
1

Uploading Records From Upload Tables

Uploading Records from Upload Table

Oracle Banking Enterprise Limits and Collateral Management

Release 14.7.2.0.0

Part No. F98472-01

 [December] [2023]

2

Uploading Records From Upload Tables

Contents

1. Preface ... 3
1.1 Audience .. 3
1.2 Related Documents .. 3

2. Introduction ... 3
2.1 How to use this Guide .. 3

3. Overview of Bulk Upload of Records ... 4
4. Upload Framework .. 4

4.1 Naming Convention: .. 5
4.2 Process Table ... 5
4.3 Upload Tables .. 6

4.3.1 Guide Lines .. 6

4.4 Trigger on Upload Table .. 8
4.4.1 Guide Lines .. 8

4.5 Upload Adapter Package .. 9
5. ODT Capabilities ... 9

5.1 Configuration of Upload Table Details in RADXML .. 9
5.2 Generated Units .. 14
5.3 Upgrade Capabilities .. 14

6. Miscellaneous .. 15
6.1 Appending Data ... 15

3

Uploading Records From Upload Tables

1. Preface
This document describes standard framework in FLEXCUBE for uploading records from
upload tables.

1.1 Audience
This document is intended for FLEXCUBE Application developers/users that use
development Workbench to develop various FLEXCUBE components.

To Use this manual, you need conceptual and working knowledge of the below:

Proficiency Resources

FLEXCUBE Functional Architecture Training programs from Oracle

Financial Software Services.

FLEXCUBE Technical Architecture Training programs from Oracle

Financial Software Services.

FLEXCUBE Screen Development 04-Development_WorkBench

_Screen_Development-I.docx

Working knowledge of Web based

applications

Self Acquired

Working knowledge of Oracle Database Oracle Documentations

Working knowledge of PLSQL & SQL

Language

Self Acquired

Working knowledge of XML files Self Acquired

1.2 Related Documents
04-Development_WorkBench _Screen_Development-I.docx
05-Development_WorkBench _Screen_Development-II.docx

2. Introduction

2.1 How to use this Guide
The information in this document includes:

 Chapter 2 , “Introduction”

 Chapter 3 , “Overview of Bulk Upload of Records"

 Chapter 4 , “Upload Framework”

file:///C:/Users/VINIT/Desktop/ODT_12.0/04-Development_WorkBench%20_Screen_Development-I.docx
file:///C:/Users/VINIT/Desktop/ODT_12.0/05-Development_WorkBench%20_Screen_Development-II.docx

4

Uploading Records From Upload Tables

 Chapter 5 , "ODT Capabilities”

3. Overview of Bulk Upload of Records
Bulk upload of Records to FLEXCUBE through upload tables is commonly used for
uploading data from an external system periodically.
Data is populated in the upload tables through Macro Excel Upload or any other utility.
(Note: Data Population in upload tables should be taken care by custom team .ODT tool
does not provide feature for data population)
Thereafter upload routine is invoked from the Screen CVDUPLOD for the particular
function id. Upload routine processes each record from upload tables. Status of processing
will be updated in a process table for monitoring purpose.
Upload routine should follow the same flow as that of Gateway/FLEXCUBE User Interface
to ensure integrity and consistency for records uploaded through different routines.
This necessitates the need for a standard framework for uploading records from upload
tables.
A standard framework for the same has been developed using ODT which is described in
the sections below.

4. Upload Framework
 Upload Framework supports upload of both maintenance and transaction screens.

 Different steps involved in Bulk Upload can be enlisted as:
1) Data is populated in the upload tables through Macro Excel Upload or any other

utility.
2) Trigger on Master Upload Table would insert entries into a process table with

Upload Status as ‘U’ (Unprocessed). One entry would be inserted into process table
for each record. Function id would also be updated in the process table along with
other information.

3) Upload routine is invoked for a particular function id by the user from
CVDUPLOD screen/stub.

4) On invoking the routine, system would process all the unprocessed records from
the process table for the particular function id. This would be done using a cursor
on process table

5) An adapter package converts the upload table types to base table type data. Then it
invokes the main package of the function id.

6) After processing of each record , process table columns for uploaded status, error
code etc would be updated by the system

From the above steps, we can derive at the components required for a particular
function id to be brought under this framework.

1) Process Table
2) Upload Tables
3) Trigger on Master Upload Table
4) Adapter package for Upload Routine

5

Uploading Records From Upload Tables

5) Wrapper code in CVDUPLOD screen processing logic to call the adapter package
based on the function id

4.1 Naming Convention:
 Framework does not enforce a standard naming convention for upload
tables. Existing upload tables can be re-used in this framework.
But if any new upload table is introduced, it is recommended to follow
naming convention as illustrated below:
Fourth Letter of base table to be replaced with U
Example:
 Base Table Name: STTM_CUSTOMER
 Upload Table Name: STTU_CUSTOMER

Recommended to follow naming convention for consulting / client
developed
Upload Table Name: Table name _U_EXTGBL

4.2 Process Table
 For Uploading, each record is processed from a cursor on process tables.
 This is common across all function ids.
 There are 2 process tables

 CSTB_EXT_CONTRACT_STAT :

This is the process table for all transaction Function ids.

