN-Native Pod Networking Worker Subnet 4-55
Creating a VCN-Native Pod Networking Worker Load Balancer Subnet 4-59
Creating a VCN-Native Pod Networking Control Plane Subnet 4-61
Creating a VCN-Native Pod Networking Control Plane Load Balancer Subnet 4-66

5 Creating and Managing OKE Clusters

Creating an OKE Cluster 5-1
Creating a Kubernetes Configuration File 5-9
Updating an OKE Cluster 5-12
Deleting an OKE Cluster 5-13

6 Managing OKE Cluster Add-ons

Installing the WebLogic Kubernetes Operator Add-on 6-1
Viewing OKE Cluster Add-ons 6-9
Add-on Reconciliation 6-10
Updating the WebLogic Kubernetes Operator Add-on 6-12
Disabling and Removing OKE Cluster Add-ons 6-13

7 Creating and Managing OKE Worker Node Pools

Creating an OKE Worker Node Pool 7-1
Updating an OKE Node Pool 7-8
Node Cycling an OKE Node Pool 7-10
Using Node Doctor to Troubleshoot Worker Node Issues 7-12
Deleting an OKE Node Pool Node 7-14
Deleting an OKE Node Pool 7-15

8 Exposing Containerized Applications

ORACLE

9 Adding Storage for Containerized Applications

Creating Persistent Block Volume Storage 9-1
Creating Persistent High Performance Block Volume Storage 9-3
Creating Persistent File System Storage Using the CSI Volume Plugin 9-4
Creating Persistent File System Storage Using an Existing File System 9-6
Using a Persistent Volume 9-9
Deleting a Persistent Volume 9-11

Deleting a Persistent Volume Claim 9-11

Retaining a Persistent Volume 9-12

ORACLE

Preface

Preface

Audience

Feedback

This publication is part of the customer documentation set for Oracle Private Cloud Appliance
Release 3.0. Note that the documentation follows the release numbering scheme of the
appliance software, not the hardware on which it is installed. All Oracle Private Cloud
Appliance product documentation is available at https://docs.oracle.com/en/engineered-
systems/private-cloud-appliance/index.html.

Oracle Private Cloud Appliance Release 3.x is a flexible general purpose Infrastructure as a
Service solution, engineered for optimal performance and compatibility with Oracle Cloud
Infrastructure. It allows customers to consume the core cloud services from the safety of their
own network, behind their own firewall.

This documentation is intended for owners, administrators and operators of Oracle Private
Cloud Appliance. It provides architectural and technical background information about the
engineered system components and services, as well as instructions for installation,
administration, monitoring and usage.

Oracle Private Cloud Appliance has two strictly separated operating areas, known as enclaves.
The Compute Enclave offers a practically identical experience to Oracle Cloud Infrastructure: It
allows users to build, configure and manage cloud workloads using compute instances and
their associated cloud resources. The Service Enclave is where privileged administrators
configure and manage the appliance infrastructure that provides the foundation for the cloud
environment. The target audiences of these enclaves are distinct groups of users and
administrators. Each enclave also provides its own separate interfaces.

It is assumed that readers have experience with system administration, network and storage
configuration, and are familiar with virtualization technologies. Depending on the types of
workloads deployed on the system, it is advisable to have a general understanding of container
orchestration, and UNIX and Microsoft Windows operating systems.

Provide feedback about this documentation at https://www.oracle.com/goto/docfeedback.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Vi

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/index.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/index.html
https://www.oracle.com/goto/docfeedback

Preface

Convention Meaning

monospace Monospace type indicates commands within a paragraph, code in
examples, text that appears on the screen, or text that you enter.

$ prompt The dollar sign ($) prompt indicates a command run as a non-root user.

prompt The pound sign (#) prompt indicates a command run as the root user.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners

we are working to remove insensitive terms from our products and documentation. We are also

mindful of the necessity to maintain compatibility with our customers' existing technologies an
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

d

Vii

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Overview of Kubernetes Engine

ORACLE

Oracle Private Cloud Appliance Kubernetes Engine (OKE) is a scalable, highly available
service that can be used to deploy any containerized application to the cloud.

The OKE service uses Cluster APl Provider (CAPI) and Cluster API Provider for Oracle Cloud
Infrastructure (CAPOCI) to orchestrate the cluster on the Private Cloud Appliance.

The OKE service uses Kubernetes, the open-source system for automating deployment,
scaling, and management of containerized applications across clusters of hosts. Kubernetes
groups the containers that make up an application into logical units called pods for easy
management.

For more information about Kubernetes in Oracle, see What Is Kubernetes? For more general
information about Kubernetes, see the Kubernetes site.

Using the OKE Service

You can access the OKE service to create OKE clusters by using the Compute Web Ul, the
OCI CLI, and API. For general information about using the Private Cloud Appliance Compute
Web Ul and OCI CLI, see the Working in the Compute Enclave chapter in the Oracle Private
Cloud Appliance User Guide.

You can access OKE clusters by using the Kubernetes command line (kubectl), the
Kubernetes Dashboard, and the Kubernetes API.

On Private Cloud Appliance, the OKE service manages all OKE cluster nodes, which are
compute instances. An authorized user can perform tasks such as patch the instance.

Supported Versions of Kubernetes

The OKE service uses versions of Kubernetes that are certified as conformant by the Cloud
Native Computing Foundation (CNCF). The OKE service is itself ISO-compliant (ISO-IEC
27001, 27017, 27018).

Supported versions of Kubernetes are 1.30.3, 1.29.9, and 1.28.8.

Best practice is to keep your clusters upgraded so that they are always running versions of
Kubernetes that are currently supported by OKE. Viewing a cluster tells you if a newer
Kubernetes version is available for that cluster. See Updating an OKE Cluster.

Supported Versions of the OCI Terraform Provider

This guide provides example Terraform scripts to configure the network resources. To use
these scripts, you must install both Terraform and the Oracle Cloud Infrastructure (OCI)
Terraform provider.

In your provider block, specify the version of the OCI Terraform provider to install as at least
v4.50.0 but no greater than v6.36.0:

provider "oci" {
version = ">= 4,50.0, <= 6.36.0"

1-1

https://www.oracle.com/cloud/cloud-native/kubernetes-engine/what-is-kubernetes/
https://kubernetes.io/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-comp-enclave.html

ORACLE

OKE Service Limits

The following table shows the service limits for the OKE service on Private Cloud Appliance.

Chapter 1

group

Maximum number of node pools/groups per
cluster

Maximum number of pods per node

Service Limit
Maximum number of clusters per tenancy 10
Maximum number of worker nodes (compute 128
instances) per cluster. These nodes can be

distributed across multiple node pools.

Maximum number of nodes per node pool/ 128

No limit on number of node pools as long as
total nodes per cluster does not exceed 128.

110. This is the Kubernetes default.

1-2

OKE Workflow

Most steps to configure and use the OKE service are performed by regular Private Cloud
Appliance users in the Compute Enclave. Some steps need to be performed by a Compute
Enclave user with more administrative authorizations, and some steps can only be performed
by a Service Enclave administrator.

e Private Cloud Appliance Administrator Tasks
¢ Cluster Administrator Tasks

e Creating the OraclePCA-OKE.cluster_id Tag
e Creating OraclePCA Tags

Private Cloud Appliance Administrator Tasks

These prerequisite tasks must be performed by a Service Enclave administrator or by a
Compute Enclave user that has authorization to create resources such as groups, policies, and
tag namespaces.

Task Description Resources
Administration If you enable the appliance Editing Administration Network
network administration network, verify that Information in the Oracle Private Cloud

the administration network and the Appliance Administrator Guide
data center network are configured to
allow traffic to and from the cluster
control plane.

Administration Network Configuration
Notes in the Oracle Private Cloud
Appliance Installation Guide
Access Configuration With
Administration Network in the Oracle
Private Cloud Appliance Security

Guide
Platform images Platform images include images Providing Platform Images in the Oracle
required by OKE that have Private Cloud Appliance Administrator

Kubernetes installed on them. Guide

Platform images should be imported
to all tenancies in the Compute
Enclave during appliance installation,
upgrade, or patching. If this was not
done, a Service Enclave administrator
must import images.

OKE users group These users groups have a policy that Creating an OKE Users Group
authorizes members to use OKE.

OraclePCA-OKE This tag is required to create or Creating the OraclePCA-OKE.cluster_id
defined tag update an OKE cluster or node pool. Tag

This tag is used to identify instances

that need to be in a dynamic group.

OKE dynamic The dynamic group authorizes its Creating a Cluster Dynamic Group
group member instances to manage OKE
resources.

ORACLE o1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-netenv-info.html#adm-netenv-admin
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-netenv-info.html#adm-netenv-admin
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/install/install-install-network-connectivity-eth.html#install-network-connectivity-adminnet-notes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/install/install-install-network-connectivity-eth.html#install-network-connectivity-adminnet-notes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix__port_matrix_with_adminnet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix__port_matrix_with_adminnet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-tenancy.html#adm-platform-images

Chapter 2
Private Cloud Appliance Administrator Tasks

Task Description Resources
OraclePCA tags These tags are used when creatinga Creating OraclePCA Tags
cluster.
Certificate After upgrade, patching, or any other Updating the Certificate Authority Bundle

Authority bundle outage, or if the automated Certificate
Authority bundle update fails, you
might need to update the CA bundle
manually on the management node.

At least three free public IP addresses are required to use OKE on Private Cloud Appliance.
Verify that free public IP addresses are available for the NAT gateway, the control plane load
balancer, and the worker load balancer. For more information, see Creating OKE Network
Resources.

In the Service Web Ul, select PCAConfig > Network Environment > Public IPs > "Free Public
IPs". In the Service CLI, enter the following command:

PCA-ADMIN> show networkConfig
"Free Public IPs"

Creating an OKE Users Group

OKE users groups have a policy that authorizes their members to use OKE. You need to
create separate OKE users groups to authorize different users to use OKE in different
compartments.

See Creating and Managing User Groups in the Oracle Private Cloud Appliance User Guide to
create a group or update an existing group.

Include the manage cluster-family authorization in the user group policy. The following is an
example policy for an OKE user group. Depending on your organization, for example if you
have a separate team who manage network resources, some of the following "manage”
authorizations could be "read" or "use" authorizations, or you might need to add authorizations.

allow group group-name to read all-resources in tenancy

allow group group-name to manage cluster-family in compartment compartment-name

allow group group-name to manage instance-family in compartment compartment-name

allow group group-name to manage network-load-balancers in compartment compartment-name
allow group group-name to manage virtual-network-family in compartment compartment-name

See Managing Policies in the Oracle Private Cloud Appliance User Guide.

Creating a Cluster Dynamic Group

ORACLE

A dynamic group authorizes its member instances to manage OKE resources.

See Creating and Managing Dynamic Groups in the Oracle Private Cloud Appliance User
Guide.

Enter the following matching rule to define the group:
tag.OraclePCA-OKE.cluster id.value
All cluster nodes that have this tag are members of the dynamic group.

The following is an example policy for the dynamic group. In this example. oke dyn grp is the
name of the dynamic group and oke is the name of the compartment where resources are

2-2

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-manage-groups.html#usr-manage-groups
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-manage-policies.html#usr-manage-policies
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-manage-dynamic-groups.html#usr-manage-dynamic-groups

ORACLE

Chapter 2
Private Cloud Appliance Administrator Tasks

created. Note that all policy statements are for the same compartment. If clusters in this group
require access to resources in other compartments, change the policy accordingly. See
Managing Policies in the Oracle Private Cloud Appliance User Guide.

allow dynamic-group oke dyn grp
allow dynamic-group oke dyn grp
allow dynamic-group oke dyn grp
allow dynamic-group oke dyn grp
allow dynamic-group oke dyn grp
allow dynamic-group oke dyn grp

to
to
to
to
to
to

manage
manage
manage
manage
manage

file-family in compartment oke
volume-family in compartment oke
load-balancers in compartment oke
instance-family in compartment oke
virtual-network-family in compartment oke

use tag-namespaces in compartment oke

For information about the purpose of the use tag-namespaces policy, see Exposing
Containerized Applications.

Using Terraform to Create a Dynamic Group

The following example shows how to use Terraform to create a dynamic group.

variables.tf

variable "oci config file profile" {

type = string

default = "DEFAULT"

variable "tenancy ocid" {

description

type
nullable

"tenancy OCID"
string
false

variable "compartment name" {
"compartment name"

description

type
nullable

string
false

variable "oke dyn grp" {
description = "Dynamic group that needs to be created for instance principal"
default = "oke-dyn-ip-grp"

variable "oke policy name" ({
description = "Policy set name for dynamic group"
default = "oke-instance-principal-policy"

terraform.tfvars

Name of the profile to use from S$HOME/.oci/config

ocl config file profile = "DEFAULT"

Tenancy OCID from the oci config file profile profile.
tenancy ocid = "ocidl.tenancy.UNIQUE ID"

Compartment name

compartment name

"oke"

Dynamic Group Name
oke dyn grp = "oke-dyn-ip-group"

2-3

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-manage-policies.html#usr-manage-policies

ORACLE

Chapter 2
Private Cloud Appliance Administrator Tasks

OKE Dynamic Group Policy Name
oke policy name = "oke-dyn-grp-policy"

provider.tf

provider "oci" {
config file profile = var.oci config file profile

tenancy ocid = var.tenancy ocid
}
main.tf
terraform {
required providers ({
oci = {
source = "oracle/oci"

version = ">= 4.50.0, <= 6.36.0"
If necessary, you can pin a specific version here

version = "6.36.0"
}
}
required version = ">= 1.1"
}
oke-dyn-grp.tf
resource "oci identity dynamic group" "oke-dynamic-grp" {
compartment id = "${var.tenancy ocid}"
description = "PCA OKE worker dynamic group for instance principal"
matching rule = "tag.${oci identity tag namespace.oracle-pca.name}.S$
{oci identity tag.cluster-id.name}.value"
name = "${var.oke dyn grp}"
depends on = [oci identity tag.cluster-id]
}
oke-policy.tf
resource "oci identity policy" "oke-dyn-grp-policy" {
compartment id = "${var.tenancy ocid}"
description = "Dynamic group policies for OKE Resources"
name = "S{var.okeipolicyiname}"
statements = [

"allow dynamic-group ${oci identity dynamic_ group.oke-dynamic-grp.name} to
manage load-balancers in compartment ${var.compartment name}",

"allow dynamic-group ${oci identity dynamic_group.oke-dynamic-grp.name} to
manage volume-family in compartment ${var.compartment name}",

"allow dynamic-group ${oci identity dynamic_group.oke-dynamic-grp.name} to
manage file-family in compartment ${var.compartment name}",

"allow dynamic-group ${oci identity dynamic_ group.oke-dynamic-grp.name} to
manage instance-family in compartment ${var.compartment name}",

"allow dynamic-group ${oci identity dynamic_ group.oke-dynamic-grp.name} to
manage virtual-network-family in compartment ${var.compartment name}",

"allow dynamic-group ${oci identity dynamic_group.oke-dynamic-grp.name} to use
tag-namespaces in compartment ${var.compartment name}"

]

depends on = [oci identity dynamic group.oke-dynamic-grp]
oke-tag-ns.tf

Create the OraclePCA-OKE.cluster_id tag, which is also described in Creating the OraclePCA-
OKE.cluster_id Tag.

2-4

Chapter 2
Cluster Administrator Tasks

resource "oci identity tag" "cluster-id" {

description = "Default tag key definition"

name = "cluster id"

tag _namespace id = "${oci identity tag namespace.oracle-pca.id}"
depends on = [oci identity tag namespace.oracle-pca]

}

resource "oci identity tag namespace" "oracle-pca" {

compartment id = "${var.tenancy ocid}"
description = "Default Tag namespace for Oracle PCA OKE"
name = "OraclePCA-OKE"

Updating the Certificate Authority Bundle

The Certificate Authority (CA) bundle for this Private Cloud Appliance is downloaded and made
available to a cluster when the cluster is created. The CA bundle includes the certificate,
private and public keys, and other authorization information.

The CA bundle is automatically updated on the appliance when regular certificate rotation
occurs or when the appliance is upgraded, for example.

When the CA bundle is updated on the appliance, then it must be updated on the local system,
for example to enable use of cluster-api. This is similar to replacing the CA bundle in your
~/.oci configuration so that you can run OCI CLI commands.

A process runs every hour to check the validity of the CA bundle and updates the CA bundle if
necessary.

If you need to update the CA bundle between these hourly checks, the process can be run
manually:

1. Log onto the management node of the Private Cloud Appliance as a system administrator
with root privilege.

2. Get the name of an OKE pod.
The following command lists the three OKE pods in the oke namespace:
kubectl get pod -n oke -1 app=oke
3. Run the command to update the CA bundle.
Use one of the oke-uniqueID pod nhames from the preceding step.
kubectl exec -it oke-6c4d85d6f-72fxs -n oke -c oke -- /usr/bin/pca-oke-cluster-tool

You can check Loki logs in Grafana for any errors that might have occurred when this process
ran either automatically or manually. See "Accessing System Logs" in the Status and Health
Monitoring chapter of the Oracle Private Cloud Appliance Administrator Guide.

Cluster Administrator Tasks

Perform the following tasks on your local system:

1. Configure OCI CLI access. See Using the OCI CLI in the Oracle Private Cloud Appliance
User Guide. If you work in more than one tenancy, create a profile for each tenancy as
described in Using Multiple Profiles. If you already have OCI CLI installed, use oci -v to
check the version. The minimum required version for using OKE is 3.48.0.

ORACLE oe

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-healthmonitor.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-healthmonitor.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-ce-cli.html#usr-ce-cli
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-ce-cli.html#usr-cli-using-profiles

Chapter 2
Creating the OraclePCA-OKE.cluster_id Tag

2. Install the Kubernetes client command line tool, kubectl. See Install kubectl. If you already
have kubectl installed, ensure the version is within one minor version of the Kubernetes
version that you are using. See Supported Versions of Kubernetes.

Perform the following tasks in the Private Cloud Appliance Compute Enclave or on your local
system:

1. Create network resources: VCN, subnets, internet gateway, NAT gateway, route tables,
and security lists. See Creating OKE Network Resources.

2. Create the OraclePCA-OKE.cluster_id defined tag.

This tag is required to create or update an OKE cluster or node pool. This tag is used to
identify instances that need to be in a dynamic group. See Creating the OraclePCA-
OKE.cluster_id Tag.

3. Create the OraclePCA tag namespace and keys that are used when creating a cluster.
See Creating OraclePCA Tags.

4. Create an OKE cluster. See Creating an OKE Cluster.

5. Create a Kubernetes configuration file for the cluster. See Creating a Kubernetes
Configuration File.

6. Create a Kubernetes Dashboard to manage the cluster and to manage and troubleshoot
applications running in the cluster. On the https://kubernetes.io/ site, see Deploy and
Access the Kubernetes Dashboard.

7. Create a worker node pool. See Creating an OKE Worker Node Pool.
8. Configure any registries or repositories that the worker nodes need.

9. Create a service to expose containerized applications outside the Private Cloud Appliance.
See Exposing Containerized Applications.

10. Create persistent storage for applications to use. See Adding Storage for Containerized
Applications.

Creating the OraclePCA-OKE.cluster id Tag

ORACLE

The OraclePCA-OKE.cluster_id tag is required to create or update an OKE cluster or node
pool. When you create a node pool, or update the node pool to add nodes, this tag is applied
to every node to identify instances that need to be members of the dynamic group.

The following sections describe how to create the OraclePCA-OKE tag namespace and the
cluster_id tag key. You must create both the tag namespace and the tag key.

@ Important:

Do not delete this tag key definition. The tag namespace name must be exactly
"OraclePCA-OKE", and the tag key name must be exactly "cluster_id".

Creating the OraclePCA-OKE Tag Namespace
Using the Compute Web Ul

1. Inthe navigation menu, select Governance, and then select Tag Namespaces.

2-6

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

ORACLE

Chapter 2
Creating the OraclePCA-OKE.cluster_id Tag

Ensure that the compartment that is selected in the compartment drop-down menu above
the tag namespaces list is the compartment where you want to create the OraclePCA-
OKE.cluster_id tag.

2. If OraclePCA-OKE is not shown in the Tag Namespaces list, select the Create Namespace

Definitions button.

3. Inthe Create Namespace Definition dialog, scroll down to the Tagging section and click in

the Tag Namespace field.

« If the OraclePCA-OKE tag namespace is not listed, continue with Step 4 of this
procedure.

« If the OraclePCA-OKE tag namespace is already available, select the Cancel button in
the Create Namespace Definition dialog. You will get an error message if you try to
create this tag namespace when it is already available.

4. In the Create Namespace Definition dialog, enter the following information:

e Namespace Definition Name: Enter "OraclePCA-OKE".

« Description: For example, "Required to create or update an OKE cluster or node pool."
5. Select Create Namespace Definition.

The details page for the new OraclePCA-OKE tag namespace is displayed.
Using theOCI CLI

Run the tag namespace create command. The --compartment-id value is the compartment
where you want to create the OraclePCA-OKE.cluster _id tag. If this tag has already been
created in a different compartment, then it is available to use in any other compartment, and
you will receive an error message from this create tag namespace command.

$ oci iam tag-namespace create --compartment-id ocidl.compartment.unique ID \
--name OraclePCA-OKE --description "Required to create or update an OKE cluster or node
pool."
{
"data": {
"compartment-id": "ocidl.compartment.unique ID",
"defined-tags": {
"Oracle-Tags": {
"CreatedBy": "okeuser",
"CreatedOn": "2024-06-06T14:37:29.262Z"
}
}I

"description": "Required to create or update an OKE cluster or node pool.",
"freeform-tags": {},
"id": "ocidl.tag_namespace.unique ID",

"is-retired": false,

"lifecycle-state": "ACTIVE",

"locks": null,

"name": "OraclePCA-OKE",

"time-created": "2024-06-06T14:37:29.357678+00:00"

b
"etag": "a86bcf9b-£9a3-4891-b632-37d490161fed"

}

Creating the cluster_id Tag Key
Using the Compute Web Ul

1. Navigate to the OraclePCA-OKE tag nhamespace details page, scroll down to the
Resources box, and select Tag Key Definitions.

2-7

ORACLE

5.

Chapter 2
Creating the OraclePCA-OKE.cluster_id Tag

If the cluster_id tag key is listed, select the name to display the details page. Ensure that
Tag Value Type is String.

If the cluster_id tag key is not listed, select the Create Tag Key Definition button.

In the Create Tag Key Definition dialog, enter the following information:

* Name: Enter "cluster_id".

« Description: For example, "Required to create or update an OKE cluster or node pool."
» Tag Value Type: Select "Static Value".

Select Create Tag Key Definition.

Using theOCI CLI

1.

Check whether the cluster_id tag already exists in the OraclePCA-OKE tag namespace.
$ oci iam tag list --tag-namespace-id ocidl.tag namespace.unique_ID

If the cluster_id tag key is listed, view the details of the tag to confirm that validator-type
iS DEFAULT.

$ oci iam tag get --tag-namespace-id ocidl.tag_namespace.unique ID --tag-name
cluster id

If the cluster_id tag key is not listed, run the tag create command.

You do not need to specify the --validator option because you want the default value.

$ oci iam tag create --tag-namespace-id ocidl.tag namespace.unique ID \
--name "cluster id" --description "Required to create or update an OKE cluster or
node pool." \
--validator '{"validatorType": "DEFAULT"}'
{
"data": {
"compartment-id": "unique ID",
"defined-tags": {
"Oracle-Tags": {
"CreatedBy": "okeuser",
"CreatedOn": "2024-06-06T21:36:51.382"
}
}I

"description": "Required to create or update an OKE cluster or node pool.",
"freeform-tags": {},

"id": "ocidl.tag.unique ID",

"is-cost-tracking": false,

"is-retired": false,

"lifecycle-state": "ACTIVE",

"name": "cluster id",
"tag-namespace-id": "ocidl.tag_namespace.unique ID",
"tag-namespace-name": "OraclePCA-OKE",

"time-created": "2024-06-06T21:36:51.456538+00:00",
"validator™: {
"validator-type": "DEFAULT"
}
}l
"etag": "5bf59d9a-5998-4857-a590-fca2a3386cc2"
}

2-8

Chapter 2
Creating OraclePCA Tags

Creating OraclePCA Tags

Oracle Private Cloud Appliance uses the OraclePCA tag namespace to set attributes that are
not available as OCI CLI options or API attributes. For OKE, some cluster attributes must be
set by using OraclePCA tags.

ORACLE

Other attributes that can only be set by using OraclePCA tags, such as some block volume
and file system attributes, are documented in the Oracle Private Cloud Appliance User Guide.
You might want to set some of these for nodes in a node pool.

When you use the OCI CLI or API, you can specify the OraclePCA tag namespace, tag key,
and values for the attributes that you want to set. You do not need to first create the
OraclePCA tag namespace and tag keys.

To use the Compute Web Ul to set these attributes, you must first create the OraclePCA tag
namespace, tag keys, and value choices.

Caution:

Do not delete these tag keys. Do not create this tag namespace and these keys
unless you need to use the Compute Web Ul to create clusters. If you create this tag
namespace and these keys, create them exactly as shown here, do not modify them,
and do not delete them.

The following sections describe how to create the OraclePCA tag namespace, and how to
create the tag key definitions for the OKE attributes.

Creating the OraclePCA Tag Namespace

1.

In the navigation menu, select Governance, and then select Tag Namespaces.

Ensure that the compartment that is selected in the compartment drop-down menu above
the tag namespaces list is the compartment where you want to create the OraclePCA tag
namespace.

If OraclePCA is not shown in the Tag Namespaces list, select the Create Namespace
Definitions button.

In the Create Namespace Definition dialog, scroll down to the Tagging section and click in
the Tag Namespace field.

« If the OraclePCA tag namespace is not listed, continue with Step 4 of this procedure.

* If the tag you need is already available, select the Cancel button in the Create
Namespace Definition dialog. You will get an error message if you try to create this tag
namespace when it is already available.

In the Create Namespace Definition window, enter the following information:
e Namespace Definition Name: Enter "OraclePCA".

» Description: For example, "Support block volume, cluster, and file system parameters
that are only available on Private Cloud Appliance."

Select Create Namespace Definition.

The details page for the new OraclePCA tag namespace definition is displayed.

2-9

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/

ORACLE

Chapter 2
Creating OraclePCA Tags

Creating the OraclePCA Tag Key Definitions

1.

4

Navigate to the OraclePCA tag namespace details page, scroll down to the Resources
box, and select Tag Key Definitions.

If the tag key you need is not listed, select the Create Tag Key Definition button.

In the Create Tag Key Definition dialog, enter the following information for the tag key that
you are creating.

SSH Key

e Name: Enter "sshkey".

e Description: For example, "Your public SSH key."

e Tag Value Type: Select "Static Value".

Number of Control Plane Nodes

e Name: Enter "cpNodeCount".

e Description: For example, "Number of nodes in the control plane."
e Tag Value Type: Select "A List of Values".

* Values: Enter "1", newline, "3", newline, and "5".

Shape of Control Plane Nodes

e Name: Enter "cpNodeShape".

« Description: For example, "The shape of the control plane nodes."
e Tag Value Type: Select "Static Value".

Shape Configuration of Control Plane Nodes

e Name: Enter "cpNodeShapeConfig".

» Description: For example, "The number of OCPUs and optionally amount of memory
for a flexible node shape."

» Tag Value Type: Select "Static Value".
Select Create Tag Key Definition.

2-10

OKE Best Practices

ORACLE

Use the best practices described in this topic to get the most from your Kubernetes Engine
clusters.

Cluster Management Best Practices
Upgrade Clusters

Keep your clusters upgraded so that they are always running versions of Kubernetes that are
listed as currently supported by OKE. Viewing a cluster tells you if a newer Kubernetes version
is available for that cluster. See Supported Versions of Kubernetes and Updating an OKE
Cluster.

Use Kubernetes labels.

Use Kubernetes labels to organize the many Kubernetes resources (such as services, pods,
containers, and networks) that comprise a cluster.

Kubernetes labels are key-value pairs that help you to maintain these resources and keep
track of how they interact with each other in a cluster.

Use resource tagging.

Use resource tagging to organize the many resources (such as worker nodes, VCNSs, load
balancers, and block volumes) used by the Kubernetes clusters you create with Kubernetes
Engine.

When a large number of resources is spread across multiple compartments in a tenancy, it can
be challenging to track the resources that are used for specific purposes. It can also be
challenging to aggregate the resources, report on them, and take bulk actions on them.

Tagging enables you to define keys and values, and associate those tags with resources. You
can then use the tags to organize and list resources based on your business needs.

For more information, see the Resource Tag Management chapter in the Oracle Private Cloud
Appliance User Guide.

Set resource requests and limits.

e Set resource requests to specify the minimum amount of resources a container can use.
e Set resource limits to specify the maximum amount of resources a container can use.

Sometimes an application fails to deploy on a Kubernetes cluster due to limited availability of
resources on that cluster. The failure of the application to deploy can be avoided by correctly
setting resource requests and resource limits.

If you do not set resource requests and limits, pods in a cluster can start utilizing more
resources than necessary. If a pod starts consuming more CPU or memory on a node, then the
Kubernetes scheduler (kube-scheduler) might not be able to place new pods on the node, and
the node might even crash.

For more information, see Resource Management for Pods and Containers on the
kubernetes.io site.

3-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-tagging.html
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

ORACLE

Chapter 3

Provide dedicated nodes by using taints and tolerations.

Use Kubernetes taints and tolerations to limit resource-intensive applications to specific worker
nodes.

Using taints and tolerations enables you to keep node resources available for workloads that
require them, and prevents the scheduling of other workloads on the nodes.

For more information, see Taints and Tolerations on the kubernetes.io Site.
Control pod scheduling by using node selectors and affinity.

Several different methods are available to constrain a pod to run on particular nodes, or to
specify a preference for a pod to run on particular nodes. The recommended approaches all
use label selectors to specify the node selection.

Often, the kube-scheduler makes a reasonable placement when constraints and preferences
are not specified. However, there are some circumstances where you might want to control the
node on which a pod runs. In these situations, best practice is to control the scheduling of pods
on nodes using Kubernetes node selectors, node affinity, and inter-pod affinity.

Using node selectors, node affinity, and inter-pod affinity enables the kube-scheduler to
logically isolate workloads, such as according to the node's hardware.

Use third-party tools for backup and disaster recovery.
Use third-party tools such as Velero with Kubernetes Engine for backup and disaster recovery.

The combined backup and disaster recovery capabilities of these tools and Kubernetes Engine
can provide a reliable, robust, and scalable Kubernetes platform that is production-ready.

Networking Best Practices

Create separate compartments for each team.

If you expect multiple teams to create clusters, create a separate compartment for each team.
Size your VCN appropriately.

Allow for possible future cluster and node pool scaling requirements when sizing the VCN in
which you want to create and deploy Kubernetes clusters.

Ensure that the VCN has a CIDR block that is large enough to allocate network addresses to
all the resources that a cluster requires: subnets, Kubernetes APl endpoint, worker nodes,
pods, load balancers.

Select the pod networking CNI plugin that best suits your needs.

Consider pod networking requirements carefully, and then select the pod networking CNI
plugin that best suits your needs.

« If applications require the use of base networking requirements (and not the use of IP
addresses from the VCN), or require a high density of pods per worker node, best practice
is to use the Flannel Overlay CNI plugin. See Creating Flannel Overlay Network
Resources.

« If applications require pods to have an IP address from the VCN CIDR, or require the
consistent network performance offered by virtual machines (regardless of the nodes on
which the pods are running) with no additional overlay, best practice is to use the OCI
VCN-Native Pod Networking CNI plugin. See Creating VCN-Native Pod Networking
Resources.

Configure externalTrafficPolicy appropriately when exposing applications.

3-2

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://velero.io/

ORACLE

Chapter 3

Carefully consider the most appropriate value for the externalTrafficPolicy setting when
provisioning a network load balancer for a Kubernetes service of type LoadBalancer.

Avoid overlapping pod and service CIDR blocks with an on-premise CIDR block and
when using the Flannel Overlay CNI plugin.

Avoid the situation where the CIDR block used by the Flannel Overlay network to provision
pods and services with IP addresses overlaps with a CIDR block used to provision external
compute instances with IP addresses.

Kubernetes clusters require a unique IP address for every pod. Therefore, IP address planning
is necessary because addresses cannot overlap with the private IP address space used on-
premises or in other connected VCNSs.

Plan the number of nodes you will need.

Create a plan for the number of nodes in a cluster that takes into account node size, the
application profile of pods, and the selected pod networking CNI plugin.

Use separate subnets and security rules.

Use separate subnets and security rules when configuring network resources. The VCN in
which you want to create and deploy clusters must have at least two different subnets, and can
have more:

¢ A Kubernetes API endpoint subnet

* A worker nodes subnet

¢ One regional, or two AD-specific, load balancer subnets (optional)

e A pods subnet (when using the OCI VCN-Native Pod Networking CNI plugin)
e A bastion subnet (optional)

You can choose to combine the subnets, and also to combine security rules. However, this
approach makes security harder to manage and is therefore not recommended unless you are
using network security groups to control access to clusters.

Security Best Practices
Plan exposure level.

Answer the following questions before implementing a security plan for the clusters you create
with Kubernetes Engine:

e How much internet exposure do you want clusters to have?

e How do you plan to expose workloads internally to your VCN, and externally to the
internet?

e How do you plan to scale workloads?
e Which types of Oracle services will the cluster consume?

Create private clusters.

If your cluster does not require direct access from the internet, create a private cluster. In a
private cluster, the Kubernetes API server and worker nodes are assigned only private IP
addresses.

Optionally use a NAT gateway for outbound internet access, a Dynamic Routing Gateway
(DRG) to enable access from the on-premises network, a Local Peering Gateway (LPG) to
allow access from other VCNSs.

3-3

Chapter 3

Place all applications in private subnets.

