
PeopleTools 8.60: PeopleCode
Developer’s Guide

July 2024

PeopleTools 8.60: PeopleCode Developer’s Guide
Copyright © 1988, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement
or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute,
exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users
are "commercial computer software," "commercial computer software documentation," or "limited rights data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained
in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by
the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create a
risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation
and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as
set forth in an applicable agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit https://
docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=info
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Preface: Preface...xi
Understanding the PeopleSoft Online Help and PeopleBooks... xi

Hosted PeopleSoft Online Help.. xi
Locally Installed PeopleSoft Online Help.. xi
Downloadable PeopleBook PDF Files..xi
Common Help Documentation..xi
Field and Control Definitions.. xii
Typographical Conventions..xii
ISO Country and Currency Codes..xiii
Region and Industry Identifiers.. xiii
Translations and Embedded Help... xiv

Using and Managing the PeopleSoft Online Help.. xiv
PeopleTools Related Links.. xiv
Contact Us..xiv
Follow Us..xv

Chapter 1: Getting Started with PeopleCode... 17
PeopleCode Overview...17
Creating PeopleCode Programs.. 18

Chapter 2: Understanding the PeopleCode Language...21
PeopleCode Language Structure...21
Data Types...21

Conventional Data Types... 21
Object Data Types.. 23

Comments..24
Statements..25

Separators..26
Assignment Statements...26
Language Constructs.. 26
Branching Statements... 27
Conditional Loops.. 29

Functions... 30
Supported Functions... 30
Function Definitions... 31
Function Declarations...31
Function Calls...31
Function Return Values.. 32
Function Naming Conflicts.. 32

Expressions..33
Expression Fundamentals... 33
Constants...33
Functions as Expressions... 35
System Variables...35
Metastrings..35
Record Field References.. 36
Definition Name References.. 36
PeopleCode Reserved Words... 37

Copyright © 1988, 2024, Oracle and/or its affiliates. iii

Contents

Variables.. 39
Supported Variable Types...40
User-Defined Variables...40
User-Defined Variable Declaration and Scope.. 40
Variable Declaration... 41
User-Defined Variable Initialization.. 42
Restrictions on Variable Use..43
Scope of Local Variables... 43
Duration of Local Variables... 43
Variables and Functions... 45
Recursive Functions... 45
State of Shared Objects Using PeopleSoft Pure Internet Architecture.. 45

Operators... 46
Math Operators... 46
Operations on Dates and Times... 47
String Concatenation.. 48
@ Operator... 48
Comparison Operators..49
Boolean Operators.. 49

Chapter 3: Understanding Objects and Classes in PeopleCode... 51
Classes and Objects.. 51

Classes...51
Objects.. 51
Object Instantiation...52

Creating and Using Objects..52
Instantiating Objects... 52
Changing Properties... 53
Invoking Methods...53
Copying Objects... 55

Assigning Objects... 55
Passing Objects... 56

Chapter 4: Referencing Data in the Component Buffer..57
Understanding Component Buffer Structure and Contents..57

Component Buffer Contents...57
Rowsets and Scroll Areas.. 59
Record Fields and the Component Buffer... 59

Specifying Data with Contextual References...60
Understanding Current Context..60
Using Contextual Row References.. 62
Using Contextual Buffer Field References.. 63

Specifying Data with References Using Scroll Path Syntax and Dot Notation................................... 64
Understanding Scroll Paths.. 65
Structuring Scroll Path Syntax...65
Referencing Scroll Levels, Rows, and Buffer Fields...68

Chapter 5: Accessing the Data Buffer...75
Understanding Data Buffer Access.. 75

Data Buffer Access...75
Access Classes..75
Data Buffer Model and Data Access Classes.. 76

Understanding Data Buffer Classes Examples...76
Employee Checklist Page Structure...77

iv Copyright © 1988, 2024, Oracle and/or its affiliates.

Contents

Object Creation Examples..80
Data Buffer Hierarchy Examples... 85
Rowset Examples... 88
Hidden Work Scroll Example.. 89

Understanding Current Context.. 91
Accessing Secondary Component Buffer Data.. 92
Instantiating Rowsets Using Non-Component Buffer Data... 92

Chapter 6: PeopleCode and the Component Processor...95
Understanding the Component Processor...95
Events Outside the Component Processor Flow.. 95
PeopleCode Program Triggers.. 95

Understanding PeopleCode Program Triggers...96
Accessing PeopleCode Programs...97
Execution Order of Events and PeopleCode... 98

Component Processor Behavior..101
Component Processor Behavior from Page Start to Page Display.. 101
Component Behavior Following User Actions in the Component.. 102

Processing Sequences..104
Flow Charts...104
Default Processing..106
Search Processing in Update Modes..108
Search Processing in Add Modes.. 111
Component Build Processing in Update Modes.. 113
Row Select Processing... 114
Component Build Processing in Add Modes...116
Field Change Processing.. 117
Row Insert Processing..120
Row Delete Processing...122
Buttons.. 124
Prompts... 124
Pop-Up Menu Display..124
Selected Item Processing..125
Save Processing.. 125

PeopleSoft Pure Internet Architecture Processing Considerations...127
Deferred Processing Mode..128
PeopleCode Events..131

Activate Event.. 132
FieldChange Event... 132
FieldDefault Event..133
FieldEdit Event... 134
FieldFormula Event.. 134
ItemSelected Event... 134
PostBuild Event.. 135
PreBuild Event..135
PrePopup Event.. 135
RowDelete Event..135
RowInit Event...136
RowInsert Event... 137
RowSelect Event...138
SaveEdit Event... 139
SavePostChange Event... 139

Copyright © 1988, 2024, Oracle and/or its affiliates. v

Contents

SavePreChange Event...140
SearchInit Event... 140
SearchSave Event... 141
Workflow Event..142

PeopleCode Execution in Pages with Multiple Scroll Areas... 142
Chapter 7: PeopleCode and PeopleSoft Pure Internet Architecture..145

Considerations Using PeopleCode in PeopleSoft Pure Internet Architecture.................................... 145
Using PeopleCode with PeopleSoft Pure Internet Architecture...145

Using Internet Scripts...146
Using the Field Object Style Property...146
Using the HTML Area...147
Using HTML Definitions and the GetHTMLText Function.. 148
Using HTML Definitions and the GetJavaScriptURL Method... 148
Using PeopleCode to Populate Key Fields in Search Dialog Boxes... 149

Calling DLL Functions on the Application Server.. 149
Sample Cross-Platform External Test Function...150

Updating the Installation and PSOPTIONS Tables..151
Chapter 8: Using Methods and Built-In Functions..153

Understanding Restrictions on Method and Function Use...153
Think-Time Functions.. 153
WinMessage and MessageBox Functions..154
Program Execution with Fields Not in the Data Buffer.. 156
Errors and Warnings...157
DoSave Function.. 157
Record Class Database Methods..157
SQL Class Methods and Functions..157
Component Interface Restricted Functions.. 158
SearchInit PeopleCode Function Restrictions..158
CallAppEngine Function.. 159
ReturnToServer Function..159
GetPage Function... 159
GetGrid and GetAnalyticGrid Functions... 159
Publish Method...160
SyncRequest Method..160

Implementing Modal Transfers...160
Understanding Modal Transfers... 160
Implementing Modal Transfers.. 162

Implementing the Multi-Row Insert Feature..163
Using the ImageReference Field.. 164
Inserting Rows Using PeopleCode... 165
Using OLE Functions... 166

Understanding OLE Functions...166
Using the Object Data Type...166
Sharing a Single Object Instance...167
Using the Exec and WinExec Functions..167

Using the Select and SelectNew Methods... 168
Understanding the Select and SelectNew Methods... 168
Using the Select Method..169

Using Standalone Rowsets..171
Understanding Standalone Rowsets... 171
Using the Fill Method.. 171

vi Copyright © 1988, 2024, Oracle and/or its affiliates.

Contents

Using the CopyTo Method...172
Adding Child Rowsets... 172
Using Standalone Rowsets to Write a File.. 173
Using Standalone Rowsets to Read a File...175

Using Errors and Warnings...176
Using Error and Warning Syntax...176
Using Errors and Warnings in Edit Events..176
Using Errors and Warnings in RowSelect Events... 177
Using Errors and Warnings in RowDelete Events...178
Using Errors and Warnings in Other Events... 178

Using the RemoteCall Feature..178
Understanding RemoteCall Components... 178
Deciding Between RemoteCall and PeopleSoft Process Scheduler...181
Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall............................181

Chapter 9: Using HTML Trees and the GenerateTree Function..183
Using the GenerateTree Function...183

Understanding HTML Trees.. 183
Building HTML Tree Pages...184
Using HTML Tree Rowset Records.. 185
Using HTML Tree Actions (Events)... 188
Initializing HTML Trees.. 189
Processing Events Passed from a Tree to an Application..192
Adding Mouse-Over Ability to HTML Trees..196
Adding Visual Selection Node Indicators..197
Specifying Override Images...197

Chapter 10: Working With File Attachments.. 199
Understanding the File Attachment Functions... 199

PeopleCode Built-in File Attachment Functions... 199
Understanding the File Attachment Architecture.. 202
Understanding File Attachment Storage Locations... 205
Understanding URL Strings Versus URL Objects...207

Developing Applications that Use File Attachment Functions.. 207
Application Development Process Overview.. 208
Delivered Record Definitions...209
Managing Entries in File Reference Tables...212
Using the PeopleTools Test Utilities Page...213

Application Development Considerations.. 214
File Name Considerations.. 214
Restrictions on Invoking Functions in Certain PeopleCode Events.. 215
Converting File Names for Files Uploaded by PutAttachment... 215
Considerations When Using CopyAttachments...216

Application Deployment and System Configuration Considerations...216
File Attachment Functions in an Environment with Multiple Application Server Domains........216
Configuring the Web Server to Support Additional MIME Types.. 217
Restricting the File Types That Can Be Uploaded or Downloaded...218
Setting Up Virus Scanning...218
Using the HTML Sanitizer...219
Considerations When Attaching Text Files... 223
File Attachment Chunk Size.. 223
Using Interfaces to the CopyAttachments and CleanAttachments Functions..............................224

Debugging File Attachment Problems..224

Copyright © 1988, 2024, Oracle and/or its affiliates. vii

Contents

Enabling Tracing on the Web Server or Application Server... 225
Problems with Transfers to and from FTP Sites... 226
Attachments with non-ASCII File Names... 227
Problems Uploading Files.. 227
Problems Downloading Files... 228
Passing Error Messages to the End User...228

Chapter 11: Accessing PeopleCode and Events..229
Understanding PeopleCode Programs and Events... 229
Understanding Automatic Backup of PeopleCode...229
Accessing PeopleCode in Application Designer.. 230
Accessing Record Field PeopleCode..232

Understanding Record Field PeopleCode.. 232
Accessing Record Field PeopleCode from a Record Definition... 233
Accessing Record Field PeopleCode from a Page Definition... 233

Accessing Component Record Field PeopleCode.. 235
Understanding Component Record Field PeopleCode...235
Accessing Component Record Field PeopleCode..235

Accessing Component Record PeopleCode... 236
Understanding Component Record PeopleCode..236
Accessing Component Record PeopleCode...237

Accessing Component PeopleCode.. 237
Understanding Component PeopleCode...238
Accessing Component PeopleCode..238

Accessing Page PeopleCode...238
Understanding Page PeopleCode... 238
Accessing Page PeopleCode.. 238

Accessing Menu Item PeopleCode...239
Understanding Menu Item PeopleCode... 239
Defining PeopleCode Pop-Up Menu Items... 239
Accessing Menu Item PeopleCode.. 240

Copying PeopleCode with a Parent Definition.. 240
Upgrading PeopleCode Programs...240

Chapter 12: Using the PeopleCode Editor..241
Navigating Between PeopleCode Programs...241

Understanding the PeopleCode Editor Window.. 241
Navigating Between Programs Associated With a Definition and Its Children...........................242
Navigating Between Programs Associated With Events... 242

Using the PeopleCode Editor... 243
Understanding the PeopleCode Editor... 244
Accessing PeopleCode Editor.. 244
Editing Functions..247
Adding Line Numbers..248
Find and Replace Dialogs.. 249
Go To Dialog..249
Validate Syntax Utility... 249
Show Database Name Utility...250
Formatting Code Automatically...251
Using Drag-and-Drop Editing..252
Accessing PeopleCode External Functions..252
Accessing PeopleCode Application Packages and Application Classes......................................252
Accessing Definitions and Associated PeopleCode...254

viii Copyright © 1988, 2024, Oracle and/or its affiliates.

Contents

Accessing Help... 255
Setting Up Help..255
Changing Colors in the PeopleCode Editor...255
Selecting a Font for the PeopleCode Editor.. 256
Changing Word Wrap in the PeopleCode Editor...256
Using the PeopleCode Event Properties.. 258
Using the Auto-Complete Feature... 258
Viewing Event Mapping References..262
Finding Matching Parentheses or Braces...263
Highlighting Content.. 263

Generating PeopleCode Using Drag-and-Drop.. 264
Generating References to Definitions.. 264
Generating PeopleCode for a Business Interlink...264
Generating PeopleCode for a Component Interface.. 265
Generating PeopleCode for a File Layout... 266

Chapter 13: Using the SQL Editor.. 267
Understanding the SQL Editor Window.. 267
Accessing the SQL Editor.. 267

Creating SQL Definitions...268
Accessing SQL Definition Properties.. 269
Creating Dynamic View or SQL View Records..269
Accessing the SQL Editor from Application Engine Programs.. 270

Using the SQL Editor... 271
Chapter 14: Creating Application Packages and Classes..275

Understanding Application Packages... 275
Creating Application Packages... 276

Understanding Package Names.. 276
Creating Application Package Definitions...276

Using the Application Package Editor... 277
Editing Application Classes..278

Chapter 15: Debugging Your Application...281
Understanding the PeopleCode Debugger..281
Accessing the PeopleCode Debugger...281
Using PeopleCode Debugger Features... 282

Visible Current Line of Execution... 283
Visible Breakpoints...283
Hover Inspect..283
Single Debugger... 284
Variables Panes... 284
Call Stack Pane.. 287
Setting Values for Variables and Properties...289
General Debugging Tips.. 290

Using PeopleCode Debugger Options..292
Setting Up the Debugging Environment.. 296
Compiling All PeopleCode Programs at Once...296

Compile All PeopleCode..297
Compile Project PeopleCode..299

Setting PeopleCode Debugger Log Options...299
Interpreting the PeopleCode Debugger Log File... 302

Log File Contents...302
Other Items in the Log File... 303

Copyright © 1988, 2024, Oracle and/or its affiliates. ix

Contents

Using Application Logging.. 304
Setting the Application Log Fence in the Configuration File..304
Using the Log Fence with PeopleSoft Analytic Calculation Engine... 305

Using the Find In Feature...305
Finding References to Application Packages and Classes... 311

Prerequisites.. 311
Finding Definition References... 311

Using Cross-Reference Reports..313
Chapter 16: Improving Your PeopleCode...315

Reducing Trips to the Server..315
Counting Server Trips.. 316
Using Deferred Mode...316
Hiding and Disabling Fields.. 316
Using the Refresh Button...317
Updating Totals and Balances..317
Using Warning Messages... 317
Using the Fastest Algorithm.. 318

Using Better Coding Techniques for Improved Performance.. 318
Running a SQL Trace.. 318
Optimizing SQL... 319
Using the GetNextNumberWithGaps Function..319
Consolidating PeopleCode Programs...319
Moving PeopleCode to a Component or Page Definition... 319
Sending Messages in the SavePostChange Event..319
Using Metadata and the RowsetCache Class...319
Setting MaxCacheMemory...320

Writing More Efficient Code..320
Writing More Efficient Code Examples.. 324

Preventing SQL Injection... 327
Chapter 17: PeopleCode Editor Short Cut Keys... 329

Short Cut Keys in the PeopleCode Editor... 329

x Copyright © 1988, 2024, Oracle and/or its affiliates.

Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

Hosted PeopleSoft Online Help
You can access the hosted PeopleSoft Online Help on the Oracle Help Center. The hosted PeopleSoft
Online Help is updated on a regular schedule, ensuring that you have access to the most current
documentation. This reduces the need to view separate documentation posts for application maintenance
on My Oracle Support. The hosted PeopleSoft Online Help is available in English only.

To configure the context-sensitive help for your PeopleSoft applications to use the Oracle Help Center,
see Configuring Context-Sensitive Help Using the Hosted Online Help Website.

Locally Installed PeopleSoft Online Help
If you’re setting up an on-premises PeopleSoft environment, and your organization has firewall
restrictions that prevent you from using the hosted PeopleSoft Online Help, you can install the online help
locally. Installable PeopleSoft Online Help is made available with selected PeopleSoft Update Images and
with PeopleTools releases for on-premises installations, through the Oracle Software Delivery Cloud.

Your installation documentation includes a chapter with instructions for how to install the online help
for your business environment, and the documentation zip file may contain a README.txt file with
additional installation instructions. See PeopleSoft 9.2 Application Installation for your database platform,
“Installing PeopleSoft Online Help.”

To configure the context-sensitive help for your PeopleSoft applications to use a locally installed online
help website, see Configuring Context-Sensitive Help Using a Locally Installed Online Help Website.

Downloadable PeopleBook PDF Files
You can access downloadable PDF versions of the help content in the traditional PeopleBook format on
the Oracle Help Center. The content in the PeopleBook PDFs is the same as the content in the PeopleSoft
Online Help, but it has a different structure and it does not include the interactive navigation features that
are available in the online help.

Common Help Documentation
Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

• Application Fundamentals

Copyright © 1988, 2024, Oracle and/or its affiliates. xi

https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_HOSTED
https://edelivery.oracle.com
https://docs.oracle.com/pls/topic/lookup?ctx=psoft&id=ATPB_LOCAL
https://docs.oracle.com/en/applications/peoplesoft/index.html

Preface

• Using PeopleSoft Applications

Most product families provide a set of application fundamentals help topics that discuss essential
information about the setup and design of your system. This information applies to many or all
applications in the PeopleSoft product family. Whether you are implementing a single application, some
combination of applications within the product family, or the entire product family, you should be familiar
with the contents of the appropriate application fundamentals help. They provide the starting points for
fundamental implementation tasks.

In addition, the PeopleTools: Applications User's Guide introduces you to the various elements of the
PeopleSoft Pure Internet Architecture. It also explains how to use the navigational hierarchy, components,
and pages to perform basic functions as you navigate through the system. While your application or
implementation may differ, the topics in this user’s guide provide general information about using
PeopleSoft applications.

Field and Control Definitions
PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions
The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign
(+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

. . . (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
 Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
 an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

xii Copyright © 1988, 2024, Oracle and/or its affiliates.

Preface

Typographical Convention Description

⇒ This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

ISO Country and Currency Codes
PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY_CD_TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY_TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers
Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

• Asia Pacific

• Europe

• Latin America

• North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

• USF (U.S. Federal)

Copyright © 1988, 2024, Oracle and/or its affiliates. xiii

Preface

• E&G (Education and Government)

Translations and Embedded Help
PeopleSoft 9.2 software applications include translated embedded help. With the 9.2 release, PeopleSoft
aligns with the other Oracle applications by focusing our translation efforts on embedded help. We
are not planning to translate our traditional online help and PeopleBooks documentation. Instead we
offer very direct translated help at crucial spots within our application through our embedded help
widgets. Additionally, we have a one-to-one mapping of application and help translations, meaning that
the software and embedded help translation footprint is identical—something we were never able to
accomplish in the past.

Using and Managing the PeopleSoft Online Help

Select About This Help in the left navigation panel on any page in the PeopleSoft Online Help to see
information on the following topics:

• Using the PeopleSoft Online Help.

• Managing hosted Online Help.

• Managing locally installed PeopleSoft Online Help.

PeopleTools Related Links

PeopleTools 8.60 Home Page

PeopleSoft Search and Insights Home Page

“PeopleTools Product/Feature PeopleBook Index” (Getting Started with PeopleTools)

PeopleSoft Online Help

PeopleSoft Information Portal

PeopleSoft Spotlight Series

PeopleSoft Training and Certification | Oracle University

My Oracle Support

Oracle Help Center

Contact Us

Send your suggestions to psoft-infodev_us@oracle.com.

Please include the applications update image or PeopleTools release that you’re using.

xiv Copyright © 1988, 2024, Oracle and/or its affiliates.

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2884844.2
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2205540.2
https://docs.oracle.com/en/applications/peoplesoft/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/index.html
https://docs.oracle.com/cd/E52319_01/infoportal/spotlight.html
https://docs.oracle.com/pls/topic/lookup?ctx=psft_hosted&id=ou
https://support.oracle.com/CSP/ui/flash.html
https://docs.oracle.com/en/
mailto:PSOFT-INFODEV_US@ORACLE.COM

Preface

Follow Us

Icon Link

Watch PeopleSoft on YouTube

Follow @PeopleSoft_Info on X.

Read PeopleSoft Blogs

Connect with PeopleSoft on LinkedIn

Copyright © 1988, 2024, Oracle and/or its affiliates. xv

http://www.youtube.com/user/PSFTOracle
https://twitter.com/PeopleSoft_Info
https://blogs.oracle.com/peoplesoft
https://www.linkedin.com/groups/4530781/?home=&gid=4530781&trk=anet_ug_hm

Chapter 1

Getting Started with PeopleCode

PeopleCode Overview

PeopleCode is the proprietary language used by PeopleSoft applications. This chapter provides an
overview of PeopleCode and discusses how to create PeopleCode programs.

These topics provide information to consider before you begin to use PeopleCode. In addition to
the considerations presented in this section, you should take advantage of all PeopleSoft sources of
information, including the installation guides, release notes, and PeopleBooks.

This section provides an overview of the product documentation available for the PeopleCode language,
which is split into three documents:

• PeopleTools: PeopleCode API Reference

This document contains information about certain application classes delivered with Oracle's
PeopleTools, as well as specifics about each class's methods and properties.

• PeopleTools: PeopleCode Developer's Guide

This document, the document that you are currently reading, provides conceptual information on
the PeopleCode language, how PeopleCode interacts with the component buffer, how to develop
PeopleCode programs, and a number of other specialized topics.

• PeopleTools: PeopleCode Language Reference

This document contains information about PeopleCode built-in functions, meta-SQL, system
variables, and meta-HTML.

The initial topics in this document, PeopleTools: PeopleCode Developer's Guide, provide conceptual
information on the PeopleCode language, including:

• PeopleCode resembles other programming languages. However, many aspects are unique to the
language and the PeopleTools environment. To learn more about the language, see PeopleCode
Language Structure.

• PeopleCode is an object-oriented language. To learn about objects and how they're used in
PeopleCode, see Classes and Objects.

• The component buffer is the area in memory that stores data for the currently active component.
Which fields are loaded into the component buffer, as well as how to access them, is covered in
Understanding Component Buffer Structure and Contents.

• The system uses a data buffer as well as the component buffer. The data buffer is used to store data
added from sources other than the component, such as from a Application Engine program, an
application message, and so on. For information about this buffer, see Understanding Data Buffer
Access.

Copyright © 1988, 2024, Oracle and/or its affiliates. 17

Getting Started with PeopleCode Chapter 1

• All PeopleCode is associated with a definition and an event. The events run in a particular order from
the Component Processor. To learn more about the Component Processor and the standard event set,
see Understanding the Component Processor.

• You should take into account certain considerations when creating applications to be used in the
PeopleSoft Pure Internet Architecture. These include how to make your code more efficient when
running on the internet, as well as considerations when using specific definitions. See PeopleSoft Pure
Internet Architecture Processing Considerations.

• There are restrictions on using some of the functions and methods in the PeopleCode language, as
well as considerations for others, like using standalone rowsets and the OLE functions. These are
covered in Functions.

• PeopleCode has a tremendous amount of specialized functionality, such as:

• Using the GenerateTree function to create a tree in your application.

• Viewing, adding, and deleting files.

See Using the GenerateTree Function.

See Understanding the File Attachment Functions .

Creating PeopleCode Programs

Additional topics in this document, PeopleTools: PeopleCode Developer's Guide, provide information on
creating PeopleCode programs, including:

All PeopleCode programs are associated with a definition as well as an event. To learn more about where
you can place your PeopleCode, and have it executed as part of the Component Processor event flow, see
Accessing PeopleCode and Events.

See Accessing Page PeopleCode.

Use the PeopleCode editor to create your PeopleCode programs. All the functionality of the PeopleCode
editor is described in Using the PeopleCode Editor.

See Using the PeopleCode Editor.

Every PeopleCode program is associated with a definition. The following definitions have additional
functionality associated with the PeopleCode editor:

• SQL definitions

• Application Package definitions

See Understanding the SQL Editor Window.

See Creating Application Packages.

After you have created your program, you must run it. Often, that involves fixing any errors that you
find. The PeopleCode debugger is an integrated part of PeopleSoft Application Designer, and it has
many useful tools for determining where code errors are occurring. All the functionality is described in
Debugging your Application.

18 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 1 Getting Started with PeopleCode

See Understanding the PeopleCode Debugger.

After your PeopleCode program is running, you may want to either improve its performance or the user
experience. Techniques for doing this are discussed in Improving Your PeopleCode.

See Understanding PeopleCode Programs and Events.

Copyright © 1988, 2024, Oracle and/or its affiliates. 19

Getting Started with PeopleCode Chapter 1

20 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2

Understanding the PeopleCode Language

PeopleCode Language Structure

This subject assumes that you are familiar with a programming language, such as C, Visual Basic, or Java.

In its fundamentals, PeopleCode syntax resembles other programming languages. Some aspects of the
PeopleCode language, however, are specifically related to the PeopleTools environment. Definition name
references, for example, enable you to refer to PeopleTools definitions, such as record definitions or
pages, without using hard-coded string literals. Other language features, such as PeopleCode data types
and metastrings, reflect the close interaction of PeopleTools and SQL. Dot notation, classes, and methods
in PeopleCode are similar to other object-oriented languages, like Java.

Typographical Conventions

The following topic describes typographical conventions that apply to PeopleCode and are used
throughout PeopleSoft documentation:Typographical Conventions

Data Types

Conventional data types include number, date, string. Use them for basic computing. Object data types
instantiate objects from PeopleTools classes. The appropriate use of each data type is demonstrated where
the documentation discusses PeopleCode that uses that data type.

Declare variables before you use them.

This section discusses:

• Conventional data types.

• Object data types.

Related Links
Variables

Conventional Data Types
PeopleCode includes these conventional data types:

• any

When variables and function return values are declared as any, the data type is indeterminate, enabling
PeopleTools to determine the appropriate type of value based on context. Undeclared local variables
are any by default.

Copyright © 1988, 2024, Oracle and/or its affiliates. 21

Understanding the PeopleCode Language Chapter 2

• boolean

• date

• datetime

• float

• integer

Note: The float and integer data types should be used instead of Number only when a performance
analysis indicates that the increased speed is useful and an application analysis indicates that the
different representations will not affect the results of the computations.

• number

• string

• time

Considerations for Float, Integer, and Number Types

The Integer type is a number represented as a 32-bit signed twos complement number, so it has a range of
-2,147,483,648 to 2,147,483,647.

The Float type is a number represented using the machine floating binary point (double precision)
representation. This floating binary point representation is not appropriate for exact calculations involving
decimal fractions; in particular, calculations involving money. For example, because a tenth (1/10 or .1)
cannot be exactly represented in floating binary point, a floating binary point sum of .10 + .10 is not be
equal to .20.

The Number type has a size limit of 34 digits, not including the decimal point, with a maximum of 32
digits to the right of the decimal point. Since the Number type is a floating decimal point representation, it
is the appropriate data type for calculations involving money.

Operations (other than division) are done using integer arithmetic if the operands are both integers and the
destination is an integer, even if the variable is declared as the Number type. The destination is considered
to be an integer if one of the following is True:

• The destination is an assignment to an integer variable or parameter.

• The destination is an array subscript.

• The destination is the right-hand operand of a comparison and the left-hand operand is an integer.

• The destination is a when-expression part of an evaluate statement, and the expression evaluated at
the start of the evaluate statement is an integer.

• The destination is a for-loop initial, limit, or step expression and the control variable of the for-loop is
an integer.

Division (the / operator) is never performed using integer arithmetic. It is always performed using the
floating-decimal-point arithmetic, even if the result variable is declared as an Integer type.

Follow these recommendations for assigning types to numbers:

22 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

• Use Number for most application data values.

• Use Integer when you are counting items, such as rows in a rowset.

• Use Float only when you are tuning the code for performance (after it is already working).

In addition, you should only use the Float type when you are certain that the resulting loss of precision
will not affect the application and that the increase in the speed of the computation makes a difference
to the transaction. In general, few applications should use the Float type.

Object Data Types
For most classes in PeopleTools, you need a corresponding data type to instantiate objects from that class.

See Classes and Objects.

PeopleCode includes these built-in component buffer access types:

• Field

• Record

• Row

• Rowset

PeopleCode also includes these built-in display data types:

• AnalyticGrid

• Chart

• Gantt

• Grid

• GridColumn

• OrgChart

• Page

• RatingBoxChart

PeopleCode also includes these built-in internet script data types:

• Cookie

• Request

• Response

PeopleCode includes numerous miscellaneous data types—for example, Array, Chart, Exception, File,
Message, XmlDoc, among many others.

Copyright © 1988, 2024, Oracle and/or its affiliates. 23

Understanding the PeopleCode Language Chapter 2

API Object Types

Use this data type for any ApiObject, such as a session object, a tree object, a component interface, a
portal registry, and so on.

The following ApiObject data type objects can be declared as type Global:

• Session

• PSMessages collection

• PSMessages

• All tree classes (trees, tree structures, nodes, levels, and so on)

• All query classes

All other ApiObject data type objects (such as all the PortalRegistry classes) must be declared as Local.

Comments

Use comments to explain, preferably in language comprehensible to anyone reading your program, what
your code does. Comments also enable you to differentiate between PeopleCode delivered with the
product and PeopleCode that you add or change. This differentiation helps in your analysis for debugging
and upgrades.

Note: Use comments to place a unique identifier marking any changes or enhancements that you have
made to a PeopleSoft application. This marker makes it possible for you to search for all the changes you
have made, which is particularly helpful when you are upgrading a database.

You insert comments into PeopleCode in these ways:

• You can insert C-style comments that span multiple lines with /* at the beginning and */ at the end.

• You can use a Rem (remark) statement for commenting.

Put a semicolon at the end of a Rem comment. If you do not, everything up to the end of the next
statement is treated as part of the comment.

• You can comment blocks of code and nested C-style comments using <* at the start and *> at the end.

Use this type of comment to enclose one set of comments within another set. You generally use this
when you are testing code and want to comment out a section that already contains comments.

• You can use Ctrl + U to toggle between comment and uncomment. Select the content that you want to
comment, which can be a line, multiple lines or blocks of code, or a portion of a single line, and then
press the short cut key.

Note: When you select multiple lines or blocks of code to comment, ensure that your selection does
not contain previously inserted comments.

24 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Warning! In application classes, you will see the use of /+ +/ style comments. Do not use these in your
PeopleCode programs. These annotations are generated by the compiler. If you use them, they are
removed by the system the next time you validate, compile, or save your PeopleCode. They are used to
provide signature information on application class methods and properties, and they are regenerated each
time the compiler compiles your application class PeopleCode. Instead, use the standard commenting
mechanisms listed above.

Note: Commented text cannot exceed a maximum of 16383 characters.

The following code sample shows comment formatting:

<* this program is no longer valid commenting out
entire thing

Rem This is an example of commenting PeopleCode;
/* ----- Logic for Compensation Change ----- */
/* Recalculate compensation change for next row.
Next row is based on prior value of EFFDT. */

calc_next_compchg(&OLDDT, EFFSEQ, 0);

/* Recalculate compensation change for current row and next row.
Next row is based on new value of EFFDT. */

calc_comp_change(EFFDT, EFFSEQ, COMP_FREQUENCY, COMPRATE,
CHANGE_AMT, CHANGE_PCT);

calc_next_compchg(EFFDT, EFFSEQ, 0);

*>

Note: All text between the <* and *> comment markers is scanned. You may receive an error message for
certain conditions, such as mismatched quotation marks, when using this type of comment.

Statements

A statement can be a declaration, an assignment, a program construct (such as a Break statement or a
conditional loop), or a subroutine call.

This section discusses:

• Separators.

• Assignment statements.

• Language constructs.

• Branching statements.

• Conditional loops.

Copyright © 1988, 2024, Oracle and/or its affiliates. 25

Understanding the PeopleCode Language Chapter 2

Separators
PeopleCode statements are generally terminated with a semicolon. The PeopleCode language accepts
semicolons even if they are not required, such as after the last statement completed within an If statement.
This functionality enables you to consistently add semicolons after each statement.

Extra spaces are ignored. They are removed by the PeopleCode Editor when you save the code.

Assignment Statements
The assignment statement is the most basic type of statement in PeopleCode. It consists of an equal sign
with a variable name on the left and an expression on the right:

variableName = expression;

The expression on the right is evaluated, and the result is placed in the variable named on the left.
Depending on the data types involved, the assignment is passed either by value or by reference.

Assignment by Value

In most types of assignments, the result of the right-hand expression is assigned to the variable as a newly
created value, in the variable's own allocated memory area. Subsequent changes to the value of that
variable have no effect on any other data.

Assignment by Reference

When both sides of an assignment statement are object variables, the result of the assignment is not to
create a copy of the object in a unique memory location and assign it to the variable. Instead, the variable
points to the object's memory location. Additional variables can point to the same object location.

For example, both &AN and &AN2 are arrays of type Number. Assigning &AN2 to &AN does not assign
a copy of &AN2 to &AN. Both array objects point to the same information in memory.

Local array of number &AN, &AN2;
Local number &NUM;

&AN = CreateArray(100, 200, 300);
&AN2 = &AN;
&NUM = &AN[1];

In the code example, &AN2 and &AN point to the same object: an array of three numbers. If you were
to change the value of &AN[2] to 500 and then reference the value of &AN2[2], you would get 500, not
300. On the other hand, assigning &NUM to the first element in &AN (100) is not an object assignment.
It is an assignment by value. If you changed &AN[1] to 500, then &NUM remains 200.

Note: In PeopleCode, the equal sign can function as either an assignment operator or a comparison
operator, depending on context.

Language Constructs
PeopleCode language constructs include:

• Branching structures: If and Evaluate.

26 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

• Loops and conditional loops: For, Repeat, and While.

• Break, Continue, and Exit statements loop control and terminating programs.

• The Return statement for returning from functions.

• Variable and function declaration statements: Global, Local, and Component for variables, and
Declare Function for functions.

• The Function statement for defining functions.

• Class definition statements.

• Try, Catch, and Throw statements for error handling.

Functions as Subroutines

PeopleCode, like C, does not have subroutines as we generally refer to them. PeopleCode subroutines are
the subset of PeopleCode functions only that are defined to return no value or to return a value optionally.
Calling a subroutine is the same as calling a function with no return value:

function_name([param_list]);

Related Links
Branching Statements
Functions
“Function” (PeopleCode Language Reference)
“Declare Function” (PeopleCode Language Reference)
“CreateException” (PeopleCode Language Reference)
“try” (PeopleCode Language Reference)

Branching Statements
Branching statements control program flow based on evaluation of conditional expressions.

If, Then, and Else statements

The syntax of If, Then, and Else statements is:

If condition Then
 [statement_list_1;]
[Else
 [statement_list_2;]]
End-If;

This statement evaluates the Boolean expression condition. If condition is True, then the If statement
executes the statements in statement_list_1. If condition is False, then the program executes the
statements in the Else clause; if there is no Else clause, the program continues to the next statement.

Evaluate Statement

Use the Evaluate statement to check multiple conditions. Its syntax is:

Evaluate left_term

Copyright © 1988, 2024, Oracle and/or its affiliates. 27

Understanding the PeopleCode Language Chapter 2

 When [relop_1] right_term_1
 [statement_list;]
 [When [relop_n] right_term_n
 [statement_list;]]
 [When-other
 [statement_list;]]
End-Evaluate;

The Evaluate statement takes an expression, left_term, and compares it to compatible expressions
(right_term) using the relational operators (relop) in a sequence of When clauses. If relop is omitted, then
the equal sign is assumed. If the result of the comparison is True, the program executes the statements
in the When clause, and then moves on to evaluate the comparison in the following When clause. The
program executes the statements in all of the When clauses for which the comparison evaluates to True. If
none of the When comparisons evaluates to True, the program executes the statement in the When-other
clause, if one is provided. For example, the following Evaluate statement executes only the first When
clause. &USE_FREQUENCY in the following example can only have one of three string values:

Evaluate &USE_FREQUENCY
When = "never"
 &PROD_USE_FREQ = 0;
When = "sometimes"
 &PROD_USE_FREQ = 1;
When = "frequently"
 &PROD_USE_FREQ = 2;
When-Other
 Error "Unexpected value assigned to &USE_FREQUENCY."
End-Evaluate;

To end the Evaluate statement after the execution of a When clause, you can add a Break statement at the
end of the clause, as in the following example:

Evaluate &USE_FREQUENCY
When = "never"
 &PROD_USE_FREQ = 0;
 Break;
When = "sometimes"
 &PROD_USE_FREQ = 1;
 Break;
When = "frequently"
 &PROD_USE_FREQ = 2;
 Break;
When-Other
 Error "Unexpected value assigned to &USE_FREQUENCY."
End-Evaluate;

In rare cases, you may want to make it possible for more than one When clause to execute, as shown in
the following example:

Evaluate &PURCHASE_AMT
When >= 100000
 &BASE_DISCOUNT = "Y";
When >= 250000
 &SPECIAL_SERVICES = "Y";
When >= 1000000
 &MUST_GROVEL = "Y";
End-Evaluate;

For Statement

The For statement repeats a sequence of statements a specified number of times. Its syntax is:

For count = expression1 to expression2 [Step i]
 statement_list;
End-For;

28 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

The For statement initializes the value of count to expression1, and then increments count by i each time
after it executes the statements in statement_list. The program continues in this loop until count is equal to
expression2. If the Step clause is omitted, then i equals one. To count backwards from a higher value to a
lower value, use a negative value for i. You can exit a For loop using a Break statement.

The following example demonstrates the For statement:

&MAX = 10;

Local integer &COUNT;
For &COUNT = 1 To &MAX;
 WinMessage("Executing statement list, count = " | &COUNT);
End-For;

Related Links
“If” (PeopleCode Language Reference)
“Evaluate” (PeopleCode Language Reference)
“For” (PeopleCode Language Reference)

Conditional Loops
Conditional loops, Repeat and While, repeat a sequence of statements, evaluating a conditional expression
each time through the loop. The loop terminates when the condition evaluates to True. You can exit from
a conditional loop using a Break statement. If the Break statement is in a loop embedded in another loop,
the break applies only to the inside loop.

Repeat Statement

The syntax of the Repeat statement is:

Repeat
 statement_list;
Until logical_expression;

The Repeat statement executes the statements in statement_list once, and then evaluates
logical_expression. If logical_expression is False, the sequence of statements is repeated until
logical_expression is True.

While Statement

The syntax of the While statement is:

While logical_expression
 statement_list;
End-While;

The While statement evaluates logical_expression before executing the statements in statement_list. It
continues to repeat the sequence of statements until logical_expression evaluates to False.

Related Links
“Repeat” (PeopleCode Language Reference)
“While” (PeopleCode Language Reference)

Copyright © 1988, 2024, Oracle and/or its affiliates. 29

Understanding the PeopleCode Language Chapter 2

Functions

This section discusses:

• Supported functions.

• Function definitions.

• Function declarations.

• Function calls.

• Function return values.

• Function naming conflicts.

Related Links
Classes and Objects
Functions
“Function” (PeopleCode Language Reference)
“Declare Function” (PeopleCode Language Reference)

Supported Functions
PeopleCode supports the following types of functions:

• Built-in: The standard set of PeopleCode functions. These can be called without being declared.

• Internal: Functions that are defined (using the Function statement) within the PeopleCode program in
which they are called.

• External PeopleCode: PeopleCode functions defined outside the calling program. These are generally
contained in record definitions that serve as function libraries.

• External non-PeopleCode: Functions stored in external (C-callable) libraries.

Note: PeopleSoft Analytic Calculation Engine provides its own set of built-in functions.

See “Understanding the Analytic Model Definition Creation Process” (Analytic Calculation Engine).

In addition, PeopleCode supports methods. The main differences between a built-in function and a
method are:

• A built-in function, in your code, is on a line by itself, and it does not (generally) have any
dependencies.

You do not have to instantiate an object before you can use the function.

• A method can only be executed by an object (using dot notation).

You must instantiate the object first.

30 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Function Definitions
PeopleCode functions can be defined in any PeopleCode program. Function definitions must be placed
at the top of the program, along with any variable and external function declarations. The syntax for a
PeopleCode function definition is as follows:

Function name[(paramlist)] [Returns data_type]
 [statements]
End-function

By convention, PeopleCode programs are stored in records whose names begin in FUNCLIB_, and they
are always attached to the FieldFormula event.

Note: Application classes can provide an alternative, and sometimes cleaner, mechanism for separating
functionality than the functions stored in function libraries.

Related Links
“Function” (PeopleCode Language Reference)
“Application Classes General Structure” (PeopleCode API Reference)

Function Declarations
If you call an external function from a PeopleCode program, you must declare the function at the top of
the program. The syntax of the function declaration varies, depending on whether the external function is
written in PeopleCode or compiled in a dynamic link library.

The following is an example of a function declaration of a function that is in another FUNCLIB record
definition:

Declare Function UpdatePSLOCK PeopleCode FUNCLIB_NODES.MSGNODENAME FieldFormula;

Related Links
“Declare Function” (PeopleCode Language Reference)

Function Calls
Functions are called with this syntax:

function_name([param_list]);

The optional parameter list (param_list) is a list of expressions, separated by commas, that the function
expects you to supply. If a parameter is listed in the function definition, then it is required when the
function is called.

You can check the values of parameters that get passed to functions at runtime in the Parameter window
of the PeopleCode debugger.

If the return value is required, then the function must be called as an expression, for example:

&RESULT = Product(&RAISE_PERCENT, .01, EMPL_SALARY);

Copyright © 1988, 2024, Oracle and/or its affiliates. 31

Understanding the PeopleCode Language Chapter 2

If the function has an optional return value, it can be called as a subroutine. If the function has no return
value, it must be called as a subroutine:

WinMessage(64, "I can't do that, " | &OPER_NICKNAME | ".");

Parameters are always passed to internal and external PeopleCode functions by reference. If the function
is supposed to change the data the caller passes, you must also pass in a variable.

Built-in function parameters can be passed by reference or by value, depending on the function. External
C function parameters can be passed by value or by reference, depending on the declaration and type.

Related Links
Understanding the PeopleCode Debugger
Variables and Functions

Function Return Values
Functions can return values of any supported data type; some functions do not return any value.

Optional return values occur only in built-in functions. You cannot define a function that optionally
returns a value. Optional return values are typical in functions that return a Boolean value indicating
whether execution was successful. For example, the following call to DeleteRow ignores the Boolean
return value and deletes a row:

DeleteRow(RECORD.BUS_EXPENSE_PER, &L1_ROW, RECORD.BUS_EXPENSE_DTL, &L2_ROW);

The following example checks the return value and returns a message saying whether it succeeded:

if DeleteRow(RECORD.BUS_EXPENSE_PER, &L1_ROW, RECORD.BUS_EXPENSE_DTL, &L2_ROW) then
 WinMessage("Row deleted.");
else
 WinMessage("Sorry -- couldn't delete that row.");
end-if;

Function Naming Conflicts
If you define a function with the same name as a built-in function, the function that you defined takes
precedence over the built-in function.

Anytime you compile the PeopleCode in the PeopleCode Editor, a warning message appears in the
Validate tab, indicating that a user-defined function has the same name as an existing built-in function.

In addition, if you select Compile All PeopleCode, an error message is generated in the log file for every
user-defined function that has the same name as a built-in function.

The following is an example error message: User-defined function IsNumber is overriding the built-in
function of the same name. (2,98)

If you notice that you named a function the same as a built-in function, and that the built-in function does
what you're trying to achieve, replace your function with a reference to the built-in function. The built-in
function is probably more efficient. In addition, using the built-in function reduces confusion for people
who maintain your code, because if they miss the warning message in the Validate tab, they might assume
the built-in function is being called when it is not.

32 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Expressions

This section discusses:

• Expression fundamentals.

• Constants.

• Functions as expressions.

• System variables.

• Metastrings.

• Record field references.

• Definition name references.

• PeopleCode reserved words.

Related Links
Variables

Expression Fundamentals
Expressions evaluate to values of PeopleCode data types. A simple PeopleCode expression can consist
of a constant, a temporary variable, a system variable, a record field reference, or a function call. Simple
expressions can be modified by unary operators (such as a negative sign or logical NOT), or combined
into compound expressions using binary operators (such a plus sign or logical AND).

Definition name references evaluate to strings equal to the name of a PeopleTools definition, such as a
record or page. They enable you to refer to definitions without using string literals, which are difficult to
maintain.

Metastrings (also called meta-SQL) are special expressions used within SQL string literals. At runtime,
the metastrings expand into the appropriate SQL for the current database platform.

Constants
PeopleCode supports numeric, string, and Boolean constants, as well as user-defined constants. It also
supports the constant Null, which indicates an object reference that does not refer to a valid object.

Note: You can express Date, DateTime, and Time values by converting from String and Number
constants using the Date, Date3, DateTime6, DateTimeValue, DateValue, Time3, TimePart, and the
TimeValue functions. You can also format a DateTime value as text using FormatDateTime.

Numeric Constants

Numeric constants can be any decimal number. Some examples are:

• 7

Copyright © 1988, 2024, Oracle and/or its affiliates. 33

Understanding the PeopleCode Language Chapter 2

• 0.8725

• -172.0036

String Constants

String constants can be delimited by using either single (') or double (") quotation marks. If a quotation
mark occurs as part of a string, the string can be surrounded by the other delimiter type. As an alternative,
you can include the delimiter twice. Some examples are:

• "This is a string constant."

• 'So is this.'

• 'She said, "This is a string constant."'

• "She said, ""This is a string constant."""

Use the following code to include a literal quotation mark as part of your string:

&cDblQuote = '"'; /* singlequote doublequote singlequote */

The following also produces a string with two double quotation marks in it:

&cDblQuote = """"; /* dquote dquote dquote dquote */

You can also directly embed the doubled double quotation mark in strings, such as:

&sImage = Char(10) | '<IMG SRC="%IMAGE(' | &pImageName | ')"';

Strings must be contained on a single line. If you need to create a multi-line string, you must use
concatenation to connect the lines to be a single sting. For example, one method to do this is:

&string = "Line 1" | Char(10) | "Line 2" | Char(10);

Boolean Constants

Boolean constants represent a truth value. The two possible values are True and False.

Null Constant

Null constants represent an object reference value that does not refer to a valid object. This means that
calling a method on the object or trying to get or set a property of it fails. The Null constant is just the
keyword Null.

User-Defined Constants

You can define constants at the start of a PeopleCode program. Then you can use the declared constant
anywhere that the corresponding value would be allowed. Constants can be defined as numbers, strings,
or Boolean values.

User-defined constants can only be declared as Local.

The following is an example of user-defined constant declarations:

Constant &Start_New_Instance = True;
Constant &Display_Mode = 0;
Constant &AddMode = "A":

34 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Local Field &Start_Date;
. . .
MyFunction(&Start_New_Instance, &Display_Mode, &Add_Mode);

Functions as Expressions
You can use any function that returns a value as an expression. The function can be used on the right
side of an assignment statement, passed as a parameter to another function, or combined with other
expressions to form a compound expression.

Related Links
Functions

System Variables
System variables are preceded by a percent (%) symbol whenever they appear in a program. Use these
variables to get the current date and time, or to get information about the user, the current language, the
current record, page, or component, and more.

Related Links
“Understanding System Variables” (PeopleCode Language Reference)
“System Variables Reference” (PeopleCode Language Reference)

Metastrings
Metastrings are special SQL expressions. The metastrings, also called meta-SQL, are preceded with
a percent (%) symbol, and can be included directly in string literals. They expand at runtime into an
appropriate substring for the current database platform. Metastrings are used in or with:

• SQLExec.

• Scroll buffer functions (ScrollSelect and its relatives).

• PeopleSoft Application Designer to construct dynamic views.

• Some rowset object methods (Select, SelectNew, Fill, and so on).

• SQL objects.

• Application Engine.

• Some record class methods (Insert, Update, and so on).

• COBOL.

Related Links
“SQLExec” (PeopleCode Language Reference)
“ScrollSelect” (PeopleCode Language Reference)
“Understanding Meta-SQL” (PeopleCode Language Reference)

Copyright © 1988, 2024, Oracle and/or its affiliates. 35

Understanding the PeopleCode Language Chapter 2

Record Field References
Use record field references to retrieve the value stored in a record field or to assign a value to a record
field.

Record Field Reference Syntax

References to record fields have the following form:

[recordname.]fieldname

You must supply the recordname only if the record field and your PeopleCode program are in different
record definitions.

For example, suppose that in a database for veterinarians you have two records, PET_OWNER and PET.
A program in the record definition PET_OWNER must refer to the PET_BREED record field in the PET
record definition as PET.PET_BREED.

However, a program in the PET record definition can refer to this same record field more directly as
PET_BREED.

If the program is in the PET_BREED record field itself, it can refer to this record field using the caret (^)
symbol.

The PeopleCode Editor replaces the caret symbol with the actual record field name.

You can also use object dot notation to refer to record fields, for example:

&FIELD = GetRecord(RECORD.PET_OWNER).GetField(FIELD.PET_BREED);

See Understanding Component Buffer Structure and Contents.

Legal Record Field Names

A record field name consists of two parts, the record name and the field name, separated by a period.

The field names used in PeopleCode are consistent with the field names allowed in the field definition.
Case is ignored, although the PeopleCode Editor for the sake of convention, automatically formats
field names in uppercase. A field name can be 1 to 18 characters, consisting of alphanumeric characters
determined by your current language setting in Microsoft Windows, and characters #, @, $, and _.

A record name can be 1 to 15 characters, consisting of alphanumeric letters determined by your current
language setting in Microsoft Windows, and characters #, @, $, and _.

Definition Name References
Definition name references are special expressions that reference the name of a PeopleTools
definition, such as a record, page, component, business interlink, and so on. Syntactically, a
definition name reference consists of a reserved word indicating the type of definition, followed by
a period, then the name of the PeopleTools definition. For example, the definition name reference
RECORD.BUS_EXPENSE_PER refers to the definition name BUS_EXPENSE_PER.

Generally, definition name references are passed as parameters to functions. If you attempt to pass a string
literal instead of a definition name reference to such a function, you receive a syntax error.

36 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

You also use definition name references outside function parameter lists, for example, in comparisons:

If (%Page = PAGE.SOMEPAGE) Then
 /* do stuff specific to SOMEPAGE */
End-If;

In these cases, the definition name reference evaluates to a string literal. Using the definition name
reference instead of a string literal enables PeopleTools to maintain the code if the definition name
changes.

If you use the definition name reference, and the name of the definition changes, the change automatically
ripples through the code, so you do not have to change it or maintain it.

In the PeopleCode Editor, if you place your cursor over any definition name reference and right-click, you
can select View Definition to open the definition.

In addition, for most definitions, if you specify a definition that was not created in PeopleSoft Application
Designer, you receive an error message when you try to save your program.

Legal and Illegal Definition Names

Legal definition names, as far as definition name references are concerned, consist of alphanumeric letters
determined by your current language setting in Microsoft Windows, and the characters #, @, $, and _.

In some cases, however, the definition supports the use of other characters. You can, for example, have
a menu item named A&M stored in the menu definition even though & is an illegal character in the
definition name reference. The illegal character results in an error when you validate the syntax or attempt
to save the PeopleCode.

You can avoid this problem in two ways:

• Rename the definition so that it uses only legal characters.

• Enclose the name of the definition in quotation marks in the reference, for example:
ITEMNAME."A&M"

The second solution is a commonly used workaround in cases where the definition name contains
illegal characters. If you use this notation, the definition name reference is not treated as a string literal:
PeopleTools maintains the reference the same way as it does other definition name references.

Note: If your definition name begins with a number, you must enclose the name in quotation marks when
you use it in a definition name reference. For example, CompIntfc."1_DISCPLIN_ACTN".

PeopleCode Reserved Words

Reserved Word Common Usage

AnalyticModel Used with the GetAnalyticModel method.

BarName Used with transfers and modal transfers.

BusActivity Used with TriggerBusinessEvent.

Copyright © 1988, 2024, Oracle and/or its affiliates. 37

Understanding the PeopleCode Language Chapter 2

Reserved Word Common Usage

BusEvent Used with TriggerBusinessEvent.

BusProcess Used with TriggerBusinessEvent.

CompIntfc Used with Component Interface Classes.

Component Used with transfers and modal transfers, as well as for
generating URLs.

Field Used with methods and functions to designate a field.

FileLayout Used with the SetFileLayout File class method.

HTML Used with the GetHTMLText function.

Image Used in with functions and methods to designate an image.

Interlink Used with the GetInterlink function.

ItemName Used with transfers and modal transfers.

Market Used with transfers and URL generation.

MenuName Used with transfers and modal transfers.

Message Used with Messaging functions and methods.

Node Used with transfers and modal transfers, as well as generating
URLs.

Operation Used with the CreateMessage function.

Page Used with transfers and modal transfers to pass the page item
name (instead of the page name), and with controls and other
functions to pass the page name.

Panel Used with the desupported TransferPanel function.

Note: Use the TransferPage function and the Page reserved
word instead.

38 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Reserved Word Common Usage

PanelGroup Used with the desupported DoModalPanelGroup function.

Note: Use the DoModalComponent function and the
Component reserved word instead.

Portal Used with transfers and modal transfers, as well as generating
URLs.

Record Used in functions and methods to designate a record.

Rowset Used in functions and methods to designate a rowset.

RowsetCache

Scroll The name of the scroll area in the page. This name is always
equal to the primary record of the scroll.

SQL Used with SQL definitions.

StyleSheet Used with style sheets.

URL Used with file attachment functions.

Variables

This section discusses.

• Supported variable types.

• User-defined variables.

• User-defined variable declaration and scope.

• Variable declaration.

• User-defined variable initialization.

• Restrictions on variable use.

• Scope of local variables.

• Duration of local variables.

• Variables and functions.

• Recursive functions.

Copyright © 1988, 2024, Oracle and/or its affiliates. 39

Understanding the PeopleCode Language Chapter 2

• State of shared objects using PeopleSoft Pure Internet Architecture.

Related Links
System Variables

Supported Variable Types
PeopleCode supports these types of variables:

Term Definition

User-defined variables These variable names are preceded by an & character
wherever they appear in a program. Variable names can be
1 to 1000 characters, consisting of letters A through Z and a
through z, digits 0 through 9, and characters #, @, $, and _.

System variables System variables provide access to system information.
 System variables have a prefix of the % character rather than
the & character. Use these variables wherever you can use a
constant, passing them as parameters to functions or assigning
their values to fields or to temporary variables.

User-Defined Variables
A user-defined variable can hold the contents of a record field for program code clarity. For example, you
may give a variable a more descriptive name than a record field, based on the context of the program. If
the record field is from another record, you may assign it to a temporary variable rather than always using
the record field reference. This makes it easier to enter the program, and can also make the program easier
to read.

Also, if you find yourself calling the same function repeatedly to get a value, you may be able to avoid
some processing by calling the function once and placing the result in a variable.

User-Defined Variable Declaration and Scope
The difference between the variable declarations concerns their life spans:

• Global

The variable is valid for the entire session.

Global variables can be accessed from different components and applications, including an
Application Engine program. A global variable must be declared, however, in each PeopleCode
program where it’s used. Use global variables rarely, because they are difficult to maintain.

Global variables are not available to a portal or applications on separate databases.

• Component

40 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Component variables remain defined and keep their values while any page in the component in which
they are defined remains active. Similar to a global variable, a component variable must be declared in
each PeopleCode program where it is used.

Component variables remain defined after a TransferPage, DoModal, or DoModalComponent
function. However, variables declared as Component do not remain defined after using the Transfer
function, whether you are transferring within the same component or not.

Component variables act the same as global variables when an Application Engine program is called
from a page (using CallAppEngine).

• Local

The variable is valid for the duration of the PeopleCode program or function in which the variable is
defined.

Local variables declared at the top of a PeopleCode program (or within the main, that is, non-function,
part of a program) remain in scope for the life of that PeopleCode program. Local variables declared
within a method or function are valid to the end of the method or function and not beyond.

You can explicitly declare variables using the Global, Component, or Local statements, or you can use
local variables without declaring them. Here are some examples of explicit variable declarations:

Local Number &AGE;
Global String &OPER_NICKNAME;
Component Rowset &MY_ROWSET;
Local Any &SOME_FIELD;
Local ApiObject &MYTREE;
Local Boolean &Compare = True;
Component PTFP_FEED:FeedFactory &cFeedFactory;

Variable declarations are usually placed above the main body of a PeopleCode program (along with
function declarations and definitions). The exception is the Local declaration, which you can use within
a function or the main section of a program. You can declare variables as any of the PeopleCode data
types. If a variable is declared as an Any data type, or if a variable is not declared, PeopleTools uses an
appropriate data type based on context.

Note: Declare a variable as an explicit data type unless the variable will hold a value of an unknown data
type.

You can check the values of Global, Component, or Local variables at runtime in the different variable
windows of the PeopleCode debugger. Local variables declared within a function appear in the Function
Parameters window.

Variable Declaration
Declare variables before you use them. If you do not declare a variable, it is automatically declared
with the scope Local and the data type Any. You receive a warning message in the Validation tab of the
PeopleSoft Application Designer output window for every variable that is not declared when you save the
PeopleCode program, as shown in the following example:

Copyright © 1988, 2024, Oracle and/or its affiliates. 41

Understanding the PeopleCode Language Chapter 2

The following image shows the validation tab with auto-declared variables.

If you declared all the variables, you can use these values to ensure you do not have misspellings. For
example, if you declared a variable as &END_DATE and then accidentally spell it as &EDN_DATE, the
“new variable” appears on the Validate tab when you save the program.

Another reason to declare variables is for the design-time checking. If you declare a variable of one data
type and then assign to it a value of a different type, the PeopleCode Editor catches that assignment as a
design-time error when you try to save the program. With an undeclared variable, the assignment error
does not appear until runtime.

The following example produces a design-time error when you try to save the program:

Local Field &DATE;

&DATE = GetRecord(RECORD.DERIVED_HR);

In addition, if you declare variables, the Find Object Reference feature finds embedded definitions. For
example, suppose you wanted to find all occurrences of the field DEPT_ID. If you have not declared
&MyRecord as a record, Find Object References does not find the following reference of the field
DEPT_ID:

&MyRecord.DEPT_ID.Visible = False;

User-Defined Variable Initialization
To declare and initialize variables in one step, use the following format:

Local String &MyString = "New";

Local Date &MyDate = %Date;

This method is available only for variables with the scope of Local.

Though you can declare more than one variable on a single line, you can only initialize one variable on a
line. The following code creates a syntax error when you try to save the program:

Local Number &N1, &N2 = 5;

You cannot declare a variable, then initialize it in a second declaration statement. The following produces
a duplicate declaration error when you try to save the program:

Global Number &N1;
...
Local String &N1 = "Str"; /* Duplicate definition. */

If you do not initialize variables, either when you declare them or before you use them, strings are
initialized as Null strings, dates and times as Null, and numbers as zero.

42 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Restrictions on Variable Use
The following data types can only be declared as Local:

• JavaObject

• Interlink

Note: Interlink objects can be declared as type Global in an Application Engine program.

• TransformData

• XmlNode

The following ApiObject data type objects can be declared as Global:

• Session

• PSMessages collection

• PSMessage

• All tree classes (trees, tree structures, nodes, levels, and so on)

• Query classes

All other ApiObject data type objects (such as all the PortalRegistry classes) must be declared as Local.

Scope of Local Variables
The two types of local variables are: program-local and function-local.

• A program-local variable is declared as local in the main part of the program and is local to that
program.

• A function-local variable is declared as local inside a function and is local only to that function.

See Recursive Functions.

A program-local variable can be affected by statements anywhere in the program. For example, suppose
RECORD_A.FIELD_A.FieldFormula has two functions, FUNC_1 and FUNC_2, and both modify a local
variable named &TEMP. They could affect each other, as they both use the same variable name in the
same PeopleCode program.

