
Oracle® Database
Database Administrator’s Guide

23ai
F47036-12
March 2025

Oracle Database Database Administrator’s Guide, 23ai

F47036-12

Copyright © 1996, 2025, Oracle and/or its affiliates.

Primary Author: Mark Doran

Contributing Authors: Padmaja Potineni, Rajesh Bhatiya, Donna Keesling

Contributors: A. Agrawal, L. Ashdown, P. Avril, D. Austin, T. Baby, H. Baer, S. Ball, S. Battula, M. Bauer, T. Bednar, E.
Belden, J. Byun, L. Carpenter, A. Chaudhry, C. Chang, B. Cheng, H. Chien, T. Chien, G. Christman, C. C. Chui, L.
Clarke, D. Colello, C. Colrain, K. Cook, J. Creighton, A. Dadhich, S. Datta, S. Davidson, M. Dilman, S. Doraiswamy, J.
Draaijer, M. Fallen, M. Fuller, D. Gagne, A. Ganesh, M. Girkar, GP Gongloor, J. Gonzalez, V. Goorah, S. Gopalan, S.
Gupta, B. Habeck, S. Hase, W. Hu, P. Huey, K. Inoue, M. Ito, C. Iyer, K. Itikarlapalli, P. Jaganath, S. Jain, C. Jones, S.
Joshi, B. Khaladkar, F. Kobylanski, B. Krishnan, V. Krishnaswamy, A. Kruglikov, B. Kuchibhotla, V. Kuhr, R. Kumar, S.
Kumar, V. Kumar, H. Lakshmanan, A. Lee, B. Lee, J. Lee, S. K. Lee, T. Lee, C. Lei, B. Leung, Y. Li, I. Listvinsky, B.
Llewellyn, H. Lombera, B. Lundhild, S. Lynn, R. Mani, V. Marwah, C. McGregor, J. McDonnell, J. McHugh, B. McGuirk,
J. Meeks, K. Mensah, M. Minhas, K. Mohan, H. Mohankumar, A. Munnolimath, G. Mulagund, P. Murguia, P. Murthy, A.
Mylavarapu, V. Moore, N. Muthukrishnan, S. Muthulingam, L. Nim, S. Panchumarthy, R. Pang, V. Panteleenko, R.
Pingte, K. Rajamani, A. Raghavan, M. Ramacher, R. Ramkissoon, S. Ravindhran, G. Ravipati, A. Ray, W. Ren, K. Rich,
J. Rivera, C. A. L. Rueda, R. Rungta, S. Sahu, P. Shanthaveerappa, Y. Sarig, M. Savanur, S. Shankar, D. Sharma, A.
Shen, B. Sinha, S. Sonawane, J. Spiller, J. Stamos, D. Steiner, J. Stern, M. Stewart, S. Stoian, R. Swonger, M.
Subramaniam, N. Sundarappa, M. Susairaj, A. Tran, A. Tsukerman, C. Tuzla, T. Ueda, K. Umamageswaran, D. Utzig, E.
Voss, N. Wagner, X. Wang, M. Wei, S. Wertheimer, P. Wheeler, D. Williams, A. Witkowski, S. Wolicki, D. M. Wong, Z.
Yang, T. F. Yu, W. Zhang