If the applications running on worker nodes do not requiredirect access to the internet, both the
worker nodes subnet and the worker load balancer subnet should be private.

Restrict cluster traffic using Network Security Groups.

Define security rules in network security groups (NSGs), rather than in security lists, for the
VCN in which you want to create and deploy clusters. See "Controlling Traffic with Network
Security Groups" in "Configuring VCN Rules and Options" in the Networking chapter of the
Oracle Private Cloud Appliance User Guide.

General security best practices.

e Apply security patches regularly.

e Use a combination of Kubernetes network policies and NSGs.
e Use NSGs in conjunction with infrastructure-as-code tools (such as Terraform).
e Rotate secrets and certificates regularly.

* Run all applications as a non-privileged user.

e Treat containers as immutable.

Auditing, logging, and monitoring.

e Check logs regularly.

e Enable audit logging.

* Use Kubernetes cluster-based logging.

e Monitor cluster components.

* Log network traffic metadata and analyze it regularly.

* Use small and secure container images.

e Limit credential exposure.

Storage Best Practices

* Choose the appropriate storage type.

* Create and use storage classes to define application needs.
* Create and use volumes for persistent storage.

e Limit storage resource consumption.

* Secure and back up data.

Upgrade Best Practices

* Use the latest supported version of Kubernetes.
e Set up test and production environments.
e Cordon and drain worker nodes in preparation for maintenance.

* Treat worker nodes as immutable.

ORACLE 3

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html

Creating OKE Network Resources

The resource definitions in the following sections in this chapter create a working example set
of network resources for workload clusters. Use this configuration as a guide when you create
these resources. You can change the values of properties such as CIDR blocks and IP
addresses. You should not change the values of properties such as the network protocol, the
stateful setting, or the private/public setting.

See Workload Cluster Network Ports for Flannel Overlay Networking and Workload Cluster
Network Ports for VCN-Native Pod Networking for specific ports that must be open for specific
purposes.

< Note:

If the appliance administration network is enabled, ask your system administrator to
verify that the administration network and the data center network are configured to
allow traffic to and from the cluster control plane. See Administration Network
Configuration Notes in the Oracle Private Cloud Appliance Installation Guide.

This chapter describes how to create network resources for two networking types:

e Creating Flannel Overlay Network Resources
* Creating VCN-Native Pod Networking Resources

Public and Private Clusters summarizes which network resources you need to create a public
cluster and which network resources you need to create a private cluster.

Pod Networking

The Kubernetes networking model assumes containers (pods) have unique and routable IP
addresses within a cluster. In the Kubernetes networking model, pods use those IP addresses
to communicate with other pods on the same node in a cluster or on a different node, with
pods on other clusters, with the cluster's control plane nodes, with other services (such as
storage services), and with the internet.

By default, pods accept traffic from any source. To enhance cluster security, control access to
and from pods using security rules defined as part of network security groups (recommended)
or security lists. The security rules apply to all pods in all the worker nodes connected to the
pod subnet specified for a node pool. See Controlling Traffic with Network Security Groups and
Controlling Traffic with Security Lists in the Oracle Private Cloud Appliance User Guide.

Public and Private Clusters

ORACLE

Before you create a cluster, decide what kind of network access the cluster requires: whether
you need a public cluster or a private cluster. You cannot create both public and private
clusters in one VCN.

The key difference between a public cluster and a private cluster is whether you configure
public or private subnets for the Kubernetes APl endpoint and the worker load balancer.

4-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/install/install-install-network-connectivity-eth.html#install-network-connectivity-adminnet-notes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/install/install-install-network-connectivity-eth.html#install-network-connectivity-adminnet-notes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-nsg
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

ORACLE

Chapter 4
Public and Private Clusters

Note:

The subnets for the worker nodes and control plane nodes are always private.

For the worker nodes and control plane nodes, you can configure route rules that allow access
only within the VCN or outside the VCN. This documentation names those route tables
"ven_private" and "nat_private." You can choose either of these private subnet configurations
for your worker nodes and control plane nodes whether the cluster is private or the cluster is
public.

Public Clusters
A public cluster requires the following network resources:

* A public subnet for the Kubernetes API endpoint. See the instructions for creating a public
"control-plane-endpoint" subnet in Creating a Flannel Overlay Control Plane Load Balancer
Subnet and Creating a VCN-Native Pod Networking Control Plane Load Balancer Subnet.

* A public subnet for the worker load balancer. See the instructions for creating a public
"service-Ib" subnet in Creating a Flannel Overlay Worker Load Balancer Subnet and
Creating a VCN-Native Pod Networking Worker Load Balancer Subnet.

* Aninternet gateway to connect resources on a public subnet to the internet using public IP
addresses.

A NAT gateway. Use a NAT gateway for outbound internet access. A NAT gateway
connects resources on a private subnet to the internet without exposing private 1P
addresses.

» Atleast three free public IP addresses. Free public IP addresses are required for the NAT
gateway, control plane load balancer, and worker load balancer.

The worker load balancer requires a free public IP address to expose applications. The
worker load balancer might require more free public IP addresses depending on the
applications running on the pods. For how to display the list of free public IP addresses on
the appliance, see Private Cloud Appliance Administrator Tasks.

Private Clusters

If you create multiple OKE VCNs, each CIDR must be unique. CIDRs of different VCNSs for
private clusters cannot overlap with any other VCN CIDRs or any on-premises CIDR. The IP
addresses used must be exclusive to each VCN.

A private cluster has the following network resources:

* A private subnet for the Kubernetes API endpoint. See the instructions for creating a
private "control-plane-endpoint” subnet in Creating a Flannel Overlay Control Plane Load
Balancer Subnet and Creating a VCN-Native Pod Networking Control Plane Load Balancer
Subnet.

* A private subnet for the worker load balancer. See the instructions for creating a private
"service-Ib" subnet in Creating a Flannel Overlay Worker Load Balancer Subnet and
Creating a VCN-Native Pod Networking Worker Load Balancer Subnet.

* Aroute table with no route rules. This route table allows access only within the VCN.

* (Optional) A Local Peering Gateway (LPG). Use an LPG to allow access from other VCNSs.
An LPG allows access to the cluster from an instance running on a different VCN. Create
an LPG on the OKE VCN, and create an LPG on a second VCN on the Private Cloud

4-2

Chapter 4
OKE Cluster Management with Administration Network

Appliance. Use the LPG connect command to peer the two LPGs. Peered VCNs can be in
different tenancies. CIDRs for the peered VCNs cannot overlap. See "Connecting VCNs
through a Local Peering Gateway" in the Networking chapter of the Oracle Private Cloud
Appliance User Guide.

Create a route rule to steer VCN subnet traffic to and from the LPGs, and security rules to
allow or deny certain types of traffic. See Creating a Flannel Overlay VCN or Creating a
VCN-Native Pod Networking VCN for the route table to add to the OKE VCN and similar
route table to add to the second VCN. Add the same route rule on the second VCN,
specifying the OKE VCN CIDR as the destination.

Install the OCI SDK and kubectl on the instance on the second VCN and connect to the
private cluster. See Creating a Kubernetes Configuration File.

(Optional) A Dynamic Routing Gateway (DRG). Use a DRG to enable access from the on-
premises network. A DRG allows traffic between the OKE VCN and the on-premises
network's IP address space. Create the DRG in the OKE VCN compartment, and then
attach the OKE VCN to that DRG. See "Connecting to the On-Premises Network through a
Dynamic Routing Gateway" in the Networking chapter of the Oracle Private Cloud
Appliance User Guide.

Create a route rule to steer traffic to the on-premises data center network's IP address
space. See Creating a Flannel Overlay VCN or Creating a VCN-Native Pod Networking
VCN for the route table to add to the OKE VCN.

OKE Cluster Management with Administration Network

ORACLE

*********** firewall \ e

When OKE is used on a system that is configured with a separate administration network, the
data center firewall must be configured to allow traffic between the OKE service and the OKE
clusters deployed by Compute Enclave users.

Figure 4-1 Example of System Configured with a Separate Administration Network

Packet flows

OKE
Control
Plane
Services

Admin Management IP 1
Admin Management IP 2
Admin Management IP 3

Admin network

Management Nodes

Load
Balancer

Public Endpoint IP, port 6443

Compute network Port1-4

The OKE service runs on the management nodes in the administration network, while the OKE
clusters are deployed in the data network. The management interface of an OKE cluster is port
6443 on its load balancer public IP address. This address is assigned from the data center IP
range you reserved and configured as public IPs during initial appliance setup.

4-3

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html

Chapter 4
Creating Flannel Overlay Network Resources

Because of the network segregation, traffic from the OKE service must exit the appliance
through the administration network, and reenter through the data network to reach the OKE
cluster. The data center network infrastructure must allow traffic in both directions. Without the
necessary firewall and routing rules, users cannot deploy OKE clusters.

See Workload Cluster Network Ports for Flannel Overlay Networking and Workload Cluster
Network Ports for VCN-Native Pod Networking for how to configure ports for OKE. If you are
using a separate administration network, see also the table Access Configuration With
Administration Network in Port Matrix in the Oracle Private Cloud Appliance Security Guide.

Creating Flannel Overlay Network Resources

ORACLE

The Flannel Overlay network type encapsulates communication between pods in the Flannel
Overlay network. The Flannel Overlay network is a simple private overlay virtual network that
satisfies the requirements of the OKE networking model by attaching IP addresses to
containers. The pods in the private overlay network are only accessible from other pods in the
same cluster.

The resource definitions in the following sections in this topic create a working example set of
network resources for workload clusters when you are using Flannel Overlay networking. Use
this configuration as a guide when you create these resources. You can change the values of
properties such as CIDR blocks and IP addresses. You should not change the values of
properties such as the network protocol, the stateful setting, or the private/public setting.

See Workload Cluster Network Ports for Flannel Overlay Networking for specific ports that
must be open for specific purposes.

Create the following network resources. To use Terraform, see Example Terraform Scripts for
Flannel Overlay Network Resources.

Note:

Create all of these network resources in the same compartment on the appliance.

e VCN. See Creating a Flannel Overlay VCN.

e Internet Gateway

* NAT Gateway

e Dynamic Routing Gateway

e Local Peering Gateway

* Route rules

e Security lists

e The following four subnets:
— Worker. See Creating a Flannel Overlay Worker Subnet.
— Worker load balancer. See Creating a Flannel Overlay Worker Load Balancer Subnet.
— Control plane. See Creating a Flannel Overlay Control Plane Subnet.

— Control plane load balancer. See Creating a Flannel Overlay Control Plane Load
Balancer Subnet.

4-4

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix__port_matrix_with_adminnet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix__port_matrix_with_adminnet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix

Chapter 4
Creating Flannel Overlay Network Resources

Workload Cluster Network CIDR Ranges for Flannel Overlay Networking

Throughout this documentation, variables are used to represent CIDR ranges for instances in
different subnets. The following table lists the CIDR variables and example values for use with
Flannel Overlay networking.

Note:

These are examples only. The CIDR ranges you use depend on the number of
clusters you have, the number of nodes in each cluster, and the type of networking
you are using.

For Flannel Overlay networking, IP addresses are managed by the underlying Container
service. Pods are not assigned IP addresses from the IP address pool that is defined in the
pod subnet CIDR. This is the reason you do not need a pod subnet when you are using
Flannel Overlay networking.

The primary difference between IP address requirements of Flannel Overlay networking and
VCN-Native Pod Networking is that VCN-Native Pod Networking requires more IP addresses
to be available. The table in Workload Cluster Network CIDR Ranges for VCN-Native Pod
Networking shows larger CIDR ranges than the following table for Flannel Overlay CIDR
ranges. The CIDR ranges used with Flannel Overlay networking can be much smaller than the
CIDR ranges used with VCN-Native Pod Networking.

Table 4-1 Example CIDR Values to Use with Flannel Overlay Networking
]

Variable Name Description Example Value
ven _cidr VCN CIDR range 172.31.252.0/23
worker cidr Worker subnet CIDR 172.31.253.0/24
workerlb cidr Worker load balancer subnet CIDR 172.31.252.0/25
kmi_cidr OKE control plane subnet CIDR 172.31.252.224/28
kmilb cidr OKE control plane load balancer subnet CIDR ~ 172.31.252.240/28

kube client cidr CIDR for clients that are allowed to contact the 10.0.0.0/8
Kubernetes API server

The IP Subnet Calculator on Calculator.net is one tool for finding all available networks for a
given IP address and prefix length.

Workload Cluster Network Ports for Flannel Overlay Networking

ORACLE

The following table lists ports that are used by workload clusters when you use Flannel Overlay
networking. These ports must be available to configure workload cluster networking. You might
need to open additional ports for other purposes.

All protocols are TCP. All port states are Stateful. Port 6443 is the port used for Kubernetes API
and is also known as kubernetes_api_port in this guide.

See also the tables in Port Matrix in the Oracle Private Cloud Appliance Security Guide.

4-5

https://www.calculator.net/ip-subnet-calculator.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix

Chapter 4
Creating Flannel Overlay Network Resources

If you are using a separate administration network, see OKE Cluster Management with
Administration Network.

Table 4-2 Ports that Must Be Available for Use by Workload Clusters for Flannel
Overlay Networking

Source IP
Address

Destination IP
Address

Port

Description

bastion host:
ven_cidr

bastion host:
vcn_cidr

Worker nodes
subnet:
worker_ cidr

Worker nodes
subnet:
worker cidr

Worker nodes
subnet:
worker_cidr

Worker nodes
subnet:
worker cidr

Worker nodes
subnet:
worker cidr

CIDR for clients:
kube client cid

r

Worker nodes
subnet:
worker cidr

kube client cid

r

Worker nodes
subnet:
worker cidr

Control plane

subnet: kmi_cidr

yum repository

Secure yum
repository

Container registry

Control plane

subnet: kmi_cidr

Control plane
load balancer

Control plane
load balancer

Control plane

subnet: kmi_cidr

Worker nodes
subnet:
worker_cidr

22

80

443

5000

6443

6443

6443

6443

30000-3
2767

Outbound connections from the bastion host to
the worker CIDR.

Outbound connections from the bastion host to
the control plane nodes.

Outbound connections from the worker CIDR to
external applications.

Secure outbound traffic from the worker CIDR
to external applications.

Outbound connections from the worker CIDR to
the container registry.

Outbound connections from the worker CIDR to
the Kubernetes API. This is necessary to allow
nodes to join through either a public IP address
on one of the nodes or the load balancer public
IP address.

Inbound connections from the worker CIDR to
the Kubernetes API.

Inbound connections from clients to the
Kubernetes API server.

Private outbound connections from the worker
CIDR to kubeapi on the control plane subnet.

Inbound traffic for applications from
Kubernetes clients.

Example Terraform Scripts for Flannel Overlay Network Resources

The following Terraform scripts create the network resources that are required by OKE when
you are using Flannel Overlay networking. Subsequent sections in this topic show other ways
to define these same network resources.

ORACLE

Most of the values shown in these scripts, such as resource display names and CIDRs, are
examples. Some ports must be specified as shown (see Workload Cluster Network Ports for
Flannel Overlay Networking), and the OKE control plane subnet must be named control-
plane. See Workload Cluster Network CIDR Ranges for Flannel Overlay Networking for
comments about CIDR values.

e variables.tf

4-6

ORACLE

Chapter 4

Creating Flannel Overlay Network Resources

e terraform.tfvars

e provider.tf

* main.tf

e oke_vcn.tf

e oke_ worker_seclist.tf
e oke_worker_subnet.tf
e oke_kmi_seclist.tf

e oke_kmi_subnet.tf

variables.tf

This file creates several variables that are used to configure OKE network resources when you
are using Flannel Overlay networking. Many of these variables are not assigned values in this
file. One port and five CIDRs are assigned values. The kubernetes api port, port 6443, is the
port used to access the Kubernetes API. See also Workload Cluster Network Ports for Flannel
Overlay Networking. The five CIDRs that are defined in this file are for the OKE VCN, worker
subnet, worker load balancer subnet, control plane subnet, and control plane load balancer

subnet.

variable "oci config file profile" {
type = string
default = "DEFAULT"

variable "tenancy ocid" ({
description = "tenancy OCID"
type string
nullable false

variable "compartment id" {

description = "compartment OCID"
type = string
nullable = false

variable "vcn name" {
description = "VCN name"
nullable = false

variable "kube client cidr" {

description = "CIDR of Kubernetes API clients"
type = string
nullable = false

variable "kubernetes api port" {

description = "port used for kubernetes API"
type = string
default = "6443"

variable "worker 1lb ingress rules" {
description = "traffic allowed to worker load balancer"
type = list (object ({
source = string

4-7

Chapter 4
Creating Flannel Overlay Network Resources

port min = string
port max = string
1)
nullable = false

variable "worker ingress rules" ({

description = "traffic allowed directly to workers"
type = list(object ({
source = string

port min = string
port max = string
1)

nullable = true

#
IP network addressing
#
variable "vcn _cidr" |
default = "172.31.252.0/23"
}

Subnet for KMIs where kube-apiserver and other control
plane applications run
variable "kmi cidr" {

description = "K8s control plane subnet CIDR"

default = "172.31.252.224/28"

Subnet for KMI load balancer

variable "kmilb cidr" {
description = "K8s control plane LB subnet CIDR"
default = "172.31.252.240/28"

Subnet for worker nodes, max 128 nodes
variable "worker cidr" {
description = "K8s worker subnet CIDR"
default = "172.31.253.0/24"

Subnet for worker load balancer (for use by CCM)
variable "workerlb cidr" {
description = "K8s worker LB subnet CIDR"
default = "172.31.252.0/25"

Flag to Enable private endpoint
variable "enable private endpoint" {
description = "Flag to create private control plane endpoint/service-1b"
type = bool
default = false
nullable = false

terraform.tfvars

This file assigns values to some of the variables that were created in variables.tf. It also
defines security list rules for accessing the worker nodes and the worker load balancer.

ORACLE o

ORACLE

Chapter 4
Creating Flannel Overlay Network Resources

Name of the profile to use from $HOME/.oci/config
oci config file profile = "DEFAULT"

Tenancy OCID from the oci config file profile profile.
tenancy ocid = "ocidl.tenancy.unique ID"

Compartment in which to build the OKE cluster.
compartment_id = "ocidl.compartment.unique ID"

Display name for the OKE VCN.
vcn _name = "oketest"

CIDR of clients that are allowed to contact Kubernetes API server.
kube client cidr = "10.0.0.0/8"

Security list rules for who is allowed to contact the worker load balancer.
Adjust these values for your applications.
worker 1b ingress rules = |
{
source = "10.0.0.0/8"
port min = 80
port max = 80
}l
{
source = "10.0.0.0/8"
port min = 443
port max = 443
}l

Security list rules for who is allowed to contact worker nodes directly.
This example allows 10.0.0.0/8 to contact the default nodeport range.
worker ingress rules = |
{
source = "10.0.0.0/8"
port min = 30000
port max = 32767
}l

provider.tf

This file is required in order to use the OCI provider. The file initializes the OCI module using
the OCI profile configuration file.

provider "oci" {
config file profile = var.oci config file profile
tenancy ocid = var.tenancy ocid

}

main.tf

This file specifies the provider to use (oracle/oci), defines several security list rules, and
initializes required local variables.

The version of the OCI provider that you use must be at least v4.50.0 but no greater than
v6.36.0.

terraform {
required providers {
oci = {
source = "oracle/oci"
version = ">= 4.50.0, <= 6.36.0"

4-9

ORACLE"

Chapter 4

Creating Flannel Overlay Network Resources

If necessary, you can pin a specific version here
version = "6.36.0"

}

required version = ">= 1.1"

}

locals {

kube internal cidr = "253.255.0.0/16"
worker 1lb ingress rules = var.worker lb ingress rules
worker ingress rules = flatten([var.worker ingress rules,

{
source
port min
port max
}I
{
source
port min
port max
}I
{
source
port min
port max
}I
{
source
port min
port max
}I
1)

var.vcn_cidr
22
22

var.workerlb cidr
30000
32767

var.workerlb cidr
10256
10256

var.kmi cidr
22
65535

kmi 1b ingress rules = [

{
source
port min
port max

}I

{
source
port min
port max

}I

{
source
port min
port max

}I

]

local.kube internal cidr
var.kubernetes api port
var.kubernetes api port

var.kube client cidr
var.kubernetes api port
var.kubernetes api port

var.vcn_cidr
var.kubernetes api port
var.kubernetes api port

kmi ingress rules = [

{
source
port min
port max
}I
{
source
port min
port max
}I
{

var.kube client cidr
var.kubernetes api port
var.kubernetes api port

var.kmilb cidr
var.kubernetes api port
var.kubernetes api port

(

4-10

Chapter 4
Creating Flannel Overlay Network Resources

source = var.worker cidr
port min = 1024
port max = 65535

}I

{
source = var.kmi cidr
port min = 1024
port max = 65535

}I

oke_vcen.tf

This file defines a VCN, NAT gateway, internet gateway, private route table, and public route
table. The private route table is the default route table for the VCN.

resource "oci core vcn" "oke ven" |
cidr block = var.vcn_cidr
dns_label var.vcn name
compartment id = var.compartment id
display name = "${var.vcn name}-vcn"

resource "ocl core nat gateway" "vcn ngs" {
compartment id = var.compartment id
ven id = oci _core vcn.oke ven.id
display name = "VCN nat g6s"

}

resource "ocl core internet gateway" "vcn igs" {
compartment id = var.compartment id

ven id = oci _core vcn.oke ven.id
display name = "VCN i6t g6s"
enabled = true

resource "ocl core default route table" "default private" {
manage default resource id = oci core vcn.oke vcn.default route table id
display name = "Default - private"

}

resource "ocl core default route table" "private" {
manage default resource id = oci core vcn.oke vcn.default route table id
display name = "Default - private"

route rules {
destination
destination type
network entity id

}

"0.0.0.0/0"
"CIDR_BLOCK"
oci core nat gateway.vcn ngs.id

resource "ocl core route table" "public" {
compartment id = var.compartment id
ven id = oci core vcn.oke ven.id
display name = "public"

route rules {
destination
destination type
network entity id

"0.0.0.0/0"
"CIDR_BLOCK"
oci core internet gateway.vcn igs.id

ORACLE 411

ORACLE

oke_worker_seclist.tf

Chapter 4
Creating Flannel Overlay Network Resources

This file defines the security lists for both the worker subnet and the worker load balancer
subnet. The rules for these security lists were defined in other Terraform files in this set.

resource "ocl core security list" "workerlb" {
"${var.vcn name}-workerlb"

display name
compartment id
ven id

var.compartment id

oci core vcn.oke ven.id

dynamic "ingress security rules" {
iterator = port

for each = local.worker 1lb ingress rules

content {
source
source_type
protocol
tcp options

{

port.value.source
"CIDR BLOCK"

nen

min = port.value.port min
max = port.value.port max

resource "ocl core security list" "worker" {
"${var.vcn name}-worker"

display name
compartment id
ven id

var.compartment id

oci core vcn.oke ven.id

dynamic "ingress security rules" {
iterator = port

for each = local.worker ingress rules

content {
source
source_type
protocol
tcp options

{

port.value.source
"CIDR BLOCK"

nen

min = port.value.port min
max = port.value.port max

oke worker_subnet.tf

This file defines the worker and worker load balancer subnets. The worker load balancer
subnet is named service-1b.

resource "ocl core subnet" "worker" ({
var.worker cidr
var.compartment id

cidr block
compartment id
ven id

display name
dns_label

oci core vcn.oke ven.id

"worker"
"worker"

4-12

Chapter 4
Creating Flannel Overlay Network Resources

prohibit public ip on vnic = true

security list ids = [
oci core default security list.oke vcn.id,
oci core security list.worker.id

]

resource "oci core subnet" "worker 1b" ({

cidr block = var.workerlb cidr

compartment id = var.compartment id

ven id = oci_core vcn.oke vcn.id

display name = "service-1b"

dns_label = "servicelb"
prohibit public ip on vnic = var.enable private endpoint

route table id = var.enable private endpoint==false ?

oci core route table.public[0].id : oci core vcn.oke ven.default route table id

security list ids = [
oci core default security list.oke vcn.id,
ocl core security list.workerlb.id

]

oke_kmi_seclist.tf

This file defines the security lists for the control plane and control plane load balancer subnets.
This file also defines updates to make to the default security list for the VCN.

resource "ocl core default security list" "oke ven"
manage default resource id = oci core vcn.oke ven.default security list id

egress_security rules {

destination = "0.0.0.0/0"
destination type = "CIDR BLOCK"
protocol = "all"

}

dynamic "ingress security rules" {
iterator = icmp type
for each = [3, 8, 11]

content {
ping from VCN; unreachable/TTL from anywhere
source = (icmp_type.value == "8" ? var.vcen cidr : "0.0.0.0/0")
source type = "CIDR BLOCK"
protocol = "i"

icmp options {
type = icmp type.value
}

resource "ocl core security list" "kmilb" {
compartment id = var.compartment id
ven id = ocl core vcn.oke vcn.id

display name = "${var.vcn name}-kmilb"

ORACLE 413

ORACLE

Chapter 4

Creating Flannel Overlay Network Resources

dynamic "ingress security rules" {

iterator = port

for each = local.kmi 1lb ingress rules

content {

source = port.value.

source

source type = "CIDR BLOCK"

protocol = "e"
tcp options {

min = port.value.port min
max = port.value.port max

}

resource "oci core security list" "kmi" {
compartment id = var.compartment id
ven id = oci_core vcn.oke vcn.id

display name = "${var.vcn name}-kmi"

dynamic "ingress security rules" {

iterator = port

for each = local.kmi ingress rules

content {

source = port.value.

source

source type = "CIDR BLOCK"

protocol = "e"
tcp options {

min = port.value.port min
max = port.value.port max

oke_kmi_subnet.tf

This file defines the control plane and control plane load balancer subnets.

@ Important:

The name of the kmi subnet must be exactly control-plane.

resource "oci core subnet" "kmi" {

cidr block =
compartment id =
display name =
dns_label =
ven id =
prohibit public ip on vnic =
security list ids = [

var.kmi cidr
var.compartment id
"control-plane"

"kmi"

oci core vcn.oke ven.id
true

ocl core default security list.oke vcn.id,

ocl core security list.kmi.

]

id

4-14

Chapter 4
Creating Flannel Overlay Network Resources

resource "oci core subnet" "kmi 1b" {

cidr block = var.kmilb cidr

compartment id = var.compartment id

dns_label = "kmilb"

ven id = oci _core vcn.oke ven.id

display name = "control-plane-endpoint"
prohibit public ip on vnic = var.enable private endpoint

route table id = var.enable private endpoint==false ?

oci core route table.public[0].id : oci core default route table.default private([0].id
security list ids = [
oci core default security list.oke vcn.id,
ocl core security list.kmilb.id
]
}

Creating a Flannel Overlay VCN

Create the following resources in the order listed:

1. VCN
2. Route rules
* Public clusters:

— Internet gateway and a route table with a route rule that references that internet
gateway.

— NAT gateway and a route table with a route rule that references that NAT gateway.
e Private clusters:
— Route table with no route rules.

— (Optional) Dynamic Routing Gateway (DRG) and a route table with a route rule
that references that DRG. See Private Clusters.

— (Optional) Local Peering Gateway (LPG) and a route table with a route rule that
references that LPG. See Private Clusters.

3. Security list. Modify the VCN default security list.

Resource names and CIDR blocks are example values.

VCN

To create the VCN, use the instructions in Creating a VCN in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Flannel Overlay
Network Resources.

For this example, use the following input to create the VCN. The VCN covers one contiguous
CIDR block. The CIDR block cannot be changed after the VCN is created.

Compute Web Ul property OCI CLI property

* Name: oketest-vcn * --display-name: oketest-vcn

¢ CIDRBlock: ven_cidr * --cidr-blocks:'["ven_cidr"]'
* DNS Label: oketest e ——dns-label: oketest

This label must be unique across all VCNs

: This label must be unique across all VCNs
in the tenancy.

in the tenancy.

ORACLE T

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-vcn-create

Chapter 4
Creating Flannel Overlay Network Resources

Note the OCID of the new VCN. In the examples in this guide, this VCN OCID is
ocidl.vcn.oke_ven_id.

Next Steps

* Public internet access. For traffic on a public subnet that connects to the internet using
public IP addresses, create an internet gateway and a route rule that references that
internet gateway.

* Private internet access. For traffic on a private subnet that needs to connect to the internet
without exposing private IP addresses, create a NAT gateway and a route rule that
references that NAT gateway.

* VCN-only access. To restrict communication to only other resources on the same VCN,
use the default route table, which has no route rules.

* Instances in another VCN. To enable communication between the cluster and an instance
running on a different VCN, create a Local Peering Gateway (LPG) and a route rule that
references that LPG.

e On-premises IP address space. To enable communication between the cluster and the on-
premises network IP address space, create a Dynamic Routing Gateway (DRG), attach the
OKE VCN to that DRG, and create a route rule that references that DRG.

VCN Private Route Table

Edit the default route table that was created when you created the VCN. Change the name of
the route table to vcn_private. This route table does not have any route rules. Do not add any
route rules.

NAT Private Route Table
Create a NAT gateway and a route table with a route rule that references the NAT gateway.
NAT Gateway

To create the NAT gateway, use the instructions in Enabling Public Connections through a NAT
Gateway in the Oracle Private Cloud Appliance User Guide. For Terraform input, see Example
Terraform Scripts for Flannel Overlay Network Resources.

Note the name and OCID of the NAT gateway for assignment to the private route rule.
Private Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide. For Terraform input, see Example
Terraform Scripts for Flannel Overlay Network Resources.

For this example, use the following input to create the route table with a private route rule that
references the NAT gateway that was created in the preceding step.

ORACLE 416

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-nat
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-nat
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables

ORACLE

Chapter 4
Creating Flannel Overlay Network Resources

Compute Web Ul property OCI CLI property

* Name: nat_private * --display-name: nat_private
Route rule --route-rules

¢ Target Type: NAT Gateway * networkEntityId: OCID of the NAT

* NAT Gateway: Name of the NAT gateway
that was created in the preceding step

* CIDR Block: 0.0.0.0/0
e Description: NAT private route rule

gateway that was created in the preceding
step

* destinationType: CIDR BLOCK
* destination:0.0.0.0/0
* description: NAT private route rule

Note the name and OCID of this route table for assignment to private subnets.

Local Peering Gateway

Create a Local Peering gateway (LPG) and a route table with a route rule that references the
LPG.

Local Peering Gateway

To create the LPG, use the instructions in "Connecting VCNs through a Local Peering
Gateway" in the Networking chapter of the Oracle Private Cloud Appliance User Guide.

Note the name and OCID of the LPG for assignment to the private route rule.
Private Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide.

For this example, use the following input to create the route table with a private route rule that
references the LPG that was created in the preceding step.

Compute Web Ul property OCI CLI property

* Name: lpg rt * --display-name:lpg rt

Route rule --route-rules

* Target Type: Local Peering Gateway * networkEntityId: OCID of the LPG that

* Local Peering Gateway: Name of the LPG
that was created in the preceding step

e CIDR Block: CIDR for the second VCN
* Description: LPG private route rule

was created in the preceding step
* destinationType: CIDR BLOCK

. destination: CIDR for the second VCN

* description: LPG private route rule

Note the name and OCID of this route table for assignment to the "control-plane-endpoint”
subnet (Creating a Flannel Overlay Control Plane Load Balancer Subnet).

Add the same route rule on the second VCN (the peered VCN), specifying the OKE VCN CIDR
as the destination.

Dynamic Routing Gateway

Create a Dynamic Routing gateway (DRG) and a route table with a route rule that references
the DRG.

Dynamic Routing Gateway

4-17

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables

Chapter 4
Creating Flannel Overlay Network Resources

To create the DRG and attach the OKE VCN to that DRG, use the instructions in "Connecting
to the On-Premises Network through a Dynamic Routing Gateway" in the Networking chapter
of the Oracle Private Cloud Appliance User Guide. Create the DRG in the OKE VCN
compartment, and then attach the OKE VCN to that DRG.

Note the name and OCID of the DRG for assignment to the private route rule.
Private Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide.

For this example, use the following input to create the route table with a private route rule that
references the DRG that was created in the preceding step.

Compute Web Ul property OCI CLI property
* Name: drg_rt * --display-name: drg_rt
Route rule --route-rules

* Target Type: Dynamic Routing Gateway * networkEntityId: OCID of the DRG that
* Dynamic Routing: Name of the DRG that was created in the preceding step

was created in the preceding step . .
° dest t T :CIDR BLOCK
. CIDR Block: 0.0.0.0/0 eotinationiype —
* destination:0.0.0.0/0

* Description: DRG private route rule
* description: DRG private route rule

Note the name and OCID of this route table for assignment to the "control-plane-endpoint"
subnet (Creating a Flannel Overlay Control Plane Load Balancer Subnet).

Public Route Table

Create an Internet gateway and a route table with a route rule that references the Internet
gateway.

Internet Gateway

To create the internet gateway, use the instructions in Providing Public Access through an
Internet Gateway in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for Flannel Overlay Network Resources.

Note the name and OCID of the internet gateway for assignment to the public route rule.
Public Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide. For Terraform input, see Example
Terraform Scripts for Flannel Overlay Network Resources.

For this example, use the following input to create the route table with a public route rule that
references the internet gateway that was created in the preceding step.

ORACLE 418

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-internet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-internet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables

ORACLE

Chapter 4
Creating Flannel Overlay Network Resources

Compute Web Ul property

OCI CLI property

¢ Name: public
Route rule

* Target Type: Internet Gateway

* Internet Gateway: Name of the internet
gateway that was created in the preceding
step

* CIDR Block: 0.0.0.0/0

e Description: OKE public route rule

. --vcn-id:ocidl.ven.oke ven id
* --display-name: public
--route-rules

networkEntityId: OCID of the internet

gateway that was created in the preceding
step

* destinationType: CIDR BLOCK
* destination:0.0.0.0/0
* description: OKE public route rule

Note the name and OCID of this route table for assignment to public subnets.