If, however, FUNC_3 is defined in RECORD_B_FIELD_B.FieldFormula and makes reference to
&TEMP, it is not the same &TEMP as in RECORD_A.FIELD_A.FieldFormula. This difference becomes
important when FUNC_1 calls FUNC_3. Technically, both functions exist at the same time, one inside
the other, but &TEMP is a different variable for each of them. However, if FUNC_1 calls FUNC_2, then
&TEMP is the same variable for both.

Duration of Local Variables
A local variable is valid for the duration of the PeopleCode program or function in which it is defined.
A PeopleCode program is defined as what the PeopleCode Editor in Application Designer presents

Copyright © 1988, 2024, Oracle and/or its affiliates. 43

Understanding the PeopleCode Language Chapter 2

in a single window: a chunk of PeopleCode text associated with a single item (a record field event, a
component record event, and so on.)

When the system evaluates a PeopleCode program and calls a function in the same PeopleCode program,
a new program evaluation is not started.

However, when a function from a different PeopleCode program is called (that is, some PeopleCode
text associated with a different item), the current PeopleCode program is suspended, and the Component
Processor starts evaluating the new program. This means that any local variables in the calling program
(called A) are no longer available. Those in the called program (called B) are available.

Even if the local variables in the A program have the same name as those in the B program, they are
different variables and are stored separately.

If the called program (B) in turn calls a function in program A, a new set of program A's variables are
allocated, and the called function in A uses these new variables. Thus, this second use of program A gets
another lifetime, until execution returns to program B.

The following is an example of pseudocode to show how this might work. (This is non-compiled, non-
working code. To use this example, you'd have to enter a similar program without the external declaration
of the function in the other, not yet compiled, one.)

Program A (Rec.Field.FieldChange):
local number &temp;
declare function B1 PeopleCode Rec.Field FieldFormula;
/* Uncomment this declaration and comment above to compile this the first time.
 function B1
 end-function;
*/

function A1
WinMessage("A1: &temp is " | &temp);
&temp = &temp + 1;
A2();
B1();
A2();
end-function;

function A2
WinMessage("A2: &temp is " | &temp);
&temp = &temp + 1;
end-function;

A1();

Program B (Rec.Field.FieldFormula):
local number &temp;
declare function A2 PeopleCode Rec.Field FieldChange;

function B1
WinMessage("B1: &temp is " | &temp);
&temp = &temp + 1;
A2();
end-function;

When this is compiled and run, it produces the following output:

A1: &temp is 0
A2: &temp is 1
B1: &temp is 0
A2: &temp is 0
A2: &temp is 2

44 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Variables and Functions
PeopleCode variables are always passed to functions by reference. This means, among other things, that a
function can change the value of a variable passed to it so that the variable has the new value on return to
the calling routine.

For example, the Amortize built-in function expects you to pass it variables into which it places the
amount of a loan payment applied towards interest (&PYMNT_INTRST), the amount of the payment
applied towards principal (&PYMNT_PRIN), and the remaining balance (&BAL). It calculates these
values based on information that the calling routine supplies in other parameters:

&INTRST_RT=12;
&PRSNT_BAL=100;
&PYMNT_AMNT=50;
&PYMNT_NBR=1;
Amortize(&INTRST_RT, &PRSNT_BAL, &PYMNT_AMNT, &PYMNT_NBR,
&PYMNT_INTRST, &PYMNT_PRIN, &BAL);
&RESULT = "Int=" | String(&PYMNT_INTRST) | " Prin=" |
String(&PYMNT_PRIN) | " Bal=" | String(&BAL);

Recursive Functions
PeopleCode supports True recursive functions. A function can call itself, and each possibly recursive call
of the function has its own independent copy of the parameters and function-local variables.

When writing recursive functions, be careful about passing variables as parameters, because PeopleCode
implements such calls by reference. This means that if you call a function such as:

Function Func(&n as Number)
&n = 3;
End-Function;
local &x = 5;
Func(&x);

After the call to Func(&x), &x has the value 3, not 5. If the call was Func(Value(&x)), after the call &x is
still 5.

State of Shared Objects Using PeopleSoft Pure Internet Architecture
Consider the following scenario:

• A local and a global variable refer to the same object.

• That object is used in a modal component.

• Instead of completing the modal component, the user clicks the browser Back button.

In general, the global state of the object is restored. If the object has not been destroyed from the global
state, the global state of the object is used for local references; otherwise, the local state is used for local
references.

Here is an example:

Global array of number &Global_Array;
Local array of number &Local_Array;

&Global_Array = CreateArray(1, 2, 3);
&Local_Array = &Global_Array;

Copyright © 1988, 2024, Oracle and/or its affiliates. 45

Understanding the PeopleCode Language Chapter 2

DoModal(Page.PAGENAME, "", - 1, - 1, 1, Record.SHAREDREC, 1);

/* return to here */
&Local_Array [1] = - 1;
&Global_Array [2] = - 2;
WinMessage(&Local_Array | " is " | &Local_Array.Join());
WinMessage(&Global_Array | " is " | &Global_Array.Join());

The following program, program 2, is located on the modal page the user is transferred to:

Global array of number &Global_Array;
&Global_Array[3] = -3;

The following program, program 3, is also located on the modal page:

Global array of number &Global_Array;
&Global_Array = CreateArray(1, 2, -3);

If program 2 is run, the output is the following:

&Local_Array is -1, -2, -3
&Global_Array is -1, -2, -3

However, if program 3 is run, thereby destroying the original global state, the output is the following:

&Local_Array is -1, 2, 3
&Global_Array is 1, -2, -3

Related Links
“System Variables Reference” (PeopleCode Language Reference)
Understanding the PeopleCode Debugger

Operators

PeopleCode expressions can be modified and combined using math, string, comparison, and Boolean
operators.

This section discusses:

• Math operators.

• Operations on dates and times.

• String concatenation.

• @ operator.

• Comparison operators.

• Boolean operators.

Math Operators
PeopleCode uses standard mathematical operators:

• +

46 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Add

• -

Subtract (or unary negative sign)

• *

Multiply

• /

Divide

• **

Exponential

Exponentiation occurs before multiplication and division; multiplication and division occur before
addition and subtraction. Otherwise, math expressions are evaluated from left to right. You can use
parentheses to force the order of operator precedence.

The minus sign can also, of course, be used as a negation operator, as in the following expressions:

-10
- &NUM
- Product(&PERCENT_CUT, .01, SALARY)

Operations on Dates and Times
You can add or subtract two date values or two time values, which provides a Number result. In the case
of dates, the number represents the difference between the two dates in days. In the case of time, the
number represents the difference in seconds. You can also add and subtract numbers to or from a time or
date, which results in another date or time. Again, in the case of days, the number represents days, and in
the case of time, the number represents seconds.

The following table summarizes these operations:

Operation Result Type Result Represents

Time + number of seconds Time Resulting time

Date + number of days Date Resulting date

Date - date Number Difference in days

Time - time Number Difference in seconds

Date + time DateTime Date and time combined

Copyright © 1988, 2024, Oracle and/or its affiliates. 47

Understanding the PeopleCode Language Chapter 2

String Concatenation
The string concatenation operator (|) is used to combine strings. For example, assuming
&OPER_NICKNAME is “Dave”, the following statement sets &RETORT to “I can’t do that, Dave.”

&RETORT = "I can't do that, " | &OPER_NICKNAME | "."

The concatenation operator automatically converts its operands to strings. This conversion makes it easy
to write statements that display mixed data types. For example:

&DAYS_LEFT = &CHRISTMAS - %Date;
WinMessage("Today is " | %Date | ". Only " | &DAYS_LEFT | " shopping days left!");

@ Operator
The @ operator converts a string storing a definition reference into the definition. This is useful, for
example, if you want to store definition references in the database as strings and retrieve them for use in
PeopleCode; or if you want to obtain a definition reference in the form of a string from the operator using
the Prompt function.

To take a simple example, if the record field EMPLID is currently equal to 8001, the following expression
evaluates to 8001:

@"EMPLID"

The following example uses the @ operator to convert strings storing a record reference and a record field
reference:

&STR1 = "RECORD.BUS_EXPENSE_PER";
&STR2 = "BUS_EXPENSE_DTL.EMPLID";
&STR3 = FetchValue(@(&STR1), CurrentRowNumber(1), @(&STR2), 1);
WinMessage(&STR3, 64);

Note: String literals that reference definitions are not maintained by PeopleTools. If you store definition
references as strings, then convert them with the @ operator in the code, this creates maintenance
problems whenever definition names change.

The following function takes a rowset and a record, passed in from another program, and performs some
processing. The GetRecord method does not take a variable for the record, however, you can dereference
the record name using the @ symbol. Because the record name is never hard-coded as a string, if the
record name changes, this code does not have to change.

Function Get_My_Row(&PASSED_ROWSET, &PASSED_RECORD)

 For &ROWSET_ROW = 1 To &PASSED_ROWSET.RowCount
 &UNDERLYINGREC = "RECORD." | &PASSED_ROWSET.DBRecordName;
 &ROW_RECORD = &PASSED_ROWSET.GetRow(&ROWSET_ROW).GetRecord(@(&UNDERLYINGREC))⇒

;

 /* Do other processing */

 End-For;

End-Function;

48 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 2 Understanding the PeopleCode Language

Comparison Operators
Comparison operators compare two expressions of the same data type. The result of the comparison is a
Boolean value. The following table summarizes these operators:

Operator Meaning

= Equal

!= Not equal

<> Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

You can precede any of the comparison operators with the word Not, for example:

• Not=

• Not<

• Not>=

Expressions formed with comparison operators form logical terms that can be combined using Boolean
operators.

String comparisons are case-sensitive. You can use the Upper or Lower built-in functions to do a case-
insensitive comparison.

Related Links
“Lower” (PeopleCode Language Reference)
“Upper” (PeopleCode Language Reference)

Boolean Operators
The logical operators And, Or, and Not are used to combine Boolean expressions. The following table
shows the results of combining two Boolean expressions with And and Or operators:

Copyright © 1988, 2024, Oracle and/or its affiliates. 49

Understanding the PeopleCode Language Chapter 2

Expression 1 Operator Expression 2 Result

False And False False

False And True False

True And True True

False Or False False

False Or True True

True Or True True

In complex logical expressions using the operations And, Or, and Not, Not takes the highest precedence,
And is next, and Or is lowest. Use parentheses to override precedence. (Generally, it is a good idea to use
parentheses in logical expressions anyway, because it makes them easier to decipher.) If used on the right
side of an assignment statement, Boolean expressions must be enclosed in parentheses.

The following are examples of statements containing Boolean expressions:

If ((&HAS_FLEAS Or
 &HAS_TICKS) And
 SOAP_QTY <= MIN_SOAP_QTY) Then
 SOAP_QTY = SOAP_QTY + OrderFleaSoap(SOAP_ORDER_QTY);
End-If;

The Not operator negates Boolean expressions, changing a True value to False and a False value to True.
The Not operator can also negate comparison operators.

There are several methodologies for negating a Boolean value. You can use the Not operator:

Local boolean &Flag;

&Flag = True;
&Flag = (Not &Flag);
If Not &Flag Then
 WinMessage("Flag = False");
End-If;

Alternatively, you can compare the Boolean value to False:

Local boolean &Flag;

&Flag = True;
&Flag = (&Flag = False);
If Not &Flag Then
 WinMessage("Flag = False");
End-If;

50 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3

Understanding Objects and Classes in
PeopleCode

Classes and Objects

PeopleSoft delivers classes of objects that you can manipulate with PeopleCode. In addition, you can
extend the existing classes or create your own. The delivered classes may or may not have a graphic
user interface equivalent; some are representations of data structures that occur only at runtime. With
PeopleCode, you can manipulate data in the data buffer easily and consistently. These classes enable you
to write code that’s more readable, more easily maintained, and more useful.

This section discusses:

• Classes.

• Objects.

• Object instantiation.

Classes
A class is the formal definition of an object and acts as a template from which an instance of an object
is created at runtime. The class defines the properties of the object and the methods used to control the
object’s behavior.

PeopleSoft delivers predefined classes, such as Array, File, Field, SQL, and so on. You can create your
own classes using the Application class. You can also extend the functionality of the existing classes
using the Application class.

Related Links
“Understanding Application Classes” (PeopleCode API Reference)

Objects
An object represents a unique instance of a data structure defined by the template provided by its class.
Each object has its own values for the variables belonging to its class and responds to methods defined by
that class. This is the same for classes provided by PeopleSoft and for classes you create yourself.

After an object has been created (instantiated) from a class, you can change its properties. A property is
an attribute of an object. Properties define:

• Object characteristics, such as name or value.

Copyright © 1988, 2024, Oracle and/or its affiliates. 51

Understanding Objects and Classes in PeopleCode Chapter 3

• The state of an object, such as deleted or changed.

Some properties are read-only and cannot be set, such as Name or Author. Other properties can be set,
such as Value or Label.

Objects are different from other data structures. They include code (in the form of methods), not just static
data. A method is a procedure or routine, associated with one or more classes, that acts on an object.

An analogy to illustrate the difference between an object and its class is the difference between a car and
the blue Citroen with license plate number TS5800B. A class is a general category, while the object is
a specific instance of that class. Each car comes with standard characteristics, such as four wheels, an
engine, or brakes, that define the class and are the template from which the individual car is created. You
can change the properties of an individual car by personalizing it with bumper stickers or racing stripes,
which is like changing the Name or Visible property of an object. The model and date that the car is
created are similar to read-only properties because you cannot alter them. A tune-up acts on the individual
car and changes its behavior, much as a method acts on an object.

Object Instantiation
A class is the blueprint for something, like a bicycle, a car, or a data structure. An object is the actual
thing that is built using that class (or blueprint.) From the blueprint for a bicycle, you can build a specific
mountain bike with 23 gears and tight suspension. From the blueprint of a data structure class, you build a
specific instance of that class. Instantiation is the term for building that copy, or an instance, of a class.

Creating and Using Objects

This section discusses how to:

• Instantiate objects.

• Change object properties.

• Invoke methods.

• Copy objects.

Instantiating Objects
Generally you instantiate objects (create them from their classes) using built-in functions or methods of
other objects. Some objects are instantiated from data already existing in the data buffer. Think about this
kind of object instantiation as taking a chunk of data from the buffer, encapsulating it in code (methods
and properties), manipulating it, then freeing the references. Some objects can be instantiated from a
previously created definition, such as a page or file layout definition, instead of from data.

The following example creates a field object:

Local field &MyField

&MyField = GetField();

Get functions, which include functions such as GetField, GetRecord, and so on, generally provide access
to data that already exists, whether in the data buffers or from an existing definition.

52 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Understanding Objects and Classes in PeopleCode

Create functions, which include functions such as CreateObject, CreateArray, CreateRecord, generally
create defined objects that do not yet exist in the data buffer. Create functions create only a buffer
structure. They do not populate it with data. For example, the following function returns a record object
for a record that already exists in the component buffer:

&REC = GetRecord();

The following example creates a standalone record. However, there is no data in &REC2. The specified
record definition must be created previously, but the record does not have to exist in either the component
or data buffer:

&REC2 = CreateRecord(EMP_CHKLST_ITM);

Objects with no built-in functions can only be instantiated from a session object (such as tree classes,
component interfaces, and so on). For most of these classes, when you use a Get function, all you get is an
identifier for the object. To fully instantiate the object, you must use an Open method.

Related Links
“Understanding Session Class” (PeopleCode API Reference)

Changing Properties
To set or get characteristics of an object, or to determine the state of an object, you must access its
properties through dot notation syntax. Follow the reference to the object with a period, followed by the
property, and assign it a value. The format is generally as follows:

Object.Property = Value

The following example hides the field &MYFIELD:

&MYFIELD.Visible = False

You can return information about an object by returning the value of one of its properties. In the following
example, &X is a variable that is assigned the value found in the field &MYFIELD:

&X = &MYFIELD.Value

In the following example, a property is used as the test for a condition:

If &ROWSET.ActiveRowCount <> &I Then

Invoking Methods
You also use dot notation to execute methods. Follow the reference to the object with a period, then with
the method name and any parameters the method takes. The format is generally:

Object.method();

You can string methods and property values together into one statement. The following example strings
together the GetField method with the Name property:

If &REC_BASE.GetField(&R).Name = &REC_RELLANG.GetField(&J).Name Then

Copyright © 1988, 2024, Oracle and/or its affiliates. 53

Understanding Objects and Classes in PeopleCode Chapter 3

Some methods return a Boolean value: True if the method executes successfully; False if it does not. The
following method compares all like-named fields of the current record object with the specified record.
This method returns as True if all like-named fields have the same value:

If &MYRECORD.CompareFields(&OTHERRECORD) Then

Other methods return a reference to an object. The GetCurrEffRow method returns a row object:

&MYROW = &MYROWSET.GetCurrEffRow();

Some methods do not return anything. Each method's documentation indicates what it returns.

Many objects have default methods. Instead of entering the name of the method explicitly, you can
use that method's parameters. Objects with default methods are composite objects; that is, they contain
additional objects within them. The default method is generally the method used to get the lower-level
object.

A good example of a composite object is a record object. Record definitions are composed of field
definitions. The default method for a record object is GetField.

The following lines of code are equivalent:

&FIELD = &RECORD.GetField(FIELD.EMPLID);
&FIELD = &RECORD.EMPLID;

Note: If the field you’re accessing has the same name as a record property (such as NAME) you cannot
use the shortcut method for accessing the field. You must use the GetField method.

Another example of default methods concerns rowsets and rows. Rowsets are made up of rows, so the
default method for a rowset is GetRow. The two specified lines of code are equivalent: They both get the
fifth row of the rowset:

&ROWSET = GetRowSet();

/*the next two lines of code are equivalent */

&ROW = &ROWSET.GetRow(5);
&ROW = &ROWSET(5);

The following example illustrates the long way of enabling the Name field on a second-level scroll area
(the code is executing on the first-level scroll area):

GetRowset(SCROLL.EMPLOYEE_CHECKLIST).GetRow(1).
GetRecord(EMPL_CHKLST_ITM).GetField(FIELD.NAME).Enabled = True;

Using default methods enables you to shorten the previous code to the following:

GetRowset(SCROLL.EMPLOYEE_CHECKLIST)(1).EMPL_CHKLST_ITM.NAME.
Enabled = True;

Expressions of the form class.name.property or class.name.method(..) are converted to a corresponding
object. For example, the code &temp = RECORD.JOB.IsChanged; is evaluated as if it were
&temp = GetRecord(RECORD.JOB).IsChanged;.

Furthermore, the code JOB.EMPLID.Visible = False; is evaluated as if it were
GetField(JOB.EMPLID).Visible = False;.

54 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 3 Understanding Objects and Classes in PeopleCode

Copying Objects
Many of the classes delivered with PeopleTools have some sort of copy method, such as the rowset
class CopyTo, the tree class Copy, and so on. Unless specifically identified (such as the message class
CopyRowsetDelta) all copy methods use the current data of the object. This may be different than the
original data values if the object was retrieved from the database and the values in it have been changed
either by an end-user or a PeopleCode program.

Assigning Objects

When you assign one object to another, you do not create a copy of the object, but only make a copy of
the reference.

In the following example, &A1 and &A2 refer to the same object. The assignment of &A1 to &A2 does
not allocate any database memory or copy any part of the original object. It makes &A2 refer to the same
object to which &A1 refers.

Local Array of Number &A1, &A2;

&A1 = CreateArray(2, 4, 6, 8, 10);
&A2 = &A1;

The following diagram shows how references of two arrays point to the same object.

If the next statement is &A2[5] = 12;, then &A1[5] also equals 12, as shown in the following
diagram:

The following example is not considered an object assignment:

Local number &NUM;
Local Array of Number &A1;

&A1 = CreateArray(2, 4, 6, 8, 10);
&NUM = &A1[3];

&NUM is of data type Number, which is not an object type. If you later change the value of &NUM in
the program, you will not change the element in the array.

Copyright © 1988, 2024, Oracle and/or its affiliates. 55

Understanding Objects and Classes in PeopleCode Chapter 3

Passing Objects

All PeopleCode objects can be passed as function parameters. You can pass complex data structures
between PeopleCode functions (as opposed to passing long lists of fields). If a function is passed an
object, the function works on the actual object, not on a copy of the object.

In the following simple example, a reference to the Visible property is passed, not the value of Visible.
This enables the MyPeopleCodeFunction either to get or set the value of the Visible property:

MyPeopleCodeFunction(&MyField.Visible);

In the following example, the function Process_Rowset loops through every row and record in the rowset
passed to it and executes an Update statement on each record in the rowset. This function can be called
from any PeopleCode program and can process any rowset that is passed to it.

Local Rowset &RS;
Local Record &REC;

Function Process_RowSet(&ROWSET as Rowset);

 For &I = 1 To &ROWSET.Rowcount
 For &J = 1 To &ROWSET.Recordcount
 &REC = &ROWSET.GetRow(&I).GetRecord(&J);
 &REC.Update();
 End-For;
 End-For;
End-Function;

&RS = GetLevel0();

Process_RowSet(&RS);

The following function takes a rowset and a record passed in from another program. GetRecord does not
take a variable for the record; however, you can use the @ symbol to dereference the record name.

Function Get_My_Row(&PASSED_ROWSET, &PASSED_RECORD)

 For &ROWSET_ROW = 1 To &PASSED_ROWSET.RowCount
 &UNDERLYINGREC = "RECORD." | &PASSED_ROWSET.DBRecordName;
 &ROW_RECORD = &PASSED_ROWSET.GetRow(&ROWSET_ROW).GetRecord(@&UNDERLYINGREC);

 /* Do other processing */

 End-For;

End-Function;

56 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4

Referencing Data in the Component Buffer

Understanding Component Buffer Structure and Contents

This section discusses:

• Component buffer contents.

• Rowsets and scroll areas.

• Record fields in the component buffer.

Related Links
Specifying Data with References Using Scroll Path Syntax and Dot Notation

Component Buffer Contents
PeopleCode frequently must refer to data in the component buffer, the area in memory that stores data for
the currently active component.

The two methods for specifying a piece of data in the component buffer from within PeopleCode are:

• Contextual references, which refer to data relative to the location of the currently executing
PeopleCode program.

• References using scroll path syntax, which provide a complete, or absolute, path through the
component buffer to the referenced component.

In addition to the built-in functions used to access the component buffer, PeopleCode provides enhanced
access to structured data buffers using the object syntax. Use the object-oriented PeopleCode to resolve
contextual ambiguities when you reference a nonprimary record field that appears on more than one scroll
level in a component. As with built-in functions, object syntax provides for both relative and absolute
references to component buffer data.

See Classes and Objects.

The component buffer consists of rows of buffer fields that hold data for the records associated with page
controls, including primary scroll records, related display records, derived/work records, and Translate
table records. PeopleCode can reference buffer fields associated with page controls and other buffer fields
from the primary scroll record and related display records.

See Record Fields and the Component Buffer.

Primary scroll records are the principal SQL tables or views associated with page scroll levels. A primary
scroll record uniquely identifies a scroll level in the context of its page: each scroll level can have only
one primary scroll record, and the same primary scroll record cannot occur on more than one scroll
area at the same level of the page. Parent-child relations between primary scroll records determine the

Copyright © 1988, 2024, Oracle and/or its affiliates. 57

Referencing Data in the Component Buffer Chapter 4

dependency structure of the scroll areas on the page. The primary record on a level one scroll area must
be a child of the primary record on level zero, the primary record on a level two scroll area must be a
child of the primary record on its enclosing level one scroll area, and the primary record on a level three
scroll area must be a child of the primary record on its enclosing level two scroll area.

Note: Level zero may have multiple records.

The hierarchical relations among scroll areas, controlled by hierarchical relations among primary scroll
records, enable the user and PeopleCode to drill down through the scroll hierarchy to access any buffer
field, including related display, derived/work, and Translate table buffer fields, which occupy space on the
same rows as the primary scroll record buffer fields with which they are associated.

For example, to access a page field on level two of a page, a user must:

1. Select a field on level one of the page.

2. Scroll to and select the field on level two of the page.

The following diagram illustrates the scroll path taken by the user to a buffer field.

To access the same field in the component buffer, PeopleCode must:

1. Specify a scroll area and row on scroll level one: this selects a subset of dependent rows on level two.

2. Specify a scroll area and row on scroll level two.

3. Specify the recordname.fieldname on the level two row.

PeopleCode component buffer functions use a common scroll path syntax for locating scrolls, rows, and
fields in multiple-scroll pages.

58 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Referencing Data in the Component Buffer

Rowsets and Scroll Areas
Rowsets enable more consistent, more convenient, and less ambiguous manipulation of buffer data than
previous built-in functions could achieve. It’s a hierarchical data object that can represent an entire scroll
area and all of its subordinate scroll areas.

A rowset can contain the entire contents of a component buffer, or the contents of any lower-level scroll
area plus all of its subordinate buffer data. The hierarchical structure of component levels—scroll area,
row, record, field—is provided by the new object data types, Rowset, Row, Record, and Field.

You can access any rowset, row, record, or field within the buffer using the dot notation inherent in
PeopleTools 8 object-oriented programming. This enables you to reference fields within a record object,
records within a row object, and rows within a rowset object as properties of the parent objects.

Related Links
Understanding Data Buffer Access
“Understanding Rowset Class” (PeopleCode API Reference)
Classes and Objects

Record Fields and the Component Buffer
The record fields in the component buffer are a superset of those accessible to the user through page
controls. In most cases, PeopleCode can reference any record field in a scroll area’s primary scroll record
or in a related display record, not just those fields that are associated with page controls. The following
table lists record types and locations:

Type and Location of Record Presence in Component Buffer

Primary record on scroll levels greater than zero On scroll levels greater than zero, all record fields from the
primary scroll record are in the component buffer. PeopleCode
can refer to any record field on the primary scroll record, even
if it is not associated with a page control.

Primary record on scroll level zero If scroll level zero of a page contains only controls associated
with primary scroll record fields that are search keys or
alternate search keys, then only the search key and alternate
search key fieldsave in the component buffer, not the entire
record. The values for the fields come from the keylist, and the
record cannot run RowInit PeopleCode. If level zero contains
at least one record field from the primary scroll record that
is not a search key or alternate search key, then all the record
fields from the primary scroll record are available in the
buffer. (For this reason, you may sometimes need to add one
such record field at level zero of the page to make sure that
all the record fields of the level-zero primary record can be
referenced from PeopleCode.)

Related display record fields The buffer contains the related display record field, plus any
record fields from the related display record that are referenced
by PeopleCode programs. You can reference any record field
in a related display record.

Copyright © 1988, 2024, Oracle and/or its affiliates. 59

Referencing Data in the Component Buffer Chapter 4

Type and Location of Record Presence in Component Buffer

Derived/work record fields Only derived/work record fields associated with page controls
are in the component buffer. Other record fields from the
derived/work record cannot be referenced from PeopleCode.

Translate table record fields Only Translate table fields associated with page controls
are available in the component buffer. Other fields from the
Translate table cannot be referenced from PeopleCode.

Note: In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed.

Specifying Data with Contextual References

In a contextual reference, PeopleCode refers to a row or buffer field determined by the context in which a
PeopleCode program is currently executing.

This section includes an overview of current context and discusses how to:

• Use contextual row references.

• Use contextual buffer field references.

Understanding Current Context
All PeopleCode programs, with the exception of programs associated with standard menu items, execute
in a current context. The current context determines which buffer fields can be contextually referenced
from PeopleCode, and which row of data is the current row on each scroll level at the time a PeopleCode
program is executing.

The current context comprises a subset of the buffer fields in the component buffer, determined by the
row of data where a PeopleCode program is executing. The current context includes:

• All buffer fields in the row of data where the PeopleCode program is executing.

• All buffer fields in rows that are hierarchically superior to the row where the PeopleCode program is
executing.

60 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Referencing Data in the Component Buffer

In the following diagram, all rows enclosed in dotted rectangles are part of the current context:

In the preceding diagram, a PeopleCode program is executing in a buffer field on row R3 on scroll level
two. The rows in scroll level two are dependent on row R2 on scroll level one. The rows in scroll level
one are dependent on the single row at scroll level zero. The current context consists of all the buffer
fields at level two row R3, level one row R2, and level zero row R1. The rows in the current context on
levels one and two are the current rows on their respective scroll areas. The single row on level zero is
always current and is included in any current context. All rows other than the current rows and the level
zero row are outside the current context. No current row can be determined on scroll areas below the one
where the PeopleCode is executing.

With PeopleTools 8, contextual references work within the structure of a rowset object, and can include
references to all field objects, record objects, row objects, and rowset objects in the current context.

Contextual Reference Processing Order

PeopleCode resolves contextual references at runtime by first checking the row where the PeopleCode
program is executing. If PeopleCode does not find an appropriate buffer field, it looks in progressively
higher rows in the current context. The following diagram indicates this processing order:

Copyright © 1988, 2024, Oracle and/or its affiliates. 61

Referencing Data in the Component Buffer Chapter 4

The following diagram indicates the processing order of a contextual reference by PeopleCode program.

In typical pages, this processing order is not significant; however, if the same record occurs on more than
one level of a page, you should understand how the direct reference is resolved.

Using Contextual Row References
A contextual row reference refers to a row in the current context on level one or lower in the page.
Because each scroll area uses a unique primary record, the name of that record uniquely identifies
whichever row is in the current context for that scroll level. A contextual row reference uses a RECORD.
recordname component name reference to specify the scroll level of the intended row, resulting in a
reference to the current row at the specified scroll level.

For example, you can use contextual row references with the RecordDeleted, RecordNew, and
RecordChanged functions:

If RecordDeleted(RECORD.SOME_REC) Then...

With PeopleTools 8 object-oriented programming, a row can be referenced by specifying parent rows or
rowsets of the current rowset:

If GetRowSet().ParentRowset.ParentRow.IsDeleted Then...

62 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Referencing Data in the Component Buffer

In early versions of PeopleTools, you could make contextual row references using a
recordname.fieldname expression:

HideRow(SOME_REC.ANY_FIELD)

If RecordDeleted(SOME_REC.ANY_FIELD) Then...

This syntax is still supported.

Related Links
Understanding Current Context

Using Contextual Buffer Field References
A contextual buffer field reference is a type of PeopleCode expression that refers to a buffer field
by specifying a record field. The row of the buffer field is determined by the current context of the
PeopleCode program where the reference is made. You can use a contextual buffer field reference to
retrieve or update the value in the buffer field, to pass the buffer field value to a function, or to reference
an instance of a page control associated with the buffer field. The following statements use contextual
buffer field references:

/* Assigns value of variable to buffer field */
SOME_RECORD.SOME_FIELD = &VAL;
/* Assigns value of buffer field to variable */
&VAL = SOME_RECORD.SOME_FIELD;
/* Hides instance of control associated with buffer field */
Hide(SOME_RECORD.SOME_FIELD);

With PeopleTools 8 object-oriented programming, a field object incorporates information about both
the record field on which the buffer field is based and the page control with which the buffer field is
associated. By referring to the field object, you either make a contextual buffer field reference or you
change an interface attribute of the associated page control, depending on the object property you use.
The following example has the same effect as a contextual buffer field reference:

/* Assigns value of a variable to a buffer field */
&MYFIELD.Value = &SOMEVAL;

Contextual Buffer Field Reference Ambiguity

Nonprimary record fields may appear on more than one scroll level in a page. For example, a page may
use a derived/work field DERIVED_JS.CALC_1 as a work field on level one and level two of the same
page. This creates distinct DERIVED_JS.CALC_1 buffer fields for rows on both levels. Because of the
order in which PeopleCode resolves contextual buffer field references, if the contextual reference &VAL
= DERIVED_JS.CALC_1; executes in a PeopleCode program on a level-two row, the reference always
retrieves the buffer field value on the current row on level two. PeopleCode on level two is unable to
retrieve the value of the DERIVED_JS.CALC_1 on level one using a contextual reference.

To explicitly reference the DERIVED_JS.CALC_1 buffer field on level one, use a component buffer
function with a scroll path:

&VAL = FetchValue(SCROLL.level1_scrollname, CurrentRowNumber(1), DERIVED_JS.CALC_1)⇒

;

The CurrentRowNumber function returns the current row on level one, or the parent row of the level two
row where the PeopleCode program is executing.

Copyright © 1988, 2024, Oracle and/or its affiliates. 63

Referencing Data in the Component Buffer Chapter 4

Ambiguous Contextual References to Buffer Fields on Level Zero

Level zero of a page contains only a single row of data, and the buffer fields in this row are always in the
current context. For this reason you can almost always refer to a level zero buffer field using a contextual
reference. However, referential ambiguity can make it impossible to reference a buffer field on level zero
contextually. For example, a page may use a derived/work field DERIVED_JS.CALC_1 as a work field
on level zero and level one of the same page. This creates distinct DERIVED_JS.CALC_1 buffer fields
for rows on both levels. Because of the order in which PeopleCode resolves contextual field references,
if the &VAL = DERIVED_JS.CALC_1; contextual reference executes in a PeopleCode program on a
level-one row, it always retrieves the buffer field value on the current row on level one.

To explicitly reference the DERIVED_JS.CALC_1 buffer field on level zero, you must use a component
buffer function with this syntax:

 Function([recordname.]fieldname, rownum)

Here rownum, because it is on level zero, is always equal to one. In the previous example of the
DERIVED_JS.CALC_1 field, you would use this statement:

&VAL = FetchValue(DERIVED_JS.CALC_1, 1);

Ambiguous References with Objects

With PeopleTools 8 object-oriented programming, even if two field objects that are in different rowsets
contain buffer data that’s based on the same underlying record field, references to those objects are
inherently unique, because each is instantiated with respect to a specific point in the hierarchy of the
buffer. Any manipulation of a field object’s interface properties affects only the page control with which
it’s associated.

The following example instantiates a field object using the long form, to emphasize the hierarchical form
of the data. It then hides the field’s associated page control. Because this is a unique instance of the field,
based on its hierarchy, hiding this field does not affect the visibility of any other page control associated
with the same record field:

&MYFIELD = GetRowset(SCROLL.EMPL_CHECKLIST).GetRow(&I).
GetRecord(RECORD.EMPL_CHECKLIST).GetField(EMPL_CHECKLIST.EMPLID);
&MYFIELD.Visible = False;
/* the same code, using the "short" form */
&MYFIELD = GetRowset(SCROLL.EMPL_CHECKLIST).GetRow(&I).
EMPL_CHECKLIST.EMPLID;

Note: Any change in a field object’s value affects both the underlying record field and the value of
any other field object oriented on the same record field. This behavior is the same as the behavior of
contextual buffer field references that alter the field value.

Related Links
Specifying Data with References Using Scroll Path Syntax and Dot Notation

Specifying Data with References Using Scroll Path Syntax and
Dot Notation

This section provides an overview of scroll paths and discusses how to:

64 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Referencing Data in the Component Buffer

• Structure scroll path syntax.

• Reference scroll levels, rows, and buffer fields.

Related Links
Understanding Data Buffer Access

Understanding Scroll Paths
A scroll path is a construction found in the parameter lists of many component buffer functions, which
specifies a scroll level in the currently active page. Additional parameters are required to locate a row or a
buffer field at the specified scroll level.

Scroll path syntax enables you to eliminate ambiguous references, which, although rare, do sometimes
occur in complex components.

See Using Contextual Buffer Field References.

PeopleTools also provides the convenience of object-oriented dot notation and default methods, which
produce inherently non-ambiguous references from PeopleCode programs to component buffer data.
There are examples of dot notation in this section along with examples of the legacy scroll path syntax.

Structuring Scroll Path Syntax
PeopleTools offers two legacy constructions for scroll paths: a standard scroll path syntax
(Record.recordname) and an alternative syntax using a Scroll.scrollname expression. The latter is more
powerful in that it can process some rare cases where a Record.recordname expression results in an
ambiguous reference.

Scroll Path Syntax with Record.recordname

Here is the standard scroll path syntax:

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row,]] Record.t⇒

arget_recname

If the target level (the level you want to reference) is one, you must supply only the
Record.target_recname parameter. If the target scroll level is greater than one, you must provide scroll

Copyright © 1988, 2024, Oracle and/or its affiliates. 65

Referencing Data in the Component Buffer Chapter 4

name and row level parameters for all hierarchically superior scroll levels, beginning at level one. The
following table indicates the scroll path syntax for the three possible target scroll levels:

Target Level Scroll Path Syntax

1 Record.target_recname

2 Record.level1_recname, level1_row,
Record.target_recname

3 Record.level1_recname, level1_row, Recor⇒

d.level2_recname, level2_row, Record.tar⇒

get_recname

If you are referring to a row or a buffer field, additional parameters are required after the scroll path.

The following table describes the standard scroll path syntax parameters:

Syntax Parameters Description

Record.level1_recname Specifies the name of a record associated with scroll level one,
 normally the primary scroll record. This parameter is required
if the target scroll level is two or three.

level1_row An integer that selects a row on scroll level one. This
parameter is required if the target scroll level is two or three.

Record.level2_recname Specifies the name of a record associated with scroll level two,
 normally the primary scroll record. This parameter is required
if the target row is on scroll level three.

level2_row An integer that selects a row on scroll level two. This
parameter is required if the target row is on scroll level three.

Record.target_recname Specifies a record associated with the target scroll level,
 generally the primary scroll record. The scroll can be on level
one, two, or three of the active page.

Scroll Path Syntax with Scroll.scrollname

As an alternative to Record.recordname expressions in scroll path constructions, PeopleTools permits use
of a Scroll.scrollname expression. Scroll paths using Scroll.scrollname are functionally identical to those
using Record.recordname, except that Scroll.scrollname expressions are more strict: they can refer only
to a scroll level’s primary record; whereas Record.recordname expressions can refer to any record in the
scroll level, which in some rare cases can result in ambiguous references. (This can occur, for example,

66 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Referencing Data in the Component Buffer

if the Record.recordname expression inadvertently references a related display record in another page
in the component.) Use of Record.recordname is still permitted, and there is no requirement to use the
Scroll.scrollname alternative unless it is needed to avoid an ambiguous reference.

The scrollname is the same as the scroll level’s primary record name.

The scroll name cannot be viewed or changed through the PeopleSoft Application Designer interface.
Here is the complete scroll path syntax using Scroll.scrollname expressions:

[Scroll.level1_scrollname, level1_row, [Scroll.level2_scrollname, level2_row,]], S⇒

croll.target_scrollname

The target scroll level in this construction is the scroll level that you want to specify. If the target level is
one, you need to supply only the Scroll.target_scrollname parameter. If the target scroll level is greater
than one, you need to provide scroll name and row-level parameters for hierarchically superior scroll
levels, beginning at level one. The following table indicates the scroll path syntax for the three possible
target scroll levels:

Target Level Scroll Path Syntax

1 Scroll.target_scrollname

2 Scroll.level1_scrollname, level1_row, Sc⇒

roll.target_scrollname

3 Scroll.level1_scrollname, level1_row, Sc⇒

roll.level2_scrollname, level2_row, Scro⇒

ll.target_scrollname

If the component you are referring to is a row or a buffer field, additional parameters are required after the
scroll path.

The following table describes the alternative scroll path syntax parameters:

Parameter Description

Scroll.level1_scrollname Specifies the name of the page’s level-one scroll area. This is
always the same as the name of the scroll level’s primary scroll
record. This parameter is required if the target scroll level is
two or three.

level1_row An integer that selects a row on scroll level one. This
parameter is required if the target scroll level is two or three.

Copyright © 1988, 2024, Oracle and/or its affiliates. 67

Referencing Data in the Component Buffer Chapter 4

Parameter Description

Scroll.level2_scrollname Specifies the name of the page’s level two scroll area. This is
always the same as the name of the scroll level’s primary scroll
record. This parameter is required if the target row is on scroll
level three.

level2_row An integer that selects a row on scroll level two. This
parameter is required if the target row is on scroll level three.

Scroll.target_scrollname The scroll name of the target scroll level, which can be level
one, two, or three of the active page.

Related Links
Referencing Scroll Levels, Rows, and Buffer Fields

Referencing Scroll Levels, Rows, and Buffer Fields
You can reference a scroll level using the scrollpath construct only. Functions that reference rows for
buffer fields require additional parameters. The following table summarizes the three types of component
buffer references:

Target Component Reference Syntax Example Function

Scroll level scrollpath HideScroll(scrollpath);

Row scrollpath, row_number HideRow(scrollpath, row_nu⇒

mber);

Field scrollpath, row_number,
[recordname.]fieldname

FetchValue(scrollpath, row⇒

_number, fieldname);

PeopleTools 8 provides an alternative to the scroll level, row, and field components in the form of the
data buffer classes Rowset, Row, Record, and Field, which you reference using dot notation with object

68 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Referencing Data in the Component Buffer

methods and properties. The following table demonstrates the syntax for instantiating and manipulating
objects in the current context from these classes:

Target Object Example Instantiation Example Operation

Rowset &MYROWSET = GetRowset(); &MYROWSET.Refresh();

Row &MYROW = GetRow(); &MYROW.CopyTo(&SOMEROW);

Record &MYRECORD = GetRecord(); &MYREC.CompareFields(&REC)⇒

;

Field &MYFIELD = GetRecord().
fieldname;

&MYFIELD.Label = "Last Nam⇒

e";

The following sections provide examples of functions using scroll path syntax, which refer to an example
page from a fictitious veterinary clinic database. The page has three scroll levels, shown in the following
table:

Level Scroll Name (Primary Scroll Record Name)

0 VET

1 OWNER

2 PET

3 VISIT

The examples given for PeopleTools 8 object-oriented syntax assumes that the following initializing code
was executed:

Local Rowset &VET_SCROLL, &OWNER_SCROLL, &PET_SCROLL, &VISIT_SCROLL;

&VET_SCROLL = GetLevel0();
&OWNER_SCROLL = &VET_Scroll.GetRow(1).GetRowSet(Scroll.OWNER);
&PET_SCROLL = &OWNER_Scroll.GetRow(2).GetRowSet(Scroll.PET);
&VISIT_SCROLL = &PET_Scroll.GetRow(2).GetRowSet(Scroll.VISIT);

Referring to Scroll Levels

The HideScroll function provides an example of a reference to a scroll level. The syntax of the function
is:

HideScroll(scrollpath)

where scrollpath is

[Record.level1_recname, level1_row, [Record.level2_recname, level2_row,]] Record.ta⇒

Copyright © 1988, 2024, Oracle and/or its affiliates. 69

Referencing Data in the Component Buffer Chapter 4

rget_recname

To reference the level 1 scroll in the example, use this syntax:

HideScroll(Record.OWNER);

This hides the OWNER, PET, and VISIT scroll areas on the example page.

In PeopleTools 8, the object-oriented version of this is:

&OWNER_Scroll.HideAllRows();

To hide scroll levels two and below, supply the primary record and row in scroll level one, and then the
record identifying the target scroll area:

HideScroll(Record.OWNER, &L1ROW, Record.PET);

The following diagram shows the scroll path of this statement, assuming that the value of &L1ROW is 2:

Similarly, to hide the VISIT scroll area on level three, you specify rows on scroll levels one and two.

HideScroll(Record.OWNER, &L1ROW, Record.PET, &L2ROW, Record.VISIT);

To use the Scroll.scrollname syntax, the previous example could be written as the following:

HideScroll(Scroll.OWNER, &L1ROW, Scroll.PET, &L2ROW, Scroll.VISIT);

In PeopleTools 8, the object-oriented version of this is:

&VISIT_Scroll.HideAllRows();

Referring to Rows

Referring to rows is the same as referring to scroll areas, except that you need to specify the row you want
to select on the target scroll area. As an example, examine the HideRow function, which hides a specific
row in the level three scroll area of the page. Here is the function syntax:

HideRow(scrollpath, target_row)

70 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Referencing Data in the Component Buffer

To hide row number &ROW_NUM on level one:

HideRow(Record.OWNER, &ROW_NUM);

To do the same using the Scroll.scrollname syntax:

HideRow(Scroll.OWNER, &ROW_NUM);

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:

&OWNER_SCROLL(&ROW_NUM).Visible = False;

On level two:

HideRow(Record.OWNER, &L1_ROW), Record.PET, &ROW_NUM);

In PeopleTools 8, the object-oriented version of this for the PET rowset is:

&PET_SCROLL(&ROW_NUM).Visible = False;

The following diagram indicates the scroll path of this statement, assuming that the value of &L1_ROW
is 2 and that &ROW_NUM is equal to 2:

On level three:

HideRow(Record.OWNER, CurrentRowNumber(1), Record.PET,
CurrentRowNumber(2), Record.VISIT, &ROW_NUM);

In PeopleTools 8, the object-oriented version of this for the VISIT rowset is:

&VISIT_SCROLL(&ROW_NUM).Visible = False;

Referring to Buffer Fields

Buffer field references require a [recordname.]fieldname parameter to specify a record field. The
combination of scroll level, row number, and record field name uniquely identifies the buffer field. Here
is the syntax:

 FetchValue(scrollpath, target_row, [recordname.]fieldname)

Copyright © 1988, 2024, Oracle and/or its affiliates. 71

Referencing Data in the Component Buffer Chapter 4

Assume, for example, that record definitions in the veterinary database have the following fields that you
want to reference:

Record Sample Field

OWNER OWNER_NAME

PET PET_BREED

VISIT VISIT_REASON

You could use the following examples to retrieve values on levels one, two, or three from a PeopleCode
program executing on level zero.

To fetch a value of the OWNER_NAME field on the current row of scroll area one:

&SOMENAME = FetchValue(Record.OWNER, &L1_ROW, OWNER.OWNER_NAME);

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:

&SOMENAME = &OWNER_SCROLL(&L1_ROW).OWNER.OWNER_NAME;

To fetch PET_BREED on level two:

&SOMEBREED = FetchValue(Record.OWNER, &L1_ROW, Record.PET, &L2_ROW, PET.PET_BREED);⇒

In PeopleTools 8, the object-oriented version of this for the PET rowset is:

&SOMEBREED = &PET_SCROLL(&L2_ROW).PET.PET_BREED;

The following diagram indicates the scroll path to the target field, assuming that &L1_ROW equals 2,
&L2_ROW equals 2, and field F3 is PET.PET_BREED.

72 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 4 Referencing Data in the Component Buffer

To fetch VISIT_REASON on level three:

&SOMEREASON = FetchValue(Record.OWNER, &L1_ROW, Record.PET,
&L2_ROW, Record.VISIT, &L3_ROW, VISIT.VISIT_REASON);

To do the same using the Scroll.scrollname syntax:

&SOMEREASON = FetchValue(Scroll.OWNER, &L1_ROW, Scroll.PET,
&L2_ROW, Scroll.VISIT, &L3_ROW, Scroll.VISIT_REASON);

In PeopleTools 8, the object-oriented version of this is:

&SOMEREASON = &VISIT_SCROLL(&L3_ROW).VISIT.VISIT_REASON;

Using CurrentRowNumber

The CurrentRowNumber function returns the current row, as determined by the current context, for a
specific scroll level in the active page. CurrentRowNumber is often used to determine a value for the
level1_row and level2_row parameters in scroll path constructions. Because current row numbers are
determined by the current context, CurrentRowNumber cannot determine a current row on a scroll level
outside the current context (a scroll level below the level where the PeopleCode program is currently
executing).

For example, you could use a statement like this to retrieve the value of a buffer field on level three of the
PET_VISITS page, in a PeopleCode program executing on level two:

&VAL = FetchValue(Record.OWNER, CurrentRowNumber(1),
Record.PET, CurrentRowNumber(2), Record.VISIT, &TARGETROW,
VISIT_REASON);

Because the PeopleCode program is executing on level two, CurrentRowNumber can return values for
levels one and two, but not three, because level three is outside of the current context and has no current
row number.

Looping Through Scroll Levels

Component buffer functions are often used in For loops to loop through the rows on scroll levels below
the level where the PeopleCode program is executing. The following loop, for example could be used in
PeopleCode executing on a level two record field to loop through rows of data on level three:

For &I = 1 To ActiveRowCount(Record.OWNER,
CurrentRowNumber(1), Record.PET, CurrentRowNumber(2), Record.VISIT)
 &VAL = FetchValue(Record.OWNER, CurrentRowNumber(1),
Record.PET, CurrentRowNumber(2), Record.VISIT, &I, VISIT_REASON);
 If &VAL = "Fleas" Then
 /* do something about fleas */
 End-If;
End-For;

A similar construct may be used in accessing other level two or level one scroll areas, such as work scroll
areas.

In these constructions, the ActiveRowCount function is often used to determine the upper bounds of the
loop. When ActiveRowCount is used for this purpose, the loop goes through all of the active rows in the
scroll (rows that have not been specified as deleted). If you use TotalRowCount to determine the upper
bounds of the loop, the loop goes through all of the rows in the scroll area: first those that have not been
specified as deleted, then those that have been specified as deleted.

Copyright © 1988, 2024, Oracle and/or its affiliates. 73

Referencing Data in the Component Buffer Chapter 4

Related Links
Structuring Scroll Path Syntax
Understanding Current Context
“CurrentRowNumber” (PeopleCode Language Reference)

74 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5

Accessing the Data Buffer

Understanding Data Buffer Access

This section discusses:

• Data buffer access.

• Access classes.

• Data buffer model and data access objects.

Data Buffer Access
In addition to the built-in functions you use to access the component buffer, classes of objects are
available that provide access to structured data buffers using the PeopleCode object syntax.

The data buffers accessed by these classes are typically the component buffers that are loaded when you
open a component. However, these classes may also be used to access data from general data buffers,
loaded by an Application Engine program, a component interface, and so on.

The methods and properties of these classes provide functionality that is similar to what has been
available using built-in functions. However, they also provide improved consistency, flexibility, and new
functionality.

Access Classes
The four data buffer classes are: Rowset, Row, Record, and Field. These four classes are the foundation
for accessing component buffer data through the new object syntax.

A field object, which is instantiated from the Field class, is a single instance of data within a record. It is
based on a field definition.

A record object, which is instantiated from the Record class, is a single instance of a data within a row. It
is based on a record definition. A record object consists of one to n fields.

A row object, which is instantiated from the Row class, is a single row of data that consists of one to n
records of data. A single row in a component scroll area is a row. A row may have one to n child rowsets.
For example, a row in a level two scroll area may have n level three child rowsets.

A rowset object is a data structure used to describe hierarchical data. It is made up of a collection of rows.
A component scroll area is a rowset. You can also have a level zero rowset.

Copyright © 1988, 2024, Oracle and/or its affiliates. 75

Accessing the Data Buffer Chapter 5

Data Buffer Model and Data Access Classes
The data model assumed by the data buffer classes is that of a PeopleTools component, where scroll bars
or grids are used to describe a hierarchical, multiple-occurrence data structure. You can access these
classes using dot notation.

The four data buffer classes relate to each other in a hierarchical manner. The main points to understand
these relationships are:

• A record contains one or more fields.

• A row contains one or more records and zero or more child rowsets.

• A rowset contains one or more rows.

For component buffers, think of a rowset as a scroll area on a page that contains all of the data in that
scroll area. A level zero rowset contains all the data for the entire component. You can use rowsets with
application messages, file layouts, business interlinks, and other definitions in addition to components.
A level zero rowset from a component buffer only contains one row: the keys that the user specifies to
initiate that component. A level zero rowset from data that is not a component, such as a message or a file
layout, might contain more than one level zero row.

The following is basic PeopleCode that traverses through a two-level component buffer using dot
notation syntax. Level zero is based on record QA_INVEST_HDR, and level one is based on record
QA_INVEST_LN.

Local Rowset &HDR_ROWSET, &LINE_ROWSET;
Local Record &HDR_REC, &LINE_REC;
&HDR_ROWSET = GetLevel0();

For &I = 1 to &HDR_ROWSET.RowCount
 &HDR_REC = &HDR_ROWSET(&I).QA_INVEST_HDR;
 &EMPLID = &HDR_REC.EMPLID.Value;
 &LINE_ROWSET = &HDR_ROWSET(&I).GetRowset(1);
 For &J = 1 to &LINE_ROWSET.RowCount
 &LINE_REC = &LINE_ROWSET(&J).QA_INVEST_LN;
 &LINE_SUM = &LINE_SUM + &LINE_REC.AMOUNT.Value;
 End-For;
End-For;

Each rowset is declared and instantiated. In general, your code is easier to read and maintain if you follow
this practice.

Understanding Data Buffer Classes Examples

This section discusses:

• Employee Checklist page structure.

• Object creation examples.

• Data buffer hierarchy examples.

• Rowset examples.

76 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

• Hidden work scroll area example.

Employee Checklist Page Structure
Most of the examples in this section use the Employee Checklist page.

The following image illustrates a structure in a Employee Checklist page.

This page has the following record structure:

Scroll Level Associated Primary Record Rowset and Variable Name

Level zero PERSONAL_DATA Level zero rowset: &RS0

Level one scroll area EMPL_CHECKLIST Level one rowset: &RS1

Level one hidden work scroll area CHECKLIST_ITEM Level one rowset: &RS1H

Level two scroll area EMPL_CHKLST_ITM Level two rowset: &RS2

Another way of looking at the structure of a component is to use the Structure view. All the scroll areas
are labeled, and the primary record is associated with each:

Copyright © 1988, 2024, Oracle and/or its affiliates. 77

Accessing the Data Buffer Chapter 5

The following image explains EMPLOYEE_CHECKLIST structure of a component where in all the
scroll areas are labeled, and the primary record is associated with each other.

In the example, the visible level one scroll area also has only one row. That row is made up of the
following records:

• EMPL_CHECKLIST

• DERIVED_HR

• CHECKLIST_TBL

• PERSONAL_DATA

You can see which records are associated with a scroll area by looking at the Order view for a page:

78 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

The following image is an example of EMPLOYEE_CHECKLIST page. This page shows the Order view
of the records associated with a scroll area.

The level two rowset has three rows. Each row is made up of two records: the primary record,
EMPL_CHKLST_ITM, and CHKLST_ITM_TBL, the record associated with the related display field
DESCR. The following example shows the rowset:

Every record has fields associated with it, such as NAME, EMPLID and CHECKLIST_SEQ. These fields
are associated with the record definitions; they are not the fields that appear on the page.

Copyright © 1988, 2024, Oracle and/or its affiliates. 79

Accessing the Data Buffer Chapter 5

Object Creation Examples
When declaring variables, use the class with the same name as the data buffer access data type (rowset
objects should be declared as type Rowset, field objects as type Field, and so on). Data buffer variables
can be of type Local, Global, or Component.

The following declarations are assumed throughout the examples that follow:

Local Rowset &LEVEL0, &ROWSET;
Local Row &ROW;
Local Record &REC;
Local Field &FIELD;

Level Zero Access

The following code instantiates a rowset object, from the Rowset class, that references the level zero
rowset, containing all the page data. It stores the object in the &LEVEL0 variable.

&LEVEL0 = GetLevel0();

The level zero rowset contains all the rows, rowsets, records, and fields underneath it.

If the level zero rowset is formed from component buffer data, then the level zero rowset has one row of
data and that row contains all the child rowsets, which in turn contain rows of data that contain other child
rowsets.

If the level zero rowset is formed from buffer data, such as from an application message, then the level
zero rowset may contain more than one row of data. Each row of the level zero rowset contains all the
child rowsets associated with that row, which in turn contain rows of data that contain other child rowsets.

Use a level zero rowset when you want an absolute path to a lower-level object or to do some processing
on the entire data buffer. For example, suppose you load all new data into the component buffers and want
to redraw the page. You could use the following code:

/* Do processing to reload Component Buffers */
&LEVEL0 = GetLevel0();
&LEVEL0.Refresh();

Rowset Object

The following code instantiates a rowset object that references the rowset that contains the currently
running PeopleCode program:

&ROWSET = GetRowset();

You might later use the &ROWSET variable and the ActiveRowCount property to iterate over all the
rows of the rowset, to access a specific row (using the GetRow method), or to hide a child rowset (by
setting the Visible property).

The level one rowset contains all the level two rowsets. However, the level two rowsets can only be
accessed using the different rows of the level one rowset. From the level zero or level one rowset, you can
only access a level two rowset by using the level one rowset and the appropriate row.

80 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

For example, suppose your program is running on some field of row five of a level two scroll area, which
is on row three of its level one scroll area. The resulting rowset contains all the rows of the level two
scroll area that are under the row three of the level one scroll area. The rowset does not contain any data
that is under any other level two scroll areas. The following diagram illustrates these results:

A further illustration uses an example from the Employee Checklist page.

Suppose that one employee was associated with three different checklists: Foreign Loan Departure,
Foreign Loan Arrival, and Foreign Loan Host. The checklist code field (CHECKLIST_CD) on the first
level of the page drives the entries on the second level. Each row in the level one rowset produces a
different level two rowset.

Copyright © 1988, 2024, Oracle and/or its affiliates. 81

Accessing the Data Buffer Chapter 5

The Foreign Loan Departure checklist (000001) produces a checklist that contains such items as Briefing
with Human Resources and Apply for Visas/Work permits, as shown in the following example:

The Foreign Loan Arrival checklist (0000004) produces a checklist that contains items such as Register at
Consulate and Open New Foreign Bank Accounts, as shown in the following example:

82 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

Row Object

When you create a page, you put fields from different records onto the page. You can think of this as
creating a type of pseudo-SQL join. The row returned from this pseudo-join is a row object.

For example, the first level scroll area of the EMPLOYEE_CHECKLIST page contains the following
fields, associated with these records:

Field Record

CHECKLIST_DT EMPL_CHECKLIST

CHECKLIST_CD EMPL_CHECKLIST

COMMENTS EMPL_CHECKLIST

DESCR CHECKLIST_TBL

NAME PERSONAL_DATA

RESPONSIBLE_ID EMPL_CHECKLIST

The pseudo-SQL join might look like this:

JOIN A.CHECKLIST_DT, A.CHECKLIST_CD, A.COMMENTS, B.DESCR, C.NAME, A.RESPONSIBLE_ID
FROM PS_EMPL_CHECKLIST A, PS_CHECKLIST_TBL B, PS_PERSONAL_DATA C, WHERE. . .

What goes into the Where clause is determined by the level zero of the page. For our example, the value
is WHERE EMPLID=8001.

When the component is opened, data is loaded into the component buffers. Any row returned by the
pseudo-SQL statement is a level one row object. The following table shows a returned row:

CHECKLIST_DT CHECKLIST_CD COMMENTS DESCR NAME RESPONSIBLE
_ID

12/03/98 000001 Foreign Loan
Department
Checklist

Peppen, Jacques 6602

Record Object

A record definition is a definition of what your underlying SQL database tables look like and how they
process data. After you create record definitions, you build the underlying SQL tables that contain the
application data that your users enter online in your production environment.

When you create a record object using the CreateRecord function, you are creating an area in the data
buffers that has the same structure as the record definition, but no data.

Copyright © 1988, 2024, Oracle and/or its affiliates. 83

Accessing the Data Buffer Chapter 5

When you instantiate a record object from the Record class using some variation of GetRecord, that
record object references a single row of data in the SQL table.

Note: The data in the record that you retrieve is based on the row, which is analogous to setting keys to
return a unique record.

The following code instantiates a record object for referencing the EMPL_CHECKLIST record of the
specified row:

&REC = &ROW.GetRecord(RECORD.EMPL_CHECKLIST);

Using the short method, the following line of code is identical to the previous line:

&REC = &ROW.EMPL_CHECKLIST;

You might later use the &REC variable and the CopyFieldsTo property to copy all like-named fields
from one record to another. In the following example, two row objects are created, the copy from row
(COPYFRMROW) and the copy to row (COPYTROW). Using these rows, like-named fields are copied
from CHECKLIST_ITEM to EMPL_CHKLST_ITM.

For &I = 1 To &ROWSET1.ActiveRowCount
 ©FRMROW = &ROWSET1.GetRow(&I);
 ©TROW = &RS2.GetRow(&I);
 ©FRMROW.CHECKLIST_ITEM.CopyFieldsTo(©TROW.EMPL_CHKLST_ITM);
End-For;

A row may contain more than one record: in addition to the primary database record, you may have a
related display record or a derived record. You can access these records as well. The level one rowset,
&ROWSET1, is made up of many records. The following accesses two of them: EMPL_CHECKLIST
and DERIVED_HR.

&REC1 = &ROW.EMPL_CHECKLIST;
&REC2 = &ROW.DERIVED_HR;

Field Object

The following instantiates a field object, from the Field class, that is used to access a specific field in the
record:

&FIELD = &REC.GetField(FIELD.CHECKLIST_CD);

You might later use the &FIELD variable as a condition:

If ALL(&FIELD) Then

Here is another example:

If &FIELD.Value = "N" Then

Note: The data in the field that you retrieve is based on the record, which is in turn based on the row.

You can also set the value of a field. Using the GetField function does not create a copy of the data from
the component buffer. Setting the value or a property of the field object sets the actual component buffer
field or property.

See Assigning Objects.