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience liii

Documentation Accessibility liii

Related Documents liv

Conventions liv

Part I Basic Database Administration

1 Getting Started with Database Administration

1.1 Changes on Oracle Database Release 23ai for Oracle Database Administrator's Guide 1-1

1.1.1 New Features in 23ai 1-2

1.1.2 Deprecated Features 1-2

1.1.3 Desupported Features 1-2

1.2 Types of Oracle Database Users 1-3

1.2.1 Database Administrators 1-3

1.2.2 Security Officers 1-4

1.2.3 Network Administrators 1-4

1.2.4 Application Developers 1-4

1.2.5 Application Administrators 1-5

1.2.6 Database Users 1-5

1.3 Tasks of a Database Administrator 1-5

1.3.1 Task 1: Evaluate the Database Server Hardware 1-6

1.3.2 Task 2: Install the Oracle Database Software 1-6

1.3.3 Task 3: Plan the Database 1-7

1.3.4 Task 4: Create and Open the Database 1-7

1.3.5 Task 5: Back Up the Database 1-8

1.3.6 Task 6: Enroll System Users 1-8

1.3.7 Task 7: Implement the Database Design 1-8

1.3.8 Task 8: Back Up the Fully Functional Database 1-8

1.3.9 Task 9: Tune Database Performance 1-8

1.3.10 Task 10: Download and Install Release Updates and Release Update
Revisions 1-9

iii

1.3.11 Task 11: Roll Out to Additional Hosts 1-9

1.4 SQL Statements 1-10

1.4.1 Submitting Commands and SQL to the Database 1-10

1.4.2 About SQL*Plus 1-11

1.4.3 Connecting to the Database with SQL*Plus 1-11

1.4.3.1 About Connecting to the Database with SQL*Plus 1-12

1.4.3.2 Step 1: Open a Command Window 1-12

1.4.3.3 Step 2: Set Operating System Environment Variables 1-12

1.4.3.4 Step 3: Start SQL*Plus 1-13

1.4.3.5 Step 4: Submit the SQL*Plus CONNECT Command 1-13

1.5 Identifying Your Oracle Database Software Release 1-18

1.5.1 About Oracle Database Release Numbers 1-18

1.5.2 Checking Your Current Release Number 1-20

1.6 About Database Administrator Security and Privileges 1-21

1.6.1 The Database Administrator's Operating System Account 1-21

1.6.2 Administrative User Accounts 1-21

1.6.2.1 About Administrative User Accounts 1-22

1.6.2.2 SYS 1-23

1.6.2.3 SYSTEM 1-23

1.6.2.4 SYSBACKUP, SYSDG, SYSKM, and SYSRAC 1-23

1.6.2.5 The DBA Role 1-24

1.7 Database Administrator Authentication 1-25

1.7.1 Administrative Privileges 1-25

1.7.2 Operations Authorized by Administrative Privileges 1-26

1.7.3 Authentication Methods for Database Administrators 1-29

1.7.3.1 About Authentication Methods for Database Administrators 1-29

1.7.3.2 Nonsecure Remote Connections 1-30

1.7.3.3 Local Connections and Secure Remote Connections 1-31

1.7.4 Using Operating System Authentication 1-31

1.7.4.1 Operating System Groups 1-31

1.7.4.2 Preparing to Use Operating System Authentication 1-33

1.7.4.3 Connecting Using Operating System Authentication 1-33

1.7.5 Using Password File Authentication 1-34

1.7.5.1 Preparing to Use Password File Authentication 1-34

1.7.5.2 Connecting Using Password File Authentication 1-36

1.8 Creating and Maintaining a Database Password File 1-36

1.8.1 ORAPWD Syntax and Command Line Argument Descriptions 1-37

1.8.2 Creating a Database Password File with ORAPWD 1-43

1.8.3 Sharing and Disabling the Database Password File 1-45

1.8.4 Keeping Administrator Passwords Synchronized with the Data Dictionary 1-45

1.8.5 Adding Users to a Database Password File 1-47

1.8.6 Granting and Revoking Administrative Privileges 1-47

iv

1.8.7 Viewing Database Password File Members 1-48

1.8.8 Removing a Database Password File 1-49

1.9 Data Utilities 1-49

2 Configuring Automatic Restart of an Oracle Database

2.1 About Oracle Restart 2-1

2.1.1 Oracle Restart Overview 2-2

2.1.2 About Startup Dependencies 2-3

2.1.3 About Starting and Stopping Components with Oracle Restart 2-3

2.1.4 About Starting and Stopping Oracle Restart 2-4

2.1.5 Oracle Restart Configuration 2-4

2.1.6 Oracle Restart Integration with Oracle Data Guard 2-6

2.1.7 Fast Application Notification with Oracle Restart 2-7

2.1.7.1 Overview of Fast Application Notification 2-7

2.1.7.2 Application High Availability with Services and FAN 2-8

2.2 Configuring Oracle Restart 2-11

2.2.1 About Configuring Oracle Restart 2-13

2.2.2 Preparing to Run SRVCTL 2-13

2.2.3 Obtaining Help for SRVCTL 2-14

2.2.4 Adding Components to the Oracle Restart Configuration 2-15

2.2.5 Removing Components from the Oracle Restart Configuration 2-16

2.2.6 Disabling and Enabling Oracle Restart Management for a Component 2-17

2.2.7 Viewing Component Status 2-18

2.2.8 Viewing the Oracle Restart Configuration for a Component 2-18

2.2.9 Modifying the Oracle Restart Configuration for a Component 2-19

2.2.10 Managing Environment Variables in the Oracle Restart Configuration 2-20

2.2.10.1 About Environment Variables in the Oracle Restart Configuration 2-20

2.2.10.2 Setting and Unsetting Environment Variables 2-21

2.2.10.3 Viewing Environment Variables 2-21

2.2.11 Creating and Deleting Database Services with SRVCTL 2-22

2.2.12 Enabling FAN Events in an Oracle Restart Environment 2-23

2.2.13 Automating the Failover of Connections Between Primary and Standby
Databases 2-24

2.2.14 Enabling Clients for Fast Connection Failover 2-25

2.2.14.1 About Enabling Clients for Fast Connection Failover 2-25

2.2.14.2 Enabling Fast Connection Failover for JDBC Clients 2-26

2.2.14.3 Enabling Fast Connection Failover for Oracle Call Interface Clients 2-27

2.2.14.4 Enabling Fast Connection Failover for ODP.NET Clients 2-28

2.3 Starting and Stopping Components Managed by Oracle Restart 2-29

2.4 Stopping and Restarting Oracle Restart for Maintenance Operations 2-31

2.5 SRVCTL Command Reference for Oracle Restart 2-33

v

2.5.1 add 2-35

2.5.1.1 srvctl add asm 2-36

2.5.1.2 srvctl add database 2-37

2.5.1.3 srvctl add listener 2-39

2.5.1.4 srvctl add ons 2-40

2.5.1.5 srvctl add service 2-41

2.5.2 config 2-45

2.5.2.1 srvctl config asm 2-45

2.5.2.2 srvctl config database 2-46

2.5.2.3 srvctl config listener 2-47

2.5.2.4 srvctl config ons 2-47

2.5.2.5 srvctl config service 2-47

2.5.3 disable 2-48

2.5.3.1 srvctl disable asm 2-49

2.5.3.2 srvctl disable database 2-49

2.5.3.3 srvctl disable diskgroup 2-50

2.5.3.4 srvctl disable listener 2-50

2.5.3.5 srvctl disable ons 2-51

2.5.3.6 srvctl disable service 2-51

2.5.4 downgrade 2-52

2.5.4.1 srvctl downgrade database 2-52

2.5.5 enable 2-53

2.5.5.1 srvctl enable asm 2-53

2.5.5.2 srvctl enable database 2-54

2.5.5.3 srvctl enable diskgroup 2-54

2.5.5.4 srvctl enable listener 2-55

2.5.5.5 srvctl enable ons 2-55

2.5.5.6 srvctl enable service 2-55

2.5.6 getenv 2-56

2.5.6.1 srvctl getenv asm 2-57

2.5.6.2 srvctl getenv database 2-57

2.5.6.3 srvctl getenv listener 2-58

2.5.7 modify 2-58

2.5.7.1 srvctl modify asm 2-59

2.5.7.2 srvctl modify database 2-59

2.5.7.3 srvctl modify listener 2-60

2.5.7.4 srvctl modify ons 2-61

2.5.7.5 srvctl modify service 2-62

2.5.8 remove 2-66

2.5.8.1 srvctl remove asm 2-66

2.5.8.2 srvctl remove database 2-67

2.5.8.3 srvctl remove diskgroup 2-68

vi

2.5.8.4 srvctl remove listener 2-68

2.5.8.5 srvctl remove ons 2-69

2.5.8.6 srvctl remove service 2-69

2.5.9 setenv 2-70

2.5.9.1 srvctl setenv asm 2-71

2.5.9.2 srvctl setenv database 2-71

2.5.9.3 srvctl setenv listener 2-72

2.5.10 start 2-73

2.5.10.1 srvctl start asm 2-73

2.5.10.2 srvctl start database 2-74

2.5.10.3 srvctl start diskgroup 2-75

2.5.10.4 srvctl start home 2-75

2.5.10.5 srvctl start listener 2-76

2.5.10.6 srvctl start ons 2-76

2.5.10.7 srvctl start service 2-77

2.5.11 status 2-78

2.5.11.1 srvctl status asm 2-78

2.5.11.2 srvctl status database 2-79

2.5.11.3 srvctl status diskgroup 2-79

2.5.11.4 srvctl status home 2-80

2.5.11.5 srvctl status listener 2-80

2.5.11.6 srvctl status ons 2-81

2.5.11.7 srvctl status service 2-81

2.5.12 stop 2-82

2.5.12.1 srvctl stop asm 2-83

2.5.12.2 srvctl stop database 2-83

2.5.12.3 srvctl stop diskgroup 2-84

2.5.12.4 srvctl stop home 2-85

2.5.12.5 srvctl stop listener 2-86

2.5.12.6 srvctl stop ons 2-86

2.5.12.7 srvctl stop service 2-87

2.5.13 unsetenv 2-88

2.5.13.1 srvctl unsetenv asm 2-89

2.5.13.2 srvctl unsetenv database 2-89

2.5.13.3 srvctl unsetenv listener 2-90

2.5.14 update 2-90

2.5.14.1 srvctl update database 2-91

2.5.15 upgrade 2-91

2.5.15.1 srvctl upgrade database 2-91

2.6 CRSCTL Command Reference 2-92

2.6.1 check 2-92

2.6.2 config 2-93

vii

2.6.3 disable 2-93

2.6.4 enable 2-93

2.6.5 start 2-93

2.6.6 stop 2-93

3 Managing Processes

3.1 About Dedicated and Shared Server Processes 3-2

3.1.1 Dedicated Server Processes 3-2

3.1.2 Shared Server Processes 3-3

3.2 About Database Resident Connection Pooling 3-5

3.2.1 Comparing DRCP to Dedicated Server and Shared Server 3-7

3.3 About Proxy Resident Connection Pooling 3-8

3.4 Configuring Oracle Database for Shared Server 3-9

3.4.1 Initialization Parameters for Shared Server 3-10

3.4.2 Memory Management for Shared Server 3-10

3.4.3 Enabling Shared Server 3-10

3.4.3.1 About Determining a Value for SHARED_SERVERS 3-12

3.4.3.2 Decreasing the Number of Shared Server Processes 3-12

3.4.3.3 Limiting the Number of Shared Server Processes 3-12

3.4.3.4 Limiting the Number of Shared Server Sessions 3-13

3.4.3.5 Protecting Shared Memory 3-13

3.4.4 Configuring Dispatchers 3-14

3.4.4.1 DISPATCHERS Initialization Parameter Attributes 3-15

3.4.4.2 Determining the Number of Dispatchers 3-16

3.4.4.3 Setting the Initial Number of Dispatchers 3-16

3.4.4.4 Altering the Number of Dispatchers 3-17

3.4.4.5 Shutting Down Specific Dispatcher Processes 3-19

3.4.5 Disabling Shared Server 3-19

3.4.6 Shared Server Data Dictionary Views 3-19

3.5 Configuring Database Resident Connection Pooling 3-20

3.5.1 Database Resident Connection Pooling Initialization Parameters 3-21

3.5.2 Enabling Database Resident Connection Pooling 3-22

3.5.3 Configuring the Connection Pool for Database Resident Connection Pooling 3-23

3.5.3.1 Configuration Parameters for Database Resident Connection Pooling 3-24

3.5.4 Using Multi-Pool Database Resident Connection Pooling 3-26

3.5.5 Data Dictionary Views for Database Resident Connection Pooling 3-27

3.5.6 Determining the States of Connections in the Connection Pool 3-28

3.6 About Oracle Database Background Processes 3-29

3.7 Managing Prespawned Processes 3-30

3.7.1 About Managing Prespawned Processes 3-30

3.7.2 Managing Pools for Prespawned Processes 3-31

viii

3.8 Managing Processes for Parallel SQL Execution 3-32

3.8.1 About Parallel Execution Servers 3-33

3.8.2 Altering Parallel Execution for a Session 3-33

3.8.2.1 Disabling Parallel SQL Execution 3-34

3.8.2.2 Enabling Parallel SQL Execution 3-34

3.8.2.3 Forcing Parallel SQL Execution 3-34

3.9 Managing Processes for External Procedures 3-35

3.9.1 About External Procedures 3-35

3.9.2 DBA Tasks to Enable External Procedure Calls 3-36

3.10 Terminating Sessions 3-37

3.10.1 About Terminating Sessions 3-37

3.10.2 Identifying Which Session to Terminate 3-38

3.10.3 Terminating an Active Session 3-38

3.10.4 Terminating an Inactive Session 3-39

3.10.5 Cancelling a SQL Statement in a Session 3-40

3.11 Process and Session Data Dictionary Views 3-41

4 Managing Memory

4.1 About Memory Management 4-2

4.2 Memory Architecture Overview 4-3

4.3 Using Unified Memory Management 4-5

4.4 Using Automatic Memory Management 4-5

4.4.1 About Automatic Memory Management 4-6

4.4.2 Enabling Automatic Memory Management 4-6

4.4.3 Monitoring and Tuning Automatic Memory Management 4-9

4.5 Configuring Memory Manually 4-10

4.5.1 About Manual Memory Management 4-10

4.5.2 Using Automatic Shared Memory Management 4-11

4.5.2.1 About Automatic Shared Memory Management 4-12

4.5.2.2 Components and Granules in the SGA 4-12

4.5.2.3 Setting Maximum SGA Size 4-13

4.5.2.4 Setting SGA Target Size 4-13

4.5.2.5 Enabling Automatic Shared Memory Management 4-15

4.5.2.6 Setting Minimums for Automatically Sized SGA Components 4-17

4.5.2.7 Dynamic Modification of SGA_TARGET 4-17

4.5.2.8 Modifying Parameters for Automatically Sized Components 4-18

4.5.2.9 Modifying Parameters for Manually Sized Components 4-19

4.5.3 Using Manual Shared Memory Management 4-19

4.5.3.1 About Manual Shared Memory Management 4-20

4.5.3.2 Enabling Manual Shared Memory Management 4-20

4.5.3.3 Setting the Buffer Cache Initialization Parameters 4-20

ix

4.5.3.4 Specifying the Shared Pool Size 4-23

4.5.3.5 Specifying the Large Pool Size 4-24

4.5.3.6 Specifying the Java Pool Size 4-24

4.5.3.7 Specifying the Streams Pool Size 4-24

4.5.3.8 Specifying the Vector Pool Size 4-24

4.5.3.9 Specifying Miscellaneous SGA Initialization Parameters 4-24

4.5.4 Using Automatic PGA Memory Management 4-25

4.5.5 Using Manual PGA Memory Management 4-27

4.6 Using Force Full Database Caching Mode 4-27

4.6.1 About Force Full Database Caching Mode 4-28

4.6.2 Before Enabling Force Full Database Caching Mode 4-29

4.6.3 Enabling Force Full Database Caching Mode 4-29

4.6.4 Disabling Force Full Database Caching Mode 4-30

4.7 Configuring Database Smart Flash Cache 4-30

4.7.1 When to Configure Database Smart Flash Cache 4-31

4.7.2 Sizing Database Smart Flash Cache 4-31

4.7.3 Tuning Memory for Database Smart Flash Cache 4-31

4.7.4 Database Smart Flash Cache Initialization Parameters 4-32

4.7.5 Database Smart Flash Cache in an Oracle Real Applications Clusters
Environment 4-33

4.8 Improving Query Response Time with the Server Result Cache 4-34

4.8.1 About the Server Result Cache 4-34

4.8.2 Using the Server Result Cache 4-34

4.8.3 Specifying the Result Cache Maximum Size 4-35

4.8.4 Specifying the Use of Temporary Segments for Query Results 4-36

4.9 Improving Query Performance with Oracle Database In-Memory 4-37

4.10 Enabling High Performance Data Streaming with the Memoptimized Rowstore 4-38

4.11 Memory Management Reference 4-39

4.11.1 Platforms That Support Automatic Memory Management 4-39

4.11.2 Memory Management Data Dictionary Views 4-39

4.12 Configuring and Using True Cache 4-40

5 Managing Users and Securing the Database

5.1 The Importance of Establishing a Security Policy for Your Database 5-1

5.2 Managing Users and Resources 5-1

5.3 User Privileges and Roles 5-2

5.4 Auditing Database Activity 5-2

5.5 Predefined User Accounts 5-3

x

6 Monitoring the Database

6.1 Monitoring Errors and Alerts 6-1

6.1.1 Monitoring Errors with Trace Files and the Alert Log 6-2

6.1.1.1 About Monitoring Errors with Trace Files and the Alert Log 6-2

6.1.1.2 Controlling the Size of an Alert Log 6-3

6.1.1.3 Controlling the Size of Trace Files 6-4

6.1.1.4 Controlling When Oracle Database Writes to Trace Files 6-5

6.1.1.5 Reading the Trace File for Shared Server Sessions 6-6

6.1.2 Monitoring a Database with Server-Generated Alerts 6-6

6.1.2.1 About Monitoring a Database with Server-Generated Alerts 6-6

6.1.2.2 Setting and Retrieving Thresholds for Server-Generated Alerts 6-7

6.1.2.3 Viewing Server-Generated Alerts 6-9

6.1.2.4 Server-Generated Alerts Data Dictionary Views 6-10

6.2 Monitoring Performance 6-10

6.2.1 Monitoring Locks 6-10

6.2.2 About Monitoring Wait Events 6-11

6.2.3 Performance Monitoring Data Dictionary Views 6-11

6.3 Monitoring Quarantined Objects 6-12

6.3.1 About Object Quarantine 6-12

6.3.2 Viewing Quarantined Objects 6-13

6.4 Automatically Monitoring Schema Objects 6-13

7 Diagnosing and Resolving Problems

7.1 About the Oracle Database Fault Diagnosability Infrastructure 7-1

7.1.1 Fault Diagnosability Infrastructure Overview 7-2

7.1.2 Incidents and Problems 7-3

7.1.2.1 About Incidents and Problems 7-3

7.1.2.2 Incident Flood Control 7-4

7.1.2.3 Related Problems Across the Topology 7-5

7.1.3 Fault Diagnosability Infrastructure Components 7-5

7.1.3.1 Automatic Diagnostic Repository (ADR) 7-6

7.1.3.2 Alert Log 7-7

7.1.3.3 Attention Log 7-7

7.1.3.4 Trace Files, Dumps, and Core Files 7-8

7.1.3.5 DDL Log 7-9

7.1.3.6 Debug Log 7-10

7.1.3.7 Other ADR Contents 7-10

7.1.3.8 Enterprise Manager Support Workbench 7-10

7.1.3.9 ADRCI Command-Line Utility 7-11

7.1.4 Structure, Contents, and Location of the Automatic Diagnostic Repository 7-11

xi

7.2 About Investigating, Reporting, and Resolving a Problem 7-15

7.2.1 Roadmap — Investigating, Reporting, and Resolving a Problem 7-16

7.2.2 Task 1: View Critical Error Alerts in Cloud Control 7-18

7.2.3 Task 2: View Problem Details 7-19

7.2.4 Task 3: (Optional) Gather Additional Diagnostic Information 7-19

7.2.5 Task 4: (Optional) Create a Service Request 7-20

7.2.6 Task 5: Package and Upload Diagnostic Data to Oracle Support 7-20

7.2.7 Task 6: Track the Service Request and Implement Any Repairs 7-21

7.3 Diagnosing Problems 7-22

7.3.1 Identifying Problems Reactively 7-23

7.3.1.1 Viewing Problems with the Support Workbench 7-23

7.3.1.2 Adding Problems Manually to the Automatic Diagnostic Repository 7-24

7.3.1.3 Creating Incidents Manually 7-26

7.3.1.4 Using DBMS_HCHECK to Identify Data Dictionary Inconsistencies 7-26

7.3.2 Identifying Problems Proactively with Health Monitor 7-31

7.3.2.1 About Health Monitor 7-32

7.3.2.2 Running Health Checks Manually 7-33

7.3.2.3 Viewing Checker Reports 7-35

7.3.2.4 Health Monitor Views 7-38

7.3.2.5 Health Check Parameters Reference 7-38

7.3.3 Gathering Additional Diagnostic Data 7-39

7.3.3.1 Viewing the Alert Log 7-40

7.3.3.2 Finding Trace Files 7-40

7.3.4 Creating Test Cases with SQL Test Case Builder 7-41

7.3.4.1 Purpose of SQL Test Case Builder 7-42

7.3.4.2 Concepts for SQL Test Case Builder 7-42

7.3.4.3 User Interfaces for SQL Test Case Builder 7-46

7.3.4.4 Running SQL Test Case Builder 7-48

7.4 Reporting Problems 7-51

7.4.1 Incident Packages 7-52

7.4.1.1 About Incident Packages 7-52

7.4.1.2 About Correlated Diagnostic Data in Incident Packages 7-53

7.4.1.3 About Quick Packaging and Custom Packaging 7-54

7.4.1.4 About Correlated Packages 7-55

7.4.2 Packaging and Uploading Problems with Custom Packaging 7-55

7.4.3 Viewing and Modifying Incident Packages 7-59

7.4.3.1 Viewing Package Details 7-60

7.4.3.2 Accessing the Customize Package Page 7-60

7.4.3.3 Editing Incident Package Files (Copying Out and In) 7-60

7.4.3.4 Adding an External File to an Incident Package 7-61

7.4.3.5 Removing Incident Package Files 7-62

7.4.3.6 Viewing and Updating the Incident Package Activity Log 7-63

xii

7.4.4 Creating, Editing, and Uploading Correlated Packages 7-63

7.4.5 Deleting Correlated Packages 7-64

7.4.6 Setting Incident Packaging Preferences 7-65

7.5 Resolving Problems 7-65

7.5.1 About Automatic Error Mitigation 7-66

7.5.2 Repairing SQL Failures with the SQL Repair Advisor 7-70

7.5.2.1 About the SQL Repair Advisor 7-71

7.5.2.2 Running the SQL Repair Advisor Using Cloud Control 7-71

7.5.2.3 Running the SQL Repair Advisor Using the DBMS_SQLDIAG Package
Subprograms 7-72

7.5.2.4 Viewing, Disabling, or Removing a SQL Patch Using Cloud Control 7-74

7.5.2.5 Disabling or Removing a SQL Patch Using DBMS_SQLDIAG Package
Subprograms 7-75

7.5.2.6 Exporting and Importing a Patch Using DBMS_SQLDIAG Package
Subprograms 7-76

7.5.3 Repairing Data Corruptions with the Data Recovery Advisor 7-77

7.5.4 Quarantine for Execution Plans for SQL Statements Consuming Excessive
System Resources 7-78

7.5.4.1 About Quarantine for Execution Plans for SQL Statements 7-79

7.5.4.2 Creating a Quarantine Configuration for an Execution Plan of a SQL
Statement 7-81

7.5.4.3 Specifying Quarantine Thresholds in a Quarantine Configuration 7-82

7.5.4.4 Enabling and Disabling a Quarantine Configuration 7-84

7.5.4.5 Viewing the Details of a Quarantine Configuration 7-84

7.5.4.6 Deleting a Quarantine Configuration 7-85

7.5.4.7 Viewing the Details of Quarantined Execution Plans of SQL Statements 7-86

7.5.4.8 Transferring Quarantine Configurations from One Database to Another
Database 7-86

7.5.4.9 Example: Quarantine for an Execution Plan of a SQL Statement
Consuming Excessive System Resources 7-88

7.5.5 Viewing Attention Log Information 7-91

7.6 Diagnosis and Tracing in a PDB Using Package DBMS_USERDIAG 7-91

7.6.1 About DBMS_USERDIAG 7-92

7.6.2 Examples of Using DBMS_USERDIAG 7-92

Part II Oracle Database Structure and Storage

8 Managing Control Files

8.1 What Is a Control File? 8-1

8.2 Guidelines for Control Files 8-2

8.2.1 Provide File Names for the Control Files 8-2

8.2.2 Multiplex Control Files on Different Disks 8-3

xiii

8.2.3 Back Up Control Files 8-3

8.2.4 Manage the Size of Control Files 8-3

8.3 Creating Control Files 8-4

8.3.1 Creating Initial Control Files 8-4

8.3.2 Creating Additional Copies, Renaming, and Relocating Control Files 8-5

8.3.3 Creating New Control Files 8-5

8.3.3.1 When to Create New Control Files 8-5

8.3.3.2 The CREATE CONTROLFILE Statement 8-6

8.3.3.3 Creating New Control Files 8-7

8.4 Troubleshooting After Creating Control Files 8-8

8.4.1 Checking for Missing or Extra Files 8-8

8.4.2 Handling Errors During CREATE CONTROLFILE 8-9

8.5 Backing Up Control Files 8-9

8.6 Recovering a Control File Using a Current Copy 8-9

8.6.1 Recovering from Control File Corruption Using a Control File Copy 8-9

8.6.2 Recovering from Permanent Media Failure Using a Control File Copy 8-10

8.7 Dropping Control Files 8-10

8.8 Control Files Data Dictionary Views 8-11

9 Managing the Redo Log

9.1 What Is the Redo Log? 9-2

9.1.1 Redo Threads 9-2

9.1.2 Redo Log Contents 9-2

9.1.3 How Oracle Database Writes to the Redo Log 9-3

9.1.3.1 Active (Current) and Inactive Redo Log Files 9-4

9.1.3.2 Log Switches and Log Sequence Numbers 9-4

9.2 Planning the Redo Log 9-5

9.2.1 Multiplexing Redo Log Files 9-6

9.2.1.1 Responding to Redo Log Failure 9-7

9.2.1.2 Valid and Invalid Configurations 9-8

9.2.2 Placing Redo Log Members on Different Disks 9-8

9.2.3 Planning the Size of Redo Log Files 9-9

9.2.4 Planning the Block Size of Redo Log Files 9-9

9.2.5 Choosing the Number of Redo Log Files 9-10

9.2.6 Controlling Archive Lag 9-11

9.2.6.1 Setting the ARCHIVE_LAG_TARGET Initialization Parameter 9-11

9.2.6.2 Factors Affecting the Setting of ARCHIVE_LAG_TARGET 9-12

9.3 Creating Redo Log Groups and Members 9-12

9.3.1 Creating Redo Log Groups 9-13

9.3.2 Creating Redo Log Members 9-13

9.4 Relocating and Renaming Redo Log Members 9-14

xiv

9.5 Dropping Redo Log Groups and Members 9-15

9.5.1 Dropping Log Groups 9-16

9.5.2 Dropping Redo Log Members 9-16

9.6 Forcing Log Switches 9-17

9.7 Verifying Blocks in Redo Log Files 9-17

9.8 Clearing a Redo Log File 9-18

9.9 Reduction of Redo Generation for Direct Path Operations 9-19

9.10 Redo Log Data Dictionary Views 9-20

10

Managing Archived Redo Log Files

10.1 What Is the Archived Redo Log? 10-2

10.2 Choosing Between NOARCHIVELOG and ARCHIVELOG Mode 10-2

10.2.1 Running a Database in NOARCHIVELOG Mode 10-3

10.2.2 Running a Database in ARCHIVELOG Mode 10-3

10.3 Controlling Archiving 10-4

10.3.1 Setting the Initial Database Archiving Mode 10-5

10.3.2 Changing the Database Archiving Mode 10-5

10.3.3 Performing Manual Archiving 10-6

10.3.4 Adjusting the Number of Archiver Processes 10-7

10.4 Specifying Archive Destinations 10-7

10.4.1 Setting Initialization Parameters for Archive Destinations 10-7

10.4.1.1 Method 1: Using the LOG_ARCHIVE_DEST_n Parameter 10-8

10.4.1.2 Method 2: Using LOG_ARCHIVE_DEST and
LOG_ARCHIVE_DUPLEX_DEST 10-10

10.4.2 Expanding Alternate Destinations with Log Archive Destination Groups 10-11

10.4.2.1 About Log Archive Destination Groups 10-11

10.4.2.2 Specifying Log Archive Destination Groups 10-12

10.4.3 Understanding Archive Destination Status 10-13

10.4.4 Specifying Alternate Destinations 10-14

10.5 About Log Transmission Modes 10-14

10.5.1 Normal Transmission Mode 10-15

10.5.2 Standby Transmission Mode 10-15

10.6 Managing Archive Destination Failure 10-15

10.6.1 Specifying the Minimum Number of Successful Destinations 10-16

10.6.1.1 Specifying Mandatory and Optional Destinations 10-16

10.6.1.2 Specifying the Number of Successful Destinations: Scenarios 10-17

10.6.2 Rearchiving to a Failed Destination 10-18

10.7 Controlling Trace Output Generated by the Archivelog Process 10-19

10.8 Viewing Information About the Archived Redo Log 10-19

10.8.1 Archived Redo Log Files Views 10-20

xv

10.8.2 Using the ARCHIVE LOG LIST Command 10-20

11

Managing Tablespaces

11.1 Guidelines for Managing Tablespaces 11-2

11.1.1 Use Multiple Tablespaces 11-2

11.1.2 Assign Tablespace Quotas to Users 11-3

11.2 Creating Tablespaces 11-3

11.2.1 About Creating Tablespaces 11-4

11.2.2 Locally Managed Tablespaces 11-5

11.2.2.1 About Locally Managed Tablespaces 11-5

11.2.2.2 Creating a Locally Managed Tablespace 11-6

11.2.2.3 Specifying Segment Space Management in Locally Managed
Tablespaces 11-7

11.2.3 Bigfile Tablespaces 11-8

11.2.3.1 About Bigfile Tablespaces 11-8

11.2.3.2 Creating a Bigfile Tablespace 11-9

11.2.3.3 Identifying a Bigfile Tablespace 11-10

11.2.4 Tablespaces with Default Compression Attributes 11-10

11.2.4.1 About Tablespaces with Default Compression Attributes 11-10

11.2.4.2 Creating Tablespaces with Default Compression Attributes 11-10

11.2.5 Encrypted Tablespaces 11-11

11.2.5.1 About Encrypted Tablespaces 11-11

11.2.5.2 Creating Encrypted Tablespaces 11-13

11.2.5.3 Viewing Information About Encrypted Tablespaces 11-14

11.2.6 Temporary Tablespaces 11-14

11.2.6.1 About Temporary Tablespaces 11-15

11.2.6.2 Creating a Locally Managed Temporary Tablespace 11-17

11.2.6.3 Creating a Bigfile Temporary Tablespace 11-18

11.2.6.4 Viewing Space Usage for Temporary Tablespaces 11-18

11.2.7 Temporary Tablespace Groups 11-18

11.2.7.1 Multiple Temporary Tablespaces: Using Tablespace Groups 11-18

11.2.7.2 Creating a Tablespace Group 11-19

11.2.7.3 Changing Members of a Tablespace Group 11-19

11.2.7.4 Assigning a Tablespace Group as the Default Temporary Tablespace 11-20

11.3 Consider Storing Tablespaces in the In-Memory Column Store 11-20

11.4 Specifying Nonstandard Block Sizes for Tablespaces 11-21

11.5 Controlling the Writing of Redo Records 11-21

11.6 Altering Tablespace Availability 11-22

11.6.1 Taking Tablespaces Offline 11-22

11.6.2 Bringing Tablespaces Online 11-24

11.7 Using Read-Only Tablespaces 11-24

xvi

11.7.1 About Read-Only Tablespaces 11-25

11.7.2 Making a Tablespace Read-Only 11-25

11.7.3 Making a Read-Only Tablespace Writable 11-27

11.7.4 Creating a Read-Only Tablespace on a WORM Device 11-28

11.7.5 Delaying the Opening of Data Files in Read-Only Tablespaces 11-28

11.7.6 Using Read-Only Tablespaces on Object Storage 11-29

11.7.6.1 Enabling a Database for Using Object Storage 11-29

11.7.6.2 Accessing Data in Object Storage 11-32

11.7.6.3 Dropping a Read-Only Tablespace and It's Data Files in Object Storage 11-35

11.8 Altering and Maintaining Tablespaces 11-35

11.8.1 Increasing the Size of a Tablespace 11-36

11.8.2 Altering a Locally Managed Tablespace 11-36

11.8.3 Altering a Bigfile Tablespace 11-37

11.8.4 Shrinking a Tablespace 11-37

11.8.5 Altering a Locally Managed Temporary Tablespace 11-41

11.8.6 Shrinking a Locally Managed Temporary Tablespace 11-42

11.9 Renaming Tablespaces 11-42

11.10 Dropping Tablespaces 11-43

11.11 Managing Lost Write Protection with Shadow Tablespaces 11-44

11.11.1 About Shadow Lost Write Protection 11-45

11.11.2 Creating Shadow Tablespaces for Shadow Lost Write Protection 11-47

11.11.3 Enabling Shadow Lost Write Protection for a Database 11-47

11.11.4 Enabling Shadow Lost Write Protection for Tablespaces and Data Files 11-49

11.11.5 Disabling Shadow Lost Write Protection for a Database 11-50

11.11.6 Removing or Suspending Shadow Lost Write Protection 11-51

11.11.7 Dropping a Shadow Tablespace 11-52

11.12 Managing the SYSAUX Tablespace 11-52

11.12.1 Monitoring Occupants of the SYSAUX Tablespace 11-53

11.12.2 Moving Occupants Out Of or Into the SYSAUX Tablespace 11-53

11.12.3 Controlling the Size of the SYSAUX Tablespace 11-54

11.13 Correcting Problems with Locally Managed Tablespaces 11-54

11.13.1 Diagnosing and Repairing Locally Managed Tablespace Problems 11-55

11.13.2 Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No
Overlap) 11-56

11.13.3 Scenario 2: Dropping a Corrupted Segment 11-57

11.13.4 Scenario 3: Fixing Bitmap Where Overlap is Reported 11-57

11.13.5 Scenario 4: Correcting Media Corruption of Bitmap Blocks 11-57

11.13.6 Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed
Tablespace 11-57

11.14 Migrating the SYSTEM Tablespace to a Locally Managed Tablespace 11-58

11.15 Viewing Information About Tablespaces 11-59

11.15.1 Tablespace Data Dictionary Views 11-59

xvii

11.15.2 Example 1: Listing Tablespaces and Default Storage Parameters 11-60

11.15.3 Example 2: Listing the Data Files and Associated Tablespaces of a Database 11-60

11.15.4 Example 3: Displaying Statistics for Free Space (Extents) of Each Tablespace 11-61

12

Managing Data Files and Temp Files

12.1 Guidelines for Managing Data Files 12-2

12.1.1 About Data Files 12-2

12.1.2 Determine the Number of Data Files 12-3

12.1.2.1 About Determining the Number of Data Files 12-3

12.1.2.2 Determine a Value for the DB_FILES Initialization Parameter 12-4

12.1.2.3 Consider Possible Limitations When Adding Data Files to a Tablespace 12-4

12.1.2.4 Consider the Performance Impact of the Number of Data Files 12-4

12.1.3 Determine the Size of Data Files 12-5

12.1.4 Place Data Files Appropriately 12-5

12.1.5 Store Data Files Separate from Redo Log Files 12-5

12.2 Creating Data Files and Adding Data Files to a Tablespace 12-5

12.3 Changing Data File Size 12-6

12.3.1 Enabling and Disabling Automatic Extension for a Data File 12-6

12.3.2 Manually Resizing a Data File 12-7

12.4 Altering Data File Availability 12-8

12.4.1 About Altering Data File Availability 12-8

12.4.2 Bringing Data Files Online or Taking Offline in ARCHIVELOG Mode 12-9

12.4.3 Taking Data Files Offline in NOARCHIVELOG Mode 12-9

12.4.4 Altering the Availability of All Data Files or Temp Files in a Tablespace 12-10

12.5 Renaming and Relocating Data Files 12-10

12.5.1 Renaming and Relocating Online Data Files 12-11

12.5.2 Renaming and Relocating Offline Data Files 12-13

12.5.2.1 Procedures for Renaming and Relocating Offline Data Files in a Single
Tablespace 12-14

12.5.2.2 Renaming and Relocating Offline Data Files in Multiple Tablespaces 12-16

12.6 Dropping Data Files 12-17

12.7 Verifying Data Blocks in Data Files 12-18

12.8 Copying Files Using the Database Server 12-18

12.8.1 About Copying Files Using the Database Server 12-19

12.8.2 Copying a File on a Local File System 12-19

12.8.3 Third-Party File Transfer 12-20

12.8.4 Advanced File Transfer Mechanisms 12-21

12.8.5 File Transfer and the DBMS_SCHEDULER Package 12-21

12.9 Mapping Files to Physical Devices 12-22

12.9.1 Overview of Oracle Database File Mapping Interface 12-23

12.9.2 How the Oracle Database File Mapping Interface Works 12-23

xviii

12.9.2.1 Components of File Mapping 12-23

12.9.2.2 Mapping Structures 12-25

12.9.2.3 Example of Mapping Structures 12-26

12.9.2.4 Configuration ID 12-27

12.9.3 Using the Oracle Database File Mapping Interface 12-27

12.9.3.1 Enabling File Mapping 12-28

12.9.3.2 Using the DBMS_STORAGE_MAP Package 12-29

12.9.3.3 Obtaining Information from the File Mapping Views 12-29

12.9.4 File Mapping Examples 12-31

12.9.4.1 Example 1: Map All Database Files that Span a Device 12-31

12.9.4.2 Example 2: Map a File Into Its Corresponding Devices 12-32

12.9.4.3 Example 3: Map a Database Object 12-32

12.10 Data Files Data Dictionary Views 12-33

13

Transporting Data

13.1 About Transporting Data 13-1

13.1.1 Purpose of Transporting Data 13-2

13.1.2 Transporting Data: Scenarios 13-2

13.1.2.1 Scenarios for Full Transportable Export/import 13-2

13.1.2.2 Scenarios for Transportable Tablespaces or Transportable Tables 13-4

13.1.3 Transporting Data Across Platforms 13-8

13.1.4 General Limitations on Transporting Data 13-10

13.1.5 Compatibility Considerations for Transporting Data 13-12

13.2 Transporting Databases 13-13

13.2.1 Introduction to Full Transportable Export/Import 13-13

13.2.2 Limitations on Full Transportable Export/import 13-14

13.2.3 Transporting a Database Using an Export Dump File 13-15

13.2.4 Transporting a Database Over the Network 13-21

13.3 Transporting Tablespaces Between Databases 13-26

13.3.1 Introduction to Transportable Tablespaces 13-27

13.3.2 Limitations on Transportable Tablespaces 13-27

13.3.3 Transporting Tablespaces Between Databases 13-28

13.3.3.1 Task 1: Pick a Self-Contained Set of Tablespaces 13-30

13.3.3.2 Task 2: Generate a Transportable Tablespace Set 13-31

13.3.3.3 Task 3: Transport the Export Dump File 13-33

13.3.3.4 Task 4: Transport the Tablespace Set 13-33

13.3.3.5 Task 5: (Optional) Restore Tablespaces to Read/Write Mode 13-34

13.3.3.6 Task 6: Import the Tablespace Set 13-34

13.4 Transporting Tables, Partitions, or Subpartitions Between Databases 13-36

13.4.1 Introduction to Transportable Tables 13-37

13.4.2 Limitations on Transportable Tables 13-37

xix

13.4.3 Transporting Tables, Partitions, or Subpartitions Using an Export Dump File 13-38

13.4.4 Transporting Tables, Partitions, or Subpartitions Over the Network 13-43

13.5 Converting Data Between Platforms 13-48

13.5.1 Converting Data Between Platforms Using the DBMS_FILE_TRANSFER
Package 13-48

13.5.2 Converting Data Between Platforms Using RMAN 13-50

13.5.2.1 Converting Tablespaces on the Source System After Export 13-51

13.5.2.2 Converting Data Files on the Target System Before Import 13-52

13.6 Guidelines for Transferring Data Files 13-53

14

Managing Undo

14.1 What Is Undo? 14-2

14.2 Introduction to Automatic Undo Management 14-2

14.2.1 Overview of Automatic Undo Management 14-2

14.2.2 The Undo Retention Period 14-4

14.2.2.1 About the Undo Retention Period 14-4

14.2.2.2 Automatic Tuning of Undo Retention 14-5

14.2.2.3 Retention Guarantee 14-6

14.2.2.4 Undo Retention Tuning and Alert Thresholds 14-7

14.2.2.5 Tracking the Tuned Undo Retention Period 14-7

14.3 Setting the Minimum Undo Retention Period 14-8

14.4 Sizing a Fixed-Size Undo Tablespace 14-8

14.4.1 Activating the Undo Advisor PL/SQL Interface 14-9

14.5 Managing Undo Tablespaces 14-10

14.5.1 Creating an Undo Tablespace 14-10

14.5.1.1 About Creating an Undo Tablespace 14-11

14.5.1.2 Using CREATE DATABASE to Create an Undo Tablespace 14-11

14.5.1.3 Using the CREATE UNDO TABLESPACE Statement 14-12

14.5.2 Altering an Undo Tablespace 14-12

14.5.3 Dropping an Undo Tablespace 14-13

14.5.4 Switching Undo Tablespaces 14-13

14.5.5 Establishing User Quotas for Undo Space 14-14

14.5.6 Managing Space Threshold Alerts for the Undo Tablespace 14-14

14.6 Migrating to Automatic Undo Management 14-15

14.7 Managing Temporary Undo 14-15

14.7.1 About Managing Temporary Undo 14-15

14.7.2 Enabling and Disabling Temporary Undo 14-16

14.8 Undo Space Data Dictionary Views 14-17

xx

15

Using Oracle Managed Files

15.1 About Oracle Managed Files 15-1

15.1.1 What Is Oracle Managed Files? 15-2

15.1.2 Who Can Use Oracle Managed Files? 15-2

15.1.3 What Is a Logical Volume Manager? 15-3

15.1.4 What Is a File System? 15-3

15.1.5 Benefits of Using Oracle Managed Files 15-3

15.1.6 Oracle Managed Files and Existing Functionality 15-4

15.2 Enabling the Creation and Use of Oracle Managed Files 15-4

15.2.1 Initialization Parameters That Enable Oracle Managed Files 15-5

15.2.2 Setting the DB_CREATE_FILE_DEST Initialization Parameter 15-6

15.2.3 Setting the DB_RECOVERY_FILE_DEST Parameter 15-6

15.2.4 Setting the DB_CREATE_ONLINE_LOG_DEST_n Initialization Parameters 15-6

15.3 Creating Oracle Managed Files 15-7

15.3.1 When Oracle Database Creates Oracle Managed Files 15-7

15.3.2 How Oracle Managed Files Are Named 15-8

15.3.3 Creating Oracle Managed Files at Database Creation 15-9

15.3.3.1 Specifying Control Files at Database Creation 15-10

15.3.3.2 Specifying Redo Log Files at Database Creation 15-11

15.3.3.3 Specifying the SYSTEM and SYSAUX Tablespace Data Files at
Database Creation 15-12

15.3.3.4 Specifying the Undo Tablespace Data File at Database Creation 15-12

15.3.3.5 Specifying the Default Temporary Tablespace Temp File at Database
Creation 15-13

15.3.3.6 CREATE DATABASE Statement Using Oracle Managed Files: Examples 15-13

15.3.4 Creating Data Files for Tablespaces Using Oracle Managed Files 15-15

15.3.4.1 About Creating Data Files for Tablespaces Using Oracle Managed Files 15-15

15.3.4.2 CREATE TABLESPACE: Examples 15-16

15.3.4.3 CREATE UNDO TABLESPACE: Example 15-17

15.3.4.4 ALTER TABLESPACE: Example 15-18

15.3.5 Creating Temp Files for Temporary Tablespaces Using Oracle Managed Files 15-18

15.3.5.1 About Creating Temp Files for Temporary Tablespaces Using Oracle
Managed Files 15-18

15.3.5.2 CREATE TEMPORARY TABLESPACE: Example 15-19

15.3.5.3 ALTER TABLESPACE... ADD TEMPFILE: Example 15-19

15.3.6 Creating Control Files Using Oracle Managed Files 15-20

15.3.6.1 About Creating Control Files Using Oracle Managed Files 15-20

15.3.6.2 CREATE CONTROLFILE Using NORESETLOGS Keyword: Example 15-21

15.3.6.3 CREATE CONTROLFILE Using RESETLOGS Keyword: Example 15-21

15.3.7 Creating Redo Log Files Using Oracle Managed Files 15-22

15.3.7.1 Using the ALTER DATABASE ADD LOGFILE Statement 15-22

15.3.7.2 Using the ALTER DATABASE OPEN RESETLOGS Statement 15-23

xxi

15.3.8 Creating Archived Logs Using Oracle Managed Files 15-23

15.4 Operation of Oracle Managed Files 15-23

15.4.1 Dropping Data Files and Temp Files 15-24

15.4.2 Dropping Redo Log Files 15-24

15.4.3 Renaming Files 15-24

15.4.4 Managing Standby Databases 15-25

15.5 Scenarios for Using Oracle Managed Files 15-25

15.5.1 Scenario 1: Create and Manage a Database with Multiplexed Redo Logs 15-25

15.5.2 Scenario 2: Create and Manage a Database with Database and Fast Recovery
Areas 15-29

15.5.3 Scenario 3: Adding Oracle Managed Files to an Existing Database 15-30

16

Using Persistent Memory Database

16.1 About Persistent Memory Database 16-1

16.1.1 What Is Persistent Memory Database? 16-1

16.1.2 What Is Oracle Persistent Memory Filestore? 16-1

16.1.3 What Is Directly Mapped Buffer Cache? 16-2

16.1.4 Benefits of Using Persistent Memory Database 16-2

16.2 Setting Initialization Parameters for Persistent Memory Database 16-2

16.2.1 Persistent Memory Database Initialization Parameters 16-2

16.3 Creating a PMEM Filestore for an Oracle Database 16-3

16.3.1 Creating a PMEM Filestore Before Creating the Database 16-3

16.3.2 Creating a Database on PMEM Storage Using Oracle DBCA 16-4

16.3.3 Creating an Oracle Database in the PMEM Filestore 16-5

16.3.4 Migrating an Oracle Database to a PMEM Filestore 16-5

16.4 Managing a PMEM Filestore 16-5

16.4.1 Viewing Information About a PMEM Filestore 16-5

16.4.2 Mounting a PMEM Filestore 16-6

16.4.3 Dismounting a PMEM Filestore 16-6

16.4.4 Changing the Attributes of a PMEM Filestore 16-6

16.4.5 Dropping a PMEM Filestore 16-6

Part III Schema Objects

17

Managing Schema Objects

17.1 About Common and Local Objects 17-2

17.2 About the Container for Schema Objects 17-2

17.3 Creating Multiple Tables and Views in a Single Operation 17-2

17.4 Analyzing Tables, Indexes, and Clusters 17-3

17.4.1 About Analyzing Tables, Indexes, and Clusters 17-4

xxii

17.4.2 Using DBMS_STATS to Collect Table and Index Statistics 17-4

17.4.3 Validating Tables, Indexes, Clusters, and Materialized Views 17-5

17.4.4 Cross Validation of a Table and an Index with a Query 17-6

17.4.5 Listing Chained Rows of Tables and Clusters 17-6

17.4.5.1 Creating a CHAINED_ROWS Table 17-7

17.4.5.2 Eliminating Migrated or Chained Rows in a Table 17-7

17.5 Truncating Tables and Clusters 17-8

17.5.1 Using DELETE to Truncate a Table 17-9

17.5.2 Using DROP and CREATE to Truncate a Table 17-9

17.5.3 Using TRUNCATE 17-9

17.6 Enabling and Disabling Triggers 17-10

17.6.1 About Enabling and Disabling Triggers 17-11

17.6.2 Enabling Triggers 17-12

17.6.3 Disabling Triggers 17-12

17.7 Managing Integrity Constraints 17-13

17.7.1 Integrity Constraint States 17-13

17.7.1.1 About Integrity Constraint States 17-14

17.7.1.2 About Disabling Constraints 17-14

17.7.1.3 About Enabling Constraints 17-15

17.7.1.4 About the Enable Novalidate Constraint State 17-15

17.7.1.5 Efficient Use of Integrity Constraints: A Procedure 17-15

17.7.2 Setting Integrity Constraints Upon Definition 17-16

17.7.2.1 Disabling Constraints Upon Definition 17-17

17.7.2.2 Enabling Constraints Upon Definition 17-17

17.7.3 Modifying, Renaming, or Dropping Existing Integrity Constraints 17-18

17.7.3.1 Disabling and Enabling Constraints 17-18

17.7.3.2 Renaming Constraints 17-19

17.7.3.3 Dropping Constraints 17-19

17.7.4 Deferring Constraint Checks 17-19

17.7.4.1 Set All Constraints Deferred 17-20

17.7.4.2 Check the Commit (Optional) 17-20

17.7.5 Reporting Constraint Exceptions 17-20

17.7.6 Viewing Constraint Information 17-22

17.8 Renaming Schema Objects 17-22

17.9 Managing Object Dependencies 17-23

17.9.1 About Object Dependencies and Object Invalidation 17-24

17.9.2 Manually Recompiling Invalid Objects with DDL 17-25

17.9.3 Manually Recompiling Invalid Objects with PL/SQL Package Procedures 17-25

17.10 Managing Object Name Resolution 17-26

17.11 Switching to a Different Schema 17-28

17.12 Managing Editions 17-28

17.12.1 About Editions and Edition-Based Redefinition 17-29

xxiii

17.12.2 DBA Tasks for Edition-Based Redefinition 17-29

17.12.3 Setting the Database Default Edition 17-30

17.12.4 Querying the Database Default Edition 17-30

17.12.5 Setting the Edition Attribute of a Database Service 17-30

17.12.5.1 About Setting the Edition Attribute of a Database Service 17-31

17.12.5.2 Setting the Edition Attribute During Database Service Creation 17-31

17.12.5.3 Setting the Edition Attribute of an Existing Database Service 17-31

17.12.6 Using an Edition 17-32

17.12.7 Editions Data Dictionary Views 17-32

17.13 Displaying Information About Schema Objects 17-33

17.13.1 Using a PL/SQL Package to Display Information About Schema Objects 17-33

17.13.2 Schema Objects Data Dictionary Views 17-34

17.13.2.1 Example 1: Displaying Schema Objects By Type 17-34

17.13.2.2 Example 2: Displaying Dependencies of Views and Synonyms 17-35

18

Managing Space for Schema Objects

18.1 Managing Tablespace Alerts 18-1

18.1.1 About Managing Tablespace Alerts 18-2

18.1.2 Setting Alert Thresholds 18-3

18.1.3 Viewing Alerts 18-5

18.1.4 Limitations 18-5

18.2 Managing Resumable Space Allocation 18-6

18.2.1 Resumable Space Allocation Overview 18-6

18.2.1.1 How Resumable Space Allocation Works 18-7

18.2.1.2 What Operations are Resumable? 18-8

18.2.1.3 What Errors are Correctable? 18-8

18.2.1.4 Resumable Space Allocation and Distributed Operations 18-9

18.2.1.5 Parallel Execution and Resumable Space Allocation 18-9

18.2.2 Enabling and Disabling Resumable Space Allocation 18-9

18.2.2.1 About Enabling and Disabling Resumable Space Allocation 18-10

18.2.2.2 Setting the RESUMABLE_TIMEOUT Initialization Parameter 18-10

18.2.2.3 Using ALTER SESSION to Enable and Disable Resumable Space
Allocation 18-11

18.2.3 Using a LOGON Trigger to Set Default Resumable Mode 18-12

18.2.4 Detecting Suspended Statements 18-12

18.2.4.1 Notifying Users: The AFTER SUSPEND System Event and Trigger 18-13

18.2.4.2 Using Views to Obtain Information About Suspended Statements 18-13

18.2.4.3 Using the DBMS_RESUMABLE Package 18-14

18.2.5 Operation-Suspended Alert 18-14

18.2.6 Resumable Space Allocation Example: Registering an AFTER SUSPEND
Trigger 18-15

18.3 Reclaiming Unused Space 18-16

xxiv

18.3.1 About Reclaimable Unused Space 18-17

18.3.2 The Segment Advisor 18-17

18.3.2.1 About the Segment Advisor 18-18

18.3.2.2 Using the Segment Advisor 18-18

18.3.2.3 Automatic Segment Advisor 18-18

18.3.2.4 Running the Segment Advisor Manually 18-19

18.3.2.5 Viewing Segment Advisor Results 18-24

18.3.2.6 Configuring the Automatic Segment Advisor 18-29

18.3.2.7 Viewing Automatic Segment Advisor Information 18-30

18.3.3 Shrinking Database Segments Online 18-31

18.3.4 Deallocating Unused Space 18-33

18.4 Dropping Unused Object Storage 18-34

18.5 Understanding Space Usage of Data Types 18-35

18.6 Displaying Information About Space Usage for Schema Objects 18-35

18.6.1 Using PL/SQL Packages to Display Information About Schema Object Space
Usage 18-35

18.6.2 Schema Objects Space Usage Data Dictionary Views 18-36

18.6.2.1 Example 1: Displaying Segment Information 18-37

18.6.2.2 Example 2: Displaying Extent Information 18-37

18.6.2.3 Example 3: Displaying the Free Space (Extents) in a Tablespace 18-38

18.7 Capacity Planning for Database Objects 18-38

18.7.1 Estimating the Space Use of a Table 18-39

18.7.2 Estimating the Space Use of an Index 18-40

18.7.3 Obtaining Object Growth Trends 18-40

19

Managing Tables

19.1 About Tables 19-2

19.2 Guidelines for Managing Tables 19-3

19.2.1 Design Tables Before Creating Them 19-5

19.2.2 Specify the Type of Table to Create 19-5

19.2.3 Specify the Location of Each Table 19-6

19.2.4 Consider Parallelizing Table Creation 19-6

19.2.5 Consider Using NOLOGGING When Creating Tables 19-7

19.2.6 Consider Using Table Compression 19-7

19.2.6.1 About Table Compression 19-8

19.2.6.2 Examples Related to Table Compression 19-11

19.2.6.3 Compression and Partitioned Tables 19-13

19.2.6.4 Determining If a Table Is Compressed 19-13

19.2.6.5 Determining Which Rows Are Compressed 19-13

19.2.6.6 Changing the Compression Level 19-14

19.2.6.7 Adding and Dropping Columns in Compressed Tables 19-15

xxv

19.2.6.8 Exporting and Importing Hybrid Columnar Compression Tables 19-15

19.2.6.9 Restoring a Hybrid Columnar Compression Table 19-16

19.2.6.10 Notes and Restrictions for Compressed Tables 19-17

19.2.6.11 Packing Compressed Tables 19-17

19.2.7 Managing Table Compression Using Enterprise Manager Cloud Control 19-18

19.2.7.1 Table Compression and Enterprise Manager Cloud Control 19-18

19.2.7.2 Viewing the Compression Summary at the Database Level 19-19

19.2.7.3 Viewing the Compression Summary at the Tablespace Level 19-19

19.2.7.4 Estimating the Compression Ratio 19-20

19.2.7.5 Compressing an Object 19-20

19.2.7.6 Viewing Compression Advice 19-21

19.2.7.7 Initiating Automatic Data Optimization on an Object 19-21

19.2.8 Consider Using Segment-Level and Row-Level Compression Tiering 19-21

19.2.9 Consider Using Attribute-Clustered Tables 19-23

19.2.10 Consider Using Zone Maps 19-24

19.2.11 Consider Storing Tables in the In-Memory Column Store 19-25

19.2.12 Consider Using Invisible Columns 19-25

19.2.12.1 Understand Invisible Columns 19-25

19.2.12.2 Invisible Columns and Column Ordering 19-26

19.2.13 Consider Encrypting Columns That Contain Sensitive Data 19-28

19.2.14 Understand Deferred Segment Creation 19-29

19.2.15 Materializing Segments 19-32

19.2.16 Estimate Table Size and Plan Accordingly 19-32

19.2.17 Restrictions to Consider When Creating Tables 19-32

19.3 Creating Tables 19-33

19.3.1 Example: Creating a Table 19-34

19.3.2 Creating a Temporary Table 19-35

19.3.2.1 Overview of Temporary Tables 19-35

19.3.2.2 Considerations When Creating Temporary Tables 19-36

19.3.2.3 Creating Global Temporary Tables 19-36

19.3.2.4 Creating Private Temporary Tables 19-38

19.3.3 Parallelizing Table Creation 19-40

19.4 Loading Tables 19-41

19.4.1 Methods for Loading Tables 19-41

19.4.2 Improving INSERT Performance with Direct-Path INSERT 19-43

19.4.2.1 About Direct-Path INSERT 19-43

19.4.2.2 How Direct-Path INSERT Works 19-44

19.4.2.3 Loading Data with Direct-Path INSERT 19-45

19.4.2.4 Logging Modes for Direct-Path INSERT 19-46

19.4.2.5 Additional Considerations for Direct-Path INSERT 19-47

19.4.3 Using Conventional Inserts to Load Tables 19-49

19.4.4 Avoiding Bulk INSERT Failures with DML Error Logging 19-49

xxvi

19.4.4.1 Inserting Data with DML Error Logging 19-50

19.4.4.2 Error Logging Table Format 19-51

19.4.4.3 Creating an Error Logging Table 19-52

19.4.4.4 Error Logging Restrictions and Caveats 19-53

19.5 Optimizing the Performance of Bulk Updates 19-54

19.6 Automatically Collecting Statistics on Tables 19-55

19.7 Altering Tables 19-56

19.7.1 Reasons for Using the ALTER TABLE Statement 19-57

19.7.2 Altering Physical Attributes of a Table 19-58

19.7.3 Moving a Table to a New Segment or Tablespace 19-58

19.7.3.1 About Moving a Table to a New Segment or Tablespace 19-58

19.7.3.2 Moving a Table 19-59

19.7.3.3 Moving a Table Partition or Subpartition Online 19-60

19.7.4 Manually Allocating Storage for a Table 19-61

19.7.5 Modifying an Existing Column Definition 19-61

19.7.6 Adding Table Columns 19-62

19.7.7 Renaming Table Columns 19-63

19.7.8 Dropping Table Columns 19-63

19.7.8.1 Removing Columns from Tables 19-64

19.7.8.2 Marking Columns Unused 19-65

19.7.8.3 Removing Unused Columns 19-65

19.7.8.4 Dropping Columns in Compressed Tables 19-66

19.7.9 Placing a Table in Read-Only Mode 19-66

19.8 Redefining Tables Online 19-67

19.8.1 About Redefining Tables Online 19-68

19.8.2 Features of Online Table Redefinition 19-69

19.8.3 Privileges Required for the DBMS_REDEFINITION Package 19-71

19.8.4 Restrictions for Online Redefinition of Tables 19-71

19.8.5 Performing Online Redefinition with the REDEF_TABLE Procedure 19-73

19.8.6 Redefining Tables Online with Multiple Procedures in DBMS_REDEFINITION 19-74

19.8.6.1 Performing Online Redefinition with Multiple Procedures in
DBMS_REDEFINITION 19-74

19.8.6.2 Constructing a Column Mapping String 19-77

19.8.6.3 Handling Virtual Private Database (VPD) Policies During Online
Redefinition 19-78

19.8.6.4 Creating Dependent Objects Automatically 19-79

19.8.6.5 Creating Dependent Objects Manually 19-79

19.8.7 Results of the Redefinition Process 19-80

19.8.8 Performing Intermediate Synchronization 19-81

19.8.9 Refreshing Dependent Materialized Views During Online Table Redefinition 19-81

19.8.10 Monitoring Online Table Redefinition Progress 19-85

19.8.11 Restarting Online Table Redefinition After a Failure 19-88

xxvii

19.8.12 Rolling Back Online Table Redefinition 19-91

19.8.12.1 About Online Table Redefinition Rollback 19-92

19.8.12.2 Performing Online Table Redefinition Rollback 19-92

19.8.13 Terminating Online Table Redefinition and Cleaning Up After Errors 19-95

19.8.14 Online Redefinition of One or More Partitions 19-96

19.8.14.1 Rules for Online Redefinition of a Single Partition 19-97

19.8.15 Online Table Redefinition Examples 19-98

19.9 Researching and Reversing Erroneous Table Changes 19-119

19.10 Recovering Tables Using Oracle Flashback Table 19-119

19.11 Dropping Tables 19-120

19.12 Using Flashback Drop and Managing the Recycle Bin 19-121

19.12.1 What Is the Recycle Bin? 19-122

19.12.2 Enabling and Disabling the Recycle Bin 19-123

19.12.3 Viewing and Querying Objects in the Recycle Bin 19-124

19.12.4 Purging Objects in the Recycle Bin 19-124

19.12.5 Restoring Tables from the Recycle Bin 19-125

19.13 Managing Index-Organized Tables 19-126

19.13.1 What Are Index-Organized Tables? 19-127

19.13.2 Creating Index-Organized Tables 19-128

19.13.2.1 About Creating Index-Organized Tables 19-128

19.13.2.2 Example: Creating an Index-Organized Table 19-129

19.13.2.3 Restrictions for Index-Organized Tables 19-129

19.13.2.4 Creating Index-Organized Tables That Contain Object Types 19-130

19.13.2.5 Choosing and Monitoring a Threshold Value 19-131

19.13.2.6 Using the INCLUDING Clause 19-131

19.13.2.7 Parallelizing Index-Organized Table Creation 19-132

19.13.2.8 Using Prefix Compression 19-133

19.13.3 Maintaining Index-Organized Tables 19-134

19.13.3.1 Altering Index-Organized Tables 19-134

19.13.3.2 Moving (Rebuilding) Index-Organized Tables 19-134

19.13.4 Creating Secondary Indexes on Index-Organized Tables 19-135

19.13.4.1 About Secondary Indexes on Index-Organized Tables 19-136

19.13.4.2 Creating a Secondary Index on an Index-Organized Table 19-136

19.13.4.3 Maintaining Physical Guesses in Logical Rowids 19-136

19.13.4.4 Specifying Bitmap Indexes on Index-Organized Tables 19-137

19.13.5 Analyzing Index-Organized Tables 19-137

19.13.5.1 Collecting Optimizer Statistics for Index-Organized Tables 19-137

19.13.5.2 Validating the Structure of Index-Organized Tables 19-138

19.13.6 Using the ORDER BY Clause with Index-Organized Tables 19-138

19.13.7 Converting Index-Organized Tables to Regular Tables 19-139

19.14 Managing Partitioned Tables 19-139

19.15 Managing External Tables 19-139

xxviii

19.15.1 About External Tables 19-140

19.15.2 Creating External Tables 19-142

19.15.3 Altering External Tables 19-146

19.15.4 Preprocessing External Tables 19-147

19.15.5 Overriding Parameters for External Tables in a Query 19-149

19.15.6 Using Inline External Tables 19-149

19.15.7 Partitioning External Tables 19-150

19.15.7.1 About Partitioning External Tables 19-150

19.15.7.2 Restrictions for Partitioned External Tables 19-152

19.15.7.3 Creating a Partitioned External Table 19-153

19.15.7.4 Altering a Partitioned External Table 19-157

19.15.8 Dropping External Tables 19-157

19.15.9 System and Object Privileges for External Tables 19-157

19.15.10 Using SQL*Loader for External Tables with Partition Values in File Paths 19-158

19.16 Managing Hybrid Partitioned Tables 19-158

19.17 Managing Immutable Tables 19-159

19.17.1 About Immutable Tables 19-159

19.17.2 Guidelines for Managing Immutable Tables 19-160

19.17.2.1 Specify the Retention Period for the Immutable Table 19-160

19.17.2.2 Specify the Retention Period for Rows in the Immutable Table 19-161

19.17.2.3 Restrictions for Immutable Tables 19-161

19.17.3 Creating Immutable Tables 19-162

19.17.4 Altering Immutable Tables 19-163

19.17.5 Adding and Dropping User Columns in Immutable Tables 19-163

19.17.6 Creating Row Versions in Immutable Tables 19-164

19.17.7 Deleting Rows from Immutable Tables 19-164

19.17.8 Dropping Immutable Tables 19-165

19.17.9 Immutable Tables Data Dictionary Views 19-165

19.18 Managing Blockchain Tables 19-166

19.18.1 About Blockchain Tables 19-168

19.18.1.1 Benefits of Using Blockchain Tables 19-168

19.18.1.2 Chaining Rows in Blockchain Tables 19-170

19.18.1.3 Hidden Columns in Blockchain Tables 19-171

19.18.2 Guidelines for Managing Blockchain Tables 19-174

19.18.2.1 Specify the Retention Period for the Blockchain Table 19-174

19.18.2.2 Specify the Retention Period for Rows in the Blockchain Table 19-175

19.18.2.3 Exporting and Importing Blockchain Tables with Oracle Data Pump 19-175

19.18.2.4 Restrictions for Blockchain Tables 19-176

19.18.3 Creating Blockchain Tables 19-177

19.18.4 Adding and Dropping User Columns in Blockchain Tables 19-179

19.18.5 Creating Row Versions in Blockchain Tables 19-179

19.18.6 Creating User Chains in Blockchain Tables 19-180

xxix

19.18.7 Altering Blockchain Tables 19-181

19.18.8 Adding Certificates Used to Sign Blockchain Table Rows 19-181

19.18.9 Adding the Certificate of a Certificate Authority to the Database 19-182

19.18.10 Deleting Certificates in Blockchain Tables 19-183

19.18.11 Adding a User Signature to Blockchain Table Rows 19-183

19.18.12 Allowing a Delegate to Sign Blockchain Table Rows 19-185

19.18.13 Countersigning Blockchain Table Rows 19-186

19.18.14 Validating Data in Blockchain Tables 19-187

19.18.15 Verifying the Integrity of Blockchain Tables 19-188

19.18.15.1 Generating a Signed Digest for Blockchain Tables 19-189

19.18.15.2 Verifying Blockchain Table Rows Created in a Specified Time Period 19-190

19.18.16 Deleting Rows from Blockchain Tables 19-191

19.18.17 Dropping Blockchain Tables 19-192

19.18.18 Setting the Table Retention Threshold 19-193

19.18.19 Determining the Data Format for Row Content to Compute Row Hash 19-193

19.18.20 Determining the Data Format to Compute Row Signature 19-195

19.18.21 Displaying the Byte Values of Data in Blockchain Tables 19-195

19.18.22 Creating a Regular Table with Blockchain History Log 19-197

19.18.23 Blockchain Tables Data Dictionary Views 19-197

19.19 Tables Data Dictionary Views 19-198

20

Managing Indexes

20.1 About Indexes 20-1

20.2 Guidelines for Managing Indexes 20-2

20.2.1 Create Indexes After Inserting Table Data 20-3

20.2.2 Index the Correct Tables and Columns 20-4

20.2.3 Order Index Columns for Performance 20-5

20.2.4 Limit the Number of Indexes for Each Table 20-5

20.2.5 Drop Indexes That Are No Longer Required 20-5

20.2.6 Indexes and Deferred Segment Creation 20-6

20.2.7 Estimate Index Size and Set Storage Parameters 20-6

20.2.8 Specify the Tablespace for Each Index 20-7

20.2.9 Consider Parallelizing Index Creation 20-7

20.2.10 Consider Creating Indexes with NOLOGGING 20-7

20.2.11 Understand When to Use Unusable or Invisible Indexes 20-8

20.2.12 Understand When to Create Multiple Indexes on the Same Set of Columns 20-9

20.2.13 Consider Costs and Benefits of Coalescing or Rebuilding Indexes 20-10

20.2.14 Consider Cost Before Disabling or Dropping Constraints 20-11

20.2.15 Consider Using the In-Memory Column Store to Reduce the Number of
Indexes 20-11

20.3 Creating Indexes 20-12

xxx

20.3.1 Prerequisites for Creating Indexes 20-13

20.3.2 Creating an Index Explicitly 20-13

20.3.3 Creating a Unique Index Explicitly 20-14

20.3.4 Creating an Index Associated with a Constraint 20-14

20.3.4.1 About Creating an Index Associated with a Constraint 20-15

20.3.4.2 Specifying Storage Options for an Index Associated with a Constraint 20-15

20.3.4.3 Specifying the Index Associated with a Constraint 20-15

20.3.5 Creating a Large Index 20-16

20.3.6 Creating an Index Online 20-17

20.3.7 Creating a Function-Based Index 20-17

20.3.8 Creating a Compressed Index 20-18

20.3.8.1 Creating an Index Using Prefix Compression 20-19

20.3.8.2 Creating an Index Using Advanced Index Compression 20-20

20.3.9 Creating an Unusable Index 20-21

20.3.10 Creating an Invisible Index 20-22

20.3.11 Creating Multiple Indexes on the Same Set of Columns 20-23

20.3.12 Creating a Vector Index 20-24

20.4 Altering Indexes 20-24

20.4.1 About Altering Indexes 20-24

20.4.2 Altering Storage Characteristics of an Index 20-25

20.4.3 Rebuilding an Existing Index 20-26

20.4.4 Making an Index Unusable 20-26

20.4.5 Making an Index Invisible or Visible 20-28

20.4.6 Renaming an Index 20-29

20.4.7 Monitoring Index Usage 20-29

20.5 Monitoring Space Use of Indexes 20-30

20.6 Dropping Indexes 20-31

20.7 Managing Automatic Indexes 20-31

20.7.1 About Automatic Indexing 20-32

20.7.2 How Automatic Indexing Works 20-33

20.7.3 Configuring Automatic Indexing in an Oracle Database 20-34

20.7.4 Generating Automatic Indexing Reports 20-38

20.7.5 Views Containing the Automatic Indexing Information 20-40

20.8 Indexes Data Dictionary Views 20-41

21

Managing Clusters

21.1 About Clusters 21-1

21.2 Guidelines for Managing Clusters 21-3

21.2.1 Choose Appropriate Tables for the Cluster 21-3

21.2.2 Choose Appropriate Columns for the Cluster Key 21-4

xxxi

21.2.3 Specify the Space Required by an Average Cluster Key and Its Associated
Rows 21-4

21.2.4 Specify the Location of Each Cluster and Cluster Index Rows 21-4

21.2.5 Estimate Cluster Size and Set Storage Parameters 21-5

21.3 Creating Clusters and Objects That Use Them 21-5

21.3.1 Creating Clusters 21-5

21.3.2 Creating Clustered Tables 21-6

21.3.3 Creating Cluster Indexes 21-7

21.4 Altering Clusters and Objects That Use Them 21-7

21.4.1 Altering Clusters 21-7

21.4.2 Altering Clustered Tables 21-8

21.4.3 Altering Cluster Indexes 21-8

21.5 Dropping Clusters and Objects That Use Them 21-9

21.5.1 Dropping Clusters 21-9

21.5.2 Dropping Clustered Tables 21-10

21.5.3 Dropping Cluster Indexes 21-10

21.6 Clusters Data Dictionary Views 21-11

22

Managing Hash Clusters

22.1 About Hash Clusters 22-1

22.2 When to Use Hash Clusters 22-2

22.2.1 Situations Where Hashing Is Useful 22-2

22.2.2 Situations Where Hashing Is Not Advantageous 22-3

22.3 Creating Different Types of Hash Clusters 22-3

22.3.1 Creating Hash Clusters 22-4

22.3.2 Creating a Sorted Hash Cluster 22-4

22.3.3 Creating Single-Table Hash Clusters 22-7

22.3.4 Controlling Space Use Within a Hash Cluster 22-7

22.3.4.1 Choosing the Key 22-8

22.3.4.2 Setting HASH IS 22-8

22.3.4.3 Setting SIZE 22-8

22.3.4.4 Setting HASHKEYS 22-9

22.3.4.5 Controlling Space in Hash Clusters 22-9

22.3.5 Estimating Size Required by Hash Clusters 22-10

22.4 Altering Hash Clusters 22-11

22.5 Dropping Hash Clusters 22-11

22.6 Hash Clusters Data Dictionary Views 22-11

23

Managing Views, Sequences, and Synonyms

23.1 Managing Views 23-1

xxxii

23.1.1 About Views 23-2

23.1.2 Creating Views and Join Views 23-2

23.1.2.1 Creating Views 23-3

23.1.2.2 Creating Join Views 23-4

23.1.2.3 Expansion of Defining Queries at View Creation Time 23-4

23.1.2.4 Creating Views with Errors 23-5

23.1.3 Replacing Views 23-5

23.1.4 Using Views in Queries 23-6

23.1.5 DML Statements and Join Views 23-7

23.1.5.1 Updating a Join View 23-7

23.1.5.2 Key-Preserved Tables 23-9

23.1.5.3 Rules for DML Statements and Join Views 23-10

23.1.5.4 Updating Views That Involve Outer Joins 23-13

23.1.5.5 Using the UPDATABLE_ COLUMNS Views 23-14

23.1.6 Altering Views 23-15

23.1.7 Dropping Views 23-15

23.2 Managing Sequences 23-16

23.2.1 About Sequences 23-16

23.2.2 Creating Sequences 23-17

23.2.3 Altering Sequences 23-17

23.2.4 Using Sequences 23-18

23.2.4.1 Referencing a Sequence 23-19

23.2.4.2 Caching Sequence Numbers 23-20

23.2.4.3 Making a Sequence Scalable 23-23

23.2.5 Dropping Sequences 23-25

23.3 Managing Synonyms 23-25

23.3.1 About Synonyms 23-26

23.3.2 Creating Synonyms 23-26

23.3.3 Using Synonyms in DML Statements 23-27

23.3.4 Dropping Synonyms 23-27

23.4 Views, Synonyms, and Sequences Data Dictionary Views 23-28

24

Repairing Corrupted Data

24.1 Options for Repairing Data Block Corruption 24-1

24.2 About the DBMS_REPAIR Package 24-2

24.2.1 DBMS_REPAIR Procedures 24-2

24.2.2 Limitations and Restrictions for DBMS_REPAIR Procedures 24-3

24.3 Using the DBMS_REPAIR Package 24-3

24.3.1 Task 1: Detect and Report Corruptions 24-3

24.3.1.1 About Detecting and Reporting Corruptions 24-4

xxxiii

24.3.1.2 DBMS_REPAIR: Using the CHECK_OBJECT and ADMIN_TABLES
Procedures 24-4

24.3.1.3 DB_VERIFY: Performing an Offline Database Check 24-4

24.3.1.4 ANALYZE: Reporting Corruption 24-5

24.3.1.5 DB_BLOCK_CHECKING Initialization Parameter 24-5

24.3.2 Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR 24-6

24.3.3 Task 3: Make Objects Usable 24-6

24.3.3.1 Corruption Repair: Using the FIX_CORRUPT_BLOCKS and
SKIP_CORRUPT_BLOCKS Procedures 24-7

24.3.3.2 Implications When Skipping Corrupt Blocks 24-7

24.3.4 Task 4: Repair Corruptions and Rebuild Lost Data 24-7

24.3.4.1 Recover Data Using the DUMP_ORPHAN_KEYS Procedures 24-7

24.3.4.2 Fix Segment Bitmaps Using the SEGMENT_FIX_STATUS Procedure 24-7

24.4 DBMS_REPAIR Examples 24-8

24.4.1 Examples: Building a Repair Table or Orphan Key Table 24-8

24.4.1.1 About Repair Tables or Orphan Key Tables 24-8

24.4.1.2 Example: Creating a Repair Table 24-9

24.4.1.3 Example: Creating an Orphan Key Table 24-9

24.4.2 Example: Detecting Corruption 24-10

24.4.3 Example: Fixing Corrupt Blocks 24-11

24.4.4 Example: Finding Index Entries Pointing to Corrupt Data Blocks 24-11

24.4.5 Example: Skipping Corrupt Blocks 24-12

Part IV Database Resource Management and Task Scheduling

25

Managing Automated Database Maintenance Tasks

25.1 About Automated Maintenance Tasks 25-2

25.2 About Maintenance Windows 25-3

25.3 Configuring Automated Maintenance Tasks 25-4

25.3.1 Enabling and Disabling Maintenance Tasks for all Maintenance Windows 25-4

25.3.2 Enabling and Disabling Maintenance Tasks for Specific Maintenance Windows 25-5

25.4 Configuring Maintenance Windows 25-5

25.4.1 Modifying a Maintenance Window 25-5

25.4.2 Creating a New Maintenance Window 25-6

25.4.3 Removing a Maintenance Window 25-7

25.5 Configuring Resource Allocations for Automated Maintenance Tasks 25-7

25.5.1 About Resource Allocations for Automated Maintenance Tasks 25-8

25.5.2 Changing Resource Allocations for Automated Maintenance Tasks 25-9

25.6 Automated Maintenance Tasks Reference 25-9

25.6.1 Predefined Maintenance Windows 25-9

xxxiv

25.6.2 Automated Maintenance Tasks Database Dictionary Views 25-10

26

Managing Resources with Oracle Database Resource Manager

26.1 About Oracle Database Resource Manager 26-2

26.1.1 CDB and PDB Resource Management 26-3

26.1.2 Purpose of Resource Management 26-4

26.1.2.1 Purpose of Resource Management for a CDB 26-4

26.1.2.2 Purpose of Resource Management for PDBs 26-6

26.1.3 Consumer Groups, Plans, and Plan Directives 26-7

26.1.3.1 About the Elements of Resource Manager 26-7

26.1.3.2 About Resource Consumer Groups 26-8

26.1.3.3 About Resource Plan Directives 26-9

26.1.3.4 About Resource Plans 26-20

26.1.3.5 About Subplans 26-29

26.1.4 User Interface for PDB Resource Management 26-30

26.1.4.1 About Resource Manager Administration Privileges 26-31

26.1.4.2 DBMS_RESOURCE_MANAGER for CDBs and PDBs 26-32

26.1.4.3 Initialization Parameters for PDB-Level Resources 26-32

26.2 Enabling Oracle Database Resource Manager and Switching Plans 26-39

26.3 Assigning Sessions to Resource Consumer Groups 26-42

26.3.1 Overview of Assigning Sessions to Resource Consumer Groups 26-42

26.3.2 Assigning an Initial Resource Consumer Group 26-43

26.3.3 Specifying Session-to-Consumer Group Mapping Rules 26-43

26.3.3.1 About Session-to-Consumer Group Mapping Rules 26-43

26.3.3.2 Creating Consumer Group Mapping Rules 26-44

26.3.3.3 Modifying and Deleting Consumer Group Mapping Rules 26-46

26.3.3.4 Creating Mapping Rule Priorities 26-46

26.3.4 Switching Resource Consumer Groups 26-47

26.3.4.1 Manually Switching Resource Consumer Groups 26-48

26.3.4.2 Enabling Users or Applications to Manually Switch Consumer Groups 26-49

26.3.5 Specifying Automatic Consumer Group Switching 26-50

26.3.5.1 Specifying Automatic Switching with Mapping Rules 26-50

26.3.5.2 Specifying Automatic Switching by Setting Resource Limits 26-51

26.3.6 Granting and Revoking the Switch Privilege 26-54

26.3.6.1 About Granting and Revoking the Switch Privilege 26-54

26.3.6.2 Granting the Switch Privilege 26-55

26.3.6.3 Revoking Switch Privileges 26-55

26.4 Managing Resource Plans 26-56

26.4.1 Managing CDB Resource Plans 26-56

26.4.1.1 Creating a CDB Resource Plan for Managing PDBs 26-57

26.4.1.2 Creating a CDB Resource Plan for Managing PDBs: Scenario 26-57

xxxv

26.4.1.3 Creating a CDB Resource Plan with PDB Performance Profiles 26-60

26.4.1.4 Creating a CDB Resource Plan for PDB Performance Profiles: Scenario 26-61

26.4.1.5 Enabling a CDB Resource Plan 26-64

26.4.1.6 Modifying a CDB Resource Plan 26-64

26.4.1.7 Disabling a CDB Resource Plan 26-76

26.4.1.8 Viewing Information About Plans and Directives in a CDB 26-77

26.4.2 Managing PDB Resource Plans 26-79

26.4.2.1 Creating a PDB Resource Plan 26-79

26.4.2.2 Enabling a PDB Resource Plan 26-80

26.4.2.3 Modifying a PDB Resource Plan 26-81

26.4.2.4 Disabling a PDB Resource Plan 26-82

26.4.3 Creating a Simple Resource Plan 26-82

26.4.4 Creating a Complex Resource Plan 26-84

26.4.4.1 About the Pending Area 26-85

26.4.4.2 Creating a Pending Area 26-86

26.4.4.3 Creating Resource Consumer Groups 26-86

26.4.4.4 Mapping Sessions to Consumer Groups 26-87

26.4.4.5 Creating a Resource Plan 26-88

26.4.4.6 Creating Resource Plan Directives 26-89

26.4.4.7 Validating the Pending Area 26-94

26.4.4.8 Submitting the Pending Area 26-95

26.4.4.9 Clearing the Pending Area 26-96

26.5 Putting It All Together: Oracle Database Resource Manager Examples 26-96

26.5.1 Multilevel Plan Example 26-97

26.5.2 Examples of Using the Utilization Limit Attribute 26-99

26.5.3 Example of Using Several Resource Allocation Methods 26-104

26.5.4 Example of Managing Parallel Statements Using Directive Attributes 26-104

26.5.5 An Oracle-Supplied Mixed Workload Plan 26-107

26.6 Managing Multiple Database Instances on a Single Server 26-108

26.6.1 About Instance Caging 26-108

26.6.2 Enabling Instance Caging 26-109

26.7 Maintaining Consumer Groups, Plans, and Directives 26-109

26.7.1 Updating a Consumer Group 26-110

26.7.2 Deleting a Consumer Group 26-110

26.7.3 Updating a Plan 26-111

26.7.4 Deleting a Plan 26-111

26.7.5 Updating a Resource Plan Directive 26-112

26.7.6 Deleting a Resource Plan Directive 26-113

26.8 Viewing Database Resource Manager Configuration and Status 26-113

26.8.1 About Resource Manager Views 26-114

26.8.2 Viewing Consumer Groups Granted to Users or Roles 26-120

26.8.3 Viewing Plan Information 26-120

xxxvi

26.8.4 Viewing Current Consumer Groups for Sessions 26-121

26.8.5 Viewing the Currently Active Plans 26-121

26.8.6 Monitoring PDBs Managed by Oracle Database Resource Manager 26-121

26.8.6.1 About Resource Manager Views for PDBs 26-122

26.8.6.2 Monitoring CPU Usage for PDBs 26-123

26.8.6.3 Monitoring Parallel Execution for PDBs 26-124

26.8.6.4 Monitoring the I/O Generated by PDBs 26-125

26.8.6.5 Monitoring Memory Usage for PDBs 26-126

26.9 Interacting with Operating-System Resource Control 26-126

26.9.1 Guidelines for Using Operating-System Resource Control 26-126

26.10 Oracle Database Resource Manager Reference 26-127

26.10.1 Predefined Resource Plans and Consumer Groups 26-127

26.10.2 Predefined Consumer Group Mapping Rules 26-129

26.10.3 Resource Manager Data Dictionary Views 26-130

26.11 Operating System CPU Resource Management 26-131

27

Oracle Scheduler Concepts

27.1 Overview of Oracle Scheduler 27-1

27.2 Jobs and Supporting Scheduler Objects 27-3

27.2.1 About Jobs and Supporting Scheduler Objects 27-4

27.2.2 Programs 27-4

27.2.3 Schedules 27-5

27.2.4 Jobs 27-5

27.2.4.1 About Jobs 27-6

27.2.4.2 Specifying a Job Action 27-6

27.2.4.3 Specifying a Job Schedule 27-6

27.2.4.4 Specifying a Job Destination 27-7

27.2.4.5 Specifying a Job Credential 27-7

27.2.5 Destinations 27-8

27.2.5.1 About Destinations 27-8

27.2.5.2 About Destinations and Scheduler Agents 27-9

27.2.6 File Watchers 27-10

27.2.7 Credentials 27-10

27.2.8 Chains 27-11

27.2.9 Job Classes 27-12

27.2.10 Windows 27-14

27.2.10.1 About Windows 27-14

27.2.10.2 Overlapping Windows 27-15

27.2.11 Groups 27-18

27.2.11.1 About Groups 27-18

27.2.11.2 Destination Groups 27-18

xxxvii

27.2.11.3 Window Groups 27-18

27.2.12 Incompatibilities 27-19

27.3 More About Jobs 27-19

27.3.1 Job Categories 27-20

27.3.1.1 Database Jobs 27-21

27.3.1.2 External Jobs 27-22

27.3.1.3 Multiple-Destination Jobs 27-24

27.3.1.4 Chain Jobs 27-26

27.3.1.5 Detached Jobs 27-26

27.3.1.6 Lightweight Jobs 27-27

27.3.1.7 In-Memory Jobs 27-28

27.3.1.8 Script Jobs 27-28

27.3.2 Job Instances 27-29

27.3.3 Job Arguments 27-30

27.3.4 How Programs, Jobs, and Schedules are Related 27-30

27.4 Scheduler Architecture 27-31

27.4.1 Scheduler Components 27-32

27.4.2 The Job Table 27-32

27.4.3 The Job Coordinator 27-32

27.4.3.1 About The Job Coordinator 27-32

27.4.3.2 Job Coordinator Actions 27-33

27.4.3.3 Maximum Number of Scheduler Job Processes 27-33

27.4.4 How Jobs Execute 27-34

27.4.5 After Jobs Complete 27-35

27.4.6 Using the Scheduler in Real Application Clusters Environments 27-35

27.4.6.1 The Scheduler and Real Application Clusters 27-35

27.4.6.2 Service Affinity when Using the Scheduler 27-36

27.5 Processes to Close a PDB 27-37

27.6 Scheduler Support for Oracle Data Guard 27-37

28

Scheduling Jobs with Oracle Scheduler

28.1 About Scheduler Objects and Their Naming 28-2

28.2 Creating, Running, and Managing Jobs 28-2

28.2.1 Job Tasks and Their Procedures 28-3

28.2.2 Creating Jobs 28-4

28.2.2.1 Overview of Creating Jobs 28-4

28.2.2.2 Specifying Job Actions, Schedules, Programs, and Styles 28-6

28.2.2.3 Specifying Scheduler Job Credentials 28-9

28.2.2.4 Specifying Destinations 28-10

28.2.2.5 Creating Multiple-Destination Jobs 28-13

28.2.2.6 Setting Job Arguments 28-14

xxxviii

28.2.2.7 Setting Additional Job Attributes 28-15

28.2.2.8 Creating Detached Jobs 28-15

28.2.2.9 Creating Multiple Jobs in a Single Transaction 28-16

28.2.2.10 Techniques for External Jobs 28-17

28.2.3 Altering Jobs 28-19

28.2.4 Running Jobs 28-20

28.2.5 Stopping Jobs 28-20

28.2.6 Stopping External Jobs 28-21

28.2.7 Stopping a Chain Job 28-22

28.2.8 Dropping Jobs 28-22

28.2.9 Dropping Running Jobs 28-22

28.2.10 Dropping Multiple Jobs 28-22

28.2.11 Disabling Jobs 28-23

28.2.12 Enabling Jobs 28-24

28.2.13 Copying Jobs 28-25

28.3 Creating and Managing Programs to Define Jobs 28-25

28.3.1 Program Tasks and Their Procedures 28-25

28.3.2 Creating Programs with Scheduler 28-26

28.3.2.1 Creating Programs 28-26

28.3.2.2 Defining Program Arguments 28-26

28.3.3 Altering Programs 28-28

28.3.4 Dropping Programs 28-28

28.3.5 Disabling Programs 28-28

28.3.6 Enabling Programs 28-29

28.4 Creating and Managing Schedules to Define Jobs 28-29

28.4.1 Schedule Tasks and Their Procedures 28-30

28.4.2 Creating Schedules 28-30

28.4.3 Altering Schedules 28-31

28.4.4 Dropping Schedules 28-31

28.4.5 Setting the Repeat Interval 28-31

28.4.5.1 About Setting the Repeat Interval 28-32

28.4.5.2 Using the Scheduler Calendaring Syntax 28-32

28.4.5.3 Using a PL/SQL Expression 28-35

28.4.5.4 Differences Between PL/SQL Expression and Calendaring Syntax
Behavior 28-35

28.4.5.5 Repeat Intervals and Daylight Savings 28-36

28.5 Using Events to Start Jobs 28-36

28.5.1 About Events 28-37

28.5.2 Starting Jobs with Events Raised by Your Application 28-37

28.5.2.1 About Events Raised by Your Application 28-38

28.5.2.2 Creating an Event-Based Job 28-39

28.5.2.3 Altering an Event-Based Job 28-40

xxxix

28.5.2.4 Creating an Event Schedule 28-40

28.5.2.5 Altering an Event Schedule 28-41

28.5.2.6 Passing Event Messages into an Event-Based Job 28-41

28.5.3 Starting a Job When a File Arrives on a System 28-42

28.5.3.1 About File Watchers 28-43

28.5.3.2 Enabling File Arrival Events from Remote Systems 28-44

28.5.3.3 Creating File Watchers and File Watcher Jobs 28-44

28.5.3.4 File Arrival Example 28-47

28.5.3.5 Managing File Watchers 28-48

28.5.3.6 Viewing File Watcher Information 28-49

28.6 Creating and Managing Job Chains 28-50

28.6.1 About Creating and Managing Job Chains 28-51

28.6.2 Chain Tasks and Their Procedures 28-52

28.6.3 Creating Chains 28-53

28.6.4 Defining Chain Steps 28-53

28.6.5 Adding Rules to a Chain 28-55

28.6.6 Setting an Evaluation Interval for Chain Rules 28-58

28.6.7 Enabling Chains 28-58

28.6.8 Creating Jobs for Chains 28-59

28.6.9 Dropping Chains 28-60

28.6.10 Running Chains 28-60

28.6.11 Dropping Chain Rules 28-61

28.6.12 Disabling Chains 28-61

28.6.13 Dropping Chain Steps 28-61

28.6.14 Stopping Chains 28-62

28.6.15 Stopping Individual Chain Steps 28-62

28.6.16 Pausing Chains 28-62

28.6.17 Skipping Chain Steps 28-63

28.6.18 Running Part of a Chain 28-64

28.6.19 Monitoring Running Chains 28-64

28.6.20 Handling Stalled Chains 28-65

28.7 Using Incompatibility Definitions 28-65

28.7.1 Creating a Job or Program Incompatibility 28-66

28.7.2 Adding a Job or Program to an Incompatibility 28-66

28.7.3 Removing a Job or Program from an Incompatibility 28-67

28.7.4 Dropping an Incompatibility 28-67

28.8 Managing Job Resources 28-68

28.8.1 Creating or Dropping a Resource 28-68

28.8.2 Altering a Resource 28-69

28.8.3 Setting a Resource Constraint for a Job 28-69

28.9 Prioritizing Jobs 28-70

28.9.1 Managing Job Priorities with Job Classes 28-71

xl

28.9.1.1 Job Class Tasks and Their Procedures 28-71

28.9.1.2 Creating Job Classes 28-72

28.9.1.3 Altering Job Classes 28-72

28.9.1.4 Dropping Job Classes 28-72

28.9.2 Setting Relative Job Priorities Within a Job Class 28-73

28.9.3 Managing Job Scheduling and Job Priorities with Windows 28-73

28.9.3.1 About Job Scheduling and Job Priorities with Windows 28-74

28.9.3.2 Window Tasks and Their Procedures 28-75

28.9.3.3 Creating Windows 28-75

28.9.3.4 Altering Windows 28-76

28.9.3.5 Opening Windows 28-76

28.9.3.6 Closing Windows 28-77

28.9.3.7 Dropping Windows 28-78

28.9.3.8 Disabling Windows 28-78

28.9.3.9 Enabling Windows 28-79

28.9.4 Managing Job Scheduling and Job Priorities with Window Groups 28-79

28.9.4.1 Window Group Tasks and Their Procedures 28-80

28.9.4.2 Creating Window Groups 28-80

28.9.4.3 Dropping Window Groups 28-81

28.9.4.4 Adding a Member to a Window Group 28-81

28.9.4.5 Removing a Member from a Window Group 28-81

28.9.4.6 Enabling a Window Group 28-82

28.9.4.7 Disabling a Window Group 28-82

28.9.5 Allocating Resources Among Jobs Using Resource Manager 28-82

28.9.6 Example of Resource Allocation for Jobs 28-83

28.10 Monitoring Jobs 28-84

28.10.1 About Monitoring Jobs 28-84

28.10.2 The Job Log 28-84

28.10.2.1 Viewing the Job Log 28-85

28.10.2.2 Run Details 28-86

28.10.2.3 Precedence of Logging Levels in Jobs and Job Classes 28-86

28.10.3 Monitoring Multiple Destination Jobs 28-87

28.10.4 Monitoring Job State with Events Raised by the Scheduler 28-88

28.10.4.1 About Job State Events 28-88

28.10.4.2 Altering a Job to Raise Job State Events 28-90

28.10.4.3 Consuming Job State Events with your Application 28-90

28.10.5 Monitoring Job State with E-mail Notifications 28-91

28.10.5.1 About E-mail Notifications 28-91

28.10.5.2 Adding E-mail Notifications for a Job 28-92

28.10.5.3 Removing E-mail Notifications for a Job 28-93

28.10.5.4 Viewing Information About E-mail Notifications 28-94

xli

29

Administering Oracle Scheduler

29.1 Configuring Oracle Scheduler 29-2

29.1.1 Setting Oracle Scheduler Privileges 29-2

29.1.2 Setting Scheduler Preferences 29-3

29.1.3 Using the Oracle Scheduler Agent to Run Remote Jobs 29-5

29.1.3.1 Enabling and Disabling Databases for Remote Jobs 29-6

29.1.3.2 Installing and Configuring the Scheduler Agent on a Remote Host 29-9

29.1.3.3 Performing Tasks with the Scheduler Agent 29-10

29.2 Monitoring and Managing the Scheduler 29-13

29.2.1 Viewing the Currently Active Window and Resource Plan 29-13

29.2.2 Finding Information About Currently Running Jobs 29-13

29.2.3 Monitoring and Managing Window and Job Logs 29-15

29.2.3.1 Job Log 29-15

29.2.3.2 Window Log 29-16

29.2.3.3 Purging Logs 29-17

29.2.4 DBMS_SCHEDULER In-Memory Trace 29-18

29.2.5 Managing Scheduler Security 29-20

29.3 Import/Export and the Scheduler 29-20

29.4 Troubleshooting the Scheduler 29-21

29.4.1 A Job Does Not Run 29-21

29.4.1.1 About Job States 29-21

29.4.1.2 Viewing the Job Log 29-22

29.4.1.3 Troubleshooting Remote Jobs 29-22

29.4.1.4 About Job Recovery After a Failure 29-23

29.4.2 A Program Becomes Disabled 29-24

29.4.3 A Window Fails to Take Effect 29-24

29.5 Examples of Using the Scheduler 29-24

29.5.1 Examples of Creating Job Classes 29-24

29.5.2 Examples of Setting Attributes 29-25

29.5.3 Examples of Creating Chains 29-27

29.5.4 Examples of Creating Jobs and Schedules Based on Events 29-28

29.5.5 Example of Creating a Job In an Oracle Data Guard Environment 29-29

29.6 Scheduler Reference 29-30

29.6.1 Scheduler Privileges 29-30

29.6.2 Scheduler Data Dictionary Views 29-32

30

Managing Transactions

30.1 Priority Transactions 30-1

30.1.1 Using Priority Transactions 30-2

30.1.1.1 Setting Transaction Priority 30-2

xlii

30.1.1.2 Setting System-Level Wait Targets 30-3

30.1.1.3 Acknowledging the Automatic Rollback 30-4

30.1.1.4 Setting Priority Transaction Mode 30-4

30.1.1.5 Using Priority Transaction Mode to Determine System-Level Wait Targets 30-5

30.1.2 Monitoring Priority Transactions 30-6

30.1.2.1 Statistics Incremented in ROLLBACK Mode 30-6

30.1.2.2 Statistics Incremented in TRACK Mode 30-7

30.1.3 Priority Transaction Behavior 30-7

30.1.3.1 Behavior of Priority Transactions for Distributed Transactions 30-7

30.1.3.2 Behavior for XA Transactions 30-8

30.1.4 Priority Transaction Restrictions 30-8

30.2 Automatic Transaction Quarantine 30-8

30.2.1 Monitoring Quarantined Transactions 30-11

30.2.2 Resolving Quarantined Transactions 30-12

30.2.3 Dropping Quarantined Transactions 30-13

30.2.4 Transaction Quarantine Escalation 30-13

Part V Distributed Database Management

31

Distributed Database Concepts

31.1 Distributed Database Architecture 31-1

31.1.1 Homogenous Distributed Database Systems 31-2

31.1.1.1 About Homogenous Distributed Database Systems 31-2

31.1.1.2 Distributed Databases Versus Distributed Processing 31-3

31.1.1.3 Distributed Databases Versus Replicated Databases 31-4

31.1.2 Heterogeneous Distributed Database Systems 31-4

31.1.2.1 About Heterogeneous Distributed Database Systems 31-5

31.1.2.2 Heterogeneous Services 31-5

31.1.2.3 Transparent Gateway Agents 31-5

31.1.2.4 Generic Connectivity 31-6

31.1.3 Client/Server Database Architecture 31-6

31.2 Database Links 31-7

31.2.1 What Are Database Links? 31-8

31.2.2 What Are Shared Database Links? 31-9

31.2.3 Why Use Database Links? 31-10

31.2.4 Global Database Names in Database Links 31-10

31.2.5 Global Name as a Loopback Database Link 31-12

31.2.6 Names for Database Links 31-12

31.2.7 Types of Database Links 31-13

31.2.8 Users of Database Links 31-14

xliii

31.2.8.1 Overview of Database Link Users 31-14

31.2.8.2 Connected User Database Links 31-15

31.2.8.3 Fixed User Database Links 31-16

31.2.8.4 Current User Database Links 31-16

31.2.9 Creation of Database Links: Examples 31-17

31.2.10 Schema Objects and Database Links 31-18

31.2.10.1 Naming of Schema Objects Using Database Links 31-19

31.2.10.2 Authorization for Accessing Remote Schema Objects 31-19

31.2.10.3 Synonyms for Schema Objects 31-19

31.2.10.4 Schema Object Name Resolution 31-20

31.2.11 Database Link Restrictions 31-20

31.3 Distributed Database Administration 31-21

31.3.1 Site Autonomy 31-22

31.3.2 Distributed Database Security 31-22

31.3.2.1 Authentication Through Database Links 31-23

31.3.2.2 Authentication Without Passwords 31-24

31.3.2.3 Supporting User Accounts and Roles 31-24

31.3.2.4 Centralized User and Privilege Management 31-25

31.3.2.5 Data Encryption 31-28

31.3.3 Auditing Database Links 31-29

31.3.4 Administration Tools 31-30

31.3.4.1 Cloud Control and Distributed Databases 31-30

31.3.4.2 Third-Party Administration Tools 31-30

31.3.4.3 SNMP Support 31-30

31.4 Transaction Processing in a Distributed System 31-31

31.4.1 Remote SQL Statements 31-32

31.4.2 Distributed SQL Statements 31-32

31.4.3 Shared SQL for Remote and Distributed Statements 31-33

31.4.4 Remote Transactions 31-33

31.4.5 Distributed Transactions 31-33

31.4.6 Two-Phase Commit Mechanism 31-34

31.4.7 Database Link Name Resolution 31-34

31.4.7.1 About Database Link Name Resolution 31-35

31.4.7.2 Name Resolution When the Global Database Name Is Complete 31-35

31.4.7.3 Name Resolution When the Global Database Name Is Partial 31-35

31.4.7.4 Name Resolution When No Global Database Name Is Specified 31-36

31.4.7.5 Terminating the Search for Name Resolution 31-36

31.4.8 Schema Object Name Resolution 31-37

31.4.8.1 About Schema Object Name Resolution 31-37

31.4.8.2 Example of Global Object Name Resolution: Complete Object Name 31-37

31.4.8.3 Example of Global Object Name Resolution: Partial Object Name 31-38

31.4.9 Global Name Resolution in Views, Synonyms, and Procedures 31-39

xliv

31.4.9.1 About Global Name Resolution in Views, Synonyms, and Procedures 31-39

31.4.9.2 What Happens When Global Names Change 31-40

31.4.9.3 Scenarios for Global Name Changes 31-40

31.5 Distributed Database Application Development 31-41

31.5.1 Transparency in a Distributed Database System 31-42

31.5.1.1 Location Transparency 31-42

31.5.1.2 SQL and COMMIT Transparency 31-43

31.5.2 PL/SQL and Remote Procedure Calls (RPCs) 31-43

31.5.3 Distributed Query Optimization 31-44

31.6 Character Set Support for Distributed Environments 31-44

31.6.1 About Character Set Support for Distributed Environments 31-45

31.6.2 Client/Server Environment 31-45

31.6.3 Homogeneous Distributed Environment 31-46

31.6.4 Heterogeneous Distributed Environment 31-46

32

Managing a Distributed Database

32.1 Managing Global Names in a Distributed System 32-1

32.1.1 Understanding How Global Database Names Are Formed 32-2

32.1.2 Determining Whether Global Naming Is Enforced 32-2

32.1.3 Viewing a Global Database Name 32-3

32.1.4 Changing the Domain in a Global Database Name 32-3

32.1.5 Changing a Global Database Name: Scenario 32-4

32.2 Creating Database Links 32-6

32.2.1 Obtaining Privileges Necessary for Creating Database Links 32-7

32.2.2 Specifying Link Types 32-7

32.2.2.1 Creating Private Database Links 32-8

32.2.2.2 Creating Public Database Links 32-8

32.2.2.3 Creating Global Database Links 32-9

32.2.3 Specifying Link Users 32-9

32.2.3.1 Creating Fixed User Database Links 32-10

32.2.3.2 Creating Connected User and Current User Database Links 32-10

32.2.4 Using Connection Qualifiers to Specify Service Names Within Link Names 32-11

32.3 Using Shared Database Links 32-12

32.3.1 Determining Whether to Use Shared Database Links 32-13

32.3.2 Creating Shared Database Links 32-14

32.3.3 Configuring Shared Database Links 32-14

32.3.3.1 Creating Shared Links to Dedicated Servers 32-14

32.3.3.2 Creating Shared Links to Shared Servers 32-15

32.4 Managing Database Links 32-16

32.4.1 Closing Database Links 32-17

32.4.2 Dropping Database Links 32-17

xlv

32.4.2.1 Dropping a Private Database Link 32-17

32.4.2.2 Dropping a Public Database Link 32-18

32.4.3 Limiting the Number of Active Database Link Connections 32-18

32.5 Viewing Information About Database Links 32-19

32.5.1 Determining Which Links Are in the Database 32-19

32.5.2 Determining Which Link Connections Are Open 32-20

32.5.3 Determining the Host of Outgoing Database Links 32-21

32.5.4 Determining Information About Incoming Database Links 32-22

32.5.5 Determining the Source of High SCN Activity for Incoming Database Links 32-23

32.6 Creating Location Transparency 32-24

32.6.1 Using Views to Create Location Transparency 32-24

32.6.2 Using Synonyms to Create Location Transparency 32-25

32.6.2.1 Creating Synonyms 32-26

32.6.2.2 Managing Privileges and Synonyms 32-27

32.6.3 Using Procedures to Create Location Transparency 32-27

32.6.3.1 Using Local Procedures to Reference Remote Data 32-28

32.6.3.2 Using Local Procedures to Call Remote Procedures 32-28

32.6.3.3 Using Local Synonyms to Reference Remote Procedures 32-29

32.6.3.4 Managing Procedures and Privileges 32-29

32.7 Managing Statement Transparency 32-29

32.8 Managing a Distributed Database: Examples 32-31

32.8.1 Example 1: Creating a Public Fixed User Database Link 32-31

32.8.2 Example 2: Creating a Public Fixed User Shared Database Link 32-31

32.8.3 Example 3: Creating a Public Connected User Database Link 32-32

32.8.4 Example 4: Creating a Public Connected User Shared Database Link 32-32

32.8.5 Example 5: Creating a Public Current User Database Link 32-33

33

Developing Applications for a Distributed Database System

33.1 Managing the Distribution of Application Data 33-1

33.2 Controlling Connections Established by Database Links 33-2

33.3 Maintaining Referential Integrity in a Distributed System 33-2

33.4 Tuning Distributed Queries 33-3

33.4.1 Using Collocated Inline Views 33-4

33.4.2 Using Cost-Based Optimization 33-4

33.4.2.1 How Does Cost-Based Optimization Work? 33-5

33.4.2.2 Rewriting Queries for Cost-Based Optimization 33-5

33.4.2.3 Setting Up Cost-Based Optimization 33-6

33.4.3 Using Hints 33-7

33.4.3.1 About Using Hints 33-7

33.4.3.2 Using the NO_MERGE Hint 33-8

33.4.3.3 Using the DRIVING_SITE Hint 33-8

xlvi

33.4.4 Analyzing the Execution Plan 33-8

33.4.4.1 Generating the Execution Plan 33-9

33.4.4.2 Viewing the Execution Plan 33-9

33.5 Handling Errors in Remote Procedures 33-10

34

Distributed Transactions Concepts

34.1 What Are Distributed Transactions? 34-1

34.1.1 DML and DDL Transactions 34-2

34.1.2 Transaction Control Statements 34-3

34.2 Session Trees for Distributed Transactions 34-3

34.2.1 About Session Trees for Distributed Transactions 34-3

34.2.2 Clients 34-4

34.2.3 Database Servers 34-5

34.2.4 Local Coordinators 34-5

34.2.5 Global Coordinator 34-5

34.2.6 Commit Point Site 34-5

34.2.6.1 About the Commit Point Site 34-6

34.2.6.2 How a Distributed Transaction Commits 34-7

34.2.6.3 Commit Point Strength 34-7

34.3 Two-Phase Commit Mechanism 34-9

34.3.1 About the Two-Phase Commit Mechanism 34-9

34.3.2 Prepare Phase 34-10

34.3.2.1 About Prepare Phase 34-10

34.3.2.2 Types of Responses in the Prepare Phase 34-10

34.3.2.3 Steps in the Prepare Phase 34-12

34.3.3 Commit Phase 34-12

34.3.3.1 Steps in the Commit Phase 34-13

34.3.3.2 Guaranteeing Global Database Consistency 34-13

34.3.4 Forget Phase 34-14

34.4 In-Doubt Transactions 34-14

34.4.1 About In-Doubt Transactions 34-14

34.4.2 Automatic Resolution of In-Doubt Transactions 34-15

34.4.2.1 Failure During the Prepare Phase 34-15

34.4.2.2 Failure During the Commit Phase 34-16

34.4.3 Manual Resolution of In-Doubt Transactions 34-17

34.4.4 Relevance of System Change Numbers for In-Doubt Transactions 34-17

34.5 Distributed Transaction Processing: Case Study 34-18

34.5.1 About the Distributed Transaction Processing Case Study 34-18

34.5.2 Stage 1: Client Application Issues DML Statements 34-18

34.5.3 Stage 2: Oracle Database Determines Commit Point Site 34-19

34.5.4 Stage 3: Global Coordinator Sends Prepare Response 34-20

xlvii

34.5.5 Stage 4: Commit Point Site Commits 34-21

34.5.6 Stage 5: Commit Point Site Informs Global Coordinator of Commit 34-21

34.5.7 Stage 6: Global and Local Coordinators Tell All Nodes to Commit 34-21

34.5.8 Stage 7: Global Coordinator and Commit Point Site Complete the Commit 34-22

35

Managing Distributed Transactions

35.1 Specifying the Commit Point Strength of a Node 35-2

35.2 Naming Transactions 35-2

35.3 Viewing Information About Distributed Transactions 35-3

35.3.1 Determining the ID Number and Status of Prepared Transactions 35-3

35.3.2 Tracing the Session Tree of In-Doubt Transactions 35-5

35.4 Deciding How to Handle In-Doubt Transactions 35-6

35.4.1 Discovering Problems with a Two-Phase Commit 35-6

35.4.2 Determining Whether to Perform a Manual Override 35-7

35.4.3 Analyzing the Transaction Data 35-7

35.4.3.1 Find a Node that Committed or Rolled Back 35-8

35.4.3.2 Look for Transaction Comments 35-8

35.4.3.3 Look for Transaction Advice 35-8

35.5 Manually Overriding In-Doubt Transactions 35-9

35.5.1 Manually Committing an In-Doubt Transaction 35-9

35.5.1.1 Privileges Required to Commit an In-Doubt Transaction 35-9

35.5.1.2 Committing Using Only the Transaction ID 35-9

35.5.1.3 Committing Using an SCN 35-10

35.5.2 Manually Rolling Back an In-Doubt Transaction 35-10

35.6 Purging Pending Rows from the Data Dictionary 35-11

35.6.1 About Purging Pending Rows from the Data Dictionary 35-11

35.6.2 Executing the PURGE_LOST_DB_ENTRY Procedure 35-12

35.6.3 Determining When to Use DBMS_TRANSACTION 35-12

35.7 Manually Committing an In-Doubt Transaction: Example 35-13

35.7.1 Step 1: Record User Feedback 35-14

35.7.2 Step 2: Query DBA_2PC_PENDING 35-14

35.7.2.1 Determining the Global Transaction ID 35-15

35.7.2.2 Determining the State of the Transaction 35-15

35.7.2.3 Looking for Comments or Advice 35-15

35.7.3 Step 3: Query DBA_2PC_NEIGHBORS on Local Node 35-16

35.7.3.1 Obtaining Database Role and Database Link Information 35-16

35.7.3.2 Determining the Commit Point Site 35-17

35.7.4 Step 4: Querying Data Dictionary Views on All Nodes 35-17

35.7.4.1 Checking the Status of Pending Transactions at sales 35-17

35.7.4.2 Determining the Coordinators and Commit Point Site at sales 35-18

35.7.4.3 Checking the Status of Pending Transactions at HQ 35-19

xlviii

35.7.5 Step 5: Commit the In-Doubt Transaction 35-19

35.7.6 Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING 35-20

35.8 Data Access Failures Due to Locks 35-20

35.8.1 Transaction Timeouts 35-20

35.8.2 Locks from In-Doubt Transactions 35-21

35.9 Simulating Distributed Transaction Failure 35-21

35.9.1 Forcing a Distributed Transaction to Fail 35-21

35.9.2 Disabling and Enabling RECO 35-22

35.10 Managing Read Consistency 35-23

35.11 Enhancing Distributed Transaction Security 35-23

Part VI Managing Read-Only Materialized Views

36

Read-Only Materialized View Concepts

36.1 Replication Databases 36-1

36.2 Read-Only Materialized Views 36-2

36.3 The Uses of Materialized Views 36-3

36.3.1 Ease Network Loads 36-3

36.3.2 Enable Data Subsetting 36-3

36.3.3 Enable Disconnected Computing 36-3

36.4 Available Materialized Views 36-4

36.4.1 About the Available Materialized Views 36-4

36.4.2 Primary Key Materialized Views 36-4

36.4.3 Object Materialized Views 36-5

36.4.4 ROWID Materialized Views 36-6

36.4.5 Complex Materialized Views 36-6

36.4.5.1 About Complex Materialized Views 36-6

36.4.5.2 A Comparison of Simple and Complex Materialized Views 36-8

36.5 Users and Privileges Related to Materialized Views 36-9

36.5.1 Required Privileges for Materialized View Operations 36-10

36.5.2 Creator Is Owner 36-11

36.5.3 Creator Is Not Owner 36-11

36.5.4 Refresher Is Owner 36-11

36.5.5 Refresher Is Not Owner 36-12

36.6 Data Subsetting with Materialized Views 36-12

36.6.1 About Data Subsetting with Materialized Views 36-12

36.6.2 Materialized Views with Subqueries 36-13

36.6.2.1 Many to One Subqueries 36-13

36.6.2.2 One to Many Subqueries 36-14

36.6.2.3 Many to Many Subqueries 36-15

xlix

36.6.2.4 Materialized Views with Subqueries and Unions 36-16

36.6.3 Restrictions for Materialized Views with Subqueries 36-19

36.6.4 Restrictions for Materialized Views with Unions Containing Subqueries 36-20

36.6.4.1 Examples of Materialized Views with Unions Containing Subqueries 36-20

36.7 Materialized View Refresh 36-21

36.8 Refresh Groups 36-21

36.9 Materialized View Log 36-21

36.10 Materialized Views and User-Defined Data Types 36-22

36.10.1 How Materialized Views Work with Object Types and Collections 36-22

36.10.2 Type Agreement at Replication Databases 36-23

36.10.3 Column Subsetting of Masters with Column Objects 36-24

36.10.4 Materialized Views Based on Object Tables 36-25

36.10.4.1 About Materialized Views Based on Object Tables 36-25

36.10.4.2 Materialized Views Based on Object Tables Created Without Using the
OF type Clause 36-25

36.10.4.3 OID Preservation in Object Materialized Views 36-26

36.10.5 Materialized Views with Collection Columns 36-26

36.10.5.1 Restrictions for Materialized Views with Collection Columns 36-28

36.10.6 Materialized Views with REF Columns 36-28

36.10.6.1 About Materialized Views with REF Columns 36-28

36.10.6.2 Scoped REF Columns 36-29

36.10.6.3 Unscoped REF Columns 36-30

36.10.6.4 Logging REF Columns in the Materialized View Log 36-30

36.10.6.5 REFs Created Using the WITH ROWID Clause 36-30

36.11 Materialized View Registration at a Master Database 36-30

36.11.1 Viewing Information about Registered Materialized Views 36-31

36.11.2 Internal Mechanisms 36-31

36.11.3 Manual Materialized View Registration 36-31

37

Read-Only Materialized View Architecture

37.1 Master Database Mechanisms 37-1

37.1.1 Master Database Objects 37-1

37.1.2 Master Table 37-2

37.1.3 Internal Trigger for the Materialized View Log 37-2

37.1.4 Materialized View Logs 37-2

37.1.4.1 About Materialized View Logs 37-3

37.1.4.2 Columns Logged in the Materialized View Log 37-4

37.1.4.3 Restriction on Import of Materialized View Logs to a Different Schema 37-5

37.2 Materialized View Database Mechanisms 37-5

37.2.1 Indexes for Materialized Views 37-6

37.3 Organizational Mechanisms 37-6

l

37.3.1 Refresh Groups 37-6

37.3.2 Refresh Group Size 37-6

37.4 Refresh Process 37-7

37.4.1 About the Refresh Process 37-7

37.4.2 Refresh Types 37-7

37.4.2.1 Complete Refresh 37-8

37.4.2.2 Fast Refresh 37-8

37.4.2.3 Force Refresh 37-9

37.4.3 Initiating a Refresh 37-9

37.4.3.1 Scheduled Refresh 37-9

37.4.3.2 On-Demand Refresh 37-10

37.4.4 Constraints and Refresh 37-11

38

Planning for Read-Only Materialized Views

38.1 Considerations for Master Tables 38-1

38.1.1 Primary Keys and Master Tables 38-1

38.1.2 Foreign Keys and Master Tables 38-1

38.1.3 Data Type Considerations for Master Tables 38-1

38.1.4 Unsupported Table Types 38-3

38.2 Planning for Master Databases and Materialized View Databases 38-3

38.2.1 Characteristics of Master Databases and Materialized View Databases 38-4

38.2.2 Advantages of Master Databases 38-4

38.2.3 Advantages of Materialized View Databases 38-4

38.2.4 Preparing for Materialized Views 38-4

38.2.4.1 Required Schemas at Materialized View Database 38-5

38.2.4.2 Required Database Links for Materialized Views 38-5

38.2.4.3 Required Privileges 38-7

38.2.4.4 Sufficient Job Processes 38-7

38.2.5 Creating Materialized View Logs 38-8

38.2.6 Logging Columns in a Materialized View Log 38-9

39

Creating and Managing Read-Only Materialized Views

39.1 Creating Read-Only Materialized Views 39-1

39.2 Creating Refresh Groups 39-3

39.3 Refreshing Materialized Views 39-4

39.4 Determining the Fast Refresh Capabilities of a Materialized View 39-5

39.5 Adding a New Materialized View Database 39-6

39.6 Monitoring Materialized View Logs 39-7

39.6.1 Listing Information About the Materialized View Logs at a Master Database 39-7

39.6.2 Listing the Materialized Views that Use a Materialized View Log 39-8

li

39.7 Monitoring Materialized Views 39-9

39.7.1 Listing Information About Materialized Views 39-9

39.7.1.1 Listing Master Database Information For Materialized Views 39-9

39.7.1.2 Listing the Properties of Materialized Views 39-10

39.7.2 Listing Information About the Refresh Groups at a Materialized View Database 39-11

39.7.3 Determining the Job ID for Each Refresh Job at a Materialized View Database 39-12

39.7.4 Determining Which Materialized Views Are Currently Refreshing 39-12

40

Troubleshooting Problems with Read-Only Materialized Views

40.1 Diagnosing Problems with Database Links 40-1

40.2 Problems Creating Materialized Views 40-2

40.3 Refresh Problems 40-2

40.3.1 Common Refresh Problems 40-2

40.3.2 Automatic Refresh Retries 40-3

40.3.3 Fast Refresh Errors at New Materialized View Databases 40-3

40.3.4 Materialized Views Continually Refreshing 40-4

40.3.5 Materialized View Logs Growing Too Large 40-4

40.4 Advanced Troubleshooting of Refresh Problems 40-4

Part VII Appendixes

A Support for DBMS_JOB

A.1 Oracle Scheduler Replaces DBMS_JOB A-1

A.1.1 Configuring DBMS_JOB A-2

A.1.2 Using Both DBMS_JOB and Oracle Scheduler A-2

A.2 Moving from DBMS_JOB to Oracle Scheduler A-2

A.2.1 Creating a Job A-3

A.2.2 Altering a Job A-3

A.2.3 Removing a Job from the Job Queue A-4

B Blockchain Tables Reference

B.1 Blockchain Tables Column Content B-1

B.2 Blockchain Tables Row Content B-3

B.3 Format of the Signed Digest in Blockchain Tables B-4

Index

lii

Preface

This document describes how to create and configure CDBs, PDBs, and application
containers.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document explains how to administer containers as containers, for example, how to
create CDBs and PDBs, start them up and shut them down, and perform cross-container
operations. Specifically, this document is intended for database administrators who perform the
following tasks:

• Create CDBs, PDBs, and application containers

• Relocate, unplug, and plug in PDBs and application containers

• Install and maintain applications in application containers

• Perform cross-container operations

Note:

Oracle Database Administrator’s Guide describes traditional administrative tasks that
you perform within an existing container, including managing database storage,
schema objects, resources, and task scheduling.

To use this document, you must be familiar with relational database concepts. You must also
be familiar with the operating system environment under which you are running Oracle
Database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

liii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Related Documents
For more information, see these Oracle resources:

• Oracle Database Concepts

• Oracle Multitenant Administrator’s Guide

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Automatic Storage Management Administrator's Guide

• Oracle Database VLDB and Partitioning Guide

• Oracle Database Error Messages

• Oracle Database Net Services Administrator's Guide

• Oracle Database Backup and Recovery User's Guide

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

• Oracle Database Development Guide

• Oracle Database PL/SQL Language Reference

• SQL*Plus User's Guide and Reference

• Oracle Database In-Memory Guide

• Oracle Globally Distributed Database Guide

Many of the examples in this book use the sample schemas. See Oracle Database Sample
Schemas for information about these schemas.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an action, or
terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples,
text that appears on the screen, or text that you enter.

Preface

liv

Part I
Basic Database Administration

Database administrators have specific responsibilities and must understand how to complete
database administration tasks.

• Getting Started with Database Administration
To get started with database administration, you must understand basic database
concepts, such as the types of database users, database security, and privileges. You
must also be able to complete basic tasks, such as submitting commands and SQL to the
database and creating a password file.

• Configuring Automatic Restart of an Oracle Database
Configure your Oracle database with the Oracle Restart feature to automatically restart the
database, the listener, and other Oracle components after a hardware or software failure or
whenever your database host computer restarts.

• Managing Processes
Oracle Databases uses several processes so that multiple users and applications can
connect to a single database instance simultaneously.

• Managing Memory
Memory management involves maintaining optimal sizes for the Oracle Database instance
memory structures as demands on the database change.

• Managing Users and Securing the Database
Establish a security policy for every database.

• Monitoring the Database
It is important that you monitor the operation of your database on a regular basis. Doing so
not only informs you of errors that have not yet come to your attention but also gives you a
better understanding of the normal operation of your database. Being familiar with normal
behavior in turn helps you recognize when something is wrong.

• Diagnosing and Resolving Problems
Oracle Database includes an advanced fault diagnosability infrastructure for collecting and
managing diagnostic data, so as to diagnose and resolve database problems. Diagnostic
data includes the trace files, dumps, and core files that are also present in previous
releases, plus new types of diagnostic data that enable customers and Oracle Support to
identify, investigate, track, and resolve problems quickly and effectively.

1
Getting Started with Database Administration

To get started with database administration, you must understand basic database concepts,
such as the types of database users, database security, and privileges. You must also be able
to complete basic tasks, such as submitting commands and SQL to the database and creating
a password file.

• Changes on Oracle Database Release 23ai for Oracle Database Administrator's Guide
The following are changes in Oracle Database Administrator's Guide for Oracle Database
Release 23ai.

• Types of Oracle Database Users
The types of users and their roles and responsibilities depend on the database site. A
small site can have one database administrator who administers the database for
application developers and users. A very large site can find it necessary to divide the
duties of a database administrator among several people and among several areas of
specialization.

• Tasks of a Database Administrator
You must complete several specific tasks to design, implement, and maintain an Oracle
Database.

• SQL Statements
The primary means of communicating with Oracle Database is by submitting SQL
statements.

• Identifying Your Oracle Database Software Release
As many as five numbers may be required to fully identify a release.

• About Database Administrator Security and Privileges
To perform the administrative tasks of an Oracle Database DBA, you need specific
privileges within the database and possibly in the operating system of the server on which
the database runs. Ensure that access to a database administrator's account is tightly
controlled.

• Database Administrator Authentication
As a DBA, you often perform special operations such as shutting down or starting up a
database. Because only a DBA should perform these operations, the database
administrator user names require a secure authentication scheme.

• Creating and Maintaining a Database Password File
You can create a database password file using the password file creation utility, ORAPWD.
For some operating systems, you can create this file as part of your standard installation.

• Data Utilities
Oracle utilities are available to help you maintain the data in your Oracle Database.

1.1 Changes on Oracle Database Release 23ai for Oracle
Database Administrator's Guide

The following are changes in Oracle Database Administrator's Guide for Oracle Database
Release 23ai.

1-1

• New Features in 23ai
The following features are new in this release.

• Deprecated Features
The following features are deprecated in this release.

• Desupported Features
The following features are desupported in this release.

1.1.1 New Features in 23ai
The following features are new in this release.

The new feature list for Oracle Database 23ai is too long to list in this guide. See Oracle
Database New Features Release 23ai for a complete list of features.

1.1.2 Deprecated Features
The following features are deprecated in this release.

• Oracle Persistent Memory Database

Oracle Persistent Memory Database (PMEM) is deprecated as of Oracle Database 23ai
due to Intel discontinuing Optane Persistent Memory hardware.
Intel has announced they will discontinue the Optane Persistent Memory product.
Therefore, Oracle Persistent Memory Database is being deprecated.

• Enterprise User Security (EUS)

Enterprise User Security (EUS) is deprecated with Oracle Database 23ai.

1.1.3 Desupported Features
The following features are desupported in this release.

• Data Recovery Advisor (DRA)

Starting in Oracle Database 23ai, the Data Recovery Advisor (DRA) feature is
desupported.
The desupport of DRA includes desupporting the following Oracle Recovery Manager
(RMAN) commands: LIST FAILURE, ADVISE FAILURE, REPAIR FAILURE, and CHANGE
FAILURE. Database administrators will no longer have access to these commands. There is
no replacement feature for DRA.

• EXP Export Utility

The original Oracle Database Export (exp) utility is desupported in Oracle Database 23ai.
Oracle recommends that you use Oracle Data Pump Export (expdp).

• Oracle Enterprise Manager Database Express

Oracle Enterprise Manager Database Express (EM Express) is desupported in Oracle
Database Release 23ai.
EM Express is a web-based database management tool that is built inside Oracle
Database. It supports key performance management and basic database administration
functions. EM Express was deprecated in Oracle Database 21c. Many of EM Express's
capabilities are now available in Oracle Cloud Infrastructure (OCI) Database Management
service, Oracle Enterprise Manager Cloud Control, or Oracle SQL Developer.

Instead of EM Express, Oracle recommends that you choose a tool that fits the
requirements and deployment type (cloud, on-premises, or hybrid) from OCI Database

Chapter 1
Changes on Oracle Database Release 23ai for Oracle Database Administrator's Guide

1-2

Management service, Oracle Enterprise Manager Cloud Control or Oracle SQL Developer
Web or Oracle SQL Developer desktop products.

• Traditional Auditing

Traditional auditing is desupported in Oracle Database 23ai. Oracle recommends that you
use unified auditing.
Starting with Oracle Database 23ai, unified auditing is the way forward to perform Oracle
Database auditing. Unified auditing offers more flexibility to perform selective and effective
auditing, which helps you focus on activities that really matter to your enterprise. Unified
auditing has one single and secure unified trail, conditional policy for audit selectivity, and
default preconfigured policies for simplicity. To improve security and compliance, Oracle
strongly recommends that you use unified auditing.

See Oracle Database Security Guide

1.2 Types of Oracle Database Users
The types of users and their roles and responsibilities depend on the database site. A small
site can have one database administrator who administers the database for application
developers and users. A very large site can find it necessary to divide the duties of a database
administrator among several people and among several areas of specialization.

• Database Administrators
Each database requires at least one database administrator (DBA). An Oracle Database
system can be large and can have many users. Therefore, database administration is
sometimes not a one-person job, but a job for a group of DBAs who share responsibility.

• Security Officers
In some cases, a site assigns one or more security officers to a database. A security officer
enrolls users, controls and monitors user access to the database, and maintains system
security.

• Network Administrators
Some sites have one or more network administrators. A network administrator, for
example, administers Oracle networking products, such as Oracle Net Services.

• Application Developers
Application developers design and implement database applications.

• Application Administrators
An Oracle Database site can assign one or more application administrators to administer a
particular application. Each application can have its own administrator.

• Database Users
Database users interact with the database through applications or utilities.

1.2.1 Database Administrators
Each database requires at least one database administrator (DBA). An Oracle Database
system can be large and can have many users. Therefore, database administration is
sometimes not a one-person job, but a job for a group of DBAs who share responsibility.

A database administrator's responsibilities can include the following tasks:

• Installing and upgrading the Oracle Database server and application tools

• Allocating system storage and planning future storage requirements for the database
system

Chapter 1
Types of Oracle Database Users

1-3

• Creating primary database storage structures (tablespaces) after application developers
have designed an application

• Creating primary objects (tables, views, indexes) once application developers have
designed an application

• Modifying the database structure, as necessary, from information given by application
developers

• Enrolling users and maintaining system security

• Ensuring compliance with Oracle license agreements

• Controlling and monitoring user access to the database

• Monitoring and optimizing the performance of the database

• Planning for backup and recovery of database information

• Maintaining archived data on tape

• Backing up and restoring the database

• Contacting Oracle for technical support

1.2.2 Security Officers
In some cases, a site assigns one or more security officers to a database. A security officer
enrolls users, controls and monitors user access to the database, and maintains system
security.

As a DBA, you might not be responsible for these duties if your site has a separate security
officer.

See Oracle Database Security Guide for information about the duties of security officers.

1.2.3 Network Administrators
Some sites have one or more network administrators. A network administrator, for example,
administers Oracle networking products, such as Oracle Net Services.

See Oracle Database Net Services Administrator's Guide for information about the duties of
network administrators.

See Also:

Distributed Database Management, for information on network administration in a
distributed environment

1.2.4 Application Developers
Application developers design and implement database applications.

Their responsibilities include the following tasks:

• Designing and developing the database application

• Designing the database structure for an application

Chapter 1
Types of Oracle Database Users

1-4

• Estimating storage requirements for an application

• Specifying modifications of the database structure for an application

• Relaying this information to a database administrator

• Tuning the application during development

• Establishing security measures for an application during development

Application developers can perform some of these tasks in collaboration with DBAs. See
Oracle Database Development Guide for information about application development tasks.

1.2.5 Application Administrators
An Oracle Database site can assign one or more application administrators to administer a
particular application. Each application can have its own administrator.

1.2.6 Database Users
Database users interact with the database through applications or utilities.

A typical user's responsibilities include the following tasks:

• Entering, modifying, and deleting data, where permitted

• Generating reports from the data

1.3 Tasks of a Database Administrator
You must complete several specific tasks to design, implement, and maintain an Oracle
Database.

Note:

When upgrading to a new release, back up your existing production environment,
both software and database, before installation. For information on preserving your
existing production database, see Oracle Database Upgrade Guide.

• Task 1: Evaluate the Database Server Hardware
Evaluate how Oracle Database and its applications can best use the available computer
resources.

• Task 2: Install the Oracle Database Software
As the database administrator, you install the Oracle Database server software and any
front-end tools and database applications that access the database.

• Task 3: Plan the Database
As the database administrator, you must plan the logical storage structure of the database,
the overall database design, and a backup strategy for the database.

• Task 4: Create and Open the Database
After you complete the database design, you can create the database and open it for
normal use.

Chapter 1
Tasks of a Database Administrator

1-5

• Task 5: Back Up the Database
After you create the database structure, perform the backup strategy you planned for the
database.

• Task 6: Enroll System Users
After you back up the database structure, you can enroll the users of the database in
accordance with your Oracle license agreement, and grant appropriate privileges and roles
to these users.

• Task 7: Implement the Database Design
After you create and start the database, and enroll the system users, you can implement
the planned logical structure database by creating all necessary tablespaces. When you
have finished creating tablespaces, you can create the database objects.

• Task 8: Back Up the Fully Functional Database
When the database is fully implemented, again back up the database. In addition to
regularly scheduled backups, you should always back up your database immediately after
implementing changes to the database structure.

• Task 9: Tune Database Performance
Optimizing the performance of the database is one of your ongoing responsibilities as a
DBA. Oracle Database provides a database resource management feature that helps you
to control the allocation of resources among various user groups.

• Task 10: Download and Install Release Updates and Release Update Revisions
After the database installation, download and install Release Updates (Updates) and
Release Update Revisions (Revisions) for your Oracle software on a regular basis.

• Task 11: Roll Out to Additional Hosts
After you have an Oracle Database installation properly configured, tuned, patched, and
tested, you may want to roll that exact installation out to other hosts.

1.3.1 Task 1: Evaluate the Database Server Hardware
Evaluate how Oracle Database and its applications can best use the available computer
resources.

This evaluation should reveal the following information:

• How many disk drives are available to the Oracle products

• How many, if any, dedicated tape drives are available to Oracle products

• How much memory is available to the instances of Oracle Database you will run (see your
system configuration documentation)

1.3.2 Task 2: Install the Oracle Database Software
As the database administrator, you install the Oracle Database server software and any front-
end tools and database applications that access the database.

In some distributed processing installations, the database is controlled by a central computer
(database server) and the database tools and applications are executed on remote computers
(clients). In this case, you must also install the Oracle Net components necessary to connect
the remote systems to the computer that executes Oracle Database.

For more information on what software to install, see "Identifying Your Oracle Database
Software Release".

Chapter 1
Tasks of a Database Administrator

1-6

See Also:

For specific requirements and instructions for installation, see the following
documentation:

• The Oracle documentation specific to your operating system

• The installation guides for your front-end tools and Oracle Net drivers

1.3.3 Task 3: Plan the Database
As the database administrator, you must plan the logical storage structure of the database, the
overall database design, and a backup strategy for the database.

It is important to plan how the logical storage structure of the database will affect system
performance and various database management operations. For example, before creating any
tablespaces for your database, you should know how many data files will comprise the
tablespace, what type of information will be stored in each tablespace, and on which disk
drives the data files will be physically stored. When planning the overall logical storage of the
database structure, take into account the effects that this structure will have when the
database is actually created and running. Consider how the logical storage structure of the
database will affect:

• The performance of the computer running Oracle Database

• The performance of the database during data access operations

• The efficiency of backup and recovery procedures for the database

Plan the relational design of the database objects and the storage characteristics for each of
these objects. By planning the relationship between each object and its physical storage before
creating it, you can directly affect the performance of the database as a unit. Be sure to plan for
the growth of the database.

In distributed database environments, this planning stage is extremely important. The physical
location of frequently accessed data dramatically affects application performance.

During the planning stage, develop a backup strategy for the database. You can alter the
logical storage structure or design of the database to improve backup efficiency.

It is beyond the scope of this book to discuss relational and distributed database design. If you
are not familiar with such design issues, see accepted industry-standard documentation.

Oracle Database Structure and Storage, and Schema Objects, provide specific information on
creating logical storage structures, objects, and integrity constraints for your database.

1.3.4 Task 4: Create and Open the Database
After you complete the database design, you can create the database and open it for normal
use.

You can create a database at installation time, using the Database Configuration Assistant, or
you can supply your own scripts for creating a database.

Chapter 1
Tasks of a Database Administrator

1-7

See Also:

• Oracle Multitenant Administrator's Guide for information on creating a database

• Oracle Database SQL Language Reference for guidance in starting up the
database

1.3.5 Task 5: Back Up the Database
After you create the database structure, perform the backup strategy you planned for the
database.

Create any additional redo log files, take the first full database backup (online or offline), and
schedule future database backups at regular intervals.

See Also:

Oracle Database Backup and Recovery User's Guide

1.3.6 Task 6: Enroll System Users
After you back up the database structure, you can enroll the users of the database in
accordance with your Oracle license agreement, and grant appropriate privileges and roles to
these users.

See Managing Users and Securing the Database for guidance in this task.

1.3.7 Task 7: Implement the Database Design
After you create and start the database, and enroll the system users, you can implement the
planned logical structure database by creating all necessary tablespaces. When you have
finished creating tablespaces, you can create the database objects.

Oracle Database Structure and Storage and Schema Objects provide information on creating
logical storage structures and objects for your database.

1.3.8 Task 8: Back Up the Fully Functional Database
When the database is fully implemented, again back up the database. In addition to regularly
scheduled backups, you should always back up your database immediately after implementing
changes to the database structure.

1.3.9 Task 9: Tune Database Performance
Optimizing the performance of the database is one of your ongoing responsibilities as a DBA.
Oracle Database provides a database resource management feature that helps you to control
the allocation of resources among various user groups.

The database resource manager is described in Managing Resources with Oracle Database
Resource Manager.

Chapter 1
Tasks of a Database Administrator

1-8

See Also:

Oracle Database Performance Tuning Guide for information about tuning your
database and applications

1.3.10 Task 10: Download and Install Release Updates and Release Update
Revisions

After the database installation, download and install Release Updates (Updates) and Release
Update Revisions (Revisions) for your Oracle software on a regular basis.

Starting with Oracle Database 18c, Oracle provides quarterly updates in the form of Release
Updates (Updates) and Release Update Revisions (Revisions). Oracle no longer releases
patch sets. Check the My Oracle Support website for required updates for your installation.

See Also:

• Oracle Database Installation Guide for your platform for instructions on
downloading and installing Release Updates (Updates) and Release Update
Revisions (Revisions)

• My Oracle Support Note 2285040.1

1.3.11 Task 11: Roll Out to Additional Hosts
After you have an Oracle Database installation properly configured, tuned, patched, and
tested, you may want to roll that exact installation out to other hosts.

Reasons to do this include the following:

• You have multiple production database systems.

• You want to create development and test systems that are identical to your production
system.

Instead of installing, tuning, and patching on each additional host, you can clone your tested
Oracle Database installation to other hosts, saving time and avoiding inconsistencies. There
are two types of cloning available to you:

• Cloning an Oracle home—Just the configured and patched binaries from the Oracle home
directory and subdirectories are copied to the destination host and fixed to match the new
environment. You can then start an instance with this cloned home and create a database.

You can use Oracle Enterprise Manager Cloud Control to clone an Oracle home to one or
more destination hosts. You can manually clone an Oracle home using a set of provided
scripts and Oracle Universal Installer.

• Cloning a database—The tuned database, including database files, initialization
parameters, and so on, are cloned to an existing Oracle home (possibly a cloned home).

Chapter 1
Tasks of a Database Administrator

1-9

You can use Cloud Control to clone an Oracle database instance to an existing Oracle
home.

See Also:

• Oracle Enterprise Manager Cloud Administration Guide

• Oracle Enterprise Manager Lifecycle Management Administrator's Guide

• Cloud Control online help

• Oracle Multitenant Administrator's Guide

1.4 SQL Statements
The primary means of communicating with Oracle Database is by submitting SQL statements.

• Submitting Commands and SQL to the Database
There are several ways to submit SQL statements and commands to Oracle Database.

• About SQL*Plus
SQL*Plus is the primary command-line interface to your Oracle database. You use
SQL*Plus to start up and shut down the database, set database initialization parameters,
create and manage users, create and alter database objects (such as tables and indexes),
insert and update data, run SQL queries, and more.

• Connecting to the Database with SQL*Plus
Connect to the Oracle Database instance using SQL*Plus.

1.4.1 Submitting Commands and SQL to the Database
There are several ways to submit SQL statements and commands to Oracle Database.

• Directly, using the command-line interface of SQL*Plus

• Indirectly, using a graphical user interface, such as Oracle Enterprise Manager Database
Express (EM Express) or Oracle Enterprise Manager Cloud Control (Cloud Control)

With these tools, you use an intuitive graphical interface to administer the database, and
the tool submits SQL statements and commands behind the scenes.

See the online help for the tool for more information.

• Directly, using SQL Developer

Developers use SQL Developer to create and test database schemas and applications,
although you can also use it for database administration tasks.

See Oracle SQL Developer User's Guide for more information.

Oracle Database also supports a superset of SQL, which includes commands for starting up
and shutting down the database, modifying database configuration, and so on.

Chapter 1
SQL Statements

1-10

Note:

Oracle Enterprise Manager Database Express (EM Express) is deprecated, and will
be removed in a future Oracle Database release.

1.4.2 About SQL*Plus
SQL*Plus is the primary command-line interface to your Oracle database. You use SQL*Plus
to start up and shut down the database, set database initialization parameters, create and
manage users, create and alter database objects (such as tables and indexes), insert and
update data, run SQL queries, and more.

Before you can submit SQL statements and commands, you must connect to the database.
With SQL*Plus, you can connect locally or remotely. Connecting locally means connecting to
an Oracle database running on the same computer on which you are running SQL*Plus.
Connecting remotely means connecting over a network to an Oracle database that is running
on a remote computer. Such a database is referred to as a remote database. The SQL*Plus
executable on the local computer is provided by a full Oracle Database installation, an Oracle
Client installation, or an Instant Client installation.

See Also:

SQL*Plus User's Guide and Reference

1.4.3 Connecting to the Database with SQL*Plus
Connect to the Oracle Database instance using SQL*Plus.

• About Connecting to the Database with SQL*Plus
Oracle Database includes the following components: the Oracle Database instance, which
is a collection of processes and memory, and a set of disk files that contain user data and
system data.

• Step 1: Open a Command Window
Take the necessary action on your platform to open a window into which you can enter
operating system commands.

• Step 2: Set Operating System Environment Variables
Depending on your platform, you may have to set environment variables before starting
SQL*Plus, or at least verify that they are set properly.

• Step 3: Start SQL*Plus
To connect to Oracle Database, use one of these options to start SQL*Plus.

• Step 4: Submit the SQL*Plus CONNECT Command
Submit the SQL*Plus CONNECT command to initially connect to the Oracle database
instance or at any time to reconnect as a different user.

Chapter 1
SQL Statements

1-11

1.4.3.1 About Connecting to the Database with SQL*Plus
Oracle Database includes the following components: the Oracle Database instance, which is a
collection of processes and memory, and a set of disk files that contain user data and system
data.

Each instance has an instance ID, also known as a system ID (SID). Because there can be
multiple Oracle instances on a host computer, each with its own set of data files, you must
identify the instance to which you want to connect. For a local connection, you identify the
instance by setting operating system environment variables. For a remote connection, you
identify the instance by specifying a network address and a database service name. For both
local and remote connections, you must set environment variables to help the operating
system find the SQL*Plus executable and to provide the executable with a path to its support
files and scripts.

To manage objects that are shared by the multitenant container database and its pluggable
databases (PDBs), such as control files, redo log files, or archived redo log files, connect to the
CDB root. Objects such as tablespaces, data files, or temp files can be created in the CDB root
or a PDB. To manage such objects, connect to the container that owns the object.

In the remainder of this book, connecting to the database means connecting to the CDB root.

See Also:

Oracle Database Concepts for background information about the Oracle instance

1.4.3.2 Step 1: Open a Command Window
Take the necessary action on your platform to open a window into which you can enter
operating system commands.

• Open a command window.

1.4.3.3 Step 2: Set Operating System Environment Variables
Depending on your platform, you may have to set environment variables before starting
SQL*Plus, or at least verify that they are set properly.

For example, on most platforms, you must set the environment variables ORACLE_SID and
ORACLE_HOME. In addition, you must configure the PATH environment variable to include the
ORACLE_HOME/bin directory. Some platforms may require additional environment variables:

• On Unix and Linux, set environment variables by entering operating system commands as
needed.

• On Microsoft Windows, the installer automatically assigns values to ORACLE_HOME and
ORACLE_SID in the Windows registry. Modify the PATH environment variable as needed.

If you did not create a database upon installation, then the installer does not set ORACLE_SID in
the registry; after you create your database at a later time, you must set the ORACLE_SID
environment variable from a command window.

Chapter 1
SQL Statements

1-12

Unix and Linux installations come with two scripts, oraenv and coraenv, that you can use to
easily set environment variables.

For all platforms, when switching between instances with different Oracle homes, you must
change the ORACLE_HOME environment variable. If multiple instances share the same Oracle
home, then you must change only ORACLE_SID when switching instances.

Example 1-1 Setting Environment Variables in Unix (C Shell)

setenv ORACLE_SID orcl
setenv ORACLE_HOME /u01/app/oracle/product/database_release_number/dbhome_1
setenv LD_LIBRARY_PATH $ORACLE_HOME/lib:/usr/lib:/usr/dt/lib:/usr/openwin/lib:/usr/ccs/lib

Example 1-2 Setting Environment Variables in Linux (Bash Shell)

export ORACLE_SID=orcl
export ORACLE_HOME=/u01/app/oracle/product/database_release_number/dbhome_1
export LD_LIBRARY_PATH=$ORACLE_HOME/lib:/usr/lib:/usr/dt/lib:/usr/openwin/lib:/usr/ccs/lib

1.4.3.4 Step 3: Start SQL*Plus
To connect to Oracle Database, use one of these options to start SQL*Plus.

1. Do one of the following:

• Ensure that the PATH environment variable contains $ORACLE_HOME/bin.

• Change directory to $ORACLE_HOME/bin. Ensure that the PATH environment variable
contains a dot (“.”).

2. Enter the following command (case-sensitive on Unix and Linux):

sqlplus /nolog

You can also run the sqlplus command by specifying its complete path:

$ORACLE_HOME/bin/sqlplus /nolog

1.4.3.5 Step 4: Submit the SQL*Plus CONNECT Command
Submit the SQL*Plus CONNECT command to initially connect to the Oracle database instance or
at any time to reconnect as a different user.

• In SQL*Plus, submit the CONNECT command.

This command is used to connect to the CDB root or a particular PDB.

Example 1-3 Connecting to a Local Database User

This simple example connects to a local database as user SYSTEM. SQL*Plus prompts for the
SYSTEM user password.

connect system

Example 1-4 Connecting to a Local Database User with SYSDBA Privilege

This example connects to a local database as user SYS with the SYSDBA privilege. SQL*Plus
prompts for the SYS user password.

connect sys as sysdba

Chapter 1
SQL Statements

1-13

When connecting as user SYS, you must connect AS SYSDBA.

Example 1-5 Connecting to a Local Database User with SYSBACKUP Privilege

This example connects to a local database as user SYSBACKUP with the SYSBACKUP privilege.
SQL*Plus prompts for the SYSBACKUP user password.

connect sysbackup as sysbackup

When connecting as user SYSBACKUP, you must connect AS SYSBACKUP.

Example 1-6 Connecting Locally with SYSDBA Privilege with Operating System
Authentication

This example connects locally with the SYSDBA privilege with operating system authentication.

connect / as sysdba

Example 1-7 Connecting to a Pluggable Database with SYSDBA Privilege

This example connects locally to a pluggable database (PDB) named sales_pdb as user SYS
with the SYSDBA privilege. SQL*Plus prompts for the SYS user password.

connect sys@sales_pdb as sysdba

When connecting as user SYS, you must connect AS SYSDBA.

Example 1-8 Connecting with Easy Connect Syntax

This example uses Easy Connect syntax to connect as user salesadmin to a remote database
running on the host dbhost.example.com. The Oracle Net listener (the listener) is listening on
the default port (1521). The database service is sales.example.com. SQL*Plus prompts for the
salesadmin user password.

connect salesadmin@"dbhost.example.com/sales.example.com"

Example 1-9 Connecting with Easy Connect Syntax with the Service Handler Type
Indicated

This example is identical to the preceding example of connecting with Easy Connect, except
that the service handler type is indicated.

connect salesadmin@"dbhost.example.com/sales.example.com:dedicated"

Example 1-10 Connecting with Easy Connect Syntax with a Nondefault Listener Port

This example is identical to the preceding example of connecting with Easy Connect, except
that the listener is listening on the nondefault port number 1522.

connect salesadmin@"dbhost.example.com:1522/sales.example.com"

Example 1-11 Connecting with Easy Connect Syntax with the Host IP Address

This example is identical to the preceding example of connecting with Easy Connect, except
that the host IP address is substituted for the host name.

connect salesadmin@"192.0.2.5/sales.example.com"

Example 1-12 Connecting with an IPv6 Address

This example connects to the database using an Internet Protocol version 6 (IPv6) address.
Note the enclosing square brackets.

Chapter 1
SQL Statements

1-14

connect salesadmin@"[2001:0DB8:0:0::200C:417A]/sales.example.com"

Example 1-13 Connecting by Specifying an Instance

This example specifies the instance to which to connect, and omits the database service
name. Note that when you specify only the instance, you cannot specify the service handler
type.

connect salesadmin@"dbhost.example.com/orcl"

Example 1-14 Connecting with a Net Service Name

This example connects remotely as user salesadmin to the database service designated by
the net service name sales1. SQL*Plus prompts for the salesadmin user password.

connect salesadmin@sales1

Example 1-15 Connecting with External Authentication

This example connects remotely with external authentication to the database service
designated by the net service name sales1.

connect /@sales1

Example 1-16 Connecting with SYSDBA Privilege and External Authentication

This example connects remotely with the SYSDBA privilege and with external authentication to
the database service designated by the net service name sales1.

connect /@sales1 as sysdba

Example 1-17 Connecting as a User with a Service Name

This example connects remotely as user salesadmin to the database service designated by
the net service name sales1. The database session starts in the rev21 edition. SQL*Plus
prompts for the salesadmin user password.

connect salesadmin@sales1 edition=rev21

Note:

If you come across any issues while connecting to the database as a user with the
SYSDBA privileges, then refer to My Oracle Support Notes 69642.1, 233223.1,
18089.1, and 747456.1.

• Syntax of the SQL*Plus CONNECT Command
Use the SQL*Plus CONNECT command to initially connect to the Oracle instance or to
reconnect to the Oracle instance.

1.4.3.5.1 Syntax of the SQL*Plus CONNECT Command
Use the SQL*Plus CONNECT command to initially connect to the Oracle instance or to reconnect
to the Oracle instance.

Syntax

CONN[ECT] [logon] [AS {SYSOPER | SYSDBA | SYSBACKUP | SYSDG | SYSKM | SYSRAC}]

Chapter 1
SQL Statements

1-15

The syntax of logon is as follows:

{username | /}[@connect_identifier] [edition={edition_name | DATABASE_DEFAULT}]

When you provide the username, SQL*Plus prompts for a password. The password is not
echoed as you type it.

The following table describes the syntax components of the CONNECT command.

Syntax Component Description

/ Calls for external authentication of the connection request. A database
password is not used in this type of authentication. The most common form
of external authentication is operating system authentication, where the
database user is authenticated by having logged in to the host operating
system with a certain host user account. External authentication can also be
performed with an Oracle wallet or by a network service. See Oracle
Database Security Guide for more information. See also "Using Operating
System Authentication".

AS {SYSOPER | SYSDBA
| SYSBACKUP | SYSDG
| SYSKM | SYSRAC}

Indicates that the database user is connecting with an administrative
privilege. Only certain predefined administrative users or users who have
been added to the password file may connect with these privileges. See
"Administrative Privileges" for more information.

username A valid database user name. The database authenticates the connection
request by matching username against the data dictionary and prompting for
a user password.

connect_identifier
(1)

An Oracle Net connect identifier, for a remote connection. The exact syntax
depends on the Oracle Net configuration. If omitted, SQL*Plus attempts
connection to a local instance.

A common connect identifier is a net service name. This is an alias for an
Oracle Net connect descriptor (network address and database service
name). The alias is typically resolved in the tnsnames.ora file on the local
computer, but can be resolved in other ways.

See Oracle Database Net Services Administrator's Guide for more
information on connect identifiers.

Chapter 1
SQL Statements

1-16

Syntax Component Description

connect_identifier
(2)

As an alternative, a connect identifier can use easy connect syntax. Easy
connect provides out-of-the-box TCP/IP connectivity for remote databases
without having to configure Oracle Net Services on the client (local)
computer.

Easy connect syntax for the connect identifier is as follows (the enclosing
double-quotes must be included):

"host[:port][/service_name][:server][/instance_name]"

where:

• host is the host name or IP address of the computer hosting the remote
database.

Both IP version 4 (IPv4) and IP version 6 (IPv6) addresses are
supported. IPv6 addresses must be enclosed in square brackets. See
Oracle Database Net Services Administrator's Guide for information
about IPv6 addressing.

• port is the TCP port on which the Oracle Net listener on host listens
for database connections. If omitted, 1521 is assumed.

• service_name is the database service name to which to connect. It can
be omitted if the Net Services listener configuration on the remote host
designates a default service. If no default service is configured, then
service_name must be supplied. Each database typically offers a
standard service with a name equal to the global database name, which
is made up of the DB_NAME and DB_DOMAIN initialization parameters as
follows:

DB_NAME.DB_DOMAIN

If DB_DOMAIN is null, then the standard service name is just the
DB_NAME. For example, if DB_NAME is orcl and DB_DOMAIN is
us.example.com, then the standard service name is
orcl.us.example.com.

See "Oracle Database SQL Language Reference" for more information.
• server is the type of service handler. Acceptable values are

dedicated, shared, and pooled. If omitted, then the default type of
server is chosen by the listener: shared server if configured, otherwise
dedicated server.

• instance_name is the instance to which to connect. You can specify
both service name and instance name, which you would typically do only
for Oracle Real Application Clusters (Oracle RAC) environments. For
Oracle RAC or single instance environments, if you specify only instance
name, then you connect to the default database service. If there is no
default service configured in the listener.ora file, then an error is
generated. You can obtain the instance name from the INSTANCE_NAME
initialization parameter.

See Oracle Database Net Services Administrator's Guide for more
information on easy connect.

edition={edition_nam
e | DATABASE_DEFAULT}

Specifies the edition in which the new database session starts. If you specify
an edition, then it must exist, and you must have the USE privilege on it. If this
clause is not specified, then the database default edition is used for the
session.

See Oracle Database Development Guide for information on editions and
edition-based redefinition.

Chapter 1
SQL Statements

1-17

See Also:

• "Using Operating System Authentication"

• SQL*Plus User's Guide and Reference for more information on the CONNECT
command

• Oracle Database Net Services Administrator's Guide for more information on net
service names

• Oracle Database Net Services Reference for information on how to define the
default service in listener.ora

1.5 Identifying Your Oracle Database Software Release
As many as five numbers may be required to fully identify a release.

Because Oracle Database continues to evolve and can require maintenance, Oracle
periodically produces new releases. Not all customers initially subscribe to a new release or
require specific maintenance for their existing release. As a result, multiple releases of the
product exist simultaneously.

• About Oracle Database Release Numbers
Oracle Database releases are categorized by five numeric segments that indicate release
information.

• Checking Your Current Release Number
To identify the release of Oracle Database that is currently installed and to see the release
levels of other database components you are using, query the data dictionary view
PRODUCT_COMPONENT_VERSION.

1.5.1 About Oracle Database Release Numbers
Oracle Database releases are categorized by five numeric segments that indicate release
information.

Note:

Starting with October 2022, Oracle provides quarterly updates in the form of Release
Updates (Updates, or RU) and Monthly Recommended Patches (MRPs). Oracle no
longer releases patch sets or bundle patch sets. MRPs replace Release Update
Revisions (RURs). For more information, see My Oracle Support note 555.1.

Release Numbers and their Meaning

Oracle Database releases are released in version and version_full releases.

The version release is designated in the form major release version.0.0.0.0. The major
release version is based on the last two digits of the year in which an Oracle Database version
is released for the first time. For example, the Oracle Database version released for the first
time in the year 2023 has the major release version of 23, and thus its version release is
23.0.0.0.0. This base release number is not updated over the course of the release. You can

Chapter 1
Identifying Your Oracle Database Software Release

1-18

identify the base release by logging in to SQL*Plus and entering SELECT BANNER FROM
V$VERSION to see the release displayed. For example:

SELECT BANNER FROM V$VERSION;

BANNER
--
--
Oracle Database 23ai Enterprise Edition Release 23.0.0.0.0

The version_full releases are categorized by five numeric segments separated by periods as
shown in the following example:

Figure 1-1 Example of an Oracle Database Version Full Release Number

• First numeral: This numeral indicates the major release version. It also denotes the last
two digits of the year in which the Oracle Database version was released for the first time.

• Second numeral: This numeral indicates the release update level. In this example, the
release update is Release Update (RU) 4 (04).

• Third numeral: This numeral indicates a refresh of an RU or a Monthly Recommended
Patch (MRP) version. In this example, the numeral is 0, indicating that this is the initial
release of Release Update 4.

• Fourth numeral: The fourth numeral indicates the year of release for the software, RU, or
MRP, by last two digits. In this example, the year is 2024 (24).

• Fifth numeral: This numeral indicates the month (01 through 12) in which a release, RU, or
MRP was released. In this example, the month is March (03).

Note:

The first three numerals mainly identify an Oracle Database release.

Chapter 1
Identifying Your Oracle Database Software Release

1-19

You can see both the major release version and the compatibility and any RU or MRP updates
by entering SELECT BANNER_FULL FROM V$VERSION. For example:

SQL> SELECT BANNER_FULL FROM V$VERSION;

BANNER_FULL
--
--
Oracle Database 23ai Enterprise Edition Release 23.0.0.0.0
Version 23.4.0.24.5

Monthly Recommended Patches and Release Updates

For each new release update (RU) after October 2022, Oracle provides to customers six MRPs
for each RU, with the following characteristics:

• Each MRP for an RU contains all MRPs previously released for the RU, as well as the
most current set of recommended one-off patches for the RU. These patches are
documented My Oracle Support Note 555.1

• MRPs replace RURs.

• MRPs are available only for the Linux operating system.

Related Topics

• Primary Note for Database Proactive Patch Program (Doc ID 888.1)

• My Oracle Support note 2118136.2

1.5.2 Checking Your Current Release Number
To identify the release of Oracle Database that is currently installed and to see the release
levels of other database components you are using, query the data dictionary view
PRODUCT_COMPONENT_VERSION.

A sample query follows. Other product release levels may increment independent of the
database server.

COL PRODUCT FORMAT A38
COL VERSION FORMAT A10
COL VERSION_FULL FORMAT A12
COL STATUS FORMAT A12
SELECT * FROM PRODUCT_COMPONENT_VERSION;

PRODUCT VERSION VERSION_FULL STATUS
-------------------------------------- ---------- ------------ ------------
NLSRTL 19.0.0.0.0 19.2.0.0.0 Production
Oracle Database 19c Enterprise Edition 19.0.0.0.0 19.2.0.0.0 Production
PL/SQL 19.0.0.0.0 19.2.0.0.0 Production
...

It is important to convey to Oracle the results of this query when you report problems with the
software.

Chapter 1
Identifying Your Oracle Database Software Release

1-20

https://support.oracle.com/rs?type=doc&id=888.1
https://support.oracle.com/rs?type=doc&id=2285040.1

Note:

You can also query the V$VERSION view to see component-level information about all
the Oracle Database components that are currently installed.

1.6 About Database Administrator Security and Privileges
To perform the administrative tasks of an Oracle Database DBA, you need specific privileges
within the database and possibly in the operating system of the server on which the database
runs. Ensure that access to a database administrator's account is tightly controlled.

• The Database Administrator's Operating System Account
To perform many of the administrative duties for a database, you must be able to execute
operating system commands.

• Administrative User Accounts
Oracle Database provides several administrative user accounts that are associated with
administrative privileges.

1.6.1 The Database Administrator's Operating System Account
To perform many of the administrative duties for a database, you must be able to execute
operating system commands.

Depending on the operating system on which Oracle Database is running, you might need an
operating system account or ID to gain access to the operating system. If so, your operating
system account might require operating system privileges or access rights that other database
users do not require (for example, to perform Oracle Database software installation). Although
you do not need the Oracle Database files to be stored in your account, you should have
access to them.

See Also:

Your operating system-specific Oracle documentation. The method of creating the
account of the database administrator is specific to the operating system.

1.6.2 Administrative User Accounts
Oracle Database provides several administrative user accounts that are associated with
administrative privileges.

• About Administrative User Accounts
Administrative user accounts have special privileges required to administer areas of the
database, such as the CREATE ANY TABLE or ALTER SESSION privilege, or EXECUTE privilege
on packages owned by the SYS schema.

• SYS
When you create an Oracle database, the user SYS is automatically created with all the
privileges.

Chapter 1
About Database Administrator Security and Privileges

1-21

• SYSTEM
When you create an Oracle database, the user SYSTEM is also automatically created and
granted the DBA role.

• SYSBACKUP, SYSDG, SYSKM, and SYSRAC
When you create an Oracle database, the following users are automatically created to
facilitate separation of duties for database administrators: SYSBACKUP, SYSDG, SYSKM, and
SYSRAC.

• The DBA Role
A predefined DBA role is automatically created with every Oracle Database installation. This
role contains most database system privileges. Therefore, the DBA role should be granted
only to actual database administrators.

1.6.2.1 About Administrative User Accounts
Administrative user accounts have special privileges required to administer areas of the
database, such as the CREATE ANY TABLE or ALTER SESSION privilege, or EXECUTE privilege on
packages owned by the SYS schema.

The following administrative user accounts are automatically created when Oracle Database is
installed:

• SYS
• SYSTEM
• SYSBACKUP
• SYSDG
• SYSKM
• SYSRAC
Oracle recommends that you create at least one additional administrative user and grant it
appropriate privileges for performing daily administrative tasks. Do not use SYS and SYSTEM for
these purposes.

Note:

Both Oracle Universal Installer (OUI) and Database Configuration Assistant (DBCA)
prompt for SYS and SYSTEM passwords and do not accept default passwords.

See Also:

• Oracle Multitenant Administrator's Guide for information about passwords for the
SYS and SYSTEM users

• Oracle Database Security Guide for the security checklist for configuring a
database

Chapter 1
About Database Administrator Security and Privileges

1-22

1.6.2.2 SYS
When you create an Oracle database, the user SYS is automatically created with all the
privileges.

All of the base tables and views for the database data dictionary are stored in the schema SYS.
These base tables and views are critical for the operation of Oracle Database. To maintain the
integrity of the data dictionary, tables in the SYS schema are manipulated only by the database.
They should never be modified by any user or database administrator, and no one should
create any tables in the schema of user SYS. (However, you can change the storage
parameters of the data dictionary settings if necessary.)

Ensure that most database users are never able to connect to Oracle Database using the SYS
account.

1.6.2.3 SYSTEM
When you create an Oracle database, the user SYSTEM is also automatically created and
granted the DBA role.

The SYSTEM user name is used to create additional tables and views that display administrative
information, and internal tables and views used by various Oracle Database options and tools.
Never use the SYSTEM schema to store tables of interest to non-administrative users.

1.6.2.4 SYSBACKUP, SYSDG, SYSKM, and SYSRAC
When you create an Oracle database, the following users are automatically created to facilitate
separation of duties for database administrators: SYSBACKUP, SYSDG, SYSKM, and SYSRAC.

These users separate duties in the following ways:

• SYSBACKUP facilitates Oracle Recovery Manager (RMAN) backup and recovery operations
either from RMAN or SQL*Plus.

• SYSDG facilitates Data Guard operations. The user can perform operations either with Data
Guard Broker or with the DGMGRL command-line interface.

• SYSKM facilitates Transparent Data Encryption keystore operations.

• SYSRAC facilitates Oracle Real Application Clusters (Oracle RAC) operations by connecting
to the database by the Clusterware agent on behalf of Oracle RAC utilities such as
SRVCTL.

The SYSRAC administrative privilege cannot be granted to database users and is not
supported in a password file. The SYSRAC administrative privilege is used only by the
Oracle agent of Oracle Clusterware to connect to the database using operating system
authentication.

Each of these accounts provides a designated user for the new administrative privilege with
the same name. Specifically, the SYSBACKUP account provides a designated user for the
SYSBACKUP administrative privilege. The SYSDG account provides a designated user for the
SYSDG administrative privilege. The SYSKM account provides a designated user for the SYSKM
administrative privilege.

Create a user and grant to that user an appropriate administrative privilege to use when
performing daily administrative tasks. Doing so enables you to manage each user account

Chapter 1
About Database Administrator Security and Privileges

1-23

separately, and each user account can have a distinct password. Do not use the SYSBACKUP,
SYSDG, or SYSKM user account for these purposes.

To use one of these administrative privileges, a user must exercise the privilege when
connecting to a database by specifying the privilege, for example AS SYSBACKUP, AS SYSDG, or
AS SYSKM. If the authentication succeeds, then the user is connected to a database with a
session in which the administrative privilege is enabled. In this case, the session user is the
corresponding administrative user account. For example, if user bradmin connects with the AS
SYSBACKUP administrative privilege, then the session user is SYSBACKUP.

Note:

• These user accounts cannot be dropped.

• These user accounts are schema only accounts, that is, they are created without
passwords. You can assign passwords to these user accounts whenever you
want them to be authenticated.

See Also:

• "Administrative Privileges"

• Oracle Database Security Guide

1.6.2.5 The DBA Role
A predefined DBA role is automatically created with every Oracle Database installation. This
role contains most database system privileges. Therefore, the DBA role should be granted only
to actual database administrators.

Note:

The DBA role does not include the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM
system privileges. These are special administrative privileges that allow an
administrator to perform basic database administration tasks, such as creating the
database and instance startup and shutdown. These administrative privileges are
discussed in "Administrative Privileges".

Chapter 1
About Database Administrator Security and Privileges

1-24

See Also:

• Oracle Database Security Guide for more information about administrative user
accounts

• "Using Password File Authentication"

1.7 Database Administrator Authentication
As a DBA, you often perform special operations such as shutting down or starting up a
database. Because only a DBA should perform these operations, the database administrator
user names require a secure authentication scheme.

• Administrative Privileges
Administrative privileges that are required for an administrator to perform basic database
operations are granted through special system privileges.

• Operations Authorized by Administrative Privileges
Each administrative privilege authorizes a specific set of operations.

• Authentication Methods for Database Administrators
Database administrators can be authenticated with account passwords, operating system
(OS) authentication, password files, or strong authentication with a directory-based
authentication service, such as Oracle Internet Directory.

• Using Operating System Authentication
Membership in special operating system groups enables a DBA to authenticate to the
database through the operating system rather than with a database user name and
password. This is known as operating system authentication.

• Using Password File Authentication
You can use password file authentication for an Oracle database instance and for an
Oracle Automatic Storage Management (Oracle ASM) instance. The password file for an
Oracle database is called a database password file, and the password file for Oracle ASM
is called an Oracle ASM password file.

1.7.1 Administrative Privileges
Administrative privileges that are required for an administrator to perform basic database
operations are granted through special system privileges.

These privileges are:

• SYSDBA
• SYSOPER
• SYSBACKUP
• SYSDG
• SYSKM
• SYSRAC
Excluding the SYSRAC privilege, grant these privileges to users depending upon the level of
authorization they require. The SYSRAC privilege cannot be granted to users because it is used

Chapter 1
Database Administrator Authentication

1-25

only by the Oracle agent of Oracle Clusterware to connect to the database using operating
system authentication.

Starting with Oracle Database 12c Release 1 (12.1), the SYSBACKUP, SYSDG, and SYSKM
administrative privileges are available. Starting with Oracle Database 12c Release 2 (12.2), the
SYSRAC administrative privilege is available. Each new administrative privilege grants the
minimum required privileges to complete tasks in each area of administration. The new
administrative privileges enable you to avoid granting SYSDBA administrative privilege for many
common tasks.

Note:

These administrative privileges allow access to a database instance even when the
database is not open. Control of these privileges is totally outside of the database
itself. Methods for authenticating database administrators with these privileges
include operating system (OS) authentication, password files, and strong
authentication with a directory-based authentication service.

These privileges can also be thought of as types of connections that enable you to
perform certain database operations for which privileges cannot be granted in any
other fashion. For example, if you have the SYSDBA privilege, then you can connect to
the database by specifying the AS SYSDBA clause in the CONNECT command and
perform STARTUP and SHUTDOWN operations. See "Authentication Methods for
Database Administrators".

1.7.2 Operations Authorized by Administrative Privileges
Each administrative privilege authorizes a specific set of operations.

The following table lists the operations that are authorized by each administrative privilege:

Administrative
Privilege

Operations Authorized

SYSDBA • Perform STARTUP and SHUTDOWN operations

• ALTER DATABASE: open, mount, back up, or change character set

• CREATE DATABASE
• DROP DATABASE
• CREATE SPFILE
• ALTER DATABASE ARCHIVELOG
• ALTER DATABASE RECOVER
• Includes the RESTRICTED SESSION privilege

This administrative privilege allows most operations, including the ability to
view user data. It is the most powerful administrative privilege.

Chapter 1
Database Administrator Authentication

1-26

Administrative
Privilege

Operations Authorized

SYSOPER • Perform STARTUP and SHUTDOWN operations

• CREATE SPFILE
• ALTER DATABASE: open, mount, or back up

• ALTER DATABASE ARCHIVELOG
• ALTER DATABASE RECOVER (Complete recovery only. Any form of

incomplete recovery, such as UNTIL TIME|CHANGE|CANCEL|
CONTROLFILE requires connecting as SYSDBA.)

• Includes the RESTRICTED SESSION privilege

This privilege allows a user to perform basic operational tasks, but without the
ability to view user data.

SYSBACKUP This privilege allows a user to perform backup and recovery operations either
from Oracle Recovery Manager (RMAN) or SQL*Plus.

See Oracle Database Security Guide for the full list of operations allowed by
this administrative privilege.

SYSDG This privilege allows a user to perform Data Guard operations. You can use
this privilege with either Data Guard Broker or the DGMGRL command-line
interface.

See Oracle Database Security Guide for the full list of operations allowed by
this administrative privilege.

SYSKM This privilege allows a user to perform Transparent Data Encryption keystore
operations.

See Oracle Database Security Guide for the full list of operations allowed by
this administrative privilege.

SYSRAC This privilege allows the Oracle agent of Oracle Clusterware to perform
Oracle Real Application Clusters (Oracle RAC) operations.

See Oracle Database Security Guide for the full list of operations allowed by
this administrative privilege.

The manner in which you are authorized to use these privileges depends upon the method of
authentication that you use.

When you connect with an administrative privilege, you connect with a current schema that is
not generally associated with your username. For SYSDBA, the current schema is SYS. For
SYSOPER, the current schema is PUBLIC. For SYSBACKUP, SYSDG, and SYSRAC, the current schema
is SYS for name resolution purposes. However, the current schema for SYSKM is SYSKM.

Also, when you connect with an administrative privilege, you connect with a specific session
user. When you connect as SYSDBA, the session user is SYS. For SYSOPER, the session user is
PUBLIC. For SYSBACKUP, SYSDG, SYSKM, and SYSRAC, the session user is SYSBACKUP, SYSDG,
SYSKM, and SYSRAC, respectively.

Chapter 1
Database Administrator Authentication

1-27

See Also:

• "Administrative User Accounts"

• "Using Operating System Authentication"

• "Using Password File Authentication"

• Oracle Database SQL Language Reference for more information about the
current schema and the session user

• Oracle Database Security Guide

Example 1-18 Current Schema When Connecting AS SYSDBA

This example illustrates that a user is assigned another schema (SYS) when connecting with
the SYSDBA administrative privilege. Assume that the sample user mydba has been granted the
SYSDBA administrative privilege and has issued the following command and statement:

CONNECT mydba
CREATE TABLE admin_test(name VARCHAR2(20));

Later, user mydba issues this command and statement:

CONNECT mydba AS SYSDBA
SELECT * FROM admin_test;

User mydba now receives the following error:

ORA-00942: table or view does not exist

Having connected as SYSDBA, user mydba now references the SYS schema, but the table was
created in the mydba schema.

Example 1-19 Current Schema and Session User When Connecting AS SYSBACKUP

This example illustrates that a user is assigned another schema (SYS) and another session
user (SYSBACKUP) when connecting with the SYSBACKUP administrative privilege. Assume that
the sample user mydba has been granted the SYSBACKUP administrative privilege and has
issued the following command and statements:

CONNECT mydba AS SYSBACKUP

SELECT SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA') FROM DUAL;

SYS_CONTEXT('USERENV','CURRENT_SCHEMA')
--
SYS

SELECT SYS_CONTEXT('USERENV', 'SESSION_USER') FROM DUAL;

SYS_CONTEXT('USERENV','SESSION_USER')
--
SYSBACKUP

Chapter 1
Database Administrator Authentication

1-28

1.7.3 Authentication Methods for Database Administrators
Database administrators can be authenticated with account passwords, operating system (OS)
authentication, password files, or strong authentication with a directory-based authentication
service, such as Oracle Internet Directory.

• About Authentication Methods for Database Administrators
There are several ways to authenticate database administrators.

• Nonsecure Remote Connections
To connect to Oracle Database as a privileged user over a nonsecure connection, you
must be authenticated by a password file.

• Local Connections and Secure Remote Connections
You can connect to Oracle Database as a privileged user over a local connection or a
secure remote connection.

1.7.3.1 About Authentication Methods for Database Administrators
There are several ways to authenticate database administrators.

Oracle database can authenticate database administrators through the data dictionary, (using
an account password) like other users. Keep in mind that database passwords are case-
sensitive. See Oracle Database Security Guide for more information about case-sensitive
database passwords.

In addition to normal data dictionary authentication, the following methods are available for
authenticating database administrators with the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM
privilege:

• Operating system (OS) authentication

• Password file including Kerberos and SSL authentication services

• Strong authentication with a directory-based authentication service, such as Oracle
Internet Directory

Note:

The SYSRAC privilege only allows OS authentication by the Oracle agent of Oracle
Clusterware. Password files and strong authentication cannot be used with the
SYSRAC privilege.

These methods are required to authenticate a database administrator when the database is
not started or otherwise unavailable. (They can also be used when the database is available.)

The remainder of this section focuses on operating system authentication and password file
authentication. See Oracle Database Security Guide for information about authenticating
database administrators with directory-based authentication services.

Chapter 1
Database Administrator Authentication

1-29

Note:

Operating system authentication takes precedence over password file authentication.
If you meet the requirements for operating system authentication, then even if you
use a password file, you will be authenticated by operating system authentication.

Your choice is influenced by whether you intend to administer your database locally on the
same system where the database resides, or whether you intend to administer many different
databases from a single remote client. The following figure illustrates the choices you have for
database administrator authentication schemes.

Figure 1-2 Database Administrator Authentication Methods

Remote Database
Administration

Local Database
Administration

Yes Yes

No No

Use OS

authentication

Use a

password file

Do you
have a secure

connection?

Do you
want to use OS
authentication?

If you are performing remote database administration, then consult your Oracle Net
documentation to determine whether you are using a secure connection. Most popular
connection protocols, such as TCP/IP and DECnet, are not secure.

See Also:

• Oracle Database Security Guide for information about authenticating database
administrators with directory-based authentication services.

• Oracle Database Net Services Administrator's Guide

1.7.3.2 Nonsecure Remote Connections
To connect to Oracle Database as a privileged user over a nonsecure connection, you must be
authenticated by a password file.

When using password file authentication, the database uses a password file to keep track of
database user names that have been granted the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM

Chapter 1
Database Administrator Authentication

1-30

administrative privilege. This form of authentication is discussed in "Using Password File
Authentication".

1.7.3.3 Local Connections and Secure Remote Connections
You can connect to Oracle Database as a privileged user over a local connection or a secure
remote connection.

You can connect in two ways:

• If the database has a password file and you have been granted a system privilege, then
you can connect and be authenticated by a password file.

• If the server is not using a password file, or if you have not been granted a system privilege
and are therefore not in the password file, then you can use operating system
authentication. On most operating systems, authentication for database administrators
involves placing the operating system username of the database administrator in a special
group.

For example, users in the OSDBA group are granted the SYSDBA administrative privilege.
Similarly, the OSOPER group is used to grant SYSOPER administrative privilege to users,
the OSBACKUPDBA group is used to grant SYSBACKUP administrative privilege to users,
the OSDGDBA group is used to grant SYSDG administrative privilege to users, the
OSKMDBA group is used to grant SYSKM administrative privilege to users, and the
OSRACDBA group is used to grant SYSRAC administrative privilege to users.

1.7.4 Using Operating System Authentication
Membership in special operating system groups enables a DBA to authenticate to the
database through the operating system rather than with a database user name and password.
This is known as operating system authentication.

• Operating System Groups
Operating system groups are created and assigned specific names as part of the database
installation process.

• Preparing to Use Operating System Authentication
DBAs can authenticate to the database through the operating system rather than with a
database user name and password.

• Connecting Using Operating System Authentication
A user can connect to the database using operating system authentication.

1.7.4.1 Operating System Groups
Operating system groups are created and assigned specific names as part of the database
installation process.

The default names of the operating system groups vary depending upon your operating
system, and are listed in the following table:

Operating System Group UNIX or Linux User
Group

Windows User Group

OSDBA dba ORA_DBA (for all Oracle homes)

ORA_HOMENAME_DBA (for each specific Oracle
home)

Chapter 1
Database Administrator Authentication

1-31

Operating System Group UNIX or Linux User
Group

Windows User Group

OSOPER oper ORA_OPER (for all Oracle homes)

ORA_HOMENAME_OPER (for each specific Oracle
home)

OSBACKUPDBA backupdba ORA_HOMENAME_SYSBACKUP
OSDGDBA dgdba ORA_HOMENAME_SYSDG
OSKMDBA kmdba ORA_HOMENAME_SYSKM
OSRACDBA racdba ORA_HOMENAME_SYSRAC

For the Windows user group names, replace HOMENAME with the Oracle home name.

Oracle Universal Installer uses these default names, but, on UNIX or Linux, you can override
them. On UNIX or Linux, one reason to override them is if you have multiple instances running
on the same host computer in different Oracle homes. If each instance has a different person
as the principal DBA, then you can improve the security of each instance by creating different
groups for each instance.

For example, for two instances on the same UNIX or Linux host in different Oracle homes, the
OSDBA group for the first instance might be named dba1, and OSDBA for the second instance
might be named dba2. The first DBA would be a member of dba1 only, and the second DBA
would be a member of dba2 only. Thus, when using operating system authentication, each
DBA would be able to connect only to their assigned instance.

On Windows, default user group names cannot be changed. The HOMENAME placeholder
enables you to have different user group names when you have multiple instances running on
the same host Windows computer.

Membership in a group affects your connection to the database in the following ways:

• If you are a member of the OSDBA group, and you specify AS SYSDBA when you connect to
the database, then you connect to the database with the SYSDBA administrative privilege.

• If you are a member of the OSOPER group, and you specify AS SYSOPER when you
connect to the database, then you connect to the database with the SYSOPER administrative
privilege.

• If you are a member of the OSBACKUPDBA group, and you specify AS SYSBACKUP when
you connect to the database, then you connect to the database with the SYSBACKUP
administrative privilege.

• If you are a member of the OSDGDBA group, and you specify AS SYSDG when you connect
to the database, then you connect to the database with the SYSDG administrative privilege.

• If you are a member of the OSKMDBA group, and you specify AS SYSKM when you connect
to the database, then you connect to the database with the SYSKM administrative privilege.

• If you are a member of the OSRACDBA group, and you specify AS SYSRAC when you
connect to the database, then you connect to the database with the SYSRAC administrative
privilege.

• If you are not a member of one of these operating system groups, and you attempt to
connect as SYSDBA, SYSOPER, SYSBACKUP, SYSDG, SYSKM, or SYSRAC, then the CONNECT
command fails.

Chapter 1
Database Administrator Authentication

1-32

See Also:

Your operating system specific Oracle documentation for information about creating
the OSDBA and OSOPER groups

1.7.4.2 Preparing to Use Operating System Authentication
DBAs can authenticate to the database through the operating system rather than with a
database user name and password.

To enable operating system authentication of an administrative user:

1. Create an operating system account for the user.

2. Add the account to the appropriate operating-system defined groups.

1.7.4.3 Connecting Using Operating System Authentication
A user can connect to the database using operating system authentication.

You can use operating system authentication by performing one of the following actions.

• A user can be authenticated, enabled as an administrative user, and connected to a local
database by typing one of the following SQL*Plus commands:

CONNECT / AS SYSDBA
CONNECT / AS SYSOPER
CONNECT / AS SYSBACKUP
CONNECT / AS SYSDG
CONNECT / AS SYSKM

• For the Windows platform only, remote operating system authentication over a secure
connection is supported. You must specify the net service name for the remote database:

CONNECT /@net_service_name AS SYSDBA
CONNECT /@net_service_name AS SYSOPER
CONNECT /@net_service_name AS SYSBACKUP
CONNECT /@net_service_name AS SYSDG
CONNECT /@net_service_name AS SYSKM

Both the client computer and database host computer must be on a Windows domain.

Note:

The SYSRAC administrative privilege is used only by the Oracle agent of Oracle
Clusterware to connect to the database using operating system authentication.

See Also:

• "Connecting to the Database with SQL*Plus"

• SQL*Plus User's Guide and Reference for the syntax of the CONNECT command

Chapter 1
Database Administrator Authentication

1-33

1.7.5 Using Password File Authentication
You can use password file authentication for an Oracle database instance and for an Oracle
Automatic Storage Management (Oracle ASM) instance. The password file for an Oracle
database is called a database password file, and the password file for Oracle ASM is called an
Oracle ASM password file.

• Preparing to Use Password File Authentication
To prepare for password file authentication, you must create the password file, set the
REMOTE_LOGIN_PASSWORDFILE initialization parameter, and grant privileges.

• Connecting Using Password File Authentication
Using password file authentication, administrative users can be connected and
authenticated to a local or remote database by using the SQL*Plus CONNECT command. By
default, passwords are case-sensitive.

See Also:

Oracle Automatic Storage Management Administrator's Guide for information about
creating an Oracle ASM password file.

1.7.5.1 Preparing to Use Password File Authentication
To prepare for password file authentication, you must create the password file, set the
REMOTE_LOGIN_PASSWORDFILE initialization parameter, and grant privileges.

To enable authentication of an administrative user using password file authentication, you must
do the following:

1. If it is not already created, then create the password file using the ORAPWD utility:

orapwd FILE=filename FORMAT=12.2

See "Creating and Maintaining a Database Password File" for details.

Chapter 1
Database Administrator Authentication

1-34

Note:

• When you invoke the Database Configuration Assistant (DBCA) as part of
the Oracle Database installation process, DBCA creates a password file.

• The administrative privileges SYSBACKUP, SYSDG, and SYSKM are not supported
in the password file when the file is created with the FORMAT=LEGACY
argument.

• 12.2 is the default for the FORMAT command-line argument.

• The administrative privilege SYSRAC is not supported in the password file.

• The administrative privileges can be granted to external users only when the
file is created with the FORMAT=12.2 argument. FORMAT=12.2 also enables
SSL and Kerberos authentication for administrative users.

• When you create a database password file that is stored in an Oracle ASM
disk group, it can be shared among the multiple Oracle RAC database
instances. The password file is not duplicated on each Oracle RAC database
instance.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to exclusive. (This is the
default).

Note:

REMOTE_LOGIN_PASSWORDFILE is a static initialization parameter and therefore
cannot be changed without restarting the database.

3. Connect to the database as user SYS (or as another user with the administrative
privileges).

4. If the user does not already exist in the database, then create the user and assign a
password.

Keep in mind that database passwords are case-sensitive. See Oracle Database Security
Guide for more information about case-sensitive database passwords.

5. Grant the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege to the user.
For example:

GRANT SYSDBA to mydba;

This statement adds the user to the password file, thereby enabling connection AS SYSDBA,
AS SYSOPER, AS SYSBACKUP, AS SYSDG, or AS SYSKM.

See Also:

"Creating and Maintaining a Database Password File" for instructions for creating
and maintaining a password file

Chapter 1
Database Administrator Authentication

1-35

1.7.5.2 Connecting Using Password File Authentication
Using password file authentication, administrative users can be connected and authenticated
to a local or remote database by using the SQL*Plus CONNECT command. By default,
passwords are case-sensitive.

To connect using password file authentication:

• In SQL*Plus, execute the CONNECT command with a valid username and password and the
AS SYSDBA, AS SYSOPER, AS SYSBACKUP, AS SYSDG, or AS SYSKM clause.

For example, if user mydba has been granted the SYSDBA privilege, then mydba can connect as
follows:

CONNECT mydba AS SYSDBA

However, if user mydba has not been granted the SYSOPER privilege, then the following
command fails:

CONNECT mydba AS SYSOPER

Note:

Operating system authentication takes precedence over password file authentication.
Specifically, if you are a member of the appropriate operating system group, such as
OSDBA or OSOPER, and you connect with the appropriate clause (for example, AS
SYSDBA), then you will be connected with associated administrative privileges
regardless of the username/password that you specify.

If you are not in the one of the operating system groups, and you are not in the
password file, then attempting to connect with the clause fails.

See Also:

• "About Connecting to the Database with SQL*Plus"

• "Creating a Database Password File with ORAPWD"

• SQL*Plus User's Guide and Reference for syntax of the CONNECT command

• Oracle Database Security Guide

1.8 Creating and Maintaining a Database Password File
You can create a database password file using the password file creation utility, ORAPWD. For
some operating systems, you can create this file as part of your standard installation.

• ORAPWD Syntax and Command Line Argument Descriptions
The ORAPWD command creates and maintains a password file.

Chapter 1
Creating and Maintaining a Database Password File

1-36

• Creating a Database Password File with ORAPWD
You can create a database password file with ORAPWD.

• Sharing and Disabling the Database Password File
You use the initialization parameter REMOTE_LOGIN_PASSWORDFILE to control whether a
database password file is shared among multiple Oracle Database instances. You can also
use this parameter to disable password file authentication.

• Keeping Administrator Passwords Synchronized with the Data Dictionary
If you change the REMOTE_LOGIN_PASSWORDFILE initialization parameter from none to
exclusive or shared, then you must ensure that the passwords stored in the data
dictionary and the passwords stored in the password file for the non-SYS administrative
users, such as SYSDBA, SYSOPER, SYSBACKUP, SYSDG, and SYSKM users are the same.

• Adding Users to a Database Password File
When you grant SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege to a
user, that user's name and privilege information are added to the database password file.

• Granting and Revoking Administrative Privileges
Use the GRANT statement to grant administrative privileges. Use the REVOKE statement to
revoke administrative privileges.

• Viewing Database Password File Members
The V$PWFILE_USERS view contains information about users that have been granted
administrative privileges.

• Removing a Database Password File
You can remove a database password file if it is no longer needed.

See Also:

• "Using Password File Authentication"

• "Authentication Methods for Database Administrators"

• Oracle Automatic Storage Management Administrator's Guide for information
about creating and maintaining an Oracle ASM password file

1.8.1 ORAPWD Syntax and Command Line Argument Descriptions
The ORAPWD command creates and maintains a password file.

The syntax of the ORAPWD command is as follows:

orapwd FILE=filename
[FORCE={y|n}]
[ASM={y|n}]
[DBUNIQUENAME=dbname]
[FORMAT={12.2|12}]
[SYS={y|n|password|external('sys-external-name')|global('sys-directory-DN')}]
[SYSBACKUP={y|n|password|external('sysbackup-external-name')|global('sysbackup-directory-
DN')}]
[SYSDG={y|n|password|external('sysdg-external-name')|global('sysdg-directory-DN')}]
[SYSKM={y|n|password|external('syskm-external-name')|global('syskm-directory-DN')}]
[DELETE={y|n}]
[INPUT_FILE=input-fname]

orapwd DESCRIBE FILE=filename

Chapter 1
Creating and Maintaining a Database Password File

1-37

Command arguments are summarized in the following table.

Argument Description

FILE If the DESCRIBE argument is not included, then specify the name to assign to the new
password file. You must supply a complete path. If you supply only a file name, the
file is written to the current directory.

If the DESCRIBE argument is included, then specify the name of an existing password
file.

FORCE (Optional) If y, permits overwriting an existing password file. It also clears CRS
resources, if they already have the password file registered.

ASM (Optional) If y, create an Oracle ASM password file in an Oracle ASM disk group.

If n, the default, create a password file in the operating system file system. When the
DBUNIQUENAME argument is specified, the password file is a database password file.
When the DBUNIQUENAME argument is not specified, the password file can be a
database password file or an Oracle ASM password file.

DBUNIQUENAME Unique database name used to identify database password files residing in an ASM
disk group only. This argument is required when the database password file is stored
on an Oracle ASM disk group. This argument is ignored when an Oracle ASM
password file is created by setting the ASM argument to y.

FORMAT (Optional) Specify one of the following values:

• 12.2, the default, creates the password file in 12.2. format. This format supports
granting administrative privileges to external users and enables SSL and
Kerberos authentication for administrative users.

• 12 creates the password file in Oracle Database 12c format. This format
supports the SYSBACKUP, SYSDG, and SYSKM administrative privileges.

SYS (Optional) This argument specifies if SYS user is password, externally, or globally
authenticated.

This argument can be set to y, n, password, external('sys-external-name'),
or global(sys-directory-DN).

If SYS=y and INPUT_FILE is specified to migrate password file entries, then you will
be prompted to enter the new password for the SYS administrative user.

If password, then you will be prompted to enter the password for the SYS
administrative user.

If external('sys-external-name'), then replace sys-external-name with the
external name for SSL or Kerberos authentication for the SYS administrative user.

If global(sys-directory-DN), then specify the directory service name for the
global SYS user.

SYSBACKUP (Optional) Creates SYSBACKUP entry. This argument specifies if SYSBACKUP user is
password, externally, or globally authenticated.

This argument can be set to y, n, password, external('sysbackup-external-
name'), or global(sysbackup-directory-DN).

If password, then you will be prompted to enter the password for the SYSBACKUP
administrative user.

If external('sysbackup-external-name'), then replace sysbackup-
external-name with the external name for SSL or Kerberos authentication for the
SYSBACKUP administrative user.

If global(sysbackup-directory-DN), then specify the directory service name for
the global SYSBACKUP user.

Chapter 1
Creating and Maintaining a Database Password File

1-38

Argument Description

SYSDG (Optional) Creates SYSDG entry. This argument specifies if SYSDG user is password,
externally, or globally authenticated.

This argument can be set to y, n, password, external('sysdg-external-
name'), or global(sysdg-directory-DN).

If password, then you will be prompted to enter the password for the SYSDG
administrative user.

If external('sysdg-external-name'), then replace sysdg-external-name
with the external name for SSL or Kerberos authentication for the SYSDG
administrative user.

If global(sysdg-directory-DN), then specify the directory service name for the
global SYSDG user.

SYSKM (Optional) Creates SYSKM entry. This argument specifies if SYSKM user is password,
externally, or globally authenticated.

(Optional) This argument can be set to y, n, password, external('syskm-
external-name'), or global(syskm-directory-DN).

If password, then you will be prompted to enter the password for the SYSKM
administrative user.

If external('syskm-external-name'), then replace syskm-external-name
with the external name for SSL or Kerberos authentication for the SYSKM
administrative user.

If y, creates a SYSKM entry in the password file. You are prompted for the password.
The password is stored in the created password file.

If n, no SYSKM entry is created in the password file.

Note: The y and n values in the SYSKM argument are deprecated in Oracle Database
12c Release 2 (12.2) and may be desupported in a future release.

If global(syskm-directory-DN), then specify the directory service name for the
global SYSKM user.

DELETE (Optional) If y, delete the specified password file.

If n, the default, create the specified password file.

INPUT_FILE (Optional) Name of the input password file. ORAPWD migrates the entries in the input
file to a new password file.

This argument can be used to convert a password file from one format to another, for
example from 12 format to 12.2 format.

This argument also can be used to reset the password for the SYS administrative
user.

ORAPWD cannot migrate an input password that is stored in an Oracle ASM disk
group.

DESCRIBE Describes the properties of the specified password file, including the FORMAT value
(12.2 or 12).

There are no spaces permitted around the equal-to (=) character.

Note:

Each external name must be unique.

Chapter 1
Creating and Maintaining a Database Password File

1-39

The following sections provide more information about some of the ORAPWD command line
arguments.

FILE
This argument sets the name of the password file being created. This argument is mandatory.
If you specify a location on an Oracle ASM disk group, then the database password file is
shared automatically among the nodes in the cluster. When you use an Oracle ASM disk
group to store the password file, and you are not using Oracle Managed Files, you must
specify the name of the password file, including its full path. The full path is not required if you
are using Oracle Managed Files.
If you do not specify a location on an Oracle ASM disk group, then the file name required for
the password file is operating system specific. Some operating systems require the password
file to adhere to a specific format and be located in a specific directory. Other operating
systems allow the use of environment variables to specify the name and location of the
password file.
The following table lists the required name and location for the password file on the UNIX,
Linux, and Windows platforms. For other platforms, consult your platform-specific
documentation.

Platform Required Name Required Location

UNIX and Linux orapwORACLE_SID ORACLE_BASE/dbs
Windows PWDORACLE_SID.ora ORACLE_BASE\database

For example, for a database instance with the SID orcldw, the password file must be named
orapworcldw on Linux and PWDorcldw.ora on Windows.
In an Oracle Real Application Clusters (Oracle RAC) environment on a platform that requires
an environment variable to be set to the path of the password file, the environment variable for
each instance must point to the same password file.
For a policy-managed Oracle RAC database or an Oracle RAC One Node database with
ORACLE_SID of the form db_unique_name_n, where n is a number, the password file is searched
for first using ORACLE_BASE/dbs/orapwsid_prefix or
ORACLE_BASE\database\PWDsid_prefix.ora. The sid_prefix (the first 8 characters of the
database name) is used to locate the password file.

Note:

• It is critically important to the security of your system that you protect your
password file and the environment variables that identify the location of the
password file. Any user with access to these could potentially compromise the
security of the connection.

• For Oracle Database 18c and later, if the password file is not found in its default
directory, then the database checks for the password file in the directory that
was the default directory in the earlier database releases. In the Oracle
Database releases earlier to 18c, the default directory of the password file on
UNIX and Linux platforms was ORACLE_HOME/dbs and on Windows was
ORACLE_HOME\database.

Chapter 1
Creating and Maintaining a Database Password File

1-40

See Also:

Using Oracle Managed Files

FORCE
This argument, if set to y, enables you to overwrite an existing password file. An error is
returned if a password file of the same name already exists and this argument is omitted or set
to n.

ASM
If this argument is set to y, then ORAPWD creates an Oracle ASM password file. The FILE
argument must specify a location in the Oracle ASM disk group.
If this argument is set to n, the default, then ORAPWD creates a password file. The FILE
argument can specify a location in the Oracle ASM disk group or in the operating system file
system. When the DBUNIQUENAME argument is specified, the password file is a database
password file. When the DBUNIQUENAME argument is not specified, the password file can be a
database password file or an Oracle ASM password file.

See Also:

Oracle Automatic Storage Management Administrator's Guide for information about
creating and maintaining an Oracle ASM password file

DBUNIQUENAME
This argument sets the unique database name for a database password file being created on
an Oracle ASM disk group. It identifies which database resource to update with the database
password file location.
This argument is not required when a database password file is created on an operating
system file system.
This argument is ignored when an Oracle ASM password file is created by setting the ASM
argument to y.

FORMAT
If this argument is set to 12.2, the default, then ORAPWD creates a database password file in
12.2 format. 12.2 format is required for the password file to support granting administrative
privileges to external users and SSL and Kerberos authentication for administrative users.
Password profiles assigned to the users are also enforced on the administrative users.
If this argument is set to 12, then ORAPWD creates a database password file in Oracle Database
12c format. Oracle Database 12c format is required for the password file to support
SYSBACKUP, SYSDG, and SYSKM administrative privileges.
If this argument is set to legacy, then ORAPWD creates a database password file that is in the
format before Oracle Database 12c. The password file supports SYSDBA and SYSOPER
administrative privileges, but it does not support SYSBACKUP, SYSDG, and SYSKM administrative
privileges.

SYS
If SYS=Y and INPUT_FILE is specified to migrate password file entries, then you will be
prompted to enter the new password for the SYS administrative user.
If password, then you will be prompted to enter the password for the SYS administrative user.
If external('sys-external-name'), then replace sys-external-name with the external name
for SSL or Kerberos authentication for the SYS administrative user.

Chapter 1
Creating and Maintaining a Database Password File

1-41

If global(sys-directory-DN), then specify the directory service name for the global SYS user.

SYSBACKUP
If password, then you will be prompted to enter the password for the SYSBACKUP administrative
user.
If external('sysbackup-external-name'), then replace sysbackup-external-name with the
external name for SSL or Kerberos authentication for the SYSDG administrative user.
If global(sysbackup-directory-DN), then specify the directory service name for the global
SYSBACKUP user.

SYSDG
If password, then you will be prompted to enter the password for the SYSDG administrative user.
If external('sysdg-external-name'), then replace sysdg-external-name with the external
name for SSL or Kerberos authentication for the SYSDG administrative user.
If global(sysdg-directory-DN), then specify the directory service name for the global SYSDG
user.

SYSKM
If password, then you will be prompted to enter the password for the SYSKM administrative user.
If external('syskm-external-name'), then replace syskm-external-name with the external
name for SSL or Kerberos authentication for the SYSKM administrative user.
If global(syskm-directory-DN), then specify the directory service name for the global SYSKM
user.

DELETE
If this argument is set to y, then ORAPWD deletes the specified password file. When y is
specified, FILE, ASM, or DBUNIQUENAME must be specified. When FILE is specified, the file must
be located on an ASM disk group.
If this argument is set to n, the default, then ORAPWD creates the password file.

INPUT_FILE
This argument specifies the name of the input password file. ORAPWD migrates the entries in
the input file to a new password file. This argument can convert a password file from one
format to another, for example from 12 format to 12.2 format.
This argument also can be used to reset the password for the SYS administrative user.
When the INPUT_FILE argument is specified, ORAPWD does not create any new entries.
Therefore, ORAPWD ignores the following arguments:

• PASSWORD
• SYSBACKUP
• SYSDG
• SYSKM
When an input file is specified and the new password file replaces the input file, FORCE must
be set to y.

Note:

When the FORMAT argument is not specified, by default the new password file is
created in 12.2 format from the input file.

Chapter 1
Creating and Maintaining a Database Password File

1-42

See Also:

"Administrative Privileges" and "Adding Users to a Database Password File"

1.8.2 Creating a Database Password File with ORAPWD
You can create a database password file with ORAPWD.

Passwords are case-sensitive. However, password files created using an earlier Oracle
Database release retain their case-insensitive passwords, if the ignorecase option was
omitted during password file creation. Oracle recommends that you force case sensitivity in
these older password files by migrating the password file from one format to another.

The maximum number of bytes for a password is 1024. ORAPWD allows the passing of 1024 byte
passwords for seeded administrative users such as SYS, SYSBACKUP, and others.

To create a database password file:

• Run the ORAPWD command.

Example 1-20 Creating a Database Password File Located in an Oracle ASM Disk
Group

The following command creates a database password file in 12.2 format named orapworcl that
is located in an Oracle ASM disk group. The DBUNIQUENAME argument is required because the
database password file is located in an Oracle ASM disk group.

orapwd FILE='+DATA/orcl/orapworcl' DBUNIQUENAME='orcl' FORMAT=12.2

Example 1-21 Creating a Database Password File with a SYSBACKUP Entry

The following example is the similar to Example 1-20 except that it creates a SYSBACKUP entry
in the database password file. The password file is in 12.2 format by default.

orapwd FILE='+DATA/orcl/orapworcl' DBUNIQUENAME='orcl' SYSBACKUP=password FORMAT=12.2

Example 1-22 Creating a Database Password File with External Authentication for SYS
and SYSKM

The following example is the similar to Example 1-20 except that it specifies an external name
for the SYS and SYSKM administrative users.

orapwd FILE='+DATA/orcl/orapworcl' DBUNIQUENAME='orcl' FORMAT=12.2
sys=external('KerberosUserSYS@example.com')
syskm=external('KerberosUserSYSKM@example.com')

Example 1-23 Creating a Database Password File Located in a File System

The following command creates a database password file in 12.2 format named orapworcl that
is located in the default location in an operating system file system.

orapwd FILE='/u01/oracle/dbs/orapworcl' FORMAT=12.2

Example 1-24 Migrating a Database Password File to Oracle Database 12c Format

The following command migrates a database password file to the 12.2 format. The new
password file is case-sensitive and will contain case-sensitive passwords. The password file is

Chapter 1
Creating and Maintaining a Database Password File

1-43

named orapworcl, and it is located in an operating system file system. The new database
password file replaces the existing database password file. Therefore, FORCE must be set to y.

orapwd FILE='/u01/oracle/dbs/orapworcl' FORMAT=12.2 INPUT_FILE='/u01/oracle/dbs/
orapworcl' FORCE=y

Example 1-25 Resetting the Password for the SYS Administrative User

The following command resets the password for the SYS administrative user. The new
database password file replaces the existing database password file. Therefore, FORCE must be
set to y.

orapwd FILE='/u01/oracle/dbs/orapworcl' SYS=Y INPUT_FILE='/u01/oracle/dbs/orapworcl'
FORCE=y

You are prompted to enter the new password for the SYS administrative user.

Example 1-26 Describing a Password File

The following command describes the orapworcl password file.

orapwd DESCRIBE FILE='orapworcl'
Password file Description : format=12.2

Note:

If the database password file name or location is changed, then run the following
command for the changes to take effect:

SQL> ALTER SYSTEM FLUSH PASSWORDFILE_METADATA_CACHE;

This command flushes the metadata cache and the subsequent logins to the
database use the new password file. In an Oracle RAC environment, this command
clears cache in all the Oracle RAC databases, but there could be some databases
that may still continue using the old password file till the change is propagated across
all the Oracle RAC databases.

After running this command, you can verify the changes by querying the
V$PASSWORDFILE_INFO view.

Note:

Whenever the password file is recreated, it is recommended that you restart the
database instance to synchronize the user profile status from the data dictionary.

See Also:

Oracle Automatic Storage Management Administrator's Guide for information about
managing a shared password file in an Oracle ASM disk group

Chapter 1
Creating and Maintaining a Database Password File

1-44

1.8.3 Sharing and Disabling the Database Password File
You use the initialization parameter REMOTE_LOGIN_PASSWORDFILE to control whether a
database password file is shared among multiple Oracle Database instances. You can also use
this parameter to disable password file authentication.

To share a password file or disable password file authentication:

• Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter.

You can set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to one of the following
values:

• none: Setting this parameter to none causes Oracle Database to behave as if the password
file does not exist. That is, no privileged connections are allowed over nonsecure
connections.

• exclusive: (The default) An exclusive password file can be used with only one database.
Only an exclusive file can be modified. Using an exclusive password file enables you to
add, modify, and delete users. It also enables you to change the password for SYS,
SYSBACKUP, SYSDG, or SYSKM with the ALTER USER command.

When an exclusive password file is stored on an Oracle ASM disk group, it can be used
by a single-instance database or multiple instances of an Oracle Real Application Clusters
(Oracle RAC) database.

When an exclusive password file is stored on an operating system, it can be used with
only one instance of one database.

• shared: A shared password file can be used by multiple databases running on the same
server, or multiple instances of an Oracle RAC database, even when it is stored on an
operating system. A shared password file is read-only and cannot be modified. Therefore,
you cannot add users to a shared password file. Any attempt to do so or to change the
password of SYS or other users with the administrative privileges generates an error. All
users needing administrative privileges must be added to the password file when
REMOTE_LOGIN_PASSWORDFILE is set to exclusive. After all users are added, you can
change REMOTE_LOGIN_PASSWORDFILE to shared, and then share the file.

This option is useful if you are administering multiple databases with a single password file.

You cannot specify shared for an Oracle ASM password file.

If REMOTE_LOGIN_PASSWORDFILE is set to exclusive or shared and the password file is missing,
this is equivalent to setting REMOTE_LOGIN_PASSWORDFILE to none.

1.8.4 Keeping Administrator Passwords Synchronized with the Data
Dictionary

If you change the REMOTE_LOGIN_PASSWORDFILE initialization parameter from none to exclusive
or shared, then you must ensure that the passwords stored in the data dictionary and the

Chapter 1
Creating and Maintaining a Database Password File

1-45

passwords stored in the password file for the non-SYS administrative users, such as SYSDBA,
SYSOPER, SYSBACKUP, SYSDG, and SYSKM users are the same.

Note:

Starting with Oracle Database 12c Release 2 (12.2), authentication for the SYS user
happens using only the password file and not using the data dictionary.

To synchronize the passwords for non-SYS administrative users, such as SYSDBA, SYSOPER,
SYSBACKUP, SYSDG, and SYSKM users, you must first revoke and then regrant the privileges to
these users as follows:

1. Find all users who have been granted the SYSDBA privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSDBA='TRUE';
2. Revoke and then re-grant the SYSDBA privilege to these users.

REVOKE SYSDBA FROM non-SYS-user;
GRANT SYSDBA TO non-SYS-user;

3. Find all users who have been granted the SYSOPER privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSOPER='TRUE';
4. Revoke and regrant the SYSOPER privilege to these users.

REVOKE SYSOPER FROM non-SYS-user;
GRANT SYSOPER TO non-SYS-user;

5. Find all users who have been granted the SYSBACKUP privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSBACKUP ='TRUE';
6. Revoke and regrant the SYSBACKUP privilege to these users.

REVOKE SYSBACKUP FROM non-SYS-user;
GRANT SYSBACKUP TO non-SYS-user;

7. Find all users who have been granted the SYSDG privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSDG='TRUE';
8. Revoke and regrant the SYSDG privilege to these users.

REVOKE SYSDG FROM non-SYS-user;
GRANT SYSDG TO non-SYS-user;

9. Find all users who have been granted the SYSKM privilege.

SELECT USERNAME FROM V$PWFILE_USERS WHERE USERNAME != 'SYS' AND SYSKM='TRUE';
10. Revoke and regrant the SYSKM privilege to these users.

REVOKE SYSKM FROM non-SYS-user;
GRANT SYSKM TO non-SYS-user;

Chapter 1
Creating and Maintaining a Database Password File

1-46

1.8.5 Adding Users to a Database Password File
When you grant SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege to a
user, that user's name and privilege information are added to the database password file.

A user's name remains in the password file only as long as that user has at least one of these
privileges. If you revoke all of these privileges, then Oracle Database removes the user from
the password file.

Note:

The password file must be created with the FORMAT=12.2 or FORMAT=12 argument to
support SYSBACKUP, SYSDG, or SYSKM administrative privilege.

Creating a Password File and Adding New Users to It

Use the following procedure to create a password file and add new users to it:

1. Follow the instructions for creating a password file as explained in "Creating a Database
Password File with ORAPWD".

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to exclusive. (This is the
default.)

Oracle Database issues an error if you attempt to grant these privileges and the
initialization parameter REMOTE_LOGIN_PASSWORDFILE is not set correctly.

Note:

REMOTE_LOGIN_PASSWORDFILE is a static initialization parameter and therefore
cannot be changed without restarting the database.

3. Connect with SYSDBA privileges as shown in the following example, and enter the SYS
password when prompted:

CONNECT SYS AS SYSDBA
4. Start up the instance and create the database if necessary, or mount and open an existing

database.

5. Create users as necessary. Grant SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM
administrative privilege to yourself and other users as appropriate. See "Granting and
Revoking Administrative Privileges".

1.8.6 Granting and Revoking Administrative Privileges
Use the GRANT statement to grant administrative privileges. Use the REVOKE statement to revoke
administrative privileges.

To grant the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM administrative privilege to a user:

• Run the GRANT statement.

For example:

Chapter 1
Creating and Maintaining a Database Password File

1-47

GRANT SYSDBA TO mydba;

To revoke the administrative privilege from a user:

• Run the REVOKE statement.

For example:

REVOKE SYSDBA FROM mydba;

The WITH ADMIN OPTION is ignored if it is specified in the GRANT statement that grants an
administrative privilege, and the following rules apply:

• A user currently connected as SYSDBA can grant any administrative privilege to another
user and revoke any administrative privilege from another user.

• A user currently connected as SYSOPER cannot grant any administrative privilege to another
user and cannot revoke any administrative privilege from another user.

• A user currently connected as SYSBACKUP can grant or revoke another user's SYSBACKUP
administrative privilege.

• A user currently connected as SYSDG can grant or revoke another user's SYSDG
administrative privilege.

• A user currently connected as SYSKM can grant or revoke another user's SYSKM
administrative privilege.

Administrative privileges cannot be granted to roles, because roles are available only after
database startup. Do not confuse the database administrative privileges with operating system
roles.

See Also:

Oracle Database Security Guide for more information on administrative privileges

1.8.7 Viewing Database Password File Members
The V$PWFILE_USERS view contains information about users that have been granted
administrative privileges.

To determine which users have been granted administrative privileges:

• Query the V$PWFILE_USERS view.

See Also:

Oracle Database Reference for information about the V$PWFILE_USERS view

Chapter 1
Creating and Maintaining a Database Password File

1-48

1.8.8 Removing a Database Password File
You can remove a database password file if it is no longer needed.

If you determine that you no longer require a database password file to authenticate users,
then to remove it:

• Delete the database password file, and optionally reset the REMOTE_LOGIN_PASSWORDFILE
initialization parameter to none.

After you remove this file, only those users who can be authenticated by the operating system
can perform SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM database administration operations.

1.9 Data Utilities
Oracle utilities are available to help you maintain the data in your Oracle Database.

SQL*Loader

SQL*Loader is used both by database administrators and by other users of Oracle Database. It
loads data from standard operating system files (such as, files in text or C data format) into
database tables.