Name Type Nullable

BRANCH_CODE VARCHAR2(3 CHAR) N

SOURCE VARCHAR2(20 CHAR) N

PRODUCT_CODE VARCHAR2(4 CHAR) Y

COUNTERPARTY VARCHAR2(35 CHAR) Y

EXTERNAL_INIT_DATE DATE Y

MODULE VARCHAR2(2 CHAR) Y

EXTERNAL_REF_NO VARCHAR2(20 CHAR) N

IMPORT_STATUS VARCHAR2(1 CHAR) Y

CITICUBE_REF_NO VARCHAR2(16 CHAR) Y

POST_IMPORT_STATUS CHAR(1 CHAR) Y

EXPORT_STATUS CHAR(1 CHAR) Y

USER_ID VARCHAR2(12 CHAR) Y

JOBNO NUMBER(2) Y

CONTRACT_REF_NO VARCHAR2(16 CHAR) Y

ERR_CODE VARCHAR2(11 CHAR) Y

ERR_MESSAGE VARCHAR2(255 CHAR) Y

ACTION_CODE VARCHAR2(10 CHAR) Y

FUNCTION_ID VARCHAR2(8 CHAR) Y

EXTERNAL_SEQ_NO NUMBER(22) N

UPLOAD_ID VARCHAR2(16 CHAR) Y

Here a particular record from upload Tables would be picked by combination of

6

Uploading Records From Upload Tables

EXTERNAL_REF_NO, EXTERNAL_SEQ_NO, BRANCH_CODE and SOURCE .
Columns like EXPORT_STATUS, CONTRACT_REF_NO, ERR_CODE and ERR_MESSAGE
would be updated by the system after processing.
UPLOAD_ID signifies the thread of execution. Upload routine can be invoked in

multiple threads if multiple upload ids are present.

 STTB_UPLOAD_MASTER :

This is the process table for all maintenance Function ids.

Name Type Nullable

MAINTENANCE_SEQ_NO VARCHAR2(16 CHAR) N

BRANCH_CODE VARCHAR2(3 CHAR) N

SOURCE_CODE VARCHAR2(15 CHAR) N

MAINTENANCE_TYPE VARCHAR2(15 CHAR) Y

UPLOAD_STATUS CHAR(1 CHAR) Y

UPLOAD_INITIATION_DATE DATE Y

USER_ID VARCHAR2(12 CHAR) Y

ACTION_CODE VARCHAR2(15 CHAR) Y

SOURCE_SEQ_NO NUMBER N

UPLOAD_ID VARCHAR2(16 CHAR) Y
Here a particular record from upload Tables would be picked by combination of

MAINTENANCE_SEQ_NO, SOURCE_SEQ_NO, BRANCH_CODE and

SOURCE_CODE.

UPLOAD_STATUS would be updated by the system after processing a record.

UPLOAD_ID signifies the thread of execution. Upload routine can be invoked in

multiple threads if multiple upload ids are present

4.3 Upload Tables
 Each Data source in the function id, if required, should be mapped to
corresponding Upload Tables in ODT.

 Data Source Column Mapping
Mapping of Upload Table Columns to Base Table Columns has to be done
after proper analysis. Avoid including internal processing columns/invisible
field columns etc to upload Table. This will reduce complexity of upload
table.

4.3.1 Guide Lines
Some guidelines for mapping upload table/columns with base table/columns are
enlisted below:

 Master Data Source of the Function Id should always be a mapped to an
Upload Table (except in case of some call forms where it is not feasible). This
upload table would be referred to as Master Upload Table

 Upload Tables should be mapped only to Normal Data Sources as per ODT
configuration. For query, in only and summary data sources; upload tables
are not required

7

Uploading Records From Upload Tables

 More than one data source in the Function Id can be mapped to a single
upload table. Note that all the base tables should one to one relationship with
each other in this scenario.
Example: Both CSTB_CONTRACT and FXTB_CONTRACT_MASTER can be
mapped to the same upload table, say, FXTB_UPLOAD_MASTER.

 If the master data source is a common table used across many functions
(Example: CSTB_CONTRACT), try grouping it with any of its child table; so
that the master upload table is unique for the function id.
Example: Both CSTB_CONTRACT and FXTB_CONTRACT_MASTER can be
mapped to the same upload table, say, FXTB_UPLOAD_MASTER.