84 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

In the following example, the type of field is verified, and the value is replaced with the tangent of that
value if it is a number

If &FIELD.Type <> "NUMBER" Then
 /* do error recording */
Else
 &FIELD.Value = Tan(&FIELD.Value);
End-If;

Data Buffer Hierarchy Examples
The following EMPLOYEE_CHECKLIST image is an example of data buffer hierarchy.

Suppose you want to access the BRIEFING_STATUS field at level two of the following page:

First, determine where your code is running. For this example, the code is starting at a field on a record at
level zero. However, you do not always have to start at level zero.

If you start with level zero, you must traverse the data hierarchy, through the level one rowset to the level
two rowset, before you can access the record that contains the field.

Obtaining the Rowset

You first obtain the level zero rowset, which is the PERSONAL_DATA rowset. You do not need to know
the name of the level zero rowset to access it:

&LEVEL0 = GetLevel0();

Copyright © 1988, 2024, Oracle and/or its affiliates. 85

Accessing the Data Buffer Chapter 5

Obtaining Rows

The next object to get is a row. As the following code is working with data that is loaded from a page,
only one row is at level zero. However, if you have rowsets that are populated with data that is not based
on component buffers (for example, an application message), you may have more than one row at level
zero.

&LEVEL0_ROW = &LEVEL0(1);

Obtaining Child Rowsets

To obtain the level two rowset, traverse through the level one rowset first. Therefore, the next object to
get is the level one rowset, as shown in the following example:

&LEVEL1 = &LEVEL0_ROW.GetRowset(SCROLL.EMPL_CHECKLIST);

Obtaining Subsequent Rows

If you are traversing a page, obtain the appropriate row after you get a rowset. To process all the rows of
the rowset, set this functionality up in a loop, as shown in the following example:

For &I = 1 to &LEVEL1.ActiveRowCount
 &LEVEL1_ROW = &LEVEL1(&I);
 . . .
End-For;

Obtaining Subsequent Rowsets and Rows

Traverse another level in the page structure to access the second level rowset, and then use a loop to
access the rows in the level two rowset.

Because we are processing all the rows at level one, we are just adding code to the previous For loop. As
we process through all the rows at level two, we are adding a second For loop. The new code is in bold in
the following example:

For &I = 1 to &LEVEL1.ActiveRowCount
 &LEVEL1_ROW = &LEVEL1(&I);
 &LEVEL2 = &LEVEL1_ROW.GetRowset(SCROLL.
EMPL_CHKLST_ITM);
 For &J = 1 to &LEVEL2.ActiveRowCount
 &LEVEL2_ROW = &LEVEL2(&J);
 . . .
 End-For;
End-For;

Obtaining Records

A row always contains a record, and it may contain only a child rowset, depending on how your page is
set up. GetRecord is the default method for a row, so all you have to specify is the record name.

Because we are processing all the rows at level two, we just add code to the For loops of the previous
example. The new code is in bold:

For &I = 1 to &LEVEL1.ActiveRowCount
 &LEVEL1_ROW = &LEVEL1(&I);
 &LEVEL2 = &LEVEL1_ROW.GetRowset(SCROLL.EMPL_CHKLST_ITM);
 For &J = 1 to &LEVEL2.ActiveRowCount
 &LEVEL2_ROW = &LEVEL2(&J);
 &RECORD = &LEVEL2_ROW.EMPL_CHKLST_ITM;
 . . .

86 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

 End-For;
End-For;

Obtaining Fields

Records are made up of fields. GetField is the default method for a record, so all you have to specify is
the field name.

Because we are processing all the rows at the level one, we are just adding code to the For loops of the
previous example. The new code is in bold:

For &I = 1 to &LEVEL1.ActiveRowCount
 &LEVEL1_ROW = &LEVEL1(&I);
 &LEVEL2 = &LEVEL1_ROW.GetRowset(SCROLL.EMPL_CHKLST_ITM);
 For &J = 1 to &LEVEL2.ActiveRowCount
 &LEVEL2_ROW = &LEVEL2(&J);
 &RECORD = &LEVEL2_ROW.EMPL_CHKLST_ITM;
 &FIELD = &RECORD.BRIEFING_STATUS;
 /* Do processing */
 End-For;
End-For;

Using Shortcuts

The previous code is the long way of accessing this field. The following example uses shortcuts to access
the field in one line of code. The following code assumes all rows are level one:

Here’s another method of expressing the code:

Object Type Code

Rowset &LEVEL0 = GetLevel0();

Row &LEVEL0_ROW = &LEVEL0(1);

Rowset &LEVEL1 = &LEVEL0_ROW.GetRowset(SCROLL.E⇒

MPL_CHECKLIST);

For &I = 1 to &LEVEL1.ActiveRowCount

Row &LEVEL1_ROW = &LEVEL1(&I);

Rowset &LEVEL2 = &LEVEL1_ROW.GetRowset(SCROLL.E⇒

MPL_CHKLST_ITM);

Copyright © 1988, 2024, Oracle and/or its affiliates. 87

Accessing the Data Buffer Chapter 5

Object Type Code

 For &J = 1 to &LEVEL2.ActiveRowCount⇒

Row &LEVEL2_ROW = &LEVEL2(&J);

Record &RECORD = &LEVEL2_ROW.EMPL_CHKLST⇒

_ITM;

Field &FIELD = &RECORD.BRIEFING_STATUS;⇒

 /* Do processing */

 End-For;

End-For;

Rowset Examples
The following code example traverses up to four levels of rowsets and could easily be modified to
do more. This example only processes the first record in every rowset. To process every record, set
up another For loop (For &R = 1 to &LEVELX.RECORDCOUNT, and so on). Notice the use of the
ChildCount function (to process all children rowsets within a rowset), ActiveRowCount, IsChanged, and
dot notation.

In the following example, ellipses indicate where application-specific code should go.

&Level0_ROWSET = GetLevel0();
For &A0 = 1 To &Level0_ROWSET.ActiveRowCount

 ...

/***************************/
/* Process Level 1 Records */
/*-------------------------*/
 If &Level0_ROWSET(&A0).ChildCount > 0 Then
 For &B1 = 1 To &Level0_ROWSET(&A0).ChildCount
 &LEVEL1_ROWSET = &Level0_ROWSET(&A0).GetRowset(&B1);
 For &A1 = 1 To &LEVEL1_ROWSET.ActiveRowCount
 If &LEVEL1_ROWSET(&A1).GetRecord(1).IsChanged Then

 ...

 /***************************/
 /* Process Level 2 Records */
 /*-------------------------*/
 If &LEVEL1_ROWSET(&A1).ChildCount > 0 Then
 For &B2 = 1 To &LEVEL1_ROWSET(&A1).ChildCount
 &LEVEL2_ROWSET = &LEVEL1_ROWSET(&A1).GetRowset(&B2);
 For &A2 = 1 To &LEVEL2_ROWSET.ActiveRowCount
 If &LEVEL2_ROWSET(&A2).GetRecord(1).IsChanged Then

88 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

 ...

/***************************/
/* Process Level 3 Records */
/*-------------------------*/
 If &LEVEL2_ROWSET(&A2).ChildCount > 0 Then
 For &B3 = 1 To &LEVEL1_ROWSET(&A2).ChildCount
 &LEVEL3_ROWSET = &LEVEL2_ROWSET(&A2).GetRowset(&B3);
 For &A3 = 1 To &LEVEL3_ROWSET.ActiveRowCount
 If &LEVEL3_ROWSET(&A3).GetRecord(1).IsChanged Then

 ...

 End-If; /* A3 - IsChanged */
 End-For; /* A3 - Loop */
 End-For; /* B3 - Loop */
 End-If; /* A2 - ChildCount > 0 */
/*--------------------------------*/
/* End of Process Level 3 Records */
/**********************************/

 End-If; /* A2 - IsChanged */
 End-For; /* A2 - Loop */
 End-For; /* B2 - Loop */
 End-If; /* A1 - ChildCount > 0 */
/*--------------------------------*/
/* End of Process Level 2 Records */
/**********************************/

 End-If; /* A1 - IsChanged */
 End-For; /* A1 - Loop */
 End-For; /* B1 - Loop */
 End-If; /* A0 - ChildCount > 0 */

/*--------------------------------*/
/* End of Process Level 1 Records */
/**********************************/

End-For; /* A0 - Loop */

Hidden Work Scroll Example
In the FieldChange event for the CHECKLIST_CD field on the EMPL_CHECKLIST record, a
PeopleCode program does the following:

1. Flushes the rowset and hidden work scroll area.

2. Performs a Select statement on the hidden work scroll area based on the value of the
CHECKLIST_CD field and the effective date.

3. Clears the level two scroll area.

4. Copies like-named fields from the hidden work scroll area to the level two scroll area.

The following example shows how to do this using built-in functions.

&CURRENT_ROW_L1 = CurrentRowNumber(1);

&ACTIVE_ROW_L2 = ActiveRowCount(RECORD.EMPL_CHECKLIST,
&CURRENT_ROW_L1, RECORD.EMPL_CHKLST_ITM);

If All(CHECKLIST_CD) Then
 ScrollFlush(RECORD.CHECKLIST_ITEM);
 ScrollSelect(1, RECORD.CHECKLIST_ITEM, RECORD.CHECKLIST_ITEM,
"Where Checklist_Cd = :1 and EffDt = (Select Max(EffDt) From

Copyright © 1988, 2024, Oracle and/or its affiliates. 89

Accessing the Data Buffer Chapter 5

PS_Checklist_Item Where Checklist_Cd = :2)",
CHECKLIST_CD, CHECKLIST_CD);

 &FOUNDDOC = FetchValue(CHECKLIST_ITEM.CHKLST_ITEM_CD, 1);
 &SELECT_ROW = ActiveRowCount(RECORD.CHECKLIST_ITEM);

 For &I = 1 To &ACTIVE_ROW_L2
 DeleteRow(RECORD.EMPL_CHECKLIST, &CURRENT_ROW_L1, RECORD.EMPL_CHKLST_ITM, 1);
 End-For;

 If All(&FOUNDDOC) Then
 For &I = 1 To &SELECT_ROW
 CopyFields(1, RECORD.CHECKLIST_ITEM, &I, 2,
RECORD.EMPL_CHECKLIST, &CURRENT_ROW_L1, RECORD.EMPL_CHKLST_ITM, &I);
 If &I <> &SELECT_ROW Then
 InsertRow(RECORD.EMPL_CHECKLIST, &CURRENT_ROW_L1,
RECORD.EMPL_CHKLST_ITM, &I);
 End-If;
 End-For;
 End-If;
End-If;

The following example performs the same function as the previous code, only it uses the data buffer
classes:

1. Flushes the rowset and hidden work scroll area (&RS1H).

2. Performs a Select statement on &RS1H based on the value of the CHECKLIST_CD field and the
effective date.

3. Clears the level two rowset (&RS2).

4. Copies like-named fields from &RS1H to &RS1.

Local Rowset &RS0, &RS1, &RS2, &RS1H;

&RS0 = GetLevel0();
&RS1 = GetRowset();
&RS2 = GetRowset(SCROLL.EMPL_CHKLST_ITM);
&RS1H = &RS0.GetRow(1).GetRowset(SCROLL.CHECKLIST_ITEM);

&MYFIELD = CHECKLIST_CD;

If All(&MYFIELD) Then
 &RS1H.Flush();
 &RS1H.Select(RECORD.CHECKLIST_ITEM, "where Checklist_CD = :1
and EffDt = (Select Max(EffDt) from PS_CHECKLIST_ITEM
Where CheckList_CD = :2)", CHECKLIST_CD, CHECKLIST_CD);

 For &I = 1 To &RS2.ActiveRowCount
 &RS2.DeleteRow(1);
 End-For;

&FOUND = &RS1H.GetCurrEffRow().CHECKLIST_ITEM. CHKLST_ITEM_CD.Value;

 If All(&FOUND) Then
 For &I = 1 To &RS1H.ActiveRowCount
 ©FRMROW = &RS1H.getrow(&I);
 ©TROW = &RS2.getrow(&I);
 ©FRMROW.CHECKLIST_ITEM.CopyFieldsTo(©TROW.EMPL_CHKLST_ITM);
 If &I <> &RS1H.ActiveRowCount Then
 &RS2.InsertRow(&I);
 End-If;
 End-For;
 End-If;
End-If;

90 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

Understanding Current Context

Most PeopleCode programs run in a current context. The current context determines which buffer fields
can be contextually referenced from PeopleCode, and which row of data is the current row on each scroll
level at the time a PeopleCode program is running.

The current context for the data buffer access classes is similar to the current context for accessing the
component buffer, as shown in the following diagram:

In this example, a PeopleCode program is running in a buffer field on the second row of the level one
rowset. The following code returns a row object for the second row of the level one rowset, because that
is the row that is the current context.

Local Row &ROW

&ROW = GetRow();

The following code returns the B2 level two rowset because of the current context:

Local Rowset &ROWSET2

&ROWSET2 = &ROW.GetRowset(SCROLL.EMPL_CHKLST_ITM);

Copyright © 1988, 2024, Oracle and/or its affiliates. 91

Accessing the Data Buffer Chapter 5

This code does not return either the C2 or the A2 rowsets. It returns only the rowset associated with the
second row of the level one rowset.

Creating Records or Rowsets and Current Context

When you instantiate a record object using the CreateRecord function, you are only creating an area in the
data buffers that has the same structure as the record definition. It does not contain any data. This record
object does not have a parent rowset and is not associated with a row. It is a freestanding record object
and, therefore, is not considered part of the current context.

The same concept applies when you instantiate a rowset object using the CreateRowset function. You
are only creating an area in the data buffers that has the same structure as the records or rowset that the
new rowset is based on. The rowset does not contain any data. This type of rowset does not have a parent
rowset or row.

Related Links
Specifying Data with Contextual References
“CreateRecord” (PeopleCode Language Reference)
“CreateRowset” (PeopleCode Language Reference)

Accessing Secondary Component Buffer Data

When a secondary page is run, the data for its buffers is copied from the parent component to a buffer
structure for the secondary page. That is, two copies of this data are made. The data buffer classes give
access to both of these copies of the data. Direct field references (recname.fieldname) always use the
current context to determine which value to access. So, in general, when using a secondary page, make
sure that references are based on the secondary page.

Instantiating Rowsets Using Non-Component Buffer Data

Both the application message and the file layout technologies represent hierarchical data, and both use the
rowset, row, record, and field hierarchy. Though you use different methods to instantiate a rowset object
for this data, you still use the same rowset, row, record, and field methods and properties to manipulate
the data. (Any exceptions are marked in the documentation.)

To instantiate a rowset for a message:

&MSG = CreateMessage(OPERATION.EMPLOYEE_DATA);
&MYROWSET = &MSG.GetRowset();

To instantiate a rowset for a file layout:

&MYFILE = GetFile(&SOMENAME, "R", "UTF8");

If &MYFILE.IsOpen Then
 &MYFILE.SetFileLayout(FILELAYOUT.SOMELAYOUT);
 &MYROWSET = &MYFILE.ReadRowset();
End-if;

92 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 5 Accessing the Data Buffer

In an Application Engine program, the default state record is considered the primary record and the main
record in context. You can access the default state record using the following:

&STATERECORD = GetRecord();

If you have more than one state record associated with an Application Engine program, you can access
them the same way you would access other, nonprimary data records, by specifying the record name. For
example:

&ALTSTATE = GetRecord(RECORD.AE_STATE_ALT);

Related Links
Using Standalone Rowsets
“Understanding Managing Messages” (Integration Broker)
“Understanding Application Engine Meta-SQL” (Application Engine)

Copyright © 1988, 2024, Oracle and/or its affiliates. 93

Accessing the Data Buffer Chapter 5

94 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6

PeopleCode and the Component Processor

Understanding the Component Processor

The Component Processor is the PeopleTools runtime engine that controls processing of an application
from the time that a user requests a component from an application menu until the database is updated and
processing of the component is complete.

Events Outside the Component Processor Flow

An Application Engine program can have a PeopleCode program as an action. Though the right-hand
drop-down list box on the PeopleCode Editor window displays the text OnExecute, the PeopleCode
program really is not an event. Any PeopleCode contained in an Application Engine action is executed
only when the action is executed.

A component interface can have user-defined methods associated with it. These methods are not part of
any processor flow; they are called as needed by the program executing the component interface.

Security has a signon event during sign-in. This is actually PeopleCode programs on a record field that
you have specified in setting up security.

Though application packages have a right-hand drop-down list box on the PeopleCode Editor window
that displays the text OnExecute, this is not an event. Any PeopleCode contained in the application class
is only executed when called explicitly in a PeopleCode program.

Related Links
“Understanding Component Interface Class” (PeopleCode API Reference)
“Understanding Application Classes” (PeopleCode API Reference)
“Specifying PeopleCode Actions” (Application Engine)
“PeopleSoft Sign In” (Security Administration)

PeopleCode Program Triggers

This section provides an overview of PeopleCode program triggers and discusses how to:

• Access PeopleCode programs.

• Associate execution order of events and PeopleCode.

Copyright © 1988, 2024, Oracle and/or its affiliates. 95

PeopleCode and the Component Processor Chapter 6

Understanding PeopleCode Program Triggers
PeopleCode can be defined on events associated with a record field, a component, a component record,
and many other definitions. During the course of the component processor’s flow of execution, these
PeopleCode events (or exit points) are encountered in a specific sequence. When an event is encountered,
the component processor runs any PeopleCode for that event on each definition.

The following definitions have events that are part of the component processor flow:

Items Event Triggers

Components Programs associated with a component definition.

Component records Programs associated with a component record.

Component record fields Programs associated with a component record field.

Pages Programs associated with a page definition.

Record fields Programs associated with a specific field of a record
definition.

Menu items Programs associated with a menu item.

Suppose a user changes the data in a page field, and then presses Tab to move out of the field. This user
action initiates the FieldEdit PeopleCode event. The FieldEdit event affects only the field and row where
the change took place.

If you have two FieldEdit PeopleCode programs, one associated with the record field and a second
associated with the component record field, both programs execute, but only on the specific field and row
of data. The FieldEdit PeopleCode program associated with the record field is executed first, and then the
FieldEdit PeopleCode program associated with the component record field is executed.

By contrast, suppose a user has opened a component for updating. As part of building the component,
the component processor encounters the RowInit event. This event triggers any RowInit PeopleCode
programs on every record field on every row of data in the component. In a scroll area with multiple rows
of data, each RowInit PeopleCode program is executed once for each row.

In addition, if you have RowInit PeopleCode associated with both the record field and the component
record, both programs are executed on every row of data in the component. The RowInit PeopleCode
program associated with the record field is executed first, and then the RowInit PeopleCode program
associated with the component record is executed. If you set the value of a field with the record field
RowInit PeopleCode, and then reset the field with the component record RowInit PeopleCode, the second
value appears to the user.

When you develop with PeopleCode, you must consider when and where your programs are triggered
during execution of the component processor flow in addition to what that program executes.

This section discusses how to:

96 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

• Access PeopleCode programs.

• Understand the execution order of events and PeopleCode.

Related Links
Execution Order of Events and PeopleCode

Accessing PeopleCode Programs
Every PeopleCode program is associated with a PeopleCode event and is often referred to by that name,
such as RowInit PeopleCode or FieldChange PeopleCode. These programs are accessible from, and
associated with, different items. The following table lists items and associated events.

Note: During search processing in update modes or add mode, the SearchInit and SearchSave events (in
the Component Record column of the table) are available only for the search record associated with a
component.

Component
Events

Component
Record Events

Component
Record Field
Events

Page Events Record Field
Events

Menu Events

PostBuild

PreBuild

SavePostChg

SavePreChg

Workflow

RowDelete

RowInit

RowInsert

RowSelect

SaveEdit

SavePostChg

SavePreChg

SeachInit

SearchSave

FieldChange

FieldDefault

FieldEdit

PrePopup

Activate FieldChange

FieldDefault

FieldEdit

FieldFormula

PrePopup

RowDelete

RowInit

RowInsert

RowSelect

SaveEdit

SavePostChg

SavePreChg

SearchInit

SearchSave

Workflow

ItemSelected

The following table lists types of PeopleCode programs and where to access them in Application
Designer.

Copyright © 1988, 2024, Oracle and/or its affiliates. 97

PeopleCode and the Component Processor Chapter 6

PeopleCode Programs Location in Application Designer

Components*, component records*, and component record
fields

Component definitions

Pages Page definitions

Record fields Record definitions

Menu items Menu definitions

* PeopleCode programs can be associated with components and component records outside of
Application Designer. The PeopleSoft Related Content Framework can be used to map application class
PeopleCode programs to component and component record events. This allows custom PeopleCode
programs to be defined for a component without customizing the component definition in Application
Designer. These custom PeopleCode programs can be configured to run before or after any PeopleCode
program defined for the same event from the component definition.

Note: While the PeopleSoft Related Content Framework is used to complete this configuration, these
PeopleCode programs do not constitute or render as related content.

Related Links
“Mapping Application Class PeopleCode to Component Events ” (Portal Technology)

Execution Order of Events and PeopleCode
In PeopleSoft systems, the component is the representation of a transaction. Therefore, any PeopleCode
that is associated with a transaction should be in events associated with some level of the component
itself (component, component record, or component record field). If you associate code with the correct
transaction, you do not have to check for the component that is issuing it (such as surrounding your code
with dozens of If %Component = statements). Consequently, this makes record definitions more
reusable, and your code is more maintainable. However, code that should be executed every time a field is
edited should be at the record field level and not placed on the component.

For example, if you have start and end dates for a course, you would always want to make sure that the
end date was after the start date. Your program to check the dates would go on the SaveEdit at the record
field level.

All similarly named component events are executed after the like-named record event. The PeopleCode
program associated with the record field event is executed first, and then the PeopleCode program
associated with the like-named component event is executed. If you set the value of a field with the record
field PeopleCode, and then reset the field with like-named component PeopleCode, the second value is
displayed to the user.

Events After Field Changes

The following events occur after a user changes a field:

Record.recordA.fielda.FieldEdit -> Component.recordA.fielda.FieldEdit ->

98 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Record.recordB.fieldb.FieldEdit -> Component.recordB.fieldb.FieldEdit ->
Record.recordA.fielda.FieldChange -> Component.recordA.fielda.FieldChange ->
Record.recordB.fieldb.FieldChange -> Component.recordB.fieldb.FieldChange ->

The following diagram shows the flow of events and PeopleCode programs after a user changes a field.

Events After User Saves

The following events occur after a user saves:

Record.recordA.fielda.SaveEdit ->
Record.recordA.fieldb.SaveEdit ->
Record.recordA.fieldc.SaveEdit ->
Component.recordA.SaveEdit

Record.recordB.fielda.SaveEdit ->
Record.recordB.fieldb.SaveEdit ->
Record.recordB.fieldc.SaveEdit ->
Component.recordB.SaveEdit

Record.recordA.fielda.SavePreChange ->
Record.recordA.fieldb.SavePreChange ->
Record.recordA.fieldc.SavePreChange ->
Component.recordA.SavePreChange

Record.recordB.fielda.SavePreChange ->
Record.recordB.fieldb.SavePreChange ->
Record.recordB.fieldc.SavePreChange ->
Component.recordB.SavePreChange

Copyright © 1988, 2024, Oracle and/or its affiliates. 99

PeopleCode and the Component Processor Chapter 6

Record.recordA.fieldA.WorkFlow ->
Record.recordB.fieldB.WorkFlow ->
Record.reocrdC.fieldC.WorkFlow
Component.Workflow

Record.recordA.fielda.SavePostChange ->
Record.recordA.fieldb.SavePostChange ->
Record.recordA.fieldc.SavePostChange ->
Component.recordA.SavePostChange

Record.recordB.fielda.SavePostChange ->
Component.recordB.SavePostChange
Component.SavePostChange

The following diagram shows the event flow of PeopleCode programs after SavePostChange event.

100 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Note: SaveEdit does not fire for deleted rows, but SavePreChange, Workflow, and SavePostChange do.

Component Processor Behavior

This section discusses:

• Component Processor behavior from page start to page display.

• Component Processor behavior following user actions in the component.

Note: Components behave differently when run in deferred mode .

Related Links
Deferred Processing Mode
Processing Sequences

Component Processor Behavior from Page Start to Page Display
Before a user selects a component, the system is in reset state, in which no component is displayed. The
Component Processor flow of execution begins when a user selects a component from a PeopleSoft menu.
The Component Processor then:

1. Performs search processing, in which it obtains and saves search key values for the component.

2. Retrieves from the database server any data needed to build the component.

3. Builds the component, creating buffers for the component data.

4. Performs any additional processing for the component or the page.

5. Displays the component and waits for user action.

Copyright © 1988, 2024, Oracle and/or its affiliates. 101

PeopleCode and the Component Processor Chapter 6

The following flowchart shows the behavior of a component processor from page start to page display at a
high level:

Component Behavior Following User Actions in the Component
After a component is built and displayed, the Component Processor can respond to a number of possible
user actions. The following table lists the user actions and briefly describes the resulting processing:

See Processing Sequences.

User Action Description

Row Insert Processing When a user requests a row insert, the Component Processor
adds a row of data in the active scroll area, then displays the
page again and waits for another action.

See Row Insert Processing.

Row Delete Processing When a user requests a row delete, the Component Processor
flags the current row as deleted, then displays the page again
and waits for another action.

See Row Delete Processing.

102 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

User Action Description

Field Modification If a user edits a page field, then leaves the field, the
Component Processor performs standard edits (such as
checking the data type and checking for values out of range).
 If the contents of the field do not pass the standard system
edits, the Component Processor redisplays the page with an
error or warning message and changes the field’s color to
the system color for field edit errors, usually red. Until the
user corrects the error, the Component Processor does not
let the user save changes or navigate to another field. If the
contents of the field pass the standard system edits, the system
redisplays the page and waits for further action.

See Field Change Processing.

Prompts If a user clicks the prompt icon next to a field, a list of values
for the prompt field appears. If the Allow Search Events
for Prompt Dialogs check box is selected in the record field
properties for the search key, the SearchInit event will trigger
before the prompt dialog appears. If the user clicks the Look
Up button the SearchSave event will trigger.

If the end-user clicks the detail button next to a date field, a
calendar appears.

If the user clicks Return To Search, or presses Alt+2, a
search page appears, enabling the user to enter an alternate
search key or partial value.

See Prompts, Search Processing in Update Modes.

Pop-up Menu Display If a user clicks the pop-up icon next to a field, a pop-up menu
appears. This can be a default pop-up menu or one that has
been defined by the developer. If the user clicks the pop-up
icon at the bottom of the page, the pop-up menu for the page
appears.

See Pop-Up Menu Display.

ItemSelected Processing A user can select an item from a pop-up menu to execute a
command.

See Selected Item Processing.

Push Button A user can click a button to execute a command.

See Buttons.

Copyright © 1988, 2024, Oracle and/or its affiliates. 103

PeopleCode and the Component Processor Chapter 6

User Action Description

Save Processing A user can direct the system to save a component by clicking
Save or by pressing Alt+1. If any component data has
been modified, the system also prompts the user to save a
component when the Next or List button is clicked, or when a
new action or component is selected.

The Component Processor first validates the data in the
component, and then updates the database with the changed
component data. After the update, a SQL Commit command
finalizes the changes.

See Save Processing.

Processing Sequences

This section presents an overview of flow charts and discusses:

• Default processing.

• Search processing in update mode.

• Search processing in add mode.

• Component build processing in update mode.

• Row select processing.

• Component build processing in add mode.

• Field change processing.

• Row insert processing.

• Row delete processing.

• Buttons.

• Prompts.

• Pop-up menu display.

• Selected item processing.

• Save processing.

Flow Charts
Actions and PeopleCode events can occur in various sequences within the Component Processor’s flow
of execution. Flow charts represent each sequence. In a flow chart, different shapes and colors represent
different concepts.

104 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Term Definition

Blue rectangles represent actions taken by the system.

Term Definition

Dark rhomboids represent branches (decision points) in the
logic.

Term Definition

Dark ellipses represent PeopleCode events.

Term Definition

Light ellipses are subprocesses.

Most processing sequences correspond to high-level component processor behaviors. However, two
important subsequences occur only in the context of a larger sequence. These subsequences are:

• Default processing, which occurs in a number of different contexts.

• Row select processing, which most commonly occurs as a part of component build in any of the
update action modes.

Row select processing also occurs when a ScrollSelect or related function is executed to load data into
a scroll area.

See Component Processor Behavior, Default ProcessingDefault Processing.

Note: Variations may occur in processing sequences, particularly when a PeopleCode function within a
processing sequence initiates another processing sequence. For example, if a row of data is inserted or
deleted programmatically during the component build sequence, a row insert or row delete sequence is
initiated. Also note that components that run in deferred mode behave differently.

See Deferred Processing Mode.

Copyright © 1988, 2024, Oracle and/or its affiliates. 105

PeopleCode and the Component Processor Chapter 6

Default Processing
In default processing, any blank fields in the component are set to their default values. You can specify
the default value either in the record field properties or in FieldDefault PeopleCode. If no default value is
specified, the field is left blank.

Note: In PeopleSoft Pure Internet Architecture, if a user changes a field, but there is nothing to cause a
trip to the server on that field, default processing and FieldFormula PeopleCode do not run. They only run
when another event causes a trip to the server.

Default processing is relatively complex. The following two sections describe how default processing
works on the level of the individual field, and how default processing works in the broader context of the
component.

Field-Level Default Processing

During default processing, the Component Processor examines all fields in all rows of the component. On
each field, it performs the following:

1. If the field is set to NULL (blank) for a character field, or set to 0 for a numeric field, the Component
Processor sets the field to any default value specified in the record field properties for that field.

2. If no default value for the field is defined in the record field properties, then the Component Processor
initiates the FieldDefault event, which triggers any FieldDefault PeopleCode associated with the
record field or the component record field.

3. If an error or warning executes in any FieldDefault PeopleCode, a runtime error occurs.

Important! Avoid using error and warning statements in FieldDefault PeopleCode.

106 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

The following flowchart explains the logic of Field-level default processing where in the Component
Processor examines all fields in all rows of the component in a sequence flow.

Default Processing on Component Level

Under normal circumstances, default processing in a component is relatively simple: each field on each
row of data undergoes field-level default processing. For typical development tasks, this is all you need to
be concerned with. However, the complete context of default processing is somewhat more complex.

See Default Processing.

During component-level default processing, the Component Processor performs these tasks:

1. Field-level default processing is performed on all fields on all rows of data in the component.

2. If any field is still blank and any other field in the component has changed, field-level default
processing may be repeated, in case a condition changed that causes default processing to now assign
a value to something that was previously left blank.

3. The FieldFormula Event is initiated on all fields on all rows of data in the component.

This PeopleCode event is often used for FUNCLIB_ (function library) record definitions to store
shared functions, so normally no PeopleCode programs execute.

Copyright © 1988, 2024, Oracle and/or its affiliates. 107

PeopleCode and the Component Processor Chapter 6

4. If the FieldFormula Event changed anything, field-level default processing is performed again, in case
FieldFormula PeopleCode changed a field value to blank, or changed something that causes default
processing to now assign a value to a field that was previously left blank.

Because there should not be any FieldFormula PeopleCode, this is unlikely to affect the development
process or performance.

5. If any field is still blank and any other field in the component has changed, field-level default
processing is repeated.

The following flowchart explains the logic of Default processing on component level.

Search Processing in Update Modes
If a user selects any of the update action modes (Update, Update/Display All, or Correction), the
Component Processor begins update mode search processing, which includes the following steps:

1. The SearchInit PeopleCode event is initiated, which triggers any SearchInit PeopleCode associated
with the record field or the component search record, on the keys or alternate search keys in the
component search record.

This enables you to control the search page field values or the search page appearance
programmatically, or to perform other processing prior to the appearance of the search page.

108 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Note: Set the search record for the component in the component properties.

For example, the following program in SearchInit PeopleCode on the component search key record
field EMPLID sets the search key page field to the user’s employee ID, makes the page field
unavailable for entry, and enables the user to modify the user’s own data in the component:

EMPLID = %EmployeeId;
&Field = GetField(EMPLID).Enabled = False;
AllowEmplIdChg(True);

Note: Generally, the system search processing displays the search page. You can use the SearchInit
event, and the SetSearchDialogBehavior function, to set the behavior of the search page before it is
displayed. If SetSearchDialogBehavior is set to Force display, the dialog box is displayed even if all
required keys have been provided. You can also set SetSearchDialogBehavior to skip if possible. In
addition, you can force search processing to always occur by selecting Force Search Processing in
the component definition properties in PeopleSoft Application Designer.

2. The search page and prompt list appear, in which the user can enter search keys or select an advanced
search to enter alternate search keys.

Note: Normally, the values in the search page are not set to default values. However, if the
SearchDefault function was executed in SearchInit PeopleCode for any of the search key or alternate
search fields, those fields in the dialog box are set to their system default values. No other default
processing occurs (that is, the FieldDefault event is not initiated).

3. The user enters a value or partial value in the search page, and then clicks Search.

4. The SearchSave PeopleCode event is initiated, which triggers any SearchSave PeopleCode associated
with the record field or the component search record, on the search keys or alternate search keys in the
search record.

This enables you to validate the user entry in the search page by testing the value in the search
record field in PeopleCode and, if necessary, issuing an error or warning. If an error is executed in
SearchSave, the user is sent back to the search page. If a warning is executed, the user can click OK
to continue or click Cancel to return to the search page and enter new values.

If partial values are entered, such that the Component Processor can select multiple rows, then the
prompt list dialog box is filled, and the user can select a value. If key values from the search page are
blank, or if the system cannot select any data based on the user entry in the search page, the system
displays a message and redisplays the search page. If the values entered produce a unique value, the
prompt list is not filled. Instead, the user is taken directly to the page.

Note: Normally, no system edits are applied when the user changes a field in the search page.
However, if the SearchEdit property is executed for specific search page fields in SearchInit
PeopleCode, the system edits are applied to those fields after the user changes a field and either leaves
the field or clicks Search. In addition, the SearchEdit property can also be set in metadata for the
record field definition.
If the user entry in the field fails the system edits, the system displays a message, highlights the field
in question, and returns the user to the dialog box. The FieldEdit and SaveEdit PeopleCode events are
not initiated. The SearchSave event is not initiated after values are selected from the search list. To
validate data entered in the search page, use the Component PreBuild event.

Copyright © 1988, 2024, Oracle and/or its affiliates. 109

PeopleCode and the Component Processor Chapter 6

5. The Component Processor buffers the search key values.

If the user then opens another component while this component is active, the Component Processor
uses the same search key values and bypasses the search page.

The following flowchart shows this logic. (It does not show the effects of executing the SearchDefault
and SearchEdit Field class properties.)

Note: You can use the IsSearchDialog built-in function to create PeopleCode that runs only during search
processing. To create processes that run only in a specific action mode, use the %Mode system variable.
This could be useful in code that is part of a library function and that is invoked in places other than from
the search page. It could also be used in PeopleCode associated with a record field that appears in pages
and in the search page.

Related Links
“SetSearchDialogBehavior” (PeopleCode Language Reference)

110 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

“SearchDefault” (PeopleCode API Reference)
“%Mode” (PeopleCode Language Reference)

Search Processing in Add Modes
When a user opens a component in add or data-entry modes, the following actions occur:

1. The Component Processor runs default processing on the high-level keys that appear in the Add or
Data Entry dialog box.

2. The Component Processor initiates the RowInit event, which triggers any RowInit PeopleCode
associated with the record field or the component record, on the Add or Data Entry dialog box fields.

3. The Component Processor initiates the SearchInit event on dialog fields, which triggers any
SearchInit PeopleCode associated with the record field or the component search record.

This enables you to execute PeopleCode programs before the dialog box appears.

4. The Component Processor displays the Add or Data Entry dialog box.

5. If the user changes a dialog box field, and then leaves the field or clicks OK, the following actions
occur:

• In add mode only, a field modification processing sequence occurs.

See Field Change Processing.

• Default processing is run on the Add or Data Entry dialog box fields.

Normally this does not have any effect, because the fields have a value.

6. When the user clicks OK in the dialog box, the SaveEdit event is initiated, which triggers any
PeopleCode associated with the record field or the component record.

7. The Component Processor initiates the SearchSave event, which triggers any SearchSave PeopleCode
associated with the record field or the component search record.

This enables you to validate user entry in the dialog box. If an error is executed in SearchSave, the
user is sent back to the Add or Data Entry dialog box. If a warning is executed, the user can click OK
to continue or click Cancel to return to the dialog box and enter new values.

8. The Component Processor buffers the search key values and continues processing.

Note: If you compare the following diagram with search processing in update modes, notice that
the add modes are considerably more complex and involve more PeopleCode events. However, in
practice, PeopleCode development is similar in both cases. PeopleCode that runs before the dialog
box appears (for example, to control dialog box appearance or set values in the dialog box fields)
generally is placed in the SearchInit event; PeopleCode that validates user entry in the dialog box is
placed in the SearchSave event.

See Search Processing in Update Modes.

Copyright © 1988, 2024, Oracle and/or its affiliates. 111

PeopleCode and the Component Processor Chapter 6

The following flowchart diagram shows the logic of Search processing in add and data-entry modes.

Note: You can use the IsSearchDialog function to create PeopleCode that runs only during search
processing. To create processes that run only in a specific action mode, use the %Mode system variable.
This could be useful in code that is part of a library function and that is invoked in places other than from
the search page. It could also be used in PeopleCode associated with a record field that appears in pages
and in the search page.

Related Links
“IsSearchDialog” (PeopleCode Language Reference)

112 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

“%Mode” (PeopleCode Language Reference)

Component Build Processing in Update Modes
After the Component Processor has saved the search keys values for the component, it uses the search key
values to select rows of data from the database server using a SQL Select statement. After the rows are
retrieved, the Component Processor performs these actions:

1. Performs row select processing, in which rows of data that have already been selected from the
database server can be filtered before they are added to the component buffer.

See Row Select Processing.

2. Initiates the PreBuild event, which triggers any PreBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

The PreBuild event is also used to validate data entered in the search page, after a prompt list is
displayed.

Note: If a PreBuild PeopleCode program issues an error or warning, the user is returned to the search
page. If there is no search page, that is, the search record has no keys, a blank component page
appears.

3. Performs default processing on all the rows and fields in the component.

See Row Select Processing.

4. Initiates the RowInit event, which triggers any RowInit PeopleCode associated with the record field or
the component record.

The RowInit event enables you to programmatically initialize the values of non-blank fields in the
component.

5. Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the
component record, enabling you to set global or component scope variables that can be used later by
PeopleCode located in other events.

6. Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to
be displayed, enabling you to programmatically control the display of that page.

7. Displays the component and waits for end-user action.

Copyright © 1988, 2024, Oracle and/or its affiliates. 113

PeopleCode and the Component Processor Chapter 6

The following flowchart shows the logic of Component build processing in update modes.

Row Select Processing
Row select processing enables PeopleCode to filter out rows of data after they have been retrieved from
the database server and before they are copied to the component buffers. Row select processing uses a
SQL Select statement .

Row select processing is a subprocess of component build processing in add modes. It also occurs after a
ScrollSelect or related function is executed.

See Component Build Processing in Add Modes.

Note: Instead of using row select processing, it is more efficient to filter out the rows using a search view,
an effective-dated record, the Select method, or ScrollSelect or a related function, before the rows are sent
to the browser.

In row select processing, the following actions occur:

1. The Component Processor checks for more rows to add to the component.

114 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

2. The Component Processor initiates the RowSelect event, which triggers any RowSelect PeopleCode
associated with the record field or component record.

This enables PeopleCode to filter rows using the StopFetching and DiscardRow functions.
StopFetching causes the system to add the current row to the component, and then to stop adding rows
to the component. DiscardRow filters out a current row, and then continues the row select process.

3. If neither the StopFetching nor DiscardRow function is called, the Component Processor adds the
rows to the page and checks for the next row.

The process continues until there are no more rows to add to the component buffers. If both
StopFetching and DiscardRow are called, the current row is not added to the page, and no more rows
are added to the page.

Note: In RowSelect PeopleCode, you can refer only to record fields on the record that is currently
being processed, because the buffers are in the process of being populated. This means that the data
might not be present.

Copyright © 1988, 2024, Oracle and/or its affiliates. 115

PeopleCode and the Component Processor Chapter 6

The following flowchart shows the logic of RowSelect processing in a Page.

Related Links
“StopFetching” (PeopleCode Language Reference)

Component Build Processing in Add Modes
After search processing in add or data-entry modes, the Component Processor:

1. Initiates the PreBuild event.

2. Runs default processing on all page fields.

116 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

This enables you to set default fields programmatically using FieldDefault PeopleCode.

3. Initiates the RowInit event on all fields in the component, which triggers any RowInit PeopleCode
associated with the record field or component record.

This enables you to initialize the state of page controls, using RowInit PeopleCode, before the
controls are displayed. (RowInit enables you to set the values of non-blank fields programmatically,
whereas default processing is used to set blank fields to their default values.)

4. Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the
component record, enabling you to set global or component scope variables that can be used later by
PeopleCode located in other events.

5. Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to
be displayed, enabling you to programmatically control the display of that page.

6. Displays a new component, using the search keys obtained from the Add or Data Entry dialog box,
with other fields set to their default values.

The following flowchart shows the logic of component build processing in add modes.

Field Change Processing
The field change processing sequence occurs after a user does any of the following:

• Changes the contents of a field, and then leaves the field (changes focus, for example, by tabbing out
of the field).

Copyright © 1988, 2024, Oracle and/or its affiliates. 117

PeopleCode and the Component Processor Chapter 6

Note: In certain, limited circumstances, tabbing out of a field is not recognized as a change of focus.
This occurs when the next item in the tab order does not have an “on-focus handler.” For example, the
embedded help icon does not have an on-focus handler. In these limited circumstances, field change
processing will not occur.

• Changes the state of a radio button or check box.

• Clicks a link or a button.

In this sequence, the following actions occur:

1. The Component Processor performs standard system edits.

To reduce trips to the server, some processing must be done locally on the machine where the browser
is located, while some is performed on the server.

Standard system edits can be done either in the browser, utilizing local JavaScript code, or on the
application server. The following table outlines where these system edits are done.

System Edits Location of Execution

Checking data type Browser

Formatting Application server or browser

Updating current or history record Application server

Effective date Application server

Effective date or sequence Application server

New effective date in range Application server

Duplicate key Application server

Current level is not effective-dated but one of its child scroll
areas is

Application server

Required field Browser

Date range Browser

Prompt table Application server

Translate table Browser

118 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

System Edits Location of Execution

Yes/no table Depends on the field type. Browser if the field is a check
box. Application server if the field is an edit box and the
values are Y or N.

Note: Default processing for the field can be done in the browser only if the default value is specified
as a constant in the record field properties. If the field contains a default, these defaults occur only
upon component initialization. Then, if a user replaces a default value with a blank, the field is not
initialized again. The required fields check is not performed on derived work fields when you press
Tab to move out of a field.

If the data fails the system edits, the Component Processor displays an error message and highlights
the field in the system color for errors (usually red).

2. If the field passes the system edits, Component Processor initiates the FieldEdit PeopleCode event,
which triggers any FieldEdit PeopleCode associated with the record field or the component record
field.

This enables you to perform additional data validation in PeopleCode. If an Error statement is called
in any FieldEdit PeopleCode, the Component Processor treats the error as it does a system edit
failure; a message is displayed, and the field is highlighted. If a Warning statement is executed in any
FieldEdit PeopleCode, a warning message appears, alerting the user to a possible problem, but the
system accepts the change to the field.

3. If the field change is accepted, the Component Processor writes the change to the component buffer,
then initiates the FieldChange event, which triggers any FieldChange PeopleCode associated with the
record field or the component record field.

This event enables you to add processes other than validation initiated by the changed field value,
such as changes to page appearance or recalculation of values in other page fields. An Error or
Warning statement in any FieldChange PeopleCode causes a runtime error.

Important! Do not use Error or Warning statements in FieldChange PeopleCode. All data validation
should be performed in FieldEdit PeopleCode.

After FieldChange processing, Component Processor runs default processing on all page fields, then
redisplays the page. If the user has changed the field value to a blank, or if SetDefault or a related
function is executed, and the changed field has a default value specified in the record field definition
or any FieldDefault PeopleCode, the field is initialized again to the default value.

Copyright © 1988, 2024, Oracle and/or its affiliates. 119

PeopleCode and the Component Processor Chapter 6

The following flowchart shows the logic of field modification processing in a Page.

Row Insert Processing
Row insert processing occurs when:

• A user requests a row insert in a scroll area by pressing Alt+7, by clicking the Insert Row button, or
by clicking the New button.

• A PeopleCode RowInsert function or a InsertRow method requests a row insert.

In either case, the Component Processor performs these actions:

1. Inserts a new row of data into the active scroll area.

120 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

If the scroll area has a dependent scroll area, the system inserts a single new row into the blank scroll
area, and the system continues until it reaches the lowest-level scroll area.

2. Initiates the RowInsert PeopleCode event, which triggers any RowInsert PeopleCode associated with
the record field or the component record.

This event processes fields only on the inserted row and any dependent rows that were inserted on
lower-level scroll areas.

3. Runs default processing on all component fields.

Normally this affects only the inserted row fields and fields on dependent rows, because other rows
already have undergone default processing.

4. Initiates the RowInit PeopleCode event, which triggers any RowInit PeopleCode associated with the
record field or the component record.

This event affects fields only on the inserted row and any dependent rows that were inserted.

5. Redisplays the page and waits for user action.

Important! Do not use Error or Warning statements in RowInsert PeopleCode. All data validation
should be performed in FieldEdit or SaveEdit PeopleCode.

Copyright © 1988, 2024, Oracle and/or its affiliates. 121

PeopleCode and the Component Processor Chapter 6

The following flowchart shows the logic of row insert processing where in a PeopleCode RowInsert
function or a InsertRow method requests a row insert.

Note: If none of the data fields in the new row are changed after the row has been inserted (either
programmatically or by the user), the new row is not inserted into the database when the page is saved.

Row Delete Processing
Row delete processing occurs when:

• A user requests a row delete in a scroll area by pressing Alt+8, by clicking the Delete Row button, or
by clicking the Delete button.

• A PeopleCode RowDelete function or a DeleteRow method requests a row delete.

In either case, these actions occur:

1. The Component Processor initiates the RowDelete PeopleCode event, which triggers RowDelete
PeopleCode associated with the record field or the component record.

122 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

This event processes fields on the deleted row and any dependent child scroll areas. RowDelete
PeopleCode enables you to check for conditions and control whether a user can delete the row. An
Error statement displays a message and prevents the user from deleting the row. A Warning statement
displays a message alerting the user about possible consequences of the deletion, but permits deletion
of the row.

2. If the deletion is rejected, the page is redisplayed after the error message.

3. If the deletion is accepted, the row, and any child scroll areas dependent on the row, are flagged as
deleted.

The row no longer appears in the page, but it is not physically deleted from the buffer and can be
accessed by PeopleCode all the way through the SavePostChange event (note, however, that SaveEdit
PeopleCode is not run on deleted rows).

4. The Component Processor runs default processing on all component fields.

5. The Component Processor redisplays the page and waits for a user action

Note: PeopleCode programs are triggered on rows flagged as deleted in SavePreChange and
SavePostChange PeopleCode. Use the IsDeleted row class property to test whether a row has been
flagged as deleted. You can also access rows flagged as deleted by looping through the rows of a
scroll area using a For loop delimited by the value returned by the RowCount rowset property.

The following flowchart shows the logic of row delete processing.

Related Links
“IsDeleted” (PeopleCode API Reference)
“RowCount” (PeopleCode API Reference)

Copyright © 1988, 2024, Oracle and/or its affiliates. 123

PeopleCode and the Component Processor Chapter 6

“For” (PeopleCode Language Reference)

Buttons
When a user presses a button, this initiates the same processing as changing a field. Typically,
PeopleCode programs started by button are placed in the FieldChange event.

Related Links
Field Change Processing

Prompts
If the Allow Search Events for Prompt Dialogs check box is selected for the Record Field properties for
a search key on a prompt table record, the search processing events are enabled for that field. When the
user selects the prompt icon, the SearchInit event for that field executes before the search dialog displays.
When the user selects the Look Up button on a prompt dialog the SearchSave event for the field executes.

Search event processing on prompt dialogs can affect performance. Oracle recommends that you
limit the use of search events in prompt dialogs to simple tasks such as showing and hiding fields or
character manipulation. Do not use the search events on prompt dialogs for complex functions such as
AddKeyListItem, ClearKeyList, ClearSearchDefault, ClearSearchEdit, IsSearchDialog, SetSearchDefault,
SetSearchDialogBehavior, or SetSearchEdit, and so on.

By default, Allow Search Events for Prompt Dialogs is off, in which case no PeopleCode event is
initiated as a result of prompts.

No PeopleCode events are initiated as a result of the user returning to the search page or displaying a
calendar. This process is controlled automatically by the system.

Note: When the value of a field is changed using a prompt, the standard field modification processing
occurs.

Related Links
“Setting Record Field Use Properties” (Application Designer Developer’s Guide)
Field Change Processing
Search Processing in Update Modes

Pop-Up Menu Display
To display a pop-up menu, a user can click the pop-up button, either next to a field or at the bottom of a
page (if the page has a pop-up menu associated with it.) The user can open a standard pop-up menu on a
page field if no pop-up menu has been defined by an application developer for that page field.

The PrePopup PeopleCode event initiates only if the user opens a pop-up menu defined by an application
developer on a page field. It does not initiate for a pop-up menu attached to the page background.

The PrePopup PeopleCode event enables you to disable, check, or hide menu items in the pop-up menu.

PrePopup PeopleCode menu item operations (such as HideMenuItem, EnableMenuItem, and so on) work
with pop-up menus attached to a grid, not a field in a grid, only if the PrePopup PeopleCode meant to

124 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

operate on that pop-up menu resides in the record field that is attached to the first column in the grid. It
does not matter if the first field is visible or hidden.

The following flowchart shows the logic of PrePopup event processing, which enables the user to disable,
check, or hide menu items in the pop-up menu.

Selected Item Processing
Selected item processing occurs when a user selects a menu item from a pop-up menu. This initiates the
ItemSelected PeopleCode event, which is a menu PeopleCode event.

The following flowchart shows the logic of selected item processing, this occurs when a user selects a
menu item from a pop-up menu.

Save Processing
A user can direct the system to save a component by clicking Save or by pressing Alt+1.

An application can prompt the user to save a component when the Next or List button is clicked, or when
a new action or component is selected. If the user clicks Save after being prompted, save processing
begins.

The following actions occur in save processing:

1. The Component Processor initiates the SaveEdit PeopleCode event, which triggers any SaveEdit
PeopleCode associated with a record field or a component record.

Copyright © 1988, 2024, Oracle and/or its affiliates. 125

PeopleCode and the Component Processor Chapter 6

This enables you to cross-validate page fields before saving, checking consistency among the page
field values. An Error statement in SaveEdit PeopleCode displays a message and then redisplays the
page, stopping the save. A Warning statement enables the user to cancel save processing by clicking
Cancel, or to continue with save processing by clicking OK.

2. The Component Processor initiates the SavePreChange event, which triggers any SavePreChange
PeopleCode associated with a record field, a component record, or a component.

SavePreChange PeopleCode enables you to process data after validation and before the database is
updated.

3. The Component Processor initiates the Workflow event, which triggers any Workflow PeopleCode
associated with a record field or a component.

Workflow PeopleCode should be used only for workflow-related processing (TriggerBusinessEvent
and related functions).

4. The Component Processor updates the database with the changed component data, performing any
necessary SQL Insert, Update, and Delete statements.

5. The Component Processor initiates the SavePostChange PeopleCode event, which triggers any
SavePostChange PeopleCode associated with a record field, a component record, or a component.

You can use SavePostChange PeopleCode for processing that must occur after the database update,
such as updates to other database tables not in the component buffer.

6. The Component Processor issues a SQL Commit statement to the database server.

7. The Component Processor redisplays the component.

Important! Never use an Error or Warning statement in any save processing event other than SaveEdit.
Perform all component data validation in SaveEdit.

126 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

The following flow chart shows the logic of save processing sequence.

PeopleSoft Pure Internet Architecture Processing Considerations

Keep the following points in mind concerning the PeopleSoft Pure Internet Architecture:

• If a user changes a field that field has nothing to cause a trip to the server, then default processing and
FieldFormula PeopleCode do not run.

These processes only run when another event causes a trip to the server.

Other fields that depend on the first field using FieldFormula or default PeopleCode are not updated
until the next time a server trip occurs.

Copyright © 1988, 2024, Oracle and/or its affiliates. 127

PeopleCode and the Component Processor Chapter 6

• In applications that run on the PeopleSoft portal, external, dynamic link information must be placed in
RowInit PeopleCode.

If it is placed in FieldChange PeopleCode, it will not work.

Deferred Processing Mode

When a component runs in deferred processing mode, trips to the server are reduced. When deploying
some pages in the browser, you may want the user to be able to input data with minimal interruption or
trips to the server. Each trip to the server can slow down your application. By specifying a component as
deferred processing mode, you can achieve better performance.

PeopleSoft applications use AJAX (Asynchronous JavaScript and XML) technology to limit server trips
and perform partial page refreshes. AJAX uses asynchronous data transfer (HTTP requests) between the
browser and the web server, allowing web pages to request small bits of information, rather than whole
pages, from the server. AJAX technology makes Internet applications smaller, faster, and more user-
friendly.

With a partial page refresh, the browser refreshes the entire page only when the user navigates to a new
page. Any server trips triggered by PeopleCode functions, such as FieldChange and FieldEdit, or for
related display fields do not redraw the entire page; the refresh updates only the changed fields. Because
of AJAX technology, much of the communication with the server happens in the background. Users
continue to work uninterrupted during this background processing.

AJAX and partial page refreshes allow you to more freely design interactive applications and deploy
interactive fields. Nevertheless, the default configuration for components, pages, and fields remains
deferred mode. Oracle still recommends that you leverage deferred processing mode to limit network
traffic. Note that:

• Deferred processing set at the component level can be overridden at either the page field or page level.

• Conversely, interactive processing set at the component level cannot be overridden at either the page
field or page level.

• Similarly, interactive processing set at the page level cannot be overridden at the page field level.

The characteristics of deferred processing mode are:

1. Field modification processing is deferred.

No field modification processing is done in the browser. FieldEdit and FieldChange PeopleCode, as
well as other edits, such as required field checks, formats, and so on, do not run until a specific user
action occurs. Several actions cause field modification processing to execute, for example, clicking
a button or link, navigating to another page in the component, and saving the page. The following
actions do not cause field processing:

• Clicking an external link.

• Clicking a list (performing a search).

• Clicking a process button.

128 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Deferred processing mode affects the appearance of pages in significant ways. For example,
related processing is not done when the user presses Tab to move out of a field. Avoid related
fields for components that use this mode.

2. Drop-down list box values are static while the page appears in the browser.

Drop-down list box values are generated on the application server when generating the HTML for the
page.

If translate values are used to populate the drop-down list box, and the current record contains an
effective date, that date is static while the page is displayed. This means the drop-down list box values
may become out of date.

If prompt table values are used to populate the drop-down list box, the high-order key field values for
the prompt table are static while the page is displayed. This means the drop-down list box values may
become out of date.

Avoid interdependencies in drop-down lists used on pages executed in deferred mode, because the
lists may quickly become out of date.

3. No field modification processing is done during prompt button processing.

When the user clicks a prompt button, a trip is made to the application server (if values were not
already downloaded) to select the search results from the database and to generate the HTML for the
prompt dialog box. During this trip to the application server, field modification processing for the
field being prompted is not performed, because this may cause an error message for another field
on the page, and this error may confuse the user. When deferred changes are made to other fields,
field modification processing for these fields is done before prompting. The field modification for
the prompted field is done after returning from the prompt page. While the system displays the page,
the high-order key field values for the prompt table should be static or not require field modification
processing. Display-only drop-down list box, radio button, and check box fields do not require field
modification processing. Field values that do not require field modification processing are temporarily
written to the component buffer, without any field modification processing being performed on them,
including FieldEdit and FieldChange PeopleCode. The system restores the original state of the page
processor before returning to the browser.

4. Field modification processing executes in field layout order.

The entire field modification processing sequence executes in field layout order for each field. If a
field passes the system edits and FieldEdit PeopleCode, the field value is written to the component
buffer. If an error occurs, field modification processing stops, and the system generates new HTML
for the page, with the field in error highlighted and sent to the browser.

5. PeopleCode dependencies between fields on the page do not work as expected.

Avoid PeopleCode dependencies between fields on pages displayed in deferred processing mode.
Also, avoid FieldChange PeopleCode that changes the display.

The following are examples of PeopleCode dependencies between fields on the page and the
application server's action. In the following examples, field A comes before field B, which comes
before field C.

• Field A has FieldChange PeopleCode that hides field B or it makes unavailable for entry.

Copyright © 1988, 2024, Oracle and/or its affiliates. 129

PeopleCode and the Component Processor Chapter 6

The value in field B of the page that was submitted from the browser is discarded.

• Field B has FieldChange PeopleCode that hides field A or makes it unavailable for entry.

The change made by the user for field A, if any, remains in the component buffer.

• Field A has FieldChange PeopleCode that changes the value in the component buffer for field B.

If the value in field B of the page that was submitted from the browser passes the system edits and
FieldEdit PeopleCode, it is written to the component buffer, overriding the change made by field
A’s FieldChange PeopleCode.

• Field B has FieldChange PeopleCode that changes the value in the component buffer for field A.

The change made by field B’s FieldChange PeopleCode overrides the change made by the user to
field A, if any.

• Field A has FieldChange PeopleCode that unhides field B or makes it available for entry.

Field B has the value that was already in the component buffer. If the user requests a different
page or finishes, the user may not have the opportunity to enter a value into field B, and therefore
the value may not be correct.

• Field B has FieldChange PeopleCode that changes the value in the component buffer for field A,
but field C has FieldChange PeopleCode that hides field B or makes it unavailable for entry.

The change made by field B’s FieldChange PeopleCode, a field that is now hidden or unavailable
for entry, overrides the change made by the user to field A, if any.

Avoid such dependencies by moving FieldChange PeopleCode logic from individual fields to save
processing for the component or FieldChange PeopleCode on a PeopleCode command button.

6. Not all buttons cause field modification processing to execute.

External links, list (search), and process buttons do not cause field modification processing to execute.

7. You can use a PeopleCode command button to cause field modification processing to execute.

An application can include a button for the sole purpose of causing field modification processing to
execute. The result is a new page showing any display changes that resulted from field modification
processing.

In addition, if the user clicks the Refresh button, or presses Alt + 0, deferred processing is executed.

Note: The Refresh button does not refresh the page from the database. It simply causes a server
trip so any deferred PeopleCode changes get processed. If the page has no deferred changes or the
deferred changes do not cause any errors or other changes on the page, it may appear to the user as if
nothing happened.

8. A scroll button (link) causes field modification processing to execute.

130 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Note: Even for a field in interactive mode, a field change does not automatically result in a trip back
through the component build stream. In PeopleSoft systems, whether in interactive or deferred mode, if
a user changes a field but there is nothing to cause a trip to the server on that field, default processing
and FieldFormula PeopleCode do not run. They run only when another action or event causes a trip to
the server. In other words, if a field is changed but there is no FieldEdit or FieldChange PeopleCode on
the field, then record defaults, FieldDefault PeopleCode, and FieldFormula PeopleCode do not run until
another action causes a trip to the server.

Related Links
“Understanding Pages” (Applications User’s Guide)
“Improving Online Performance” (Application Designer Developer’s Guide)

PeopleCode Events

This section discusses:

• Activate event.

• FieldChange event.

• FieldDefault event.

• FieldEdit event.

• FieldFormula event.

• ItemSelected event.

• PostBuild event.

• PreBuild event.

• PrePopup event.

• RowDelete event.

• RowInit event.

• RowInsert event.

• RowSelect event.

• SaveEdit event.

• SavePostChange event.

• SavePreChange event.

• SearchInit event.

• SearchSave event.

Copyright © 1988, 2024, Oracle and/or its affiliates. 131

PeopleCode and the Component Processor Chapter 6

• Workflow event.

Note: The term PeopleCode type is still frequently used, but it does not fit into the PeopleTools object-
based, event-driven metaphor. The term PeopleCode event should now be used instead. However, it’s
often convenient to qualify a class of PeopleCode programs triggered by a specific event with the event
name; for example, PeopleCode programs associated with the RowInit events are collectively referred to
as RowInit PeopleCode.

Activate Event
The Activate event is initiated each time that a page is activated, including when a page is first displayed
by a user, or if a user presses Tab between different pages in a component. Each page has its own
Activate event.