Export and Import Utilities

The Data Pump utility enables you to archive data and to move data between one Oracle
Database and another. Also available are the original Import (IMP) and Export (EXP) utilities
for importing and exporting data from and to earlier releases.

See Also:

• Oracle Database Utilities for detailed information about SQL*Loader

• Oracle Database Utilities for detailed information about Data Pump

Chapter 1
Data Utilities

1-49

2
Configuring Automatic Restart of an Oracle
Database

Configure your Oracle database with the Oracle Restart feature to automatically restart the
database, the listener, and other Oracle components after a hardware or software failure or
whenever your database host computer restarts.

• About Oracle Restart
Oracle Restart enhances the availability of Oracle databases in a single-instance
environment.

• Configuring Oracle Restart
To configure Oracle Restart, you can add components, remove components, or modify
options for components.

• Starting and Stopping Components Managed by Oracle Restart
When Oracle Restart is in use, Oracle strongly recommends that you use the SRVCTL
utility to start and stop components.

• Stopping and Restarting Oracle Restart for Maintenance Operations
When several components in an Oracle home are managed by Oracle Restart, you can
stop Oracle Restart and the components managed by Oracle Restart in the Oracle home.

• SRVCTL Command Reference for Oracle Restart
You can reference details about the syntax and options for SRVCTL commands specific to
Oracle Restart.

• CRSCTL Command Reference
You can reference details about the syntax for the CRSCTL commands that are relevant
for Oracle Restart.

2.1 About Oracle Restart
Oracle Restart enhances the availability of Oracle databases in a single-instance environment.

• Oracle Restart Overview
When you install Oracle Restart, various Oracle components can be automatically
restarted after a hardware or software failure or whenever your database host computer
restarts.

• About Startup Dependencies
Oracle Restart ensures that Oracle components are started in the proper order, in
accordance with component dependencies.

• About Starting and Stopping Components with Oracle Restart
Oracle Restart automatically restarts various Oracle components when required, and
automatically stops Oracle components in an orderly fashion when you manually shut
down your system.

• About Starting and Stopping Oracle Restart
The CRSCTL utility starts and stops Oracle Restart.

2-1

• Oracle Restart Configuration
Oracle Restart maintains a list of all the Oracle components that it manages, and maintains
configuration information for each component.

• Oracle Restart Integration with Oracle Data Guard
Oracle Restart is integrated with Oracle Data Guard (Data Guard) and the Oracle Data
Guard Broker (the broker).

• Fast Application Notification with Oracle Restart
Oracle Restart uses Oracle Notification Services (ONS) and Oracle Advanced Queues to
publish Fast Application Notification (FAN) high availability events. Integrated Oracle
clients use FAN to provide fast notification to clients when the service or instance goes
down. The client can automate the failover of database connections between a primary
database and a standby database.

2.1.1 Oracle Restart Overview
When you install Oracle Restart, various Oracle components can be automatically restarted
after a hardware or software failure or whenever your database host computer restarts.

Table 2-1 lists these components.

Table 2-1 Oracle Components Automatically Restarted by Oracle Restart

Component Notes

Database instance Oracle Restart can accommodate multiple databases on a single
host computer.

Oracle Net listener -

Database services Does not include the default service created upon installation
because it is automatically managed by Oracle Database. Also does
not include any default services created during database creation or
global services. For more information about global services, see the
Oracle Database Global Data Services Concepts and
Administration Guide.

Oracle Automatic Storage
Management (Oracle ASM)
instance

-

Oracle ASM disk groups Restarting a disk group means mounting it.

Oracle Notification Services (ONS) In an Oracle Grid Infrastructure for Standalone Servers (Oracle
Restart) environment, ONS can be used in Oracle Data Guard
installations for automating failover of connections between primary
and standby database through Fast Application Notification (FAN).
ONS is a service for sending FAN events to integrated clients upon
failover.

Oracle Restart runs periodic check operations to monitor the health of these components. If a
check operation fails for a component, the component is shut down and restarted.

Oracle Restart is used in standalone server (non-clustered) environments only. For Oracle
Real Application Clusters (Oracle RAC) environments, the functionality to automatically restart
components is provided by Oracle Clusterware.

Oracle Restart runs out of the Oracle Grid Infrastructure home, which you install separately
from Oracle Database homes. See the Oracle Grid Infrastructure Installation Guide for your
platform for information about installing the Oracle Grid Infrastructure home.

Chapter 2
About Oracle Restart

2-2

See Also:

• "Configuring Oracle Restart"

• Oracle Automatic Storage Management Administrator's Guide for information
about Oracle Automatic Storage Management

2.1.2 About Startup Dependencies
Oracle Restart ensures that Oracle components are started in the proper order, in accordance
with component dependencies.

For example, if database files are stored in Oracle ASM disk groups, then before starting the
database instance, Oracle Restart ensures that the Oracle ASM instance is started and the
required disk groups are mounted. Likewise, if a component must be shut down, Oracle
Restart ensures that dependent components are cleanly shut down first.

Oracle Restart also manages the weak dependency between database instances and the
Oracle Net listener (the listener): When a database instance is started, Oracle Restart attempts
to start the listener. If the listener startup fails, then the database is still started. If the listener
later fails, Oracle Restart does not shut down and restart any database instances.

2.1.3 About Starting and Stopping Components with Oracle Restart
Oracle Restart automatically restarts various Oracle components when required, and
automatically stops Oracle components in an orderly fashion when you manually shut down
your system.

There may be times, however, when you want to manually start or stop individual Oracle
components. Oracle Restart includes the Server Control (SRVCTL) utility that you use to
manually start and stop Oracle Restart–managed components. When Oracle Restart is in use,
Oracle strongly recommends that you use SRVCTL to manually start and stop components.

After you stop a component with SRVCTL, Oracle Restart does not automatically restart that
component if a failure occurs. If you then start the component with SRVCTL, that component is
again available for automatic restart.

Oracle utilities such as SQL*Plus, the Listener Control utility (LSNRCTL), and ASMCMD are
integrated with Oracle Restart. If you shut down the database with SQL*Plus, Oracle Restart
does not interpret this as a database failure and does not attempt to restart the database.
Similarly, if you shut down the Oracle ASM instance with SQL*Plus or ASMCMD, Oracle Restart
does not attempt to restart it.

An important difference between starting a component with SRVCTL and starting it with
SQL*Plus (or another utility) is the following:

• When you start a component with SRVCTL, any components on which this component
depends are automatically started first, and in the proper order.

• When you start a component with SQL*Plus (or another utility), other components in the
dependency chain are not automatically started; you must ensure that any components on
which this component depends are started.

In addition, Oracle Restart enables you to start and stop all of the components managed by
Oracle Restart in a specified Oracle home using a single command. The Oracle home can be

Chapter 2
About Oracle Restart

2-3

an Oracle Database home or an Oracle Grid Infrastructure home. This capability is useful
when you are installing a patch.

See Also:

"Starting and Stopping Components Managed by Oracle Restart"

2.1.4 About Starting and Stopping Oracle Restart
The CRSCTL utility starts and stops Oracle Restart.

You can also use the CRSCTL utility to enable or disable Oracle high availability services.
Oracle Restart uses Oracle high availability services to start and stop automatically the
components managed by Oracle Restart. For example, Oracle high availability services
daemons automatically start databases, listeners, and Oracle ASM instances. When Oracle
high availability services are disabled, none of the components managed by Oracle Restart are
started when a node is rebooted.

Typically, you use the CRSCTL utility when you must stop all of the running Oracle software in
an Oracle installation. For example, you might need to stop Oracle Restart when you are
installing a patch or performing operating system maintenance. When the maintenance is
complete, you use the CRSCTL utility to start Oracle Restart.

See Also:

"Stopping and Restarting Oracle Restart for Maintenance Operations" for information
about using the CRSCTL utility

2.1.5 Oracle Restart Configuration
Oracle Restart maintains a list of all the Oracle components that it manages, and maintains
configuration information for each component.

All of this information is collectively known as the Oracle Restart configuration. When Oracle
Restart starts a component, it starts the component according to the configuration information
for that component. For example, the Oracle Restart configuration includes the location of the
server parameter file (SPFILE) for databases, and the TCP port to listen on for listeners.

If you install Oracle Restart and then create your database with Database Configuration
Assistant (DBCA), DBCA automatically adds the database to the Oracle Restart configuration.
When DBCA then starts the database, the required dependencies between the database and
other components (for example disk groups in which the database stores data) are
established, and Oracle Restart begins to manage the database.

You can manually add and remove components from the Oracle Restart configuration with
SRVCTL commands. For example, if you install Oracle Restart onto a host on which a
database is already running, you can use SRVCTL to add that database to the Oracle Restart
configuration. When you manually add a component to the Oracle Restart configuration and
then start it with SRVCTL, Oracle Restart begins to manage the component, restarting it when
required.

Chapter 2
About Oracle Restart

2-4

Note:

Adding a component to the Oracle Restart configuration is also referred to as
"registering a component with Oracle Restart."

Other SRVCTL commands enable you to view the status and configuration of Oracle Restart–
managed components, temporarily disable and then reenable management for components,
and more.

Note:

Starting with Oracle Database 19c, customer use of the SERVICE_NAMES parameter is
deprecated. It can be desupported in a future release. To manage your services,
Oracle recommends that you use the SRVCTL or GDSCTL command line utilities, or the
DBMS_SERVICE package.

When Oracle Restart is installed, many operations that create Oracle components
automatically add the components to the Oracle Restart configuration. Table 2-2 lists some
create operations and whether the created component is automatically added.

Table 2-2 Create Operations and the Oracle Restart Configuration

Create Operation Created Component Automatically Added to
Oracle Restart Configuration?

Create a database with OUI or DBCA Yes

Create a database with the CREATE DATABASE
SQL statement

No

Create an Oracle ASM instance with OUI, DBCA,
or ASMCA

Yes

Create a disk group (any method) Yes

Add a listener with NETCA Yes

Create a database service with SRVCTL Yes

Create a database service by modifying the
SERVICE_NAMES initialization parameter1

No

Create a database service with
DBMS_SERVICE.CREATE_SERVICE

No

Create a standby database No

1 Not recommended when Oracle Restart is in use

Table 2-3 lists some delete/drop/remove operations and whether the deleted component is also
automatically removed from the Oracle Restart configuration.

Chapter 2
About Oracle Restart

2-5

Table 2-3 Delete/Drop/Remove Operations and the Oracle Restart Configuration

Operation Deleted Component Automatically Removed from Oracle
Restart Configuration?

Delete a database with DBCA Yes

Delete a database by removing
database files with operating system
commands1

No

Delete a listener with NETCA Yes

Drop an Oracle ASM disk group (any
method)

Yes

Delete a database service with
SRVCTL

Yes

Delete a database service by any other
means

No

1 Not recommended

2.1.6 Oracle Restart Integration with Oracle Data Guard
Oracle Restart is integrated with Oracle Data Guard (Data Guard) and the Oracle Data Guard
Broker (the broker).

When a database shutdown and restart is required in response to a role change request,
Oracle Restart shuts down and restarts the database in an orderly fashion (taking
dependencies into account), and according to the settings in the Oracle Restart configuration.
Oracle Restart also ensures that, following a Data Guard role transition, all database services
configured to run in the new database role are active and all services not configured to run in
the new role are stopped.

In addition, the Oracle Restart configuration supports Data Guard–related configuration options
for the following components:

• Databases—When you add a database to the Oracle Restart configuration, you can
specify the current Data Guard role for the database: PRIMARY, PHYSICAL_STANDBY,
LOGICAL_STANDBY, or SNAPSHOT_STANDBY. If the role is later changed using the broker,
Oracle Restart automatically updates the database configuration with the new role. If you
change the database role without using the broker, you must manually modify the
database's role in the Oracle Restart configuration to reflect the new role.

• Database Services—When adding a database service to the Oracle Restart configuration,
you can specify one or more Data Guard roles for the service. When this configuration
option is present, upon database open Oracle Restart starts the service only if one of the
service roles matches the current database role.

Chapter 2
About Oracle Restart

2-6

See Also:

• Oracle Data Guard Concepts and Administration for information about Oracle
Data Guard

• "Fast Application Notification with Oracle Restart"

• "Automating the Failover of Connections Between Primary and Standby
Databases"

2.1.7 Fast Application Notification with Oracle Restart
Oracle Restart uses Oracle Notification Services (ONS) and Oracle Advanced Queues to
publish Fast Application Notification (FAN) high availability events. Integrated Oracle clients
use FAN to provide fast notification to clients when the service or instance goes down. The
client can automate the failover of database connections between a primary database and a
standby database.

• Overview of Fast Application Notification
FAN is a high availability notification mechanism that Oracle Restart can use to notify other
processes about configuration changes that include service status changes, such as UP or
DOWN events.

• Application High Availability with Services and FAN
Oracle Database focuses on maintaining service availability. With Oracle Restart, Oracle
services are designed to be continuously available. Oracle Restart monitors the database
and its services and, when configured, sends event notifications using FAN.

See Also:

Oracle Database Advanced Queuing User's Guide

2.1.7.1 Overview of Fast Application Notification
FAN is a high availability notification mechanism that Oracle Restart can use to notify other
processes about configuration changes that include service status changes, such as UP or
DOWN events.

FAN provides the ability to immediately terminate inflight transaction when an instance or
server fails. Integrated Oracle clients receive the events and respond. Applications can
respond either by propagating the error to the user or by resubmitting the transactions and
masking the error from the application user. When a DOWN event occurs, integrated clients
immediately clean up connections to the terminated database. When an UP event occurs, the
clients create new connections to the new primary database instance.

Oracle Restart publishes FAN events whenever a managed instance or service goes up or
down. After a failover, the Oracle Data Guard Broker (broker) publishes FAN events. These
FAN events can be used in the following ways:

• Applications can use FAN with Oracle Restart without programmatic changes if they use
one of these Oracle integrated database clients: Oracle Database JDBC, Universal

Chapter 2
About Oracle Restart

2-7

Connection Pool for Java, Oracle Call Interface, and Oracle Database ODP.NET. These
clients can be configured for Fast Connection Failover (FCF) to automatically connect to a
new primary database after a failover.

• FAN server-side callouts can be configured on the database tier.

For DOWN events, such as a failed primary database, FAN provides immediate notification to the
clients so that they can failover as fast as possible to the new primary database. The clients do
not wait for a timeout. The clients are notified immediately, and they must be configured to
failover when they are notified.

For UP events, when services and instances are started, new connections can be created so
that the application can immediately take advantage of the extra resources.

Through server-side callouts, you can also use FAN to:

• Log status information

• Page DBAs or open support tickets when resources fail to start

• Automatically start dependent external applications that must be co-located with a service

FAN events are published using ONS and Oracle Database Advanced Queuing queues. The
queues are configured automatically when you configure a service. You must configure ONS
manually using SRVCTL commands.

The Connection Manager (CMAN) and Oracle Net Services listeners are integrated with FAN
events, enabling the CMAN and the listener to immediately de-register services provided by
the failed instance and to avoid erroneously sending connection requests to a failed database.

See Also:

Oracle Data Guard Broker for information about FAN events in an Oracle Data Guard
environment

2.1.7.2 Application High Availability with Services and FAN
Oracle Database focuses on maintaining service availability. With Oracle Restart, Oracle
services are designed to be continuously available. Oracle Restart monitors the database and
its services and, when configured, sends event notifications using FAN.

• Managing Unplanned Outages
If Oracle Restart detects an outage, then it isolates the failed component and recovers the
dependent components. If the failed component is the database instance, then after Oracle
Data Guard fails over to the standby database, Oracle Restart on the new primary
database starts any services defined with the current role.

• Managing Planned Outages
For repairs, upgrades, and changes that require you to shut down the primary database,
Oracle Restart provides interfaces that disable and enable services to minimize service
disruption to application users.

• Fast Application Notification High Availability Events
Understand FAN event record parameters and the event types.

• Using Fast Application Notification Callouts
FAN callouts are server-side executables that Oracle Restart executes immediately when
high availability events occur.

Chapter 2
About Oracle Restart

2-8

• Oracle Clients That Are Integrated with Fast Application Notification
Oracle has integrated FAN with many of the common Oracle client drivers that are used to
connect to Oracle Restart databases. Therefore, the easiest way to use FAN is to use an
integrated Oracle Client.

2.1.7.2.1 Managing Unplanned Outages
If Oracle Restart detects an outage, then it isolates the failed component and recovers the
dependent components. If the failed component is the database instance, then after Oracle
Data Guard fails over to the standby database, Oracle Restart on the new primary database
starts any services defined with the current role.

FAN events are published by Oracle Restart and the Oracle Data Guard Broker through ONS
and Advanced Queuing. You can also perform notifications using FAN callouts.

Note:

Oracle Restart does not run callouts with guaranteed ordering. Callouts are run
asynchronously, and they are subject to scheduling variability.

With Oracle Restart, restart and recovery are automatic, including the restarting of the
subsystems, such as the listener and the Oracle Automatic Storage Management (Oracle
ASM) processes, not just the database. You can use FAN callouts to report faults to your fault
management system and to initiate repair jobs.

2.1.7.2.2 Managing Planned Outages
For repairs, upgrades, and changes that require you to shut down the primary database,
Oracle Restart provides interfaces that disable and enable services to minimize service
disruption to application users.

Using Oracle Data Guard Broker with Oracle Restart allows a coordinated failover of the
database service from the primary to the standby for the duration of the planned outage. Once
you complete the operation, you can return the service to normal operation.

The management policy for a service controls whether the service starts automatically when
the database is restarted. If the management policy for a service is set to AUTOMATIC, then it
restarts automatically. If the management policy for a service is set to MANUAL, then it must be
started manually.

See Also:

"Modifying the Oracle Restart Configuration for a Component"

2.1.7.2.3 Fast Application Notification High Availability Events
Understand FAN event record parameters and the event types.

Table 2-4 describes the FAN event record parameters and the event types, followed by name-
value pairs for the event properties. The event type is always the first entry and the timestamp
is always the last entry. In the following example, the name in the name-value pair is shown in

Chapter 2
About Oracle Restart

2-9

Fan event type (service_member), and the value in the name-value pair is shown in
Properties:

FAN event type: service_member
Properties: version=1.0 service=ERP database=FINPROD instance=FINPROD host=node1
status=up

Table 2-4 Event Record Parameters and Descriptions

Parameter Description

VERSION Version of the event record. Used to identify release changes.

EVENT TYPE SERVICE, SERVICE_MEMBER, DATABASE, INSTANCE, NODE, ASM,
SRV_PRECONNECT. Note that database and Instance types provide the
database service, such as DB_UNIQUE_NAME.DB_DOMAIN.

DATABASE UNIQUE NAME The unique database supporting the service; matches the initialization
parameter value for DB_UNIQUE_NAME, which defaults to the value of
the initialization parameter DB_NAME.

INSTANCE The name of the instance that supports the service; matches the
ORACLE_SID value.

NODE NAME The name of the node that supports the service or the node that has
stopped; matches the node name known to Cluster Synchronization
Services (CSS).

SERVICE The service name; matches the service in DBA_SERVICES.

STATUS Values are UP, DOWN, NOT_RESTARTING, PRECONN_UP,
PRECONN_DOWN, and UNKNOWN.

REASON Data_Guard_Failover, Failure, Dependency, User, Autostart,
Restart.

CARDINALITY The number of service members that are currently active; included in
all UP events.

TIMESTAMP The local time zone to use when ordering notification events.

A FAN record matches the database signature of each session as shown in Table 2-5.

Table 2-5 FAN Parameters and Matching Database Signatures

FAN Parameter Matching Oracle Database Signature

SERVICE sys_context('userenv', 'service_name')
DATABASE UNIQUE NAME sys_context('userenv', 'db_unique_name')
INSTANCE sys_context('userenv', 'instance_name')
NODE NAME sys_context('userenv', 'server_host')

2.1.7.2.4 Using Fast Application Notification Callouts
FAN callouts are server-side executables that Oracle Restart executes immediately when high
availability events occur.

You can use FAN callouts to automate the following activities when events occur, such as:

• Opening fault tracking tickets

• Sending messages to pagers

Chapter 2
About Oracle Restart

2-10

• Sending e-mail

• Starting and stopping server-side applications

• Maintaining an uptime log by logging each event as it occurs

To use FAN callouts:

• Place an executable in the directory grid_home/racg/usrco on both the primary and the
standby database servers. If you are using scripts, then set the shell as the first line of the
executable.

The following is an example file for the grid_home/racg/usrco/callout.sh callout:

#! /bin/ksh
FAN_LOGFILE= [your path name]/admin/log/`hostname`_uptime.log
echo $* "reported="`date` >> $FAN_LOGFILE &

The following output is from the previous example:

NODE VERSION=1.0 host=sun880-2 status=nodedown reason=
timestamp=08-Oct-2004 04:02:14 reported=Fri Oct 8 04:02:14 PDT 2004

A FAN record matches the database signature of each session, as shown in Table 2-5. Use
this information to take actions on sessions that match the FAN event data.

See Also:

Table 2-4 for information about the callout and event details

2.1.7.2.5 Oracle Clients That Are Integrated with Fast Application Notification
Oracle has integrated FAN with many of the common Oracle client drivers that are used to
connect to Oracle Restart databases. Therefore, the easiest way to use FAN is to use an
integrated Oracle Client.

You can use the CMAN session pools, Oracle Call Interface, Universal Connection Pool for
Java, JDBC simplefan API, and ODP.NET connection pools. The overall goal is to enable
applications to consistently obtain connections to the available primary database at anytime.

See Also:

"Automating the Failover of Connections Between Primary and Standby Databases"

2.2 Configuring Oracle Restart
To configure Oracle Restart, you can add components, remove components, or modify options
for components.

• About Configuring Oracle Restart
If you install Oracle Restart by installing the Oracle Grid Infrastructure for Standalone
Servers and then create your database, the database is automatically added to the Oracle

Chapter 2
Configuring Oracle Restart

2-11

Restart configuration, and is then automatically restarted when required. However, if you
install Oracle Restart on a host computer on which a database already exists, you must
manually add the database, the listener, the Oracle Automatic Storage Management
(Oracle ASM) instance, and possibly other components to the Oracle Restart configuration.

• Preparing to Run SRVCTL
Many Oracle Restart tasks require that you run the SRVCTL utility. You must ensure that
you run SRVCTL from the correct Oracle home, and that you log in to the host computer
with the correct user account.

• Obtaining Help for SRVCTL
Online help is available for the SRVCTL utility.

• Adding Components to the Oracle Restart Configuration
In most cases, creating an Oracle component on a host that is running Oracle Restart
automatically adds the component to the Oracle Restart configuration. However, in some
cases, you must add components manually.

• Removing Components from the Oracle Restart Configuration
When you use an Oracle-recommended method to delete an Oracle component, the
component is also automatically removed from the Oracle Restart configuration.

• Disabling and Enabling Oracle Restart Management for a Component
You can temporarily disable Oracle Restart management for a component. One reason to
do this is when you are performing maintenance on the component. For example, if a
component must be repaired, then you might not want it to be automatically restarted if it
fails or if the host computer is restarted. When maintenance is complete, you can reenable
management for the component.

• Viewing Component Status
You can use SRVCTL to view the running status (running or not running) for any
component managed by Oracle Restart. For some components, additional information is
also displayed.

• Viewing the Oracle Restart Configuration for a Component
You can use SRVCTL to view the Oracle Restart configuration for any component. Oracle
Restart maintains different configuration information for each component type. In one form
of the SRVCTL command, you can obtain a list of components managed by Oracle
Restart.

• Modifying the Oracle Restart Configuration for a Component
You can use SRVCTL to modify the Oracle Restart configuration of a component. For
example, you can modify the port number that a listener listens on when Oracle Restart
starts it, or the server parameter file (SPFILE) that Oracle Restart points to when it starts a
database.

• Managing Environment Variables in the Oracle Restart Configuration
The Oracle Restart configuration can store name/value pairs for environment variables.

• Creating and Deleting Database Services with SRVCTL
When managing a database with Oracle Restart, Oracle recommends that you use
SRVCTL to create and delete database services. When you use SRVCTL to add a
database service, the service is automatically added to the Oracle Restart configuration
and a dependency between the service and the database is established. Thus, if you start
the service, Oracle Restart first starts the database if it is not started.

• Enabling FAN Events in an Oracle Restart Environment
To enable Oracle Restart to publish Fast Application Notification (FAN) events, you must
create an Oracle Notification Services (ONS) network that includes the Oracle Restart
servers and the integrated clients.

Chapter 2
Configuring Oracle Restart

2-12

• Automating the Failover of Connections Between Primary and Standby Databases
In a configuration that uses Oracle Restart and Oracle Data Guard primary and standby
databases, the database services fail over automatically from the primary to the standby
during either a switchover or failover.

• Enabling Clients for Fast Connection Failover
Fast Connection Failover provides high availability to Fast Application Notification (FAN)
integrated clients, such as clients that use JDBC, OCI, or ODP.NET. If you configure the
client to use fast connection failover, then the client automatically subscribes to FAN
events and can react to database UP and DOWN events. In response, Oracle Database
gives the client a connection to an active instance that provides the requested database
service.

2.2.1 About Configuring Oracle Restart
If you install Oracle Restart by installing the Oracle Grid Infrastructure for Standalone Servers
and then create your database, the database is automatically added to the Oracle Restart
configuration, and is then automatically restarted when required. However, if you install Oracle
Restart on a host computer on which a database already exists, you must manually add the
database, the listener, the Oracle Automatic Storage Management (Oracle ASM) instance, and
possibly other components to the Oracle Restart configuration.

After configuring Oracle Restart to manage your database, you may want to:

• Add additional components to the Oracle Restart configuration.

• Remove components from the Oracle Restart configuration.

• Temporarily suspend Oracle Restart management for one or more components.

• Modify the Oracle Restart configuration options for an individual component.

See Also:

"About Oracle Restart"

2.2.2 Preparing to Run SRVCTL
Many Oracle Restart tasks require that you run the SRVCTL utility. You must ensure that you
run SRVCTL from the correct Oracle home, and that you log in to the host computer with the
correct user account.

Table 2-6 lists the components that you can configure with SRVCTL, and for each component,
lists the Oracle home from which you must run SRVCTL.

Table 2-6 Determining the Oracle Home from which to Start SRVCTL

Component Being Configured Oracle Home from which to Start SRVCTL

Database, database service Database home

Oracle ASM instance, disk group, listener1, ONS Oracle Grid Infrastructure home

1 Assumes the listener was started from the Oracle Grid Infrastructure home. If you installed Oracle Restart for an
existing database, the listener may have been started from the database home, in which case you start SRVCTL
from the database home.

Chapter 2
Configuring Oracle Restart

2-13

To prepare to run SRVCTL:

1. Use Table 2-6 to determine the Oracle home from which you must run SRVCTL.

2. If you intend to run a SRVCTL command that modifies the Oracle Restart configuration
(add, remove, enable, disable, and so on), then do one of the following:

• On UNIX and Linux, log in to the database host computer as the user who installed the
Oracle home that you determined in Step 1.

• On Windows, log in to the database host computer as an Administrator.

Otherwise, log in to the host computer as any user.

3. Open the command window that you will use to enter the SRVCTL commands.

To enter commands, you might need to ensure that the SRVCTL program is in your PATH
environment variable. Otherwise, you can enter the absolute path to the program.

2.2.3 Obtaining Help for SRVCTL
Online help is available for the SRVCTL utility.

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl
For more detailed help, enter the following command:

srvctl -help

For detailed help on a particular command, enter:

srvctl command -help

For example, to obtain help for the add command and the different options for each component
type, enter:

srvctl add -help

For detailed help on a particular command for a particular component type, enter:

srvctl command object -help

For example, to obtain help about adding a database service, enter the following command:

srvctl add service -help

See "SRVCTL Command Reference for Oracle Restart" for a list of SRVCTL commands and
Table 2-7 for a list of components.

Starting with Oracle Database 12c, single-letter parameters are deprecated in favor of keyword
parameters. To support backward compatibility, you can use a mix of single-letter parameters
and new keyword parameters. The help shows the keyword parameters by default, but you can
obtain the single-letter equivalents, where applicable, by adding the -compatible parameter
after the -help parameter.

For example, to obtain help about adding a database service that includes the single-letter
equivalents, enter the following command:

srvctl add service -help -compatible

Chapter 2
Configuring Oracle Restart

2-14

The single-letter equivalents appear in parentheses next to the keyword parameters.
Parameters that are new in Oracle Database 12c and later do not have single-letter
equivalents.

2.2.4 Adding Components to the Oracle Restart Configuration
In most cases, creating an Oracle component on a host that is running Oracle Restart
automatically adds the component to the Oracle Restart configuration. However, in some
cases, you must add components manually.

(See Table 2-2.) The component is then automatically restarted when required.

The following are occasions when you must manually add components to the Oracle Restart
configuration with SRVCTL:

• You install Oracle Restart after creating the database.

• You create an additional Oracle database on the same host computer using the CREATE
DATABASE SQL statement.

• You create a database service with DBMS_SERVICE.CREATE_SERVICE package procedure.
(The recommended way is to use SRVCTL.)

Note:

Adding a component to the Oracle Restart configuration is also referred to as
"registering a component with Oracle Restart."

Adding a component to the Oracle Restart configuration does not start that component. You
must use a srvctl start command to start it.

When you add a component to the Oracle Restart configuration with SRVCTL, you can specify
optional configuration settings for the component.

To add a component to the Oracle Restart configuration with SRVCTL:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl add object options

where object is one of the components listed in Table 2-7. See the SRVCTL add
command for available options for each component.

Example 2-1 Adding a Database

This example adds a database with a DB_UNIQUE_NAME of dbcrm. The mandatory -oraclehome
option specifies the Oracle home location.

srvctl add database -db dbcrm -oraclehome /u01/app/oracle/product/
database_release_number/dbhome_1

Example 2-2 Adding a Database Service

For the database with the DB_UNIQUE_NAME of dbcrm, this example both creates a new database
service named crmbatch and adds it to the Oracle Restart configuration.

srvctl add service -db dbcrm -service crmbatch

Chapter 2
Configuring Oracle Restart

2-15

See "Creating and Deleting Database Services with SRVCTL" for more examples.

Example 2-3 Adding the Default Listener

This example adds the default listener to the Oracle Restart configuration.

srvctl add listener

Note:

When you install a database or manually add a database to the Oracle Restart
configuration, and you have a separate Oracle Grid Infrastructure installation owner
user, then you must also add the grid user as a member of the OSRACDBA group of
that database to enable Oracle Grid Infrastructure components to connect to the
database. This is because the Oracle Grid Infrastructure components must be able to
connect to the database as SYSRAC to start and stop the database.

For example, if the host user who installed the Oracle Grid Infrastructure home is
named grid and the OSRACDBA group of the Oracle home is named racdba, then user
grid must be a member of the racdba group.

See Also:

• "Starting and Stopping Components Managed by Oracle Restart"

• "Operating System Groups"

• "SRVCTL Command Reference for Oracle Restart"

2.2.5 Removing Components from the Oracle Restart Configuration
When you use an Oracle-recommended method to delete an Oracle component, the
component is also automatically removed from the Oracle Restart configuration.

For example, if you use Database Configuration Assistant (DBCA) to delete a database, DBCA
removes the database from the Oracle Restart configuration. Likewise, if you use Oracle Net
Configuration Assistant (NETCA) to delete a listener, NETCA removes the listener from the
Oracle Restart configuration. See Table 2-3 for more examples. If you use a non-
recommended or manual method to delete an Oracle component, you must first use SRVCTL
to remove the component from the Oracle Restart configuration. Failing to do so could result in
an error.

To remove a component from the Oracle Restart configuration:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl remove object [options]

where object is one of the components listed in Table 2-7. See the SRVCTL remove
command for available options for each component.

Chapter 2
Configuring Oracle Restart

2-16

Example 2-4 Removing a Database

This example removes a database with a DB_UNIQUE_NAME of dbcrm.

srvctl remove database -db dbcrm

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.6 Disabling and Enabling Oracle Restart Management for a Component
You can temporarily disable Oracle Restart management for a component. One reason to do
this is when you are performing maintenance on the component. For example, if a component
must be repaired, then you might not want it to be automatically restarted if it fails or if the host
computer is restarted. When maintenance is complete, you can reenable management for the
component.

When you disable a component:

• It is no longer automatically restarted.

• It is no longer automatically started through a dependency.

• It cannot be started with SRVCTL.

• Any component dependent on this resource is no longer automatically started or restarted.

To disable or enable automatic restart for a component:

1. Prepare to run SRVCTL, as described in "Preparing to Run SRVCTL".

2. Do one of the following:

• To disable a component, enter the following command:

srvctl disable object [options]
• To enable a component, enter the following command:

srvctl enable object [options]
Replace object with one of the components listed in Table 2-7. See the SRVCTL disable
command and the enable command for available options for each component.

Example 2-5 Disabling Automatic Restart for a Database

This example disables automatic restart for a database with a DB_UNIQUE_NAME of dbcrm.

srvctl disable database -db dbcrm

Example 2-6 Disabling Automatic Restart for an Oracle ASM Disk Group

This example disables automatic restart for the Oracle ASM disk group named recovery.

srvctl disable diskgroup -diskgroup recovery

Example 2-7 Enabling Automatic Restart for an Oracle ASM Disk Group

This example reenables automatic restart for the disk group recovery.

srvctl enable diskgroup -diskgroup recovery

Chapter 2
Configuring Oracle Restart

2-17

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.7 Viewing Component Status
You can use SRVCTL to view the running status (running or not running) for any component
managed by Oracle Restart. For some components, additional information is also displayed.

To view component status:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl status object [options]

where object is one of the components listed in Table 2-7. See the SRVCTL status
command for available options for each component.

Example 2-8 Viewing Status of a Database

This example displays the status of the database with a DB_UNIQUE_NAME of dbcrm.

srvctl status database -db dbcrm

Database is running.

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.8 Viewing the Oracle Restart Configuration for a Component
You can use SRVCTL to view the Oracle Restart configuration for any component. Oracle
Restart maintains different configuration information for each component type. In one form of
the SRVCTL command, you can obtain a list of components managed by Oracle Restart.

To view component configuration:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl config object options

where object is one of the components listed in Table 2-7. See the SRVCTL config
command for available options for each component.

Example 2-9 Viewing a List of All Databases Managed by Oracle Restart

srvctl config database

Chapter 2
Configuring Oracle Restart

2-18

dbcrm
orcl

Example 2-10 Viewing the Configuration of a Particular Database

This example displays the configuration of the database with a DB_UNIQUE_NAME of orcl.

srvctl config database -db orcl

Database unique name: orcl
Database name: orcl
Oracle home: /u01/app/oracle/product/database_release_number/dbhome_1
Oracle user: oracle
Spfile: +DATA/orcl/spfileorcl.ora
Domain: us.example.com
Start options: open
Stop options: immediate
Database role:
Management policy: automatic
Disk Groups: DATA
Services: mfg,sales

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.9 Modifying the Oracle Restart Configuration for a Component
You can use SRVCTL to modify the Oracle Restart configuration of a component. For example,
you can modify the port number that a listener listens on when Oracle Restart starts it, or the
server parameter file (SPFILE) that Oracle Restart points to when it starts a database.

To modify the Oracle Restart configuration for a component:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl modify object options

where object is one of the components listed in Table 2-7. See the SRVCTL modify
command for available options for each component.

Example 2-11 Modifying the Oracle Restart Configuration for a Database

For the database with a DB_UNIQUE_NAME of dbcrm, the following command changes the
management policy to MANUAL and the start option to NOMOUNT.

srvctl modify database -db dbcrm -policy MANUAL -startoption NOMOUNT

With a MANUAL management policy, the database is never automatically started when the
database host computer is restarted. However, Oracle Restart continues to monitor the
database and restarts it if a failure occurs.

Chapter 2
Configuring Oracle Restart

2-19

See Also:

• "Viewing the Oracle Restart Configuration for a Component"

• "SRVCTL Command Reference for Oracle Restart"

2.2.10 Managing Environment Variables in the Oracle Restart Configuration
The Oracle Restart configuration can store name/value pairs for environment variables.

• About Environment Variables in the Oracle Restart Configuration
You can set environment variable values in the Oracle Restart configuration.

• Setting and Unsetting Environment Variables
You use SRVCTL to set and unset environment variable values in the Oracle Restart
configuration for a component.

• Viewing Environment Variables
You use SRVCTL to view the values of environment variables in the Oracle Restart
configuration for a component.

2.2.10.1 About Environment Variables in the Oracle Restart Configuration
You can set environment variable values in the Oracle Restart configuration.

If you typically set environment variables (other than ORACLE_HOME and ORACLE_SID) before
starting your Oracle database, then you can set these environment variable values in the
Oracle Restart configuration. You can store any number environment variables in the individual
configurations of the following components:

• Database instance

• Listener

• Oracle ASM instance

When Oracle Restart starts one of these components, it first sets environment variables for
that component to the values stored in the component configuration. Although you can set
environment variables that are used by Oracle components in this manner, this capability is
primarily intended for operating system environment variables.

The following sections provide instructions for setting, unsetting, and viewing environment
variables:

• Setting and Unsetting Environment Variables

• Viewing Environment Variables

Note:

Do not use this facility to set standard environment variables like ORACLE_HOME and
ORACLE_SID; these are set automatically by Oracle Restart.

Chapter 2
Configuring Oracle Restart

2-20

2.2.10.2 Setting and Unsetting Environment Variables
You use SRVCTL to set and unset environment variable values in the Oracle Restart
configuration for a component.

To set or unset environment variables in the configuration:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Do one of the following:

• To set an environment variable in the configuration, enter the following command:

srvctl setenv {asm|database|listener} options
• To remove an environment variable from the configuration, enter the following

command:

srvctl unsetenv {asm|database|listener} options
See the SRVCTL setenv command and the unsetenv command for available options for
each component.

Example 2-12 Setting Database Environment Variables

This example sets the NLS_LANG and the AIX AIXTHREAD_SCOPE environment variables in the
Oracle Restart configuration for the database with a DB_UNIQUE_NAME of dbcrm:

srvctl setenv database -db dbcrm -envs "NLS_LANG=AMERICAN_AMERICA.AL32UTF8,
 AIXTHREAD_SCOPE=S"

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.10.3 Viewing Environment Variables
You use SRVCTL to view the values of environment variables in the Oracle Restart
configuration for a component.

To view environment variable values in the configuration:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl getenv {database|listener|asm} options

See the SRVCTL getenv command for available options for each component.

Example 2-13 Viewing All Environment Variables for a Database

This example gets and displays the environment variables in the Oracle Restart configuration
for the database with a DB_UNIQUE_NAME of dbcrm:

srvctl getenv database -db dbcrm

dbcrm:
NLS_LANG=AMERICAN_AMERICA

Chapter 2
Configuring Oracle Restart

2-21

AIXTHREAD_SCOPE=S
GCONF_LOCAL_LOCKS=1

Example 2-14 Viewing Specific Environment Variables for a Database

This example gets and displays the NLS_LANG and AIXTHREAD_SCOPE environment variables
from the Oracle Restart configuration for the same database:

srvctl getenv database -db dbcrm -envs "NLS_LANG,AIXTHREAD_SCOPE"

dbcrm:
NLS_LANG=AMERICAN_AMERICA
AIXTHREAD_SCOPE=S

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.11 Creating and Deleting Database Services with SRVCTL
When managing a database with Oracle Restart, Oracle recommends that you use SRVCTL to
create and delete database services. When you use SRVCTL to add a database service, the
service is automatically added to the Oracle Restart configuration and a dependency between
the service and the database is established. Thus, if you start the service, Oracle Restart first
starts the database if it is not started.

When you use SRVCTL to delete a database service, the service is also removed from the
Oracle Restart configuration.

To create a database service with SRVCTL:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl add service -db db_unique_name -service service_name [options]

The database service is created and added to the Oracle Restart configuration. See the
srvctl add service command for available options.

To delete a database service with SRVCTL:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Enter the following command:

srvctl remove service -db db_unique_name -service service_name [-force]

The database service is removed from the Oracle Restart configuration. If the -force flag
is present, the service is removed even if it is still running. Without this flag, an error occurs
if the service is running.

Example 2-15 Creating a Database Service

For the database with the DB_UNIQUE_NAME of dbcrm, this example creates a new database
service named crmbatch.

srvctl add service -db dbcrm -service crmbatch

Chapter 2
Configuring Oracle Restart

2-22

Example 2-16 Creating a Role-Based Database Service

This example creates the crmbatch database service and assigns it the Data Guard role of
PHYSICAL_STANDBY. The service is automatically started only if the current role of the dbcrm
database is physical standby.

srvctl add service -db dbcrm -service crmbatch -role PHYSICAL_STANDBY

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.12 Enabling FAN Events in an Oracle Restart Environment
To enable Oracle Restart to publish Fast Application Notification (FAN) events, you must create
an Oracle Notification Services (ONS) network that includes the Oracle Restart servers and the
integrated clients.

These clients can include Oracle Connection Manager (CMAN), Java Database Connectivity
(JDBC), and Universal Connection Pool (UCP) clients. If you are using Oracle Call Interface or
ODP.NET clients, then you must enable Oracle Advanced Queuing (AQ) HA notifications for
your services. In addition, ONS must be running on the server.

To enable FAN events in an Oracle Restart environment:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Add the database to the Oracle Restart Configuration if it is not already managed by
Oracle Restart. See "Adding Components to the Oracle Restart Configuration".

3. Add ONS to the configuration:

srvctl add ons

ONS is disabled when it is added.

4. Enable ONS:

srvctl enable ons
5. Start ONS:

srvctl start ons
6. Add the service to the Oracle Restart Configuration.

For Oracle Call Interface and ODP.NET clients, ensure that the -notification option is
set to TRUE to enable the database queue.

See "Creating and Deleting Database Services with SRVCTL".

7. Enable each client for fast connection failover. See "Enabling Clients for Fast Connection
Failover".

Chapter 2
Configuring Oracle Restart

2-23

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.13 Automating the Failover of Connections Between Primary and
Standby Databases

In a configuration that uses Oracle Restart and Oracle Data Guard primary and standby
databases, the database services fail over automatically from the primary to the standby during
either a switchover or failover.

You can use Oracle Notification Services (ONS) to immediately notify clients of the failover of
services between the primary and standby databases. The Oracle Data Guard Broker uses
Fast Application Notification (FAN) to send notifications to clients when a failover occurs.
Integrated Oracle clients automatically failover connections and applications can mask the
failure from end-users.

To automate connection failover, you must create an ONS network that includes the Oracle
Restart servers and the integrated clients (CMAN, listener, JDBC, and UCP). If you are using
Oracle Call Interface or ODP.NET clients, you must enable the Oracle Advanced Queuing
queue. The database and the services must be managed by Oracle Restart and the Oracle
Data Guard Broker to automate the failover of services.

To automate the failover of services between primary and standby databases:

1. Configure the primary and standby database with the Oracle Data Guard Broker. See
Oracle Data Guard Broker.

2. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

3. Add the primary database to the Oracle Restart configuration on the primary server if it has
not been added. Ensure that you specify PRIMARY for the database role. See "Adding
Components to the Oracle Restart Configuration".

4. Add the standby database to the Oracle Restart configuration on the standby server if it
has not been added. Ensure that you specify the appropriate standby database role.

5. Enable FAN events on both the primary database server and the standby database server.
"Enabling FAN Events in an Oracle Restart Environment".

6. Add the services that clients will use to connect to the databases to the Oracle Restart
configuration on the primary database and the standby database. When you add a service,
ensure that:

• The -role option is set to the proper role for each service

• The -notification option is set to TRUE if you are using ODP.NET or Oracle Call
Interface

See "Creating and Deleting Database Services with SRVCTL".

7. Enable each client for fast connection failover. See "Enabling Clients for Fast Connection
Failover".

Chapter 2
Configuring Oracle Restart

2-24

See Also:

"SRVCTL Command Reference for Oracle Restart"

2.2.14 Enabling Clients for Fast Connection Failover
Fast Connection Failover provides high availability to Fast Application Notification (FAN)
integrated clients, such as clients that use JDBC, OCI, or ODP.NET. If you configure the client
to use fast connection failover, then the client automatically subscribes to FAN events and can
react to database UP and DOWN events. In response, Oracle Database gives the client a
connection to an active instance that provides the requested database service.

• About Enabling Clients for Fast Connection Failover
In a configuration with a standby database, after you have added Oracle Notification
Services (ONS) to your Oracle Restart configurations and enabled Oracle Advanced
Queuing (AQ) HA notifications for your services, you can enable clients for fast connection
failover.

• Enabling Fast Connection Failover for JDBC Clients
Enabling FAN for the Oracle Universal Connection Pool enables Fast Connection Failover
(FCF) for the client. Your application can use either thick or thin JDBC clients to use FCF.

• Enabling Fast Connection Failover for Oracle Call Interface Clients
Oracle Call Interface clients can enable Fast Connection Failover (FCF) by registering to
receive notifications about Oracle Restart high availability FAN events and respond when
events occur.

• Enabling Fast Connection Failover for ODP.NET Clients
Oracle Data Provider for .NET (ODP.NET) connection pools can subscribe to notifications
that indicate when services are down. After a DOWN event, Oracle Database cleans up
sessions in the connection pool that go to the instance that stops, and ODP.NET
proactively disposes connections that are no longer valid.

2.2.14.1 About Enabling Clients for Fast Connection Failover
In a configuration with a standby database, after you have added Oracle Notification Services
(ONS) to your Oracle Restart configurations and enabled Oracle Advanced Queuing (AQ) HA
notifications for your services, you can enable clients for fast connection failover.

The clients receive Fast Application Notification (FAN) events and can relocate connections to
the current primary database after an Oracle Data Guard failover. See "Automating the
Failover of Connections Between Primary and Standby Databases" for information about
adding ONS.

For databases with no standby database configured, you can still configure the client FAN
events. When there is a failure, you can configure the client to retry the connection to the
database. Since Oracle Restart will restart the failed database, the client can reconnect when
the database restarts. Ensure that you program the appropriate delay and retries on the
connection string, as illustrated in the examples in this section.

Chapter 2
Configuring Oracle Restart

2-25

2.2.14.2 Enabling Fast Connection Failover for JDBC Clients
Enabling FAN for the Oracle Universal Connection Pool enables Fast Connection Failover
(FCF) for the client. Your application can use either thick or thin JDBC clients to use FCF.

To configure the JDBC client, set the FastConnectionFailoverEnabled property before making
the first getConnection() request to a data source. When you enable Fast Connection
Failover, the failover applies to every connection in the connection cache. If your application
explicitly creates a connection cache using the Connection Cache Manager, then you must first
set FastConnectionFailoverEnabled.

This section describes how to enable FCF for JDBC with the Universal Connection Pool. For
thick JDBC clients, if you enable Fast Connection Failover, do not enable Transparent
Application Failover (TAF), either on the client or for the service. Enabling FCF with thin or thick
JDBC clients enables the connection pool to receive and react to all FAN events.

To enable Fast Connection Failover for JDBC clients:

1. On a cache enabled DataSource, set the DataSource property
FastConnectionFailoverEnabled to true as in the following example to enable FAN for
the Oracle JDBC Implicit Connection Cache:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setONSConfiguration("nodes=primaryhost:6200,standbyhost:6200");
pds.setFastConnectionFailoverEnabled(true);
pds.setURL("jdbc:oracle:thin:@(DESCRIPTION=
 (LOAD_BALANCE=on)
 (ADDRESS=(PROTOCOL=TCP)(HOST=primaryhost)(PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=standbyhost)(PORT=1521))
 (CONNECT_DATA=(service_name=service_name)))");

......

In this example, primaryhost is the server for the primary database, and standbyhost is
the server for the standby database.

Applications must have both ucp.jar and ons.jar in their CLASSPATH.

Note:

Use the following system property to enable FAN without making data source
changes: -D oracle.jdbc.FastConnectionFailover=true.

2. When you start the application, ensure that the ons.jar file is located on the application
CLASSPATH. The ons.jar file is part of the Oracle client installation.

See Also:

• Oracle Database JDBC Developer's Guide

• Oracle Universal Connection Pool Developer’s Guide

Chapter 2
Configuring Oracle Restart

2-26

2.2.14.3 Enabling Fast Connection Failover for Oracle Call Interface Clients
Oracle Call Interface clients can enable Fast Connection Failover (FCF) by registering to
receive notifications about Oracle Restart high availability FAN events and respond when
events occur.

This improves the session failover response time in Oracle Call Interface and removes
terminated connections from connection and session pools. This feature works on Oracle Call
Interface applications, including those that use Transparent Application Failover (TAF),
connection pools, or session pools.

First, you must enable a service for high availability events to automatically populate the
Advanced Queuing ALERT_QUEUE. If your application is using TAF, then enable the TAF settings
for the service. Configure client applications to connect to an Oracle Restart database. Clients
can register callbacks that are used whenever an event occurs. This reduces the time that it
takes to detect a connection failure.

During DOWN event processing, Oracle Call Interface:

• Terminates affected connections at the client and returns an error

• Removes connections from the Oracle Call Interface connection pool and the Oracle Call
Interface session pool

The session pool maps each session to a physical connection in the connection pool, and
there can be multiple sessions for each connection.

• Fails over the connection if you have configured TAF

If TAF is not configured, then the client only receives an error.

Note:

Oracle Call Interface does not manage UP events.

To Enable Fast Connection Failover for an Oracle Call Interface client:

1. Ensure that the service that you are using has Advanced Queuing notifications enabled by
setting the services' values using the SRVCTL modify command. For example:

srvctl modify service -db proddb -service gl.us.example.com -notification
true -role primary -failovertype select -failovermethod basic -failoverretry 5
-failoverdelay 180 -clbgoal long

2. Enable OCI_EVENTS at environment creation time on the client as follows:

(OCIEnvCreate(...))
3. Link client applications with the client thread or operating system library.

4. (Optional) Register a client EVENT callback.

5. Ensure that the client uses an Oracle Net connect descriptor that includes all primary and
standby hosts in the ADDRESS_LIST. For example:

gl =
(DESCRIPTION =
 (CONNECT_TIMEOUT=10)(RETRY_COUNT=3)
 (ADDRESS_LIST =

Chapter 2
Configuring Oracle Restart

2-27

 (ADDRESS = (PROTOCOL = TCP)(HOST = BOSTON1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = CHICAGO1)(PORT = 1521))
 (LOAD_BALANCE = yes)
)
(CONNECT_DATA=
 (SERVICE_NAME=gl.us.example.com)))

To see the alert information, query the views DBA_OUTSTANDING_ALERTS and
DBA_ALERT_HISTORY.

See Also:

• Oracle Call Interface Programmer's Guide

• Oracle Database Net Services Administrator's Guide for information about
configuring TAF

2.2.14.4 Enabling Fast Connection Failover for ODP.NET Clients
Oracle Data Provider for .NET (ODP.NET) connection pools can subscribe to notifications that
indicate when services are down. After a DOWN event, Oracle Database cleans up sessions in
the connection pool that go to the instance that stops, and ODP.NET proactively disposes
connections that are no longer valid.

All three ODP.NET providers (core, managed, and unmanaged) support FCF.

To enable Fast Connection Failover for ODP.NET clients:

1. Enable Fast Application Notification (FAN) by using SRVCTL modify service command,
as in the following example:

srvctl modify service –db dbname –service gl -notification true
2. Enable Fast Connection Failover for ODP.NET connection pools by subscribing to FAN

high availability events. Set the HA Events connection string attribute to true at connection
time. In newer ODP.NET versions, HA Events is set to true by default. The pooling attribute
must be set to true, which is the default. The following example illustrates these settings,
where user_name is the name of the user and password is the user password:

// C#
using System;
using Oracle.ManagedDataAccess.Client;
//using Oracle.DataAccess.Client;

class HAEventEnablingSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 // Open a connection using ConnectionString attributes
 // Also, enable "load balancing"
 con.ConnectionString =
 "User Id=user_name;Password=password;Data Source=oracle;" +
 "Min Pool Size=10;Connection Lifetime=120;Connection Timeout=60;" +
 "HA Events=true;Incr Pool Size=5;Decr Pool Size=2";

Chapter 2
Configuring Oracle Restart

2-28

 con.Open();

 // Create more connections and perform work against the database here.

 // Dispose OracleConnection object
 con.Dispose();
 }
}

3. Ensure that the client uses an Oracle Net connect descriptor that includes all primary and
standby hosts in the ADDRESS_LIST. For example:

gl =
(DESCRIPTION =
 (CONNECT_TIMEOUT=10)(RETRY_COUNT=3)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = BOSTON1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = CHICAGO1)(PORT = 1521))
 (LOAD_BALANCE = yes)
)
 (CONNECT_DATA=
 (SERVICE_NAME=gl.us.example.com))
)
)

See Also:

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows for
information about ODP.NET

• "SRVCTL Command Reference for Oracle Restart"

2.3 Starting and Stopping Components Managed by Oracle
Restart

When Oracle Restart is in use, Oracle strongly recommends that you use the SRVCTL utility to
start and stop components.

Use the SRVCTL utility to start and stop components for the following reasons:

• When starting a component with SRVCTL, Oracle Restart can first start any components
on which this component depends. When stopping a component with SRVCTL, Oracle
Restart can stop any dependent components first.

• SRVCTL always starts a component according to its Oracle Restart configuration. Starting
a component by other means may not.

For example, if you specified a server parameter file (SPFILE) location when you added a
database to the Oracle Restart configuration, and that location is not the default location
for SPFILEs, if you start the database with SQL*Plus, the SPFILE specified in the
configuration may not be used.

See the srvctl add database command for a table of configuration options for a database
instance.

Chapter 2
Starting and Stopping Components Managed by Oracle Restart

2-29

• When you start a component with SRVCTL, environment variables stored in the Oracle
Restart configuration for the component are set.

See "Managing Environment Variables in the Oracle Restart Configuration" for more
information.

You can start and stop any component managed by Oracle Restart with SRVCTL.

To start or stop a component managed by Oracle Restart with SRVCTL:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Do one of the following:

• To start a component, enter the following command:

srvctl start object [options]
• To stop a component, enter the following command:

srvctl stop object [options]
where object is one of the components listed in Table 2-7. See the SRVCTL start
command and the stop command for available options for each component.

Example 2-17 Starting a Database

This example starts the database with a DB_UNIQUE_NAME of dbcrm:

srvctl start database -db dbcrm

Example 2-18 Starting a Database NOMOUNT

This example starts the database instance without mounting the database:

srvctl start database -db dbcrm -startoption nomount

Example 2-19 Starting the Default Listener

This example starts the default listener:

srvctl start listener

Example 2-20 Starting a Specified Listener

This example starts the listener named crmlistener:

srvctl start listener -listener crmlistener

Example 2-21 Starting Database Services

This example starts the database services bizdev and support for the database with a
DB_UNIQUE_NAME of dbcrm. If the database is not started, Oracle Restart first starts the
database.

srvctl start service -db dbcrm -service "bizdev,support"

Example 2-22 Starting (Mounting) Oracle ASM Disk Groups

This example starts (mounts) the Oracle ASM disk groups data and recovery. The user
running this command must be a member of the OSASM group.

srvctl start diskgroup -diskgroup "data,recovery"

Chapter 2
Starting and Stopping Components Managed by Oracle Restart

2-30

Example 2-23 Shutting Down a Database

This example stops (shuts down) the database with a DB_UNIQUE_NAME of dbcrm. Because a
stop option (-stopoption) is not provided, the database shuts down according to the stop
option in its Oracle Restart configuration. The default stop option is IMMEDIATE.

srvctl stop database -db dbcrm

Example 2-24 Shutting Down a Database with the ABORT option

This example does a SHUTDOWN ABORT of the database with a DB_UNIQUE_NAME of dbcrm.

srvctl stop database -db dbcrm -stopoption abort

Note:

After relinking Oracle executables, use the SRVCTL utility to start and stop
components when Oracle Restart is in use. Typically, relinking Oracle executables is
required on a Linux or UNIX-based operating system after you apply an operating
system patch or after an operating system upgrade. See Oracle Database
Administrator's Reference for Linux and UNIX-Based Operating Systems for more
information about relinking.

If you use SQL*Plus to start and stop components, then you must first run the
setasmgidwrap script after relinking. See Oracle Database Upgrade Guide for
information about running this script.

See Also:

The SRVCTL start command

2.4 Stopping and Restarting Oracle Restart for Maintenance
Operations

When several components in an Oracle home are managed by Oracle Restart, you can stop
Oracle Restart and the components managed by Oracle Restart in the Oracle home.

You can also disable Oracle Restart so that it is not restarted if the node reboots. You might
need to do this when you are performing maintenance that includes the Oracle home, such as
installing a patch. When the maintenance operation is complete, you can enable and restart
Oracle Restart, and you can restart the components managed by Oracle Restart in the Oracle
home.

Use both the SRVCTL utility and the CRSCTL utility for the stop and start operations:

• The stop home SRVCTL command stops all of the components that are managed by
Oracle Restart in the specified Oracle home. The start home SRVCTL command starts
these components. The Oracle home can be an Oracle Database home or an Oracle Grid
Infrastructure home.

Chapter 2
Stopping and Restarting Oracle Restart for Maintenance Operations

2-31

When you use the home object, a state file, specified in the -statefile option, tracks the
state of each component. The stop and status commands create the state file. The start
command uses the state file to identify the components to restart.

In addition, you can check the status of the components managed by Oracle Restart using
the status home command.

• The stop CRSCTL command stops Oracle Restart, and the disable CRSCTL command
ensures that the components managed by Oracle Restart do not restart automatically. The
enable CRSCTL command enables automatic restart and the start CRSCTL command
restarts Oracle Restart.

To stop and start the components in an Oracle home while installing a patch:

1. Prepare to run SRVCTL as described in "Preparing to Run SRVCTL".

2. Use the SRVCTL utility to stop the components managed by Oracle Restart in an Oracle
home:

srvctl stop home -oraclehome oracle_home -statefile state_file [-stopoption
stop_options] [-force]

where oracle_home is the complete path of the Oracle home and state_file is the
complete path to the state file. State information for the Oracle home is recorded in the
specified state file. Make a note of the state file location because it must be specified in
Step 7.

Before stopping the components in an Oracle Grid Infrastructure home, ensure that you
first stop the components in a dependent Oracle Database home.

3. If you are patching an Oracle Grid Infrastructure home, then disable and stop Oracle
Restart. Otherwise, go to Step 4.

To disable and stop Oracle Restart, use the CRSCTL utility to run the following commands:

crsctl disable has

crsctl stop has
4. Perform the maintenance operation.

5. Use the CRSCTL utility to enable automatic restart of the components managed by Oracle
Restart:

crsctl enable has
6. Use the CRSCTL utility to start Oracle Restart:

crsctl start has
7. Use the SRVCTL utility to start the components that were stopped in Step 2:

srvctl start home -oraclehome oracle_home -statefile state_file

The state file must match the state file specified in Step 2.

8. (Optional) Use the SRVCTL utility to check the status of the components managed by
Oracle Restart in the Oracle home:

srvctl status home -oraclehome oracle_home -statefile state_file
Example 2-25 Stopping Components Managed by Oracle Restart in an Oracle Home

srvctl stop home -oraclehome /u01/app/oracle/product/database_release_number/dbhome_1 -
statefile /usr1/or_state

Chapter 2
Stopping and Restarting Oracle Restart for Maintenance Operations

2-32

Example 2-26 Starting Components Managed by Oracle Restart in an Oracle Home

srvctl start home -oraclehome /u01/app/oracle/product/database_release_number/dbhome_1 -
statefile /usr1/or_state

Example 2-27 Displaying the Status of Components Managed by Oracle Restart in an
Oracle Home

srvctl status home -oraclehome /u01/app/oracle/product/database_release_number/dbhome_1 -
statefile /usr1/or_state

See Also:

• The srvctl stop home command

• The srvctl status home command

• The srvctl start home command

• "CRSCTL Command Reference"

2.5 SRVCTL Command Reference for Oracle Restart
You can reference details about the syntax and options for SRVCTL commands specific to
Oracle Restart.

See Oracle Real Application Clusters Administration and Deployment Guide for the full list of
SRVCTL commands.

SRVCTL Command Syntax and Options Overview

SRVCTL expects the following command syntax:

srvctl command object options

where:

• command is a verb such as start, stop, or remove.

• object is the component on which SRVCTL performs the command, such as database,
listener, and so on. You can also use component abbreviations. See Table 2-7 for a
complete list of components and their abbreviations.

• options extend the use of a preceding command combination to include additional
parameters for the command. For example, the -db option indicates that a database
unique name follows, and the -service option indicates that a comma-delimited list of
database service names follows.

Note:

On the Windows platform, when specifying a comma-delimited list, you must enclose
the list within double-quotes ("...,..."). You must also use double-quotes on the UNIX
and Linux platforms if any list member contains shell metacharacters.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-33

Case Sensitivity

SRVCTL commands and components are case insensitive. Options are case sensitive.
Database and database service names are case insensitive and case preserving.

Command Parameters Input File

You can specify command parameters in a file rather than directly on the command line. Using
a command parameters input file is useful in the following situations:

• You want to run a command with very long parameter values or a command with numerous
parameters

• You want to bypass shell processing of certain special characters

To specify a command parameters input file, use the -file parameter with a value that is the
location of the command parameters file. SRVCTL processes the command parameters from
the command parameters file instead of from the command line.

SRVCTL Components Summary

Table 2-7 lists the keywords that can be used for the object portion of SRVCTL commands.
You can use either the full name or the abbreviation for each component keyword.

Table 2-7 Component Keywords and Abbreviations

Componen
t

Abbreviation Description

asm asm Oracle ASM instance

database db Database instance

diskgroup dg Oracle ASM disk group

home home Oracle home or Oracle Clusterware home

listener lsnr Oracle Net listener

service serv Database service

ons ons Oracle Notification Services (ONS)

• add
The srvctl add command adds the specified component to the Oracle Restart
configuration, and optionally sets Oracle Restart configuration parameters for the
component. After a component is added, Oracle Restart begins to manage it, restarting it
when required.

• config
The srvctl config command displays the Oracle Restart configuration of the specified
component or set of components.

• disable
Disables a component, which suspends management of that component by Oracle
Restart.

• downgrade
The srvctl downgrade command downgrades the database configuration after you
manually downgrade the database.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-34

• enable
The srvctl enable command reenables the specified disabled component.

• getenv
Gets and displays environment variables and their values from the Oracle Restart
configuration for a database, listener, or Oracle ASM instance.

• modify
Modifies the Oracle Restart configuration of a component. The change takes effect when
the component is next restarted.

• remove
Removes the specified component from the Oracle Restart configuration. Oracle Restart
no longer manages the component. Any environment variable settings for the component
are also removed.

• setenv
The setenv command sets values of environment variables in the Oracle Restart
configuration for a database, a listener, or the Oracle ASM instance.

• start
Starts the specified component or components.

• status
Displays the running status of the specified component or set of components.

• stop
Stops the specified component or components.

• unsetenv
The unsetenv command deletes one or more environment variables from the Oracle
Restart configuration for a database, a listener, or an Oracle ASM instance.

• update
The srvctl update command updates the running database to switch to the specified
startup option.

• upgrade
The srvctl upgrade command upgrades the resources types and resources from an older
version to a newer version.

See Also:

Table 2-1

2.5.1 add
The srvctl add command adds the specified component to the Oracle Restart configuration,
and optionally sets Oracle Restart configuration parameters for the component. After a
component is added, Oracle Restart begins to manage it, restarting it when required.

To perform srvctl add operations, you must be logged in to the database host computer with
the proper user account. See "Preparing to Run SRVCTL" for more information.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-35

Note:

There is no srvctl add command for Oracle ASM disk groups. Disk groups are
automatically added to the Oracle Restart configuration when they are first mounted.
If you remove a disk group from the Oracle Restart configuration and later want to
add it back, connect to the Oracle ASM instance with SQL*Plus and use an ALTER
DISKGROUP ... MOUNT command.

• srvctl add asm
Adds an Oracle ASM instance to the Oracle Restart configuration.

• srvctl add database
Adds a database to the Oracle Restart configuration.

• srvctl add listener
Adds a listener to the Oracle Restart configuration.

• srvctl add ons
Adds Oracle Notification Services (ONS) to an Oracle Restart configuration.

• srvctl add service
Adds a database service to the Oracle Restart configuration.

2.5.1.1 srvctl add asm
Adds an Oracle ASM instance to the Oracle Restart configuration.

• Syntax and Options

• Example

2.5.1.1.1 Syntax and Options
Use the srvctl add asm command with the following syntax:

srvctl add asm [-listener listener_name] [-spfile spfile]
 [-pwfile password_file_path] [-diskstring asm_diskstring]

Table 2-8 srvctl add asm Options

Option Description

-listener listener_name Name of the listener with which Oracle ASM should register. A weak
dependency is established with this listener. (Before starting the Oracle
ASM instance, Oracle Restart attempts to start the listener. If the
listener does not start, the Oracle ASM instance is still started. If the
listener later fails, Oracle Restart does not restart Oracle ASM.)

If omitted, defaults to the listener named listener.

-spfile spfile The full path of the server parameter file for the database. If omitted, the
default SPFILE is used.

-pwfile
password_file_path

The full path of the Oracle ASM password file.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-36

Table 2-8 (Cont.) srvctl add asm Options

Option Description

-diskstring
asm_diskstring

Oracle ASM disk group discovery string. An Oracle ASM discovery
string is a comma-delimited list of strings that limits the set of disks that
an Oracle ASM instance discovers. The discovery strings can include
wildcard characters. Only disks that match one of the strings are
discovered.

2.5.1.1.2 Example
An example of this command is:

srvctl add asm -listener crmlistener

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about Oracle ASM disk group discovery strings

2.5.1.2 srvctl add database
Adds a database to the Oracle Restart configuration.

After adding a database to the Oracle Restart configuration, if the database then accesses
data in an Oracle ASM disk group, a dependency between the database that disk group is
created. Oracle Restart then ensures that the disk group is mounted before attempting to start
the database.

However, if the database and Oracle ASM instance are not running when you add the
database to the Oracle Restart configuration, you must manually establish the dependency
between the database and its disk groups by specifying the -diskgroup option in the SRVCTL
command. See the example later in this section.

Note:

When you manually add a database to the Oracle Restart configuration, you must
also add the Oracle grid infrastructure software owner as a member of the OSDBA
group of that database. This is because the grid infrastructure components must be
able to connect to the database as SYSDBA to start and stop the database.

For example, if the host user who installed the grid infrastructure home is named
grid and the OSDBA group of the new database is named dba, then user grid must
be a member of the dba group.

• Syntax and Options

• Examples

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-37

2.5.1.2.1 Syntax and Options
Use the srvctl add database command with the following syntax:

srvctl add database -db db_unique_name -oraclehome oracle_home
 [-domain domain_name] [-dbname db_name] [-instance instance_name]
 [-spfile spfile][-pwfile password_file_path] [-startoption start_options]
 [-stopoption stop_options]
 [-role {PRIMARY | PHYSICAL_STANDBY | LOGICAL_STANDBY |
 SNAPSHOT_STANDBY | FAR_SYNC}]
 [-policy {AUTOMATIC | MANUAL | NORESTART}] [-diskgroup disk_group_list]
 [-verbose]

Table 2-9 srvctl add database Options

Syntax Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-oraclehome
oracle_home

The full path of Oracle home for the database

-domain domain_name The domain for the database. Must match the DB_DOMAIN initialization
parameter.

-dbname db_name If provided, must match the DB_NAME initialization parameter setting. You
must include this option if DB_NAME is different from the unique name given
by the -db option

-instance
instance_name

The instance name.

You must include this option if the instance name is different from the
unique name given by the -db option. For example, if the unique name
includes an underscore, and the instance name omits the underscore, then
use this parameter to specify the instance name.

-spfile spfile The full path of the server parameter file for the database. If omitted, the
default SPFILE is used.

-pwfile
password_file_path

The full path of the database password file.

-startoption
start_options

Startup options for the database (OPEN, MOUNT, or NOMOUNT). If omitted,
defaults to OPEN.

See Also: SQL*Plus User's Guide and Reference for more information
about startup options

-stopoption
stop_options

Shutdown options for the database (NORMAL, IMMEDIATE,
TRANSACTIONAL, or ABORT). If omitted, defaults to IMMEDIATE.

See Also: SQL*Plus User's Guide and Reference for more information
about shutdown options

-role {PRIMARY |
PHYSICAL_STANDBY |
LOGICAL_STANDBY |
SNAPSHOT_STANDBY |
FAR_SYNC}

The current role of the database (PRIMARY, PHYSICAL_STANDBY,
LOGICAL_STANDBY, SNAPSHOT_STANDBY, or FAR_SYNC). The default is
PRIMARY. Applicable in Oracle Data Guard environments only.

See Also: Oracle Data Guard Concepts and Administration for more
information about database roles

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-38

Table 2-9 (Cont.) srvctl add database Options

Syntax Description

-policy {AUTOMATIC |
MANUAL | NORESTART}

Management policy for the database.

• AUTOMATIC (default): The database is automatically restored to its
previous running condition (started or stopped) upon restart of the
database host computer.

• MANUAL: The database is never automatically restarted upon restart of
the database host computer. A MANUAL setting does not prevent Oracle
Restart from monitoring the database while it is running and restarting
it if a failure occurs.

• NORESTART: Similar to the MANUAL setting, the database is never
automatically restarted upon restart of the database host computer. A
NORESTART setting, however, never restarts the database even if a
failure occurs.

-diskgroup
disk_group_list

Comma separated list of disk groups upon which the database is
dependent. When starting the database, Oracle Restart first ensures that
these disk groups are mounted. This option is required only if the database
instance and the Oracle ASM instance are not started when adding the
database. Otherwise, the dependency is recorded automatically between
the database and its disk groups.

-verbose Verbose output

2.5.1.2.2 Examples
This example adds the database with the DB_UNIQUE_NAME dbcrm:

srvctl add database -db dbcrm -oraclehome /u01/app/oracle/product/
database_release_number/dbhome_1

This example adds the same database and also establishes a dependency between the
database and the disk groups DATA and RECOVERY.

srvctl add database -db dbcrm -oraclehome /u01/app/oracle/product/
database_release_number/dbhome_1
 -diskgroup "DATA,RECOVERY"

See Also:

• "Oracle Restart Integration with Oracle Data Guard"

• Oracle Data Guard Concepts and Administration

2.5.1.3 srvctl add listener
Adds a listener to the Oracle Restart configuration.

• Syntax and Options

• Example

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-39

2.5.1.3.1 Syntax and Options
Use the srvctl add listener command with the following syntax:

srvctl add listener [-listener listener_name] [-endpoints endpoints] [-skip]
 [-oraclehome oracle_home]

Table 2-10 srvctl add listener Options

Option Description

-listener
listener_name

Listener name. If omitted, defaults to LISTENER

-endpoints
endpoints

Comma separated TCP ports or listener endpoints. If omitted, defaults to
TCP:1521. endpoints syntax is:

"[TCP:]port[, ...] [/IPC:key] [/NMP:pipe_name] [/
TCPS:s_port] [/SDP:port]"

-skip Skip checking for port conflicts with the supplied endpoints

-oraclehome
oracle_home

Oracle home for the listener. If omitted, the Oracle Grid Infrastructure home is
assumed.

2.5.1.3.2 Example
The following command adds a listener (named LISTENER) running out of the database Oracle
home and listening on TCP port 1522:

srvctl add listener -endpoints TCP:1522
 -oraclehome /u01/app/oracle/product/database_release_number/dbhome_1

2.5.1.4 srvctl add ons
Adds Oracle Notification Services (ONS) to an Oracle Restart configuration.

ONS must be added to an Oracle Restart configuration to enable the sending of Fast
Application Notification (FAN) events after an Oracle Data Guard failover.

When ONS is added to an Oracle Restart configuration, it is initially disabled. You can enable it
with the srvctl enable ons command.

• Syntax and Options

See Also:

"srvctl enable ons"

2.5.1.4.1 Syntax and Options
Use the srvctl add ons command with the following syntax:

srvctl add ons [-emport em_port] [-onslocalport ons_local_port]
 [-onsremoteport ons_remote_port] [-remoteservers host[:port],[host[:port]...]]
 [-verbose]

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-40

Table 2-11 srvctl add ons Options

Option Description

-emport em_port ONS listening port for Oracle Enterprise Manager Cloud Control (Cloud
Control). The default is 2016.

-onslocalport
ons_local_port

ONS listening port for local client connections. The default is 6100.

-onsremoteport
ons_remote_port

ONS listening port for connections from remote hosts. The default is 6200.

-remoteservers
host[:port],
[host[:port],...

A list of host:port pairs of remote hosts that are part of the ONS network

Note: If port is not specified for a remote host, then ons_remote_port is
used.

-verbose Verbose output

2.5.1.5 srvctl add service
Adds a database service to the Oracle Restart configuration.

Creates the database service if it does not exist. This method of creating a service is preferred
over using the DBMS_SERVICE PL/SQL package.

• Syntax and Options

• Example

2.5.1.5.1 Syntax and Options
Use the srvctl add service command with the following syntax:

srvctl add service -db db_unique_name -service service_name
 [-role [PRIMARY][,PHYSICAL_STANDBY][,LOGICAL_STANDBY][,SNAPSHOT_STANDBY]]
 [-policy {AUTOMATIC | MANUAL}]
 [-failovertype {NONE | SESSION | SELECT | TRANSACTION}]
 [-failovermethod {NONE | BASIC}] [-failoverdelay integer]
 [-failoverretry integer] [-clbgoal {SHORT | LONG}]
 [-rlbgoal {SERVICE_TIME | THROUGHPUT | NONE}] [-notification {TRUE | FALSE}]
 [-edition edition_name] [-pdb pluggable_database]
 [-sql_translation_profile sql_translation_profile]
 [-commit_outcome {TRUE | FALSE}] [-retention retention]
 [-replay_init_time replay_init_time] [-drain_timeout timeout]
 [-stopoption stop_option] [-session_state {STATIC | DYNAMIC}]
 [-global {TRUE | FALSE}] [-maxlag max_lag_time] [-force] [-verbose]

Table 2-12 srvctl add service Options

Option Description

-db db_unique_name Unique name for the database

The name must match the DB_UNIQUE_NAME initialization parameter setting.
If DB_UNIQUE_NAME is unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_UNIQUE_NAME uses
the setting for DB_NAME.

-service
service_name

The database service name

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-41

Table 2-12 (Cont.) srvctl add service Options

Option Description

-role [PRIMARY]
[,PHYSICAL_STANDBY]
[,LOGICAL_STANDBY]
[,SNAPSHOT_STANDBY]

A list of service roles

This option is applicable in Oracle Data Guard environments only. When this
option is present, upon database open, the service is started only when one
of its service roles matches the current database role.

See Also: Oracle Data Guard Concepts and Administration for more
information about database roles

-policy {AUTOMATIC
| MANUAL}

Management policy for the service

If AUTOMATIC (the default), the service is automatically started upon restart of
the database, either by a planned restart (with SRVCTL) or after a failure.
Automatic restart is also subject to the service role, however (the -role
option).

If MANUAL, the service is never automatically restarted upon planned restart
of the database (with SRVCTL). A MANUAL setting does not prevent Oracle
Restart from monitoring the service when it is running and restarting it if a
failure occurs.

-failovertype {NONE
|SESSION | SELECT |
TRANSACTION}

To enable Application Continuity for OCI and Java, use TRANSACTION.

If the failover type is TRANSACTION, then OCI and Java attempt to recover the
in progress transaction upon receipt of a recoverable error. When failover type
is TRANSACTION, the -commit_outcome option must be set to TRUE.

To enable Transparent Application Failover (TAF) for OCI, use SELECT or
SESSION.

-failovermethod
{NONE | BASIC}

TAF failover method for backward compatibility only

If the failover type (-failovertype) is set to a value other than NONE, then
use BASIC for this option.

-failoverdelay
integer

For Application Continuity and TAF, the time delay, in seconds, between
reconnect attempts for each incident at failover

-failoverretry
integer

For Application Continuity and TAF, the number of attempts to connect after
an incident

-clbgoal {SHORT |
LONG}

Connection load balancing goal

Use SHORT for run-time load balancing.

Use LONG for long running connections, such as batch jobs.

-rlbgoal
{SERVICE_TIME |
THROUGHPUT | NONE}

Run-time load balancing goal

Use SERVICE_TIME to balance connections by response time.

Use THROUGHPUT to balance connections by throughput.

-notification {TRUE
| FALSE}

Enable Fast Application Notification (FAN) for OCI connections

-edition
edition_name

The initial session edition of the service

When an edition is specified for a service, all subsequent connections that
specify the service use this edition as the initial session edition. However, if a
session connection specifies a different edition, then the edition specified in
the session connection is used for the initial session edition.

SRVCTL does not validate the specified edition name. During connection, the
connect user must have USE privilege on the specified edition. If the edition
does not exist or if the connect user does not have USE privilege on the
specified edition, then an error is raised.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-42

Table 2-12 (Cont.) srvctl add service Options

Option Description

-pdb
pluggable_database

In a multitenant container database (CDB), the name of the pluggable
database (PDB) to associate with the service

If this option is set to an empty string, then the service is associated with root.

-
sql_translation_pro
file
sql_translation_pro
file

A SQL translation profile for a service that you are adding after you have
migrated applications from a non-Oracle database to an Oracle database

This parameter corresponds to the SQL translation profile parameter in the
DBMS_SERVICE service attribute.

Notes:
• Before using the SQL translation framework, you must migrate all server-

side application objects and data to the Oracle database.
• Use the srvctl config service command to display the SQL

translation profile.
See Also: Oracle Database SQL Translation and Migration Guide for more
information about using a SQL translation profile

-commit_outcome
{TRUE | FALSE}

For Transaction Guard, when TRUE a transaction's commit outcome is
accessible after the transaction's session fails due to a recoverable outage.

If FALSE, the default, then a transaction's commit outcome is not retained.

When this option is set to TRUE, the outcome of a transaction's commit is
durable, and an applications can determine the commit status of a transaction
after an outage. You can set commit_outcome to TRUE for a user-defined
service.

The commit_outcome setting has no effect on Oracle Active Data Guard and
read-only databases.

See Also: See Oracle Database Development Guide for more information.

-retention
retention

If commit_outcome is set to TRUE, then this option determines the amount of
time, in seconds, that the commit outcome is retained. The default is 24 hours
(86400).

If commit_outcome is set to FALSE, then this option cannot be set.

-replay_init_time
replay_init_time

For Application Continuity, this option specifies the difference between the
time, in seconds, of original execution of the first operation of a request and
the time that the replay is ready to start after a successful reconnect.
Application Continuity will not replay after the specified amount of time has
passed. This option is intended to avoid the unintentional execution of a
transaction when a system is recovered after a long period of time. The
default is 5 minutes (300). The maximum value is 24 hours (86400).

If failovertype is not set to TRANSACTION, then this option is not used.

-drain_timeout
timeout

This option specifies the time allowed for resource draining to be completed
in seconds. Permitted values are NULL, 0, or any positive integer.

The draining period is intended for planned maintenance operations. During
the draining period, all current client requests are processed, but new
requests are not accepted. How draining works depends on the setting of the
-stopoption option.

The default value is NULL, which means that this option is not set. If the
option is not set, and -drain_timeout has been set on the service, then
this value is used.

If it is set to 0, then draining does not occur.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-43

Table 2-12 (Cont.) srvctl add service Options

Option Description

-stopoption
stop_option

This option specifies the mode in which the service is stopped. The following
values are permitted:

• IMMEDIATE specifies that sessions are permitted to drain before the
service is stopped.

• TRANSACTIONAL specifies that sessions are permitted to drain for the
amount of time specified in the —drain_timeout option. The service is
stopped when the time limit is reached, and any remaining sessions are
terminated.

• NONE is the default.

-session_state
{STATIC | DYNAMIC}

For Application Continuity, this parameter specifies whether the session state
that is not transactional is changed by the application. Oracle recommends a
setting of DYNAMIC for most applications.

Note: This parameter is considered only if -failovertype is set to
TRANSACTION for Application Continuity. It describes how non-transactional is
changed during a request. Examples of session state are NLS settings,
optimizer preferences, event settings, PL/SQL global variables, temporary
tables, advanced queues, LOBs, and result cache. If non-transactional values
change after the request starts, then use the default, DYNAMIC. Most
applications should use DYNAMIC mode. If you are unsure, then use DYNAMIC
mode.

-global {TRUE |
FALSE}

If TRUE, then the service is a Global Data Services (GDS) service and is
managed by the Global Services Manager (GSM).

If FALSE, the default, then the service is not a GDS service.

The global attribute of a service cannot be changed after the service is
added.

See Oracle Database Global Data Services Concepts and Administration
Guide for more information.

-maxlag
maximum_lag_time

Maximum replication lag time in seconds. Must be a non-negative integer.
The default value is ANY.

-force Force the add operation even though a listener is not configured for a
network.

-verbose Verbose output

2.5.1.5.2 Example
This example adds the sales service for the database with DB_UNIQUE_NAME dbcrm. The service
is started only when dbcrm is in PRIMARY mode.

srvctl add service -db dbcrm -service sales -role PRIMARY

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-44

See Also:

• The section in Oracle Database PL/SQL Packages and Types Reference on the
DBMS_SERVICE package for more information about the options for this command

• "Oracle Restart Integration with Oracle Data Guard"

• Oracle Data Guard Concepts and Administration

• Oracle Multitenant Administrator's Guide for information about creating,
modifying, or removing a service for a pluggable database (PDB)

2.5.2 config
The srvctl config command displays the Oracle Restart configuration of the specified
component or set of components.

• srvctl config asm
Displays the Oracle Restart configuration information for the Oracle ASM instance.

• srvctl config database
Displays the Oracle Restart configuration information for the specified database, or lists all
databases managed by Oracle Restart.

• srvctl config listener
Displays the Oracle Restart configuration information for all Oracle Restart–managed
listeners or for the specified listener.

• srvctl config ons
Displays the current configuration information for Oracle Notification Services (ONS).

• srvctl config service
For the specified database, displays the Oracle Restart configuration information for the
specified database service or for all Oracle Restart–managed database services.

2.5.2.1 srvctl config asm
Displays the Oracle Restart configuration information for the Oracle ASM instance.

• Syntax and Options

• Example

2.5.2.1.1 Syntax and Options
Use the srvctl config asm command with the following syntax:

srvctl config asm [-all]

Table 2-13 srvctl config asm Options

Option Description

-all Display enabled/disabled status also

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-45

2.5.2.1.2 Example
An example of this command is:

srvctl config asm -all

asm home: /u01/app/oracle/product/database_release_number/grid
ASM is enabled.

2.5.2.2 srvctl config database
Displays the Oracle Restart configuration information for the specified database, or lists all
databases managed by Oracle Restart.

• Syntax and Options

• Example

2.5.2.2.1 Syntax and Options
Use the srvctl config database command with the following syntax:

srvctl config database [-db db_unique_name [-all]] [-verbose]

Table 2-14 srvctl config database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-all Display detailed configuration information

-verbose Verbose output

2.5.2.2.2 Example
An example of this command to list all Oracle Restart–managed databases is:

srvctl config database

dbcrm
orcl

An example of this command to display configuration and enabled/disabled status for the
database with the DB_UNIQUE_ID orcl is:

srvctl config database -db orcl -all

Database unique name: orcl
Database name: orcl
Oracle home: /u01/app/oracle/product/database_release_number/dbhome_1
Oracle user: oracle
Spfile: +DATA/orcl/spfileorcl.ora
Domain: us.example.com

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-46

Start options: open
Stop options: immediate
Database role:
Management policy: automatic
Disk Groups: DATA
Services: mfg,sales
Database is enabled

2.5.2.3 srvctl config listener
Displays the Oracle Restart configuration information for all Oracle Restart–managed listeners
or for the specified listener.

• Syntax and Options

• Example

2.5.2.3.1 Syntax and Options
Use the srvctl config listener command with the following syntax:

srvctl config listener [-listener listener_name]

Table 2-15 srvctl config listener Options

Option Description

-listener
listener_name

Listener name. If omitted, configuration information for all Oracle Restart–
managed listeners is displayed.

2.5.2.3.2 Example
This example displays the configuration information and enabled/disabled status for the default
listener:

srvctl config listener

Name: LISTENER
Home: /u01/app/oracle/product/database_release_number/dbhome_1
End points: TCP:1521
Listener is enabled.

2.5.2.4 srvctl config ons
Displays the current configuration information for Oracle Notification Services (ONS).

• Syntax and Options

2.5.2.4.1 Syntax and Options
Use the srvctl config ons command with the following syntax:

srvctl config ons

2.5.2.5 srvctl config service
For the specified database, displays the Oracle Restart configuration information for the
specified database service or for all Oracle Restart–managed database services.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-47

• Syntax and Options

• Example

2.5.2.5.1 Syntax and Options
Use the srvctl config service command with the following syntax:

srvctl config service -db db_unique_name [-service service_name] [-verbose]

Table 2-16 srvctl config service Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-service
service_name

Database service name. If omitted, SRVCTL displays configuration
information for all Oracle Restart–managed services for the database.

-verbose Verbose output

2.5.2.5.2 Example
An example of this command is:

srvctl config service -db dbcrm -service sales

Service name: sales
Service is enabled
Cardinality: SINGLETON
Disconnect: true
Service role: PRIMARY
Management policy: automatic
DTP transaction: false
AQ HA notifications: false
Failover type: NONE
Failover method: NONE
TAF failover retries: 0
TAF failover delay: 0
Connection Load Balancing Goal: NONE
Runtime Load Balancing Goal: NONE
TAF policy specification: NONE
Edition: e2

2.5.3 disable
Disables a component, which suspends management of that component by Oracle Restart.

The srvctl disable command is intended to be used when a component must be repaired or
shut down for maintenance, and should not be restarted automatically. When you disable a
component:

• It is no longer automatically restarted.

• It is no longer automatically started through a dependency.

• It cannot be started with SRVCTL.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-48

To perform srvctl disable operations, you must be logged in to the database host computer
with the proper user account. See "Preparing to Run SRVCTL" for more information.

• srvctl disable asm
Disables the Oracle ASM instance.

• srvctl disable database
Disables the specified database.

• srvctl disable diskgroup
Disables an Oracle ASM disk group.

• srvctl disable listener
Disables the specified listener or all listeners.

• srvctl disable ons
Disables Oracle Notification Services (ONS).

• srvctl disable service
Disables one or more database services.

See Also:

The enable command

2.5.3.1 srvctl disable asm
Disables the Oracle ASM instance.

• Syntax and Options

2.5.3.1.1 Syntax and Options
Use the srvctl disable asm command with the following syntax:

srvctl disable asm

2.5.3.2 srvctl disable database
Disables the specified database.

• Syntax and Options

• Example

2.5.3.2.1 Syntax and Options
Use the srvctl disable database command with the following syntax:

srvctl disable database -db db_unique_name

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-49

Table 2-17 srvctl disable database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME initialization
parameter setting. If DB_UNIQUE_NAME is unspecified, then this option must
match the DB_NAME initialization parameter setting. The default setting for
DB_UNIQUE_NAME uses the setting for DB_NAME.

2.5.3.2.2 Example
An example of this command is:

srvctl disable database -db dbcrm

2.5.3.3 srvctl disable diskgroup
Disables an Oracle ASM disk group.

• Syntax and Options

• Example

2.5.3.3.1 Syntax and Options
Use the srvctl disable diskgroup command with the following syntax:

srvctl disable diskgroup -diskgroup diskgroup_name

Table 2-18 srvctl disable diskgroup Options

Option Description

-diskgroup
diskgroup_name

Disk group name

2.5.3.3.2 Example
An example of this command is:

srvctl disable diskgroup -diskgroup DATA

2.5.3.4 srvctl disable listener
Disables the specified listener or all listeners.

• Syntax and Options

• Example

2.5.3.4.1 Syntax and Options
Use the srvctl disable listener command with the following syntax:

srvctl disable listener [-listener listener_name]

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-50

Table 2-19 srvctl disable listener Options

Option Description

-listener
listener_name

Listener name. If omitted, all listeners are disabled.

2.5.3.4.2 Example
An example of this command is:

srvctl disable listener -listener crmlistener

2.5.3.5 srvctl disable ons
Disables Oracle Notification Services (ONS).

• Syntax and Options

2.5.3.5.1 Syntax and Options
Use the srvctl disable ons command with the following syntax:

srvctl disable ons [-verbose]

Table 2-20 srvctl disable ons Options

Option Description

-verbose Verbose output

2.5.3.6 srvctl disable service
Disables one or more database services.

• Syntax and Options

• Example

2.5.3.6.1 Syntax and Options
Use the srvctl disable service command with the following syntax:

srvctl disable service -db db_unique_name -service service_name_list
 [-global_override

Table 2-21 srvctl disable service Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-51

Table 2-21 (Cont.) srvctl disable service Options

Option Description

-service
service_name_list

Comma-delimited list of database service names

-global_override If the service is a Global Data Services (GDS) service, then this option must
be specified to disable the service.

An error is returned if you attempt to disable a GDS service and -
global_override is not included.

This option is ignored if the service is not a GDS service.

See Oracle Database Global Data Services Concepts and Administration
Guide for more information.

2.5.3.6.2 Example
The following example disables the database service sales and mfg:

srvctl disable service -db dbcrm -service sales,mfg

2.5.4 downgrade
The srvctl downgrade command downgrades the database configuration after you manually
downgrade the database.

• srvctl downgrade database
The srvctl downgrade database command downgrades the configuration of a database
and its services from its current version to the specified lower version.

2.5.4.1 srvctl downgrade database
The srvctl downgrade database command downgrades the configuration of a database and
its services from its current version to the specified lower version.

• Syntax and Options

2.5.4.1.1 Syntax and Options
Use the srvctl downgrade database command with the following syntax:

srvctl downgrade database -db db_unique_name -oraclehome oracle_home
 -targetversion to_version

Table 2-22 srvctl downgrade database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-oraclehome
oracle_home

The full path of Oracle home for the database

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-52

Table 2-22 (Cont.) srvctl downgrade database Options

Option Description

-targetversion
to_version

The version to which to downgrade

2.5.5 enable
The srvctl enable command reenables the specified disabled component.

When you enable a component:

• Oracle Restart can automatically restart it.

• It can be automatically started through a dependency.

• You can start it manually with SRVCTL.

If the component is already enabled, then the command is ignored.

When you add a component to the Oracle Restart configuration, it is enabled by default.

To perform srvctl enable operations, you must be logged in to the database host computer
with the proper user account. See "Preparing to Run SRVCTL" for more information.

• srvctl enable asm
Enables an Oracle ASM instance.

• srvctl enable database
Enables the specified database.

• srvctl enable diskgroup
Enables an Oracle ASM disk group.

• srvctl enable listener
Enables the specified listener or all listeners.

• srvctl enable ons
Enables Oracle Notification Services (ONS).

• srvctl enable service
Enables one or more database services for the specified database.

See Also:

The disable command

2.5.5.1 srvctl enable asm
Enables an Oracle ASM instance.

• Syntax and Options

2.5.5.1.1 Syntax and Options
Use the srvctl enable asm command with the following syntax:

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-53

srvctl enable asm

2.5.5.2 srvctl enable database
Enables the specified database.

• Syntax and Options

• Example

2.5.5.2.1 Syntax and Options
Use the srvctl enable database command with the following syntax:

srvctl enable database -db db_unique_name

Table 2-23 srvctl enable database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

2.5.5.2.2 Example
An example of this command is:

srvctl enable database -db dbcrm

2.5.5.3 srvctl enable diskgroup
Enables an Oracle ASM disk group.

• Syntax and Options

• Example

2.5.5.3.1 Syntax and Options
Use the srvctl enable diskgroup command with the following syntax:

srvctl enable diskgroup -diskgroup diskgroup_name

Table 2-24 srvctl enable diskgroup Options

Option Description

-diskgroup
diskgroup_name

Disk group name

2.5.5.3.2 Example
An example of this command is:

srvctl enable diskgroup -diskgroup DATA

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-54

2.5.5.4 srvctl enable listener
Enables the specified listener or all listeners.

• Syntax and Options

• Example

2.5.5.4.1 Syntax and Options
Use the srvctl enable listener command with the following syntax:

srvctl enable listener [-listener listener_name]

Table 2-25 srvctl enable listener Options

Option Description

-listener
listener_name

Listener name. If omitted, all listeners are enabled.

2.5.5.4.2 Example
An example of this command is:

srvctl enable listener -listener crmlistener

2.5.5.5 srvctl enable ons
Enables Oracle Notification Services (ONS).

• Syntax and Options

2.5.5.5.1 Syntax and Options
Use the srvctl enable ons command with the following syntax:

srvctl enable ons [-verbose]

Table 2-26 srvctl enable ons Options

Option Description

-verbose Verbose output

2.5.5.6 srvctl enable service
Enables one or more database services for the specified database.

• Syntax and Options

• Example

2.5.5.6.1 Syntax and Options
Use the srvctl enable service command with the following syntax:

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-55

srvctl enable service -db db_unique_name -service service_name_list
 [-global_override]

Table 2-27 srvctl enable service Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified,
then this option must match the DB_NAME initialization parameter
setting. The default setting for DB_UNIQUE_NAME uses the setting for
DB_NAME.

-service service_name_list Comma-delimited list of database service names

-global_override If the service is a Global Data Services (GDS) service, then this
option must be specified to enable the service.

An error is returned if you attempt to enable a GDS service and -
global_override is not included.

This option is ignored if the service is not a GDS service.

See Oracle Database Global Data Services Concepts and
Administration Guide for more information.

2.5.5.6.2 Example
The following example enables the database services sales and mfg in the database with
DB_UNIQUE_NAME dbcrm:

srvctl enable service -db dbcrm -service "sales,mfg"

2.5.6 getenv
Gets and displays environment variables and their values from the Oracle Restart configuration
for a database, listener, or Oracle ASM instance.

• srvctl getenv asm
Displays the configured environment variables for the Oracle ASM instance.

• srvctl getenv database
Displays the configured environment variables for the specified database.

• srvctl getenv listener
Displays the configured environment variables for the specified listener.

See Also:

• setenv command

• unsetenv command

• "Managing Environment Variables in the Oracle Restart Configuration"

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-56

2.5.6.1 srvctl getenv asm
Displays the configured environment variables for the Oracle ASM instance.

• Syntax and Options

• Example

2.5.6.1.1 Syntax and Options
Use the srvctl getenv asm command with the following syntax:

srvctl getenv asm [-envs name_list]

Table 2-28 srvctl getenv asm Options

Options Description

-envs name_list Comma-delimited list of names of environment variables to display. If omitted,
SRVCTL displays all configured environment variables for Oracle ASM.

2.5.6.1.2 Example
The following example displays all configured environment variables for the Oracle ASM
instance:

srvctl getenv asm

2.5.6.2 srvctl getenv database
Displays the configured environment variables for the specified database.

• Syntax and Options

• Example

2.5.6.2.1 Syntax and Options
Use the srvctl getenv database command with the following syntax:

srvctl getenv database -db db_unique_name [-envs name_list]

Table 2-29 srvctl getenv database Options

Options Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-envs name_list Comma-delimited list of names of environment variables to display. If omitted,
SRVCTL displays all configured environment variables.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-57

2.5.6.2.2 Example
The following example displays all configured environment variables for the database with
DB_UNIQUE_NAME dbcrm:

srvctl getenv database -db dbcrm

2.5.6.3 srvctl getenv listener
Displays the configured environment variables for the specified listener.

• Syntax and Options

• Example

2.5.6.3.1 Syntax and Options
Use the srvctl getenv listener command with the following syntax:

srvctl getenv listener [-listener listener_name] [-envs name_list]

Table 2-30 srvctl getenv listener Options

Options Description

-listener
listener_name

Listener name. If omitted, SRVCTL lists environment variables for all
listeners.

-envs name_list Comma-delimited list of names of environment variables to display. If omitted,
SRVCTL displays all configured environment variables.

2.5.6.3.2 Example
The following example displays all configured environment variables for the listener named
crmlistener:

srvctl getenv listener -listener crmlistener

2.5.7 modify
Modifies the Oracle Restart configuration of a component. The change takes effect when the
component is next restarted.

To perform srvctl modify operations, you must be logged in to the database host computer
with the proper user account. See "Preparing to Run SRVCTL" for more information.

• srvctl modify asm
Modifies the Oracle Restart configuration for the Oracle ASM instance.

• srvctl modify database
Modifies the Oracle Restart configuration for a database.

• srvctl modify listener
Modifies the Oracle Restart configuration for the specified listener or all listeners.

• srvctl modify ons
Modifies Oracle Notification Services (ONS).

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-58

• srvctl modify service
Modifies the Oracle Restart configuration of a database service.

2.5.7.1 srvctl modify asm
Modifies the Oracle Restart configuration for the Oracle ASM instance.

• Syntax and Options

• Example

2.5.7.1.1 Syntax and Options
Use the srvctl modify asm command with the following syntax:

srvctl modify asm [-listener listener_name] [-spfile spfile]
 [-pwfile password_file_path] [-diskstring asm_diskstring]

Table 2-31 srvctl modify asm Options

Option Description

-listener
listener_name

Name of the listener with which Oracle ASM must register. A weak
dependency is established with this listener. (Before Oracle ASM is started,
Oracle Restart ensures that this listener is started.)

-spfile spfile The full path of the server parameter file for the database. If omitted, the
default SPFILE is used.

-pwfile
password_file_path

The full path of the Oracle ASM password file.

-diskstring
asm_diskstring

Oracle ASM disk group discovery string. An Oracle ASM discovery string is a
comma-delimited list of strings that limits the set of disks that an Oracle ASM
instance discovers. The discovery strings can include wildcard characters.
Only disks that match one of the strings are discovered.

2.5.7.1.2 Example
An example of this command is:

srvctl modify asm -listener crmlistener

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about Oracle ASM disk group discovery strings

2.5.7.2 srvctl modify database
Modifies the Oracle Restart configuration for a database.

• Syntax and Options

• Example

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-59

2.5.7.2.1 Syntax and Options
Use the srvctl modify database command with the following syntax:

srvctl modify database -db db_unique_name [-oraclehome oracle_home]
 [-user oracle_user] [-domain domain_name] [-dbname db_name]
 [-instance instance_name] [-instance instance_name] [-spfile spfile]
 [-pwfile password_file_path] [-startoption start_options]
 [-stopoption stop_options]
 [-role {PRIMARY | PHYSICAL_STANDBY | LOGICAL_STANDBY | SNAPSHOT_STANDBY}]
 [-policy {AUTOMATIC | MANUAL | NORESTART}]
 [{-diskgroup "diskgroup_list" | -nodiskgroup}] [-force]

Table 2-32 srvctl modify database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-user oracle_user Name of the Oracle user who owns the Oracle home directory

-diskgroup
disk_group_list

Comma separated list of disk groups upon which the database is dependent.
When starting the database, Oracle Restart first ensures that these disk
groups are mounted. This option is required only if the database instance and
the Oracle ASM instance are not started when adding the database.
Otherwise, the dependency is recorded automatically between the database
and its disk groups.

-nodiskgroup Remove the database's dependency on Oracle ASM disk groups

-force Force the operation even though the some resources might be stopped.

(Other options) See Table 2-9

2.5.7.2.2 Example
The following example changes the role of the database with DB_UNIQUE_NAME dbcrm to
LOGICAL_STANDBY:

srvctl modify database -db dbcrm -role logical_standby

See Also:

• "Oracle Restart Integration with Oracle Data Guard"

• Oracle Data Guard Concepts and Administration

2.5.7.3 srvctl modify listener
Modifies the Oracle Restart configuration for the specified listener or all listeners.

• Syntax and Options

• Example

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-60

2.5.7.3.1 Syntax and Options
Use the srvctl modify listener command with the following syntax:

srvctl modify listener [-listener listener_name] [-endpoints endpoints]
 [-oraclehome oracle_home]

Table 2-33 srvctl modify listener Options

Option Description

-listener
listener_name

Listener name. If omitted, all listener configurations are modified.

-endpoints
endpoints

Comma separated TCP ports or listener endpoints. endpoints syntax is:

"[TCP:]port[, ...] [/IPC:key] [/NMP:pipe_name]
 [/TCPS:s_port] [/SDP:port]"

-oraclehome
oracle_home

New Oracle home for the listener

2.5.7.3.2 Example
This example modifies the TCP port on which the listener named crmlistener listens:

srvctl modify listener -listener crmlistener -endpoints TCP:1522

2.5.7.4 srvctl modify ons
Modifies Oracle Notification Services (ONS).

• Syntax and Options

2.5.7.4.1 Syntax and Options
Use the srvctl modify ons command with the following syntax:

srvctl modify ons [-emport em_port] [-onslocalport ons_local_port]
 [-onsremoteport ons_remote_port] [-remoteservers host[:port],[host[:port]...]]
 [-verbose]

Table 2-34 srvctl modify ons Options

Option Description

-emport em_port ONS listening port for Cloud Control. The default is 2016.

-onslocalport
ons_local_port

ONS listening port for local client connections

-onsremoteport
ons_remote_port

ONS listening port for connections from remote hosts

-remoteservers
host[:port],
[host[:port],...

A list of host:port pairs of remote hosts that are part of the ONS network

Note: If port is not specified for a remote host, then ons_remote_port is
used.

-verbose Verbose output

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-61

2.5.7.5 srvctl modify service
Modifies the Oracle Restart configuration of a database service.

Note:

Oracle recommends that you limit configuration changes to the minimum requirement
and that you not perform other service operations while the online service
modification is in progress.

• Syntax and Options

• Example

2.5.7.5.1 Syntax and Options
Use the srvctl modify service command with the following syntax:

srvctl modify service -db db_unique_name -service service_name
 [-role [PRIMARY][,PHYSICAL_STANDBY][,LOGICAL_STANDBY][,SNAPSHOT_STANDBY]]
 [-policy {AUTOMATIC | MANUAL}]
 [-failovertype {NONE | SESSION | SELECT | TRANSACTION}]
 [-failovermethod {NONE | BASIC}] [-failoverdelay integer]
 [-failoverretry integer] [-clbgoal {SHORT | LONG}]
 [-rlbgoal {SERVICE_TIME | THROUGHPUT | NONE}] [-notification {TRUE | FALSE}]
 [-edition edition_name] [-pdb pluggable_database]
 [-sql_translation_profile sql_translation_profile]
 [-commit_outcome {TRUE | FALSE}] [-retention retention]
 [-replay_init_time replay_init_time] [-drain_timeout timeout]
 [-stopoption stop_option] [-session_state {STATIC | DYNAMIC}]
 [-global_override] [-verbose]

Table 2-35 srvctl modify service Options

Option Description

-db db_unique_name Unique name for the database

The name must match the DB_UNIQUE_NAME initialization parameter setting.
If DB_UNIQUE_NAME is unspecified, then this option must match the DB_NAME
initialization parameter setting. The default setting for DB_UNIQUE_NAME uses
the setting for DB_NAME.

-service
service_name

Service name

-role [PRIMARY]
[,PHYSICAL_STANDBY]
[,LOGICAL_STANDBY]
[,SNAPSHOT_STANDBY]

A list of service roles

This option is applicable in Oracle Data Guard environments only. When this
option is present, upon database startup, the service is started only when
one of its service roles matches the current database role.

See Also: Oracle Data Guard Concepts and Administration for more
information about database roles

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-62

Table 2-35 (Cont.) srvctl modify service Options

Option Description

-policy {AUTOMATIC
| MANUAL}

Management policy for the service

If AUTOMATIC (the default), the service is automatically started upon restart of
the database, either by a planned restart (with SRVCTL) or after a failure.
Automatic restart is also subject to the service role, however (the -role
option).

If MANUAL, the service is never automatically restarted upon planned restart
of the database (with SRVCTL). A MANUAL setting does not prevent Oracle
Restart from monitoring the service when it is running and restarting it if a
failure occurs.

-failovertype {NONE
|SESSION | SELECT |
TRANSACTION}

To enable Application Continuity for OCI and Java, use TRANSACTION.

If the failover type is TRANSACTION, then OCI and Java attempt to recover the
inflight transaction upon receipt of a recoverable error. When failover type is
TRANSACTION, the commit_outcome option must be set to TRUE.

To enable Transparent Application Failover (TAF) for OCI, use SELECT or
SESSION.

-failovermethod
{NONE | BASIC}

TAF failover method for backward compatibility only

If the failover type (-failovertype) is set to a value other than NONE, then
use BASIC for this option.

-failoverdelay
integer

For Application Continuity and TAF, the time delay, in seconds, between
reconnect attempts for each incident at failover

-failoverretry
integer

For Application Continuity and TAF, the number of attempts to connect after
an incident

-clbgoal {SHORT |
LONG}

Connection load balancing goal

Use SHORT for run-time load balancing.

Use LONG for long running connections, such as batch jobs.

-rlbgoal
{SERVICE_TIME |
THROUGHPUT | NONE}

Run-time load balancing goal

Use SERVICE_TIME to balance connections by response time.

Use THROUGHPUT to balance connections by throughput.

-notification {TRUE
| FALSE}

Enable Fast Application Notification (FAN) for OCI connections

-edition
edition_name

The initial session edition of the service

If this option is not specified, then the edition is not modified for the service.

If this option is specified but edition_name is empty, then the edition is set
to NULL. A NULL edition has no effect.

When an edition is specified for a service, all subsequent connections that
specify the service use this edition as the initial session edition. However, if a
session connection specifies a different edition, then the edition specified in
the session connection is used for the initial session edition.