VCN Default Security List

Modify the default security list, using the input shown in the following table. Delete all of the
default rules and create the rules shown in the following table.

To modify a security list, use the instructions in "Updating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for Flannel Overlay Network Resources.

Compute Web Ul property

OCI CLI property

* Name: Default

One egress security rule:

« Stateless: uncheck the box

* Egress CIDR: 0.0.0.0/0

« IP Protocol: All protocols

¢ Description: "Allow all outgoing traffic.

Three ingress security rules:

Ingress Rule 1

» Stateless: uncheck the box
* Ingress CIDR: ven_cidr

e IP Protocol: ICMP

— Parameter Type: 8: Echo
* Description: "Allow ping from VCN."

--security-list-id:
ocidl.securitylist.default securitylist
_id

One egress security rule:
--egress-security-rules

°* isStateless: false

* destination:0.0.0.0/0

* destinationType:CIDR BLOCK

* protocol:all

* description: "Allow all outgoing traffic.

Three ingress security rules:
--ingress-security-rules

Ingress Rule 1

° isStateless: false

° source:ven cidr

. sourceType: CIDR BLOCK
* protocol:l

°* icmpOptions

- type:8

* description: "Allow ping from VCN."

4-19

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Creating a Flannel Overlay Worker Subnet

ORACLE

Chapter 4

Creating Flannel Overlay Network Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 2

Stateless: uncheck the box

Ingress CIDR: 0.0.0.0/0

IP Protocol: ICMP

— Parameter Type: 3: Destination
Unreachable

Description: "Blocks incoming requests

from any source.”

Ingress Rule 3

Stateless: uncheck the box

Ingress CIDR: 0.0.0.0/0

IP Protocol: ICMP

- Parameter Type: 11: Time Exceeded
Description: "Time exceeded."

Ingress Rule 2

* 1isStateless: false

* source:0.0.0.0/0

. sourceType: CIDR BLOCK
e protocol:l

e icmpOptions

- type:3

* description: "Blocks incoming requests

from any source.”
Ingress Rule 3
° isStateless: false
* source:0.0.0.0/0
. sourceType: CIDR BLOCK
* protocol:l
e icmpOptions
- type:ll
e description: "Time exceeded."

Note the name and OCID of this default security list for assignment to subnets.

Create the following resources in the order listed:

1.
2.

Worker security list

Worker subnet

Create a Worker Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for Flannel Overlay Network Resources.

This security list defines traffic that is allowed to contact worker nodes directly.

For this example, use the following input for the worker subnet security list.

Compute Web Ul property

OCI CLI property

Name: worker-seclist

Seven ingress security rules:

¢ --vcn-idiocidl.vcn.oke ven id
* --display-name:worker-seclist
Seven ingress security rules:

--ingress-security-rules

4-20

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

ORACLE

Chapter 4
Creating Flannel Overlay Network Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 1

Stateless: uncheck the box

Ingress CIDR: ven_cidr

IP Protocol: TCP

— Destination Port Range: 22
Description: "Allow intra-VCN ssh."

Ingress Rule 2

Stateless: uncheck the box

Ingress CIDR: kube_client cidr

IP Protocol: TCP

- Destination Port Range: 30000-32767

Description: "Allow clients to contact the
node port range."

Ingress Rule 3

Stateless: uncheck the box

Ingress CIDR: workerlb cidr

IP Protocol: TCP

— Destination Port Range: 30000-32767

Description: "Allow the worker load
balancer to contact the worker nodes."

Ingress Rule 4

Stateless: uncheck the box

Ingress CIDR: workerlb cidr

IP Protocol: TCP

— Destination Port Range: 10256

Description: "Allow the worker load
balancer to contact the worker nodes."

Ingress Rule 1
* 1isStateless: false
. source: ven_cidr
. sourceType: CIDR BLOCK
* protocol:6
° tcpOptions
destinationPortRange
- max:22
- min: 22
e description: "Allow intra-VCN ssh."
Ingress Rule 2
° isStateless: false
* source: kube _client cidr
* sourceType: CIDR BLOCK
°* protocol:6
°* tcpOptions
destinationPortRange
- max: 32767
— min: 30000

* description: "Allow clients to contact the

node port range."
Ingress Rule 3
° isStateless: false
* source: workerlb cidr
. sourceType: CIDR BLOCK
°* protocol:6
°* tcpOptions
destinationPortRange
- max: 32767
- min: 30000

* description: "Allow the worker load
balancer to contact the worker nodes."

Ingress Rule 4

°* isStateless: false

* source: workerlb cidr

. sourceType: CIDR BLOCK

* protocol:6

°* tcpOptions
destinationPortRange
- max: 10256
— min: 10256

e description: "Allow the worker load
balancer to contact the worker nodes."

4-21

Chapter 4
Creating Flannel Overlay Network Resources

Compute Web Ul property OCI CLI property

Ingress Rule 5 Ingress Rule 5

» Stateless: uncheck the box * isStateless: false

* Ingress CIDR: kmi_cidr o source: kmi cidr

* IP Protocol: TCP . sourceType:—CIDR_BLOCK
— Destination Port Range: 22-65535 « protocol:6

* Description: "Allow the control plane to

. tcpOptions
contact the worker nodes." PP

destinationPortRange
- max: 65535
- min: 22
* description: "Allow the control plane to
contact the worker nodes."

Create the Worker Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Flannel Overlay
Network Resources.

For this example, use the following input to create the worker subnet. Use the OCID of the
VCN that was created in Creating a Flannel Overlay VCN. Create the worker subnet in the
same compartment where you created the VCN.

Create either a NAT private worker subnet or a VCN private worker subnet. Create a NAT
private worker subnet to communicate outside the VCN.

Table 4-3 Create a NAT Private Worker Subnet
|

Compute Web Ul property OCI CLI property
¢ Name: worker * --vcn-id:ocidl.ven.oke ven id
¢ CIDR Block: worker cidr ¢ --display-name:worker
* Route Table: Select "nat_private" fromthe . __cidr-block: worker cidr
list -
. --dns-1label: worker
» Private Subnet: check the box o o)
e --prohibit-public-ip-on-vnic: true

. DNS Hostnames:

Use DNS Hostnames in this Subnet: check T OUt?'table'id: OCID of the
the box "nat_private" route table

_ DNS Label: worker * --security-list-ids: OCIDs of the

¢ Security Lists: Select "worker-seclist" and "worker-seclist” security list and the

"Default Security List for oketest-ven" from "Default Security List for oketest-ven”
the list security list

The difference in the following private subnet is the VCN private route table is used instead of
the NAT private route table.

ORACLE 405

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

Chapter 4
Creating Flannel Overlay Network Resources

Table 4-4 Create a VCN Private Worker Subnet

Compute Web Ul property OCI CLI property
* Name: worker e --vcn-idiocidl.vcn.oke ven id
° CIDR Block: Worker_cidr . ——display—name: worker
* Route Table: Select "vcn_private” fromthe « __cidr-block: worker cidr
list . -
* --dns-label:worker

Private Subnet: check the box " o .
DNS Hostnames: * --prohibit-public-ip-on-vnic: true

Use DNS Hostnames in this Subnet: check - OUt?_table_id: OCID of the
the box "ven_private" route table
— DNS Label: worker ¢ --security-list-ids: OCIDs of the

Security Lists: Select "worker-seclist" and "worker-seclist” security list and the

"Default Security List for oketest-ven" from "Default Security List for oketest-ven”
the list security list

Creating a Flannel Overlay Worker Load Balancer Subnet

Create the following resources in the order listed:

ORACLE

1.
2.

Worker load balancer security list

Worker load balancer subnet

Create a Worker Load Balancer Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for Flannel Overlay Network Resources.

This security list defines traffic, such as applications, that is allowed to contact the worker load
balancer.

For this example, use the following input for the worker load balancer subnet security list.
These sources and destinations are examples; adjust these for your applications.

< Note:

When you create an external load balancer for your containerized applications (see
Exposing Containerized Applications), remember to add that load balancer service
front-end port to this security list.

Compute Web Ul property OCI CLI property
¢ Name: workerlb-seclist e --vcn-id:ocidl.vcn.oke ven id

* --display-name: workerlg-sezlist
Two ingress security rules: Two ingress security rules:

--ingress-security-rules

4-23

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Chapter 4
Creating Flannel Overlay Network Resources

Compute Web Ul property OCI CLI property
Ingress Rule 1 Ingress Rule 1
» Stateless: uncheck the box * isStateless: false
¢ Ingress CIDR: kube_client cidr e source: kube client cidr
« IP Protocol: TCP * sourceType: CIDR_BLOCK
- Destination Port Range: 80 « protocol:6
. Desc.ript.ion: "Allow inbound traffic for « tcpOptions
applications."
destinationPortRange
- max: 80
- min: 80
* description: "Allow inbound traffic for
applications.”
Ingress Rule 2 Ingress Rule 2
» Stateless: uncheck the box * isStateless: false
¢ Ingress CIDR: kube_client cidr e source: kube client cidr
* IP Protocol: TCP ¢ sourceType: CIDR BLOCK
- Destination Port Range: 443 « protocol:6
. Desc.ript'ion: "Allow inbound traffic for + tcpOptions
applications.”
destinationPortRange
- max: 443
— min: 443
e description: "Allow inbound traffic for
applications."

Create the Worker Load Balancer Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Flannel Overlay
Network Resources.

For this example, use the following input to create the worker load balancer subnet. Use the
OCID of the VCN that was created in Creating a Flannel Overlay VCN. Create the worker load
balancer subnet in the same compartment where you created the VCN.

Create either a private or a public worker load balancer subnet. Create a public worker load
balancer subnet to use with a public cluster. Create a private worker load balancer subnet to
expose applications in a private cluster.

ORACLE 4o

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

Chapter 4
Creating Flannel Overlay Network Resources

Table 4-5 Create a Public Worker Load Balancer Subnet

Compute Web Ul property OCI CLI property

* Name: service-1b ¢ --vcn-id:ocidl.ven.oke _ven id

* CIDR Block: workerlb cidr « --display-name: service-1b

¢ Route Table: Select "public” from the list o ——cidr-block: workerlb cidr

* Public Subnet: check the box « ——dns-label: servicelb

" DNS Hostnames: * --prohibit-public-ip-on-vnic: false

Use DNS Hostnames in this Subnet: check
the box

— DNS Label: servicelb

* Security Lists: Select "workerlb-seclist" and " ~-security-list-ids: OCIDs of the

"Default Security List for oketest-vcn" from ::workerlb-secl}st" ;ecunty list and th"e
the list Default Security List for oketest-vcn

security list

--route-table-id: OCID of the "public"
route table

The difference in the following private subnet is the VCN private route table is used instead of
the public route table.

Table 4-6 Create a Private Worker Load Balancer Subnet
-~]

Compute Web Ul property OCI CLI property
¢ Name: service-lb * --vcn-id:ocidl.ven.oke ven id
° CIDR BlOCk: WOrkerlb_Cidr ° ——display—name: service-1b
* Route Table: Select "vcn_private” fromthe « __cidr-block: workerlb cidr
list . -
. --dns-1label: servicelb
* Private Subnet: check the box o o)
e --prohibit-public-ip-on-vnic: true

. DNS Hostnames:

Use DNS Hostnames in this Subnet: check - OUte.'table'id: OCID of the
the box "ven_private” route table

_ DNS Label: servicelb * --security-list-ids: OCIDs of the

* Security Lists: Select "workerlb-seclist" and ::wofr kelrlb—secl.ist" s_eCLflrityliist and th"e
"Default Security List for oketest-ven" from Detault Security List for oketest-ven

the list security list

Creating a Flannel Overlay Control Plane Subnet

ORACLE

Create the following resources in the order listed:

1. Control plane security list

2. Control plane subnet

Create a Control Plane Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for Flannel Overlay Network Resources.

For this example, use the following input for the control plane subnet security list. The
kubernetes _api port is the port used to access the Kubernetes API: port 6443. See also
Workload Cluster Network Ports for VCN-Native Pod Networking. See also Workload Cluster
Network Ports for Flannel Overlay Networking.

4-25

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

ORACLE

Chapter 4
Creating Flannel Overlay Network Resources

Compute Web Ul property

OCI CLI property

Name: kmi-seclist

Six ingress security rules:

Ingress Rule 1

Stateless: uncheck the box

Ingress CIDR: kube_client cidr

IP Protocol: TCP

— Destination Port Range:
kubernetes _api port

Description: "Allow inbound connections to
the Kubernetes API server."

Ingress Rule 2

Stateless: uncheck the box

Ingress CIDR: kmilb cidr

IP Protocol: TCP

— Destination Port Range:
kubernetes_api port

Description: "Allow inbound connections
from the control plane load balancer.”

Ingress Rule 3

Stateless: uncheck the box

Ingress CIDR: worker cidr

IP Protocol: TCP

— Destination Port Range: 1024-65535

Description: "Allow inbound connections
from worker nodes to the control plane."

* --vcn-idiocidl.vcn.oke ven id
* --display-name: kmi-seclist
Six ingress security rules:
--ingress-security-rules
Ingress Rule 1
°* isStateless: false
* source: kube _client cidr
. sourceType: CIDR BLOCK
° protocol:6
°* tcpOptions
destinationPortRange
- max: kubernetes api port
— min: kubernetes api port
* description: "Allow inbound connections
to the Kubernetes API server."

Ingress Rule 2
. isStateless: false

* source: kmilb cidr

° sourceType: CIDR BLOCK

°* protocol:6

°* tcpOptions
destinationPortRange
— max: kubernetes _api port
— min: kubernetes _api port

* description: "Allow inbound connections
from the control plane load balancer.”

Ingress Rule 3
. isStateless: false

* source: worker cidr
. sourceType: CIDR BLOCK
°* protocol:6
°* tcpOptions
destinationPortRange
- max: 65535
- min: 1024
* description: "Allow inbound connections
from worker nodes to the control plane.”

4-26

Chapter 4
Creating Flannel Overlay Network Resources

Compute Web Ul property OCI CLI property

Ingress Rule 4 Ingress Rule 4

» Stateless: uncheck the box * isStateless: false

¢ Ingress CIDR: kmi_cidr e source: kmi cidr

¢ IP Protocol: TCP + sourceType: CIDR BLOCK

- Destination Port Range: 1024-65535 « protocol: 6
* Description: "Allow inbound connections

T * tcpOptions
within the control plane.” s

destinationPortRange
- max: 65535
- min: 1024
* description: "Allow inbound connections
within the control plane.”

Create the Control Plane Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Flannel Overlay
Network Resources.

Use the following input to create the control plane subnet. Use the OCID of the VCN that was
created in Creating a Flannel Overlay VCN. Create the control plane subnet in the same
compartment where you created the VCN.

Create either a NAT private control plane subnet or a VCN private control plane subnet. Create
a NAT private control plane subnet to communicate outside the VCN.

@© Important:

The name of this subnet must be exactly "control-plane”.

Table 4-7 Create a NAT Private Control Plane Subnet

Compute Web Ul property OCI CLI property
¢ Name: control-plane * --vcn-id:ocidl.ven.oke ven id
¢ CIDR Block: kmi_cidr ¢ --display-name: control-plane
* Route Table: Select "nat_private" fromthe . -—cidr-block: kmi cidr
list .
. --dns-label: kmi
» Private Subnet: check the box o o)
* --prohibit-public-ip-on-vnic: true

e DNS Hostnames: '
Use DNS Hostnames in this Subnet: check - OUt(_e_table'ld' OCID of the
the box "nat_private" route table
— DNS Label: kmi e --security-list-ids: OCIDs of the "kmi-

seclist” security list and the "Default

* Security Lists: Select "kmi-seclist” and Lo . o
Security List for oketest-ven" security list

"Default Security List for oketest-vcn" from
the list

The difference in the following private subnet is the VCN private route table is used instead of
the NAT private route table.

ORACLE 4-27

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

Chapter 4
Creating Flannel Overlay Network Resources

Table 4-8 Create a VCN Private Control Plane Subnet

Compute Web Ul property OCI CLI property
* Name: control-plane ¢ --vcn-id:ocidl.ven.oke _ven id
¢ CIDR Block: kmi_cidr ¢ --display-name: control-plane
* Route Table: Select "vcn_private” fromthe « __cidr-block: kmi cidr
list e
* --dns-label: kmi

¢ Private Subnet: check the box - o .
. DNS Hostnames: * --prohibit-public-ip-on-vnic: true

Use DNS Hostnames in this Subnet: check Tt OUt?_table_id: OCID of the
the box "ven_private" route table
DNS Label: kmi e --security-list-ids: OCIDs of the "kmi-

seclist” security list and the "Default
Security List for oketest-ven” security list

* Security Lists: Select "kmi-seclist" and
"Default Security List for oketest-vcn" from
the list

Creating a Flannel Overlay Control Plane Load Balancer Subnet

Create the following resources in the order listed:

1. Control plane load balancer security list

2. Control plane load balancer subnet

Create a Control Plane Load Balancer Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for Flannel Overlay Network Resources.

The control plane load balancer accepts traffic on port 6443, which is also called
kubernetes_api_port in this guide. Adjust this security list to only accept connections from
where you expect the network to run. Port 6443 must accept connections from the cluster
control plane instances and worker instances.

For this example, use the following input for the control plane load balancer subnet security list.

Compute Web Ul property OCI CLI property

* Name: kmilb-seclist * --vcn-id:ocidl.ven.oke ven id
e --display-name: kmilb—sezlist -

Three ingress security rules: Three ingress security rules:
--ingress-security-rules

ORACLE 408

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

ORACLE

Chapter 4
Creating Flannel Overlay Network Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 1:

Stateless: uncheck the box

Ingress CIDR: 253.255.0.0/16

This value is required. Do not change this

CIDR value.

IP Protocol: TCP

— Destination Port Range:
kubernetes_api port

Description: "Allow inbound connections to
the control plane load balancer.”

Ingress Rule 2:

Stateless: uncheck the box
Ingress CIDR: kube client cidr

IP Protocol: TCP

— Destination Port Range:
kubernetes_api port

Description: "Allow inbound connections to
the control plane load balancer.”

Ingress Rule 3:

Stateless: uncheck the box
Ingress CIDR: ven_cidr
IP Protocol: TCP

- Destination Port Range:
kubernetes api port

Description: "Allow inbound connections to
the control plane load balancer.”

Ingress Rule 1:

Ingress Rule 2:

Ingress Rule 3:

isStateless: false
source: 253.255.0.0/16

This value is required. Do not change this
CIDR value.

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

— max: kubernetes _api port

— min: kubernetes _api port
description: "Allow inbound connections
to the control plane load balancer.”

isStateless: false

source: kube_client cidr

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

— max: kubernetes _api port

— min: kubernetes _api port
description: "Allow inbound connections
to the control plane load balancer.”

isStateless: false

source: ven_cidr

sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange

- max: kubernetes api port
— min: kubernetes api port

description: "Allow inbound connections
to the control plane load balancer."

Create the Control Plane Load Balancer Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Flannel Overlay
Network Resources.

For this example, use the following input to create the control plane load balancer subnet. Use
the OCID of the VCN that was created in Creating a Flannel Overlay VCN. Create the control
plane load balancer subnet in the same compartment where you created the VCN.

4-29

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

ORACLE

Chapter 4
Creating Flannel Overlay Network Resources

Create either a private or a public control plane load balancer subnet. Create a public control
plane load balancer subnet to use with a public cluster. Create a private control plane load
balancer subnet to use with a private cluster.

See Private Clusters for information about using Local Peering Gateways to connect a private
cluster to other instances on the Private Cloud Appliance and using Dynamic Routing
Gateways to connect a private cluster to the on-premises IP address space. To create a private
control plane load balancer subnet, specify one of the following route tables (see Creating a
Flannel Overlay VCN):

e vcn_private
* lIpg_rt
e drg_rt

Table 4-9 Create a Public Control Plane Load Balancer Subnet
- |

Compute Web Ul property OCI CLI property
¢ Name: control-plane-endpoint * --vcn-id:ocidl.ven.oke ven id
¢ CIDRBlock: kmilb cidr ¢ --display-name: control-plane-
* Route Table: Select "public” from the list endpoint
o Public Subnet: check the box o ——cidr-block: kmilb cidr
* DNS Hostnames: « --dns-label: kmilb
:.Lseekl))OI;I{S Hostnames in this Subnet: check --prohibit-public-ip-on-vnic: false
* --route-table-id: OCID of the "public"

— DNS Label: kmilb

* Security Lists: Select "kmilb-seclist" and route table

"Default Security List for oketest-ven" from --security-list-ids: OCIDs of the
the list "kmilb-seclist" security list and the "Default

Security List for oketest-ven" security list

The difference in the following private subnet is the VCN private route table is used instead of
the public route table. Depending on your needs, you could specify the LPG route table or the
DRG route table instead.

Table 4-10 Create a Private Control Plane Load Balancer Subnet
- |

Compute Web Ul property OCI CLI property
* Name: control-plane-endpoint * --vcn-id:ocidl.ven.oke ven id
¢ CIDR Block: kmilb cidr * --display-name: control-plane-
* Route Table: Select "vcn_private” from the endpoint

list - ——cidr-block: kmilb cidr

* Private Subnet: check the box
* DNS Hostnames:

Use DNS Hostnames in this Subnet: check

° --dns-label: kmilb
--prohibit-public-ip-on-vnic: true

the box * --route-table-id: OCID of the
— DNS Label: kmilb "ven_private” route table

« Security Lists: Select "kmilb-seclist” and :—se_curit%/—%ist—i.ds: OCIDs of th:?
"Default Security List for oketest-ven" from kmilb-seclist" security list and the "Default
the list Security List for oketest-ven" security list

4-30

Chapter 4
Creating VCN-Native Pod Networking Resources

Creating VCN-Native Pod Networking Resources

ORACLE

VCN-Native Pod Networking enables you to directly manage the traffic from pods because pod
IP addresses come directly from the VCN CIDR block and not from a network overlay such as
Flannel Overlay. VCN-Native Pod Networking offers more flexibility and control over the traffic
and allows you to use different security rules.

VCN-Native Pod Networking connects nodes in a Kubernetes cluster to pod subnets in the
OKE VCN. Pod IP addresses within the OKE VCN are directly routable from other VCNs that
are connected (peered) to the OKE VCN, and from on-premises networks.

When you create a cluster that uses VCN-Native Pod Networking, the VCN that you specify
must have a subnet named "pod". You must provide a subnet named "pod" so that the system
can find that subnet. The pod subnet has security rules that enable pods on control plane
nodes to communicate directly with pods on worker nodes and with other pods and other
resources. See Creating a VCN-Native Pod Networking Pod Subnet. If you select VCN-Native
Pod Networking and do not have a subnet named "pod", the cluster creation will fail.

When you create a node pool for a cluster that is using VCN-Native Pod Networking, the pod
subnet that you specify (Pod Communication > Pod Communication Subnet or --pod-subnet-
ids) serves the function of a pod subnet for pods on worker nodes. That pod subnet should
have security rules that enable pods on worker nodes to communicate directly with other pods
on worker nodes and control plane nodes. You can optionally specify the worker node subnet
as the pod subnet. The CIDR of the pod subnet that you specify must be larger than /25. The
pod subnet should be larger than the worker node subnet.

In general, when you use VCN-Native Pod Networking, security rules can enable pods to
communicate directly with other pods on the same node or on other nodes in the cluster, with
other clusters, with other services, and with the internet.

Node Shapes and Number of Pods

When using the OCI VCN-Native Pod Networking CNI plugin, each pod needs a private IP
address. By default, 31 IP addresses are assigned to a VNIC for use by pods running on the
worker node.

You can specify the maximum number of pods that you want to run on a worker node. The
default maximum is 31 pods per worker node. You can specify up to 110.

A node shape, and therefore a worker node, has a minimum of two VNICs. The first VNIC is
connected to the worker subnet. The second VNIC is connected to the pod subnet. Therefore a
worker node can support at least 31 pods. If you want more than 31 pods on a single worker
node, specify a shape for the node pool that supports three or more VNICs: one VNIC to
connect to the worker node subnet, and at least two VNICs to connect to the pod subnet.

A VM.PCAStandardl.4 standard node shape can have a maximum of four VNICs, and the
worker node can support up to 93 pods. A VM.PCAStandard.E5.Flex node shape with five
OCPUs can have a maximum of five VNICs, and the worker node can support up to 110 pods.
A node cannot have more than 110 pods (see OKE Service Limits).

The following formula summarizes the maximum number of pods supported per node:

MIN((Number of VNICs - 1) * 31), 110)

For information about all node shapes, see "Compute Shapes" in the Compute Instance
Concepts chapter in the Oracle Private Cloud Appliance Concepts Guide.

4-31

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-compute-instances.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-compute-instances.html

Chapter 4
Creating VCN-Native Pod Networking Resources

VCN-Native Pod Networking Resources

The resource definitions in the following sections in this topic create a working example set of
network resources for workload clusters when you are using VCN-Native Pod Networking. Use
this configuration as a guide when you create these resources. You can change the values of
properties such as CIDR blocks and IP addresses. You should not change the values of
properties such as the network protocol, the stateful setting, or the private/public setting.

See Workload Cluster Network Ports for VCN-Native Pod Networking for specific ports that
must be open for specific purposes.

Create the following network resources. To use Terraform, see Example Terraform Scripts for
VCN-Native Pod Networking Resources.

< Note:

Create all of these network resources in the same compartment on the appliance.

* VCN. See Creating a VCN-Native Pod Networking VCN.
e Internet Gateway
* NAT Gateway
* Dynamic Routing Gateway
e Local Peering Gateway
* Route rules
e Security lists
e The following five subnets:
— Pod. See Creating a VCN-Native Pod Networking Pod Subnet.
— Worker. See Creating a VCN-Native Pod Networking Worker Subnet.

— Worker load balancer. See Creating a VCN-Native Pod Networking Worker Load
Balancer Subnet.

— Control plane. See Creating a VCN-Native Pod Networking Control Plane Subnet.

— Control plane load balancer. See Creating a VCN-Native Pod Networking Control
Plane Load Balancer Subnet.

Workload Cluster Network CIDR Ranges for VCN-Native Pod Networking

ORACLE

Throughout this documentation, variables are used to represent CIDR ranges for instances in
different subnets. The following table lists the CIDR variables and example values for use with
VCN-Native Pod Networking.

< Note:

These are examples only. The CIDR ranges you use depend on the number of
clusters you have, the number of nodes in each cluster, the shape you select for the
worker nodes, and the type of networking you are using.

4-32

Chapter 4
Creating VCN-Native Pod Networking Resources

For VCN-Native Pod Networking, every pod gets an IP address assigned from the IP address
pool that is defined in the pod subnet CIDR. The shape you specify for the node pool
determines the maximum number of VNICs (pods) for each worker node, as described in Node
Shapes and Number of Pods.

The primary difference between IP address requirements of VCN-Native Pod Networking and
Flannel Overlay networking is that VCN-Native Pod Networking requires more IP addresses to
be available. The table in Workload Cluster Network CIDR Ranges for Flannel Overlay
Networking shows smaller CIDR ranges than the following table for VCN-Native Pod
Networking CIDR ranges.

Note:

The pod subnet CIDR must be larger than /25. The pod subnet should be larger than
the worker node subnet.

Table 4-11 Example CIDR Values to Use with VCN-Native Pod Networking

. __|
Variable Name Description Example Value

ven_cidr VCN CIDR range 172.31.0.0/19

This Is a small VCN with 8192 IP's for creating
OKE infrastructure.

worker cidr Worker subnet CIDR 172.31.8.0/21
workerlb cidr Worker load balancer subnet CIDR 172.31.0.0/23
kmi_cidr OKE control plane subnet CIDR 172.31.4.0/22
kmilb cidr OKE control plane load balancer subnet CIDR 172.31.2.0/23
pod _cidr Pod subnet CIDR 172.31.16.0/20

kube client cidr CIDR for clients that are allowed to contact the 10.0.0.0/8
Kubernetes API server

The IP Subnet Calculator on Calculator.net is one tool for finding all available networks for a
given IP address and prefix length.

Workload Cluster Network Ports for VCN-Native Pod Networking

The following table lists ports that are used by workload clusters when you use VCN-Native
Pod Networking. These ports must be available to configure workload cluster networking. You
might need to open additional ports for other purposes.

All protocols are TCP. All port states are Stateful. Port 6443 is the port used for Kubernetes API
and is also known as kubernetes_api_port in this guide.

See also the tables in Port Matrix in the Oracle Private Cloud Appliance Security Guide.

If you are using a separate administration network, see OKE Cluster Management with
Administration Network.

ORACLE 433

https://www.calculator.net/ip-subnet-calculator.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix

Chapter 4
Creating VCN-Native Pod Networking Resources

Table 4-12 Ports that Must Be Available for Use by Workload Clusters for VCN-Native

Pod Networking

Source IP Destination IP Port Description
Address Address
bastion host: Worker nodes 22 Outbound connections from the bastion host to
ven_cidr subnet: the worker CIDR.
worker cidr
bastion host: Control plane 22 Outbound connections from the bastion host to
ven_cidr subnet: kmi_cidr the control plane nodes.
Worker nodes yum repository 80 Outbound connections from the worker CIDR to
subnet: external applications.
worker cidr
Worker nodes Control plane 6443 Outbound connections from the worker CIDR to
subnet: subnet: kmi_cidr the Kubernetes API This is necessary to allow
worker cidr nodes to join through either a public IP address
on one of the nodes or the load balancer public
IP address.
Worker nodes Control plane 6443 Inbound connections from the worker CIDR to
subnet: load balancer the Kubernetes API.
worker cidr
CIDR for clients: Control plane 6443 Inbound connections from clients to the
kube client cid load balancer Kubernetes API server.
r
Worker nodes Control plane 6443 Private outbound connections from the worker
subnet: subnet: kmi_cidr CIDR to kubeapi on the control plane subnet.
worker cidr
kube_client cid Worker nodes 30000-3 Inbound traffic for applications from
r subnet: 2767 Kubernetes clients.
worker cidr
kmi_cidr worker cidr, 10250 Kubernetes API endpoint to worker node
pod cidr communication.
kmi_cidr worker cidr, 10256 Allow load balancer or network load balancer
pod cidr to communicate with kube-proxy on worker
nodes or pod subnet.
pod _cidr kmilb cidr 12250 Pod to Kubernetes API endpoint
communication.
kmi_cidr kmi_cidr 2379-23 Communication between the etcd server and
81 metrics services. Ports 2379 and 2380 are used
by Kubernetes to communicate with the etcd
server. Port 2381 is used by Kubernetes to
collect metrics from etcd.
kmi_cidr kmi_cidr 10257-1 Inbound connection for Kubernetes
0260 components.

Example Terraform Scripts for VCN-Native Pod Networking Resources

The following Terraform scripts create the network resources that are required by OKE when
you are using VCN-Native Pod Networking. Other sections in this chapter show other ways to
define these same network resources.

ORACLE ey

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Most of the values shown in these scripts, such as resource display names and CIDRs, are
examples. Some ports must be specified as shown (see Workload Cluster Network Ports for
VCN-Native Pod Networking), the OKE pod subnet must be hamed pod, and the OKE control
plane subnet must be named control-plane. See Workload Cluster Network CIDR Ranges for
VCN-Native Pod Networking for comments about CIDR values.

e variables.tf

e terraform.tfvars

e provider.tf

* main.tf

e oke_vcn.tf

* oke_pod_seclist.tf

e oke_pod_subnet.tf

e oke_worker_seclist.tf
e oke_worker_subnet.tf
e oke_kmi_seclist.tf

e oke_kmi_subnet.tf

variables.tf

This file creates several variables that are used to configure OKE network resources when you
are using VCN-Native Pod Networking. Many of these variables are not assigned values in this
file. One port and five CIDRs are assigned values. The kubernetes api port, port 6443, is the
port used to access the Kubernetes API. See also Workload Cluster Network Ports for VCN-
Native Pod Networking. The six CIDRs that are defined in this file are for the OKE VCN, pod
subnet, worker subnet, worker load balancer subnet, control plane subnet, and control plane
load balancer subnet.

variable "oci config file profile" {
type = string
default = "DEFAULT"

}

variable "tenancy ocid" {

description = "tenancy OCID"
type = string
nullable = false

}

variable "compartment id" {

description = "compartment OCID"
type = string
nullable = false

}

variable "vcn name" {
description = "VCN name"
nullable = false

}

variable "kube client cidr" {
description = "CIDR of Kubernetes API clients"
type = string
nullable = false

4-35

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

variable "kubernetes api port" {

description = "port used for kubernetes API"
type = string
default = "6443"

variable "worker 1b ingress rules" {

description = "traffic allowed to worker load balancer"
type = list(object ({
source = string

port min = string
port max = string
1)
nullable = false

variable "worker ingress rules" {

description = "Traffic allowed directly to workers."
type = list(object ({
source = string

port min = string
port max = string
1)

nullable = true

#

IP network addressing

#

variable "vcn _cidr" |
default = "172.31.0.0/19"

}

Subnet for KMIs where kube-apiserver and other control
plane applications run, maximum 9 nodes.
variable "kmi cidr" {
description = "Kubernetes control plane subnet CIDR"
default = "172.31.4.0/22"

Subnet for KMI load balancer.

variable "kmilb cidr" {
description = "Kubernetes control plane LB subnet CIDR"
default = "172.31.2.0/23"

Subnet for worker nodes, maximum 128 nodes.
variable "worker cidr" {
description = "K8s worker subnet CIDR"
default = "172.31.8.0/21"

Subnet for worker load balancer (for use by CCM).
variable "workerlb cidr" {

description = "K8s worker LB subnet CIDR"

default = "172.31.0.0/23"

Subnet for pod communication
variable "pod cidr" {
description = "K8s pod communication subnet CIDR"

4-36

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

default = "172.31.16.0/20"

Flag to Enable private endpoint
variable "enable private endpoint" {
description = "Flag to create private control plane endpoint/service-1b"
type = bool
default = false
nullable = false

terraform.tfvars

This file assigns values to some of the variables that were created in variables.tf. It also
defines security list rules for accessing the worker nodes and the worker load balancer.