Activate PeopleCode associated with a popup page executes after the page activate event for the main
page. When fields on the main page change and trigger updates on the popup page the page activate event
for the popup page is executed.

The Activate event segregates PeopleCode that is related to a specific page from the rest of the
application’s PeopleCode. Place PeopleCode related to page display or page processing, such as enabling
a field or hiding a scroll area, in this event. Also, you can use this event for security validation: if a user
does not have clearance to view a page in a component, you would put the code for hiding the page in this
event.

Note: PeopleSoft builds a page grid one row at a time. Because the Grid class applies to a complete grid,
you cannot attach PeopleCode that uses the Grid class to events that occur before the grid is built; the
earliest event you can use is the Activate event. The Activate event is not associated with a specific row
and record at the point of execution. This means you cannot use functions such as GetRecord, GetRow,
and so on, which rely on context, without specifying more context.

Activate PeopleCode can only be associated with pages.

This event is valid only for pages that are defined as standard or secondary. This event is not supported
for subpages.

Note: If your application uses the MessageBox built-in function in the Activate event with a message
from the message catalog that's defined as type Error, Warning or Cancel, all component processing stops
with an error message to that effect. If the message has a type of Message, processing does not stop.

Related Links
Component Build Processing in Update Modes
Component Build Processing in Add Modes

FieldChange Event
Use FieldChange PeopleCode to recalculate page field values, change the appearance of page controls,
or perform other processing that results from a field change other than data validation. To validate the
contents of the field, use the FieldEdit event. See FieldEdit Event.

132 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

FieldChange PeopleCode can be associated with record fields and component record fields. The
FieldChange event applies to the field and row that just changed. For a definition of what constitutes a
field change, see Field Change Processing.

FieldChange PeopleCode is often paired with RowInit PeopleCode. In these RowInit/FieldChange pairs,
the RowInit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution
and resets the state or value of page controls.

To take a simple example, suppose you have a derived/work field called PRODUCT, the value of which
is always the product of page field A and page field B. When the component is initialized, you would
use RowInit PeopleCode to initialize PRODUCT equal to A × B when the component starts up or when
a new row is inserted. You could then attach FieldChange PeopleCode programs to both A and B which
also set PRODUCT equal to A × B. Whenever a user changes the value of either A or B, PRODUCT is
recalculated.

FieldDefault Event
The FieldDefault PeopleCode event enables you to programmatically set fields to default values when
they are initially displayed. This event is initiated on all page fields as part of many different processes;
however, it triggers PeopleCode programs only when the following conditions are all True:

• The page field is still blank after applying any default value specified in the record field properties.

This is True if there is no default specified, if a null value is specified, or if a 0 is specified for a
numeric field.

• The field has a FieldDefault PeopleCode program.

In practice, FieldDefault PeopleCode normally sets fields by default when new data is being added to the
component; that is, in Add mode and when a new row is inserted into a scroll area.

If a field value is changed, whether through PeopleCode or by a user, the IsChanged property for the row
is set to True. The exception to this is when a change is done in the FieldDefault or FieldFormula events.
If a value is set in FieldDefault or FieldFormula, the row is not marked as changed.

At save time, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

You must attach FieldDefault PeopleCode to the field where the default value is being populated.

Note: An error or warning issued from FieldDefault PeopleCode causes a runtime error.

FieldDefault PeopleCode can be associated with record fields and component record fields.

Related Links
Default Processing

Copyright © 1988, 2024, Oracle and/or its affiliates. 133

PeopleCode and the Component Processor Chapter 6

FieldEdit Event
Use FieldEdit PeopleCode to validate the contents of a field, supplementing standard system edits. If
the data does not pass the validation, the PeopleCode program should display a message using the Error
statement, which redisplays the page, displaying an error message and turning the field red.

To permit the field edit but alert the user to a possible problem, use a Warning statement instead of an
Error statement. A Warning statement displays a warning dialog box with OK and Explain buttons. It
permits field contents to be changed and continues processing as usual after the user clicks OK.

If the validation must check for consistency across page fields, then use SaveEdit PeopleCode instead of
FieldEdit.

FieldEdit PeopleCode can be associated with record fields and component record fields. The FieldEdit
event applies to the field and row that just changed. For a definition of what constitutes a field change, see
Field Change Processing.

FieldFormula Event
The FieldFormula event is not currently used. Because FieldFormula PeopleCode initiates in many
different contexts and triggers PeopleCode on every field on every row in the component buffer, it
can seriously degrade application performance. Use RowInit and FieldChange events rather than
FieldFormula.

If a field value is changed, whether through PeopleCode or by a user, the IsChanged property for the row
is usually set to True. However, if a value is set in FieldDefault or FieldFormula, the row is not marked as
changed.

At save time, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

Note: In PeopleSoft Pure Internet Architecture, if a user changes a field but that field has nothing to cause
a trip to the server, then default processing and FieldFormula PeopleCode do not run. They only run when
another event causes a trip to the server.

As a matter of convention, FieldFormula is now often used in FUNCLIB_ (function library) record
definitions to store shared functions. However, you can store shared functions in any PeopleCode event.

FieldFormula PeopleCode is only associated with record fields.

ItemSelected Event
The ItemSelected event is initiated whenever a user selects a menu item from a pop-up menu. In pop-up
menus, ItemSelected PeopleCode executes in the context of the page field from where the pop-up menu
is attached, which means that you can freely reference and change page fields, just as you could from a
button.

Note: This event, and all its associated PeopleCode, does not initiate if run from a component interface.

ItemSelected PeopleCode is only associated with pop-up menu items.

134 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Related Links
Selected Item Processing

PostBuild Event
The PostBuild event is initiated after all the other component build events have been initiated. This event
is often used to hide or unhide pages. It is also used to set component variables.

PostBuild PeopleCode is only associated with components.

PreBuild Event
The PreBuild event is initiated before the rest of the component build events. This event is often used to
hide or unhide pages. It is also used to set component variables.

Note: If a PreBuild PeopleCode program issues an error or warning, the user is returned to the search
page. If the search record has no keys, a blank component page appears.

Also use the PreBuild event to validate data entered in a search page after a prompt list is displayed. For
example, after a user selects key values on a search, the PreBuild PeopleCode program runs, catches the
error condition, and issues an error message. The user receives and acknowledges the error message.
The component is canceled (because of the error), and the user is returned to the search page. PreBuild
PeopleCode is only associated with components.

PrePopup Event
The PrePopup event is initiated just before the display of a pop-up menu.

You can use PrePopup PeopleCode to control the appearance of the pop-up menu.

Note: This event, and all its associated PeopleCode, does not initiate if run from a component interface.

PrePopup PeopleCode can be associated with record fields and component record fields.

Related Links
Pop-Up Menu Display

RowDelete Event
The RowDelete event is initiated whenever a user attempts to delete a row of data from a page scroll area.
Use RowDelete PeopleCode to prevent the deletion of a row (using an Error or Warning statement) or
to perform any other processing contingent on row deletion. For example, you could have a page field
called Total on scroll area level zero whose value is the sum of all the Extension page fields on scroll
area level one. If the user deleted a row on scroll area level one, you could use RowDelete PeopleCode to
recalculate the value of the Total field.

The RowDelete event triggers PeopleCode on any field on the row of data that is being flagged as deleted.

Note: RowDelete does not trigger programs on derived/work records.

Copyright © 1988, 2024, Oracle and/or its affiliates. 135

PeopleCode and the Component Processor Chapter 6

RowDelete PeopleCode can be associated with record fields and component records.

Deleting All Rows from a Scroll Area

When the last row of a scroll area is deleted, a new, dummy row is automatically added. As part of the
RowInsert event, RowInit PeopleCode is run on this dummy row. If a field is changed by RowInit (even
if it’s left blank), the row is no longer new, and therefore is not reused by any of the ScrollSelect functions
or the Select method. In this case, you may want to move your initialization code from the RowInit event
to FieldDefault.

Related Links
Row Delete Processing
Using Errors and Warnings in RowDelete Events

RowInit Event
The RowInit event is initiated the first time that the Component Processor encounters a row of data.
Use it to set the initial state of component controls during component build processing and row insert
processing. The RowInit event also occurs after a Select or SelectAll Rowset method, or a ScrollSelect or
related function, is executed.

Note: Generally, if none of the fields in the new row are changed after the row is inserted (either by a
user pressing Alt+7 or programmatically) when the page is saved, the new row is not inserted into the
database. However, if the ChangeOnInit rowset class property is set to False, you can set values for fields
in a new row in RowInsert or RowInit PeopleCode, and the row will not be saved.

RowInit is not field-specific. It triggers PeopleCode on all fields and on all rows in the component buffer.

Do not use Error or Warning statements in RowInit PeopleCode. They cause a runtime error.

RowInit PeopleCode is often paired with FieldChange PeopleCode. In these RowInit/FieldChange pairs,
the RowInit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution
and resets the state or value of page controls.

For a simple example, suppose you have a derived/work field called PRODUCT, the value of which is
always the product of page field A and page field B. When the component is initialized, use RowInit
PeopleCode to initialize PRODUCT equal to A × B when the component starts up or when a new row
is inserted. You could then attach FieldChange PeopleCode programs to both A and B, which also
sets PRODUCT equal to A × B. Whenever a user changes the value of either A or B, PRODUCT is
recalculated.

RowInit PeopleCode can be associated with record fields and component records.

RowInit Exceptions

In certain rare circumstances, the Component Processor does not run RowInit PeopleCode for some
record fields. The Component Processor runs RowInit PeopleCode when it loads the record from the
database. However, in some cases, the record can be initialized entirely from the keys for the component.
When this happens, RowInit PeopleCode is not run.

For RowInit to not run, the following must all be True:

136 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

• The record is at level zero.

• Every record field that is present in the data buffers is also present in the keys for the component.

The Component Processor determines if the field is required by the component. In practice, this
usually means that the field is associated with a page field, possibly hidden, for some page of the
component. It could also mean that the field is referenced by some PeopleCode program that is
attached to an event on some other field of the component.

• Every record field that is present in the data buffers is display-only.

RowInit not running is not considered to be an error. The purpose of RowInit PeopleCode is to complete
initialization of data on the row after it has been read from the database. Because the data in this special
circumstance is coming from the keylist, it was already initialized correctly by whatever processing
produced the keylist. More general initialization of the component should be done in PostBuild
PeopleCode, not RowInit.

Related Links
Component Build Processing in Add Modes
“ChangeOnInit” (PeopleCode API Reference)

RowInsert Event
When a user adds a row of data, the Component Processor generates a RowInsert event. You should use
RowInsert PeopleCode for processing specific to the insertion of new rows. Do not put PeopleCode in
RowInsert that already exists in RowInit, because a RowInit event always initiates after the RowInsert
event, which will cause your code to be run twice.

Note: Generally, if none of the fields in the new row are changed after the row has been inserted (either
by a user pressing Alt+7 or programmatically), when the page is saved, the new row is not inserted into
the database. However, if the ChangeOnInit rowset class property is set to False, you can set values for
fields in a new row in RowInsert or RowInit PeopleCode, and the row won't be saved.

The RowInsert event triggers PeopleCode on any field on the inserted row of data.

Do not use a warning or error in RowInsert.

You can prevent a user from inserting rows into a scroll area by selecting the No Row Insert check box
in the page field properties, as shown in the following illustration. However, you cannot prevent row
insertion conditionally.

Copyright © 1988, 2024, Oracle and/or its affiliates. 137

PeopleCode and the Component Processor Chapter 6

This example illustrates the fields and controls on the Setting row insert properties in page field properties
for a scroll bar. You can find definitions for the fields and controls later on this page.

Note: RowInsert does not trigger PeopleCode on derived/work fields.

RowInsert PeopleCode can be associated with record fields and component records.

Related Links
Row Insert Processing
“ChangeOnInit” (PeopleCode API Reference)

RowSelect Event
The RowSelect event is initiated at the beginning of the component build process in any of the update
action modes (Update, Update/Display All, Correction). RowSelect PeopleCode is used to filter out rows
of data as they are being read into the component buffer. This event also occurs after a ScrollSelect or
related function is executed.

A DiscardRow function in RowSelect PeopleCode causes the Component Processor to skip the current
row of data and continue to process other rows. A StopFetching statement causes the Component

138 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Processor to accept the current row of data, and then stop reading additional rows. If both statements are
executed, the program skips the current row of data, and then stops reading additional rows.

PeopleSoft applications rarely use RowSelect, because it's inefficient to filter out rows of data after
they've already been selected. Instead, screen out rows of data using search record views and effective-
dated tables, which filter out the rows before they're selected. You could also use a ScrollSelect or related
function to programmatically select rows of data into the component buffer.

In previous versions of PeopleTools, the Warning and Error statements were used instead of DiscardRow
and StopFetching. Warning and Error statements still work as before in RowSelect, but their use is
discouraged.

Note: In RowSelect PeopleCode, you can refer to record fields only on the record that is currently being
processed. This event, and all its associated PeopleCode, does not initiate if run from a component
interface.

RowSelect PeopleCode can be associated with record fields and component records.

Related Links
Row Select Processing

SaveEdit Event
The SaveEdit event is initiated whenever a user attempts to save the component. You can use SaveEdit
PeopleCode to validate the consistency of data in component fields. Whenever a validation involves more
than one component field, you should use SaveEdit PeopleCode. If a validation involves only one page
field, use FieldEdit PeopleCode.

SaveEdit is not field-specific. It triggers associated PeopleCode on every row of data in the component
buffers except rows flagged as deleted.

An Error statement in SaveEdit PeopleCode displays a message and redisplays the component without
saving data. A Warning statement enables the user to click OK and save the data, or to click Cancel and
return to the component without saving.

Use the SetCursorPos function to set the cursor position to a specific page field following a warning or
error in SaveEdit, to show the user the field (or at least one of the fields) that is causing the problem.
Make sure to call SetCursorPos before the error or warning, because these may terminate the PeopleCode
program.

SaveEdit PeopleCode can be associated with record fields and components.

Related Links
Save Processing
“SetCursorPos” (PeopleCode Language Reference)

SavePostChange Event
After the Component Processor updates the database, it initiates the SavePostChange event. You can
use SavePostChange PeopleCode to update tables not in your component using the SQLExec built-in
function.

Copyright © 1988, 2024, Oracle and/or its affiliates. 139

PeopleCode and the Component Processor Chapter 6

An error or warning in SavePostChange PeopleCode causes a runtime error. Avoid errors and warnings in
this event.

The system issues a SQL Commit statement after SavePostChange PeopleCode completes successfully.

If you are executing Workflow PeopleCode, keep in mind that if the Workflow PeopleCode fails,
SavePostChange PeopleCode is not executed. If your component has both Workflow and SavePostChange
PeopleCode, consider moving the SavePostChange PeopleCode to SavePreChange or Workflow.

If you are doing messaging, your Publish PeopleCode should go into this event.

SavePostChange does not execute if there is an error during the save. For example, if there is a data
conflict error because another user updated the same data at the same time, SavePostChange does not
execute.

Important! Never issue a SQL Commit or Rollback statement manually from within a SQLExec
function. Let the Component Processor issue these SQL commands.

SavePostChange PeopleCode can be associated with record fields, components, and component records.

Related Links
Save Processing
“SQLExec” (PeopleCode Language Reference)

SavePreChange Event
The SavePreChange event is initiated after SaveEdit completes without errors. SavePreChange
PeopleCode provides one final opportunity to manipulate data before the system updates the database; for
instance, you could use SavePreChange PeopleCode to set sequential high-level keys. If SavePreChange
runs successfully, a Workflow event is generated, and then the Component Processor issues appropriate
Insert, Update, or Delete SQL statements.

SavePreChange PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of
data in the component buffer.

SavePreChange PeopleCode can be associated with record fields, components, and component records.

Related Links
Save Processing

SearchInit Event
The SearchInit event is generated just before a search, add, or data-entry dialog box is displayed.
SearchInit triggers associated PeopleCode in the search key fields of the search record. This enables you
to control processing before a user enters values for search keys in the dialog box. In some cases, you may
want to set the value of the search dialog fields programmatically. For example, the following program in
SearchInit PeopleCode on the component search key record field EMPLID sets the search key page field
to the user’s employee ID, makes the page field unavailable for entry, and enables the user to modify the
user’s own data in the component:

EMPLID = %EmployeeId;

140 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Gray (EMPLID);
AllowEmplIdChg(True);

You can activate system defaults and system edits in the search page by calling SetSeachDefault and
SetSearchEdit in SearchInit PeopleCode. You can also control the behavior of the search page, either
forcing it to appear even if all the required keys have been provided, or by skipping it if possible, with the
SetSeachDialogBehavior function. You can also force search processing to always occur by selecting the
Force Search Processing check box in the component properties in PeopleSoft Application Designer.

Note: This event, and all its associated PeopleCode, does not initiate if run from a component interface.

SearchInit PeopleCode can be associated with record fields on search records and prompt table records
and on component search records and component prompt table records.

SearchInit with Prompt Dialogs

Beginning with PeopleTools 8.50, you can put PeopleCode on the SearchInit and SearchSave events on
the search keys of prompt table records. SearchInit and SearchSave events will only execute if the Allow
Search Events for Prompt Dialogs check box was selected for the search key’s record field properties in
Application Designer. By default Allow Search Events for Prompt Dialogs is off.

Note: Search processing with prompt dialogs can affect performance. Oracle recommends that you limit
the use of PeopleCode with prompt dialogs.

SearchInit PeopleCode Function Restrictions

You cannot use the following functions in SearchInit PeopleCode:

• DoModal, DoModalComponent, DoModalX, and DoModalXComponent

• Transfer, TransferExact, TransferNode, TransferPage, and TransferPortal

Related Links
Prompts
“SetSearchDefault” (PeopleCode Language Reference)
Search Processing in Update Modes
Search Processing in Add Modes

SearchSave Event
SearchSave PeopleCode is executed for all search key fields on a search, add, or data-entry dialog box
after a user clicks Search. This enables you to control processing after search key values are entered, but
before the search based on these keys is executed. A typical use of this feature is to provide cross-field
edits for selecting a minimum set of key information. This event is also used to force a user to enter a
value in at least one field, even if it’s a partial value, to help narrow a search for tables with many rows.

Note: SearchSave is not initiated when values are selected from the search list. To validate data entered in
the search page, use the Component PreBuild event.

You can use Error and Warning statements in SearchSave PeopleCode to send the user back to the search
page if the user entry does not pass validations implemented in the PeopleCode.

Copyright © 1988, 2024, Oracle and/or its affiliates. 141

PeopleCode and the Component Processor Chapter 6

Note: This event, and all its associated PeopleCode, is not initiated if run from a component interface.

SearchSave PeopleCode can be associated with record fields and component search records.

Note: Do not use the %Menu system variable in this event. You may get unexpected results.

SearchSave with Prompt Dialogs

Beginning with PeopleTools 8.50, you can put PeopleCode on the SearchInit and SearchSave events on
the search keys of prompt table records. SearchInit and SearchSave events will only execute if the Allow
Search Events for Prompt Dialogs check box is selected for the search key’s record field properties in
Application Designer. By default Allow Search Events for Prompt Dialogs is off.

Note: Search processing with prompt dialogs can affect performance. Oracle recommends that you limit
the use of PeopleCode with prompt dialogs.

Related Links
Prompts
Search Processing in Update Modes
Search Processing in Add Modes

Workflow Event
Workflow PeopleCode executes immediately after the SavePreChange event and before the database
update that precedes the SavePostChange event. The Workflow event segregates PeopleCode related to
workflow from the rest of the application’s PeopleCode. Only PeopleCode related to workflow (such as
TriggerBusinessEvent) should be in workflow programs. Your program should deal with the Workflow
event only after any SavePreChange processing is complete.

Workflow PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of data in
the component buffer.

WorkFlow PeopleCode can be associated with record fields and components.

Related Links
Save Processing
“Writing Workflow PeopleCode” (Workflow Technology)

PeopleCode Execution in Pages with Multiple Scroll Areas

Components with multiple levels can have multiple rows of data from multiple primary record definitions.
You must know the order in which the system processes buffers for this data, because it applies
PeopleCode in the same order.

The Component Processor uses a depth-first algorithm to process rows in multiple-scroll-area pages,
starting with a row at level zero, drilling down to dependent rows on lower levels, and then working up
the hierarchy until the system has processed all the dependent rows of the last row on the highest level.

142 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 6 PeopleCode and the Component Processor

Scroll Level One

When pages have only one scroll bar, the Component Processor processes record definitions at scroll level
zero, and then all rows of data at scroll level one.

Data is retrieved for all rows with a single Select statement, and then it is merged with buffer structures.

Scroll Level Two

With scroll bars at multiple scroll levels, the system processes a single row of data at scroll level one, and
then it processes all subordinate rows of data at scroll level two. After processing all subordinate data at
scroll level two, it processes the next row for scroll level one, and all the subordinate data for that row.
The system continues in this fashion until all data is processed.

Scroll Level Three

The Component Processor uses the same method for processing subordinate data at scroll level three.
Data is retrieved for all rows with a single Select statement, and then merged with buffer structures. The
Component Processor processes a single row of data at scroll level two, and it processes all subordinate
data at scroll level three. After processing all subordinate data at scroll level three, it processes the next
row for scroll level two and all the subordinates data for that row. The system continues in this fashion
until all data is processed..

Related Links
Understanding Component Buffer Structure and Contents

Copyright © 1988, 2024, Oracle and/or its affiliates. 143

PeopleCode and the Component Processor Chapter 6

144 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 7

PeopleCode and PeopleSoft Pure Internet
Architecture

Considerations Using PeopleCode in PeopleSoft Pure Internet
Architecture

Consider the following points when writing PeopleCode programs for PeopleSoft Pure Internet
Architecture:

• To help your application run efficiently, avoid using field-level PeopleCode events (FieldEdit and
FieldChange).

Each field-level PeopleCode program requires a trip to the application server.

The majority of PeopleCode programs run on the application server as part of the component build
and save process. Do not hesitate to use PeopleCode for building and saving components.

• If a user changes a field but nothing on that field will cause a trip to the server, then default processing
and FieldFormula PeopleCode do not run.

This processing occurs only when another event causes a trip to the server.

Other fields that depend on the first field using FieldFormula or default PeopleCode are not updated
until the next time a server trip occurs.

• In applications that run on the PeopleSoft portal, external dynamic link information must be placed in
RowInit PeopleCode.

If external dynamic link information is placed in FieldChange PeopleCode, it will not work.

• Trips to the server are reduced when a component runs in deferred processing mode.

Each trip to the server results in the page being completely refreshed on the browser, which may cause
the display to flicker. It can also slow down your application. Deferred processing mode results in
better performance.

Related Links
Deferred Processing Mode

Using PeopleCode with PeopleSoft Pure Internet Architecture

This section discusses how to:

Copyright © 1988, 2024, Oracle and/or its affiliates. 145

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

• Use internet scripts.

• Use the field object Style property.

• Use the HTML area.

• Use HTML definitions and the GetHTMLText function.

• Use HTML definitions and the GetJavaScriptURL method.

• Use PeopleCode to populate key fields in search dialog boxes

Using Internet Scripts
An internet script is a specialized PeopleCode function that generates dynamic web content. Internet
scripts interact with web clients (browsers) using a request-response paradigm based on HTTP.

Related Links
“Understanding Internet Script Classes” (PeopleCode API Reference)

Using the Field Object Style Property
In PeopleSoft Application Designer, on the Use tab of the page definition properties, you can associate a
page with a style sheet component.

The style sheet has several classes of styles defined for it. You can edit each style class to change the font,
the color, the background, and so on. Then, you can dynamically change the style of a field using the
Style field class property. The style sheet does not change, only the style class associated with that field
changes.

The following example changes the style class of a field depending on a value entered by the user. This
code is in the FieldChange event.

Local Field &field;

&field = GetField();

If TESTFIELD1 = 1 Then;
 &field.Style = "PSHYPERLINK";
End-If;

If TESTFIELD1 = 2 Then;
 &field.Style = "PSIMAGE";
End-If;

The following examples show the fields with different styles:

The below mentioned is an image of a field with PSIMAGE style.

146 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Related Links
“Understanding Style Sheets and Style Classes” (Application Designer Developer’s Guide)
“Understanding the Field Class” (PeopleCode API Reference)

Using the HTML Area
Two methods are used to populate an HTML area control. Both require accessing the HTML area in the
PeopleSoft Application Designer. One method is to select Constant on the HTML tab of the HTML page
field properties dialog and enter HTML directly into the page field dialog.

The other method is to select Value on the HTML tab of the HTML page field properties dialog and
associate the control with a record field. At runtime, populate that field with the text that you want to
appear in the HTML area.

If you are using an HTML area to add form controls to a page, you can use GetParameter request class
method in PeopleCode to get the user input from those controls.

Note: When you associate an HTML area control with a field, make sure the field is long enough to
contain the data you want to pass to it. For example, if you associate an HTML area control with a field
that is only 10 characters long, only the first 10 characters of your text will appear.

The following code populates an HTML area with a simple bulleted list. This code is in the RowInit event
of the record field associated with the HTML control.

Local Field &HTMLField;

&HTMLField = GetField();
&HTMLField.Value = "Item oneItem two";

The following code is in the FieldChange event of a button. It populates an HTML area (associated with
the record field CHART_DATA.HTMLAREA) with a simple list.

Local Field &HTMLField;

&HTMLField = GetRecord(Record.CHART_DATA).HTMLAREA;
&HTMLField.Value = "Item oneItem two";

The following code populates an HTML area (associated with the record DERIVED_HTML and the field
HTMLAREA) with the output of the GenerateTree function:

DERIVED_HTML.HTMLAREA = GenerateTree(&TREECTL);

The following tags are unsupported by the HTML area control:

• Body

• Frame

• Frameset

• Form

• Head

• HTML

• Meta

Copyright © 1988, 2024, Oracle and/or its affiliates. 147

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

• Title

Related Links
Using the GenerateTree Function
“Understanding HTML Definitions” (Application Designer Developer’s Guide)

Using HTML Definitions and the GetHTMLText Function
If you are using the same HTML text in more than one place or if it is a large, unwieldy string, you can
create an HTML definition in PeopleSoft Application Designer, and then use the GetHTMLText function
to populate an HTML area control.

The following is the HTML string to create a simple table:

<P>
<TABLE>

 <TR bgColor=#008000>
 <TD>
 <P><FONT color=#f5f5dc face="Arial, Helvetica, sans-serif"
 size=2>message 1 </P></TD></TR>
 <TR bgColor=#0000cd>
 <TD>
 <P><FONT color=#00ffff face="Arial, Helvetica, sans-serif"
 size=2>message 2</P></TD></TR>
</TABLE>
</P>

This HTML is saved to an HTML definition called TABLE_HTML.

This code is in the RowInit event of the record field associated with the HTML area control:

Local Field &HTMLField;

&HTMLField = GetField();
&string = GetHTMLText(HTML.TABLE_HTML);
&HTMLField.Value = &string;

This code produces the following:

This example illustrates the fields and controls on the HTML definition example. You can find definitions
for the fields and controls later on this page.

Related Links
“GetHTMLText” (PeopleCode Language Reference)

Using HTML Definitions and the GetJavaScriptURL Method
HTML definitions can contain JavaScript programs in addition to HTML. If you have an HTML
definition that contains JavaScript, use the GetJavaScriptURL Response method to access and execute the
script.

148 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

This example assumes the existence in the database of a HTML definition called HelloWorld_JS that
contains some JavaScript:

Function IScript_TestJavaScript()

 %Response.WriteLine("<script src= " |
%Response.GetJavaScriptURL(HTML.HelloWorld_JS) | "></script>");

End-Function;

Related Links
“GetJavaScriptURL” (PeopleCode API Reference)
“Understanding HTML Definitions” (Application Designer Developer’s Guide)

Using PeopleCode to Populate Key Fields in Search Dialog Boxes
In a PeopleSoft Pure Internet Architecture application, you typically want users to directly access their
own data. To facilitate this, you may want to use SearchInit PeopleCode to populate standard key fields in
search page fields and then make the fields unavailable for entry. You might assign the search key field a
default value based on the user ID or alias the user entered when signing in.

You must also call the AllowEmplIdChg function, which enables users to change their own data. This
function takes a single Boolean parameter in which you pass True to allow employees to change their own
data.

Here is a simple example of such a SearchInit program, using %EmployeeId to identify the user:

EMPLID = %EmployeeId;

Gray (EMPLID);

AllowEmplIdChg(True);

Calling DLL Functions on the Application Server

To support processes running on an application server, you can declare and call functions compiled in
Microsoft Windows DLLs and in UNIX shared libraries (or shared objects, depending on the specific
UNIX platform). You can do this either with a special PeopleCode declaration, or using the business
interlink framework.

When you call out to a DLL using PeopleCode, on Microsoft Windows NT application servers, the DLL
file has to be on the path. On UNIX application servers, the shared library file must be on the library path
(as defined for the specific UNIX platform).

The PeopleCode declaration and function call syntax remains unchanged. For example, the following
PeopleCode could be used to declare and call a function LogMsg in an external library Testdll.dll on a
Microsoft Windows client or a Windows application server, or a libtestdll.so on an UNIX application
server. The UNIX shared library’s extension varies by the specific UNIX platform.

Declare Function LogMsg Library "testdll" (string, string)
 Returns integer;

&res = LogMsg("\temp\test.log", "This is a test");

Copyright © 1988, 2024, Oracle and/or its affiliates. 149

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

Sample Cross-Platform External Test Function
The following section describes and includes the C source code for a sample cross-platform test function:
LogMsg. It is a basic function that opens a log file and appends a line to it. If you compile the code using
a C++ compiler, the functions must be declared using external C to ensure C-language linkage.

The sample program also contains an interface function (LogMsg_intf). Prior to PeopleTools 8.52, this
interface function was required for all non-Microsoft Windows environments. The interface function
references a provided header file, pcmext.h. The interface function is passed type codes that can be
optionally used for parameter checking.

Starting with PeopleTools 8.52, the interface function is required for the following environments only:

• HP-UX Itanium

• Solaris x86_64

• z/Linux

For all the other PeopleTools-supported UNIX platforms, the functions from the UNIX shared libraries
can be used directly. To maintain backward compatibility, the interface functions are also supported on
these UNIX platforms.

In the following sample test program, the interface function is compiled only when compiling for the
specified non-Windows environments.

/*
 * Simple test function for calling from PeopleCode.
 * This is passed two strings, a file name and a message.
 * It creates the specified file and writes the message
 * to it.
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#ifdef _WINDOWS
#define DLLEXPORT __declspec(dllexport)
#define LINKAGE __stdcall
#else
#define DLLEXPORT
#define LINKAGE
#endif

DLLEXPORT int LINKAGE LogMsg(char * fname, char * msg);

/**
* PeopleCode External call test function. *
* *
* Parameters are two strings (filename and message) *
* Result is 0 if error, 1 if OK *
* *
* *
* To call this function, the following PeopleCode is *
* used *
* *
* Declare Function LogMsg Library "testdll" *
* (string, string) *
* Returns integer; *
* *
* &res = LogMsg("\temp\test.log", "This is a test"); *
* *
**/

150 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

DLLEXPORT int LINKAGE LogMsg(char * fname, char * msg)
{
 FILE *fp;

 fp = fopen(fname, "a"); /* append */
 if (fp == NULL) return 0;

 fprintf(fp, "%s\n", msg);
 fclose(fp);
 return 1;
}

#ifndef _WINDOWS

/**
* Interface function. *
* *
* This is not needed for Windows.... *
* *
**/

#include "pcmext.h"
#include "assert.h"

/* This interface function is required only for the following platforms:
 - HP-UX Itanium
 - Solaris x86_64
 - z/Linux
*/

void LogMsg_intf(int nParam, void ** ppParams, EXTPARAMDESC * pDesc)
{
 int rc;

 /* Some error checking */
 assert(nParam == 2);
 assert(pDesc[0].eExtType == EXTTYPE_STRING
 && pDesc[1].eExtType == EXTTYPE_STRING
 && pDesc[2].eExtType == EXTTYPE_INT);

 rc = LogMsg((char *)ppParams[0],
 (char *)ppParams[1]);
 *(int *)ppParams[2] = rc;

}

#endif

Updating the Installation and PSOPTIONS Tables

When an application updates either the PSOPTIONS or the Installation table it must call
UpdateSysVersion from the SavePreChange PeopleCode event. This way, updates take effect at the next
page load. Otherwise, the change does not take effect at the client workstation until the user signs out and
signs back in.

Important! Only a database administrator or the equivalent should change these tables.

Copyright © 1988, 2024, Oracle and/or its affiliates. 151

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

152 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8

Using Methods and Built-In Functions

Understanding Restrictions on Method and Function Use

This section discusses:

• Think-time functions.

• WinMessage and MessageBox functions.

• Program execution with fields not in the data buffer.

• Errors and warnings.

• DoSave function.

• Record class database methods.

• SQL class methods and functions.

• Component interface restricted functions.

• SearchInit PeopleCode function restrictions.

• CallAppEngine function.

• ReturnToServer function.

• GetPage function.

• GetGrid function.

• Publish method.

• SyncRequest method.

Think-Time Functions
Think-time functions suspend processing either until the user has taken some action (such as clicking
a button in a message box) or until an external process has run to completion (for example, a remote
process).

Avoid think-time functions in the following PeopleCode events:

• SavePreChange.

• Workflow.

• RowSelect.

Copyright © 1988, 2024, Oracle and/or its affiliates. 153

Using Methods and Built-In Functions Chapter 8

• SavePostChange.

• Any PeopleCode event that executes as a result of a ScrollSelect, ScrollSelectNew, RowScrollSelect,
or RowScrollSelectNew function call.

• Any PeopleCode event that executes as a result of a Rowset class Select or SelectNew method.

Violation of this rule can result in application failure.

The following are think-time functions:

• Calls to an external DLL.

• DoCancel.

• DoModal and DoModalComponent.

• Exec (this is think-time only when synchronous).

• File attachment functions AddAttachment, DetachAttachment, MAddAttachment, and
ViewAttachment.

• CropImage and InsertImage.

• Object functions, such as CreateObject, ObjectDoMethod, ObjectSetProperty, and ObjectGetProperty
(these are think-time only when the object requires user action).

• Prompt.

• RemoteCall.

• RevalidatePassword.

• WinExec (think-time only when synchronous).

• WinMessage and MessageBox (depending on the style parameter).

Important! On the initial loading of a component (initial page Activate event), it is recommended that
you allow the component to render correctly before you call any modality that requires user interaction
(think-time functions).
If you call any modality that requires user interaction during the initial page Activate event, except if
its a message box with only an OK button, the user interaction suspends the processing of the page
load leading to undesired rendering. For example, the message box (with more than one button) loses
its styling, and the rendering of the page and component is corrupted. If you use DoModalPopup or
DoModalComponentPopup, you should note that it will render as a full page.

WinMessage and MessageBox Functions
The WinMessage and MessageBox functions sometimes behave as think-time functions, depending on the
value passed in the function’s style parameter, which controls, among other things, the number of buttons
displayed in the message dialog box.

Note: The style parameter is ignored if the message has any severity other than Message.

154 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

Here is the syntax of both functions:

MessageBox(style, title, message_set, message_num, default_txt [, paramlist])

WinMessage(message [, style] [, title])

Note: The WinMessage function is supported for compatibility with previous releases of PeopleTools.
New applications should use MessageBox instead.

If the style parameter specifies more than one button, the function behaves as a think-time function and
is subject to the same restrictions as other think-time functions (that is, it should never be used from
SavePreChange through SavePostChange PeopleCode, or in RowSelect).

If the style parameter specifies a single button (that is, the OK button), then the function can be called in
any PeopleCode event.

Note: In the Microsoft Windows client, MessageBox dialog boxes include an Explain button to display
more detailed information stored in the message catalog. The presence of the Explain button has no
bearing on whether a message box behaves as a think-time function.

The style parameter is optional in WinMessage. If style is omitted, WinMessage displays OK and Cancel
buttons, which causes the function to behave as a think-time function. To avoid this situation, always pass
an appropriate value in the WinMessage style parameter.

The following table shows the values that can be passed in the style parameter. To calculate the value to
pass, make one selection from each category in the table, then add the selections.

Category Value Constant Meaning

Buttons 0 %MsgStyle_OK The message box contains one
button: OK.

Buttons 1 %MsgStyle_OKCancel The message box contains two
buttons: OK and Cancel.

Buttons 2 %MsgStyle_
AbortRetryIgnore

The message box contains
three buttons: Abort, Retry,
 and Ignore.

Buttons 3 %MsgStyle_YesNoCancel The message box contains
three buttons: Yes, No, and
Cancel.

Buttons 4 %MsgStyle_YesNo The message box contains two
buttons: Yes and No.

Buttons 5 %MsgStyle_RetryCancel The message box contains two
buttons: Retry and Cancel.

Note: The following values for style can only be used in the Microsoft Windows client. They have no
affect in PeopleSoft Pure Internet Architecture.

Copyright © 1988, 2024, Oracle and/or its affiliates. 155

Using Methods and Built-In Functions Chapter 8

Category Value Constant Meaning

Default Button 0 %MsgDefault_First The first button is the default.

Default Button 256 %MsgDefault_Second The second button is the
default.

Default Button 512 %MsgDefault_Third The third button is the default.

Icon 0 %MsgIcon_None None

Icon 16 %MsgIcon_Error A stop-sign icon appears in
the message box.

Icon 32 %MsgIcon_Query A question-mark icon appears
in the message box.

Icon 48 %MsgIcon_Warning An exclamation-point icon
appears in the message box.

Icon 64 %MsgIcon_Info An icon consisting of a
lowercase letter i in a circle
appears in the message box.

Related Links
“MessageBox” (PeopleCode Language Reference)
“WinMessage” (PeopleCode Language Reference)

Program Execution with Fields Not in the Data Buffer
Under certain conditions, when you access a field that is not in the data buffer, a portion of your
PeopleCode program is skipped. The skip occurs when:

• The reference is in the Import Manager.

• The reference is from the FieldDefault or FieldFormula events.

After the call to the invalid field, execution skips to the next top-level statement. Top-level statements are
not nested inside other statements. The start of a PeopleCode program is a top-level statement. Nesting
begins with the first conditional statement (such as While or If) or the first function call.

For example, if your code is executing in a function and inside an If … then … end-if statement, and it
runs into the skip conditions, the next statement executed is the one after the End-if statement, still inside
the function.

156 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

Errors and Warnings
Errors and warnings should not be used in FieldDefault, FieldFormula, RowInit, FieldChange, RowInsert,
SavePreChange, WorkFlow, and SavePostChange PeopleCode events. An error or warning in these events
causes a runtime error that forces cancellation of the component.

Related Links
“Warning” (PeopleCode Language Reference)
“Error” (PeopleCode Language Reference)

DoSave Function
DoSave can be used in the following PeopleCode events only: FieldEdit, FieldChange, or ItemSelected
(for menu items in popup menus only).

Related Links
“DoSave” (PeopleCode Language Reference)

Record Class Database Methods
You use the following record class methods to update the database:

• Delete

• Insert

• Save

• Update

Only use these methods in the following events (events that allow database updates):

• SavePreChange

• WorkFlow

• SavePostChange

• FieldChange

• Application Engine PeopleCode action

Related Links
“Understanding Record Class” (PeopleCode API Reference)

SQL Class Methods and Functions
Use the SQL class to update the database. Use these functions and methods only in the following events
(events that allow database updates):

• SavePreChange

Copyright © 1988, 2024, Oracle and/or its affiliates. 157

Using Methods and Built-In Functions Chapter 8

• WorkFlow

• SavePostChange

• FieldChange

• Application Engine PeopleCode action

Component Interface Restricted Functions
PeopleCode events and functions that relate exclusively to the page interface (the GUI) and online
processing can’t be used by Component Interfaces. These include:

• Menu PeopleCode and pop-up menus.

The ItemSelected and PrePopup PeopleCode events are not supported. In addition, the
DisableMenuItem, EnableMenuItem, and HideMenuItem functions aren’t supported.

• Transfers between components, including modal transfers.

The DoModal, EndModal, IsModal, Transfer, TransferPage, DoModalComponent, TransferNode,
TransferPortal, and IsModalComponent functions cannot be used.

• Cursor position.

SetControlValue cannot be used.

• WinMessage cannot be used.

• Save in the middle of a transaction.

DoSave cannot be used.

• The page Activate event cannot be used.

When executed using a component interface, these functions do nothing and return a default value. In
addition, using the Transfer function terminates the current PeopleCode program.

For the unsupported functions, you should put a condition around them, testing whether there’s an
existing Component Interface.

If %ComponentName Then
 /* process is being called from a Component Interface */
 /* do CI specific processing */
Else
 /* do regular processing */
 . . .
End-if;

Related Links
“Generating PeopleCode Templates to Access Component Interfaces” (Component Interfaces)

SearchInit PeopleCode Function Restrictions
You cannot use the following functions in SearchInit PeopleCode:

158 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

• DoModal, DoModalComponent, DoModalX, and DoModalXComponent

• Transfer, TransferExact, TransferNode, TransferPage, and TransferPortal

CallAppEngine Function
Use the CallAppEngine function only in events that allow database updates, because, generally, if you are
calling Application Engine, you intend to perform database updates. This category of events includes the
following PeopleCode events:

• SavePreChange (Page)

• SavePostChange (Page)

• Workflow

• FieldChange

CallAppEngine cannot be used in a Application Engine PeopleCode action. If you need to access one
Application Engine program from another Application Engine program, use the CallSection action.

Related Links
“Running Application Engine Programs” (Application Engine)

ReturnToServer Function
The ReturnToServer function returns a value from a PeopleCode application messaging program to the
publication or subscription server. You would use this in either your publication or subscription routing
code, not in one of the standard Component Processor events.

Related Links
“Understanding Managing Messages” (Integration Broker)

GetPage Function
The GetPage function cannot be used until after the Component Processor has loaded the page. You
should not use this function in an event prior to the PostBuild event.

Related Links
Component Processor Behavior
“GetPage” (PeopleCode Language Reference)

GetGrid and GetAnalyticGrid Functions
PeopleSoft builds a grid one row at a time. Because the grid and AnalyticGrid classes apply to a complete
grid, you cannot use either the GetGrid or GetAnalyticGrid functions in an event prior to the Activate
event.

Copyright © 1988, 2024, Oracle and/or its affiliates. 159

Using Methods and Built-In Functions Chapter 8

Related Links
Component Processor Behavior
“GetGrid” (PeopleCode Language Reference)
“Understanding the Analytic Calculation Engine Classes” (PeopleCode API Reference)

Publish Method
If you are using PeopleSoft Integration Broker, your sending PeopleCode should go in the
SavePostChange event, for either the record or the component.

Related Links
“Understanding Managing Messages” (Integration Broker)

SyncRequest Method
If you are using PeopleSoft Integration Broker, your SyncRequest PeopleCode should go in the
SavePostChange event, for either the record or the component.

Related Links
“Understanding Managing Messages” (Integration Broker)

Implementing Modal Transfers

This section provides an overview of modal transfers and discusses how to implement modal transfers.

Understanding Modal Transfers
When you use modal transfers to transfer from one component (the originating component) to another
component (the modal component), the user must click the OK or Cancel buttons on the modal
component before returning to the originating component.

Modal transfers provide some control over the order in which the user fills in pages, which is useful
where data in the originating component can be derived from data entered by the user into the modal
component.

Limit use of this feature, as it forces users to complete interaction with the modal page before returning to
the main component.

Note: Modal transfers cannot be initiated from SearchInit PeopleCode.

A modal component resembles a Microsoft Windows modal dialog box. It displays three buttons: OK,
Cancel, and Apply. No toolbars or windows are available while the modal component has the focus. The
OK button saves changes to the modal component and returns the user to the originating component. The
Apply button saves changes to the modal component without returning to the originating component.
The Cancel button returns the user to the originating component without saving changes to the modal
component.

160 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

Modal components are generally smaller than the page from which they are invoked. Remember that OK
and Cancel buttons are added at runtime, thus increasing the size of the pages.

The originating component and the modal component share record fields in a derived/work record called
a shared work record. The derived/work fields of this record provide the two components with an area in
memory where they can share data. Edit boxes in both components are associated with the same derived/
work field, so that changes made to this field in the originating component are reflected in the modal
component, and vice versa. The following diagram illustrates this shared memory:

The following diagram explains that the Edit boxes on the originating and modal components share the
same data.

Edit boxes associated with the same derived/work fields must be placed at level zero in both the
originating component and the modal component.

You can use the shared fields to:

• Pass values assigned to the search keys in the modal component search record.

If these fields are missing or invalid, the search page appears, enabling the user to enter search keys.

• Pass other values from the originating component to the modal component.

• Pass values back from the modal component to the originating component.

Modeless Windows

In addition to modal secondary windows, you can create modeless secondary windows. A modeless
window is different from a modal window launched by any of the DoModal* functions in that its state
is separate from that of the parent, launching component. When a modeless window is launched from a
classic component using the TransferModeless function, the modeless window does not mask the parent
window, which allows the user to update the modeless and parent window from the same browser session
at the same time.

However, when a modeless window is launched from a fluid component using either the
ViewContentURLModeless or ViewURLModeless functions, the parent window is masked and cannot
be accessed until the modeless window is dismissed. In this respect and from the user’s perspective,
a modeless window launched from a fluid component operates similar to a modal window; but
programmatically, its state is separate from that of the parent, launching component.

Copyright © 1988, 2024, Oracle and/or its affiliates. 161

Using Methods and Built-In Functions Chapter 8

Similar to modal, secondary windows opened by any of the DoModal* functions, the modeless window
does not include the browser title bar, browser menus, and the browser tool bars, status bar, and tool icons
associated with most browser windows.

Note: While the title bar of a modeless window includes an X (or cancel) button, it cannot include any
custom buttons.

Important! Only one active child modeless window can be open at one time. Therefore, after opening
a modeless child window from the parent, you cannot open a second modeless child window from that
modeless window. However, you can open a modal window from that modeless window.

Related Links
“TransferModeless” (PeopleCode Language Reference)
“ViewContentURLModeless” (PeopleCode Language Reference)
“ViewURLModeless” (PeopleCode Language Reference)

Implementing Modal Transfers
Any component accessible through an application menu system can be accessed using a modal transfer.
However, to implement a modal transfer, you must modify pages in both the originating component and
the modal component. After these modifications are complete, you can implement the modal transfer
using the DoModalComponent function from a page in the originating component.

Before beginning this process, you should answer the following questions:

• Should the originating component provide search key values for the modal component?

If so, what are the search keys? (Check the modal component's search record.)

• Does the originating component need to pass any data to the modal component?

If so, what record fields are needed to store this data?

• Does the modal component need to pass any data back to the originating component?

If so, what record fields are needed to store this data?

To implement a modal transfer:

1. Create derived/work record fields for sharing data between the originating and modal components.

Create a new derived/work record or open an existing derived/work record. If suitable record fields
exist, you can use them; otherwise create new record fields for any data that needs to be shared
between the components. These can be search keys for the modal component, data to pass to the
modal component, or data to pass back to the originating component.

2. Add derived work fields to the level-zero area of the originating component.

Add one edit box for each of the derived/work fields that you need to share between the originating
and modal components to the level-zero area of the page from which the transfer will take place. You
probably want to make the edit boxes invisible.

3. Add the same derived work fields to the level-zero area of the modal component.

162 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

Add one edit box for each of the edit boxes that you added in the previous step to the level-zero area
of the page to which you are transferring. You probably want to make the edit boxes invisible.

4. Add PeopleCode to pass values into the derived/work fields in the originating component.

To provide search key values or pass data to the modal page, write PeopleCode that assigns
appropriate values to the derived/work fields before DoModalComponent is called.

For example, if the modal component search key is PERSONAL_DATA.EMPLID, you could place
the following assignment statement in the derived/work field's RowInit event:

EMPLID = PERSONAL_DATA.EMPLID

You also might assign these values in the same program where DoModalComponent is called.

5. Add PeopleCode to access and change the derived/work fields in the modal component.

No PeopleCode is required to pass search key values during the search. However, if other data has
been passed to the modal component, you may need PeopleCode to access and use the data. You
may also need to assign new values to the shared fields so that they can be used by the originating
component.

It is possible that the component was accessed through the menu system and not through a modal
transfer. To write PeopleCode that runs only in the component when it is running modally, use the
IsModalComponent function:

If IsModalComponent() Then
 /* PeopleCode for modal execution only. */
End-If

6. Add PeopleCode to access changed derived/work fields in the originating component.

If the modal component has altered the data in the shared work fields, you can write PeopleCode to
access and use the data after DoModalComponent has executed.

Note: You can use the EndModalComponent function as a programmatic implementation of the OK
and Cancel buttons.

Related Links
“Transfer and Modal Functions” (Fluid User Interface Developer’s Guide)
“IsModal” (PeopleCode Language Reference)
“EndModalComponent” (PeopleCode Language Reference)

Implementing the Multi-Row Insert Feature

Enabling the multi-row insert feature in grids or scroll areas can reduce response times for transactions
that usually require entering many rows of data. With the multi-row feature, users specify the number of
rows to add to a grid or scroll area, and empty rows appear for data entry.

This feature cannot be used with effective-dated grids or scroll areas. In addition, the feature may not
apply if the entire row is populated using PeopleCode, especially if the data is copied from prior rows. If
the feature does apply in this case, the default value of the ChangeOnInit property can be used (the default

Copyright © 1988, 2024, Oracle and/or its affiliates. 163

Using Methods and Built-In Functions Chapter 8

value is True, which means any PeopleCode updates done in the RowInit or RowInsert events set the
IsChanged and IsNew properties to True).

To use the multi-row insert feature:

1. Specify deferred mode processing.

The multi-row feature reduces transaction times by eliminating excess server trips. To take full
advantage of this feature, the transaction should be set to execute in deferred mode. Deferred mode
should be set for the component, all pages in the component, and all fields on those pages.

2. Enable the multi-row feature.

For each grid or scroll area where appropriate, select the Allow Multi-row Insert check box under the
Use tab in the grid or scroll area property sheet.

Note: The Allow Multi-Row Insert option is not supported and is ignored (if enabled) on fluid grids.

3. Add ChangeOnInit PeopleCode.

Setting the ChangeOnInit property for a rowset to False enables PeopleCode to modify data in the
rowset during RowInit and RowInsert events without flagging the rows as changed. This ensures that
only user changes cause the affected row to be saved.

Note: Each rowset that is referenced by a grid or scroll area with the multi-row feature enabled should
have the ChangeOnInit property for the rowset set to False. This includes lower-level rowsets. In
addition, this property must be set prior to any RowInsert or RowInit PeopleCode for the affected row.

4. Empty rows at save.

After a transaction is saved, any empty rows are discarded before the page is redisplayed to the user.
An empty row means that the user did not access the data because PeopleCode or record defaults may
have been used to initialize the row for the initial display.

Note: PeopleCode save processing (SaveEdit and SavePreChange) PeopleCode executes for all rows
in the buffer (including the empty ones). Therefore, SaveEdit and SavePreChange PeopleCode should
be coded so that it is executed only if the field contains data, or if the row properties IsNew and
IsChanged are both True. An alternative method is adding PeopleCode in the first save program in the
component, to explicitly delete any row based on the IsNew and IsChanged properties. If you choose
this method, then rows should be deleted from the bottom of the data buffer to the top (last row first).

Related Links
Deferred Processing Mode
“ChangeOnInit” (PeopleCode API Reference)

Using the ImageReference Field

To associate an image definition with a field at runtime, the field has to be of type ImageReference. An
example of this is referencing a red, yellow, or green light on a page, depending on the context.

164 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

To change the image value of an ImageReference field:

1. Create a field of type ImageReference.

2. Create the images you want to use.

These images must be saved in PeopleSoft Application Designer as image definitions.

3. Add the field to a record that will be accessed by the page.

4. Add an image control to the page and associate the image control with the ImageReference field.

5. Assign the field value.

Use the keyword Image to assign a value to the field. For example:

Local Record &MyRec;
Global Number &MyResult;

&MyRec = GetRecord();
If &MyResult Then
 &MyRec.MyImageField.Value = Image.THUMBSUP;
Else
 &MyRec.MyImageField.Value = Image.THUMBSDOWN;
End-If;

Related Links
“Creating New Field Definitions” (Application Designer Developer’s Guide)

Inserting Rows Using PeopleCode

When inserting rows using PeopleCode, you can either use the Insert method with a record object or
create a SQL Insert statement using the SQL object. If you do a single insert, use the Record Insert
method. If you are in a loop and, therefore, calling the insert more than once, use the SQL object. The
SQL object uses dedicated cursors and, if the database you are working with supports it, bulk insert.

A dedicated cursor means that the SQL gets compiled only once on the database, so PeopleTools looks
for the meta-SQL only once. This can increase performance.

For bulk insert, inserted rows are buffered and sent to the database server only when the buffer is full
or a commit occurs. This reduces the number of round-trips to the database. Again, this can increase
performance.

The following is an example of using the Record Insert method:

&REC = CreateRecord(Record.GREG);
&REC.DESCR.Value = "Y" | &I;
&REC.EMPLID.Value = &I;
&REC.Insert();

The following is an example using a SQL object to insert rows:

&SQL = CreateSQL("%INSERT(:1)");
&REC = CreateRecord(Record.GREG);
&SQL.BulkMode = True;
For &I = 1 to 10
 &REC.DESCR.Value = "Y" | &I;

Copyright © 1988, 2024, Oracle and/or its affiliates. 165

Using Methods and Built-In Functions Chapter 8

 &REC.EMPLID.Value = &I;
 &SQL.Execute(&REC);
End-For;

Related Links
“Insert” (PeopleCode API Reference)
“Understanding SQL Class” (PeopleCode API Reference)

Using OLE Functions

This section provides an overview of OLE functions and discusses how to:

• Use the Object data type.

• Share a single object instance.

• Use the Exec and WinExec functions.

Understanding OLE Functions
OLE automation is a Microsoft Windows protocol that enables one application to control another’s
operation. The applications communicate by means of an OLE object. One of the applications (called the
automation server) makes available an OLE object that the second application (the client application) can
use to send commands to the server application. The OLE object has methods associated with it, each
of which corresponds to an action that the server application can perform. The client runs the methods,
which cause the server application to perform the specified actions.

PeopleCode includes a set of functions that enable your PeopleCode program to be an OLE client. You
can connect to any application that’s registered as an OLE automation server and invoke its methods.

Note: Differences in Microsoft Windows applications from one release to the next (that is, properties
becoming methods or vice versa) can cause problems with the ObjectGetProperty, ObjectSetProperty and
ObjectDoMethod functions.

See the documentation for the OLE-automated application.

Related Links
“Functions by Category” (PeopleCode Language Reference)

Using the Object Data Type
To support OLE, PeopleCode has a special data type, Object, which it uses for OLE objects. The purpose
of the Object data type is to hold OLE objects during the course of a session so that you can run its
methods. You cannot store Object data for any extended period of time.

Important! Object is a valid data type for variables, but not for record fields. Because OLE objects are by
nature temporary, you cannot store Object data in a record field, including work record fields.

166 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

Some OLE object methods return data to the client. You can use such methods to get data from the
automation server, if the method returns the data in a PeopleCode-supported data type. If the method
returns data in an spreadsheet, for example, you cannot accept the data, because PeopleCode does not
support spreadsheets.

Sharing a Single Object Instance
When you need the services of an OLE automation server, you create an instance of its OLE object, using
the CreateObject function. After you have the object, you can run its methods as often as you like. You do
not need to create a new instance of the object each time.

In a typical scenario, you have a PeopleSoft component that needs to access Microsoft Excel or Word,
or some other automation server, perhaps one you have created yourself. Various PeopleCode programs
associated with the component must run OLE object methods.

Rather than create a new instance of the OLE object in each PeopleCode program, you should create
one instance of the OLE object in a PeopleCode program that runs when the component starts (such as
RowInit) and assign it to a global variable. Then, any PeopleCode program can reference the object and
invoke its methods.

Using the Exec and WinExec Functions
The WinExec and Exec built-in functions provide another way to start another application from
PeopleCode. Unlike the OLE functions, however, Exec and WinExec do not enable you to control
what actions the application takes after you start it. You can start the application, and if you use the
synchronous option you can find out when it closes, but you cannot affect its course or receive any data in
return.

WinExec is appropriate in two situations:

• When you want to start an application and continue processing.

• When you have a short, unvarying process that you want to run, such as copying a file.

The Exec function, unlike WinExec and the OLE functions, is not Microsoft Windows-specific. You
can run it on an application server to call an executable on the application server platform, which in
PeopleTools release 7 and later can be either Windows NT or UNIX.

Important! If you use the WinExec function with its synchronous option, the PeopleCode program (and
the PeopleSoft application) remain paused until the called program is complete. If you start a program
that waits for user input, such as Notepad, the application appears to hang until the user closes the called
program. The synchronous option also imposes limits on the PeopleCode.

Related Links
“Exec” (PeopleCode Language Reference)
“WinExec” (PeopleCode Language Reference)

Copyright © 1988, 2024, Oracle and/or its affiliates. 167

Using Methods and Built-In Functions Chapter 8

Using the Select and SelectNew Methods

This section provides an overview of the Select method and discusses how to use the Select method.

Understanding the Select and SelectNew Methods
The Select and SelectNew methods, like the ScrollSelect functions, enable you to control the process
of selecting data into a page scroll area. The Select method selects rows from a table or view and adds
the rows to either a rowset or a row. Let’s call the record definition of the table or view that it selected
from the select record. Let’s call the primary database record of the top-level rowset object executing the
method the default scroll record.

The select record can be the same as the default scroll record, or it can be a different record definition
that has the same key fields as the default scroll record. If you define a select record that differs from the
default scroll record, you can restrict the number of fields loaded into the buffers by including only the
fields you actually need.

You can use these methods only with a rowset. A rowset can be thought of as a page scroll area.

A level zero rowset starts at the top level of the page, level zero, and contains all the data in the
component buffers. A child rowset is contained by an upper-level rowset, also called the parent rowset.
For example, a level one rowset could be considered the child rowset of a level zero, or parent, rowset. Or
a level two rowset could be the child rowset of a level one rowset. The data contained in a child rowset
depends on the row of the parent rowset.

When a rowset is selected into, any autoselected child rowsets are also read. The child rowsets are read
using a Where clause that filters the rows according to the Where clause used for the parent rowset, using
a Subselect.

The Select method automatically places child rowsets in the rowset object executing the method under the
correct parent row. If it cannot match a child rowset to a parent row, an error occurs.

The Select method also accepts an optional SQL string that can contain a Where clause restricting
the number of rows selected into the scroll area. The SQL string can also contain an Order By clause,
enabling you to sort the rows.

The Select and SelectNew methods generate an SQL Select statement at runtime, based on the fields
in the select record and the Where clause passed to them in the function call. This gives Select and
SelectNew a significant advantage over the SQLExec function: they enable you to change the structure of
the select record without affecting the PeopleCode program, unless the field affected is referred to in the
Where clause string. This can make the application easier to maintain.

Also, if you use one of the meta-SQL constructs or shortcuts in the Where clause, such as %KeyEqual or
%List, even if a field has changed, you do not have to change your code.

Unlike the ScrollSelect functions, neither Select or SelectNew allow you to operate in turbo mode.

Note: In addition to these methods, the SelectByKey record class method enables you to select into a
record object. If you’re only interested in selecting a single row of data, consider this method instead.

168 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

Related Links
Understanding Data Buffer Access

Using the Select Method
The syntax of the Select method is:

Select([parmlist], RECORD.selrecord [, wherestr, bindvars]);

Where paramlist is a list of child rowsets, given in the following form:

SCROLL.scrollname1 [SCROLL., scrollname2] . . .

The first scrollname must be a child rowset of the rowset object executing the method, the second
scrollname must be a child of the first child, and so on.

This syntax does the following:

• Specifies an optional child rowset into which to read the selected rows.

• Specifies the select record from which to select rows.

• Passes a string containing a SQL Where clause to restrict the selection of rows or an Order By clause
to sort the rows, or both.

Specifying Child Rowsets

The first part of the Select syntax specifies a child rowset into which rows are selected. This parameter is
optional.

If you do not specify any child rowsets in paramlist, Select selects from a SQL table or view specified by
selrecord into the rowset object executing the method. For example, suppose you’ve instantiated a level
one rowset &BUS_EXPENSES_PER. The following would select into this rowset:

Local Rowset &BUS_EXPENSES_PER;

&BUS_EXPENSES_PER = GetRowset(SCROLL.BUS_EXPSNESE_PER);
&BUS_EXPENSES_PER.Select(RECORD.BUS_EXPENSE_VW,
"WHERE SETID = :1 and CUST_ID = :2", SETID, CUST_ID);

If the rowset executing the method is a level zero rowset, and you specify the Select method without
specifying any child rowsets with paramlist,, the method reads only a single row, because only one row is
allowed at level zero.