SRVCTL does not validate the specified edition name. During connection, the
connect user must have USE privilege on the specified edition. If the edition
does not exist or if the connect user does not have USE privilege on the
specified edition, then an error is raised.

-pdb
pluggable_database

In a CDB, the name of the PDB to associate with the service

If this option is set to an empty string, then the service is associated with root.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-63

Table 2-35 (Cont.) srvctl modify service Options

Option Description

-
sql_translation_pro
file
sql_translation_pro
file

A SQL translation profile for a service that you are adding after you have
migrated applications from a non-Oracle database to an Oracle database

Note: Before using the SQL translation framework, you must migrate all
server-side application objects and data to the Oracle database.

See Also: Oracle Database SQL Translation and Migration Guide for more
information about using a SQL translation profile

-commit_outcome
{TRUE | FALSE}

For Transaction Guard, when TRUE a transaction's commit outcome is
accessible after the transaction's session fails due to a recoverable outage.

If FALSE, the default, then a transaction's commit outcome is not retained.

When this option is set to TRUE, the outcome of a transaction's commit is
durable, and an applications can determine the commit status of a
transaction after an outage. You can set commit_outcome to TRUE for a
user-defined service.

The commit_outcome setting has no effect on Oracle Active Data Guard and
read-only databases.

See Also: See Oracle Database Development Guide for more information.

-retention
retention

If commit_outcome is set to TRUE, then this option determines the amount of
time, in seconds, that the commit outcome is retained. The default is 24 hours
(86400).

If commit_outcome is set to FALSE, then this option cannot be set.

-replay_init_time
replay_init_time

For Application Continuity, this option specifies the difference between the
time, in seconds, of original execution of the first operation of a request and
the time that the replay is ready to start after a successful reconnect.
Application Continuity will not replay after the specified amount of time has
passed. This option is intended to avoid the unintentional execution of a
transaction when a system is recovered after a long period of time. The
default is 5 minutes (300). The maximum value is 24 hours (86400).

If failovertype is not set to TRANSACTION, then this option is not used.

-drain_timeout
timeout

This option specifies the time allowed for resource draining to be completed
in seconds. Permitted values are NULL, 0, or any positive integer.

The draining period is intended for planned maintenance operations. During
the draining period, all current client requests are processed, but new
requests are not accepted. How draining works depends on the setting of the
-stopoption option.

The default value is NULL, which means that this option is not set. If the
option is not set, and -drain_timeout has been set on the service, then
this value is used.

If it is set to 0, then draining does not occur.

-stopoption
stop_option

This option specifies the mode in which the service is stopped. The following
values are permitted:

• IMMEDIATE specifies that sessions are permitted to drain before the
service is stopped.

• TRANSACTIONAL specifies that sessions are permitted to drain for the
amount of time specified in the —drain_timeout option. The service is
stopped when the time limit is reached, and any remaining sessions are
terminated.

• NONE is the default.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-64

Table 2-35 (Cont.) srvctl modify service Options

Option Description

-session_state
{STATIC | DYNAMIC}

For Application Continuity, this parameter specifies whether the session state
that is not transactional is changed by the application. Oracle recommends a
setting of DYNAMIC for most applications.

Note: This parameter is considered only if -failovertype is set to
TRANSACTION for Application Continuity. It describes how non-transactional is
changed during a request. Examples of session state are NLS settings,
optimizer preferences, event settings, PL/SQL global variables, temporary
tables, advanced queues, LOBs, and result cache. If non-transactional values
change after the request starts, then use the default, DYNAMIC. Most
applications should use DYNAMIC mode. If you are unsure, then use DYNAMIC
mode.

-global_override If the service is a Global Data Services (GDS) service, then this option must
be specified to modify any of the following service attributes:

• -role
• -policy
• -failovertype
• -failovermethod
• -failoverdelay
• -failoverretry
• -edition
• -clbgoal
• -rlbgoal
• -notification
An error is returned if you attempt to modify one of these options for a GDS
service and -global_override is not included.

This option is ignored if the service is not a GDS service.

See Oracle Database Global Data Services Concepts and Administration
Guide for more information.

-verbose Verbose output

2.5.7.5.2 Example
For the database with a DB_UNIQUE_NAME of dbcrm, the following command changes the Oracle
Data Guard role of the database service named support to standby:

srvctl modify service -db dbcrm -service support -role standby

See Also:

Oracle Multitenant Administrator's Guide for information about managing services
associated with PDBs

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-65

2.5.8 remove
Removes the specified component from the Oracle Restart configuration. Oracle Restart no
longer manages the component. Any environment variable settings for the component are also
removed.

Before you remove a component from the Oracle Restart configuration, you must use SRVCTL
to stop it. Oracle recommends that you disable the component before removing it, but this is
not required.

To perform srvctl remove operations, you must be logged in to the database host computer
with the proper user account. See "Preparing to Run SRVCTL" for more information.

• srvctl remove asm
Removes an Oracle ASM instance.

• srvctl remove database
Removes a database. Prompts for confirmation first.

• srvctl remove diskgroup
Removes an Oracle ASM disk group.

• srvctl remove listener
Removes the specified listener or all listeners.

• srvctl remove ons
Removes Oracle Notification Services (ONS).

• srvctl remove service
Removes the specified database service.

See Also:

• stop command

• disable command

2.5.8.1 srvctl remove asm
Removes an Oracle ASM instance.

• Syntax and Options

• Example

2.5.8.1.1 Syntax and Options
Use the srvctl remove asm command with the following syntax:

srvctl remove asm [-force]

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-66

Table 2-36 srvctl remove asm Options

Options Description

-force Force remove, even when disk groups and databases that use Oracle ASM
exist or when the Oracle ASM instance is running.

2.5.8.1.2 Example
An example of this command is:

srvctl remove asm

2.5.8.2 srvctl remove database
Removes a database. Prompts for confirmation first.

• Syntax and Options

• Example

2.5.8.2.1 Syntax and Options
Use the srvctl remove database command with the following syntax:

Note:

After running this command, ensure that the password file is in the default location if
you want to connect to the database as the SYS user with the SYS user's password.

srvctl remove database -db db_unique_name [-force] [-noprompt] [-verbose]

Table 2-37 srvctl remove database Options

Options Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-force Force. Removes the database even if it is running.

-noprompt Suppresses the confirmation prompt and removes immediately

-verbose Verbose output. A success or failure message is displayed.

2.5.8.2.2 Example
An example of this command is:

srvctl remove database -db dbcrm

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-67

2.5.8.3 srvctl remove diskgroup
Removes an Oracle ASM disk group.

• Syntax and Options

• Example

2.5.8.3.1 Syntax and Options
Use the srvctl remove diskgroup command with the following syntax:

srvctl remove diskgroup -diskgroup diskgroup_name [-force]

Table 2-38 srvctl remove diskgroup Options

Option Description

-diskgroup diskgroup_name Disk group name

-force Force. Removes the disk group even if files are open on it.

2.5.8.3.2 Example
This example removes the disk group named DATA. An error is returned if files are open on this
disk group.

srvctl remove diskgroup -diskgroup DATA

2.5.8.4 srvctl remove listener
Removes the specified listener or all listeners.

• Syntax and Options

• Example

2.5.8.4.1 Syntax and Options
Use the srvctl remove listener command with the following syntax:

srvctl remove listener [-listener listener_name | -all] [-force]

Table 2-39 srvctl remove listener Options

Options Description

-listener
listener_name

Name of the listener that you want to remove. If omitted, then the default is
LISTENER.

-all Remove all listeners

-force Force. Removes the listener even if databases are using it.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-68

2.5.8.4.2 Example
The following command removes the listener lsnr01:

srvctl remove listener -listener lsnr01

2.5.8.5 srvctl remove ons
Removes Oracle Notification Services (ONS).

• Syntax and Options

2.5.8.5.1 Syntax and Options
Use the srvctl remove ons command as follows:

srvctl remove ons [-force] [-verbose]

Table 2-40 srvctl remove ons Options

Options Description

-force Force. Removes ONS even if it is enabled.

-verbose Verbose output

2.5.8.6 srvctl remove service
Removes the specified database service.

• Syntax and Options

• Example

2.5.8.6.1 Syntax and Options
Use the srvctl remove service command as follows:

srvctl remove service -db db_unique_name -service service_name [-global_override]

Table 2-41 srvctl remove service Options

Options Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-service
service_name

Service name

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-69

Table 2-41 (Cont.) srvctl remove service Options

Options Description

-global_override If the service is a Global Data Services (GDS) service, then this option must
be specified to remove the service.

An error is returned if you attempt to remove a GDS service and -
global_override is not included.

This option is ignored if the service is not a GDS service.

See Oracle Database Global Data Services Concepts and Administration
Guide for more information.

2.5.8.6.2 Example
An example of this command is:

srvctl remove service -db dbcrm -service sales

2.5.9 setenv
The setenv command sets values of environment variables in the Oracle Restart configuration
for a database, a listener, or the Oracle ASM instance.

To perform srvctl setenv operations, you must be logged in to the database host computer
with the proper user account. See "Preparing to Run SRVCTL" for more information.

• srvctl setenv asm
Sets the values of environment variables in the Oracle Restart configuration for the Oracle
ASM instance. Before starting the instance, Oracle Restart sets environment variables to
the values stored in the configuration.

• srvctl setenv database
Sets the values of environment variables in the Oracle Restart configuration for a database
instance. Before starting the instance, Oracle Restart sets environment variables to the
values stored in the configuration.

• srvctl setenv listener
Sets the values of environment variables in the Oracle Restart configuration for a listener.
Before starting the listener, Oracle Restart sets environment variables to the values stored
in the configuration.

See Also:

• getenv command

• unsetenv command

• "Managing Environment Variables in the Oracle Restart Configuration"

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-70

2.5.9.1 srvctl setenv asm
Sets the values of environment variables in the Oracle Restart configuration for the Oracle
ASM instance. Before starting the instance, Oracle Restart sets environment variables to the
values stored in the configuration.

• Syntax and Options

• Example

2.5.9.1.1 Syntax and Options
Use the srvctl setenv asm command with the following syntax:

srvctl setenv asm {-envs name=val[,name=val,...] | -env name=val}

Table 2-42 srvctl setenv database Options

Options Description

-envs name=val[,name=val,...] Comma-delimited list of name/value pairs of environment
variables

-env name=val Enables single environment variable to be set to a value that
contains commas or other special characters

2.5.9.1.2 Example
The following example sets the AIX operating system environment variable AIXTHREAD_SCOPE
in the Oracle ASM instance configuration:

srvctl setenv asm -envs AIXTHREAD_SCOPE=S

2.5.9.2 srvctl setenv database
Sets the values of environment variables in the Oracle Restart configuration for a database
instance. Before starting the instance, Oracle Restart sets environment variables to the values
stored in the configuration.

• Syntax and Options

• Example

2.5.9.2.1 Syntax and Options
Use the srvctl setenv database command with the following syntax:

srvctl setenv database -db db_unique_name
 {-envs name=val[,name=val,...] | -env name=val}

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-71

Table 2-43 srvctl setenv database Options

Options Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-envs
name=val[,name=val,
...]

Comma-delimited list of name/value pairs of environment variables

-env name=val Enables single environment variable to be set to a value that contains
commas or other special characters

2.5.9.2.2 Example
The following example sets the LANG environment variable in the configuration of the database
with a DB_UNIQUE_NAME of dbcrm:

srvctl setenv database -db dbcrm -envs LANG=en

2.5.9.3 srvctl setenv listener
Sets the values of environment variables in the Oracle Restart configuration for a listener.
Before starting the listener, Oracle Restart sets environment variables to the values stored in
the configuration.

• Syntax and Options

• Example

2.5.9.3.1 Syntax and Options
Use the srvctl setenv listener command with the following syntax:

srvctl setenv listener [-listener listener_name]
 {-envs name=val[,name=val,...] | -env name=val}

Table 2-44 srvctl setenv listener Options

Options Description

-listener
listener_name

Listener name. If omitted, sets the specified environment variables in all
listener configurations.

-envs
name=val[,name=val,
...]

Comma-delimited list of name/value pairs of environment variables

-env name=val Enables single environment variable to be set to a value that contains
commas or other special characters

2.5.9.3.2 Example
The following example sets the AIX operating system environment variable AIXTHREAD_SCOPE
in the configuration of the listener named crmlistener:

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-72

srvctl setenv listener -listener crmlistener -envs AIXTHREAD_SCOPE=S

2.5.10 start
Starts the specified component or components.

• srvctl start asm
Starts the Oracle ASM instance.

• srvctl start database
Starts the specified database instance.

• srvctl start diskgroup
Starts (mounts) an Oracle ASM disk group.

• srvctl start home
Starts all of the components that are managed by Oracle Restart in the specified Oracle
home. The Oracle home can be an Oracle Database home or an Oracle Grid Infrastructure
home.

• srvctl start listener
Starts the specified listener or all listeners.

• srvctl start ons
Starts Oracle Notification Services (ONS).

• srvctl start service
Starts the specified database service or services.

See Also:

"Starting and Stopping Components Managed by Oracle Restart"

2.5.10.1 srvctl start asm
Starts the Oracle ASM instance.

For this command, SRVCTL connects "/ as sysasm" to perform the operation. To run such
operations, the owner of the executables in the Oracle Grid Infrastructure home must be a
member of the OSASM group, and users running the commands must also be in the OSASM
group.

• Syntax and Options

• Example

2.5.10.1.1 Syntax and Options
Use the srvctl start asm command with the following syntax:

srvctl start asm [-startoption start_options]

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-73

Table 2-45 srvctl start asm Option

Option Description

-startoption
start_options

Comma-delimited list of options for the startup command (OPEN, MOUNT,
NOMOUNT, or FORCE). If omitted, defaults to normal startup (OPEN).

See Also: SQL*Plus User's Guide and Reference for more information about
startup options

2.5.10.1.2 Example
This example starts the Oracle ASM instance, which then mounts any disk groups named in
the ASM_DISKGROUPS initialization parameter:

srvctl start asm

This example starts the Oracle ASM instance without mounting any disk groups:

srvctl start asm -startoption nomount

2.5.10.2 srvctl start database
Starts the specified database instance.

For this command, SRVCTL connects "/ as sysdba" to perform the operation. To run such
operations, the owner of the Oracle executables in the database Oracle home must be a
member of the OSDBA group (for example, the dba group on UNIX and Linux), and users
running the commands must also be in the OSDBA group.

• Syntax and Options

• Example

2.5.10.2.1 Syntax and Options
Use the srvctl start database command with the following syntax:

srvctl start database -db db_unique_name [-startoption start_options] [-verbose]

Table 2-46 srvctl start database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-74

Table 2-46 (Cont.) srvctl start database Options

Option Description

-startoption
start_options

Comma-delimited list of options for the startup command (for example: OPEN,
MOUNT, NOMOUNT, RESTRICT, and so on)

Notes:
• This command parameter does not support the PFILE option or the

QUIET option, but it supports all other database startup options.

• For multi-word startup options, such as read only and read write,
separate the words with a space and enclose in single quotation marks
(''). For example, 'read only'.

See Also: SQL*Plus User's Guide and Reference for more information
about startup options

-verbose Verbose output

2.5.10.2.2 Example
An example of this command is:

srvctl start database -db dbcrm -startoption nomount

2.5.10.3 srvctl start diskgroup
Starts (mounts) an Oracle ASM disk group.

• Syntax and Options

• Example

2.5.10.3.1 Syntax and Options
Use the srvctl start diskgroup command with the following syntax:

srvctl start diskgroup -diskgroup diskgroup_name

Table 2-47 srvctl start diskgroup Options

Option Description

-diskgroup diskgroup_name Disk group name

2.5.10.3.2 Example
An example of this command is:

srvctl start diskgroup -diskgroup DATA

2.5.10.4 srvctl start home
Starts all of the components that are managed by Oracle Restart in the specified Oracle home.
The Oracle home can be an Oracle Database home or an Oracle Grid Infrastructure home.

This command starts the components that were stopped by a srvctl stop home. This
command uses the information in the specified state file to identify the components to start.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-75

Note:

Use this command to restart components after you install a patch in an Oracle home.

• Syntax and Options

2.5.10.4.1 Syntax and Options
Use the srvctl start home command with the following syntax:

srvctl start home -oraclehome oracle_home -statefile state_file

Table 2-48 srvctl start home Options

Option Description

-oraclehome
oracle_home

Complete path of the Oracle home

-statefile
state_file

Complete path of the state file. The state file contains the current state
information for the components in the Oracle home and is created when the
srvctl stop home command or the srvctl status home command is run.

2.5.10.5 srvctl start listener
Starts the specified listener or all listeners.

• Syntax and Options

• Example

2.5.10.5.1 Syntax and Options
Use the srvctl start listener command with the following syntax:

srvctl start listener [-listener listener_name]

Table 2-49 srvctl start listener Options

Option Description

-listener listener_name Listener name. If omitted, all Oracle Restart–managed listeners are
started.

2.5.10.5.2 Example
An example of this command is:

srvctl start listener -listener listener

2.5.10.6 srvctl start ons
Starts Oracle Notification Services (ONS).

• Syntax and Options

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-76

2.5.10.6.1 Syntax and Options
Use the srvctl start ons command with the following syntax:

srvctl start ons [-verbose]

Table 2-50 srvctl start ons Options

Option Description

-verbose Verbose output

2.5.10.7 srvctl start service
Starts the specified database service or services.

• Syntax and Options

• Example

2.5.10.7.1 Syntax and Options
Use the srvctl start service command with the following syntax:

srvctl start service -db db_unique_name [-service service_name_list |
 -pdb pluggable_database] [-startoption start_options] [-global_override] [-verbose]

Table 2-51 srvctl start service Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-service
service_name_list

Comma-delimited list of service names. The service name list is optional and,
if not provided, SRVCTL starts all of the database's services.

-pdb
pluggable_database

In a CDB, the name of the PDB associated with the service

If this option is set to an empty string, then the service is associated with root.

-startoption
start_options

Options for database startup (for example: OPEN, MOUNT, NOMOUNT and so on)
if the database must be started first

See Also: SQL*Plus User's Guide and Reference for more information about
startup options

-global_override If the service is a Global Data Services (GDS) service, then this option must
be specified to start the service.

An error is returned if you attempt to start a GDS service and -
global_override is not included.

This option is ignored if the service is not a GDS service.

See Oracle Database Global Data Services Concepts and Administration
Guide for more information.

-verbose Verbose output

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-77

2.5.10.7.2 Example
For the database with a DB_UNIQUE_NAME of dbcrm, the following example starts the sales
database service:

srvctl start service -db dbcrm -service sales

2.5.11 status
Displays the running status of the specified component or set of components.

• srvctl status asm
Displays the running status of the Oracle ASM instance.

• srvctl status database
Displays the running status of the specified database.

• srvctl status diskgroup
Displays the running status of an Oracle ASM disk group.

• srvctl status home
Displays the running status of all of the components that are managed by Oracle Restart in
the specified Oracle home. The Oracle home can be an Oracle Database home or an
Oracle Grid Infrastructure home.

• srvctl status listener
Displays the running status of the specified listener or of all Oracle Restart–managed
listeners.

• srvctl status ons
Displays the running status of Oracle Notification Services (ONS).

• srvctl status service
Displays the running status of one or more database services.

2.5.11.1 srvctl status asm
Displays the running status of the Oracle ASM instance.

• Syntax and Options

• Example

2.5.11.1.1 Syntax and Options
Use the srvctl status asm command with the following syntax:

srvctl status asm [-all] [-verbose]

Table 2-52 srvctl status asm Options

Option Description

-all Display enabled/disabled status also

-verbose Verbose output

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-78

2.5.11.1.2 Example
An example of this command is:

srvctl status asm

ASM is running on dbhost

2.5.11.2 srvctl status database
Displays the running status of the specified database.

• Syntax and Options

• Example

2.5.11.2.1 Syntax and Options
Use the srvctl status database command with the following syntax:

srvctl status database -db db_unique_name [-force] [-verbose]

Table 2-53 srvctl status database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-force Display a message if the database is disabled

-verbose Verbose output. Lists the database services that are running.

2.5.11.2.2 Example
An example of this command is:

srvctl status database -db dbcrm -verbose

Database dbcrm is running with online services mfg,sales

2.5.11.3 srvctl status diskgroup
Displays the running status of an Oracle ASM disk group.

• Syntax and Options

• Example

2.5.11.3.1 Syntax and Options
Use the srvctl status diskgroup command with the following syntax:

srvctl status diskgroup -diskgroup diskgroup_name [-all] [-verbose]

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-79

Table 2-54 srvctl status diskgroup Options

Option Description

-diskgroup diskgroup_name Disk group name

-all Display enabled/disabled status also

-verbose Verbose output. Lists the database services that are running.

2.5.11.3.2 Example
An example of this command is:

srvctl status diskgroup -diskgroup DATA

Disk Group DATA is running on dbhost

2.5.11.4 srvctl status home
Displays the running status of all of the components that are managed by Oracle Restart in the
specified Oracle home. The Oracle home can be an Oracle Database home or an Oracle Grid
Infrastructure home.

This command writes the current status of the components to the specified state file.

• Syntax and Options

2.5.11.4.1 Syntax and Options
Use the srvctl status home command with the following syntax:

srvctl status home -oraclehome oracle_home -statefile state_file

Table 2-55 srvctl status home Options

Option Description

-oraclehome oracle_home Complete path of the Oracle home

-statefile state_file Complete path of the state file

2.5.11.5 srvctl status listener
Displays the running status of the specified listener or of all Oracle Restart–managed listeners.

• Syntax and Options

• Example

2.5.11.5.1 Syntax and Options
Use the srvctl status listener command with the following syntax:

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-80

srvctl status listener [-listener listener_name] [-verbose]

Table 2-56 srvctl status listener Options

Option Description

-listener listener_name Listener name. If omitted, the status of all listeners is displayed.

-verbose Verbose output. Lists the database services that are running.

2.5.11.5.2 Example
An example of this command is:

srvctl status listener -listener crmlistener

Listener CRMLISTENER is running on dbhost

2.5.11.6 srvctl status ons
Displays the running status of Oracle Notification Services (ONS).

• Syntax and Options

2.5.11.6.1 Syntax and Options
Use the srvctl status ons command with the following syntax:

srvctl status ons [-verbose]

Table 2-57 srvctl status ons Options

Option Description

-verbose Verbose output. Lists the database services that are running.

2.5.11.7 srvctl status service
Displays the running status of one or more database services.

• Syntax and Options

• Example

2.5.11.7.1 Syntax and Options
Use the srvctl status service command with the following syntax:

srvctl status service -db db_unique_name
 [-service service_name_list | -pdb pluggable_database]
 [-force] [-verbose]

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-81

Table 2-58 srvctl status service Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-service
service_name_list

Comma-delimited list of service names. If omitted, status is listed for all
database services for the designated database.

-pdb
pluggable_database

In a multitenant container database (CDB), the name of the pluggable
database (PDB) associated with the service

If this option is set to an empty string, then the service is associated with
root.

-force Display a message if a service is disabled

-verbose Verbose output

2.5.11.7.2 Example
For the database with the DB_UNIQUE_NAME of dbcrm, the following example displays the
running status of the service sales:

srvctl status service -db dbcrm -service sales

Service sales is running on dbhost

2.5.12 stop
Stops the specified component or components.

If you want a component to remain stopped after you issue a srvctl stop command, disable
the component. See the disable command.

Note:

If a component is stopped and is not disabled, it could restart as a result of another
planned operation. That is, although a stopped component will not restart as a result
of a failure, it might be started if a dependent component is started with a srvctl
start command.

• srvctl stop asm
Stops the Oracle ASM instance.

• srvctl stop database
Stops a database and its services.

• srvctl stop diskgroup
Stops (dismounts) an Oracle ASM disk group.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-82

• srvctl stop home
Stops all of the components that are managed by Oracle Restart in the specified Oracle
home. The Oracle home can be an Oracle Database home or an Oracle Grid Infrastructure
home.

• srvctl stop listener
Stops the designated listener or all Oracle Restart–managed listeners. Stopping a listener
does not cause databases that are registered with the listener to be stopped.

• srvctl stop ons
Stops Oracle Notification Services (ONS).

• srvctl stop service
Stops one or more database services.

See Also:

"Starting and Stopping Components Managed by Oracle Restart"

2.5.12.1 srvctl stop asm
Stops the Oracle ASM instance.

• Syntax and Options

• Example

2.5.12.1.1 Syntax and Options
Use the srvctl stop asm command with the following syntax:

srvctl stop asm [-stopoption stop_options] [-force]

Table 2-59 srvctl stop asm Option

Option Description

-stopoption
stop_options

Options for the shutdown operation, for example, NORMAL, TRANSACTIONAL,
IMMEDIATE, or ABORT
See Also: SQL*Plus User's Guide and Reference for more information about
shutdown options

-force Force. Must be present if disk groups are currently started (mounted). This
option enables SRVCTL to stop the disk groups before stopping Oracle ASM.
Each dependent database instance is also stopped according to its stop
options, or with the ABORT option if the configured stop options fail.

2.5.12.1.2 Example
An example of this command is:

srvctl stop asm -stopoption abort -force

2.5.12.2 srvctl stop database
Stops a database and its services.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-83

• Syntax and Options

• Example

2.5.12.2.1 Syntax and Options
Use the srvctl stop database command with the following syntax:

srvctl stop database -db db_unique_name [-stopoption stop_options]
 [-drain_timeout timeout] [-force] [-verbose]

Table 2-60 srvctl stop database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-stopoption
stop_options

SHUTDOWN command options (for example: NORMAL, TRANSACTIONAL,
IMMEDIATE, or ABORT). Default is IMMEDIATE.

-drain_timeout
timeout

This option specifies the time allowed for resource draining to be completed in
seconds. Permitted values are NULL, 0, or any positive integer.

The draining period is intended for planned maintenance operations. During
the draining period, all current client requests are processed, but new
requests are not accepted. How draining works depends on the setting of the
-stopoption option.

The default value is NULL, which means that this option is not set. If the
option is not set, and -drain_timeout has been set on the service, then this
value is used.

If it is set to 0, then draining does not occur.

-force Stops the database, its services, and any resources that depend on the
services

-verbose Verbose output

2.5.12.2.2 Example
An example of this command is:

srvctl stop database -db dbcrm

2.5.12.3 srvctl stop diskgroup
Stops (dismounts) an Oracle ASM disk group.

• Syntax and Options

• Example

2.5.12.3.1 Syntax and Options
Use the srvctl stop diskgroup command with the following syntax:

srvctl stop diskgroup -diskgroup diskgroup_name [-force]

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-84

Table 2-61 srvctl stop diskgroup Options

Option Description

-diskgroup
diskgroup_name

Disk group name

-force Force. Dismount the disk group even if some files in the disk group are
open.

2.5.12.3.2 Example
This example stops the disk group named DATA. An error is returned if files are open on this
disk group.

srvctl stop diskgroup -diskgroup DATA

2.5.12.4 srvctl stop home
Stops all of the components that are managed by Oracle Restart in the specified Oracle home.
The Oracle home can be an Oracle Database home or an Oracle Grid Infrastructure home.

This command identifies the components that it stopped in the specified state file.

Note:

• Before stopping the components in an Oracle Grid Infrastructure home, stop the
components in a dependent Oracle Database home.

• Use this command to stop components before you install a patch in an Oracle
home.

• Syntax and Options

2.5.12.4.1 Syntax and Options
Use the srvctl stop home command with the following syntax:

srvctl stop home -oraclehome oracle_home -statefile state_file
 [-stopoption stop_options] [-force]

Table 2-62 srvctl stop home Options

Option Description

-oraclehome
oracle_home

Complete path of the Oracle home

-statefile
state_file

Complete path to where you want the state file to be written

-stopoption
stop_options

SHUTDOWN command options for the database (for example: NORMAL,
TRANSACTIONAL, IMMEDIATE, or ABORT). Default is IMMEDIATE.

See Also: SQL*Plus User's Guide and Reference for more information about
shutdown options

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-85

Table 2-62 (Cont.) srvctl stop home Options

Option Description

-force Force stop each component

2.5.12.5 srvctl stop listener
Stops the designated listener or all Oracle Restart–managed listeners. Stopping a listener
does not cause databases that are registered with the listener to be stopped.

• Syntax and Options

• Example

2.5.12.5.1 Syntax and Options
Use the srvctl stop listener command with the following syntax:

srvctl stop listener [-listener listener_name] [-force]

Table 2-63 srvctl stop listener Options

Option Description

-listener
listener_name

Listener name. If omitted, all Oracle Restart–managed listeners are stopped.

-force Force. Passes the stop command with the -f option to Oracle Clusterware.
See Oracle Clusterware Administration and Deployment Guide for more
information about the Oracle Clusterware -f option.

2.5.12.5.2 Example
An example of this command is:

srvctl stop listener -listener crmlistener

2.5.12.6 srvctl stop ons
Stops Oracle Notification Services (ONS).

• Syntax and Options

2.5.12.6.1 Syntax and Options
Use the srvctl stop ons command with the following syntax:

srvctl stop ons [-verbose]

Table 2-64 srvctl stop ons Options

Option Description

-verbose Verbose output

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-86

2.5.12.7 srvctl stop service
Stops one or more database services.

• Syntax and Options

• Example

2.5.12.7.1 Syntax and Options
Use the srvctl stop service command with the following syntax:

srvctl stop service -db db_unique_name [-service service_name_list |
 -pdb pluggable_database] [-drain_timeout timeout] [-stopoption stop_option]
 [-global_override] [-wait wait_option] [-force] [-verbose]

Table 2-65 srvctl stop service Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-service
service_name_list

Comma-delimited list of database service names. If you do not provide a
service name list, then SRVCTL stops all services on the database

-pdb
pluggable_database

In a CDB, the name of the PDB associated with the service

If this option is set to an empty string, then the service is associated with root.

-drain_timeout
timeout

This option specifies the time allowed for resource draining to be completed in
seconds. Permitted values are NULL, 0, or any positive integer.

The draining period is intended for planned maintenance operations. During
the draining period, all current client requests are processed, but new
requests are not accepted. How draining works depends on the setting of the
-stopoption option.

The default value is NULL, which means that this option is not set. If the option
is not set, and -drain_timeout has been set on the service, then this value
is used.

If it is set to 0, then draining does not occur.

-stopoption
stop_option

This option specifies the mode in which the service is stopped. The following
values are permitted:

• IMMEDIATE specifies that sessions are permitted to drain before the
service is stopped.

• TRANSACTIONAL specifies that sessions are permitted to drain for the
amount of time specified in the —drain_timeout option. The service is
stopped when the time limit is reached, and any remaining sessions are
terminated.

• NONE is the default.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-87

Table 2-65 (Cont.) srvctl stop service Options

Option Description

-global_override If the service is a Global Data Services (GDS) service, then this option must
be specified to stop the service.

An error is returned if you attempt to stop a GDS service and -
global_override is not included.

This option is ignored if the service is not a GDS service.

See Oracle Database Global Data Services Concepts and Administration
Guide for more information.

-wait wait_option This option specifies whether to wait until service draining is completed
before stopping the service. Specify YES to wait or NO to stop the service
without waiting.

-force Force. This option disconnects all of the stopped services' sessions
immediately. Uncommitted transactions are rolled back. If this option is
omitted, active sessions remain connected to the services, but no further
connections to the services can be made.

-verbose Verbose output

2.5.12.7.2 Example
The following example stops the sales database service on the database with a
DB_UNIQUE_NAME of dbcrm:

srvctl stop service -db dbcrm -service sales

2.5.13 unsetenv
The unsetenv command deletes one or more environment variables from the Oracle Restart
configuration for a database, a listener, or an Oracle ASM instance.

To perform srvctl unsetenv operations, you must be logged in to the database host computer
with the proper user account. See "Preparing to Run SRVCTL" for more information.

• srvctl unsetenv asm
Removes the specified environment variables from the Oracle Restart configuration for the
Oracle ASM instance.

• srvctl unsetenv database
Removes the specified environment variables from the Oracle Restart configuration for the
specified database.

• srvctl unsetenv listener
Removes the specified environment variables from the Oracle Restart configuration for the
specified listener or all listeners.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-88

See Also:

• setenv command

• getenv command

• "Managing Environment Variables in the Oracle Restart Configuration"

2.5.13.1 srvctl unsetenv asm
Removes the specified environment variables from the Oracle Restart configuration for the
Oracle ASM instance.

• Syntax and Options

• Example

2.5.13.1.1 Syntax and Options
Use the srvctl unsetenv asm command with the following syntax:

srvctl unsetenv asm -envs name_list

Table 2-66 srvctl unsetenv asm Options

Options Description

-envs name_list Comma-delimited list of environment variables to remove

2.5.13.1.2 Example
The following example removes the AIX operating system environment variable
AIXTHREAD_SCOPE from the Oracle ASM instance configuration:

srvctl unsetenv asm -envs AIXTHREAD_SCOPE

2.5.13.2 srvctl unsetenv database
Removes the specified environment variables from the Oracle Restart configuration for the
specified database.

• Syntax and Options

• Example

2.5.13.2.1 Syntax and Options
Use the srvctl unsetenv database command as follows:

srvctl unsetenv database -db db_unique_name -envs name_list

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-89

Table 2-67 srvctl unsetenv database Options

Options Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-envs name_list Comma-delimited list of environment variables to remove

2.5.13.2.2 Example
The following example deletes the AIXTHREAD_SCOPE environment variable from the Oracle
Restart configuration for the database with a DB_UNIQUE_NAME of dbcrm:

srvctl unsetenv database -db dbcrm -envs AIXTHREAD_SCOPE

2.5.13.3 srvctl unsetenv listener
Removes the specified environment variables from the Oracle Restart configuration for the
specified listener or all listeners.

• Syntax and Options

• Example

2.5.13.3.1 Syntax and Options
Use the srvctl unsetenv listener command with the following syntax:

srvctl unsetenv listener [-listener listener_name] -envs name_list

Table 2-68 srvctl unsetenv listener Options

Options Description

-listener
listener_name

Listener name. If omitted, the specified environment variables are removed
from the configurations of all listeners.

-envs name_list Comma-delimited list of environment variables to remove

2.5.13.3.2 Example
The following example removes the AIX operating system environment variable
AIXTHREAD_SCOPE from the listener configuration for the listener named crmlistener:

srvctl unsetenv listener -listener crmlistener -envs AIXTHREAD_SCOPE

2.5.14 update
The srvctl update command updates the running database to switch to the specified startup
option.

• srvctl update database
The srvctl update database command changes the open mode of the database.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-90

2.5.14.1 srvctl update database
The srvctl update database command changes the open mode of the database.

• Syntax and Options

2.5.14.1.1 Syntax and Options
Use the srvctl update database command as follows:

srvctl update database -db db_unique_name --startoption start_options

Table 2-69 srvctl upgrade database Options

Option Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

-startoption
start_options

Startup options for the database. Examples of startup options are OPEN,
MOUNT, or "READ ONLY".

2.5.15 upgrade
The srvctl upgrade command upgrades the resources types and resources from an older
version to a newer version.

• srvctl upgrade database
The srvctl upgrade database command upgrades the configuration of a database and all
of its services to the version of the database home from where this command is run.

2.5.15.1 srvctl upgrade database
The srvctl upgrade database command upgrades the configuration of a database and all of
its services to the version of the database home from where this command is run.

• Syntax and Options

2.5.15.1.1 Syntax and Options
Use the srvctl upgrade database command as follows:

srvctl upgrade database -db db_unique_name -oraclehome oracle_home

Table 2-70 srvctl upgrade database Options

Parameter Description

-db db_unique_name Unique name for the database. Must match the DB_UNIQUE_NAME
initialization parameter setting. If DB_UNIQUE_NAME is unspecified, then this
option must match the DB_NAME initialization parameter setting. The default
setting for DB_UNIQUE_NAME uses the setting for DB_NAME.

Chapter 2
SRVCTL Command Reference for Oracle Restart

2-91

Table 2-70 (Cont.) srvctl upgrade database Options

Parameter Description

-oraclehome
oracle_home

The full path of Oracle home for the database

2.6 CRSCTL Command Reference
You can reference details about the syntax for the CRSCTL commands that are relevant for
Oracle Restart.

Note:

You must be the root user or Oracle grid infrastructure software owner to run these
CRSCTL commands.

CRSCTL Command Syntax Overview

CRSCTL expects the following command syntax:

crsctl command has

where command is a verb such as start, stop, or enable. The has object indicates Oracle high
availability services.

Case Sensitivity

CRSCTL commands and components are case insensitive.

• check
Displays the Oracle Restart status.

• config
Displays the Oracle Restart configuration.

• disable
Disables automatic restart of Oracle Restart.

• enable
Enables automatic restart of Oracle Restart.

• start
Starts Oracle Restart.

• stop
Stops Oracle Restart.

2.6.1 check
Displays the Oracle Restart status.

Syntax and Options

crsctl check has

Chapter 2
CRSCTL Command Reference

2-92

2.6.2 config
Displays the Oracle Restart configuration.

Syntax and Options

crsctl config has

2.6.3 disable
Disables automatic restart of Oracle Restart.

Syntax and Options

crsctl disable has

2.6.4 enable
Enables automatic restart of Oracle Restart.

Syntax and Options

crsctl enable has

2.6.5 start
Starts Oracle Restart.

Syntax and Options

crsctl start has

2.6.6 stop
Stops Oracle Restart.

Syntax and Options

crsctl stop has [-f]

Chapter 2
CRSCTL Command Reference

2-93

Table 2-71 crsctl stop has Options

Options Description

-f Force. If any resources that are managed by Oracle Restart are still running,
then try to stop these resources gracefully. If a resource cannot be stopped
gracefully, then try to force the resource to stop.

For example, if an Oracle ASM instance is running, then SHUTDOWN
IMMEDIATE attempts to stop the Oracle ASM instance gracefully, while
SHUTDOWN ABORT attempts to force the Oracle ASM instance to stop.

When the -f option is not specified, this command tries to stop resources
managed by Oracle Restart gracefully but does not try to force them to stop.

Note:

For a database resource, this command always
uses SHUTDOWN ABORT, regardless of whether
the -f option is specified.

Chapter 2
CRSCTL Command Reference

2-94

3
Managing Processes

Oracle Databases uses several processes so that multiple users and applications can connect
to a single database instance simultaneously.

• About Dedicated and Shared Server Processes
Oracle Database creates server processes to handle the requests of user processes
connected to an instance.

• About Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) provides a connection pool in the
database server for typical Web application usage scenarios where the application
acquires a database connection, works on it for a relatively short duration, and then
releases it. DRCP pools "dedicated" servers. A pooled server is the equivalent of a server
foreground process and a database session combined.

• About Proxy Resident Connection Pooling
Proxy resident connection pooling uses Proxy Resident Connection Pool that can be
configured using Oracle Connection Manager in Traffic Director Mode. Proxy resident
connection pooling provides high availability, security, and performance for database
clients.

• Configuring Oracle Database for Shared Server
You can enable shared server and set or alter shared server initialization parameters.

• Configuring Database Resident Connection Pooling
The database server is preconfigured to allow database resident connection pooling.
However, you must explicitly enable this feature by starting the connection pool.

• About Oracle Database Background Processes
To maximize performance and accommodate many users, a multiprocess Oracle Database
system uses background processes. Background processes consolidate functions that
would otherwise be handled by multiple database programs running for each user process.
Background processes asynchronously perform I/O and monitor other Oracle Database
processes to provide increased parallelism for better performance and reliability.

• Managing Prespawned Processes
Oracle Database can prespawn processes for better client connection performance.

• Managing Processes for Parallel SQL Execution
You can manage parallel processing of SQL statements. In this configuration, Oracle
Database can divide the work of processing an SQL statement among multiple parallel
processes.

• Managing Processes for External Procedures
An external procedure is a procedure or function written in a programming language and
stored in a shared library. An Oracle server can call external procedures or functions using
PL/SQL routines.

• Terminating Sessions
Sometimes it is necessary to terminate current user sessions. For example, you might
want to perform an administrative operation and need to terminate all non-administrative
sessions.

• Process and Session Data Dictionary Views
You can query data dictionary views for information about processes and sessions.

3-1

3.1 About Dedicated and Shared Server Processes
Oracle Database creates server processes to handle the requests of user processes
connected to an instance.

A server process can be either of the following:

• A dedicated server process, which services only one user process

• A shared server process, which can service multiple user processes

Your database is always enabled to allow dedicated server processes, but you must
specifically configure and enable shared server by setting one or more initialization
parameters.

• Dedicated Server Processes
A dedicated server process services only one user process.

• Shared Server Processes
A shared server process can service multiple user processes.

3.1.1 Dedicated Server Processes
A dedicated server process services only one user process.

Figure 3-1 illustrates how dedicated server processes work. In this diagram two user
processes are connected to the database through dedicated server processes.

In general, it is better to be connected through a dispatcher and use a shared server process.
This is illustrated in Figure 3-2. A shared server process can be more efficient because it keeps
the number of processes required for the running instance low.

In the following situations, however, users and administrators should explicitly connect to an
instance using a dedicated server process:

• To submit a batch job (for example, when a job can allow little or no idle time for the server
process)

• To use Recovery Manager (RMAN) to back up, restore, or recover a database

To request a dedicated server connection when Oracle Database is configured for shared
server, users must connect using a net service name that is configured to use a dedicated
server. Specifically, the net service name value should include the SERVER=DEDICATED clause in
the connect descriptor.

See Also:

Oracle Database Net Services Administrator's Guide for more information about
requesting a dedicated server connection

Chapter 3
About Dedicated and Shared Server Processes

3-2

Figure 3-1 Oracle Database Dedicated Server Processes

User
Process

Application
Code

System Global Area

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Database Server

Client Workstation

Dedicated
Server

Process

Oracle
Server Code

3.1.2 Shared Server Processes
A shared server process can service multiple user processes.

Consider an order entry system with dedicated server processes. A customer phones the order
desk and places an order, and the clerk taking the call enters the order into the database. For
most of the transaction, the clerk is on the telephone talking to the customer. A server process
is not needed during this time, so the server process dedicated to the clerk's user process
remains idle. The system is slower for other clerks entering orders, because the idle server
process is holding system resources.

Shared server architecture eliminates the need for a dedicated server process for each
connection (see Figure 3-2).

Chapter 3
About Dedicated and Shared Server Processes

3-3

Figure 3-2 Oracle Database Shared Server Processes

System Global Area

CodeCode
Code

Code
CodeCode

User

Process

Database Server

Client Workstation

Code
Code

Application
Code

Dispatcher Processes

Shared

server

processes

1

2

3

4

5

6

7

Response

Oracle
Server CodeOracle

Server Code

Oracle
Server CodeOracle

Server Code

Request
Queue

Queues

In a shared server configuration, client user processes connect to a dispatcher. The dispatcher
can support multiple client connections concurrently. Each client connection is bound to a
virtual circuit, which is a piece of shared memory used by the dispatcher for client database
connection requests and replies. The dispatcher places a virtual circuit on a common queue
when a request arrives.

An idle shared server process picks up the virtual circuit from the common queue, services the
request, and relinquishes the virtual circuit before attempting to retrieve another virtual circuit
from the common queue. This approach enables a small pool of server processes to serve a
large number of clients. A significant advantage of shared server architecture over the
dedicated server model is the reduction of system resources, enabling the support of an
increased number of users.

For even better resource management, shared server can be configured for session
multiplexing, which combines multiple sessions for transmission over a single network
connection in order to conserve the operating system's resources.

Shared server architecture requires Oracle Net Services. User processes targeting the shared
server must connect through Oracle Net Services, even if they are on the same system as the
Oracle Database instance.

Chapter 3
About Dedicated and Shared Server Processes

3-4

See Also:

Oracle Database Net Services Administrator's Guide for more detailed information
about shared server, including features such as session multiplexing

3.2 About Database Resident Connection Pooling
Database Resident Connection Pooling (DRCP) provides a connection pool in the database
server for typical Web application usage scenarios where the application acquires a database
connection, works on it for a relatively short duration, and then releases it. DRCP pools
"dedicated" servers. A pooled server is the equivalent of a server foreground process and a
database session combined.

DRCP complements middle-tier connection pools that share connections between threads in a
middle-tier process. In addition, DRCP enables sharing of database connections across
middle-tier processes on the same middle-tier host and even across middle-tier hosts. This
results in significant reduction in key database resources needed to support a large number of
client connections, thereby reducing the database tier memory footprint and boosting the
scalability of both the middle-tier and the database tier. Having a pool of readily available
servers also has the additional benefit of reducing the cost of creating and tearing down client
connections.

DRCP is especially relevant for architectures with multi-process single threaded application
servers (such as PHP/Apache) that cannot perform middle-tier connection pooling. The
database can still scale to tens of thousands of simultaneous connections with DRCP.

Starting with Oracle Database Release 21c, DRCP can be configured based on the
requirements of specific pluggable databases (PDBs). PDB administrators can independently
configure, manage, and monitor a connection pool for individual PDBs. Note that the broker
processes are owned and configured by the root and shared among the PDB pools.

Note:

• Starting with Oracle Database 12c Release 2 (12.2), proxy sessions that belong
to the same user can be shared.

• On Windows platforms, setting the SQLNET.AUTHENTICATION_SERVICES parameter
value to nts is not supported with DRCP.

Chapter 3
About Database Resident Connection Pooling

3-5

See Also:

• Oracle Database Concepts for more details on DRCP

• Oracle Database Development Guide for more information about DRCP,
including restrictions on using DRCP

• Oracle Call Interface Programmer's Guide for information about options that are
available when obtaining a DRCP session

• Oracle Database Development Guide for information about sharing proxy
sessions

When To Use Database Resident Connection Pooling

Database resident connection pooling is useful when multiple clients access the database and
when any of the following apply:

• A large number of client connections need to be supported with minimum memory usage.

• The client applications are similar and can share or reuse sessions.

Applications are similar if they connect with the same database credentials and use the
same schema.

• The client applications acquire a database connection, work on it for a relatively short
duration, and then release it.

• Session affinity is not required across client requests.

• There are multiple processes and multiple hosts on the client side.

Advantages of Database Resident Connection Pooling

Using database resident connection pooling provides the following advantages:

• Enables resource sharing among multiple middle-tier client applications.

• Improves scalability of databases and applications by reducing resource usage.

Database Resident Connection Pooling and LOGON/LOGOFF Triggers

LOGON triggers fire for every authentication and every time a new session is created in DRCP.

LOGOFF triggers fire on every log off and when the sessions are destroyed in DRCP. Therefore,
a LOGOFF trigger fires when a session is terminated due to an idle time limit.

• Comparing DRCP to Dedicated Server and Shared Server
Understand the differences between dedicated server, shared server, and database
resident connection pooling.

See Also:

• Oracle Database PL/SQL Language Reference

• Oracle Database Security Guide

Chapter 3
About Database Resident Connection Pooling

3-6

3.2.1 Comparing DRCP to Dedicated Server and Shared Server
Understand the differences between dedicated server, shared server, and database resident
connection pooling.

Table 3-1 lists the differences between dedicated server, shared server, and database resident
connection pooling.

Table 3-1 Dedicated Servers, Shared Servers, and Database Resident Connection Pooling

Dedicated Server Shared Server Database Resident Connection
Pooling

When a client request is received, a new
server process and a session are
created for the client.

When the first request is received from
a client, the Dispatcher process places
this request on a common queue. The
request is picked up by an available
shared server process. The Dispatcher
process then manages the
communication between the client and
the shared server process.

When the first request is received from
a client, the Connection Broker picks an
available pooled server and hands off
the client connection to the pooled
server.

If no pooled servers are available, the
Connection Broker creates one. If the
pool has reached its maximum size, the
client request is placed on the wait
queue until a pooled server is available.

Releasing database resources involves
terminating the session and server
process.

Releasing database resources involves
terminating the session.

Releasing database resources involves
releasing the pooled server to the pool.

Memory requirement is proportional to
the number of server processes and
sessions. There is one server and one
session for each client.

Memory requirement is proportional to
the sum of the shared servers and
sessions. There is one session for each
client.

Memory requirement is proportional to
the number of pooled servers and their
sessions. There is one session for each
pooled server.

Session memory is allocated from the
PGA.

Session memory is allocated from the
SGA.

Session memory is allocated from the
PGA.

Example of Memory Usage for Dedicated Server, Shared Server, and Database Resident
Connection Pooling

Consider an application in which the memory required for each session is 400 KB and the
memory required for each server process is 4 MB. The pool size is 100 and the number of
shared servers used is 100.

If there are 5000 client connections, the memory used by each configuration is as follows:

• Dedicated Server

Memory used = 5000 X (400 KB + 4 MB) = 22 GB

• Shared Server

Memory used = 5000 X 400 KB + 100 X 4 MB = 2.5 GB

Out of the 2.5 GB, 2 GB is allocated from the SGA.

• Database Resident Connection Pooling

Memory used = 100 X (400 KB + 4 MB) + (5000 X 35KB)= 615 MB

The cost of each connection to the broker is approximately 35 KB.

Chapter 3
About Database Resident Connection Pooling

3-7

3.3 About Proxy Resident Connection Pooling
Proxy resident connection pooling uses Proxy Resident Connection Pool that can be
configured using Oracle Connection Manager in Traffic Director Mode. Proxy resident
connection pooling provides high availability, security, and performance for database clients.

You can configure CMAN-TDM to establish pooled connections from either per-service or per-
PDB connection pools. A database client that is based on any of the following technologies can
use proxy resident connection pooling to connect to a database instance – Oracle Call
Interface (OCI), Java Database Connectivity (JDBC), Oracle Data Provider for .NET
(ODP.Net), Open Database Connectivity (ODBC), Pro*C, Pro*COBOL, PHP OCI8 extension,
Node.js node-oracledb driver, Python cx_Oracle, ROracle, Ruby-oci8, Perl DBD::Oracle, or
Oracle C++ Call Interface (OCCI).

Note:

Proxy resident connection pooling is available starting with Oracle Database 18c.

When to Use Proxy Resident Connection Pooling

Proxy resident connection pooling is useful when multiple clients access a database and when
any of the following apply:

• A large number of client connections need to be supported using fewer number of
connections to a database.

• A database connection needs to be shared across middle tier connection pools.

• More than 64K sessions need to be supported (when shared servers cannot be used as
they have a limit of 64K sessions).

• High availability needs to be supported for older clients that do not support Transparent
Application Failover (TAF) and Oracle RAC, or the clients that do not use Oracle Database
Resident Connection Pooling (DRCP) or Fast Application Notification (FAN) or Application
Continuity (AC).

Advantages of Proxy Resident Connection Pooling

Using proxy resident connection pooling provides the following major advantages:

• Improved high availability (planned and unplanned)

• Improved database security

• Database connection multiplexing

Chapter 3
About Proxy Resident Connection Pooling

3-8

See Also:

The following sections in Oracle Database Net Services Administrator's Guide for
more information about enabling proxy resident connection pooling using Oracle
Connection Manager in Traffic Director Mode and per-service and per-PDB
connection pools.

• About Using Oracle Connection Manager in Traffic Director Mode

• Configuring Oracle Connection Manager in Traffic Director Mode

• Per-Service and Per-PDB Connection Pools

3.4 Configuring Oracle Database for Shared Server
You can enable shared server and set or alter shared server initialization parameters.

• Initialization Parameters for Shared Server
A set of initialization parameters control shared server operation.

• Memory Management for Shared Server
Shared server requires some user global area (UGA) in either the shared pool or large
pool. For installations with a small number of simultaneous sessions, the default sizes for
these system global area (SGA) components are generally sufficient. However, if you
expect a large number of sessions for your installation, you may have to tune memory to
support shared server.

• Enabling Shared Server
Shared server is enabled by setting the SHARED_SERVERS initialization parameter to a value
greater than 0. The other shared server initialization parameters need not be set.

• Configuring Dispatchers
The DISPATCHERS initialization parameter configures dispatcher processes in the shared
server architecture. At least one dispatcher process is required for shared server to work. If
you do not specify a dispatcher, but you enable shared server by setting SHARED_SERVER to
a nonzero value, then by default Oracle Database creates one dispatcher for the TCP
protocol.

• Disabling Shared Server
You disable shared server by setting the SHARED_SERVERS initialization parameter to 0. You
can do this dynamically with the ALTER SYSTEM statement.

• Shared Server Data Dictionary Views
You can query data dictionary views for information about your shared server configuration
and to monitor performance.

See Also:

• "About Dedicated and Shared Server Processes"

• Oracle Database SQL Language Reference for further information about the
ALTER SYSTEM statement

Chapter 3
Configuring Oracle Database for Shared Server

3-9

3.4.1 Initialization Parameters for Shared Server
A set of initialization parameters control shared server operation.

The following initialization parameters control shared server operation:

• SHARED_SERVERS: Specifies the initial number of shared servers to start and the minimum
number of shared servers to keep. This is the only required parameter for using shared
servers.

• MAX_SHARED_SERVERS: Specifies the maximum number of shared servers that can run
simultaneously.

• SHARED_SERVER_SESSIONS: Specifies the total number of shared server user sessions that
can run simultaneously. Setting this parameter enables you to reserve user sessions for
dedicated servers.

• DISPATCHERS: Configures dispatcher processes in the shared server architecture.

• MAX_DISPATCHERS: Specifies the maximum number of dispatcher processes that can run
simultaneously. This parameter can be ignored for now. It will only be useful in a future
release when the number of dispatchers is auto-tuned according to the number of
concurrent connections.

• CIRCUITS: Specifies the total number of virtual circuits that are available for inbound and
outbound network sessions.

See Also:

Oracle Database Reference for more information about these initialization
parameters

3.4.2 Memory Management for Shared Server
Shared server requires some user global area (UGA) in either the shared pool or large pool.
For installations with a small number of simultaneous sessions, the default sizes for these
system global area (SGA) components are generally sufficient. However, if you expect a large
number of sessions for your installation, you may have to tune memory to support shared
server.

See the "Configuring and Using Memory" section of Oracle Database Performance Tuning
Guide for guidelines.

3.4.3 Enabling Shared Server
Shared server is enabled by setting the SHARED_SERVERS initialization parameter to a value
greater than 0. The other shared server initialization parameters need not be set.

• Set shared server dynamically by setting the SHARED_SERVERS initialization parameter to a
nonzero value with the ALTER SYSTEM statement.

• Set the SHARED_SERVERS initialization parameter to a nonzero value at database startup by
including it in the initialization parameter file.

Chapter 3
Configuring Oracle Database for Shared Server

3-10

Because shared server requires at least one dispatcher in order to work, a dispatcher is
brought up even if no dispatcher has been configured. Dispatchers are discussed in
"Configuring Dispatchers".

Note:

If SHARED_SERVERS is not included in the initialization parameter file at database
startup, but DISPATCHERS is included and it specifies at least one dispatcher, shared
server is enabled. In this case, the default for SHARED_SERVERS is 1.

If neither SHARED_SERVERS nor DISPATCHERS is included in the initialization file, you
cannot start shared server after the instance is brought up by just altering the
DISPATCHERS parameter. You must specifically alter SHARED_SERVERS to a nonzero
value to start shared server.

Note:

If you create your Oracle database with Database Configuration Assistant (DBCA),
DBCA configures a dispatcher for Oracle XML DB (XDB). This is because XDB
protocols like HTTP and FTP require shared server. This results in a SHARED_SERVER
value of 1. Although shared server is enabled, this configuration permits only
sessions that connect to the XDB service to use shared server. To enable shared
server for regular database sessions (for submitting SQL statements), you must add
an additional dispatcher configuration, or replace the existing configuration with one
that is not specific to XDB. See "Configuring Dispatchers" for instructions.

• About Determining a Value for SHARED_SERVERS
The SHARED_SERVERS initialization parameter specifies the minimum number of shared
servers that you want created when the instance is started. After instance startup, Oracle
Database can dynamically adjust the number of shared servers based on how busy
existing shared servers are and the length of the request queue.

• Decreasing the Number of Shared Server Processes
You can decrease the minimum number of shared servers that must be kept active by
dynamically setting the SHARED_SERVERS parameter to a lower value. Thereafter, until the
number of shared servers is decreased to the value of the SHARED_SERVERS parameter, any
shared servers that become inactive are marked by PMON for termination.

• Limiting the Number of Shared Server Processes
The MAX_SHARED_SERVERS initialization parameter specifies the maximum number of shared
servers that can be automatically created by PMON. It has no default value.

• Limiting the Number of Shared Server Sessions
The SHARED_SERVER_SESSIONS initialization parameter specifies the maximum number of
concurrent shared server user sessions.

• Protecting Shared Memory
The CIRCUITS initialization parameter sets a maximum limit on the number of virtual circuits
that can be created in shared memory. This parameter has no default. If it is not specified,
then the system can create circuits as needed, limited by the DISPATCHERS initialization
parameter and system resources.

Chapter 3
Configuring Oracle Database for Shared Server

3-11

3.4.3.1 About Determining a Value for SHARED_SERVERS
The SHARED_SERVERS initialization parameter specifies the minimum number of shared servers
that you want created when the instance is started. After instance startup, Oracle Database
can dynamically adjust the number of shared servers based on how busy existing shared
servers are and the length of the request queue.

In typical systems, the number of shared servers stabilizes at a ratio of one shared server for
every ten connections. For OLTP applications, when the rate of requests is low, or when the
ratio of server usage to request is low, the connections-to-servers ratio could be higher. In
contrast, in applications where the rate of requests is high or the server usage-to-request ratio
is high, the connections-to-server ratio could be lower.

The PMON (process monitor) background process cannot terminate shared servers below the
value specified by SHARED_SERVERS. Therefore, you can use this parameter to stabilize the load
and minimize strain on the system by preventing PMON from terminating and then restarting
shared servers because of coincidental fluctuations in load.

If you know the average load on your system, you can set SHARED_SERVERS to an optimal value.
The following example shows how you can use this parameter:

Assume a database is being used by a telemarketing center staffed by 1000 agents. On
average, each agent spends 90% of the time talking to customers and only 10% of the time
looking up and updating records. To keep the shared servers from being terminated as agents
talk to customers and then spawned again as agents access the database, a DBA specifies
that the optimal number of shared servers is 100.

However, not all work shifts are staffed at the same level. On the night shift, only 200 agents
are needed. Since SHARED_SERVERS is a dynamic parameter, a DBA reduces the number of
shared servers to 20 at night, thus allowing resources to be freed up for other tasks such as
batch jobs.

3.4.3.2 Decreasing the Number of Shared Server Processes
You can decrease the minimum number of shared servers that must be kept active by
dynamically setting the SHARED_SERVERS parameter to a lower value. Thereafter, until the
number of shared servers is decreased to the value of the SHARED_SERVERS parameter, any
shared servers that become inactive are marked by PMON for termination.

• Set shared server dynamically by setting the SHARED_SERVERS initialization parameter to a
nonzero value with the ALTER SYSTEM statement.

For example, the following statement reduces the number of shared servers:

ALTER SYSTEM SET SHARED_SERVERS = 5;

Setting SHARED_SERVERS to 0 disables shared server. For more information, see "Disabling
Shared Server".

3.4.3.3 Limiting the Number of Shared Server Processes
The MAX_SHARED_SERVERS initialization parameter specifies the maximum number of shared
servers that can be automatically created by PMON. It has no default value.

If no value is specified, then PMON starts as many shared servers as is required by the load,
subject to these limitations:

Chapter 3
Configuring Oracle Database for Shared Server

3-12

• The process limit (set by the PROCESSES initialization parameter)

• A minimum number of free process slots (at least one-eighth of the total process slots, or
two slots if PROCESSES is set to less than 24)

• System resources

To limit the number of shared server processes:

• Set the MAX_SHARED_SERVERS initialization parameter.

The value of SHARED_SERVERS overrides the value of MAX_SHARED_SERVERS. Therefore, you can
force PMON to start more shared servers than the MAX_SHARED_SERVERS value by setting
SHARED_SERVERS to a value higher than MAX_SHARED_SERVERS. You can subsequently place a
new upper limit on the number of shared servers by dynamically altering the
MAX_SHARED_SERVERS to a value higher than SHARED_SERVERS.

The primary reason to limit the number of shared servers is to reserve resources, such as
memory and CPU time, for other processes. For example, consider the case of the
telemarketing center discussed previously:

The DBA wants to reserve two thirds of the resources for batch jobs at night. They set
MAX_SHARED_SERVERS to less than one third of the maximum number of processes (PROCESSES).
By doing so, the DBA ensures that even if all agents happen to access the database at the
same time, batch jobs can connect to dedicated servers without having to wait for the shared
servers to be brought down after processing agents' requests.

Another reason to limit the number of shared servers is to prevent the concurrent run of too
many server processes from slowing down the system due to heavy swapping, although
PROCESSES can serve as the upper bound for this rather than MAX_SHARED_SERVERS.

Still other reasons to limit the number of shared servers are testing, debugging, performance
analysis, and tuning. For example, to see how many shared servers are needed to efficiently
support a certain user community, you can vary MAX_SHARED_SERVERS from a very small number
upward until no delay in response time is noticed by the users.

3.4.3.4 Limiting the Number of Shared Server Sessions
The SHARED_SERVER_SESSIONS initialization parameter specifies the maximum number of
concurrent shared server user sessions.

Setting this parameter, which is a dynamic parameter, lets you reserve database sessions for
dedicated servers. This in turn ensures that administrative tasks that require dedicated servers,
such as backing up or recovering the database, are not preempted by shared server sessions.

To limit the number of shared server sessions:

• Set the SHARED_SERVER_SESSIONS initialization parameter.

This parameter has no default value. If it is not specified, the system can create shared server
sessions as needed, limited by the SESSIONS initialization parameter.

3.4.3.5 Protecting Shared Memory
The CIRCUITS initialization parameter sets a maximum limit on the number of virtual circuits
that can be created in shared memory. This parameter has no default. If it is not specified, then

Chapter 3
Configuring Oracle Database for Shared Server

3-13

the system can create circuits as needed, limited by the DISPATCHERS initialization parameter
and system resources.

To protect shared memory by limiting the number of virtual circuits that can be created in
shared memory:

• Set the CIRCUITS initialization parameter.

3.4.4 Configuring Dispatchers
The DISPATCHERS initialization parameter configures dispatcher processes in the shared server
architecture. At least one dispatcher process is required for shared server to work. If you do
not specify a dispatcher, but you enable shared server by setting SHARED_SERVER to a nonzero
value, then by default Oracle Database creates one dispatcher for the TCP protocol.

The equivalent DISPATCHERS explicit setting of the initialization parameter for this configuration
is:

dispatchers="(PROTOCOL=tcp)"

You can configure more dispatchers, using the DISPATCHERS initialization parameter, if either of
the following conditions apply:

• You must configure a protocol other than TCP/IP. You configure a protocol address with
one of the following attributes of the DISPATCHERS parameter:

– ADDRESS

– DESCRIPTION

– PROTOCOL

• You want to configure one or more of the optional dispatcher attributes:

– DISPATCHERS

– CONNECTIONS

– SESSIONS

– LISTENER

– MULTIPLEX

– SERVICE

Note:

Database Configuration Assistant helps you configure this parameter.

To configure a protocol other than TCP/IP or to configure additional dispatchers:

• Set the DISPATCHERS initialization parameter and specify the appropriate attributes.

• DISPATCHERS Initialization Parameter Attributes
You can set several attributes for the DISPATCHERS initialization parameter.

• Determining the Number of Dispatchers
Once you know the number of possible connections for each process for the operating
system, calculate the initial number of dispatchers to create during instance startup, for
each network protocol.

Chapter 3
Configuring Oracle Database for Shared Server

3-14

• Setting the Initial Number of Dispatchers
You can specify multiple dispatcher configurations by setting DISPATCHERS to a comma
separated list of strings, or by specifying multiple DISPATCHERS initialization parameters in
the initialization parameter file.

• Altering the Number of Dispatchers
You can control the number of dispatcher processes in the instance. Unlike the number of
shared servers, the number of dispatchers does not change automatically. You change the
number of dispatchers explicitly with the ALTER SYSTEM statement. You can increase the
number of dispatchers to more than the limit specified by the MAX_DISPATCHERS parameter.

• Shutting Down Specific Dispatcher Processes
With the ALTER SYSTEM SET DISPATCHERS statement, you leave it up to the database to
determine which dispatchers to shut down to reduce the number of dispatchers.
Alternatively, it is possible to shut down specific dispatcher processes.

3.4.4.1 DISPATCHERS Initialization Parameter Attributes
You can set several attributes for the DISPATCHERS initialization parameter.

A protocol address is required and is specified using one or more of the following attributes:

Attribute Description

ADDRESS Specify the network protocol address of the endpoint on which the dispatchers
listen.

DESCRIPTION Specify the network description of the endpoint on which the dispatchers listen,
including the network protocol address. The syntax is as follows:

(DESCRIPTION=(ADDRESS=...))

PROTOCOL Specify the network protocol for which the dispatcher generates a listening
endpoint. For example:

(PROTOCOL=tcp)

See the Oracle Database Net Services Reference for further information about
protocol address syntax.

The following attribute specifies how many dispatchers this configuration should have. It is
optional and defaults to 1.

Attribute Description

DISPATCHERS Specify the initial number of dispatchers to start.

The following attributes tell the instance about the network attributes of each dispatcher of this
configuration. They are all optional.

Attribute Description

CONNECTIONS Specify the maximum number of network connections to allow for each
dispatcher.

SESSIONS Specify the maximum number of network sessions to allow for each dispatcher.

LISTENER Specify an alias name for the listeners with which the LREG process registers
dispatcher information. Set the alias to a name that is resolved through a naming
method.

Chapter 3
Configuring Oracle Database for Shared Server

3-15

Attribute Description

MULTIPLEX Used to enable the Oracle Connection Manager session multiplexing feature.

SERVICE Specify the service names the dispatchers register with the listeners.

You can specify either an entire attribute name a substring consisting of at least the first three
characters. For example, you can specify SESSIONS=3, SES=3, SESS=3, or SESSI=3, and so
forth.

See Also:

Oracle Database Reference for more detailed descriptions of the attributes of the
DISPATCHERS initialization parameter

3.4.4.2 Determining the Number of Dispatchers
Once you know the number of possible connections for each process for the operating system,
calculate the initial number of dispatchers to create during instance startup, for each network
protocol.

To calculate the initial number of dispatchers to create during instance startup, use the
following formula:

Number of dispatchers =
 CEIL (max. concurrent sessions / connections for each dispatcher)

CEIL returns the result roundest up to the next whole integer.

For example, assume a system that can support 970 connections for each process, and that
has:

• A maximum of 4000 sessions concurrently connected through TCP/IP and

• A maximum of 2,500 sessions concurrently connected through TCP/IP with SSL

The DISPATCHERS attribute for TCP/IP should be set to a minimum of five dispatchers (4000 /
970), and for TCP/IP with SSL three dispatchers (2500 / 970:

DISPATCHERS='(PROT=tcp)(DISP=5)', '(PROT=tcps)(DISP=3)'

Depending on performance, you may need to adjust the number of dispatchers.

3.4.4.3 Setting the Initial Number of Dispatchers
You can specify multiple dispatcher configurations by setting DISPATCHERS to a comma
separated list of strings, or by specifying multiple DISPATCHERS initialization parameters in the
initialization parameter file.

• Set the DISPATCHERS initialization parameter.

If you specify DISPATCHERS multiple times, then the lines must be adjacent to each other in the
initialization parameter file. Internally, Oracle Database assigns an INDEX value (beginning with

Chapter 3
Configuring Oracle Database for Shared Server

3-16

zero) to each DISPATCHERS parameter. You can later refer to that DISPATCHERS parameter in an
ALTER SYSTEM statement by its index number.

Some examples of setting the DISPATCHERS initialization parameter follow.

Example: Typical

This is a typical example of setting the DISPATCHERS initialization parameter.

DISPATCHERS="(PROTOCOL=TCP)(DISPATCHERS=2)"

Example: Forcing the IP Address Used for Dispatchers

The following hypothetical example will create two dispatchers that will listen on the specified
IP address. The address must be a valid IP address for the host that the instance is on. (The
host may be configured with multiple IP addresses.)

DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)(HOST=144.25.16.201))(DISPATCHERS=2)"

Example: Forcing the Port Used by Dispatchers

To force the dispatchers to use a specific port as the listening endpoint, add the PORT attribute
as follows:

DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)(PORT=5000))"
DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)(PORT=5001))"

3.4.4.4 Altering the Number of Dispatchers
You can control the number of dispatcher processes in the instance. Unlike the number of
shared servers, the number of dispatchers does not change automatically. You change the
number of dispatchers explicitly with the ALTER SYSTEM statement. You can increase the
number of dispatchers to more than the limit specified by the MAX_DISPATCHERS parameter.

1. Monitor the following views to determine the load on the dispatcher processes:

• V$QUEUE
• V$DISPATCHER
• V$DISPATCHER_RATE

If these views indicate that the load on the dispatcher processes is consistently high,
then performance may be improved by starting additional dispatcher processes to
route user requests. In contrast, if the load on dispatchers is consistently low, reducing
the number of dispatchers may improve performance.

See Also:

Oracle Database Performance Tuning Guide for information about monitoring
these views to determine dispatcher load and performance

2. To dynamically alter the number of dispatchers when the instance is running, use the
ALTER SYSTEM statement to modify the DISPATCHERS attribute setting for an existing
dispatcher configuration. You can also add new dispatcher configurations to start
dispatchers with different network attributes.

Chapter 3
Configuring Oracle Database for Shared Server

3-17

When you reduce the number of dispatchers for a particular dispatcher configuration, the
dispatchers are not immediately removed. Rather, as users disconnect, Oracle Database
terminates dispatchers down to the limit you specify in DISPATCHERS,

For example, suppose the instance was started with this DISPATCHERS setting in the
initialization parameter file:

DISPATCHERS='(PROT=tcp)(DISP=2)', '(PROT=tcps)(DISP=2)'

To increase the number of dispatchers for the TCP/IP protocol from 2 to 3, and decrease the
number of dispatchers for the TCP/IP with SSL protocol from 2 to 1, you can issue the
following statement:

ALTER SYSTEM SET DISPATCHERS = '(INDEX=0)(DISP=3)', '(INDEX=1)(DISP=1)';

or

ALTER SYSTEM SET DISPATCHERS = '(PROT=tcp)(DISP=3)', '(PROT=tcps)(DISP=1)';

Note:

You need not specify (DISP=1). It is optional because 1 is the default value for the
DISPATCHERS parameter.

If fewer than three dispatcher processes currently exist for TCP/IP, the database creates new
ones. If multiple dispatcher processes currently exist for TCP/IP with SSL, then the database
terminates the extra ones as the connected users disconnect.

• Notes on Altering Dispatchers
Understand details about altering dispatchers.

3.4.4.4.1 Notes on Altering Dispatchers
Understand details about altering dispatchers.

• The INDEX keyword can be used to identify which dispatcher configuration to modify. If you
do not specify INDEX, then the first dispatcher configuration matching the DESCRIPTION,
ADDRESS, or PROTOCOL specified will be modified. If no match is found among the existing
dispatcher configurations, then a new dispatcher will be added.

• The INDEX value can range from 0 to n-1, where n is the current number of dispatcher
configurations. If your ALTER SYSTEM statement specifies an INDEX value equal to n, where
n is the current number of dispatcher configurations, a new dispatcher configuration will be
added.

• To see the values of the current dispatcher configurations--that is, the number of
dispatchers and so forth--query the V$DISPATCHER_CONFIG dynamic performance view. To
see which dispatcher configuration a dispatcher is associated with, query the CONF_INDX
column of the V$DISPATCHER view.

• When you change the DESCRIPTION, ADDRESS, PROTOCOL, CONNECTIONS, and MULTIPLEX
attributes of a dispatcher configuration, the change does not take effect for existing
dispatchers but only for new dispatchers. Therefore, in order for the change to be effective
for all dispatchers associated with a configuration, you must forcibly terminate existing
dispatchers after altering the DISPATCHERS parameter, and let the database start new ones
in their place with the newly specified properties.

Chapter 3
Configuring Oracle Database for Shared Server

3-18

The attributes LISTENER and SERVICES are not subject to the same constraint. They apply
to existing dispatchers associated with the modified configuration. Attribute SESSIONS
applies to existing dispatchers only if its value is reduced. However, if its value is
increased, it is applied only to newly started dispatchers.

3.4.4.5 Shutting Down Specific Dispatcher Processes
With the ALTER SYSTEM SET DISPATCHERS statement, you leave it up to the database to
determine which dispatchers to shut down to reduce the number of dispatchers. Alternatively, it
is possible to shut down specific dispatcher processes.

1. To identify the name of the specific dispatcher process to shut down, use the
V$DISPATCHER dynamic performance view.

SELECT NAME, NETWORK FROM V$DISPATCHER;

Each dispatcher is uniquely identified by a name of the form Dnnn.

2. Run an ALTER SYSTEM SHUTDOWN IMMEDIATE statement and specify the dispatcher
name.

For example, to shut down dispatcher D002, issue the following statement:

ALTER SYSTEM SHUTDOWN IMMEDIATE 'D002';

The IMMEDIATE keyword stops the dispatcher from accepting new connections, and the
database immediately terminates all existing connections through that dispatcher. After all
sessions are cleaned up, the dispatcher process shuts down. If IMMEDIATE were not
specified, then the dispatcher would wait until all of its users disconnected and all of its
connections terminated before shutting down.

3.4.5 Disabling Shared Server
You disable shared server by setting the SHARED_SERVERS initialization parameter to 0. You can
do this dynamically with the ALTER SYSTEM statement.

• Set the SHARED_SERVERS initialization parameter to 0.

When you disable shared server, no new clients can connect in shared mode. However, Oracle
Database retains some shared servers until all shared server connections are closed. The
number of shared servers retained is either the number specified by the preceding setting of
SHARED_SERVERS or the value of the MAX_SHARED_SERVERS parameter, whichever is smaller. If
both SHARED_SERVERS and MAX_SHARED_SERVERS are set to 0, then all shared servers will
terminate and requests from remaining shared server clients will be queued until the value of
SHARED_SERVERS or MAX_SHARED_SERVERS is raised again.

To terminate dispatchers once all shared server clients disconnect, enter this statement:

ALTER SYSTEM SET DISPATCHERS = '';

3.4.6 Shared Server Data Dictionary Views
You can query data dictionary views for information about your shared server configuration and
to monitor performance.

Chapter 3
Configuring Oracle Database for Shared Server

3-19

View Description

V$DISPATCHER Provides information on the dispatcher processes, including name,
network address, status, various usage statistics, and index number.

V$DISPATCHER_CONFIG Provides configuration information about the dispatchers.

V$DISPATCHER_RATE Provides rate statistics for the dispatcher processes.

V$QUEUE Contains information on the shared server message queues.

V$SHARED_SERVER Contains information on the shared servers.

V$CIRCUIT Contains information about virtual circuits, which are user connections to
the database through dispatchers and servers.

V$SHARED_SERVER_MONITO
R

Contains information for tuning shared server.

V$SGA Contains size information about various system global area (SGA)
groups. May be useful when tuning shared server.

V$SGASTAT Contains detailed statistical information about the SGA, useful for tuning.

V$SHARED_POOL_RESERVED Lists statistics to help tune the reserved pool and space within the shared
pool.

See Also:

Oracle Database Performance Tuning Guide for specific information about monitoring
and tuning shared server

3.5 Configuring Database Resident Connection Pooling
The database server is preconfigured to allow database resident connection pooling. However,
you must explicitly enable this feature by starting the connection pool.

• Database Resident Connection Pooling Initialization Parameters
You can set initialization parameters to configure database resident connection pooling.

• Enabling Database Resident Connection Pooling
Oracle Database includes a default connection pool called SYS_DEFAULT_CONNECTION_POOL.
This connection pool must be started to enable database resident connection pooling.

• Configuring the Connection Pool for Database Resident Connection Pooling
The connection pool is configured using default parameter values. You can use the
procedures in the DBMS_CONNECTION_POOL package to configure the connection pool
according to your usage. In an Oracle Real Application Clusters (Oracle RAC)
environment, the configuration parameters are applicable to each Oracle RAC instance.

• Using Multi-Pool Database Resident Connection Pooling
Starting Oracle Database 23ai, you can use multiple, named database resident connection
pooling (DRCP) pools.

• Data Dictionary Views for Database Resident Connection Pooling
You can query data dictionary views to obtain information about your connection pool and
to monitor the performance of database resident connection pooling.

Chapter 3
Configuring Database Resident Connection Pooling

3-20

• Determining the States of Connections in the Connection Pool
You can query the V$CPOOL_CONN_INFO view to determine the current state of each
connection in the connection pool.

See Also:

"About Database Resident Connection Pooling"

3.5.1 Database Resident Connection Pooling Initialization Parameters
You can set initialization parameters to configure database resident connection pooling.

Use the DRCP_DEDICATED_OPT initialization parameter to configure the use of dedicated
optimization with Database Resident Connection Pooling (DRCP). You enable dedicated
optimization by setting DRCP_DEDICATED_OPT to Yes. Dedicated optimization makes DRCP
behave like a dedicated server when the number of connections to the DRCP broker is less
than the DRCP maximum size.

The following initialization parameters are used to configure the authentication pool:

• MAX_AUTH_SERVERS
Specifies the maximum number of authentication servers in the authentication pool. The
authentication pool, which is separate from the connection pool, authenticates user
connections when client applications connect to DRCP. Set this parameter to a positive
integer that is greater than the value specified by the MIN_AUTH_SERVERS initialization
parameter.

• MIN_AUTH_SERVERS
Specifies the minimum number of authentication servers in the authentication pool. Set this
parameter to a positive integer that is lesser than the value specified by the
MAX_AUTH_SERVERS initialization parameter.

• ENABLE_PER_PDB_DRCP
Set this parameter to TRUE to enable the creation of connection pools at the pluggable
database (PDB) level. DRCP is started for both authentication pools and connection pools
when a PDB is opened. The MIN_AUTH_SERVERS and MAX_AUTH_SERVERS parameters can be
set at the PDB level. Only the PDB administrator can configure DRCP parameters for a
PDB. The SYS user must grant the following to the PDB administrator: CREATE SESSION
privilege, CREATE SYNOMYM privilege, EXECUTE privilege on the DBMS_CONNECTION_POOL
package, and SELECT privilege on the data dictionary views containing DRCP information.

When this parameter is set to FALSE, only the CDB root can manage the connection pool.
You can configure DRCP either for the entire database or at the PDB level. When DRCP is
enabled at the PDB level, database level DRCP is automatically disabled.

• DRCP_CONNECTION_LIMIT
Specifies the maximum number of Database Resident Connection Pooling (DRCP)
connections for a PDB. In CDB$ROOT, the default value is 0 (unlimited). In a PDB, if a
persistent value for SESSIONS was explicitly set for the PDB (ALTER SYSTEM SET SESSIONS
= n SCOPE={SPFILE|BOTH}), and the PDB was subsequently restarted, then the default
value is (10 * SESSIONS). Otherwise, the PDB inherits the value for this parameter from
CDB$ROOT. DRCP_CONNECTION_LIMIT is a PDB-inherited parameter. The value of this
parameter in CDB$ROOT is not a CDB-wide limit. It is the default value for each PDB.

Chapter 3
Configuring Database Resident Connection Pooling

3-21

In an Oracle RAC environment, different instances can use different values.

Related Topics

• MAX_AUTH_SERVERS

• MIN_AUTH_SERVERS

• ENABLE_PER_PDB_DRCP

• DRCP_CONNECTION_LIMIT

3.5.2 Enabling Database Resident Connection Pooling
Oracle Database includes a default connection pool called SYS_DEFAULT_CONNECTION_POOL.
This connection pool must be started to enable database resident connection pooling.

Note:

If DRCP is configured at the PDB level, the connection pool is started when the PDB
is opened. When a PDB is closed, its connection pool is stopped. The PDB
administrator can stop, start, or modify the connection pool by using the
DBMS_CONNECTION_POOL package.

To enable database resident connection pooling:

1. Start the database resident connection pool, as described in "Starting the Database
Resident Connection Pool".

2. Route the client connection requests to the connection pool, as described in "Routing
Client Connection Requests to the Connection Pool".

Starting the Database Resident Connection Pool

To start the connection pool:

1. Start SQL*Plus and connect to the database as the SYS user.

2. Issue the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL();
Once started, the connection pool remains in this state until it is explicitly stopped. The
connection pool is automatically restarted when the database instance is restarted if the pool
was active at the time of instance shutdown.

In an Oracle Real Application Clusters (Oracle RAC) environment, you can use any instance to
manage the connection pool. Any changes you make to the pool configuration are applicable
on all Oracle RAC instances.

Routing Client Connection Requests to the Connection Pool

In the client application, the connect string must specify the connect type as POOLED.

The following example shows an easy connect string that enables clients to connect to a
database resident connection pool:

examplehost.company.com:1521/books.company.com:POOLED

Chapter 3
Configuring Database Resident Connection Pooling

3-22

The following example shows a TNS connect descriptor that enables clients to connect to a
database resident connection pool:

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=myhost)
 (PORT=1521))(CONNECT_DATA=(SERVICE_NAME=sales)
 (SERVER=POOLED)))

Note:

Only the TCP protocol is supported for client connections to a database resident
connection pool.

Disabling Database Resident Connection Pooling

To disable database resident connection pooling, you must explicitly stop the connection pool.
Use the following steps:

1. Start SQL*Plus and connect to the database as the SYS user.

2. Issue the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.STOP_POOL();

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
on the DBMS_CONNECTION_POOL package.

Note:

The operation of disabling the database resident connection pool can be completed
only when all client requests that have been handed off to a server are completed.

3.5.3 Configuring the Connection Pool for Database Resident Connection
Pooling

The connection pool is configured using default parameter values. You can use the procedures
in the DBMS_CONNECTION_POOL package to configure the connection pool according to your
usage. In an Oracle Real Application Clusters (Oracle RAC) environment, the configuration
parameters are applicable to each Oracle RAC instance.

Using the CONFIGURE_POOL Procedure

The CONFIGURE_POOL procedure of the DBMS_CONNECTION_POOL package enables you to
configure the connection pool with advanced options. This procedure is usually used when you
must modify all the parameters of the connection pool.

Chapter 3
Configuring Database Resident Connection Pooling

3-23

Using the ALTER_PARAM Procedure

The ALTER_PARAM procedure of the DBMS_CONNECTION_POOL package enables you to alter a
specific configuration parameter without affecting other parameters.For example, the following
command changes the minimum number of pooled servers used:

SQL> EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM ('','MINSIZE','10');

The following example, changes the maximum number of connections that each connection
broker can handle to 50000.

SQL> EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM ('','MAXCONN_CBROK','50000');

Before you run this command, ensure that the maximum number of connections allowed by the
platform on which your database is installed is not less than the value you set for
MAXCONN_CBROK. Note that you cannot use this command when PDB-level connection pooling is
configured.

For example, in Linux, the following entry in the /etc/security/limits.conf file indicates that
the maximum number of connections allowed for the user test_user is 30000.

test_user HARD NOFILE 30000

To set the maximum number of connections that each connection broker can allow to 50000,
first change the value in the limits.conf file to a value not less than 50000.

Restoring the Connection Pool Default Settings

If you have made changes to the connection pool parameters, but you want to revert to the
default pool settings, use the RESTORE_DEFAULT procedure of the DBMS_CONNECTION_POOL
package. The command to restore the connection pool to its default settings is:

SQL> EXECUTE DBMS_CONNECTION_POOL.RESTORE_DEFAULTS();

• Configuration Parameters for Database Resident Connection Pooling
You can specify parameters for subprograms in the DBMS_CONNECTION_POOL package to
configure database resident connection pooling.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on
the DBMS_CONNECTION_POOL package.

3.5.3.1 Configuration Parameters for Database Resident Connection Pooling
You can specify parameters for subprograms in the DBMS_CONNECTION_POOL package to
configure database resident connection pooling.

When DRCP is enabled at the database level, you must connect to the CDB root and then
modify configuration parameters. When DRCP is configured at the PDB level, you must
connect to the PDB as the PDB administrator and then modify configuration parameters.

Chapter 3
Configuring Database Resident Connection Pooling

3-24

Note:

When DRCP is enabled at the PDB level, the following parameters cannot be altered
or set to the maximum value of 2147483647: MINSIZE, NUM_CBROK, and
MAXCONN_CBROK.

The following table lists the parameters that you can configure for the connection pool.

Table 3-2 Configuration Parameters for Database Resident Connection Pooling

Parameter Name Description

MINSIZE The minimum number of pooled servers in the pool. The default
value is 4 when configuring DRCP at the database level. If DRCP
is confired at the PDB level, the default value is 0.

MAXSIZE The maximum number of pooled servers in the pool. The default
value is 40.

INCRSIZE The number of pooled servers by which the pool is incremented if
servers are unavailable when a client application request is
received. The default value is 2.

SESSION_CACHED_CURSORS The number of session cursors to cache in each pooled server
session. The default value is 20.

INACTIVITY_TIMEOUT The maximum time, in seconds, the pooled server can stay idle in
the pool. After this time, the server is terminated. The default value
is 300.

This parameter does not apply if the pool is at MINSIZE.

MAX_THINK_TIME The maximum time of inactivity, in seconds, for a client after it
obtains a pooled server from the pool. After obtaining a pooled
server from the pool, if the client application does not issue a
database call for the time specified by MAX_THINK_TIME, then the
pooled server is freed and the client connection is terminated. As a
result, if a round trip call is attempted on such a connection, the
application may encounter an ORA-3113 or ORA-3115 error.

MAX_TXN_THINK_TIME The maximum time of inactivity, in seconds, for a client after it
obtains a pooled server from the pool with an open transaction.
After obtaining the pooled server from the pool, if the client
application does not issue a database call for the time specified by
MAX_TXN_THINK_TIME, then the pooled server is freed, and the
client connection is terminated. The default value of this parameter
is the value of the MAX_THINK_TIME parameter. Applications can
set the value of the MAX_TXN_THINK_TIME parameter to a value
higher than the MAX_THINK_TIME value to allow more time for the
connections with open transactions.

MAX_USE_SESSION The number of times a pooled server can be taken and released to
the pool. The default value is 500000.

MAX_LIFETIME_SESSION The time, in seconds, to live for a pooled server in the pool. The
default value is 86400.

Chapter 3
Configuring Database Resident Connection Pooling

3-25

Table 3-2 (Cont.) Configuration Parameters for Database Resident Connection Pooling

Parameter Name Description

NUM_CBROK The number of Connection Brokers that are created to handle
client requests. The default value is 1.

Creating multiple Connection Broker processes helps distribute the
load of client connection requests if there are a large number of
client applications.

When using PDB-level connection pooling, the PDB administrator
cannot modify the value of this parameter. It can only be modified
by using the CONNECTION_BROKERS initialization parameter. For
example:

ALTER SYSTEM SET
CONNECTION_BROKERS='((TYPE=POOLED)(BROKERS=2)
(CONNECTIONS=45000))'

MAXCONN_CBROK The maximum number of connections that each Connection
Broker can handle.

The default value is 40000. But if the maximum connections
allowed by the platform on which the database is installed is lesser
than the default value, this value overrides the value set using
MAXCONN_CBROK.

Set the per-process file descriptor limit of the operating system
sufficiently high so that it supports the number of connections
specified by MAXCONN_CBROK.

When using PDB-level connection pooling, you can modify the
value of this parameter only by setting CONNECTION_BROKERS
initialization parameter.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on
the DBMS_CONNECTION_POOL package.

3.5.4 Using Multi-Pool Database Resident Connection Pooling
Starting Oracle Database 23ai, you can use multiple, named database resident connection
pooling (DRCP) pools.

Database administrators can add, configure, manage, monitor, or remove a DRCP pool at the
PDB or CDB level. You can configure DRCP to use connections (pooled servers) from any
available DRCP pool and have a specific application acquire connections from a configured
DRCP pool.

The default system-named pool: SYS_DEFAULT_CONNECTION_POOL is always available. You can
create a new, named pool using the ADD_POOL procedure in the DBMS_CONNECTION_POOL
package. Depending on your requirements, applications can use connections from any DRCP
pool.

Chapter 3
Configuring Database Resident Connection Pooling

3-26

Having multiple pools allows finer control over the DRCP pool usage. You can have pooled
servers available to a few applications or services at all times. You can avoid a situation where
connections from some applications occupy all the pooled servers of a DRCP pool while other
applications wait for an available pooled server in that pool.

Components of Multi-pool DRCP

The following components are common to all the multi-pool DRCP pools and the default pool,
at the PDB or CDB level.

• A connection broker to manage the pooled servers and handle the connection hand-off
process.

• An authentication pool to authenticate user connections when client applications connect
to DRCP.

Other components include:

• A default pool called SYS_DEFAULT_CONNECTION_POOL to handle DRCP for pools when no
pool name is specified. The client cannot add or remove the default pool.

• Multiple DRCP pools that are added at the PDB or CDB level.

Figure 3-3 Multi-Pool DRCP

Related Topics

• Adding a DRCP Pool

• Removing a DRCP Pool

• About Authentication Pool in Multi-pool DRCP

• Managing the Connection Broker in Mutli-pool DRCP

3.5.5 Data Dictionary Views for Database Resident Connection Pooling
You can query data dictionary views to obtain information about your connection pool and to
monitor the performance of database resident connection pooling.

To view information about all connection pools in the database, connect to the root as the CDB
administrator. To view information about connection pools for a pluggable database (PDB),
connect to the PDB as the PDB administrator and query the views. You can view statistics for
your PDB only. The PDB administrator must be granted permissions to view the connection
pooling data dictionary views.

Chapter 3
Configuring Database Resident Connection Pooling

3-27

Table 3-3 Data Dictionary Views for Database Resident Connection Pooling

View Description

DBA_CPOOL_INFO Contains information about the connection pool such as the pool
status, the maximum and minimum number of connections, and
timeout for idle sessions.

V$CPOOL_CONN_INFO Contains information about each connection to the connection broker.

V$CPOOL_STATS Contains pool statistics such as the number of session requests,
number of times a session that matches the request was found in the
pool, and total wait time for a session request.

V$CPOOL_CC_INFO Contains information about the pool-to-connection class mapping for
the pool.

V$CPOOL_CC_STATS Contains connection class level statistics for the pool.

3.5.6 Determining the States of Connections in the Connection Pool
You can query the V$CPOOL_CONN_INFO view to determine the current state of each connection
in the connection pool.

You can query this view for detailed information about the state of each connection. For
example, you can determine which connections are busy or idle. To determine this information:

• Query the V$CPOOL_CONN_INFO view.

Example 3-1 Determining How Long Connections Have Been Waiting

The following query shows the wait time for connections in the WAITING state:

SELECT USERNAME, SERVICE, LAST_WAIT_TIME
 FROM V$CPOOL_CONN_INFO
 WHERE CONNECTION_STATUS = 'WAITING';

Example 3-2 Determining How Long Connections Have Been Active

The following query shows the amount of time each connection has been active for
connections in the ACTIVE state:

SELECT USERNAME, SERVICE, LAST_ACTIVE_TIME
 FROM V$CPOOL_CONN_INFO
 WHERE CONNECTION_STATUS = 'ACTIVE';

Example 3-3 Listing the Longest Running Active Connections

The following query shows lists the connections that have been in the ACTIVE state the longest
amount of time:

SELECT USERNAME, SERVICE, ACTIVE_TIME
 FROM V$CPOOL_CONN_INFO
 WHERE CONNECTION_STATUS = 'ACTIVE'
 ORDER BY ACTIVE_TIME DESC;

Chapter 3
Configuring Database Resident Connection Pooling

3-28

Example 3-4 Determining the Wait Time of the Oldest Connection in the Wait Queue

The following query shows the wait time for sessions in the WAITING state:

SELECT USERNAME, SERVICE, LAST_WAIT_TIME
 FROM V$CPOOL_CONN_INFO
 WHERE LAST_WAIT_TIME = (
 SELECT max(LAST_WAIT_TIME)
 FROM V$CPOOL_CONN_INFO
 WHERE CONNECTION_STATUS = 'WAITING');

3.6 About Oracle Database Background Processes
To maximize performance and accommodate many users, a multiprocess Oracle Database
system uses background processes. Background processes consolidate functions that would
otherwise be handled by multiple database programs running for each user process.
Background processes asynchronously perform I/O and monitor other Oracle Database
processes to provide increased parallelism for better performance and reliability.

Table 3-4 describes the fundamental background processes, many of which are discussed in
more detail elsewhere in this book. The use of additional database features or options can
cause more background processes to be present. For example:

• When you use Oracle Database Advanced Queuing, the queue monitor (QMNn)
background process is present.

• When you set the FILE_MAPPING initialization parameter to true for mapping data files to
physical devices on a storage subsystem, the FMON process is present.

• If you use Oracle Automatic Storage Management (Oracle ASM), then additional Oracle
ASM–specific background processes are present.

Table 3-4 Oracle Database Background Processes

Process Name Description

Database writer (DBWn or
BWnn)

The database writer writes modified blocks from the database buffer cache to the data files.
Oracle Database allows a maximum of 100 database writer processes. The names of the
first 36 database writer processes are DBW0-DBW9 and DBWa-DBWz. The names of the
37th through 100th database writer processes are BW36-BW99.

The DB_WRITER_PROCESSES initialization parameter specifies the number of database writer
processes. The database selects an appropriate default setting for this initialization
parameter or adjusts a user-specified setting based on the number of CPUs and the number
of processor groups.

For more information about setting the DB_WRITER_PROCESSES initialization parameter, see
the "Oracle Database Performance Tuning Guide".

Log writer (LGWR) The log writer process writes redo log entries to disk. Redo log entries are generated in the
redo log buffer of the system global area (SGA). LGWR writes the redo log entries
sequentially into a redo log file. If the database has a multiplexed redo log, then LGWR writes
the redo log entries to a group of redo log files. See " Managing the Redo Log" for
information about the log writer process.

Checkpoint (CKPT) At specific times, all modified database buffers in the system global area are written to the
data files by DBWn. This event is called a checkpoint. The checkpoint process is responsible
for signalling DBWn at checkpoints and updating all the data files and control files of the
database to indicate the most recent checkpoint.

Chapter 3
About Oracle Database Background Processes

3-29

Table 3-4 (Cont.) Oracle Database Background Processes

Process Name Description

System monitor (SMON) The system monitor performs recovery when a failed instance starts up again. In an Oracle
Real Application Clusters database, the SMON process of one instance can perform
instance recovery for other instances that have failed. SMON also cleans up temporary
segments that are no longer in use and recovers terminated transactions skipped during
system failure and instance recovery because of file-read or offline errors. These
transactions are eventually recovered by SMON when the tablespace or file is brought back
online.

Process monitor (PMON) The process monitor performs process recovery when a user process fails. PMON is
responsible for detecting processes that have failed. PMON is then responsible for
coordinating cleanup performed by the CLMN process and the CLnn child processes. The
cleanup frees resources that the process was using.

Archiver (ARCn) One or more archiver processes copy the redo log files to archival storage when they are full
or a log switch occurs. Archiver processes are the subject of " Managing Archived Redo Log
Files".

Recoverer (RECO) The recoverer process is used to resolve distributed transactions that are pending because
of a network or system failure in a distributed database. At timed intervals, the local RECO
attempts to connect to remote databases and automatically complete the commit or rollback
of the local portion of any pending distributed transactions. For information about this
process and how to start it, see " Managing Distributed Transactions".

Dispatcher (Dnnn) Dispatchers are optional background processes, present only when the shared server
configuration is used. Shared server was discussed previously in "Configuring Oracle
Database for Shared Server".

See Also:

Oracle Database Reference for a complete list of Oracle Database background
processes

3.7 Managing Prespawned Processes
Oracle Database can prespawn processes for better client connection performance.

• About Managing Prespawned Processes
Oracle Database can prespawn foreground and background processes in process pools.

• Managing Pools for Prespawned Processes
You can use the DBMS_PROCESS package to configure and modify the number of
prespawned processes in the foreground process pool.

3.7.1 About Managing Prespawned Processes
Oracle Database can prespawn foreground and background processes in process pools.

Oracle Database prespawns foreground processes when a dedicated broker is enabled or
threaded execution mode is enabled. When a foreground process is required, it uses the
prespawned processes internally to reduce the creation time. A database runs in threaded
execution mode when the THREADED_EXECUTION initialization parameter is set to TRUE. When

Chapter 3
Managing Prespawned Processes

3-30

this parameter is set to FALSE, the default, the database runs in process mode, and Oracle
Database does not prespawn foreground and background processes in process pools.

Client connection time can be more efficient when processes are prespawned. If threaded
execution mode is enabled, then Oracle Database prespawns processes by default in various
request pools. Each request pool is for a different kind of process. The V$PROCESS_POOL view
shows information about these pools, and you can manage these pools using the
DBMS_PROCESS package.

3.7.2 Managing Pools for Prespawned Processes
You can use the DBMS_PROCESS package to configure and modify the number of prespawned
processes in the foreground process pool.

Oracle Database can create process pools to improve the efficiency of client connections. You
can use the DBMS_PROCESS package to manage these pools. You can view the current process
pools by querying the V$PROCESS_POOL view.

Process pools are created only if the database is running in the multithreaded Oracle Database
model.

1. Connect to the database as a user with the required privileges.

The user must have SYSDBA administrative privilege, and you must exercise this privilege
using AS SYSDBA at connect time.

2. Run a subprogram in the DBMS_PROCESS package to manage a process pool.

Example 3-5 Stopping a Process Pool

SYS_DEFAULT_FOREGROUND_POOL

exec DBMS_PROCESS.STOP_POOL('SYS_DEFAULT_FOREGROUND_POOL');

The ENABLED column in the V$PROCESS_POOL view is FALSE for the process pool when it is
stopped.

Example 3-6 Starting a Process Pool

SYS_DEFAULT_FOREGROUND_POOL

exec DBMS_PROCESS.START_POOL('SYS_DEFAULT_FOREGROUND_POOL');

The ENABLED column in the V$PROCESS_POOL view is TRUE for the process pool when it is
enabled.

Example 3-7 Configuring a Process Pool

You can check the current configuration of a process pool by querying the V$PROCESS_POOL
view. For example, the following query shows the current configuration of the process pools:

COLUMN POOL_NAME FORMAT A30
COLUMN ENABLED FORMAT A7
COLUMN MIN_COUNT FORMAT 9999999
COLUMN BATCH_COUNT FORMAT 9999999
COLUMN INIT_COUNT FORMAT 9999999

Chapter 3
Managing Prespawned Processes

3-31

SELECT POOL_NAME, ENABLED, MIN_COUNT, BATCH_COUNT, INIT_COUNT
 FROM V$PROCESS_POOL;

Assume the results are the following:

POOL_NAME ENABLED MIN_COUNT BATCH_COUNT INIT_COUNT
------------------------------ ------- --------- ----------- ----------
SYS_DEFAULT_FOREGROUND_POOL TRUE 10 20 29

For this process pool, to change the minimum number of prespawned process to 20, the
number of prespawned processes created in a batch to 30, and the initial number of
prespawned processes to 40, run the following procedure:

BEGIN
 DBMS_PROCESS.CONFIGURE_POOL(
 POOL_NAME => 'SYS_DEFAULT_FOREGROUND_POOL',
 MIN_COUNT => 20,
 BATCH_COUNT => 30,
 INIT_COUNT => 40);
END;
/

You can confirm your changes by running the query again.

See Also:

• Oracle Database Reference for more information about the THREADED_EXECUTION
initialization parameter

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_PROCESS package

3.8 Managing Processes for Parallel SQL Execution
You can manage parallel processing of SQL statements. In this configuration, Oracle Database
can divide the work of processing an SQL statement among multiple parallel processes.

Note:

The parallel execution feature described in this section is available with the Oracle
Database Enterprise Edition.

• About Parallel Execution Servers
The execution of many SQL statements can be parallelized. The degree of parallelism is
the number of parallel execution servers that can be associated with a single operation.

• Altering Parallel Execution for a Session
You control parallel SQL execution for a session using the ALTER SESSION statement.

Chapter 3
Managing Processes for Parallel SQL Execution

3-32

3.8.1 About Parallel Execution Servers
The execution of many SQL statements can be parallelized. The degree of parallelism is the
number of parallel execution servers that can be associated with a single operation.

The degree of parallelism is determined by any of the following:

• A PARALLEL clause in a statement

• For objects referred to in a query, the PARALLEL clause that was used when the object was
created or altered

• A parallel hint inserted into the statement

• A default determined by the database

An example of using parallel SQL execution is contained in "Parallelizing Table Creation".

When an instance starts up, Oracle Database creates a pool of parallel execution servers
which are available for any parallel operation. A process called the parallel execution
coordinator dispatches the execution of a pool of parallel execution servers and coordinates
the sending of results from all of these parallel execution servers back to the user.

The parallel execution servers are enabled by default, because the PARALLEL_MAX_SERVERS
initialization parameter value is set to greater than 0 by default. The processes are available for
use by the various Oracle Database features that are capable of exploiting parallelism. Related
initialization parameters are tuned by the database for the majority of users, but you can alter
them as needed to suit your environment. For ease of tuning, some parameters can be altered
dynamically.

Parallelism can be used by several features, including transaction recovery, replication, and
SQL execution. In the case of parallel SQL execution, the topic discussed in this book, parallel
execution server processes remain associated with a statement throughout its execution
phase. When the statement is completely processed, these processes become available to
process other statements.

Note:

To disable parallel SQL execution in a database, set the PARALLEL_MAX_SERVERS
initialization parameter value to 0.

See Also:

• Oracle Database SQL Tuning Guide for information about using parallel hints

• Oracle Database VLDB and Partitioning Guide for more information about using
parallel execution

3.8.2 Altering Parallel Execution for a Session
You control parallel SQL execution for a session using the ALTER SESSION statement.

Chapter 3
Managing Processes for Parallel SQL Execution

3-33

• Disabling Parallel SQL Execution
You disable parallel SQL execution with an ALTER SESSION DISABLE PARALLEL DML|DDL|
QUERY statement. All subsequent DML (INSERT, UPDATE, DELETE), DDL (CREATE, ALTER), or
query (SELECT) operations are executed serially after such a statement is issued. They will
be executed serially regardless of any parallel attribute associated with the table or
indexes involved. However, statements with a PARALLEL hint override the session settings.

• Enabling Parallel SQL Execution
You enable parallel SQL execution with an ALTER SESSION ENABLE PARALLEL DML|DDL|
QUERY statement. Subsequently, when a PARALLEL clause or parallel hint is associated with
a statement, those DML, DDL, or query statements will execute in parallel. By default,
parallel execution is enabled for DDL and query statements.

• Forcing Parallel SQL Execution
You can force parallel execution of all subsequent DML, DDL, or query statements for
which parallelization is possible with the ALTER SESSION FORCE PARALLEL DML|DDL|QUERY
statement.

3.8.2.1 Disabling Parallel SQL Execution
You disable parallel SQL execution with an ALTER SESSION DISABLE PARALLEL DML|DDL|QUERY
statement. All subsequent DML (INSERT, UPDATE, DELETE), DDL (CREATE, ALTER), or query
(SELECT) operations are executed serially after such a statement is issued. They will be
executed serially regardless of any parallel attribute associated with the table or indexes
involved. However, statements with a PARALLEL hint override the session settings.

• Run the appropriate ALTER SESSION DISABLE PARALLEL statement to disable DML, DDL, or
query operations.

For example, to disable parallel DDL operations, run the following statement:

ALTER SESSION DISABLE PARALLEL DDL;

3.8.2.2 Enabling Parallel SQL Execution
You enable parallel SQL execution with an ALTER SESSION ENABLE PARALLEL DML|DDL|QUERY
statement. Subsequently, when a PARALLEL clause or parallel hint is associated with a
statement, those DML, DDL, or query statements will execute in parallel. By default, parallel
execution is enabled for DDL and query statements.

• Run the appropriate ALTER SESSION DISABLE PARALLEL statement to enable DML, DDL, or
query operations.

For example, a DML statement can be parallelized only if you specifically issue an ALTER
SESSION statement to enable parallel DML:

ALTER SESSION ENABLE PARALLEL DML;

3.8.2.3 Forcing Parallel SQL Execution
You can force parallel execution of all subsequent DML, DDL, or query statements for which
parallelization is possible with the ALTER SESSION FORCE PARALLEL DML|DDL|QUERY statement.

You can force a specific degree of parallelism to be in effect, overriding any PARALLEL clause
associated with subsequent statements. If you do not specify a degree of parallelism in the
ALTER SESSION statement, the default degree of parallelism is used. Statement level parallel
hints override the forced degree of parallelism. With table level parallel hints, the behavior

Chapter 3
Managing Processes for Parallel SQL Execution

3-34

depends on whether hints are provided for all tables. If all tables contain table-level parallel
hints, the maximum value among these hints is used. If at least one table does not contain a
table-level parallel hint, the degree of parallelism used is the highest value among the parallel
hints and the degree of parallelism specified in the ALTER SESSION command .

To force parallel execution:

• Run an ALTER SESSION FORCE PARALLEL statement.

For example, the following statement forces parallel execution of subsequent statements and
sets the overriding degree of parallelism to 5:

ALTER SESSION FORCE PARALLEL DDL PARALLEL 5;

3.9 Managing Processes for External Procedures
An external procedure is a procedure or function written in a programming language and
stored in a shared library. An Oracle server can call external procedures or functions using
PL/SQL routines.

• About External Procedures
External procedures are procedures that are written in a programming language such as
C, C++, or Java, compiled, and stored outside of the database, and then called by user
sessions. For example, a PL/SQL program unit can call one or more C routines that are
required to perform special-purpose processing.