Name of the profile to use from $HOME/.oci/config
oci config file profile = "DEFAULT"

Tenancy ocid from the above profile.
tenancy ocid = "ocidl.tenancy.unique ID"

Compartment in which to build the OKE cluster.
compartment_id = "ocidl.compartment.unique ID"

Display-name for the OKE VCN.
vcn name = "oketest"

CIDR of clients that are allowed to contact the Kubernetes apiserver.
kube client cidr = "10.0.0.0/8"

Security list rules for who is allowed to contact the worker load balancer
(adjust for your applications).
worker 1lb ingress rules = [
{
source = "10.0.0.0/8"
port min = 80
port max = 80
}I
{
source = "10.0.0.0/8"
port min = 443
port max = 443
}I

Security list rules for who is allowed to contact worker nodes directly.
This example allows 10/8 to contact the default nodeport range.
worker ingress rules = |
{
source = "10.0.0.0/8"
port min = 30000
port max = 32767
}I

provider.tf

This file is required in order to use the OCI provider. The file initializes the OCI module using
the OCI profile configuration file.

4-37

Chapter 4
Creating VCN-Native Pod Networking Resources

provider "oci" {
config file profile = var.oci config file profile
tenancy ocid = var.tenancy ocid

}

main.tf

This file specifies the provider to use (oracle/oci), defines several security list rules, and
initializes required local variables.

The version of the OCI provider that you use must be at least v4.50.0 but no greater than

v6.36.0.
terraform {
required providers {
oci = {
source = "oracle/oci"

version = ">= 4.50.0, <= 6.36.0"
If necessary, you can pin a specific version here
version = "6.36.0"

}
required version = ">= 1.1"

}

locals {
kube internal cidr = "253.255.0.0/16"
worker 1lb ingress rules = var.worker lb ingress rules
worker ingress rules = flatten([var.worker ingress rules, |
{
source = var.kmi cidr
port min = 22
port max = 22
}I
{
source = var.worker cidr
port min = 22
port max = 22
}I
{
source = var.worker cidr
port min = 10250
port max = 10250
}I
{
source = var.worker cidr
port min = 10256
port max = 10256
}I
{
source = var.worker cidr
port min = 30000
port max = 32767
}I
{
source = var.workerlb cidr
port min = 10256
port max = 10256
}I
{
source = var.workerlb cidr
port min = 30000

ORACLE 438

ORACLE"

port max =
}I
{
source =
port min =
port max =
}I
{
source =
port min =
port max =
}I
{
source =
port min =
port max =
}I
1)
kmi 1b ingress_
{
source =
port min =
port max =
}I
{
source =
port min =
port max =
}I
{
source =
port min =
port max =
}I
{
source =
port min =
port max =
}I
{
source =
port min =
port max =
}I
{
source =
port min =
port max =
}I
]
kmi ingress rul
{
source =
port min =
port max =
}I
{
source =
port min =
port max =
}I
{

32767

var.kmi cidr
10250
10250

var.kmi cidr
10256
10256

var.pod cidr
30000
32767

rules = [

local.kube internal cidr
var.kubernetes api port
var.kubernetes api port

var.kube client cidr
var.kubernetes api port
var.kubernetes api port

var.kmi cidr
var.kubernetes api port
var.kubernetes api port

var.worker cidr
var.kubernetes api port
var.kubernetes api port

var.worker cidr
12250
12250

var.pod cidr
12250
12250

es = |

var.kube client cidr
var.kubernetes api port
var.kubernetes api port

var.kmilb cidr
var.kubernetes api port
var.kubernetes api port

Chapter 4
Creating VCN-Native Pod Networking Resources

4-39

ORACLE"

b
{

b
{

b
{

b
{

b
{

b
{

b
{

b
{

b
{

b
]

source
port min
port max

source
port min
port max

source
port min
port max

source
port min
port max

source
port min
port max

source
port min
port max

source
port min
port max

source
port min
port max

source
port min
port max

source
port min
port max

var.kmilb cidr
12250
12250

var.worker cidr
var.kubernetes api port
var.kubernetes api port

var.worker cidr
12250
12250

var.kmi cidr
var.kubernetes api port
var.kubernetes api port

var.kmi cidr
2379
2381

var.kmi cidr
8044
8045

var.kmi cidr
10250
10250

var.kmi cidr
10257
10260

var.pod cidr
var.kubernetes api port
var.kubernetes api port

var.pod cidr
12250
12250

pod_ingress rules = [

{

b
{

Iy
{

source
port min
port max

source
port min

port max =

var.vcn_cidr
22
22

var.workerlb cidr
10256
10256

Chapter 4
Creating VCN-Native Pod Networking Resources

4-40

ORACLE

Chapter 4

Creating VCN-Native Pod Networking Resources

source = var.worker cidr
port min = 10250
port max = 10250

}I

{
source = var.worker cidr
port min = 10256
port max = 10256

}I

{
source = var.worker cidr
port min = 80
port max = 80

}I

oke_vcen.tf

This file defines a VCN, NAT gateway, internet gateway, private route table, and public route

table. The private route table is the default route table for the VCN.

resource "oci core vcn" "oke ven" |
cidr block = var.vcn_cidr
dns_label var.vcn name
compartment id = var.compartment id
display name = "${var.vcn name}-vcn"

resource "oci core nat gateway" "vcn ngs" {
compartment id = var.compartment id
ven id = oci _core vcn.oke ven.id
display name = "VCN nat g6s"

}

resource "ocl core internet gateway" "vcn igs" {
compartment id = var.compartment id

ven id = oci _core vcn.oke ven.id
display name = "VCN i6t g6s"
enabled = true

resource "ocl core default route table" "default private" {
manage default resource id = oci core vcn.oke vcn.default route table id
display name = "Default - private"

}

resource "ocl core default route table" "private" {
manage default resource id = oci core vcn.oke vcn.default route table id
display name "Default - private"

route rules {
destination
destination type
network entity id

"0.0.0.0/0"
"CIDR_BLOCK"
oci core nat gateway.vcn ngs.id

}

resource "ocl core route table" "public" {
compartment id = var.compartment id
ven id = oci _core vcn.oke ven.id

4-41

Chapter 4
Creating VCN-Native Pod Networking Resources

display name = "public"
route rules {
destination = "0.0.0.0/0"
destination type = "CIDR BLOCK"
network entity id = oci core internet gateway.vcn igs.id

}

oke_pod_seclist.tf

This file defines the security list for the pod subnet. The rules for this security list were defined
in other Terraform files in this set.

resource "ocl core security list" "pod" {
compartment id = var.compartment id
ven id = oci _core vcn.oke ven.id

display name = "${var.vcn name}-pod"

dynamic "ingress_ security rules" {
iterator = port
for each = local.pod ingress rules

content {
source port.value.source
source type = "CIDR BLOCK"
protocol = "e"
tcp options {
min = port.value.port min
max = port.value.port max

dynamic "ingress security rules" {
iterator = icmp type
for each = [0, 8]

content {
ping from VCN; unreachable/TTL from anywhere
source = var.kmi cidr
source type = "CIDR BLOCK"
protocol = "i"

icmp options {
type = icmp type.value
}

dynamic "ingress security rules" {

for each = var.pod cidr != null ? [var.pod cidr] : []
content {

source = ingress security rules.value

source type = "CIDR BLOCK"

protocol = "all"

}

ORACLE 4ao

Chapter 4
Creating VCN-Native Pod Networking Resources

oke_pod_subnet.tf

This file defines the pod subnet.

@ Important:

The name of the pod subnet must be exactly pod.

resource "oci core subnet" "pod" {

cidr block = var.pod_cidr
compartment id = var.compartment id

ven id = oci _core vcn.oke ven.id
display name = "pod"
dns_label = "pod"

prohibit public ip on vnic = true
security list ids = [
oci core default security list.oke vcn.id,

ocl core security list.pod.id

]

oke worker_seclist.tf

This file defines the security lists for both the worker subnet and the worker load balancer
subnet. The rules for these security lists were defined in other Terraform files in this set.

resource "oci core security list" "workerlb" {

display name = "${var.vcn name}-workerlb"
compartment id = var.compartment id
ven id = oci core vcn.oke vcn.id

dynamic "ingress security rules" {
iterator = port
for each = local.worker lb ingress rules

content {
source port.value.source
source type = "CIDR BLOCK"
protocol = "g"
tcp options {
min = port.value.port min
max = port.value.port max

resource "oci core security list" "worker" {

display name = "${var.vcn name}-worker"
compartment id = var.compartment id
ven id = oci core vcn.oke vcn.id

dynamic "ingress security rules" {
iterator = port
for each = local.worker ingress rules

ORACLE 443

Chapter 4
Creating VCN-Native Pod Networking Resources

content {
source = port.value.source
source type = "CIDR BLOCK"
protocol = "e"

tcp options {
min = port.value.port min
max = port.value.port max

}

dynamic "ingress security rules" {
iterator = icmp type
for each = [0, 8]

content {
ping from VCN; unreachable/TTL from anywhere
source = var.kmi cidr
source type = "CIDR BLOCK"
protocol = "1i"

icmp options {
type = icmp type.value
}

oke_worker_subnet.tf

This file defines the worker and worker load balancer subnets. The worker load balancer
subnet is named service-1b.

resource "oci core subnet" "worker" {

cidr block = var.worker cidr
compartment id = var.compartment id

ven id = oci core vcn.oke ven.id
display name = "worker"
dns label = "worker"

prohibit public ip on vnic = true

security list ids = [
oci core default security list.oke vcn.id,
oci core security list.worker.id

]

resource "oci core subnet" "worker 1lb" {

cidr block = var.workerlb cidr

compartment id = var.compartment id

ven id = oci core vcn.oke ven.id

display name = "service-1b"

dns label = "servicelb"
prohibit public ip on vnic = var.enable private endpoint

route table id = var.enable private endpoint==false ?

oci core route table.public[0].id : oci core vcn.oke vcn.default route table id

security list ids = [
oci core default security list.oke vcn.id,
oci core security list.workerlb.id

ORACLE vy

ORACLE

Chapter 4

Creating VCN-Native Pod Networking Resources

oke_kmi_seclist.tf

This file defines the security lists for the control plane and control plane load balancer subnets.
This file also defines updates to make to the default security list for the VCN.

resource "ocl core default security list" "oke ven"

manage default resource id = oci core vcn.oke ven.default security list id

egress_security rules {

destination = "0.0.0.0/0"
destination type = "CIDR BLOCK"
protocol = "all"

}

dynamic "ingress security rules" {
iterator = icmp type
for each = [3, 8, 11]

content {
ping from VCN; unreachable/TTL from anywhere
source = (icmp_ type.value == "8" ? var.vcn cidr :
source type = "CIDR BLOCK"
protocol = "i"

icmp options {
type = icmp type.value
}

resource "ocl core security list" "kmilb" {
compartment id = var.compartment id
ven id = ocl core vcn.oke vcn.id

display name = "${var.vcn name}-kmilb"
dynamic "ingress security rules" {

iterator = port
for each = local.kmi 1b ingress rules

content {
source = port.value.source
source type = "CIDR BLOCK"
protocol = "e"

tcp options {
min = port.value.port min
max = port.value.port max

dynamic "ingress security rules" {
for each = var.enable private endpoint 2 [1] : []
content {
source = var.kmilb cidr
source type = "CIDR BLOCK"
protocol = "6"
tcp options {
min = var.kubernetes api port

"0.0.0.0/0M)

4-45

ORACLE

max =

resource "oci core security lis

Chapter 4
Creating VCN-Native Pod Networking Resources

var.kubernetes api port

£ "kmi" {

compartment id = var.compartment id

ven id =

display name =

oci core vcn.oke ven.id

"${var.vcn_name}-kmi"

dynamic "ingress security rules" {

s rules

source

iterator = port

for each = local.kmi ingres

content {
source = port.value.
source type = "CIDR BLOCK"
protocol = "e"

tcp options {

min = port.value.port min
max = port.value.port max

}

oke_kmi_subnet.tf

This file defines the control plane and control plane load balancer subnets.

@ Important:

The name of the kmi subnet must be exactly control-plane.

resource "oci core subnet" "kmi" {

cidr block =
compartment id =
display name =
dns_label =
ven id =
prohibit public ip on vnic =
security list ids = [

var.kmi cidr
var.compartment id
"control-plane"

"kmi"

oci core vcn.oke ven.id
true

ocl core default security list.oke vcn.id,

ocl core security list.kmi.

]

id

resource "oci core subnet" "kmi 1b" {

cidr block =
compartment id =
dns_label =
ven id =
display name =
prohibit public ip on vnic =
route table id =
ocl core route table.public([0].
security list ids = [

var.kmilb cidr

var.compartment id

"kmilb"

oci core vcn.oke ven.id

"control-plane-endpoint"

var.enable private endpoint
var.enable private endpoint==false ?

id : oci core default route table.default private[0].id

4-46

Chapter 4
Creating VCN-Native Pod Networking Resources

oci core default security list.oke vcn.id,
ocl core security list.kmilb.id
]
}

Creating a VCN-Native Pod Networking VCN

Create the following resources in the order listed:
1. VCN
2. Route rules

e Public clusters:

— Internet gateway and a route table with a route rule that references that internet
gateway.

— NAT gateway and a route table with a route rule that references that NAT gateway.
e Private clusters:
— Route table with no route rules.

— (Optional) Dynamic Routing Gateway (DRG), attach the OKE VCN to that DRG,
and create a route table with a route rule that references that DRG. See Private
Clusters.

— (Optional) Local Peering Gateway (LPG) and a route table with a route rule that
references that LPG. See Private Clusters.

3. Security list. Modify the VCN default security list

Resource names and CIDR blocks are example values.

VCN

To create the VCN, use the instructions in Creating a VCN in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for VCN-Native
Pod Networking Resources.

For this example, use the following input to create the VCN. The VCN covers one contiguous
CIDR block. The CIDR block cannot be changed after the VCN is created.

Compute Web Ul property OCI CLI property

* Name: oketest-vcn * --display-name: oketest-vcn

¢ CIDRBlock: ven_cidr * --cidr-blocks:'["ven_cidr"]'
* DNS Label: oketest e ——dns-label: oketest

This label must be unique across all VCNs

: This label must be unique across all VCNs
in the tenancy.

in the tenancy.

Note the OCID of the new VCN. In the examples in this guide, this VCN OCID is
ocidl.vcn.oke _ven id.

Next Steps

* Public internet access. For traffic on a public subnet that connects to the internet using
public IP addresses, create an internet gateway and a route rule that references that
internet gateway.

ORACLE A-47

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-vcn-create

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

« Private internet access. For traffic on a private subnet that needs to connect to the internet
without exposing private IP addresses, create a NAT gateway and a route rule that
references that NAT gateway.

e VCN-only access. To restrict communication to only other resources on the same VCN,
use the default route table, which has no route rules.

* Instances in another VCN. To enable communication between the cluster and an instance
running on a different VCN, create a Local Peering Gateway (LPG) and a route rule that
references that LPG.

e Data center IP address space. To enable communication between the cluster and the on-
premises network IP address space, create a Dynamic Routing Gateway (DRG) and a
route rule that references that DRG.

VCN Private Route Table

Edit the default route table that was created when you created the VCN. Change the name of
the route table to ven_private. This route table does not have any route rules. Do not add any
route rules.

NAT Private Route Table
Create a NAT gateway and a route table with a route rule that references the NAT gateway.
NAT Gateway

To create the NAT gateway, use the instructions in Enabling Public Connections through a NAT
Gateway in the Oracle Private Cloud Appliance User Guide. For Terraform input, see Example
Terraform Scripts for VCN-Native Pod Networking Resources.

Note the name and OCID of the NAT gateway for assignment to the private route rule.
Private Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide. For Terraform input, see Example
Terraform Scripts for Flannel Overlay Network Resources.

For this example, use the following input to create the route table with a private route rule that
references the NAT gateway that was created in the preceding step.

Compute Web Ul property OCI CLI property

* Name: nat_private * --display-name: nat_private
Route rule --route-rules

¢ Target Type: NAT Gateway networkEntityId: OCID of the NAT

* NAT Gateway: Name of the NAT gateway
that was created in the preceding step

* CIDR Block: 0.0.0.0/0
¢ Description: NAT private route rule

gateway that was created in the preceding
step

* destinationType: CIDR BLOCK
* destination:0.0.0.0/0
* description: NAT private route rule

Note the name and OCID of this route table for assignment to private subnets.

Local Peering Gateway

Create a Local Peering gateway (LPG) and a route table with a route rule that references the
LPG.

4-48

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-nat
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-nat
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables

Chapter 4
Creating VCN-Native Pod Networking Resources
Local Peering Gateway

To create the LPG, use the instructions in "Connecting VCNSs through a Local Peering
Gateway" in the Networking chapter of the Oracle Private Cloud Appliance User Guide.

Note the name and OCID of the LPG for assignment to the private route rule.
Private Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide.

For this example, use the following input to create the route table with a private route rule that
references the LPG that was created in the preceding step.

Compute Web Ul property OCI CLI property
¢ Name: Ipg rt * --display-name:lpg rt
Route rule --route-rules

¢ Target Type: Local Peering Gateway

¢ Local Peering Gateway: Name of the LPG
that was created in the preceding step

* CIDRBlock: CIDR for the second VCN
* Description: LPG private route rule

* networkEntityId: OCID of the LPG that
was created in the preceding step
destinationType: CIDR BLOCK

° destination: CIDR for the second VCN
* description: LPG private route rule

Note the name and OCID of this route table for assignment to the "control-plane-endpoint”
subnet (Creating a VCN-Native Pod Networking Control Plane Load Balancer Subnet).

Add the same route rule on the second VCN (the peered VCN), specifying the OKE VCN CIDR
as the destination.

Dynamic Routing Gateway

Create a Dynamic Routing gateway (DRG) and a route table with a route rule that references
the DRG.

Dynamic Routing Gateway

To create the DRG and attach the OKE VCN to that DRG, use the instructions in "Connecting
to the On-Premises Network through a Dynamic Routing Gateway" in the Networking chapter
of the Oracle Private Cloud Appliance User Guide. Create the DRG in the OKE VCN
compartment, and then attach the OKE VCN to that DRG.

Note the name and OCID of the DRG for assignment to the private route rule.
Private Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide.

For this example, use the following input to create the route table with a private route rule that
references the DRG that was created in the preceding step.

ORACLE 449

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-networking.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property OCI CLI property
* Name: drg_rt * --display-name: drg_rt
Route rule --route-rules

* Target Type: Dynamic Routing Gateway ., otyorkEntityId: OCID of the DRG that
* Dynamic Routing: Name of the DRG that
was created in the preceding step

* CIDR Block: 0.0.0.0/0
* Description: DRG private route rule

was created in the preceding step
e destinationType: CIDR BLOCK

* destination:0.0.0.0/0
* description: DRG private route rule

Note the name and OCID of this route table for assignment to the "control-plane-endpoint”
subnet (Creating a VCN-Native Pod Networking Control Plane Load Balancer Subnet).

Public Route Table

Create an Internet gateway and a route table with a route rule that references the Internet
gateway.

Internet Gateway

To create the internet gateway, use the instructions in Providing Public Access through an
Internet Gateway in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for VCN-Native Pod Networking Resources.

Note the name and OCID of the internet gateway for assignment to the public route rule.
Public Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide. For Terraform input, see Example
Terraform Scripts for VCN-Native Pod Networking Resources.

For this example, use the following input to create the route table with a public route rule that
references the internet gateway that was created in the preceding step.

Compute Web Ul property OCI CLI property

¢ Name: public e --vcn-id:ocidl.vcn.oke ven id
Route rule ¢ --display-name: public

e Target Type: Internet Gateway ——route-rules

* Internet Gateway: Name of the internet
gateway that was created in the preceding
step

- CIDR Block: 0.0.0.0/0 step

* Description: OKE public route rule * destinationType: CIDR_BLOCK
* destination:0.0.0.0/0

networkEntityId: OCID of the internet
gateway that was created in the preceding

* description: OKE public route rule

Note the name and OCID of this route table for assignment to public subnets.

VCN Default Security List

Modify the default security list, using the input shown in the following table. Delete all of the
default rules and create the rules shown in the following table.

4-50

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-internet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-internet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables

Chapter 4
Creating VCN-Native Pod Networking Resources

To modify a security list, use the instructions in "Updating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for VCN-Native Pod Networking Resources.

Compute Web Ul property OCI CLI property

* Name: Default Security List for oketest-ven --security-list-id:
ocidl.securitylist.default securitylist

_id
One egress security rule: One egress security rule:
« Stateless: uncheck the box --egress-security-rules
* Egress CIDR: 0.0.0.0/0 « isStateless: false

« IP Protocol: All protocols

- . * destination:0.0.0.0/0
o Description: "Allow all outgoing traffic. Hhat

* destinationType: CIDR BLOCK
* protocol:all

* description: "Allow all outgoing traffic."

Three ingress security rules: Three ingress security rules:

--ingress-security-rules

Ingress Rule 1 Ingress Rule 1
» Stateless: uncheck the box ° isStateless: false
* Ingress CIDR: ven_cidr * source:ven cidr
IP Protocol: ICMP ¢ sourceType: CIDR BLOCK
- Parameter Type: 8: Echo + protocol:l
* Description: "Allow ping from VCN." + icmpOptions
- type:8
* description: "Allow ping from VCN."
Ingress Rule 2 Ingress Rule 2
« Stateless: uncheck the box * isStateless: false
° Ingress CIDR: 00.0.0/0 ° source: 0.0.0. O/O
* [P Protocol: ICMP ¢ sourceType: CIDR BLOCK
— Parameter Type: 3: Destination .
° t 1:1
Unreachable }.aro oco .
* Description: "Blocks incoming requests * lempOptions
from any source." - type:3
* description: "Blocks incoming requests
from any source.”
Ingress Rule 3 Ingress Rule 3
» Stateless: uncheck the box * isStateless: false
¢ Ingress CIDR: 0.0.0.0/0 e source:0.0.0.0/0
» IP Protocol: ICMP R

sourceType: CIDR BLOCK

- Parameter Type: 11: Time Exceeded « protocol: 1

* Description: "Time exceeded.” : .
* 1lcmpOptions

- type:ll
e description: "Time exceeded."

Note the name and OCID of this default security list for assignment to subnets.

ORACLE 41

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Chapter 4
Creating VCN-Native Pod Networking Resources

Creating a VCN-Native Pod Networking Pod Subnet

ORACLE

The instructions in this topic create a pod subnet named "pod" in the VCN that provides the
private IP addresses for pods running on the control plane nodes. The number of IP addresses
in this subnet should be equal to or greater than the number of IP addresses in the control
plane subnet. The pod subnet must be a private subnet.

The pod subnet supports communication between pods and direct access to individual pods
using private pod IP addresses. The pod subnet must be private. The pod subnet enables
pods to communicate with other pods on the same worker node, with pods on other worker
nodes, with OCI services (through a service gateway) and with the internet (through a NAT
gateway).

Create the following resources in the order listed:

1. Pod security list
2. Pod subnet

Create a Pod Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for VCN-Native Pod Networking Resources.

The security rules shown in the following table define traffic that is allowed to contact pods
directly. Use these security rules as part of network security groups (NSGs) or in security lists.
Oracle recommends using NSGs. See Security Best Practices.

The security rules apply to all pods in all the worker nodes connected to the pod subnet
specified for a node pool.

Route incoming requests to pods based on routing policies specified by routing rules and route
tables. See the route tables defined in Creating a VCN-Native Pod Networking VCN.

For this example, use the following input for the pod subnet security list.

Compute Web Ul property

OCI CLI property

¢ Name: pod-seclist

One egress security rule:

» Stateless: uncheck the box

o Egress CIDR: 0.0.0.0/0

* IP Protocol: All protocols

* Description: "Allow all outgoing traffic."

Six ingress security rules:

e --vcn-idiocidl.vcn.oke ven id

* --display-name:pod-seclist

One egress security rule:
--egress-security-rules

* isStateless: false

* destination:0.0.0.0/0

* destinationType: CIDR BLOCK

° protocol:all

e description: "Allow all outgoing traffic."
Six ingress security rules:

--ingress-security-rules

4-52

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 1
» Stateless: uncheck the box
¢ Ingress CIDR: ven_cidr
* IP Protocol: TCP
— Destination Port Range: 22

* Description: "Allow SSH connection to the
pod subnet from all subnets in the VCN."

Ingress Rule 2

e Stateless: uncheck the box

¢ Ingress CIDR: workerlb cidr
« IP Protocol: TCP

- Destination Port Range: 10256

* Description: "Allow the worker load
balancer to contact the pods.”

Ingress Rule 3
» Stateless: uncheck the box
* Ingress CIDR: worker cidr
* IP Protocol: TCP
— Destination Port Range: 10250

* Description: "Allow Kubernetes API
endpoint to pod (via worker node)
communication.”

Ingress Rule 1

Ingress Rule 2

Ingress Rule 3

isStateless: false

source: ven_cidr

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max:22

- min: 22

description: "Allow SSH connection to the
pod subnet from all subnets in the VCN."

isStateless: false
source: workerlb cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10256

- min: 10256

description: "Allow the worker load
balancer to contact the pods."

isStateless: false
source: worker cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10250

- min: 10250

description: "Allow Kubernetes API

endpoint to pod (via worker node)
communication."

4-53

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 4
» Stateless: uncheck the box
¢ Ingress CIDR: worker cidr
* IP Protocol: TCP
— Destination Port Range: 10256
* Description: "Allow Load Balancer or

subnet).”

Ingress Rule 5
» Stateless: uncheck the box
¢ Ingress CIDR: worker cidr
e IP Protocol: TCP
— Destination Port Range: 80

* Description: "Allow the worker node to
contact the pods."

end user application. This rule could be
different based on what applications are
deployed.

Ingress Rule 6

» Stateless: uncheck the box
* Ingress CIDR: pod cidr

« IP Protocol: All protocols

¢ Description: "Allow the pod CIDR to
communicate with itself."

Network Load Balancer to communicate
with the kube-proxy pod (via the worker

This ingress is optional. This port is open for an

Ingress Rule 4

Ingress Rule 5

This ingress is optional. This port is open for an
end user application. This rule could be
different based on what applications are
deployed.

Ingress Rule 6

isStateless: false
source: worker cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10256

- min: 10256

description: "Allow Load Balancer or

Network Load Balancer to communicate
with the kube-proxy pod (via the worker

subnet)."

isStateless: false

source: worker cidr

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max: 80

— min: 80

description: "Allow the worker node to
contact the pods.”

isStateless: false
source: pod_cidr
sourceType: CIDR BLOCK
protocol:all

description: "Allow the pod CIDR to
communicate with itself."

Create the Pod Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for VCN-Native

Pod Networking Resources.

For this example, use the following input to create the pod subnet. Use the OCID of the VCN
that was created in Creating a VCN-Native Pod Networking VCN. Create the pod subnet in the
same compartment where you created the VCN.

4-54

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

@© Important:

Chapter 4
Creating VCN-Native Pod Networking Resources

The name of this subnet must be exactly "pod".

Compute Web Ul property

OCI CLI property

Name: pod

CIDR Block: pod_cidr

Route Table: Select "nat_private" from the
list

Private Subnet: check the box

DNS Hostnames:

Use DNS Hostnames in this Subnet: check
the box

- DNS Label: pod

Security Lists: Select "pod-seclist" and
"Default Security List for oketest-vcn" from
the list

--vcn-id:ocidl.vcn.oke ven id
--display-name: pod

--cidr-block: pod_cidr

--dns-1label: pod
--prohibit-public-ip-on-vnic: true
--route-table-id: OCID of the
"nat_private" route table
--security-list-ids: OCIDs of the "pod-

seclist” security list and the "Default
Security List for oketest-ven" security list

Creating a VCN-Native Pod Networking Worker Subnet

Create the following resources in the order listed:

ORACLE

1.
2.

Worker security list

Worker subnet

Create a Worker Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for VCN-Native Pod Networking Resources.

This security list defines traffic that is allowed to contact worker nodes directly.

For this example, use the following input for the worker subnet security list.

Compute Web Ul property

OCI CLI property

Name: worker-seclist

One egress security rule:

Stateless: uncheck the box

Egress CIDR: 0.0.0.0/0

IP Protocol: All protocols

Description: "Allow all outgoing traffic.

Ten ingress security rules:

One egress security rule:
--egress-security-rules

Ten ingress security rules:

--ingress-security-rules

--vcn-id:ocidl.ven.oke ven id
--display-name: worker-seclist

isStateless: false

destination: 0.0.0.0/0
destinationType: CIDR BLOCK
protocol:all

description: "Allow all outgoing traffic."

4-55

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

ORACLE

Ingress Rule 1
» Stateless: uncheck the box
* Ingress CIDR: kmi_cidr
* IP Protocol: TCP
— Destination Port Range: 22

¢ Description: "Allow SSH connection from
the control plane subnet.”

Ingress Rule 2

* Stateless: uncheck the box
¢ Ingress CIDR: worker cidr
e IP Protocol: TCP

- Destination Port Range: 22

* Description: "Allow SSH connection from
the worker subnet."

Ingress Rule 3
» Stateless: uncheck the box
* Ingress CIDR: worker cidr
» IP Protocol: TCP
— Destination Port Range: 10250
* Description: "Allow Kubernetes API

endpoint to worker node communication."

Ingress Rule 4
« Stateless: uncheck the box
¢ Ingress CIDR: worker cidr
* IP Protocol: TCP
— Destination Port Range: 10256
* Description: "Allow Load Balancer or

Network Load Balancer to communicate
with kube-proxy on worker nodes."

Ingress Rule 1

Ingress Rule 2

Ingress Rule 3

Ingress Rule 4

isStateless: false

source: kmi_cidr

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max:22

- min: 22

description: "Allow SSH connection from
the control plane subnet."

isStateless: false

source: worker cidr

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max: 22

- min: 22

description: "Allow SSH connection from
the worker subnet."

isStateless: false
source: worker cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10250

- min: 10250

description: "Allow Kubernetes API
endpoint to worker node communication.”

isStateless: false
source: worker cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10256

— min: 10256

description: "Allow Load Balancer or

Network Load Balancer to communicate
with kube-proxy on worker nodes."

4-56

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 5
» Stateless: uncheck the box
¢ Ingress CIDR: worker cidr
* IP Protocol: TCP
— Destination Port Range: 30000-32767

* Description: "Allow traffic to worker
nodes."

Ingress Rule 6

¢ Stateless: uncheck the box

¢ Ingress CIDR: workerlb cidr
e IP Protocol: TCP

- Destination Port Range: 10256

* Description: "Allow Load Balancer or
Network Load Balancer to communicate
with kube-proxy on worker nodes."

Ingress Rule 7
« Stateless: uncheck the box
e Ingress CIDR: workerlb cidr

* IP Protocol: TCP

— Destination Port Range: 30000-32767
¢ Description: "Allow worker nodes to

receive connections through Network Load

Balancer."

Ingress Rule 5

Ingress Rule 6

Ingress Rule 7

isStateless: false
source: worker _cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 32767

— min: 30000

description: "Allow traffic to worker
nodes."

isStateless: false
source: workerlb cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10256

- min: 10256

description: "Allow Load Balancer or

Network Load Balancer to communicate
with kube-proxy on worker nodes."

isStateless: false
source: workerlb cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 32767

- min: 30000

description: "Allow worker nodes to

receive connections through Network Load
Balancer.”

4-57

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 8
» Stateless: uncheck the box
* Ingress CIDR: kmi_cidr
* IP Protocol: TCP
— Destination Port Range: 10250
e Description: "Allow Kubernetes API

Ingress Rule 9

e Stateless: uncheck the box
* Ingress CIDR: kmi_cidr

e IP Protocol: TCP

- Destination Port Range: 10256

* Description: "Allow Load Balancer or
Network Load Balancer to communicate
with kube-proxy on worker nodes."

Ingress Rule 10
« Stateless: uncheck the box
* Ingress CIDR: pod cidr
* IP Protocol: TCP
— Destination Port Range: 30000-32767

* Description: "Allow worker nodes to
receive connections through the pod
subnet.”

endpoint to worker node communication."

Ingress Rule 8

Ingress Rule9

Ingress Rule 10

isStateless: false
source: kmi_cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10250

- min: 10250

description: "Allow Kubernetes API
endpoint to worker node communication."

isStateless: false
source: kmi_cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10256

- min: 10256

description: "Allow Load Balancer or

Network Load Balancer to communicate
with kube-proxy on worker nodes."

isStateless: false
source: pod_cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 32767

— min: 30000

description: "Allow worker nodes to

receive connections through the pod
subnet."

Create the Worker Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for VCN-Native

Pod Networking Resources.

For this example, use the following input to create the worker subnet. Use the OCID of the
VCN that was created in Creating a VCN-Native Pod Networking VCN. Create the worker
subnet in the same compartment where you created the VCN.

Create either a NAT private worker subnet or a VCN private worker subnet. Create a NAT
private worker subnet to communicate outside the VCN.

4-58

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

Chapter 4
Creating VCN-Native Pod Networking Resources

Table 4-13 Create a NAT Private Worker Subnet

Compute Web Ul property OCI CLI property
* Name: worker e --vcn-idiocidl.vcn.oke ven id
° CIDR Block: Worker_cidr . ——display—name: worker
* Route Table: Select "nat_private" fromthe « __cidr-block: worker cidr
list . -
* --dns-label:worker

* Private Subnet: check the box " o .
. DNS Hostnames: * --prohibit-public-ip-on-vnic: true

Use DNS Hostnames in this Subnet: check - OUt_e_table_id: OCID of the
the box "nat_private" route table
— DNS Label: worker * --security-list-ids: OCIDs of the

« Security Lists: Select "worker-seclist" and "worker-seclist” security list and the

"Default Security List for oketest-ven" from "Default Security List for oketest-ven”
the list security list

The difference in the following private subnet is the VCN private route table is used instead of
the NAT private route table.