Note: For developers familiar with previous releases of PeopleCode: In this situation, the Select method
is acting like the RowScrollSelect function.

If you specify a child rowset in paramlist, the Select method selects from a SQL table or view specified
by selrecord into the child rowset specified in paramlist, under the appropriate row of the rowset
executing the method.

In the following example, rows are selected into a child rowset BUS_EXPENSE_DTL, matching level-
one keys, and with the charge amount equal to or exceeding 200, sorting by that amount:

Local Record &REC_EXP;
Local Rowset &BUS_EXPENSE_PER;

Copyright © 1988, 2024, Oracle and/or its affiliates. 169

Using Methods and Built-In Functions Chapter 8

&REC_EXP = GetRecord(RECORD.BUSINESS_EXPENSE_PER;
&BUS_EXPENSE_PER = GetRowset(SCROLL.BUS_EXPSNESE_PER);
&BUS_EXPENSE_PER.Select(SCROLL.BUS_EXPENSE_DTL,
RECORD.BUS_EXPENSE_DTL, "WHERE %KeyEqual(:1) AND EXPENSE_AMT
>= 200 ORDER BY EXPENSE_AMT", &REC_EXP);

Specifying the Select Record

The record definition of the table or view being selected from is called the select record, and identified
with RECORD.selrecord.. The select record can be the same as the primary database record associated
with the rowset executing the method, or it can be a different record definition that has compatible fields.

The select record must be defined in PeopleSoft Application Designer and be a built SQL table or
view (using Build, Project), unless the select record is the same record as the primary database record
associated with the rowset.

The select record can contain fewer fields than the primary record associated with the rowset, although it
must contain any key fields to maintain dependencies with other records.

If you define a select record that differs from the primary database record for the rowset, you can restrict
the number of fields that are loaded into the buffers on the client work station by including only the fields
you actually need.

The Where Clause

The Select method accepts a SQL string that can contain a Where clause restricting the number of rows
selected into the object. The SQL string can also contain an Order By clause to sort the rows.

Select and SelectNew generate a SQL Select statement at runtime, based on the fields in the select record
and the Where clause passed to them in the method parameters.

To avoid errors, the Where clause should explicitly select matching key fields on parent and child rows.
You do this using the %KeyEqual meta-SQL.

Select Like RowScrollSelect

If the rowset executing the method is a level zero rowset, and you specify Select without specifying any
child rowsets with paramlist, the method reads only a single row, because only one row is allowed at level
zero.

Note: For developers familiar with previous releases of PeopleCode: In this situation, the Select method
is acting like the RowScrollSelect function.

If you qualify the lower-level rowset so that it only returns one row, it acts like the RowScrollSelect
method.

&RSLVL1 = GetRowset(SCROLL.PHYSICAL_INV);
&RSLVL2 = &RSLVL1(&PHYSICAL_ROW).GetRowset(SCROLL.PO_RECEIVED_INV);
&REC2 = &RSLVL2.PO_RECEIVED_INV;
If &PO_ROW = 0 Then
 &RSLVL2.Select(PO_RECEIVED_INV, "WHERE %KeyEqual(:1)
and qty_available > 0", &REC2);
End-if;

Related Links
“%KeyEqual” (PeopleCode Language Reference)

170 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

Using Standalone Rowsets

This section provides an overview of standalone rowsets and discusses how to:

• Use the Fill rowset method.

• Use the CopyTo rowset method.

• Add child rowsets.

• Use standalone rowsets to write a file.

• Use standalone rowsets to read a file.

Understanding Standalone Rowsets
Standalone rowsets are not associated with a component or page. Use them to work on data that is not
associated with a component or page buffer. In earlier releases, this was done using derived work records.
You still must build work pages.

Note: Standalone rowsets are not connected to the Component Processor, so there are no database updates
when they are manipulated. Delete and insert actions on these types of rowsets are not automatically
applied at save time.

As with any PeopleTools object, the scope of standalone rowsets can be Local, Global, or Component.
Consider the following code:

Local Rowset &MYRS;

&MYRS = CreateRowset(RECORD.SOMEREC);

This code creates a rowset with SOMEREC as the level zero record. The rowset is unpopulated.
Functionally, it is the same as an array of rows.

Using the Fill Method
The Fill method fills the rowset by reading records from the database, by first flushing out all the contents
of the rowset. A Where clause must be provided to get all the relevant rows.

Local Rowset &MYRS;
Local String &EMPLID;

&MYRS = CreateRowset(RECORD.SOMEREC);
&EMPLID = '8001';

&MYRS.Fill("where EMPLID = :1", &EMPLID);

Use the Fill method with standalone rowsets, created using the CreateRowset function. Do not use Fill
with component buffer rowsets.

Copyright © 1988, 2024, Oracle and/or its affiliates. 171

Using Methods and Built-In Functions Chapter 8

Using the CopyTo Method
The CopyTo method copies like-named fields from a source rowset to a destination rowset. To perform
the copy, it uses like-named records for matching, unless specified. It works on any rowset except the
Application Engine state records. The following is an example:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLID;

&MYRS1 = CreateRowset(RECORD.SOMEREC);
&MYRS2 = CreateRowset(RECORD.SOMEREC);

&EMPLID = '8001';

&MYRS1.Fill("where EMPLID = :1", &EMPLID);
&MYRS1.CopyTo(&MYRS2);

After running the previous code segment, &MYRS2 contains that same data as &MYRS1. Both
&MYRS1 and &MYRS2 were built using like-named records.

To use the CopyTo method where there are no like-named records, you must specify the source and
destination records. The following code copies only like-named fields:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLID;

&MYRS1 = CreateRowset(RECORD.SOMEREC1);
&MYRS2 = CreateRowset(RECORD.SOMEREC2);

&EMPLID = '8001';

&MYRS1.Fill("where EMPLID = :1", &EMPLID);
&MYRS1.CopyTo(&MYRS2, RECORD.SOMEREC1, RECORD.SOMEREC2);

Adding Child Rowsets
The first parameter of the CreateRowset method determines the top-level structure. If you pass the name
of the record as the first parameter, the rowset is based on a record. You can also base the structure on a
different rowset. In the following example, &MYRS2 inherits the structure of &MYRS1:

Local Rowset &MYRS1, MYRS2;

&MYRS1 = CreateRowset(RECORD.SOMEREC1);
&MYRS2 = CreateRowset(&MYRS1);

To add a child rowset, suppose the following records describe a relationship. The structure is made up of
three records:

• PERSONAL_DATA

• BUS_EXPENSE_PER

• BUS_EXPENSE_DTL

To build rowsets with child rowsets, use code like the following:

Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;

&rsBusExpDtl = CreateRowset(Record.BUS_EXPENSE_DTL);
&rsBusExpPer = CreateRowset(Record.BUS_EXPENSE_PER, &rsBusExpDtl);
&rsBusExp = CreateRowset(Record.PERSONAL_DATA, &rsBusExpPer);

172 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

Another variation is

&rsBusExp = CreateRowset(Record.PERSONAL_DATA,
CreateRowset(Record.BUS_EXPENSE_PER,
CreateRowset(Record.BUS_EXPENSE_DTL)));

Using Standalone Rowsets to Write a File
The following is an example of using standalone rowsets along with a file layout to write a file:

The following example writes a file using a file layout that contains parent-child records:

Local File &MYFILE;
Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQL1, &SQL2, &SQL3;

&rBusExp = CreateRecord(Record.PERSONAL_DATA);
&rBusExpPer = CreateRecord(Record.BUS_EXPENSE_PER);
&rBusExpDtl = CreateRecord(Record.BUS_EXPENSE_DTL);

&rsBusExp = CreateRowset(Record.PERSONAL_DATA,
CreateRowset(Record.BUS_EXPENSE_PER,
CreateRowset(Record.BUS_EXPENSE_DTL)));
&rsBusExpPer = &rsBusExp.GetRow(1).GetRowset(1);

&MYFILE = GetFile("c:\temp\BUS_EXP.out", "W", "UTF8", %FilePath_Absolute);
&MYFILE.SetFileLayout(FileLayout.BUS_EXP_OUT);

&EMPLID = "8001";

&SQL1 = CreateSQL("%selectall(:1) where EMPLID = :2", &rBusExp, &EMPLID);
&SQL2 = CreateSQL("%selectall(:1) where EMPLID = :2", &rBusExpPer, &EMPLID);

While &SQL1.Fetch(&rBusExp)
 &rBusExp.CopyFieldsTo(&rsBusExp.GetRow(1).PERSONAL_DATA);

Copyright © 1988, 2024, Oracle and/or its affiliates. 173

Using Methods and Built-In Functions Chapter 8

 &I = 1;
 While &SQL2.Fetch(&rBusExpPer)
 &rBusExpPer.CopyFieldsTo(&rsBusExpPer(&I).BUS_EXPENSE_PER);
 &J = 1;
 &SQL3 = CreateSQL("%selectall(:1) where EMPLID = :2
and EXPENSE_PERIOD_DT = :3", &rBusExpDtl, &EMPLID,
&rsBusExpPer(&I).BUS_EXPENSE_PER.EXPENSE_PERIOD_DT.Value);
 &rsBusExpDtl = &rsBusExpPer.GetRow(&I).GetRowset(1);
 While &SQL3.Fetch(&rBusExpDtl)
 &rBusExpDtl.CopyFieldsTo(&rsBusExpDtl(&J).BUS_EXPENSE_DTL);
 &rsBusExpDtl.InsertRow(&J);
 &J = &J + 1;
 End-While;

 &rsBusExpPer.InsertRow(&I);
 &I = &I + 1;
 End-While;
 &MYFILE.WriteRowset(&rsBusExp);
End-While;
&MYFILE.Close();

The previous code generates the following output file.

AA8001 Schumacher,Simon
BB8001 06/11/1989YNA0 Customer Go-Live Celebration
CC8001 06/11/1989
 06/01/198908226.83 USDEntertain Clients 10100
BB8001 08/31/1989YNA0 Customer Focus Group Meeting
CC8001 08/31/198908/11/1989012401.58 USDCustomer Visit 10100⇒

CC8001 08/31/198908/12/198904250.48 USDCustomer Visit 10100⇒

CC8001 08/31/198908/12/198902498.34 USDCustomer Visit 10100⇒

BB8001 03/01/1998YYP0 Attend Asia/Pacific Conference
CC8001 03/01/199802/15/1998011200 USDConference 00001⇒

CC8001 03/01/199802/16/19980220000 JPYConference 00001⇒

BB8001 05/29/1998NNP0 Annual Subscription
CC8001 05/29/199805/29/199814125.93 USDSoftware, Inc. 10100⇒

BB8001 08/22/1998NNP0 Regional Users Group Meeting
CC8001 08/22/199808/22/19981045.69 USDDrive to Meeting 10100⇒

CC8001 08/22/199808/22/19980912.44 USDCity Parking 10100⇒

BB8001 12/12/1998NNP0 Customer Visit: Nevco
CC8001 12/12/199812/02/199801945.67 USDCustomer Feedback 00001⇒

CC8001 12/12/199812/02/19981010.54 USDTo Airport 00001⇒

CC8001 12/12/199812/03/19980610 USDAirport Tax 00001⇒

CC8001 12/12/199812/03/199804149.58 USDCustomer Feedback 00001⇒

CC8001 12/12/199812/04/1998055.65 USDCheck Voicemail 00001⇒

174 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

CC8001 12/12/199812/04/19980988 USDAirport Parking 00001⇒

CC8001 12/12/199812/04/199802246.95 USDCustomer Feedback 00001⇒

CC8001 12/12/199812/04/199803135.69 USDCustomer Feedback 00001⇒

Related Links
“Understanding File Layouts” (Application Designer Developer’s Guide)

Using Standalone Rowsets to Read a File
The following code shows an example of reading in a file and inserting the rows into the database:

Local File &MYFILE;
Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQL1;

&rBusExp = CreateRecord(Record.PERSONAL_DATA);
&rBusExpPer = CreateRecord(Record.BUS_EXPENSE_PER);
&rBusExpDtl = CreateRecord(Record.BUS_EXPENSE_DTL);

&rsBusExp = CreateRowset(Record.PERSONAL_DATA,
CreateRowset(Record.BUS_EXPENSE_PER,
CreateRowset(Record.BUS_EXPENSE_DTL)));

&MYFILE = GetFile("c:\temp\BUS_EXP.out", "R", "UTF8", %FilePath_Absolute);
&MYFILE.SetFileLayout(FileLayout.BUS_EXP_OUT);

&SQL1 = CreateSQL("%Insert(:1)");

&rsBusExp = &MYFILE.ReadRowset();
While &rsBusExp <> Null;
 &rsBusExp.GetRow(1).PERSONAL_DATA.CopyFieldsTo(&rBusExp);
 &rsBusExpPer = &rsBusExp.GetRow(1).GetRowset(1);
 For &I = 1 To &rsBusExpPer.ActiveRowCount
 &rsBusExpPer(&I).BUS_EXPENSE_PER.CopyFieldsTo(&rBusExpPer);
 &rBusExpPer.ExecuteEdits(%Edit_Required);
 If &rBusExpPer.IsEditError Then
 For &K = 1 To &rBusExpPer.FieldCount
 &MYFIELD = &rBusExpPer.GetField(&K);
 If &MYFIELD.EditError Then
 &MSGNUM = &MYFIELD.MessageNumber;
 &MSGSET = &MYFIELD.MessageSetNumber;
 End-If;
 End-For;
 Else
 &SQL1.Execute(&rBusExpPer);
 &rsBusExpDtl = &rsBusExpPer.GetRow(&I).GetRowset(1);
 For &J = 1 To &rsBusExpDtl.ActiveRowCount
 &rsBusExpDtl(&J).BUS_EXPENSE_DTL.CopyFieldsTo(&rBusExpDtl);
 &rBusExpDtl.ExecuteEdits(%Edit_Required);
 If &rBusExpDtl.IsEditError Then
 For &K = 1 To &rBusExpDtl.FieldCount
 &MYFIELD = &rBusExpDtl.GetField(&K);
 If &MYFIELD.EditError Then
 &MSGNUM = &MYFIELD.MessageNumber;
 &MSGSET = &MYFIELD.MessageSetNumber;
 End-If;
 End-For;
 Else
 &SQL1.Execute(&rBusExpDtl);

Copyright © 1988, 2024, Oracle and/or its affiliates. 175

Using Methods and Built-In Functions Chapter 8

 End-If;
 End-For;
 End-If;
 End-For;
 &rsBusExp = &MYFILE.ReadRowset();
End-While;
&MYFILE.Close();

Using Errors and Warnings

For the most part, errors and warnings display messages to users informing them about invalid data.
For this reason, they are almost always placed in FieldEdit or SaveEdit PeopleCode, or in SearchSave
PeopleCode for validation during search processing. In conjunction with edits, errors stop processing,
while warnings allow processing to continue. When errors and warnings appear in places other than
FieldEdit or SaveEdit, their effects vary.

This section discusses how to:

• Use errors and warning syntax.

• Use errors and warnings in edit events.

• Use errors and warnings in RowSelect events.

• Use errors and warnings in RowDelete events.

• Use errors and warnings in other events.

Using Error and Warning Syntax
Errors and warnings require only a message that the Component Processor displays to users. You can
code the message into the error or warning statement, or you can use the message catalog. Use the
message catalog with the MsgGet, MsgGetExplainText, and similar functions.

Errors and warnings use the same syntax. For example:

Error MsgGet(11100, 180, "Message not found.");
Warning MsgGet(11100, 180, "Message not found.");

Using Errors and Warnings in Edit Events
You can use the following PeopleCode events for validation edits: FieldEdit and SaveEdit. The
Component Processor applies FieldEdit when the user changes a field, and SaveEdit when the user saves
a component. Errors and warnings in these events display a message. Most errors and warnings appear in
these event types, although you can use errors and warnings elsewhere.

FieldEdit Event Errors

You can use either the record field or component record field event. The record field event for each record
runs before the component record field event for that record.

An error in FieldEdit prevents the system from accepting the new value of a field. The Component
Processor highlights the problem field. The user must either change the field back to its original value or

176 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

to something else which does not trigger the error. A warning enables the Component Processor to accept
the new data. The Component Processor does not highlight a field that has warnings.

SaveEdit Event Errors

You can use the record field or the component record event. All record field events for a record run before
the component record events.

An error in SaveEdit prevents the system from saving any row of data. The Component Processor does
not update the database for any field if one field has an error. Although the Component Processor displays
an error message, it does not turn any field red. Unlike FieldEdit errors, SaveEdit errors can happen
anywhere on a page or component, for any row of data. The data causing the error may appear on a
different page within the same group, or a row of data not currently displayed. If this is the case, the field
in error is brought into view by the system.

A warning in SaveEdit also is applied to all data in the page or component, but the Component Processor
will accept the data, if told to by the user. In a FieldEdit warning, the Component Processor displays a
message box with the text and two buttons: OK and the standard Explain (the Explain button returns an
explanation for the last message retrieved with the MsgGet function). In a SaveEdit warning, the message
box contains an additional button, Cancel. OK accepts the data, overriding the warning and continuing the
save process. Cancel ends the save process.

Because errors and warnings apply to all rows of data and all pages in a group, you must provide the user
explicit information about what caused the error. Typically, you use the message catalog function to store
messages and substitute variables into them. However, you can also facilitate this by concatenating in a
field value. For example, if you have a stack of historical data on the page, you could use the following
error statement:

Error ("The value exceeds the maximum on "|effdt|".");

Using Errors and Warnings in RowSelect Events
RowSelect PeopleCode filters out rows of data after the system applies search record criteria. It also can
stop the Component Processor from reading additional rows of data.

Note: Errors and warnings should no longer be used in RowSelect processing; instead, use DiscardRow
and StopFetching. The behavior of errors and warnings in RowSelect PeopleCode is retained for
compatibility with previous releases of PeopleTools.

A warning causes the Component Processor to reject the current row, but the Component Processor
continues reading more data. An error prevents more data coming into the page or component. The
Component Processor accepts the row that causes the error, but does not read any more data. To reject the
current row and stop loading additional rows, issue a warning and an error.

You must specify text for an error or warning, but the Component Processor does not display messages
from RowSelect. You can still use the message text as a way of documenting the program.

Related Links
Understanding PeopleCode Programs and Events
“DiscardRow” (PeopleCode Language Reference)
“StopFetching” (PeopleCode Language Reference)

Copyright © 1988, 2024, Oracle and/or its affiliates. 177

Using Methods and Built-In Functions Chapter 8

Using Errors and Warnings in RowDelete Events
When you delete a row of data, the system prompts you to confirm. If you confirm, any record field
RowDelete PeopleCode runs, and any component record RowDelete PeopleCode also runs. Errors and
warnings in RowDelete display a message box.

A warning from RowDelete presents two choices: accept the RowDelete (the OK button), or cancel the
RowDelete (the Cancel button). An error from RowDelete PeopleCode prevents the Component Processor
from removing that row of data from the page.

Using Errors and Warnings in Other Events
Do not put errors or warning in PeopleCode attached to the FieldDefault, FieldFormula, RowInit,
FieldChange, RowInsert, SavePreChange, WorkFlow, and SavePostChange events. These event types
activate processing that a user has no direct control over. However, the Component Processor may
issue its own errors and warnings when it runs PeopleCode and encounters an unrecoverable error. The
Component Processor cancels the transaction to avoid unpredictable results.

Related Links
“Warning” (PeopleCode Language Reference)
“Error” (PeopleCode Language Reference)

Using the RemoteCall Feature

This section provides an overview of RemoteCall components and discusses how to:

• Decide between RemoteCall and PeopleSoft Process Scheduler.

• Modify PeopleSoft Process Scheduler programs to run with RemoteCall.

Related Links
Think-Time Functions
“CallAppEngine” (PeopleCode Language Reference)

Understanding RemoteCall Components
RemoteCall is a PeopleTools feature that enables executing a COBOL program remotely from within a
PeopleSoft application. Remote calls are made using the RemoteCall PeopleCode function.

The purpose of the RemoteCall PeopleCode function is to allow PeopleCode programs to invoke
PeopleSoft application COBOL programs.

In the application server configuration file, you can specify where the COBOL executables are located.

See “Remote Call Options” (System and Server Administration).

The RemoteCall function is a synchronous call. The PeopleSoft system passes parameters to the remote
program, and then waits while the program runs. When the remote program is done, it returns any
results or status information to the invoking program, which then resumes execution. This means

178 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

that RemoteCall is a think-time function. RemoteCall is designed for fast response time, and has an
application programming interface (API) that provides programs with the response time needed for
transaction processing. However, RemoteCall has no scheduling or multistep job capabilities. Each
execution of RemoteCall is independent.

Note: As of PeopleTools 8, you can no longer use RemoteCall to execute an Application Engine program.
Use the CallAppEngine function instead.

The RemoteCall PeopleTools feature consists of the following components:

• PeopleCode programs.

This interface consists of the RemoteCall PeopleCode function, which is used from within
PeopleCode programs to start a remote program and process results.

Note: The PeopleCode program does not include any special code to specify where the remote
program is executed.

• Remote program API.

This is used by the remote COBOL program to receive or pass parameters and return status
information.

• PeopleSoft RemoteCall service.

The PeopleSoft application server, PSAPPSRV, advertises the RemoteCall service. The service
receives requests from PeopleCode programs and starts the requested remote program. When
the remote program is completed, PSAPPSRV passes the parameters and status code back to the
PeopleCode program.

• Oracle Tuxedo.

Oracle Tuxedo is a message-based transaction monitor for distributed applications. No direct Oracle
Tuxedo calls need to be implemented in PeopleCode or remote programs.

PeopleCode Programs

You can execute the RemoteCall function from PeopleCode associated with any Component Processor
event except SavePostChange, SavePreChange, Workflow, RowSelect, or in any PeopleCode event
resulting from a ScrollSelect or related function call. However, remote programs that change data should
not be run as part of a SaveEdit process, because the remote program may complete successfully even
though an error occurs later in the save process.

To call a remote program that changes data, use FieldChange PeopleCode in a record field associated with
a command button, or from a pop-up menu item.

Do not use RemoteCall if you expect the remote program to return a large amount of data to the client,
because data is passed back only through the parameters of the PeopleCode API.

Authorization to run a remote program is like authorization to run a PeopleCode program. Because a
remote program is started from PeopleCode, the user has authorization to use the page that executes the
PeopleCode.

Copyright © 1988, 2024, Oracle and/or its affiliates. 179

Using Methods and Built-In Functions Chapter 8

The remote program runs in a different unit of work from the page. A commit is issued by PeopleTools if
needed on the client before RemoteCall is called. This means that, by default, the remote program does
not know about any database changes unless the page is saved before the program is called. After the
remote program starts, it runs to completion and commits or ends before returning to the page. In this
way, the remote program and the page do not have locking contention. To ensure that the save has actually
been done, use the DoSaveNow built-in function.

When using RemoteCall to execute a COBOL program, two types of errors can occur:

• PeopleTools errors.

An error might occur in the application server domain while processing the remote call. These are
treated as hard errors by PeopleCode. An error message box appears, and that PeopleCode program is
terminated. In the case of a PeopleTools error, the remote program always either returns a code of zero
or terminates with a message due to a system error.

• Application-specific errors.

Any error information specific to the remote application must be passed back in regular data
variables, and the application can process these in an application-specific way. If you have a status
code on which the application depends, you should initialize it to an invalid value to be sure the
COBOL program does return the status code.

Because the remote program is executed synchronously, users receive an hourglass icon and cannot
do anything in the current window until the remote program completes. They could move to another
window and do processing there, or they could open another PeopleSoft window. They cannot cancel the
remote program after it starts. If the program does not terminate in a timely fashion (as determined by the
RemoteCall timeout set with PeopleSoft Configuration Manager), RemoteCall attempts to terminate the
process and returns an error indicating that the program was terminated.

Remote Program API

The remote program API provides the functions to get and put data between the network and the COBOL
program. These functions are implemented in C, but are callable from COBOL through the PTPNETRT
program. For an example, see the PTPNTEST.CBL program.

Note: If these APIs are called when the program is not running as a remote program, ACTION-GET and
ACTION-PUT return an error. All other actions return without doing anything.

If an unexpected error is found, call PTPNETRT with ACTION-RESET, then with ACTION-PUT to send
back any error status variables, then with ACTION-DONE to send the buffer.

PeopleSoft RemoteCall Service

The RemoteCall service serves as a bridge between the PeopleCode API and remote COBOL programs.
RemoteCall is one of many services advertised by the application server domain, and can be configured as
part of the standard domain setup and administration.

The client sends the RemoteCall service request, consisting of the connect information and the program
name, as well as any other parameters for the program, to the application server. The RemoteCall service
then executes the program and passes it the connect string.

180 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 8 Using Methods and Built-In Functions

RemoteCall Programming Guidelines

Keep the following points in mind when using RemoteCall:

• Do not use RemoteCall for long-running batch jobs.

As a general rule, if you think execution will take more than 15 seconds, you should not be using
RemoteCall, but should instead use PeopleSoft Process Scheduler.

• RemoteCall is meant for running jobs on the application server.

It should not be used to invoke client-only programs. Support for local calling with RemoteCall is
provided solely as a debugging and development aid. For client-only programs, use Declare Function,
then call the external function from a library.

• If you do not want to modify an existing program, then pass only the program name and run control,
and do not return any parameters.

This way, the program requires few changes to run as a remote function.

Deciding Between RemoteCall and PeopleSoft Process Scheduler
COBOL application programs initiated by the RemoteCall service use the same COBOL application
architecture used by PeopleSoft Process Scheduler. After being initiated by the dispatcher, COBOL
application programs call the COBOL SQL API program, PTPSQLRT, to connect to the relational
database management system to compile and execute SQL statements. You can design and implement
COBOL programs to be understood by both PeopleSoft Process Scheduler and RemoteCall.

Follow these guidelines to select the optimal method for running a particular COBOL program:

• Use PeopleSoft Process Scheduler for asynchronous processes, or for processes that can be scheduled,
are multistep, are long-running, or that require printed output.

• Use RemoteCall for synchronous processes that complete quickly (transaction processing types of
processes).

Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall
To enable an existing program that runs under PeopleSoft Process Scheduler to run under RemoteCall as
well, make the following changes:

• Include the PTCNETRT copy member.

• Include the PTCNCHEK member before the connection call to PTPSQLRT.

• Add the call to PTPNETRT ACTION-DONE just before the program terminates (after the call to
disconnect from the database).

This should be conditional on whether you are RUNNING-REMOTE-CALL.

• If you are running as a remote call, ensure that PROCESS-INSTANCE OF PRUNSTATUS is not set.

Otherwise your calls to PTCPSTAT try to update the PSPRCSRQST table. This does not cause an
error, but it is unnecessary processing.

Copyright © 1988, 2024, Oracle and/or its affiliates. 181

Using Methods and Built-In Functions Chapter 8

This program can now run from PeopleSoft Process Scheduler or from RemoteCall. If a program has to
pass parameters, it must have RemoteCall-specific ACTION-GET and ACTION-PUT calls.

182 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9

Using HTML Trees and the GenerateTree
Function

Using the GenerateTree Function

This section provides an overview of HTML trees and discusses how to:

• Build HTML tree pages.

• Use HTML tree rowset records.

• Use tree actions (events).

• Initialize HTML trees.

• Process events passed from a tree to an application.

• Add mouse-over ability to HTML trees.

• Add visual selection node indicators.

• Specify override images.

Understanding HTML Trees
Use the GenerateTree function to display data in a tree format. The result of the GenerateTree function
is an HTML string, which can appear in an HTML area control. The tree generated by GenerateTree is
called an HTML tree.

The GenerateTree function displays data from a rowset. You can populate this rowset using existing
record data. You can also use the tree classes to display data from trees created using PeopleSoft Tree
Manager.

To use this function, you must set up a page for displaying the data and populate a standalone rowset with
the data to be displayed.

Copyright © 1988, 2024, Oracle and/or its affiliates. 183

Using HTML Trees and the GenerateTree Function Chapter 9

The following example shows an HTML tree. This is used to display data in tree format using
GenerateTree function.

The positional links at the top of the page (First, Previous, Next, Last, Left, Right) enable the user to
navigate around the tree. These links are automatically generated as part of the execution of GenerateTree.

When a node is collapsed, a plus sign appears on the node icon, and the node's children are hidden. When
a node is expanded, all child nodes appear, and the icon displays a minus sign. Icons without a plus or
minus sign are terminal nodes, which have no children and cannot be expanded or collapsed.

Building HTML Tree Pages
The page you use to display the HTML tree must contain:

• An HTML area used to display the HTML tree.

• A character field that has a page field name, is at least 46 characters long, and is invisible.

Note: The edit box should be invisible, but not display-only. An invisible edit box cannot be seen by the
user, but it still has a buffer that can be written to. Page fields that have been specified as invisible do not
need to be marked as Modifiable from HTML unless they are located on a page that is not active when
GenerateTree is called. For example, if your application calls GenerateTree from one page and then saves
the result in a field that is displayed by an HTML area on another page in the component, the associated
event field must be marked both Invisible and Modifiable from HTML.

Events are sent to the application from the HTML tree using the invisible field. The events are processed
by FieldChange PeopleCode that is attached to the invisible field.

This is an example page for an HTML tree:

184 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Using HTML Trees and the GenerateTree Function

This example illustrates the fields and controls on the Example of PeopleSoft Application Designer
HTML tree page. You can find definitions for the fields and controls later on this page.

The large area that is selected in the example is the HTML area that displays the HTML tree. The HTML
area is attached to the DERIVED_HTML.HTMLAREA field for this example.

The white edit box is the invisible field used to pass events from the HTML tree to the application. It is
attached to the DERIVED_HTML.TREECTLEVENT field for this example.

The edit box must have a page field name. In this example, the page field name is TREECTLEVENT.

Using HTML Tree Rowset Records
The GenerateTree function takes a prebuilt and populated rowset as a parameter. This rowset must have
a certain structure and contain certain fields. In the following examples, the rowset is standalone, that is,
the rowset is created using the CreateRowset function. The fields necessary for the rowset are contained
in the following record definitions:

• The header record TREECTL_HRD, containing the subrecord TREECTL_HDR_SBR.

• The node record TREECTL_NDE, containing the subrecord TREECTL_NDE_SBR.

The header record is the level zero record of the HTML tree rowset. It contains options for the HTML
tree, such as the name of the collapsed node image, the height of the images, the number of pixels to
indent each node, and so on.

The node record is the level one record of the HTML tree rowset. It contains the tree data and information
about the data, such as the dynamic range leaf, the level, and so on.

The level one scroll area contains a row for each node or leaf in the tree data.

Copyright © 1988, 2024, Oracle and/or its affiliates. 185

Using HTML Trees and the GenerateTree Function Chapter 9

To store additional application data with each node in the tree, you can incorporate the
TREECTL_NDE_SBR into a record of your definition and use your record to define the HTML tree
rowset.

For example, you might want to store application key values with each node record, so that when a user
selects a node, you have the data you need to perform the action that you want.

This table describes the relevant fields in TREECTL_HDR_SBR:

Field Description

PAGE_NAME Name of the page that contains the HTML area and the
invisible field used to process the HTML tree events.

PAGE_FIELD_NAME Page field name of the invisible field used to process the
HTML tree events.

PAGE_SIZE Number of nodes or leaves to send to the browser at a time.
 Set to 0 to send all visible nodes or leaves to the browser. The
default value is 0.

DISPLAY_LEVELS Number of levels to display on the browser at a time. The
default value is 8.

COLLAPSED_IMAGE Collapsed node image name. The default value is PT_TREE_
COLLAPSED.

EXPANDED_IMAGE Expanded node image name. The default value is PT_TREE_
EXPANDED.

END_NODE_IMAGE End node image name. The default value is PT_TREE_END_
NODE.

LEAF_IMAGE Leaf image name. The default value is PT_TREE_LEAF.

IMAGE_WIDTH Image width in pixels. All four images need to be the same
width. The default value is 15 pixels.

IMAGE_HEIGHT Image height in pixels. All four images need to be the same
height. The default value is 12 pixels.

INDENT_PIXELS Number of pixels to indent each level. The default value is 20
pixels.

TREECTL_VERSION Version of the HTML tree. The default value is 812. Used
with the DESCR_IMAGE field in the TREECTL_HDR_SBR
record.

This table describes the relevant fields in TREECTL_NDE_SBR:

186 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Using HTML Trees and the GenerateTree Function

Field Description

LEAF_FLAG If this is a leaf, set to Y. The default value is N.

TREE_NODE Node name.

DESCR (Optional) Node description.

RANGE_FROM The range from value of the leaf.

RANGE_TO The range to value of the leaf.

DYNAMIC_FLAG If this leaf has a dynamic range, set to Y. The default value is
N.

ACTIVE_FLAG Set to N for the node or leaf not to be a link. The default value
is Y.

DISPLAY_OPTION Set to N to display the name only. Set to D to display the
description only. Set to B to display both the name and the
description. Used for nodes only. The default value is B.

STYLECLASSNAME Use to control the style of the link associated with the node or
leaf. The default value is PSHYPERLINK.

PARENT_FLAG If this node is a parent and its direct children are loaded now,
 set to Y. If this node is a parent and its direct children are
loaded on demand, set to X. If this node is not a parent, set to
N. The default value is N.

TREE_LEVEL_NUM Set to the level of the node. The default value is 1.

LEVEL_OFFSET If a child node is to appear more than one level to the right of
its parent, specify the number of additional levels. The default
value is 0.

DESCR_IMAGE Use to display an image after the node or leaf image and
before the name or description. The two images are separated
by a space. The new image is not scaled. This field takes
a string value, the name of an image definition created in
PeopleSoft Application Designer.

This field is only recognized if the TREECTL_VERSION
field is greater than or equal to 812.

Copyright © 1988, 2024, Oracle and/or its affiliates. 187

Using HTML Trees and the GenerateTree Function Chapter 9

Field Description

EXPANDED_FLAG When the EXPANDED_FLAG of a node is set to Y, the
GenerateTree function expects the immediate children of the
node to be loaded into the &TREECTL rowset (such as in
PostBuild), and GenerateTree generates HTML such that the
node is expanded and its immediate children appear.

Related Links
“CreateRowset” (PeopleCode Language Reference)

Using HTML Tree Actions (Events)
The GenerateTree function works with an HTML area control and an invisible field. When a user selects
a node, expands a node, collapses a node, or uses one of the navigation links, that event (user action) is
passed to the invisible field, and the FieldChange PeopleCode for the invisible field is executed.

The FieldChange PeopleCode example program (below) checks for expanding (or collapsing) a node and
selecting a node by checking the first character in the invisible field. The following example checks for
whether a node is selected:

If Left(TREECTLEVENT, 1) = "S" Then

In your application, you can check for the following user actions:

Event Description

Tn Expand or collapse the node, whichever is the opposite of
the previous state. N is the row number of the node in the
TREECTL_NODE rowset.

Xn Expand the node, but load the children first. The children
are loaded in PeopleCode, and then the event is passed to
GenerateTree so that the HTML can be generated with the
node expanded. N is the row number of the node in the
TREECTL_NODE rowset.

F Display the first page.

P Display the previous page.

N Display the next page.

L Display the last page.

Q Move the display left one level.

188 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Using HTML Trees and the GenerateTree Function

Event Description

R Move the display to the right one level.

Sn Select the node or leaf. N is the row number of the node or leaf
in the TREECTL_NODE rowset.

Note: Drag-and-drop functionality is not supported in an HTML tree.

Initializing HTML Trees
For this example, the PeopleCode for initializing the HTML tree was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

The PostBuild PeopleCode Example program is an example of how to initialize the HTML tree using the
Tree classes and load only the root node into the HTML tree rowset.

The first time a user expands a node, the direct children of the node are loaded into the HTML tree
rowset by the FieldChange PeopleCode Example program, shown in the following section. This chunking
functionality enables the HTML tree to support trees of any size with good performance.

You cannot simply copy either the PostBuild or FieldChange PeopleCode example programs into your
application. You must modify them to make them work with your data. You must make these changes to
the PostBuild PeopleCode to initialize HTML trees:

1. Set the PAGE_NAME and PAGE_FIELD_NAME fields.

The PAGE_NAME field contains the name of the page that contains the HTML area and the invisible
field that processes HTML tree events. The PAGE_FIELD_NAME field is the page field name of
the invisible field that is used to process the HTML tree events.

Note: The PAGE_FIELD_NAME field is the page field name of the invisible field, not the invisible
field name.

2. Set tree-specific variables.

The &SET_ID, &USERKEYVALUE, &TREE_NAME, &TREE_DT, and &BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the
example PeopleCode that follows, these variables are set as follows:

&SET_ID = PSTREEDEFN_VW.SETID;
&USERKEYVALUE = "";
&TREE_NAME = PSTREEDEFN_VW.TREE_NAME;
&TREE_DT = PSTREEDEFN_VW.EFFDT;
&BRANCH_NAME = "";

3. Set the PAGE_SIZE field.

If you do not want the page to expand vertically to display the tree, set the PAGE_SIZE to a number
of rows that will fit inside the HTML area. If some vertical expansion is okay, but you do not want the
page to get too large, set the PAGE_SIZE to whatever value you like. Set the PAGE_SIZE to 0 if you
do not care how big the page gets.

Copyright © 1988, 2024, Oracle and/or its affiliates. 189

Using HTML Trees and the GenerateTree Function Chapter 9

4. Set the DISPLAY_LEVELS field to the number of levels that will fit inside the HTML area.

If this field is set too large, wrapping may occur. Positional links at the top of the HTML area enable
the user to navigate as the tree expands.

5. (Optional) Set the DISPLAY_OPTION field.

The default for the DISPLAY_OPTION field is to display both the node name and the description.
You can display just the node name or just the description. The values for this field are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

6. (Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The
default for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK is not the style you want
to use, change this field value to the style you want.

7. Change the last line to assign the output of GenerateTree to the field attached to the HTML area that
will display the tree.

In the example that follows, the HTML area control is the DERIVED_HTML.HTMLAREA. You
must specify the record and field name associated with the HTML area control on your page.

PostBuild PeopleCode Example

The PeopleCode for initializing the HTML tree for this example was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

This example shows how to initialize the HTML tree using the tree classes and load only the root node
into the HTML tree rowset:

Component Rowset &TREECTL;

&NODE_ROWSET = CreateRowset(Record.TREECTL_NODE);
&TREECTL = CreateRowset(Record.TREECTL_HDR, &NODE_ROWSET);

&TREECTL.InsertRow(1);
&REC = &TREECTL.GetRow(2).GetRecord(1);

/* Set the HDR options:

1) PAGE_NAME - Name of the page that contains the HTML Area
and the invisible field that will be used to process the HTML
tree events.
2) PAGE_FIELD_NAME - Page field name of the invisible field that
will be used to process the HTML tree events.
3) PAGE_SIZE - Number of nodes or leaves to send to the browser at
a time.
Set to 0 to send all of the visible nodes or leaves to the browser.
Default value: 0

190 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Using HTML Trees and the GenerateTree Function

4) DISPLAY_LEVELS - Number of levels to display on the browser at
a time. Default value: 8
5) COLLAPSED_IMAGE - Collapsed node image name.
Default value: PT_TREE_COLLAPSED
6) EXPANDED_IMAGE - Expanded node image name.
Default value: PT_TREE_EXPANDED
7) END_NODE_IMAGE - End node image name.
Default value: PT_TREE_END_NODE
8) LEAF_IMAGE - Leaf image name. Default value: PT_TREE_LEAF
9) IMAGE_WIDTH - Image width.
All four images need to be the same size. Default value: 15
10) IMAGE_HEIGHT - Image height. Default value: 12
11) INDENT_PIXELS - Number of pixels to indent each level.
Default value: 20
*/
&REC.GetField(Field.PAGE_NAME).Value = "TREECTL_TEST";
&REC.GetField(Field.PAGE_FIELD_NAME).Value = "TREECTLEVENT";
&REC.GetField(Field.PAGE_SIZE).Value = 15;
&REC.GetField(Field.DISPLAY_LEVELS).Value = 8;
&REC.GetField(Field.COLLAPSED_IMAGE).Value = "PT_TREE_COLLAPSED";
&REC.GetField(Field.EXPANDED_IMAGE).Value = "PT_TREE_EXPANDED";
&REC.GetField(Field.END_NODE_IMAGE).Value = "PT_TREE_END_NODE";
&REC.GetField(Field.LEAF_IMAGE).Value = "PT_TREE_LEAF";
&REC.GetField(Field.IMAGE_WIDTH).Value = 15;
&REC.GetField(Field.IMAGE_HEIGHT).Value = 12;
&REC.GetField(Field.INDENT_PIXELS).Value = 20;

&SET_ID = PSTREEDEFN_VW.SETID;
&USERKEYVALUE = "";
&TREE_NAME = PSTREEDEFN_VW.TREE_NAME;
&TREE_DT = PSTREEDEFN_VW.EFFDT;
&BRANCH_NAME = "";

&MYSESSION = %Session;
&SRC_TREE = &MYSESSION.GetTree();
&RES = &SRC_TREE.OPEN(&SET_ID, &USERKEYVALUE, &TREE_NAME,
&TREE_DT, &BRANCH_NAME, False);

/* Just insert the root node into the &TREECTL Rowset.
If the root node has children, set the &PARENT_FLAG to 'X',
so that its children will be loaded on demand. */

&ROOT_NODE = &SRC_TREE.FindRoot();

If &ROOT_NODE.HasChildren Then
 &PARENT_FLAG = "X";
Else
 &PARENT_FLAG = "N";
End-If;

&NODE_ROWSET = &TREECTL.GetRow(2).GetRowset(1);
&NODE_ROWSET.InsertRow(1);
&REC = &NODE_ROWSET.GetRow(2).GetRecord(1);

/* Set the NODE values:

1) LEAF_FLAG - If this is a leaf set to "Y". Default value: N
2) TREE_NODE - Node name.
3) DESCR - Node description. (optional)
4) RANGE_FROM - Leaf's range from value.
5) RANGE_TO - Leaf's range to value.
6) DYNAMIC_FLAG - If this leaf has a dynamic range, set to "Y".
Default value: N
7) ACTIVE_FLAG - Set to "N" for the node or leaf not to be a link.
 Default value: Y
8) DISPLAY_OPTION - Set to "N" to display the name only.
Set to "D" to display the description only.
Set to "B" to display both the name and the description.
Only used for nodes. Default value: B
9) STYLECLASSNAME - Used to control the style of the link
associated with the node or leaf. Default value: PSHYPERLINK

Copyright © 1988, 2024, Oracle and/or its affiliates. 191

Using HTML Trees and the GenerateTree Function Chapter 9

10) PARENT_FLAG - If this node is a parent and its direct
children will be loaded now, set to "Y". If this node is a
parent and its direct children are to be loaded on demand,
set to "X". Default value: N
11) TREE_LEVEL_NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed more than
one level to the right of its parent, specify the number of
additional levels. Default value: 0
*/
&REC.GetField(Field.LEAF_FLAG).Value = "N";
&REC.GetField(Field.TREE_NODE).Value = &ROOT_NODE.NAME;
&REC.GetField(Field.DESCR).Value = &ROOT_NODE.DESCRIPTION;
&REC.GetField(Field.RANGE_FROM).Value = "";
&REC.GetField(Field.RANGE_TO).Value = "";
&REC.GetField(Field.DYNAMIC_FLAG).Value = "N";
&REC.GetField(Field.ACTIVE_FLAG).Value = "Y";
&REC.GetField(Field.DISPLAY_OPTION).Value = "B";
&REC.GetField(Field.STYLECLASSNAME).Value = "PSHYPERLINK";
&REC.GetField(Field.PARENT_FLAG).Value = &PARENT_FLAG;
&REC.GetField(Field.TREE_LEVEL_NUM).Value = 1;
&REC.GetField(Field.LEVEL_OFFSET).Value = 0;

&SRC_TREE.Close();
DERIVED_HTML.HTMLAREA = GenerateTree(&TREECTL);

Processing Events Passed from a Tree to an Application
To modify the FieldChange PeopleCode to load the direct children of the node into the HTML trees,
use the following FieldChange PeopleCode to process the events passed from an HTML tree to an
application. The code that processes the load children event loads the direct children of a node the first
time the node is expanded by the user. Changes that you must make to the FieldChange PeopleCode are as
follows.

1. Globally change TREECTLEVENT to the name of the invisible field used to process the events.

2. Set the tree-specific variables.

The &SET_ID, &USERKEYVALUE, &TREE_NAME, &TREE_DT, and &BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the
example PeopleCode that follows, they are set like this:

&SET_ID = PSTREEDEFN_VW.SETID;
&USERKEYVALUE = "";
&TREE_NAME = PSTREEDEFN_VW.TREE_NAME;
&TREE_DT = PSTREEDEFN_VW.EFFDT;
&BRANCH_NAME = "";

3. (Optional) Set the DISPLAY_OPTION field.

The default for the DISPLAY_OPTION field is to display both the node name and the description.
You can display just the node name or just the description. The values for this field are:

Field Value Description

N Display the name only.

D Display the description only.

192 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Using HTML Trees and the GenerateTree Function

Field Value Description

B Display both the name and description.

4. (Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The
default for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK is not the style you
want to use, change this field value to the style you want.

5. Change the assignment of the output of every GenerateTree call to the field attached to the HTML
area that will display the tree.

In this example, the HTML area control is the DERIVED_HTML.HTMLAREA. You must specify
the record and field name associated with the HTML area control on your page.

6. Change the code that processes the select event to perform the action you want when the user selects a
node or leaf.

This section is marked as Process Select Event in the following code sample.

FieldChange PeopleCode Example

The following is the PostBuild PeopleCode example:

Component Rowset &TREECTL;

/* process load children event */
If Left(TREECTLEVENT, 1) = "X" Then
 &ROW = Value(Right(TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
 &NODE_ROWSET = &TREECTL.GetRow(2).GetRowset(1);
 &PARENT_REC = &NODE_ROWSET.GetRow(&ROW).GetRecord(1);
 &PARENT_LEVEL = &PARENT_REC.GetField(Field.TREE_LEVEL_NUM).Value;
 &ROW = &ROW + 1;

 &SET_ID = PSTREEDEFN_VW.SETID;
 &USERKEYVALUE = "";
 &TREE_NAME = PSTREEDEFN_VW.TREE_NAME;
 &TREE_DT = PSTREEDEFN_VW.EFFDT;
 &BRANCH_NAME = "";

 &MYSESSION = %Session;
 &SRC_TREE = &MYSESSION.GetTree();
 &RES = &SRC_TREE.OPEN(&SET_ID, &USERKEYVALUE, &TREE_NAME,
&TREE_DT, &BRANCH_NAME, False);

 /* Find the parent node and expand the tree one level below
the parent. Insert just the direct children of the parent node
into the &TREECTL Rowset. If any of the child nodes have
children, set their PARENT_FLAG to 'X', so that their children
are loaded on demand. */

 &PARENT_NODE = &SRC_TREE.FindNode(&PARENT_REC.
GetField(Field.TREE_NODE).Value, "");
 If &PARENT_NODE.HasChildren Then
 &PARENT_NODE.Expand(2);

 If &PARENT_NODE.HasChildLeaves Then
 /* Load the child leaves into the &TREECTL Rowset. */
 &FIRST = True;
 &CHILD_LEAF = &PARENT_NODE.FirstChildLeaf;
 While &FIRST Or

Copyright © 1988, 2024, Oracle and/or its affiliates. 193

Using HTML Trees and the GenerateTree Function Chapter 9

 &CHILD_LEAF.HasNextSib
 If &FIRST Then
 &FIRST = False;
 Else
 &CHILD_LEAF = &CHILD_LEAF.NextSib;
 End-If;
 If &CHILD_LEAF.Dynamic = True Then
 &RANGE_FROM = "";
 &RANGE_TO = "";
 &DYNAMIC_RANGE = "Y";
 Else
 &RANGE_FROM = &CHILD_LEAF.RangeFrom;
 &RANGE_TO = &CHILD_LEAF.RangeTo;
 &DYNAMIC_RANGE = "N";
 End-If;

 &NODE_ROWSET.InsertRow(&ROW - 1);
 &REC = &NODE_ROWSET.GetRow(&ROW).GetRecord(1);

 /* Set the NODE values:

1) LEAF_FLAG - If this is a leaf set to "Y". Default value: N
2) TREE_NODE - Node name.
3) DESCR - Node description. (optional)
4) RANGE_FROM - Leaf's range from value.
5) RANGE_TO - Leaf's range to value.
6) DYNAMIC_FLAG - If this leaf has a dynamic range, set to "Y".
Default value: N
7) ACTIVE_FLAG - Set to "N" for the node or leaf not to be a link.
 Default value: Y
8) DISPLAY_OPTION - Set to "N" to display the name only.
Set to "D" to display the description only.
Set to "B" to display both the name and the description.
Only used for nodes. Default value: B
9) STYLECLASSNAME - Used to control the style of the link
associated with the node or leaf. Default value: PSHYPERLINK
10) PARENT_FLAG - If this node is a parent and its direct
children will be loaded now, set to "Y". If this node is a
parent and its direct children are to be loaded on demand,
set to "X". Default value: N
11) TREE_LEVEL_NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed more than
one level to the right of its parent, specify the number of
additional levels. Default value: 0
*/
 &REC.GetField(Field.LEAF_FLAG).Value = "Y";
 &REC.GetField(Field.TREE_NODE).Value = "";
 &REC.GetField(Field.DESCR).Value = "";
 &REC.GetField(Field.RANGE_FROM).Value = &RANGE_FROM;
 &REC.GetField(Field.RANGE_TO).Value = &RANGE_TO;
 &REC.GetField(Field.DYNAMIC_FLAG).Value =
&DYNAMIC_RANGE;
 &REC.GetField(Field.ACTIVE_FLAG).Value = "Y";
 &REC.GetField(Field.DISPLAY_OPTION).Value = "B";
 &REC.GetField(Field.STYLECLASSNAME).Value =
"PSHYPERLINK";
 /* Leaves never have children. */
 &REC.GetField(Field.PARENT_FLAG).Value = "N";
 &REC.GetField(Field.TREE_LEVEL_NUM).Value =
&PARENT_LEVEL + 1;
 &REC.GetField(Field.LEVEL_OFFSET).Value = 0;

 &ROW = &ROW + 1;
 End-While;
 End-If;

 If &PARENT_NODE.HasChildNodes Then
 /* Load the child nodes into the &TREECTL Rowset. */
 &FIRST = True;
 &CHILD_NODE = &PARENT_NODE.FirstChildNode;
 While &FIRST Or

194 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Using HTML Trees and the GenerateTree Function

 &CHILD_NODE.HasNextSib
 If &FIRST Then
 &FIRST = False;
 Else
 &CHILD_NODE = &CHILD_NODE.NextSib;
 End-If;
 If &CHILD_NODE.HasChildren Then
 &PARENT_FLAG = "X";
 Else
 &PARENT_FLAG = "N";
 End-If;

 /* If the tree uses strict levels, set the
&LEVEL_OFFSET to the number of levels that the child node is to
the right of its parent minus 1. */
 If &SRC_TREE.LevelUse = "S" Then
 &LEVEL_OFFSET = &CHILD_NODE.LevelNumber -
&PARENT_NODE.LevelNumber - 1;
 Else
 &LEVEL_OFFSET = 0;
 End-If;

 &NODE_ROWSET.InsertRow(&ROW - 1);
 &REC = &NODE_ROWSET.GetRow(&ROW).GetRecord(1);
 &REC.GetField(Field.LEAF_FLAG).Value = "N";
 &REC.GetField(Field.TREE_NODE).Value = &CHILD_NODE.Name;
 &REC.GetField(Field.DESCR).Value =
&CHILD_NODE.Description;
 &REC.GetField(Field.RANGE_FROM).Value = "";
 &REC.GetField(Field.RANGE_TO).Value = "";
 &REC.GetField(Field.DYNAMIC_FLAG).Value = "N";
 &REC.GetField(Field.ACTIVE_FLAG).Value = "Y";
 &REC.GetField(Field.DISPLAY_OPTION).Value = "B";
 &REC.GetField(Field.STYLECLASSNAME).Value =
"PSHYPERLINK";
 &REC.GetField(Field.PARENT_FLAG).Value = &PARENT_FLAG;
 &REC.GetField(Field.TREE_LEVEL_NUM).Value =
&PARENT_LEVEL + 1;
 &REC.GetField(Field.LEVEL_OFFSET).Value = &LEVEL_OFFSET;

 &ROW = &ROW + 1;
 End-While;
 End-If;

 /* change the parent's PARENT_FLAG from 'X' to 'Y' */
 &PARENT_REC.GetField(Field.PARENT_FLAG).Value = "Y";

 HTMLAREA = GenerateTree(&TREECTL, TREECTLEVENT);
 End-If;

 &SRC_TREE.Close();
Else

 /* Process select event. */

 /* As an example, just display the selected node name or
leaf range as a MessageBox. */

 If Left(TREECTLEVENT, 1) = "S" Then
 &ROW = Value(Right(TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
 &NODE_ROWSET = &TREECTL.GetRow(2).GetRowset(1);
 &REC = &NODE_ROWSET.GetRow(&ROW).GetRecord(1);
 If &REC.GetField(Field.LEAF_FLAG).Value = "N" Then
 MessageBox(0, "", 0, 0, "The selected node is %1.",
&REC.GetField(Field.TREE_NODE).Value);
 Else
 If &REC.GetField(Field.DYNAMIC_FLAG).Value = "N" Then
 If &REC.GetField(Field.RANGE_FROM).Value =
&REC.GetField(Field.RANGE_TO).Value Then
 &TEMP = "[" | &REC.GetField(Field.RANGE_FROM).
Value | "]";

Copyright © 1988, 2024, Oracle and/or its affiliates. 195

Using HTML Trees and the GenerateTree Function Chapter 9

 Else
 &TEMP = "[" | &REC.GetField(Field.RANGE_FROM).
Value | " - " | &REC.GetField(Field.RANGE_TO).Value | "]";
 End-If;
 Else
 &TEMP = "[]";
 End-If;
 MessageBox(0, "", 0, 0, "The selected leaf is %1.", &TEMP);
 End-If;
 Else
 /* process all other events */
 HTMLAREA = GenerateTree(&TREECTL, TREECTLEVENT);
 End-If;
End-If;

/* done processing the event, so clear it */
TREECTLEVENT = "";

Related Links
Using HTML Tree Actions (Events)

Adding Mouse-Over Ability to HTML Trees
To add mouse-over ability to HTML tree elements, you must add fields to the TREECTL_HDR_SBR
record and PeopleCode to the program to set the values and the images.

1. Add the following fields to the TREECTL_HDR_SBR (tree control header subrecord) record.

• COLLAPSED_MSGNUM

• COLLAPSED_MSGSET

• END_NODE_MSGNUM

• END_NODE_MSGSET

• EXPANDED_MSGNUM

• EXPANDED_MSGSET

• LEAF_NODE_MSGNUM

• LEAF_NODE_MSGSET

2. Add the following PeopleCode to set the message set and number for the mouse-over text:

&REC.GetField(Field.EXPANDED_MSGSET).Value = 2;
&REC.GetField(Field.EXPANDED_MSGNUM).Value = 903;
&REC.GetField(Field.COLLAPSED_MSGSET).Value = 2;
&REC.GetField(Field.COLLAPSED_MSGNUM).Value = 904;
&REC.GetField(Field.END_NODE_MSGSET).Value = 2;
&REC.GetField(Field.END_NODE_MSGNUM).Value = 905;
&REC.GetField(Field.LEAF_MSGSET).Value = 2;
&REC.GetField(Field.LEAF_MSGNUM).Value = 906;

3. Add the following fields to the TREECTL_NDE_SBR record:

• DESCR_MSGNUM

196 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 9 Using HTML Trees and the GenerateTree Function

• DESCR_MSGSET

4. Add PeopleCode to set the DESCR_MSGNUM and DESCR_MSGSET fields.

These two fields should be set to the correct message number and message set values that contain the
text to be used as the mouse-over text.

Adding Visual Selection Node Indicators
Sometimes, users need a visual indicator, such as a different color or style, to indicate which node is
selected. This example shows a selected node style:

To add selected node highlighting:

1. Add the field NODESELECTEDSTYLE to the TREECTL_HDR_SBR record.

2. Add PeopleCode to set the NODESELECTEDSTYLE field to provide the highlighting effect.

The NODESELECTEDSTYLE field takes the name of a style class.

The following example uses the PSTREENODESELECTED style:

&REC.GetField(Field.NODESELECTEDSTYLE).Value = "PSTREENODESELECTED";

You can set the style of the selected node when processing the select event.

Note: You also must reset the style of the previous selected node when processing the select event.
To find the previous selected node, you can search the node rowset looking for a node with a
STYLECLASSNAME equal to the style you set for selected nodes. Alternatively, you can keep a
global variable with the index of the node in the rowset. If you keep an index variable, however, you
may have to update the index when processing the load children event.

Specifying Override Images
You specify different images to represent the nodes in a tree by using the TREECTL_NODE record.

To specify override images:

1. Add the following fields to the tree control node record:

• OVERRIDE_IMAGE

• OVERRIDE_MSGSET

Copyright © 1988, 2024, Oracle and/or its affiliates. 197

Using HTML Trees and the GenerateTree Function Chapter 9

• OVERRIDE_MSGNUM

2. Add PeopleCode to use the override values when writing tree control node records.

198 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10

Working With File Attachments

Understanding the File Attachment Functions

This section provides an overview of:

• PeopleCode built-in file attachment functions.

• File attachment architecture.

• File attachment storage locations.

• Storage location URLs.

PeopleCode Built-in File Attachment Functions
All file attachments are performed using PeopleCode built-in functions, such as AddAttachment,
ViewAttachment, GetAttachment, and so on. These functions operate on and transfer files to and from
supported storage locations: database tables, FTP sites, HTTP, and Oracle Content and Experience Cloud
(CEC) repositories.

PeopleCode provides built-in file attachment functions that are organized into three categories:

• End user upload/download:

• AddAttachment

Use the AddAttachment function to upload one file from an end user specified location (local
storage or cloud storage) to a specified storage location.

See “AddAttachment” (PeopleCode Language Reference).

• MAddAttachment

Use the MAddAttachment function to upload one or more files from an end user specified
location (local storage or cloud storage) to a specified storage location.

See “MAddAttachment” (PeopleCode Language Reference).

• DetachAttachment

Use the DetachAttachment function to download a file from its source storage location and save it
locally on the end user machine. The file is sent to the browser with appropriate HTTP headers to
cause the browser to display a save as dialog box to the user.

See “DetachAttachment” (PeopleCode Language Reference).

• ViewAttachment

Copyright © 1988, 2024, Oracle and/or its affiliates. 199

Working With File Attachments Chapter 10

Use the ViewAttachment function to download a file from its source storage location and open it
locally on the end user machine.

See “ViewAttachment” (PeopleCode Language Reference).

• ShareAttachment

Use the ShareAttachment function to share files in Oracle Content and Experience Cloud (CEC).

See “ShareAttachment” (PeopleCode Language Reference).

• UnshareAttachment

Use the UnshareAttachment function to revoke sharing access to files in Oracle Content and
Experience Cloud (CEC).

See “UnshareAttachment” (PeopleCode Language Reference).

• Application server upload/download:

• PutAttachment

Use the PutAttachment function to upload a file from the file system of the application server to
the specified storage location.

See “PutAttachment” (PeopleCode Language Reference).

• GetAttachment

Use the GetAttachment function to download a file from its source storage location to the file
system of the application server.

See “GetAttachment” (PeopleCode Language Reference).

• Storage location maintenance:

• CleanAttachments

Use the CleanAttachments function to remove orphan files (files with no corresponding file
reference) from specified tables used as storage locations in the current database.

See “CleanAttachments” (PeopleCode Language Reference).

• CopyAttachments

Use the CopyAttachments function to copy all files with file references from one storage location
to another. The files to be copied can be limited to those referenced in specific file reference
tables.

See “CopyAttachments” (PeopleCode Language Reference).

• DeleteAttachment

Use the DeleteAttachment function to delete a file from the specified storage location.

200 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

See “DeleteAttachment” (PeopleCode Language Reference).

The following diagram illustrates the operation of the PeopleCode file attachment functions:

Because these functions abstract the storage of the attachments, you can use any defined storage location.
The location to be used is determined by the URL passed as the first parameter to the invoked attachment
function.

Related Links
Understanding File Attachment Storage Locations

Copyright © 1988, 2024, Oracle and/or its affiliates. 201

Working With File Attachments Chapter 10

Understanding URL Strings Versus URL Objects

Understanding the File Attachment Architecture
File attachments are supported by using PeopleCode built-in functions that implement the transfer of a
file to or from a storage location. Using the PeopleCode functions, files can be transferred back and forth
from the end user machine to the storage location (by way of the web server and application server) or
transferred back and forth from the application server file system to the storage location.