• DBA Tasks to Enable External Procedure Calls
To enable external procedure calls, you must modify the listener and manage libraries.

3.9.1 About External Procedures
External procedures are procedures that are written in a programming language such as C, C+
+, or Java, compiled, and stored outside of the database, and then called by user sessions. For
example, a PL/SQL program unit can call one or more C routines that are required to perform
special-purpose processing.

These callable routines are stored in a dynamic link library (DLL), or a libunit in the case of a
Java class method, and are registered with the base language. Oracle Database provides a
special-purpose interface, the call specification (call spec), that enables users to call external
procedures.

When a user session calls an external procedure, the database starts an external procedure
agent on the database host computer. The default name of the agent is extproc. Each session
has its own dedicated agent. Optionally, you can create a credential so that the agent runs as a
particular operating system user. When a session terminates, the database terminates its
agent.

User applications pass to the external procedure agent the name of the DLL or libunit, the
name of the external procedure, and any relevant parameters. The external procedure agent
then loads the DLL or libunit, runs the external procedure, and passes back to the application
any values returned by the external procedure.

See Also:

Oracle Database Development Guide for information about external procedures

Chapter 3
Managing Processes for External Procedures

3-35

3.9.2 DBA Tasks to Enable External Procedure Calls
To enable external procedure calls, you must modify the listener and manage libraries.

Enabling external procedure calls may involve the following DBA tasks:

• Configuring the listener to start the extproc agent

By default, the database starts the extproc process. Under the following circumstances,
you must change this default configuration so that the listener starts the extproc process:

– You want to use a multithreaded extproc agent

– The database is running in shared server mode on Windows

– An AGENT clause in the LIBRARY specification or an AGENT IN clause in the PROCEDURE or
FUNCTION specification redirects external procedures to a different extproc agent

Instructions for changing the default configuration are in Oracle Database Development
Guide.

• Managing libraries or granting privileges related to managing libraries

The database requires DLL statements to be accessed through a schema object called a
library. For security purposes, by default, only users with the DBA role can create and
manage libraries. Therefore, you may be asked to:

– Create a directory object using the CREATE DIRECTORY statement for the location of the
library. After the directory object is created, a CREATE LIBRARY statement can specify
the directory object for the location of the library.

– Create a credential using the DBMS_CREDENTIAL.CREATE_CREDENTIAL PL/SQL
procedure. After the credential is created, a CREATE LIBRARY statement can associate
the credential with a library to run the extproc agent as a particular operating system
user.

– Use the CREATE LIBRARY statement to create the library objects that the developers
need.

– Grant the following privileges to developers: CREATE LIBRARY, CREATE ANY LIBRARY,
ALTER ANY LIBRARY, EXECUTE ANY LIBRARY, EXECUTE ON library_name, and EXECUTE ON
directory_object.

Only make an explicit grant of these privileges to trusted users, and never to the
PUBLIC role. If you plan to create PL/SQL interfaces to libraries, then only grant the
EXECUTE privilege to the PL/SQL interface. Do not grant EXECUTE on the underlying
library. You must have the EXECUTE object privilege on the library to create the PL/SQL
interface. However, users have this privilege automatically in their own schemas.
Explicit grants of EXECUTE object privilege on a library are rarely required.

Chapter 3
Managing Processes for External Procedures

3-36

See Also:

• Oracle Database PL/SQL Language Reference for information about the CREATE
LIBRARY statement

• Oracle Database Security Guide for information about creating a credential using
the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_CREDENTIAL package

• "Specifying Scheduler Job Credentials" for information about using credentials
with Oracle Scheduler jobs

3.10 Terminating Sessions
Sometimes it is necessary to terminate current user sessions. For example, you might want to
perform an administrative operation and need to terminate all non-administrative sessions.

• About Terminating Sessions
When a session is terminated, any active transactions of the session are rolled back, and
resources held by the session (such as locks and memory areas) are immediately released
and available to other sessions.

• Identifying Which Session to Terminate
To identify which session to terminate, specify the session index number and serial
number.

• Terminating an Active Session
Terminating an active session ends the session.

• Terminating an Inactive Session
If the session is not making a SQL call to Oracle Database (is INACTIVE) when it is
terminated, the ORA-00028 message is not returned immediately. The message is not
returned until the user subsequently attempts to use the terminated session.

• Cancelling a SQL Statement in a Session
You can cancel a SQL statement in a session using the ALTER SYSTEM CANCEL SQL
statement.

3.10.1 About Terminating Sessions
When a session is terminated, any active transactions of the session are rolled back, and
resources held by the session (such as locks and memory areas) are immediately released
and available to other sessions.

You terminate a current session using the SQL statement ALTER SYSTEM KILL SESSION. The
following statement terminates the session whose system identifier is 7 and serial number is
15:

ALTER SYSTEM KILL SESSION '7,15';

You can also use the DBMS_SERVICE.DISCONNECT_SESSION procedure to terminate sessions
with a named service at the current instance.

Chapter 3
Terminating Sessions

3-37

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DISCONNECT_SESSION procedure

3.10.2 Identifying Which Session to Terminate
To identify which session to terminate, specify the session index number and serial number.

To identify the system identifier (SID) and serial number of a session:

• Query the V$SESSION dynamic performance view.

For example, the following query identifies all sessions for the user jward:

SELECT SID, SERIAL#, STATUS
 FROM V$SESSION
 WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS
----- --------- --------
 7 15 ACTIVE
 12 63 INACTIVE

A session is ACTIVE when it is making a SQL call to Oracle Database. A session is INACTIVE if
it is not making a SQL call to the database.

See Also:

Oracle Database Reference for a description of the status values for a session

3.10.3 Terminating an Active Session
Terminating an active session ends the session.

If a user session is processing a transaction (ACTIVE status) when you terminate the session,
then the transaction is rolled back and the user immediately receives the following message:

ORA-00028: your session has been killed

If, after receiving the ORA-00028 message, a user submits additional statements before
reconnecting to the database, then Oracle Database returns the following message:

ORA-01012: not logged on

An active session cannot be interrupted when it is performing network I/O or rolling back a
transaction. Such a session cannot be terminated until the operation completes. In this case,
the session holds all resources until it is terminated. Additionally, the session that issues the
ALTER SYSTEM statement to terminate a session waits up to 60 seconds for the session to be
terminated. If the operation that cannot be interrupted continues past one minute, the issuer of
the ALTER SYSTEM statement receives a message indicating that the session has been marked
to be terminated. A session marked to be terminated is indicated in V$SESSION with a status of
KILLED and a server that is something other than PSEUDO.

Chapter 3
Terminating Sessions

3-38

If you are using Application Continuity, then an active session's activity is recovered when the
session terminates. If you do not want to recover a session after you terminate it, then you can
include the NOREPLAY keyword in the ALTER SYSTEM statement. For example, the following
statement specifies that the session will not be recovered:

ALTER SYSTEM KILL SESSION '7,15' NOREPLAY;

If you use the DBMS_SERVICE.DISCONNECT_SESSION procedure to terminate one or more
sessions, then you can specify DBMS_SERVICE.NOREPLAY for the disconnect_option parameter
to indicate that the sessions should not be recovered by Application Continuity. For example, to
disconnect all sessions with the service sales.example.com and specify that the sessions
should not be recovered, run the following procedure:

BEGIN
 DBMS_SERVICE.DISCONNECT_SESSION(
 service_name => 'sales.example.com',
 disconnect_option => DBMS_SERVICE.NOREPLAY);
END;
/

See Also:

• "Oracle Database SQL Language Reference"

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DISCONNECT_SESSION procedure

3.10.4 Terminating an Inactive Session
If the session is not making a SQL call to Oracle Database (is INACTIVE) when it is terminated,
the ORA-00028 message is not returned immediately. The message is not returned until the
user subsequently attempts to use the terminated session.

When an inactive session has been terminated, the STATUS of the session in the V$SESSION
view is KILLED. The row for the terminated session is removed from V$SESSION after the user
attempts to use the session again and receives the ORA-00028 message.

In the following example, an inactive session is terminated. First, V$SESSION is queried to
identify the SID and SERIAL# of the session, and then the session is terminated.

SELECT SID,SERIAL#,STATUS,SERVER
 FROM V$SESSION
 WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS SERVER
----- -------- --------- ---------
 7 15 INACTIVE DEDICATED
 12 63 INACTIVE DEDICATED
2 rows selected.

ALTER SYSTEM KILL SESSION '7,15';
Statement processed.

SELECT SID, SERIAL#, STATUS, SERVER
 FROM V$SESSION

Chapter 3
Terminating Sessions

3-39

 WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS SERVER
----- -------- --------- ---------
 7 15 KILLED PSEUDO
 12 63 INACTIVE DEDICATED
2 rows selected.

3.10.5 Cancelling a SQL Statement in a Session
You can cancel a SQL statement in a session using the ALTER SYSTEM CANCEL SQL statement.

Instead of terminating a session, you can cancel a high-load SQL statement in a session.
When you cancel a DML statement, the statement is rolled back.

The following clauses are required in an ALTER SYSTEM CANCEL SQL statement:

• SID – Session ID

• SERIAL – Session serial number

The following clauses are optional in an ALTER SYSTEM CANCEL SQL statement:

• INST_ID – Instance ID

• SQL_ID – SQL ID of the SQL statement

You can view this information for a session by querying the GV$SESSION view.

The following is the syntax for cancelling a SQL statement:

ALTER SYSTEM CANCEL SQL 'SID, SERIAL, @INST_ID, SQL_ID';

The following example cancels a SQL statement having the session identifier of 20, session
serial number of 51142, and SQL ID of 8vu7s907prbgr:

ALTER SYSTEM CANCEL SQL '20, 51142, 8vu7s907prbgr';

Note:

• If @INST_ID is not specified, the instance ID of the current session is used.

• If SQL_ID is not specified, the currently running SQL statement in the specified
session is terminated.

See Also:

• Oracle Database Get Started with Performance Tuning for information about
identifying high-load SQL statements

• Oracle Database Reference for information about the GV$SESSION view

Chapter 3
Terminating Sessions

3-40

3.11 Process and Session Data Dictionary Views
You can query data dictionary views for information about processes and sessions.

View Description

V$PROCESS Contains information about the currently active processes

V$SESSION Lists session information for each current session

V$SESS_IO Contains I/O statistics for each user session

V$SESSION_LONGOPS Displays the status of various operations that run for longer than 6
seconds (in absolute time). These operations currently include many
backup and recovery functions, statistics gathering, and query
execution. More operations are added for every Oracle Database
release.

V$SESSION_WAIT Displays the current or last wait for each session

V$SESSION_WAIT_HISTORY Lists the last ten wait events for each active session

V$WAIT_CHAINS Displays information about blocked sessions

V$SESSTAT Contains session statistics

V$RESOURCE_LIMIT Provides information about current and maximum global resource
utilization for some system resources

V$SQLAREA Contains statistics about shared SQL areas. Contains one row for
each SQL string. Provides statistics about SQL statements that are
in memory, parsed, and ready for execution

Chapter 3
Process and Session Data Dictionary Views

3-41

4
Managing Memory

Memory management involves maintaining optimal sizes for the Oracle Database instance
memory structures as demands on the database change.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers
to a non-CDB from a previous release.

• About Memory Management
The memory structures that must be managed are the system global area (SGA) and the
instance program global area (instance PGA). Oracle Database supports various memory
management methods, which are chosen by initialization parameter settings.

• Memory Architecture Overview
Understand basic memory structures associated with Oracle Database.

• Using Unified Memory Management
You can allow the Oracle Database instance to automatically manage and tune memory for
you based on total memory size.

• Using Automatic Memory Management
You can allow the Oracle Database instance to automatically manage and tune memory for
you.

• Configuring Memory Manually
If you prefer to exercise more direct control over the sizes of individual memory
components, you can disable automatic memory management and configure the database
for manual memory management.

• Using Force Full Database Caching Mode
An Oracle Database instance can cache the full database in the buffer cache.

• Configuring Database Smart Flash Cache
The Database Smart Flash Cache feature is a transparent extension of the database buffer
cache using solid state device (SSD) technology. Database Smart Flash Cache can greatly
improve the performance of Oracle databases by reducing the amount of disk I/O at a
much lower cost than adding an equivalent amount of RAM.

• Improving Query Response Time with the Server Result Cache
The server result cache improves the performance of repetitive queries.

• Improving Query Performance with Oracle Database In-Memory
Oracle Database In-Memory (Database In-Memory) is a suite of features, first introduced in
Oracle Database 12c Release 1 (12.1.0.2), that greatly improves performance for real-time
analytics and mixed workloads.

4-1

• Enabling High Performance Data Streaming with the Memoptimized Rowstore
The Memoptimized Rowstore enables high performance data streaming for applications,
such as Internet of Things (IoT) applications that typically stream small amounts of data in
single-row inserts from a large number of clients simultaneously and also query data for
clients at a very high frequency.

• Memory Management Reference
Automatic memory management is supported only on some platforms. Also, you can query
a set of data dictionary views for information on memory management.

• Configuring and Using True Cache
Oracle True Cache (True Cache) is an in-memory, consistent, and automatically managed
cache for Oracle Database.

4.1 About Memory Management
The memory structures that must be managed are the system global area (SGA) and the
instance program global area (instance PGA). Oracle Database supports various memory
management methods, which are chosen by initialization parameter settings.

Unified Memory Management

Unified Memory configures the database instance memory with a single parameter,
MEMORY_SIZE. The database can dynamically use this memory for any ratio of SGA, PGA,
MGA, UGA, and other memory segments based on the current workload. If huge pages are
configured, they can be used for both SGA and PGA. Unified Memory provides an extremely
flexible memory configuration.

Automatic Memory Management

Oracle Database can manage the SGA memory and instance PGA memory completely
automatically. You designate only the total memory size to be used by the instance, and Oracle
Database dynamically exchanges memory between the SGA and the instance PGA as needed
to meet processing demands. This capability is referred to as automatic memory management.
With this memory management method, the database also dynamically tunes the sizes of the
individual SGA components and the sizes of the individual PGAs. Oracle recommends
automatic memory management for databases where the total size of the SGA and PGA
memory is less than or equal to four gigabytes.

Manual Memory Management

If you prefer to exercise more direct control over the sizes of individual memory components,
you can disable automatic memory management and configure the database for manual
memory management. There are a few different methods available for manual memory
management. Some of these methods retain some degree of automation. The methods
therefore vary in the amount of effort and knowledge required by the DBA. These methods are:

• Automatic shared memory management - for the SGA

• Manual shared memory management - for the SGA

• Automatic PGA memory management - for the instance PGA

• Manual PGA memory management - for the instance PGA

These memory management methods are described later in this chapter.

If you create your database with Database Configuration Assistant (DBCA) and choose the
basic installation option, automatic memory management is enabled when system memory is
less than or equal to 4 gigabytes. When system memory is greater than 4 gigabytes, automatic

Chapter 4
About Memory Management

4-2

memory management is disabled, and automatic shared memory management is enabled. If
you choose advanced installation, then DBCA enables you to select automatic memory
management or automatic shared memory management.

Oracle recommends automatic shared memory management when the total size of the SGA
and PGA memory is four gigabytes or larger.

Note:

The easiest way to manage memory is to use the graphical user interface of Oracle
Enterprise Manager Cloud Control (Cloud Control).

For information about managing memory with Cloud Control, see the Cloud Control
online help.

See Also:

Oracle Database Concepts for an introduction to the various automatic and manual
methods of managing memory.

4.2 Memory Architecture Overview
Understand basic memory structures associated with Oracle Database.

The basic memory structures associated with Oracle Database include:

• System Global Area (SGA)

The SGA is a group of shared memory structures, known as SGA components, that
contain data and control information for one Oracle Database instance. The SGA is shared
by all server and background processes. Examples of data stored in the SGA include
cached data blocks and shared SQL areas.

• Program Global Area (PGA)

A PGA is a memory region that contains data and control information for a server process.
It is nonshared memory created by Oracle Database when a server process is started.
Access to the PGA is exclusive to the server process. There is one PGA for each server
process. Background processes also allocate their own PGAs. The total PGA memory
allocated for all background and server processes attached to an Oracle Database
instance is referred to as the total instance PGA memory, and the collection of all
individual PGAs is referred to as the total instance PGA, or just instance PGA.

Figure 4-1 illustrates the relationships among these memory structures.

Chapter 4
Memory Architecture Overview

4-3

Figure 4-1 Oracle Database Memory Structures

System Global Area

Server
process

Background
process

Background
process

PGA PGA

PGA

PGA

Database smart
flash cache

PGA

Server
process

Server
process

Java

Pool

Vector

Pool

Streams

Pool

Shared

Pool

Large

Pool

Other

Components

Redo

Buffer

Buffer

Cache

If your database is running on Solaris or Oracle Linux, you can optionally add another memory
component: Database Smart Flash Cache. Database Smart Flash Cache is an extension of the
SGA-resident buffer cache, providing a level 2 cache for database blocks. It can improve
response time and overall throughput for both read-intensive online transaction processing
(OLTP) workloads and ad hoc queries and bulk data modifications in a data warehouse
environment. Database Smart Flash Cache resides on one or more flash disk devices, which
are solid state storage devices that use flash memory. Database Smart Flash Cache is typically
more economical than additional main memory, and is an order of magnitude faster than disk
drives.

Starting with Oracle Database 12c Release 1 (12.1.0.2), the big table cache enables serial
queries and parallel queries to use the buffer cache. The big table cache facilitates efficient
caching for large tables in data warehousing environments, even if these tables do not fully fit
in the buffer cache. Table scans can use the big table cache in the following scenarios:

• Parallel queries

In single-instance and Oracle Real Application Clusters (Oracle RAC) databases, parallel
queries can use the big table cache when the DB_BIG_TABLE_CACHE_PERCENT_TARGET
initialization parameter is set to a non-zero value, and PARALLEL_DEGREE_POLICY is set to
AUTO or ADAPTIVE.

• Serial queries

Chapter 4
Memory Architecture Overview

4-4

In a single-instance configuration only, serial queries can use the big table cache when the
DB_BIG_TABLE_CACHE_PERCENT_TARGET initialization parameter is set to a non-zero value.

See Also:

• "Configuring Database Smart Flash Cache"

• Oracle Database Concepts for more information on memory architecture in an
Oracle Database instance

• Oracle Database Reference for more information about the
DB_BIG_TABLE_CACHE_PERCENT_TARGET initialization parameter

• Oracle Database Reference for more information about the
PARALLEL_DEGREE_POLICY initialization parameter

• Oracle Database VLDB and Partitioning Guide for more information about the big
table cache

4.3 Using Unified Memory Management
You can allow the Oracle Database instance to automatically manage and tune memory for
you based on total memory size.

Unified Memory configures the database instance memory with a single parameter,
MEMORY_SIZE. The database can dynamically use this memory for SGA, PGA, MGA, UGA, and
other memory segments. The split between different memory segments is based off the
memory sizing of the PDBs currently opened in the CDB. If huge pages are configured, they
can be used for both SGA and PGA. Unified Memory provides an extremely flexible memory
configuration.

4.4 Using Automatic Memory Management
You can allow the Oracle Database instance to automatically manage and tune memory for
you.

• About Automatic Memory Management
The simplest way to manage instance memory is to allow the Oracle Database instance to
automatically manage and tune it for you. To do so (on most platforms), you set only a
target memory size initialization parameter (MEMORY_TARGET) and optionally a maximum
memory size initialization parameter (MEMORY_MAX_TARGET).

• Enabling Automatic Memory Management
If you did not enable automatic memory management upon database creation (either by
selecting the proper options in DBCA or by setting the appropriate initialization parameters
for the CREATE DATABASE SQL statement), then you can enable it at a later time. Enabling
automatic memory management involves a shutdown and restart of the database.

• Monitoring and Tuning Automatic Memory Management
The dynamic performance view V$MEMORY_DYNAMIC_COMPONENTS shows the current sizes of
all dynamically tuned memory components, including the total sizes of the SGA and
instance PGA.

Chapter 4
Using Unified Memory Management

4-5

4.4.1 About Automatic Memory Management
The simplest way to manage instance memory is to allow the Oracle Database instance to
automatically manage and tune it for you. To do so (on most platforms), you set only a target
memory size initialization parameter (MEMORY_TARGET) and optionally a maximum memory size
initialization parameter (MEMORY_MAX_TARGET).

The total memory that the instance uses remains relatively constant, based on the value of
MEMORY_TARGET, and the instance automatically distributes memory between the system global
area (SGA) and the instance program global area (instance PGA). As memory requirements
change, the instance dynamically redistributes memory between the SGA and instance PGA.

When automatic memory management is not enabled, you must size both the SGA and
instance PGA manually.

Because the MEMORY_TARGET initialization parameter is dynamic, you can change
MEMORY_TARGET at any time without restarting the database. MEMORY_MAX_TARGET, which is not
dynamic, serves as an upper limit so that you cannot accidentally set MEMORY_TARGET too high,
and so that enough memory is set aside for the database instance in case you do want to
increase total instance memory in the future. Because certain SGA components either cannot
easily shrink or must remain at a minimum size, the instance also prevents you from setting
MEMORY_TARGET too low.

Note:

• If the total physical memory of a database instance is greater than 4 GB, then
you cannot specify the Automatic Memory Management option during the
database installation and creation. Oracle recommends that you use Automatic
Shared Memory Management in such environments.

• You cannot enable automatic memory management if the LOCK_SGA initialization
parameter is TRUE. See Oracle Database Reference for information about this
parameter.

See Also:

"Platforms That Support Automatic Memory Management"

4.4.2 Enabling Automatic Memory Management
If you did not enable automatic memory management upon database creation (either by
selecting the proper options in DBCA or by setting the appropriate initialization parameters for
the CREATE DATABASE SQL statement), then you can enable it at a later time. Enabling
automatic memory management involves a shutdown and restart of the database.

To enable automatic memory management:

1. Start SQL*Plus and connect to the Oracle Database instance with the SYSDBA
administrative privilege.

Chapter 4
Using Automatic Memory Management

4-6

See "Connecting to the Database with SQL*Plus" and "Database Administrator
Authentication" for instructions.

2. Calculate the minimum value for MEMORY_TARGET as follows:

a. Determine the current sizes of SGA_TARGET and PGA_AGGREGATE_TARGET in megabytes
by entering the following SQL*Plus commands:

SHOW PARAMETER SGA_TARGET

NAME TYPE VALUE
------------------------------------ ----------- --------------------------
sga_target big integer 272M

SHOW PARAMETER PGA_AGGREGATE_TARGET

NAME TYPE VALUE
------------------------------------ ----------- --------------------------
pga_aggregate_target big integer 90M

See "Enabling Automatic Shared Memory Management" for information about setting
the SGA_TARGET parameter if it is not set.

b. Run the following query to determine the maximum instance PGA allocated in
megabytes since the database was started:

SELECT VALUE/1048576 FROM V$PGASTAT WHERE NAME='maximum PGA allocated';
c. Compute the maximum value between the query result from step 2b and

PGA_AGGREGATE_TARGET. Add SGA_TARGET to this value.

MEMORY_TARGET = SGA_TARGET + MAX(PGA_AGGREGATE_TARGET, MAXIMUM PGA ALLOCATED)
For example, if SGA_TARGET is 272M and PGA_AGGREGATE_TARGET is 90M as shown above,
and if the maximum PGA allocated is determined to be 120M, then MEMORY_TARGET should
be at least 392M (272M + 120M).

3. Choose the value for MEMORY_TARGET that you want to use.

This can be the minimum value that you computed in step 2, or you can choose to use a
larger value if you have enough physical memory available.

4. For the MEMORY_MAX_TARGET initialization parameter, decide on a maximum amount of
memory that you would want to allocate to the database for the foreseeable future. That is,
determine the maximum value for the sum of the SGA and instance PGA sizes. This
number can be larger than or the same as the MEMORY_TARGET value that you chose in the
previous step.

5. Do one of the following:

• If you started your Oracle Database instance with a server parameter file, which is the
default if you created the database with the Database Configuration Assistant (DBCA),
enter the following command:

ALTER SYSTEM SET MEMORY_MAX_TARGET = nM SCOPE = SPFILE;

where n is the value that you computed in step 4.

The SCOPE = SPFILE clause sets the value only in the server parameter file, and not for
the running instance. You must include this SCOPE clause because MEMORY_MAX_TARGET
is not a dynamic initialization parameter.

• If you started your instance with a text initialization parameter file, manually edit the file
so that it contains the following statements:

Chapter 4
Using Automatic Memory Management

4-7

memory_max_target = nM
memory_target = mM

where n is the value that you determined in step 4, and m is the value that you
determined in step 3.

Note:

In a text initialization parameter file, if you omit the line for MEMORY_MAX_TARGET
and include a value for MEMORY_TARGET, then the database automatically sets
MEMORY_MAX_TARGET to the value of MEMORY_TARGET. If you omit the line for
MEMORY_TARGET and include a value for MEMORY_MAX_TARGET, then the
MEMORY_TARGET parameter defaults to zero. After startup, you can then
dynamically change MEMORY_TARGET to a nonzero value, provided that it does not
exceed the value of MEMORY_MAX_TARGET.

6. Shut down and restart the database.

See Oracle Database SQL Language Reference for instructions.

7. If you started your Oracle Database instance with a server parameter file, enter the
following commands:

ALTER SYSTEM SET MEMORY_TARGET = nM;
ALTER SYSTEM SET SGA_TARGET = 0;
ALTER SYSTEM SET PGA_AGGREGATE_TARGET = 0;

where n is the value that you determined in step 3.

Note:

With MEMORY_TARGET set, the SGA_TARGET setting becomes the minimum size of the
SGA and the PGA_AGGREGATE_TARGET setting becomes the minimum size of the
instance PGA. By setting both of these to zero as shown, there are no minimums,
and the SGA and instance PGA can grow as needed as long as their sum is less
than or equal to the MEMORY_TARGET setting. The sizing of SQL work areas remains
automatic.

You can omit the statements that set the SGA_TARGET and PGA_AGGREGATE_TARGET
parameter values to zero and leave either or both of the values as positive numbers.
In this case, the values act as minimum values for the sizes of the SGA or instance
PGA.

In addition, you can use the PGA_AGGREGATE_LIMIT initialization parameter to set an
instance-wide hard limit for PGA memory. You can set PGA_AGGREGATE_LIMIT whether
or not you use automatic memory management. See "Using Automatic PGA Memory
Management".

Chapter 4
Using Automatic Memory Management

4-8

See Also:

• "About Automatic Memory Management"

• "Memory Architecture Overview"

• Oracle Database SQL Language Reference for information on the ALTER SYSTEM
SQL statement

4.4.3 Monitoring and Tuning Automatic Memory Management
The dynamic performance view V$MEMORY_DYNAMIC_COMPONENTS shows the current sizes of all
dynamically tuned memory components, including the total sizes of the SGA and instance
PGA.

• Query the V$MEMORY_TARGET_ADVICE view for tuning advice for the MEMORY_TARGET
initialization parameter.

For example, run the following query:

SQL> select * from v$memory_target_advice order by memory_size;

MEMORY_SIZE MEMORY_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR VERSION
----------- ------------------ ------------ ------------------- ----------
 180 .5 458 1.344 0
 270 .75 367 1.0761 0
 360 1 341 1 0
 450 1.25 335 .9817 0
 540 1.5 335 .9817 0
 630 1.75 335 .9817 0
 720 2 335 .9817 0

The row with the MEMORY_SIZE_FACTOR of 1 shows the current size of memory, as set by the
MEMORY_TARGET initialization parameter, and the amount of DB time required to complete the
current workload. In previous and subsequent rows, the results show several alternative
MEMORY_TARGET sizes. For each alternative size, the database shows the size factor (the
multiple of the current size), and the estimated DB time to complete the current workload if the
MEMORY_TARGET parameter were changed to the alternative size. Notice that for a total memory
size smaller than the current MEMORY_TARGET size, estimated DB time increases. Notice also
that in this example, there is nothing to be gained by increasing total memory size beyond
450MB. However, this situation might change if a complete workload has not yet been run.

See Also:

• Oracle Database Reference for more information about the
V$MEMORY_DYNAMIC_COMPONENTS dynamic performance view

• Oracle Database Reference for more information about the
V$MEMORY_TARGET_ADVICE dynamic performance view

• Oracle Database Performance Tuning Guide for a definition of DB time.

Chapter 4
Using Automatic Memory Management

4-9

4.5 Configuring Memory Manually
If you prefer to exercise more direct control over the sizes of individual memory components,
you can disable automatic memory management and configure the database for manual
memory management.

• About Manual Memory Management
There are two different manual memory management methods for the SGA, and two for
the instance PGA.

• Using Automatic Shared Memory Management
Automatic Shared Memory Management simplifies SGA memory management.

• Using Manual Shared Memory Management
To manage shared memory manually, you first ensure that both automatic memory
management and automatic shared memory management are disabled. You then manually
configure, monitor, and tune memory components..

• Using Automatic PGA Memory Management
By default, Oracle Database automatically and globally manages the total amount of
memory dedicated to the instance PGA. You can control this amount by setting the
initialization parameter PGA_AGGREGATE_TARGET.

• Using Manual PGA Memory Management
Oracle Database supports manual PGA memory management, in which you manually tune
SQL work areas.

4.5.1 About Manual Memory Management
There are two different manual memory management methods for the SGA, and two for the
instance PGA.

The two manual memory management methods for the SGA vary in the amount of effort and
knowledge required by the DBA. With automatic shared memory management, you set target
and maximum sizes for the SGA. The database then sets the total size of the SGA to your
designated target, and dynamically tunes the sizes of many SGA components. With manual
shared memory management, you set the sizes of several individual SGA components,
thereby determining the overall SGA size. You then manually tune these individual SGA
components on an ongoing basis.

For the instance PGA, there is automatic PGA memory management, in which you set a target
size for the instance PGA. The database then sets the size of the instance PGA to your target,
and dynamically tunes the sizes of individual PGAs. There is also manual PGA memory
management, in which you set maximum work area size for each type of SQL operator (such
as sort or hash-join). This memory management method, although supported, is not
recommended.

See Also:

Oracle Database Concepts for an overview of Oracle Database memory
management methods.

Chapter 4
Configuring Memory Manually

4-10

4.5.2 Using Automatic Shared Memory Management
Automatic Shared Memory Management simplifies SGA memory management.

• About Automatic Shared Memory Management
With automatic shared memory management, you specify the total amount of SGA
memory available to an instance using the SGA_TARGET initialization parameter and Oracle
Database automatically distributes this memory among the various SGA components to
ensure the most effective memory utilization.

• Components and Granules in the SGA
The SGA comprises several memory components, which are pools of memory used to
satisfy a particular class of memory allocation requests.

• Setting Maximum SGA Size
The SGA_MAX_SIZE initialization parameter specifies the maximum size of the System
Global Area for the lifetime of the instance.

• Setting SGA Target Size
You enable the automatic shared memory management feature by setting the SGA_TARGET
initialization parameter to a nonzero value. This parameter sets the total size of the SGA. It
replaces the parameters that control the memory allocated for a specific set of individual
components, which are now automatically and dynamically resized (tuned) as needed.

• Enabling Automatic Shared Memory Management
The procedure for enabling automatic shared memory management (ASMM) differs
depending on whether you are changing to ASMM from manual shared memory
management or from automatic memory management.

• Setting Minimums for Automatically Sized SGA Components
You can exercise some control over the size of the automatically sized SGA components
by specifying minimum values for the parameters corresponding to these components.
Doing so can be useful if you know that an application cannot function properly without a
minimum amount of memory in specific components.

• Dynamic Modification of SGA_TARGET
The SGA_TARGET parameter can be dynamically increased up to the value specified for the
SGA_MAX_SIZE parameter, and it can also be reduced.

• Modifying Parameters for Automatically Sized Components
When automatic shared memory management is enabled, the manually specified sizes of
automatically sized components serve as a lower bound for the size of the components.
You can modify this limit dynamically by changing the values of the corresponding
parameters.

• Modifying Parameters for Manually Sized Components
Parameters for manually sized components can be dynamically altered as well. However,
rather than setting a minimum size, the value of the parameter specifies the precise size of
the corresponding component.

See Also:

• Oracle Database Performance Tuning Guide for information about tuning the
components of the SGA

Chapter 4
Configuring Memory Manually

4-11

4.5.2.1 About Automatic Shared Memory Management
With automatic shared memory management, you specify the total amount of SGA memory
available to an instance using the SGA_TARGET initialization parameter and Oracle Database
automatically distributes this memory among the various SGA components to ensure the most
effective memory utilization.

When automatic shared memory management is enabled, the sizes of the different SGA
components are flexible and can adapt to the needs of a workload without requiring any
additional configuration. The database automatically distributes the available memory among
the various components as required, allowing the system to maximize the use of all available
SGA memory.

If you are using a server parameter file (SPFILE), the database remembers the sizes of the
automatically tuned SGA components across instance shutdowns. As a result, the database
instance does not need to learn the characteristics of the workload again each time the
instance is started. The instance can begin with information from the previous instance and
continue evaluating workload where it left off at the last shutdown.

4.5.2.2 Components and Granules in the SGA
The SGA comprises several memory components, which are pools of memory used to satisfy
a particular class of memory allocation requests.

Examples of memory components include the shared pool (used to allocate memory for SQL
and PL/SQL execution), the java pool (used for java objects and other java execution memory),
and the buffer cache (used for caching disk blocks). All SGA components allocate and
deallocate space in units of granules. Oracle Database tracks SGA memory use in internal
numbers of granules for each SGA component.

The memory for dynamic components in the SGA is allocated in the unit of granules. The
granule size is determined by the amount of SGA memory requested when the instance starts.
Specifically, the granule size is based on the value of the SGA_MAX_SIZE initialization parameter.
Table 4-1 shows the granule size for different amounts of SGA memory.

Table 4-1 Granule Size

SGA Memory Amount Granule Size

Less than or equal to 1 GB 4 MB

Greater than 1 GB and less than or equal to 8 GB 16 MB

Greater than 8 GB and less than or equal to 16 GB 32 MB

Greater than 16 GB 64 MB

Some platform dependencies may arise. Consult your operating system specific
documentation for more details.

You can query the V$SGAINFO view to see the granule size that is being used by an instance.
The same granule size is used for all components in the SGA.

If you specify a size for a component that is not a multiple of granule size, Oracle Database
rounds the specified size up to the nearest multiple. For example, if the granule size is 4 MB
and you specify DB_CACHE_SIZE as 10 MB, the database actually allocates 12 MB.

Chapter 4
Configuring Memory Manually

4-12

4.5.2.3 Setting Maximum SGA Size
The SGA_MAX_SIZE initialization parameter specifies the maximum size of the System Global
Area for the lifetime of the instance.

To set the maximum size of the System Global Area:

• Set the SGA_MAX_SIZE initialization parameter.

You can dynamically alter the initialization parameters affecting the size of the buffer caches,
shared pool, large pool, Java pool, and streams pool but only to the extent that the sum of
these sizes and the sizes of the other components of the SGA (fixed SGA, variable SGA, and
redo log buffers) does not exceed the value specified by SGA_MAX_SIZE.

If you do not specify SGA_MAX_SIZE, then Oracle Database selects a default value that is the
sum of all components specified or defaulted at initialization time. If you do specify
SGA_MAX_SIZE, and at the time the database is initialized the value is less than the sum of the
memory allocated for all components, either explicitly in the parameter file or by default, then
the database ignores the setting for SGA_MAX_SIZE and chooses a correct value for this
parameter.

4.5.2.4 Setting SGA Target Size
You enable the automatic shared memory management feature by setting the SGA_TARGET
initialization parameter to a nonzero value. This parameter sets the total size of the SGA. It
replaces the parameters that control the memory allocated for a specific set of individual
components, which are now automatically and dynamically resized (tuned) as needed.

To enable the automatic shared memory management feature:

• Set the SGA_TARGET initialization parameter to a nonzero value.

Note:

The STATISTICS_LEVEL initialization parameter must be set to TYPICAL (the default) or
ALL for automatic shared memory management to function.

If you use SQL*Plus to set SGA_TARGET, then you must then set the automatically
sized SGA components to zero or to a minimum value.

• The SGA Target and Automatically Sized SGA Components
Some SGA components are automatically sized when SGA_TARGET is set.

• SGA and Virtual Memory
For optimal performance in most systems, the entire SGA should fit in real memory. If it
does not, and if virtual memory is used to store parts of it, then overall database system
performance can decrease dramatically. The reason for this is that portions of the SGA are
paged (written to and read from disk) by the operating system.

• Monitoring and Tuning SGA Target Size
The V$SGAINFO view provides information on the current tuned sizes of various SGA
components. The V$SGA_TARGET_ADVICE view provides information that helps you decide
on a value for SGA_TARGET.

Chapter 4
Configuring Memory Manually

4-13

4.5.2.4.1 The SGA Target and Automatically Sized SGA Components
Some SGA components are automatically sized when SGA_TARGET is set.

The following table lists the SGA components that are automatically sized when SGA_TARGET is
set. For each SGA component, its corresponding initialization parameter is listed.

Table 4-2 Automatically Sized SGA Components and Corresponding Parameters

SGA Component Initialization Parameter

Fixed SGA and other internal allocations
needed by the Oracle Database instance

N/A

The shared pool SHARED_POOL_SIZE
The large pool LARGE_POOL_SIZE
The Java pool JAVA_POOL_SIZE
The buffer cache DB_CACHE_SIZE
The Streams pool STREAMS_POOL_SIZE
The Vector pool VECTOR_MEMORY_SIZE

The manually sized parameters listed in Table 4-3, if they are set, take their memory from
SGA_TARGET, leaving what is available for the components listed in Table 4-2.

Table 4-3 Manually Sized SGA Components that Use SGA_TARGET Space

SGA Component Initialization Parameter

The log buffer LOG_BUFFER
The keep and recycle buffer caches DB_KEEP_CACHE_SIZE

DB_RECYCLE_CACHE_SIZE
Nonstandard block size buffer caches DB_nK_CACHE_SIZE

In addition to setting SGA_TARGET to a nonzero value, you must set to zero all initialization
parameters listed in Table 4-2 to enable full automatic tuning of the automatically sized SGA
components.

Alternatively, you can set one or more of the automatically sized SGA components to a
nonzero value, which is then used as the minimum setting for that component during SGA
tuning. This is discussed in detail later in this section.

4.5.2.4.2 SGA and Virtual Memory
For optimal performance in most systems, the entire SGA should fit in real memory. If it does
not, and if virtual memory is used to store parts of it, then overall database system
performance can decrease dramatically. The reason for this is that portions of the SGA are
paged (written to and read from disk) by the operating system.

See your operating system documentation for instructions for monitoring paging activity. You
can also view paging activity using Cloud Control. See Oracle Database 2 Day + Performance
Tuning Guide for more information.

Chapter 4
Configuring Memory Manually

4-14

4.5.2.4.3 Monitoring and Tuning SGA Target Size
The V$SGAINFO view provides information on the current tuned sizes of various SGA
components. The V$SGA_TARGET_ADVICE view provides information that helps you decide on a
value for SGA_TARGET.

To monitor and tune the SGA target size:

• Query the V$SGAINFO and V$SGA_TARGET_ADVICE views.

For example, run the following query:

SQL> select * from v$sga_target_advice order by sga_size;

 SGA_SIZE SGA_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR ESTD_PHYSICAL_READS
---------- --------------- ------------ ------------------- -------------------
 290 .5 448176 1.6578 1636103
 435 .75 339336 1.2552 1636103
 580 1 270344 1 1201780
 725 1.25 239038 .8842 907584
 870 1.5 211517 .7824 513881
 1015 1.75 201866 .7467 513881
 1160 2 200703 .7424 513881

The information in this view is similar to that provided in the V$MEMORY_TARGET_ADVICE view for
automatic memory management. See "Monitoring and Tuning Automatic Memory
Management" for an explanation of that view.

See Also:

• Oracle Database Reference for more information about the V$SGAINFO view

• Oracle Database Reference for more information about the
V$SGA_TARGET_ADVICE view

4.5.2.5 Enabling Automatic Shared Memory Management
The procedure for enabling automatic shared memory management (ASMM) differs depending
on whether you are changing to ASMM from manual shared memory management or from
automatic memory management.

To change to ASMM from manual shared memory management:

1. Run the following query to obtain a value for SGA_TARGET:

SELECT (
 (SELECT SUM(value) FROM V$SGA) -
 (SELECT CURRENT_SIZE FROM V$SGA_DYNAMIC_FREE_MEMORY)
) "SGA_TARGET"
FROM DUAL;

2. Set the value of SGA_TARGET, either by editing the text initialization parameter file and
restarting the database, or by issuing the following statement:

ALTER SYSTEM SET SGA_TARGET=value [SCOPE={SPFILE|MEMORY|BOTH}]

Chapter 4
Configuring Memory Manually

4-15

where value is the value computed in step 1 or is some value between the sum of all SGA
component sizes and SGA_MAX_SIZE. For more information on the ALTER SYSTEM statement
and its SCOPE clause, see Oracle Database SQL Language Reference.

3. Do one of the following:

• For more complete automatic tuning, set the values of the automatically sized SGA
components listed in Table 4-2 to zero. Do this by editing the text initialization
parameter file or by issuing ALTER SYSTEM statements.

• To control the minimum size of one or more automatically sized SGA components, set
those component sizes to the desired value. (See the next section for details.) Set the
values of the other automatically sized SGA components to zero. Do this by editing the
text initialization parameter file or by issuing ALTER SYSTEM statements.

To change to ASMM from automatic memory management:

1. Set the MEMORY_TARGET initialization parameter to 0.

ALTER SYSTEM SET MEMORY_TARGET = 0;

The database sets SGA_TARGET based on current SGA memory allocation.

2. Do one of the following:

• For more complete automatic tuning, set the sizes of the automatically sized SGA
components listed in Table 4-2 to zero. Do this by editing the text initialization
parameter file or by issuing ALTER SYSTEM statements.

• To control the minimum size of one or more automatically sized SGA components, set
those component sizes to the desired value. (See the next section for details.) Set the
sizes of the other automatically sized SGA components to zero. Do this by editing the
text initialization parameter file or by issuing ALTER SYSTEM statements.

Example 4-1 Using ASMM

For example, suppose you currently have the following configuration of parameters for an
instance configured for manual shared memory management and with SGA_MAX_SIZE set to
1200M:

• SHARED_POOL_SIZE = 200M

• DB_CACHE_SIZE = 500M

• LARGE_POOL_SIZE=200M

Also assume the following query results:

Query Result

SELECT SUM(value) FROM V$SGA 1200M

SELECT CURRENT_SIZE FROM
V$SGA_DYNAMIC_FREE_MEMORY

208M

You can take advantage of automatic shared memory management by issuing the following
statements:

ALTER SYSTEM SET SGA_TARGET = 992M;
ALTER SYSTEM SET SHARED_POOL_SIZE = 0;
ALTER SYSTEM SET LARGE_POOL_SIZE = 0;
ALTER SYSTEM SET JAVA_POOL_SIZE = 0;

Chapter 4
Configuring Memory Manually

4-16

ALTER SYSTEM SET DB_CACHE_SIZE = 0;
ALTER SYSTEM SET STREAMS_POOL_SIZE = 0;

where 992M = 1200M minus 208M.

4.5.2.6 Setting Minimums for Automatically Sized SGA Components
You can exercise some control over the size of the automatically sized SGA components by
specifying minimum values for the parameters corresponding to these components. Doing so
can be useful if you know that an application cannot function properly without a minimum
amount of memory in specific components.

To specify the minimum amount of SGA space for a component:

• Set a value for its corresponding initialization parameter.

Manually limiting the minimum size of one or more automatically sized components reduces
the total amount of memory available for dynamic adjustment. This reduction in turn limits the
ability of the system to adapt to workload changes. Therefore, this practice is not
recommended except in exceptional cases. The default automatic management behavior
maximizes both system performance and the use of available resources.

Related Topics

• The SGA Target and Automatically Sized SGA Components
Some SGA components are automatically sized when SGA_TARGET is set.

4.5.2.7 Dynamic Modification of SGA_TARGET
The SGA_TARGET parameter can be dynamically increased up to the value specified for the
SGA_MAX_SIZE parameter, and it can also be reduced.

If you reduce the value of SGA_TARGET, the system identifies one or more automatically tuned
components for which to release memory. You can reduce SGA_TARGET until one or more
automatically tuned components reach their minimum size. Oracle Database determines the
minimum allowable value for SGA_TARGET taking into account several factors, including values
set for the automatically sized components, manually sized components that use SGA_TARGET
space, and number of CPUs.

The change in the amount of physical memory consumed when SGA_TARGET is modified
depends on the operating system. On some UNIX platforms that do not support dynamic
shared memory, the physical memory in use by the SGA is equal to the value of the
SGA_MAX_SIZE parameter. On such platforms, there is no real benefit in setting SGA_TARGET to a
value smaller than SGA_MAX_SIZE. Therefore, setting SGA_MAX_SIZE on those platforms is not
recommended.

On other platforms, such as Solaris and Windows, the physical memory consumed by the SGA
is equal to the value of SGA_TARGET.

For example, suppose you have an environment with the following configuration:

• SGA_MAX_SIZE = 1024M

• SGA_TARGET = 512M

• DB_8K_CACHE_SIZE = 128M

In this example, the value of SGA_TARGET can be resized up to 1024M and can also be reduced
until one or more of the automatically sized components reaches its minimum size. The exact

Chapter 4
Configuring Memory Manually

4-17

value depends on environmental factors such as the number of CPUs on the system. However,
the value of DB_8K_CACHE_SIZE remains fixed at all times at 128M

In Oracle Cloud environments, a PDB can be downsized by reducing the CPU_MIN_COUNT,
CPU_COUNT, and other memory and session parameters. This impacts the resources being
used.

Note:

When enabling automatic shared memory management, it is best to set SGA_TARGET
to the desired nonzero value before starting the database. Dynamically modifying
SGA_TARGET from zero to a nonzero value may not achieve the desired results
because the shared pool may not be able to shrink. After startup, you can
dynamically tune SGA_TARGET up or down as required.

Related Topics

• Memory Adjustments in a Multitenant Environment

4.5.2.8 Modifying Parameters for Automatically Sized Components
When automatic shared memory management is enabled, the manually specified sizes of
automatically sized components serve as a lower bound for the size of the components. You
can modify this limit dynamically by changing the values of the corresponding parameters.

If the specified lower limit for the size of a given SGA component is less than its current size,
then there is no immediate change in the size of that component. The new setting only limits
the automatic tuning algorithm to that reduced minimum size in the future.

To set the lower bound for the size of a component:

• Set the initialization parameter for the component to the minimum.

For example, consider the following configuration:

• SGA_TARGET = 512M

• LARGE_POOL_SIZE = 256M

• Current actual large pool size = 284M

In this example, if you increase the value of LARGE_POOL_SIZE to a value greater than the
actual current size of the component, the system expands the component to accommodate the
increased minimum size. For example, if you increase the value of LARGE_POOL_SIZE to 300M,
then the system increases the large pool incrementally until it reaches 300M. This resizing
occurs at the expense of one or more automatically tuned components. If you decrease the
value of LARGE_POOL_SIZE to 200, there is no immediate change in the size of that component.
The new setting only limits the reduction of the large pool size to 200 M in the future.

Note:

When SGA_TARGET is not set, the automatic shared memory management feature is
not enabled. Therefore, the rules governing the resizing of all component parameters
are the same as in earlier releases.

Chapter 4
Configuring Memory Manually

4-18

4.5.2.9 Modifying Parameters for Manually Sized Components
Parameters for manually sized components can be dynamically altered as well. However,
rather than setting a minimum size, the value of the parameter specifies the precise size of the
corresponding component.

When you increase the size of a manually sized component, extra memory is taken away from
one or more automatically sized components. When you decrease the size of a manually sized
component, the memory that is released is given to the automatically sized components.

To modify the precise size of a component:

• Set the initialization parameter for the component.

For example, consider this configuration:

• SGA_TARGET = 512M

• DB_8K_CACHE_SIZE = 128M

In this example, increasing DB_8K_CACHE_SIZE by 16M to 144M means that the 16M is taken
away from the automatically sized components. Likewise, reducing DB_8K_CACHE_SIZE by 16M
to 112M means that the 16M is given to the automatically sized components.

4.5.3 Using Manual Shared Memory Management
To manage shared memory manually, you first ensure that both automatic memory
management and automatic shared memory management are disabled. You then manually
configure, monitor, and tune memory components..

• About Manual Shared Memory Management
If you decide not to use automatic memory management or automatic shared memory
management, you must manually configure several SGA component sizes, and then
monitor and tune these sizes on an ongoing basis as the database workload changes. You
can follow guidelines on setting the parameters that control the sizes of these SGA
components.

• Enabling Manual Shared Memory Management
There is no initialization parameter that in itself enables manual shared memory
management. You effectively enable manual shared memory management by disabling
both automatic memory management and automatic shared memory management.

• Setting the Buffer Cache Initialization Parameters
The buffer cache initialization parameters determine the size of the buffer cache
component of the SGA.

• Specifying the Shared Pool Size
The SHARED_POOL_SIZE initialization parameter is a dynamic parameter that lets you
specify or adjust the size of the shared pool component of the SGA. Oracle Database
selects an appropriate default value.

• Specifying the Large Pool Size
The LARGE_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify
or adjust the size of the large pool component of the SGA.

• Specifying the Java Pool Size
The JAVA_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify
or adjust the size of the Java pool component of the SGA.

Chapter 4
Configuring Memory Manually

4-19

• Specifying the Streams Pool Size
The STREAMS_POOL_SIZE initialization parameter is a dynamic parameter that lets you
specify or adjust the size of the Streams Pool component of the SGA.

• Specifying the Vector Pool Size
The VECTOR_MEMORY_SIZE initialization parameter is a dynamic parameter that lets you
specify or adjust the size of the Vector Pool component of the SGA.

• Specifying Miscellaneous SGA Initialization Parameters
You can set a few additional initialization parameters to control how the SGA uses memory.

4.5.3.1 About Manual Shared Memory Management
If you decide not to use automatic memory management or automatic shared memory
management, you must manually configure several SGA component sizes, and then monitor
and tune these sizes on an ongoing basis as the database workload changes. You can follow
guidelines on setting the parameters that control the sizes of these SGA components.

If you create your database with DBCA and choose manual shared memory management,
DBCA provides fields where you must enter sizes for the buffer cache, shared pool, large pool,
and Java pool. It then sets the corresponding initialization parameters in the server parameter
file (SPFILE) that it creates. If you instead create the database with the CREATE DATABASE SQL
statement and a text initialization parameter file, you can do one of the following:

• Provide values for the initialization parameters that set SGA component sizes.

• Omit SGA component size parameters from the text initialization file. Oracle Database
chooses reasonable defaults for any component whose size you do not set.

4.5.3.2 Enabling Manual Shared Memory Management
There is no initialization parameter that in itself enables manual shared memory management.
You effectively enable manual shared memory management by disabling both automatic
memory management and automatic shared memory management.

To enable manual shared memory management:

1. Set the MEMORY_TARGET initialization parameter to 0.

2. Set the SGA_TARGET initialization parameter to 0.

You must then set values for the various SGA components, as described in the following
sections.

4.5.3.3 Setting the Buffer Cache Initialization Parameters
The buffer cache initialization parameters determine the size of the buffer cache component of
the SGA.

You use them to specify the sizes of caches for the various block sizes used by the database.
These initialization parameters are all dynamic.

The size of a buffer cache affects performance. Larger cache sizes generally reduce the
number of disk reads and writes. However, a large cache may take up too much memory and
induce memory paging or swapping.

Oracle Database supports multiple block sizes in a database. If you create tablespaces with
non-standard block sizes, you must configure non-standard block size buffers to accommodate
these tablespaces. The standard block size is used for the SYSTEM tablespace. You specify the

Chapter 4
Configuring Memory Manually

4-20

standard block size by setting the initialization parameter DB_BLOCK_SIZE. Legitimate values
are from 2K to 32K.

If you intend to use multiple block sizes in your database, you must have the DB_CACHE_SIZE
and at least one DB_nK_CACHE_SIZE parameter set. Oracle Database assigns an appropriate
default value to the DB_CACHE_SIZE parameter, but the DB_nK_CACHE_SIZE parameters default
to 0, and no additional block size caches are configured.

The sizes and numbers of non-standard block size buffers are specified by the following
parameters:

DB_2K_CACHE_SIZE
DB_4K_CACHE_SIZE
DB_8K_CACHE_SIZE
DB_16K_CACHE_SIZE
DB_32K_CACHE_SIZE

Each parameter specifies the size of the cache for the corresponding block size.

Note:

• Platform-specific restrictions regarding the maximum block size apply, so some of
these sizes might not be allowed on some platforms.

• A 32K block size is valid only on 64-bit platforms.

• Example of Setting Block and Cache Sizes
An example illustrates setting block and cache sizes.

• Multiple Buffer Pools
You can configure the database buffer cache with separate buffer pools that either keep
data in the buffer cache or make the buffers available for new data immediately after using
the data blocks.

See Also:

"Specifying Nonstandard Block Sizes for Tablespaces"

4.5.3.3.1 Example of Setting Block and Cache Sizes
An example illustrates setting block and cache sizes.

DB_BLOCK_SIZE=4096
DB_CACHE_SIZE=1024M
DB_2K_CACHE_SIZE=256M
DB_8K_CACHE_SIZE=512M

In the preceding example, the parameter DB_BLOCK_SIZE sets the standard block size of the
database to 4K. The size of the cache of standard block size buffers is 1024MB. Additionally,
2K and 8K caches are also configured, with sizes of 256MB and 512MB, respectively.

Chapter 4
Configuring Memory Manually

4-21

Note:

The DB_nK_CACHE_SIZE parameters cannot be used to size the cache for the standard
block size. If the value of DB_BLOCK_SIZE is nK, it is invalid to set DB_nK_CACHE_SIZE.
The size of the cache for the standard block size is always determined from the value
of DB_CACHE_SIZE.

The cache has a limited size, so not all the data on disk can fit in the cache. When the cache is
full, subsequent cache misses cause Oracle Database to write dirty data already in the cache
to disk to make room for the new data. (If a buffer is not dirty, it does not need to be written to
disk before a new block can be read into the buffer.) Subsequent access to any data that was
written to disk and then overwritten results in additional cache misses.

The size of the cache affects the likelihood that a request for data results in a cache hit. If the
cache is large, it is more likely to contain the data that is requested. Increasing the size of a
cache increases the percentage of data requests that result in cache hits.

You can change the size of the buffer cache while the instance is running, without having to
shut down the database. Do this with the ALTER SYSTEM statement.

Use the fixed view V$BUFFER_POOL to track the sizes of the different cache components and any
pending resize operations.

4.5.3.3.2 Multiple Buffer Pools
You can configure the database buffer cache with separate buffer pools that either keep data in
the buffer cache or make the buffers available for new data immediately after using the data
blocks.

Particular schema objects (tables, clusters, indexes, and partitions) can then be assigned to
the appropriate buffer pool to control the way their data blocks age out of the cache.

• The KEEP buffer pool retains the schema object's data blocks in memory.

• The RECYCLE buffer pool eliminates data blocks from memory as soon as they are no
longer needed.

• The DEFAULT buffer pool contains data blocks from schema objects that are not assigned to
any buffer pool, as well as schema objects that are explicitly assigned to the DEFAULT pool.

The initialization parameters that configure the KEEP and RECYCLE buffer pools are
DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE.

Note:

Multiple buffer pools are only available for the standard block size. Non-standard
block size caches have a single DEFAULT pool.

Chapter 4
Configuring Memory Manually

4-22

See Also:

Oracle Database Performance Tuning Guide for information about tuning the buffer
cache and for more information about multiple buffer pools

4.5.3.4 Specifying the Shared Pool Size
The SHARED_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify or
adjust the size of the shared pool component of the SGA. Oracle Database selects an
appropriate default value.

In releases before Oracle Database 10g, the amount of shared pool memory that was
allocated was equal to the value of the SHARED_POOL_SIZE initialization parameter plus the
amount of internal SGA overhead computed during instance startup. The internal SGA
overhead refers to memory that is allocated by Oracle Database during startup, based on the
values of several other initialization parameters. This memory is used to maintain state for
different server components in the SGA. For example, if the SHARED_POOL_SIZE parameter is
set to 64 MB and the internal SGA overhead is computed to be 12 MB, the real size of the
shared pool is 64 + 12 = 76 MB, although the value of the SHARED_POOL_SIZE parameter is still
displayed as 64 MB.

Starting with Oracle Database 10g, the size of the internal SGA overhead is included in the
user-specified value of SHARED_POOL_SIZE. If you are not using automatic memory
management or automatic shared memory management, the amount of shared pool memory
that is allocated at startup is equal to the value of the SHARED_POOL_SIZE initialization
parameter, rounded up to a multiple of the granule size. You must therefore set this parameter
so that it includes the internal SGA overhead in addition to the desired value for shared pool
size. In the previous example, if the SHARED_POOL_SIZE parameter is set to 64 MB at startup,
then the available shared pool after startup is 64 - 12 = 52 MB, assuming the value of internal
SGA overhead remains unchanged. In order to maintain an effective value of 64 MB for shared
pool memory after startup, you must set the SHARED_POOL_SIZE parameter to 64 + 12 = 76 MB.

When migrating from a release earlier than Oracle Database 10g, the migration utilities
recommend a new value for this parameter based on the value of internal SGA overhead in the
pre-upgrade environment and based on the old value of this parameter. Beginning with Oracle
Database 10g, the exact value of internal SGA overhead, also known as startup overhead in
the shared pool, can be queried from the V$SGAINFO view. Also, in manual shared memory
management mode, if the user-specified value of SHARED_POOL_SIZE is too small to
accommodate even the requirements of internal SGA overhead, then Oracle Database
generates an ORA-00371 error during startup, with a suggested value to use for the
SHARED_POOL_SIZE parameter. When you use automatic shared memory management, the
shared pool is automatically tuned, and an ORA-00371 error would not be generated.

• The Result Cache and Shared Pool Size

4.5.3.4.1 The Result Cache and Shared Pool Size
The result cache takes its memory from the shared pool. Therefore, if you expect to increase
the maximum size of the result cache, take this into consideration when sizing the shared pool.

Chapter 4
Configuring Memory Manually

4-23

See Also:

"Specifying the Result Cache Maximum Size"

4.5.3.5 Specifying the Large Pool Size
The LARGE_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify or
adjust the size of the large pool component of the SGA.

The large pool is an optional component of the SGA. You must specifically set the
LARGE_POOL_SIZE parameter to create a large pool. Configuring the large pool is discussed in
Oracle Database Performance Tuning Guide.

4.5.3.6 Specifying the Java Pool Size
The JAVA_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify or
adjust the size of the Java pool component of the SGA.

Oracle Database selects an appropriate default value. Configuration of the Java pool is
discussed in Oracle Database Java Developer's Guide.

4.5.3.7 Specifying the Streams Pool Size
The STREAMS_POOL_SIZE initialization parameter is a dynamic parameter that lets you specify or
adjust the size of the Streams Pool component of the SGA.

If STREAMS_POOL_SIZE is set to 0, then the Oracle Streams product transfers memory from the
buffer cache to the Streams Pool when it is needed. .

4.5.3.8 Specifying the Vector Pool Size
The VECTOR_MEMORY_SIZE initialization parameter is a dynamic parameter that lets you specify
or adjust the size of the Vector Pool component of the SGA.

The default size of the vector pool is 0. Configuration of the Vector pool is discussed in Oracle
Database AI Vector Search User's Guide.

4.5.3.9 Specifying Miscellaneous SGA Initialization Parameters
You can set a few additional initialization parameters to control how the SGA uses memory.

• Physical Memory
The LOCK_SGA parameter, when set to TRUE, locks the entire SGA into physical memory.

• SGA Starting Address
The SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_ADDRESS parameters specify the
SGA's starting address at run time.

4.5.3.9.1 Physical Memory
The LOCK_SGA parameter, when set to TRUE, locks the entire SGA into physical memory.

This parameter cannot be used with automatic memory management.

Chapter 4
Configuring Memory Manually

4-24

See Also:

• Oracle Database Reference for more information on these initialization
parameters

• "Using Automatic Memory Management"

• "Using Automatic Shared Memory Management"

4.5.3.9.2 SGA Starting Address
The SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_ADDRESS parameters specify the SGA's
starting address at run time.

These parameters are rarely used. For 64-bit platforms, HI_SHARED_MEMORY_ADDRESS specifies
the high order 32 bits of the 64-bit address.

See Also:

• Oracle Database Reference for more information on the SHARED_MEMORY_ADDRESS
initialization parameter

• Oracle Database Reference for more information on the
HI_SHARED_MEMORY_ADDRESS initialization parameter

• "Using Automatic Memory Management"

• "Using Automatic Shared Memory Management"

4.5.4 Using Automatic PGA Memory Management
By default, Oracle Database automatically and globally manages the total amount of memory
dedicated to the instance PGA. You can control this amount by setting the initialization
parameter PGA_AGGREGATE_TARGET.

Oracle Database then tries to ensure that the total amount of PGA memory allocated across all
database server processes and background processes never exceeds this target.

If you create your database with DBCA, you can specify a value for the total instance PGA.
DBCA then sets the PGA_AGGREGATE_TARGET initialization parameters in the server parameter
file (SPFILE) that it creates. If you do not specify the total instance PGA, DBCA chooses a
reasonable default.

If you create the database with the CREATE DATABASE SQL statement and a text initialization
parameter file, you can provide a value for PGA_AGGREGATE_TARGET. If you omit this parameter,
the database chooses a default value for it.

With automatic PGA memory management, sizing of SQL work areas is automatic and all
*_AREA_SIZE initialization parameters are ignored. At any given time, the total amount of PGA
memory available to active work areas on the instance is automatically derived from the
parameter PGA_AGGREGATE_TARGET. This amount is set to the value of PGA_AGGREGATE_TARGET
minus the PGA memory allocated for other purposes (for example, session memory). The

Chapter 4
Configuring Memory Manually

4-25

resulting PGA memory is then allotted to individual active work areas based on their specific
memory requirements.

There are dynamic performance views that provide PGA memory use statistics. Most of these
statistics are enabled when PGA_AGGREGATE_TARGET is set.

• Statistics on allocation and use of work area memory can be viewed in the following
dynamic performance views:

V$SYSSTAT
V$SESSTAT
V$PGASTAT
V$SQL_WORKAREA
V$SQL_WORKAREA_ACTIVE

• The following three columns in the V$PROCESS view report the PGA memory allocated and
used by an Oracle Database process:

PGA_USED_MEM
PGA_ALLOC_MEM
PGA_MAX_MEM

The PGA_AGGREGATE_TARGET setting is a target. Therefore, Oracle Database tries to limit PGA
memory usage to the target, but usage can exceed the setting at times. To specify a hard limit
on PGA memory usage, use the PGA_AGGREGATE_LIMIT initialization parameter. Oracle
Database ensures that the PGA size does not exceed this limit. If the database exceeds the
limit, then the database terminates calls from sessions that have the highest untunable PGA
memory allocations. You can set PGA_AGGREGATE_LIMIT whether or not you use automatic
memory management. If PGA_AGGREGATE_LIMIT is not set, then Oracle Database determines
an appropriate default limit. See Oracle Database Reference for more information about this
parameter.

Note:

The automatic PGA memory management method applies to work areas allocated by
both dedicated and shared server process. See Oracle Database Concepts for
information about PGA memory allocation in dedicated and shared server modes.

See Also:

• Oracle Database Reference for information about the initialization parameters
and views described in this section

• Oracle Database Performance Tuning Guide for information about using the
views described in this section

Chapter 4
Configuring Memory Manually

4-26

4.5.5 Using Manual PGA Memory Management
Oracle Database supports manual PGA memory management, in which you manually tune
SQL work areas.

In releases earlier than Oracle Database 10g, the database administrator controlled the
maximum size of SQL work areas by setting the following parameters: SORT_AREA_SIZE,
HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE and CREATE_BITMAP_AREA_SIZE. Setting these
parameters is difficult, because the maximum work area size is ideally selected from the data
input size and the total number of work areas active in the system. These two factors vary
greatly from one work area to another and from one time to another. Thus, the various
*_AREA_SIZE parameters are difficult to tune under the best of circumstances.

For this reason, Oracle strongly recommends that you leave automatic PGA memory
management enabled.

If you decide to tune SQL work areas manually, you must set the WORKAREA_SIZE_POLICY
initialization parameter to MANUAL.

Note:

The initialization parameter WORKAREA_SIZE_POLICY is a session- and system-level
parameter that can take only two values: MANUAL or AUTO. The default is AUTO. You
can set PGA_AGGREGATE_TARGET, and then switch back and forth from auto to manual
memory management mode. When WORKAREA_SIZE_POLICY is set to AUTO, your
settings for *_AREA_SIZE parameters are ignored.

4.6 Using Force Full Database Caching Mode
An Oracle Database instance can cache the full database in the buffer cache.

Note:

This feature is available starting with Oracle Database 12c Release 1 (12.1.0.2).

• About Force Full Database Caching Mode
In default caching mode, Oracle Database does not always cache the underlying data
when a user queries a large table because doing so might remove more useful data from
the buffer cache. Starting with Oracle Database 12c Release 1 (12.1.0.2), if the Oracle
Database instance determines that there is enough space to cache the full database in the
buffer cache and that it would be beneficial to do so, then the instance automatically
caches the full database in the buffer cache.

• Before Enabling Force Full Database Caching Mode
The database must be at 12.0.0 or higher compatibility level to enable force full database
caching mode for the database instance. In addition, ensure that the buffer cache is large
enough to cache the entire database.

• Enabling Force Full Database Caching Mode
You can enable force full database caching mode for a database.

Chapter 4
Using Force Full Database Caching Mode

4-27

• Disabling Force Full Database Caching Mode
You can disable force full database caching mode for a database.

4.6.1 About Force Full Database Caching Mode
In default caching mode, Oracle Database does not always cache the underlying data when a
user queries a large table because doing so might remove more useful data from the buffer
cache. Starting with Oracle Database 12c Release 1 (12.1.0.2), if the Oracle Database
instance determines that there is enough space to cache the full database in the buffer cache
and that it would be beneficial to do so, then the instance automatically caches the full
database in the buffer cache.

Caching the full database in the buffer cache might result in performance improvements. You
can force an instance to cache the database in the buffer cache using an ALTER DATABASE
FORCE FULL DATABASE CACHING statement. This statement puts the instance in force full
database caching mode. In this mode, Oracle Database assumes that the buffer cache is large
enough to cache the full database and tries to cache all blocks that are accessed
subsequently.

When an Oracle Database instance is in force full database caching mode, the following query
returns YES:

SELECT FORCE_FULL_DB_CACHING FROM V$DATABASE;

When an instance is in default caching mode, NOCACHE LOBs are not cached in the buffer
cache. However, when an instance is in force full database caching mode, NOCACHE LOBs can
be cached in the buffer cache. Also, both LOBs that use SecureFiles LOB storage and LOBs
that use BasicFiles LOB storage can be cached in the buffer cache in force full database
caching mode only.

Note:

• When an instance is put in force full database caching mode, database objects
are not loaded into the buffer cache immediately. Instead, they are cached in the
buffer cache when they are accessed.

• In a multitenant environment, force full database caching mode applies to the
entire multitenant container database (CDB), including all of its pluggable
databases (PDBs).

• Information about force full database caching mode is stored in the control file. If
the control file is replaced or recreated, then the information about the force full
database caching mode is lost. A restored control file might or might not include
this information, depending on when the control file was backed up.

Chapter 4
Using Force Full Database Caching Mode

4-28

See Also:

• Oracle Multitenant Administrator's Guide

• "Managing Control Files"

• Oracle Database Performance Tuning Guide for information about when to use
force full database caching mode

4.6.2 Before Enabling Force Full Database Caching Mode
The database must be at 12.0.0 or higher compatibility level to enable force full database
caching mode for the database instance. In addition, ensure that the buffer cache is large
enough to cache the entire database.

When a database is configured to use the SGA_TARGET or MEMORY_TARGET initialization
parameter for automatic memory management, the size of the buffer cache might change
depending on the workload. Run the following query to estimate the buffer cache size when the
instance is under normal workload:

SELECT NAME, BYTES FROM V$SGAINFO WHERE NAME='Buffer Cache Size';

This query returns the buffer cache size for all possible block sizes. If your database uses
multiple block sizes, then it is best to ensure that the buffer cache size for each possible block
size is bigger than the total database size for that block size.

You can determine the buffer cache size for non-default block sizes with the DB_nK_CACHE_SIZE
initialization parameter. With SGA_TARGET or MEMORY_TARGET, the buffer cache size for the
default block size in the default pool might change depending on the workload. The following
query returns the current buffer cache size for the default block size in the default pool:

SELECT COMPONENT, CURRENT_SIZE FROM V$SGA_DYNAMIC_COMPONENTS
 WHERE COMPONENT LIKE 'DEFAULT buffer cache';

If you are estimating memory requirements for running a database fully in the buffer cache,
then you can estimate the size of the buffer cache as one of the following:

• If you plan to use SGA_TARGET, then you can estimate the buffer cache size as 60% of
SGA_TARGET.

• If you plan to use MEMORY_TARGET, then you can estimate the SGA size as 60% of
MEMORY_TARGET, and buffer cache size as 60% of SGA size. That is, you can estimate the
buffer cache size as 36% of MEMORY_TARGET.

See Also:

"Using Automatic Memory Management"

4.6.3 Enabling Force Full Database Caching Mode
You can enable force full database caching mode for a database.

Chapter 4
Using Force Full Database Caching Mode

4-29

1. Connect to the instance as a user with ALTER DATABASE system privilege.

2. Ensure that the database is mounted but not open.

See "Oracle Database SQL Language Reference".

3. Issue the following SQL statement:

ALTER DATABASE FORCE FULL DATABASE CACHING;
4. (Optional) Open the database:

ALTER DATABASE OPEN;

4.6.4 Disabling Force Full Database Caching Mode
You can disable force full database caching mode for a database.

1. Connect to the instance as a user with ALTER DATABASE system privilege.

2. Ensure that the database is mounted but not open.

See "Oracle Database SQL Language Reference".

3. Issue the following SQL statement:

ALTER DATABASE NO FORCE FULL DATABASE CACHING;
4. (Optional) Open the database:

ALTER DATABASE OPEN;

4.7 Configuring Database Smart Flash Cache
The Database Smart Flash Cache feature is a transparent extension of the database buffer
cache using solid state device (SSD) technology. Database Smart Flash Cache can greatly
improve the performance of Oracle databases by reducing the amount of disk I/O at a much
lower cost than adding an equivalent amount of RAM.

• When to Configure Database Smart Flash Cache
You should consider configuring Database Smart Flash Cache when certain conditions are
met.

• Sizing Database Smart Flash Cache
As a general rule, size Database Smart Flash Cache to be between 2 times and 10 times
the size of the buffer cache.

• Tuning Memory for Database Smart Flash Cache
For each database block moved from the buffer cache to Database Smart Flash Cache, a
small amount of metadata about the block is kept in the buffer cache.

• Database Smart Flash Cache Initialization Parameters
You can use a set of initialization parameters to configure Database Smart Flash Cache.

• Database Smart Flash Cache in an Oracle Real Applications Clusters Environment
Oracle recommends that you configure a Database Smart Flash Cache on either all or
none of the instances in an Oracle Real Application Clusters environment. Also, the total
flash cache size configured on each instance should be approximately the same.

Chapter 4
Configuring Database Smart Flash Cache

4-30

See Also:

"Memory Architecture Overview" for a description of Database Smart Flash Cache

4.7.1 When to Configure Database Smart Flash Cache
You should consider configuring Database Smart Flash Cache when certain conditions are
met.

Consider adding Database Smart Flash Cache when all of the following conditions are true:

• Your database is running on the Solaris or Oracle Linux operating systems. Database
Smart Flash Cache is supported on these operating systems only.

• The Buffer Pool Advisory section of your Automatic Workload Repository (AWR) report or
STATSPACK report indicates that doubling the size of the buffer cache would be beneficial.

• db file sequential read is a top wait event.

• You have spare CPU.

Note:

You cannot share one flash file among multiple instances. However, you can share a
single flash device among multiple instances if you use a logical volume manager or
similar tool to statically partition the flash device.

4.7.2 Sizing Database Smart Flash Cache
As a general rule, size Database Smart Flash Cache to be between 2 times and 10 times the
size of the buffer cache.

Any multiplier less than two would not provide any benefit. If you are using automatic shared
memory management, make Database Smart Flash Cache between 2 times and 10 times the
size of SGA_TARGET. Using 80% of the size of SGA_TARGET instead of the full size would also
suffice for this calculation.

4.7.3 Tuning Memory for Database Smart Flash Cache
For each database block moved from the buffer cache to Database Smart Flash Cache, a
small amount of metadata about the block is kept in the buffer cache.

For a single instance database, the metadata consumes approximately 100 bytes. For an
Oracle Real Application Clusters (Oracle RAC) database, it is closer to 200 bytes. You must
therefore take this extra memory requirement into account when adding Database Smart Flash
Cache.

To tune memory for the Database Smart Flash Cache, complete one of the following actions:

• If you are managing memory manually, then increase the size of the buffer cache by an
amount approximately equal to the number of database blocks that fit into the Database
Smart Flash Cache as configured, multiplied by 100 (or 200 for Oracle RAC).

Chapter 4
Configuring Database Smart Flash Cache

4-31

• If you are using automatic memory management, then increase the size of the
MEMORY_TARGET initialization parameter using the algorithm described above. You may first
have to increase the size of the MEMORY_MAX_TARGET initialization parameter .

• If you are using automatic shared memory management, then increase the size of the
SGA_TARGET initialization parameter .

Also, for an Oracle RAC database that uses the flash cache, additional memory must be
allocated to the shared pool for Global Cache Service (GCS) resources. Each GCS resource
requires approximately 208 bytes in the shared pool.

Note:

• You can choose to not increase the buffer cache size to account for Database
Smart Flash Cache. In this case, the effective size of the buffer cache is reduced.
In some cases, you can offset this loss by using a larger Database Smart Flash
Cache.

• You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM
FLUSH FLASH_CACHE statement. Flushing the Database Smart Flash Cache can
be useful if you need to measure the performance of rewritten queries or a suite
of queries from identical starting points, or if there might be corruption in the
cache.

See Also:

"About Memory Management"

4.7.4 Database Smart Flash Cache Initialization Parameters
You can use a set of initialization parameters to configure Database Smart Flash Cache.

Table 4-4 Database Smart Flash Cache Initialization Parameters

Parameter Description

DB_FLASH_CACHE_FILE Specifies a list of paths and file names for the files to contain
Database Smart Flash Cache, in either the operating system file
system or an Oracle Automatic Storage Management disk group. If
a specified file does not exist, then the database creates it during
startup. Each file must reside on a flash device. If you configure
Database Smart Flash Cache on a disk drive (spindle), then
performance may suffer. A maximum of 16 files is supported.

Chapter 4
Configuring Database Smart Flash Cache

4-32

Table 4-4 (Cont.) Database Smart Flash Cache Initialization Parameters

Parameter Description

DB_FLASH_CACHE_SIZE Specifies the size of each file in your Database Smart Flash
Cache. Each size corresponds with a file specified in
DB_FLASH_CACHE_FILE. The files and sizes correspond in the
order that they are specified. An error is raised if the number of
specified sizes does not match the number of specified files.

Each size specification must be less than or equal to the physical
memory size of its flash device. The size is expressed as nG,
indicating the number of gigabytes (GB). For example, to specify a
16 GB Database Smart Flash Cache, set DB_FLASH_CACHE_SIZE
value to 16G.

For example, assume that your Database Smart Flash Cache uses following flash devices:

File Size

/dev/sda 32G

/dev/sdb 32G

/dev/sdc 64G

You can set the initialization parameters to the following values:

DB_FLASH_CACHE_FILE = /dev/sda, /dev/sdb, /dev/sdc

DB_FLASH_CACHE_SIZE = 32G, 32G, 64G

You can query the V$FLASHFILESTAT view to determine the cumulative latency and read counts
of each file and compute the average latency.

You can use ALTER SYSTEM to set DB_FLASH_CACHE_SIZE to zero for each flash device you wish
to disable. You can also use ALTER SYSTEM to set the size for any disabled flash device back to
its original size to reenable it. However, dynamically changing the size of Database Smart
Flash Cache is not supported.

See Also:

Oracle Database Reference for more information about the initialization parameters
described in this section and for more information about the V$FLASHFILESTAT view

4.7.5 Database Smart Flash Cache in an Oracle Real Applications Clusters
Environment

Oracle recommends that you configure a Database Smart Flash Cache on either all or none of
the instances in an Oracle Real Application Clusters environment. Also, the total flash cache
size configured on each instance should be approximately the same.

Chapter 4
Configuring Database Smart Flash Cache

4-33

4.8 Improving Query Response Time with the Server Result
Cache

The server result cache improves the performance of repetitive queries.

• About the Server Result Cache
The server result cache is a subcomponent of the shared pool.

• Using the Server Result Cache
You control the use of server result cache by setting the RESULT_CACHE_MODE initialization
parameter and using the RESULT_CACHE hint.

• Specifying the Result Cache Maximum Size
The RESULT_CACHE_MAX_SIZE initialization parameter is a dynamic parameter that enables
you to specify the maximum size of the result cache component of the SGA.

• Specifying the Use of Temporary Segments for Query Results
You can specify a per-query limit on memory usage by setting the RESULT_CACHE_MAX_SIZE
and RESULT_CACHE_MAX_RESULT initialization parameters. If a query exceeds the limit, the
database server can store part of the results as a temporary segment in the SYS user's
default temporary tablespace.

4.8.1 About the Server Result Cache
The server result cache is a subcomponent of the shared pool.

The server result cache is a memory pool within the shared pool that contains the SQL query
result cache and PL/SQL function result cache. The SQL query result cache stores the results
of queries and query fragments. Frequently executed queries will see performance
improvements when using the SQL query result cache. The PL/SQL function result cache
stores function result sets. Frequently invoked functions that depend on relatively static data
are good candidates for result caching.

4.8.2 Using the Server Result Cache
You control the use of server result cache by setting the RESULT_CACHE_MODE initialization
parameter and using the RESULT_CACHE hint.

The RESULT_CACHE_MODE initialization parameter determines whether the SQL query result
cache is used for all queries (when possible) or only for annotated queries. Users can annotate
a query or query fragment with a RESULT_CACHE hint to indicate that results should be stored in
the SQL query result cache.

You can use the initialization parameter RESULT_CACHE_INTEGRITY to specify whether the
database enforces result cache integrity. This parameter directs the database to do one of the
following actions:

• Enforce result cache integrity regardless of the setting of the RESULT_CACHE_MODE
initialization parameter or any specified hints, allowing only deterministic constructs to be
eligible for result caching. For example, queries using PL/SQL functions that are not
explicitly declared as deterministic will not be cached.

• Honor the setting of the RESULT_CACHE_MODE initialization parameter and any specified
hints, and consider queries using possibly nondeterministic constructs as candidates for
result caching. For example, queries using PL/SQL functions that are not explicitly

Chapter 4
Improving Query Response Time with the Server Result Cache

4-34

declared as deterministic may be cached. Results that are certain to be nondeterministic
(for example, SYSDATE or constructs involving SYSDATE) will not be cached.

See Also:

• Oracle Database Reference to learn more about the RESULT_CACHE_MODE
initialization parameter

• Oracle Database Reference to learn more about the RESULT_CACHE_INTEGRITY
initialization parameter

• Oracle Database SQL Language Reference to learn about the RESULT_CACHE hint

4.8.3 Specifying the Result Cache Maximum Size
The RESULT_CACHE_MAX_SIZE initialization parameter is a dynamic parameter that enables you
to specify the maximum size of the result cache component of the SGA.

Typically, there is no need to specify this parameter, because the default maximum size is
chosen by the database based on total memory available to the SGA and on the memory
management method currently in use. You can view the current default maximum size by
displaying the value of the RESULT_CACHE_MAX_SIZE parameter. To change this maximum size,
you can set RESULT_CACHE_MAX_SIZE with an ALTER SYSTEM statement, or you can specify this
parameter in the text initialization parameter file. The value may be rounded up due to internal
memory granularity.

If RESULT_CACHE_MAX_SIZE is 0 upon instance startup, the result cache is disabled. To reenable
it you must set RESULT_CACHE_MAX_SIZE to a nonzero value (or remove this parameter from the
text initialization parameter file to get the default maximum size) and then restart the database.

Note that after starting the database with the result cache disabled, if you use an ALTER SYSTEM
statement to set RESULT_CACHE_MAX_SIZE to a nonzero value but do not restart the database,
querying the value of the RESULT_CACHE_MAX_SIZE parameter returns a nonzero value even
though the result cache is still disabled. The value of RESULT_CACHE_MAX_SIZE is therefore not
the most reliable way to determine if the result cache is enabled. You can use the following
query instead:

SELECT dbms_result_cache.status() FROM dual;

DBMS_RESULT_CACHE.STATUS()

ENABLED

The result cache takes its memory from the shared pool, so if you increase the maximum result
cache size, consider also increasing the shared pool size.

The view V$RESULT_CACHE_STATISTICS and the PL/SQL package procedure
DBMS_RESULT_CACHE.MEMORY_REPORT display information to help you determine the amount of
memory currently allocated to the result cache.

The PL/SQL package function DBMS_RESULT_CACHE.FLUSH clears the result cache and releases
all the memory back to the shared pool.

Chapter 4
Improving Query Response Time with the Server Result Cache

4-35

See Also:

• Oracle Database Performance Tuning Guide for more information about the
result cache

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_RESULT_CACHE package procedures and functions

• Oracle Database Reference for more information about the
V$RESULT_CACHE_STATISTICS view

• Oracle Real Application Clusters Administration and Deployment Guide for
information on setting RESULT_CACHE_MAX_SIZE for a cluster database

4.8.4 Specifying the Use of Temporary Segments for Query Results
You can specify a per-query limit on memory usage by setting the RESULT_CACHE_MAX_SIZE and
RESULT_CACHE_MAX_RESULT initialization parameters. If a query exceeds the limit, the database
server can store part of the results as a temporary segment in the SYS user's default temporary
tablespace.

You can query V$RESULT_CACHE_OBJECTS to determine whether temporary segments have been
used. A value of Temp in the TYPE column indicates the use of temporary segments.

You can use the following initialization parameters, alterable at the PDB level, to control the
use of space by temporary segments:

• RESULT_CACHE_MODE: Set to MANUAL_TEMP or FORCE_TEMP. In either mode, all query results
will be allowed to spill to temporary segments unless prohibited by a hint. The default is
MANUAL, which means that query results will only be cached when queries explicitly use a
result cache hint.

• RESULT_CACHE_MAX_TEMP_SIZE: Set to a value to limit the amount of space in that the result
cache will consume in a database's temporary tablespace. The parameter value defaults to
10 times the default or initialized value of RESULT_CACHE_MAX_SIZE. This parameter can
only be modified at the system level, not the session. In addition, any value below 5% of
the System Global Area (SGA) size will be sanitized to that 5%. A value of 0, however, will
disable the feature. It also cannot exceed 10% of the currently estimated total free
temporary tablespace in the SYS schema, sanitizing the value to that max.

• RESULT_CACHE_MAX_TEMP_RESULT: Set to a value to limit the maximum amount of space in
the temporary tablespace that one cached query can consume. The value defaults to 5%
of the value of RESULT_CACHE_MAX_TEMP_SIZE. This parameter can only be modified at the
system level, not the session.

See Also:

Oracle Database Performance Tuning Guide for more information about the result
cache

Chapter 4
Improving Query Response Time with the Server Result Cache

4-36

4.9 Improving Query Performance with Oracle Database In-
Memory

Oracle Database In-Memory (Database In-Memory) is a suite of features, first introduced in
Oracle Database 12c Release 1 (12.1.0.2), that greatly improves performance for real-time
analytics and mixed workloads.

The Database In-Memory features can drastically improve the performance of queries that do
the following:

• Scan a large number of rows and apply filters that use operators such as <, >, =, and IN
• Select a small number of columns from a table or a materialized view having large number

of columns, such as a query that accesses 5 out of 100 columns

• Select LOB columns using SQL operators

• Join small dimension tables with large fact tables

• Aggregate data

The Database In-Memory feature set includes the In-Memory Column Store (IM column store),
advanced query optimizations, and availability solutions.

• IM Column Store

The IM column store is the key feature of Database In-Memory. The IM column store
maintains copies of tables, partitions, and individual columns in a special compressed
columnar format that is optimized for rapid scans. The IM column store resides in the In-
Memory Area, which is an optional portion of the system global area (SGA).

The IM column store does not replace row-based storage or the database buffer cache,
but supplements it. The database enables data to be in memory in both a row-based and
columnar format, providing the best of both worlds. The IM column store provides an
additional transaction-consistent copy of table data that is independent of the disk format.

• Advanced Query Optimizations

Database In-Memory includes several performance optimizations for analytic queries:

– In-Memory Expression (IM expression): Enables to identify and populate hot
expressions in the IM column store.

– Join Group: Enables to eliminate the performance overhead of decompressing and
hashing column values.

– In-Memory Aggregation (IM aggregation): Enhances performance of aggregation
queries that join small dimension tables with large fact tables.

– Repopulation: Enhances performance of queries by automatically repopulating the IM
column store with the modified objects.

– In-Memory Dynamic Scans (IM dynamic scans): Enhances performance of queries by
automatically using lightweight threads to parallelize table scans when the CPU
resources are idle.

• High Availability Support

Database In-Memory includes the following availability features:

– Reduces the time to populate data into the IM column store when a database instance
restarts. This functionality is achieved using the In-Memory FastStart (IM FastStart)
feature.

Chapter 4
Improving Query Performance with Oracle Database In-Memory

4-37

– Provides the IM column store on each node in an Oracle Real Application Clusters
(Oracle RAC) environment.

– Provides the IM column store on standby databases in an Active Data Guard
environment.

Note:

By default, Oracle Database In-Memory is disabled in an Oracle database. It can be
enabled by setting the INMEMORY_SIZE initialization parameter to a value greater than
0. When Oracle Database In-Memory is enabled, Oracle Database Resource
Manager (the Resource Manager) also gets enabled automatically.

See Also:

• Oracle Database In-Memory Guide

• Oracle Video: Managing Oracle Database In-Memory

4.10 Enabling High Performance Data Streaming with the
Memoptimized Rowstore

The Memoptimized Rowstore enables high performance data streaming for applications, such
as Internet of Things (IoT) applications that typically stream small amounts of data in single-
row inserts from a large number of clients simultaneously and also query data for clients at a
very high frequency.

The Memoptimized Rowstore provides the following functionality:

• Fast ingest

Fast ingest optimizes the processing of high-frequency, single-row data inserts into a
database. Fast ingest uses the large pool for buffering the inserts before writing them to
disk, so as to improve data insert performance.

• Fast lookup

Fast lookup enables fast retrieval of data from a database for high-frequency queries. Fast
lookup uses a separate memory area in the SGA called the memoptimize pool for buffering
the data queried from tables, so as to improve query performance.

Note:

For using fast lookup, you must allocate appropriate memory size to the
memoptimize pool using the MEMOPTIMIZE_POOL_SIZE initialization parameter.

Chapter 4
Enabling High Performance Data Streaming with the Memoptimized Rowstore

4-38

https://www.youtube.com/watch?v=IZ7UMoQxtLo

See Also:

• Oracle Database Performance Tuning Guide for information about configuring
and using the Memoptimized Rowstore

• Oracle Database Concepts for information about the memoptimize pool memory
architecture

• Oracle Database Reference for information about the MEMOPTIMIZE_POOL_SIZE
initialization parameter

4.11 Memory Management Reference
Automatic memory management is supported only on some platforms. Also, you can query a
set of data dictionary views for information on memory management.

• Platforms That Support Automatic Memory Management
Some platforms support automatic memory management.

• Memory Management Data Dictionary Views
A set of dynamic performance views provide information on memory management.

4.11.1 Platforms That Support Automatic Memory Management
Some platforms support automatic memory management.

The following platforms support automatic memory management—the Oracle Database ability
to automatically tune the sizes of the SGA and PGA, redistributing memory from one to the
other on demand to optimize performance:

• Linux

• Solaris

• Windows

• HP-UX

• AIX

4.11.2 Memory Management Data Dictionary Views
A set of dynamic performance views provide information on memory management.

View Description

V$SGA Displays summary information about the system global area
(SGA).

V$SGAINFO Displays size information about the SGA, including the sizes
of different SGA components, the granule size, and free
memory.

V$SGASTAT Displays detailed information about how memory is allocated
within the shared pool, large pool, Java pool, and Streams
pool.

Chapter 4
Memory Management Reference

4-39

View Description

V$PGASTAT Displays PGA memory usage statistics as well as statistics
about the automatic PGA memory manager when it is
enabled (that is, when PGA_AGGREGATE_TARGET is set).
Cumulative values in V$PGASTAT are accumulated since
instance startup.

V$MEMORY_DYNAMIC_COMPONENTS Displays information on the current size of all automatically
tuned and static memory components, with the last operation
(for example, grow or shrink) that occurred on each.

V$SGA_DYNAMIC_COMPONENTS Displays the current sizes of all SGA components, and the
last operation for each component.

V$SGA_DYNAMIC_FREE_MEMORY Displays information about the amount of SGA memory
available for future dynamic SGA resize operations.

V$MEMORY_CURRENT_RESIZE_OPS Displays information about resize operations that are
currently in progress. A resize operation is an enlargement or
reduction of the SGA, the instance PGA, or a dynamic SGA
component.

V$SGA_CURRENT_RESIZE_OPS Displays information about dynamic SGA component resize
operations that are currently in progress.

V$MEMORY_RESIZE_OPS Displays information about the last 800 completed memory
component resize operations, including automatic grow and
shrink operations for SGA_TARGET and
PGA_AGGREGATE_TARGET.

V$SGA_RESIZE_OPS Displays information about the last 800 completed SGA
component resize operations.

V$MEMORY_TARGET_ADVICE Displays information that helps you tune MEMORY_TARGET if
you enabled automatic memory management.

V$SGA_TARGET_ADVICE Displays information that helps you tune SGA_TARGET.

V$PGA_TARGET_ADVICE Displays information that helps you tune
PGA_AGGREGATE_TARGET.

V$IM_SEGMENTS Displays information about the storage allocated for all
segments in the IM column store.

Note: This view is available starting with Oracle Database
12c Release 1 (12.1.0.2).

4.12 Configuring and Using True Cache
Oracle True Cache (True Cache) is an in-memory, consistent, and automatically managed
cache for Oracle Database.

True Cache is similar to Active Data Guard, except that True Cache databases are mostly
diskless.

At a high level, True Cache works as follows. Your application must either connect to a primary
database application service or True Cache. If your application connects to True Cache, the
True cache instance satisfies queries using data it caches for the database application services
it handles. On "cache miss", a True Cache instance fetches chunks of blocks from a source
database instance, usually the primary database instance. This helps prime the True Cache
instance. Once a block is cached, it is updated automatically via redo apply coming from a
primary database with typically only a sub-second lag. This is accomplished similarly to real
time redo apply in a Data Guard configuration where the primary database redo blocks are
continuously sent to the True Cache standby redo log files via the LGWR process on the

Chapter 4
Configuring and Using True Cache

4-40

primary database instance in ASYNC mode. Queries to True Cache returns only committed
data, as recent as the redo apply lag. Each query to a True Cache instance always returns
consistent data.

For complete details on configuring and using True Cache, see the documents referenced
below.

Related Topics

• Overview of Oracle True Cache

Chapter 4
Configuring and Using True Cache

4-41

5
Managing Users and Securing the Database

Establish a security policy for every database.

• The Importance of Establishing a Security Policy for Your Database
It is important to develop a security policy for every database. The security policy
establishes methods for protecting your database from accidental or malicious destruction
of data or damage to the database infrastructure.

• Managing Users and Resources
To connect to the database, each user must specify a valid user name that has been
previously defined to the database. An account must have been established for the user,
with information about the user being stored in the data dictionary.

• User Privileges and Roles
Privileges and roles are used to control user access to data and the types of SQL
statements that can be executed.

• Auditing Database Activity
You can monitor and record selected user database actions, including those performed by
administrators. You can monitor system-wide actions as well as actions performed on
individual database objects. This type of monitoring is called database auditing.

• Predefined User Accounts
Oracle Database includes several predefined user accounts.

5.1 The Importance of Establishing a Security Policy for Your
Database

It is important to develop a security policy for every database. The security policy establishes
methods for protecting your database from accidental or malicious destruction of data or
damage to the database infrastructure.

Each database can have an administrator, referred to as the security administrator, who is
responsible for implementing and maintaining the database security policy If the database
system is small, the database administrator can have the responsibilities of the security
administrator. However, if the database system is large, a designated person or group of
people may have sole responsibility as security administrator.

For information about establishing security policies for your database, see Oracle Database
Security Guide.

5.2 Managing Users and Resources
To connect to the database, each user must specify a valid user name that has been
previously defined to the database. An account must have been established for the user, with
information about the user being stored in the data dictionary.

When you create a database user (account), you specify the following attributes of the user:

• User name

5-1

• Authentication method

• Default tablespace

• Temporary tablespace

• Other tablespaces and quotas

• User profile

To learn how to create and manage users, see Oracle Database Security Guide.

5.3 User Privileges and Roles
Privileges and roles are used to control user access to data and the types of SQL statements
that can be executed.

The table that follows describes the three types of privileges and roles:

Type Description

System privilege A system-defined privilege usually granted only by administrators. These privileges
allow users to perform specific database operations.

Object privilege A system-defined privilege that controls access to a specific object.

Role A collection of privileges and other roles. Some system-defined roles exist, but most
are created by administrators. Roles group together privileges and other roles, which
facilitates the granting of multiple privileges and roles to users.

Privileges and roles can be granted to other users by users who have been granted the
privilege to do so. The granting of roles and privileges starts at the administrator level. At
database creation, the administrative user SYS is created and granted all system privileges and
predefined Oracle Database roles. User SYS can then grant privileges and roles to other users,
and also grant those users the right to grant specific privileges to others.

To learn how to administer privileges and roles for users, see Oracle Database Security Guide.

5.4 Auditing Database Activity
You can monitor and record selected user database actions, including those performed by
administrators. You can monitor system-wide actions as well as actions performed on
individual database objects. This type of monitoring is called database auditing.

You can create unified audit policies and manage these audit policies using SQL statements.
Oracle Database provides default unified audit policies that contain the standard audit settings,
and you can create custom unified audit policies. You can also create fine-grained audit
policies using the DBMS_FGA PL/SQL package.

See Also:

Oracle Database Security Guide for more information about database auditing

Chapter 5
User Privileges and Roles

5-2

Note:

Starting with Oracle Database Release 21c, traditional auditing is desupported.
Oracle recommends that you use unified auditing, which enables selective and more
effective auditing inside Oracle Database.

5.5 Predefined User Accounts
Oracle Database includes several predefined user accounts.

The three types of predefined accounts are:

• Administrative accounts (SYS, SYSTEM, SYSBACKUP, SYSDG, SYSKM, SYSRAC, SYSMAN, and
DBSNMP)

SYS, SYSTEM, SYSBACKUP, SYSDG, SYSKM, and SYSRAC are described in "About Database
Administrator Security and Privileges". SYSMAN is used to perform Oracle Enterprise
Manager Cloud Control (Cloud Control) administration tasks. The management agent of
Cloud Control uses the DBSNMP account to monitor and manage the database. You must
not delete these accounts.

• Sample schema accounts

These optional accounts are used for examples in Oracle Database documentation and
instructional materials. The sample schema accounts are – HR, SH, and OE.

• Internal accounts

These accounts are created so that individual Oracle Database features or components
can have their own schemas. You must not delete internal accounts, and you must not
attempt to log in with them.

Note:

Starting with Oracle Database 19c, most of the Oracle Database supplied user
accounts, except SYS and sample schemas are schema only accounts, that is, these
accounts are created without passwords. This prevents malicious users from logging
into these accounts. You can assign passwords to these accounts whenever you
want them to be authenticated, but Oracle recommends that for better security, you
should change these accounts back to schema only accounts, when you do not need
to authenticate them anymore.

See Also:

• Oracle Database Security Guide for information about all the predefined
accounts provided by Oracle Database

• Oracle Database Security Guide for information about schema only accounts

• Oracle Database Sample Schemas for information about all the sample schemas
provided by Oracle Database

Chapter 5
Predefined User Accounts

5-3

6
Monitoring the Database

It is important that you monitor the operation of your database on a regular basis. Doing so not
only informs you of errors that have not yet come to your attention but also gives you a better
understanding of the normal operation of your database. Being familiar with normal behavior in
turn helps you recognize when something is wrong.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers
to a non-CDB from a previous release.

• Monitoring Errors and Alerts
You can monitor database errors and alerts to prevent, detect, and solve problems.

• Monitoring Performance
Monitoring performance includes monitoring locks and wait events and querying a set of
data dictionary views.

• Monitoring Quarantined Objects
Object quarantine enables an Oracle database to function even when there are corrupted,
unrecoverable objects. The V$QUARANTINE view contains information about quarantined
objects.

• Automatically Monitoring Schema Objects
Oracle Database can automatically track the activities and usage of certain schema
objects, such as tables and materialized views.

6.1 Monitoring Errors and Alerts
You can monitor database errors and alerts to prevent, detect, and solve problems.

Note:

The easiest and best way to monitor the database for errors and alerts is with the
Database Home page in Oracle Enterprise Manager Cloud Control (Cloud Control).
See the Cloud Control online help for more information. This section provides
alternate methods for monitoring, using data dictionary views, PL/SQL packages, and
other command-line facilities.

• Monitoring Errors with Trace Files and the Alert Log
A trace file is a file that contains diagnostic data used to investigate problems. An alert log
is a file that provides a chronological log of database messages and errors.

6-1

• Monitoring a Database with Server-Generated Alerts
A server-generated alert is a notification from the Oracle Database server of an impending
problem.

6.1.1 Monitoring Errors with Trace Files and the Alert Log
A trace file is a file that contains diagnostic data used to investigate problems. An alert log is a
file that provides a chronological log of database messages and errors.

• About Monitoring Errors with Trace Files and the Alert Log
The trace file and alert log contain information about errors.

• Controlling the Size of an Alert Log
To control the size of an alert log, change the segment size and number of segments used
by the alert log.

• Controlling the Size of Trace Files
You can control the maximum size of all trace files (excluding the alert log) using the
initialization parameter MAX_DUMP_FILE_SIZE.

• Controlling When Oracle Database Writes to Trace Files
Background processes always write to a trace file when appropriate.

• Reading the Trace File for Shared Server Sessions
If shared server is enabled, each session using a dispatcher is routed to a shared server
process, and trace information is written to the server trace file only if the session has
enabled tracing (or if an error is encountered). Therefore, to track tracing for a specific
session that connects using a dispatcher, you might have to explore several shared server
trace files.

6.1.1.1 About Monitoring Errors with Trace Files and the Alert Log
The trace file and alert log contain information about errors.

Each server and background process can write to an associated trace file. When an internal
error is detected by a process, it dumps information about the error to its trace file. Some of the
information written to a trace file is intended for the database administrator, and other
information is for Oracle Support Services. Trace file information is also used to tune
applications and instances.

Note:

Critical errors also create incidents and incident dumps in the Automatic Diagnostic
Repository. See Diagnosing and Resolving Problems for more information.

The alert log is a chronological log of messages and errors, and includes the following items:

• All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors
(ORA-00060) that occur

• Administrative operations, such as some CREATE, ALTER, and DROP statements and
STARTUP, SHUTDOWN, and ARCHIVELOG statements

• Messages and errors relating to the functions of shared server and dispatcher processes

• Errors occurring during the automatic refresh of a materialized view

Chapter 6
Monitoring Errors and Alerts

6-2

• The values of all initialization parameters that had nondefault values at the time the
database and instance start

Oracle Database uses the alert log to record these operations as an alternative to displaying
the information on an operator's console (although some systems also display information on
the console). If an operation is successful, a "completed" message is written in the alert log,
along with a timestamp.

The alert log is maintained as both an XML-formatted file and a text-formatted file. You can
view either format of the alert log with any text editor or you can use the ADRCI utility to view
the XML-formatted version of the file with the XML tags stripped.

Check the alert log and trace files of an instance periodically to learn whether the background
processes have encountered errors. For example, when the log writer process (LGWR) cannot
write to a member of a log group, an error message indicating the nature of the problem is
written to the LGWR trace file and the alert log. Such an error message means that a media or
I/O problem has occurred and should be corrected immediately.

Oracle Database also writes values of initialization parameters to the alert log, in addition to
other important statistics.

The alert log and all trace files for background and server processes are written to the
Automatic Diagnostic Repository, the location of which is specified by the DIAGNOSTIC_DEST
initialization parameter. The names of trace files are operating system specific, but each file
usually includes the name of the process writing the file (such as LGWR and RECO).

See Also:

• "Diagnosing and Resolving Problems" for information about the Automatic
Diagnostic Repository (ADR).

• "Alert Log" for additional information about the alert log.

• "Viewing the Alert Log"

• Oracle Database Utilities for information on the ADRCI utility.

• Your operating system specific Oracle documentation for information about the
names of trace files

6.1.1.2 Controlling the Size of an Alert Log
To control the size of an alert log, change the segment size and number of segments used by
the alert log.

By default, the alert log consists of 20 segments with each being 50 Mb in size. The alert log
has segmentation roataion enabled, which means that when all alert log files are full, Oracle
will overwrite the files beginning with the oldest file.

To control the size of an alert log:

• Back up any alert log files you wish to keep.

• Delete the alert log file or files.

Chapter 6
Monitoring Errors and Alerts

6-3

6.1.1.3 Controlling the Size of Trace Files
You can control the maximum size of all trace files (excluding the alert log) using the
initialization parameter MAX_DUMP_FILE_SIZE.

You can set this parameter in the following ways:

• A numerical value specifies the maximum size in operating system blocks. The specified
value is multiplied by the block size to obtain the limit.

• A number followed by a K, M, or G suffix specifies the file size in kilobytes, megabytes, or
gigabytes. The default value is 32M on Oracle Database Free, and 1G on all other Oracle
Database offerings.

• UNLIMITED, which specifies no limit.

• Trace File Segmentation and MAX_DUMP_FILE_SIZE
Oracle Database can automatically segment trace files based on the limit you specify with
the MAX_DUMP_FILE_SIZE initialization parameter. When a limit is reached, the database
renames the current trace file using a sequential number, and creates an empty file with
the original name.

See Also:

• Oracle Database Reference for more information about the MAX_DUMP_FILE_SIZE
initialization parameter.

• About the Oracle Database Fault Diagnosability Infrastructure for more
information about IPS.

6.1.1.3.1 Trace File Segmentation and MAX_DUMP_FILE_SIZE
Oracle Database can automatically segment trace files based on the limit you specify with the
MAX_DUMP_FILE_SIZE initialization parameter. When a limit is reached, the database renames
the current trace file using a sequential number, and creates an empty file with the original
name.

The following table describes how trace files are segmented based on the
MAX_DUMP_FILE_SIZE setting.

Table 6-1 The MAX_DUMP_FILE_SIZE Parameter and Trace File Segmentation

MAX_DUMP_FILE_SIZE
Setting

Trace File Segmentation

UNLIMITED Trace files are not segmented.

Larger than 25M Trace files are segmented on a boundary that is 1/5 of the
MAX_DUMP_FILE_SIZE setting. Trace files with sizes that are less than
this boundary in size are not segmented. For example, if the
MAX_DUMP_FILE_SIZE setting is 100M, then the boundary is 20 MB (1/5
of 100 MB).

25M or less Trace files are not segmented.

Chapter 6
Monitoring Errors and Alerts

6-4

There can be up to five segments, but the total combined size of the segments cannot exceed
the MAX_DUMP_FILE_SIZE limit. When the combined size of all segments of the trace file
exceeds the specified limit, the oldest segment after the first segment is deleted, and a new,
empty segment is created. Therefore, the trace file always contains the most recent trace
information. The first segment is not deleted because it might contain relevant information
about the initial state of the process.

Segmentation improves space management for trace files. Specifically, segmentation enables
you to manage trace files in the following ways:

• You can purge old trace files when they are no longer needed.

• You can diagnose problems with smaller trace files and isolate trace files that must be
packaged for the incident packaging service (IPS).

Note:

Any segment that covers a time range that includes an incident is not deleted. It is
kept in addition to the five default segments.

6.1.1.4 Controlling When Oracle Database Writes to Trace Files
Background processes always write to a trace file when appropriate.

In the case of the ARCn background process, it is possible, through the LOG_ARCHIVE_TRACE
initialization parameter, to control the amount and type of trace information that is produced. To
do so:

• Follow the instructions described in the section "Controlling Trace Output Generated by the
Archivelog Process".

Other background processes do not have this flexibility.

Trace files are written on behalf of server processes whenever critical errors occur.
Additionally, setting the initialization parameter SQL_TRACE = TRUE causes the SQL trace facility
to generate performance statistics for the processing of all SQL statements for an instance and
write them to the Automatic Diagnostic Repository.

Optionally, you can request that trace files be generated for server processes. Regardless of
the current value of the SQL_TRACE initialization parameter, each session can enable or disable
trace logging on behalf of the associated server process by using the SQL statement ALTER
SESSION SET SQL_TRACE. This example enables the SQL trace facility for a specific session:

ALTER SESSION SET SQL_TRACE TRUE;

Use the DBMS_SESSION or the DBMS_MONITOR packages to control SQL tracing for a session.