Table 4-14 Create a VCN Private Worker Subnet
-~]

Compute Web Ul property OCI CLI property
¢ Name: worker * --vcn-idiocidl.ven.oke ven id
° CIDR BlOCk: WOrker_Cidr ° ——display—name: worker
* Route Table: Select "vcn_private" fromthe « __cidr-block: worker cidr
list : B
. --dns-label: worker

* Private Subnet: check the box . . .
< DNS Hostnames: * --prohibit-public-ip-on-vnic: true

Use DNS Hostnames in this Subnet: check - OUte.'table'id: OCID of the
the box "ven_private” route table
_ DNS Label: worker e --security-list-ids: OCIDs of the

e Security Lists: Select "worker-seclist” and "worker-seclist” security list and the

"Default Security List for oketest-ven” from "Default Security List for oketest-ven”
the list security list

Creating a VCN-Native Pod Networking Worker Load Balancer Subnet

ORACLE

Create the following resources in the order listed:
1. Worker load balancer security list

2. Worker load balancer subnet

Create a Worker Load Balancer Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for VCN-Native Pod Networking Resources.

This security list defines traffic, such as applications, that is allowed to contact the worker load
balancer.

For this example, use the following input for the worker load balancer subnet security list.
These sources and destinations are examples; adjust these for your applications.

4-59

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

ORACLE

Note:

front-end port to this security list.

Chapter 4
Creating VCN-Native Pod Networking Resources

When you create an external load balancer for your containerized applications (see
Exposing Containerized Applications), remember to add that load balancer service

Compute Web Ul property

OCI CLI property

* Name: workerlb-seclist

One egress security rule:

o Stateless: uncheck the box

¢ Egress CIDR: 0.0.0.0/0

* IP Protocol: All protocols

* Description: "Allow all outgoing traffic."

Two ingress security rules:

Ingress Rule 1
» Stateless: uncheck the box
* Ingress CIDR: kube_client cidr
* IP Protocol: TCP
— Destination Port Range: 80

* Description: "Allow inbound traffic for
applications."

Ingress Rule 2
* Stateless: uncheck the box
¢ Ingress CIDR: kube_client cidr
* IP Protocol: TCP
— Destination Port Range: 443

¢ Description: "Allow inbound traffic for
applications.”

One egress security rule:
-—egress-security-rules

Two ingress security rules:

--ingress-security-rules

Ingress Rule 1

Ingress Rule 2

--vcn-id:ocidl.vcn.oke ven id
--display-name: workerlb-seclist

isStateless: false

destination: 0.0.0.0/0
destinationType: CIDR BLOCK
protocol:all

description: "Allow all outgoing traffic."

isStateless: false

source: kube_client cidr
sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max: 80

— min: 80

description: "Allow inbound traffic for
applications.”

isStateless: false

source: kube_client cidr
sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max: 443

— min: 443

description: "Allow inbound traffic for
applications.”

Create the Worker Load Balancer Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for VCN-Native

Pod Networking Resources.

4-60

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

Chapter 4
Creating VCN-Native Pod Networking Resources

For this example, use the following input to create the worker load balancer subnet. Use the
OCID of the VCN that was created in Creating a VCN-Native Pod Networking VCN. Create the
worker load balancer subnet in the same compartment where you created the VCN.

Create either a private or a public worker load balancer subnet. Create a public worker load
balancer subnet to use with a public cluster. Create a private worker load balancer subnet to
expose applications in a private cluster.

Table 4-15 Create a Public Worker Load Balancer Subnet
|

Compute Web Ul property OCI CLI property

* Name: service-1b e --vcn-id:ocidl.ven.oke ven id

¢ CIDR Block: workerlb cidr « --display-name: service-1b

* Route Table: Select "public” from the list o ——cidr-block: workerlb cidr

e Public Subnet: check the box + ——dns-label: servicelb

* DNS Hostnames: * --prohibit-public-ip-on-vnic: false

Use DNS Hostnames in this Subnet: check
the box

— DNS Label: servicelb

* Security Lists: Select "workerlb-seclist" and * --security-list-ids: OCIDs of the

"Default Security List for oketest-vcn" from ::workerlb—secl}st" s_ecurlty list and th"e
the list Default Security List for oketest-vcn

security list

--route-table-id: OCID of the "public"
route table

The difference in the following private subnet is the VCN private route table is used instead of
the public route table.

Table 4-16 Create a VCN Private Worker Load Balancer Subnet
- |

Compute Web Ul property OCI CLI property
* Name: service-lb * --vcn-id:ocidl.ven.oke ven id
° CIDR Block: Workerlb_cidr . ——display—name: service-1b
* Route Table: Select "vcn_private” fromthe « -_cidr-block: workerlb cidr
list) . -
* --dns-label:servicelb

* Private Subnet: check the box - o .
. DNS Hostnames: * --prohibit-public-ip-on-vnic: true

Use DNS Hostnames in this Subnet: check "IOUte._table_ld: OCID of the
the box "ven_private” route table

_ DNS Label, SeI'Vlcelb ° ——SeCurity—liSt—idSZ OCIDS Ofthe

* Security Lists: Select "workerlb-seclist" and "workerlb-seclist” security list and the

"Default Security List for oketest-ven" from "Default Security List for oketest-ven”
the list security list

Creating a VCN-Native Pod Networking Control Plane Subnet

Create the following resources in the order listed:

1. Control plane security list

2. Control plane subnet

ORACLE 46l

Chapter 4
Creating VCN-Native Pod Networking Resources

Create a Control Plane Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for VCN-Native Pod Networking Resources.

For this example, use the following input for the control plane subnet security list. The
kubernetes api port is the port used to access the Kubernetes API: port 6443. See also
Workload Cluster Network Ports for VCN-Native Pod Networking.

Compute Web Ul property OCI CLI property

* Name: kmi-seclist e --vcn-idiocidl.vcn.oke ven id
e --display-name: kmi-seclist

One egress security rule: One egress security rule:

« Stateless: uncheck the box --egress-security-rules

* Egress CIDR: 0.0.0.0/0 « isStateless: false

* IP Protocol: All protocols

s . * destination:0.0.0.0/0
* Description: "Allow all outgoing traffic." Het

* destinationType:CIDR BLOCK

* protocol:all

* description: "Allow all outgoing traffic."
Twelve ingress security rules: Twelve ingress security rules:

--ingress-security-rules

Ingress Rule 1 Ingress Rule 1
« Stateless: uncheck the box * 1sStateless:false
* Ingress CIDR: kube client cidr * source: kube_client cidr
e IP Protocol: TCP * sourceType: CIDR BLOCK
- Destination Port Range: * protocol:6
kubernetes_api port ¢ tcpOptions
’ ?ﬁ;ﬁ%ﬁ%ggl;?iomggems to communicate destinationPortRange
- max: kubernetes api port
— min: kubernetes api port
¢ description: "Allow clients to
communicate with Kubernetes APL."
Ingress Rule 2 Ingress Rule 2
« Stateless: uncheck the box * isStateless: false
e Ingress CIDR: kmilb cidr o source: kmilb cidr
+ IP Protocol: TCP + sourceType: CIDR BLOCK
— Destination Port Range: « protocol:6

kubernetes api port

* Description: "Allow the load balancer to))
communicate with Kubernetes control destinationPortRange

plane APIs." - max: kubernetes_api port

°* tcpOptions

- min: kubernetes api port
* description: "Allow the load balancer to

communicate with Kubernetes control
plane APIs."

ORACLE 6o

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 3

Stateless: uncheck the box
Ingress CIDR: kmilb cidr

IP Protocol: TCP
- Destination Port Range: 12250

Description: "Allow Kubernetes worker to
Kubernetes API endpoint communication
via the control plane load balancer."

Ingress Rule 4

Stateless: uncheck the box
Ingress CIDR: worker cidr
IP Protocol: TCP

- Destination Port Range:
kubernetes api port

Description: "Allow worker nodes to access
the Kubernetes APL"

Ingress Rule 5

Stateless: uncheck the box
Ingress CIDR: worker cidr

IP Protocol: TCP
— Destination Port Range: 12250

Description: "Allow Kubernetes worker to
Kubernetes API endpoint communication.”

Ingress Rule 6

Stateless: uncheck the box
Ingress CIDR: kmi_cidr
IP Protocol: TCP

- Destination Port Range:
kubernetes api port

Description: "Allow the control plane to
reach itself."

Ingress Rule 3

Ingress Rule 4

Ingress Rule 5

Ingress Rule 6

isStateless: false
source: kmilb cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 12250

- min: 12250

description: "Allow Kubernetes worker to

Kubernetes API endpoint communication
via the control plane load balancer.”

isStateless: false

source: worker cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange

- max: kubernetes api port
- min: kubernetes api port

description: "Allow worker nodes to
access the Kubernetes APL"

isStateless: false
source: worker cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
— max: 12250

— min: 12250

description: "Allow Kubernetes worker to
Kubernetes API endpoint communication."

isStateless: false

source: kmi_cidr

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max: kubernetes api port

- min: kubernetes _api port
description: "Allow the control plane to
reach itself."

4-63

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 7
* Stateless: uncheck the box

* Ingress CIDR: kmi_cidr
» IP Protocol: TCP

- Destination Port Range: 2379-2381
* Description: "Allow the control plane to

reach etcd services and metrics. Ports 2379

and 2380 are used by Kubernetes to
communicate with the etcd server. Port

2381 is used by Kubernetes to collect
metrics from etcd.”

Ingress Rule 8
» Stateless: uncheck the box

* Ingress CIDR: kmi_cidr
* IP Protocol: TCP
— Destination Port Range: 8044-8045

* Description: "Allow the control plane to
reach etcd service discovery.”

Ingress Rule 9
« Stateless: uncheck the box

* Ingress CIDR: kmi_cidr
* IP Protocol: TCP

— Destination Port Range: 10250

¢ Description: "Allow Kubernetes API
endpoint to control plane node
communication."

Ingress Rule 7

Ingress Rule 8

Ingress Rule 9

isStateless: false

source: kmi_cidr

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max: 2381

- min: 2379

description: "Allow the control plane to

reach etcd services and metrics. Ports 2379

and 2380 are used by Kubernetes to
communicate with the etcd server. Port

2381 is used by Kubernetes to collect
metrics from etcd.”

isStateless: false

source: kmi_cidr

sourceType: CIDR BLOCK

protocol: 6

tcpOptions

destinationPortRange

- max: 8045

— min: 8044

description: "Allow the control plane to
reach etcd service discovery."

isStateless: false
source: kmi_cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10250

— min: 10250

description: "Allow Kubernetes API

endpoint to control plane node
communication.”

4-64

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 10

» Stateless: uncheck the box .
* Ingress CIDR: kmi_cidr .
e IP Protocol: TCP .

Ingress Rule 11

with Kubernetes APIs."
- max: kubernetes api port
- min: kubernetes api port
* description: "Allow pods to communicate
with Kubernetes APIs."
Ingress Rule 12 Ingress Rule 12
» Stateless: uncheck the box * isStateless: false
¢ Ingress CIDR: pod cidr + source: pod_cidr
+ IP Protocol: TCP ¢ sourceType: CIDR BLOCK
- Destination Port Range: 12250 « protocol:6
Kuberhetes API endpoint communieation.” * “°POPEione
destinationPortRange
- max: 12250
- min: 12250

— Destination Port Range: 10257-10260 .

Description: "Allow inbound connection for
Kubernetes components.”

Stateless: uncheck the box .
Ingress CIDR: pod_cidr .
IP Protocol: TCP .
- Destination Port Range: .

kubernetes api port
Description: "Allow pods to communicate

Ingress Rule 10

Ingress Rule 11

isStateless: false
source: kmi_cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange
- max: 10260

- min: 10257

description: "Allow inbound connection
for Kubernetes components.”

isStateless: false
source: pod_cidr
sourceType: CIDR BLOCK
protocol: 6

tcpOptions

destinationPortRange

description: "Allow Kubernetes pods to
Kubernetes API endpoint communication."

Create the Control Plane Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for VCN-Native
Pod Networking Resources.

Use the following input to create the control plane subnet. Use the OCID of the VCN that was
created in Creating a VCN-Native Pod Networking VCN. Create the control plane subnet in the
same compartment where you created the VCN.

Create either a NAT private control plane subnet or a VCN private control plane subnet. Create
a NAT private control plane subnet to communicate outside the VCN.

4-65

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

Chapter 4
Creating VCN-Native Pod Networking Resources

@© Important:

The name of this subnet must be exactly "control-plane".

Table 4-17 Create a Data Center Private Control Plane Subnet

Compute Web Ul property OCI CLI property
¢ Name: control-plane e --vcn-idiocidl.vcn.oke ven id
¢ CIDRBlock: kmi_cidr ¢ --display-name: control-plane
* Route Table: Select "nat_private" fromthe « __cidr-block: kmi cidr
list .
* --dns-label: kmi

* Private Subnet: check the box . . .
< DNS Hostnames: e --prohibit-public-ip-on-vnic: true

Use DNS Hostnames in this Subnet: check T OUt.e'table'ld: OCID of the
the box "nat_private" route table

_ DNS Label: kmi * --security-list-ids: OCIDs of the "kmi-

seclist” security list and the "Default

e Security Lists: Select "kmi-seclist” and . . N s
Security List for oketest-ven" security list

"Default Security List for oketest-vcn" from
the list

The difference in the following private subnet is the VCN private route table is used instead of
the NAT private route table.

Table 4-18 Create a VCN Private Control Plane Subnet
- |

Compute Web Ul property OCI CLI property
* Name: control-plane * --vcn-id:ocidl.ven.oke ven id
¢ CIDRBlock: kmi_cidr e --display-name: control-plane
* Route Table: Select "vcn_private” fromthe o« __cidr-block: kmi cidr
list R
* --dns-label: kmi

* Private Subnet: check the box o . .
. DNS Hostnames: * --prohibit-public-ip-on-vnic: true

Use DNS Hostnames in this Subnet: check Tt OUte__table_ld: OCID of the
the box "ven_private" route table

_ DNS Label: kmi * --security-list-ids: OCIDs of the "kmi-

seclist” security list and the "Default

» Security Lists: Select "kmi-seclist" and . oo Y -
Security List for oketest-ven" security list

"Default Security List for oketest-ven" from
the list

Creating a VCN-Native Pod Networking Control Plane Load Balancer
Subnet

Create the following resources in the order listed:

1. Control plane load balancer security list

2. Control plane load balancer subnet

ORACLE 466

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Create a Control Plane Load Balancer Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for VCN-Native Pod Networking Resources.

The control plane load balancer accepts traffic on port 6443, which is also called
kubernetes_api_port in this guide. Adjust this security list to only accept connections from
where you expect the network to run. Port 6443 must accept connections from the cluster

control plane instances and worker instances.

For this example, use the following input for the control plane load balancer subnet security list.

Compute Web Ul property

OCI CLI property

* Name: kmilb-seclist

One egress security rule:

« Stateless: uncheck the box

* Egress CIDR: 0.0.0.0/0

* IP Protocol: All protocols

* Description: "Allow all outgoing traffic.

Six ingress security rules:

Ingress Rule 1:

» Stateless: uncheck the box
* Ingress CIDR: 253.255.0.0/16

CIDR value.
e IP Protocol: TCP

— Destination Port Range:
kubernetes_api port

to communicate with Kubernetes APIs."

This value is required. Do not change this

e Description: "Allow a Kubernetes container

One egress security rule:

--egress-security-rules

Six ingress security rules:

--ingress-security-rules

Ingress Rule 1:

--vcn-idiocidl.ven.oke ven id
--display-name: kmilb-seclist

isStateless: false
destination:0.0.0.0/0
destinationType: CIDR BLOCK
protocol:all

description: "Allow all outgoing traffic.”

isStateless: false
source: 253.255.0.0/16

This value is required. Do not change this
CIDR value.

sourceType: CIDR BLOCK
protocol: 6

tcpOptions
destinationPortRange

— max: kubernetes _api port

— min: kubernetes _api port
description: "Allow a Kubernetes

container to communicate with Kubernetes
APIs."

4-67

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property

OCI CLI property

Ingress Rule 2:

Stateless: uncheck the box
Ingress CIDR: kube _client cidr
IP Protocol: TCP

- Destination Port Range:
kubernetes api port

Description: "Allow clients to connect with
the Kubernetes cluster.”

Ingress Rule 3:

Stateless: uncheck the box
Ingress CIDR: kmi_cidr

IP Protocol: TCP

- Destination Port Range:
kubernetes api port

Description: "Allow the control plane to
reach itself via the load balancer."

Ingress Rule 4:

Stateless: uncheck the box

Ingress CIDR: worker cidr

IP Protocol: TCP

— Destination Port Range:
kubernetes_api port

Description: "Allow worker nodes to
connect with the cluster via the control
plane load balancer."

Ingress Rule 2:

* 1isStateless: false

* source: kube _client cidr

. sourceType: CIDR BLOCK

° protocol:6

°* tcpOptions
destinationPortRange
- max: kubernetes api port
- min: kubernetes api port

* description: "Allow clients to connect
with the Kubernetes cluster.”

Ingress Rule 3:

° isStateless: false

* source: kmi_cidr

* sourceType: CIDR BLOCK

°* protocol:6

°* tcpOptions
destinationPortRange
— max: kubernetes api port
— min: kubernetes api port

* description: "Allow the control plane to
reach itself via the load balancer."

Ingress Rule 4:

° isStateless: false

* source: worker cidr

. sourceType: CIDR BLOCK

°* protocol:6

°* tcpOptions
destinationPortRange
— max: kubernetes _api port
— min: kubernetes_api port

* description: "Allow worker nodes to

connect with the cluster via the control
plane load balancer.”

4-68

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Compute Web Ul property OCI CLI property

Ingress Rule 5: Ingress Rule 5:

» Stateless: uncheck the box * isStateless: false

¢ Ingress CIDR: worker cidr o source: worker cidr

« IP Protocol: TCP e sourceType: CIBR_BLOCK
- Destination Port Range: 12250 « protocol:6

¢ Description: "Allow Kubernetes workerto « tcpoptions
Kubernetes API endpoint communication

via the load balancer." destinationPortRange

— max: 12250
- min: 12250

* description: "Allow Kubernetes worker to

Kubernetes API endpoint communication
via the load balancer."

Ingress Rule 6: Ingress Rule 6:

» Stateless: uncheck the box * isStateless: false

* Ingress CIDR: pod cidr * source: pod cidr

¢ IP Protocol: TCP ¢ sourceType: CIDR BLOCK
— Destination Port Range: 12250 « protocol:6

» Description: "Allow Kubernetes pods to * tcpOptions

Kubernetes API endpoint communication

via the load balancer." destinationPortRange

- max: 12250
- min: 12250

* description: "Allow Kubernetes pods to

Kubernetes API endpoint communication
via the load balancer.”

Create the Control Plane Load Balancer Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for VCN-Native
Pod Networking Resources.

For this example, use the following input to create the control plane load balancer subnet. Use
the OCID of the VCN that was created in Creating a VCN-Native Pod Networking VCN. Create
the control plane load balancer subnet in the same compartment where you created the VCN.

Create either a private or a public control plane load balancer subnet. Create a public control
plane load balancer subnet to use with a public cluster. Create a private control plane load
balancer subnet to use with a private cluster.

See Private Clusters for information about using Local Peering Gateways to connect a private
cluster to other instances on the Private Cloud Appliance and using Dynamic Routing
Gateways to connect a private cluster to the on-premises IP address space. To create a private
control plane load balancer subnet, specify one of the following route tables (see Creating a
Flannel Overlay VCN):

e vcn_private

* lIpg_rt
e drg_rt

4-69

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

ORACLE

Chapter 4
Creating VCN-Native Pod Networking Resources

Table 4-19 Create a Public Control Plane Load Balancer Subnet

Compute Web Ul property

OCI CLI property

Name: control-plane-endpoint

CIDR Block: kmilb cidr

Route Table: Select "public” from the list
Public Subnet: check the box

DNS Hostnames:

Use DNS Hostnames in this Subnet: check
the box

— DNS Label: kmilb

Security Lists: Select "kmilb-seclist" and
"Default Security List for oketest-vcn" from
the list

--vcn-id:ocidl.ven.oke ven id
--display-name: control-plane-
endpoint

--cidr-block: kmilb cidr
--dns-label: kmilb
--prohibit-public-ip-on-vnic: false
--route-table-id: OCID of the "public"
route table

--security-list-ids: OCIDs of the

"kmilb-seclist" security list and the "Default
Security List for oketest-ven" security list

The difference in the following private subnet is the VCN private route table is used instead of
the public route table. Depending on your needs, you could specify the LPG route table or the
DRG route table instead.

Table 4-20 Create a Private Control Plane Load Balancer Subnet

Compute Web Ul property

OCI CLI property

Name: control-plane-endpoint

CIDR Block: kmilb cidr

Route Table: Select "ven_private” from the
list

Private Subnet: check the box

DNS Hostnames:

Use DNS Hostnames in this Subnet: check
the box

— DNS Label: kmilb

Security Lists: Select "kmilb-seclist" and
"Default Security List for oketest-vcn" from
the list

--vcn-id:ocidl.vcn.oke _ven id
--display-name: control-plane-
endpoint

--cidr-block: kmilb cidr
--dns-label: kmilb
--prohibit-public-ip-on-vnic: true
--route-table-id: OCID of the
"ven_private" route table
--security-list-ids: OCIDs of the

"kmilb-seclist" security list and the "Default
Security List for oketest-ven” security list

4-70

Creating and Managing OKE Clusters

This chapter describes how to create, update, and delete an OKE cluster. Be sure to carefully
read the descriptions of the cluster parameters before you create the cluster.

You can create either a public cluster or a private cluster. See Public and Private Clusters for
the resources required for each.

Note:

You cannot create both public and private clusters in one VCN.

A cluster includes cluster management nodes. This chapter describes how to recognize those
management nodes in a list of instances.

This chapter also describes how to create a Kubernetes configuration file. You need a
Kubernetes configuration file for each OKE cluster that you work with. The Kubernetes
configuration file enables you to access OKE clusters using the kubectl command and the
Kubernetes Dashboard.

Creating an OKE Cluster

ORACLE

These procedures describe how to create an OKE cluster.

If you create a public cluster, the Network Load Balancer and public IP address are created
and assigned as part of cluster creation.

@ mportant:
Before you can create a cluster, the following conditions must be met:

e The OraclePCA-OKE.cluster_id defined tag must exist in the tenancy. See
Creating the OraclePCA-OKE.cluster_id Tag.

e All fault domains must be healthy.
» Each fault domain must have at least one healthy compute instance.
« Sufficient resources must be available to create a cluster.

» Ensure that no appliance upgrade is scheduled during the cluster create.

If notifications are configured for operations such as system upgrade, ensure you are on the
list to be natified of such planned outages.

To create a node pool at the same time that you create the cluster, you must use the Compute
Web UL.

5-1

Chapter 5
Creating an OKE Cluster

To specify tags to be applied to all load balancers created by Kubernetes services, you must
use the OCI CLI.

After you create a cluster, see the Cluster Next Steps section.

Using the Compute Web Ul

1. On the dashboard, select Containers / View Kubernetes Clusters (OKE).

2. Onthe clusters list page, select the Create Cluster button.

3. On the Cluster page in the Create Cluster dialog, provide the following information:
e Name: The name of the new cluster. Avoid entering confidential information.
e Compartment: The compartment in which to create the new cluster.

« Kubernetes Version: The version of Kubernetes to run on the control plane nodes.
Accept the default version or select a different version.

If the Kubernetes version that you want to use is not listed, use the OCI CLI or the OCI
API to create the cluster and specify the Kubernetes version.

e Tagging: Add defined or free-form tags for the cluster resource.

< Note:

Do not specify values for the OraclePCA-OKE.cluster_id defined tag or for
the ClusterResourceldentifier free-form tag. These tag values are system-
generated and only applied to nodes (instances), not to the cluster resource.

Use OraclePCA defined tags to provide the following information for control plane
nodes. If these tags are not listed in the Compute Web Ul Tagging menus, you must
create them. See Creating OraclePCA Tags.

@ Important:

If you are using Private Cloud Appliance Release 3.0.2-b1081557, these
defined tags are not recognized. You must use free-form tags to specify
these values as described in the workaround in Create Cluster Does Not
Support Extension Parameters. In Private Cloud Appliance Release 3.0.2-
b1185392 and later, the free-form tags are deprecated; use the defined tags
described below for SSH key, number of control plane nodes, node shape,
and node configuration in Private Cloud Appliance Release 3.0.2-b1185392
and later.

¢ Note:

None of these values - SSH key, number of nodes, node shape, or node
shape configuration - can be set or changed after the cluster is created. If
you set these tags when you update the cluster, the new values are ignored.

— Your public SSH key.

ORACLE -

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/relnotes/relnotes-known-issues-containerengine.html#ki-containerengine-36979754
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/relnotes/relnotes-known-issues-containerengine.html#ki-containerengine-36979754

ORACLE

Chapter 5
Creating an OKE Cluster

Specify sshkey for the tag key (OraclePCA.sshkey). Paste your public SSH key
into the Value field.

@ Important:

You cannot add an SSH key after the cluster is created.

Number of nodes.

By default, the number of nodes in the control plane is 3. You can specify 1, 3, or 5
nodes. To specify the number of control plane nodes, specify cpNodeCount for the
tag key (OraclePCA.cpNodeCount), and select 1, 3, or 5 in the Value field.

Node shape.

For Private Cloud Appliance X10 systems, the shape of the control plane nodes is
VM.PCAStandard.E5.Flex and you cannot change it. For all other Private Cloud
Appliance systems, the default shape is VM.PCAStandard1.1, and you can specify
a different shape.

To use a different shape, specify cpNodeShape for the tag key
(OraclePCA.cpNodeShape), and enter the name of the shape in the Value field.
For a description of each shape, see Compute Shapes in the Oracle Private Cloud
Appliance Concepts Guide.

Node shape configuration.

If you specify a shape that is not a flexible shape, do not specify a shape
configuration. The number of OCPUs and amount of memory are set to the values
shown for this shape in "Standard Shapes" in Compute Shapes in the Oracle
Private Cloud Appliance Concepts Guide.

If you specify a flexible shape, you can change the default shape configuration.

To provide shape configuration information, specify cpNodeShapeConfig for the
tag key (OraclePCA.cpNodeShapeConfig). You must specify the number of
OCPUs (ocpus) you want. You can optionally specify the total amount of memory
you want (memoryInGBs). The default value for gigabytes of memory is 16 times the
number you specify for OCPUSs.

Note:

If the cluster will have 1-10 worker nodes, specify at least 16 GB
memory. If the cluster will have 11-128 worker nodes, specify at least 2
OCPUs and 32 GB memory. Note that you cannot change the number of
OCPUs or amount of memory when you update the cluster.

In the Value field for the tag, enter the node shape configuration value as shown in
the following examples.

In the following example, the default amount of memory will be configured:

{"ocpus":1}

In the following example, the amount of memory is specified:

{"ocpus":2, "memoryInGBs":48}

5-3

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes

ORACLE

Chapter 5
Creating an OKE Cluster

Note:

If you use Terraform to specify a complex value (a value that is a key/
value pair), then you must escape the double quotation marks in the
value as shown in the following example:

"OraclePCA.cpNodeShapeConfig"="{\"ocpus\":2, \"memoryInGBs\":48}"

Add-ons: This section shows a tile for each add-on that is available for this cluster. In
the Create Cluster dialog, all add-ons are Disabled. See Installing the WebLogic
Kubernetes Operator Add-on.

4, Select Next.

5. On the Network page in the Create Cluster dialog, provide the following information:

Network Type. Specifies how pods running on nodes in the cluster communicate with
each other, with the cluster's control plane nodes, with pods on other clusters, with
other services (such as storage services), and with the internet.

The Flannel Overlay network type encapsulates communication between pods in the
Flannel Overlay network. The Flannel Overlay network is a simple private overlay
virtual network that satisfies the requirements of the OKE networking model by
attaching IP addresses to containers. The pods in the private overlay network are only
accessible from other pods in the same cluster. For more description, see Creating
Flannel Overlay Network Resources.

VCN-Native Pod Networking connects nodes in a Kubernetes cluster to pod subnets
in the OKE VCN. As a result, pod IP addresses within the OKE VCN are directly
routable from other VCNSs that are connected (peered) to the OKE VCN, and from on-
premises networks. For more description, see Creating VCN-Native Pod Networking
Resources.

Note:

If you specify VCN-Native Pod Networking, then the VCN you specify must
have a subnet named "pod". See Creating VCN-Native Pod Networking
Resources.

VCN. Select the VCN that has the configuration of the "oke_vcn" VCN described in
Creating a Flannel Overlay VCN or Creating a VCN-Native Pod Networking VCN.

Kubernetes Service LB Subnet. The subnet that is configured to host the load
balancer in an OKE cluster. To create a public cluster, create and specify here the
public version of the "service-lb" subnet described in Creating a Flannel Overlay
Worker Load Balancer Subnet or Creating a VCN-Native Pod Networking Worker Load
Balancer Subnet. To create a private cluster, create and specify here the private
version of the "service-Ib" subnet.

Kubernetes APl Endpoint Subnet. The regional subnet in which to place the cluster
endpoint. To create a public cluster, create and specify here the public version of the
"control-plane-endpoint" subnet described in Creating a Flannel Overlay Control Plane
Load Balancer Subnet or Creating a VCN-Native Pod Networking Control Plane Load
Balancer Subnet. To create a private cluster, create and specify here the private
version of the "control-plane-endpoint" subnet.

Kubernetes Service CIDR Block. (Optional) The default value is 10.96.0.0/16.

5-4

ORACLE

6.

Chapter 5
Creating an OKE Cluster

* Pods CIDR Block. (Optional) The default value is 10.244.0.0/16.

* Network Security Group. If you check the box to enable network security groups,
select the Add Network Security Group button and select an NSG from the drop-down
list. You might need to change the compartment to find the NSG you want.

Select Next.

On the Node Pool page, select the Add Node Pool button to optionally add a node pool as
part of creating this cluster. See Creating an OKE Worker Node Pool to add node pools
after the cluster is created.

If you select the Add Node Pool button, enter the following information in the Add Node
Pool section:

* Name: The name of the new node pool. Avoid using confidential information.
e Compartment: The compartment in which to create the new node pool.

* Node Count: Enter the number of nodes you want in this node pool. The default is 0.
The maximum number is 128 per cluster, which can be distributed across multiple
node pools.

* See Creating an OKE Worker Node Pool for information about Network Security
Groups, Placement Configuration, Source Image, Shape, and Pod Communication.

Review your entries.

If you created a node pool, you have the opportunity to edit or delete the node pool in this
review.

Select Submit.

The details page for the cluster is displayed. Scroll to the Resources section and select
Work Requests to see the progress of the cluster creation. If you created a node pool, the
NODEPOOL_CREATE work request might still be In Progress for a time after the cluster is
Active and the CLUSTER_CREATE work request is Succeeded.

The cluster details page does not list OraclePCA tags on the Tags tab (and you cannot
filter a list of clusters by the values of OraclePCA tags). To review the settings of the
OraclePCA tags, use the CLI.

The cluster details page does not list the cluster control plane nodes. To view the control
plane nodes, view the list of instances in the compartment where you created this cluster.
Names of control plane nodes are in the following format:

oke-IDl-control-plane-ID2

* IDI- The first 32 characters after the pca_name in the cluster OCID.
e ID2- A unique identifier added when the cluster has more than one control plane node.

Search for the instances in the list whose names contain the 1D1 string from this cluster
OCID.

Using the OCI CLI

To install a cluster add-on, use the cluster install-addon command after you have created
the cluster. See Installing the WebLogic Kubernetes Operator Add-on.

1.

Get the information you need to run the command.

e The OCID of the compartment where you want to create the cluster: oci iam
compartment list

e The name of the cluster. Avoid using confidential information.

5-5

Chapter 5
Creating an OKE Cluster

e The Kubernetes version that you want to use. Use the following command to show a
list of available Kubernetes versions:

oci ce cluster-options get --cluster-option-id all

You might be able to list more Kubernetes versions by using the compute image list
command and looking in the display name. In the following example, the Kubernetes
version in the image is 1.29.9:

"display-name": "uln-pca-Oracle-Linux8-0KE-1.29.9-20250325.0ci"

Another way to specify a version that is not listed is to use the OCID of an older cluster
instead of the keyword all as the argument of the --cluster-option-id option to list
the Kubernetes version used for that specified cluster:

oci ce cluster-options get --cluster-option-id cluster OCID

If you are using Private Cloud Appliance Release 3.0.2-b1081557, the cluster-
options get command is not available. Use the compute image list command to get
the Kubernetes version from the image display nhame.

e OCID of the virtual cloud network (VCN) in which you want to create the cluster.
Specify the VCN that has the configuration of the "oke_vcn" VCN described in Creating
a Flannel Overlay VCN or Creating a VCN-Native Pod Networking VCN.

* OCID of the OKE service LB subnet. Specify the subnet that has configuration like the
"service-Ib" subnet described in Creating a Flannel Overlay Worker Load Balancer
Subnet or Creating a VCN-Native Pod Networking Worker Load Balancer Subnet. For
a public cluster, follow the instructions to create the public version of the "service-Ib"
subnet. For a private cluster, create the private version of the "service-Ib" subnet.
Specify only one OKE Service LB subnet.

* OCID of the Kubernetes APl endpoint subnet. Specify the subnet that has
configuration like the "control-plane-endpoint” subnet described in Creating a Flannel
Overlay Control Plane Load Balancer Subnet or Creating a VCN-Native Pod
Networking Control Plane Load Balancer Subnet. For a public cluster, follow the
instructions to create the public version of the "control-plane-endpoint” subnet. For a
private cluster, create the private version of the "control-plane-endpoint” subnet.