The following steps depict the process of transferring a file with the AddAttachment function:

1. The file is streamed from the browser to the servlet on the web server using a standard HTML form
construct.

Optionally, if virus scan is enabled, the stream in the HTTP servlet request is scanned by the virus
scan engine.

See Setting Up Virus Scanning.

Note: This transfer can be performed securely in an encrypted fashion if the web server uses Secure
Sockets Layer (SSL) to communicate to the browser.

Note: When the user selects a file for uploading, file size is not checked until after the file is
transferred to the web server. Once the file gets to the web server the file size is compared to the value
of the AddAttachment function's MaxSize parameter. The transfer is terminated if the file size exceeds
this parameter.

2. As the file stream is received by the web server, the file is streamed from the web server to the
application server in one-megabyte chunks until there is no streamed data available on the web server.

Note: The one-megabyte transfer chunk size between web server and application server cannot be
customized.

Note: The web server-to-application server transfer is performed by using Oracle Jolt, which is
securely encrypted. Because this transfer is done using the standard Oracle Jolt mechanism, no
additional settings to the firewall are required (you do not need to open additional ports).

3. The file chunks from the web server are transferred by the application server to a temporary table in
the database. The chunk size for this temporary storage depends on the ultimate storage location.

For database tables, the chunk size is governed by the value of the Maximum Attachment Chunk Size
field on the PeopleTools Options page. The chunk size in temporary storage can vary, but it never
exceeds this maximum attachment chunk size limit. For all other storage locations, the chunk size in
the temporary storage table is 16 KB.

4. Then, the application server transfers the file in chunks from the temporary database table to its
ultimate storage location.

Once the entire file is transferred, the application server deletes the temporary copy from the
PeopleTools table in the database.

202 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

Note: If the storage location is a database table, then the chunk size is exactly as specified by the
value of the Maximum Attachment Chunk Size field (except for the last chunk written, which can be
smaller than the maximum).

See File Attachment Chunk Size.

Note: If the storage location is an FTP site or an HTTP repository, the file is reassembled into a whole
file at the destination.

Note: The file transfer process for MAddAttachment is, in general, similar to the process for
AddAttachment. With a call to MAddAttachment, the files are streamed from the browser to the web
server in bulk but from the web server through to the storage location one file at a time.

Copyright © 1988, 2024, Oracle and/or its affiliates. 203

Working With File Attachments Chapter 10

The following diagram depicts this process of transferring a file with the AddAttachment function:

The file attachment architecture is designed for use in the frame template or the iframe template only.
It is not supported in a pagelet or an HTML template. When content is rendered in a pagelet or HTML
template, the user interaction is managed through the PeopleSoft portal servlet. For the file attachment
architecture to work, the browser must communicate directly with the PeopleSoft content servlet, which
requires the use of the frame or iframe template.

Related Links
“Understanding Portal Templates” (Portal Technology)
“Understanding Template Types” (Portal Technology)

204 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

Understanding File Attachment Storage Locations
PeopleTools supports three types of storage locations: database tables, FTP sites, and HTTP repositories.
Except for the CleanAttachments function, all PeopleCode file attachment functions support all three
storage locations. The CleanAttachments function operates only on database tables as storage locations.

This section provides an overview of the following:

• Database storage considerations

• FTP site considerations

• HTTP repository considerations

Important! The following applies to FTP sites and HTTP repositories on Windows only:
When uploading to a Windows file system or downloading files from a Windows file system, remember
that Windows processes file names in a case-insensitive manner. So, for example, if a file called
FILE1.TXT already exists at a particular location on a Windows file system:
Attempting to download a file called file1.txt from that same location will have the effect of downloading
the file FILE1.TXT that is there.
Attempting to upload a file called file1.txt to that same location will have the effect of overwriting the file
FILE1.TXT that is there.

Database Storage Considerations

To store file attachments in the database, you must create a target table to store the attachments
themselves. The record definition associated with this target table must include the FILE_ATTDET_SBR
subrecord and no other fields.

This chapter contains additional information on how to create the target table.

See Application Development Process Overview.

When the storage location is a database table, the URL parameter of the invoked file attachment function
can be specified in one of two ways:

• A URL string in the form of:

record://MYRECORD

In this case, MYRECORD is the record definition associated with the target table.

• A URL identifier in the form of:

URL.URL_ID

In this case, the URL identifier refers to the URL object named URL_ID.

FTP Site Considerations

When the storage location is an FTP site, the URL can be defined in one of two ways:

• A URL string in the form of:

ftp://FTP_user:FTP_pwd@FTP_site/path

Copyright © 1988, 2024, Oracle and/or its affiliates. 205

Working With File Attachments Chapter 10

Important! FTPS and SFTP require that a URL object be used and do not support URL strings. This
form of URL string is for use with the FTP protocol only.

• A URL identifier in the form of:

URL.URL_ID

In this case, the URL identifier refers to the URL object named URL_ID.

When specifying a URL for an FTP site, specify the FTP server's name or its IP address. Specify a path
on the FTP server relative to the directory specified as the FTP server's home directory.

Note: For many FTP servers, the FTP server's home directory is specifiable on a per-FTP-user basis.
Therefore, if an application will be using multiple FTP user accounts, then care must be take to ensure
that files are being stored and accessed in a consistent manner with respect to their absolute location on
the FTP server.

The default FTP port is 21. If you want to use a different port, you must specify it in the URL, as part of
the FTP server address. For example:

ftp://ftpserver.example.com:6000/

Note: If the specified subdirectories do not exist the PeopleCode function tries to create them.

The following limitations apply to FTP URLs:

• The FTP user name to is limited to 30 characters.

• The FTP password to is limited to 16 characters.

HTTP Repository Considerations

When the storage location is an HTTP repository, the URL parameter of the invoked file attachment
function must be specified as a URL identifier in the form of:

URL.URL_ID

In this case, the URL identifier refers to the URL object named URL_ID.

An HTTP repository can reside on a PeopleSoft web server, or on a non-PeopleSoft web server
environment. If the HTTP repository resides on a PeopleSoft web server, then the psfiletransfer servlet
has been provided to manage the file transfers to and from the storage location. You should specify
appropriate URL properties, for example, for the HTTP protocol, you should specify the USER and
USEAUTHTOKEN properties. The URL properties specific for each protocol are described in detail in
the URL Maintenance topic in the System and Server Administration Guide.

See “URL Maintenance” (System and Server Administration), Specifying Properties for HTTP URLs and
Specifying Properties for HTTPS URLs.

If the HTTP repository resides on a non-PeopleSoft web server, then you need to ensure that the web
server can handle file transfer security and requests. Additionally, you should ensure that the repository
supports adding attachments (POST method), viewing attachments (GET method), and deleting
attachments (DELETE method). If required, you may configure additional URL properties based on your
business requirements using the URL maintenance page. For more information on URL properties, see

206 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

“URL Maintenance” (System and Server Administration) and “Maintain URL Properties” (System and
Server Administration).

When you plan to use the non-PeopleSoft web server as an HTTP repository, check your web server
documentation for its capabilities to use with the file-attachment PeopleCode functions.

Understanding URL Strings Versus URL Objects
The URL parameter of the invoked file attachment function includes both the protocol to be used and the
address for a storage location. These URLs can be specified as ad hoc strings at run time in certain limited
cases. Alternatively, they can be defined and maintained as URL objects, which include an identifier,
the URL itself, and additional URL properties. Oracle recommends that you always use URL objects
since that approach gives you the flexibility of later changing the storage location of your files without
having to modify your PeopleCode or the contents of any file reference tables used. Moreover, the
FILE_EXT_LIST property of a URL object allows you to specify a file extension list, which is the most
straightforward way to restrict the file types that can be uploaded to or downloaded from your PeopleSoft
system. File extension lists cannot be applied to ad hoc URL strings.

See Restricting the File Types That Can Be Uploaded or Downloaded.

URL objects are created and maintained using the URL Maintenance page (PeopleTools, Administration,
Utilities, Maintain URLs). The length of the full URL is limited to 254 characters. Certain protocols—
specifically, FTPS, SFTP, HTTP, and HTTPS—require the use of URL objects because other information
in addition to the URL itself are required. This additional information is defined as URL properties on the
associated URL Properties page.

Note: For database tables and the FTP protocol only, the storage location can be specified as an ad hoc
string at run time because these file transfer methods do not require additional URL properties.

PeopleTools: System and Server Administration contains detailed information on creating and maintaining
URL objects.

See “URL Maintenance” (System and Server Administration)

The following are examples of some valid storage location URLs:

record://MYAPP_ATT_CNTNT
ftp://user01:password@ftpserver.example.com/myfiles
ftps://ftp_user:usr_pwd@ftps.example.com:6000/images
sftp://usr10:pwd@ftp.example.com/attachments
http://www.example.com:8080/psfiletransfer/ps/docs
https://www.example.com:8090/psfiletransfer/empl/docs

Developing Applications that Use File Attachment Functions

This section provides an overview of the application development process and discusses:

• Delivered record definitions.

• Managing entries in file reference tables.

• Using the PeopleTools Test Utilities page.

Copyright © 1988, 2024, Oracle and/or its affiliates. 207

Working With File Attachments Chapter 10

Application Development Process Overview
Follow these steps to develop an application that uses file attachments:

1. Create an application-specific, default storage location.

Oracle recommends that you use a database table as the default storage location so that it is available
to you during application development, and to customers as a default when the application is installed.
You must include the FILE_ATTDET_SBR subrecord in the record definition associated with this
target table; the record definition must have no other fields.

Create a storage location that is unique to your application. (Specifically, to avoid potential file name
conflicts and unintended file overwrites, do not share storage locations among applications.) For
example, create a record definition named MYAPP_ATT_CNTNT and build the associated database
table. If you need to store other information, store it as part of the file reference, as described in the
step 3, or create another record and use it in the component.

2. Create a URL object that corresponds to your default storage location.

See Understanding URL Strings Versus URL Objects.

3. Create an application-specific record definition to define the table that will store file reference
information and any additional information about the file attachments. You must include the
FILE_ATTACH_SBR subrecord in this new record definition.

For example, create a new record called MYAPP_ATT_REF. Add fields for any other information
related to the transaction you want to store. Your application must populate the fields in this file
reference table with the system file name, user file name, and any information about the file that will
be needed for later use.

Note: Create a file reference record that is specific to your application. In addition, you should
consider whether to create a separate file reference record for each storage location. Doing so can
prevent file name conflicts, eliminates the need to store the URL string or URL identifier with each
file reference, and can ease the use of the CopyAttachments function.

See Considerations When Using CopyAttachments.

4. Clone the FILE_ATTACH_WRK record to create an application-specific derived/work record with a
unique name. Save the PeopleCode with the new record.

For example, create a record named MYAPP_ATT_WRK by cloning FILE_ATTACH_WRK. You can
use this copy of the sample PeopleCode as the basis for your own application.

Important! The FILE_ATTACH_WRK record is delivered as a sample only. It is not intended for
direct use as part of an application running in production. Instead an application-specific clone of it
must be used. Oracle can change the delivered sample PeopleCode in future releases. Any application
that directly uses the FILE_ATTACH_WRK record might fail. Using application-specific PeopleCode
makes it easier to manage during upgrades and your PeopleCode can be reused in other components
that use file attachment functionality.
You must also implement the PeopleCode to manage the data in your file reference table (or tables).

5. Use the records you created in the previous steps to create the file attachment component and page.

208 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

The derived/work record has fields with FieldChange PeopleCode that you can use for Add, Delete,
Detach, and View buttons.

Add PeopleCode—probably at the component record field level—to invoke the underlying functions
in the application-specific derived/work record when the user clicks on one of the buttons.

Delivered Record Definitions
The following table summarizes the delivered record definitions for use in a file attachment application:

Record Example Description

FILE_ATTDET_SBR MYAPP_ATT_CNTNT Insert this subrecord in any record
definition for target tables that will store
attached files. Do not add other fields to
this record.

FILE_ATTACH_SBR MYAPP_ATT_REF Insert this subrecord in any application-
specific record for tables that will store
references to attached files. The fields in
this subrecord store the system file name
and the user file name.

FILE_ATTACH_WRK MYAPP_ATT_WRK Clone this derived/work record to
create your own application-specific
derived/work record. In your application-
specific derived/work record, you can
modify your copy of the delivered
sample code to meet your file attachment
requirements and manage your file
reference table (or tables).

FILE_ATTDET_SBR Subrecord

To use a database table as a storage location, you must create an application-specific record
definition associated with the target table that will receive the attachments. You must include the
FILE_ATTDET_SBR subrecord in your application-specific record, and it can contain no additional
fields.

The FILE_ATTDET_SBR subrecord has the following fields:

Copyright © 1988, 2024, Oracle and/or its affiliates. 209

Working With File Attachments Chapter 10

Field Description

ATTACHSYSFILENAME The system file name, which must be unique to the storage
location in order to avoid unintended file overwrites.
 Furthermore, if the file reference table to be used will contain
references to file stored at more than one storage location, then
the system file name must also be unique to that table.

The value of the ATTACHSYSFILENAME field in the
corresponding row of the file reference table must be identical
to this value.

ATTACHSYSFILENAME is a 128-character field.

FILE_SEQ The file sequence number (to support file chunking).

VERSION Version number.

FILE_SIZE The physical size of the file chunk.

LASTUPDDTTM Last update date and time.

LASTUPDOPRID The user ID of the last user to update the attachment.

FILE_DATA The data of the file chunk.

PeopleTools maintains the values in this table. Therefore, do not reuse the fields in this table to store
incomplete or nonstandard versions of the file name or other data.

FILE_ATTACH_SBR Subrecord

You must insert the FILE_ATTACH_SBR subrecord in the application-specific record definition to be
associated with the table that will store references to the attached files. The fields in this subrecord store
the system file name and the user file name.

The FILE_ATTACH_SBR subrecord contains the following fields:

210 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

Field Description

ATTACHSYSFILENAME The system file name (the name of the file as it exists at the
storage location).

Among other things, this means that if the file is stored in a
database table, then the value in this field must be identical to
the value of the ATTACHSYSFILENAME field in the rows
that correspond to the file chunks in the database table.

ATTACHSYSFILENAME is a 128-character field.

ATTACHUSERFILE The user file name (the name that the end user associates with
the file).

ATTACHUSERFILE is a 64-character field.

Your application must populate these fields with the system file name, user file name, and any
information about the file that will be needed for later use.

See Managing Entries in File Reference Tables.

FILE_ATTACH_WRK Derived/Work Record

The FILE_ATTACH_WRK derived/work record provides sample PeopleCode programs that demonstrate
how to use the file attachment PeopleCode built-in functions. Clone this derived/work record so that you
can customize the programs to suit your application's needs.

The FILE_ATTACH_WRK derived/work record contains the following fields:

Field Description

ATTACHADD Contains a PeopleCode program used for uploading an
attachment from an end-user machine to the specified storage
location (via the AddAttachment built-in function).

ATTACHDET Contains a PeopleCode program used for downloading an
attachment from the specified storage location to be saved
on the end-user machine (via the DetachAttachment built-in
function).

ATTACHDELETE Contains a PeopleCode program used for deleting an
attachment from the specified storage location (via the
DeleteAttachment built-in function).

Copyright © 1988, 2024, Oracle and/or its affiliates. 211

Working With File Attachments Chapter 10

Field Description

ATTACHUTIL Contains a user-defined PeopleCode function that can be
called to determine (by file name extension) whether the
attachment operation will be permitted on a file. In this
function, an array of file name extensions identifies which
types of files will be regarded as impermissible.

Note: The sample PeopleCode programs included in the
FILE_ATTACH_WRK derived/work record invoke this user-
defined PeopleCode function.

ATTACHVIEW Contains a PeopleCode program used for downloading an
attachment from the specified storage location to be viewed
on the end-user machine (via the ViewAttachment built-in
function).

The PeopleTools Test Utilities page demonstrates a sample application that makes use of the PeopleCode
programs in the FILE_ATTACH_WRK derived/work record.

See Using the PeopleTools Test Utilities Page.

Managing Entries in File Reference Tables
When you create a file attachment application, you create an application-specific record to be associated
with the table that will store file reference information and any additional information about the file
attachments. You must include the FILE_ATTACH_SBR subrecord in this new record. For example,
you might create a new record called MYAPP_ATT_REF. Then, you would add fields for any other
information related to the transaction you want to store.

Your application must populate these fields with the system file name, user file name, and any
information about the file that will be needed for later use. Your application should use the fields in file
reference tables as follows:

• When your application is uploading files (for example, with AddAttachment):

• ATTACHSYSFILENAME – Save the system file name in the ATTACHSYSFILENAME field.
This is the name of the file as it exists at the storage location and is also a key field of your file
reference table.

Note: ATTACHSYSFILENAME is a 128-character field.

• ATTACHUSERFILE – Save the user file name, which is the value returned by AddAttachment
in its UserFile parameter. This is essentially the base name of file selected by the end user for
uploading and would be used to allow end users to identify the file in other file attachment
operations (such as viewing, downloading, or deleting).

Note: ATTACHUSERFILE is a 64-character field.

212 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

• When your application is downloading or deleting files (for example, with ViewAttachment,
DetachAttachment, or DeleteAttachment):

• ATTACHUSERFILE – Use the ATTACHUSERFILE field to present a list of available files for
end user selection. This field is also passed as a parameter to some of the built-in PeopleCode
functions.

• ATTACHSYSFILENAME – Use the ATTACHSYSFILENAME field (along with the
ATTACHUSERFILE field, for some of the built-in PeopleCode functions) to construct the
parameters to be passed to the built-in PeopleCode functions.

Related Links
Delivered Record Definitions

Using the PeopleTools Test Utilities Page
Access the PeopleTools Test Utilities page (PeopleTools > Utilities > Debug > PeopleTools Test
Utilities).

The PeopleTools Test Utilities page contains a sample file attachment application that allows you to
upload (Attach button), save (Detach button), delete (Delete button), and open (View button) a file
attachment. The page allows you to specify a storage location as a URL identifier or as an ad hoc string.
After clicking the Attach button, you are prompted to select a file to upload to the storage location. Once
the selected file has been successfully uploaded, buttons appear that allow you to open, save, or delete
that file from its storage location.

Note: This demonstration application permits the user to enter a URL of up to 120 characters only.

The actual page definition involved, PSTESTUTIL, contains buttons that execute FieldChange
PeopleCode programs in the FILE_ATTACH_WRK derived/work record definition. These programs are
provided as working examples of how to use the following file attachment functions: AddAttachment,
DeleteAttachment, DetachAttachment, and ViewAttachment. If you are developing a file attachment
application, you can clone the FILE_ATTACH_WRK derived/work record definition and modify the
copied programs to fit your application’s file processing requirements.

Important! Do not modify the delivered FILE_ATTACH_WRK record definition or the PeopleCode
programs it contains. In addition, do not directly call these PeopleCode programs from any PeopleCode
programs you implement. Oracle might modify these sample programs in a future release of PeopleTools.

See Delivered Record Definitions.

The FILE_ATTACH_WRK derived/work record definition also demonstrates a programmatic
methodology for restricting file types. The IsLegalAttachmentType function compares a given file to an
internally defined array of illegal file extensions. This programmatic methodology can be contrasted with
restricting file types through the use of file extension lists. File extension lists can be provide an easier,
more flexible, and more manageable approach to restricting file types than a programmatic method.

Important! Do not combine these two methodologies in the same application.

See Restricting the File Types That Can Be Uploaded or Downloaded.

Copyright © 1988, 2024, Oracle and/or its affiliates. 213

Working With File Attachments Chapter 10

Application Development Considerations

This section discusses:

• File name considerations.

• Restrictions on invoking functions in certain PeopleCode events.

• Converting file names for files uploaded by PutAttachment.

• Considerations when using CopyAttachments.

File Name Considerations
If the source file name specified using one of the file attachment contains any of the following characters,
the invoking function will be stopped and an error (%Attachment_Failed) is returned. The actual error
message can be found in the logs.

• * (asterisk)

• : (colon)

• " (quotation mark)

• < (less than symbol)

• > (greater than symbol)

• ? (question mark)

• / (forward slash)

• \ (backslash)

• | (vertical bar or pipe)

File names that contain Unicode characters are not supported on a non-Unicode database. In this case, the
file attachment fails and an error (%Attachment_Rejected) is returned.

When the file is uploaded to or downloaded from a storage location, the following characters are replaced
with an underscore:

• (space)

• @ (at sign)

• ; (semicolon)

• + (plus sign)

• % (percent sign)

• & (ampersand)

• ' (apostrophe)

214 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

• ! (exclamation point)

• # (pound sign)

• $ (dollar sign)

Note: In general, you should exercise caution when using an @ or : character in the name of a file
selected for uploading. In FTP URLs, the : character must to be used as a delimiter between the FTP user
ID and the FTP password or just before the FTP port number (if one is specified). In addition, in FTP
URLs, the @ character must be used as a delimiter between the FTP password and the FTP server address.

Restrictions on Invoking Functions in Certain PeopleCode Events
Because AddAttachment, DetachAttachment, MAddAttachment, and ViewAttachment are interactive,
they are known as “think-time” functions. This means that these functions should not be used in any of
the following PeopleCode events:

• SavePreChange

• SavePostChange

• Workflow

• RowSelect

• Any PeopleCode event that initiates as a result of a Select or SelectNew method, or any of the
ScrollSelect functions.

If you want to transfer files in a non-interactive mode with functions that aren't think-time functions, see
GetAttachment and PutAttachment.

Related Links
“Select” (PeopleCode API Reference)
“SelectNew” (PeopleCode API Reference)
Think-Time Functions

Converting File Names for Files Uploaded by PutAttachment
Generally, a PeopleCode program that calls PutAttachment will also need to save (for later use) the name
of each uploaded file as it ended up actually being named at the specified storage location. However, the
destination file name (which may have been converted as described in “File Name Considerations”) is not
passed back to the PutAttachment function. So, the only way for your PeopleCode program to ensure that
it is saving the correct name is to either avoid using special characters in the destination file name or to
simulate the conversion process in something like the following example:

&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, " ", "_");
&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, ";", "_");
&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "+", "_");
&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "%", "_");
&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "&", "_");
&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "'", "_");
&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "!", "_");
&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "@", "_");
&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "#", "_");

Copyright © 1988, 2024, Oracle and/or its affiliates. 215

Working With File Attachments Chapter 10

&ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "$", "_");

Note: Unlike the PutAttachment function, the AddAttachment function automatically returns the
converted file name for reference and later use. For example, the file name My Resume.doc is returned
through the AddAttachment function as My_Resume.doc, with the space converted to an underscore.

Related Links
File Name Considerations

Considerations When Using CopyAttachments
CopyAttachments does not modify the contents of any of the associated file reference tables. You must
design your application in such a way that using CopyAttachments does not, by itself, require any
subsequent changes to the contents of any of the associated file reference tables.

Application Deployment and System Configuration
Considerations

This section discusses:

• File attachment functions in an environment with multiple application server domains.

• Configuring the web server to support additional MIME types.

• Restricting the file types that can be uploaded or downloaded.

• Setting up virus scanning.

• Using the HTML sanitizer.

• Considerations when attaching text files.

• File attachment chunk size.

• Using interfaces to the CopyAttachments and CleanAttachments functions.

The topics in this section are of interest primarily to customers deploying file processing applications, and
secondarily to application developers.

File Attachment Functions in an Environment with Multiple Application
Server Domains

In an environment involving multiple application server domains, a call to one of the PeopleCode file
attachment functions must not be passed a parameter designating a file that is located on the file system
of a particular application server domain. The problem is that at the time of the call, the application server
domain currently in use (as a consequence of load-balancing) might not be the application server domain
that has the file in question. In this case, a file-not-found error would result. For example, this may be an
issue for a call to PutAttachment, or this might cause a call to GetAttachment to result in the file being
downloaded to an unexpected location (the file system of the wrong application server domain) or to fail
entirely if the specified destination directory does not exist on the application server domain currently in

216 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

use. Therefore, the path to the local file must be specified with this in mind by creating directories that
can be comparably accessed regardless of which application server domain actually services the request at
runtime.

Configuring the Web Server to Support Additional MIME Types
When a browser attempts to open a file attachment, the browser invokes a viewer based on the MIME
(Multipurpose Internet Mail Extensions) type sent in the response header from the web server. For
example, if the user tried to view an MP3 file, the response header sent to the browser by the web server
would indicate the audio/MPEG content type:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Mon, 01 Oct 2001 21:25:51 GMT
Content-Type: audio/mpeg
Accept-Ranges: bytes
Last-Modified: Mon, 01 Oct 2001 21:00:26 GMT
ETag: "78e21918bc4ac11:cc8"
Content-Length: 60

Notice that the content-type is audio/mpeg. The browser uses this MIME type to determine that the
viewer for audio/MPEG is the appropriate application to open this attachment. If the web server did not
send this content-type header, the browser would not be able to determine the nature of the file being
transmitted, and it would be unable to invoke the correct viewer application. The browser would try to
display the file as text/plain, which is often the wrong behavior.

The web server maps file extensions to MIME types through entries in a web.xml configuration file. A
copy of web.xml is deployed to each web server instance when it is installed. After a web server instance
is created, edit its deployed copy to add any additional MIME types.

The location of the deployment copies varies depending on the web server:

Web Server Location of Deployment Copy

WebLogic PS_HOME/webserv/web_server/applications/peoplesoft/
PORTAL.war/WEB-INF/web.xml

See your web server documentation for the name and location of the master copy of this configuration
file.

This file contains definitions similar to the following:

 <mime-mapping>
 <extension>
 doc
 </extension>
 <mime-type>
 application/msword
 </mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>
 xls
 </extension>
 <mime-type>
 application/vnd.ms-excel
 </mime-type>
 </mime-mapping>

Copyright © 1988, 2024, Oracle and/or its affiliates. 217

Working With File Attachments Chapter 10

Let's say you want to add a mapping that causes .log files to be interpreted as regular text files. To
determine the correct MIME type, check RFC (Request for Comments) documents 2045, 2046, 2047,
2048, and 2077, which discuss internet media types and the internet media type registry.

After checking the RFCs, you determine that the correct MIME type is text/plain. The following is an
example of code you would add to the previous section of the configuration file:

 <mime-mapping>
 <extension>
 log
 </extension>
 <mime-type>
 text/plain
 </mime-type>
 </mime-mapping>

Once you save the file, the .log extension is associated with the content type of text/plain.

Note: You must restart your web server before these changes are recognized.

Note: When trying to view the objects, the extension must exactly match what is set up in the web.xml
file. This value is case-sensitive. Therefore, if the PreserveCase parameter has been used when uploading
files, it will be necessary to add a MIME type entry for each case-permutation of the file extension in
question. If the object view appears garbled, chances are that either the extension is not set up in the
web.xml file or there is a case mismatch.

Also see the documentation for your web server.

Restricting the File Types That Can Be Uploaded or Downloaded
You can restrict the file types that can be uploaded to or downloaded from your PeopleSoft system.
The file type restrictions apply to the AddAttachment, DetachAttachment, MAddAttachment, and
ViewAttachment functions. Allowable or disallowed file extensions are managed through a file extension
list and through the FILE_EXT_LIST property of the URL object.

Note: File extension lists cannot be applied to ad hoc URL strings.

PeopleTools: System and Server Administration contains detailed information on creating and maintaining
file extension lists.

See “File Extension List” (System and Server Administration).

Setting Up Virus Scanning
Virus scanning can be performed on all files uploaded with the AddAttachment, InsertImage, and
MAddAttachment functions.

For instructions on setting up virus scanning, see “Enabling Virus Scanning for Web Servers” (Security
Administration).

218 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

Using the HTML Sanitizer

Setting Up the HTML Sanitizer

The HTML sanitizer is used to scan and sanitize HTML files uploaded with the AddAttachment and
MAddAttachment functions. To use the HTML sanitizer, you configure a allowlist file to specify the files
to be scanned and sanitized by file extension along with the specific HTML tags to be allowed.

Note: If virus scanning is also configured on this web server, virus scanning is performed on the file
before the HTML sanitizer is run.

To enable and configure the HTML sanitizer on your web server:

1. Locate the HTMLAllowlist.xml file for WebLogic server:

PS_CFG_HOME\webserv\web_server\applications\peoplesoft\PORTAL.war\WEB-INF\clas⇒

ses\psft\pt8\htmlsanitizer\

2. Edit the HTMLAllowlist.xml file to enable the HTML sanitizer:

<Sanitizer enable="True">

3. Explicitly specify each file extension that you want to be scanned and sanitized. In the following
example, only files with an extension of html will be scanned and sanitized. All other files will not
pass through the HTML sanitizer:

 <AppliedFileExtentions>
 <Extention>html</Extention>
<!-- <Extention>htm</Extention>
 <Extention>shtml</Extention>
 <Extention>xhtml</Extention>
 <Extention>hta</Extention> -->
 </AppliedFileExtentions>

Note: File extension specifications are case sensitive; HTML and hTML are not equivalent to html.

4. Identify the tags that you want to be allowed (written) as tags themselves in the HTML output.

• Identify the tags for container elements— for example, <html>, <head>, and <body>.

• Identify the tags for content elements—for example, <p>, headings (<h1>, <h2>, and so on), lists
(, ,), and other content elements.

• Identify the tags for additional content attributes—for example, <id>, <src>, <height>, and so on.

• If a tag is not specified in the allowlist file, then the tag itself will be stripped from the HTML
output. However, the content of the tag will still be allowed in the output.

• Conversely, to strip the content of the tag (but not the tag itself), use allowtext="False".

5. Explicitly specify each tag for the container elements as well as whether to allow untagged text
content within those container tags. The following example allows the <html>, <head>, and <body>
tags along with untagged text:

 <Element name="html" allowtext="True">
 </Element>

Copyright © 1988, 2024, Oracle and/or its affiliates. 219

Working With File Attachments Chapter 10

 <Element name="head" allowtext="True">
 </Element>

 <Element name="body" allowtext="True">
 </Element>

Note: Allowing untagged text within a container element will ensure that line breaks are not stripped
from files that pass through the HTML sanitizer.

6. Explicitly specify each tag for content elements and their attributes. As an example, the following
entries allow <title>, <p>, and tags. However, the text within the tag is disallowed and
stripped from the HTML output:

 <Element name="p" allowtext="True">
 </Element>

 <Element name="b" allowtext="False">
 </Element>

 <Element name="title" allowtext="True">
 </Element>

In this example, the src attribute is allowed for the tag:

 <Element name="img" allowtext="False">
 <Attribute name="src">
 </Attribute>
 </Element>

Testing the HTML Sanitizer

You can use the PeopleTools Test Utilities page to test the settings you’ve made in the
HTMLAllowlist.xml file. To test the HTML sanitizer:

1. Select PeopleTools > Utilities > Debug > PeopleTools Test Utilities.

2. In the URL Id or String URL field, enter the following URL ID: URL.FILEDB

3. Click the Attach button and browse to select an HTML file to upload for the test.

4. Click the View button to view the sanitized file in a new browser tab. Click the Detach button to
download the sanitized file.

If the file is uploaded successfully and no problems are encountered by the HTML sanitizer, the
AddAttachment or MAddAttachment function returns %Attachment_Succeeded. If a problem is
encountered, the PeopleCode function returns one the following return codes (which are the same codes
as used by the virus scan engine):

Numeric Value Constant Value Description

13 %Attachment_ViolationFound File violation detected by HTML
sanitizer.

14 %Attachment_VirusScanError HTML sanitizer error.

220 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

Numeric Value Constant Value Description

15 %Attachment_VirusConfigError HTML sanitizer configuration error.

16 %Attachment_VirusConnectError HTML sanitizer connection error.

Example

The following example presents:

• An example of a configured HTMLAllowlist.xml file.

• A sample HTML input file.

• The HTML output of the HTML sanitizer.

Example HTMLAllowlist.xml

The following code provides an example of a simple allowlist file to demonstrate the inclusion and
exclusion of tags as well as the effects of the allowtext setting:

<?xml version="1.0" encoding="UTF-8"?>
<!--HTML white listing configuration file -->
<Sanitizer enable="True">
 <AppliedFileExtentions>
 <Extention>html</Extention>
<!-- <Extention>htm</Extention>
 <Extention>shtml</Extention>
 <Extention>xhtml</Extention>
 <Extention>hta</Extention> -->
 </AppliedFileExtentions>

 <Element name="html" allowtext="True">
 </Element>

 <Element name="head" allowtext="True">
 <Element name="title" allowtext="True">
 </Element>
 </Element>

 <Element name="body" allowtext="False">

 <Element name="p" allowtext="True">
 </Element>

 <Element name="b" allowtext="False">
 </Element>

 <Element name="style" allowtext="True">
 </Element>

<!-- <Element name="img" allowtext="False">
 <Attribute name="src">
 </Attribute>
 </Element>

 <Element name="a" allowtext="True">
 <Attribute name="href">
 <AllowURL>True</AllowURL>
 <RegularExp>(?:ht|f)tps?:.*</RegularExp>
 </Attribute>
 </Element>

Copyright © 1988, 2024, Oracle and/or its affiliates. 221

Working With File Attachments Chapter 10

 <Element name="h1" allowtext="True">
 </Element>
 </Element> -->

 </Element>

</Sanitizer>

Sample HTML File

The following code presents the contents of a simple HTML file. The line numbers are included for
reference only and are not part of the file:

[01] <!DOCTYPE html>
[02] <html>
[03] <head>
[04] <title>
[05] A Simple HTML Document
[06] </title>
[07] </head>
[08] <body>
[09] <h1>The Heading</h1>
[10] <p>This is a very simple HTML document. One sentence uses bold.</p>
[11] <p>It only has two paragraphs. Another sentence uses <i>italics</i>.</p>
[12] </body>
[13] </html>

The browser displays this example HTML file as follows:

Example of Sanitized HTML Output

The following code presents the sanitized HTML output of the simple HTML file. Similarly, the line
numbers are included for reference only and are not part of the file:

[01]
[02] <html>
[03] <head>
[04] <title>
[05] A Simple HTML Document
[06] </title>
[07] </head>
[08] <body>The Heading<p>This is a very simple HTML document. One sentence uses <b⇒

222 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

>.</p><p>It only has two paragraphs. Another sentence uses italics.</p></body>
[09] </html>

The browser displays this sanitized HTML output file as follows:

Considerations When Attaching Text Files
The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed. In fact, when any file is uploaded, it is always copied to the specified destination byte-for-byte.

Warning! You may encounter problems when a text file is uploaded from one operating system or
environment and then later viewed on another. For instance, suppose a text file on a DB2 system is
encoded in EBCDIC. A user viewing that file in a Windows environment might see garbled content
because the text file viewer is expecting ANSI encoding.
Similar issues can occur when two file systems have different character sets, such as Japanese JIS and
Unicode, or different line endings.

It is the developer's responsibility to manage this issue in their environments. A number of text file
conversion utilities are available for various platforms.

Some steps you can take to avoid conversion problems include:

• Educate your users.

• Standardize on file formats and encodings.

• Make sure that the user's environment supports the files being transferred.

• Restrict attachments to file types that are known to be compatible across user platforms.

File Attachment Chunk Size
When using a database table as the storage location, the file is automatically “chunked,” or stored, in
multiple rows of the database table. The size of each chunk is determined by the Maximum Attachment
Chunk Size field on the PeopleTools Options page.

Copyright © 1988, 2024, Oracle and/or its affiliates. 223

Working With File Attachments Chapter 10

Because each file is chunked, you cannot pull whole files directly from the database. You must use the
PeopleCode file attachment functions, which automatically put the data back together into one file for
you. Because the chunk size is stored with the file, if you change the system chunk size, you can still
retrieve files with different chunk sizes.

Related Links
“PeopleTools Options” (System and Server Administration)

Using Interfaces to the CopyAttachments and CleanAttachments Functions
PeopleTools provides three interfaces to executing the CopyAttachments and CleanAttachments functions
(select PeopleTools, Utilities, Administration, Administer File Processing):

• Copy File Attachments (Batch) page.

Use the Copy File Attachments (Batch) page to execute the CopyAttachments function
asynchronously via the COPYATTS Application Engine program. This ensures that a large
CopyAttachments job does not terminate prematurely due to a timeout. See “Copy File Attachments
(Batch)” (System and Server Administration) for more information.

• Delete Orphan Files (Batch) page.

Use the Delete Orphan Files (Batch) page to execute the CleanAttachments function asynchronously
via the CLEANATT84 Application Engine program. This ensures that a large CleanAttachments job
does not terminate prematurely due to a timeout. See “Delete Orphan Files (Batch)” (System and
Server Administration) for more information.

• Manage Attachment Repositories page.

Use the Manage Attachment Repositories page to execute either CopyAttachments or
CleanAttachments directly in a synchronous manner. See “Manage Attachment Repositories” (System
and Server Administration) for more information.

Note: Executing either CopyAttachments or CleanAttachments directly in a synchronous manner
may result in a timeout if the number of file attachments to be processed is large. Therefore, Oracle
recommends that you use the batch processing interfaces instead.

Note: None of these interfaces allow you to set all of the optional parameters of either CopyAttachments
or CleanAttachments. If you want to enable the use of these optional parameters, you must clone and then
modify the existing PeopleCode or implement your own PeopleCode to do this.

Related Links
“CleanAttachments” (PeopleCode Language Reference)
“CopyAttachments” (PeopleCode Language Reference)

Debugging File Attachment Problems

This debugging section discusses the following:

224 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

• Enabling tracing on the web server or application server.

• Problems with transfers to and from FTP sites.

• Attachments with non-ASCII file names.

• Problems uploading files.

• Passing error messages to the end user.

The topics in this section are of interest primarily to customers deploying file processing applications, and
secondarily to application developers.

Enabling Tracing on the Web Server or Application Server
This section discusses how to:

• Enable tracing on the web server.

• Enable PeopleCode tracing on the application server.

Enabling Tracing on the Web Server

To enable web server tracing of file attachment processes:

1. Select PeopleTools, Web Profile, Web Profile Configuration, and open the current web profile.

2. Select the Custom Properties page.

3. Add a new row, and enter these values:

Column Value

Property Name IDDA

Validation Type Number

Property Value 32 (File processing)

4. Set the .level property of the logging.properties file to ALL.

5. Restart the web server.

The log files are written to a directory that depends on the java.util.logging.FileHandler.pattern property
of the logging.properties file.

More information on IDDA logging is available in the PeopleTools PeopleBooks.

See “Enabling IDDA Logging” (System and Server Administration).

Copyright © 1988, 2024, Oracle and/or its affiliates. 225

Working With File Attachments Chapter 10

Enabling PeopleCode Tracing on the Application Server

For tracing file attachment issues, set the PeopleCode trace level to 2048 (Statement Tracing, which
shows each statement as it's executed). In addition, higher PeopleCode trace settings are recommended
whenever CopyAttachments is run. You can enable PeopleCode tracing on the application server in
several ways:

• For all client sessions by setting TracePC in Configuration Manager.

• For a specific client session through the Trace PeopleCode page (select PeopleTools, Utilities, Debug,
Set PeopleCode Trace Options.

Because PeopleCode tracing can generate a lot of output, setting tracing for a specific client session only
is recommended.

Application server log files can be found in the PS_CFG_HOME/appserv/domain/LOGS directory.

• The application server log files have names in the form APPSRV_MMDD.LOG (in which MMDD
represents the month and date).

• The file transfer log file has a name in the form of FILETRANSFERpid.LOG.

• The PeopleCode trace file has a name of the form, *.tracesql.

See “Specifying Trace Settings” (System and Server Administration).

Problems with Transfers to and from FTP Sites
A common reason that a transfer fails is that the FTP server is not accessible from the application server.
This error could be due to:

• An incorrect password.

• An incorrect account name.

• An inability of the application server to resolve the FTP server's host name.

• The FTP server is down.

Try to ping the FTP server machine from the application server system, and then try to manually transfer
a file to the FTP server machine from the application server.

If the FTP site is on Microsoft Windows, the host name for the system might not be associated with a
fixed IP address and might not be resolvable using DNS (Domain Name System). If the application server
is on a UNIX machine, the application server can resolve the host name using DNS only—or perhaps
using NIS (Network Information System) or an /etc/hosts file. However, the application server will be
unable to use Windows mechanisms such as WinBeui or WINS. Therefore, the application server will not
be able to convert the host name indicated for the Microsoft Windows file server into an IP address and
route to it.

If the file transfer fails, you must resolve the problem by either specifying the numeric IP address in
the FTP URL or by putting the host name for the FTP site into DNS, NIS, or the hosts file on your
application server so that the name can be resolved.

226 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 10 Working With File Attachments

Typically, the URL used for file attachments has the following format:

ftp://user:pwd@system_name/dir1/subdir

However, if the domain name cannot be resolved with DNS, then use the numeric IP address. The
following example assumes system_name has the IP address of 192.0.2.1:

ftp://user:pwd@192.0.2.1/dir1/subdir

Note: Use numeric IP addresses only when absolutely necessary.

Attachments with non-ASCII File Names
To successfully upload an attachment with a file name containing non-ASCII characters (such as
Japanese), Oracle recommends running the application server with the locale that supports those specific
non-ASCII characters—for example, ja_JP.sjis. If the storage location for the attachment is an FTP site
or an HTTP repository, Oracle recommends that the storage location also be running in an environment
that supports the same language or locale as the file names used. The web server (which serves as an
intermediary in the transfer of the file from the browser to the application server and then on to the
storage location) can be running either a multi-language environment (for example, UTF-8) or a non-
ASCII character language environment.

The uploading of a file attachment involves multiple tiers—for example, the browser on the client, the
web server, the application server, the database server, and ultimately the file attachment storage location.
To ensure the correct transfer of data and files between these tiers, Oracle recommends configuring each
server tier (web server, application server, database server, and file storage location) to use the same
character set as follows:

• If your PeopleSoft system operates in a multi-language environment, use a UTF-8 character set on
each server tier.

• If your PeopleSoft system operates in a single language environment, use the native language
character set for that language on each server tier.

The Global Technology PeopleBook provides examples of which character set to specify on which tier for
three typical configurations—a multi-language environment, a single language environment (Western),
and a single language environment (non-Western).

Related Links
“Understanding Character Set Selection” (Global Technology)

Problems Uploading Files
You cannot use a relative path to specify the file that is to be uploaded; you must use a full path. If users
experiences problems in uploading files, ensure that they browse to the file they wish to upload rather
than attempting to manually enter the full path name of the file.

This problem can manifest itself differently depending on the browser used. For example, with some
browser versions, the PeopleSoft page appears to be in an infinite “Processing” state.

Related Links
PeopleTools Browser Compatibility Guide (Oracle Support Document 704492.1)

Copyright © 1988, 2024, Oracle and/or its affiliates. 227

https://support.oracle.com/epmos/faces/DocumentDisplay?id=704492.1

Working With File Attachments Chapter 10

Problems Downloading Files
The combination of the attachmentExtraWindow web profile property and settings of a browser can
silently interfere with downloading and opening of files with the ViewAttachment function. For more
information, see the documentation on the attachmentExtraWindow web profile property.

Related Links
“Configuring Custom Properties” (Portal Technology)

Passing Error Messages to the End User
When working with the attachment functions, if you want the end user to be able to view error messages
(such as that the file is too large, that the file was not found, that there is no disk space at the storage
location, and so on), then you need to write or clone PeopleCode to interpret function return codes and
pass error messages back to the user.

As an example, each of the programs in the FILE_ATTACH_WRK derived/work record includes a
parameter that sets the message level, but does not translate these into user terminology. The message
levels that can be set are:

• 0 – Suppress all messages including errors.

• 1 – Display all messages.

• 2 – Suppress success messages only, but display error messages.

By default, the message level is 0 for each of these programs. The programs are demonstrated on the
PeopleTools Test Utilities page.

Related Links
Delivered Record Definitions
Using the PeopleTools Test Utilities Page

228 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 11

Accessing PeopleCode and Events

Understanding PeopleCode Programs and Events

Every PeopleCode program is associated with an aspect of a Application Designer definition and an
event. Events are predefined points either in the Component Processor flow or in the program flow. As
each event is encountered, it fires on each component, triggering any PeopleCode program associated
with that component and that event. Each definition in Application Designer can have an event set, that is,
a group of events appropriate to that definition. A definition can have zero or one PeopleCode programs
for each event in its event set.

Some definitions have events that fall outside the Component Processor flow. These definitions include
Application Engine programs, component interfaces, and application packages. In addition, security has a
signon event, which is described in the documentation for the definition or topic.

Related Links
“Understanding Component Interface Class” (PeopleCode API Reference)
“Understanding Application Classes” (PeopleCode API Reference)
“Creating Message Definitions” (Integration Broker)
“Specifying PeopleCode Actions” (Application Engine)
“Security Administration Overview” (Security Administration)

Understanding Automatic Backup of PeopleCode

A PeopleCode program is automatically saved to a file while you are working on it. This checkpoint
occurs at the following times:

• Every 10 keystrokes.

• On a save command, just before the save is executed (in case the save does not actually execute
because the code is invalid).

• When another PeopleCode program is selected to be edited (if you have two PeopleCode editor
windows open at the same time and you move from one to the other).

The file is saved to your temp directory, as specified in your environment, in a file with the following
name:

PPCMMDDYY_HHMMSS.txt

, where MMDDYY represents the month, date, and year of the checkpoint, respectively, and HHMMSS
represents the hour, minute, and second of the checkpoint, respectively.

Copyright © 1988, 2024, Oracle and/or its affiliates. 229

Accessing PeopleCode and Events Chapter 11

The top of the checkpoint file contains the following information:

[PeopleCode Checkpoint File]

[RECORD.recordnameFIELD.fieldnameMETHOD.eventname]

If your PeopleCode program saves successfully, checkpoint files associated with that program are
automatically deleted.

Accessing PeopleCode in Application Designer

You can access PeopleCode associated with Application Designer definitions in several ways.

For record fields and pop-up menu items, the Project view displays PeopleCode programs within the
project hierarchy using a lightning bolt icon. The programs are children of the fields and pop-up menu
items with which they are associated, and they are named according to their associated events, such as
ItemSelected, RowInit, or SaveEdit, as shown in the following example.

The following image is an example of PeopleCode programs in the Project view hierarchy.

230 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 11 Accessing PeopleCode and Events

Double-click a record field or pop-up menu item program in the Project view to start the PeopleCode
Editor and load that program for editing. When you load a program in the PeopleCode Editor, the status
bar at the bottom of the Application Designer window displays the date, time, and the ID of the user who
last updated the program as shown in the following example:

This example illustrates the fields and controls on the Status bar displaying the last update information for
a PeopleCode program. You can find definitions for the fields and controls later on this page.

You can associate PeopleCode with other types of definitions, such as:

• Components

• Pages

• Component interfaces

Such PeopleCode programs do not appear in the Project view. Instead, you right-click the name of
the definition and select View PeopleCode. You can also access these programs from their associated
definitions.

PeopleCode can also be associated with:

• Component records (specific records included in components).

• Component record fields (specific record fields included in components).

• Application packages.

Because component record fields and component records do not appear in the Project view, you must
access their associated programs through their parent definitions.

Related Links
Accessing Record Field PeopleCode

Copyright © 1988, 2024, Oracle and/or its affiliates. 231

Accessing PeopleCode and Events Chapter 11

Accessing Component PeopleCode

Accessing Record Field PeopleCode

This section provides an overview of the record field event set and discusses how to access record field
PeopleCode.

Understanding Record Field PeopleCode
A record is a table-level definition. Record definitions are of different types, such as SQL table, dynamic
view, derived/work, and so on.

Record fields are child definitions of records. Record field PeopleCode programs are child definitions of
record fields. The following events are associated with a record field:

• FieldChange

• FieldDefault

• FieldEdit

• FieldFormula

• RowInit

• RowInsert

• RowSelect

• RowDelete

• PrePopup

• SaveEdit

• SavePreChange

• Workflow

• SavePostChange

• SearchInit

• SearchSave

Related Links
PeopleCode Program Triggers

232 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 11 Accessing PeopleCode and Events

Accessing Record Field PeopleCode from a Record Definition
This image is an example of Record definition. This shows three fields associated with PeopleCode which
appear in bold type in record views.

In the previous example, the first three fields (in boldface font) have PeopleCode associated with them.
If you expand the subrecords in a record definition, any fields in the subrecord that have PeopleCode
associated with them also appear in bold type.

To access record field PeopleCode from an open record definition:

1. Click the PeopleCode Display button on the toolbar.

A grid appears with a column for each event in the record field event set. Each cell represents a
field-event combination. The column names are abbreviations of the record field event names, for
example, FCh for the FieldChange event and RIn for the RowInit event. A check mark appears in the
appropriate cell for each field/event combination that has an associated PeopleCode program.

2. Access the PeopleCode using one of these methods:

• Double-click the cell.

• Right-click the cell and select View PeopleCode.

• Select View, PeopleCode.

The PeopleCode Editor appears. If the field/event combination has an associated program, it appears in
the editor.

Related Links
Understanding Record Field PeopleCode
Using the PeopleCode Editor

Accessing Record Field PeopleCode from a Page Definition
You can associate a PeopleCode program with any page control that you can associate with a record field.

To access record field PeopleCode from a page definition, right-click a page control and select View
Record PeopleCode. The PeopleCode Editor appears, displaying the first event in the event set associated
with the underlying record field of that control.

Copyright © 1988, 2024, Oracle and/or its affiliates. 233

Accessing PeopleCode and Events Chapter 11

Button controls are a special case. You can associate a PeopleCode program with a button only if its
destination is defined as PeopleCode Command. When the user clicks a button defined using this method,
the FieldEdit and FieldChange events are triggered, so the PeopleCode must be associated with one
of those two events. Typically, you use the FieldChange event. The following example shows button
properties:

The following image illustrates Page field properties for buttons.

To define a command button:

1. In the page definition, double-click the button to access its properties.

2. Select PeopleCode Command as the button destination.

3. Select the record and field with which your button and PeopleCode are associated.

You should associate the button with a derived/work record field, which separates its PeopleCode
from the PeopleCode associated with any of the page’s other underlying record fields. You can then
store generic PeopleCode with this field so that you can reuse it with buttons on other pages.

4. Click OK to return to the page.

Right-click the command button and select View PeopleCode to access the PeopleCode Editor.

234 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 11 Accessing PeopleCode and Events

Related Links
Using the PeopleCode Editor

Accessing Component Record Field PeopleCode

This section provides an overview of the component record field event set and discusses how to access
component record field PeopleCode.

Understanding Component Record Field PeopleCode
Component record field PeopleCode is associated with a record field, but only with respect to a
component and one of its events. Use this type of association to tailor your programs to a particular
component. This PeopleCode is accessible only through the component structure view, not from a record
definition. The following events are associated with a component record field:

• FieldChange

• FieldDefault

• FieldEdit

• PrePopup

Related Links
PeopleCode Program Triggers

Accessing Component Record Field PeopleCode
To access PeopleCode associated with a component record field, open the component, click the Select
tab, select a field, right-click the field name, and select View PeopleCode. A lightning bolt appears
next to the field name if PeopleCode is associated with the field at the component level. If PeopleCode
is associated with the field at the record level, then a lightning bolt does not appear, as shown in the
following example:

Copyright © 1988, 2024, Oracle and/or its affiliates. 235

Accessing PeopleCode and Events Chapter 11

This example illustrates the fields and controls on the Accessing component record field PeopleCode
from the component structure. You can find definitions for the fields and controls later on this page.

Note: The Structure tab displays only the runtime state of the PeopleCode. That is, it only displays record
field PeopleCode. For example, PeopleCode programs that are orphaned as a result of a page definition
change do not appear on the Structure tab. Orphaned PeopleCode programs do appear, however, in the
PeopleCode Editor, which displays the design-time view of PeopleCode.

The PeopleCode Editor appears. If that field has associated PeopleCode, then the first program in the
component record field event set appears in the editor.

Related Links
Using the PeopleCode Editor
Accessing Record Field PeopleCode

Accessing Component Record PeopleCode

This section provides an overview of the component record event set and discusses how to access
component record PeopleCode.

Understanding Component Record PeopleCode
Component record PeopleCode is associated with a record definition, but only with respect to a
component and one of its events. Use this type of association to tailor programs to a particular component.
This PeopleCode is directly accessible through the component structure view, not from the record
definition.

236 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 11 Accessing PeopleCode and Events

Search records and non-search records in components have different associated event sets. The following
events are associated with search records within a component:

• SearchInit

• SearchSave

The following events are associated with non-search records within a component:

• RowDelete

• RowInit

In rare circumstances, the Component Processor does not run RowInit PeopleCode for some
record fields. The Component Processor runs RowInit PeopleCode when it loads the record from
the database. However, in some cases, the record can be initialized entirely from the keys for the
component. When this happens, RowInit PeopleCode is not run.

• RowInsert

• RowSelect

• SaveEdit

• SavePostChange

• SavePreChange

Related Links
PeopleCode Program Triggers

Accessing Component Record PeopleCode
To access PeopleCode associated with a component record, open the structure view of the component,
select a record, right-click the record name, and select View PeopleCode.

The PeopleCode Editor appears. If the record has associated PeopleCode, then the first program in the
component record event set appears in the editor.

Related Links
Using the PeopleCode Editor

Accessing Component PeopleCode

This section provides an overview of the component event set and discusses how to access component
PeopleCode.

Copyright © 1988, 2024, Oracle and/or its affiliates. 237

Accessing PeopleCode and Events Chapter 11

Understanding Component PeopleCode
Component PeopleCode is associated with a component definition and an event. The following events can
be associated with a component:

• PostBuild

• PreBuild

• SavePostChange

• SavePreChange

• Workflow

Related Links
PeopleCode Program Triggers

Accessing Component PeopleCode
To access PeopleCode associated with a component, open its structure view, select the component name,
right-click the name, and select View PeopleCode.

The PeopleCode Editor appears. If the component has associated PeopleCode, the first program in the
component event set appears in the editor.

Related Links
Using the PeopleCode Editor

Accessing Page PeopleCode

This section provides an overview of page PeopleCode and discusses how to access page PeopleCode.

Understanding Page PeopleCode
Page PeopleCode is associated with a page definition. The page event set consists of a single event, the
Activate event, which fires every time the page is activated. This event is valid only for pages that are
defined as standard or secondary, and it is not supported for subpages.

Related Links
PeopleCode Program Triggers

Accessing Page PeopleCode
To access PeopleCode associated with a page, right-click any part of the page definition and select View
Page PeopleCode.

238 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 11 Accessing PeopleCode and Events

Note: Page PeopleCode can only be accessed in this way. You cannot access Page PeopleCode from the
component definition Structure tab, from a project, or any other way.

The PeopleCode Editor appears. If the page has associated PeopleCode, it appears in the editor.

Note: The term page PeopleCode refers to PeopleCode programs owned by pages. Do not confuse page
PeopleCode with PeopleCode properties related to the appearance of pages, such as the Visible Page
Class property.

Related Links
“Understanding Page Class” (PeopleCode API Reference)
Using the PeopleCode Editor

Accessing Menu Item PeopleCode

This section provides an overview of menu item PeopleCode and discusses how to:

• Define PeopleCode pop-up menu items.

• Access menu item PeopleCode.

Related Links
“Working With Menu Definitions” (Application Designer Developer’s Guide)
Using the PeopleCode Editor

Understanding Menu Item PeopleCode
PeopleTools menus are one of two types, either pop-up or standard, both of which are standalone
definitions in the project hierarchy. However, you can only associate PeopleCode with menu items in pop-
up menus.

The menu item event set consists of a single event, the ItemSelected Event. This event fires whenever an
user selects a menu item from a pop-up menu.

Note: Do not confuse menu item PeopleCode with PeopleCode functions related to the appearance of
menu items, such as CheckMenuItem.

Related Links
ItemSelected Event

Defining PeopleCode Pop-Up Menu Items
To define a PeopleCode pop-up menu item:

1. In the open pop-up menu definition, double-click the menu item to access its properties.

Copyright © 1988, 2024, Oracle and/or its affiliates. 239

Accessing PeopleCode and Events Chapter 11

If you are creating a new menu item, double-click the empty rectangle at the bottom of the pop-up
menu.

The Menu Item Properties dialog box appears.

2. If this is a new menu item, enter a name and a label for the item.

3. Select PeopleCode from the Type group box.

4. Click OK to close the Menu Item Properties dialog box.

Accessing Menu Item PeopleCode
To access pop-up menu item PeopleCode:

1. Open the pop-up menu definition.

2. Right-click the menu item and select View PeopleCode.

The PeopleCode Editor appears, displaying the associated program for that menu item, if any.

Copying PeopleCode with a Parent Definition

When you copy a Application Designer definition that contains PeopleCode, you can choose whether to
copy all PeopleCode programs and the definition. Each copy of the definition receives a separate copy of
the PeopleCode programs.

To copy a definition with its PeopleCode:

1. Open the definition you want to copy.

2. Select File, Save As.

The Save As dialog appears.

3. Type a name for the new definition in the dialog box.

4. Click OK, and then click Yes to copy the PeopleCode.

Click Yes to copy all PeopleCode associated with the definition.

Upgrading PeopleCode Programs

You can upgrade PeopleCode programs independently of the definitions with which they are associated.
Refer to the upgrade instructions for your product for details.

240 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12

Using the PeopleCode Editor

Navigating Between PeopleCode Programs

After you access a PeopleCode program associated with a Application Designer definition, you can access
programs associated with other related definitions without having to close the editor window.

This section provides an overview of the PeopleCode Editor window and discusses how to:

• Navigate between programs associated with a definition and its children.

• Navigate between programs associated with a definition's event set.

Related Links
Understanding PeopleCode Programs and Events

Understanding the PeopleCode Editor Window
Application Designer supplies an independent editor window for each parent definition, such as a record,
component interface, or an analytic model, for which you invoke the editor. The editor window’s title bar
displays the name and type of the parent definition, as shown in the following illustration:

The editor window contains the main edit pane, the drop-down definition list at the upper-left, and
the drop-down event list at the upper-right. The drop-down lists enable you to navigate directly to the

Copyright © 1988, 2024, Oracle and/or its affiliates. 241

Using the PeopleCode Editor Chapter 12

PeopleCode associated with related child definitions, for example, fields within a record and their event
sets.

Note: When you make a selection from either drop-down list box, your selected entry has a yellow
background, indicating that you must click the edit pane before you can start typing.

You can open as many editor windows as you want and resize them in Application Designer. Each line
of code wraps automatically based on the window’s current width. A vertical scroll bar appears if the
program has more lines than the editor can display in the edit pane.

Note: You cannot open two editor windows for a single parent definition, or for any two of its child
definitions.

Related Links
Navigating Between Programs Associated With a Definition and Its Children
Navigating Between Programs Associated With Events

Navigating Between Programs Associated With a Definition and Its
Children

You use the drop-down definition list to navigate between PeopleCode programs that are associated with
a parent definition and its children. The list displays the complete hierarchy of child definitions to which
you can navigate; bold items have PeopleCode associated with at least one event in the item's event set.
The structure of the definition list depends on the type of parent definition. Parent definitions include:

• Records.

Select record fields from the record drop-down list. The record name appears at the top of the list as
a visual clue to clarify the location of the record fields, but you cannot associate PeopleCode with a
record.

• Components.

Select component records and component record fields from the component drop-down list.

• Pages.

Select the page definition from the page drop-down list.

• Pop-up menus.

Select pop-up menu items from the menu drop-down list. The menu and menu bars appear in the list
as visual clues, but you cannot associate PeopleCode with these elements.

Navigating Between Programs Associated With Events
Use the PeopleCode Editor’s drop-down event list to select an event from the event set of the currently
selected definition. Use this event list to navigate between PeopleCode programs that are associated with
that definition. For every definition-event combination with associated PeopleCode, the event name is
displayed in bold, and it appears at the top of the event list, as shown in the following illustration:

242 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

This example illustrates the fields and controls on the Selecting an event from the PeopleCode Editor. You
can find definitions for the fields and controls later on this page.

Related Links
Understanding PeopleCode Programs and Events
PeopleCode Program Triggers

Using the PeopleCode Editor

This section provides an overview of the PeopleCode Editor and color-coded language elements and
discusses how to:

• Access PeopleCode Editor.

• Editing functions.

• Format code automatically.

• Use drag-and-drop editing.

• Access PeopleCode external functions.

• Access definitions and associated PeopleCode.

• Access help.

• Set up help.

• Change colors in the PeopleCode Editor.

Copyright © 1988, 2024, Oracle and/or its affiliates. 243

Using the PeopleCode Editor Chapter 12

• Select a font for the PeopleCode Editor.