Note:

The SQL trace facility for server processes can cause significant system overhead
resulting in severe performance impact, so you should enable this feature only when
collecting statistics.

Chapter 6
Monitoring Errors and Alerts

6-5

See Also:

• "Diagnosing and Resolving Problems" for more information about how the
database handles critical errors, otherwise known as incidents.

6.1.1.5 Reading the Trace File for Shared Server Sessions
If shared server is enabled, each session using a dispatcher is routed to a shared server
process, and trace information is written to the server trace file only if the session has enabled
tracing (or if an error is encountered). Therefore, to track tracing for a specific session that
connects using a dispatcher, you might have to explore several shared server trace files.

To help you, Oracle provides a command line utility program, trcsess, which consolidates all
trace information pertaining to a user session in one place and orders the information by time.

See Also:

Oracle Database SQL Tuning Guide for information about using the SQL trace facility
and using TKPROF and trcsess to interpret the generated trace files

6.1.2 Monitoring a Database with Server-Generated Alerts
A server-generated alert is a notification from the Oracle Database server of an impending
problem.

• About Monitoring a Database with Server-Generated Alerts
A server-generated alert may contain suggestions for correcting the problem. Notifications
are also provided when the problem condition has been cleared.

• Setting and Retrieving Thresholds for Server-Generated Alerts
You can view and change threshold settings for the server alert metrics using the
SET_THRESHOLD and GET_THRESHOLD procedures of the DBMS_SERVER_ALERT PL/SQL
package.

• Viewing Server-Generated Alerts
The easiest way to view server-generated alerts is by accessing the Database Home page
of Cloud Control, but there are other methods of viewing these alerts.

• Server-Generated Alerts Data Dictionary Views
You can query data dictionary views for information about server-generated alerts.

6.1.2.1 About Monitoring a Database with Server-Generated Alerts
A server-generated alert may contain suggestions for correcting the problem. Notifications are
also provided when the problem condition has been cleared.

Alerts are automatically generated when a problem occurs or when data does not match
expected values for metrics, such as the following:

• Physical Reads Per Second

• User Commits Per Second

Chapter 6
Monitoring Errors and Alerts

6-6

• SQL Service Response Time

Server-generated alerts can be based on threshold levels or can issue simply because an
event has occurred. Threshold-based alerts can be triggered at both threshold warning and
critical levels. The value of these levels can be customer-defined or internal values, and some
alerts have default threshold levels which you can change if appropriate. For example, by
default a server-generated alert is generated for tablespace space usage when the percentage
of space usage exceeds either the 85% warning or 97% critical threshold level. Examples of
alerts not based on threshold levels are:

• Snapshot Too Old
• Resumable Session Suspended
• Recovery Area Space Usage
An alert message is sent to the predefined persistent queue ALERT_QUE owned by the user SYS.
Cloud Control reads this queue and provides notifications about outstanding server alerts, and
sometimes suggests actions for correcting the problem. The alerts are displayed on the Cloud
Control Database Home page and can be configured to send email or pager notifications to
selected administrators. If an alert cannot be written to the alert queue, a message about the
alert is written to the Oracle Database alert log.

Background processes periodically flush the data to the Automatic Workload Repository to
capture a history of metric values. The alert history table and ALERT_QUE are purged
automatically by the system at regular intervals.

6.1.2.2 Setting and Retrieving Thresholds for Server-Generated Alerts
You can view and change threshold settings for the server alert metrics using the
SET_THRESHOLD and GET_THRESHOLD procedures of the DBMS_SERVER_ALERT PL/SQL package.

Note:

The most convenient way to set and retrieve threshold values is to use the graphical
interface of Cloud Control. See the Cloud Control online help about managing alerts
for instructions.

• Setting Threshold Levels
The SET_THRESHOLD procedure in the DBMS_SERVER_ALERT package can set threshold
levels.

• Retrieving Threshold Information
The GET_THRESHOLD procedure in the DBMS_SERVER_ALERT package can retrieve threshold
information.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_SERVER_ALERT package

Chapter 6
Monitoring Errors and Alerts

6-7

6.1.2.2.1 Setting Threshold Levels
The SET_THRESHOLD procedure in the DBMS_SERVER_ALERT package can set threshold levels.

To set threshold levels:

• Run SET_THRESHOLD procedure in the DBMS_SERVER_ALERT package, and specify the
appropriate arguments.

The following example shows how to set thresholds with the SET_THRESHOLD procedure for
CPU time for each user call for an instance:

DBMS_SERVER_ALERT.SET_THRESHOLD(
 DBMS_SERVER_ALERT.CPU_TIME_PER_CALL, DBMS_SERVER_ALERT.OPERATOR_GE, '8000',
 DBMS_SERVER_ALERT.OPERATOR_GE, '10000', 1, 2, 'inst1',
 DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE, 'main.regress.rdbms.dev.us.example.com');

In this example, a warning alert is issued when CPU time exceeds 8000 microseconds for
each user call and a critical alert is issued when CPU time exceeds 10,000 microseconds for
each user call. The arguments include:

• CPU_TIME_PER_CALL specifies the metric identifier. For a list of support metrics, see Oracle
Database PL/SQL Packages and Types Reference.

• The observation period is set to 1 minute. This period specifies the number of minutes that
the condition must deviate from the threshold value before the alert is issued.

• The number of consecutive occurrences is set to 2. This number specifies how many times
the metric value must violate the threshold values before the alert is generated.

• The name of the instance is set to inst1.

• The constant DBMS_ALERT.OBJECT_TYPE_SERVICE specifies the object type on which the
threshold is set. In this example, the service name is
main.regress.rdbms.dev.us.example.com.

6.1.2.2.2 Retrieving Threshold Information
The GET_THRESHOLD procedure in the DBMS_SERVER_ALERT package can retrieve threshold
information.

To retrieve threshold values:

• Run the GET_THRESHOLD procedure in the DBMS_SERVER_ALERT package and specify the
appropriate arguments.

The following example retrieves threshold values:

DECLARE
 warning_operator BINARY_INTEGER;
 warning_value VARCHAR2(60);
 critical_operator BINARY_INTEGER;
 critical_value VARCHAR2(60);
 observation_period BINARY_INTEGER;
 consecutive_occurrences BINARY_INTEGER;
BEGIN
 DBMS_SERVER_ALERT.GET_THRESHOLD(
 DBMS_SERVER_ALERT.CPU_TIME_PER_CALL, warning_operator, warning_value,
 critical_operator, critical_value, observation_period,
 consecutive_occurrences, 'inst1',
 DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE, 'main.regress.rdbms.dev.us.example.com');
 DBMS_OUTPUT.PUT_LINE('Warning operator: ' || warning_operator);

Chapter 6
Monitoring Errors and Alerts

6-8

 DBMS_OUTPUT.PUT_LINE('Warning value: ' || warning_value);
 DBMS_OUTPUT.PUT_LINE('Critical operator: ' || critical_operator);
 DBMS_OUTPUT.PUT_LINE('Critical value: ' || critical_value);
 DBMS_OUTPUT.PUT_LINE('Observation_period: ' || observation_period);
 DBMS_OUTPUT.PUT_LINE('Consecutive occurrences:' || consecutive_occurrences);
END;
/

You can also check specific threshold settings with the DBA_THRESHOLDS view. For example:

SELECT metrics_name, warning_value, critical_value, consecutive_occurrences
 FROM DBA_THRESHOLDS
 WHERE metrics_name LIKE '%CPU Time%';

6.1.2.3 Viewing Server-Generated Alerts
The easiest way to view server-generated alerts is by accessing the Database Home page of
Cloud Control, but there are other methods of viewing these alerts.

If you use your own tool rather than Cloud Control to display alerts, then complete the following
steps to view server-generated alerts:

1. Subscribe to the ALERT_QUE.

2. Read the ALERT_QUE.

3. Display an alert notification after setting the threshold levels for an alert

To create an agent and subscribe the agent to the ALERT_QUE, complete the following steps:

1. Run the CREATE_AQ_AGENT procedure of the DBMS_AQADM package.

2. Run the ADD_SUBSCRIBER procedure of the DBMS_AQADM package.

3. Associate a database user with the subscribing agent, because only a user associated with
the subscribing agent can access queued messages in the secure ALERT_QUE.

4. Assign the enqueue privilege to the user by running the ENABLE_DB_ACCESS and
GRANT_QUEUE_PRIVILEGE procedures of the DBMS_AQADM package.

5. Register with the DBMS_AQ.REGISTER procedure to receive an asynchronous notification
when an alert is enqueued to ALERT_QUE. The notification can be in the form of email,
HTTP post, or PL/SQL procedure.

To read an alert message, complete the following steps:

1. Use the DBMS_AQ.DEQUEUE procedure or OCIAQDeq call.

2. After the message has been dequeued, use the DBMS_SERVER_ALERT.EXPAND_MESSAGE
procedure to expand the text of the message.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_AQ package

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_AQADM package

Chapter 6
Monitoring Errors and Alerts

6-9

6.1.2.4 Server-Generated Alerts Data Dictionary Views
You can query data dictionary views for information about server-generated alerts.

View Description

DBA_THRESHOLDS Lists the threshold settings defined for the instance

DBA_OUTSTANDING_ALERTS Describes the outstanding alerts in the database

DBA_ALERT_HISTORY Lists a history of alerts that have been cleared

V$ALERT_TYPES Provides information such as group and type for each alert

V$METRICNAME Contains the names, identifiers, and other information about the
system metrics

V$METRIC Contains system-level metric values

V$METRIC_HISTORY Contains a history of system-level metric values

6.2 Monitoring Performance
Monitoring performance includes monitoring locks and wait events and querying a set of data
dictionary views.

Monitoring database performance is covered in detail in Oracle Database Performance Tuning
Guide and Oracle Database SQL Tuning Guide.

• Monitoring Locks
Locks are mechanisms that prevent destructive interaction between transactions accessing
the same resource. The resources can be either user objects, such as tables and rows, or
system objects not visible to users, such as shared data structures in memory and data
dictionary rows.

• About Monitoring Wait Events
Wait events are statistics that are incremented by a server process to indicate that it had to
wait for an event to complete before being able to continue processing. A session could
wait for a variety of reasons, including waiting for more input, waiting for the operating
system to complete a service such as a disk write, or it could wait for a lock or latch.

• Performance Monitoring Data Dictionary Views
You can query a set of data dictionary views to monitor an Oracle Database instance.

6.2.1 Monitoring Locks
Locks are mechanisms that prevent destructive interaction between transactions accessing the
same resource. The resources can be either user objects, such as tables and rows, or system
objects not visible to users, such as shared data structures in memory and data dictionary
rows.

Oracle Database automatically obtains and manages necessary locks when executing SQL
statements, so you need not be concerned with such details. However, the database also lets
you lock data manually.

A deadlock can occur when two or more users are waiting for data locked by each other.
Deadlocks prevent some transactions from continuing to work. Oracle Database automatically
detects deadlock situations and resolves them by rolling back one of the statements involved in
the deadlock, thereby releasing one set of the conflicting row locks.

Chapter 6
Monitoring Performance

6-10

Oracle Database is designed to avoid deadlocks, and they are not common. Most often they
occur when transactions explicitly override the default locking of the database. Deadlocks can
affect the performance of your database, so Oracle provides some scripts and views that
enable you to monitor locks.

To monitor locks:

1. Run the catblock.sql, which creates lock views.

2. Run the utllockt.sql script, which uses the views created by catblock.sql to display, in
a tree fashion, the sessions in the system that are waiting for locks and the locks that they
are waiting for.

The location of the script files is operating system dependent.

See Also:

• "Performance Monitoring Data Dictionary Views"

• Oracle Database Concepts contains more information about locks.

6.2.2 About Monitoring Wait Events
Wait events are statistics that are incremented by a server process to indicate that it had to
wait for an event to complete before being able to continue processing. A session could wait
for a variety of reasons, including waiting for more input, waiting for the operating system to
complete a service such as a disk write, or it could wait for a lock or latch.

When a session is waiting for resources, it is not doing any useful work. A large number of
waits is a source of concern. Wait event data reveals various symptoms of problems that might
be affecting performance, such as latch contention, buffer contention, and I/O contention.

Oracle provides several views that display wait event statistics. A discussion of these views
and their role in instance tuning is contained in Oracle Database Performance Tuning Guide.

6.2.3 Performance Monitoring Data Dictionary Views
You can query a set of data dictionary views to monitor an Oracle Database instance.

These views are general in their scope. Other views, more specific to a process, are discussed
in the section of this book where the process is described.

View Description

V$LOCK Lists the locks currently held by Oracle Database and outstanding
requests for a lock or latch

DBA_BLOCKERS Displays a session if it is holding a lock on an object for which another
session is waiting

DBA_WAITERS Displays a session if it is waiting for a locked object

DBA_DDL_LOCKS Lists all DDL locks held in the database and all outstanding requests for a
DDL lock

DBA_DML_LOCKS Lists all DML locks held in the database and all outstanding requests for a
DML lock

Chapter 6
Monitoring Performance

6-11

View Description

DBA_LOCK Lists all locks or latches held in the database and all outstanding requests
for a lock or latch

DBA_LOCK_INTERNAL Displays a row for each lock or latch that is being held, and one row for
each outstanding request for a lock or latch

V$LOCKED_OBJECT Lists all locks acquired by every transaction on the system

V$SESSION_WAIT Lists the resources or events for which active sessions are waiting

V$SYSSTAT Contains session statistics

V$RESOURCE_LIMIT Provides information about current and maximum global resource
utilization for some system resources

V$SQLAREA Contains statistics about shared SQL area and contains one row for each
SQL string. Also provides statistics about SQL statements that are in
memory, parsed, and ready for execution

V$LATCH Contains statistics for nonparent latches and summary statistics for parent
latches

6.3 Monitoring Quarantined Objects
Object quarantine enables an Oracle database to function even when there are corrupted,
unrecoverable objects. The V$QUARANTINE view contains information about quarantined
objects.

• About Object Quarantine
Object quarantine isolates an object that has raised an error and monitors the object for
impacts on the system.

• Viewing Quarantined Objects
The V$QUARANTINE view stores information about the objects that are currently quarantined.

6.3.1 About Object Quarantine
Object quarantine isolates an object that has raised an error and monitors the object for
impacts on the system.

Some Oracle Database errors, such as ORA-00600 and ORA-07445, typically cause the process
to terminate, which can cause the database to terminate. When such an error is encountered,
object quarantine attempts to isolate the resource that caused the error so that the database
can continue to run. The resource is isolated in memory so that it does not affect the rest of the
database. The V$QUARANTINE view stores information about the objects that are currently
quarantined.

Most database resources can raise errors that can cause a database to terminate. For
example, library cache memory objects can raise such errors.

In a multitenant environment, a multitenant container database (CDB) can, in some cases, use
object quarantine to isolate and terminate a pluggable database (PDB) that has raised a
serious error instead of terminating the CDB.

A quarantined resource typically remains quarantined until the database is restarted. If a
resource is quarantined for a PDB in a CDB, then the resource is quarantined until the PDB is
closed and re-opened.

Chapter 6
Monitoring Quarantined Objects

6-12

6.3.2 Viewing Quarantined Objects
The V$QUARANTINE view stores information about the objects that are currently quarantined.

1. Connect to the database as an administrative user.

2. Query the V$QUARANTINE view.

Example 6-1 Querying the V$QUARANTINE View

This query shows the resources that are currently quarantined.

COLUMN OBJECT FORMAT A10
COLUMN ADDRESS FORMAT A10
COLUMN BYTES FORMAT 999999999
COLUMN ERROR FORMAT A20
COLUMN TIMESTAMP FORMAT A20

SELECT OBJECT, ADDRESS, BYTES, ERROR, TIMESTAMP
 FROM V$QUARANTINE;

Your output is similar to the following:

OBJECT ADDRESS BYTES ERROR TIMESTAMP
---------- ---------- ---------- -------------------- --------------------
session 0000000078 9528 ORA-00600: internal 16-SEP-15 01.17.42.2
 B54BC8 error code, argument 85878 PM -07:00
 s: [12345], [], [],
 [], [], [], [], [],
 [], [], [], []

This output shows the following about the quarantined resource:

• The name of the resource is “session.”

• The start address of the memory region being quarantined is 0000000078B54BC8.
Typically, this is the address of the resource, such as the session in this example.

• The resource is using 9528 bytes of memory in quarantine.

• The message of the error that caused the resource to be placed in quarantine is
“ORA-00600 internal error code.”

• The timestamp shows the date and time of the error.

6.4 Automatically Monitoring Schema Objects
Oracle Database can automatically track the activities and usage of certain schema objects,
such as tables and materialized views.

The Object Activity Tracking System (OATS) tracks various activities associated with database
objects. Tracking can be performed both at the database level and pluggable database (PDB)
level. The activities tracked include DML operations on tables, table and partition scans,
partition maintenance operations (PMOPs), materialized view rewrite and refresh, and usage
of auxiliary structures such as indexes. The statistics are used to support automated database
functionality such as automatic materialized views.

Chapter 6
Automatically Monitoring Schema Objects

6-13

Use procedures and functions in the DBMS_ACTIVITY package to control the information
captured by OATS.

To enable Object Activity Tracking System:

• Set the STATISTICS_LEVEL initialization parameter to TYPICAL or ALL.

Statistics tracked by OATS can be viewed in the following data dictionary views:
DBA_ACTIVITY_CONFIG, DBA_ACTIVITY_SNAPSHOT_META, DBA_ACTIVITY_TABLE, and
DBA_ACTIVITY_MVIEW.

Related Topics

• Oracle Database Data Warehousing Guide

Chapter 6
Automatically Monitoring Schema Objects

6-14

7
Diagnosing and Resolving Problems

Oracle Database includes an advanced fault diagnosability infrastructure for collecting and
managing diagnostic data, so as to diagnose and resolve database problems. Diagnostic data
includes the trace files, dumps, and core files that are also present in previous releases, plus
new types of diagnostic data that enable customers and Oracle Support to identify, investigate,
track, and resolve problems quickly and effectively.

• About the Oracle Database Fault Diagnosability Infrastructure
Oracle Database includes a fault diagnosability infrastructure for preventing, detecting,
diagnosing, and resolving database problems.

• About Investigating, Reporting, and Resolving a Problem
You can use the Enterprise Manager Support Workbench (Support Workbench) to
investigate and report a problem (critical error), and in some cases, resolve the problem.
You can use a "roadmap" that summarizes the typical set of tasks that you must perform.

• Diagnosing Problems
This section describes various methods to diagnose problems in an Oracle database.

• Reporting Problems
Using the Enterprise Manager Support Workbench (Support Workbench), you can create,
edit, and upload custom incident packages. With custom incident packages, you have fine
control over the diagnostic data that you send to Oracle Support.

• Resolving Problems
This section describes how to resolve database problems using advisor tools, such as SQL
Repair Advisor and Data Recovery Advisor, and the resource management tools, such as
the Resource Manager and related APIs.

• Diagnosis and Tracing in a PDB Using Package DBMS_USERDIAG
This section describes how to use the PL/SQL package DBMS_USERDIAG for diagnosis
and allows you to set up a trace within a PDB.

7.1 About the Oracle Database Fault Diagnosability Infrastructure
Oracle Database includes a fault diagnosability infrastructure for preventing, detecting,
diagnosing, and resolving database problems.

• Fault Diagnosability Infrastructure Overview
The fault diagnosability infrastructure aids in preventing, detecting, diagnosing, and
resolving problems. The problems that are targeted in particular are critical errors such as
those caused by code bugs, metadata corruption, and customer data corruption.

• Incidents and Problems
A problem is a critical error in a database instance, Oracle Automatic Storage
Management (Oracle ASM) instance, or other Oracle product or component. An incident
is a single occurrence of a problem.

• Fault Diagnosability Infrastructure Components
The fault diagnosability infrastructure consists of several components, including the
Automatic Diagnostic Repository (ADR), various logs, trace files, the Enterprise Manager
Support Workbench, and the ADRCI Command-Line Utility.

7-1

• Structure, Contents, and Location of the Automatic Diagnostic Repository
The Automatic Diagnostic Repository (ADR) is a directory structure that is stored outside of
the database. It is therefore available for problem diagnosis when the database is down.

7.1.1 Fault Diagnosability Infrastructure Overview
The fault diagnosability infrastructure aids in preventing, detecting, diagnosing, and resolving
problems. The problems that are targeted in particular are critical errors such as those caused
by code bugs, metadata corruption, and customer data corruption.

When a critical error occurs, it is assigned an incident number, and diagnostic data for the error
(such as trace files) are immediately captured and tagged with this number. The data is then
stored in the Automatic Diagnostic Repository (ADR)—a file-based repository outside the
database—where it can later be retrieved by incident number and analyzed.

The goals of the fault diagnosability infrastructure are the following:

• First-failure diagnosis

• Problem prevention

• Limiting damage and interruptions after a problem is detected

• Reducing problem diagnostic time

• Reducing problem resolution time

• Simplifying customer interaction with Oracle Support

The keys to achieving these goals are the following technologies:

• Automatic capture of diagnostic data upon first failure—For critical errors, the ability to
capture error information at first-failure greatly increases the chance of a quick problem
resolution and reduced downtime. An always-on memory-based tracing system proactively
collects diagnostic data from many database components, and can help isolate root
causes of problems. Such proactive diagnostic data is similar to the data collected by
airplane "black box" flight recorders. When a problem is detected, alerts are generated and
the fault diagnosability infrastructure is activated to capture and store diagnostic data. The
data is stored in a repository that is outside the database (and therefore available when the
database is down), and is easily accessible with command line utilities and Oracle
Enterprise Manager Cloud Control (Cloud Control).

• Standardized trace formats—Standardizing trace formats across all database
components enables DBAs and Oracle Support personnel to use a single set of tools for
problem analysis. Problems are more easily diagnosed, and downtime is reduced.

• Health checks—Upon detecting a critical error, the fault diagnosability infrastructure can
run one or more health checks to perform deeper analysis of a critical error. Health check
results are then added to the other diagnostic data collected for the error. Individual health
checks look for data block corruptions, undo and redo corruption, data dictionary
corruption, and more. As a DBA, you can manually invoke these health checks, either on a
regular basis or as required.

• Incident packaging service (IPS) and incident packages—The IPS enables you to
automatically and easily gather the diagnostic data—traces, dumps, health check reports,
and more—pertaining to a critical error and package the data into a zip file for transmission
to Oracle Support. Because all diagnostic data relating to a critical error are tagged with
that error's incident number, you do not have to search through trace files and other files to
determine the files that are required for analysis; the incident packaging service identifies
the required files automatically and adds them to the zip file. Before creating the zip file,
the IPS first collects diagnostic data into an intermediate logical structure called an incident

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-2

package (package). Packages are stored in the Automatic Diagnostic Repository. If you
choose to, you can access this intermediate logical structure, view and modify its contents,
add or remove additional diagnostic data at any time, and when you are ready, create the
zip file from the package. After these steps are completed, the zip file is ready to be
uploaded to Oracle Support.

• Data Recovery Advisor—The Data Recovery Advisor integrates with database health
checks and RMAN to display data corruption problems, assess the extent of each problem
(critical, high priority, low priority), describe the impact of a problem, recommend repair
options, conduct a feasibility check of the customer-chosen option, and automate the
repair process.

• SQL Test Case Builder—For many SQL-related problems, obtaining a reproducible test
case is an important factor in problem resolution speed. The SQL Test Case Builder
automates the sometimes difficult and time-consuming process of gathering as much
information as possible about the problem and the environment in which it occurred. After
quickly gathering this information, you can upload it to Oracle Support to enable support
personnel to easily and accurately reproduce the problem.

7.1.2 Incidents and Problems
A problem is a critical error in a database instance, Oracle Automatic Storage Management
(Oracle ASM) instance, or other Oracle product or component. An incident is a single
occurrence of a problem.

• About Incidents and Problems
To facilitate diagnosis and resolution of critical errors, the fault diagnosability infrastructure
introduces two concepts for Oracle Database: problems and incidents.

• Incident Flood Control
It is conceivable that a problem could generate dozens or perhaps hundreds of incidents in
a short period of time. This would generate too much diagnostic data, which would
consume too much space in the ADR and could possibly slow down your efforts to
diagnose and resolve the problem. For these reasons, the fault diagnosability infrastructure
applies flood control to incident generation after certain thresholds are reached.

• Related Problems Across the Topology
For any problem identified in a database instance, the diagnosability framework can
identify related problems across the topology of your Oracle Database installation.

7.1.2.1 About Incidents and Problems
To facilitate diagnosis and resolution of critical errors, the fault diagnosability infrastructure
introduces two concepts for Oracle Database: problems and incidents.

A problem is a critical error in a database instance, Oracle Automatic Storage Management
(Oracle ASM) instance, or other Oracle product or component. Critical errors manifest as
internal errors, such as ORA-00600, or other severe errors, such as ORA-07445 (operating
system exception) or ORA-04031 (out of memory in the shared pool). Problems are tracked in
the ADR. Each problem has a problem key, which is a text string that describes the problem. It
includes an error code (such as ORA 600) and in some cases, one or more error parameters.

An incident is a single occurrence of a problem. When a problem (critical error) occurs
multiple times, an incident is created for each occurrence. Incidents are timestamped and
tracked in the Automatic Diagnostic Repository (ADR). Each incident is identified by a numeric
incident ID, which is unique within the ADR. When an incident occurs, the database:

• Makes an entry in the alert log.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-3

• Sends an incident alert to Cloud Control.

• Gathers first-failure diagnostic data about the incident in the form of dump files (incident
dumps).

• Tags the incident dumps with the incident ID.

• Stores the incident dumps in an ADR subdirectory created for that incident.

Diagnosis and resolution of a critical error usually starts with an incident alert. Incident alerts
are displayed on the Cloud Control Database Home page or Oracle Automatic Storage
Management Home page. The Database Home page also displays in its Related Alerts section
any critical alerts in the Oracle ASM instance or other Oracle products or components. After
viewing an alert, you can then view the problem and its associated incidents with Cloud Control
or with the ADRCI command-line utility.

See Also:

• "Viewing Problems with the Support Workbench"

• "About Investigating, Reporting, and Resolving a Problem"

• "ADRCI Command-Line Utility"

7.1.2.2 Incident Flood Control
It is conceivable that a problem could generate dozens or perhaps hundreds of incidents in a
short period of time. This would generate too much diagnostic data, which would consume too
much space in the ADR and could possibly slow down your efforts to diagnose and resolve the
problem. For these reasons, the fault diagnosability infrastructure applies flood control to
incident generation after certain thresholds are reached.

A flood-controlled incident is an incident that generates an alert log entry, is recorded in the
ADR, but does not generate incident dumps. Flood-controlled incidents provide a way of
informing you that a critical error is ongoing, without overloading the system with diagnostic
data. You can choose to view or hide flood-controlled incidents when viewing incidents with
Cloud Control or the ADRCI command-line utility.

Threshold levels for incident flood control are predetermined and cannot be changed. They are
defined as follows:

• After five incidents occur for the same problem key in one hour, subsequent incidents for
this problem key are flood-controlled. Normal (non-flood-controlled) recording of incidents
for that problem key begins again in the next hour.

• After 25 incidents occur for the same problem key in one day, subsequent incidents for this
problem key are flood-controlled. Normal recording of incidents for that problem key begins
again on the next day.

In addition, after 50 incidents for the same problem key occur in one hour, or 250 incidents for
the same problem key occur in one day, subsequent incidents for this problem key are not
recorded at all in the ADR. In these cases, the database writes a message to the alert log
indicating that no further incidents will be recorded. As long as incidents continue to be
generated for this problem key, this message is added to the alert log every ten minutes until
the hour or the day expires. Upon expiration of the hour or day, normal recording of incidents
for that problem key begins again.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-4

7.1.2.3 Related Problems Across the Topology
For any problem identified in a database instance, the diagnosability framework can identify
related problems across the topology of your Oracle Database installation.

In a single instance environment, a related problem could be identified in the local Oracle ASM
instance. In an Oracle RAC environment, a related problem could be identified in any database
instance or Oracle ASM instance on any other node. When investigating problems, you are
able to view and gather information on any related problems.

A problem is related to the original problem if it occurs within a designated time period or
shares the same execution context identifier. An execution context identifier (ECID) is a
globally unique identifier used to tag and track a single call through the Oracle software stack,
for example, a call to Oracle Fusion Middleware that then calls into Oracle Database to retrieve
data. The ECID is typically generated in the middle tier and is passed to the database as an
Oracle Call Interface (OCI) attribute. When a single call has failures on multiple tiers of the
Oracle software stack, problems that are generated are tagged with the same ECID so that
they can be correlated. You can then determine the tier on which the originating problem
occurred.

7.1.3 Fault Diagnosability Infrastructure Components
The fault diagnosability infrastructure consists of several components, including the Automatic
Diagnostic Repository (ADR), various logs, trace files, the Enterprise Manager Support
Workbench, and the ADRCI Command-Line Utility.

• Automatic Diagnostic Repository (ADR)
The ADR is a file-based repository for database diagnostic data such as traces, dumps,
the alert log, health monitor reports, and more. It has a unified directory structure across
multiple instances and multiple products.

• Alert Log
The alert log is an XML file that is a chronological log of messages and errors.

• Attention Log
The attention log is a structured, externally modifiable file that contains information about
critical and highly visible database events. Use the attention log to quickly access
information about critical events that need action.

• Trace Files, Dumps, and Core Files
Trace files, dumps, and core files contain diagnostic data that are used to investigate
problems. They are stored in the ADR.

• DDL Log
The data definition language (DDL) log is a file that has the same format and basic
behavior as the alert log, but it only contains the DDL statements issued by the database.

• Debug Log
An Oracle Database component can detect conditions, states, or events that are unusual,
but which do not inhibit correct operation of the detecting component. The component can
issue a warning about these conditions, states, or events. The debug log is a file that
records these warnings.

• Other ADR Contents
In addition to files mentioned in the previous sections, the ADR contains health monitor
reports, data repair records, SQL test cases, incident packages, and more. These
components are described later in the chapter.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-5

• Enterprise Manager Support Workbench
The Enterprise Manager Support Workbench (Support Workbench) is a facility that enables
you to investigate, report, and in some cases, repair problems (critical errors), all with an
easy-to-use graphical interface.

• ADRCI Command-Line Utility
The ADR Command Interpreter (ADRCI) is a utility that enables you to investigate
problems, view health check reports, and package first-failure diagnostic data, all within a
command-line environment.

7.1.3.1 Automatic Diagnostic Repository (ADR)
The ADR is a file-based repository for database diagnostic data such as traces, dumps, the
alert log, health monitor reports, and more. It has a unified directory structure across multiple
instances and multiple products.

The database, Oracle Automatic Storage Management (Oracle ASM), the listener, Oracle
Clusterware, and other Oracle products or components store all diagnostic data in the ADR.
Each instance of each product stores diagnostic data underneath its own home directory within
the ADR. For example, in an Oracle Real Application Clusters environment with shared
storage and Oracle ASM, each database instance and each Oracle ASM instance has an ADR
home directory. ADR's unified directory structure, consistent diagnostic data formats across
products and instances, and a unified set of tools enable customers and Oracle Support to
correlate and analyze diagnostic data across multiple instances. With Oracle Clusterware,
each host node in the cluster has an ADR home directory.

Starting with Oracle Database 23ai, several improvements have been made to make problem
diagnosis better. These improvements include:

• Attention Log - entries are more verbose and provide more detail for the database
administrator. Entries now include attributes such as urgency, target user, a verbose
description of the event, a detailed solution to the event, and more.

• Debug Log - all log entries that are not database administrator or customer focused are
now recorded in the debug log instead of the alert log.

• Trace Content Classification - every trace entry is now categorized with a label that
denotes the type of content written. There are 10 categories denoting highest to lowest
security categorization. You may filter the data by security categorization to be selected
and packaged for analysis by Oracle for further diagnosis.

• Trace File Limits and Segmentation - trace files created by the database will no longer
default to unlimited size. Segmentation and rotation of the files has been enabled. There is
now an upper limit of 1GB per foreground process and 10GB per background process,
equally divided into 5 segments resulting in 200MB per segment for foreground processes
and 2GB per background process. Any further traces generated will create new segments
and delete the older segments. The first segment is preserved, and only last four segments
are rotated.

Trace files are limited to 32MB each for the Oracle Database Free Edition.

The initialization parameter MAX_DUMP_FILE_SIZE, which controls the trace file size,
defaults to 1GB per foreground process and 10GB per background process for Oracle
Database Enterprise Edition and other editions, except the Free Edition, which default to
32MB.

• Trace Content Suppression - repetitive or excessive content is no longer written to the
traces.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-6

Note:

Because all diagnostic data, including the alert log, are stored in the ADR, the
initialization parameters BACKGROUND_DUMP_DEST and USER_DUMP_DEST are
deprecated. They are replaced by the initialization parameter DIAGNOSTIC_DEST,
which identifies the location of the ADR.

Related Topics

• Structure, Contents, and Location of the Automatic Diagnostic Repository
The Automatic Diagnostic Repository (ADR) is a directory structure that is stored outside of
the database. It is therefore available for problem diagnosis when the database is down.

7.1.3.2 Alert Log
The alert log is an XML file that is a chronological log of messages and errors.

There is one alert log in each ADR home. Each alert log is specific to its component type, such
as database, Oracle ASM, listener, and Oracle Clusterware.

For the database, the alert log includes messages about the following:

• Critical errors (incidents)

• Administrative operations, such as starting up or shutting down the database, recovering
the database, creating or dropping a tablespace, and others.

• Errors during automatic refresh of a materialized view

• Other database events

You can view the alert log in text format (with the XML tags stripped) with Cloud Control and
with the ADRCI utility. There is also a text-formatted version of the alert log stored in the ADR
for backward compatibility. However, Oracle recommends that any parsing of the alert log
contents be done with the XML-formatted version, because the text format is unstructured and
may change from release to release.

See Also:

• "ADRCI Command-Line Utility"

• "Viewing the Alert Log"

7.1.3.3 Attention Log
The attention log is a structured, externally modifiable file that contains information about
critical and highly visible database events. Use the attention log to quickly access information
about critical events that need action.

There is one attention log for each database instance. The attention log contains a pre-
determined, translatable series of messages, with one message for each event. Some
important attributes of a message are as follows:

• Attention ID: A unique identifier for the message.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-7

• Attention type: The type of attention message. Possible values are Error, Warning,
Notification, or Additional information. The attention type can be modified dynamically.

• Message text

• Urgency: Possible values are Immediate, Soon, Deferrable, or Information.

• Scope: Possible values are Session, Process, PDB Instance, CDB Instance, CDB Cluster,
PDB (for issues in persistent storage that a database restart will not fix), or CDB (for issues
in persistent storage that a database restart will not fix).

• Target user: The user who must act on this attention log message. Possible values are
Clusterware Admin, CDB admin, or PDB admin.

• Cause

• Action

Contents of the Attention Log

The following is an example of an attention log message that needs immediate action.

{
IMMEDIATE : "PMON (ospid: 3565): terminating the instance due to ORA error
822"
CAUSE: "PMON detected fatal background process death"
ACTION: "Termination of fatal background is not recommended, Investigate
cause of process termination"
CLASS : CDB-INSTANCE / CDB_ADMIN / ERROR / DBAL-35782660
TIME : 2020-03-28T14:15:16.159-07:00
INFO : "Some additional data on error PMON error"
}

Related Topics

• Viewing Attention Log Information
Access information stored in the attention log either by opening the file with any text editor
or by querying the V$DIAG_ATTENTION view.

7.1.3.4 Trace Files, Dumps, and Core Files
Trace files, dumps, and core files contain diagnostic data that are used to investigate
problems. They are stored in the ADR.

• Trace Files
Each server and background process can write to an associated trace file. Trace files are
updated periodically over the life of the process and can contain information on the
process environment, status, activities, and errors. In addition, when a process detects a
critical error, it writes information about the error to its trace file.

• Dumps
A dump is a specific type of trace file. A dump is typically a one-time output of diagnostic
data in response to an event (such as an incident), whereas a trace tends to be continuous
output of diagnostic data.

• Core Files
A core file contains a memory dump, in an all-binary, port-specific format.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-8

7.1.3.4.1 Trace Files
Each server and background process can write to an associated trace file. Trace files are
updated periodically over the life of the process and can contain information on the process
environment, status, activities, and errors. In addition, when a process detects a critical error, it
writes information about the error to its trace file.

The SQL trace facility also creates trace files, which provide performance information on
individual SQL statements. You can enable SQL tracing for a session or an instance.

Trace file names are platform-dependent. Typically, database background process trace file
names contain the Oracle SID, the background process name, and the operating system
process number, while server process trace file names contain the Oracle SID, the string "ora",
and the operating system process number. The file extension is .trc. An example of a server
process trace file name is orcl_ora_344.trc. Trace files are sometimes accompanied by
corresponding trace metadata (.trm) files, which contain structural information about trace files
and are used for searching and navigation.

Starting with Oracle Database 21c, all trace file records contain a prefix that is used to classify
records. The prefix indicates the level of sensitivity of each trace record. This helps in
enhancing security.

Oracle Database includes tools that help you analyze trace files. For more information on
application tracing, SQL tracing, and tracing tools, see Oracle Database SQL Tuning Guide.

Related Topics

• Finding Trace Files
Trace files are stored in the Automatic Diagnostic Repository (ADR), in the trace directory
under each ADR home. To help you locate individual trace files within this directory, you
can use data dictionary views. For example, you can find the path to your current session's
trace file or to the trace file for each Oracle Database process.

7.1.3.4.2 Dumps
A dump is a specific type of trace file. A dump is typically a one-time output of diagnostic data
in response to an event (such as an incident), whereas a trace tends to be continuous output
of diagnostic data.

When an incident occurs, the database writes one or more dumps to the incident directory
created for the incident. Incident dumps also contain the incident number in the file name.

7.1.3.4.3 Core Files
A core file contains a memory dump, in an all-binary, port-specific format.

Core file names include the string "core" and the operating system process ID. Core files are
useful to Oracle Support engineers only. Core files are not found on all platforms.

7.1.3.5 DDL Log
The data definition language (DDL) log is a file that has the same format and basic behavior as
the alert log, but it only contains the DDL statements issued by the database.

The DDL log is created only for the RDBMS component and only if the ENABLE_DDL_LOGGING
initialization parameter is set to TRUE. When this parameter is set to FALSE, DDL statements are
not included in any log.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-9

The DDL log contains one log record for each DDL statement issued by the database. The
DDL log is included in IPS incident packages.

There are two DDL logs that contain the same information. One is an XML file, and the other is
a text file. The DDL log is stored in the log/ddl subdirectory of the ADR home.

See Also:

Oracle Database Reference for more information about the ENABLE_DDL_LOGGING
initialization parameter

7.1.3.6 Debug Log
An Oracle Database component can detect conditions, states, or events that are unusual, but
which do not inhibit correct operation of the detecting component. The component can issue a
warning about these conditions, states, or events. The debug log is a file that records these
warnings.

These warnings recorded in the debug log are not serious enough to warrant an incident or a
write to the alert log. They do warrant a record in a log file because they might be needed to
diagnose a future problem.

The debug log has the same format and basic behavior as the alert log, but it only contains
information about possible problems that might need to be corrected.

The debug log reduces the amount of information in the alert log and trace files. It also
improves the visibility of debug information.

The debug log is included in IPS incident packages. The debug log's contents are intended for
Oracle Support. Database administrators should not use the debug log directly.

Note:

Because there is a separate debug log starting with Oracle Database 12c, the alert
log and the trace files are streamlined. They now contain fewer warnings of the type
that are recorded in the debug log.

7.1.3.7 Other ADR Contents
In addition to files mentioned in the previous sections, the ADR contains health monitor
reports, data repair records, SQL test cases, incident packages, and more. These components
are described later in the chapter.

7.1.3.8 Enterprise Manager Support Workbench
The Enterprise Manager Support Workbench (Support Workbench) is a facility that enables
you to investigate, report, and in some cases, repair problems (critical errors), all with an easy-
to-use graphical interface.

The Support Workbench provides a self-service means for you to gather first-failure diagnostic
data, obtain a support request number, and upload diagnostic data to Oracle Support with a

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-10

minimum of effort and in a very short time, thereby reducing time-to-resolution for problems.
The Support Workbench also recommends and provides easy access to Oracle advisors that
help you repair SQL-related problems, data corruption problems, and more.

7.1.3.9 ADRCI Command-Line Utility
The ADR Command Interpreter (ADRCI) is a utility that enables you to investigate problems,
view health check reports, and package first-failure diagnostic data, all within a command-line
environment.

You can then upload the package to Oracle Support. ADRCI also enables you to view the
names of the trace files in the ADR, and to view the alert log with XML tags stripped, with and
without content filtering.

For more information on ADRCI, see Oracle Database Utilities.

7.1.4 Structure, Contents, and Location of the Automatic Diagnostic
Repository

The Automatic Diagnostic Repository (ADR) is a directory structure that is stored outside of the
database. It is therefore available for problem diagnosis when the database is down.

The ADR root directory is known as ADR base. Its location is set by the DIAGNOSTIC_DEST
initialization parameter. If this parameter is omitted or left null, the database sets
DIAGNOSTIC_DEST upon startup as follows:

• If environment variable ORACLE_BASE is set, DIAGNOSTIC_DEST is set to the directory
designated by ORACLE_BASE.

• If environment variable ORACLE_BASE is not set, DIAGNOSTIC_DEST is set to
ORACLE_HOME/log.

Within ADR base, there can be multiple ADR homes, where each ADR home is the root
directory for all diagnostic data—traces, dumps, the alert log, and so on—for a particular
instance of a particular Oracle product or component. For example, in an Oracle Real
Application Clusters environment with Oracle ASM, each database instance, Oracle ASM
instance, and listener has an ADR home.

ADR homes reside in ADR base subdirectories that are named according to the product or
component type. Figure 7-1 illustrates these top-level subdirectories.

Figure 7-1 Product/Component Type Subdirectories in the ADR

asm rdbms tnslsnr clients crs

ADR

base

diag

(others)

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-11

Note:

Additional subdirectories might be created in the ADR depending on your
configuration. Some products automatically purge expired diagnostic data from ADR.
For other products, you can use the ADRCI utility PURGE command at regular intervals
to purge expired diagnostic data.

The location of each ADR home is given by the following path, which starts at the ADR base
directory:

diag/product_type/product_id/instance_id

As an example, Table 7-1 lists the values of the various path components for an Oracle
Database instance.

Table 7-1 ADR Home Path Components for Oracle Database

Path Component Value for Oracle Database

product_type rdbms

product_id DB_UNIQUE_NAME

instance_id SID

For example, for a database with a SID and database unique name both equal to orclbi, the
ADR home would be in the following location:

ADR_base/diag/rdbms/orclbi/orclbi/

Similarly, the ADR home path for the Oracle ASM instance in a single-instance environment
would be:

ADR_base/diag/asm/+asm/+asm/

ADR Home Subdirectories

Within each ADR home directory are subdirectories that contain the diagnostic data. Table 7-2
lists some of these subdirectories and their contents.

Table 7-2 ADR Home Subdirectories

Subdirectory Name Contents

alert The XML-formatted alert log

cdump Core files

incident Multiple subdirectories, where each subdirectory is named for a particular
incident, and where each contains dumps pertaining only to that incident

trace Background and server process trace files, SQL trace files, and the text-
formatted alert log

(others) Other subdirectories of ADR home, which store incident packages, health
monitor reports, logs other than the alert log (such as the DDL log and the
debug log), and other information

Figure 7-2 illustrates the complete directory hierarchy of the ADR for a database instance.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-12

Figure 7-2 ADR Directory Structure for a Database Instance

diag

rdbms

alert cdump incident trace (others)

ADR

base

ADR

home

DB_UNIQUE_NAME

SID

ADR in an Oracle Clusterware Environment

Oracle Clusterware uses ADR and has its own Oracle home and Oracle base. The ADR
directory structure for Oracle Clusterware is different from that of a database instance. There is
only one instance of Oracle Clusterware on a system, so Clusterware ADR homes use only a
system's host name as a differentiator.

When Oracle Clusterware is configured, the ADR home uses crs for both the product type and
the instance ID, and the system host name is used for the product ID. Thus, on a host named
dbprod01, the CRS ADR home would be:

ADR_base/diag/crs/dbprod01/crs/

See Also:

Oracle Clusterware Administration and Deployment Guide

ADR in an Oracle Real Application Clusters Environment

In an Oracle Real Application Clusters (Oracle RAC) environment, each node can have ADR
base on its own local storage, or ADR base can be set to a location on shared storage. You
can use ADRCI to view aggregated diagnostic data from all instances on a single report.

ADR in Oracle Client

Each installation of Oracle Client includes an ADR for diagnostic data associated with critical
failures in any of the Oracle Client components. The ADRCI utility is installed with Oracle Client
so that you can examine diagnostic data and package it to enable it for upload to Oracle
Support.

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-13

Viewing ADR Locations with the V$DIAG_INFO View

The V$DIAG_INFO view lists all important ADR locations for the current Oracle Database
instance.

SELECT * FROM V$DIAG_INFO;

INST_ID NAME VALUE
------- --------------------- ---
 1 Diag Enabled TRUE
 1 ADR Base /u01/oracle
 1 ADR Home /u01/oracle/diag/rdbms/orclbi/orclbi
 1 Diag Trace /u01/oracle/diag/rdbms/orclbi/orclbi/trace
 1 Diag Alert /u01/oracle/diag/rdbms/orclbi/orclbi/alert
 1 Diag Incident /u01/oracle/diag/rdbms/orclbi/orclbi/incident
 1 Diag Cdump /u01/oracle/diag/rdbms/orclbi/orclbi/cdump
 1 Health Monitor /u01/oracle/diag/rdbms/orclbi/orclbi/hm
 1 Default Trace File /u01/oracle/diag/rdbms/orclbi/orclbi/trace/orcl_ora_22769.trc
 1 Active Problem Count 8
 1 Active Incident Count 20

The following table describes some of the information displayed by this view.

Table 7-3 Data in the V$DIAG_INFO View

Name Description

ADR Base Path of ADR base

ADR Home Path of ADR home for the current database instance

Diag Trace Location of background process trace files, server process trace files, SQL trace
files, and the text-formatted version of the alert log

Diag Alert Location of the XML-formatted version of the alert log

Default Trace File Path to the trace file for the current session

Viewing Critical Errors with the V$DIAG_CRITICAL_ERROR View

The V$DIAG_CRITICAL_ERROR view lists all of the non-internal errors designated as critical
errors for the current Oracle Database release. The view does not list internal errors because
internal errors are always designated as critical errors.

The following example shows the output for the V$DIAG_CRITICAL_ERROR view:

SELECT * FROM V$DIAG_CRITICAL_ERROR;

FACILITY ERROR
---------- --
ORA 7445
ORA 4030
ORA 4031
ORA 29740
ORA 255
ORA 355
ORA 356
ORA 239
ORA 240
ORA 494
ORA 3137
ORA 227

Chapter 7
About the Oracle Database Fault Diagnosability Infrastructure

7-14

ORA 353
ORA 1578
ORA 32701
ORA 32703
ORA 29770
ORA 29771
ORA 445
ORA 25319
OCI 3106
OCI 3113
OCI 3135

The following table describes the information displayed by this view.

Table 7-4 Data in the V$DIAG_CRITICAL_ERROR View

Column Description

FACILITY The facility that can report the error, such as Oracle Database (ORA) or Oracle
Call Interface (OCI)

ERROR The error number

See Also:

"About Incidents and Problems" for more information about internal errors

7.2 About Investigating, Reporting, and Resolving a Problem
You can use the Enterprise Manager Support Workbench (Support Workbench) to investigate
and report a problem (critical error), and in some cases, resolve the problem. You can use a
"roadmap" that summarizes the typical set of tasks that you must perform.

Note:

The tasks described in this section are all Cloud Control–based. You can also
accomplish all of these tasks (or their equivalents) with the ADRCI command-line
utility, with PL/SQL packages such as DBMS_HM and DBMS_SQLDIAG, and with other
software tools. See Oracle Database Utilities for more information on the ADRCI utility,
and see Oracle Database PL/SQL Packages and Types Reference for information on
PL/SQL packages.

• Roadmap — Investigating, Reporting, and Resolving a Problem
You can begin investigating a problem by starting from the Support Workbench home page
in Cloud Control. However, the more typical workflow begins with a critical error alert on
the Database Home page.

• Task 1: View Critical Error Alerts in Cloud Control
You begin the process of investigating problems (critical errors) by reviewing critical error
alerts on the Database Home page or Oracle Automatic Storage Management Home page.

Chapter 7
About Investigating, Reporting, and Resolving a Problem

7-15

• Task 2: View Problem Details
You continue your investigation from the Incident Manager Problem Details page.

• Task 3: (Optional) Gather Additional Diagnostic Information
You can perform the following activities to gather additional diagnostic information for a
problem. This additional information is then automatically included in the diagnostic data
uploaded to Oracle Support. If you are unsure about performing these activities, then
check with your Oracle Support representative.

• Task 4: (Optional) Create a Service Request
At this point, you can create an Oracle Support service request and record the service
request number with the problem information.

• Task 5: Package and Upload Diagnostic Data to Oracle Support
For this task, you use the quick packaging process of the Support Workbench to package
and upload the diagnostic information for the problem to Oracle Support.

• Task 6: Track the Service Request and Implement Any Repairs
After uploading diagnostic information to Oracle Support, you might perform various
activities to track the service request, to collect additional diagnostic information, and to
implement repairs.

See Also:

"About the Oracle Database Fault Diagnosability Infrastructure" for more information
on problems and their diagnostic data

7.2.1 Roadmap — Investigating, Reporting, and Resolving a Problem
You can begin investigating a problem by starting from the Support Workbench home page in
Cloud Control. However, the more typical workflow begins with a critical error alert on the
Database Home page.

Figure 7-3 illustrates the tasks that you complete to investigate, report, and in some cases,
resolve a problem.

Chapter 7
About Investigating, Reporting, and Resolving a Problem

7-16

Figure 7-3 Workflow for Investigating, Reporting, and Resolving a Problem

Task 2

Task 3

View Problem Details

Gather additional
diagnostic
information

Task 4

Create a Service
Request

Task 5

Package and Upload
Diagnostic Data

to
Oracle Support

Task 6

Track the Service
Request and

Implement Any
Repairs

Task 1

View Critical
Error Alerts in

Enterprise
Manager

The following are task descriptions. Subsequent sections provide details for each task.

• Task 1: View Critical Error Alerts in Cloud Control

Start by accessing the Database Home page in Cloud Control and reviewing critical error
alerts. Select an alert for which to view details, and then go to the Problem Details page.

• Task 2: View Problem Details

Examine the problem details and view a list of all incidents that were recorded for the
problem. Display findings from any health checks that were automatically run.

• Task 3: (Optional) Gather Additional Diagnostic Information

Optionally run additional health checks or other diagnostics. For SQL-related errors,
optionally invoke the SQL Test Case Builder, which gathers all required data related to a
SQL problem and packages the information in a way that enables the problem to be
reproduced at Oracle Support.

• Task 4: (Optional) Create a Service Request

Optionally create a service request with My Oracle Support and record the service request
number with the problem information. If you skip this step, you can create a service
request later, or the Support Workbench can create one for you.

• Task 5: Package and Upload Diagnostic Data to Oracle Support

Invoke a guided workflow (a wizard) that automatically packages the gathered diagnostic
data for a problem and uploads the data to Oracle Support.

• Task 6: Track the Service Request and Implement Any Repairs

Chapter 7
About Investigating, Reporting, and Resolving a Problem

7-17

Optionally maintain an activity log for the service request in the Support Workbench. Run
Oracle advisors to help repair SQL failures or corrupted data.

See Also:

"Viewing Problems with the Support Workbench"

7.2.2 Task 1: View Critical Error Alerts in Cloud Control
You begin the process of investigating problems (critical errors) by reviewing critical error alerts
on the Database Home page or Oracle Automatic Storage Management Home page.

To view critical error alerts:

1. Access the Database Home page in Cloud Control.

2. View the alerts in the Incidents and Problems section.

If necessary, click the hide/show icon next to the Alerts heading to display the alerts.

Also, in the Category list, you can select a particular category to view alerts for only that
category.

3. In the Summary column, click the message of the critical error alert that you want to
investigate.

The General subpage of the Incident Manager Problem Details page appears. This page
includes:

• Problem details

• Controls that allow you to acknowledge, clear, or record a comment about the alert in
the Tracking section

• Links that enable you to diagnose the problem using Support Workbench and package
the diagnostics in the Guided Resolution section.

Other sections might appear depending on the type of problem you are investigating.

To view more information about the problem, click the following subpages on the Incident
Manager Problem Details page:

Chapter 7
About Investigating, Reporting, and Resolving a Problem

7-18

• The Incidents subpage contains information about individual incidents for the problem.

• The My Oracle Support Knowledge subpage provides access to My Oracle Support for
more information about the problem.

• The Updates subpage shows any updates entered about the problem.

• The Related Problems subpage shows other open problems with the same problem
key as the current problem.

4. Perform one of the following actions:

• To view the details of the problem associated with the critical error alert that you are
investigating, proceed with "Task 2: View Problem Details".

• If there are several related problems and you want to view more information about
them, then complete these steps:

– View problems and incidents as described in "Viewing Problems with the Support
Workbench".

– Select a single problem and view problem details, as described in "Viewing
Problems with the Support Workbench".

– Continue with "Task 3: (Optional) Gather Additional Diagnostic Information".

7.2.3 Task 2: View Problem Details
You continue your investigation from the Incident Manager Problem Details page.

To view problem details:

1. On the General subpage of the Incident Manager Problem Details page, click Support
Workbench: Problem Details in the Diagnostics subsection.

The Support Workbench Problem Details page appears.

2. (Optional) Complete one or more of the following actions:

• In the Investigate and Resolve section, under Diagnose, click Related Problems
Across Topology.

A page appears showing any related problems in the local Oracle Automatic Storage
Management (Oracle ASM) instance, or in the database or Oracle ASM instances on
other nodes in an Oracle Real Application Clusters environment. This step is
recommended if any critical alerts appear in the Related Alerts section on the Cloud
Control Database Home page.

See "Related Problems Across the Topology" for more information.

• To view incident details, in the Incidents subpage, select an incident, and then click
View.

The Incident Details page appears, showing the Dump Files subpage.

• On the Incident Details page, select Checker Findings to view the Checker Findings
subpage.

This page displays findings from any health checks that were automatically run when
the critical error was detected.

7.2.4 Task 3: (Optional) Gather Additional Diagnostic Information
You can perform the following activities to gather additional diagnostic information for a
problem. This additional information is then automatically included in the diagnostic data

Chapter 7
About Investigating, Reporting, and Resolving a Problem

7-19

uploaded to Oracle Support. If you are unsure about performing these activities, then check
with your Oracle Support representative.

• Manually invoke additional health checks.

See "Identifying Problems Proactively with Health Monitor".

• Invoke the SQL Test Case Builder.

See "Creating Test Cases with SQL Test Case Builder".

7.2.5 Task 4: (Optional) Create a Service Request
At this point, you can create an Oracle Support service request and record the service request
number with the problem information.

If you choose to skip this task, then the Support Workbench will automatically create a draft
service request for you in "Task 5: Package and Upload Diagnostic Data to Oracle Support".

To create a service request:

1. From the Enterprise menu, select My Oracle Support, then Service Requests.

The My Oracle Support Login and Registration page appears.

2. Log in to My Oracle Support and create a service request in the usual manner.

(Optional) Remember the service request number (SR#) for the next step.

3. (Optional) Return to the Problem Details page, and then do the following:

a. In the Summary section, click the Edit button that is adjacent to the SR# label.

b. Enter the SR#, and then click OK.

The SR# is recorded in the Problem Details page. This is for your reference only. See
"Viewing Problems with the Support Workbench" for information about returning to the
Problem Details page.

7.2.6 Task 5: Package and Upload Diagnostic Data to Oracle Support
For this task, you use the quick packaging process of the Support Workbench to package and
upload the diagnostic information for the problem to Oracle Support.

Quick packaging has a minimum of steps, organized in a guided workflow (a wizard). The
wizard assists you with creating an incident package (package) for a single problem, creating a
zip file from the package, and uploading the file. With quick packaging, you are not able to edit
or otherwise customize the diagnostic information that is uploaded. However, quick packaging
is the more direct, straightforward method to package and upload diagnostic data.

To edit or remove sensitive data from the diagnostic information, enclose additional user files
(such as application configuration files or scripts), or perform other customizations before
uploading, you must use the custom packaging process, which is a more manual process and
has more steps. See "Reporting Problems" for instructions. If you choose to follow those
instructions instead of the instructions here in Task 5, do so now and then continue with Task 6:
Track the Service Request and Implement Any Repairs when you are finished.

To package and upload diagnostic data to Oracle Support:

1. On the Support Workbench Problem Details page, in the Investigate and Resolve section,
click Quick Package.

The Create New Package page of the Quick Packaging wizard appears.

Chapter 7
About Investigating, Reporting, and Resolving a Problem

7-20

Note:

See "Viewing Problems with the Support Workbench" for instructions for
returning to the Problem Details page if you are not already there.

2. (Optional) Enter a package name and description.

3. Fill in any remaining fields on the page. If you have created a service request for this
problem, then select the No option button for Create new Service Request (SR).

If you select the Yes option button for Create new Service Request (SR), then the Quick
Packaging wizard creates a draft service request on your behalf. You must later log in to
My Oracle Support and fill in the details of the service request.

Click Next.

The Quick Packaging wizard displays a page indicating that it is processing the command
to create a new package. When it finished, the Quick Packaging: View Contents page is
displayed.

4. Review the contents on the View Contents page, making a note of the size of the created
package, then click Next.

The Quick Packaging: View Manifest page appears.

5. Review the information on this page, making a note of the location of the manifest (listed
next to the heading Path). After you have reviewed the information, click Next.

The Quick Packaging: Schedule page appears.

6. Choose either Immediately, or Later. If you select Later, then you provide additional
information about the time the package should be submitted to My Oracle Support. After
you have made your choice and provided any necessary information, click Submit.

The Processing: Packaging and Sending the Package progress page appears.

When the Quick Packaging wizard is complete, if a new draft service request was created,
then the confirmation message contains a link to the draft service request in My Oracle
Support in Cloud Control. You can review and edit the service request by clicking the link.

The package created by the Quick Packaging wizard remains available in the Support
Workbench. You can then modify it with custom packaging operations (such as adding new
incidents) and upload again at a later time. See "Viewing and Modifying Incident Packages".

7.2.7 Task 6: Track the Service Request and Implement Any Repairs
After uploading diagnostic information to Oracle Support, you might perform various activities
to track the service request, to collect additional diagnostic information, and to implement
repairs.

Among these activities are the following:

• Adding an Oracle bug number to the problem information.

To do so, on the Problem Details page, click the Edit button that is adjacent to the Bug#
label. This is for your reference only.

• Adding comments to the problem activity log.

You may want to do this to share problem status or history information with other DBAs in
your organization. For example, you could record the results of your conversations with
Oracle Support. To add comments, complete the following steps:

Chapter 7
About Investigating, Reporting, and Resolving a Problem

7-21

1. Access the Problem Details page for the problem, as described in "Viewing Problems
with the Support Workbench".

2. Click Activity Log to display the Activity Log subpage.

3. In the Comment field, enter a comment, and then click Add Comment.

Your comment is recorded in the activity log.

• As new incidents occur, adding them to the package and reuploading.

For this activity, you must use the custom packaging method described in "Reporting
Problems".

• Running health checks.

See "Identifying Problems Proactively with Health Monitor".

• Running a suggested Oracle advisor to implement repairs.

Access the suggested advisor in one of the following ways:

– Problem Details page—In the Self-Service tab of the Investigate and Resolve section

– Support Workbench home page—on the Checker Findings subpage

– Incident Details page—on the Checker Findings subpage

Table 7-5 lists the advisors that help repair critical errors.

Table 7-5 Oracle Advisors that Help Repair Critical Errors

Advisor Critical Errors Addressed See

Data Recovery Advisor Corrupted blocks, corrupted or missing files, and
other data failures

"Repairing Data Corruptions with the
Data Recovery Advisor"

SQL Repair Advisor SQL statement failures "Repairing SQL Failures with the SQL
Repair Advisor"

See Also:

"Viewing Problems with the Support Workbench" for instructions for viewing the
Checker Findings subpage of the Incident Details page

7.3 Diagnosing Problems
This section describes various methods to diagnose problems in an Oracle database.

• Identifying Problems Reactively
This section describes how to identify Oracle database problems reactively.

• Identifying Problems Proactively with Health Monitor
You can run diagnostic checks on a database with Health Monitor.

• Gathering Additional Diagnostic Data
This section describes how to gather additional diagnostic data using alert log and trace
files.

Chapter 7
Diagnosing Problems

7-22

• Creating Test Cases with SQL Test Case Builder
SQL Test Case Builder is a tool that automatically gathers information needed to
reproduce the problem in a different database instance.

7.3.1 Identifying Problems Reactively
This section describes how to identify Oracle database problems reactively.

• Viewing Problems with the Support Workbench
You can use the Support Workbench home page in Cloud Control to view all the problems
or the problems in a specific time period.

• Adding Problems Manually to the Automatic Diagnostic Repository
You can use Support Workbench in Cloud Control to manually add a problem to the ADR.

• Creating Incidents Manually
You can create incidents manually by using the Automatic Diagnostic Repository
Command Interpreter (ADRCI) utility.

• Using DBMS_HCHECK to Identify Data Dictionary Inconsistencies
DBMS_HCHECK is a read-only and lightweight PL/SQL package procedure that helps you
identify database dictionary inconsistencies.

7.3.1.1 Viewing Problems with the Support Workbench
You can use the Support Workbench home page in Cloud Control to view all the problems or
the problems in a specific time period.

Figure 7-4 Support Workbench Home Page in Cloud Control

Chapter 7
Diagnosing Problems

7-23

To access the Support Workbench home page (database or Oracle ASM):

1. Access the Database Home page in Cloud Control.

2. From the Oracle Database menu, select Diagnostics, then Support Workbench.

The Support Workbench home page for the database instance appears, showing the
Problems subpage. By default the problems from the last 24 hours are displayed.

3. To view the Support Workbench home page for the Oracle ASM instance, click the link
Support Workbench (+ASM_hostname) in the Related Links section.

To view problems and incidents:

1. On the Support Workbench home page, select the desired time period from the View list.
To view all problems, select All.

2. (Optional) If the Performance and Critical Error Timeline section is hidden, click the Show/
Hide icon adjacent to the section heading to show the section.

This section enables you to view any correlation between performance changes and
incident occurrences.

3. (Optional) Under the Details column, click Show to display a list of all incidents for a
problem, and then click an incident ID to display the Incident Details page.

To view details for a particular problem:

1. On the Support Workbench home page, select the problem, and then click View.

The Problem Details page appears, showing the Incidents subpage. The incidents
subpage shows all incidents that are open and that generated dumps—that is, that were
not flood-controlled.

2. (Optional) To view both normal and flood-controlled incidents, select All in the Data
Dumped list.

3. (Optional) To view details for an incident, select the incident, and then click View.

The Incident Details page appears.

4. (Optional) On the Incident Details page, to view checker findings for the incident, click
Checker Findings.

5. (Optional) On the Incident Details page, to view the user actions that are available to you
for the incident, click Additional Diagnostics. Each user action provides a way for you to
gather additional diagnostics for the incident or its problem.

See Also:

"Incident Flood Control"

7.3.1.2 Adding Problems Manually to the Automatic Diagnostic Repository
You can use Support Workbench in Cloud Control to manually add a problem to the ADR.

System-generated problems, such as critical errors generated internally to the database are
automatically added to the Automatic Diagnostic Repository (ADR) and tracked in the Support
Workbench.

Chapter 7
Diagnosing Problems

7-24

From the Support Workbench, you can gather additional diagnostic data on these problems,
upload diagnostic data to Oracle Support, and in some cases, resolve the problems, all with
the easy-to-use workflow that is explained in "About Investigating, Reporting, and Resolving a
Problem".

There may be a situation in which you want to manually add a problem that you noticed to the
ADR, so that you can put that problem through that same workflow. An example of such a
situation might be a global database performance problem that was not diagnosed by
Automatic Diagnostic Database Monitor (ADDM). The Support Workbench includes a
mechanism for you to create and work with such a user-reported problem.

To create a user-reported problem:

1. Access the Support Workbench home page.

See "Viewing Problems with the Support Workbench" for instructions.

2. Under Related Links, click Create User-Reported Problem.

The Create User-Reported Problem page appears.

3. If your problem matches one of the listed issue types, select the issue type, and then click
Run Recommended Advisor to attempt to solve the problem with an Oracle advisor.

4. If the recommended advisor did not solve the problem, or if you did not run an advisor, do
one of the following:

• If your problem matches one of the listed issue types, select the issue type, and then
click Continue with Creation of Problem.

• If your problem does not match one of the listed issue types, select the issue type
Other and then click Continue with Creation of Problem.

The Problem Details page appears.

5. Follow the instructions on the Problem Details page.

See "About Investigating, Reporting, and Resolving a Problem" for more information.

See Also:

"About the Oracle Database Fault Diagnosability Infrastructure" for more information
on problems and the ADR

Chapter 7
Diagnosing Problems

7-25

7.3.1.3 Creating Incidents Manually
You can create incidents manually by using the Automatic Diagnostic Repository Command
Interpreter (ADRCI) utility.

To create an incident manually by using the ADRCI utility:

1. Ensure that the ORACLE_HOME and PATH environment variables are set properly. The PATH
environment variable must include ORACLE_HOME/bin directory.

2. Start the ADRCI utility by running the following command at the operating system
command prompt:

ADRCI

The ADRCI utility starts and displays the following prompt:

adrci>

3. Run the ADRCI command having the following syntax to create an incident manually:

adrci> dde create incident type incident_type

Specify incident_type value for the type of incident that you want to create.

See Also:

• Oracle Database Utilities for more information about the ADRCI utility

7.3.1.4 Using DBMS_HCHECK to Identify Data Dictionary Inconsistencies
DBMS_HCHECK is a read-only and lightweight PL/SQL package procedure that helps you
identify database dictionary inconsistencies.

DBMS_HCHECK is a read-only and lightweight PL/SQL package procedure that helps you identify
database dictionary inconsistencies that are manifested in unexpected entries in the RDBMS
dictionary tables or invalid references between dictionary tables. Database dictionary
inconsistencies can cause process failures and, in some cases, instance crash. Such
inconsistencies may be exposed to internal ORA-00600 errors. DBMS_HCHECK assists you in
identifying such inconsistencies and in some cases provides guided remediation to resolve the
problem and avoid such database failures.

Unexpected entries in the dictionary tables or invalid references between dictionary tables, for
example, include the following:

• A lob segment not in OBJ$
• An entry in SOURCE$ not in OBJ$
• Invalid data between OBJ$-PARTOBJ$ and TABPART$
• A segment with no owner

Chapter 7
Diagnosing Problems

7-26

• A table with no segment

• A segment with no object entry

• A recycle bin object not in the recyclebin$
• Check if Control Seq is near the limit

To run all the checks or only the critical checks defined by dbms_hcheck, connect to the SYS
schema, and then run the following commands as SYS user:

Full check

SQL> set serveroutput on size unlimited
SQL> execute dbms_hcheck.full

Critical check

SQL> set serveroutput on size unlimited
SQL> execute dbms_hcheck.critical

Optionally, turn on the spool to redirect the output to a server-side flat file. By default, when you
query the SYS schema, the DBMS_HCHECK package creates a trace file named, HCHECK.trc.

For example: /<path>/diag/rdbms/<db_name>/<oracle_sid>/trace/
<oracle_sid>_<ora>_<pid>_HCHECK.trc.

The execution reports the result as:

• CRITICAL: Requires an immediate fix.

• FAIL: Requires resolution on priority.

• WARN: Good to resolve.

• PASS: No issues.

Note:

In all cases, any output reporting "problems" must be triaged by Oracle Support to
confirm if any action is required.

Example 7-1 Full check run

SQL> set serveroutput on size unlimited
SQL> execute dbms_hcheck.full
dbms_hcheck on 07-MAR-2023 03:17:48
--
Catalog Version 21.0.0.0.0 (2300000000)
db_name: ORCL
Is CDB?: NO
Trace File: /oracle/log/diag/rdbms/orcl/orcl/trace/orcl_ora_2574906_HCHECK.trc

 Catalog Fixed
Procedure Name Version Vs Release Timestamp
Result

Chapter 7
Diagnosing Problems

7-27

------------------------------ ... ---------- -- ---------- --------------

.- OIDOnObjCol ... 2300000000 <= *All Rel* 03/07 03:17:48
PASS
.- LobNotInObj ... 2300000000 <= *All Rel* 03/07 03:17:48
PASS
.- SourceNotInObj ... 2300000000 <= *All Rel* 03/07 03:17:48
PASS
.- OversizedFiles ... 2300000000 <= *All Rel* 03/07 03:17:48
PASS
.- PoorDefaultStorage ... 2300000000 <= *All Rel* 03/07 03:17:48
PASS
.- PoorStorage ... 2300000000 <= *All Rel* 03/07 03:17:48
PASS
.- TabPartCountMismatch ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- TabComPartObj ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- Mview ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- ValidDir ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- DuplicateDataobj ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- ObjSyn ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- ObjSeq ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- UndoSeg ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- IndexSeg ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- IndexPartitionSeg ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- IndexSubPartitionSeg ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- TableSeg ... 2300000000 <= *All Rel* 03/07 03:17:49
FAIL

HCKE-0019: Orphaned TAB$ (no SEG$) (Doc ID 1360889.1)
ORPHAN TAB$: OBJ#=83241 DOBJ#=83241 TS=5 RFILE/BLOCK=5/11 TABLE=SYS.ORPHANSEG
BOBJ#=

.- TablePartitionSeg ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- TableSubPartitionSeg ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- PartCol ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- ValidSeg ... 2300000000 <= *All Rel* 03/07 03:17:49
FAIL

HCKE-0023: Orphaned SEG$ Entry (Doc ID 1360934.1)
ORPHAN SEG$: SegType=LOB TS=5 RFILE/BLOCK=5/26

.- IndPartObj ... 2300000000 <= *All Rel* 03/07 03:17:49

Chapter 7
Diagnosing Problems

7-28

PASS
.- DuplicateBlockUse ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- FetUet ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- Uet0Check ... 2300000000 <= *All Rel* 03/07 03:17:49
PASS
.- SeglessUET ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ValidInd ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ValidTab ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- IcolDepCnt ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ObjIndDobj ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- TrgAfterUpgrade ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ObjType0 ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ValidOwner ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- StmtAuditOnCommit ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- PublicObjects ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- SegFreelist ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ValidDepends ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- CheckDual ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ObjectNames ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ChkIotTs ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- NoSegmentIndex ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- NextObject ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- DroppedROTS ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- FilBlkZero ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- DbmsSchemaCopy ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- IdnseqObj ... 2300000000 > 1201000000 03/07 03:17:50
PASS
.- IdnseqSeq ... 2300000000 > 1201000000 03/07 03:17:50
PASS
.- ObjError ... 2300000000 > 1102000000 03/07 03:17:50
PASS
.- ObjNotLob ... 2300000000 <= *All Rel* 03/07 03:17:50
FAIL

Chapter 7
Diagnosing Problems

7-29

HCKE-0049: OBJ$ LOB entry has no LOB$ or LOBFRAG$ entry (Doc ID 2125104.1)
OBJ$ LOB has no LOB$ entry: Obj=83243 Owner: SYS LOB Name: LOBC1

.- MaxControlfSeq ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- SegNotInDeferredStg ... 2300000000 > 1102000000 03/07 03:17:50
PASS
.- SystemNotRfile1 ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- DictOwnNonDefaultSYSTEM ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ValidateTrigger ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- ObjNotTrigger ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS
.- InvalidTSMaxSCN ... 2300000000 > 1202000000 03/07 03:17:50
CRITICAL

HCKE-0054: TS$ has Tablespace with invalid Maximum SCN (Doc ID 1360208.1)
TS$ has Tablespace with invalid Maximum SCN: TS#=5 Tablespace=HCHECK Online$=1

.- OBJRecycleBin ... 2300000000 <= *All Rel* 03/07 03:17:50
PASS

07-MAR-2023 03:17:50 Elapsed: 2 secs

Found 4 potential problem(s) and 0 warning(s)
Found 1 CRITICAL problem(s) needing attention
Contact Oracle Support with the output and trace file
to check if the above needs attention or not
BEGIN dbms_hcheck.full; END;

*
ERROR at line 1:
ORA-20000: dbms_hcheck found 1 critical issue(s). Trace file:
/oracle/log/diag/rdbms/orcl/orcl/trace/orcl_ora_2574906_HCHECK.trc

SQL>

Example 7-2 Critical check run

SQL> set serveroutput on size unlimited
SQL> execute dbms_hcheck.critical
dbms_hcheck on 07-MAR-2023 03:12:23
--
Catalog Version 21.0.0.0.0 (2100000000)
db_name: ORCL
Is CDB?: NO
Trace File: /oracle/log/diag/rdbms/orcl/orcl/trace/orcl_ora_2574058_HCHECK.trc

 Catalog Fixed
Procedure Name Version Vs Release Timestamp
Result
------------------------------ ... ---------- -- ---------- --------------

Chapter 7
Diagnosing Problems

7-30

.- UndoSeg ... 2300000000 <= *All Rel* 03/07 03:12:23
PASS
.- MaxControlfSeq ... 2300000000 <= *All Rel* 03/07 03:12:23
PASS
.- InvalidTSMaxSCN ... 2300000000 > 1202000000 03/07 03:12:23
CRITICAL

HCKE-0054: TS$ has Tablespace with invalid Maximum SCN (Doc ID 1360208.1)
TS$ has Tablespace with invalid Maximum SCN: TS#=5 Tablespace=HCHECK Online$=1

07-MAR-2023 03:12:23 Elapsed: 0 secs

Found 1 potential problem(s) and 0 warning(s)
Found 1 CRITICAL problem(s) needing attention
Contact Oracle Support with the output and trace file
to check if the above needs attention or not
BEGIN dbms_hcheck.critical; END;

*
ERROR at line 1:
ORA-20000: dbms_hcheck found 1 critical issue(s). Trace file:
/ade/b/959592990/oracle/log/diag/rdbms/orcl/orcl/trace/
orcl_ora_2574058_HCHECK.trc

SQL>

Related Topics

• Summary of DBMS_HCHECK Subprograms

7.3.2 Identifying Problems Proactively with Health Monitor
You can run diagnostic checks on a database with Health Monitor.

• About Health Monitor
Oracle Database includes a framework called Health Monitor for running diagnostic checks
on the database.

• Running Health Checks Manually
Health Monitor can run health checks manually either by using the DBMS_HM PL/SQL
package or by using the Cloud Control interface, found on the Checkers subpage of the
Advisor Central page.

• Viewing Checker Reports
After a checker has run, you can view a report of its execution. The report contains
findings, recommendations, and other information. You can view reports using Cloud
Control, the ADRCI utility, or the DBMS_HM PL/SQL package. The following table indicates
the report formats available with each viewing method.

• Health Monitor Views
Instead of requesting a checker report, you can view the results of a specific checker run
by directly querying the ADR data from which reports are created.

• Health Check Parameters Reference
Some health checks require parameters. Parameters with a default value of (none) are
mandatory.

Chapter 7
Diagnosing Problems

7-31

7.3.2.1 About Health Monitor
Oracle Database includes a framework called Health Monitor for running diagnostic checks on
the database.

• About Health Monitor Checks
Health Monitor checks (also known as checkers, health checks, or checks) examine
various layers and components of the database.

• Types of Health Checks
Health monitor runs several different types of checks.

7.3.2.1.1 About Health Monitor Checks
Health Monitor checks (also known as checkers, health checks, or checks) examine various
layers and components of the database.

Health checks detect file corruptions, physical and logical block corruptions, undo and redo
corruptions, data dictionary corruptions, and more. The health checks generate reports of their
findings and, in many cases, recommendations for resolving problems. Health checks can be
run in two ways:

• Reactive—The fault diagnosability infrastructure can run health checks automatically in
response to a critical error.

• Manual—As a DBA, you can manually run health checks using either the DBMS_HM PL/SQL
package or the Cloud Control interface. You can run checkers on a regular basis if desired,
or Oracle Support may ask you to run a checker while working with you on a service
request.

Health Monitor checks store findings, recommendations, and other information in the
Automatic Diagnostic Repository (ADR).

Health checks can run in two modes:

• DB-online mode means the check can be run while the database is open (that is, in OPEN
mode or MOUNT mode).

• DB-offline mode means the check can be run when the instance is available but the
database itself is closed (that is, in NOMOUNT mode).

All the health checks can be run in DB-online mode. Only the Redo Integrity Check and the DB
Structure Integrity Check can be used in DB-offline mode.

Note:

"Automatic Diagnostic Repository (ADR)"

7.3.2.1.2 Types of Health Checks
Health monitor runs several different types of checks.

Health monitor runs the following checks:

• DB Structure Integrity Check—This check verifies the integrity of database files and
reports failures if these files are inaccessible, corrupt or inconsistent. If the database is in

Chapter 7
Diagnosing Problems

7-32

mount or open mode, this check examines the log files and data files listed in the control
file. If the database is in NOMOUNT mode, only the control file is checked.

• Data Block Integrity Check—This check detects disk image block corruptions such as
checksum failures, head/tail mismatch, and logical inconsistencies within the block. Most
corruptions can be repaired using Block Media Recovery. Corrupted block information is
also captured in the V$DATABASE_BLOCK_CORRUPTION view. This check does not detect inter-
block or inter-segment corruption.

• Redo Integrity Check—This check scans the contents of the redo log for accessibility and
corruption, as well as the archive logs, if available. The Redo Integrity Check reports
failures such as archive log or redo corruption.

• Undo Segment Integrity Check—This check finds logical undo corruptions. After locating
an undo corruption, this check uses PMON and SMON to try to recover the corrupted
transaction. If this recovery fails, then Health Monitor stores information about the
corruption in V$CORRUPT_XID_LIST. Most undo corruptions can be resolved by forcing a
commit.

• Transaction Integrity Check—This check is identical to the Undo Segment Integrity
Check except that it checks only one specific transaction.

• Dictionary Integrity Check—This check examines the integrity of core dictionary objects,
such as tab$ and col$. It performs the following operations:

– Verifies the contents of dictionary entries for each dictionary object.

– Performs a cross-row level check, which verifies that logical constraints on rows in the
dictionary are enforced.

– Performs an object relationship check, which verifies that parent-child relationships
between dictionary objects are enforced.

The Dictionary Integrity Check operates on the following dictionary objects:

tab$, clu$, fet$, uet$, seg$, undo$, ts$, file$, obj$, ind$, icol$, col$, user$, con$,
cdef$, ccol$, bootstrap$, objauth$, ugroup$, tsq$, syn$, view$, typed_view$,
superobj$, seq$, lob$, coltype$, subcoltype$, ntab$, refcon$, opqtype$, dependency$,
access$, viewcon$, icoldep$, dual$, sysauth$, objpriv$, defrole$, and ecol$.

7.3.2.2 Running Health Checks Manually
Health Monitor can run health checks manually either by using the DBMS_HM PL/SQL package
or by using the Cloud Control interface, found on the Checkers subpage of the Advisor Central
page.

• Running Health Checks Using the DBMS_HM PL/SQL Package
The DBMS_HM procedure for running a health check is called RUN_CHECK.

• Running Health Checks Using Cloud Control
Cloud Control provides an interface for running Health Monitor checkers.

7.3.2.2.1 Running Health Checks Using the DBMS_HM PL/SQL Package
The DBMS_HM procedure for running a health check is called RUN_CHECK.

1. To call RUN_CHECK, supply the name of the check and a name for the run, as follows:

BEGIN
 DBMS_HM.RUN_CHECK('Dictionary Integrity Check', 'my_run');
END;
/

Chapter 7
Diagnosing Problems

7-33

2. To obtain a list of health check names, run the following query:

SELECT name FROM v$hm_check WHERE internal_check='N';

Your output is similar to the following:

NAME
--
DB Structure Integrity Check
Data Block Integrity Check
Redo Integrity Check
Transaction Integrity Check
Undo Segment Integrity Check
Dictionary Integrity Check

Most health checks accept input parameters. You can view parameter names and descriptions
with the V$HM_CHECK_PARAM view. Some parameters are mandatory while others are optional. If
optional parameters are omitted, defaults are used. The following query displays parameter
information for all health checks:

SELECT c.name check_name, p.name parameter_name, p.type,
p.default_value, p.description
FROM v$hm_check_param p, v$hm_check c
WHERE p.check_id = c.id and c.internal_check = 'N'
ORDER BY c.name;

Input parameters are passed in the input_params argument as name/value pairs separated by
semicolons (;). The following example illustrates how to pass the transaction ID as a parameter
to the Transaction Integrity Check:

BEGIN
 DBMS_HM.RUN_CHECK (
 check_name => 'Transaction Integrity Check',
 run_name => 'my_run',
 input_params => 'TXN_ID=7.33.2');
END;
/

See Also:

• "Health Check Parameters Reference"

• Oracle Database PL/SQL Packages and Types Reference for more examples of
using DBMS_HM.

7.3.2.2.2 Running Health Checks Using Cloud Control
Cloud Control provides an interface for running Health Monitor checkers.

To run a Health Monitor Checker using Cloud Control:

1. Access the Database Home page.

2. From the Performance menu, select Advisors Home.

3. Click Checkers to view the Checkers subpage.

4. In the Checkers section, click the checker you want to run.

Chapter 7
Diagnosing Problems

7-34

5. Enter values for input parameters or, for optional parameters, leave them blank to accept
the defaults.

6. Click OK, confirm your parameters, and click OK again.

7.3.2.3 Viewing Checker Reports
After a checker has run, you can view a report of its execution. The report contains findings,
recommendations, and other information. You can view reports using Cloud Control, the
ADRCI utility, or the DBMS_HM PL/SQL package. The following table indicates the report formats
available with each viewing method.

• About Viewing Checker Reports
Results of checker runs (findings, recommendations, and other information) are stored in
the ADR, but reports are not generated immediately.

• Viewing Reports Using Cloud Control
You can also view Health Monitor reports and findings for a given checker run using Cloud
Control.

• Viewing Reports Using DBMS_HM
You can view Health Monitor checker reports with the DBMS_HM package function
GET_RUN_REPORT.

• Viewing Reports Using the ADRCI Utility
You can create and view Health Monitor checker reports using the ADRCI utility.

7.3.2.3.1 About Viewing Checker Reports
Results of checker runs (findings, recommendations, and other information) are stored in the
ADR, but reports are not generated immediately.

Report Viewing Method Report Formats Available

Cloud Control HTML

DBMS_HM PL/SQL package HTML, XML, and text

ADRCI utility XML

When you request a report with the DBMS_HM PL/SQL package or with Cloud Control, if the
report does not yet exist, it is first generated from the checker run data in the ADR, stored as a
report file in XML format in the HM subdirectory of the ADR home for the current instance, and
then displayed. If the report file already exists, it is just displayed. When using the ADRCI
utility, you must first run a command to generate the report file if it does not exist, and then run
another command to display its contents.

The preferred method to view checker reports is with Cloud Control.

Note:

"Automatic Diagnostic Repository (ADR)"

Chapter 7
Diagnosing Problems

7-35

7.3.2.3.2 Viewing Reports Using Cloud Control
You can also view Health Monitor reports and findings for a given checker run using Cloud
Control.

To view run findings using Cloud Control:

1. Access the Database Home page.

2. From the Performance menu, select Advisors Home.

3. Click Checkers to view the Checkers subpage.

4. Click the run name for the checker run that you want to view.

The Run Detail page appears, showing the Findings subpage for that checker run.

5. Click Runs to display the Runs subpage.

Cloud Control displays more information about the checker run.

6. Click View Report to view the report for the checker run.

The report is displayed in a new browser window.

7.3.2.3.3 Viewing Reports Using DBMS_HM
You can view Health Monitor checker reports with the DBMS_HM package function
GET_RUN_REPORT.

This function enables you to request HTML, XML, or text formatting. The default format is text,
as shown in the following SQL*Plus example:

SET LONG 100000
SET LONGCHUNKSIZE 1000
SET PAGESIZE 1000
SET LINESIZE 512
SELECT DBMS_HM.GET_RUN_REPORT('HM_RUN_1061') FROM DUAL;

DBMS_HM.GET_RUN_REPORT('HM_RUN_1061')

 Run Name : HM_RUN_1061
 Run Id : 1061
 Check Name : Data Block Integrity Check
 Mode : REACTIVE
 Status : COMPLETED
 Start Time : 2007-05-12 22:11:02.032292 -07:00
 End Time : 2007-05-12 22:11:20.835135 -07:00
 Error Encountered : 0
 Source Incident Id : 7418
 Number of Incidents Created : 0

Input Parameters for the Run
 BLC_DF_NUM=1
 BLC_BL_NUM=64349

Run Findings And Recommendations
 Finding
 Finding Name : Media Block Corruption
 Finding ID : 1065
 Type : FAILURE
 Status : OPEN

Chapter 7
Diagnosing Problems

7-36

 Priority : HIGH
 Message : Block 64349 in datafile 1:
 '/u01/app/oracle/dbs/t_db1.f' is media corrupt
 Message : Object BMRTEST1 owned by SYS might be unavailable
 Finding
 Finding Name : Media Block Corruption
 Finding ID : 1071
 Type : FAILURE
 Status : OPEN
 Priority : HIGH
 Message : Block 64351 in datafile 1:
 '/u01/app/oracle/dbs/t_db1.f' is media corrupt
 Message : Object BMRTEST2 owned by SYS might be unavailable

See Also:

Oracle Database PL/SQL Packages and Types Reference for details on the DBMS_HM
package.

7.3.2.3.4 Viewing Reports Using the ADRCI Utility
You can create and view Health Monitor checker reports using the ADRCI utility.

To create and view a checker report using ADRCI:

1. Ensure that the ORACLE_HOME and PATH environment variables are set properly, and then
start the ADRCI utility by running the following command at the operating system
command prompt:

ADRCI

The ADRCI utility starts and displays the following prompt:

adrci>

Optionally, you can change the current ADR home. Use the SHOW HOMES command to list all
ADR homes, and the SET HOMEPATH command to change the current ADR home. See
Oracle Database Utilities for more information.

2. Enter the following command:

show hm_run

This command lists all the checker runs (stored in V$HM_RUN) registered in the ADR.

3. Locate the checker run for which you want to create a report and note the checker run
name. The REPORT_FILE field contains a file name if a report already exists for this checker
run. Otherwise, generate the report with the following command:

create report hm_run run_name
4. To view the report, enter the following command:

show report hm_run run_name

Chapter 7
Diagnosing Problems

7-37

Note:

"Automatic Diagnostic Repository (ADR)"

7.3.2.4 Health Monitor Views
Instead of requesting a checker report, you can view the results of a specific checker run by
directly querying the ADR data from which reports are created.

This data is available through the views VHM_RUN, VHM_FINDING, and V$HM_RECOMMENDATION.

The following example queries the V$HM_RUN view to determine a history of checker runs:

SELECT run_id, name, check_name, run_mode, src_incident FROM v$hm_run;

 RUN_ID NAME CHECK_NAME RUN_MODE SRC_INCIDENT
---------- ------------ ---------------------------------- -------- ------------
 1 HM_RUN_1 DB Structure Integrity Check REACTIVE 0
 101 HM_RUN_101 Transaction Integrity Check REACTIVE 6073
 121 TXNCHK Transaction Integrity Check MANUAL 0
 181 HMR_tab$ Dictionary Integrity Check MANUAL 0
 .
 .
 .
 981 Proct_ts$ Dictionary Integrity Check MANUAL 0
 1041 HM_RUN_1041 DB Structure Integrity Check REACTIVE 0
 1061 HM_RUN_1061 Data Block Integrity Check REACTIVE 7418

The next example queries the V$HM_FINDING view to obtain finding details for the reactive data
block check with RUN_ID 1061:

SELECT type, description FROM v$hm_finding WHERE run_id = 1061;

TYPE DESCRIPTION
------------- ---
FAILURE Block 64349 in datafile 1: '/u01/app/orac
 le/dbs/t_db1.f' is media corrupt

FAILURE Block 64351 in datafile 1: '/u01/app/orac
 le/dbs/t_db1.f' is media corrupt

See Also:

• "Types of Health Checks"

• Oracle Database Reference for more information on the V$HM_* views

7.3.2.5 Health Check Parameters Reference
Some health checks require parameters. Parameters with a default value of (none) are
mandatory.

Chapter 7
Diagnosing Problems

7-38

Table 7-6 Parameters for Data Block Integrity Check

Parameter Name Type Default Value Description

BLC_DF_NUM Number (none) Block data file number

BLC_BL_NUM Number (none) Data block number

Table 7-7 Parameters for Redo Integrity Check

Parameter Name Type Default Value Description

SCN_TEXT Text 0 SCN of the latest good redo (if
known)

Table 7-8 Parameters for Undo Segment Integrity Check

Parameter Name Type Default Value Description

USN_NUMBER Text (none) Undo segment number

Table 7-9 Parameters for Transaction Integrity Check

Parameter Name Type Default Value Description

TXN_ID Text (none) Transaction ID

Table 7-10 Parameters for Dictionary Integrity Check

Parameter Name Type Default Value Description

CHECK_MASK Text ALL Possible values are:

• COLUMN_CHECKS—Run
column checks only. Verify
column-level constraints in
the core tables.

• ROW_CHECKS—Run row
checks only. Verify row-level
constraints in the core tables.

• REFERENTIAL_CHECKS—
Run referential checks only.
Verify referential constraints
in the core tables.

• ALL—Run all checks.

TABLE_NAME Text ALL_CORE_TABLES Name of a single core table to
check. If omitted, all core tables
are checked.

7.3.3 Gathering Additional Diagnostic Data
This section describes how to gather additional diagnostic data using alert log and trace files.

• Viewing the Alert Log
You can view the alert log with a text editor, with Cloud Control, or with the ADRCI utility.

Chapter 7
Diagnosing Problems

7-39

• Finding Trace Files
Trace files are stored in the Automatic Diagnostic Repository (ADR), in the trace directory
under each ADR home. To help you locate individual trace files within this directory, you
can use data dictionary views. For example, you can find the path to your current session's
trace file or to the trace file for each Oracle Database process.

7.3.3.1 Viewing the Alert Log
You can view the alert log with a text editor, with Cloud Control, or with the ADRCI utility.

To view the alert log with Cloud Control:

1. Access the Database Home page in Cloud Control.

2. From the Oracle Database menu, select Diagnostics, then Support Workbench.

3. Under Related Links, click Alert Log Contents.

The View Alert Log Contents page appears.

4. Select the number of entries to view, and then click Go.

To view the alert log with a text editor:

1. Connect to the database with SQL*Plus or another query tool, such as SQL Developer.

2. Query the V$DIAG_INFO view as shown in "Viewing ADR Locations with the V$DIAG_INFO
View".

3. To view the text-only alert log, without the XML tags, complete these steps:

a. In the V$DIAG_INFO query results, note the path that corresponds to the Diag Trace
entry, and change directory to that path.

b. Open file alert_SID.log with a text editor.

4. To view the XML-formatted alert log, complete these steps:

a. In the V$DIAG_INFO query results, note the path that corresponds to the Diag Alert
entry, and change directory to that path.

b. Open the file log.xml with a text editor.

See Also:

Oracle Database Utilities for information about using the ADRCI utility to view a text
version of the alert log (with XML tags stripped) and to run queries against the alert
log

7.3.3.2 Finding Trace Files
Trace files are stored in the Automatic Diagnostic Repository (ADR), in the trace directory
under each ADR home. To help you locate individual trace files within this directory, you can
use data dictionary views. For example, you can find the path to your current session's trace
file or to the trace file for each Oracle Database process.

Chapter 7
Diagnosing Problems

7-40

To find the trace file for your current session:

• Submit the following query:

SELECT VALUE FROM V$DIAG_INFO WHERE NAME = 'Default Trace File';

The full path to the trace file is returned.

To find all trace files for the current instance:

• Submit the following query:

SELECT VALUE FROM V$DIAG_INFO WHERE NAME = 'Diag Trace';

The path to the ADR trace directory for the current instance is returned.

To determine the trace file for each Oracle Database process:

• Submit the following query:

SELECT PID, PROGRAM, TRACEFILE FROM V$PROCESS;

See Also:

• "Structure, Contents, and Location of the Automatic Diagnostic Repository"

• The ADRCI SHOW TRACEFILE command in Oracle Database Utilities

7.3.4 Creating Test Cases with SQL Test Case Builder
SQL Test Case Builder is a tool that automatically gathers information needed to reproduce
the problem in a different database instance.

A SQL test case is a set of information that enables a developer to reproduce the execution
plan for a specific SQL statement that has encountered a performance problem.

This section contains the following topics:

• Purpose of SQL Test Case Builder
SQL Test Case Builder automates the process of gathering and reproducing information
about a problem and the environment in which it occurred.

• Concepts for SQL Test Case Builder
Key concepts for SQL Test Case Builder include SQL incidents, types of information
recorded, and the form of the output.

• User Interfaces for SQL Test Case Builder
You can access SQL Test Case Builder either through Cloud Control or using PL/SQL on
the command line.

• Running SQL Test Case Builder
You can run SQL Test Case Builder using Cloud Control.

Chapter 7
Diagnosing Problems

7-41

7.3.4.1 Purpose of SQL Test Case Builder
SQL Test Case Builder automates the process of gathering and reproducing information about
a problem and the environment in which it occurred.

For most SQL components, obtaining a reproducible test case is the most important factor in
bug resolution speed. It is also the longest and most painful step for users. The goal of SQL
Test Case Builder is to gather as much as information related to an SQL incident as possible,
and then package it in a way that enables Oracle staff to reproduce the problem on a different
system.

The output of SQL Test Case Builder is a set of scripts in a predefined directory. These scripts
contain the commands required to re-create all the necessary objects and the environment on
another database instance. After the test case is ready, you can create a zip file of the directory
and move it to another database, or upload the file to Oracle Support.

7.3.4.2 Concepts for SQL Test Case Builder
Key concepts for SQL Test Case Builder include SQL incidents, types of information recorded,
and the form of the output.

This section contains the following topics:

• SQL Incidents
In the fault diagnosability infrastructure of Oracle Database, an incident is a single
occurrence of a problem.

• What SQL Test Case Builder Captures
SQL Test Case Builder captures permanent information about a SQL query and its
environment.

• Output of SQL Test Case Builder
The output of SQL Test Case Builder is a set of files that contains commands required to
re-create the environment and all necessary objects.

7.3.4.2.1 SQL Incidents
In the fault diagnosability infrastructure of Oracle Database, an incident is a single occurrence
of a problem.

A SQL incident is a SQL-related problem. When a problem (critical error) occurs multiple times,
the database creates an incident for each occurrence. Incidents are timestamped and tracked
in the Automatic Diagnostic Repository (ADR). Each incident has a numeric incident ID, which
is unique within the ADR.

SQL Test Case Builder is accessible any time on the command line. In Oracle Enterprise
Manager Cloud Control (Cloud Control), the SQL Test Case pages are only available after a
SQL incident is found.

7.3.4.2.2 What SQL Test Case Builder Captures
SQL Test Case Builder captures permanent information about a SQL query and its
environment.

The information includes the query being executed, table and index definitions (but not the
actual data), PL/SQL packages and program units, optimizer statistics, SQL plan baselines,
and initialization parameter settings. Starting with Oracle Database 12c, SQL Test Case

Chapter 7
Diagnosing Problems

7-42

Builder also captures and replays transient information, including information only available as
part of statement execution.

SQL Test Case Builder supports the following:

• Adaptive plans

SQL Test Case Builder captures inputs to the decisions made regarding adaptive plans,
and replays them at each decision point. For adaptive plans, the final statistics value at
each buffering statistics collector is sufficient to decide on the final plan.

• Automatic memory management

The database automatically handles the memory requested for each SQL operation.
Actions such as sorting can affect performance significantly. SQL Test Case Builder keeps
track of the memory activities, for example, where the database allocated memory and
how much it allocated.

• Dynamic statistics

Dynamic statistics is an optimization technique in which the database executes a recursive
SQL statement to scan a small random sample of a table's blocks to estimate predicate
selectivities. Regathering dynamic statistics on a different database does not always
generate the same results, for example, when data is missing. To reproduce the problem,
SQL Test Case Builder exports the dynamic statistics result from the source database. In
the testing database, SQL Test Case Builder reuses the same values captured from the
source database instead of regathering dynamic statistics.

• Multiple execution support

SQL Test Case Builder can capture dynamic information accumulated during multiple
executions of the query. This capability is important for automatic reoptimization.

• Compilation environment and bind values replay

The compilation environment setting is an important part of the query optimization context.
SQL Test Case Builder captures nondefault settings altered by the user when running the
problem query in the source database. If any nondefault parameter values are used, SQL
Test Case Builder re-establishes the same values before running the query.

• Object statistics history

The statistics history for objects is helpful to determine whether a plan change was caused
by a change in statistics values. DBMS_STATS stores the history in the data dictionary. SQL
Test Case Builder stores this statistics data into a staging table during export. During
import, SQL Test Case Builder automatically reloads the statistics history data into the
target database from the staging table.

• Statement history

The statement history is important for diagnosing problems related to adaptive cursor
sharing, statistics feedback, and cursor sharing bugs. The history includes execution plans
and compilation and execution statistics.

Chapter 7
Diagnosing Problems

7-43

See Also:

• Oracle Database SQL Tuning Guide for more information about adaptive query
plans, supplemental dynamic statistics, automatic reoptimization, and SQL plan
baselines

• Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

7.3.4.2.3 Output of SQL Test Case Builder
The output of SQL Test Case Builder is a set of files that contains commands required to re-
create the environment and all necessary objects.

By default, SQL Test Case Builder stores the files in the following directory, where incnum
refers to the incident number and runnum refers to the run number:

$ADR_HOME/incident/incdir_incnum/SQLTCB_runnum

For example, a valid output file name could be as follows:

$ORACLE_HOME/log/diag/rdbms/dbsa/dbsa/incident/incdir_2657/SQLTCB_1

You can also specify a particular directory for storing the SQL Test Case Builder files by
creating a directory object with the name SQL_TCB_DIR and running the procedure
DBMS_SQLDIAG.EXPORT_SQL_TESTCASE as shown in the following example:

CREATE OR REPLACE DIRECTORY SQL_TCB_DIR '/tmp';

DECLARE
tc CLOB;
BEGIN
 DBMS_SQLDIAG.EXPORT_SQL_TESTCASE (
 directory => 'SQL_TCB_DIR',
 sql_text => 'select * from hr_table',
 testcase => tc);
END;

Note:

The database administrator must have read and write access permissions to the
operating system directory specified in the directory object SQL_TCB_DIR.

You can also specify a name for a test case using the testcase_name parameter of the
DBMS_SQLDIAG.EXPORT_SQL_TESTCASE procedure. A test case name is used as a prefix for all
the files generated by SQL Test Case Builder.

Chapter 7
Diagnosing Problems

7-44

If you do not specify a test case name, then a default test case name having the following
format is used by SQL Test Case Builder:

oratcb_connectionId_sqlId_sequenceNumber_sessionId

Here, connectionId is the database connection ID, sqlId is the SQL statement ID,
sequenceNumber is the internal sequence number, and sessionId is the database session ID.

You can also specify any additional information to include in the output of SQL Test Case
Builder using the ctrlOptions parameter of the DBMS_SQLDIAG.EXPORT_SQL_TESTCASE
procedure. The following are some of the options that you can specify in the ctrlOptions
parameter:

• compress: This option is used to compress the SQL Test Case Builder output files into a zip
file.

• diag_event: This option is used to specify the level of trace information to include in the
SQL Test Case Builder output.

• problem_type: This option is used to assign an issue type for a SQL Test Case Builder test
case. For example, if a test case is related to performance regression issue, then you can
assign the value of PERFORMANCE to the problem_type option.

You can view the information about all the test cases generated by SQL Test Case Builder by
querying the V$SQL_TESTCASES view as shown in the following example:

select testcase_name, sql_text from v$sql_testcases;

TESTCASE_NAME SQL_TEXT
------------------------------------- ----------------------
oratcb_0_am8q8kudm02v9_1_00244CC50001 select * from hr_table

Note:

The V$SQL_TESTCASES view requires the existence of a SQL Test Case Builder root
directory object named SQL_TCB_DIR. In Oracle Autonomous Database environments,
this directory object is created automatically on each POD during provisioning. For
on-premises databases, you must explicitly create the SQL Test Case Builder root
directory object SQL_TCB_DIR, otherwise the V$SQL_TESTCASES view will not display
any information. The database administrator must have read and write access
permissions to the operating system directory specified in the directory object
SQL_TCB_DIR.

Chapter 7
Diagnosing Problems

7-45

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SQLDIAG.EXPORT_SQL_TESTCASE procedure

• Oracle Database Reference for more information about the V$SQL_TESTCASES
view

7.3.4.3 User Interfaces for SQL Test Case Builder
You can access SQL Test Case Builder either through Cloud Control or using PL/SQL on the
command line.

This section contains the following topics:

• Graphical Interface for SQL Test Case Builder
Within Cloud Control, you can access SQL Test Case Builder from the Incident Manager
page or the Support Workbench page.

• Command-Line Interface for SQL Test Case Builder
The DBMS_SQLDIAG package performs tasks relating to SQL Test Case Builder.

7.3.4.3.1 Graphical Interface for SQL Test Case Builder
Within Cloud Control, you can access SQL Test Case Builder from the Incident Manager page
or the Support Workbench page.

This section contains the following topics:

• Accessing the Incident Manager
From the Incidents and Problems section on the Database Home page, you can navigate
to the Incident Manager.

• Accessing the Support Workbench
From the Oracle Database menu, you can navigate to the Support Workbench.

7.3.4.3.1.1 Accessing the Incident Manager

From the Incidents and Problems section on the Database Home page, you can navigate to
the Incident Manager.

To access the Incident Manager:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. In the Incidents and Problems section, locate the SQL incident to be investigated.

In the following example, the ORA 600 error is a SQL incident.

Chapter 7
Diagnosing Problems

7-46

6. Click the summary of the incident.

The Problem Details page of the Incident Manager appears.

The Support Workbench page appears, with the incidents listed in a table.

7.3.4.3.1.2 Accessing the Support Workbench

From the Oracle Database menu, you can navigate to the Support Workbench.

To access the Support Workbench:

1. Log in to Cloud Control with the appropriate credentials.

2. Under the Targets menu, select Databases.

3. In the list of database targets, select the target for the Oracle Database instance that you
want to administer.

4. If prompted for database credentials, then enter the minimum credentials necessary for the
tasks you intend to perform.

5. From the Oracle Database menu, select Diagnostics, then Support Workbench.

The Support Workbench page appears, with the incidents listed in a table.

7.3.4.3.2 Command-Line Interface for SQL Test Case Builder
The DBMS_SQLDIAG package performs tasks relating to SQL Test Case Builder.

This package consists of various subprograms for the SQL Test Case Builder, some of which
are listed in the following table.

Chapter 7
Diagnosing Problems

7-47

Table 7-11 SQL Test Case Functions in the DBMS_SQLDIAG Package

Procedure Description

EXPORT_SQL_TESTCASE Exports a SQL test case to a user-specified directory

EXPORT_SQL_TESTCASE_DIR_BY_INC Exports a SQL test case corresponding to the incident ID
passed as an argument

EXPORT_SQL_TESTCASE_DIR_BY_TXT Exports a SQL test case corresponding to the SQL text
passed as an argument

IMPORT_SQL_TESTCASE Imports a SQL test case into a schema

REPLAY_SQL_TESTCASE Automates reproduction of a SQL test case

EXPLAIN_SQL_TESTCASE Explains a SQL test case

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more about the
DBMS_SQLDIAG package

7.3.4.4 Running SQL Test Case Builder
You can run SQL Test Case Builder using Cloud Control.

Assumptions

This tutorial assumes the following:

• You ran the following EXPLAIN PLAN statement as user sh, which causes an internal error:

EXPLAIN PLAN FOR
 SELECT unit_cost, sold
 FROM costs c,
 (SELECT /*+ merge */ p.prod_id, SUM(quantity_sold) AS sold
 FROM products p, sales s
 WHERE p.prod_id = s.prod_id
 GROUP BY p.prod_id) v
 WHERE c.prod_id = v.prod_id;

• In the Incidents and Problems section on the Database Home page, a SQL incident
generated by the internal error appears.

• You access the Incident Details page, as explained in "Accessing the Incident Manager".

To run SQL Test Case Builder:

1. Click the Incidents tab.

The Problem Details page appears.

Chapter 7
Diagnosing Problems

7-48

2. Click the summary for the incident.

The Incident Details page appears.

3. In Guided Resolution, click View Diagnostic Data.

The Incident Details: incident_number page appears.

Chapter 7
Diagnosing Problems

7-49

4. In the Application Information section, click Additional Diagnostics.

The Additional Diagnostics subpage appears.

5. Select SQL Test Case Builder, and then click Run.

The Run User Action page appears.