* OKE service CIDR block. (Optional) The default value is 10.96.0.0/16.
* Pods CIDR block. (Optional) The default value is 10.244.0.0/16.

e (Optional) The OCID of the Network Security Group to apply to the cluster endpoint.
Do not specify more than one NSG. If you specify an NSG, use the following syntax:

--endpoint-nsg-ids '["ocidl.networksecuritygroup.unique ID"]'

e (Optional) Your public SSH key in RSA format. You cannot add or update an SSH key
after the cluster is created.

* The network type. (Optional) Specify either OCI VCN IP NATIVE Of FLANNEL OVERLAY
for the value of the cniType parameter in the argument for the --cluster-pod-
network-options option. See the descriptions of Flannel Overlay and VCN-Native Pod
Networking in the Compute Web Ul procedure. If you do not specify the --cluster-
pod-network-options option, FLANNEL OVERLAY is used.

--cluster-pod-network-options '[{"cniType": "OCI VCN IP NATIVE"}]'

ORACLE -

ORACLE

Chapter 5
Creating an OKE Cluster

< Note:

If you specify OCI_VCN_IP NATIVE, then the VCN you specify must have a
subnet named pod. See Creating VCN-Native Pod Networking Resources.

(Optional) Add defined or free-form tags for the cluster resource by using the --defined-
tags Oor --freeform-tags options.

< Note:

Do not specify values for the OraclePCA-OKE.cluster_id defined tag or for the
ClusterResourceldentifier free-form tag. These tag values are system-generated
and only applied to nodes (instances), not to the cluster resource.

Define an argument for the --defined-tags option to provide the following information for
control plane nodes. Specify OraclePCA as the tag namespace.

@© Important:

If you are using Private Cloud Appliance Release 3.0.2-b1081557, these defined
tags are not recognized. You must use free-form tags to specify these values as
described in the workaround in Create Cluster Does Not Support Extension
Parameters. In Private Cloud Appliance Release 3.0.2-b1185392 and later, the
free-form tags are deprecated; use the defined tags described below for SSH
key, number of control plane nodes, node shape, and node configuration in
Private Cloud Appliance Release 3.0.2-b1185392 and later.

Note:

None of these values - SSH key, number of nodes, node shape, or node shape
configuration - can be set or changed after the cluster is created. If you set these
tags when you update the cluster, the new values are ignored.

Your public SSH key.
Specify sshkey for the tag key, and paste your public SSH key as the value.

@ Important:

You cannot add an SSH key after the cluster is created.

Number of nodes.

By default, the number of nodes in the control plane is 3. You can specify 1, 3, or 5
nodes. To specify the number of control plane nodes, specify cpNodeCount for the tag
key, and enter 1, 3, or 5 in the Value field.

5-7

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/relnotes/relnotes-known-issues-containerengine.html#ki-containerengine-36979754
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/relnotes/relnotes-known-issues-containerengine.html#ki-containerengine-36979754

ORACLE

Chapter 5
Creating an OKE Cluster

Node shape.

For Private Cloud Appliance X10 systems, the shape of the control plane nodes is
VM.PCAStandard.E5.Flex and you cannot change it. For all other Private Cloud
Appliance systems, the default shape is VM.PCAStandard1.1, and you can specify a
different shape.

To use a different shape, specify cpNodeShape for the tag key, and enter the name of
the shape as the value. Use the following command to list the available shapes and
their characteristics.

$ oci compute shape list --compartment-id compartment OCID
Node shape configuration.

If you specify a shape that is not a flexible shape, do not specify a shape configuration.
The number of OCPUs and amount of memory are set to the values shown for this
shape in "Standard Shapes" in Compute Shapes in the Oracle Private Cloud Appliance
Concepts Guide.

If you specify a flexible shape, you can change the default shape configuration.

To provide shape configuration information, specify cpNodeShapeConfig for the tag key.
You must specify the number of OCPUs (ocpus) you want. You can optionally specify
the total amount of memory you want (memoryInGBs). The default value for gigabytes of
memory is 16 times the number you specify for OCPUs.

< Note:

If the cluster will have 1-10 worker nodes, specify at least 16 GB memory. If
the cluster will have 11-128 worker nodes, specify at least 2 OCPUs and 32
GB memory. Note that you cannot change the number of OCPUs or amount
of memory when you update the cluster.

Specify defined tags either inline or in a file in JSON format, such as the following example
file:

"OraclePCA": {
"sshkey": "ssh-rsa remainder of key text",
"cpNodeCount": 1,
"cpNodeShape": "VM.PCAStandardl.Flex",
"cpNodeShapeConfig": {
"ocpus": 2,
"memoryInGBs": 48
}
}

Use the following syntax to specify a file of tags. Specify the full path to the .son file
unless the file is in the same directory where you are running the command.

--defined-tags file://cluster tags.json

(Optional) You can use the --service-1b-defined-tags Or --service-lb-freeform-tags
options to specify tags to be applied to all load balancers created by Kubernetes services.
Ensure that the applicable dynamic group includes the use tag-namespaces policy. See
Exposing Containerized Applications.

Run the create cluster command.

5-8

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes

Chapter 5
Creating a Kubernetes Configuration File

If the --endpoint-subnet-id that you specify is a public subnet, then a public endpoint is
created, and the --endpoint-public-ip-enabled option must be set to true.

If the --endpoint-subnet-id that you specify is a private subnet, then a private endpoint is
created, and the --endpoint-public-ip-enabled option must be set to false.

Example:

$ oci ce cluster create \

--compartment-id ocidl.compartment.unique ID --kubernetes-version version \
--name "Native Cluster" --vcn-id ocidl.vcn.unique ID \
--cluster-pod-network-options '{"cniType":"OCI VCN_ IP NATIVE"}' \
--endpoint-subnet-id control-plane-endpoint subnet OCID \
--endpoint-public-ip-enabled false \

--service-lb-subnet-ids '["service-1lb_subnet OCID"]' \

--defined-tags '{"OraclePCA":{"sshkey":"ssh-rsa remainder of key text"}}'

The output from this cluster create command is the same as the output from the
cluster get command.

Use the work-request get command to check the status of the create operation. The work
request OCID is in created-by-work-request-id in the metadata section of the cluster
create output.

$ oci ce work-request get --work-request-id workrequest OCID
To identify the control plane nodes for this cluster, list instances in the compartment where
you created the cluster. Names of control plane nodes are in the following format:

oke-IDl-control-plane-ID2

* IDI - The first 32 characters after the pca_name in the cluster OCID.

e ID2- A unique identifier added when the cluster has more than one control plane node.
Search for the instances in the list whose names contain the 1D1 string from this cluster
OCID.

Cluster Next Steps

1. Create a Kubernetes configuration file for the cluster. See Creating a Kubernetes
Configuration File.

2. Deploy a Kubernetes Dashboard to manage the cluster and to manage and troubleshoot
applications running in the cluster. On the https://kubernetes.io/ site, see Deploy and
Access the Kubernetes Dashboard.

3. Create a node pool for the cluster. See Creating an OKE Worker Node Pool.

4. Create a backup for the workload cluster. For example, see Backing up an etcd cluster and
Restoring up an etcd cluster in Operating etcd clusters for Kubernetes. Use the etcd
backup to recover OKE clusters under disaster scenarios such as losing all control plane
nodes. An etcd backup contains all OKE states and critical information. An etcd backup
does not back up applications or other content on cluster nodes.

Creating a Kubernetes Configuration File

Set up a Kubernetes configuration file for each OKE cluster that you work with. Your
Kubernetes configuration file enables you to access OKE clusters using the kubectl command
and the Kubernetes Dashboard.

ORACLE -

https://kubernetes.io/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#restoring-an-etcd-cluster
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/

ORACLE

Chapter 5
Creating a Kubernetes Configuration File

Kubernetes configuration files organize information about clusters, users, namespaces, and
authentication mechanisms. You can define contexts to easily switch between clusters and
namespaces. The kubectl tool uses Kubernetes configuration files to find the information it
needs to choose a cluster and communicate with the API server of a cluster.

Installing the Kubernetes Command Line Tool

Install and configure the Kubernetes command line tool kubectl. The kubectl tool enables you
to perform operations on OKE clusters such as deploy applications, inspect and manage
cluster resources, and view logs.

To install kubectl, see https://kubernetes.io/docs/tasks/tools/. The kubectl version must be
within one minor version of the OKE cluster Kubernetes version. For example, a v1.29 client
can communicate with v1.28, v1.29, and v1.30 control planes. See Supported Versions of
Kubernetes.

For more information, including a complete list of kubect1 operations, see the Command line
tool (kubectl) reference page.

Creating a Kubernetes Configuration File

Use the OCI CLI to create your Kubernetes configuration file.

Tip:

The Quick Start button on a cluster details page in the Compute Web Ul shows how
to create a Kubernetes configuration file, and provides the OCID of the cluster.

1. Getthe OCID of the cluster: oci ce cluster list
2. Run the command to create the configuration file.
The --cluster-1id option is required.

The default value of the --file option is ~/.kube/config. If you already have a file at the
specified location and you want to replace it, use the --overwrite option. To maintain
more than one configuration file, select a different file by using the KUBECONFIG
environment variable or the --kubeconfig option.

The value of the --kube-endpoint option must be PUBLIC ENDPOINT.

If you do not specify the --profile option, the current value of your OCI_CLI PROFILE
environment variable is used. Best practice is to specify this value.

If provided, the value of the --token-version option must be 2.0.0.

Example:

Use the following command to configure a Kubernetes configuration file for the specified
cluster using the public endpoint:

$ oci ce cluster create-kubeconfig --cluster-id ocidl.cluster.unique ID \
--file SHOME/.kube/config --kube-endpoint PUBLIC_ENDPOINT --profile profile-name
New config written to the Kubeconfig file /home/username/.kube/config

A Kubernetes configuration file includes an OCI CLI command that dynamically generates
an authentication token and inserts it when you run a kubectl command. By default, the
OCI CLI command in the Kubernetes configuration file uses your current OCI CLI profile
when generating an authentication token. If you have defined multiple profiles in your OCI

5-10

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/

ORACLE

Chapter 5
Creating a Kubernetes Configuration File

CLI configuration file, use one of the following methods to specify which profile to use
when generating the authentication token. The value of profile-name is the name of the
profile in your OCI CLI configuration file.

» Ensure that your 0CI_CLI_PROFILE environment variable is set to the profile for the
tenancy where the ocidl.cluster.unique_IDresides. This setting is ignored if one of
the following methods was used to specify the profile for this cluster in the Kubernetes
configuration file.

e Specify the --profile option on the create-kubeconfig command line as shown in
the preceding example command.

« Edit the generated configuration file as shown in the following example.

user:
exec:
apiVersion: client.authentication.k8s.io/vlbetal
args:
- ce
- cluster
- generate-token
- --cluster-id
- cluster ocid
- --profile
- profile-name
command: oci
env: []

Use the following command to set your KUBECONFIG environment variable to the
Kubernetes configuration file that you created or updated in the preceding command:

$ export KUBECONFIG=S$HOME/.kube/config

The following command shows the content of your new YAML configuration file:

$ kubectl config view

If you run the command again with a different cluster OCID, the new information is merged
with the existing information. The following message is displayed:

Existing Kubeconfig file found at /home/username/.kube/config and new config merged
into it
Verify Your Cluster Access

Before you run kubectl commands, enure that your OCI_CLI PROFILE environment variable is
set to the name of the profile that is defined in your OCI CLI configuration file:

$ export OCI CLI PROFILE=profile-name

Run the following command to confirm that you can access your cluster:

$ kubectl cluster-info

Every Kubernetes namespace contains at least one ServiceAccount: the default
ServiceAccount for that namespace, which is named default. If you do not specify a
ServiceAccount when you create a Pod, the OKE service automatically assigns the
ServiceAccount named default in that namespace.

An application running inside a Pod can access the Kubernetes API using automatically
mounted service account credentials.

5-11

Chapter 5
Updating an OKE Cluster

Updating an OKE Cluster

When you update a cluster, you can change the cluster name, Kubernetes version, and tags.

ORACLE

Best practice is to keep your clusters upgraded so that they are always running versions of
Kubernetes that are currently supported by OKE. See the instructions in the following
procedures to determine whether a newer supported version of Kubernetes is available.

< Note:

If you set or modify any of the following tags, the new values are ignored: SSH key
(OraclePCA.sshkey), number of nodes (OraclePCA.cpNodeCount), node shape
(OraclePCA.cpNodeShape), or node shape configuration
(OraclePCA.cpNodeShapeConfig). These values can be set only when you create
the cluster.

Using the Compute Web Ul

5.

On the dashboard, select Containers / View Kubernetes Clusters (OKE).

In the clusters list, if a Kubernetes version update is available, an exclamation point icon is
displayed next to the Kubernetes Version number. To upgrade to a newer version, select
the Actions menu and select Upgrade Available. Select a new version from the drop-down
menu.

Alternatively, on the cluster details page, select Upgrade Available next to the Kubernetes
Version number, or select the Upgrade button at the top of the page.

On the clusters list page, select the name of the cluster that you want to update.
At the top of the cluster details page, select the Edit button.

Do not specify values for the OraclePCA-OKE.cluster_id defined tag or for the
ClusterResourceldentifier free-form tag. These tag values are system-generated and only
applied to nodes (instances), not to the cluster resource.

When you are finished making changes, select Save Changes.

Using the OCI CLI

1.
2.

Get the OCID of the cluster that you want to update: oci ce cluster list
Check whether a newer version of Kubernetes is available.
Run the get cluster command: oci ce cluster get

If the value of available-kubernetes-upgrades is not the empty set, specify one of the
listed versions as the --kubernetes-version in the update cluster command.

Run the update cluster command.

If you specify the --defined-tags or --freeform-tags options, do not specify values for
the OraclePCA-OKE.cluster_id defined tag or for the ClusterResourceldentifier free-form
tag. These tag values are system-generated and only applied to nodes (instances), not to
the cluster resource.

Example:

5-12

Chapter 5
Deleting an OKE Cluster

$ oci ce cluster update --cluster-id ocidl.cluster.unique ID \
--—kubernetes-version newer_ kubernetes version --name new_cluster name

Deleting an OKE Cluster

Deleting a cluster deletes the cluster control plane nodes, worker nodes, and node pools.
Other cluster resources such as VCNs, internet gateways, NAT gateways, route tables,
security lists, load balancers, and block volumes are not deleted when you delete the cluster.
Those resources must be deleted separately.

Using the Compute Web Ul

1. On the dashboard, select Containers / View Kubernetes Clusters (OKE).

2. For the cluster that you want to delete, select the Actions menu, and select Delete.
3. Confirm that you want to delete the cluster.

Enter the cluster name, and select the Delete button.

Using the OCI CLI
1. Getthe OCID of the cluster that you want to delete: oci ce cluster list
2. Run the delete cluster command.

Example:

$ oci ce cluster delete --cluster-id ocidl.cluster.unique ID --force

ORACLE - 13

Managing OKE Cluster Add-ons

Cluster add-ons are components that you can choose to deploy on a Kubernetes cluster.
Cluster add-ons extend core Kubernetes functionality and improve cluster manageability and
performance.

This chapter describes how to install the WebLogic Kubernetes Operator add-on, which
supports running WebLogic Server and Fusion Middleware Infrastructure domains on
Kubernetes. For detailed information about the WebLogic Kubernetes Operator, refer to the
public operator documentation at https://github.com/oracle/weblogic-kubernetes-operator.

Installing the WebLogic Kubernetes Operator Add-on

ORACLE

You can enable the WebLogic Kubernetes Operator add-on when you create a cluster or for an
existing cluster.

¢ Note:

To bring the WebLogic Server to the running state, create additional rules in separate
WebLogic Server security lists for the control plane and worker subnets, and for the
pod subnet if you are using VCN-Native Pod Networking. See Ports Required by
WebLogic Server.

Add-on installation remains in Accepted state and waits until the cluster is in the Active state.

After the cluster is in the Active state, the WebLogic Kubernetes Operator is in Needs Attention
state until a node pool is created for the cluster.

When a node-pool has been created for the cluster, the add-on is reconciled, and the add-on is
in Ready state unless some other problem exists. See Add-on Reconciliation.

Note:

Enabling the WebLogic Kubernetes Operator add-on on a VCN-Native Pod
Networking cluster requires an entry for 169.254.169.254 in crio-noproxy node
metadata for the nodepools where the add-on pods might be scheduled. See "Proxy
settings" in the OCI CLI procedure in Creating an OKE Worker Node Pool.

Install the Add-on When You Create a Cluster
To install an add-on when you create a cluster, you must use the Compute Web UI.
Using the Compute Web Ul

1. On the dashboard, select Containers / View Kubernetes Clusters (OKE).

2. Above the clusters list, select the Create Cluster button.

6-1

https://github.com/oracle/weblogic-kubernetes-operator

ORACLE

Chapter 6
Installing the WebLogic Kubernetes Operator Add-on

On the bottom of the first page of the Create Cluster dialog, the Add-ons section shows the
available cluster add-ons. In the Create Cluster dialog, all add-ons are Disabled.

Select the WLS Operator (WebLogic Kubernetes Operator) add-on.

a. Enable: Select the checkbox for "Enable Add-On WLS Operator" to deploy and enable
the add-on for this cluster.

b. Add-on version updates: Select how you want the version of the add-on to be
updated as newer versions of the add-on become available and as newer versions of
Kubernetes are supported for OKE. Select either Automatic Updates or Choose a
Version. See descriptions of these options in Version Updates for Add-ons.

If you select Choose a Version, then you must select a version from the list.

c. Configurations: Select the Add configuration button to select a configuration option
and specify a value. See the descriptions in Configuration Parameters for the
WebLogic Kubernetes Operator Add-on.

Select the Add configuration button to set another configuration parameter.

Install the Add-on for an Existing Cluster

Outside Certificates

If you want to install the WebLogic Kubernetes Operator add-on on an existing cluster that is
using a certificate that is not the certificate that is specific to the Private Cloud Appliance,
perform the following steps on the cluster where you want to install the add-on:

1.
2.

Perform certificate rotation as described in Updating the Certificate Authority Bundle.

Perform any updates to node pool configuration that are required, such as boot volume
size change or shape changes, for example.

Cycle worker nodes as described in Node Cycling an OKE Node Pool.

Enable or install the WebLogic Kubernetes Operator add-on as described in this
procedure.

Using the Compute Web Ul

1
2
3.
4

On the dashboard, select Containers / View Kubernetes Clusters (OKE).
In the clusters list, select the name of the cluster in which you want to install the add-on.
On the cluster details page, scroll to the Resources section, and select Add-ons.

In the add-ons list, for the WLS Operator add-on, select the Actions menu, and select Edit.
On the WLS Operator dialog, select the Enable Add-on WLS Operator checkbox to do one
of the following:

* Deploy and enable the WebLogic Kubernetes Operator add-on if the add-on has not
been enabled on this cluster before.

* Enable the WebLogic Kubernetes Operator add-on if the add-on was previously
deployed for this cluster but is currently disabled.

Configure the add-on.

a. Add-on version updates: Select the method you want to use to update the version of
the add-on as newer versions of the add-on become available and as newer versions
of Kubernetes are supported for OKE: either Automatic Updates or Choose a Version.
See descriptions of these options in Version Updates for Add-ons.

If you select Choose a Version, then you must select a version from the list.

6-2

ORACLE

6.

Chapter 6
Installing the WebLogic Kubernetes Operator Add-on

b. Add-on configuration: Select the Add configuration button to select a configuration
option and specify a value. See the descriptions in Configuration Parameters for the
WebLogic Kubernetes Operator Add-on.

To set another configuration parameter, select the Add configuration button.

Select the Save Changes button in the dialog.

Using the OCI CLI

1.

2.

Get the OCID of the cluster for which you want to install an add-on: oci ce cluster list
Construct an argument for the --configurations option.

Use the --configurations option to specify one or more key/value pairs in JSON format
to pass as arguments to the cluster add-on.

For descriptions of the configuration parameters, see Configuration Parameters for the
WebLogic Kubernetes Operator Add-on.

The inline syntax is shown in the example in the next step of this procedure. You might find
it easier to use a file:

--confiqgurations file://./weblogic-cfg.json

The format and content of the configuration file is given by the following command:

$ oci ce cluster install-addon --generate-param-json-input configurations
[
{
"key": "string",
"value": "string"
}l
{
"key": "string",
"value": "string"
}
]

In the following example, both requests and limits are specified because the memory
limit is lower than the default memory request. If a limit is less than the corresponding
request, the deployment will fail.

Double quotation marks within a value must be escaped with a single backslash.

[

"key": "weblogic-operator.ContainerResources",
"value": "{
\"requests\": {
\"cpu\": \"250m\",
\"memory\": \"150Mi\"
}l
\"limits\": {
\"cpu\": \"500m\",
\"memory\": \"200Mi\"

}ll

"key": "weblogic-operator-webhook.ContainerResources",
"value": "{
\"limits\": {
\llcpu\": \"150m\",
\"memory\": \"200Mi\"

6-3

ORACLE

Chapter 6
Installing the WebLogic Kubernetes Operator Add-on

}ll

"key": "numOfReplicas",
"Value": lll"

]
Run the install add-on command.
Syntax:

$ oci ce cluster install-addon --cluster-id cluster OCID \
--addon-name addon name

Example:

If you specify a version, you are selecting the "Stay on the specific version" option for
updating the add-on version, described in Version Updates for Add-ons. If you set the
version to null, or you omit the --version-parameterconflict option, you are selecting
the default behavior "Automatically update the add-on."

Note that the version string must begin with a "v".

Enclose the configurations argument in single quotation marks so that you do not need to
escape every double quotation mark in the argument value.

$ oci ce cluster install-addon --cluster-id ocidl.cluster.unique ID \
--addon-name WeblogicKubernetesOperator --version-parameterconflict "v4.2.13" \

--configurations '[{"key": "weblogic-operator.ContainerResources", "value":
"\"limits\": {\"cpu\": \"500m\", \"memory\": \"512Mi\"}}"}, \
{"key": "weblogic-operator-webhook.ContainerResources", "value": "{\"limits\":

{\llcpu\ll: \"lSOm\", \nmemory\n: \"200Mi\"}}"}]’

{

"opc-work-request-id": "ocidl.cccworkrequest.unique ID"

}

Version Updates for Add-ons

When you enable a cluster add-on, you can choose one of the following options for updating
the add-on version:

(Default) Automatically update the add-on when new versions become available.

The newest version of the add-on that supports the Kubernetes version that is specified for
the cluster is deployed when you install the add-on. When a newer version of the add-on is
released, the add-on is automatically updated if the new add-on version is compatible with
the versions of Kubernetes that are supported by OKE at that time and the version of
Kubernetes that the cluster is running.

Best practice is to keep your clusters upgraded so that they are always running versions of
Kubernetes that are listed as currently supported by OKE. See Supported Versions of
Kubernetes and Updating an OKE Cluster.

Stay on the specific version of the add-on that you select until you change it.

If you specify that you want to choose the version of the add-on to deploy, the version you
choose is enabled. Ensure that the add-on version is compatible with the Kubernetes
version that you have selected for the cluster or that is already running on the cluster.

When you use the Compute Web Ul, you select the version from a list. All versions on the
list are compatible with the Kubernetes version that you have selected for the cluster or
that is already running on the cluster.

6-4

Chapter 6
Installing the WebLogic Kubernetes Operator Add-on

When you use the OCI CLI, use the following addon-option 1list commands to get the
information you need before you run the cluster install-addon command.

List available versions of all cluster add-ons that are supported on the specified
Kubernetes version.

$ oci ce addon-option list --kubernetes-version v1.29.9

List available versions of the specified cluster add-on that are supported on the specified
Kubernetes version.

$ oci ce addon-option list --kubernetes-version v1.29.9 --addon-name
WeblogicKubernetesOperator

Configuration Parameters for the WebLogic Kubernetes Operator Add-on

The following configuration parameters are available for the WebLogic Kubernetes Operator
cluster add-on.

Note:

For weblogic-operator container resources and weblogic-operator-webhook container
resources, if you set a limit without specifying a request, and the limit is less than the
default request, the deployment will fail.

Use the values of the weblogic-operator container resources parameter and the weblogic-
operator-webhook container resources parameter to determine the maximum number of
replicas you can specify. The values of these parameters could be the default values shown in
the following table or different values that you requested when you enabled the WebLogic
Kubernetes Operator.

Example:

A worker node with 6 Gb RAM and 2 OCPUs could accommodate 12 pods if you don't count
other cluster-related or custom pods. Each WebLogic Server pod could require 250m/768Mi
(cpu/memory), and Flannel Overlay pods could require 2700m/50Mi. Best practice is not to
exceed 70% of CPU/memory usage per node. Considering only weblogic-operator pods, 8
would be ideal to leave room for system daemons or fluctuating workloads.

Since you also must allocate weblogic-operator-webhook pods, it would be better to schedule
a maximum of 6 replicas per weblogic-operator pod per node, leaving room for a maximum of
8 weblogic-operator-webhook pods,

In this example (a worker node with 6 Gb RAM and 2 OCPUSs), 6 replicas per node (12 for a 2
worker node cluster) is the best configuration.

This calculation of maximum number of replicas varies for each case, depending on the
WebLogic requirements, the size of the node pools, and the shape configuration (CPU and
memory) for each node pool.

Parameter Name Description

Compute Web Ul

OCI CLI

numOfReplicas (Required) The integer number of replicas of the add-on
numOfReplicas deployment.

ORACLE g

ORACLE

Chapter 6
Installing the WebLogic Kubernetes Operator Add-on

Parameter Name
Compute Web Ul
OCI CLI

Description

weblogic-operator container
resources

weblogic-
operator.ContainerResources

weblogic-operator-webhook
container resources

weblogic-operator-
webhook.ContainerResources

(Optional) These are resource values for the main
WebLogic Operator container. The resource quantities
that the add-on containers request, and the resource
usage limits that the add-on containers cannot exceed.
See Resource Management for Pods and Containers in the
Kubernetes documentation.

If you do not specify a request, the default request values
are:

* cpu: 250m

* memory: 512Mi

If you set a usage limit, you must set a limit equal to or
greater than these default resource request values or the
request values that you specified.

(Optional) These are resource values for the webhook
container used by the operator. The resource quantities
that the add-on containers request, and the resource
usage limits that the add-on containers cannot exceed.

If you do not specify a request, the default request values
are:

* cpu: 100m

* memory: 100Mi

If you set a usage limit, you must set a limit equal to or
greater than these default resource request values or the
request values that you specified.

Ports Required by WebLogic Server

This section describes additional security rules needed to specify ports that are required to
bring the WebLogic Server to the running state. Create additional rules in separate WebLogic
Server security lists for the control plane and worker subnets, and for the pod subnet if you are

using VCN-Native Pod Networking.

The following rules are for the control plane subnet. These rules are used for both Flannel
Overlay networking and VCN-Native Pod Networking.

6-6

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Chapter 6
Installing the WebLogic Kubernetes Operator Add-on

Table 6-1 WebLogic Server Security Rules for the Control Plane Subnet

Compute Web Ul property OCI CLI property

Ingress Rule 1 Ingress Rule 1

« Stateless: uncheck the box * isStateless: false

* Ingress CIDR: kmi_cidr o source: kmi cidr

« IP Protocol: TCP . sourceType:_CIDR_BLOCK
- Destination Port Range: 8084 « protocol:6

* Description: "This service port is the

° tcpOpti
default for the WebLogic Server Console cpoptions

and is used to manage WebLogic Server destinationPortRange
domains." - max: 8084
— min: 8084

* description: "This service port is the

default for the WebLogic Server Console
and is used to manage WebLogic Server

domains."
Ingress Rule 2 Ingress Rule 2
o Stateless: uncheck the box * isStateless: false
¢ Ingress CIDR: worker cidr o source: worker cidr
¢ IP Protocol: UDP ¢ sourceType: CIDR BLOCK
- Destination Port Range: 8472 « protocol: 17
. Desc.nptlon:_ "W"ebLoglc Server + udpOptions
administration.
destinationPortRange
- max: 8472
- min: 8472
* description: "WebLogic Server
administration.”

The following rules are for the worker subnet. These rules are used for both Flannel Overlay
networking and VCN-Native Pod Networking.

Table 6-2 WebLogic Server Security Rules for the Worker Subnet

Compute Web Ul property OCI CLI property

Ingress Rule 1 Ingress Rule 1

» Stateless: uncheck the box * isStateless: false

° II‘lgI‘ESS CIDR: kmi_cidr . source: kmi cidr

« IP Protocol: TCP * sourceType: CIDR_BLOCK
— Destination Port Range: 8084 ¢ protocol:6

* Description: "This service port is the

° tcpOpti
default for the WebLogic Server Console cpoptions

and is used to manage WebLogic Server destinationPortRange
domains." - max: 8084
- min: 8084

* description: "This service port is the
default for the WebLogic Server Console
and is used to manage WebLogic Server
domains."

ORACLE .

Chapter 6
Installing the WebLogic Kubernetes Operator Add-on

Table 6-2 (Cont.) WebLogic Server Security Rules for the Worker Subnet
|

Compute Web Ul property OCI CLI property
Ingress Rule 2 Ingress Rule 2
« Stateless: uncheck the box * isStateless: false
° IngI‘eSS CIDR: kmi_cidr . source: kmi cidr
¢+ IP Protocol: UDP + sourceType: CIDR BLOCK
- Destination Port Range: 8472 « protocol: 17
. DESC.I‘lp'[IOIli. V\I't'ebLoglc Server « udpOptions
administration.
destinationPortRange
- max: 8472
— min: 8472
* description: "WebLogic Server
administration.”
Ingress Rule 3 Ingress Rule 3
» Stateless: uncheck the box * isStateless: false
¢ Ingress CIDR: worker cidr e source: worker cidr
+ IP Protocol: UDP ¢ sourceType: CIDR BLOCK
- Destination Port Range: 7001-9000 « protocol: 17
* Description: "These ports are used by q :
. . Opt
WebLogic Server." naptpions
destinationPortRange
- max: 9000
- min: 7001
* description: "These ports are used by
WebLogic Server."

The following rules are for the pod subnet. These rules are used for VCN-Native Pod
Networking.

Table 6-3 WebLogic Server Security Rules for the Pod Subnet
e

Compute Web Ul property OCI CLI property

Ingress Rule 1 Ingress Rule 1

» Stateless: uncheck the box * isStateless: false

° II‘lgI'ESS CIDR: kmi_Cidr . source: kmi cidr

+ IP Protocol: TCP * sourceType: CIDR_BLOCK
— Destination Port Range: 8084 « protocol:6

* Description: "This service port is the

°* tcpOptions
default for the WebLogic Server Console PUPEL

and is used to manage WebLogic Server destinationPortRange
domains.” - max: 8084
- min: 8084

* description: "This service port is the
default for the WebLogic Server Console
and is used to manage WebLogic Server
domains."

ORACLE 68

Chapter 6
Viewing OKE Cluster Add-ons

Table 6-3 (Cont.) WebLogic Server Security Rules for the Pod Subnet
|

Compute Web Ul property OCI CLI property
Ingress Rule 2 Ingress Rule 2
« Stateless: uncheck the box * isStateless: false
° Ingress CIDR: WOrker_Cidr ° source: worker cidr
¢ IP Protocol: UDP + sourceType: CIDR BLOCK
- Destination Port Range: 8472 ¢ protocol: 17
. DESC.I‘lptIOIl:. V\I'('ebLoglc Server « udpOptions
administration.
destinationPortRange
- max: 8472
— min: 8472
* description: "WebLogic Server
administration.”

Viewing OKE Cluster Add-ons

This topic describes how to list all add-ons for a cluster and how to view more information
about a specified cluster add-on.

ORACLE

To list versions of an add-on that are supported on a specific version of Kubernetes, use the
OCI CLI, or use the Edit Add-on option in the Compute Web UI.

Using the Compute Web Ul

1.
2.
3.

On the dashboard, select Containers / View Kubernetes Clusters (OKE).
In the clusters list, select the name of the cluster for which you want to view add-ons.
On the cluster details page, scroll to the Resources section, and select Add-ons.

The list table shows the name of the cluster add-on, whether automatic updates are
Enabled, the lifecycle state of the add-on (for example, Active, Updating, Disabled), and
the current version of the add-on.

To show more information, select the Actions menu, and select the Edit Add-on option.

On the dialog, you can view the current add-on configuration and change the configuration.
You can enable the add-on, select either Automatically Update or Choose a version, and
specify configuration parameters.

Using the OCI CLI

1.

2.

Get the OCID of the cluster for which you want to view add-ons: oci ce cluster list

List all add-ons in the specified cluster.

$ oci ce cluster list-addons --cluster-id ocidl.cluster.unique ID

For each add-on that is available to the specified cluster, the output shows the name of the
add-on, the current installed version, and the lifecycle state.
For more information about a specific add-on, run the get add-on command.

The output is the same as for the 1ist-addons command except that get-addon also
shows the configuration values.

6-9

Chapter 6
Add-on Reconciliation

If the add-on lifecycle state is NEEDS_ATTENTION, see Add-on Reconciliation.
Example:

$ oci ce cluster get-addon --cluster-id ocidl.cluster.unique ID \
--addon-name WeblogicKubernetesOperator
{
"data": {
"addon-error": {
"code": null,
"message": null,
"status": null
}I
"configurations": [
{

"key": "numOfReplicas",

"value": "0"
}l
{
"key": "weblogic-operator.ContainerResources",
"value": "{'limits': {'cpu': '500m', 'memory': '200Mi'}}"
}l
{
"key": "weblogic-operator-webhook.ContainerResources",
"value": "{'limits': {'cpu': '200m', 'memory': '300Mi'}}"
}
]I
"current-installed-version": "v4.2.13",
"lifecycle-state": "ACTIVE",
"name": "WeblogicKubernetesOperator",

"time-created": "2025-02-26T01:41:52.020696+00:00",
"version": null

I

"etag": "5f3eef22-eb32-5c2c-774c-c7a98836al3a"

Add-on Reconciliation

ORACLE

The OKE service includes a reconciliation process that periodically evaluates the state of the
add-on and updates the add-on if necessary.