 It is recommended to provide the same column names to both base table
column and upload table column. This avoids complexity to both developer
and user.

 Apart from Mapped Columns from Base Table, Upload Table should have a
standard set of columns as defined below

COLUMN NAME Remarks

SOURCE_CODE Specifies External Source

SOURCE_REF /
MAINTENANCE_SEQ_NO

Specifies External Reference Number.
SOURCE_REF is used for Contract upload tables
while MAINTENANCE_SEQ_NO for maintenance
upload tables

SOURCE_SEQ_NO Specifies Source Sequence Number.

BRANCH_CODE Specifies branch Code

FUNCTION_ID

This column is required only in Upload Master
table.
This is mandatory if same upload master tables are
used for multiple function ids. Example : Parent and
Child Functions

ACTION_CODE

This is required only in Upload Master Table. If not
present , then only NEW Operation would be
supported by upload framework for the Function
Id.

UPLOAD_ID

 This is required only in Upload Master Table.
Different values can be inserted for this column in
batches to process upload routine in multiple
threads.
This is an optional column; mostly used in
transaction screens

UPLOAD_STATUS

Optional. Required only if Upload Table and Master
Table are the same.eg: PC contract.
This is used mostly in transaction screens

MODULE
Module Code of the Function Id.
Optional; used mostly in transaction screens

SOURCE_OPERATION

Optional. Specifies the Source Operation code. This
needs to present in only master upload table, if any.
If not present , then system would try to derive the
default SOURCE_OPERATION for particular action
code

8

Uploading Records From Upload Tables

SOURCE_CODE, SOURCE_REF / MAINTENANCE_SEQ_NO, SOURCE_SEQ_NO
and BRANCH_CODE form the composite primary key for any master upload table.
For detail upload tables, the 4 columns mentioned above along with unique
identifier for the record, if any, forms the primary key
FUNCTION_ID, ACTION_CODE, UPLOAD_ID, UPLOAD_STATUS, MODULE and
SOURCE_OPERATION are optional columns in Master Upload Table

 For Transaction screens, EXTERNAL_REF_NO of upload table has to be
mandatorily mapped to a base table column. This is required to derive the
reference number in case of any modify operation. Most often, this column
can be found in CSTB_CONTRACT.

 More than one data source can be mapped to the same upload table
differentiated by upload table where clause.
For Instance; if two different legs of a transaction (buy and sell) of a deal are
captured by two data sources in function id (same table with different aliases); then
one upload table can be used for both the tables. Upload where clause for both these
data source should be such that the adapter picks proper data to base table data types
Note that in this scenario, both the data sources should not be directly related
to each other. Difference has to be noted between this scenario and the case
where 2 data sources with one to one relationship is mapped to same upload
table.

 For call form function ids, master data source would often be a view for
propagating record key to the call form. In such instances master data
sources should not have any upload table mapped to it.
Example: CSTBS_CONTRACT__ADV is the master data source for Advice Call
form but data is uploaded only in CSTB_CONTRACT_EVENT_ADVICE. Hence
upload table should not be mapped to CSTBS_CONTRACT__ADV

Sample Master Upload Table definitions are attached:

Mainteneace_Master_Upload_Table.sql TXN_MASTER_UPLOAD_TABLE.sql

DETAIL_UPLOAD_TABLE.sql Callform_Upload_table.sql

4.4 Trigger on Upload Table
 Triggers would be created on Master Upload Table to insert records into Upload
Process Tables on insert of records in upload tables. For Uploading, each record is
processed from a cursor on process tables.

4.4.1 Guide Lines
 If column for action code is not present in the master upload table; then

Action code column in process table would be updated as NEW

 If upload routine is present for parent and child function ids; then the master
upload table would be the same. In such cases, FUNCTION_ID column

9

Uploading Records From Upload Tables

should be present in the master upload table and the same would be inserted
into the process table. Hence the same trigger would hold good for all the
child screens.

 There would be no separate trigger for any call form function ids as call form
records does not exist independently.

 Sample Upload Table Trigger is attached

Maintenance_Upload_Trigger.sql

Txn_Upload_Trigger.sql

4.5 Upload Adapter Package
 Upload Packages would handle type conversions and processing records after
conversion.

 Naming Convention
 Module||’_pks_’||FunctionId||’_Ext_Upload’

 Example : fxpks_fxfdtronl_ext_upload
 Based on structure, upload packages can be broadly classified as

1) Transaction Upload Adapter
 Records will be processed based on cursor on CSTB_EXT_CONTRACT_STAT.
 Code to handle SUBSYSTAT will be present.
2) Maintenance Upload Adapter
 Records will be processed based on cursor on STTB_UPLOAD_MASTER
3) Transaction Call forms Upload Adapter
 It will be called from Transaction Upload Package.
 Code to update SUBSYSSTAT will be present
4) Maintenance Call Forms Upload Adapter
 It will be called from Maintenance Upload Packages

5. ODT Capabilities
 ODT supports extensible upload framework.
 Upload Framework components can be generated by the tool through configurations.