• Change word wrap in the PeopleCode Editor.

• Use PeopleCode Event properties.

• Use auto-complete in the PeopleCode Editor.

• Use event mapping button in the PeopleCode Editor.

• Enhance user experience.

Understanding the PeopleCode Editor
The PeopleCode Editor works much like any other text editor, but has capabilities specifically geared
toward the PeopleTools environment. Some of its features include:

• Editing functions are integrated with the menus and toolbar of Application Designer and are also
accessible from a pop-up window.

• It checks, formats, and saves all programs associated with Application Designer definitions
simultaneously when any definition is saved.

• It includes a Validate Syntax command for checking and formatting a single PeopleCode program
without saving.

• It supports standard Microsoft Windows drag-and-drop editing.

• It supports color-coding for the different elements of the PeopleCode language.

• It supports word wrap based on either the size of the editor window or a specific number of characters
per line.

• You can open separate instances of the editor simultaneously, and you can use a drag-and-drop text
operation between programs.

• You can open the definition with which the current set of PeopleCode programs is associated from
within the PeopleCode Editor.

• You can open a field, record, page, file layout, or other definitions from a PeopleCode reference to the
field, record, page, or file layout, and so on.

• You can access PeopleCode programs associated with a field, record, page or file layout, or other
definitions from a PeopleCode reference to the field, record, page, or file layout, and so on.

• You can open a PeopleCode Editor window containing an external function definition from a function
declaration or function call.

• You can press F1 with the cursor in a PeopleCode built-in function, method, meta-SQL, and so on, to
open the PeopleSoft help for that item.

Accessing PeopleCode Editor
When a definition is open in Application Designer, you can access the PeopleCode Editor by:

244 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

• Clicking the View PeopleCode button in the toolbar.

• Right-clicking the definition and selecting View PeopleCode from the pop-up menu.

• Selecting the definition and pressing Ctrl + E.

To access the PeopleCode Editor for an Application Class:

• Double-click the Application Class.

• Select the Application Class and press Ctrl + E.

Using the View PeopleCode Button in the Toolbar

Field or Control Description

For definitions where PeopleCode can be inserted, the View
PeopleCode button appears in the dynamic Application
Designer toolbar. Click this button to launch the PeopleCode
Editor and view the PeopleCode associated with the current
definition.

The View PeopleCode button appears for these definition
types:

• records

• pages

• components

• menus

• component interfaces

• messages

• Application Engine programs

Note: Depending on the definition type, the label of the button
and the number of buttons that appear might be different.
 For example, with pages, you see two buttons: View Page
PeopleCode and View Record PeopleCode.

Selecting View PeopleCode from the Pop-up Menu

Open a definition in Application Designer, and in the Application Designer workspace, right-click a field,
which displays a pop-up menu. Click View PeopleCode to launch the PeopleCode Editor.

Note: Depending on the definition type, the options to launch PeopleCode Editor might be different. For
example, with pages, you see two options: View Page PeopleCode and View Record PeopleCode.

Copyright © 1988, 2024, Oracle and/or its affiliates. 245

Using the PeopleCode Editor Chapter 12

This example illustrates accessing PeopleCode Editor from the current definition open in the Application
Designer workspace.

You can also access PeopleCode Editor by selecting the definition and then pressing Ctrl + E on the
keyboard.

246 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

Accessing PeopleCode Editor for an Application Class

This example illustrates accessing PeopleCode Editor for the Application Class from the Application
Designer workspace.

You can either double click on the selected Application Class or press Ctrl + E on the keyboard after
selecting the Application Class to access its PeopleCode Editor.

Editing Functions
The PeopleCode Editor supports standard editing function commands such as Save, Cancel, Cut, Copy,
Paste, Find, Replace, and Undo, from the PeopleCode Editor pop-up menu. Cut, Copy, and Paste use
standard Microsoft Windows keyboard shortcuts. You can also cut, copy, and paste within the same
PeopleCode program or across multiple programs.

Use these buttons to perform editing functions:

Field or Control Description

Save the current PeopleCode program. You can also use the
key combination CTRL+S.

Cut the selected text or item. You can also use the CTRL+X
or SHIFT+DEL key combinations.

Copy the selected text or item. You can also use the CTRL+C
or CTRL+INS key combinations.

Copyright © 1988, 2024, Oracle and/or its affiliates. 247

Using the PeopleCode Editor Chapter 12

Field or Control Description

Paste from the clipboard. You can also use the CTRL+V or
SHIFT+INS key combinations.

Find specified text. You can also use the key combination
CTRL+F.

Find and replace specified text. You can also use the key
combination CTRL+H.

Validate the current PeopleCode program.

Undo the last change. Use the CTRL+Z or ALT
+BACKSPACE key combinations.

Cancel the current operation. Use Esc key.

Related Links
Short Cut Keys in the PeopleCode Editor

Adding Line Numbers
To add line numbers in PeopleCode Editor:

1. Go to the menu bar of Application Designer.

2. Click on View.

3. Select Line Numbers.

The following image illustrates how line numbers are displayed in PeopleCode Editor:

To remove line numbers from PeopleCode Editor, uncheck Line Numbers.

248 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

Note: Line numbers in PeopleCode Editor are not the same as statement numbers in debug mode. While
line numbers are valid for all the lines in PeopleCode editor including comments, declarations and new
lines, statement numbers do not include the declare functions and functions that are not debuggable.

Find and Replace Dialogs
When you use the Find and Replace functions, any text string that is highlighted appears when either
the Find or Replace dialog boxes are called. For example, if you select the method ActiveRowCount it
appears in the Find dialog box when it's called, as shown in the following example:

You can move through finding and replacing text strings one string at a time, or click Replace All to
replace globally. The Undo function is available to undo the last replace or replace all.

The Mark All button places a bookmark next to all lines that have the matching text. Use Shift+CTRL
+f2 to remove all bookmarks.

With the Replace dialog box, you can select to replace text either in a selected section or a whole file (that
is, a PeopleCode program.)

Go To Dialog
Use the Go To dialog box to specify a line number in the current program, then go to that line. If you have
line wrap not enabled, you can specify to go to statement numbers instead of line numbers.

This example illustrates the fields and controls on the Go To dialog box.

Validate Syntax Utility
To check the syntax of the current PeopleCode program and format it if it is syntactically correct, do one
of the following:

Copyright © 1988, 2024, Oracle and/or its affiliates. 249

Using the PeopleCode Editor Chapter 12

• Click the Validate Syntax button on the Application Designer toolbar.

• Within Application Designer, select Tools, Validate Syntax.

• Right-click in the PeopleCode Editor window, then select Validate Syntax.

The Validate utility has several functions, such as finding undeclared variables, mismatching data types,
or invalid methods or properties for a class. You can check either a single component or an entire project.

Errors or warnings produced by the Validate utility are displayed in the Validate tab at the bottom of the
PeopleCode Editor window.

Any variables that you don't declare are automatically declared for you, and a warning message appears
in the Validate tab for each undeclared variable. You can right-click in the Validate tab and select Clear
to delete all the warnings listed there, then use the Validate utility again to ensure that your code runs
without errors or warnings.

Note: This feature is convenient if you have written multiple PeopleCode programs and you want to
check the syntax of one without saving. All PeopleCode programs associated with an item (record,
component, and so on) are checked prior to saving.

Related Links
“Validating Projects” (Application Designer Developer’s Guide)
Compiling All PeopleCode Programs at Once

Show Database Name Utility
To display the name of the database in use in the current PeopleCode program:

1. Open Configuration Manager.

2. Click on the Display tab.

250 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

The following image illustrates the Display tab in Configuration Manager:

3. Select the Show Database Name check box.

When you access Application Designer, the name of the database in use is displayed at the bottom
right corner of the status bar.

Related Links
“Understanding PeopleSoft Configuration Manager” (System and Server Administration)
“Starting PeopleSoft Configuration Manager” (System and Server Administration)

Formatting Code Automatically
You do not need to format your PeopleCode statements; you need only to use the correct syntax. When
you save or validate, the system formats the code according to the rules in the PeopleCode tables, no
matter how you entered it originally. The PeopleCode Editor automatically converts field names to
uppercase and indents statements.

Copyright © 1988, 2024, Oracle and/or its affiliates. 251

Using the PeopleCode Editor Chapter 12

PeopleCode is case-insensitive, except for quoted literals. PeopleCode does not format anything
surrounded by quotation marks. String comparisons, however, are case-sensitive. When you compare the
contents of a field or a variable to a string literal, make sure the literal is in the correct case.

All field names in a PeopleCode program must be fully qualified, even if the field is on the same
record definition as the PeopleCode program. However, you only need to type in the name of the
field. The editor validates if the field exists on the current record, and reformats the field name to
recordname.fieldname.

Using Drag-and-Drop Editing
In addition to the standard keyboard shortcuts and toolbar buttons, you can copy or move text within a
window or between two PeopleCode Editor windows by using the mouse and the CTRL key.

Note: You cannot open two editor windows for a single parent definition, or for any two of its child
definitions.

To move text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Place the mouse over the text and drag the text to the other PeopleCode Editor window.

3. When the cursor appears at the place where you want to insert the text, release the mouse button.

To copy text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Hold down the CTRL key as you drag the text to the other PeopleCode Editor window.

3. When the cursor appears at the place where you want to insert the text, release the mouse button.

Accessing PeopleCode External Functions
An external PeopleCode function is a function written in PeopleCode (as opposed to a built-in function
or external DLL function) and defined in a program outside the one from which it is called. External
PeopleCode functions can be defined in any record PeopleCode program, but typically they are stored in
the FieldFormula event in records beginning with FUNCLIB_.

The PeopleCode Editor provides immediate access to external PeopleCode function definitions.
Right-click the function name in the program where the function is called, then select View Function
FunctionName. This opens a new PeopleCode Editor window containing the external function definition.

Note: Internet scripts are contained in records similar to FUNCLIB_ records. However, their names begin
with WEBLIB_.

Accessing PeopleCode Application Packages and Application Classes
The PeopleCode Editor provides immediate access to application packages, application classes, and
application class method definitions.

252 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

Right-click the package, class, or method name and, depending on the context, select from:

• View Application Package

• View Application Class

• View Application Class Method

This opens the application package or a new PeopleCode Editor window containing the application class.

The following example shows the context menu for a fully-qualified application class name.

The following example shows the context menu for a method.

Copyright © 1988, 2024, Oracle and/or its affiliates. 253

Using the PeopleCode Editor Chapter 12

Note: The application class context menu is not available for methods that are called by indirection.
In the following example the method CallMe would not be available to view using the context menu.
Object0.GetObject().CallMe();

Accessing Methods in Derived Classes

A method that is defined only in the superclass is not available if you attempt to view it using View
Application Class Method with the derived class, or subclass.

For example, in the following code snippet CCI_CRM extends CCI_BASE. The method Validate is not
defined in CCI_CRM; it is available to CCI_CRM by extension. The method Submit, on the other hand,
is overridden in CCI_CRM.

If you right-click Validate and select View Application Class Method, the cursor will be placed at the
beginning of the application class CCR_CRM, not at the method definition in CCI_BASE.

If you right-click Submit and select View Application Class Method, you will be taken to the method
definition for Submit in CCI_CRM.

Import EOCC:CCI_CRM;
&CCI = Create EOCC:CCI_CRM();
&CCI.Validate(&Card);
&CCI.Submit(&Card);

This may be helpful when you need to know whether a method has been overridden.

Accessing Definitions and Associated PeopleCode
You can open fields, records, pages, application packages, and other definitions from the PeopleCode
Editor. Or you can open a new PeopleCode Editor window containing the programs associated with a
field, record, page, application class, or other definition.

To open a definition from the PeopleCode Editor, right-click a PeopleCode definition reference and select
View Definition or View Application Package.

For example, you could open definitions by clicking the following references:

• Record.BUS_EXPENSE_PER

• BUS_EXPENSE_PER.EXPENSE_PERIOD_DT

• Page.BUSINESS_EXPENSES

• PT_BRANDING:BrandingBase

If you access a record definition from a record field reference (that is, recordname.fieldname) the
specified record field is selected when the record definition opens.

To open a new PeopleCode editor window, right-click a reference to the definition and select View
PeopleCode or, for application class PeopleCode, select View Application Class Method or View
Application Class.

For example, you can access record PeopleCode from the following record and record field references:

• Record.BUS_EXPENSE_PER

254 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

• BUS_EXPENSE_PER.EXPENSE_PERIOD_DT

Note: You can only view the PeopleCode and definition when the text is in the format
recordname.fieldname. If the text is in the format method(i).recordname, method(i).fieldname, or
&MyRecord.Fieldname, the View PeopleCode and View Definition commands are not available.

You can access application class PeopleCode from the following references:

• PT_BRANDING:BrandingBase

• %This.ValidateSave(&aErrs)

Accessing Help
The PeopleCode Editor has context-sensitive online help for all PeopleCode built-in functions, methods,
properties, system variables, and meta-SQL. To access online help, place the cursor in the item that you
want to look up, then press F1. If there is a corresponding entry in the online reference system it appears;
otherwise an error message similar to the following appears.

Help cannot be displayed because no help topic was found for the help context ID "m⇒

y_topic".

If more than one entry is applicable, a pop-up window that lists all applicable entries appears. Select the
entry for the item of interest.

Setting Up Help
To set up the help, use the F1 Help URL field on the PeopleTools Options page to specify where the
PeopleTools documentation is installed.

Related Links
“PeopleTools Options” (System and Server Administration)

Changing Colors in the PeopleCode Editor
You can change the display (foreground) color for many language elements in the PeopleCode Editor,
including quoted strings, keywords, and built-in functions. You can also change the background color.

To change the display colors:

1. Select Edit, Display Font and Colors.

2. Select the language element that you want to change.

3. Select the foreground color.

If you click the Automatic check box, the default color is used.

A box displaying the selected color is only available if the Automatic check box is not selected.

Copyright © 1988, 2024, Oracle and/or its affiliates. 255

Using the PeopleCode Editor Chapter 12

If you click the box displaying the selected color, the standard color chart for your display appears.
If you click Other from this dialog or click the drop-down list on the Font and Color Settings dialog
box, the custom color chart for your display appears.

4. Select the background color.

If you click Reset All, the default colors for the PeopleCode language elements are reassigned.

Selecting a Font for the PeopleCode Editor
The default font for the PeopleCode Editor is 9-point Courier New.

To change the PeopleCode Editor font, select Edit, Display Fonts and Colors. Use this dialog box to
change the font for the editor.

Note: When you select a font for the PeopleCode Editor, the font selection dialog box provides choices
based on a character set appropriate for your international version of Microsoft Windows. If you
experience trouble embedding foreign characters (such as Thai characters) in PeopleCode, you might
need to change the font setting. If you are trying to display Thai characters in Microsoft Windows 95, you
might also need to change your keyboard input settings for the characters to display correctly. You can
change your keyboard input settings from the Input Locales tab on the Windows Regional Settings control
panel, or on the Keyboard control panel.

Changing Word Wrap in the PeopleCode Editor
The PeopleCode Editor supports text word wrapping. You can turn word wrapping on and off for an open
editor window. You can also specify the default value for word wrap, as well as whether the text wraps to
the editor's window size or to a fixed number of characters per line.

To turn word wrapping on or off for an open editor window, go to Edit, Word Wrap. After you close
Application Designer, all word wrap values are reset to the default value for the editor.

Specifying Word Wrap Options

Go to the Tools, Options dialog box, Editors tab, to specify the word wrap options.

256 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

This example illustrates the fields and controls on the Options dialog box: Editors tab. You can find
definitions for the fields and controls later on this page.

Field or Control Description

Enable (word wrap) Specify whether word wrap is the default mode when opening
the editor. If this box is not checked, wrapping text based on
window size is the default.

Wrap on Window Size Specify whether the text wraps based on the size of the
window.

Wrap on Line Size Specify whether the text wraps based on the number of
characters in a line. If this box is checked, you can specify the
number of maximum number of characters per line.

Copyright © 1988, 2024, Oracle and/or its affiliates. 257

Using the PeopleCode Editor Chapter 12

Field or Control Description

Maximum Characters per Line Specify the maximum number of characters allowed for a line
before the text wraps. The default value is 90. Valid values are
between 25 and 2000.

Using the PeopleCode Event Properties
To access the PeopleCode Event properties, open a PeopleCode editor window, then either press Alt +
Enter or click the Properties button.

This example illustrates the fields and controls on the PeopleCode Event Properties dialog box.

Important! This dialog box has been desupported. It has no effect on the location of the execution of
code.

Using the Auto-Complete Feature
The PeopleCode Editor provides an auto-complete feature for PeopleCode application classes, built-in
classes, built-in functions, system variables and constants. The auto-complete feature displays the possible
options when you insert a period (.) or dot after an object.

The auto-complete feature also supports the display of a tool tip when you hover the mouse over the
selected list item. The tool tip displays the method name, parameter type, and the return type.

If you select any item listed in the auto-complete list control and then press F1, it will take you to the
context-sensitive online help for that item.

The auto-complete feature is not applicable for objects that are declared as automatic variable and objects
that get resolved at run-time.

Setting Up Auto-Complete Feature

To use the auto-complete feature, you must enable the Auto-completion for PeopleCode option on the
Editors tab of the Options dialog box.

258 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

This example illustrates the fields for the auto-complete feature.

PeopleCode Built-in Class Objects

If an object is created out of any built-in classes, such as Record, Document, Feed, the methods or
properties of the appropriate class are displayed in a list from which an application developer can choose
the required method or property. The list displays the set of methods and properties relevant to the object.
As the user types in a string for a method, the nearest matching item gets displayed at the top of the auto-
complete list control

Methods and properties are differentiated by using different icons.

For example, in the following code snippet, when you enter a period (.) after the object &sqlObject,
methods and properties are displayed in a list box.

rem &sqlObject is of type PeopleCode built-in class SQL;
Local SQL &sqlObject;

&sqlObject = CreateSQL("%SelectAll(:1) where EMPLID = :2", RECORD.ABSENCE_HIST, &EM⇒

PLID);
&sqlObject.

Note: The auto-complete feature is not applicable if you create an object as an automatic variable without
using the PeopleCode built-in class.

This example illustrates the auto-complete list box for built-in classes.

Copyright © 1988, 2024, Oracle and/or its affiliates. 259

Using the PeopleCode Editor Chapter 12

Application Class Objects

If an object is declared and created from an application class (PeopleTools delivered or customized), the
methods or properties of the appropriate class are displayed in a list box.

For example, in the following code snippet, when you enter a period (.) after the object &objHLBase,
methods and properties are displayed in a list box.

import PT_BRANDING:HeaderLinkBase;
import PT_BRANDING:HeaderLinkHP;

Local PT_BRANDING:HeaderLinkBase &objHLBase;
Local PT_BRANDING:HeaderLinkHP &objHeaderLink;

&objHLBase = create PT_BRANDING:HeaderLinkBase(&apiPortal, &strtabIndex, &bHdrSearc⇒

h, &SearchURL, &SearchASLimit, &bGblHdrSearch);
&objHeaderLink = create PT_BRANDING:HeaderLinkHP(&Portal, &tabindex, &navPortal.IsS⇒

earchInHdr(), &navPortal.GetSearchPageURL(), &navPortal.GetSearchASLimit(), &navPor⇒

tal.IsGblSearchInHdr());

rem b) Objects of type Application Classes;
&objHLBase.

This example illustrates the auto-complete list box for application class objects.

Note: The auto-complete feature is not supported for objects that are created and assigned to a variable
that is not declared explicitly.

If you create an object and assign it to a variable that is not declared in the PeopleCode program, the
object type is not known at design time to display the relevant methods or properties. For example, in the
following code snippet, variables &obj1 and &obj2 are not declared in the PeopleCode program.

,

&obj1 = Create PT_BRANDING:BrandingBase(...);
&obj2 = CreateObject("PT_BRANDING:BrandingBase");

260 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

In cases where the class type changes at run time, the methods or properties of the class type that was
declared are displayed. For example, if a variable is declared as of type class A and at run-time the type
is changed from type A to type B based on a run-time execution of a piece of PeopleCode, the auto-
complete feature displays the methods or properties of the type class A because it was declared as type A.

In the following code snippet, the PeopleCode API CreateObject needs to resolve it's parameter to
know the Application Package name and the Application Class name. Irrespective of the value of the
variable &name that is resolved at run-time, the auto-complete support is provided for the class type
PT_BRANDING:HeaderLinkBase on the variable &objHLBase.

Local PT_BRANDING:HeaderLinkBase &objHLBase;
&name = SomeFunction();
&objHLBase = CreateObject(&name);

PeopleCode Built-in Functions, System Variables, and Constants Objects

In the PeopleCode editor, press CTRL+ Space bar to view a list of delivered built-in functions, system
variables, and constants. The list displays icons for the different items based on the item type. To list the
desired set of options, you can enter the desired characters and then press CTRL+ Space bar. For example,
to list all built-in functions, system variables, and constants beginning with “win,” type “win” and then
press CTRL+Space bar.

Press the Esc key, to close the list box.

This example illustrates the listing of built-in functions, system variables, and constants in PeopleCode
Editor.

Auto-completion Support for Keywords

In a PeopleCode Editor, pressing CTRL + Spacebar brings up a list control with a list of delivered built-in
functions, system variables, and constants. Pressing CTRL + Spacebar also lists keywords of PeopleCode.

Copyright © 1988, 2024, Oracle and/or its affiliates. 261

Using the PeopleCode Editor Chapter 12

The following image illustrates the listing of keywords and other items in PeopleCode Editor:

Keywords are shown with a key icon to differentiate them from other items.

Viewing Event Mapping References
The PeopleCode Editor provides an Event Mapping button in the dynamic Application Designer toolbar.
For an application developer, the Event Mapping button is a visual indicator of custom PeopleCode
programs mapped to events of a component, component page, component record, or component record
field.

Using the Event Mapping Button

The Event Mapping button in the toolbar is enabled when the PeopleCode being viewed for a component,
component page, component record or component record field event are mapped to custom PeopleCode
programs. When you select the Event Mapping button, the Find Definition References tab (of the output
window) lists the events that are mapped to custom PeopleCode programs along with the application
class.

Field or Control Description

Select the Event Mapping button to view a list of events in the
selected component, component record, or component record
field.

262 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

This example illustrates the Find Definition References tab (in output window), which displays the list of
events.

Finding Event Mapping References

To find references to other components where the custom PeopleCode programs of an application class
are used, you should complete the following steps:

1. In the Find Definition References, right-click the application class.

A pop-menu is displayed.

2. From the pop-up menu, select Event Mapping References.

The list of components is displayed in the Event Mapping References tab (of the output window).

This example illustrates the Event Mapping References (in output window), which displays the
components that use the application class.

Related Links
“Mapping Application Class PeopleCode to Component Events ” (Portal Technology)

Finding Matching Parentheses or Braces
In the PeopleCode Editor, you can use the Ctrl + B short cut key to move the cursor to the matching
parenthesis or brace.

Additionally, when you place the cursor on a parenthesis or brace in a piece of code, the parenthesis or
brace is highlighted in green color if a matching parenthesis or brace is found; the parenthesis or brace is
highlighted in red color if a matching parenthesis or brace is not found.

Highlighting Content
When you double-click any string in the active window of the PeopleCode Editor, all occurrences of the
string are highlighted. That is, all preceding and subsequent occurrences of the double-clicked string are
highlighted.

Copyright © 1988, 2024, Oracle and/or its affiliates. 263

Using the PeopleCode Editor Chapter 12

Hyphenated words are considered as a string, so the string function is different from the string end-
function. When you double-click function, occurrences of the string end-function are not highlighted. If
you want to highlight occurrences of end-function, you have to double-click the string end-function.

Click anywhere in the active window to clear the highlight.

Generating PeopleCode Using Drag-and-Drop

You can generate references to definitions using a drag-and-drop operation. You can also generate
PeopleCode templates for accessing business interlinks and component interfaces.

This section discusses how to:

• Generate references to definitions.

• Generate PeopleCode for a business interlink.

• Generate PeopleCode for a component interface.

• Generate PeopleCode for a file layout.

Generating References to Definitions
When you drag definitions, such as menus, records, record fields, and pages, from a project into
an open PeopleCode editor window, you generate a reference to the definition. For example,
suppose your project contains a component named QEACTIVITY_GUIDE_1. If you drag the
QEACTIVITY_GUIDE_1 component definition from the project into an open PeopleCode window, the
word QEACTIVITY_GUIDE_1 prefixed with the keyword COMPONENT is written to the PeopleCode
program in the place where you dragged the definition.

Generating PeopleCode for a Business Interlink
After you create a business interlink definition, you use PeopleCode to instantiate an interlink object and
activate the interlink plug-in. This PeopleCode can be long and complex. Rather than write it directly,
you can drag and drop the business interlink definition from the Application Designer Project view into
an open PeopleCode edit pane. PeopleCode Application Designer analyzes the definition and generates
initial PeopleCode as a template, which you can modify to suit your purpose.

The following is a snippet of the code that is generated:

/* ===>

/* ===>
This is a dynamically generated PeopleCode template to be
used only as a helper to the application developer.
You need to replace all references to '<*>' OR default values
with references to PeopleCode variables and/or a Rec.Fields.*/

/* ===> Declare and instantiate: */
Local Interlink &QE_AE_NONSSL__1;
Local BIDocs &inDoc;
Local BIDocs &outDoc;
Local boolean &RSLT;
Local number &EXECRSLT;
&QE_AE_NONSSL__1 = GetInterlink(INTERLINK.QE_AE_NONSSL_BI);

264 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 12 Using the PeopleCode Editor

.

.

.

.

Generating PeopleCode for a Component Interface
After you create a component interface definition, you can use PeopleCode to access it. This PeopleCode
can be long and complex. Rather than write it directly, you can drag and drop the component interface
definition from the Application Designer Project view into an open PeopleCode edit pane. Application
Designer analyzes the definition and generates initial PeopleCode as a template, which you can modify to
meet your requirements.

The following is a snippet of the code that is generated:

/* ===>
This is a dynamically generated PeopleCode template to be
used only as a helper to the application developer.
You need to replace all references to '<*>' OR default values
with references to PeopleCode variables and/or a Rec.Fields. */

Local ApiObject &oSession;
Local ApiObject &oCurrencyCdCi;
Local ApiObject &oPSMessageCollection;
Local ApiObject &oPSMessage;
Local File &LogFile;
Local number &i;
Local String &strErrMsgSetNum, &strErrMsgNum, &strErrMsgText,
&strErrType;
.
.
.

You can also access a component interface using the component object model (COM). You can
automatically generate a Visual Basic template, a Java template, or a C template, similar to the
PeopleCode template, to begin.

To generate a template:

1. Open a component interface in Application Designer.

2. Right-click anywhere in the open component interface and select a template type.

You must save the component interface before generating the template.

When the template is successfully generated, a message appears with the full path and name of the file
containing the template.

3. Open the generated file and modify the source code to meet the needs of your application.

The following is the initial code snippet that is generated for a Visual Basic template:

Option Explicit
'===>
'This is a dynamically generated Visual Basic template to be
'used only as a helper to the application developer.
'You need to replace all references to '<*>' OR default
'values with references to Visual Basic variables.

Dim oSession As PeopleSoft_PeopleSoft.Session

Copyright © 1988, 2024, Oracle and/or its affiliates. 265

Using the PeopleCode Editor Chapter 12

Private Sub ErrorHandler()
'***** Display PeopleSoft Error Messages *****
If Not oSession Is Nothing Then
 If oSession.ErrorPending Or oSession.WarningPending Then
 Dim oPSMessageCollection As PSMessageCollection
 Dim oPSMessage As PSMessage
 Set oPSMessageCollection = oSession.PSMessages
 Dim i As Integer
 For i = 1 To oPSMessageCollection.Count
 Set oPSMessage = oPSMessageCollection.Item(i)
 Debug.Print "(" & oPSMessage.MessageNumber & "," &
oPSMessage.MessageSetNumber & ") : " & oPSMessage.Text
 Next i
 '***** Done processing messages in the collection;
 '***** OK to delete *****
 oPSMessageCollection.DeleteAll
 End If
End If
End Sub
.
.
.
.

Generating PeopleCode for a File Layout
After you create a file layout definition, you can use PeopleCode to access it. This PeopleCode can be
long and complex. Rather than write it directly, you can drag and drop the file layout definition from the
PeopleCode Application Designer Project view into an open PeopleCode edit pane. Application Designer
analyzes the definition and generates initial PeopleCode as a template, which you can modify to meet
your requirements.

This example shows some of the code that is generated:

Function EditRecord(&REC As Record) Returns boolean ;
Local integer &E;

REM &REC.ExecuteEdits(%Edit_Required + %Edit_DateRange +
%Edit_YesNo + %Edit_TranslateTable + %Edit_PromptTable +
%Edit_OneZero);

 &REC.ExecuteEdits(%Edit_Required + %Edit_DateRange +
%Edit_YesNo + %Edit_OneZero);
 If &REC.IsEditError Then
 For &E = 1 To &REC.FieldCount
 &MYFIELD = &REC.GetField(&E);
 If &MYFIELD.EditError Then
 &MSGNUM = &MYFIELD.MessageNumber;
 &MSGSET = &MYFIELD.MessageSetNumber;
 &LOGFILE.WriteLine("****Record:" | &REC.Name | ",
Field:" | &MYFIELD.Name);
 &LOGFILE.WriteLine("****" | MsgGet(&MSGSET,
&MSGNUM, ""));
 End-If;
 End-For;
 Return False;
 Else
 Return True;
 End-If;
End-Function;
.
.
.
.

266 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 13

Using the SQL Editor

Understanding the SQL Editor Window

Use the SQL Editor to create and validate SQL for SQL definitions for PeopleCode programs, record
views, and Application Engine programs.

The title bar of the editor window displays either the name of the SQL definition or the name of the
component that contains the SQL. For example, if the SQL statement is part of an Application Engine
program, then the names of the program, the section, the step, and the action are listed in the title bar, as
shown in the following example:

This example illustrates the SQL Editor window.

The editor window consists of the main edit pane. For SQL definitions and SQL views, a drop-down
database list appears at the upper left.

Note: For SQL definitions only, you can optionally specify an effective date, which appears in a drop-
down at the upper right.

Accessing the SQL Editor

This section discusses how to:

Copyright © 1988, 2024, Oracle and/or its affiliates. 267

Using the SQL Editor Chapter 13

• Create SQL definitions.

• Access SQL definition properties.

• Create dynamic view or SQL view records.

• Access the SQL Editor from Application Engine programs.

You access the SQL Editor differently for each definition type.

Creating SQL Definitions
A SQL definition contains SQL statements, which can be entire SQL programs or just fragments that you
want to reuse. You can access, create, change, or delete SQL definitions using Application Designer, or
you can use the SQL class in PeopleCode. You can upgrade SQL definitions, and you can add them to a
project. The following example shows a SQL definition:

This example illustrates a SQL definition with an effective date.

To create a SQL definition:

1. From Application Designer, select File, New, SQL.

2. Specify the database type to associate with the SQL definition.

You can associate more than one database type with a single SQL definition. In PeopleCode, you can
specify the appropriate database type for the program. However, at least one of the SQL statements
must be of type Default.

3. (Optional) Specify an effective date.

To specify an effective date with your SQL definition:

a. Access the object properties by selecting File, Object Properties.

268 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 13 Using the SQL Editor

Alternatively, select the SQL definition, right-click it, and then select Object Properties, or press
ALT + ENTER.

b. Click the Advanced tab, and then select the Show Effective Date check box.

When you click OK, the SQL definition shows a date in the right-hand drop-down menu.

4. Enter the SQL code.

You do not need to format your code. The SQL Editor validates and formats it when you save the
SQL definition.

Related Links
“Working with Definitions” (Application Designer Developer’s Guide)
“Understanding SQL Class” (PeopleCode API Reference)

Accessing SQL Definition Properties
Do one of the following to access the definition properties for the SQL definition:

• Press ALT+Enter.

• Select File, Definition Properties.

• Right-click in the definition and select Definition Properties.

Use general properties to specify a description for the SQL definition as well as additional comments. The
description appears in Application Designer search lists.

Use the advanced properties to display an effective date with the SQL definition.

Note: The Audit SQL field on the Advanced Properties tab is not used.

Creating Dynamic View or SQL View Records
When you create a SQL view or dynamic view record definition, you enter a SQL view Select statement
to indicate the field values that you want to join and the tables that contain the field values. You do this in
the SQL Editor, as shown in the following example:

Copyright © 1988, 2024, Oracle and/or its affiliates. 269

Using the SQL Editor Chapter 13

This example illustrates the SQL Editor for SQL view record definition.

To access the SQL Editor from record definitions:

1. Open or create a dynamic view or SQL view record definition.

2. Select the Record Type tab.

3. Click the Click to Open SQL Editor button.

You can select a database type, but not an effective date, from the SQL Editor for dynamic view and
SQL view record definitions.

Note: You must be sure to save record definitions of the SQL View type before opening the SQL Editor.
Once the SQL Editor is open, the Save options are disabled and inaccessible. If you do not save your
changes before opening the SQL Editor, you may lose your work.

Accessing the SQL Editor from Application Engine Programs
You can access the SQL Editor from the following action types:

• Do Select

• Do Until

• Do When

• Do While

• SQL

270 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 13 Using the SQL Editor

The following example shows an Application Engine SQL code in the SQL Editor:

To access the SQL Editor from an Application Engine program:

1. Open the Application Engine program.

2. Select the action.

3. Either right-click and select View SQL, or select View, SQL.

Select the database type and effective date for this SQL in the section, not in the SQL Editor.

Using the SQL Editor

The SQL Editor works similarly to many other text editors. Many of the same functions are available as in
the PeopleCode Editor, for example, cut, paste, find, and replace.

Copyright © 1988, 2024, Oracle and/or its affiliates. 271

Using the SQL Editor Chapter 13

When you right-click in an open SQL Editor window, the available functions appear in a pop-up menu:

This table describes the functions that are available in the SQL Editor but not the PeopleCode Editor:

Function Description

Format Display You do not need to format your SQL statements; you only
need to use the correct syntax. When you save or validate,
 the system formats the code according to the rules in the
PeopleCode tables, no matter how you entered it originally. It
automatically converts field names to uppercase and indents
statements. The resulting look of SQL is consistent with other
programs in the system.

Resolve Meta SQL If the SQL contains meta-SQL, select Resolve Meta SQL to
expand the meta-SQL statement in the output window. The
expanded meta-SQL appears in the Meta SQL tab.

Delete Statement You can delete standalone SQL statements. This menu item
is not enabled with SQL statements that have a database type
of Default with no effective date, or for statements that have a
database type of Default and an effective date of 01/01/1900.

This example, using Resolve Meta-SQL, shows how the following code expands:

%Join(COMMON_FIELDS, PSAEAPPLDEFN ABC, PSAESECTDEFN XYZ)

This example illustrates meta-SQL expanded in the output window.

The SQL Editor and the PeopleCode Editor interfaces and functions are similar. You can add, delete, and
change text; you can use the find and replace function; and you can validate the SQL. When you save a
SQL definition, the code is automatically validated and formatted (indented, capitalized, and so on). You

272 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 13 Using the SQL Editor

can select the colors for displaying keywords, comments, operators, and so on; these settings are shared
with the PeopleCode Editor. You can also separately specify word wrap options.

See the documentation on the PeopleCode Editor for details on relevant functions.

Related Links
Editing Functions
Find and Replace Dialogs
Validate Syntax Utility
Using Drag-and-Drop Editing
Changing Colors in the PeopleCode Editor
Selecting a Font for the PeopleCode Editor
Changing Word Wrap in the PeopleCode Editor

Copyright © 1988, 2024, Oracle and/or its affiliates. 273

Using the SQL Editor Chapter 13

274 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 14

Creating Application Packages and Classes

Understanding Application Packages

Use the Application Packages Editor to create application packages. A package contains other packages
or application classes. A subpackage is any package within a primary, or parent, package.

The title bar of the editor window displays the name of the application package definition. The main
window displays the classes and other application packages that make up the application package
definition.

The application package hierarchy is displayed as a tree structure. You can use the expand icon (+) and
the collapse icon (-) to expand or collapse individual nodes.

To expand all the nodes in a package select View, Expand All or click the Expand All Nodes button on the
toolbar. To collapse all the nodes in a package select View, Collapse All or click the Collapse All Nodes
button on the toolbar.

In the following example, PTAF_UTILITIES is the primary package, and Encryption, Exception
Utilities, Integration, and so on, are subpackages. Printable Document is a class in the PTAF_UTILITIES
application package, while Base64 and PSCipher are classes in the Encryption subpackage.

This example illustrates the fields and controls on the Application Package Editor main window. You can
find definitions for the fields and controls later on this page.

Copyright © 1988, 2024, Oracle and/or its affiliates. 275

Creating Application Packages and Classes Chapter 14

Related Links
“Understanding Application Classes” (PeopleCode API Reference)

Creating Application Packages

This section provides an overview of package names and discusses how to create application package
definitions.

Understanding Package Names
You can create a subpackage with the same name as another package or subpackage within the same
application package definition, as long as the fully qualified name is unique for each subpackage. Each
subpackage is differentiated by the full path name of the class (from the package definition name and the
subpackage name).

The following is an example of application package naming conventions, which shows a case where in,
suppose in the application class PT_FRUIT, where PT_FRUIT is the primary class, you had the following
structure of subpackages (no classes are listed in this example):

In this example, three subpackages are named Raw, but the fully qualified name for each is unique.
For example, the first one is qualified by the name of the primary package. Its fully qualified name is
PT_FRUIT:Raw.

The other Raw subpackages are also qualified by the subpackages that contain them. Their names are
PT_FRUIT:Reciepies:Raw and PT_FRUIT:Smoothies.Raw.

Similarly, you cannot create two classes with the same name within a given package or subpackage.
You can create classes with the same name within the same application package definition, just like
subpackages, as long as the fully qualified name is unique. Each class is differentiated by the full path
name of the class.

Note: You cannot create a structure for which more than two levels of subpackages are defined below the
primary package.

Creating Application Package Definitions
This section discusses how to create a new application package or insert a new package or class into an
application package.

276 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 14 Creating Application Packages and Classes

To create a new application package, access Application Designer and select File, New, Application
Package.

To insert a new package or class, open an application package definition. Select a package or subpackage
and select Insert, Package or Insert, Application Class.

Application package names and application class names must begin with an alphabetic character and must
consist of only alphanumeric characters and underscores (_).

Note: In certain cases you may encounter an error if you use Save As to create a new application package.
The error occurs when you choose to save the PeopleCode with the application package and the
PeopleCode uses a %This system variable. The %This system variable is used in application class
PeopleCode to refer to the current object.

Related Links
“Using %This with Constructors” (PeopleCode API Reference)

Using the Application Package Editor

When you right-click an open Application Package Editor window, you see the available functions:

Field or Control Description

Cut, Copy, and Paste Not available for this release. Instead, insert new subpackage
and class nodes where needed and use the clipboard to copy
and paste PeopleCode text from class to class.

To copy the primary package, select File, Save As.

Delete Click to delete either a class or a package. The PeopleCode
text is not actually deleted until you save the application
package. Deleted PeopleCode classes can be recovered by
reinserting the class node, as long as you have not saved in the
interim.

Copyright © 1988, 2024, Oracle and/or its affiliates. 277

Creating Application Packages and Classes Chapter 14

Field or Control Description

Insert App Class (insert application class)application classes
inserting

Click to insert an application class. Because classes cannot
have children (subclasses), they can be inserted only into an
existing package.

Insert Package Click to insert an application package. You can only insert
packages into an existing package or subpackage.

Rename Click to rename either a class or a subpackage. When you
save the definition, all PeopleCode programs associated with
the renamed class are also updated. To rename the primary
package definition, select File, Rename.

View PeopleCode Click to view the associated PeopleCode. PeopleCode can
be defined only for application classes, and it is not directly
related to package nodes.

Print Click to print the application package definition, including all
the PeopleCode in the classes.

Find Definition References Select an application package or class and click to search for
references.

See Finding References to Application Packages and Classes.

Editing Application Classes

From an application package, you can access the PeopleCode programs associated with the classes of the
package.

The Application Packages Editor and the PeopleCode Editor interfaces are similar. You can add, delete,
and change text, you can use the find and replace functions, and you can validate syntax. When you
save application packages, the code is automatically formatted (indented and so on), just as it is in the
PeopleCode Editor.

The editor window contains the main edit pane, the drop-down definition list at the upper-left, and the
drop-down event list at the upper-right, as shown in the following example:

278 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 14 Creating Application Packages and Classes

This example illustrates the fields and controls on the Example of Application Packages Editor window.
You can find definitions for the fields and controls later on this page.

Only one event is defined for an application class, OnExecute. This is not an event in the Component
Processor flow. The application class runs when called.

The drop-down list at the upper-left enables you to navigate directly to the PeopleCode associated with
every class in the package, as well as to every subpackage and its classes.

To edit an application class:

1. Open the application package.

2. Select a class.

3. Either select View, PeopleCode or right-click and select View PeopleCode.

A PeopleCode Editor window appears.

Related Links
Editing Functions

Copyright © 1988, 2024, Oracle and/or its affiliates. 279

Creating Application Packages and Classes Chapter 14

280 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15

Debugging Your Application

Understanding the PeopleCode Debugger

The PeopleCode debugger is an integrated part of Application Designer. The interface to the debugger has
a visual indicator of breakpoints, an arrow indicating the current line, and the ability to step through code.
You can inspect the value of a variable by holding the cursor over it and reading the pop-up bubble help.
The debugger also provides variable inspection windows for global variables, local variables, function
parameters, and component-scoped variables. It also enables PeopleCode objects to be expanded, so you
can inspect their component parts.

Note: Do not try to use the PeopleCode debugger with the SwitchUser function. Only the first user is
logged into the PeopleCode debugger. Once the switch occurs, breakpoints, logging, and so on are no
longer executed.

Accessing the PeopleCode Debugger

Note: You can start a debugging session either before or after you start a PeopleSoft component.

1. Determine whether to run Application Designer in two-tier mode or three-tier mode.

• If you are debugging Application Engine or component interface PeopleCode, run Application
Designer in two-tier mode, with a direct connection to the database.

• If you are debugging an application in PeopleSoft Pure Internet Architecture (PIA), run
Application Designer in three-tier mode, through the application server. You must be logged on to
PIA and to Application Designer using the same user ID.

2. Access the debugger through Application Designer by selecting Debug, PeopleCode Debugger Mode.

The Local Variables watch pane and the Call Stack pane open. PeopleCode programs that had
breakpoints set from your previous debugging session are opened also, and the breakpoints are
restored.

If you did not have breakpoints set, open the PeopleCode program you want to debug and enter
debug mode. The debugger will open with the current PeopleCode program and you can set your
breakpoints.

Note: If you have already opened the debugger and then closed it, the menu may not change correctly
to enable you to access the debugger a second time. If this occurs, click the Local Variables window,
and then try the Debug menu again.

Copyright © 1988, 2024, Oracle and/or its affiliates. 281

Debugging Your Application Chapter 15

In PIA, navigate to the point where the breakpoint occurs. Your application pauses and the
Application Designer icon flashes in the task bar. Switch to Application Designer to step through your
program or continue running it.

This example illustrates the fields and controls on the Application Designer icon flashes in the toolbar
when the application hits a breakpoint. You can find definitions for the fields and controls later on this
page.

If the debugger does not engage, check that you used the same user ID to log into PIA and
Application Designer, then check your application server configuration to verify that PeopleCode
debugger is enabled.

Note: Your security administrator has options for allowing users to access different parts of Application
Designer, including the PeopleCode debugger. If you are having problems accessing the debugger,
you may need to contact your system administrator about your security access. You can access the
PeopleCode debugger from outside a firewall.

Using PeopleCode Debugger Features

This section discusses:

• Visible current line of execution.

282 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

• Visible breakpoints.

• Hover inspect.

• Single debugger.

• Variable panes.

• General debugging tips.

Visible Current Line of Execution
This example shows the current line indicator (green arrow displayed in left-hand gutter):

This example illustrates the fields and controls on the PeopleCode debugger with current line of
execution. You can find definitions for the fields and controls later on this page.

Visible Breakpoints
The PeopleCode debugger supports visual indicators that signify breakpoint locations. In the following
example, the current line indicator (green arrow) is shown at the first line, and the breakpoint (red dot
displayed in left-hand gutter) is on line 8:

All breakpoints are saved when Exit Debug Mode is selected.

Note: You cannot set breakpoints in function declarations, variable declarations, or comments.

Hover Inspect
If the program is already running, you can see the actual values for the variables by holding the cursor
over them. The current value appears in a pop-up window, as shown in the following example:

Copyright © 1988, 2024, Oracle and/or its affiliates. 283

Debugging Your Application Chapter 15

This example illustrates the fields and controls on the PeopleCode debugger with breakpoint, current line
of execution, and hover inspect. You can find definitions for the fields and controls later on this page.

Hover inspect is implemented only for simple variables and fields.

Hover inspect is not implemented for object expressions (for example, rowset assignments and array
assignments).

Single Debugger
Each PeopleSoft session you run on a machine can have its own debugging session. However, only one
instance of the PeopleCode debugger can occur per session. If more than one instance of Application
Designer is running for a session, only one may be the active debugger at a given time.

From within a running instance of Application Designer, any component in the same session is also
placed into debug mode.

After the session is in debug mode, any component that is started and that belongs to that session
automatically goes into debug mode.

Similarly, Application Engine PeopleCode and component interface PeopleCode can be debugged.

After you exit debug mode by selecting Debug, Exit Debug Mode or by exiting Application Designer, all
components in that session go out of debug mode. If you exit a component, debugging continues with any
remaining open and running components.

If more than one Application Designer session is running, the Application Designer session that is used as
a debugger is the first one to be started.

In debug mode, a PeopleCode Editor window opens for every item (for example, record, component, or
page) that has PeopleCode in it when that PeopleCode is executed. If a component has more than one
event with a PeopleCode program, then only one window opens per item. For example, if you have a
record that has PeopleCode in both the SearchSave and RowInit events, only one PeopleCode Editor
window opens: first it contains the SearchSave PeopleCode program, and then the RowInit program. If
you have PeopleCode in the RowInit event for two different records that are part of the same component,
two PeopleCode Editor windows open, one for each RowInit PeopleCode program.

Variables Panes
The four types of variables panes are:

284 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

• Local

• Global

• Component

• Parameter

The Local, Global, and Component variable panes show local, global, and component variables,
respectively. The Parameter variable pane shows the value of parameters passed in function declarations.

From the variables pane, you can check the value of the variables you have in the program. These values
are updated as the code runs. The following example shows the variables pane:

This example illustrates the fields and controls on the Local Variables pane. You can find definitions for
the fields and controls later on this page.

In addition, you can expand any of the objects to see its properties by clicking the plus sign next to the
variable name. In the following example, a level one rowset is expanded. You can see the properties, such
as ActiveRowCount and DBRecordName, that are part of the rowset.

Copyright © 1988, 2024, Oracle and/or its affiliates. 285

Debugging Your Application Chapter 15

This example illustrates the fields and controls on the Local Variables pane with rowset object expanded.
You can find definitions for the fields and controls later on this page.

In addition, some objects contain other objects: a rowset contains rows, rows contain records or child
rowsets, and records contain fields. You can expand these secondary objects to see their properties. In the
following example, the first row of a rowset is expanded, as is the EMPL_CHECKLIST record:

This example illustrates the fields and controls on the Variable pane with rowset, row, and record
expanded (shown with condensed font). You can find definitions for the fields and controls later on this
page.

286 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

Field Values

When you view a field object in the debugger, the value of the field is listed in the Value column.
Therefore, you do not have to navigate to the Value property to see the value of a field.

The following example shows the PERSONAL_DATA record and the values of the fields:

This example illustrates the fields and controls on the PERSONAL_DATA record field values. You can
find definitions for the fields and controls later on this page.

In addition, the only fields that appear in the debugger are the fields that are actually in the Component
Buffer. For example, suppose you have a derived work record, but you do not access all the fields in the
work record. Only the fields that you access and that are in the Component Buffer actually appear in the
debugger.

Related Links
Record Fields and the Component Buffer

Call Stack Pane
The Call Stack pane appears by default when the PeopleCode debugger is started. To reopen it, select
Debug, View Call Stack Window.

The Call Stack pane displays a stack of PeopleCode functions and methods that are currently active but
not completed. You can use the Call Stack pane to observe the flow of an application as it executes a
series of nested functions. When a function is called, it is pushed onto the top of the stack. When the
function returns, it is popped off the stack.

Copyright © 1988, 2024, Oracle and/or its affiliates. 287

Debugging Your Application Chapter 15

The Call Stack pane displays the currently executing function at the top of the stack and older function
calls below that, in reverse calling order. You can navigate to the source code of a function from the call
stack window. The variables panes update to reflect values for the selected function.

The Call Stack pane is updated and usable when execution is stopped at a breakpoint.

Call Stack Indicators

The Call Stack displays a current line indicator and a selected function indicator in the gutter.

The current line indicator is a green arrow that shows where in the call stack the execution stopped. The
current line indicator always appears in the call stack pane.

The selected function indicator is a yellow triangle that marks the current function being displayed by the
Edit and Variables windows. The selected function indicator does not appear when the current function is
at the execution point.

You can hover over a function name to see the full program path in a pop-up window, as shown in the
following example.

This example illustrates the fields and controls on the Call Stack pane example showing execution
pointer, selected function indicator, and hover pop-up. You can find definitions for the fields and controls
later on this page.

The Call Stack pane is updated, when necessary, with each change of the debug state.

Go To Source Code

Right-click on a function to access a context menu with these options:

Options Description

Copy Copies the text of the selection in the call stack to the
clipboard.

Select All Selects all rows in the call stack. You can also use standard
shift-click and CTRL-click actions to select multiple rows.

Go To Source Code Displays the selected function in the Edit window. In addition,
 the active variables windows will be updated in sync with the
Call Stack and Edit windows.

Double-click a function name to go to the source code.

288 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

When the displayed source code is at the execution point, the execution pointer icon (green arrow)
appears in the source window.

When the displayed source code is not at the execution point, the selected function icon (yellow triangle)
appears in the source window.

This example illustrates the fields and controls on the Source code pane and call stack pane showing the
yellow triangle execution pointer. You can find definitions for the fields and controls later on this page.

Viewing source code for functions that are not at the top of the stack does not change the
point of execution. Nor does it disable the ability to continue execution. For example, in
the previous example, selecting Go would cause the program execution to continue at
“FUNCLIB_PORTAL.PORTAL_GEN_FUNC.FieldFormula PortalOpen” and not at the function in the
source code window.

During debugging it is easier to go back to the previous code event from the call stack window as
compared to trying to keep track of where the control was transferred and then finding the right
opened PeopleCode window in Application Designer. This can be useful when trying to understand the
component design and PeopleCode flow.

Setting Values for Variables and Properties
Setting the value of a variable or property in the debugger gives you the flexibility to try out changes and
see the results in real time or to recover from a logic error and continue.

You can change the value of variables or properties in the Local Variables, Component Variables,
Function Parameters, and Component Buffers panes. Only variables or properties with conventional data
types (Any, Boolean, Date, DateTime, Float, Integer, Number, String, Time) can by changed. You cannot
assign a new object to an object variable. Values that are not editable appear on a gray background.

Copyright © 1988, 2024, Oracle and/or its affiliates. 289

Debugging Your Application Chapter 15

While the debugger is running and halted at a breakpoint, select a field in the value column, such as the
Local Value column in the example, and revise the value.

This example illustrates the fields and controls on the Local Variables pane showing a drop-down list to
set the value for a Boolean variable. You can find definitions for the fields and controls later on this page.

The debugger performs data type checking to prevent entry of incorrect data type values. For example,
character strings are not allowed for integer data types, and so on. However, data integrity is not verified,
so be aware that changing variable values at runtime can corrupt program execution as well as program
data. For example, setting an integer value higher than what is permitted in the function could cause a
crash when execution continues. It is the developer’s responsibility to enter an appropriate value.

Modifying a variable in a debugger pane changes the value in memory only. The change does not trigger
any PeopleCode events and does not cause any PeopleCode flags to be set.

General Debugging Tips
The following are general tips for debugging your application:

• If you are having problems determining if the correct data is being loaded into the component buffers,
use the View Component Buffers view window to see all the values currently in the component buffer.

This is equivalent to putting a GetLevel0 function at the start of a program.

Use the &LEVEL0 variable to navigate through all the levels of the rowset object, see the row,
records, fields, and so on. This shows you everything that has been loaded into the component buffers
for that component.

• While at a breakpoint, if you lose track of the window, or the location within the window, that is
displaying the green execution location arrow, you can use the Execution Location Properties menu
item’s ViewCode button to find your current execution location again.

• Objects remain expanded in the variable windows as you move through PeopleCode.

This enables quick inspection of the state of an object as you step through the PeopleCode. However,
there is a performance cost for using this feature. If you are finished examining an object, you may
want to collapse it to improve the response speed.

290 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

• If a database transaction has been started (either for you by PeopleTools, or by you in PeopleCode)
other users of that database are blocked from accessing that database until the transaction is complete.

If you are stepping through PeopleCode while this transaction is open, you could potentially block
other users for an extended period of time. You may want to use a private database for debugging to
avoid blocking other users.

• Using the debugger is resource intensive and will impact overall system performance. Oracle
recommends that you do not run debugger on your production system unless the issue you are trying
to debug cannot be replicated in any other environment. If that is the case, debug when there is the
least activity on the system. As an alternative you can try PeopleCode tracing.

• To create a file that contains all the PeopleCode for a project (or database), use the Find In feature and
search for ;.

Be sure to select Save PeopleCode to File.

The following example shows the Find In dialog box:

This example illustrates the fields and controls on the Find In dialog box. You can find definitions for the
fields and controls later on this page.

See Using the Find In Feature.

Copyright © 1988, 2024, Oracle and/or its affiliates. 291

Debugging Your Application Chapter 15

DoModal Considerations

If you set the PeopleCode debugger to break at start and you are using the DoModal PeopleCode function,
the DoModal window may appear behind the PeopleCode debugger window. The debugger may appear
to have stopped, but it has not. Be sure to check that other windows have not opened while you are
debugging the code.

Using PeopleCode Debugger Options

While the debugger is running, you can use the Debug menu to select other options:

This example illustrates the fields and controls on the PeopleCode debugger options. You can find
definitions for the fields and controls later on this page.

Field or Control Description

Exit Debug Mode Exits debug mode. When you exit debug mode, all breakpoints
are automatically saved. If you close Application Designer,
 you automatically exit debug mode.

Abort Running Program Stops the PeopleCode program that is currently running.

292 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

Field or Control Description

Execution Location Properties Displays the location of the running code in a dialog box. This
display includes the record name, field name, event name,
 and line number of the code. It also indicates if the code is
executing on the client or server. You can view the exact code
by clicking View Code.

This example illustrates the fields and controls on the Execution Location Properties dialog box. You can
find definitions for the fields and controls later on this page.

Field or Control Description

Break at Start Pauses execution of the component on the first line of every
PeopleCode program that executes in the component. If you
start a component with Break at Start selected and then you
start a second component, the PeopleCode associated with
the second component is stopped at the first line of the first
PeopleCode program as well, as part of the same debugging
session.

Toggle Break at Cursor Removes the breakpoint if the line the cursor is currently on
has a breakpoint. Adds a breakpoint if the line the cursor is
currently on does not have a breakpoint.

Edit Breakpoints Opens a dialog box that displays the lines that have
breakpoints. From this dialog box, you can display the code
that contains the breakpoint by clicking View Code. You can
also remove one or all breakpoints.

Copyright © 1988, 2024, Oracle and/or its affiliates. 293

Debugging Your Application Chapter 15

This example illustrates the fields and controls on the Breakpoints dialog box. You can find definitions for
the fields and controls later on this page.

Field or Control Description

Go Continues processing until the next breakpoint. If Break At
Start is enabled, processing pauses at the next PeopleCode
program.

Step Executes the current line of the PeopleCode program, stepping
into functions.

Step Over Steps through each line of the PeopleCode program, one
line at a time, but steps over the functions; the functions are
executed, but not stepped into.

Run to Return Processes past the return of the current function, and then
pauses.

Step Instruction Processes low-level, pseudo-machine code instructions
internal to PeopleCode. This option is used in conjunction with
Log Options.

View Call Stack Window Opens a separate window for viewing the call stack. The Call
Stack window displays a stack of PeopleCode functions and
methods that are currently active but not completed. You
can use the Call Stack window to observe the flow of an
application as it executes a series of nested functions.

View Global Variables Opens a separate window for watching global variables.

View Component Variables Opens a separate window for watching component variables.

294 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

Field or Control Description

View Local Variables Opens a separate window for watching local variables.

View Function Parameters Opens a separate window for watching user-specified
parameters in function calls.

View Component Buffers Opens a separate window for viewing the current component
buffers. This is equivalent to getting a level zero rowset for the
component.

Note: The previous five windows update continuously as the program executes.

Field or Control Description

Options Enables you to select between opening a dialog box for
general options or for specifying log options.

This example illustrates the fields and controls on the General Options dialog box. You can find
definitions for the fields and controls later on this page.

The General Options dialog box enables you to specify conditions of the view windows. The default is for
both of these options to be selected.

Field or Control Description

Enable Auto Scroll If you select this check box and you click a plus symbol next
to a variable name in a view window, the variable you clicked
scrolls to the top of the window.

Enable Condensed Font Select to display all view windows with a smaller font.

Copyright © 1988, 2024, Oracle and/or its affiliates. 295

Debugging Your Application Chapter 15

Additional Features

Field or Control Description

Break at Termination After you are in debug mode, generally, any PeopleCode
program in the session that terminates abnormally first breaks
in the debugger. In addition, the error message appears in
the PeopleCode log in the bottom window of Application
Designer.

Related Links
Setting PeopleCode Debugger Log Options

Setting Up the Debugging Environment

You can use the PeopleCode debugger for two-tier and three-tier debugging. The database and application
can reside on remote servers; they do not need to reside on the local machine.

Two-tier debugging works out of the box. Setting up three-tier debugging requires you to make a few
modifications in PSADMIN (PSAPPSRV.CFG) to enable debugging.

You can connect to a Microsoft Windows NT server domain that is not on your local machine. You do not
have to configure a local domain to do this. You also do not have to have PeopleTools software installed
locally for three-tier debugging.

Note: Application Designer will not connect to the PeopleCode debugger through a firewall using
Network Address Translation (NAT).

Related Links
“Setting Up the PeopleCode Debugger” (System and Server Administration)

Compiling All PeopleCode Programs at Once

In addition to checking individual programs, you can compile all PeopleCode programs either in a
database or in a project to check for errors. This option opens and compiles every PeopleCode program.
This process can be run on an as-needed basis to check for corruption in your programs. Run this option
after an upgrade to verify that all the programs were upgraded correctly.

You run this option from the Tools menu:

296 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

This example illustrates the fields and controls on the Tools menu - Compile All PeopleCode option. You
can find definitions for the fields and controls later on this page.

Compile All PeopleCode
To compile all PeopleCode programs:

1. Open Application Designer while accessing the database that contains the PeopleCode that you want
to check.

2. Select Tools, Compile All PeopleCode

3. Select which PeopleCode to compile.

4. Click Compile in the Compile All PeopleCode dialog box.

Errors appear in the PeopleCode log display window. Warnings and auto-declared variables do not
appear in the log display window, however the number of warnings and the number of auto-declared
variables appear in the log display window.

Note: If you specified a log file in the debugger log options, then all errors are written to the log file
as well.

Copyright © 1988, 2024, Oracle and/or its affiliates. 297

Debugging Your Application Chapter 15

This example illustrates the fields and controls on the Compile All PeopleCode dialog box. You can find
definitions for the fields and controls later on this page.

Field or Control Description

Compile all PeopleCode Select this option to validate every PeopleCode program in the
database.

Compile all and Save all PeopleCode Select this option to open, compile and save every PeopleCode
program.

Compile and Save Directive PeopleCode Select this option to open, compile and save directive
PeopleCode.

You can also compile PeopleCode from the command line, including the ability to compile directive
PeopleCode.

Directive PeopleCode

Directive PeopleCode provides the ability write PeopleTools release specific PeopleCode. Using directive
PeopleCode you can conditionally ignore PeopleCode objects in PeopleCode events based on the
PeopleTools release. Directive PeopleCode uses #If #ToolsRel and #End-If. For example:

#If #ToolsRel >= "8.54" #Then
 &PhotoSizeName = "CARD";
#Else
&PhotoSizeName = "ORIG";
#End-If

The PeopleTools release is stored in the PSPCMPROG table in the PTTOOLSREL field. When directive
PeopleCode is compiled, the system will check the PeopleTools release for the database and compile the
correct code for that PeopleTools release.