Chapter 7
Diagnosing Problems

7-50

6. Select a sampling percentage (optional), and then click Submit.

After processing completes, the Confirmation page appears.

7. Access the SQL Test Case files in the location described in "Output of SQL Test Case
Builder".

7.4 Reporting Problems
Using the Enterprise Manager Support Workbench (Support Workbench), you can create, edit,
and upload custom incident packages. With custom incident packages, you have fine control
over the diagnostic data that you send to Oracle Support.

• Incident Packages
You can collect diagnostic data into an intermediate logical structure called an incident
package (package).

• Packaging and Uploading Problems with Custom Packaging
You use Support Workbench (Support Workbench) to create and upload custom incident
packages (packages). Before uploading, you can manually add, edit, and remove
diagnostic data files from the package.

• Viewing and Modifying Incident Packages
After creating an incident package with the custom packaging method, you can view or
modify the contents of the package before uploading the package to Oracle Support.

• Creating, Editing, and Uploading Correlated Packages
After you upload a package to Oracle Support, you can create and upload one or more
correlated packages.

• Deleting Correlated Packages
You delete a correlated package with the Support Workbench for the target for which you
created the package.

Chapter 7
Reporting Problems

7-51

• Setting Incident Packaging Preferences
You can set incident packaging preferences. Examples of incident packaging preferences
include the number of days to retain incident information, and the number of leading and
trailing incidents to include in a package for each problem.

See Also:

"About the Oracle Database Fault Diagnosability Infrastructure"

7.4.1 Incident Packages
You can collect diagnostic data into an intermediate logical structure called an incident
package (package).

• About Incident Packages
For the customized approach to uploading diagnostic data to Oracle Support, you first
collect the data into an intermediate logical structure called an incident package (package).

• About Correlated Diagnostic Data in Incident Packages
To diagnose problem, it is sometimes necessary to examine not only diagnostic data that is
directly related to the problem, but also diagnostic data that is correlated with the directly
related data.

• About Quick Packaging and Custom Packaging
The Support Workbench provides two methods for creating and uploading an incident
package: the quick packaging method and the custom packaging method.

• About Correlated Packages
Correlated packages provide a means of packaging and uploading diagnostic data for
related problems.

7.4.1.1 About Incident Packages
For the customized approach to uploading diagnostic data to Oracle Support, you first collect
the data into an intermediate logical structure called an incident package (package).

A package is a collection of metadata that is stored in the Automatic Diagnostic Repository
(ADR) and that points to diagnostic data files and other files both in and out of the ADR. When
you create a package, you select one or more problems to add to the package. The Support
Workbench then automatically adds to the package the problem information, incident
information, and diagnostic data (such as trace files and dumps) associated with the selected
problems. Because a problem can have many incidents (many occurrences of the same
problem), by default only the first three and last three incidents for each problem are added to
the package, excluding any incidents that are over 90 days old. You can change these default
numbers on the Incident Packaging Configuration page of the Support Workbench.

After the package is created, you can add any type of external file to the package, remove
selected files from the package, or edit selected files in the package to remove sensitive data.
As you add and remove package contents, only the package metadata is modified.

When you are ready to upload the diagnostic data to Oracle Support, you first create a zip file
that contains all the files referenced by the package metadata. You then upload the zip file
through My Oracle Support.

Chapter 7
Reporting Problems

7-52

Related Topics

• Packaging and Uploading Problems with Custom Packaging
You use Support Workbench (Support Workbench) to create and upload custom incident
packages (packages). Before uploading, you can manually add, edit, and remove
diagnostic data files from the package.

• Viewing and Modifying Incident Packages
After creating an incident package with the custom packaging method, you can view or
modify the contents of the package before uploading the package to Oracle Support.

7.4.1.2 About Correlated Diagnostic Data in Incident Packages
To diagnose problem, it is sometimes necessary to examine not only diagnostic data that is
directly related to the problem, but also diagnostic data that is correlated with the directly
related data.

Diagnostic data can be correlated by time, by process ID, or by other criteria. For example,
when examining an incident, it may be helpful to also examine an incident that occurred five
minutes after the original incident. Similarly, while it is clear that the diagnostic data for an
incident should include the trace file for the Oracle Database process that was running when
the incident occurred, it might be helpful to also include trace files for other processes that are
related to the original process.

Thus, when problems and their associated incidents are added to a package, any correlated
incidents are added at the same time, with their associated trace files.

During the process of creating the physical file for a package, the Support Workbench calls
upon the Incident Packaging Service to finalize the package. Finalizing means adding to the
package any additional trace files that are correlated by time to incidents in the package, and
adding other diagnostic information such as the alert log, health checker reports, SQL test
cases, configuration information, and so on. Therefore, the number of files in the zip file may
be greater than the number of files that the Support Workbench had previously displayed as
the package contents.

The Incident Packaging Service follows a set of rules to determine the trace files in the ADR
that are correlated to existing package data. You can modify some of those rules in the Incident
Packaging Configuration page in Cloud Control.

Because both initial package data and added correlated data may contain sensitive
information, it is important to have an opportunity to remove or edit files that contain this
information before uploading to Oracle Support. For this reason, the Support Workbench
enables you to run a command that finalizes the package as a separate operation. After
manually finalizing a package, you can examine the package contents, remove or edit files,
and then generate and upload a zip file.

Note:

Finalizing a package does not mean closing it to further modifications. You can
continue to add diagnostic data to a finalized package. You can also finalize the
same package multiple times. Each time that you finalize, any new correlated data is
added.

Chapter 7
Reporting Problems

7-53

Related Topics

• Setting Incident Packaging Preferences
You can set incident packaging preferences. Examples of incident packaging preferences
include the number of days to retain incident information, and the number of leading and
trailing incidents to include in a package for each problem.

7.4.1.3 About Quick Packaging and Custom Packaging
The Support Workbench provides two methods for creating and uploading an incident
package: the quick packaging method and the custom packaging method.

Quick Packaging—This is the more automated method with a minimum of steps, organized in
a guided workflow (a wizard). You select a single problem, provide a package name and
description, and then schedule upload of the package contents, either immediately or at a
specified date and time. The Support Workbench automatically places diagnostic data related
to the problem into the package, finalizes the package, creates the zip file, and then uploads
the file. With this method, you do not have the opportunity to add, edit, or remove package files
or add other diagnostic data such as SQL test cases. However, it is the simplest and quickest
way to get first-failure diagnostic data to Oracle Support. Quick packaging is the method used
in the workflow described in "About Investigating, Reporting, and Resolving a Problem".

When quick packaging is complete, the package that was created by the wizard remains. You
can then modify the package with custom packaging operations at a later time and manually
reupload.

Custom Packaging—This is the more manual method, with more steps. It is intended for
expert Support Workbench users who want more control over the packaging process. With
custom packaging, you can create a new package with one or more problems, or you can add
one or more problems to an existing package. You can then perform a variety of operations on
the new or updated package, including:

• Adding or removing problems or incidents

• Adding, editing, or removing trace files in the package

• Adding or removing external files of any type

• Adding other diagnostic data such as SQL test cases

• Manually finalizing the package and then viewing package contents to determine if you
must edit or remove sensitive data or remove files to reduce package size.

You might conduct these operations over several days, before deciding that you have enough
diagnostic information to send to Oracle Support.

With custom packaging, you create the zip file and request the upload to Oracle Support as
two separate steps. Each of these steps can be performed immediately or scheduled for a
future date and time.

Related Topics

• About Investigating, Reporting, and Resolving a Problem
You can use the Enterprise Manager Support Workbench (Support Workbench) to
investigate and report a problem (critical error), and in some cases, resolve the problem.
You can use a "roadmap" that summarizes the typical set of tasks that you must perform.

• Task 5: Package and Upload Diagnostic Data to Oracle Support
For this task, you use the quick packaging process of the Support Workbench to package
and upload the diagnostic information for the problem to Oracle Support.

Chapter 7
Reporting Problems

7-54

7.4.1.4 About Correlated Packages
Correlated packages provide a means of packaging and uploading diagnostic data for related
problems.

A database instance problem can have related problems in other database instances or in
Oracle Automatic Storage Management instances. After you create and upload a package for
one or more database instance problems (the "main package"), you can create and upload one
or more correlated packages, each with one or more related problems. You can accomplish
this only with the custom packaging workflow in Support Workbench.

Related Topics

• Related Problems Across the Topology
For any problem identified in a database instance, the diagnosability framework can
identify related problems across the topology of your Oracle Database installation.

• Creating, Editing, and Uploading Correlated Packages
After you upload a package to Oracle Support, you can create and upload one or more
correlated packages.

7.4.2 Packaging and Uploading Problems with Custom Packaging
You use Support Workbench (Support Workbench) to create and upload custom incident
packages (packages). Before uploading, you can manually add, edit, and remove diagnostic
data files from the package.

To package and upload problems with custom packaging:

1. Access the Support Workbench home page.

See "Viewing Problems with the Support Workbench" for instructions.

2. (Optional) For each problem that you want to include in the package, indicate the service
request number (SR#) associated with the problem, if any. To do so, complete the following
steps for each problem:

a. In the Problems subpage at the bottom of the Support Workbench home page, select
the problem, and then click View.

Note:

If you do not see the desired problem in the list of problems, or if there are
too many problems to scroll through, select a time period from the View list
and click Go. You can then select the desired problem and click View.

The Problem Details page appears.

b. Next to the SR# label, click Edit, enter a service request number, and then click OK.

The service request number is displayed on the Problem Details page.

c. Return to the Support Workbench home page by clicking Support Workbench in the
locator links at the top of the page.

Chapter 7
Reporting Problems

7-55

3. On the Support Workbench home page, select the problems that you want to package, and
then click Package.

The Select Packaging Mode page appears.

Note:

The packaging process may automatically select additional correlated problems
to add to the package. An example of a correlated problem is one that occurs
within a few minutes of the selected problem. See "About Correlated Diagnostic
Data in Incident Packages" for more information.

4. Select the Custom packaging option, and then click Continue.

The Select Package page appears.

5. Do one of the following:

• To create a new package, select the Create new package option, enter a package
name and description, and then click OK.

• To add the selected problems to an existing package, select the Select from existing
packages option, select the package to update, and then click OK.

The Customize Package page appears. It displays the problems and incidents that are
contained in the package, plus a selection of packaging tasks to choose from. You run
these tasks against the new package or the updated existing package.

Chapter 7
Reporting Problems

7-56

6. (Optional) In the Packaging Tasks section, click links to perform one or more packaging
tasks. Or, use other controls on the Customize Package page and its subpages to
manipulate the package. Return to the Customize Package page when you are finished.

See "Viewing and Modifying Incident Packages" for instructions for some of the most
common packaging tasks.

7. In the Packaging Tasks section of the Customize Package page, under the heading Send
to Oracle Support, click Finish Contents Preparation to finalize the package.

A list (or partial list) of files included in the package is displayed. (This may take a while.)
The list includes files that were determined to contain correlated diagnostic information and
added by the finalization process.

See "About Correlated Diagnostic Data in Incident Packages" for a definition of package
finalization.

8. Click Files to view all the files in the package. Examine the list to see if there are any files
that might contain sensitive data that you do not want to expose. If you find such files, then
exclude (remove) or edit them.

See "Editing Incident Package Files (Copying Out and In)" and "Removing Incident
Package Files" for instructions for editing and removing files.

To view the contents of a file, click the eyeglasses icon in the rightmost column in the table
of files. Enter host credentials, if prompted.

Note:

Trace files are generally for Oracle internal use only.

Chapter 7
Reporting Problems

7-57

9. Click Generate Upload File.

The Generate Upload File page appears.

10. Select the Full or Incremental option to generate a full package zip file or an incremental
package zip file.

For a full package zip file, all the contents of the package (original contents and all
correlated data) are always added to the zip file.

For an incremental package zip file, only the diagnostic information that is new or modified
since the last time that you created a zip file for the same package is added to the zip file.
For example, if trace information was appended to a trace file since that file was last
included in the generated physical file for a package, the trace file is added to the
incremental package zip file. Conversely, if no changes were made to a trace file since it
was last uploaded for a package, that trace file is not included in the incremental package
zip file.

Note:

The Incremental option is dimmed (unavailable) if an upload file was never
created for the package.

11. Schedule file creation either immediately or at a future date and time (select Immediately
or Later), and then click Submit.

File creation can use significant system resources, so it may be advisable to schedule it for
a period of low system usage.

A Processing page appears, and creation of the zip file proceeds. A confirmation page
appears when processing is complete.

Note:

The package is automatically finalized when the zip file is created.

12. Click OK.

The Customize Package page returns.

13. Click Send to Oracle.

The View/Send Upload Files page appears.

14. (Optional) Click the Send Correlated Packages link to create correlated packages and
send them to Oracle.

See "Creating, Editing, and Uploading Correlated Packages". When you are finished
working with correlated packages, return to the View/Send Upload Files page by clicking
the Package Details link at the top of the page, clicking Customize Package, and then
clicking Send to Oracle again.

15. Select the zip files to upload, and then click Send to Oracle.

The Send to Oracle page appears. The selected zip files are listed in a table.

16. Fill in the requested My Oracle Support information. Next to Create new Service Request
(SR), select Yes or No. If you select Yes, a draft service request is created for you. You

Chapter 7
Reporting Problems

7-58

must later log in to My Oracle Support and fill in the service request details. If you select
No, enter an existing service request number.

17. Schedule the upload to take place immediately or at a future date and time, and then click
Submit.

A Processing page appears. If the upload is completed successfully, a confirmation page
appears. If the upload could not complete, an error page appears. The error page may
include a message that requests that you upload the zip file to Oracle manually. If so,
contact your Oracle Support representative for instructions.

18. Click OK.

The View/Send Upload Files page returns. Under the Time Sent column, check the status
of the files that you attempted to upload.

19. (Optional) Create and upload correlated packages.

See "Creating, Editing, and Uploading Correlated Packages" for instructions.

See Also:

• "About Incidents and Problems"

• "About Incident Packages"

• "About Quick Packaging and Custom Packaging"

7.4.3 Viewing and Modifying Incident Packages
After creating an incident package with the custom packaging method, you can view or modify
the contents of the package before uploading the package to Oracle Support.

In addition, after using the quick packaging method to package and upload diagnostic data,
you can view or modify the contents of the package that the Support Workbench created, and
then reupload the package. To modify a package, you choose from among a selection of
packaging tasks, most of which are available from the Customize Package page.

• Viewing Package Details
The Package Details page contains information about the incidents, trace files, and other
files in a package, and enables you to view and add to the package activity log.

• Accessing the Customize Package Page
The Customize Package page is used to perform various packaging tasks, such as adding
and removing problems; adding, removing, and scrubbing (editing) package files; and
generating and uploading the package zip file.

• Editing Incident Package Files (Copying Out and In)
The Support Workbench enables you to edit one or more files in an incident package.

• Adding an External File to an Incident Package
You can add any type of external file to an incident package.

• Removing Incident Package Files
You can remove one or more files of any type from the incident package.

• Viewing and Updating the Incident Package Activity Log
The Support Workbench maintains an activity log for each incident package.

Chapter 7
Reporting Problems

7-59

See Also:

• "About Incident Packages"

• "Packaging and Uploading Problems with Custom Packaging"

7.4.3.1 Viewing Package Details
The Package Details page contains information about the incidents, trace files, and other files
in a package, and enables you to view and add to the package activity log.

To view package details:

1. Access the Support Workbench home page.

See "Viewing Problems with the Support Workbench" for instructions.

2. Click Packages to view the Packages subpage.

A list of packages that are currently in the Automatic Diagnostic Repository (ADR) is
displayed.

3. (Optional) To reduce the number of packages displayed, enter text into the Search field
above the list, and then click Go.

All packages that contain the search text anywhere in the package name are displayed. To
view the full list of packages, remove the text from the Search field and click Go again.

4. Under the Package Name column, click the link for the desired package.

The Package Details page appears.

7.4.3.2 Accessing the Customize Package Page
The Customize Package page is used to perform various packaging tasks, such as adding and
removing problems; adding, removing, and scrubbing (editing) package files; and generating
and uploading the package zip file.

To access the Customize Package page:

1. Access the Package Details page for the desired package, as described in "Viewing
Package Details".

2. Click Customize Package.

The Customize Package page appears.

7.4.3.3 Editing Incident Package Files (Copying Out and In)
The Support Workbench enables you to edit one or more files in an incident package.

You may want to do this to delete or overwrite sensitive data in the files. To edit package files,
you must first copy the files out of the package into a designated directory, edit the files with a
text editor or other utility, and then copy the files back into the package, overwriting the original
package files.

The following procedure assumes that the package is already created and contains diagnostic
data.

Chapter 7
Reporting Problems

7-60

To edit incident package files:

1. Access the Customize Package page for the desired incident package.

See "Accessing the Customize Package Page" for instructions.

2. In the Packaging Tasks section, under the Scrub User Data heading, click Copy out Files
to Edit contents.

If prompted for host credentials, enter credentials and then click OK.

The Copy Out Files page appears. It displays the name of the host to which you can copy
files.

3. Do one of the following to specify a destination directory for the files:

• Enter a directory path in the Destination Folder field.

• Click the magnifying glass icon next to the Destination Folder field, and then
complete the following steps:

a. If prompted for host credentials, enter credentials for the host to which you want to
copy out the files, and then click OK. (Select Save as Preferred Credential to
avoid the prompt for credentials next time.)

The Browse and Select: File or Directory window appears.

b. Select the desired destination directory, and then click Select.

The Browse and Select: File or Directory window closes, and the path to the
selected directory appears in the Destination Folder field of the Copy Out Files
page.

4. Under Files to Copy Out, select the desired files, and then click OK.

Note:

If you do not see the desired files, then they may be on another page. Click the
Next link to view the next page. Continue clicking Next, or select from the list of
file numbers (to the left of the Next link) until you see the desired files. You can
then select the files and click OK.

The Customize Package page returns, displaying a confirmation message that lists the
files that were copied out.

5. Using a text editor or other utility, edit the files.

6. On the Customize Package page, in the Packaging Tasks section, under the Scrub User
Data heading, click Copy in Files to Replace Contents.

The Copy In Files page appears. It displays the files that you copied out.

7. Select the files to copy in, and then click OK.

The files are copied into the package, overwriting the existing files. The Customize
Package page returns, displaying a confirmation message that lists the files that were
copied in.

7.4.3.4 Adding an External File to an Incident Package
You can add any type of external file to an incident package.

To add an external file to an incident package:

Chapter 7
Reporting Problems

7-61

1. Access the Customize Package page for the desired incident package.

See "Accessing the Customize Package Page" for instructions.

2. Click the Files link to view the Files subpage.

From this page, you can add and remove files to and from the package.

3. Click Add external files.

The Add External File page appears. It displays the host name from which you may select
a file.

4. Do one of the following to specify a file to add:

• Enter the full path to the file in the File Name field.

• Click the magnifying glass icon next to the File Name field, and then complete the
following steps:

a. If prompted for host credentials, enter credentials for the host on which the
external file resides, and then click OK. (Select Save as Preferred Credential to
avoid the prompt for credentials next time.)

b. In the Browse and Select: File or Directory window, select the desired file and then
click Select.

The Browse and Select window closes, and the path to the selected file appears in
the File Name field of the Add External File page.

5. Click OK.

The Customize Package page returns, displaying the Files subpage. The selected file is
now shown in the list of files.

7.4.3.5 Removing Incident Package Files
You can remove one or more files of any type from the incident package.

To remove incident package files:

1. Access the Customize Package page for the desired incident package.

See "Accessing the Customize Package Page" for instructions.

2. Click the Files link to view the Files subpage.

A list of files in the package is displayed.

If you have not yet generated a physical file for this package, all package files are
displayed in the list. If you have already generated a physical file, then a View list appears
above the files list. It enables you to choose between viewing only incremental package
contents or the full package contents. The default selection is incremental package
contents. This default selection displays only those package files that were created or
modified since the last time that a physical file was generated for the package. Select Full
package contents from the View list to view all package files.

3. Select the files to remove, and then click Exclude.

Chapter 7
Reporting Problems

7-62

Note:

If you do not see the desired files, then they may be on another page. Click the
Next link to view the next page. Continue clicking Next, or select from the list of
file numbers (to the left of the Next link) until you see the desired files. You can
then select the files and click Remove.

7.4.3.6 Viewing and Updating the Incident Package Activity Log
The Support Workbench maintains an activity log for each incident package.

Most activities that you perform on a package, such as adding or removing files or creating a
package zip file, are recorded in the log. You can also add your own notes to the log. This is
especially useful if multiple database administrators are working with packages.

To view and update the incident package activity log:

1. Access the Package Details page for the desired incident package.

See "Viewing Package Details" for instructions.

2. Click the Activity Log link to view the Activity Log subpage.

The activity log is displayed.

3. To add your own comment to the activity log, enter text into the Comment field, and then
click Add Comment.

Your comment is appended to the list.

7.4.4 Creating, Editing, and Uploading Correlated Packages
After you upload a package to Oracle Support, you can create and upload one or more
correlated packages.

This is recommended if critical alerts appeared in the Related Alerts section of the Database
Home page. The correlated packages are associated with the original package, also known as
the main package. The main package contains problems that occurred in a database
instance. Correlated packages contain problems that occurred on other instances (Oracle ASM
instances or other database instances) and that are related problems for the problems in the
main package. There can be only one correlated package for each related instance.

To create, edit, and upload a correlated package:

1. View the Package Details page for the main package.

See "Viewing Package Details" for instructions.

2. On the Package Details page, click Customize Package.

3. On the Customize Package page, in the Packaging Tasks section, under Additional
Diagnostic Data, click Create/Update Correlated Packages.

4. On the Correlated Packages page, under Correlated Packages, select one or more
instances that have incidents and click Create.

A confirmation message appears, and the package IDs of the newly created correlated
packages appear in the ID column.

5. Select the instance on which you created the correlated package, and click Finish
Contents Preparation.

Chapter 7
Reporting Problems

7-63

A confirmation message appears.

6. (Optional) View and edit a correlated package by completing these steps:

a. Click the package ID to view the package.

If prompted for credentials, enter them and click Login.

b. On the Package Details page, click Files to view the files in the package.

c. Click Customize Package and perform any desired customization tasks, as described
in "Viewing and Modifying Incident Packages".

7. For each correlated package to upload, click Generate Upload File.

8. For each correlated package to send to Oracle, select the package and click Send to
Oracle.

Note:

If Send to Oracle is unavailable (dimmed), then there were no correlated
incidents for the instance.

See Also:

• "About Correlated Packages"

• "Related Problems Across the Topology"

7.4.5 Deleting Correlated Packages
You delete a correlated package with the Support Workbench for the target for which you
created the package.

For example, if you created a correlated package for an Oracle ASM instance target, access
the Support Workbench for that Oracle ASM instance.

To delete a correlated package:

1. Access the Support Workbench for the target on which you created the correlated
package.

Tip:

See the Related Links section at the bottom of any Support Workbench page. Or,
see "Viewing Problems with the Support Workbench"

2. Click Packages to view the Packages subpage.

3. Locate the correlated package in the list. Verify that it is a correlated package by viewing
the package description.

4. Select the package and click Delete.

5. On the confirmation page, click Yes.

Chapter 7
Reporting Problems

7-64

See Also:

• "About Correlated Packages"

• "Related Problems Across the Topology"

7.4.6 Setting Incident Packaging Preferences
You can set incident packaging preferences. Examples of incident packaging preferences
include the number of days to retain incident information, and the number of leading and
trailing incidents to include in a package for each problem.

By default, if a problem has many incidents, only the first three and last three incidents are
packaged. You can change these and other incident packaging preferences with Cloud Control
or with the ADRCI utility.

To set incident packaging preferences with Cloud Control:

1. Access the Support Workbench home page.

See "Viewing Problems with the Support Workbench" for instructions.

2. In the Related Links section at the bottom of the page, click Incident Packaging
Configuration.

The View Incident Packaging Configuration page appears. Click Help to view descriptions
of the settings on this page.

3. Click Edit.

The Edit Incident Packaging Configuration page appears.

4. Edit settings, and then click OK to apply changes.

See Also:

• "About Incident Packages"

• "About Incidents and Problems"

• "Task 5: Package and Upload Diagnostic Data to Oracle Support"

• Oracle Database Utilities for information on ADRCI

7.5 Resolving Problems
This section describes how to resolve database problems using advisor tools, such as SQL
Repair Advisor and Data Recovery Advisor, and the resource management tools, such as the
Resource Manager and related APIs.

• About Automatic Error Mitigation
The database attempts automatic error mitigation for SQL statements that fail with an
ORA-00600 error during SQL compilation.

Chapter 7
Resolving Problems

7-65

• Repairing SQL Failures with the SQL Repair Advisor
In the rare case that a SQL statement fails with a critical error, you can run the SQL Repair
Advisor to try to repair the failed statement.

• Repairing Data Corruptions with the Data Recovery Advisor
You use the Data Recovery Advisor to repair data block corruptions, undo corruptions,
data dictionary corruptions, and more.

• Quarantine for Execution Plans for SQL Statements Consuming Excessive System
Resources
Starting with Oracle Database 19c, you can use the SQL Quarantine infrastructure (SQL
Quarantine) to quarantine execution plans for SQL statements that are terminated by the
Resource Manager for consuming excessive system resources in an Oracle database. An
individual SQL statement may have multiple execution plans, and if it attempts to use the
execution plan that is quarantined, then that SQL statement is not allowed to run, thus
preventing database performance degradation.

• Viewing Attention Log Information
Access information stored in the attention log either by opening the file with any text editor
or by querying the V$DIAG_ATTENTION view.

7.5.1 About Automatic Error Mitigation
The database attempts automatic error mitigation for SQL statements that fail with an
ORA-00600 error during SQL compilation.

An ORA-00600 is a severe error. It indicates that a process has encountered a low-level,
unexpected condition. When a SQL statement fails with this error during the parse phase,
automatic error mitigation traps it and attempts to resolve the condition. If a resolution is found,
the database generates a SQL patch in order to adjust the SQL execution plan. If this patch
enables the parse to complete successfully, then the ORA-00600 error is not raised and no
exception is seen by the application.

How Automatic Error Mitigation Works

These series of examples show how automatic error mitigation can transparently fix
ORA-00600 errors.

1. Consider the following error condition. The query has failed and raised a fatal exception.

SQL> SELECT count(*)
 2 FROM emp1 e1
 3 WHERE ename = (select max(ename) from emp2 e2 where e2.empno =
e1.empno)
 4 AND empno = (select max(empno) from emp2 e2 where e2.empno =
e1.empno)
 5 AND job = (select max(job) from emp2 e2 where e2.empno = e1.empno);

ERROR at line 3:
ORA-00600: internal error code, arguments: [kkqctcqincf0], [0], [], [],
[], [], [], [], [], [], [], []

2. Automatic error mitigation is then turned on in the session.

SQL> alter session set sql_error_mitigation = 'on';

Session altered.

Chapter 7
Resolving Problems

7-66

3. If automatic error mitigation is enabled and it successfully resolves the error, the
ORA-00600 message in Step 1 is not displayed, because no exception is returned to the
application. The query has been executed successfully.

SQL> SELECT count(*)
 2 FROM emp1 e1
 3 WHERE ename = (select max(ename) from emp2 e2 where e2.empno =
e1.empno)
 4 AND empno = (select max(empno) from emp2 e2 where e2.empno =
e1.empno)
 5 AND job = (select max(job) from emp2 e2 where e2.empno = e1.empno);

COUNT(*)

999

4. If you now look at the explain plan for this query, you can see in the Note section at the
bottom that a SQL patch has been created to repair the query.

SQL> SELECT * FROM
table(dbms_xplan.display_cursor(sql_id=>'5426r24y45gz0',cursor_child_no=>1,
format=>'basic +note'));

PLAN_TABLE_OUTPUT

EXPLAINED SQL
STATEMENT:

SELECT count(*) FROM emp1 e1 where ename = (select max(ename) FROM emp2 e2
WHERE e2.empno = e1.empno) AND empno = (select max(empno) FROM
emp2 e2 WHERE e2.empno = e1.empno) AND job = (select max(job) FROM emp2 e2
WHERE e2.empno = e1.empno);

Plan hash value:
1226419153

| Id | Operation | Name
|

| 0 | SELECT STATEMENT |
|
| 1 | SORT AGGREGATE |
|
| 2 | HASH JOIN |
|
| 3 | HASH JOIN |

Chapter 7
Resolving Problems

7-67

|
| 4 | HASH JOIN |
|
| 5 | TABLE ACCESS FULL | EMP1
|
| 6 | VIEW | VW_SQ_3
|
| 7 | SORT GROUP BY |
|
| 8 | TABLE ACCESS FULL| EMP2
|
| 9 | VIEW | VW_SQ_2
|
| 10 | SORT GROUP BY |
|
| 11 | TABLE ACCESS FULL | EMP2
|
| 12 | VIEW | VW_SQ_1
|
| 13 | SORT GROUP BY |
|
| 14 | TABLE ACCESS FULL | EMP2
|

Note

 - cpu costing is off (consider enabling
it)
 - SQL patch "SYS_SQLPTCH_AUTO_dq7z4ydz3b2ug" used for this statement

Chapter 7
Resolving Problems

7-68

Tip:

You can get more information about the origin and type of a patched SQL problem by
querying DBA_SQL_PATCHES and DBA_SQL_ERROR_MITIGATIONS.

SQL> SELECT name,signature,origin FROM dba_sql_patches
 2 /

 NAME SIGNATURE ORIGIN

–---

 SYS_SQLPTCH_AUTO_dq7z4ydz3b2ug 15789590553029872463 AUTO-
FOREGROUND-REPAIR

SQL> SELECT m.sql_id, m.signature, m.problem_key, m.problem_type 2
FROM dba_sql_error_mitigations m;

 SQL_ID SIGNATURE
PROBLEM_KEY PROBLEM_TYPE

--

 5426r24y45gz0 15789590553029872463 ORA 600
[kkqctcqincf0] COMPILATION ERROR

Chapter 7
Resolving Problems

7-69

See Also:

Although automatic error mitigation repairs ORA-00600 are transparent to your
application, there are views you can inspect to get more information about the
process.

The Database Error Message Reference defines ORA-00600, which is the internal
error number for Oracle program exceptions.

The Oracle Database Reference Manual provides three views related to automatic
error mitigation.

• SQL_ERROR_MITIGATION describes the properties of the
SQL_ERROR_MITIGATION initialization parameter.

• DBA_SQL_ERROR_MITIGATIONS shows the actions performed by automatic
error mitigation. It describes each successful error mitigation, based on SQL ID.
The MITIGATION_DETAILS column provides information on SQL patches created
by automatic error mitigation.

• DBA_SQL_PATCHES shows details of SQL patches that have been generated
(including but not limited to patches created by automatic error mitigation). The
ORIGIN column value for patches created by automatic error mitigation is AUTO-
FOREGROUND-REPAIR.

The Application Packaging and Types Reference documents the
SQL_ERROR_MITIGATION initialization parameter.

7.5.2 Repairing SQL Failures with the SQL Repair Advisor
In the rare case that a SQL statement fails with a critical error, you can run the SQL Repair
Advisor to try to repair the failed statement.

• About the SQL Repair Advisor
You run the SQL Repair Advisor after a SQL statement fails with a critical error.

• Running the SQL Repair Advisor Using Cloud Control
You can run the SQL Repair Advisor from the Problem Details page of the Support
Workbench of Cloud Control.

• Running the SQL Repair Advisor Using the DBMS_SQLDIAG Package Subprograms
You can run the SQL Repair Advisor using the DBMS_SQLDIAG package subprograms.

• Viewing, Disabling, or Removing a SQL Patch Using Cloud Control
After you apply a SQL patch with the SQL Repair Advisor, you can view it to confirm its
presence, disable it, or remove it using Cloud Control. One reason to disable or remove a
patch is if you install a later release of Oracle Database that fixes the bug that caused the
failure in the patched SQL statement.

• Disabling or Removing a SQL Patch Using DBMS_SQLDIAG Package Subprograms
After you apply a SQL patch with the SQL Repair Advisor, you can disable or remove it
using the DBMS_SQLDIAG package subprograms. One reason to disable or remove a patch
is if you install a later release of Oracle Database that fixes the bug that caused the failure
in the patched SQL statement.

• Exporting and Importing a Patch Using DBMS_SQLDIAG Package Subprograms
A patch created using the SQL Repair Advisor can be exported out of one system and
imported into another system using DBMS_SQLDIAG package subprograms.

Chapter 7
Resolving Problems

7-70

7.5.2.1 About the SQL Repair Advisor
You run the SQL Repair Advisor after a SQL statement fails with a critical error.

The advisor analyzes the statement and in many cases recommends a patch to repair the
statement. If you implement the recommendation, the applied SQL patch circumvents the
failure by causing the query optimizer to choose an alternate execution plan for future
executions.

You can run the SQL Repair Advisor using either Cloud Control or DBMS_SQLDIAG package
subprograms.

7.5.2.2 Running the SQL Repair Advisor Using Cloud Control
You can run the SQL Repair Advisor from the Problem Details page of the Support Workbench
of Cloud Control.

Typically, you do so when you were already notified of a critical error caused by your SQL
statement and that you followed the workflow described in "About Investigating, Reporting, and
Resolving a Problem".

To run the SQL Repair Advisor using Cloud Control:

1. Access the Problem Details page for the problem that pertains to the failed SQL statement.

See "Viewing Problems with the Support Workbench" for instructions.

2. In the Investigate and Resolve section, under the Resolve heading, click SQL Repair
Advisor.

3. On the SQL Repair Advisor page, complete these steps:

a. Modify the preset task name if desired, optionally enter a task description, modify or
clear the optional time limit for the advisor task, and adjust settings to schedule the
advisor to run either immediately or at a future date and time.

b. Click Submit.

A "Processing" page appears. After a short delay, the SQL Repair Results page appears.

Chapter 7
Resolving Problems

7-71

A check mark in the SQL Patch column indicates that a recommendation is present. The
absence of a check mark in this column means that the SQL Repair Advisor was unable to
devise a patch for the SQL statement.

Note:

If the SQL Repair Results page fails to appear, then complete these steps to
display it:

a. Go to the Database Home page.

b. From the Performance menu, select Advisors Home.

c. On the Advisor Central page, in the Results list, locate the most recent entry
for the SQL Repair Advisor.

d. Select the entry and click View Result.

4. If a recommendation is present (there is a check mark in the SQL Patch column), then click
View to view the recommendation.

The Repair Recommendations page appears, showing the recommended patch for the
statement.

5. Click Implement.

The SQL Repair Results page returns, showing a confirmation message.

6. (Optional) Click Verify using SQL Worksheet to run the statement in the SQL worksheet
and verify that the patch successfully repaired the statement.

7.5.2.3 Running the SQL Repair Advisor Using the DBMS_SQLDIAG Package
Subprograms

You can run the SQL Repair Advisor using the DBMS_SQLDIAG package subprograms.

Typically, you do so when you are notified of a critical error caused by your SQL statement and
that you followed the workflow described in "About Investigating, Reporting, and Resolving a
Problem".

You run the SQL Repair Advisor by creating and executing a diagnostic task using the
DBMS_SQLDIAG package subprograms CREATE_DIAGNOSIS_TASK and EXECUTE_DIAGNOSIS_TASK
respectively. The SQL Repair Advisor first reproduces the critical error and then tries to
produce a workaround in the form of a SQL patch, which you can apply using the
ACCEPT_SQL_PATCH subprogram.

Chapter 7
Resolving Problems

7-72

Note:

Starting with Oracle Database 19c, you can also use a single subprogram
SQL_DIAGNOSE_AND_REPAIR to create a diagnostic task, execute it, and accept SQL
patch recommendation for a given SQL statement. Thus, the
SQL_DIAGNOSE_AND_REPAIR subprogram achieves the functionality of all the following
subprograms – CREATE_DIAGNOSIS_TASK, EXECUTE_DIAGNOSIS_TASK, and
ACCEPT_SQL_PATCH.

To run the SQL Repair Advisor using the DBMS_SQLDIAG package subprograms:

1. Identify the problematic SQL statement

Consider the SQL statement that gives a critical error:

DELETE FROM t t1
WHERE t1.a = 'a' AND
 ROWID <> (SELECT MAX(ROWID)
 FROM t t2
 WHERE t1.a = t2.a AND
 t1.b = t2.b AND
 t1.d = t2.d)

You use the SQL Repair Advisor to repair this critical error.

2. Create a diagnosis task

Run DBMS_SQLDIAG.CREATE_DIAGNOSIS_TASK. You can specify an optional task name, an
optional time limit for the advisor task, and problem type. In the example below, we specify
the SQL text, the task name as 'error_task' and a problem type as
'DBMS_SQLDIAG.PROBLEM_TYPE_COMPILATION_ERROR'.

DECLARE
 rep_out CLOB;
 t_id VARCHAR2(50);
BEGIN
 t_id := DBMS_SQLDIAG.CREATE_DIAGNOSIS_TASK (
 sql_text => 'DELETE FROM t t1
 WHERE t1.a = ''a'' AND
 ROWID <> (SELECT MAX(ROWID)
 FROM t t2
 WHERE t1.a = t2.a AND
 t1.b = t2.b AND
 t1.d = t2.d)',
 task_name => 'error_task',
 problem_type => DBMS_SQLDIAG.PROBLEM_TYPE_COMPILATION_ERROR);

3. Execute the diagnosis task

To execute the workaround generation and analysis phase of the SQL Repair Advisor, you
run DBMS_SQLDIAG.EXECUTE_DIAGNOSIS_TASK with the task ID returned by the
CREATE_DIAGNOSIS_TASK. After a short delay, the SQL Repair Advisor returns. As part of its
execution, the SQL Repair Advisor keeps a record of its findings which can be accessed
through the reporting facilities of SQL Repair Advisor.

DBMS_SQLDIAG.EXECUTE_DIAGNOSIS_TASK (t_id);
4. Generate a report for the diagnosis task

Chapter 7
Resolving Problems

7-73

The analysis of the diagnosis task is accessed using
DBMS_SQLDIAG.REPORT_DIAGNOSIS_TASK. If the SQL Repair Advisor was able to find a
workaround, it recommends a SQL Patch. A SQL Patch is similar to a SQL profile, but
unlike the SQL Profile, it is used to workaround compilation or execution errors.

rep_out := DBMS_SQLDIAG.REPORT_DIAGNOSIS_TASK (t_id, DBMS_SQLDIAG.TYPE_TEXT);
DBMS_OUTPUT.PUT_LINE ('Report : ' || rep_out);
END;
/

5. Apply the patch

If a patch recommendation is present in the report, you can run
DBMS_SQLDIAG.ACCEPT_SQL_PATCH to accept the patch. This procedure takes task name as
an argument.

EXECUTE DBMS_SQLDIAG.ACCEPT_SQL_PATCH(task_name => 'error_task', task_owner =>
'SYS', replace => TRUE);

6. Test the patch

Now that you have accepted the patch, you can rerun the SQL statement. This time, it will
not give you the critical error. If you run explain plan for this statement, you will see that a
SQL patch was used to generate the plan.

DELETE FROM t t1
WHERE t1.a = 'a' AND
 ROWID <> (SELECT max(rowid)
 FROM t t2
 WHERE t1.a = t2.a AND
 t1.b = t2.b AND
 t1.d = t2.d);

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_SQLDIAG package subprograms

7.5.2.4 Viewing, Disabling, or Removing a SQL Patch Using Cloud Control
After you apply a SQL patch with the SQL Repair Advisor, you can view it to confirm its
presence, disable it, or remove it using Cloud Control. One reason to disable or remove a
patch is if you install a later release of Oracle Database that fixes the bug that caused the
failure in the patched SQL statement.

To view, disable, or remove a SQL patch using Cloud Control:

1. Access the Database Home page in Cloud Control.

2. From the Performance menu, select SQL, then SQL Plan Control.

The SQL Plan Control page appears.

3. Click SQL Patch to display the SQL Patch subpage.

The SQL Patch subpage displays all SQL patches in the database.

4. Locate the desired patch by examining the associated SQL text.

Chapter 7
Resolving Problems

7-74

Click the SQL text to view the complete text of the statement. After viewing the SQL text,
click Return.

5. To disable the patch on the SQL Patch subpage, select it, and then click Disable.

A confirmation message appears, and the patch status changes to DISABLED. You can later
reenable the patch by selecting it and clicking Enable.

6. To remove the patch, select it, and then click Drop.

A confirmation message appears.

See Also:

"About the SQL Repair Advisor"

7.5.2.5 Disabling or Removing a SQL Patch Using DBMS_SQLDIAG Package
Subprograms

After you apply a SQL patch with the SQL Repair Advisor, you can disable or remove it using
the DBMS_SQLDIAG package subprograms. One reason to disable or remove a patch is if you
install a later release of Oracle Database that fixes the bug that caused the failure in the
patched SQL statement.

To disable a SQL patch using DBMS_SQLDIAG package subprogram:

Run the procedure DBMS_SQLDIAG.ALTER_SQL_PATCH by specifying the patch name to disable
with the status value of DISABLED.

The following example disables the SQL patch sql_patch_12345.

EXEC DBMS_SQLDIAG.ALTER_SQL_PATCH('sql_patch_12345', 'STATUS', 'DISABLED');

To remove a SQL patch using DBMS_SQLDIAG package subprogram:

Run the procedure DBMS_SQLDIAG.DROP_SQL_PATCH by specifying the patch name to remove.
The patch name can be obtained from the explain plan section or by querying the view
DBA_SQL_PATCHES.

The following example removes the SQL patch sql_patch_12345.

EXEC DBMS_SQLDIAG.DROP_SQL_PATCH('sql_patch_12345');

See Also:

• "About the SQL Repair Advisor"

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SQLDIAG package subprograms

Chapter 7
Resolving Problems

7-75

7.5.2.6 Exporting and Importing a Patch Using DBMS_SQLDIAG Package
Subprograms

A patch created using the SQL Repair Advisor can be exported out of one system and
imported into another system using DBMS_SQLDIAG package subprograms.

Patches can be exported out of one system and imported into another by using a staging table.
Like with SQL diagnosis sets, the operation of inserting into the staging table is called as
"pack", and the operation of creating patches from staging table data is called as "unpack".

To export and import a patch using the DBMS_SQLDIAG package subprograms:

1. Create a staging table owned by user 'SH' by calling
DBMS_SQLDIAG.CREATE_STGTAB_SQLPATCH:

EXEC DBMS_SQLDIAG.CREATE_STGTAB_SQLPATCH(
 table_name => 'STAGING_TABLE',
 schema_name => 'SH');

2. Call DBMS_SQLDIAG.PACK_STGTAB_SQLPATCH one or more times to write SQL patch data into
the staging table. In this case, copy data for all SQL patches in the DEFAULT category into a
staging table owned by the current schema owner:

EXEC DBMS_SQLDIAG.PACK_STGTAB_SQLPATCH(
 staging_table_name => 'STAGING_TABLE');

3. In this case, only a single SQL patch SP_FIND_EMPLOYEE is copied into a staging table
owned by the current schema owner:

EXEC DBMS_SQLDIAG.PACK_STGTAB_SQLPATCH(
 patch_name => 'SP_FIND_EMPLOYEE',
 staging_table_name => 'STAGING_TABLE');

The staging table can then be moved to another system using either data pump, import/
export commands or using a database link.

4. Call DBMS_SQLDIAG.UNPACK_STGTAB_SQLPATCH to create SQL patches on the new system
from the patch data in the staging table. In this case, change the name in the data for the
SP_FIND_EMPLOYEE patch stored in the staging table to 'SP_FIND_EMP_PROD':

exec dbms_sqldiag.remap_stgtab_sqlpatch(
 old_patch_name => 'SP_FIND_EMPLOYEE',
 new_patch_name => 'SP_FIND_EMP_PROD',

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_SQLDIAG package subprograms

Chapter 7
Resolving Problems

7-76

7.5.3 Repairing Data Corruptions with the Data Recovery Advisor
You use the Data Recovery Advisor to repair data block corruptions, undo corruptions, data
dictionary corruptions, and more.

The Data Recovery Advisor integrates with the Enterprise Manager Support Workbench
(Support Workbench), with the Health Monitor, and with the RMAN utility to display data
corruption problems, assess the extent of each problem (critical, high priority, low priority),
describe the impact of a problem, recommend repair options, conduct a feasibility check of the
customer-chosen option, and automate the repair process.

The Cloud Control online help provides details on how to use the Data Recovery Advisor. This
section describes how to access the advisor from the Support Workbench.

The Data Recovery Advisor is automatically recommended by and accessible from the Support
Workbench when you are viewing health checker findings that are related to a data corruption
or other data failure. The Data Recovery Advisor is also available from the Advisor Central
page.

To access the Data Recovery Advisor in Cloud Control:

1. Access the Database Home page in Cloud Control.

The Data Recovery Advisor is available only when you are connected as SYSDBA.

2. From the Oracle Database menu, select Diagnostics, then Support Workbench.

3. Click Checker Findings.

The Checker Findings subpage appears.

4. Select one or more data corruption findings and then click Launch Recovery Advisor.

Chapter 7
Resolving Problems

7-77

See Also:

Oracle Database Backup and Recovery User's Guide for more information about the
Data Recovery Advisor

7.5.4 Quarantine for Execution Plans for SQL Statements Consuming
Excessive System Resources

Starting with Oracle Database 19c, you can use the SQL Quarantine infrastructure (SQL
Quarantine) to quarantine execution plans for SQL statements that are terminated by the
Resource Manager for consuming excessive system resources in an Oracle database. An
individual SQL statement may have multiple execution plans, and if it attempts to use the
execution plan that is quarantined, then that SQL statement is not allowed to run, thus
preventing database performance degradation.

• About Quarantine for Execution Plans for SQL Statements
You can use the SQL Quarantine infrastructure (SQL Quarantine) to quarantine execution
plans for SQL statements that are terminated by the Resource Manager for consuming
excessive system resources in an Oracle database. The quarantined execution plans for
such SQL statements are not allowed to run again, thus preventing database performance
degradation.

• Creating a Quarantine Configuration for an Execution Plan of a SQL Statement
You can create a quarantine configuration for an execution plan of a SQL statement using
any of these DBMS_SQLQ package functions – CREATE_QUARANTINE_BY_SQL_ID or
CREATE_QUARANTINE_BY_SQL_TEXT.

• Specifying Quarantine Thresholds in a Quarantine Configuration
After creating a quarantine configuration for an execution plan for a SQL statement, you
can specify quarantine thresholds for it using the DBMS_SQLQ.ALTER_QUARANTINE procedure.
When any of the Resource Manager thresholds is equal to or less than a quarantine
threshold specified in a SQL statement's quarantine configuration, then the SQL statement
is not allowed to run, if it uses the execution plan specified in its quarantine configuration.

• Enabling and Disabling a Quarantine Configuration
You can enable or disable a quarantine configuration using the
DBMS_SQLQ.ALTER_QUARANTINE procedure. A quarantine configuration is enabled by default
when it is created.

• Viewing the Details of a Quarantine Configuration
You can query the DBA_SQL_QUARANTINE view to get details of all the quarantine
configurations.

• Deleting a Quarantine Configuration
The unused quarantine configurations are automatically purged or deleted after 53 weeks.
You can also delete a quarantine configuration using the DBMS_SQLQ.DROP_QUARANTINE
procedure. You can disable automatic deletion of a quarantine configuration using the
DBMS_SQLQ.ALTER_QUARANTINE procedure.

• Viewing the Details of Quarantined Execution Plans of SQL Statements
You can query the V$SQL and GV$SQL views to get details about the quarantined execution
plans of SQL statements.

Chapter 7
Resolving Problems

7-78

• Transferring Quarantine Configurations from One Database to Another Database
You can transfer quarantine configurations from one database to another database using
the DBMS_SQLQ package subprograms – CREATE_STGTAB_QUARANTINE,
PACK_STGTAB_QUARANTINE, and UNPACK_STGTAB_QUARANTINE.

• Example: Quarantine for an Execution Plan of a SQL Statement Consuming Excessive
System Resources
This example shows how an execution plan of a SQL statement is quarantined when it
exceeds a resource consumption limit configured using the Resource Manager.

7.5.4.1 About Quarantine for Execution Plans for SQL Statements
You can use the SQL Quarantine infrastructure (SQL Quarantine) to quarantine execution
plans for SQL statements that are terminated by the Resource Manager for consuming
excessive system resources in an Oracle database. The quarantined execution plans for such
SQL statements are not allowed to run again, thus preventing database performance
degradation.

Using the Resource Manager, you can configure limits for SQL statements for consuming
system resources (Resource Manager thresholds). The Resource Manager terminates SQL
statements that exceed the Resource Manager thresholds. In the earlier Oracle Database
releases, if a SQL statement that is terminated by the Resource Manager runs again, the
Resource Manager allows it to run again and terminates it again when it exceeds the Resource
Manager thresholds. Thus, it is a waste of system resources to allow such SQL statements to
run again.

Starting with Oracle Database 19c, you can use SQL Quarantine to automatically quarantine
execution plans of SQL statements terminated by the Resource Manager, so that they are not
allowed to run again. SQL Quarantine information is periodically persisted to the data
dictionary. When resource manager terminates a SQL statement, it may be several minutes
before the statement is quarantined.

Note:

Oracle Database Licensing Information User Manual for details on which features are
supported for different editions and services

Additionally, SQL Quarantine can also be used to create quarantine configurations for
execution plans of SQL statements by specifying thresholds for consuming various system
resources (similar to the Resource Manager thresholds) using the DBMS_SQLQ package
subprograms. These thresholds are known as quarantine thresholds. If any of the Resource
Manager thresholds is equal to or less than a quarantine threshold specified in a SQL
statement's quarantine configuration, then the SQL statement is not allowed to run, if it uses
the execution plan specified in its quarantine configuration.

The following are the steps to manually set quarantine thresholds for an execution plan for a
SQL statement using the DBMS_SQLQ package subprograms:

1. Create a quarantine configuration for an execution plan for a SQL statement

2. Specify quarantine thresholds in the quarantine configuration

You can also perform the following operations related to quarantine configurations using the
DBMS_SQLQ package subprograms:

• Enable or disable a quarantine configuration

Chapter 7
Resolving Problems

7-79

• Delete a quarantine configuration

• Transfer quarantine configurations from one database to another

Note:

• A quarantine configuration is specific to an execution plan for a SQL statement. If
two different SQL statements use the same execution plan, they do not share the
same quarantine configuration.

• An execution plan is quarantined specific to a SQL statement that is terminated
by the Resource Manager. Thus, an execution plan that is quarantined for a SQL
statement will not be quarantined for a different SQL statement that is not yet
terminated by the Resource Manager.

• If there is no quarantine configuration created for an execution plan for a SQL
statement, or if no quarantine thresholds are specified in its quarantine
configuration, the execution plan for a SQL statement still gets automatically
quarantined, if the Resource Manager terminates it for exceeding any of the
Resource Manager thresholds.

For example, consider a resource plan of the Resource Manager that limits execution time for
SQL statements to be 10 seconds (Resource Manager threshold). Consider a SQL statement
Q1 for which this resource plan is application. When Q1 exceeds execution time of 10
seconds, it gets terminated by the Resource Manager. SQL Quarantine then creates a
quarantine configuration for Q1 specific to that execution plan and stores this execution time of
10 seconds as a quarantine threshold in the quarantine configuration.

If Q1 is executed again with the same execution plan and the Resource Manager threshold is
still 10 seconds, then SQL Quarantine does not allow Q1 to execute, because it refers to the
quarantine threshold of 10 seconds to determine that Q1 will be eventually terminated by the
Resource Manager as Q1 takes at least 10 seconds to execute.

If the Resource Manager threshold is changed to 5 seconds and Q1 is executed again with the
same execution plan, then SQL Quarantine does not allow Q1 to execute, because it refers to
the quarantine threshold of 10 seconds to determine that Q1 will be eventually terminated by
the Resource Manager as Q1 takes at least 10 seconds to execute.

If the Resource Manager threshold is changed to 15 seconds and Q1 is executed again with
the same execution plan, then SQL quarantine allows Q1 to execute, because it refers to the
quarantine threshold of 10 seconds to determine that Q1 takes at least 10 seconds to execute,
but there is a possibility that Q1 may complete its execution within 15 seconds.

Note:

A quarantine threshold is specific to an execution plan for a SQL statement, and it is
automatically set by SQL Quarantine based on the Resource Manager threshold that
is exceeded by the SQL statement and its execution plan. You can also manually set
a quarantine threshold for a specific execution plan for a SQL statement by using the
DBMS_SQLQ package subprograms.

Chapter 7
Resolving Problems

7-80

See Also:

• "Creating a Quarantine Configuration for an Execution Plan of a SQL Statement"

• "Specifying Quarantine Thresholds in a Quarantine Configuration"

• "Enabling and Disabling a Quarantine Configuration"

• "Viewing the Details of a Quarantine Configuration"

• "Deleting a Quarantine Configuration"

• "Specifying Automatic Switching by Setting Resource Limits" for information
about how to configure resource consumption limits for SQL statements using
the Resource Manager

7.5.4.2 Creating a Quarantine Configuration for an Execution Plan of a SQL
Statement

You can create a quarantine configuration for an execution plan of a SQL statement using any
of these DBMS_SQLQ package functions – CREATE_QUARANTINE_BY_SQL_ID or
CREATE_QUARANTINE_BY_SQL_TEXT.

The following example creates a quarantine configuration for an execution plan having the
hash value of 3488063716 for a SQL statement having the SQL ID of 8vu7s907prbgr:

DECLARE
 quarantine_config VARCHAR2(30);
BEGIN
 quarantine_config := DBMS_SQLQ.CREATE_QUARANTINE_BY_SQL_ID(
 SQL_ID => '8vu7s907prbgr',
 PLAN_HASH_VALUE => '3488063716');
END;
/

If you do not specify an execution plan or specify it as NULL, then the quarantine configuration
is applied to all the execution plans of a SQL statement, except for those execution plans for
which the execution plan-specific quarantine configurations are already created.

The following example creates a quarantine configuration for all the execution plans for a SQL
statement having the SQL ID of 152sukb473gsk:

DECLARE
 quarantine_config VARCHAR2(30);
BEGIN
 quarantine_config := DBMS_SQLQ.CREATE_QUARANTINE_BY_SQL_ID(
 SQL_ID => '152sukb473gsk');
END;
/

Chapter 7
Resolving Problems

7-81

The following example creates a quarantine configuration for all the execution plans for a SQL
statement 'select count(*) from emp':

DECLARE
 quarantine_config VARCHAR2(30);
BEGIN
 quarantine_config := DBMS_SQLQ.CREATE_QUARANTINE_BY_SQL_TEXT(
 SQL_TEXT => to_clob('select count(*) from emp'));
END;
/

The CREATE_QUARANTINE_BY_SQL_ID and CREATE_QUARANTINE_BY_SQL_TEXT functions return the
name for the quarantine configuration, which can be used for specifying quarantine thresholds
for an execution plan for a SQL statement using the DBMS_SQLQ.ALTER_QUARANTINE procedure.

See Also:

• "Specifying Quarantine Thresholds in a Quarantine Configuration"

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SQLQ package subprograms

7.5.4.3 Specifying Quarantine Thresholds in a Quarantine Configuration
After creating a quarantine configuration for an execution plan for a SQL statement, you can
specify quarantine thresholds for it using the DBMS_SQLQ.ALTER_QUARANTINE procedure. When
any of the Resource Manager thresholds is equal to or less than a quarantine threshold
specified in a SQL statement's quarantine configuration, then the SQL statement is not allowed
to run, if it uses the execution plan specified in its quarantine configuration.

You can specify quarantine thresholds for the following resources in a quarantine configuration
using the DBMS_SQLQ.ALTER_QUARANTINE procedure:

• CPU time

• Elapsed time

• I/O in megabytes

• Number of physical I/O requests

• Number of logical I/O requests

In the following example, the quarantine threshold specified for CPU time is 5 seconds and
elapsed time is 10 seconds for the quarantine configuration
SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4.

BEGIN
 DBMS_SQLQ.ALTER_QUARANTINE(
 QUARANTINE_NAME => 'SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4',
 PARAMETER_NAME => 'CPU_TIME',
 PARAMETER_VALUE => '5');

 DBMS_SQLQ.ALTER_QUARANTINE(
 QUARANTINE_NAME => 'SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4',

Chapter 7
Resolving Problems

7-82

 PARAMETER_NAME => 'ELAPSED_TIME',
 PARAMETER_VALUE => '10');
END;
/

When the SQL statement is executed using the execution plan specified in this quarantine
configuration, and if the Resource Manager threshold for CPU time is 5 seconds or less, or
elapsed time is 10 seconds or less, then the SQL statement is not allowed to run.

Note:

If any of the Resource Manager thresholds is equal to or less than a quarantine
threshold specified in a SQL statement's quarantine configuration, then that SQL
statement is not allowed to run, if it uses the execution plan specified in its quarantine
configuration.

Querying quarantine thresholds for a quarantine configuration

You can query a quarantine threshold for a quarantine configuration using the
DBMS_SQLQ.GET_PARAM_VALUE_QUARANTINE function. The following example returns the
quarantine threshold for CPU time consumption for the quarantine configuration
SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4:

DECLARE
 quarantine_config_setting_value VARCHAR2(30);
BEGIN
 quarantine_config_setting_value :=
 DBMS_SQLQ.GET_PARAM_VALUE_QUARANTINE(
 QUARANTINE_NAME => 'SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4',
 PARAMETER_NAME => 'CPU_TIME');
END;
/

Deleting quarantine thresholds from a quarantine configuration

You can delete a quarantine threshold from a quarantine configuration by specifying
DBMS_SQLQ.DROP_THRESHOLD as the value for PARAMETER_VALUE. The following example deletes
the quarantine threshold for CPU time consumption from the quarantine configuration
SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4:

BEGIN
 DBMS_SQLQ.ALTER_QUARANTINE(
 QUARANTINE_NAME => 'SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4',
 PARAMETER_NAME => 'CPU_TIME',
 PARAMETER_VALUE => DBMS_SQLQ.DROP_THRESHOLD);
END;
/

Chapter 7
Resolving Problems

7-83

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_SQLQ.ALTER_QUARANTINE procedure

7.5.4.4 Enabling and Disabling a Quarantine Configuration
You can enable or disable a quarantine configuration using the DBMS_SQLQ.ALTER_QUARANTINE
procedure. A quarantine configuration is enabled by default when it is created.

The following example disables the quarantine configuration having the name
SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4:

BEGIN
 DBMS_SQLQ.ALTER_QUARANTINE(
 QUARANTINE_NAME => 'SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4',
 PARAMETER_NAME => 'ENABLED',
 PARAMETER_VALUE => 'NO');
END;
/

The following example enables the quarantine configuration having the name
SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4:

BEGIN
 DBMS_SQLQ.ALTER_QUARANTINE(
 QUARANTINE_NAME => 'SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4',
 PARAMETER_NAME => 'ENABLED',
 PARAMETER_VALUE => 'YES');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_SQLQ.ALTER_QUARANTINE procedure

7.5.4.5 Viewing the Details of a Quarantine Configuration
You can query the DBA_SQL_QUARANTINE view to get details of all the quarantine configurations.

The DBA_SQL_QUARANTINE view contains the following information about each quarantine
configuration:

• Quarantine configuration name

• SQL statement for which the quarantine configuration is applicable

• Hash value of the execution plan for which the quarantine configuration is applicable

Chapter 7
Resolving Problems

7-84

• Status of the quarantine configuration (enabled or disabled)

• Status of automatic purging of the quarantine configuration (yes or no)

• Quarantine thresholds specified for the quarantine configuration:

– CPU time

– Elapsed time

– I/O in megabytes

– Number of physical I/O requests

– Number of logical I/O requests

• Date and time when the quarantine configuration was created

• Date and time when the quarantine configuration was last executed

See Also:

Oracle Database Reference for details of the DBA_SQL_QUARANTINE view

7.5.4.6 Deleting a Quarantine Configuration
The unused quarantine configurations are automatically purged or deleted after 53 weeks. You
can also delete a quarantine configuration using the DBMS_SQLQ.DROP_QUARANTINE procedure.
You can disable automatic deletion of a quarantine configuration using the
DBMS_SQLQ.ALTER_QUARANTINE procedure.

The following example disables automatic deletion of the quarantine configuration
SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4:

BEGIN
 DBMS_SQLQ.ALTER_QUARANTINE(
 QUARANTINE_NAME => 'SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4',
 PARAMETER_NAME => 'AUTOPURGE',
 PARAMETER_VALUE => 'NO');
END;
/

The following example enables automatic deletion of the quarantine configuration
SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4:

BEGIN
 DBMS_SQLQ.ALTER_QUARANTINE(
 QUARANTINE_NAME => 'SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4',
 PARAMETER_NAME => 'AUTOPURGE',
 PARAMETER_VALUE => 'YES');
END;
/

Chapter 7
Resolving Problems

7-85

The following example deletes the quarantine configuration
SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4:

BEGIN
 DBMS_SQLQ.DROP_QUARANTINE('SQL_QUARANTINE_3z0mwuq3aqsm8cfe7a0e4');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_SQLQ package subprograms

7.5.4.7 Viewing the Details of Quarantined Execution Plans of SQL Statements
You can query the V$SQL and GV$SQL views to get details about the quarantined execution
plans of SQL statements.

The following columns of the V$SQL and GV$SQL views show the quarantine information of
execution plans of SQL statements:

• SQL_QUARANTINE: This column shows the name of the quarantine configuration for an
execution plan of a SQL statement.

• AVOIDED_EXECUTIONS: This column shows the number of times an execution plan of a SQL
statement was prevented from running after it was quarantined.

See Also:

Oracle Database Reference for details of the V$SQL and GV$SQL views

7.5.4.8 Transferring Quarantine Configurations from One Database to Another
Database

You can transfer quarantine configurations from one database to another database using the
DBMS_SQLQ package subprograms – CREATE_STGTAB_QUARANTINE, PACK_STGTAB_QUARANTINE,
and UNPACK_STGTAB_QUARANTINE.

For example, you may have tested the quarantine configurations on a test database and
confirmed that they have performed well. You may then want to load these quarantine
configurations into a production database.

The following example describes the steps to transfer quarantine configurations from one
database (source database) to another database (destination database) using the DBMS_SQLQ
package subprograms:

1. Using SQL*Plus, connect to the source database as a user with the administrative
privileges, and create a staging table using the DBMS_SQLQ.CREATE_STGTAB_QUARANTINE
procedure.

Chapter 7
Resolving Problems

7-86

The following example creates a staging table named TBL_STG_QUARANTINE:

BEGIN
 DBMS_SQLQ.CREATE_STGTAB_QUARANTINE (
 staging_table_name => 'TBL_STG_QUARANTINE');
END;
/

2. Add the quarantine configurations into the staging table, which you want to transfer to the
destination database.

The following example adds all the quarantine configurations starting with the name
QUARANTINE_CONFIG_ into the staging table TBL_STG_QUARANTINE:

DECLARE
 quarantine_configs NUMBER;
BEGIN
 quarantine_configs := DBMS_SQLQ.PACK_STGTAB_QUARANTINE(
 staging_table_name => 'TBL_STG_QUARANTINE',
 name => 'QUARANTINE_CONFIG_%');
END;
/

The DBMS_SQLQ.PACK_STGTAB_QUARANTINE function returns the number of quarantine
configurations added to the staging table.

3. Export the staging table TBL_STG_QUARANTINE to a dump file using the Oracle Data Pump
Export utility.

4. Transfer the dump file from the source database system to the destination database
system.

5. On the destination database system, import the staging table TBL_STG_QUARANTINE from
the dump file into the destination database using the Oracle Data Pump Import utility.

6. Using SQL*Plus, connect to the destination database as a user with the administrative
privileges, and create the quarantine configurations from the imported staging table.

The following example creates the quarantine configurations on the destination database
based on all the quarantine configurations stored in the imported staging table
TBL_STG_QUARANTINE:

DECLARE
 quarantine_configs NUMBER;
BEGIN
 quarantine_configs := DBMS_SQLQ.UNPACK_STGTAB_QUARANTINE(
 staging_table_name => 'TBL_STG_QUARANTINE');
END;
/

The DBMS_SQLQ.UNPACK_STGTAB_QUARANTINE function returns the number of quarantine
configurations created in the destination database.

Chapter 7
Resolving Problems

7-87

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_SQLQ package subprograms

7.5.4.9 Example: Quarantine for an Execution Plan of a SQL Statement Consuming
Excessive System Resources

This example shows how an execution plan of a SQL statement is quarantined when it
exceeds a resource consumption limit configured using the Resource Manager.

1. Using the Resource Manager, specify the execution time limit of 3 seconds for SQL
statements executed by the user HR.

The following code performs these operations by creating a complex resource plan using
the DBMS_RESOURCE_MANAGER package subprograms:

• creates a consumer group TEST_RUNAWAY_GROUP.

• assigns the user HR to the TEST_RUNAWAY_GROUP consumer group.

• creates a resource plan LIMIT_RESOURCE that terminates SQL statements when they
exceed the execution time of 3 seconds.

• assigns the LIMIT_RESOURCE resource plan to the TEST_RUNAWAY_GROUP consumer
group.

connect / as sysdba

begin

 -- Create a pending area
 dbms_resource_manager.create_pending_area();

 -- Create a consumer group 'TEST_RUNAWAY_GROUP'
 dbms_resource_manager.create_consumer_group (
 consumer_group => 'TEST_RUNAWAY_GROUP',
 comment => 'This consumer group limits execution time for SQL statements'
);

 -- Map the sessions of the user 'HR' to the consumer group 'TEST_RUNAWAY_GROUP'
 dbms_resource_manager.set_consumer_group_mapping(
 attribute => DBMS_RESOURCE_MANAGER.ORACLE_USER,
 value => 'HR',
 consumer_group => 'TEST_RUNAWAY_GROUP'
);

 -- Create a resource plan 'LIMIT_RESOURCE'
 dbms_resource_manager.create_plan(
 plan => 'LIMIT_RESOURCE',
 comment => 'Terminate SQL statements after exceeding total execution time'
);

 -- Create a resource plan directive by assigning the 'LIMIT_RESOURCE' plan to
 -- the 'TEST_RUNAWAY_GROUP' consumer group
 -- Specify the execution time limit of 3 seconds for SQL statements belonging to
 -- the 'TEST_RUNAWAY_GROUP' group
 dbms_resource_manager.create_plan_directive(
 plan => 'LIMIT_RESOURCE',
 group_or_subplan => 'TEST_RUNAWAY_GROUP',
 comment => 'Terminate SQL statements when they exceed the' ||
 'execution time of 3 seconds',

Chapter 7
Resolving Problems

7-88

 switch_group => 'CANCEL_SQL',
 switch_time => 3,
 switch_estimate => false
);

 -- Allocate resources to the sessions not covered by the currently active plan
 -- according to the OTHER_GROUPS directive
 dbms_resource_Manager.create_plan_directive(
 plan => 'LIMIT_RESOURCE',
 group_or_subplan => 'OTHER_GROUPS',
 comment => 'Ignore'
);

 -- Validate and submit the pending area
 dbms_resource_manager.validate_pending_area();
 dbms_resource_manager.submit_pending_area();

 -- Grant switch privilege to the 'HR' user to switch to the 'TEST_RUNAWAY_GROUP'
 -- consumer group
 dbms_resource_manager_privs.grant_switch_consumer_group('HR',
 'TEST_RUNAWAY_GROUP',
 false);

 -- Set the initial consumer group of the 'HR' user to 'TEST_RUNAWAY_GROUP'
 dbms_resource_manager.set_initial_consumer_group('HR',
 'TEST_RUNAWAY_GROUP');

end;
/

-- Set the 'LIMIT_RESOURCE' plan as the top plan for the Resource Manager
alter system set RESOURCE_MANAGER_PLAN = 'LIMIT_RESOURCE' scope = memory;

-- Unlock the HR user and assign it the DBA role
alter user hr identified by hr_user_password account unlock;
grant dba to hr;

-- Flush the shared pool
alter system flush shared_pool;

2. Connect to the Oracle database as the HR user and run the SQL statement that exceeds
the execution time limit of 3 seconds:

select count(*)
from employees emp1, employees emp2,
 employees emp3, employees emp4,
 employees emp5, employees emp6,
 employees emp7, employees emp8,
 employees emp9, employees emp10
where rownum <= 100000000;

The SQL statement is terminated by the Resource Manager as it exceeds the execution
time limit of 3 seconds and the following error message is displayed:

ORA-00040: active time limit exceeded - call aborted

The execution plan for the SQL statement is now added to the quarantine list, so that it is
not allowed to run again.

3. Run the SQL statement again.

Now the SQL statement should terminate immediately with the following error message,
because its execution plan is quarantined:

ORA-56955: quarantined plan used

Chapter 7
Resolving Problems

7-89

4. View the details of the quarantined execution plan of the SQL statement by querying the
v$sql and dba_sql_quarantine views.

• Query the v$sql view. The v$sql view contains information about various statistics of
the SQL statements including the quarantine statistics.

select sql_text, plan_hash_value, avoided_executions, sql_quarantine
from v$sql
where sql_quarantine is not null;

The output of this query is similar to the following:

SQL_TEXT PLAN_HASH_VALUE AVOIDED_EXECUTIONS SQL_QUARANTINE
------------------------------------ --------------- ------------------ ------------------------------------
select count(*) 3719017987 1 SQL_QUARANTINE_3uuhv1u5day0yf6ed7f0c
from employees emp1, employees emp2,
 employees emp3, employees emp4,
 employees emp5, employees emp6,
 employees emp7, employees emp8,
 employees emp9, employees emp10
where rownum <= 100000000;

The sql_quarantine column shows the auto-generated name for the quarantine
configuration for the execution plan of the SQL statement.

• Query the dba_sql_quarantine view. The dba_sql_quarantine view contains
information about the quarantine configurations of execution plans of the SQL
statements.

select sql_text, name, plan_hash_value, last_executed, enabled
from dba_sql_quarantine;

The output of this query is similar to the following:

SQL_TEXT NAME PLAN_HASH_VALUE
LAST_EXECUTED ENABLED
------------------------------------ ------------------------------------ ---------------
---------------------------- -------
select count(*) SQL_QUARANTINE_3uuhv1u5day0yf6ed7f0c 3719017987 14-JAN-19 02.19.01.000000
AM YES
from employees emp1, employees emp2,
 employees emp3, employees emp4,
 employees emp5, employees emp6,
 employees emp7, employees emp8,
 employees emp9, employees emp10
where rownum <= 100000000;

The name column shows the auto-generated name for the quarantine configuration for
the execution plan of the SQL statement.

5. Clean up the example environment.

The following code deletes all the database objects created for this example:

connect / as sysdba

begin
 for quarantineObj in (select name from dba_sql_quarantine) loop
 sys.dbms_sqlq.drop_quarantine(quarantineObj.name);
 end loop;
end;
/

alter system set RESOURCE_MANAGER_PLAN = '' scope = memory;

Chapter 7
Resolving Problems

7-90

execute dbms_resource_manager.clear_pending_area();
execute dbms_resource_manager.create_pending_area();
execute dbms_resource_manager.delete_plan('LIMIT_RESOURCE');
execute dbms_resource_manager.delete_consumer_group('TEST_RUNAWAY_GROUP');
execute dbms_resource_manager.validate_pending_area();
execute dbms_resource_manager.submit_pending_area();

See Also:

• "Creating a Complex Resource Plan" for more information about creating a
complex resource plan using the DBMS_RESOURCE_MANAGER package subprograms

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_RESOURCE_MANAGER package subprograms

• Oracle Database Reference for more information about the V$SQL view

7.5.5 Viewing Attention Log Information
Access information stored in the attention log either by opening the file with any text editor or
by querying the V$DIAG_ATTENTION view.

To view the attention log by using a text editor:

1. Navigate to the $ORACLE_HOME/diag/rdbms/database_name/instance_id/trace directory.

2. Open the attention.log file.

To view attention log information stored in the data dictionary:

1. Connect to the database with SQL*Plus or a query tool such as SQL Developer.

2. Query the V$DIAG_ATTENTION view using the required filters.

For example, the following query displays attention messages for which urgent action must
be taken. A message_level of 1 corresponds to critical errors that need immediate action.

SELECT container_name, message_id, message_type, message_text, cause_text,
 action_text, version, host_id, component_id
FROM v$diag_attention
WHERE message_level = 1;

7.6 Diagnosis and Tracing in a PDB Using Package
DBMS_USERDIAG

This section describes how to use the PL/SQL package DBMS_USERDIAG for diagnosis and
allows you to set up a trace within a PDB.

• About DBMS_USERDIAG
The DBMS_USERDIAG package provides a narrow set of functionality provided through
DBMS_SYSTEM , which restricts arbitrary event settings.

• Examples of Using DBMS_USERDIAG
This section shows examples of using the DBMS_USERDIAG package.

Chapter 7
Diagnosis and Tracing in a PDB Using Package DBMS_USERDIAG

7-91

7.6.1 About DBMS_USERDIAG
The DBMS_USERDIAG package provides a narrow set of functionality provided through
DBMS_SYSTEM , which restricts arbitrary event settings.

For a given PDB, the DBMS_USERDIAG package allows you:

• to enable the SQL trace at a given level.

• to disable the SQL trace.

• to check the SQL trace.

Most of the regular diagnostic mechanisms have been restricted outside of a given PDB using
lockdown profiles, so that arbitrary events cannot be enabled from user sessions in a shared
tenancy in CBD deployments in cloud instances. In particular, the alter session set events
statement is blocked in cloud deployments because it can be misused to set events and
actions which may change code-path execution or simulate errors.

7.6.2 Examples of Using DBMS_USERDIAG
This section shows examples of using the DBMS_USERDIAG package.

The example below shows setting a trace event for SQL ID g3yc1js3g2689.

exec dbms_userdiag.enable_sql_trace_event(sql_id=>'g3yc1js3g2689', binds=>1,
 waits=>1,
plan_stat=>'all_executions');

The example below shows writing a message to the trace file:

exec dbms_userdiag.trace('DBMS_USERDIAG-TRACE:This is a message, written
default to trace file');

This example shows writing to the default trace file. A non-zero value for ALERT writes to the
alert log:

exec dbms_userdiag.trace('DBMS_USERDIAG-TRACE:This is an alert log message',
alert=>1);

This example shows enabling excpetions to the thrown if there are internal errors, if any:

exec dbms_userdiag.SET_EXCEPTION_MODE(TRUE);

Related Topics

• PL/SQL Packages and Types Reference

Chapter 7
Diagnosis and Tracing in a PDB Using Package DBMS_USERDIAG

7-92

Part II
Oracle Database Structure and Storage

You can create and manage database structures and storage components.

• Managing Control Files
You can create, back up, and drop control files.

• Managing the Redo Log
You manage the redo log by completing tasks such as creating redo log groups and
members, relocating and renaming redo log members, dropping redo log groups and
members, and forcing log switches.

• Managing Archived Redo Log Files
You manage the archived redo log files by completing tasks such as choosing between
NOARCHIVELOG or ARCHIVELOG mode and specifying archive destinations.

• Managing Tablespaces
A tablespace is a database storage unit that groups related logical structures together. The
database data files are stored in tablespaces.

• Managing Data Files and Temp Files
You can manage data files and temp files by performing tasks such as creating them,
altering them, and dropping them.

• Transporting Data
Transporting data moves the data from one database to another.

• Managing Undo
For a default installation, Oracle Database automatically manages undo. There is typically
no need for DBA intervention. However, if your installation uses Oracle Flashback
operations, you may need to perform some undo management tasks to ensure the
success of these operations.

• Using Oracle Managed Files
Oracle Database can manage the files that comprise the database.

• Using Persistent Memory Database
Mapping the database directly into persistent memory (PMEM) provides significant
performance enhancements.

8
Managing Control Files

You can create, back up, and drop control files.

• What Is a Control File?
Every Oracle Database has a control file, which is a small binary file that records the
physical structure of the database.

• Guidelines for Control Files
You can follow guidelines to manage the control files for a database.

• Creating Control Files
You can create, copy, rename, and relocate control files.

• Troubleshooting After Creating Control Files
After issuing the CREATE CONTROLFILE statement, you may encounter some errors.

• Backing Up Control Files
Use the ALTER DATABASE BACKUP CONTROLFILE statement to back up your control files.

• Recovering a Control File Using a Current Copy
You can recover your control file from a current backup or from a multiplexed copy.

• Dropping Control Files
You can drop control files, but the database should have at least two control files at all
times.

• Control Files Data Dictionary Views
You can query a set of data dictionary views for information about control files.

See Also:

• Oracle Database Concepts for an overview of control files

• Using Oracle Managed Files for information about creating control files that are
both created and managed by the Oracle Database server

8.1 What Is a Control File?
Every Oracle Database has a control file, which is a small binary file that records the physical
structure of the database.

The control file includes:

• The database name

• Names and locations of associated data files and redo log files

• The timestamp of the database creation

• The current log sequence number

• Checkpoint information

8-1

The control file must be available for writing by the Oracle Database server whenever the
database is open. Without the control file, the database cannot be mounted and recovery is
difficult.

The control file of an Oracle Database is created at the same time as the database. By default,
at least one copy of the control file is created during database creation. On some operating
systems the default is to create multiple copies. You should create two or more copies of the
control file during database creation. You can also create control files later, if you lose control
files or want to change particular settings in the control files.

8.2 Guidelines for Control Files
You can follow guidelines to manage the control files for a database.

• Provide File Names for the Control Files
You specify control file names using the CONTROL_FILES initialization parameter in the
database initialization parameter file. The instance recognizes and opens all the listed file
during startup, and the instance writes to and maintains all listed control files during
database operation.

• Multiplex Control Files on Different Disks
Every Oracle Database should have at least two control files, each stored on a different
physical disk.

• Back Up Control Files
It is very important that you back up your control files. This is true initially, and every time
you change the physical structure of your database.

• Manage the Size of Control Files
The main determinants of the size of a control file are the values set for the MAXDATAFILES,
MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and MAXINSTANCES parameters in the
CREATE DATABASE statement that created the associated database.

8.2.1 Provide File Names for the Control Files
You specify control file names using the CONTROL_FILES initialization parameter in the database
initialization parameter file. The instance recognizes and opens all the listed file during startup,
and the instance writes to and maintains all listed control files during database operation.

If you do not specify files for CONTROL_FILES before database creation:

• If you are not using Oracle Managed Files, then the database creates a control file and
uses a default file name. The default name is operating system specific.

• If you are using Oracle Managed Files, then the initialization parameters you set to enable
that feature determine the name and location of the control files.

• If you are using Oracle Automatic Storage Management (Oracle ASM), you can place
incomplete Oracle ASM file names in the DB_CREATE_FILE_DEST and
DB_RECOVERY_FILE_DEST initialization parameters. Oracle ASM then automatically creates
control files in the appropriate places.

Related Topics

• Creating Initial Control Files
The initial control files of an Oracle Database are created when you issue the CREATE
DATABASE statement.

Chapter 8
Guidelines for Control Files

8-2

• Using Oracle Managed Files
Oracle Database can manage the files that comprise the database.

• Oracle Automatic Storage Management Administrator's Guide

8.2.2 Multiplex Control Files on Different Disks
Every Oracle Database should have at least two control files, each stored on a different
physical disk.

If a control file is damaged due to a disk failure, the associated instance must be shut down.
Once the disk drive is repaired, the damaged control file can be restored using the intact copy
of the control file from the other disk and the instance can be restarted. In this case, no media
recovery is required.

The behavior of multiplexed control files is this:

• The database writes to all file names listed for the initialization parameter CONTROL_FILES
in the database initialization parameter file.

• The database reads only the first file listed in the CONTROL_FILES parameter during
database operation.

• If any of the control files become unavailable during database operation, the instance
becomes inoperable and should be terminated.

Note:

Oracle strongly recommends that your database has a minimum of two control
files and that they are located on separate physical disks.

One way to multiplex control files is to store a control file copy on every disk drive that stores
members of redo log groups, if the redo log is multiplexed. By storing control files in these
locations, you minimize the risk that all control files and all groups of the redo log will be lost in
a single disk failure.

8.2.3 Back Up Control Files
It is very important that you back up your control files. This is true initially, and every time you
change the physical structure of your database.

Such structural changes include:

• Adding, dropping, or renaming data files

• Adding or dropping a tablespace, or altering the read/write state of the tablespace

• Adding or dropping redo log files or groups

The methods for backing up control files are discussed in "Backing Up Control Files".

8.2.4 Manage the Size of Control Files
The main determinants of the size of a control file are the values set for the MAXDATAFILES,
MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and MAXINSTANCES parameters in the CREATE
DATABASE statement that created the associated database.

Chapter 8
Guidelines for Control Files

8-3

Increasing the values of these parameters increases the size of a control file of the associated
database.

See Also:

• Your operating system specific Oracle documentation contains more information
about the maximum control file size.

• Oracle Database SQL Language Reference for a description of the CREATE
DATABASE statement

8.3 Creating Control Files
You can create, copy, rename, and relocate control files.

• Creating Initial Control Files
The initial control files of an Oracle Database are created when you issue the CREATE
DATABASE statement.

• Creating Additional Copies, Renaming, and Relocating Control Files
You can create an additional control file copy for multiplexing by copying an existing control
file to a new location and adding the file name to the list of control files.

• Creating New Control Files
You can create new control files when all of the control files for the database have been
permanently damaged and you do not have a control file backup or when you want to
change the database name.

8.3.1 Creating Initial Control Files
The initial control files of an Oracle Database are created when you issue the CREATE
DATABASE statement.

The names of the control files are specified by the CONTROL_FILES parameter in the initialization
parameter file used during database creation. The file names specified in CONTROL_FILES
should be fully specified and are operating system specific. The following is an example of a
CONTROL_FILES initialization parameter:

CONTROL_FILES = (/u01/oracle/prod/control01.ctl,
 /u02/oracle/prod/control02.ctl,
 /u03/oracle/prod/control03.ctl)

If files with the specified names currently exist at the time of database creation, you must
specify the CONTROLFILE REUSE clause in the CREATE DATABASE statement, or else an error
occurs. Also, if the size of the old control file differs from the SIZE parameter of the new one,
you cannot use the REUSE clause.

The size of the control file changes between some releases of Oracle Database, as well as
when the number of files specified in the control file changes. Configuration parameters such
as MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and MAXINSTANCES affect
control file size.

You can subsequently change the value of the CONTROL_FILES initialization parameter to add
more control files or to change the names or locations of existing control files.

Chapter 8
Creating Control Files

8-4

See Also:

Your operating system specific Oracle documentation contains more information
about specifying control files.

8.3.2 Creating Additional Copies, Renaming, and Relocating Control Files
You can create an additional control file copy for multiplexing by copying an existing control file
to a new location and adding the file name to the list of control files.

Similarly, you rename an existing control file by copying the file to its new name or location,
and changing the file name in the control file list. In both cases, to guarantee that control files
do not change during the procedure, shut down the database before copying the control file.

To add a multiplexed copy of the current control file or to rename a control file:

1. Shut down the database.

2. Copy an existing control file to a new location, using operating system commands.

3. Edit the CONTROL_FILES parameter in the database initialization parameter file to add the
new control file name, or to change the existing control file name.

4. Restart the database.

8.3.3 Creating New Control Files
You can create new control files when all of the control files for the database have been
permanently damaged and you do not have a control file backup or when you want to change
the database name.

• When to Create New Control Files
You must create new control files in certain situations.

• The CREATE CONTROLFILE Statement
You can create a new control file for a database using the CREATE CONTROLFILE statement.

• Creating New Control Files
You can create new control files for your database.

8.3.3.1 When to Create New Control Files
You must create new control files in certain situations.

It is necessary for you to create new control files in the following situations:

• All control files for the database have been permanently damaged and you do not have a
control file backup.

• You want to change the database name.

For example, you would change a database name if it conflicted with another database
name in a distributed environment.

Chapter 8
Creating Control Files

8-5

Note:

You can change the database name and DBID (internal database identifier) using
the DBNEWID utility. See Oracle Database Utilities for information about using
this utility.

8.3.3.2 The CREATE CONTROLFILE Statement
You can create a new control file for a database using the CREATE CONTROLFILE statement.

The following statement creates a new control file for the prod database (a database that
formerly used a different database name):

CREATE CONTROLFILE
 SET DATABASE prod
 LOGFILE GROUP 1 ('/u01/oracle/prod/redo01_01.log',
 '/u01/oracle/prod/redo01_02.log'),
 GROUP 2 ('/u01/oracle/prod/redo02_01.log',
 '/u01/oracle/prod/redo02_02.log'),
 GROUP 3 ('/u01/oracle/prod/redo03_01.log',
 '/u01/oracle/prod/redo03_02.log')
 RESETLOGS
 DATAFILE '/u01/oracle/prod/system01.dbf' SIZE 3M,
 '/u01/oracle/prod/rbs01.dbs' SIZE 5M,
 '/u01/oracle/prod/users01.dbs' SIZE 5M,
 '/u01/oracle/prod/temp01.dbs' SIZE 5M
 MAXLOGFILES 50
 MAXLOGMEMBERS 3
 MAXLOGHISTORY 400
 MAXDATAFILES 200
 MAXINSTANCES 6
 ARCHIVELOG;

Note:

• The CREATE CONTROLFILE statement can potentially damage specified data files
and redo log files. Omitting a file name can cause loss of the data in that file, or
loss of access to the entire database. Use caution when issuing this statement
and be sure to follow the instructions in "Creating New Control Files".

• If the database had forced logging enabled before creating the new control file,
and you want it to continue to be enabled, then you must specify the FORCE
LOGGING clause in the CREATE CONTROLFILE statement. See "Oracle Database
SQL Language Reference".

See Also:

Oracle Database SQL Language Reference describes the complete syntax of the
CREATE CONTROLFILE statement

Chapter 8
Creating Control Files

8-6

8.3.3.3 Creating New Control Files
You can create new control files for your database.

Complete the following steps to create a new control file.

1. Make a list of all data files and redo log files of the database.

If you follow recommendations for control file backups as discussed in "Backing Up Control
Files" , you will already have a list of data files and redo log files that reflect the current
structure of the database. However, if you have no such list, executing the following
statements will produce one.

SELECT MEMBER FROM V$LOGFILE;
SELECT NAME FROM V$DATAFILE;
SELECT VALUE FROM V$PARAMETER WHERE NAME = 'control_files';

If you have no such lists and your control file has been damaged so that the database
cannot be opened, try to locate all of the data files and redo log files that constitute the
database. Any files not specified in step 5 are not recoverable once a new control file has
been created. Moreover, if you omit any of the files that comprise the SYSTEM tablespace,
you might not be able to recover the database.

2. Shut down the database.

If the database is open, shut down the database normally if possible. Use the IMMEDIATE or
ABORT clauses only as a last resort.

3. Back up all data files and redo log files of the database.

4. Start up a new instance, but do not mount or open the database:

STARTUP NOMOUNT
5. Create a new control file for the database using the CREATE CONTROLFILE statement.

When creating a new control file, specify the RESETLOGS clause if you have lost any redo
log groups in addition to control files. In this case, you will need to recover from the loss of
the redo logs (step 8). You must specify the RESETLOGS clause if you have renamed the
database. Otherwise, select the NORESETLOGS clause.

6. Store a backup of the new control file on an offline storage device. See "Backing Up
Control Files" for instructions for creating a backup.

7. Edit the CONTROL_FILES initialization parameter for the database to indicate all of the
control files now part of your database as created in step 5 (not including the backup
control file). If you are renaming the database, edit the DB_NAME parameter in your instance
parameter file to specify the new name.

8. Recover the database if necessary. If you are not recovering the database, skip to step 9.

If you are creating the control file as part of recovery, recover the database. If the new
control file was created using the NORESETLOGS clause, you can recover the database with
complete, closed database recovery.

If the new control file was created using the RESETLOGS clause, you must specify USING
BACKUP CONTROL FILE. If you have lost online redo logs, archived redo log files, or data
files, use the procedures for recovering those files.

Chapter 8
Creating Control Files

8-7

See Also:

Oracle Database Backup and Recovery User's Guide for information about
recovering your database and methods of recovering a lost control file

9. Open the database using one of the following methods:

• If you did not perform recovery, or you performed complete, closed database recovery
in step 8, open the database normally.

ALTER DATABASE OPEN;
• If you specified RESETLOGS when creating the control file, use the ALTER DATABASE

statement, indicating RESETLOGS.

ALTER DATABASE OPEN RESETLOGS;
The database is now open and available for use.

8.4 Troubleshooting After Creating Control Files
After issuing the CREATE CONTROLFILE statement, you may encounter some errors.

• Checking for Missing or Extra Files
After creating a new control file and using it to open the database, check the alert log to
see if the database has detected inconsistencies between the data dictionary and the
control file, such as a data file in the data dictionary includes that the control file does not
list.

• Handling Errors During CREATE CONTROLFILE
If Oracle Database sends you an error when you attempt to mount and open the database
after creating a new control file, the most likely cause is that you omitted a file from the
CREATE CONTROLFILE statement or included one that should not have been listed.

8.4.1 Checking for Missing or Extra Files
After creating a new control file and using it to open the database, check the alert log to see if
the database has detected inconsistencies between the data dictionary and the control file,
such as a data file in the data dictionary includes that the control file does not list.

If a data file exists in the data dictionary but not in the new control file, the database creates a
placeholder entry in the control file under the name MISSINGnnnn, where nnnn is the file number
in decimal. MISSINGnnnn is flagged in the control file as being offline and requiring media
recovery.

If the actual data file corresponding to MISSINGnnnn is read-only or offline normal, then you can
make the data file accessible by renaming MISSINGnnnn to the name of the actual data file. If
MISSINGnnnn corresponds to a data file that was not read-only or offline normal, then you
cannot use the rename operation to make the data file accessible, because the data file
requires media recovery that is precluded by the results of RESETLOGS. In this case, you must
drop the tablespace containing the data file.

Conversely, if a data file listed in the control file is not present in the data dictionary, then the
database removes references to it from the new control file. In both cases, the database
includes an explanatory message in the alert log to let you know what was found.

Chapter 8
Troubleshooting After Creating Control Files

8-8

8.4.2 Handling Errors During CREATE CONTROLFILE
If Oracle Database sends you an error when you attempt to mount and open the database
after creating a new control file, the most likely cause is that you omitted a file from the CREATE
CONTROLFILE statement or included one that should not have been listed.

Typically, the error is ORA-01173, ORA-01176, ORA-01177, ORA-01215, or ORA-01216. In this case,
you should restore the files you backed up in "Creating New Control Files" and repeat the
procedure in that task, using the correct file names.

8.5 Backing Up Control Files
Use the ALTER DATABASE BACKUP CONTROLFILE statement to back up your control files.

You have two options:

• Back up the control file to a binary file (duplicate of existing control file) using the following
statement:

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/backup/control.bkp';
• Produce SQL statements that can later be used to re-create your control file:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

This command writes a SQL script to a trace file where it can be captured and edited to
reproduce the control file. View the alert log to determine the name and location of the
trace file.

See Also:

– Oracle Database Backup and Recovery User's Guide for more information
on backing up your control files

– "Viewing the Alert Log"

8.6 Recovering a Control File Using a Current Copy
You can recover your control file from a current backup or from a multiplexed copy.

• Recovering from Control File Corruption Using a Control File Copy
If a control file becomes corrupted, then you can recover it using a control file copy.

• Recovering from Permanent Media Failure Using a Control File Copy
If there is permanent media failure, then you can recover by using a control file copy.

8.6.1 Recovering from Control File Corruption Using a Control File Copy
If a control file becomes corrupted, then you can recover it using a control file copy.

This method assumes that one of the control files specified in the CONTROL_FILES parameter is
corrupted, that the control file directory is still accessible, and that you have a multiplexed copy
of the control file.

Chapter 8
Backing Up Control Files

8-9

1. With the instance shut down, use an operating system command to overwrite the bad
control file with a good copy:

% cp /u03/oracle/prod/control03.ctl /u02/oracle/prod/control02.ctl
2. Start SQL*Plus and open the database:

SQL> STARTUP

8.6.2 Recovering from Permanent Media Failure Using a Control File Copy
If there is permanent media failure, then you can recover by using a control file copy.

This method assumes that one of the control files specified in the CONTROL_FILES parameter is
inaccessible due to a permanent media failure and that you have a multiplexed copy of the
control file.

1. With the instance shut down, use an operating system command to copy the current copy
of the control file to a new, accessible location:

% cp /u01/oracle/prod/control01.ctl /u04/oracle/prod/control03.ctl
2. Edit the CONTROL_FILES parameter in the initialization parameter file to replace the bad

location with the new location:

CONTROL_FILES = (/u01/oracle/prod/control01.ctl,
 /u02/oracle/prod/control02.ctl,
 /u04/oracle/prod/control03.ctl)

3. Start SQL*Plus and open the database:

SQL> STARTUP
If you have multiplexed control files, you can get the database started up quickly by editing the
CONTROL_FILES initialization parameter. Remove the bad control file from CONTROL_FILES
setting and you can restart the database immediately. Then you can perform the reconstruction
of the bad control file and at some later time shut down and restart the database after editing
the CONTROL_FILES initialization parameter to include the recovered control file.

8.7 Dropping Control Files
You can drop control files, but the database should have at least two control files at all times.

You want to drop control files from the database, for example, if the location of a control file is
no longer appropriate.

1. Shut down the database.

2. Edit the CONTROL_FILES parameter in the database initialization parameter file to delete the
old control file name.

3. Restart the database.

Note:

This operation does not physically delete the unwanted control file from the disk.
Use operating system commands to delete the unnecessary file after you have
dropped the control file from the database.

Chapter 8
Dropping Control Files

8-10

8.8 Control Files Data Dictionary Views
You can query a set of data dictionary views for information about control files.

The following views display information about control files:

View Description

V$DATABASE Displays database information from the control file

V$CONTROLFILE Lists the names of control files

V$CONTROLFILE_RECORD_SECTION Displays information about control file record sections

V$PARAMETER Displays the names of control files as specified in the
CONTROL_FILES initialization parameter

This example lists the names of the control files.

SQL> SELECT NAME FROM V$CONTROLFILE;

NAME

/u01/oracle/prod/control01.ctl
/u02/oracle/prod/control02.ctl
/u03/oracle/prod/control03.ctl

Chapter 8
Control Files Data Dictionary Views

8-11

9
Managing the Redo Log

You manage the redo log by completing tasks such as creating redo log groups and members,
relocating and renaming redo log members, dropping redo log groups and members, and
forcing log switches.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers
to a non-CDB from a previous release.

• What Is the Redo Log?
The most crucial structure for recovery operations is the redo log, which consists of two or
more preallocated files that store all changes made to the database as they occur. Every
instance of an Oracle Database has an associated redo log to protect the database in case
of an instance failure.

• Planning the Redo Log
You can follow guidelines when configuring a database instance redo log.

• Creating Redo Log Groups and Members
Plan the redo log for a database and create all required groups and members of redo log
files during database creation. However, there are situations where you might want to
create additional groups or members. For example, adding groups to a redo log can
correct redo log group availability problems.

• Relocating and Renaming Redo Log Members
You can use operating system commands to relocate redo logs, then use the ALTER
DATABASE statement to make their new names (locations) known to the database.

• Dropping Redo Log Groups and Members
In some cases, you may want to drop an entire group of redo log members.

• Forcing Log Switches
A log switch occurs when LGWR stops writing to one redo log group and starts writing to
another. By default, a log switch occurs automatically when the current redo log file group
fills.

• Verifying Blocks in Redo Log Files
You can configure the database to use checksums to verify blocks in the redo log files.

• Clearing a Redo Log File
A redo log file might become corrupted while the database is open, and ultimately stop
database activity because archiving cannot continue.

• Reduction of Redo Generation for Direct Path Operations
Certain operations against user tables can be done without creating redo that is
proportional to the data involved.

9-1

• Redo Log Data Dictionary Views
You can query a set of data dictionary views for information about the redo log.

See Also:

Using Oracle Managed Files for information about redo log files that are both created
and managed by the Oracle Database server

9.1 What Is the Redo Log?
The most crucial structure for recovery operations is the redo log, which consists of two or
more preallocated files that store all changes made to the database as they occur. Every
instance of an Oracle Database has an associated redo log to protect the database in case of
an instance failure.

• Redo Threads
When speaking in the context of multiple database instances, the redo log for each
database instance is also referred to as a redo thread.

• Redo Log Contents
Redo log files are filled with redo records.

• How Oracle Database Writes to the Redo Log
The redo log for a database consists of two or more redo log files. The database requires a
minimum of two files to guarantee that one is always available for writing while the other is
being archived (if the database is in ARCHIVELOG mode).

9.1.1 Redo Threads
When speaking in the context of multiple database instances, the redo log for each database
instance is also referred to as a redo thread.

In typical configurations, only one database instance accesses an Oracle Database, so only
one thread is present. In an Oracle Real Application Clusters environment, however, two or
more instances concurrently access a single database and each instance has its own thread of
redo. A separate redo thread for each instance avoids contention for a single set of redo log
files, thereby eliminating a potential performance bottleneck.

This chapter describes how to configure and manage the redo log on a standard single-
instance Oracle Database. The thread number can be assumed to be 1 in all discussions and
examples of statements. For information about redo log groups in an Oracle Real Application
Clusters environment, see Oracle Real Application Clusters Administration and Deployment
Guide.

9.1.2 Redo Log Contents
Redo log files are filled with redo records.

A redo record, also called a redo entry, is made up of a group of change vectors, each of
which is a description of a change made to a single block in the database. For example, if you
change a salary value in an employee table, you generate a redo record containing change
vectors that describe changes to the data segment block for the table, the undo segment data
block, and the transaction table of the undo segments.

Chapter 9
What Is the Redo Log?

9-2

Redo entries record data that you can use to reconstruct all changes made to the database,
including the undo segments. Therefore, the redo log also protects rollback data. When you
recover the database using redo data, the database reads the change vectors in the redo
records and applies the changes to the relevant blocks.

Redo records are buffered in a circular fashion in the redo log buffer of the SGA (see "How
Oracle Database Writes to the Redo Log") and are written to one of the redo log files by the
Log Writer (LGWR) database background process. Whenever a transaction is committed,
LGWR writes the transaction redo records from the redo log buffer of the SGA to a redo log
file, and assigns a system change number (SCN) to identify the redo records for each
committed transaction. Only when all redo records associated with a given transaction are
safely on disk in the online logs is the user process notified that the transaction has been
committed.

Redo records can also be written to a redo log file before the corresponding transaction is
committed. If the redo log buffer fills, or another transaction commits, LGWR flushes all of the
redo log entries in the redo log buffer to a redo log file, even though some redo records may
not be committed. If necessary, the database can roll back these changes.

9.1.3 How Oracle Database Writes to the Redo Log
The redo log for a database consists of two or more redo log files. The database requires a
minimum of two files to guarantee that one is always available for writing while the other is
being archived (if the database is in ARCHIVELOG mode).

See " Managing Archived Redo Log Files" for more information.

LGWR writes to redo log files in a circular fashion. When the current redo log file fills, LGWR
begins writing to the next available redo log file. When the last available redo log file is filled,
LGWR returns to the first redo log file and writes to it, starting the cycle again. Figure 9-1
illustrates the circular writing of the redo log file. The numbers next to each line indicate the
sequence in which LGWR writes to each redo log file.

Filled redo log files are available to LGWR for reuse depending on whether archiving is
enabled.

• If archiving is disabled (the database is in NOARCHIVELOG mode), a filled redo log file is
available after the changes recorded in it have been written to the data files.

• If archiving is enabled (the database is in ARCHIVELOG mode), a filled redo log file is
available to LGWR after the changes recorded in it have been written to the data files and
the file has been archived.

Chapter 9
What Is the Redo Log?

9-3

Figure 9-1 Reuse of Redo Log Files by LGWR

LGWR

1, 4, 7, ...

3, 6, 9, ...

2, 5, 8, ...

Online redo

log file

#3

Online redo

log file

#2

Online redo

log file

#1

• Active (Current) and Inactive Redo Log Files
Oracle Database uses only one redo log file at a time to store redo records written from the
redo log buffer. The redo log file that LGWR is actively writing to is called the current redo
log file.

• Log Switches and Log Sequence Numbers
A log switch is the point at which the database stops writing to one redo log file and
begins writing to another. Normally, a log switch occurs when the current redo log file is
completely filled and writing must continue to the next redo log file.

9.1.3.1 Active (Current) and Inactive Redo Log Files
Oracle Database uses only one redo log file at a time to store redo records written from the
redo log buffer. The redo log file that LGWR is actively writing to is called the current redo log
file.

Redo log files that are required for instance recovery are called active redo log files. Redo log
files that are no longer required for instance recovery are called inactive redo log files.

If you have enabled archiving (the database is in ARCHIVELOG mode), then the database cannot
reuse or overwrite an active online log file until one of the archiver background processes
(ARCn) has archived its contents. If archiving is disabled (the database is in NOARCHIVELOG
mode), then when the last redo log file is full, LGWR continues by overwriting the next log file
in the sequence when it becomes inactive.

9.1.3.2 Log Switches and Log Sequence Numbers
A log switch is the point at which the database stops writing to one redo log file and begins
writing to another. Normally, a log switch occurs when the current redo log file is completely
filled and writing must continue to the next redo log file.

Chapter 9
What Is the Redo Log?

9-4

However, you can configure log switches to occur at regular intervals, regardless of whether
the current redo log file is completely filled. You can also force log switches manually.

Oracle Database assigns each redo log file a new log sequence number every time a log
switch occurs and LGWR begins writing to it. When the database archives redo log files, the
archived log retains its log sequence number. A redo log file that is cycled back for use is given
the next available log sequence number.

Each online or archived redo log file is uniquely identified by its log sequence number. During
crash, instance, or media recovery, the database properly applies redo log files in ascending
order by using the log sequence number of the necessary archived and redo log files.

9.2 Planning the Redo Log
You can follow guidelines when configuring a database instance redo log.

Starting with Oracle Database Release 21c, on non-Exadata Linux systems, redo logs can be
stored in a persistent memory (PMEM) DAX file system. The tasks and commands for
managing redo logs in PMEM are the same as those for managing redo logs on disk.

Oracle Database requires the persistent memory to be configured with App Direct Mode,
preferably with interleaved configuration. A DAX-enabled file system such as XFS or EXT4
must be configured on the namespaces used by the database. On compute nodes, the
database only supports FSDAX configuration and does not support Device DAX (devdax)
configuration.

• Multiplexing Redo Log Files
To protect against a failure involving the redo log itself, Oracle Database allows a
multiplexed redo log, meaning that two or more identical copies of the redo log can be
automatically maintained in separate locations.

• Placing Redo Log Members on Different Disks
When setting up a multiplexed redo log, place members of a group on different physical
disks. If a single disk fails, then only one member of a group becomes unavailable to
LGWR and other members remain accessible to LGWR, so the instance can continue to
function.

• Planning the Size of Redo Log Files
When setting the size of redo log files, consider whether you will be archiving the redo log.
Redo log files should be sized so that a filled group can be archived to a single unit of
offline storage media (such as a tape or disk), with the least amount of space on the
medium left unused.

• Planning the Block Size of Redo Log Files
Unlike the database block size, which can be between 2K and 32K, redo log files always
default to a block size that is equal to the physical sector size of the disk. Historically, this
has typically been 512 bytes (512B).

• Choosing the Number of Redo Log Files
The best way to determine the appropriate number of redo log files for a database instance
is to test different configurations. The optimum configuration has the fewest groups
possible without hampering LGWR from writing redo log information.

• Controlling Archive Lag
You can force all enabled redo log threads to switch their current logs at regular time
intervals.

Chapter 9
Planning the Redo Log

9-5

See Also:

Persistent Memory documentation for information about provisioning Intel Optane DC
persistent memory

9.2.1 Multiplexing Redo Log Files
To protect against a failure involving the redo log itself, Oracle Database allows a multiplexed
redo log, meaning that two or more identical copies of the redo log can be automatically
maintained in separate locations.

For the most benefit, these locations should be on separate disks. Even if all copies of the redo
log are on the same disk, however, the redundancy can help protect against I/O errors, file
corruption, and so on. When redo log files are multiplexed, LGWR concurrently writes the
same redo log information to multiple identical redo log files, thereby eliminating a single point
of redo log failure.

Multiplexing is implemented by creating groups of redo log files. A group consists of a redo log
file and its multiplexed copies. Each identical copy is said to be a member of the group. Each
redo log group is defined by a number, such as group 1, group 2, and so on.

Figure 9-2 Multiplexed Redo Log Files

Disk BDisk A

1, 3, 5, ...

2, 4, 6, ...

��

��

��

Group 1

Group 2

�

B_LOG1

�

�

B_LOG2

�

A_LOG1

�

�

A_LOG2

LGWR

Group 1

Group 2

In Figure 9-2, A_LOG1 and B_LOG1 are both members of Group 1, A_LOG2 and B_LOG2 are both
members of Group 2, and so forth. Each member in a group must be the same size.

Each member of a log file group is concurrently active—that is, concurrently written to by
LGWR—as indicated by the identical log sequence numbers assigned by LGWR. In
Figure 9-2, first LGWR writes concurrently to both A_LOG1 and B_LOG1. Then it writes
concurrently to both A_LOG2 and B_LOG2, and so on. LGWR never writes concurrently to
members of different groups (for example, to A_LOG1 and B_LOG2).