5.1 Configuration of Upload Table Details in RADXML

 Upload Table :
 In data source definition screen, upload table name for the data source has to be specified.

10

Uploading Records From Upload Tables

 Figure 1: Specifying Upload Table for a Data Source in ODT

 Avoid providing Synonyms in Upload Table field.

 Upload Tables should be mapped only to Normal Data Sources

 The standard set of columns for the upload table can be viewed by clicking on
the button next to Upload table.

 SOURCE_CODE, SOURCE_REF, SOURCE_SEQ_NO and BRANCH_CODE
will be assumed as part of primary key of any upload table.
Make note of the guide lines explained in previous section while providing
Upload Table Name

 Upload Table Standard Columns:
 Refer previous section for the standard columns which are part of the upload table.
 Default column names are provided in the screen. Source Operation would be not present in
the table by default.
 Developer can change the column names of the standard columns as desired. This could be
useful if existing upload tables are re-used.
 Example : Name of the column for External reference number can be changed from SOURCE_REF to
EXT_REF_NO

11

Uploading Records From Upload Tables

 Figure 2: Standard Columns for Master Upload Table of Transaction Screen

 Figure 3: Standard Columns for Master Upload Table of Maintenance Screen

12

Uploading Records From Upload Tables

 Figure 3: Standard Columns for Detail Upload Table

 Upload Table Where Clause:
 If all the records in an upload table is not be mapped to a particular data source; then
upload table where clause can be specified to filter the records.
 This is applicable only when the data sources involved are not directly related with each other.

 Figure 4: Usage of Upload Where Clause for Differentiating data of multiple Data sources

13

Uploading Records From Upload Tables

 Upload Table Where clause would be applied on the upload table; hence upload table columns
should be used in the clause

Upload Table Column:
 All the data source columns which are included in the RADXML would be assumed to be
part of the upload table.

 By default, name of the Upload Table column would be assumed to be same as that of
the base table name

 If the name of the upload table column has to be different from base table column; then
the same has to be explicitly mentioned in Upload Table Column Field

 Figure 5: Changing Column Name for Standard Columns in Upload Tables

 If any of the columns included in the data source in RADXML is not required in Upload
table; then the same has to specified by selecting the checkbox Not Required in Upload
Tables

14

Uploading Records From Upload Tables

Figure 6: Data Source Column not required in upload Table. Explicitly specifying the same

5.2 Generated Units

1) Upload Adapter Package

Naming Convention : Module||’_pks_’||FunctionId||’_Ext_Upload’

2) Triggers on Upload table

3) Upload Table DDL

If existing upload tables are being used, DDL scripts can be ignored.

 Drop scripts for the table would be generated in a separate file.

5.3 Upgrade Capabilities
 Normal ODT upgrade feature is supported in Upload table configurations as well.

 Customizations can be done on the configuration maintained in ODT
 Customizations can be done to:

i) Change the Upload Tables mapped.
Map new Upload tables/Remove existing table mapping

ii) Modify/Remove/Add Upload table column names
iii) Configure upload tables for entire screen if it is not provided by engineering

and if bank needs the same

 Changes done as part of customizations would be retained during ODT Refresh.
Any new mappings done by the engineering team would reflect after Refresh.
After Refresh all the artifacts has to be regenerated including upload table definitions.

15

Uploading Records From Upload Tables

6. Miscellaneous

6.1 Appending Data
In certain scenarios, only the data which has to be appended would be uploaded

to the upload tables. Requirement would be to append this data to the existing data in the
table. This feature is not supported by the standard FLEXCUBE framework
 Example : Upload of Floating Rates for a Currency

FLEXCUBE Framework :
 In FLEXCUBE, if any multi Record Block has to be modified then the complete data of the
block has to be sent. FLEXCUBE will derive the records modified, deleted or added in the
block according to the data sent and updates the tables accordingly. Hence if only the data
to be appended to the block is sent, then the existing records would be treated as deleted
and hence deleted from the tables.

Solution:
 To handle this scenario, the following approach is recommended:
 Handle this case based on the source operation parameter in the custom package.
 Developer can either

1) skip all the system functions and write code to upload data in custom package for
particular source operation OR

2) append the existing data to screen object instance before start of processing (
preferably in pre_check_mandatory) for the particular source operation

16

Uploading Records From Upload Tables

Uploading Records from Upload Tables
[December] [2023]
Version 14.7.2.0.0

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India

Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2007, 2023, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer
software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any
kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

http://www.oracle.com/financialservices/