Note: Compiling directive PeopleCode is included as a step in all PeopleTools upgrades.

For more information on directive PeopleCode functions and constructs, see “Directive PeopleCode
Functions and Constructs” (PeopleCode Language Reference).

298 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

Related Links
“Command Line Parameters” (Lifecycle Management Guide)
“Compiling and Saving Directive PeopleCode” (Lifecycle Management Guide)

Compile Project PeopleCode
To compile all PeopleCode programs:

1. Open Application Designer while accessing the database that contains the PeopleCode that you want
to check.

2. Open the project containing the PeopleCode to compile.

3. Select Tools, Compile Project PeopleCode.

Compiler output is written to the pccmpprj.log file.

• On Windows, the pccmpprj.log file is located in the user's temporary directory.

• On Linux, the pccmpprj.log file is located in the PS_CFG_HOME directory.

If you are using command line, and if the pccmpprj.log file cannot be opened in the default location,
then you can access the file in the directory that is specified with the -LF parameter.

Errors appear in the PeopleCode log display window.

Note: If you specified a log file in the debugger log options, then all errors are written to the log file
as well.

Related Links
“Command Line Parameters” (Lifecycle Management Guide)

Setting PeopleCode Debugger Log Options

Use the PeopleCode debugger to view PeopleCode that is executed while you step through your
application. Select Debug, Log Options to access the PeopleCode Log Options dialog box.

Copyright © 1988, 2024, Oracle and/or its affiliates. 299

Debugging Your Application Chapter 15

This example illustrates the fields and controls on the PeopleCode Log Options dialog box. You can find
definitions for the fields and controls later on this page.

All log information appears in the PeopleCode log window, at the bottom of Application Designer.

This example illustrates the fields and controls on the PeopleCode log window. You can find definitions
for the fields and controls later on this page.

You can record what you see in a log file. Also, you can tailor the log results to record a variety of online
information.

If you exit debug mode but do not close Application Designer, all the log options that you specified are
still there when you start debug mode again.

When you close the Application Designer, all log options are clear. The next time you enter debugging
mode, you must reselect debug log options.

See Interpreting the PeopleCode Debugger Log File.

300 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

All the options available in the Log Options dialog box are also available in PeopleSoft Configuration
Manager, on the Trace tab, in the PeopleCode Trace section.

Execution Trace Options

Execution trace is set to trace each PeopleCode statement. You can also trace the start of each program or
each program instruction.

Data Trace Options

This table describes the data trace options:

Option Description

Assignments Records each assignment made to a field.

Fetches Records the field values retrieved from a PeopleCode fetch.

Stack Indicates the contents of the internal machine stack. Typically,
 only PeopleSoft staff developing PeopleCode language
enhancements use this option.

Call Trace Options

The call trace options, described in the following table, enable you to record the values of external calls,
internal calls, returns, and function parameters.

Option Description

External calls Traces each call to external (PeopleCode) functions.

Internal calls Records each call to internal subroutines.

Returns Logs the occurrence of program returns.

Function parameters Logs the value of individual PeopleCode function parameters.

Log To File

When you select this option, you must specify the name of a file, or you receive an error and logging to
file is disabled.

If you do not specify a directory location, the file is placed in the same directory from which you are
running PeopleTools.

Copyright © 1988, 2024, Oracle and/or its affiliates. 301

Debugging Your Application Chapter 15

If you specify the name of an existing file, a warning message appears, asking you whether to overwrite
the file. You must go back into the Log Options dialog box and specify a different file name; otherwise,
the log file is overwritten.

If you do not exit Application Designer before running a different application, each trace is appended to
the specified log file.

Related Links
“Specifying Trace Settings” (System and Server Administration)
“Configuring PeopleCode Trace” (System and Server Administration)

Interpreting the PeopleCode Debugger Log File

You can produce a trace log using any of the following methods:

• Using the Log File option in the PeopleCode debugger.

• With the PeopleSoft Configuration Manager Trace tab.

• Using the SetTracePC and SetTraceSQL built-in functions.

• With PeopleTools utilities (included for backward compatibility purposes only and should not be
used).

All trace files except those produced using the Log File option contain timing information, such as when
each line started processing and how long it took to execute.

The Log File option writes to a file that you specify. The log file produced by the other options is
specified by the PeopleTools Trace File option in PeopleSoft Configuration Manager. All of these options
write to the same file.

Trace files are also produced by Application Engine. These logs may contain more information.

This section discusses:

• Log file contents.

• Other items in the log file.

Related Links
“Using Debug Utilities” (System and Server Administration)

Log File Contents
The log file contains information useful for debugging PeopleCode.

You can view the log using any editor that displays ASCII text, such as Notepad. The log file has the
following components.

302 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

Field or Control Description

Line Count Specifies a line number in the file.

Internal Information Contains reference numbers used for internal tracing. You can
ignore this information.

Instruction Location Address of an instruction processed in the program. You can
follow programs and functions using this number.

Operation Code Indicates the operation performed by the program.

Operation Operands Contains information specific to each operation. The following
table lists the possible operations and the operands that appear
for the list and trace options.

Other Items in the Log File
The following table describes other items that can appear in a debugging trace:

Trace Item Description

Store Field:record name.field name Value=xx Issued when the assignments trace option is selected. It
contains the record and field names and the value that is
stored.

Fetch Field:recordname.fieldname Value=xx Issued when the Fetch Field option is selected. It contains the
record and field name and the value that is retrieved.

Fetch Field:recordname.fieldname Contains Null Value Issued when the Fetch Field option is selected and the selected
record.field contains a null value.

Fetch Field:recordname.fieldname Does Not Exist Issued when the Fetch Fields option is selected and when the
field is not found.

Branch Taken Displayed after a branch test when the branch is taken.

Field Not Found, Statement Skipped Displayed whenever a referenced field was not found error
causes the PeopleCode processor to skip to the next statement.

vvvvvv PeopleCode Program Listing Issued when the List Program option is selected. It marks the
beginning of a PeopleCode program listing.

^^^^^ PeopleCode Program Listing End Issued when the List Program option is selected. It marks the
end of a PeopleCode program listing.

Copyright © 1988, 2024, Oracle and/or its affiliates. 303

Debugging Your Application Chapter 15

Trace Item Description

Error Return -> NNN Issued when a fatal error condition terminates the PeopleCode
program.

Using Application Logging

Application logging enables you to do error logging using an independent application log fence
mechanism. It also enables you to write to the PeopleTools log using the WriteToLog built-in function.

Note: This is an application log fence, and it is distinct from the PeopleTools LogFence setting.

In PeopleTools, a log fence is a type of barrier. Application error messages are only written to the
PeopleTools log if the log fence setting that the messages are written to the log with (using WriteToLog)
is less than or equal to the current application log fence setting (AppLogFence) in the application server
configuration file (PSAPPSRV.CFG).

For example if the AppLogFence setting is 2, only messages written using the WriteToLog function with
a log fence value less than or equal to 2 will be written. This allows you to have application logging code
written in your application that will only be in effect if the log fence setting permits.

The application log fence setting is available through the system variable %ApplicationLogFence.

Apart from the obvious use of allowing the application to write to the Tools log file, this mechanism is
also an aid in debugging. For example, you could interleave PeopleCode, SQL, and application level
tracing in the same log file to easily correlate application and PeopleTools actions.

Related Links
“WriteToLog” (PeopleCode Language Reference)
“%ApplicationLogFence” (PeopleCode Language Reference)

Setting the Application Log Fence in the Configuration File
The application log fence default is %ApplicationLogFence_Level1 (3). If you want to use this setting,
you need to place it in the application server configuration file (PSAPPSRV.CFG.) The setting is dynamic
change enabled; that is, if its value is changed in the file, then the new value will be used. As the
following example illustrates, the AppLogFence setting must be in the PSTOOLS section. If you add this
setting, your configuration file can look like this:

[PSTOOLS]
;==
; General settings for PSTOOLS
;==
AppLogFence=1

Related Links
“PSAPPSRV Options” (System and Server Administration)

304 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

Using the Log Fence with PeopleSoft Analytic Calculation Engine
If you set the application log fence to 3 or above, all the detailed messages created on the analytic server
to be sent back to the application server are also logged in the analytic server log file.

In addition, if you set the application log fence to 4 or above, all tracing information is logged to the
analytic server log file.

Using the Find In Feature

Use the Find In feature of Application Designer to search for strings, either in PeopleCode programs or in
SQL definitions. This feature searches:

• All PeopleCode programs and all SQL statements.

• Only PeopleCode programs.

• Only SQL statements.

• Only HTML definitions.

• Only freeform style sheets.

The following examples illustrate the fields and controls in the Find In dialog box.

Copyright © 1988, 2024, Oracle and/or its affiliates. 305

Debugging Your Application Chapter 15

This example illustrates the options for the Find Type list box:

306 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

The Definition Name is a combination box which allows text edits and includes a drop down list box that
lists the 10 most recently used (MRU) items. When any text is provided in this box, objects with their
names beginning with the provided text are listed in the results. When no text is provided, all the results
are displayed without filtering by name. This filter is currently available for PeopleCode search only.

The Owner ID list box has all the owner ID values in the system. When any value is selected from the list
box, only objects having selected owner IDs are listed in the results. When no value is selected, the filter
is not applied to the search. This example illustrates the options for the Definition Name and Owner ID
filters:

The Definition Name and Owner ID filters are independent of each other and can be used along with
other filters.

You can select to search in a specific project or the entire database. If a project is currently open, then the
initial search scope is that project. If you are searching PeopleCode programs and SQL statements, you
can specify if you want record PeopleCode, page PeopleCode, menu PeopleCode, and so on.

When you specify record PeopleCode or page PeopleCode, you can filter the search by selecting the
options available under record PeopleCode or page PeopleCode.

The following options are available in record PeopleCode to filter your search:

• Table

Copyright © 1988, 2024, Oracle and/or its affiliates. 307

Debugging Your Application Chapter 15

• View

• Derived

• Sub Record

• Dynamic View

• Query View

• Temporary Table

The following options are available in page PeopleCode to filter your search:

• Standard Page

• Sub Page

• Secondary Page

• Popup Page

• Layout Page

All output from the search is placed in an output window. You can save these results to a file, copy them,
clear them, or print them.

From the output window, you can immediately open any of the PeopleCode programs, SQL statement,
HTML definitions, or free-form style sheets listed. You also can insert selected definitions into a project
from the output window. Then, if you need to search those definitions again, you can search by project.

Note: To create a file that contains all the PeopleCode for a project (or database) you can use the Find In
feature and search for ;. Be sure to select Save PeopleCode to File.

To find a text string:

1. In Application Designer, select Edit, Find in. Alternatively, if a project is open, right-click the project
name in the project workspace; select Find In Project from the pop-up menu.

The Find In dialog box appears. If a project is currently open, then the initial search scope is that
project. Otherwise, the search scope is the entire database.

2. Type the string that you want to find in the Find What edit box.

If you want only those items that match the case of what you entered, select the Match Case check
box at the bottom of the dialog box.

3. Specify with the Find Type edit box whether you are searching in PeopleCode and SQL, just
PeopleCode, just SQL, HTML definitions, or freeform style sheets.

4. Select the search scope.

You can search the entire database or any existing project.

5. (Optional) Select the view to search.

308 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

If you decide to not search the entire database, you can specify if you want to search the Development
view or the Upgrade view. The default is the Development view.

6. Select the items to search.

You can search all items that contain either PeopleCode or SQL, or a subset of items.

Note: When you select a Find Type of Text String in HTML the Search check box list is empty.
The search is conducted against all HTML definitions.
Similarly, when you select a Find Type of Text String in Freeform Stylesheets the Search check
box list is empty. The search is conducted against all freeform style sheets.

7. (Optional) Select the option to save the search results to a file.

You can save the results of a PeopleCode search to a text file, which you can view or print using a
text editor or word processor. The text file contains the entire PeopleCode program that contained the
string.

To save your results to a file, select the Save PeopleCode to File check box at the bottom of the
dialog box. The results are saved to the file, and appear in the Application Designer Find In output
window.

This option is not available when searching SQL, HTML, or freeform style sheets.

8. Select which Find In output window to display the search results: 1, 2, or 3.

Note: This option allows users to retain and display Find In results. The searches can be conducted in
any of the three windows and displayed in the corresponding tab in the output window.

9. Click the Find button to start the search.

As the Find In feature searches the database, it displays a counter at the bottom of the Find In dialog
box indicating the number of PeopleCode programs searched.

You can click the Cancel button to stop the process.

10. Check the Find in tab on the output window for results.

The results of the search appear in the Find In tab of the output window. Each line shows where the
string was found. You can open any of the programs listed by double-clicking a line in the output
window.

Note: To improve searching for text strings in PeopleCode programs, you can compile and save all
PeopleCode in the database first. To do so, select the Compile all and Save all PeopleCode option on the
Compile All PeopleCode dialog box. See Compile All PeopleCode for more information.

The following example shows the Find In tab of an output window:

Copyright © 1988, 2024, Oracle and/or its affiliates. 309

Debugging Your Application Chapter 15

This example illustrates the fields and controls on the Opening a PeopleCode program from the Find In
tab. You can find definitions for the fields and controls later on this page.

To save records, you select them in the output window, as shown in the following example:

This example illustrates the fields and controls on the Find In output window with definitions selected.
You can find definitions for the fields and controls later on this page.

To save definitions in a project:

1. Use the Find In feature to search for a string.

2. Press the Shift key while selecting the references to save in the output window.

3. Right-click the highlighted definitions and select Insert Into Project.

All the selected definitions are inserted into the current open project.

4. Save your project.

The following example shows the Insert Into Project option:

310 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

This example illustrates the fields and controls on the Insert Into Project option of the Find In pop-up
menu. You can find definitions for the fields and controls later on this page.

Finding References to Application Packages and Classes

You can use the Find Definition References menu item to quickly find references to application packages
or classes.

Prerequisites
To be able to search for references to application packages or classes, you must compile all PeopleCode
for the database first:

Note: This compilation process is a one-time activity per database, which takes many hours to complete
and depending on the size of your database.

1. Sign into Application Designer in two-tier mode.

2. In Application Designer, select Tools > Compile all PeopleCode.

3. In the Compile All PeopleCode dialog box, select the Compile all and Save all PeopleCode option.

4. Click the Compile button.

After this initial PeopleCode compilation, new application package and class definitions and references
are automatically added to the database.

Important! When importing a project that contains application package and application class definitions,
you must select the Compile PeopleCode after Import option to add these definitions to the database.

Related Links
Compiling All PeopleCode Programs at Once

Finding Definition References
After you have compiled and saved all PeopleCode, you can search for references to application packages
or application classes or application class methods:

Copyright © 1988, 2024, Oracle and/or its affiliates. 311

Debugging Your Application Chapter 15

1. In Application Designer, open the application package in the Application Package Editor.

2. In the application package structure, browse to the application package or application class or
application class method for which you want to find definition references.

3. Select Edit, Find Definition References, or right-click the definition and select Find Definition
References from the pop-up menu.

Note: When you want to find definition references for record definition or field definition, the Find
Definition References dialog box displays a set of options for filtering the definition types.
For more information on search filters for record and field definitions, see “Finding Definition
References” (Application Designer Developer’s Guide).

This example illustrates the fields and controls on the Finding definition references for an application
class. You can find definitions for the fields and controls later on this page.

After you select this item, a search of the database takes place, and the results appear on the Find
Definition References tab of the output window.

4. Select any definition that is displayed in the Find Definition References tab by double-clicking it.

The selected definition opens in the editor.

Note: Find definition references will not find an application package or class name when it appears in a
PeopleCode comment or when the name appears in a string literal (that is, within quotes). Use the Find In
feature instead.

Related Links
Using the Find In Feature

312 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 15 Debugging Your Application

Using Cross-Reference Reports

If a field value changes and you do not know how it changed, you can find all references to a field using:

• The Find References option in Application Designer.

• Cross-reference reports.

See “Understanding Projects” (Application Designer Developer’s Guide)“Using Projects” (Application
Designer Developer’s Guide).

PeopleTools is delivered with these PeopleCode cross-reference reports:

• XRFFLPC.

Reports on all fields in the system referenced by other PeopleCode programs. The report sorts by
record names and field names. XRFFLPC shows the records, fields, and PeopleCode program types
that reference each field.

• XRFPCFL.

Reports on the fields that each program references. It sorts the report by record definition, field name,
and PeopleCode type. It shows the records and fields referenced for each program. This report and
XRFFLPC complement each other by using converse approaches to reporting the cross references.

• XRFPNPC.

Reports on pages with PeopleCode. This report shows pages containing fields with PeopleCode
attached to them.

You can run these reports using PeopleSoft Query and either view the reports online or print them. You
can also download them to a Microsoft Excel spreadsheet. The following example shows an XRFPNPC
report:

This example illustrates the fields and controls on the Example of XRFPNPC PeopleSoft Query results.
You can find definitions for the fields and controls later on this page.

Related Links
“PeopleSoft Query Overview” (Query)
“Understanding Cross-Reference Reports” (Application Designer Developer’s Guide)

Copyright © 1988, 2024, Oracle and/or its affiliates. 313

Debugging Your Application Chapter 15

314 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 16

Improving Your PeopleCode

Reducing Trips to the Server

This section discusses how to:

• Count server trips.

• Use deferred mode.

• Hide and disable fields.

• Use the Refresh button.

• Update totals and balances.

• Use warning messages.

• Use the fastest algorithm.

Server trips are bad for performance. Each server trip consumes resources on the application server, slows
down the user data entry, and can affect type ahead. Whenever you see an hourglass as you move between
fields on a page, it is because the browser is waiting for a server trip to complete.

The larger the component’s buffer (based on the number of record definitions accessed, the number of
fields in each record, and the number of rows in each grid or scroll area for each record), the longer each
round trip to the server, because of the increased server processing.

Deferred mode reduces the user’s time to complete the transaction and conserves application server
resources.

The following user interactions cause a trip to the server. Only the first three items in the list are deferred
in deferred processing mode.

• Entering data in fields with FieldEdit or FieldChange PeopleCode.

• Entering data in fields that have prompt table edits.

• Entering data in fields that have related displays.

• Inserting a row in a grid or scroll area.

• Deleting a row from a grid or scroll area.

• Using grid or scroll area controls to move forward or back.

• Accessing another page in the component.

• Selecting an internal tab.

Copyright © 1988, 2024, Oracle and/or its affiliates. 315

Improving Your PeopleCode Chapter 16

• Expanding or collapsing a collapsible section.

• Clicking a button or link.

Each trip goes through the same process of checking security, unpacking the buffers that store the data
being processed, processing the service request, generating the HTML for the page to be redisplayed,
packing updated buffers, and storing the buffers on the web server. To maximize online performance,
minimize server trips.

Counting Server Trips
Count the trips to the server to quickly identify transactions that have performance issues. PeopleTools
can automatically count these trips by reason (such as, adding a row in a grid or FieldChange
PeopleCode) and write the output to a log file.

To turn this feature on, run a debug version of PeopleTools and add the following to the [trace] section of
the appserv.cfg file:

showcounters = 1

The output is written to the appsrv.log file.

Using Deferred Mode
Keep components in deferred mode and enable fields for interactive mode only if there is a strong
business case.

For every field on the component to run in deferred mode, Deferred mode must be selected at the
component level, Allow Deferred Processing must be selected for each page in the component, and
Allow Deferred Processing must be selected for each field.

PeopleSoft recommends that you continue to code field edits in FieldEdit PeopleCode and field change
logic in FieldChange PeopleCode, but set this logic to run in deferred mode. You do not need to move
field edits to SaveEdit.

Hiding and Disabling Fields
Avoid using FieldChange PeopleCode to hide, unhide, enable, or disable elements on the same page,
unless the element is triggered by a separate button.

Hiding or unhiding objects and enabling or disabling objects should, as a general rule, be coded in either
page Activate PeopleCode or, for objects that are on another page in the component, in FieldChange
PeopleCode.

Perform cross-validation edits to prevent invalid data combinations from being written to the database
for fields that previously would have been hidden or unavailable. If unhiding fields that were previously
hidden or unavailable results in making the page confusing, consider designing a longer page so that users
can easily associate related fields.

You can hide or unhide objects or set them to display-only in page Activate PeopleCode before the page
initially appears based on setup data, configuration options, or personalization settings. You can set fields
to display-only using PeopleCode by setting the DisplayOnly property for the field to True.

316 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 16 Improving Your PeopleCode

You can hide or unhide fields on another page, or set the fields to display-only, based on the value
that a user enters in a field on the current page, as long as that component or field is set up to run in
deferred processing mode. In some cases, it may make sense to split transactions across pages to achieve
progressive disclosure.

Using the Refresh Button
The Refresh button gives users control of their environment. Clicking the Refresh button forces a trip to
the server. PeopleTools then redisplays the page in the browser. The refresh action allows the user to:

• See related display field values for the data entered so far.

• See any default values based on data entered previously on the page.

• Validate the data that has been entered on the page so far.

When the page is redisplayed, the cursor is positioned in the same field it was when the user pressed the
Refresh button.

Note: The Refresh button does not refresh the page from the database. It simply causes a server trip so
that any deferred PeopleCode changes are processed. If no deferred changes exist or the deferred changes
do not cause any errors or other changes on the page, it may appear to the user as if nothing has happened.
Fields on derived work records are not updated if the user clicks the Refresh button.

Updating Totals and Balances
In some pages, totals or balances appear based on data entered into a grid or scroll area. This process
should work in deferred mode also, showing the totals or balances as of the last trip to the application
server.

Continue to keep any accumulation and balancing logic in FieldChange PeopleCode, but run the field
in deferred mode. Users can click the Refresh button at any time to see the latest totals based on the
data entered. Totals and balances in deferred mode are always updated and displayed after any trip to the
application server.

Using Warning Messages
In deferred mode, FieldEdit PeopleCode errors and warnings do not appear when a user moves out of the
field, but rather on the next trip to the server. This next trip might not occur until the user enters all the
data and clicks the Save button.

For FieldEdit error messages running in deferred mode, PeopleTools changes the field to red and
positions the cursor to the field in error when it displays the message. This behavior allows the user to
associate the error message with a specific field.

For warning messages, however, PeopleTools does not change the field to red or position the cursor. For a
user to clearly understand to which field a warning message applies, ensure that warning messages clearly
describe the fields affected by the warning.

For example, the warning message “Date out of range” would be confusing if there are seven date fields
on the page, since a user could not easily determine which date field needed to be reviewed. Instead, you
could include bind variables in the message to show which dates are out of range.

Copyright © 1988, 2024, Oracle and/or its affiliates. 317

Improving Your PeopleCode Chapter 16

Using the Fastest Algorithm
You should determine which algorithms perform the best and have the smallest elapsed time. Tracing does
not provide subsecond level of timing information. Plus, tracing imposes a higher overhead to the runtime
environment, which skews the elapsed time reading.

However, you can use the %PerfTime system variable for determining elapsed time. %PerfTime retrieves
the local system clock time by making a system call, and the return time is down to the millisecond.

The following example of %PerfTime determines how long a program takes to execute:

 &Start = %PerfTime;
 &results = "";
 For &I = 1 To &Count;
 &GnnwgNumber = GetNextNumberWithGapsCommit(QEORDER_DTL.QE_QTY, 999999, 1, "wh⇒

ere QE_ORDER_NBR='GNNWG'");
 &results = &results | " : " | &GnnwgNumber;
 End-For;

 &End = %PerfTime;
 &out = "Count = " | &Count | ", total GNNWG time (s) = " | NumberToString("%6.3"⇒

, Value(&End - &Start));

Using Better Coding Techniques for Improved Performance

This section discusses how to:

• Run a SQL trace.

• Optimize SQL.

• Use the GetNextNumberWithGaps function.

• Consolidate PeopleCode programs.

• Move PeopleCode to a component or page definition.

• Send messages in the SavePostChange event.

• Use metadata and the RowsetCache class.

• Setting MaxCacheMemory

Running a SQL Trace
Run a SQLTrace and review the transaction for SQL statements that have a long processing time.

The duration column (Dur=) in a SQL trace displays this information. If the duration is greater than
100 milliseconds, you may be able to make this SQL statement run faster. Work with your database
administrator to tune the SQL.

318 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 16 Improving Your PeopleCode

Optimizing SQL
A simple join optimizes SQL more effectively than issuing two related SQL statements separately.

However, if your transaction requires a complex SQL statement (for instance, one that uses correlated
subqueries), consider breaking it up into multiple SQL statements. You may get more predictable
performance this way.

Using the GetNextNumberWithGaps Function
Many applications use a sequence number as a unique key. The last number used is stored in a common
table, and a SQL statement is issued to retrieve the last number used and update the table. This action
locks the common table until the whole transaction is saved and the unit of work committed.

Instead, consider using the GetNextNumberWithGaps PeopleCode function whenever gaps in the
sequence numbering are acceptable. The function retrieves the last number used, increments it by one,
and updates the common table. This action is done in a separate unit of work to minimize the time a
database lock is held on the common table.

GetNextNumberWithGaps issues a commit only when issued from the SavePreChange or Workflow
event.

Consolidating PeopleCode Programs
Consolidate RowInit PeopleCode into one field within the record to reduce the number of PeopleCode
events that need to be triggered. Fewer PeopleCode programs results in fewer PeopleCode objects
to manage. Do the same for RowInsert, SaveEdit, SavePreChange, SavePostChange, and Workflow
PeopleCode programs.

Moving PeopleCode to a Component or Page Definition
Analyze transactions and move PeopleCode that is specific to a component from the record definition to
the component or page definition. This action eliminates the need to execute conditional statements, such
as If %Component = .

This action helps only if you are able to move all the PeopleCode in a program from the record to a
component or page, and multiple components access that record.

Sending Messages in the SavePostChange Event
Messages sent online should always be coded in the SavePostChange event. To minimize the time
that PeopleTools maintains locks on single-threaded messaging tables, behind-the-scenes logic in the
SavePostChange event defers sending the message until just before the commit for the transaction.

Using Metadata and the RowsetCache Class
If your application uses data that is common, used by a number of users, and yet is fairly static, you may
see a performance improvement by using the RowsetCache class.

Copyright © 1988, 2024, Oracle and/or its affiliates. 319

Improving Your PeopleCode Chapter 16

PeopleTools stores application data in a database cache to increase system performance. The
RowsetCache class enables you to access this memory structure, created at runtime, and shared by all
users.

Note: Non-base language users may see different performance due to language table considerations.

See “Understanding a Rowset Cache” (PeopleCode API Reference).

Setting MaxCacheMemory
PeopleTools stores application data in a memory cache to increase system performance. However,
too large a cache can leave insufficient available memory on your system, which leads to reduced
performance.

Use this setting to specify the maximum size of the memory cache. PeopleTools prunes the cache to keep
it within the specified size, and places the pruned data in a disk cache instead. Because using a disk cache
can also reduce performance, the default setting might not be optimal for your application. You can adjust
this setting to achieve the best trade-off between speed and available memory.

See “Cache Settings” (System and Server Administration).

Writing More Efficient Code

Follow these steps to write more efficient PeopleCode:

1. Declare all variables.

One of the conveniences of PeopleCode is that you do not have to declare your variables before
you use them. The variable is assigned a type of ANY, taking on the type of the value it is assigned.
However, if you use this feature, you lose type-checking at compile time, which can lead to problems
at runtime.

If the variable is used in an expression before it is assigned a value, the system processes it as a
string type whose value is null. Therefore, it is recommended to assign a value to the variable before
attempting to use it in an expression.

If two variables of type ANY are compared, the second operand is converted to the type of the first
operand before the compare operation is run.

When you validate or save PeopleCode, watch for auto-declared messages and consider adding
declarations to your program.

2. Declare variable types specifically.

Most of the time, you know a variable's type, so you should declare the variable of that type when you
begin.

For example, if you know that a particular variable is going to be an Integer value, declare it to be
Integer in the first place. You can get much better runtime performance. It is particularly effective for
loop control variables but, since an integer has limited range (up to 9 or 10 digits), you must use it
judiciously.

320 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 16 Improving Your PeopleCode

3. Watch references.

In PeopleCode function calls, parameters are passed by reference; a reference to the value is passed
instead of the value itself. If you are passing a reference to a complex data structure, such as a rowset
object or an array, passing by reference saves significant processing.

Watch out for unexpected results, though. In the following code, the function Test changes the value
of &Str after the function call.

Function Test(&Par as String)

&Par = "Surprise";
end-function;

Local String &Str = "Hello";
Test(&Str);
/* now &Str has the value "surprise" */

4. Put Break statements in your Evaluate statements.

In an Evaluate statement, the When clauses continue to be evaluated until an End-evaluate or a Break
statement is encountered.

If you have an Evaluate statement with a number of When clauses, and you only expect one of them
to match, put a Break statement following the likely clause. Otherwise, all the subsequent When
clauses are evaluated. Your program is still correct, but it is inefficient at runtime, particularly if you
have a large number of When clauses, and the Evaluate statement is in a loop.

5. Govern your state.

One of the key features in PeopleSoft Pure Internet Architecture is that the application server
is stateless. When required, the state of your session is bundled up and exchanged between the
application server and the web server.

For example, on a user interaction, the whole state, including your PeopleCode state, has to be
serialized to the web server. Then, once the interaction has completed, that state is deserialized in the
application server so that your application can continue.

To improve efficiency:

• Watch the size of PeopleCode objects that you create (strings, arrays, and so on) to make sure they
are only as big as you need them to be.

• For user interactions, you might be able to change the logic of your program to minimize the state.

For example if you are building up a large string (a couple of megabytes) and then performing
a user interaction, you might be able to change your program logic to build the string after the
interaction.

• For secondary pages that are infrequently accessed but retrieve lots of data, consider setting No
Auto Select in the Application Designer for the grids and scroll areas on the secondary page, to
prevent loading the data the secondary page when the page buffers are initially built.

Then add the necessary Select method to the Activate event for the secondary page to load the
data into the grid or scroll area.

6. Isolate common expressions.

Copyright © 1988, 2024, Oracle and/or its affiliates. 321

Improving Your PeopleCode Chapter 16

The PeopleCode compiler is not an optimizing compiler, unlike some current compilers for languages
such as C++. For example, the PeopleCode compiler does not do common subexpression analysis.
So, sometimes, if you have a complicated bit of PeopleCode that is used often, you can isolate the
common expression yourself. This isolation can make your code look cleaner and make your code
faster, especially if it is in a loop.

In this example, notice how the common subexpression is broken out:

/*---- For this customer, setup time on B is influenced by
 *---- the machine flavors of A. */
 &r_machine = &rs(&idB.GetRecord(Record.MACHINE_INFO);
 If (&typeA = "F") And (&typeB == "U") Then
 &r_machine.SETUP_TIME.Value = 50;
 Else
 &r_machine.SETUP_TIME.Value = 10;
 End-If;

The compiler has to evaluate each occurrence of the expression, even though it would only execute it
once.

Here is another example. Notice that once &RS and &StartDate are created, they can be used
repeatedly in the loop, saving significant processing time.

 &RS = GetRowset();
 &StartDate = GetField(PSU_CRS_SESSN.START_DATE).Value;
 For &I = 1 To &RS.ActiveRowCount
 &RecStuEnroll = &RS.GetRow(&I).PSU_STU_ENROLL;
 &Course = &RecStuEnroll.COURSE;
 &Status = &RecStuEnroll.ENROLL_STATUS;
 &PreReqStart = &RS.GetRow(&I).PSU_CRS_SESSN.START_DATE.Value;
 If &Course.Value = "1002" And
 (&Status.Value = "ENR" Or
 &Status.Value = "CMP") Then
 If &PreReqStart < &StartDate Then
 &Completed = True;
 Break;
 End-If;
 End-If;
 End-For;

7. Avoid implicit conversions.

The most common implicit conversion is from a character string to a number and vice versa. You
might not be able to do anything about this, but—by being aware of it—you might be able to spot
opportunities to improve performance.

In the following example, two character strings are converted into numeric values before the
difference is taken. If this code were in a loop and one of the values did not change, performance
would improve significantly by doing the conversion once, as the second statement illustrates.

 &Diff = &R1.QE_EMPLID.Value - &R2.QE_EMPID.Value;
&Original = &R1.QE_EMPLID.Value;
. . .
&Diff = &Original - &R2.QE_EMPID.Value;

8. Choose the right SQL style.

In certain cases, use SQLExec, as it only returns a single row. In other cases, you could benefit greatly
by using a SQL object instead, especially if you can plan to execute a statement more than once
with different bind parameters. The performance gain comes from compiling the statement once and
executing it many times.

322 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 16 Improving Your PeopleCode

For instance, code that uses SQLExec might look like this:

While (some condition)
 . . .set up &Rec
 SQLExec("%Insert(:1)", &rec);
/* this does a separate tools parse of the sql and db compile
of the statement and execute each time */
End-while;

The following code rewrites the previous example to use the new SQL object:

Local SQL &SQL = CreateSQL("%Insert(:1)");
While (some condition)
. . .Setup &Rec
&Sql.Execute(&Rec); /* saves the tools parse and db compile
on the SQL statement and the db setup for the statement */
end-while;

SQL objects also have the ReuseCursor property, which can be used for further performance gains.

See “ReuseCursor” (PeopleCode API Reference).

9. Tighten up loops.

Examine loops to see if code can be placed outside the loop.

For example, if you are working with file objects and your file layout does not change, there is no
reason to set the file layout every time you go through the loop reading lines from the file. Set the file
layout once, outside the loop.

10. Set objects to NULL when they will no longer be accessed.

Once you are finished with an object reference, especially one with a global or component scope,
assign it to NULL to get rid of the object. This setting allows the runtime environment to clean up
unused objects, reducing the size of your PeopleCode state.

11. Improve your application classes

Simple properties (without get/set) are much more efficient than method calls. Be clear in your
design about what needs to be simple properties, properties with get/set, and methods. Never make
something a method that really should be a property.

Analyze your use of properties implemented with get/set. While PeopleCode properties are in a sense
first class properties with more flexibility in that you can run PeopleCode to actually get and set
their values, make sure you actually need get and set methods. If all you have is a normal property
which is more of an instance variable then avoid get/set methods. In the following example (without
the strikethrough!) by having get/set for the property SomeString you have made it much more
inefficient to get/set that property since every property reference has to run some PeopleCode. Often,
this inefficiency can creep in when properties are designed to be flexible at the beginning and never
subsequently analyzed for whether getters/setters were really needed after all.

class Test
...
property String SomeString get set;

end-class;get SomeString
return &SomeString;
end-get;

set SomeString

Copyright © 1988, 2024, Oracle and/or its affiliates. 323

Improving Your PeopleCode Chapter 16

&SomeString = &NewValue;
end-set;

Writing More Efficient Code Examples
These examples demonstrate more efficiently written code:

• Beware of the rowset Fill method. (Or, "What not to do in a Application Engine PeopleCode step.")

Sometimes you need to examine the algorithm you are using. The following example is a PeopleCode
program that adopts this approach: read all the data into a rowset, process it row by row, and then
update as necessary. One of the reasons this is a bad approach is because you lose the general
advantage of set-based programming that you get with Application Engine programs.

Local Rowset &RS;
Local Record &REC;
Local SQL &SQL_UPDATE;

&REC_NAME1 = "Record." | SOME_AET.SOME_TMP;
&RS = CreateRowset(@(&REC_NAME1));
&LINE_NO = 1;

&NUM_ROWS = &RS.Fill("WHERE PROCESS_INSTANCE = :1 AND BUSINESS_UNIT = :2 AND T⇒

RANSACTION_GROUP = :3 AND ADJUST_TYPE = :4 ", SOME_AET.PROCESS_INSTANCE, SOME_⇒

AET.BUSINESS_UNIT, SOME_AET.TRANSACTION_GROUP, SOME_AET.ADJUST_TYPE);

For &I = 1 To &NUM_ROWS
 &REC = &RS(&I).GetRecord(@(&REC_NAME1));
 &REC.SOME_FIELD.Value = &LINE_NO;
 &REC.Update();
 &LINE_NO = &LINE_NO + 2;
End-For;

This code has the following problems:

• You might run out of memory in the Fill method if the Select gathers a large amount of data.

• The Fill is selecting all the columns in the table when all that is being updated is one column.

You can change this code to read in the data one row at a time using a SQL object or using a similar
algorithm, but chunking the rowsets into a manageable size through the use of an appropriate Where
clause.

The following are some approximate numbers you can use to see how large a rowset can grow. The
overhead for a field buffer (independent of any field data) is approximately 88 bytes. The overhead
for a record buffer is approximately 44 bytes. The overhead for a row is approximately 26 bytes. So a
rowset with just one record (row) the general approximate formula is as follows:

memory_amount = nrows * (row overhead + nrecords * (rec overhead + nfields * (field overhead) +
average cumulative fielddata for all fields))

• The following are some code examples to show isolating common expressions.

In this example, a simple evaluation goes from happening three times to just once–
&RS_Level2(&I).PSU_TASK_EFFORT. In addition, the rewritten code is easier to read.

324 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 16 Improving Your PeopleCode

Example of code before being rewritten:

Local Rowset &RS_Level2;

Local Boolean &TrueOrFalse = (PSU_TASK_RSRC.COMPLETED_FLAG.Value = "N");

For &I = 1 To &RS_Level2.ActiveRowCount
 &RS_Level2(&I).PSU_TASK_EFFORT.EFFORT_DT.Enabled = &TrueOrFalse;
 &RS_Level2(&I).PSU_TASK_EFFORT.EFFORT_AMT.Enabled = &TrueOrFalse;
 &RS_Level2(&I).PSU_TASK_EFFORT.CHARGE_BACK.Enabled = &TrueOrFalse;
End-For;

Example of code after being rewritten:

Local Boolean &TrueOrFalse = (PSU_TASK_RSRC.COMPLETED_FLAG.Value = "N");

For &I = 1 To &RS_Level2.ActiveRowCount
 Local Record &TaskEffort = &RS_Level2(&I).PSU_TASK_EFFORT;

 &TaskEffort.EFFORT_DT.Enabled = &TrueOrFalse;
 &TaskEffort.EFFORT_AMT.Enabled = &TrueOrFalse;
 &TaskEffort.CHARGE_BACK.Enabled = &TrueOrFalse;
End-For;

In the next example, the following improvements are made to the code:

Shorthand is used: &ThisRs(&J) instead of &ThisRs.GetRow(&J).

Eliminated all the autodeclared messages by declaring all the local variables. This action can improve
your logic and possibly give you better performance.

Notice the integer declaration. If you know your variables will fit in an integer (or a float), then
declare them that way. Runtime performance for Integers can be better than for variables declared as
Number.

Fewer evaluation expressions.

Example of code before being rewritten:

Local Row &CurrentRow;
&TrueOrFalse = (GetField().Value = "N");
&CurrentRow = GetRow();
For &I = 1 To &CurrentRow.ChildCount
 For &J = 1 To &CurrentRow.GetRowset(&I).ActiveRowCount
 For &K = 1 To &CurrentRow.GetRowset(&I).GetRow(&J).RecordCount
 For &L = 1 To &CurrentRow.GetRowset(&I).GetRow(&J).GetRecord(&K).Fiel⇒

dCount
 &CurrentRow.GetRowset(&I).GetRow(&J).GetRecord(&K).GetField(&L).En⇒

abled = &TrueOrFalse;
 End-For;
 End-For;
 End-For;
End-For;

Example of code after being rewritten:

Local Row &CurrentRow;
Local integer &I, &J, &K, &L;

Local boolean &TrueOrFalse = (GetField().Value = "N");
&CurrentRow = GetRow();
For &i = 1 To &CurrentRow.ChildCount
/* No specific RowSet, Record, or Field is mentioned! */

Copyright © 1988, 2024, Oracle and/or its affiliates. 325

Improving Your PeopleCode Chapter 16

 Local Rowset &ThisRs = &CurrentRow.GetRowset(&i);

 For &J = 1 To &ThisRs.ActiveRowCount
 Local Row &ThisRow = &ThisRs(&J);

 For &K = 1 To &ThisRow.RecordCount
 Local Record &ThisRec = &ThisRow.GetRecord(&K);

 For &L = 1 To &ThisRec.FieldCount
 &ThisRec.GetField(&L).Enabled = &TrueOrFalse;
 End-For;
 End-For;
 End-For;
End-For;

• Concatenating a large number of strings into a large string. Sometimes you need to do this.

The simplest approach is to do something like:

&NewString = &NewString | &NewPiece;

In itself this is not a bad approach but you can do this much more efficiently using an application class
below.

class StringBuffer
 method StringBuffer(&InitialValue As string);
 method Append(&New As string) returns StringBuffer; // allows &X.Append("th⇒

is").Append("that").Append("and this")
 method Reset();
 property string Value get set;
 property integer Length readonly;
 property integer MaxLength;
private
 instance array of string &Pieces;
end-class;

method StringBuffer
 /+ &InitialValue as String, +/

 &Pieces = CreateArray(&InitialValue);
 &MaxLength = 2147483647; // default maximum size
 &Length = Len(&InitialValue);
end-method;

method Reset
 &Pieces.Len = 0;
 &Length = 0;
end-method;

method Append
 /+ &New as String +/
 Local integer &TempLength = &Length + Len(&New);
 If &Length > &MaxLength Then
 throw CreateException(0, 0, "Maximum size of StringBuffer exceeded(" | &⇒

MaxLength | ")");
 End-If;
 &Length = &TempLength;
 &Pieces.Push(&New);
 return %This;
end-method;

get Value
 /+ Returns String +/
 Local string &Temp = &Pieces.Join("", "", "", &Length);
 /* collapse array now */
 &Pieces.Len = 1;
 &Pieces[1] = &Temp; /* start out with this combo string */

326 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 16 Improving Your PeopleCode

 Return &Temp;
end-get;

set Value
 /+ &NewValue as String +/
 /* Ditch our current value */
 &Pieces.Len = 1;
 &Pieces[1] = &NewValue; /* start out with this string */
 &Length = Len(&NewValue);
end-set;

Use this code as follows:

Local StringBuffer &S = create StringBuffer("");

....
&S.Append(&line);

/* to get the value of string simply use &S.Value */

Preventing SQL Injection

The following functions and methods provide a way for SQL to be submitted to the database; they are,
therefore, subject to SQL injection vulnerabilities:

• SQLExec function

• CreateSQL function

• Rowset class Select method

• Rowset class SelectNew method

• Rowset class Fill method

• Rowset class FillAppend method

Look at the following PeopleCode as an example:

rem Retrieve user input from the name field;
&UserInput = GetField(Field.NAME).Value;
SQLExec("SELECT NAME, PHONE FROM PS_INFO WHERE NAME='"
| &UserInput | "'", &Name, &Phone);

The code is meant to enable the user to type in a name and get the person's phone number. In the example,
the developer expects that the user will input data such as Smith, in which case the resulting SQL would
look like this:

SELECT NAME, PHONE FROM PS_INFO WHERE NAME='Smith'

However, if the user specified "Smith' OR AGE > 55 --", the resulting SQL would look like this:

SELECT NAME, PHONE FROM PS_INFO WHERE NAME='Smith' OR AGE > 55 --'

Note the use of the comment operator (--) to ignore the trailing single quotation mark placed by the
developer's code. This would allow a devious user to find everyone older than 55.

Use the following approaches to avoid SQL injection vulnerabilities:

• Where possible, avoid using string-building techniques to generate SQL.

Copyright © 1988, 2024, Oracle and/or its affiliates. 327

Improving Your PeopleCode Chapter 16

Note: String-building techniques cannot always be avoided. String-building does not pose a threat
unless unvalidated user input is concatenated to SQL.

• Use bind variables where possible rather that string concatenation.

The following example is vulnerable:

SQLExec("SELECT NAME, PHONE FROM PS_INFO WHERE NAME='" |
&UserInput | "'", &Name, &Phone);

• Use the Quote PeopleCode function on the user input before concatenating it to SQL.

This pairs the quotation marks in the user input, effectively negating any SQL injection attack.

The following example is vulnerable:

SQLExec("SELECT NAME, PHONE FROM PS_INFO WHERE NAME='" |
&UserInput | "'", &Name, &Phone);

This example is not vulnerable:

SQLExec("SELECT NAME, PHONE FROM PS_INFO WHERE NAME='" |
Quote(&UserInput) | "'", &Name, &Phone);

• Specify whether SQL errors appear to the user with the Suppress SQL Error setting in the PSTOOLS
section of the application server configuration file. Normally, the SQL in error appears to the user in
a number of messages. If you consider this a security issue, add the following line to your application
server configuration file:

Suppress SQL Error=1

When this line is set, SQL errors do not display details; instead, they refer the user to consult the
system log. The detail that was in the SQL message is written to the log file.

Related Links
“Quote” (PeopleCode Language Reference)
“PSTOOLS Options” (System and Server Administration)

328 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 17

PeopleCode Editor Short Cut Keys

Short Cut Keys in the PeopleCode Editor

The following table lists all the short cut keys available in the PeopleCode Editor.

Note: The short cut keys for Application Designer are not listed.

Key Description

Ctrl + A Select all

Ctrl + B Find matching brace or parenthesis

Ctrl + C Edit copy

Ctrl + D Duplicate current line

Ctrl + F Edit find

Ctrl + H Edit replace

Ctrl + L Line cut

Shift + Ctrl + L Line delete

Ctrl + U Toggle comment on and off

Select the content (a line, multiple lines, or a portion of line)
and then press the short cut key.

See Comments.

Shift + Ctrl + U Selection uppercase

Ctrl + V Paste

Backspace Backspace and delete characters

Alt + Backspace Edit undo

Copyright © 1988, 2024, Oracle and/or its affiliates. 329

PeopleCode Editor Short Cut Keys Chapter 17

Key Description

Ctrl + Backspace Delete to start of word

Shift + Alt + Backspace Edit redo

Delete Delete

Ctrl + Delete Delete to next word

Shift + Delete Edit cut

↓ (down arrow) Line down

Ctrl + ↓ Scroll window down one line

Shift + ↓ Line down with selection

End Position cursor at end of line

Ctrl + End Position cursor at end of file

Shift + End Select to end of line

Shift + Ctrl + End Select to end of file

Enter New line

Esc (escape) Clear selection

F2 Next bookmark

Ctrl + F2 Toggle bookmark off and on

Shift + F2 Previous bookmark

Shift + Ctrl + F2 Remove all bookmarks

F3 Find next

Shift + F3 Find previous

330 Copyright © 1988, 2024, Oracle and/or its affiliates.

Chapter 17 PeopleCode Editor Short Cut Keys

Key Description

F5 Go (Debug)

F8 Step (Debug)

F9 Toggle debug breakpoint

Alt + F9 Edit breakpoints (Debug)

Ctrl + F9 Break at start (Debug)

F10 Step over (Debug)

Home Position cursor to first character of line

Ctrl + Home Position cursor to start of file

Shift + Home Select to start of line

Shift + Ctrl + Home Select to start of file

Insert Toggle insert mode

Ctrl + Insert Copy

Shift + Insert Paste

← (left arrow) Position cursor left one character

Ctrl + ← Position cursor left one word

Shift + ← Select one character left of cursor

Shift + Ctrl + ← Select next word left of cursor

Page Down Page down

Page Up Page up

→ (right arrow) Position cursor right one character

Copyright © 1988, 2024, Oracle and/or its affiliates. 331

PeopleCode Editor Short Cut Keys Chapter 17

Key Description

Ctrl + → Position cursor right one word

Shift + → Select one character right of cursor

Shift + Ctrl + → Select next word right of cursor

Tab Tab

Shift + Tab Back tab

↑ (up arrow) Line up

Ctrl + ↑ Scroll window up one line

Shift + Ctrl + W Select word

Ctrl + X Edit cut

Ctrl + Y Edit redo

Ctrl + Z Edit undo

Shift + Ctrl + Z Edit redo

332 Copyright © 1988, 2024, Oracle and/or its affiliates.

	Legal Notices
	Contents
	Preface
	Understanding the PeopleSoft Online Help and PeopleBooks
	Hosted PeopleSoft Online Help
	Locally Installed PeopleSoft Online Help
	Downloadable PeopleBook PDF Files
	Common Help Documentation
	Field and Control Definitions
	Typographical Conventions
	ISO Country and Currency Codes
	Region and Industry Identifiers
	Translations and Embedded Help

	Using and Managing the PeopleSoft Online Help
	PeopleTools Related Links
	Contact Us
	Follow Us

	Getting Started with PeopleCode
	PeopleCode Overview
	Creating PeopleCode Programs

	Understanding the PeopleCode Language
	PeopleCode Language Structure
	Data Types
	Conventional Data Types
	Object Data Types

	Comments
	Statements
	Separators
	Assignment Statements
	Language Constructs
	Branching Statements
	Conditional Loops

	Functions
	Supported Functions
	Function Definitions
	Function Declarations
	Function Calls
	Function Return Values
	Function Naming Conflicts

	Expressions
	Expression Fundamentals
	Constants
	Functions as Expressions
	System Variables
	Metastrings
	Record Field References
	Definition Name References
	PeopleCode Reserved Words

	Variables
	Supported Variable Types
	User-Defined Variables
	User-Defined Variable Declaration and Scope
	Variable Declaration
	User-Defined Variable Initialization
	Restrictions on Variable Use
	Scope of Local Variables
	Duration of Local Variables
	Variables and Functions
	Recursive Functions
	State of Shared Objects Using PeopleSoft Pure Internet Architecture

	Operators
	Math Operators
	Operations on Dates and Times
	String Concatenation
	@ Operator
	Comparison Operators
	Boolean Operators

	Understanding Objects and Classes in PeopleCode
	Classes and Objects
	Classes
	Objects
	Object Instantiation

	Creating and Using Objects
	Instantiating Objects
	Changing Properties
	Invoking Methods
	Copying Objects

	Assigning Objects
	Passing Objects

	Referencing Data in the Component Buffer
	Understanding Component Buffer Structure and Contents
	Component Buffer Contents
	Rowsets and Scroll Areas
	Record Fields and the Component Buffer

	Specifying Data with Contextual References
	Understanding Current Context
	Using Contextual Row References
	Using Contextual Buffer Field References

	Specifying Data with References Using Scroll Path Syntax and Dot Notation
	Understanding Scroll Paths
	Structuring Scroll Path Syntax
	Referencing Scroll Levels, Rows, and Buffer Fields

	Accessing the Data Buffer
	Understanding Data Buffer Access
	Data Buffer Access
	Access Classes
	Data Buffer Model and Data Access Classes

	Understanding Data Buffer Classes Examples
	Employee Checklist Page Structure
	Object Creation Examples
	Data Buffer Hierarchy Examples
	Rowset Examples
	Hidden Work Scroll Example

	Understanding Current Context
	Accessing Secondary Component Buffer Data
	Instantiating Rowsets Using Non-Component Buffer Data

	PeopleCode and the Component Processor
	Understanding the Component Processor
	Events Outside the Component Processor Flow
	PeopleCode Program Triggers
	Understanding PeopleCode Program Triggers
	Accessing PeopleCode Programs
	Execution Order of Events and PeopleCode

	Component Processor Behavior
	Component Processor Behavior from Page Start to Page Display
	Component Behavior Following User Actions in the Component

	Processing Sequences
	Flow Charts
	Default Processing
	Search Processing in Update Modes
	Search Processing in Add Modes
	Component Build Processing in Update Modes
	Row Select Processing
	Component Build Processing in Add Modes
	Field Change Processing
	Row Insert Processing
	Row Delete Processing
	Buttons
	Prompts
	Pop-Up Menu Display
	Selected Item Processing
	Save Processing

	PeopleSoft Pure Internet Architecture Processing Considerations
	Deferred Processing Mode
	PeopleCode Events
	Activate Event
	FieldChange Event
	FieldDefault Event
	FieldEdit Event
	FieldFormula Event
	ItemSelected Event
	PostBuild Event
	PreBuild Event
	PrePopup Event
	RowDelete Event
	RowInit Event
	RowInsert Event
	RowSelect Event
	SaveEdit Event
	SavePostChange Event
	SavePreChange Event
	SearchInit Event
	SearchSave Event
	Workflow Event

	PeopleCode Execution in Pages with Multiple Scroll Areas

	PeopleCode and PeopleSoft Pure Internet Architecture
	Considerations Using PeopleCode in PeopleSoft Pure Internet Architecture
	Using PeopleCode with PeopleSoft Pure Internet Architecture
	Using Internet Scripts
	Using the Field Object Style Property
	Using the HTML Area
	Using HTML Definitions and the GetHTMLText Function
	Using HTML Definitions and the GetJavaScriptURL Method
	Using PeopleCode to Populate Key Fields in Search Dialog Boxes

	Calling DLL Functions on the Application Server
	Sample Cross-Platform External Test Function

	Updating the Installation and PSOPTIONS Tables

	Using Methods and Built-In Functions
	Understanding Restrictions on Method and Function Use
	Think-Time Functions
	WinMessage and MessageBox Functions
	Program Execution with Fields Not in the Data Buffer
	Errors and Warnings
	DoSave Function
	Record Class Database Methods
	SQL Class Methods and Functions
	Component Interface Restricted Functions
	SearchInit PeopleCode Function Restrictions
	CallAppEngine Function
	ReturnToServer Function
	GetPage Function
	GetGrid and GetAnalyticGrid Functions
	Publish Method
	SyncRequest Method

	Implementing Modal Transfers
	Understanding Modal Transfers
	Implementing Modal Transfers

	Implementing the Multi-Row Insert Feature
	Using the ImageReference Field
	Inserting Rows Using PeopleCode
	Using OLE Functions
	Understanding OLE Functions
	Using the Object Data Type
	Sharing a Single Object Instance
	Using the Exec and WinExec Functions

	Using the Select and SelectNew Methods
	Understanding the Select and SelectNew Methods
	Using the Select Method

	Using Standalone Rowsets
	Understanding Standalone Rowsets
	Using the Fill Method
	Using the CopyTo Method
	Adding Child Rowsets
	Using Standalone Rowsets to Write a File
	Using Standalone Rowsets to Read a File

	Using Errors and Warnings
	Using Error and Warning Syntax
	Using Errors and Warnings in Edit Events
	Using Errors and Warnings in RowSelect Events
	Using Errors and Warnings in RowDelete Events
	Using Errors and Warnings in Other Events

	Using the RemoteCall Feature
	Understanding RemoteCall Components
	Deciding Between RemoteCall and PeopleSoft Process Scheduler
	Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall

	Using HTML Trees and the GenerateTree Function
	Using the GenerateTree Function
	Understanding HTML Trees
	Building HTML Tree Pages
	Using HTML Tree Rowset Records
	Using HTML Tree Actions (Events)
	Initializing HTML Trees
	Processing Events Passed from a Tree to an Application
	Adding Mouse-Over Ability to HTML Trees
	Adding Visual Selection Node Indicators
	Specifying Override Images

	Working With File Attachments
	Understanding the File Attachment Functions
	PeopleCode Built-in File Attachment Functions
	Understanding the File Attachment Architecture
	Understanding File Attachment Storage Locations
	Understanding URL Strings Versus URL Objects

	Developing Applications that Use File Attachment Functions
	Application Development Process Overview
	Delivered Record Definitions
	Managing Entries in File Reference Tables
	Using the PeopleTools Test Utilities Page

	Application Development Considerations
	File Name Considerations
	Restrictions on Invoking Functions in Certain PeopleCode Events
	Converting File Names for Files Uploaded by PutAttachment
	Considerations When Using CopyAttachments

	Application Deployment and System Configuration Considerations
	File Attachment Functions in an Environment with Multiple Application Server Domains
	Configuring the Web Server to Support Additional MIME Types
	Restricting the File Types That Can Be Uploaded or Downloaded
	Setting Up Virus Scanning
	Using the HTML Sanitizer
	Considerations When Attaching Text Files
	File Attachment Chunk Size
	Using Interfaces to the CopyAttachments and CleanAttachments Functions

	Debugging File Attachment Problems
	Enabling Tracing on the Web Server or Application Server
	Problems with Transfers to and from FTP Sites
	Attachments with non-ASCII File Names
	Problems Uploading Files
	Problems Downloading Files
	Passing Error Messages to the End User

	Accessing PeopleCode and Events
	Understanding PeopleCode Programs and Events
	Understanding Automatic Backup of PeopleCode
	Accessing PeopleCode in Application Designer
	Accessing Record Field PeopleCode
	Understanding Record Field PeopleCode
	Accessing Record Field PeopleCode from a Record Definition
	Accessing Record Field PeopleCode from a Page Definition

	Accessing Component Record Field PeopleCode
	Understanding Component Record Field PeopleCode
	Accessing Component Record Field PeopleCode

	Accessing Component Record PeopleCode
	Understanding Component Record PeopleCode
	Accessing Component Record PeopleCode

	Accessing Component PeopleCode
	Understanding Component PeopleCode
	Accessing Component PeopleCode

	Accessing Page PeopleCode
	Understanding Page PeopleCode
	Accessing Page PeopleCode

	Accessing Menu Item PeopleCode
	Understanding Menu Item PeopleCode
	Defining PeopleCode Pop-Up Menu Items
	Accessing Menu Item PeopleCode

	Copying PeopleCode with a Parent Definition
	Upgrading PeopleCode Programs

	Using the PeopleCode Editor
	Navigating Between PeopleCode Programs
	Understanding the PeopleCode Editor Window
	Navigating Between Programs Associated With a Definition and Its Children
	Navigating Between Programs Associated With Events

	Using the PeopleCode Editor
	Understanding the PeopleCode Editor
	Accessing PeopleCode Editor
	Editing Functions
	Adding Line Numbers
	Find and Replace Dialogs
	Go To Dialog
	Validate Syntax Utility
	Show Database Name Utility
	Formatting Code Automatically
	Using Drag-and-Drop Editing
	Accessing PeopleCode External Functions
	Accessing PeopleCode Application Packages and Application Classes
	Accessing Definitions and Associated PeopleCode
	Accessing Help
	Setting Up Help
	Changing Colors in the PeopleCode Editor
	Selecting a Font for the PeopleCode Editor
	Changing Word Wrap in the PeopleCode Editor
	Using the PeopleCode Event Properties
	Using the Auto-Complete Feature
	Viewing Event Mapping References
	Finding Matching Parentheses or Braces
	Highlighting Content

	Generating PeopleCode Using Drag-and-Drop
	Generating References to Definitions
	Generating PeopleCode for a Business Interlink
	Generating PeopleCode for a Component Interface
	Generating PeopleCode for a File Layout

	Using the SQL Editor
	Understanding the SQL Editor Window
	Accessing the SQL Editor
	Creating SQL Definitions
	Accessing SQL Definition Properties
	Creating Dynamic View or SQL View Records
	Accessing the SQL Editor from Application Engine Programs

	Using the SQL Editor

	Creating Application Packages and Classes
	Understanding Application Packages
	Creating Application Packages
	Understanding Package Names
	Creating Application Package Definitions

	Using the Application Package Editor
	Editing Application Classes

	Debugging Your Application
	Understanding the PeopleCode Debugger
	Accessing the PeopleCode Debugger
	Using PeopleCode Debugger Features
	Visible Current Line of Execution
	Visible Breakpoints
	Hover Inspect
	Single Debugger
	Variables Panes
	Call Stack Pane
	Setting Values for Variables and Properties
	General Debugging Tips

	Using PeopleCode Debugger Options
	Setting Up the Debugging Environment
	Compiling All PeopleCode Programs at Once
	Compile All PeopleCode
	Compile Project PeopleCode

	Setting PeopleCode Debugger Log Options
	Interpreting the PeopleCode Debugger Log File
	Log File Contents
	Other Items in the Log File

	Using Application Logging
	Setting the Application Log Fence in the Configuration File
	Using the Log Fence with PeopleSoft Analytic Calculation Engine

	Using the Find In Feature
	Finding References to Application Packages and Classes
	Prerequisites
	Finding Definition References

	Using Cross-Reference Reports

	Improving Your PeopleCode
	Reducing Trips to the Server
	Counting Server Trips
	Using Deferred Mode
	Hiding and Disabling Fields
	Using the Refresh Button
	Updating Totals and Balances
	Using Warning Messages
	Using the Fastest Algorithm

	Using Better Coding Techniques for Improved Performance
	Running a SQL Trace
	Optimizing SQL
	Using the GetNextNumberWithGaps Function
	Consolidating PeopleCode Programs
	Moving PeopleCode to a Component or Page Definition
	Sending Messages in the SavePostChange Event
	Using Metadata and the RowsetCache Class
	Setting MaxCacheMemory

	Writing More Efficient Code
	Writing More Efficient Code Examples

	Preventing SQL Injection

	PeopleCode Editor Short Cut Keys
	Short Cut Keys in the PeopleCode Editor