Note:

You should not install, configure, update, or delete add-ons manually. Use the OKE
service installation, configuration, update, and delete interfaces.

The reconciliation process behaves differently depending on the state of the add-on.

Active State

For add-ons in ACTIVE state, the reconciliation process runs every twelve hours. If resources
have been manually deleted, the process detects the change and attempts recovery. Full
recovery is not guaranteed.

If full recovery is successful, the add-on state returns to ACTIVE.

If recovery is partial or fails, the add-on state changes to NEEDS_ATTENTION.

6-10

ORACLE

Chapter 6
Add-on Reconciliation

Needs Attention State

For add-ons in NEEDS_ATTENTION state, the reconciliation process runs every few minutes,
not every twelve hours, while the add-on remains in the NEEDS_ATTENTION state. The
process checks whether all deployments associated with the add-on are ready, whether all
pods are healthy. The interval between reconciliation process runs is a little longer each time.

Some issues, such as unschedulable nodes, might resolve during the reconciliation process.
Other issues, such as configuration problems, require user intervention to fix. If the add-on
remains in NEEDS_ATTENTION state after the reconciliation process has run, try to identify
the issues. Check the K8s_app application in Grafana or check the state of the add-on
operator manually.

Recovery actions that might be appropriate for a user to take include the following:

* Ensure that node pools in the cluster have at least one node available. If no nodes are
available, the add-on pods cannot be scheduled, the add-on cannot be deployed.

* Ensure the configuration values and other settings are correct.

« Update the add-on as needed. Updating the add-on will trigger another reconciliation
process.

» Disable and reinstall the add-on.

If the add-on recovers, the add-on is transitioned back to ACTIVE state.
If the add-on remains unhealthy, the system schedules the next check.

The reconciliation process continues to run for approximately 12.5 hours if the add-on remains
in NEEDS_ATTENTION state. After the reconciliation process stops running, the add-on
remains in NEEDS_ATTENTION state indefinitely. After approximately 30 minutes, the work
request moves to FAILED state.

The following example shows an add-on in NEEDS_ATTENTION state.

$ oci ce cluster get-addon --cluster-id ocidl.cluster.unique ID \
--addon-name WeblogicKubernetesOperator
{
"data": {
"addon-error": {
"code": "409",

"message": "Incorrect state for CR",
"status": "IncorrectState"

b

"configurations": |

{

"key": "numOfReplicas",

"value": "0"
}l
{
"key": "weblogic-operator.ContainerResources",
"value": "{'limits': {'cpu': '500m', 'memory': '200Mi'}}"
}l
{
"key": "weblogic-operator-webhook.ContainerResources",
"value": "{'limits': {'cpu': '200m', 'memory': '300Mi'}}"
}
]I
"current-installed-version": "",
"lifecycle-state": "NEEDS ATTENTION",
"name": "WeblogicKubernetesOperator",

6-11

}

Chapter 6
Updating the WebLogic Kubernetes Operator Add-on

"time-created": "2025-02-26T01:41:52.020696+00:00",
"version": null

I
"etag": "5f3eef22-eb32-5c2c-774c-c7a98836al3a"

Updating the WebLogic Kubernetes Operator Add-on

You can update how you want the version of the WebLogic Kubernetes Operator add-on to be
updated, and you can update the number of replicas and the resource usage limits as
described in Installing the WebLogic Kubernetes Operator Add-on.

ORACLE

Add-on update remains in Accepted state and waits until the cluster is in the Active state.

Using the Compute Web Ul

1
2
3.
4

6.

On the dashboard, select Containers / View Kubernetes Clusters (OKE).
In the clusters list, select the name of the cluster for which you want to update an add-on.
On the cluster details page, scroll to the Resources section, and select Add-ons.

In the add-ons list, for the WLS Operator add-on, select the Actions menu, and select the
Edit Add-on option.

In the dialog that opens, configure the add-on.

a. Add-on version updates: Select how you want the version of the add-on to be
updated as newer versions of the add-on become available and as newer versions of
Kubernetes are supported for OKE: either Automatic Updates or Choose a Version.
See descriptions of these options in Version Updates for Add-ons.

If you select Choose a Version, then you must select a version from the list.

b. Add-on configuration: Optionally select a configuration parameter and a value for
that parameter. See the descriptions in Configuration Parameters for the WebLogic
Kubernetes Operator Add-on.

To set another configuration parameter, select the Add configuration button.

Select the Save Changes button in the dialog.

Using the OCI CLI

1.

2.

Get the OCID of the cluster for which you want to update an add-on: oci ce cluster list
Run the update add-on command.
Syntax:

$ oci ce cluster update-addon --cluster-id cluster OCID \
--addon-name addon name

Example:

$ oci ce cluster update-addon --cluster-id ocidl.cluster.unique ID \
--addon-name WeblogicKubernetesOperator \
--confiqurations file://./weblogic-cfg.json --force

{

"opc-work-request-id": "ocidl.cccworkrequest.unique ID"

}

6-12

Chapter 6
Disabling and Removing OKE Cluster Add-ons

Disabling and Removing OKE Cluster Add-ons

When you disable an add-on, it is disabled and deleted from the cluster. If you subsequently
enable the add-on, the add-on is reinstalled.

ORACLE

Add-on delete remains in Accepted state and waits until the cluster is in the Active state.

Using the Compute Web Ul

1
2
3.
4

6.

On the dashboard, select Containers / View Kubernetes Clusters (OKE).
In the clusters list, select the name of the cluster for which you want to delete the add-on.
On the cluster details page, scroll to the Resources section, and select Add-ons.

In the add-ons list, for the WLS Operator add-on, select the Actions menu, and select the
Edit option.

In the edit dialog, deselect (uncheck) the Enable Add-on option to disable and remove the
WebLogic Kubernetes Operator add-on for this cluster.

Select the Save Changes button in the dialog.

Using the OCI CLI

1.

2.

Get the OCID of the cluster that you want to delete: oci ce cluster list
Run the disable add-on command.
Example:

$ oci ce cluster disable-addon --cluster-id ocidl.cluster.unique ID \
--addon-name WeblogicKubernetesOperator

The add-on is disabled and removed from the cluster: The --is-remove-existing-add-on
option is ignored.

6-13

Creating and Managing OKE Worker Node

Pools

This chapter describes how to create, update, and delete node pools for an OKE cluster. Be
sure to carefully read the descriptions of the node pool parameters before you create the node
pool.

This chapter also describes how to recognize node pool nodes in a list of all instances in a
tenancy, and how to delete a single node from a node pool.

Creating an OKE Worker Node Pool

ORACLE

These procedures describe how to create a pool of worker nodes for an OKE workload cluster.
Nodes are Private Cloud Appliance compute instances.

You cannot customize the OKE cloud-init scripts.

To configure proxy settings, use the OCI CLI or OCI API to set the proxy in node metadata. If
the cluster is using VCN-Native Pod Networking, add 169.254.169.254 to the noproxy setting.

Using the Compute Web Ul

1. On the dashboard, select Containers / View Kubernetes Clusters (OKE).

If the cluster to which you want to attach a node pool is not listed, select a different
compartment from the compartment menu above the list.

Select the name of the cluster to which you want to add a node pool.
On the cluster details page, scroll to the Resources section, and select Node Pools.
On the Node Pools list, select the Add Node Pool button.

a p 0w DN

In the Add Node Pool dialog, provide the following information:
* Name: The name of the new node pool. Avoid using confidential information.
e Compartment: The compartment in which to create the new node pool.

* Node Pool Options: In the Node Count field, enter the number of nodes you want in
this node pool. The default is 0. The maximum number is 128 per cluster, which can be
distributed across multiple node pools.

* Network Security Group: If you check the box to enable network security groups,
select the Add Network Security Group button and select an NSG from the drop-down
list. You might need to change the compartment to find the NSG you want. The primary
VNIC from the worker subnet will be attached to this NSG.

* Placement configuration

— Worker Node Subnet: Select a subnet that has configuration like the "worker"
subnet described in Creating a Flannel Overlay Worker Subnet or Creating a VCN-
Native Pod Networking Worker Subnet. For a public cluster, create the NAT private
version of the "worker" subnet. For a private cluster, create the VCN-only private
version of the "worker" subnet. Select only one subnet. The subnet must have
rules set to communicate with the control plane endpoint. The subnet must use a

7-1

ORACLE

Chapter 7
Creating an OKE Worker Node Pool

private route table and must have a security list like the worker-seclist security list
described in Creating a Flannel Overlay Worker Subnet or Creating a VCN-Native
Pod Networking Worker Subnet.

— Fault Domain: Select a fault domain or select "Automatically select the best fault
domain," which is the default option.

Source Image: Select an image.
a. Select the Platform Image Source Type.
b. Select an image from the list.

The image list has columns Operating System, OS Version, and Kubernetes
Version. You can use the drop-down menu arrow to the right of the OS Version or
Kubernetes Version to select a different version. If more than one image has the
exact same Kubernetes version, select the newest image, according to the date in
the image name.

If the image that you want to use is not listed, use the OCI CLI or OCI APl and
specify the OCID of the image. To get the OCID of the image you want, use the ce
node-pool get command for a node pool where you used this image before.

Note:

The image that you specify must not have a Kubernetes version that is

newer than the Kubernetes version that you specified when you created
the cluster. The Kubernetes Version for the cluster is in a column of the

cluster list table.

Shape: Select a shape for the worker nodes. For a description of each shape, see
Compute Shapes in the Oracle Private Cloud Appliance Concepts Guide. For Private
Cloud Appliance X10 systems, the shape is VM.PCAStandard.E5.Flex and you cannot
change it.

If you select a shape that is not a flexible shape, the amount of memory and number of
OCPUs are displayed. These numbers match the numbers shown for this shape in the
table in the Oracle Private Cloud Appliance Concepts Guide.

If you select a flexible shape, then you must specify the number of OCPUs you want.
You can optionally specify the total amount of memory you want. The default value for
gigabytes of memory is 16 times the number you specify for OCPUs. Click inside each
value field to see the minimum and maximum allowed values.

Note:

Allocate at least 2 OCPUs and 32 GB memory for every 10 running pods.
You might need to allocate more resources, depending on the workloads that
are planned. See Resource Management for Pods and Containers.

Boot Volume: (Optional) Check the box to specify a custom boot volume size.

Boot volume size (GB): The default boot volume size for the selected image is
shown. To specify a larger size, enter a value from 50 to 16384 in gigabytes (50 GB to
16 TB) or use the increment and decrement arrows.

7-2

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Chapter 7
Creating an OKE Worker Node Pool

If you specify a custom boot volume size, you need to extend the partition to take
advantage of the larger size. Oracle Linux platform images include the oci-utils
package. Use the oci-growfs command from that package to extend the root partition
and then grow the file system. See oci-growfs.

« Pod Communication (VCN-Native Pod Networking clusters only)

Pod Communication Subnet: Select a subnet that has configuration like the "pod"
subnet described in Creating a VCN-Native Pod Networking Pod Subnet.

Number of Pods per node: The maximum number of pods that you want to run on a
single worker node in a node pool. The default value is 31. You can enter a number
from 1 to 110. The number of VNICs allowed by the shape you specify (see "Shape"
above) limits this maximum pods number. See Node Shapes and Number of Pods. To
conserve the pod subnet's address space, reduce the maximum number of pods you
want to run on a single worker node. This reduces the number of IP addresses that are
pre-allocated in the pod subnet.

If you check the box to Use Security Rules in Network Security Group (NSG), select
the Add Network Security Group button and select an NSG from the drop-down list.
You might need to change the compartment to find the NSG you want. Secondary
VNICs from the pod subnet will be attached to this NSG.

e Cordon and Drain: (Optional) Enter the number of minutes of eviction grace duration,
or use the arrows to decrease or increase the number of minutes of eviction grace
duration. The maximum value and default value is 60 minutes.

— Private Cloud Appliance Release 3.0.2-b1261765. Specify an integer from 0 to 60.
If you enter 0, the value will be converted to 0.333 because 20 seconds is the
minimum eviction grace duration. If you then select the up arrow, the value will
change to 1.

— Private Cloud Appliance Release 3.0.2-b1185392. Specify an integer from 1 to 60.

You cannot deselect "Force terminate after grace period." Nodes are deleted after their
pods are evicted or at the end of the eviction grace duration, even if not all pods are
evicted.

For descriptions of cordon and drain and eviction grace duration, see Node and node
pool deletion settings in "Using the OCI CLI".

e SSH Key: The public SSH key for the worker nodes. Either upload the public key file
or copy and paste the content of the file.

« Kubernetes Labels: Select the Add Kubernetes Label button and enter a key name
and value. You can use these labels to target pods for scheduling on specific nodes or
groups of nodes. See the description and example in the OCI CLI procedure.

* Node Pool Tags: Defined or free-form tags for the node pool resource.

Note:

Do not specify values for the OraclePCA-OKE.cluster_id defined tag or for
the ClusterResourceldentifier free-form tag. These tag values are system-
generated and only applied to nodes (instances), not to the node pool
resource.

* Node Tags: Defined or free-form tags that are applied to every node in the node pool.

ORACLE .

https://docs.oracle.com/en-us/iaas/oracle-linux/oci-utils/index.htm#oci-growfs

Chapter 7
Creating an OKE Worker Node Pool

@© Important:

Do not specify values for the OraclePCA-OKE.cluster_id defined tag or for
the ClusterResourceldentifier free-form tag. These tag values are system-
generated.

6. Select the Add Node Pool button.

The details page for the node pool is displayed. Scroll to the Resources section and select
Work Requests to see the progress of the node pool creation and see nodes being added
to the Nodes list. The work request status will be Accepted until the cluster is in either
Active state or Failed state.

To identify these nodes in a list of instances, note that the names of these nodes are in the
format oke-ID, where IDis the first 32 characters after the pca_name in the node pool
OCID. Search for the instances in the list whose names contain the 1D string from this
node pool OCID.

Using the OCI CLI

1. Get the information you need to run the command.

ORACLE

The OCID of the compartment where you want to create the node pool: oci iam
compartment list

The OCID of the cluster for this node pool: oci ce cluster list
The name of the node pool. Avoid using confidential information.

The placement configuration for the nodes, including the worker subnet OCID and fault
domain. See the "Placement configuration" description in the Compute Web Ul
procedure. Use the following command to show the content and format of this option:

$ oci ce node-pool create --generate-param-json-input placement-configs

Use the following command to list fault domains: oci iam fault-domain list. Do not
specify more than one fault domain or more than one subnet in the placement
configuration. To allow the system to select the best fault domains, do not specify any
fault domain.

(VCN-Native Pod Networking clusters only) The OCID of the pod subnet. See Creating
a VCN-Native Pod Networking Pod Subnet. See also the description in Pod
Communication in the preceding Compute Web Ul procedure. Use the --pod-subnet-
ids option. Although the --pod-subnet-ids option value is an array, you can specify
only one pod subnet OCID.

The maximum number of pods that you want to run on a single worker node in a node
pool. Use the --max-pods-per-node option. The default value is 31. You can enter a
number from 1 to 110. The number of VNICs allowed by the shape you specify (see
"The name of the shape" below) limits this maximum pods number. See Node Shapes
and Number of Pods. To conserve the pod subnet's address space, reduce the
maximum number of pods you want to run on a single worker node. This reduces the
number of IP addresses that are pre-allocated in the pod subnet.

(Optional) The OCID of the Network Security Group to use for the pods in this node
pool. Use the --pod-nsg-ids option. You can specify up to five NSGs.

The OCID of the image to use for the nodes in this node pool.

Use the following command to get the OCID of the image that you want to use:

7-4

ORACLE

Chapter 7
Creating an OKE Worker Node Pool

$ oci compute image list --compartment-id compartment OCID

If the image that you want to use is not listed, you can get the OCID of the image from
the output of the ce node-pool get command for a node pool where you used this
image before.

Note:

The image that you specify must have "-0KE-" in itS display-name and must
not have a Kubernetes version that is newer than the Kubernetes version
that you specified when you created the cluster.

The Kubernetes version for the cluster is shown in cluster 1list output. The
Kubernetes version for the image is shown in the display-name property in image
list output. The Kubernetes version of the following image is 1.29.9.

"display-name": "uln-pca-Oracle-Linux8-0KE-1.29.9-20250325.0ci"

If more than one image has the exact same Kubernetes version, select the newest
image, according to the date in the image name.

Do not specify the --kubernetes-version option in the node-pool create command.

You can specify a custom boot volume size in gigabytes. The default boot volume size
is 50 GB. To specify a custom boot volume size, use the --node-source-details
option to specify both the boot volume size and the image. You cannot specify both --
node-image-id and --node-source-details. Use the following command to show the
content and format of the node source details option.

$ oci ce node-pool create --generate-param-json-input node-source-details

If you specify a custom boot volume size, you need to extend the partition to take
advantage of the larger size. Oracle Linux platform images include the oci-utils
package. Use the oci-growfs command from that package to extend the root partition
and then grow the file system. See oci-growfs.

The name of the shape of the worker nodes in this node pool. For Private Cloud
Appliance X10 systems, the shape of the control plane nodes is
VM.PCAStandard.E5.Flex and you cannot change it. For all other Private Cloud
Appliance systems, the default shape is VM.PCAStandardl.1, and you can specify a
different shape.

If you specify a flexible shape, then you must also specify the shape configuration, as
shown in the following example. You must provide a value for ocpus. The memoryInGBs
property is optional; the default value in gigabytes is 16 times the number of ocpus.

--node-shape-config '{"ocpus": 32, "memoryInGBs": 512}'

Note:

Allocate at least 2 OCPUs and 32 GB memory for every 10 running pods.
You might need to allocate more resources, depending on the workloads that
are planned. See Resource Management for Pods and Containers.

7-5

https://docs.oracle.com/en-us/iaas/oracle-linux/oci-utils/index.htm#oci-growfs
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

ORACLE

Chapter 7
Creating an OKE Worker Node Pool

If you specify a shape that is not a flexible shape, do not specify --node-shape-
config. The number of OCPUs and amount of memory are set to the values shown for
this shape in "Standard Shapes" in Compute Shapes in the Oracle Private Cloud
Appliance Concepts Guide.

(Optional) The OCID of the Network Security Group to use for the nodes in this node
pool. Use the --nsg-ids option. Do not specify more than one NSG.

(Optional) Labels. Setting labels on nodes enables you to target pods for scheduling
on specific nodes or groups of nodes. Use this functionality to ensure that specific
pods only run on nodes with certain isolation, security, or regulatory properties.

Use the --initial-node-labels option to add labels to the nodes. Labels are a list of
key/value pairs to add to nodes after they join the Kubernetes cluster. See "Metadata
Key Limits" in the Compute Instance Concepts chapter of the Oracle Private Cloud
Appliance Concepts Guide for information about metadata limits.

The following is an example label to apply to the nodes in the node pool:

--initial-node-labels '[{"key":"disktype","value":"ssd"}]

An easy way to select nodes based on their labels is to use nodeSelector in the pod
configuration. Kubernetes only schedules the pod onto nodes that have each of the
labels that are specified in the nodeSelector section.

The following example excerpt from a pod configuration specifies that pods that use
this configuration must be run on nodes that have the ssd disk type label:

nodeSelector:
disktype: ssd

(Optional) Node metadata. Use the --node-metadata option to attach custom user
data to nodes. See the following proxy settings item for a specific example.

See "Metadata Key Limits" in the Compute Instance Concepts chapter of the Oracle
Private Cloud Appliance Concepts Guide for information about metadata limits. The
maximum size of node metadata is 32,000 bytes.

(Optional) Proxy settings. If your network requires proxy settings to enable worker
nodes to reach outside registries or repositories, for example, create an argument for
the --node-metadata option.

In the --node-metadata option argument, provide values for crio-proxy and crio-
noproxy as shown in the following example file argument:

{
"crio-proxy": "http://your proxy.your domain name:your port",
"crio-noproxy":
"localhost,127.0.0.1, your _domain name,ocir.io,Kubernetes cidr,pods cidr"

}

If the cluster is using VCN-Native Pod Networking, add 169.254.169.254 to the
noproxy setting, as in the following example:

"crio-noproxy":
"localhost,127.0.0.1, your_domain name,ocir.io,Kubernetes cidr,pods cidr,169.254.1
69.254"

(Optional) Node and node pool deletion settings. You can specify how to handle node
deletion when you delete a node pool, delete a specified node, decrement the size of
the node pool, or change the node pool nodes placement configuration. These node
deletion parameters can also be set or changed when you update the node pool,
delete a specified node, or delete the node pool.

7-6

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-compute-instances.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-compute-instances.html

Chapter 7
Creating an OKE Worker Node Pool

To specify node pool deletion settings, create an argument for the --node-eviction-
node-pool-settings option. You can specify the eviction grace duration
(evictionGraceDuration) for nodes. Nodes are always deleted after their pods are
evicted or at the end of the eviction grace duration.

— Eviction grace duration. This value specifies the amount of time to allow to cordon
and drain worker nodes.

A node that is cordoned cannot have new pods placed on it. Existing pods on that
node are not affected.

When a node is drained, each pod's containers terminate gracefully and perform
any necessary cleanup.

The eviction grace duration value is expressed in ISO 8601 format: for example,
PT45S, PT20M, or PT39M21S. The default value and the maximum value are 60
minutes (PT60M). The minimum value is 20 seconds (PT20S). OKE always
attempts to drain nodes for at least 20 seconds.

— Force delete. Nodes are always deleted after their pods are evicted or at the end
of the eviction grace duration. After the default or specified eviction grace duration,
the node is deleted, even if one or more pod containers are not completely
drained.

The following shows an example argument for the --node-eviction-node-pool-
settings option. If you include the isForceDeleteAfterGraceDuration property, then
its value must be true. Nodes are always deleted after their pods are evicted or at the
end of the eviction grace duration.

--node-eviction-node-pool-settings '{"evictionGraceDuration": "PT30M",
"isForceDeleteAfterGraceDuration": true}'

Note:

If you use Terraform and you specify node eviction node pool settings,
then you must explicitly set is force delete after grace duration to
true, even though true is the default value. The

is force delete after grace duration property setting is not optional if
you are using Terraform.

* (Optional) Tags. Add defined or free-form tags for the node pool resource by using the
--defined-tags or --freeform-tags options. Do not specify values for the
OraclePCA-OKE.cluster_id defined tag or for the ClusterResourceldentifier free-form
tag. These tag values are system-generated and only applied to nodes (instances), not
to the node pool resource.

To add defined or free-form tags to all nodes in the node pool, use the --node-
defined-tags and --node-freeform-tags options.

© Important:

Do not specify values for the OraclePCA-OKE.cluster_id defined tag or for
the ClusterResourceldentifier free-form tag. These tag values are system-
generated.

2. Run the create node pool command.

ORACLE s

Chapter 7
Updating an OKE Node Pool

Example:

See the preceding Compute Web Ul procedure for information about the options shown in
this example and other options such as --node-boot-volume-size-in-gbs and --nsg-ids.
The --pod-subnet-ids option is only applicable if the cluster uses VCN-Native Pod
Networking.

$ oci ce node-pool create \

--cluster-id ocidl.cluster.unique ID --compartment-id ocidl.compartment.unique ID \
--name node pool name --node-shape shape name --node-image-id ocidl.image.unique ID \
--placement-configs

'[{"availabilityDomain":"AD-1", "subnetId":"ocidl.subnet.unique ID"}]' \
--pod-subnet-ids '["ocidl.subnet.unique ID"]' --size 10 --ssh-public-key
"public key text"

The output from this node-pool create command is the same as the output from the
node-pool get command. The cluster OCID is shown, and a brief summary of each node
is shown. For more information about a node, use the compute instance get command
with the OCID of the node.

Use the work-request get command to check the status of the node pool create
operation. The work request OCID is in created-by-work-request-id in the metadata
section of the cluster get output.

$ oci ce work-request get --work-request-id workrequest OCID

The work request status will be ACCEPTED until the cluster is in either Active state or Failed
state.

To identify these nodes in a list of instances, note that the names of these nodes are in the
format oke-ID, where IDis the first 32 characters after the pca_name in the node pool
OCID. Search for the instances in the list whose names contain the 1D string from this
node pool OCID.

Node Pool Next Steps

1. Configure any registries or repositories that the worker nodes need. Ensure you have
access to a self-managed public or intranet container registry to use with the OKE service
and your application images.

2. Create a service to expose containerized applications outside the Private Cloud Appliance.
See Exposing Containerized Applications.

3. Create persistent storage for applications to use. See Adding Storage for Containerized
Applications.

Updating an OKE Node Pool

You can update any configuration that you can set when you create a node pool except for the
compartment where nodes will be created. See Creating an OKE Worker Node Pool for
property descriptions.

When you update node properties, by default existing nodes are not updated. The updated
values only apply to new nodes that are created. New nodes are created when you increase
the node count, change the fault domain, or change the subnet.

ORACLE .

Chapter 7
Updating an OKE Node Pool

@© Important:

If you change the fault domain or subnet of a node pool, existing worker nodes are
terminated and new worker nodes are created using the updated configuration.

If you make changes that add new worker nodes, see Node Pool Next Steps.

To replace existing nodes with new nodes that use these updated settings, see Node Cycling
an OKE Node Pool.

Using the Compute Web Ul

1
2
3.
4

5.

ORACLE

On the dashboard, select Containers / View Kubernetes Clusters (OKE).
Select the name of the cluster that contains the node pool that you want to update.
On the cluster details page, scroll to the Resources section, and select Node Pools.

For the node pool that you want to update in the Node Pools list, select the Actions menu
and select Edit.

The Edit Node Pool dialog opens. You can change any configuration except the
compartment where new nodes will be created. See Creating an OKE Worker Node Pool
for property descriptions. The updated configuration only applies to new nodes that are
created, as described at the beginning of this topic.

Cordon and Drain settings

Enter the number of minutes of eviction grace duration, or use the arrows to decrease or
increase the number of minutes of eviction grace duration. The maximum value and default
value is 60 minutes.

» Private Cloud Appliance Release 3.0.2-b1261765. You can specify an integer from 0 to
60. If you enter 0O, the value will be converted to 0.333 because 20 seconds is the
minimum eviction grace duration. The field will show a decimal value if the existing
value was set in ISO 8601 format and included a seconds value. For example, an
existing value of PT45S will show as 0.45, PT20M will show as 20, and PT39M21S will
show as 39.35.

« Private Cloud Appliance Release 3.0.2-b1185392. Specify an integer from 1 to 60. If
the existing value was set in ISO 8601 format and includes a seconds value, that value
will display as the next higher integer number of minutes. The seconds value will still
be used, even though it does not display.

You cannot deselect "Force terminate after grace period." For descriptions of cordon and
drain and eviction grace duration, see Node and node pool deletion settings in "Using the
OCI CLI" in Creating an OKE Worker Node Pool.

Note:

Do not specify values for the OraclePCA-OKE.cluster_id defined tag or for the
ClusterResourceldentifier free-form tag. These tag values are system-generated
and only applied to nodes (instances), not to the node pool resource.

When you are finished making changes, select Save Changes.

7-9

Chapter 7
Node Cycling an OKE Node Pool

The details page for the node pool is displayed. In addition to Node Pool Information and
Tags tabs, the node pool details page has a Placement Configuration tab.

The updated configuration only applies to new nodes that are created by this procedure or
in the future, as described at the beginning of this topic.

To replace existing nodes with new nodes that use these updated settings, see Node
Cycling an OKE Node Pool.

Using the OCI CLI

1.

Get the information you need to run the command.
e The OCID of the node pool that you want to update: oci ce node-pool list

e (Optional) Node and node pool deletion settings. Use the --node-eviction-node-
pool-settings option or the --override-eviction-grace-duration option to set the
eviction grace duration for nodes. Nodes are always deleted after their pods are
evicted or at the end of the eviction grace duration. See the description in Creating an
OKE Worker Node Pool.

e (Optional) Labels. To add labels to new nodes, use the --initial-node-labels
option. Labels on existing nodes cannot be changed by using the --initial-node-
labels option. Labels on existing nodes can be modified using kubectl. For more
information about node labels, see Creating an OKE Worker Node Pool.

* (Optional) Tags. Add, change, or delete defined or free-form tags for the node pool
resource by using the --defined-tags and --freeform-tags options. Do not specify
values for the OraclePCA-OKE.cluster_id defined tag or for the
ClusterResourceldentifier free-form tag. These tag values are system-generated and
only applied to nodes (instances), not to the node pool resource.

To add tags to nodes that are newly added to the node pool, use the --node-defined-
tags and --node-freeform-tags options.

(Optional) Create an argument for the --node-pool-cycling-details option, and use that
option to apply these updates to all of the nodes in the node pool.

Without the --node-pool-cycling-details option, the updated configuration specified in
this node-pool update command only applies to new nodes that are created by this
command or in the future, as described at the beginning of this topic.

To replace existing nodes with new nodes that use these updated settings, specify the --
node-pool-cycling-details option as described in Node Cycling an OKE Node Pool.

Run the update node pool command.
Syntax:

$ oci ce node-pool update --node-pool-id ocidl.nodepool.unique ID \
new_configuration settings

Node Cycling an OKE Node Pool

By default when you update a node pool, only new nodes that are added during this update or

ORACLE

that are added later receive the updates. To replace existing nodes with new nodes that use
updated settings, enable the node cycling option.

Node cycling performs an in-place update of all existing nodes in the node pool to the latest

specified configuration. New nodes are created, workloads moved onto them from existing
nodes, current node pool updates applied, and the original nodes terminated.

7-10

ORACLE

Chapter 7
Node Cycling an OKE Node Pool

You can set the maximum number of nodes that are starting or terminating at any particular
time.

e Maximum surge. The maximum number of new nodes that can be starting at any time
during this update operation. Set this value to avoid adding too many new nodes before
existing nodes are terminated, which could incur excessive cost. The default value is 1.
The maximum value is 5.

e Maximum unavailable. The maximum number of existing nodes that can be terminating at
any time during this update operation. Set this value to ensure that enough nodes remain
to handle the workload. The default value is 0. The maximum value is 7.

One of these values must be greater than 0.

Both of these values can be set to either a number (from 0 to the configured number of nodes
in the node pool, but not greater than the maximum cited above) or a percentage (from 0% to
100%, but not a percentage that would result in a number greater than the maximum cited
above). These values can be a maximum of four characters.

If you set either of these properties to a percent value that exceeds the maximum allowed
number of nodes, the error message tells you the maximum allowed percent value for this
node pool.

Note:

If the node cycling operation fails (for example, the operation times out), try re-
running the operation. You might need to run the node cycling operation multiple
times if the system is loaded and running at scale.

Using the Compute Web Ul

Follow the Compute Web Ul procedure in Updating an OKE Node Pool to update the node
pool configuration.

1. On the node pool details page, click the Cycle Nodes button.

2. Inthe Cycle Nodes dialog, enter values for the Maximum Surge and Maximum Unavailable
properties.

See the rules at the beginning of this topic.

3. Click the Cycle Nodes button in the dialog to start the node pool update operation.
To monitor the progress of the update operation, view the status of the associated work
request.

Using the OCI CLI

1. Construct a command to update the node pool configuration as described in the Compute
Web Ul procedure in Updating an OKE Node Pool.

2. Inthat same command (not later as with the Compute Web Ul procedure) include the --
node-pool-cycling-details option.

In addition to setting maximumUnavailable and maximumSurge, enable node cycling by
setting isNodeCyclingEnabled to true. By default, isNodeCyclingEnabled is false, and
node cycling will not be performed if you set only maximumUnavailable Or maximumSurge
and do not set isNodeCyclingEnabled to true.

7-11

Chapter 7
Using Node Doctor to Troubleshoot Worker Node Issues

$ oci ce node-pool update --node-pool-id ocidl.nodepool.unique ID \
new_configuration settings \

--node-pool-cycling-details

'{"isNodeCyclingEnabled":true, "maximumUnavailable":"value", "maximumSurge":"value"}'
See the beginning of this topic for the possible values.

In the following example, the image is updated for all nodes in the node pool:

$ oci ce node-pool update --node-pool-id ocidl.nodepool.unique ID \
--node-source-details '{"imageId":"ocidl.image.unique ID","sourceType":"IMAGE"}' \
--node-pool-cycling-details

'{"isNodeCyclingEnabled":true, "maximumUnavailable":"5%", "maximumSurge":"5%"}"'

To monitor the progress of the update operation, view the status of the associated work
request.
Find the work request OCID:

oci ce work-request list --compartment-id ocidl.compartment.unique ID \
--resource-id ocidl.nodepool.unique_ ID

Show the current state of the work request:

oci ce work-request get --work-request-id ocidl.workrequest.unique ID

Using Node Doctor to Troubleshoot Worker Node Issues

ORACLE

If a cluster has a worker node that is in a state other than Active or Running, use the Node
Doctor utility to troubleshoot the issues.

Node Doctor scans a worker node and reports the health status of the node. Node Doctor can
do the following tasks:

* ldentify potential problem areas and provide references to information to help you address
those problem areas. See Print Troubleshooting Information.

* Collect node system information into a support bundle if you need help from Oracle
Support. See Create a Support Bundle.

Use Node Daoctor only on worker nodes. Because Node Doctor is installed on OKE images,
Node Doctor is also available on cluster control plane nodes. Do not use Node Doctor on
control plane nodes.

Check the Oracle Private Cloud Appliance Release Notes for the release in which Node Doctor
was first delivered. If your node pools were created on that release or later, then you can
proceed with the instructions in this topic. If your worker node image is from an earlier release,
then that node does not have access to Node Doctor. Note that if your Private Cloud Appliance
is running a release that includes Node Doctor, then you could use node cycling to update
older worker node images. See Node Cycling an OKE Node Pool.

Connect to the Worker Node Using SSH
Perform the following steps to connect to the worker node that you want to troubleshoot.

1. Ensure that you have a private and public SSH key pair.

You must have the private key that goes with the public key that was added to the node
when the node was created.

2. Get the node user name. OKE images have the initial user name opc configured.

3. Get the IP address of the worker node that you need to troubleshoot.

7-12

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/relnotes/

Chapter 7
Using Node Doctor to Troubleshoot Worker Node Issues

The IP address is on the Networking tab of the node details page in the Compute Web UI.
« If the node has a public IP address, use the public IP address.
e If the node is on a private IP, then connect to the node via the bastion host.

If a bastion host is not available, see Creating a Bastion.

4. Enter the following command at a shell prompt on your local system (public IP address) or
on the bastion host (private IP address):

ssh -1 private key file usernameQip-address

* private key file. The full path and name of the file that contains the private SSH key
that goes with the public key that was added to the node when the node was created.

e username. The default user name for the node. This value probably is opc.
e ip-address. The node IP address that you got in Step 3.
5. Ensure that you have permission to execute the following file:

/usr/local/bin/node-doctor.sh

Print Troubleshooting Information

While logged in to the worker node as described in Connect to the Worker Node Using SSH,
enter the following command to print information that identifies potential problem areas:

$ sudo /usr/local/bin/node-doctor.sh --check

Use the following command to see more options:

$ sudo /usr/local/bin/node-doctor.sh --help

Create a Support Bundle

If you are not able to resolve the issue, use the following command to create a support bundle
with relevant information for Oracle Support:

$ sudo /usr/local/bin/node-doctor.sh --generate

The support bundle is in the /tmp directory as oke-support-bundle-dateTtime.tar.

Note:

Monitor the /tmp directory to ensure that it does not fill up. Remove old files by using
the rm command, for example.

See the following resources for information about uploading a bundle to a support ticket:
e Quick User Guide to Upload Files to My Oracle Support - MOS (Doc ID 1588459.1)
e How to Upload Files to Oracle Support (Doc ID 1547088.2)

e Using Support Bundles in the Oracle Private Cloud Appliance Administrator Guide

ORACLE 7-13

https://docs.oracle.com/en-us/iaas/Content/Bastion/Tasks/create-bastion.htm
https://support.oracle.com/epmos/faces/DocContentDisplay?id=1588459.1
https://support.oracle.com/epmos/faces/DocContentDisplay?id=1547088.2
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-health-support-bundles.html#adm-health-support-bundles

Chapter 7
Deleting an OKE Node Pool Node

Deleting an OKE Node Pool Node

ORACLE

These procedures describe how to explicitly delete a worker node. Worker nodes are also
deleted when you update a node pool to scale down the node pool or change the subnet or
fault domains of the node pool. See Updating an OKE Node Pool.

Deleting a worker node permanently deletes the node. You cannot recover a deleted worker
node.

When you delete a node, by default a new node is created to satisfy the node count set for the
pool. To override this behavior, select the option to decrease node pool size.

Do not use the kubectl delete node command to terminate worker nodes in an OKE cluster.
The kubectl delete node command removes the worker node from the cluster's etcd key-
value store, but the command does not terminate the underlying compute instance.

Using the Compute Web Ul

On the dashboard, select Containers / View Kubernetes Clusters (OKE).

Select the name of the cluster that contains the node that you want to delete.

On the cluster details page, scroll to the Resources section, and select Node Pools.
Select the name of the node pool that contains the node that you want to delete.
On the node pool details page, scroll to the Resources section, and select Nodes.

For the node that you want to delete, select the Actions menu, and select Delete.

N o g & 0w DhN PR

Confirm the deletion.

a. If you do not want a new node to be automatically created to replace the deleted node,
select Decrease node pool size.

b. Check the box if you want to override the eviction grace duration in the cordon and
drain settings for the node.

Use the arrows to decrease or increase the number of minutes of eviction grace
duration. See the description of this field in Updating an OKE Node Pool.

You cannot deselect "Force terminate after grace period." The node is deleted after its
pods are evicted or at the end of the eviction grace duration, even if not all pods are
evicted.

For descriptions of cordon and drain and eviction grace duration, see "Node and node
pool deletion settings" in "Using the OCI CLI" in Creating an OKE Worker Node Pool.

c. Select the Delete button on the dialog.

Using the OCI CLI

1. Get the information you need to run the command.
e OCID of the node pool: oci ce node-pool list
e OCID of the node: oci ce node-pool list

2. Run the delete node pool node command.

If you do not want a new node to be automatically created to replace the deleted node,
specify the --is-decrement-size option.

Example:

7-14

Chapter 7
Deleting an OKE Node Pool

$ oci ce node-pool delete-node --node-pool-id ocidl.nodepool.unique ID \
--node-id ocidl.instance.unique ID --is-decrement-size true --force

You can use the --override-eviction-grace-duration option to set a new value for
evictionGraceDuration for this node deletion. See the description of --node-eviction-
node-pool-settings in Creating an OKE Worker Node Pool. For node-pool delete-node,
this new eviction grace duration value only applies to the node being deleted.

Deleting an OKE Node Pool

Deleting a node pool permanently deletes the node pool. You cannot recover a deleted node
pool.

Using the Compute Web Ul

On the dashboard, select Containers / View Kubernetes Clusters (OKE).
Select the name of the cluster that contains the node pool that you want to delete.
On the cluster details page, scroll to the Resources section, and select Node Pools.

For the node pool that you want to delete, select the Actions menu, and select Delete.

g & B d P

Confirm the deletion.
a. Enter the name of the node pool to confirm that you want to delete the node pool.

b. Check the box if you want to override the eviction grace duration in the cordon and
drain settings for the nodes in the pool.

Use the arrows to decrease or increase the number of minutes of eviction grace
duration. See the description of this field in Updating an OKE Node Pool.

You cannot deselect "Force terminate after grace period.” Nodes are deleted after their
pods are evicted or at the end of the eviction grace duration, even if not all pods are
evicted.

For descriptions of cordon and drain and eviction grace duration, see "Node and node
pool deletion settings" in "Using the OCI CLI" in Creating an OKE Worker Node Pool.

c. Select the Delete button on the dialog.

Using the OCI CLI
1. Getthe OCID of the node pool that you want to delete: oci ce node-pool list
2. Run the delete node pool command.

Example:

$ oci ce node-pool delete --node-pool-id ocidl.nodepool.unique ID --force

You can use the --override-eviction-grace-duration option to set a new value for
evictionGraceDuration for this node pool deletion. See the description of --node-
eviction-node-pool-settings in Creating an OKE Worker Node Pool.

ORACLE 7-15

Exposing Containerized Applications

Do the following to expose an application deployment so that worker node applications can be
reached from outside the Private Cloud Appliance:

* Create an external load balancer.

e Update ingress and egress rules as necessary to support the port requirements of your
containerized applications. For example, if any application uses TCP port 3000, then an
ingress rule needs to be added with port 3000.

Create an External Load Balancer

An external load balancer is a Service of type LoadBalancer. The service provides load
balancing for an application that has multiple running instances.

If you use the --service-1b-defined-tags Or --service-1b-flexible-tags options to specify
tags to be applied to external load balancers. then ensure that the applicable dynamic group
includes the following policy. See Creating a Cluster Dynamic Group.

allow dynamic-group dynamic-group-name to use tag-namespaces in compartment compartment-
name

Ensure that the load balancer shape parameter has one of the following values: either 400Mbps
or flexible. If you specify flexible then you must also provide flex-min and flex-max
annotations. You might need to edit the application deployment file to modify the load balancer
shape value. See Specifying Alternative Load Balancer Shapes and Specifying Flexible Load
Balancer Shapes for more information and examples of how to set these values.

If you want to create a service load balancer on a private cluster (a cluster with a private
worker load balancer subnet), then use the following annotation in your external load balancer
template:

service.beta.kubernetes.io/oci-load-balancer-internal: "true"

Use the following command to create the external load balancer:

kubectl create -f expose 1b

The following is the content of the expose 1b file:

apiVersion: vl
kind: Service
metadata:
name: my-nginx-svc
labels:
app: nginx
annotations:
oci.oraclecloud.com/load-balancer-type: "1b"
service.beta.kubernetes.io/oci-load-balancer-shape: "400Mbps"
spec:
type: LoadBalancer
ports:
- port: 80
selector:
app: nginx

ORACLE a1

https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancers-subtopic.htm#Specifyi
https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancers-subtopic.htm#flexible
https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancers-subtopic.htm#flexible

ORACLE

Chapter 8

The following command shows more information about this external load balancer. The
LoadBalancer Ingress IP address is the IP address that is used to reach node applications
from outside the Private Cloud Appliance. In the Compute Web Ul, the LoadBalancer Ingress
IP address is shown under the heading "IP Address" at the bottom of the first column on load

balancer details page, followed by the label "(Public)."

kubectl describe svc my-nginx-svc

Name : my-nginx-svc
Namespace: default
Labels: app=nginx
Annotations: oci.oraclecloud.com/load-balancer-type: 1lb
service.beta.kubernetes.io/oci-load-balancer-shape: 400Mbps
Selector: app=nginx
Type: LoadBalancer
IP Family Policy: SingleStack
IP Families: IPv4
IP: IP_address
IPs: IP_address
LoadBalancer Ingress: Load Balancer IP address
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 32145/TCP
Endpoints: IP address:port, IP_address+l:port, IP_address+2:port
Session Affinity: None
External Traffic Policy: Cluster
Events:
Type Reason Age From Message

Normal EnsuringLoadBalancer 7mé48s service-controller Ensuring load balancer
Normal EnsuredLoadBalancer 6m40s service-controller Ensured load balancer

Use the following command to list IP addresses and ports for the external load balancer:

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
kubernetes ClusterIP IP _address <none> 443/TCP

my-nginx-svc LoadBalancer IP_address Load Balancer IP address 80:32145/TCP

AGE
6hl7m
5hbm

8-2

Adding Storage for Containerized Applications

You can add persistent storage for use by applications on an OKE cluster node. Storage
created in a container's root file system will be deleted when you delete the container. For
more durable storage for containerized applications, configure persistent volumes to store data
outside of containers.

A persistent volume (PV) is storage that enables your data to remain intact when the
containers to which the storage is connected are terminated.

A PV is a resource in the cluster. A persistent volume claim (PVC) is a request for a PV
resource. A PVC is a storage request that is met by binding the PVC to a PV. A PVC provides
an abstraction layer to the underlying storage.

You can provision PVCs using the following methods:

e Block volumes. Attach volumes from the Private Cloud Appliance Block Volume service.
The volumes are connected to clusters created by OKE using a CSI (Container Storage
Interface) volume plugin deployed on the clusters.

— To provision a regular block volume, see Creating Persistent Block Volume Storage.

— To provision a high performance block volume, see Creating Persistent High
Performance Block Volume Storage.

For information about block volumes on the Private Cloud Appliance, see the Block
Volume Storage Overview chapter in the Oracle Private Cloud Appliance Concepts Guide
and the Block Volume Storage chapter in the Oracle Private Cloud Appliance User Guide.

e File systems. Mount file systems from the Private Cloud Appliance File Storage service.
The File Storage service file systems are mounted inside containers running on clusters
created by OKE using a CSI volume plugin deployed on the clusters.

— Provision a PVC on a new file system using the CSI volume plugin. Create a storage
class and a PVC. The CSI volume plugin dynamically creates both a new File Storage
service file system and a new persistent volume backed by the new file system. See
Creating Persistent File System Storage Using the CSI Volume Plugin.

— Provision a PVC on an existing file system. Create a file system, mount target, PV, and
PVC. See Creating Persistent File System Storage Using an Existing File System.

For information about file systems on the Private Cloud Appliance, see the File Storage
Overview chapter in the Oracle Private Cloud Appliance Concepts Guide and "Creating a
File System, Mount Target, and Export" in the File System Storage chapter in the Oracle
Private Cloud Appliance User Guide.

Creating Persistent Block Volume Storage

ORACLE

This procedure automatically creates the requested oci-bv storage class; you do not need to
create it. This procedure starts with using the kubectl command to create the persistent
volume claim.

If you need to provision a high performance block volume, see Creating Persistent High
Performance Block Volume Storage.

9-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-block-storage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-block-storage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-file-storage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-file-storage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html

ORACLE

Chapter 9
Creating Persistent Block Volume Storage

Create a persistent volume claim, specifying the storage class hame oci-bv.

$ kubectl create -f csi-bvs-pvc.yaml

The following is the content of the csi-bvs-pvc.yanl file:

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: mynginxclaim
spec:
storageClassName: "oci-bv"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 50Gi

The persistent volume claim name in the metadata section is user-specified. You can have
more than one persistent volume claim on a persistent volume.

For the value of accessModes, specify ReadiiriteOnce; do not use ReadiiriteMany.
The value of the storage property must be at least 50 gigabytes.
Run the following command to verify that the PVC has been created:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
mynginxclaim Pending oci-bv 4m

The PVC has a status of Pending because the oci-bv storage class definition includes the
following:

volumeBindingMode: WaitForFirstConsumer
Use the PVC when creating other objects, such as pods.

For example, you could create a new pod from the following pod definition, which instructs
the system to use the mynginxclaim PVC as the nginx volume, which is mounted by the
pod at /data:

apiVersion: vl
kind: Pod
metadata:
name: nginx
spec:
containers:
- name: nginx
image: nginx:latest
ports:
- name: http
containerPort: 80
volumeMounts:
- name: data
mountPath: /usr/share/nginx/html
volumes:
- name: data
persistentVolumeClaim:
claimName: mynginxclaim

Run the following command to verify that the PVC has been bound to a new PV:

9-2

Chapter 9
Creating Persistent High Performance Block Volume Storage

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
mynginxclaim Bound csi-unique ID 50Gi RWO oci-bv

Run the following command to verify that the pod is using the new PVC:

$ kubectl describe pod nginx

Creating Persistent High Performance Block Volume Storage

This procedure creates a high performance block volume as persistent storage. If you do not
need a high performance block volume, use the instructions in Creating Persistent Block
Volume Storage.

ORACLE

1.

Create a high performance block volume using the CSI plugin specified by the oci-bv-
high storage class definition (provisioner: blockvolume.csi.oraclecloud.com).

$ kubectl create -f csi-bvs-high.yaml

The following is the content of the csi-bvs-high.yanl file:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: oci-bv-high
provisioner: blockvolume.csi.oraclecloud.com
parameters:

vpusPerGB: "20"

attachment-type: "paravirtualized"
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
reclaimPolicy: Delete

Create a persistent volume claim, specifying the storage class name oci-bv-high.

$ kubectl create -f csi-bvs-high-pvc.yaml

The following is the content of the csi-bvs-high-pvc.yanl file:

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: mynginxclaim-high
spec:
storageClassName: "oci-bv-high"
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 50Gi

The persistent volume claim name in the metadata section is user-specified. You can have
more than one persistent volume claim on a persistent volume.

For the value of accessModes, specify ReadiiriteOnce; do not use ReadiiriteMany.

The value of the storage property must be at least 50 gigabytes.

Run the following command to verify that the PVC has been created:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
mynginxclaim-high Pending oci-bv-high 4m

9-3

Chapter 9
Creating Persistent File System Storage Using the CSI Volume Plugin

The PVC has a status of Pending because the oci-bv-high storage class definition
includes the following:

volumeBindingMode: WaitForFirstConsumer
Use the PVC when creating other objects, such as pods.

For example, you could create a new pod from the following pod definition, which instructs
the system to use the mynginxclaim-high PVC as the nginx volume, which is mounted by
the pod at /data:

apiVersion: vl
kind: Pod
metadata:
name: nginx-high
spec:
containers:
- name: nginx
image: nginx:latest
ports:
- name: http
containerPort: 80
volumeMounts:
- name: data
mountPath: /usr/share/nginx/html
volumes:
- name: data
persistentVolumeClaim:
claimName: mynginxclaim-high

Run the following command to verify that the PVC has been bound to a new PV:

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS
AGE
mynginxclaim-high Bound csi-unique ID 50Gi RWO oci-bv-high

Run the following command to verify that the pod is using the new PVC:

$ kubectl describe pod nginx-high

Creating Persistent File System Storage Using the CSI Volume

Plugin

ORACLE

This procedure provisions a PVC on a new file system using the CSI volume plugin. Use the
kubectl command to create the storage class and persistent volume claim. The CSI volume
plugin provisions the PVC on a new file system.

You can have only one mount target and one file system per VCN. You can have multiple
storage classes, persistent volumes, and persistent volume claims per cluster. All storage
classes, persistent volumes, and persistent volume claims in a cluster share one NFS.

1. Create a new storage class that uses the fss.csi.oraclecloud.com provisioner.

$ kubectl create -f sc.yaml

The following is the content of the sc.yaml manifest file:

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:

9-4

ORACLE

Chapter 9
Creating Persistent File System Storage Using the CSI Volume Plugin

name: fss-dyn-storage
provisioner: fss.csi.oraclecloud.com
parameters:

availabilityDomain: AD-1

compartmentOcid: ocidl.compartment.unique ID

mountTargetSubnetOcid: ocidl.subnet.unique ID

exportPath: AUTOSELECT

exportOptions:
"[{\"source\":\"0.0.0.0/0\",\"requirePrivilegedSourcePort\":false, \"access\":\"READ W
RITE\", \"identitySquash\":\"NONE\"}]"

encryptInTransit: "false"

e The name for the new storage class is fss-dyn-storage.

e Either mountTargetSubnetOcid Of mountTargetOcid is required. The value of
mountTargetSubnetOcid is the OCID of the subnet where you want the CSI plugin to
create a mount target. The value of mountTargetOcid is the OCID of an existing mount
target. If you specify both mountTargetSubnetOcid and mountTargetOcid,
mountTargetOcid is used and mountTargetSubnetOcid is ignored.

To ensure that the mount target can be reached from worker nodes, specify the subnet
that has configuration like the "worker" subnet described in Creating OKE Network
Resources or create the mount target on the subnet that has configuration like the
worker subnet. Ensure that TCP port 2049 to the NFS server is open on that subnet.

* The compartmentOcid is optional. This value is the OCID of the compartment where
the new file system (and the new mount target, if mountTargetSubnetOcid is specified)
will be created. The default value is the same compartment as the cluster.

e You must specify AUTOSELECT as the value for exportPath.

e The exportOptions value is the NFS export options entry within the file system export
that defines the access granted to NFS clients when they connect to a mount target.
The source can be a single IP address or CIDR block range. This value is a set of
parameters in JSON format.

e The value of encryptInTransit specifies whether to encrypt data in transit.
Create a PVC to be provisioned by the new file system in the File Storage service.

$ kubectl create -f fss-dyn-claim.yaml

The following is the content of the fss-dyn-claim.yaml manifest file:

apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: fss-dynamic-claim
spec:

accessModes:

- ReadWriteMany

storageClassName: "fss-dyn-storage"

resources:

requests:
storage: 50Gi

Verify that the PVC has been bound to the new persistent volume.

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

fss-dynamic-claim Bound c¢si-fss-£6823a66-8b6f-4c42-9d1£f-d25723e69257 50Gi

RWX fss-dyn-storage 6mé7s

9-5

Chapter 9
Creating Persistent File System Storage Using an Existing File System

4. Use the new PVC when you create objects such as pods.

The following is an example object creation:

$ kubectl create nginx.yaml

The following is the content of the nginx.yaml file. See the claimName on the last line:

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 3
selector:
matchlLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx image url
ports:
- name: http
containerPort: 80
volumeMounts:
- name: persistent-storage
mountPath: /usr/share/nginx/html
volumes:
- name: persistent-storage
persistentVolumeClaim:
claimName: fss-dynamic-claim

Verify that the object is created and deployed:

$ kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 3/3 3 0 104s

Creating Persistent File System Storage Using an Existing File

System

ORACLE

This procedure provisions a PVC on an existing file system. Create a mount target, file system,
and file system export on the Private Cloud Appliance. Then use the kubectl command to
create the storage class, persistent volume, and persistent volume claim.

1. Create a mount target.

@© Important:

To ensure that the mount target can be reached from worker nodes, create the
mount target on the subnet that has configuration like the "worker" subnet
described in Creating OKE Network Resources. Ensure that TCP port 2049 to
the NFS server is open on that subnet.

9-6

ORACLE

Chapter 9
Creating Persistent File System Storage Using an Existing File System

See "Creating a Mount Target" in the File System Storage chapter in the Oracle Private
Cloud Appliance User Guide and see "File Storage Network Ports" in the File Storage
Overview chapter in the Oracle Private Cloud Appliance Concepts Guide.

Note the export set OCID and mount target OCID. The export set OCID is required to
create the file system export, and the mount target OCID is required to create the storage
class. See Steps 3 and 4.

You can have only one mount target per VCN.
Create a file system.

See "Creating a File System" in the File System Storage chapter in the Oracle Private
Cloud Appliance User Guide.

You can create only one file system per VCN. You can have multiple storage classes,
persistent volumes, and persistent volume claims per cluster, and they all share one NFS.

Create a file system export to associate the mount target with the file system.

See "Creating an Export for a File System" in the File System Storage chapter in the
Oracle Private Cloud Appliance User Guide.

« Specify the export set OCID from the output from creating the mount target.

» Specify the longest CIDR (smallest network) in the CIDR range that you specified
when you created the "worker" subnet as described in Creating OKE Network
Resources.

Note the export path and the mount target IP address.

Create a storage class, specifying the mount target OCID from the output of the create
mount target step.

$ kubectl create -f sc.yaml

The following is the content of the sc.yaml file:

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: pca-fss
provisioner: fss.csi.oraclecloud.com
parameters:
mntTargetId: ocidl.mounttarget.unique ID

The values of the apiVersion and provisioner properties are standard. The value of the
storage class name in the metadata section is user-specified. You can create more than
one storage class per mount target, and the storage class name is used in the following
steps to create a persistent volume and persistent volume claim.

Use the get sc subcommand to view information about the new storage class:
$ kubectl get sc

Create a persistent volume, specifying the storage class name, the export path, and the
mount target IP address.

The storage class name is in the metadata in the sc.yaml file in the preceding step. The
export path and the mount target IP address are output from the create file system export
step. See Step 3 above.

$ kubectl create -f pv.yaml

The following is the content of the pv. yanl file:

9-7

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-file-storage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-file-storage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html

ORACLE

Chapter 9
Creating Persistent File System Storage Using an Existing File System

apiVersion: vl
kind: PersistentVolume
metadata:
name: fss-pv
spec:
storageClassName: pca-fss
capacity:
storage: 200Gi
accessModes:
- ReadWriteMany
mountOptions:
- nosuid
nfs:
server: mount target IP address
path: "/export/unique ID"
readOnly: false

The persistent volume name in the metadata section is user-specified. You can have more
than one persistent volume in a storage class.

In the nfs section, the server value is the mount target IP address, and the path value is
the export path.

Use the get pv subcommand to view information about the new persistent volume:

$ kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

fss-pv 200Gi RWX Retain Bound default/fss-pvc pca-
fss 20h

Create a persistent volume claim, specifying the persistent volume name and the storage
class name.

The persistent volume name and storage class name are in the output of the get pv
command.

Wait for the PVC status to be Bound before using this storage.

kubectl create -f pvc.yaml

The following is the content of the pvc. yaml file:

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: fss-pvc
spec:
storageClassName: pca-fss
accessModes:
- ReadWriteMany
resources:
requests:
storage: 200Gi
volumeName: fss-pv

The persistent volume claim name in the metadata section is user-specified. You can have
more than one persistent volume claim on a persistent volume.

The value of the accessModes property must be ReadiiriteMany.
The value of the storage property must be at least 50 gigabytes.

Run the following command to view information about the new persistent volume claim:

9-8

Chapter 9
Using a Persistent Volume

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
fss-pvc Bound fss-pv 200G1 RWX pca-fss 2h

Use the PVC when creating other objects, such as pods.

For example, you could create a new pod from the following pod definition, which instructs
the system to use the fss-pvc PVC as the nginx volume, which is mounted by the pod at /
persistent-storage

apiVersion: vl
kind: Pod
metadata:
name: fss-dynamic-app
spec:
containers:
- name: nginx
image: nginx:latest
ports:
- name: http
containerPort: 80
volumeMounts:
- name: persistent-storage
mountPath: /usr/share/nginx/html
volumes:
- name: persistent-storage
persistentVolumeClaim:
claimName: fss-pvc

Run the following command to verify that the pod is using the new PVC:

$ kubectl describe pod fss-dynamic-app

Using a Persistent Volume

ORACLE

To use this persistent storage, create a Kubernetes Deployment and assign a persistent
volume claim.

Using File System Storage
The following example uses file system storage:

$ kubectl create -f nginx-deploy.yaml

The following is the content of the nginx-deploy.yanl file.

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-fss-deployment
spec:
replicas: 3
selector:

matchlLabels:
app: nginx-fss

template:

metadata:
labels:
app: nginx-fss
spec:
containers:
- name: nginx

9-9

ORACLE

Chapter 9
Using a Persistent Volume

image: nginx:latest
volumeMounts:
- mountPath: /usr/share/nginx/
name: data
ports:
- containerPort: 80
name: http
protocol: TCP
volumes:
- name: data
persistentVolumeClaim:
claimName: fss-pvc

Using Block Volume Storage

The following example uses block volume storage:

$ kubectl create -f nginx-deploy.yaml

The following is the content of the nginx-deploy.yaml file.

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-bv-deployment
spec:
replicas: 3
selector:
matchLabels:
app: nginx-bv
template:
metadata:
labels:
app: nginx-bv
spec:
containers:
- name: nginx
image: available internal registry/nginx:latest
volumeMounts:
- mountPath: /usr/share/nginx/
name: data
ports:
- containerPort: 80
name: http
protocol: TCP
volumes:
- name: data
persistentVolumeClaim:
claimName: mynginxclaim

Verify the New Storage Asset
Use the get pod subcommand to show the names of the replicas in the pod:

$ kubectl get pod

nginx-deployment-55££88b668-2k8rt 1/1 Running 0 4mb54s
nginx-deployment-55££88b668-79c2t 1/1 Running 0 4mb54s
nginx-deployment-55££88b668-gpdfd 1/1 Running 0 4mb54s

Log in to the pod and use the Linux df command to show that the application replicas are
using the persistentVolumeClaim storage. The Filesystem column in the df output shows the
mount target IP address and the file system export path.

9-10

Chapter 9
Deleting a Persistent Volume

kubectl exec -it nginx-deployment-55ff88b668-2k8rt -- df -h /usr/share/nginx/html
Filesystem Size
Used Avail Use% Mounted on

XXX .XX.XxXX.Xxx:/export/4fsderwh09ufyf84eillh3gq2x80ou86pg5vcbx3aeec0060xXxXXXXKXXXKXXXKXX 67T
0 67T 0% /usr/share/nginx/html

Deleting a Persistent Volume

This topic describes how to delete a PV, or retain a PV after all associated PVCs are deleted.
To delete PVCs, see Deleting a Persistent Volume Claim.

For file system storage, the default behavior is to retain the PV when all associated PVCs are
deleted.

For block volume storage, the default behavior is to delete the PV when all associated PVCs
are deleted. You might prefer to retain the PV after all associated PVCs are deleted, for
example if the volume contains critical data. See Retaining a Persistent Volume.

If a PV is retained, you can optionally delete the PV later.

Deleting a Persistent Volume Claim

ORACLE

To delete a PVC, first delete all pods that are using that PVC. If you attempt to delete the PVC
while a pod is still using the PVC, the PVC will be stuck in Terminating state and will not be
deleted. When all the pods that are using that PVC are deleted, the PVC will be deleted.

1. List all pods that are using the PVC.
Ensure that you have JQ command line utilities installed to query JSON objects.

Use the following command to list pods across all the namespaces that are associated with
the PVC that you want to delete.

$ kubectl get pods --all-namespaces -o=json | jgq -c '.items[] |

{name: .metadata.name, namespace: .metadata.namespace, claimName: .spec |
select (has ("volumes")) .volumes|[] |

select (has ("persistentVolumeClaim")) .persistentVolumeClaim.claimName} |
select (.claimName != null)'

n m.n non nm.n mn 4 nm.n 1 n
: / : :

{"name":"podl name","namespace":"namespacel name","claimName":"claiml name"}

{"name":"pod2 name","namespace":"namespacel name","claimName":"claiml name"}

{"name":"pod3 name", "namespace":"namespace2 name","claimName":"claim2 name"}

To list pods only in the current namespace, use the same command as the preceding
command except omit the --all-namespaces option.
2. Delete all pods that are using the PVC.

Use the pod names reported by the kubectl get pods command that are associated with
the claimName that you want to delete.

$ kubectl delete pod podl name pod2 name
3. Delete the PVC.

$ kubectl delete pvc claiml name
4. (Optional) Delete the PV.

If the Persistent Volume Reclaim Policy is Delete, the PV is automatically deleted when all
PVCs that are associated with this PV are deleted.

To list all PVCs, use the kubectl get pvc command.

9-11

Chapter 9
Deleting a Persistent Volume

If the Persistent Volume Reclaim Policy is Retain, you can use the following command to
delete the PV:

$ kubectl delete pv pv_name

Retaining a Persistent Volume

ORACLE

Rather than delete a PV, you might prefer to retain the PV after all associated PVCs are
deleted, for example if the volume contains critical data. See Changing the Reclaim Policy of a
Persistent Volume for instructions to change the reclaim policy of the PV so that the PV will be
retained after all associated PVCs are deleted.

If the Persistent Volume Reclaim Policy is Delete, the PV is automatically deleted when all
PVCs that are associated with this PV are deleted. To prevent this behavior, specify the Retain
policy. With the Retain policy, the PV is not deleted but is released of its claim. See Recovering
the Data from a Released Persistent Volume for instructions to recover the data.

If you decide you want to delete the PV even though it was retained, or you want to delete the
PV after you have recovered the data, use the following command:

$ kubectl delete pv pv_name

Changing the Reclaim Policy of a Persistent Volume

1. List the PVs in the cluster.

$ kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

fss-pv 200Gi RWX Delete Bound default/fss-pvc pca-
fss 20h

2. Change the reclaim policy of the PV.

$ kubectl patch pv fss-pv -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}"'
3. Verify the reclaim policy change.

The RECLAIM POLICY column should now say Retain.

$ kubectl get pv

Recovering the Data from a Released Persistent Volume

The PV is not available for another claim after the PV has been released of its previous claim
because the previous claimant's data is still on the volume. Recover the data and then re-
create the PV using the same storage to make a new claim on that storage.

1. Delete the PV.

$ kubectl delete pv pv_name

The associated block volume or file system still exists after the PV is deleted.
2. Manually recover and clean up the data on the block volume or file system.
3. (Optional) Manually delete the block volume or file system.

To reuse the same block volume or file system, create a new PV with the same storage
asset definition.

9-12

	Contents
	Preface
	Audience
	Feedback
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Overview of Kubernetes Engine
	2 OKE Workflow
	Private Cloud Appliance Administrator Tasks
	Creating an OKE Users Group
	Creating a Cluster Dynamic Group
	Updating the Certificate Authority Bundle

	Cluster Administrator Tasks
	Creating the OraclePCA-OKE.cluster_id Tag
	Creating OraclePCA Tags

	3 OKE Best Practices
	4 Creating OKE Network Resources
	Public and Private Clusters
	OKE Cluster Management with Administration Network
	Creating Flannel Overlay Network Resources
	Workload Cluster Network CIDR Ranges for Flannel Overlay Networking
	Workload Cluster Network Ports for Flannel Overlay Networking
	Example Terraform Scripts for Flannel Overlay Network Resources
	Creating a Flannel Overlay VCN
	Creating a Flannel Overlay Worker Subnet
	Creating a Flannel Overlay Worker Load Balancer Subnet
	Creating a Flannel Overlay Control Plane Subnet
	Creating a Flannel Overlay Control Plane Load Balancer Subnet

	Creating VCN-Native Pod Networking Resources
	Workload Cluster Network CIDR Ranges for VCN-Native Pod Networking
	Workload Cluster Network Ports for VCN-Native Pod Networking
	Example Terraform Scripts for VCN-Native Pod Networking Resources
	Creating a VCN-Native Pod Networking VCN
	Creating a VCN-Native Pod Networking Pod Subnet
	Creating a VCN-Native Pod Networking Worker Subnet
	Creating a VCN-Native Pod Networking Worker Load Balancer Subnet
	Creating a VCN-Native Pod Networking Control Plane Subnet
	Creating a VCN-Native Pod Networking Control Plane Load Balancer Subnet

	5 Creating and Managing OKE Clusters
	Creating an OKE Cluster
	Creating a Kubernetes Configuration File
	Updating an OKE Cluster
	Deleting an OKE Cluster

	6 Managing OKE Cluster Add-ons
	Installing the WebLogic Kubernetes Operator Add-on
	Viewing OKE Cluster Add-ons
	Add-on Reconciliation
	Updating the WebLogic Kubernetes Operator Add-on
	Disabling and Removing OKE Cluster Add-ons

	7 Creating and Managing OKE Worker Node Pools
	Creating an OKE Worker Node Pool
	Updating an OKE Node Pool
	Node Cycling an OKE Node Pool
	Using Node Doctor to Troubleshoot Worker Node Issues
	Deleting an OKE Node Pool Node
	Deleting an OKE Node Pool

	8 Exposing Containerized Applications
	9 Adding Storage for Containerized Applications
	Creating Persistent Block Volume Storage
	Creating Persistent High Performance Block Volume Storage
	Creating Persistent File System Storage Using the CSI Volume Plugin
	Creating Persistent File System Storage Using an Existing File System
	Using a Persistent Volume
	Deleting a Persistent Volume
	Deleting a Persistent Volume Claim
	Retaining a Persistent Volume