Chapter 9
Planning the Redo Log

9-6

https://www.intel.com/content/www/us/en/developer/articles/guide/qsg-intro-to-provisioning-pmem.html

Note:

Oracle recommends that you multiplex your redo log files. The loss of the log file data
can be catastrophic if recovery is required. Note that when you multiplex the redo log,
the database must increase the amount of I/O that it performs. Depending on your
configuration, this may impact overall database performance.

• Responding to Redo Log Failure
Whenever LGWR cannot write to a member of a group, the database marks that member
as INVALID and writes an error message to the LGWR trace file and to the database alert
log to indicate the problem with the inaccessible files.

• Valid and Invalid Configurations
In most cases, a multiplexed redo log should be symmetrical: all groups of the redo log
should have the same number of members. However, the database does not require that a
multiplexed redo log be symmetrical.

9.2.1.1 Responding to Redo Log Failure
Whenever LGWR cannot write to a member of a group, the database marks that member as
INVALID and writes an error message to the LGWR trace file and to the database alert log to
indicate the problem with the inaccessible files.

The specific reaction of LGWR when a redo log member is unavailable depends on the reason
for the lack of availability, as summarized in the table that follows.

Condition LGWR Action

LGWR can successfully write to
at least one member in a group

Writing proceeds as normal. LGWR writes to the available members
of a group and ignores the unavailable members.

LGWR cannot access the next
group at a log switch because the
group must be archived

Database operation temporarily halts until the group becomes
available or until the group is archived.

All members of the next group are
inaccessible to LGWR at a log
switch because of media failure

Oracle Database returns an error, and the database instance shuts
down. In this case, you may need to perform media recovery on the
database from the loss of a redo log file.

If the database checkpoint has moved beyond the lost redo log,
media recovery is not necessary, because the database has saved
the data recorded in the redo log to the data files. You need only drop
the inaccessible redo log group. If the database did not archive the
bad log, use ALTER DATABASE CLEAR LOGFILE UNARCHIVED to
disable archiving before the log can be dropped.

All members of a group suddenly
become inaccessible to LGWR
while it is writing to them

Oracle Database returns an error and the database instance
immediately shuts down. In this case, you may need to perform
media recovery. If the media containing the log is not actually lost--for
example, if the drive for the log was inadvertently turned off--media
recovery may not be needed. In this case, you need only turn the
drive back on and let the database perform automatic instance
recovery.

Chapter 9
Planning the Redo Log

9-7

9.2.1.2 Valid and Invalid Configurations
In most cases, a multiplexed redo log should be symmetrical: all groups of the redo log should
have the same number of members. However, the database does not require that a
multiplexed redo log be symmetrical.

For example, one group can have only one member, and other groups can have two members.
This configuration protects against disk failures that temporarily affect some redo log members
but leave others intact.

The only requirement for an instance redo log is that it have at least two groups. Figure 9-3
shows valid and invalid multiplexed redo log configurations. The second configuration is invalid
because it has only one group.

Figure 9-3 Valid and Invalid Multiplexed Redo Log Configuration

VALID

Disk BDisk A

Group 1

Group 2

Group 3

A_LOG1

A_LOG2

A_LOG3

B_LOG1

INVALID

Disk BDisk A

Group 1

Group 2

Group 3

A_LOG1 B_LOG1

B_LOG2

B_LOG3

9.2.2 Placing Redo Log Members on Different Disks
When setting up a multiplexed redo log, place members of a group on different physical disks.
If a single disk fails, then only one member of a group becomes unavailable to LGWR and
other members remain accessible to LGWR, so the instance can continue to function.

If you archive the redo log, spread redo log members across disks to eliminate contention
between the LGWR and ARCn background processes. For example, if you have two groups of
multiplexed redo log members (a duplexed redo log), place each member on a different disk
and set your archiving destination to a fifth disk. Doing so will avoid contention between LGWR
(writing to the members) and ARCn (reading the members).

Data files should also be placed on different disks from redo log files to reduce contention in
writing data blocks and redo records.

Chapter 9
Planning the Redo Log

9-8

9.2.3 Planning the Size of Redo Log Files
When setting the size of redo log files, consider whether you will be archiving the redo log.
Redo log files should be sized so that a filled group can be archived to a single unit of offline
storage media (such as a tape or disk), with the least amount of space on the medium left
unused.

For example, suppose only one filled redo log group can fit on a tape and 49% of the tape
storage capacity remains unused. In this case, it is better to decrease the size of the redo log
files slightly, so that two log groups could be archived on each tape.

All members of the same multiplexed redo log group must be the same size. Members of
different groups can have different sizes. However, there is no advantage in varying file size
between groups. If checkpoints are not set to occur between log switches, make all groups the
same size to guarantee that checkpoints occur at regular intervals.

The minimum size permitted for a redo log file is 4 MB.

See Also:

Your operating system–specific Oracle documentation. The default size of redo log
files is operating system dependent.

9.2.4 Planning the Block Size of Redo Log Files
Unlike the database block size, which can be between 2K and 32K, redo log files always
default to a block size that is equal to the physical sector size of the disk. Historically, this has
typically been 512 bytes (512B).

Some newer high-capacity disk drives offer 4K byte (4K) sector sizes for both increased ECC
capability and improved format efficiency. Most Oracle Database platforms are able to detect
this larger sector size. The database then automatically creates redo log files with a 4K block
size on those disks.

However, with a block size of 4K, there is increased redo wastage. In fact, the amount of redo
wastage in 4K blocks versus 512B blocks is significant. You can determine the amount of redo
wastage by viewing the statistics stored in the V$SESSTAT and V$SYSSTAT views.

SQL> SELECT name, value FROM v$sysstat WHERE name = 'redo wastage';

NAME VALUE
-------------------------------- ----------
redo wastage 17941684

To avoid the additional redo wastage, if you are using emulation-mode disks—4K sector size
disk drives that emulate a 512B sector size at the disk interface—you can override the default
4K block size for redo logs by specifying a 512B block size or, for some platforms, a 1K block
size. However, you will incur a significant performance degradation when a redo log write is not
aligned with the beginning of the 4K physical sector. Because seven out of eight 512B slots in
a 4K physical sector are not aligned, performance degradation typically does occur. Thus, you
must evaluate the trade-off between performance and disk wastage when planning the redo
log block size on 4K sector size emulation-mode disks.

Chapter 9
Planning the Redo Log

9-9

You can specify the block size of online redo log files with the BLOCKSIZE keyword in the CREATE
DATABASE, ALTER DATABASE, and CREATE CONTROLFILE statements. On some platforms, the
permissible block sizes are 512 and 4096. On other platforms, the permissible block sizes are
1024 and 4096.

The following statement adds a redo log file group with a block size of 512B. The BLOCKSIZE
512 clause is valid but not required for 512B sector size disks. For 4K sector size emulation-
mode disks, the BLOCKSIZE 512 clause overrides the default 4K size.

ALTER DATABASE orcl ADD LOGFILE
 GROUP 4 ('/u01/logs/orcl/redo04a.log','/u01/logs/orcl/redo04b.log')
 SIZE 100M BLOCKSIZE 512 REUSE;

To ascertain the redo log file block size, run the following query:

SQL> SELECT BLOCKSIZE FROM V$LOG;

BLOCKSIZE

 512

See Also:

• Oracle Database SQL Language Reference for information about the ALTER
DATABASE command.

• Oracle Database Reference for information about the V$SESSTAT view

• Oracle Database Reference for information about the V$SYSSTAT view

9.2.5 Choosing the Number of Redo Log Files
The best way to determine the appropriate number of redo log files for a database instance is
to test different configurations. The optimum configuration has the fewest groups possible
without hampering LGWR from writing redo log information.

In some cases, a database instance may require only two groups. In other situations, a
database instance may require additional groups to guarantee that a recycled group is always
available to LGWR. During testing, the easiest way to determine whether the current redo log
configuration is satisfactory is to examine the contents of the LGWR trace file and the
database alert log. If messages indicate that LGWR frequently has to wait for a group because
a checkpoint has not completed or a group has not been archived, add groups.

Consider the parameters that can limit the number of redo log files before setting up or altering
the configuration of an instance redo log. The following parameters limit the number of redo log
files that you can add to a database:

• The MAXLOGFILES parameter used in the CREATE DATABASE statement determines the
maximum number of groups of redo log files for each database. Group values can range
from 1 to MAXLOGFILES. You can exceed the MAXLOGFILES limit, and the control files expand
as needed. If MAXLOGFILES is not specified for the CREATE DATABASE statement, then the
database uses an operating system specific default value.

• The MAXLOGMEMBERS parameter used in the CREATE DATABASE statement determines the
maximum number of members for each group. As with MAXLOGFILES, the only way to

Chapter 9
Planning the Redo Log

9-10

override this upper limit is to re-create the database or control file. Therefore, it is important
to consider this limit before creating a database. If no MAXLOGMEMBERS parameter is
specified for the CREATE DATABASE statement, then the database uses an operating system
default value.

See Also:

Your operating system specific Oracle documentation for the default and valid
values of the MAXLOGFILES and MAXLOGMEMBERS parameters

9.2.6 Controlling Archive Lag
You can force all enabled redo log threads to switch their current logs at regular time intervals.

In a primary/standby database configuration, changes are made available to the standby
database by archiving redo logs at the primary site and then shipping them to the standby
database. The changes that are being applied by the standby database can lag behind the
changes that are occurring on the primary database, because the standby database must wait
for the changes in the primary database redo log to be archived (into the archived redo log)
and then shipped to it. To limit this lag, you can set the ARCHIVE_LAG_TARGET initialization
parameter. Setting this parameter lets you specify in seconds how long that lag can be.

• Setting the ARCHIVE_LAG_TARGET Initialization Parameter
When you set the ARCHIVE_LAG_TARGET initialization parameter, you cause the database to
examine the current redo log for the instance periodically and determine when to switch
the log.

• Factors Affecting the Setting of ARCHIVE_LAG_TARGET
There are several factors to consider when you are setting the ARCHIVE_LAG_TARGET
initialization parameter.

9.2.6.1 Setting the ARCHIVE_LAG_TARGET Initialization Parameter
When you set the ARCHIVE_LAG_TARGET initialization parameter, you cause the database to
examine the current redo log for the instance periodically and determine when to switch the
log.

If the following conditions are met, then the instance will switch the log:

• The current log was created before n seconds ago, and the estimated archival time for the
current log is m seconds (proportional to the number of redo blocks used in the current
log), where n + m exceeds the value of the ARCHIVE_LAG_TARGET initialization parameter.

• The current log contains redo records.

In an Oracle Real Application Clusters environment, the instance also causes other threads to
switch and archive their logs if they are falling behind. This can be particularly useful when one
instance in the cluster is more idle than the other instances (as when you are running a 2-node
primary/secondary configuration of Oracle Real Application Clusters).

The ARCHIVE_LAG_TARGET initialization parameter provides an upper limit for how long (in
seconds) the current log of the database can span. Because the estimated archival time is also
considered, this is not the exact log switch time.

• Set the ARCHIVE_LAG_TARGET initialization parameter.

Chapter 9
Planning the Redo Log

9-11

The following initialization parameter setting sets the log switch interval to 30 minutes (a typical
value).

ARCHIVE_LAG_TARGET = 1800

A value of 0 disables this time-based log switching functionality. This is the default setting.

You can set the ARCHIVE_LAG_TARGET initialization parameter even if there is no standby
database. For example, the ARCHIVE_LAG_TARGET parameter can be set specifically to force
logs to be switched and archived.

ARCHIVE_LAG_TARGET is a dynamic parameter and can be set with the ALTER SYSTEM SET
statement.

Note:

The ARCHIVE_LAG_TARGET parameter must be set to the same value in all instances of
an Oracle Real Application Clusters environment. Failing to do so results in
unpredictable behavior.

9.2.6.2 Factors Affecting the Setting of ARCHIVE_LAG_TARGET
There are several factors to consider when you are setting the ARCHIVE_LAG_TARGET
initialization parameter.

Consider the following factors when determining if you want to set the ARCHIVE_LAG_TARGET
initialization parameter and in determining the value for this parameter.

• Overhead of switching (as well as archiving) logs

• How frequently normal log switches occur as a result of log full conditions

• How much redo loss is tolerated in the standby database

Setting ARCHIVE_LAG_TARGET may not be very useful if natural log switches already occur more
frequently than the interval specified. However, in the case of irregularities of redo generation
speed, the interval does provide an upper limit for the time range each current log covers.

If the ARCHIVE_LAG_TARGET initialization parameter is set to a very low value, there can be a
negative impact on performance. This can force frequent log switches. Set the parameter to a
reasonable value so as not to degrade the performance of the primary database.

9.3 Creating Redo Log Groups and Members
Plan the redo log for a database and create all required groups and members of redo log files
during database creation. However, there are situations where you might want to create
additional groups or members. For example, adding groups to a redo log can correct redo log
group availability problems.

To create new redo log groups and members, you must have the ALTER DATABASE system
privilege. A database can have up to MAXLOGFILES groups.

• Creating Redo Log Groups
To create a new group of redo log files, use the SQL statement ALTER DATABASE with the
ADD LOGFILE clause.

Chapter 9
Creating Redo Log Groups and Members

9-12

• Creating Redo Log Members
In some cases, it might not be necessary to create a complete group of redo log files. A
group could already exist, but not be complete because one or more members of the group
were dropped (for example, because of a disk failure). In this case, you can add new
members to an existing group.

See Also:

Oracle Database SQL Language Reference for a complete description of the ALTER
DATABASE statement

9.3.1 Creating Redo Log Groups
To create a new group of redo log files, use the SQL statement ALTER DATABASE with the ADD
LOGFILE clause.

• Run the SQL statement ALTER DATABASE with the ADD LOGFILE clause.

For example, the following statement adds a new group of redo logs to the database:

ALTER DATABASE
 ADD LOGFILE ('/oracle/dbs/log1c.rdo', '/oracle/dbs/log2c.rdo') SIZE 100M;

Note:

Provide full path names of new log members to specify their location. Otherwise, the
files are created in either the default or current directory of the database server,
depending upon your operating system.

You can also specify the number that identifies the group using the GROUP clause:

ALTER DATABASE
 ADD LOGFILE GROUP 10 ('/oracle/dbs/log1c.rdo', '/oracle/dbs/log2c.rdo')
 SIZE 100M BLOCKSIZE 512;

Using group numbers can make administering redo log groups easier. However, the group
number must be between 1 and MAXLOGFILES. Do not skip redo log file group numbers (that is,
do not number your groups 10, 20, 30, and so on), or you will consume unnecessary space in
the control files of the database.

In the preceding statement, the BLOCKSIZE clause is optional. See "Planning the Block Size of
Redo Log Files" for more information.

9.3.2 Creating Redo Log Members
In some cases, it might not be necessary to create a complete group of redo log files. A group
could already exist, but not be complete because one or more members of the group were
dropped (for example, because of a disk failure). In this case, you can add new members to an
existing group.

To create new redo log members for an existing group:

Chapter 9
Creating Redo Log Groups and Members

9-13

• Run the SQL statement ALTER DATABASE with the ADD LOGFILE MEMBER clause.

For example, the following statement adds a new redo log member to redo log group number
2:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2b.rdo' TO GROUP 2;

Notice that file names must be specified, but sizes need not be. The size of the new members
is determined from the size of the existing members of the group.

When using the ALTER DATABASE statement, you can alternatively identify the target group by
specifying all of the other members of the group in the TO clause, as shown in the following
example:

ALTER DATABASE ADD LOGFILE MEMBER '/oracle/dbs/log2c.rdo'
 TO ('/oracle/dbs/log2a.rdo', '/oracle/dbs/log2b.rdo');

Note:

Fully specify the file names of new log members to indicate where the operating
system files should be created. Otherwise, the files will be created in either the
default or current directory of the database server, depending upon your operating
system. You may also note that the status of the new log member is shown as
INVALID. This is normal and it will change to active (blank) when it is first used.

9.4 Relocating and Renaming Redo Log Members
You can use operating system commands to relocate redo logs, then use the ALTER DATABASE
statement to make their new names (locations) known to the database.

This procedure is necessary, for example, if the disk currently used for some redo log files is
going to be removed, or if data files and several redo log files are stored on the same disk and
should be separated to reduce contention.

To rename redo log members, you must have the ALTER DATABASE system privilege.
Additionally, you might also need operating system privileges to copy files to the desired
location and privileges to open and back up the database.

Before relocating your redo logs, or making any other structural changes to the database,
completely back up the database in case you experience problems while performing the
operation. As a precaution, after renaming or relocating a set of redo log files, immediately
back up the database control file.

Use the following steps for relocating redo logs. The example used to illustrate these steps
assumes:

• The log files are located on two disks: diska and diskb.

• The redo log is duplexed: one group consists of the members /diska/logs/log1a.rdo
and /diskb/logs/log1b.rdo, and the second group consists of the members /diska/
logs/log2a.rdo and /diskb/logs/log2b.rdo.

• The redo log files located on diska must be relocated to diskc. The new file names will
reflect the new location: /diskc/logs/log1c.rdo and /diskc/logs/log2c.rdo.

To rename redo log members:

Chapter 9
Relocating and Renaming Redo Log Members

9-14

1. Shut down the database.

SHUTDOWN
2. Copy the redo log files to the new location.

Operating system files, such as redo log members, must be copied using the appropriate
operating system commands. See your operating system specific documentation for more
information about copying files.

Note:

You can execute an operating system command to copy a file (or perform other
operating system commands) without exiting SQL*Plus by using the HOST
command. Some operating systems allow you to use a character in place of the
word HOST. For example, you can use an exclamation point (!) in UNIX.

The following example uses operating system commands (UNIX) to move the redo log
members to a new location:

mv /diska/logs/log1a.rdo /diskc/logs/log1c.rdo
mv /diska/logs/log2a.rdo /diskc/logs/log2c.rdo

3. Startup the database, mount, but do not open it.

CONNECT / as SYSDBA
STARTUP MOUNT

4. Rename the redo log members.

Use the ALTER DATABASE statement with the RENAME FILE clause to rename the database
redo log files.

ALTER DATABASE
 RENAME FILE '/diska/logs/log1a.rdo', '/diska/logs/log2a.rdo'
 TO '/diskc/logs/log1c.rdo', '/diskc/logs/log2c.rdo';

5. Open the database for normal operation.

The redo log alterations take effect when the database is opened.

ALTER DATABASE OPEN;

9.5 Dropping Redo Log Groups and Members
In some cases, you may want to drop an entire group of redo log members.

For example, you want to reduce the number of groups in an instance redo log. In a different
case, you may want to drop one or more specific redo log members. For example, if a disk
failure occurs, you may need to drop all the redo log files on the failed disk so that the
database does not try to write to the inaccessible files. In other situations, particular redo log
files become unnecessary. For example, a file might be stored in an inappropriate location.

• Dropping Log Groups
You can drop a redo log group.

• Dropping Redo Log Members
You can drop redo log members.

Chapter 9
Dropping Redo Log Groups and Members

9-15

9.5.1 Dropping Log Groups
You can drop a redo log group.

To drop a redo log group, you must have the ALTER DATABASE system privilege. Before
dropping a redo log group, consider the following restrictions and precautions:

• An instance requires at least two groups of redo log files, regardless of the number of
members in the groups. (A group comprises one or more members.)

• You can drop a redo log group only if it is inactive. If you must drop the current group, then
first force a log switch to occur.

• Make sure a redo log group is archived (if archiving is enabled) before dropping it. To see
whether this has happened, use the V$LOG view.

SELECT GROUP#, ARCHIVED, STATUS FROM V$LOG;

 GROUP# ARC STATUS
--------- --- ----------------
 1 YES ACTIVE
 2 NO CURRENT
 3 YES INACTIVE
 4 YES INACTIVE

To drop a redo log group:

• Run the SQL statement ALTER DATABASE with the DROP LOGFILE clause.

For example, the following statement drops redo log group number 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

When a redo log group is dropped from the database, and you are not using the Oracle
Managed Files feature, the operating system files are not deleted from disk. Rather, the control
files of the associated database are updated to drop the members of the group from the
database structure. After dropping a redo log group, ensure that the drop completed
successfully, and then use the appropriate operating system command to delete the dropped
redo log files.

When using Oracle Managed Files, the cleanup of operating systems files is done
automatically for you.

9.5.2 Dropping Redo Log Members
You can drop redo log members.

To drop a redo log member, you must have the ALTER DATABASE system privilege. Consider the
following restrictions and precautions before dropping individual redo log members:

• It is permissible to drop redo log files so that a multiplexed redo log becomes temporarily
asymmetric. For example, if you use duplexed groups of redo log files, you can drop one
member of one group, even though all other groups have two members each. However,
you should rectify this situation immediately so that all groups have at least two members,
and thereby eliminate the single point of failure possible for the redo log.

• An instance always requires at least two valid groups of redo log files, regardless of the
number of members in the groups. (A group comprises one or more members.) If the
member you want to drop is the last valid member of the group, you cannot drop the
member until the other members become valid. To see a redo log file status, use the

Chapter 9
Dropping Redo Log Groups and Members

9-16

V$LOGFILE view. A redo log file becomes INVALID if the database cannot access it. It
becomes STALE if the database suspects that it is not complete or correct. A stale log file
becomes valid again the next time its group is made the active group.

• You can drop a redo log member only if it is not part of an active or current group. To drop
a member of an active group, first force a log switch to occur.

• Make sure the group to which a redo log member belongs is archived (if archiving is
enabled) before dropping the member. To see whether this has happened, use the V$LOG
view.

To drop specific inactive redo log members:

• Run the ALTER DATABASE statement with the DROP LOGFILE MEMBER clause.

The following statement drops the redo log /oracle/dbs/log3c.rdo:

ALTER DATABASE DROP LOGFILE MEMBER '/oracle/dbs/log3c.rdo';

When a redo log member is dropped from the database, the operating system file is not
deleted from disk. Rather, the control files of the associated database are updated to drop the
member from the database structure. After dropping a redo log file, ensure that the drop
completed successfully, and then use the appropriate operating system command to delete the
dropped redo log file.

To drop a member of an active group, you must first force a log switch.

9.6 Forcing Log Switches
A log switch occurs when LGWR stops writing to one redo log group and starts writing to
another. By default, a log switch occurs automatically when the current redo log file group fills.

You can force a log switch to make the currently active group inactive and available for redo
log maintenance operations. For example, you want to drop the currently active group, but are
not able to do so until the group is inactive. You may also want to force a log switch if the
currently active group must be archived at a specific time before the members of the group are
completely filled. This option is useful in configurations with large redo log files that take a long
time to fill.

To force a log switch, you must have the ALTER SYSTEM privilege.

To force a log switch,

• Run the ALTER SYSTEM statement with the SWITCH LOGFILE clause.

For example, the following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

9.7 Verifying Blocks in Redo Log Files
You can configure the database to use checksums to verify blocks in the redo log files.

If you set the initialization parameter DB_BLOCK_CHECKSUM to TYPICAL (the default), then the
database computes a checksum for each database block when it is written to disk, including
each redo log block as it is being written to the current log. The checksum is stored the header
of the block.

Oracle Database uses the checksum to detect corruption in a redo log block. The database
verifies the redo log block when the block is read from an archived log during recovery and

Chapter 9
Forcing Log Switches

9-17

when it writes the block to an archive log file. An error is raised and written to the alert log if
corruption is detected.

If corruption is detected in a redo log block while trying to archive it, the system attempts to
read the block from another member in the group. If the block is corrupted in all members of
the redo log group, then archiving cannot proceed.

The value of the DB_BLOCK_CHECKSUM parameter can be changed dynamically using the ALTER
SYSTEM statement.

Note:

There is a slight overhead and decrease in database performance with
DB_BLOCK_CHECKSUM enabled. Monitor your database performance to decide if the
benefit of using data block checksums to detect corruption outweighs the
performance impact.

See Also:

Oracle Database Reference for a description of the DB_BLOCK_CHECKSUM initialization
parameter

9.8 Clearing a Redo Log File
A redo log file might become corrupted while the database is open, and ultimately stop
database activity because archiving cannot continue.

In this situation, to reinitialize the file without shutting down the database:

• Run the ALTER DATABASE CLEAR LOGFILE SQL statement.

The following statement clears the log files in redo log group number 3:

ALTER DATABASE CLEAR LOGFILE GROUP 3;

This statement overcomes two situations where dropping redo logs is not possible:

• If there are only two log groups

• The corrupt redo log file belongs to the current group

If the corrupt redo log file has not been archived, use the UNARCHIVED keyword in the
statement.

ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 3;

This statement clears the corrupted redo logs and avoids archiving them. The cleared redo
logs are available for use even though they were not archived.

If you clear a log file that is needed for recovery of a backup, then you can no longer recover
from that backup. The database writes a message in the alert log describing the backups from
which you cannot recover.

Chapter 9
Clearing a Redo Log File

9-18

Note:

If you clear an unarchived redo log file, you should make another backup of the
database.

To clear an unarchived redo log that is needed to bring an offline tablespace online, use the
UNRECOVERABLE DATAFILE clause in the ALTER DATABASE CLEAR LOGFILE statement.

If you clear a redo log needed to bring an offline tablespace online, you will not be able to bring
the tablespace online again. You will have to drop the tablespace or perform an incomplete
recovery. Note that tablespaces taken offline normal do not require recovery.

9.9 Reduction of Redo Generation for Direct Path Operations
Certain operations against user tables can be done without creating redo that is proportional to
the data involved.

For example, direct path inserts done in NOLOGGING mode generate only enough redo to record
the range of blocks loaded but not the actual data loaded. When creating tables or inserting
large amounts of data, using NOLOGGING mode can substantially reduce the amount of redo
generated but does mean that the operation is not recoverable via normal media recovery. Use
of NOLOGGING should only be for cases where the data does not need to be recoverable or can
be recreated again. Use of NOLOGGING mode has implications for any processes that read the
redo, such as standby databases or GoldenGate.

You can set FORCE LOGGING and NOLOGGING at various levels, such as for a database, pluggable
database (PDB), tablespace, or database object. When FORCE LOGGING is set at one or more
levels, the precedence of FORCE LOGGING settings determines what is logged in the redo log.

You can put a multitenant container database (CDB) into FORCE LOGGING mode. In this mode,
the database logs all changes in the database except for changes in temporary tablespaces
and temporary segments. This setting takes precedence over and is independent of any
NOLOGGING or FORCE LOGGING settings you specify for individual tablespaces and any
NOLOGGING settings you specify for individual database objects.

You can also put a tablespace into FORCE LOGGING mode. The database logs all changes to all
objects in the tablespace except changes to temporary segments, overriding any NOLOGGING
setting for individual objects.

In addition, you can specify a logging attribute with the logging_clause for various types of
database objects that determines whether certain DML operations will be logged in the redo
log file (LOGGING) or not (NOLOGGING). You can specify a logging attribute for the following types
of database objects:

• Tables

• Indexes

• Materialized views

The following table summarizes the logging settings at each level and shows the result for a
CDB.

Chapter 9
Reduction of Redo Generation for Direct Path Operations

9-19

Table 9-1 Precedence of FORCE LOGGING Settings for a CDB

CDB PDB Tablespace Database Object
LOGGING
Attribute

Result

FORCE LOGGING Ignored Ignored Ignored Logged

NO FORCE
LOGGING

ENABLE FORCE
LOGGING

Ignored Ignored Logged

NO FORCE
LOGGING

ENABLE FORCE
NOLOGGING

Ignored Ignored Not Logged

NO FORCE
LOGGING

DISABLE FORCE
[NO]LOGGING (no
setting)

FORCE LOGGING Ignored Logged

NO FORCE
LOGGING

DISABLE FORCE
[NO]LOGGING (no
setting)

NO FORCE
LOGGING

LOGGING Logged

NO FORCE
LOGGING

DISABLE FORCE
[NO]LOGGING (no
setting)

NO FORCE
LOGGING

NOLOGGING Not Logged

Related Topics

• Improving INSERT Performance with Direct-Path INSERT

9.10 Redo Log Data Dictionary Views
You can query a set of data dictionary views for information about the redo log.

The following views provide information on redo logs.

View Description

V$LOG Displays the redo log file information from the control file

V$LOGFILE Identifies redo log groups and members and member status

V$LOG_HISTORY Contains log history information

The following query returns the control file information about the redo log for a database.

SELECT GROUP#, THREAD#, SEQUENCE#, BYTES, MEMBERS, ARCHIVED,
 STATUS, FIRST_CHANGE#, FIRST_TIME
 FROM V$LOG;

GROUP# THREAD# SEQ BYTES MEMBERS ARC STATUS FIRST_CHANGE# FIRST_TIM
------ ------- ----- ------- ------- --- --------- ------------- ---------
 1 1 10605 1048576 1 YES ACTIVE 11515628 16-APR-00
 2 1 10606 1048576 1 NO CURRENT 11517595 16-APR-00
 3 1 10603 1048576 1 YES INACTIVE 11511666 16-APR-00
 4 1 10604 1048576 1 YES INACTIVE 11513647 16-APR-00

To see the names of all of the member of a group, use a query similar to the following:

SELECT GROUP#, STATUS, MEMBER FROM V$LOGFILE;

GROUP# STATUS MEMBER
------ ------- ----------------------------------

Chapter 9
Redo Log Data Dictionary Views

9-20

 1 D:\ORANT\ORADATA\IDDB2\REDO04.LOG
 2 D:\ORANT\ORADATA\IDDB2\REDO03.LOG
 3 D:\ORANT\ORADATA\IDDB2\REDO02.LOG
 4 D:\ORANT\ORADATA\IDDB2\REDO01.LOG

If STATUS is blank for a member, then the file is in use.

Chapter 9
Redo Log Data Dictionary Views

9-21

10
Managing Archived Redo Log Files

You manage the archived redo log files by completing tasks such as choosing between
NOARCHIVELOG or ARCHIVELOG mode and specifying archive destinations.

• What Is the Archived Redo Log?
Oracle Database lets you save filled groups of redo log files to one or more offline
destinations, known collectively as the archived redo log.

• Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
You must choose between running your database in NOARCHIVELOG or ARCHIVELOG mode.

• Controlling Archiving
You can set the archiving mode for your database and adjust the number of archiver
processes.

• Specifying Archive Destinations
Before you can archive redo logs, you must determine the destination to which you will
archive, and familiarize yourself with the various destination states.

• About Log Transmission Modes
The two modes of transmitting archived logs to their destination are normal archiving
transmission and standby transmission mode. Normal transmission involves
transmitting files to a local disk. Standby transmission involves transmitting files through a
network to either a local or remote standby database.

• Managing Archive Destination Failure
Sometimes archive destinations can fail, causing problems when you operate in automatic
archiving mode. Oracle Database provides procedures to help you minimize the problems
associated with destination failure.

• Controlling Trace Output Generated by the Archivelog Process
Background processes always write to a trace file when appropriate. In the case of the
archivelog process, you can control the output that is generated to the trace file.

• Viewing Information About the Archived Redo Log
You can display information about the archived redo log using dynamic performance views
or the ARCHIVE LOG LIST command.

See Also:

• Using Oracle Managed Files for information about creating an archived redo log
that is both created and managed by the Oracle Database server

• Oracle Real Application Clusters Administration and Deployment Guide for
information specific to archiving in the Oracle Real Application Clusters
environment

10-1

10.1 What Is the Archived Redo Log?
Oracle Database lets you save filled groups of redo log files to one or more offline destinations,
known collectively as the archived redo log.

The process of turning redo log files into archived redo log files is called archiving. This
process is only possible if the database is running in ARCHIVELOG mode. You can choose
automatic or manual archiving.

An archived redo log file is a copy of one of the filled members of a redo log group. It includes
the redo entries and the unique log sequence number of the identical member of the redo log
group. For example, if you are multiplexing your redo log, and if group 1 contains identical
member files a_log1 and b_log1, then the archiver process (ARCn) will archive one of these
member files. Should a_log1 become corrupted, then ARCn can still archive the identical
b_log1. The archived redo log contains a copy of every group created since you enabled
archiving.

When the database is running in ARCHIVELOG mode, the log writer process (LGWR) cannot
reuse and hence overwrite a redo log group until it has been archived. The background
process ARCn automates archiving operations when automatic archiving is enabled. The
database starts multiple archiver processes as needed to ensure that the archiving of filled
redo logs does not fall behind.

You can use archived redo log files to:

• Recover a database

• Update a standby database

• Get information about the history of a database using the LogMiner utility

See Also:

The following sources document the uses for archived redo log files:

– Oracle Database Backup and Recovery User's Guide

– Oracle Data Guard Concepts and Administration discusses setting up and
maintaining a standby database

– Oracle Database Utilities contains instructions for using the LogMiner
PL/SQL package

10.2 Choosing Between NOARCHIVELOG and ARCHIVELOG
Mode

You must choose between running your database in NOARCHIVELOG or ARCHIVELOG mode.

The choice of whether to enable the archiving of filled groups of redo log files depends on the
availability and reliability requirements of the application running on the database. If you cannot
afford to lose any data in your database in the event of a disk failure, use ARCHIVELOG mode.
The archiving of filled redo log files can require you to perform extra administrative operations.

Chapter 10
What Is the Archived Redo Log?

10-2

• Running a Database in NOARCHIVELOG Mode
When you run your database in NOARCHIVELOG mode, you disable the archiving of the redo
log.

• Running a Database in ARCHIVELOG Mode
When you run a database in ARCHIVELOG mode, you enable the archiving of the redo log.

10.2.1 Running a Database in NOARCHIVELOG Mode
When you run your database in NOARCHIVELOG mode, you disable the archiving of the redo log.

The database control file indicates that filled groups are not required to be archived. Therefore,
when a filled group becomes inactive after a log switch, the group is available for reuse by
LGWR.

NOARCHIVELOG mode protects a database from instance failure but not from media failure. Only
the most recent changes made to the database, which are stored in the online redo log groups,
are available for instance recovery. If a media failure occurs while the database is in
NOARCHIVELOG mode, you can only restore the database to the point of the most recent full
database backup. You cannot recover transactions subsequent to that backup.

In NOARCHIVELOG mode you cannot perform online tablespace backups, nor can you use online
tablespace backups taken earlier while the database was in ARCHIVELOG mode. To restore a
database operating in NOARCHIVELOG mode, you can use only whole database backups taken
while the database is closed. Therefore, if you decide to operate a database in NOARCHIVELOG
mode, take whole database backups at regular, frequent intervals.

10.2.2 Running a Database in ARCHIVELOG Mode
When you run a database in ARCHIVELOG mode, you enable the archiving of the redo log.

The database control file indicates that a group of filled redo log files cannot be reused by
LGWR until the group is archived. A filled group becomes available for archiving immediately
after a redo log switch occurs.

The archiving of filled groups has these advantages:

• A database backup, together with online and archived redo log files, guarantees that you
can recover all committed transactions in the event of an operating system or disk failure.

• If you keep archived logs available, you can use a backup taken while the database is
open and in normal system use.

• You can keep a standby database current with its original database by continuously
applying the original archived redo log files to the standby.

You can configure an instance to archive filled redo log files automatically, or you can archive
manually. For convenience and efficiency, automatic archiving is usually best. Figure 10-1
illustrates how the archiver process (ARC0 in this illustration) writes filled redo log files to the
database archived redo log.

If all databases in a distributed database operate in ARCHIVELOG mode, you can perform
coordinated distributed database recovery. However, if any database in a distributed database
is in NOARCHIVELOG mode, recovery of a global distributed database (to make all databases
consistent) is limited by the last full backup of any database operating in NOARCHIVELOG mode.

Chapter 10
Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

10-3

Figure 10-1 Redo Log File Use in ARCHIVELOG Mode

LGWR

ARC0 ARC0 ARC0

LGWR LGWR

0001

0002

0001

0002

0003

TIME

LGWR

Archived
Redo Log
Files

Online
Redo Log
Files

Log

0004

Log

0003

Log

0002

0001 0002

0001

0003

0002

0001

Log

0001

Tip:

It is good practice to move archived redo log files and corresponding database
backups from the local disk to permanent offline storage media such as tape. A
primary value of archived logs is database recovery, so you want to ensure that these
logs are safe should disaster strike your primary database.

10.3 Controlling Archiving
You can set the archiving mode for your database and adjust the number of archiver
processes.

• Setting the Initial Database Archiving Mode
You set the initial archiving mode as part of database creation in the CREATE DATABASE
statement.

• Changing the Database Archiving Mode
To change the archiving mode of the database, use the ALTER DATABASE statement with the
ARCHIVELOG or NOARCHIVELOG clause.

• Performing Manual Archiving
For convenience and efficiency, automatic archiving is usually best. However, you can
configure your database for manual archiving only.

Chapter 10
Controlling Archiving

10-4

• Adjusting the Number of Archiver Processes
The LOG_ARCHIVE_MAX_PROCESSES initialization parameter specifies the number of ARCn
processes that the database initially starts. The default is four processes.

See Also:

Your Oracle operating system specific documentation for additional information on
controlling archiving modes

10.3.1 Setting the Initial Database Archiving Mode
You set the initial archiving mode as part of database creation in the CREATE DATABASE
statement.

Usually, you can use the default of NOARCHIVELOG mode at database creation because there is
no need to archive the redo information generated by that process. After creating the
database, decide whether to change the initial archiving mode.

If you specify ARCHIVELOG mode, you must have initialization parameters set that specify the
destinations for the archived redo log files (see "Setting Initialization Parameters for Archive
Destinations").

10.3.2 Changing the Database Archiving Mode
To change the archiving mode of the database, use the ALTER DATABASE statement with the
ARCHIVELOG or NOARCHIVELOG clause.

To change the archiving mode, you must be connected to the database with administrator
privileges (AS SYSDBA).

The following steps switch the database archiving mode from NOARCHIVELOG to ARCHIVELOG:

1. Shut down the database instance.

SHUTDOWN IMMEDIATE

An open database must first be closed and any associated instances shut down before you
can switch the database archiving mode. You cannot change the mode from ARCHIVELOG to
NOARCHIVELOG if any data files need media recovery.

2. Back up the database.

Before making any major change to a database, always back up the database to protect
against any problems. This will be your final backup of the database in NOARCHIVELOG
mode and can be used if something goes wrong during the change to ARCHIVELOG mode.
See Oracle Database Backup and Recovery User's Guide for information about taking
database backups.

3. Edit the initialization parameter file to include the initialization parameters that specify the
destinations for the archived redo log files (see "Setting Initialization Parameters for
Archive Destinations").

4. Start a new instance and mount, but do not open, the database.

STARTUP MOUNT

To enable or disable archiving, the database must be mounted but not open.

Chapter 10
Controlling Archiving

10-5

5. Change the database archiving mode. Then open the database for normal operations.

ALTER DATABASE ARCHIVELOG;
ALTER DATABASE OPEN;

6. Shut down the database.

SHUTDOWN IMMEDIATE
7. Back up the database.

Changing the database archiving mode updates the control file. After changing the
database archiving mode, you must back up all of your database files and control file. Any
previous backup is no longer usable because it was taken in NOARCHIVELOG mode.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for more
information about switching the archiving mode when using Real Application
Clusters

10.3.3 Performing Manual Archiving
For convenience and efficiency, automatic archiving is usually best. However, you can
configure your database for manual archiving only.

When you operate your database in manual ARCHIVELOG mode, you must archive inactive
groups of filled redo log files or your database operation can be temporarily suspended.

To operate your database in manual archiving mode:

1. Follow the procedure described in "Changing the Database Archiving Mode ", but replace
the ALTER DATABASE statement with the following statement:

ALTER DATABASE ARCHIVELOG MANUAL;
2. Connect to the database as a user with administrator privileges.

3. Ensure that the database is either mounted or open.

4. Use the ALTER SYSTEM statement with the ARCHIVE LOG clause to manually archive filled
redo log files. For example, the following statement archives all unarchived redo log files:

ALTER SYSTEM ARCHIVE LOG ALL;
When you use manual archiving mode, you cannot specify any standby databases in the
archiving destinations.

Even when automatic archiving is enabled, you can use manual archiving for such actions as
rearchiving an inactive group of filled redo log members to another location. In this case, it is
possible for the instance to reuse the redo log group before you have finished manually
archiving, and thereby overwrite the files. If this happens, the database writes an error
message to the alert log.

Related Topics

• Running a Database in ARCHIVELOG Mode
When you run a database in ARCHIVELOG mode, you enable the archiving of the redo log.

Chapter 10
Controlling Archiving

10-6

10.3.4 Adjusting the Number of Archiver Processes
The LOG_ARCHIVE_MAX_PROCESSES initialization parameter specifies the number of ARCn
processes that the database initially starts. The default is four processes.

To avoid any run-time overhead of starting additional ARCn processes:

• Set the LOG_ARCHIVE_MAX_PROCESSES initialization parameter to specify that up to 30 ARCn
processes be started at instance startup.

The LOG_ARCHIVE_MAX_PROCESSES parameter is dynamic, so you can change it using the ALTER
SYSTEM statement.

The following statement configures the database to start six ARCn processes upon startup:

ALTER SYSTEM SET LOG_ARCHIVE_MAX_PROCESSES=6;

The statement also has an immediate effect on the currently running instance. It increases or
decreases the current number of running ARCn processes to six.

10.4 Specifying Archive Destinations
Before you can archive redo logs, you must determine the destination to which you will archive,
and familiarize yourself with the various destination states.

The dynamic performance (V$) views, listed in "Viewing Information About the Archived Redo
Log", provide all needed archive information.

• Setting Initialization Parameters for Archive Destinations
You can choose to archive redo logs to a single destination or to multiple destinations.

• Expanding Alternate Destinations with Log Archive Destination Groups
You can expand the number of alternate archive destinations by using log archive
destination groups.

• Understanding Archive Destination Status
Several variables determine an archive destination’s status.

• Specifying Alternate Destinations
To specify that a location be an archive destination only in the event of a failure of another
destination, you can make it an alternate destination. Both local and remote destinations
can be alternates.

10.4.1 Setting Initialization Parameters for Archive Destinations
You can choose to archive redo logs to a single destination or to multiple destinations.

Destinations can be local—within the local file system or an Oracle Automatic Storage
Management (Oracle ASM) disk group—or remote (on a standby database). When you archive
to multiple destinations, a copy of each filled redo log file is written to each destination. These
redundant copies help ensure that archived logs are always available in the event of a failure
at one of the destinations.

To archive to only a single destination:

• Specify that destination using the LOG_ARCHIVE_DEST initialization parameter.

To archive to multiple destinations:

Chapter 10
Specifying Archive Destinations

10-7

• Choose to archive to two or more locations using the LOG_ARCHIVE_DEST_n initialization
parameters, or to archive only to a primary and secondary destination using the
LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST initialization parameters.

For local destinations, in addition to the local file system or an Oracle ASM disk group, you can
archive to the Fast Recovery Area. The database uses the Fast Recovery Area to store and
automatically manage disk space for a variety of files related to backup and recovery. See
Oracle Database Backup and Recovery User's Guide for details about the Fast Recovery Area.

Typically, you determine archive log destinations during database planning, and you set the
initialization parameters for archive destinations during database installation. However, you can
use the ALTER SYSTEM command to dynamically add or change archive destinations after your
database is running. Any destination changes that you make take effect at the next log switch
(automatic or manual).

The following table summarizes the archive destination alternatives, which are further
described in the sections that follow.

Method Initialization Parameter Host Example

1 LOG_ARCHIVE_DEST_n
where:

n is an integer from 1 to 31. Archive
destinations 1 to 10 are available for local or
remote locations. Archive destinations 11 to
31 are available for remote locations only.

Local or remote LOG_ARCHIVE_DEST_1 = 'LOCATION=/disk1/
arc'
LOG_ARCHIVE_DEST_2 = 'LOCATION=/disk2/
arc'
LOG_ARCHIVE_DEST_3 =
'SERVICE=standby1'

2 LOG_ARCHIVE_DEST and

LOG_ARCHIVE_DUPLEX_DEST
Local only LOG_ARCHIVE_DEST = '/disk1/arc'

LOG_ARCHIVE_DUPLEX_DEST = '/disk2/arc'

• Method 1: Using the LOG_ARCHIVE_DEST_n Parameter
You can use the LOG_ARCHIVE_DEST_n initialization parameter to specify different
destinations for archived logs.

• Method 2: Using LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST
To specify a maximum of two locations, use the LOG_ARCHIVE_DEST parameter to specify a
primary archive destination and the LOG_ARCHIVE_DUPLEX_DEST to specify an optional
secondary archive destination.

10.4.1.1 Method 1: Using the LOG_ARCHIVE_DEST_n Parameter
You can use the LOG_ARCHIVE_DEST_n initialization parameter to specify different destinations
for archived logs.

Set the LOG_ARCHIVE_DEST_n initialization parameter (where n is an integer from 1 to 31) to
specify from one to 31. Each numerically suffixed parameter uniquely identifies an individual
destination.

You specify the location for LOG_ARCHIVE_DEST_n using the keywords explained in the following
table:

Keyword Indicates Example

LOCATION A local file system location or
Oracle ASM disk group

LOG_ARCHIVE_DEST_n = 'LOCATION=/disk1/arc'
LOG_ARCHIVE_DEST_n = 'LOCATION=+DGROUP1/orcl/arc_1'

LOCATION The Fast Recovery Area LOG_ARCHIVE_DEST_n = 'LOCATION=USE_DB_RECOVERY_FILE_DEST'

Chapter 10
Specifying Archive Destinations

10-8

Keyword Indicates Example
SERVICE Remote archival through Oracle

Net service name.
LOG_ARCHIVE_DEST_n = 'SERVICE=standby1'

If you use the LOCATION keyword, specify one of the following:

• A valid path name in your operating system's local file system

• An Oracle ASM disk group

• The keyword USE_DB_RECOVERY_FILE_DEST to indicate the Fast Recovery Area

If you specify SERVICE, supply a net service name that Oracle Net can resolve to a connect
descriptor for a standby database. The connect descriptor contains the information necessary
for connecting to the remote database.

Perform the following steps to set the destination for archived redo log files using the
LOG_ARCHIVE_DEST_n initialization parameter:

1. Set the LOG_ARCHIVE_DEST_n initialization parameter to specify from one to 31 archiving
locations. For example, enter:

LOG_ARCHIVE_DEST_1 = 'LOCATION = /disk1/archive'
LOG_ARCHIVE_DEST_2 = 'LOCATION = /disk2/archive'
LOG_ARCHIVE_DEST_3 = 'LOCATION = +RECOVERY/orcl/arc_3'

If you are archiving to a standby database, then use the SERVICE keyword to specify a valid
net service name. For example, enter:

LOG_ARCHIVE_DEST_4 = 'SERVICE = standby1'
2. (Optional) Set the LOG_ARCHIVE_FORMAT initialization parameter, using %t to include the

thread number as part of the file name, %s to include the log sequence number, and %r to
include the resetlogs ID (a timestamp value represented in ub4). Use capital letters (%T, %S,
and %R) to pad the file name to the left with zeroes.

Note:

The database requires the specification of resetlogs ID (%r) when you include the
LOG_ARCHIVE_FORMAT parameter. The default for this parameter is operating
system dependent.

The incarnation of a database changes when you open it with the RESETLOGS
option. Specifying %r causes the database to capture the resetlogs ID in the
archived redo log file name. See Oracle Database Backup and Recovery User's
Guide for more information about this method of recovery.

The following example shows a setting of LOG_ARCHIVE_FORMAT:

LOG_ARCHIVE_FORMAT = arch_%t_%s_%r.arc

This setting will generate archived logs as follows for thread 1; log sequence numbers 100,
101, and 102; resetlogs ID 509210197. The identical resetlogs ID indicates that the files
are all from the same database incarnation:

/disk1/archive/arch_1_100_509210197.arc,
/disk1/archive/arch_1_101_509210197.arc,

Chapter 10
Specifying Archive Destinations

10-9

/disk1/archive/arch_1_102_509210197.arc

/disk2/archive/arch_1_100_509210197.arc,
/disk2/archive/arch_1_101_509210197.arc,
/disk2/archive/arch_1_102_509210197.arc

/disk3/archive/arch_1_100_509210197.arc,
/disk3/archive/arch_1_101_509210197.arc,
/disk3/archive/arch_1_102_509210197.arc

The LOG_ARCHIVE_FORMAT initialization parameter is ignored in some cases. See Oracle
Database Reference for more information about this parameter.

10.4.1.2 Method 2: Using LOG_ARCHIVE_DEST and
LOG_ARCHIVE_DUPLEX_DEST

To specify a maximum of two locations, use the LOG_ARCHIVE_DEST parameter to specify a
primary archive destination and the LOG_ARCHIVE_DUPLEX_DEST to specify an optional
secondary archive destination.

All locations must be local. Whenever the database archives a redo log, it archives it to every
destination specified by either set of parameters.

Perform the following steps the use method 2:

1. Specify destinations for the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameter
(you can also specify LOG_ARCHIVE_DUPLEX_DEST dynamically using the ALTER SYSTEM
statement). For example, enter:

LOG_ARCHIVE_DEST = '/disk1/archive'
LOG_ARCHIVE_DUPLEX_DEST = '/disk2/archive'

2. Set the LOG_ARCHIVE_FORMAT initialization parameter as described in step 2 for method 1.

Note:

If you configure a Fast Recovery Area (by setting the DB_RECOVERY_FILE_DEST and
DB_RECOVERY_FILE_DEST_SIZE parameters) and do not specify any local archive
destinations, the database automatically selects the Fast Recovery Area as a local
archive destination and sets LOG_ARCHIVE_DEST_1 to USE_DB_RECOVERY_FILE_DEST.

WARNING:

You must ensure that there is sufficient disk space at all times for archive log
destinations. If the database encounters a disk full error as it attempts to archive a
log file, an irrecoverable error occurs and the database stops responding. You can
check the alert log for a disk full message.

Chapter 10
Specifying Archive Destinations

10-10

See Also:

• Oracle Database Reference for additional information about the initialization
parameters used to control the archiving of redo logs

• Oracle Data Guard Concepts and Administration for information about using the
LOG_ARCHIVE_DEST_n initialization parameter for specifying a standby destination.
There are additional keywords that can be specified with this initialization
parameter that are not discussed in this book.

• Oracle Database Net Services Administrator's Guide for a discussion of net
service names and connect descriptors.

• Oracle Database Backup and Recovery User's Guide for information about the
Fast Recovery Area

10.4.2 Expanding Alternate Destinations with Log Archive Destination
Groups

You can expand the number of alternate archive destinations by using log archive destination
groups.

• About Log Archive Destination Groups
A log archive destination group specifies multiple archive destinations, and the destinations
in the group can be prioritized. You can specify multiple groups to expand the number of
possible archive destinations for your database.

• Specifying Log Archive Destination Groups
Use the GROUP attribute of the LOG_ARCHIVE_DEST_n initialization parameter to specify log
archive destination groups.

10.4.2.1 About Log Archive Destination Groups
A log archive destination group specifies multiple archive destinations, and the destinations in
the group can be prioritized. You can specify multiple groups to expand the number of possible
archive destinations for your database.

To specify a log archive destination group, use the GROUP attribute of the LOG_ARCHIVE_DEST_n
initialization parameter. There can be up to 30 log archive destinations included in a group.
One member of each group is active, and the others are available for use in the event of a
failure of the active destination. If the active destination becomes inactive, then Oracle
Database switches to an available destination as long as one or more are available in the
group. You can indicate which destinations to use first by prioritizing the destinations with the
PRIORITY attribute.

A log archive destination group is referenced by a group number, which is specified when the
group is created. There can be up to eight groups. To specify where to archive the redo data
within a group, all of the log archive destinations must specify the SERVICE attribute.

To prioritize the destinations in a group, set the PRIORITY attribute for a destination to an
integer in the range of 1 through 8. The lower number indicates the higher priority. The priority
determines which destination within a group to make active when the database is mounted or
when the active destination fails. For example, a PRIORITY value of 2 is higher priority than a
PRIORITY value of 7. Therefore, if the currently active destination with the PRIORITY value of 1

Chapter 10
Specifying Archive Destinations

10-11

in the group becomes inactive, then the destination with the PRIORITY value of 2 is used before
the destination with the PRIORITY value of 7. If the PRIORITY attribute is not set for a
destination, then the default value is 1.

The priority is also considered when a previously failed destination becomes available. If an
active destination fails, and Oracle Database switches to a destination with a lower priority,
then Oracle Database switches back to the destination with higher priority when it becomes
available again. For example, if an active destination with priority 1 becomes inactive, and
Oracle Database switches to a destination with priority 2, then Oracle Database switches back
to the destination with priority 1 when it becomes available again, even if the priority 2
destination did not fail.

However, more than one destination assigned to the same group can have the same priority.
For example, there can be three destinations with priority 1. In such a group, a failure of the
active destination results in a switch to another member with the same priority. In this case,
there is no switch back to the original destination when it becomes available again because
both destinations have the same priority. If the second destination fails after the first destination
has become available again, then the database will switch to the first destination or to another
destination in the group with the same priority.

See Also:

Oracle Data Guard Concepts and Administration

10.4.2.2 Specifying Log Archive Destination Groups
Use the GROUP attribute of the LOG_ARCHIVE_DEST_n initialization parameter to specify log
archive destination groups.

You can create up to eight log archive destination groups, and each group can have up to 30
destinations specified.

To specify log archive destination groups, the database must be running in ARCHIVELOG mode.

• Set the LOG_ARCHIVE_DEST_n initialization parameter, and include the GROUP attribute to
specify log archive destination groups.

Optionally, include the PRIORITY attribute to specify which log archive destination within a
group to make active when the system is started or when a destination fails.

Example 10-1 Specifying Two Log Archive Destination Groups

This example specifies two log archive destination groups (1 and 2). Each group has three log
archive destinations specified.

LOG_ARCHIVE_DEST_1 = 'SERVICE=SITEa VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
GROUP=1'
LOG_ARCHIVE_DEST_2 = 'SERVICE=SITEb VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
GROUP=1'
LOG_ARCHIVE_DEST_3 = 'SERVICE=SITEc VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
GROUP=1'

LOG_ARCHIVE_DEST_4 = 'SERVICE=SITE1 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
GROUP=2'
LOG_ARCHIVE_DEST_5 = 'SERVICE=SITE2 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
GROUP=2'

Chapter 10
Specifying Archive Destinations

10-12

LOG_ARCHIVE_DEST_6 = 'SERVICE=SITE3 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
GROUP=2'

Example 10-2 Specifying Priority Within a Log Archive Destination Group

This example specifies different priority levels for destinations within a single log archive
destination group. Specifically, destination 1 and 2 are both at priority level 1, destination 3 is at
priority level 2, and destination 4 is at priority level 3.

LOG_ARCHIVE_DEST_1 = 'SERVICE=SITE1 SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=1'
LOG_ARCHIVE_DEST_2 = 'SERVICE=SITE2 SYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=1'
LOG_ARCHIVE_DEST_3 = 'SERVICE=SITE3 ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=2'
LOG_ARCHIVE_DEST_4 = 'SERVICE=SITE4 ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) GROUP=1 PRIORITY=3'

In this example, sites 1, 2 and 3 could be Oracle Data Guard far sync instances that only
forward the redo, and site 4 is the actual remote standby database. Alternatively, sites 1, 2, 3,
and 4 could all be standby databases which are configured to cascade the redo to the other
sites when they are the active destination.

The following priority rules are followed:

• The default active destination can be destination 1 or destination 2 because both are at
priority level 1.

• If destination 1 is active but then becomes unavailable, then Oracle Database switches to
destination 2. Similarly, if destination 2 is active but then becomes unavailable, then Oracle
Database switches to destination 1. When either destination 1 or 2 is available, one of
them is used.

• If both destination 1 and destination 2 become unavailable, then destination 3 is used.

• If, when destination 3 is active, destination 1 or destination 2 becomes available, Oracle
Database switches to the available priority 1 destination.

• If destination 1, 2, and 3 all become unavailable, then destination 4 is used.

• If, when destination 4 is active, destination 1, 2, or 3 becomes available, Oracle Database
switches to the available priority 1 destination first and then to the available priority 2
destination.

See Also:

Oracle Data Guard Concepts and Administration

10.4.3 Understanding Archive Destination Status
Several variables determine an archive destination’s status.

Each archive destination has the following variable characteristics that determine its status:

• Valid/Invalid: indicates whether the disk location or service name information is specified
and valid

Chapter 10
Specifying Archive Destinations

10-13

• Enabled/Disabled: indicates the availability state of the location and whether the database
can use the destination

• Active/Inactive: indicates whether there was a problem accessing the destination

Several combinations of these characteristics are possible. To obtain the current status and
other information about each destination for an instance, query the V$ARCHIVE_DEST view.

The LOG_ARCHIVE_DEST_STATE_n (where n is an integer from 1 to 31) initialization parameter
lets you control the availability state of the specified destination (n).

• ENABLE indicates that the database can use the destination.

• DEFER indicates that the location is temporarily disabled.

• ALTERNATE indicates that the destination is an alternate. The availability state of an
alternate destination is DEFER. If its parent destination fails, the availability state of the
alternate becomes ENABLE. ALTERNATE cannot be specified for destinations
LOG_ARCHIVE_DEST_11 to LOG_ARCHIVE_DEST_31.

10.4.4 Specifying Alternate Destinations
To specify that a location be an archive destination only in the event of a failure of another
destination, you can make it an alternate destination. Both local and remote destinations can
be alternates.

The following example makes LOG_ARCHIVE_DEST_4 an alternate for LOG_ARCHIVE_DEST_3:

ALTER SYSTEM SET LOG_ARCHIVE_DEST_4 = 'LOCATION=/disk4/arch';
ALTER SYSTEM SET LOG_ARCHIVE_DEST_3 = 'LOCATION=/disk3/arch MAX_FAILURE=1
 ALTERNATE=LOG_ARCHIVE_DEST_4';
ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_4=ALTERNATE;

SQL> SELECT dest_name, status, destination FROM v$archive_dest;

DEST_NAME STATUS DESTINATION
----------------------- --------- --
LOG_ARCHIVE_DEST_1 VALID /disk1/arch
LOG_ARCHIVE_DEST_2 VALID /disk2/arch
LOG_ARCHIVE_DEST_3 VALID /disk3/arch
LOG_ARCHIVE_DEST_4 ALTERNATE /disk4/arch

10.5 About Log Transmission Modes
The two modes of transmitting archived logs to their destination are normal archiving
transmission and standby transmission mode. Normal transmission involves transmitting
files to a local disk. Standby transmission involves transmitting files through a network to either
a local or remote standby database.

• Normal Transmission Mode
In normal transmission mode, the archiving destination is another disk drive of the
database server.

• Standby Transmission Mode
In standby transmission mode, the archiving destination is either a local or remote standby
database.

Chapter 10
About Log Transmission Modes

10-14

10.5.1 Normal Transmission Mode
In normal transmission mode, the archiving destination is another disk drive of the database
server.

In this configuration archiving does not contend with other files required by the instance and
can complete more quickly. Specify the destination with either the LOG_ARCHIVE_DEST_n or
LOG_ARCHIVE_DEST parameters.

10.5.2 Standby Transmission Mode
In standby transmission mode, the archiving destination is either a local or remote standby
database.

Note:

You can maintain a standby database on a local disk, but Oracle strongly encourages
you to maximize disaster protection by maintaining your standby database at a
remote site.

See Also:

• Oracle Data Guard Concepts and Administration

• Oracle Database Net Services Administrator's Guide for information about
connecting to a remote database using a service name

10.6 Managing Archive Destination Failure
Sometimes archive destinations can fail, causing problems when you operate in automatic
archiving mode. Oracle Database provides procedures to help you minimize the problems
associated with destination failure.

• Specifying the Minimum Number of Successful Destinations
The optional initialization parameter LOG_ARCHIVE_MIN_SUCCEED_DEST=n determines the
minimum number of destinations to which the database must successfully archive a redo
log group before it can reuse online log files. The default value is 1. Valid values for n are 1
to 2 if you are using duplexing, or 1 to 31 if you are multiplexing.

• Rearchiving to a Failed Destination
Use the REOPEN attribute of the LOG_ARCHIVE_DEST_n parameter to specify whether and
when ARCn should attempt to rearchive to a failed destination following an error. REOPEN
applies to all errors, not just OPEN errors.

Chapter 10
Managing Archive Destination Failure

10-15

10.6.1 Specifying the Minimum Number of Successful Destinations
The optional initialization parameter LOG_ARCHIVE_MIN_SUCCEED_DEST=n determines the
minimum number of destinations to which the database must successfully archive a redo log
group before it can reuse online log files. The default value is 1. Valid values for n are 1 to 2 if
you are using duplexing, or 1 to 31 if you are multiplexing.

• Specifying Mandatory and Optional Destinations
The LOG_ARCHIVE_DEST_n initialization parameter lets you specify whether a destination is
OPTIONAL (the default) or MANDATORY.

• Specifying the Number of Successful Destinations: Scenarios
You can see the relationship between the LOG_ARCHIVE_DEST_n and
LOG_ARCHIVE_MIN_SUCCEED_DEST initialization parameters most easily through sample
scenarios.

10.6.1.1 Specifying Mandatory and Optional Destinations
The LOG_ARCHIVE_DEST_n initialization parameter lets you specify whether a destination is
OPTIONAL (the default) or MANDATORY.

• Set the destination as OPTIONAL (the default) or MANDATORY in the LOG_ARCHIVE_DEST_n
initialization parameter.

The LOG_ARCHIVE_MIN_SUCCEED_DEST=n parameter uses all MANDATORY destinations plus some
number of non-standby OPTIONAL destinations to determine whether LGWR can overwrite the
online log. The following rules apply:

• Omitting the MANDATORY attribute for a destination is the same as specifying OPTIONAL.

• You must have at least one local destination, which you can declare OPTIONAL or
MANDATORY.

• The MANDATORY attribute can only be specified for destinations LOG_ARCHIVE_DEST_1
through LOG_ARCHIVE_DEST_10.

• When you specify a value for LOG_ARCHIVE_MIN_SUCCEED_DEST=n, Oracle Database will
treat at least one local destination as MANDATORY, because the minimum value for
LOG_ARCHIVE_MIN_SUCCEED_DEST is 1.

• The LOG_ARCHIVE_MIN_SUCCEED_DEST value cannot be greater than the number of
destinations, nor can it be greater than the number of MANDATORY destinations plus the
number of OPTIONAL local destinations.

• If you DEFER a MANDATORY destination, and the database overwrites the online log without
transferring the archived log to the standby site, then you must transfer the log to the
standby manually.

If you are duplexing the archived logs, you can establish which destinations are mandatory or
optional by using the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters. The
following rules apply:

• Any destination declared by LOG_ARCHIVE_DEST is mandatory.

• Any destination declared by LOG_ARCHIVE_DUPLEX_DEST is optional if
LOG_ARCHIVE_MIN_SUCCEED_DEST = 1 and mandatory if LOG_ARCHIVE_MIN_SUCCEED_DEST =
2.

Chapter 10
Managing Archive Destination Failure

10-16

10.6.1.2 Specifying the Number of Successful Destinations: Scenarios
You can see the relationship between the LOG_ARCHIVE_DEST_n and
LOG_ARCHIVE_MIN_SUCCEED_DEST initialization parameters most easily through sample
scenarios.

• Scenario for Archiving to Optional Local Destinations
In this scenario, you archive to three local destinations, each of which you declare as
OPTIONAL.

• Scenario for Archiving to Both Mandatory and Optional Destinations
In this scenario, you archive to MANDATORY and OPTIONAL local destinations.

10.6.1.2.1 Scenario for Archiving to Optional Local Destinations
In this scenario, you archive to three local destinations, each of which you declare as
OPTIONAL.

Table 10-1 illustrates the possible values for LOG_ARCHIVE_MIN_SUCCEED_DEST=n in this case.

Table 10-1 LOG_ARCHIVE_MIN_SUCCEED_DEST Values for Scenario 1

Value Meaning

1 The database can reuse log files only if at least one of the OPTIONAL destinations
succeeds.

2 The database can reuse log files only if at least two of the OPTIONAL destinations
succeed.

3 The database can reuse log files only if all of the OPTIONAL destinations succeed.

4 or greater ERROR: The value is greater than the number of destinations.

This scenario shows that even though you do not explicitly set any of your destinations to
MANDATORY using the LOG_ARCHIVE_DEST_n parameter, the database must successfully archive
to one or more of these locations when LOG_ARCHIVE_MIN_SUCCEED_DEST is set to 1, 2, or 3.

10.6.1.2.2 Scenario for Archiving to Both Mandatory and Optional Destinations
In this scenario, you archive to MANDATORY and OPTIONAL local destinations.

Consider a case in which:

• You specify two MANDATORY destinations.

• You specify two OPTIONAL destinations.

• No destination is a standby database.

Table 10-2 shows the possible values for LOG_ARCHIVE_MIN_SUCCEED_DEST=n.

Table 10-2 LOG_ARCHIVE_MIN_SUCCEED_DEST Values for Scenario 2

Value Meaning

1 The database ignores the value and uses the number of MANDATORY destinations
(in this example, 2).

Chapter 10
Managing Archive Destination Failure

10-17

Table 10-2 (Cont.) LOG_ARCHIVE_MIN_SUCCEED_DEST Values for Scenario 2

Value Meaning

2 The database can reuse log files even if no OPTIONAL destination succeeds.

3 The database can reuse logs only if at least one OPTIONAL destination succeeds.

4 The database can reuse logs only if both OPTIONAL destinations succeed.

5 or greater ERROR: The value is greater than the number of destinations.

This case shows that the database must archive to the destinations you specify as MANDATORY,
regardless of whether you set LOG_ARCHIVE_MIN_SUCCEED_DEST to archive to a smaller number
of destinations.

10.6.2 Rearchiving to a Failed Destination
Use the REOPEN attribute of the LOG_ARCHIVE_DEST_n parameter to specify whether and when
ARCn should attempt to rearchive to a failed destination following an error. REOPEN applies to
all errors, not just OPEN errors.

REOPEN=n sets the minimum number of seconds before ARCn should try to reopen a failed
destination. The default value for n is 300 seconds. A value of 0 is the same as turning off the
REOPEN attribute; ARCn will not attempt to archive after a failure. If you do not specify the
REOPEN keyword, ARCn will never reopen a destination following an error.

You cannot use REOPEN to specify the number of attempts ARCn should make to reconnect and
transfer archived logs. The REOPEN attempt either succeeds or fails.

When you specify REOPEN for an OPTIONAL destination, the database can overwrite online logs if
there is an error. If you specify REOPEN for a MANDATORY destination, the database stalls the
production database when it cannot successfully archive. In this situation, consider the
following options:

• Archive manually to the failed destination.

• Change the destination by deferring the destination, specifying the destination as optional,
or changing the service.

• Drop the destination.

When using the REOPEN keyword, note the following:

• ARCn reopens a destination only when starting an archive operation from the beginning of
the log file, never during a current operation. ARCn always retries the log copy from the
beginning.

• If you specified REOPEN, either with a specified time the default, ARCn checks to see
whether the time of the recorded error plus the REOPEN interval is less than the current time.
If it is, ARCn retries the log copy.

• The REOPEN clause successfully affects the ACTIVE=TRUE destination state. The VALID and
ENABLED states are not changed.

Something wrong here. A destination can be inactive, or valid, or disabled. There is no
ACTIVE status. So I think maybe it should say, "The REOPEN clause sets the destination
status to VALID" ...? DL

Chapter 10
Managing Archive Destination Failure

10-18

10.7 Controlling Trace Output Generated by the Archivelog
Process

Background processes always write to a trace file when appropriate. In the case of the
archivelog process, you can control the output that is generated to the trace file.

To control the output that is generated to the trace file for the archivelog process:

• Set the LOG_ARCHIVE_TRACE initialization parameter to specify a trace level, such as 0, 1,
2, 4, 8, and so on.

You can combine tracing levels by specifying a value equal to the sum of the individual levels
that you would like to trace. For example, setting LOG_ARCHIVE_TRACE=12 will generate trace
level 8 and 4 output. You can set different values for the primary and any standby database.

The default value for the LOG_ARCHIVE_TRACE parameter is 0. At this level, the archivelog
process generates appropriate alert and trace entries for error conditions.

You can change the value of this parameter dynamically using the ALTER SYSTEM statement.
For example:

ALTER SYSTEM SET LOG_ARCHIVE_TRACE=12;

Changes initiated in this manner will take effect at the start of the next archiving operation.

See Also:

• "Monitoring Errors with Trace Files and the Alert Log"

• Oracle Database Reference for more information about the LOG_ARCHIVE_TRACE
initialization parameter, including descriptions of the valid values for this
parameter

• Oracle Data Guard Concepts and Administration for information about using this
parameter with a standby database

10.8 Viewing Information About the Archived Redo Log
You can display information about the archived redo log using dynamic performance views or
the ARCHIVE LOG LIST command.

• Archived Redo Log Files Views
You can query a set of dynamic performance views for information about archived redo log
files.

• Using the ARCHIVE LOG LIST Command
The SQL*Plus command ARCHIVE LOG LIST displays archiving information for the
connected instance.

Chapter 10
Controlling Trace Output Generated by the Archivelog Process

10-19

10.8.1 Archived Redo Log Files Views
You can query a set of dynamic performance views for information about archived redo log
files.

Several dynamic performance views contain useful information about archived redo log files,
as summarized in the following table.

Dynamic Performance View Description

V$DATABASE Shows if the database is in ARCHIVELOG or NOARCHIVELOG mode
and if MANUAL (archiving mode) has been specified.

V$ARCHIVED_LOG Displays historical archived log information from the control file. If
you use a recovery catalog, the RC_ARCHIVED_LOG view contains
similar information.

V$ARCHIVE_DEST Describes the current instance, all archive destinations, and the
current value, mode, and status of these destinations.

V$ARCHIVE_PROCESSES Displays information about the state of the various archive
processes for an instance.

V$BACKUP_REDOLOG Contains information about any backups of archived logs. If you
use a recovery catalog, the RC_BACKUP_REDOLOG contains similar
information.

V$LOG Displays all redo log groups for the database and indicates which
need to be archived.

V$LOG_HISTORY Contains log history information such as which logs have been
archived and the SCN range for each archived log.

For example, the following query displays which redo log group requires archiving:

SELECT GROUP#, ARCHIVED
 FROM SYS.V$LOG;

GROUP# ARC
-------- ---
 1 YES
 2 NO

To see the current archiving mode, query the V$DATABASE view:

SELECT LOG_MODE FROM SYS.V$DATABASE;

LOG_MODE

NOARCHIVELOG

10.8.2 Using the ARCHIVE LOG LIST Command
The SQL*Plus command ARCHIVE LOG LIST displays archiving information for the connected
instance.

For example:

SQL> ARCHIVE LOG LIST

Database log mode Archive Mode
Automatic archival Enabled

Chapter 10
Viewing Information About the Archived Redo Log

10-20

Archive destination D:\oracle\oradata\IDDB2\archive
Oldest online log sequence 11160
Next log sequence to archive 11163
Current log sequence 11163

This display tells you all the necessary information regarding the archived redo log settings for
the current instance:

• The database is currently operating in ARCHIVELOG mode.

• Automatic archiving is enabled.

• The archived redo log destination is D:\oracle\oradata\IDDB2\archive.

• The oldest filled redo log group has a sequence number of 11160.

• The next filled redo log group to archive has a sequence number of 11163.

• The current redo log file has a sequence number of 11163.

See Also:

SQL*Plus User's Guide and Reference for more information on the ARCHIVE LOG
LIST command

Chapter 10
Viewing Information About the Archived Redo Log

10-21

11
Managing Tablespaces

A tablespace is a database storage unit that groups related logical structures together. The
database data files are stored in tablespaces.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers
to a non-CDB from a previous release.

• Guidelines for Managing Tablespaces
You can follow guidelines for working with tablespaces.

• Creating Tablespaces
You create a tablespace to group related logical structures, such as tables and indexes,
together. The database data files are stored in tablespaces.

• Consider Storing Tablespaces in the In-Memory Column Store
You can enable a tablespace for the In-Memory Column Store during tablespace creation
or by altering a tablespace. When this enable a tablespace for the In-Memory Column
Store, all tables in the tablespace are enabled for the In-Memory Column Store by default.

• Specifying Nonstandard Block Sizes for Tablespaces
You can create tablespaces with block sizes different from the standard database block
size, which is specified by the DB_BLOCK_SIZE initialization parameter. This feature lets you
transport tablespaces with unlike block sizes between databases.

• Controlling the Writing of Redo Records
For some database operations, you can control whether the database generates redo
records.

• Altering Tablespace Availability
You can take an online tablespace offline so that it is temporarily unavailable for general
use. The rest of the database remains open and available for users to access data.
Conversely, you can bring an offline tablespace online to make the schema objects within
the tablespace available to database users. The database must be open to alter the
availability of a tablespace.

• Using Read-Only Tablespaces
A tablespace can be put into read-only mode. This prevents any data stored in it from
being updated.

• Altering and Maintaining Tablespaces
You can alter and maintain tablespaces by performing such tasks as adding data files and
temp files to them.

11-1

• Renaming Tablespaces
Using the RENAME TO clause of the ALTER TABLESPACE, you can rename a permanent or
temporary tablespace.

• Dropping Tablespaces
You can drop a tablespace and its contents (the segments contained in the tablespace)
from the database if the tablespace and its contents are no longer required.

• Managing Lost Write Protection with Shadow Tablespaces
A data block lost write occurs when an I/O subsystem acknowledges the completion of the
block write, but the write did not occur in the persistent storage. Shadow lost write
protection can protect against lost writes.

• Managing the SYSAUX Tablespace
The SYSAUX tablespace was installed as an auxiliary tablespace to the SYSTEM tablespace
when you created your database. Some database components that formerly created and
used separate tablespaces now occupy the SYSAUX tablespace.

• Correcting Problems with Locally Managed Tablespaces
Oracle Database includes aids for correcting problems with locally managed tablespaces.

• Migrating the SYSTEM Tablespace to a Locally Managed Tablespace
Use the DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL procedure to migrate the
SYSTEM tablespace from dictionary-managed to locally managed.

• Viewing Information About Tablespaces
Oracle Database includes data dictionary views that you can query for information about
tablespaces.

See Also:

• Oracle Database Concepts

• Using Oracle Managed Files for information about creating data files and temp
files that are both created and managed by the Oracle Database server

• "Transporting Tablespaces Between Databases"

11.1 Guidelines for Managing Tablespaces
You can follow guidelines for working with tablespaces.

• Use Multiple Tablespaces
Using multiple tablespaces allows you more flexibility in performing database operations.

• Assign Tablespace Quotas to Users
Grant to users who will be creating tables, clusters, materialized views, indexes, and other
objects the privilege to create the object and a quota (space allowance or limit) in the
tablespace intended to hold the object segment.

11.1.1 Use Multiple Tablespaces
Using multiple tablespaces allows you more flexibility in performing database operations.

When a database has multiple tablespaces, you can:

• Separate user data from data dictionary data to reduce I/O contention.

Chapter 11
Guidelines for Managing Tablespaces

11-2

• Separate data of one application from the data of another to prevent multiple applications
from being affected if a tablespace must be taken offline.

• Store the data files of different tablespaces on different disk drives to reduce I/O
contention.

• Take individual tablespaces offline while others remain online, providing better overall
availability.

• Optimizing tablespace use by reserving a tablespace for a particular type of database use,
such as high update activity, read-only activity, or temporary segment storage.

• Back up individual tablespaces.

Some operating systems set a limit on the number of files that can be open simultaneously.
Such limits can affect the number of tablespaces that can be simultaneously online. To avoid
exceeding your operating system limit, plan your tablespaces efficiently. Create only enough
tablespaces to fulfill your needs, and create these tablespaces with as few files as possible. If
you must increase the size of a tablespace, then add one or two large data files, or create data
files with autoextension enabled, rather than creating many small data files.

Review your data in light of these factors and decide how many tablespaces you need for your
database design.

11.1.2 Assign Tablespace Quotas to Users
Grant to users who will be creating tables, clusters, materialized views, indexes, and other
objects the privilege to create the object and a quota (space allowance or limit) in the
tablespace intended to hold the object segment.

Note:

For PL/SQL objects such as packages, procedures, and functions, users only need
the privileges to create the objects. No explicit tablespace quota is required to create
these PL/SQL objects.

See Also:

Oracle Database Security Guide for information about creating users and assigning
tablespace quotas.

11.2 Creating Tablespaces
You create a tablespace to group related logical structures, such as tables and indexes,
together. The database data files are stored in tablespaces.

• About Creating Tablespaces
To create a new tablespace, use the SQL statement CREATE TABLESPACE or CREATE
TEMPORARY TABLESPACE. You must have the CREATE TABLESPACE system privilege to create
a tablespace.

Chapter 11
Creating Tablespaces

11-3

• Locally Managed Tablespaces
A locally managed tablespace uses a bitmap stored in each data file to manage the
extents.

• Bigfile Tablespaces
Bigfile tablespaces can increase the storage capacity of a database and reduce the burden
of managing many data files and temp files.

• Tablespaces with Default Compression Attributes
When you create a tablespace, you can specify that all tables and indexes, or their
partitions, created in a tablespace are compressed by default.

• Encrypted Tablespaces
You can encrypt any permanent tablespace to protect sensitive data.

• Temporary Tablespaces
Temporary tablespaces can improve the concurrency of multiple sort operations that do not
fit in memory. These tablespaces also improve the efficiency of space management
operations during sorts.

• Temporary Tablespace Groups
A temporary tablespace group is a tablespace group that is assigned as the default
temporary tablespace for the database.

11.2.1 About Creating Tablespaces
To create a new tablespace, use the SQL statement CREATE TABLESPACE or CREATE TEMPORARY
TABLESPACE. You must have the CREATE TABLESPACE system privilege to create a tablespace.

Before you can create a tablespace, you must create a database to contain it. The primary
tablespace in any database is the SYSTEM tablespace, which contains information basic to the
functioning of the database server, such as the data dictionary and the system rollback
segment. The SYSTEM tablespace is the first tablespace created at database creation. It is
managed as any other tablespace, but requires a higher level of privilege and is restricted in
some ways. For example, you cannot rename or drop the SYSTEM tablespace or take it offline.

The SYSAUX tablespace, which acts as an auxiliary tablespace to the SYSTEM tablespace, is also
always created when you create a database. It contains the schemas used by various Oracle
products and features, so that those products do not require their own tablespaces. As for the
SYSTEM tablespace, management of the SYSAUX tablespace requires a higher level of security
and you cannot rename or drop it. The management of the SYSAUX tablespace is discussed
separately in Managing the SYSAUX Tablespace.

Starting with Oracle Database 23ai, databases created with DBCA templates will have the
default type of tablespace to be bigfile, including SYSTEM, SYSAUX, and USER.

The steps for creating tablespaces vary by operating system, but the first step is always to use
your operating system to create a directory structure in which your data files will be allocated.
On most operating systems, you specify the size and fully specified file names of data files
when you create a new tablespace or alter an existing tablespace by adding data files.
Whether you are creating a new tablespace or modifying an existing one, the database
automatically allocates and formats the data files as specified.

You can also use the CREATE UNDO TABLESPACE statement to create a special type of
tablespace called an undo tablespace, which is specifically designed to contain undo records.
These are records generated by the database that are used to roll back, or undo, changes to
the database for recovery, read consistency, or as requested by a ROLLBACK statement.
Creating and managing undo tablespaces is the subject of Managing Undo .

Chapter 11
Creating Tablespaces

11-4

You can use the ALTER TABLESPACE or ALTER DATABASE statements to alter the tablespace. You
must have the ALTER TABLESPACE or ALTER DATABASE system privilege, correspondingly.

See Also:

• Oracle Multitenant Administrator's Guide and your Oracle Database installation
documentation for your operating system for information about tablespaces that
are created at database creation

• Oracle Database SQL Language Reference for more information about the
syntax and semantics of the CREATE TABLESPACE, CREATE TEMPORARY
TABLESPACE, ALTER TABLESPACE, and ALTER DATABASE statements.

• Oracle Multitenant Administrator's Guide for information about initialization
parameters necessary to create tablespaces with nonstandard block sizes

11.2.2 Locally Managed Tablespaces
A locally managed tablespace uses a bitmap stored in each data file to manage the extents.

• About Locally Managed Tablespaces
Locally managed tablespaces track all extent information in the tablespace itself by using
bitmaps.

• Creating a Locally Managed Tablespace
Create a locally managed tablespace by specifying LOCAL in the EXTENT MANAGEMENT
clause of the CREATE TABLESPACE statement.

• Specifying Segment Space Management in Locally Managed Tablespaces
In a locally managed tablespace, there are two methods that Oracle Database can use to
manage segment space: automatic and manual.

11.2.2.1 About Locally Managed Tablespaces
Locally managed tablespaces track all extent information in the tablespace itself by using
bitmaps.

Locally managed tablespaces provide the following benefits:

• Fast, concurrent space operations. Space allocations and deallocations modify locally
managed resources (bitmaps stored in header files).

• Enhanced performance

• Readable standby databases are allowed, because locally managed temporary
tablespaces do not generate any undo or redo.

• Space allocation is simplified, because when the AUTOALLOCATE clause is specified, the
database automatically selects the appropriate extent size.

• User reliance on the data dictionary is reduced, because the necessary information is
stored in file headers and bitmap blocks.

• Coalescing free extents is unnecessary for locally managed tablespaces.

All tablespaces, including the SYSTEM tablespace, can be locally managed.

Chapter 11
Creating Tablespaces

11-5

The DBMS_SPACE_ADMIN package provides maintenance procedures for locally managed
tablespaces.

See Also:

• Oracle Multitenant Administrator's Guide, "Migrating the SYSTEM Tablespace to
a Locally Managed Tablespace", and "Diagnosing and Repairing Locally
Managed Tablespace Problems"

• "Bigfile Tablespaces" for information about creating another type of locally
managed tablespace that contains only a single data file or temp file.

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_SPACE_ADMIN package

11.2.2.2 Creating a Locally Managed Tablespace
Create a locally managed tablespace by specifying LOCAL in the EXTENT MANAGEMENT clause of
the CREATE TABLESPACE statement.

This is the default for new permanent tablespaces, but you must specify the EXTENT
MANAGEMENT LOCAL clause to specify either the AUTOALLOCATE clause or the UNIFORM clause. You
can have the database manage extents for you automatically with the AUTOALLOCATE clause
(the default), or you can specify that the tablespace is managed with uniform extents of a
specific size (UNIFORM).

If you expect the tablespace to contain objects of varying sizes requiring many extents with
different extent sizes, then AUTOALLOCATE is the best choice. AUTOALLOCATE is also a good
choice if it is not important for you to have a lot of control over space allocation and
deallocation, because it simplifies tablespace management. Some space may be wasted with
this setting, but the benefit of having Oracle Database manage your space most likely
outweighs this drawback.

If you want exact control over unused space, and you can predict exactly the space to be
allocated for an object or objects and the number and size of extents, then UNIFORM is a good
choice. This setting ensures that you will never have unusable space in your tablespace.

When you do not explicitly specify the type of extent management, Oracle Database
determines extent management as follows:

• If the CREATE TABLESPACE statement omits the DEFAULT storage clause, then the database
creates a locally managed autoallocated tablespace.

• If the CREATE TABLESPACE statement includes a DEFAULT storage clause, then the database
considers the following:

– If you specified the MINIMUM EXTENT clause, the database evaluates whether the
values of MINIMUM EXTENT, INITIAL, and NEXT are equal and the value of PCTINCREASE
is 0. If so, the database creates a locally managed uniform tablespace with extent size
= INITIAL. If the MINIMUM EXTENT, INITIAL, and NEXT parameters are not equal, or if
PCTINCREASE is not 0, then the database ignores any extent storage parameters you
may specify and creates a locally managed, autoallocated tablespace.

– If you did not specify MINIMUM EXTENT clause, then the database evaluates only
whether the storage values of INITIAL and NEXT are equal and PCTINCREASE is 0. If so,

Chapter 11
Creating Tablespaces

11-6

the tablespace is locally managed and uniform. Otherwise, the tablespace is locally
managed and autoallocated.

For example, the following statement creates a locally managed tablespace named lmtbsb and
specifies AUTOALLOCATE:

CREATE TABLESPACE lmtbsb DATAFILE '/u02/oracle/data/lmtbsb01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

AUTOALLOCATE causes the tablespace to be system managed with a minimum extent size of
64K.

The alternative to AUTOALLOCATE is UNIFORM. which specifies that the tablespace is managed
with extents of uniform size. You can specify that size in the SIZE clause of UNIFORM. If you omit
SIZE, then the default size is 1M.

The following example creates a tablespace with uniform 128K extents. (In a database with 2K
blocks, each extent would be equivalent to 64 database blocks). Each 128K extent is
represented by a bit in the extent bitmap for this file.

CREATE TABLESPACE lmtbsb DATAFILE '/u02/oracle/data/lmtbsb01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

You cannot specify the DEFAULT storage clause, MINIMUM EXTENT, or TEMPORARY when you
explicitly specify EXTENT MANAGEMENT LOCAL. To create a temporary locally managed
tablespace, use the CREATE TEMPORARY TABLESPACE statement.

Note:

When you allocate a data file for a locally managed tablespace, you should allow
space for metadata used for space management (the extent bitmap or space header
segment) which are part of user space. For example, if you specify the UNIFORM
clause in the extent management clause but you omit the SIZE parameter, then the
default extent size is 1MB. In that case, the size specified for the data file must be
larger (at least one block plus space for the bitmap) than 1MB.

11.2.2.3 Specifying Segment Space Management in Locally Managed Tablespaces
In a locally managed tablespace, there are two methods that Oracle Database can use to
manage segment space: automatic and manual.

Manual segment space management uses linked lists called "freelists" to manage free space
in the segment, while automatic segment space management uses bitmaps. Automatic
segment space management is the more efficient method, and is the default for all new
permanent, locally managed tablespaces.

Automatic segment space management delivers better space utilization than manual segment
space management. It is also self-tuning, in that it scales with increasing number of users or
instances. In an Oracle Real Application Clusters environment, automatic segment space
management allows for a dynamic affinity of space to instances. In addition, for many standard
workloads, application performance with automatic segment space management is better than
the performance of a well-tuned application using manual segment space management.

Although automatic segment space management is the default for all new permanent, locally
managed tablespaces, you can explicitly enable it with the SEGMENT SPACE MANAGEMENT AUTO
clause.

Chapter 11
Creating Tablespaces

11-7

For example, the following statement creates tablespace lmtbsb with automatic segment
space management:

CREATE TABLESPACE lmtbsb DATAFILE '/u02/oracle/data/lmtbsb01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO;

The SEGMENT SPACE MANAGEMENT MANUAL clause disables automatic segment space
management.

The segment space management that you specify at tablespace creation time applies to all
segments subsequently created in the tablespace. You cannot change the segment space
management mode of a tablespace.

Note:

• If you set extent management to LOCAL UNIFORM, then you must ensure that each
extent contains at least 5 database blocks.

• If you set extent management to LOCAL AUTOALLOCATE, and if the database block
size is 16K or greater, then Oracle manages segment space by creating extents
with a minimum size of 5 blocks rounded up to 64K.

• You cannot specify automatic segment space management for the SYSTEM
tablespace.

Locally managed tablespaces using automatic segment space management can be created as
single-file or bigfile tablespaces, as described in "Bigfile Tablespaces".

11.2.3 Bigfile Tablespaces
Bigfile tablespaces can increase the storage capacity of a database and reduce the burden of
managing many data files and temp files.

• About Bigfile Tablespaces
A bigfile tablespace is a tablespace with a single, but potentially very large (up to 4G
blocks) data file. Traditional smallfile tablespaces, in contrast, can contain multiple data
files, but the files cannot be as large.

• Creating a Bigfile Tablespace
To create a bigfile tablespace, specify the BIGFILE keyword of the CREATE TABLESPACE
statement (CREATE BIGFILE TABLESPACE ...).

• Identifying a Bigfile Tablespace
You can query a set of data dictionary views for information about bigfile tablespaces.

11.2.3.1 About Bigfile Tablespaces
A bigfile tablespace is a tablespace with a single, but potentially very large (up to 4G blocks)
data file. Traditional smallfile tablespaces, in contrast, can contain multiple data files, but the
files cannot be as large.

The benefits of bigfile tablespaces are the following:

• A bigfile tablespace with 8K blocks can contain a 32 terabyte data file. A bigfile tablespace
with 32K blocks can contain a 128 terabyte data file. The maximum number of data files in

Chapter 11
Creating Tablespaces

11-8

an Oracle Database is limited (usually to 64K files). Therefore, bigfile tablespaces can
significantly enhance the storage capacity of an Oracle Database.

• Bigfile tablespaces can reduce the number of data files needed for a database. An
additional benefit is that the DB_FILES initialization parameter and MAXDATAFILES parameter
of the CREATE DATABASE and CREATE CONTROLFILE statements can be adjusted to reduce
the amount of SGA space required for data file information and the size of the control file.

• Bigfile tablespaces simplify database management by providing data file transparency.
SQL syntax for the ALTER TABLESPACE statement lets you perform operations on
tablespaces, rather than the underlying individual data files.

Bigfile tablespaces are supported only for locally managed tablespaces with automatic
segment space management, with three exceptions: locally managed undo tablespaces,
temporary tablespaces, and the SYSTEM tablespace.

Note:

• Bigfile tablespaces are intended to be used with Automatic Storage Management
(Oracle ASM) or other logical volume managers that supports striping or RAID,
and dynamically extensible logical volumes.

• Avoid creating bigfile tablespaces on a system that does not support striping
because of negative implications for parallel query execution and RMAN backup
parallelization.

• Using bigfile tablespaces on platforms that do not support large file sizes is not
recommended and can limit tablespace capacity. See your operating system
specific documentation for information about maximum supported file sizes.

11.2.3.2 Creating a Bigfile Tablespace
To create a bigfile tablespace, specify the BIGFILE keyword of the CREATE TABLESPACE
statement (CREATE BIGFILE TABLESPACE ...).

Oracle Database automatically creates a locally managed tablespace with automatic segment
space management. You can, but need not, specify EXTENT MANAGEMENT LOCAL and SEGMENT
SPACE MANAGEMENT AUTO in this statement. However, the database returns an error if you specify
EXTENT MANAGEMENT DICTIONARY or SEGMENT SPACE MANAGEMENT MANUAL. The remaining syntax of
the statement is the same as for the CREATE TABLESPACE statement, but you can only specify
one data file. For example:

CREATE BIGFILE TABLESPACE bigtbs
 DATAFILE '/u02/oracle/data/bigtbs01.dbf' SIZE 50G
...

You can specify SIZE in kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T).

If the default tablespace type was set to BIGFILE at database creation, you need not specify
the keyword BIGFILE in the CREATE TABLESPACE statement. A bigfile tablespace is created by
default. Starting with Oracle Database 23ai, databases created with DBCA templates will have
the default type of tablespace to be bigfile, including SYSTEM, SYSAUX, and USER. A database
upgraded from a previous release retains its tablespace type.

Chapter 11
Creating Tablespaces

11-9

If the default tablespace type was set to BIGFILE at database creation, but you want to create a
traditional (smallfile) tablespace, then specify a CREATE SMALLFILE TABLESPACE statement to
override the default tablespace type for the tablespace that you are creating.

See Also:

Oracle Multitenant Administrator's Guide

11.2.3.3 Identifying a Bigfile Tablespace
You can query a set of data dictionary views for information about bigfile tablespaces.

The following views contain a BIGFILE column that identifies a tablespace as a bigfile
tablespace:

• DBA_TABLESPACES
• USER_TABLESPACES
• V$TABLESPACE
Query these views for information about bigfile tablespaces.

You can also identify a bigfile tablespace by the relative file number of its single data file. That
number is 1024 on most platforms, but 4096 on OS/390.

11.2.4 Tablespaces with Default Compression Attributes
When you create a tablespace, you can specify that all tables and indexes, or their partitions,
created in a tablespace are compressed by default.

• About Tablespaces with Default Compression Attributes
When you create a tablespace, you can specify the default compression of data for all
tables and indexes created in the tablespace. The default compression level also applies
to the partitions that comprise the tablespace. Compressing this data can reduce disk use.

• Creating Tablespaces with Default Compression Attributes
When you create a tablespace, you can specify the type of table compression using the
DEFAULT keyword, followed by the table compression clause including the compression
type. You can also specify the type of index compression using the DEFAULT keyword,
followed by index compression clause and the index compression type.

11.2.4.1 About Tablespaces with Default Compression Attributes
When you create a tablespace, you can specify the default compression of data for all tables
and indexes created in the tablespace. The default compression level also applies to the
partitions that comprise the tablespace. Compressing this data can reduce disk use.

11.2.4.2 Creating Tablespaces with Default Compression Attributes
When you create a tablespace, you can specify the type of table compression using the
DEFAULT keyword, followed by the table compression clause including the compression type.

Chapter 11
Creating Tablespaces

11-10

You can also specify the type of index compression using the DEFAULT keyword, followed by
index compression clause and the index compression type.

The following statement indicates that all tables and partitions created in the tablespace are to
use advanced row compression, unless otherwise specified:

CREATE TABLESPACE ... DEFAULT ROW STORE COMPRESS ADVANCED ... ;

You can override the default tablespace compression specification when you create a table or
partition in that tablespace.

The following statement indicates that all indexes created in the tablespace are to use high
level advanced index compression, unless otherwise specified:

CREATE TABLESPACE ... DEFAULT INDEX COMPRESS ADVANCED HIGH ... ;

You can override the default tablespace compression specification when you create an index in
that tablespace.

11.2.5 Encrypted Tablespaces
You can encrypt any permanent tablespace to protect sensitive data.

• About Encrypted Tablespaces
Encrypted tablespaces primarily protect your data from unauthorized access by means
other than through the database. For example, when encrypted tablespaces are written to
backup media for travel from one Oracle database to another or for travel to an off-site
facility for storage, they remain encrypted.

• Creating Encrypted Tablespaces
You can create encrypted tablespaces to protect your data from unauthorized access.

• Viewing Information About Encrypted Tablespaces
You can query the DBA_TABLESPACES and USER_TABLESPACES data dictionary views for
information about encrypted tablespaces.

11.2.5.1 About Encrypted Tablespaces
Encrypted tablespaces primarily protect your data from unauthorized access by means other
than through the database. For example, when encrypted tablespaces are written to backup
media for travel from one Oracle database to another or for travel to an off-site facility for
storage, they remain encrypted.

Also, encrypted tablespaces protect data from users who try to circumvent the security
features of the database and access database files directly through the operating system file
system. Tablespace encryption is completely transparent to your applications, so no application
modification is necessary.

Tablespace encryption does not address all security issues. It does not, for example, provide
access control from within the database. Any user who is granted privileges on objects stored
in an encrypted tablespace can access those objects without providing any kind of additional
password or key.

When you encrypt a tablespace, all tablespace blocks are encrypted. All segment types are
supported for encryption, including tables, clusters, indexes, LOBs (BASICFILE and
SECUREFILE), table and index partitions, and so on.

Chapter 11
Creating Tablespaces

11-11

Note:

There is no need to use LOB encryption on SECUREFILE LOBs stored in an encrypted
tablespace.

To maximize security, data from an encrypted tablespace is automatically encrypted when
written to the undo tablespace, to the redo logs, and to any temporary tablespace. However,
starting with Oracle Database 12c Release 2 (12.2), you can optionally encrypt undo
tablespaces and temporary tablespaces.

For partitioned tables and indexes that have different partitions in different tablespaces, it is
permitted to use both encrypted and non-encrypted tablespaces in the same table or index.

Tablespace encryption uses the Transparent Data Encryption feature of Oracle Database,
which requires that you create a keystore to store the master encryption key for the database.
The keystore must be open before you can create the encrypted tablespace and before you
can store or retrieve encrypted data. When you open the keystore, it is available to all session,
and it remains open until you explicitly close it or until the database is shut down.

Transparent Data Encryption supports industry-standard encryption algorithms, including the
following types of encryption algorithms Advanced Encryption Standard (AES) and Triple Data
Encryption Standard (3DES) algorithms:

• Advanced Encryption Standard (AES)

• ARIA

• GHOST

• SEED

• Triple Data Encryption Standard (3DES)

See Oracle Database Transparent Data Encryption Guide for detailed information about the
supported encryption algorithms.

The encryption key length is implied by the algorithm name. For example, the AES128
algorithm uses 128-bit keys. You specify the algorithm to use when you create the tablespace,
and different tablespaces can use different algorithms. Although longer key lengths
theoretically provide greater security, there is a trade-off in CPU overhead. If you do not specify
the algorithm in your CREATE TABLESPACE statement, then AES128 is the default. There is no
disk space overhead for encrypting a tablespace.

After an encrypted table is created, you can use an ALTER TABLESPACE statement to decrypt it
or change its key. You can also use an ALTER TABLESPACE statement to encrypt a tablespace
that is not encrypted.

Restrictions

The following are restrictions for encrypted tablespaces:

• Encrypted tablespaces are subject to restrictions when they are transported to another
database. See "General Limitations on Transporting Data".

• When recovering a database with encrypted tablespaces (for example after a SHUTDOWN
ABORT or a catastrophic error that brings down the database instance), you must open the
keystore after database mount and before database open, so that the recovery process
can decrypt data blocks and redo.

Chapter 11
Creating Tablespaces

11-12

In addition, see Oracle Database Transparent Data Encryption Guide for general restrictions
for Transparent Data Encryption.

See Also:

• Oracle Database Transparent Data Encryption Guide for more information about
Transparent Data Encryption

• "Consider Encrypting Columns That Contain Sensitive Data" for an alternative to
encrypting an entire tablespace

• Oracle Real Application Clusters Administration and Deployment Guide for
information on using a keystore in an Oracle Real Application Clusters
environment

• Oracle Database SQL Language Reference for information about the CREATE
TABLESPACE statement

11.2.5.2 Creating Encrypted Tablespaces
You can create encrypted tablespaces to protect your data from unauthorized access.

To encrypt a tablespace, you must open the database with the COMPATIBLE initialization
parameter set to 11.2.0 or higher. Any user who can create a tablespace can create an
encrypted tablespace.

To create an encrypted tablespace:

• Run a CREATE TABLESPACE statement with an ENCRYPTION clause.

Starting with Oracle Database Release 21c, use the
TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM initialization parameter to specify the default
encryption algorithm. You can set this parameter either in the initialization parameter file or by
using the ALTER SYSTEM statement. With wallet-based TDE, set this parameter before the first
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE command. With OKV-based TDE
deployments, set this parameter before the first ADMINISTER KEY MANAGEMENT SET ENCRYPTION
KEY command.

Examples

The following statement sets the default encryption algorithm to AES192:

ALTER SYSTEM SET TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM=AES192;

The following statement creates an encrypted tablespace with the default encryption algorithm:

CREATE TABLESPACE securespace
DATAFILE '/u01/app/oracle/oradata/orcl/secure01.dbf' SIZE 100M
ENCRYPTION ENCRYPT;

If the default encryption algorithm was not explicitly set using an ALTER SYSTEM command, then
the default encryption algorithm used is AES128.

The following statement creates the same tablespace with the AES256 algorithm:

Chapter 11
Creating Tablespaces

11-13

CREATE TABLESPACE securespace
DATAFILE '/u01/app/oracle/oradata/orcl/secure01.dbf' SIZE 100M
ENCRYPTION USING 'AES256' ENCRYPT;

See Also:

Oracle Database Transparent Data Encryption Guide

11.2.5.3 Viewing Information About Encrypted Tablespaces
You can query the DBA_TABLESPACES and USER_TABLESPACES data dictionary views for
information about encrypted tablespaces.

The DBA_TABLESPACES and USER_TABLESPACES data dictionary views include a column named
ENCRYPTED. This column contains YES for encrypted tablespaces.

The view V$ENCRYPTED_TABLESPACES lists all currently encrypted tablespaces. The following
query displays the name and encryption algorithm of encrypted tablespaces:

SELECT t.name, e.encryptionalg algorithm
FROM v$tablespace t, v$encrypted_tablespaces e
WHERE t.ts# = e.ts#;

NAME ALGORITHM
------------------------------ ---------
SECURESPACE AES256

Note:

You can convert an existing tablespace to an encrypted tablespace.

See Also:

Oracle Database Transparent Data Encryption Guide for information about convert
an existing tablespace to an encrypted tablespace

11.2.6 Temporary Tablespaces
Temporary tablespaces can improve the concurrency of multiple sort operations that do not fit
in memory. These tablespaces also improve the efficiency of space management operations
during sorts.

• About Temporary Tablespaces
A temporary tablespace contains transient data that persists only for the duration of the
session. Temporary tablespaces can improve the concurrency of multiple sort operations
that do not fit in memory and can improve the efficiency of space management operations
during sorts.

Chapter 11
Creating Tablespaces

11-14

• Creating a Locally Managed Temporary Tablespace
Because space management is much simpler and more efficient in locally managed
tablespaces, they are ideally suited for temporary tablespaces.

• Creating a Bigfile Temporary Tablespace
Just as for regular tablespaces, you can create single-file (bigfile) temporary tablespaces.

• Viewing Space Usage for Temporary Tablespaces
The DBA_TEMP_FREE_SPACE dictionary view contains information about space usage for
each temporary tablespace.

11.2.6.1 About Temporary Tablespaces
A temporary tablespace contains transient data that persists only for the duration of the
session. Temporary tablespaces can improve the concurrency of multiple sort operations that
do not fit in memory and can improve the efficiency of space management operations during
sorts.

Temporary tablespaces are used to store the following:

• Intermediate sort results

• Temporary tables and temporary indexes

• Temporary LOBs

• Temporary B-trees

Within a temporary tablespace, all sort operations for a particular instance share a single sort
segment, and sort segments exist for every instance that performs sort operations that require
temporary space. A sort segment is created by the first statement after startup that uses the
temporary tablespace for sorting, and is released only at shutdown.

By default, a single temporary tablespace named TEMP is created for each new Oracle
Database installation. You can create additional temporary tablespaces with the CREATE
TABLESPACE statement. You can assign a temporary tablespace to each database user with the
CREATE USER or ALTER USER statement. A single temporary tablespace can be shared by
multiple users.

You cannot explicitly create objects in a temporary tablespace.

Note:

The exception to the preceding statement is a temporary table. When you create a
temporary table, its rows are stored in your default temporary tablespace, unless you
create the table in a new temporary tablespace. See "Creating a Temporary Table"
for more information.

Starting with Oracle Database 12c Release 2 (12.2), local temporary tablespaces are
available. A local temporary tablespace stores separate, non-shared temp files for every
database instance. A local temporary tablespace is used only for spilling temporary results of
SQL statements, such as queries that involve sorts, hash aggregations, and joins. These
results are only accessible within an instance. In contrast, a shared temporary tablespace
resides on a shared disk and is available to all instances. To create a local temporary
tablespace, use a CREATE LOCAL TEMPORARY TABLESPACE statement. Shared temporary
tablespaces were available in prior releases of Oracle Database and were called "temporary

Chapter 11
Creating Tablespaces

11-15

tablespaces." In this Oracle Database Administrator’s Guide, the term "temporary tablespace"
refers to a shared temporary tablespace unless specified otherwise.

Default Temporary Tablespace

Users who are not explicitly assigned a temporary tablespace use the database default
temporary tablespace, which for new installations is TEMP. You can change the default
temporary tablespace for the database with the following command:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE tablespace_name;

To determine the current default temporary tablespace for the database, run the following
query:

SELECT PROPERTY_NAME, PROPERTY_VALUE FROM DATABASE_PROPERTIES WHERE
 PROPERTY_NAME='DEFAULT_TEMP_TABLESPACE';

PROPERTY_NAME PROPERTY_VALUE
-------------------------- ------------------------------
DEFAULT_TEMP_TABLESPACE TEMP

Space Allocation in a Temporary Tablespace

You can view the allocation and deallocation of space in a temporary tablespace sort segment
using the V$SORT_SEGMENT view. The V$TEMPSEG_USAGE view identifies the current sort users in
those segments.

When a sort operation that uses temporary space completes, allocated extents in the sort
segment are not deallocated; they are just marked as free and available for reuse. The
DBA_TEMP_FREE_SPACE view displays the total allocated and free space in each temporary
tablespace. See "Viewing Space Usage for Temporary Tablespaces" for more information. You
can manually shrink a locally managed temporary tablespace that has a large amount of
unused space. See "Shrinking a Locally Managed Temporary Tablespace" for details.

Automatic Temporary Tablespace Shrink and Extension

Queries, sorts, hash joins, query transformations, and other operations can cause a temporary
tablespace to grow very large due to spikes in usage. The Automatic Temporary Tablespace
Shrink and Extension feature can automatically shrink the tablespace in the background after
the usage has subsided. In addition, if the database detects that temporary tablespace use is
increasing, it will preemptively grow the temporary tablespace to ensure performance is not
impacted. This feature requires no intervention of the database administrator.

Chapter 11
Creating Tablespaces

11-16

See Also:

• Oracle Database Security Guide for information about creating users and
assigning temporary tablespaces

• Oracle Database Concepts for more information about local temporary
tablespaces, shared temporary tablespaces, and the default temporary
tablespace

• Oracle Database Reference for more information about the V$SORT_SEGMENT,
V$TEMPSEG_USAGE, and DBA_TEMP_FREE_SPACE views

• Oracle Database Performance Tuning Guide for a discussion on tuning sorts

• Oracle Real Application Clusters Administration and Deployment Guide for more
information about local temporary tablespace

11.2.6.2 Creating a Locally Managed Temporary Tablespace
Because space management is much simpler and more efficient in locally managed
tablespaces, they are ideally suited for temporary tablespaces.

Locally managed temporary tablespaces use temp files, which do not modify data outside of
the temporary tablespace or generate any redo for temporary tablespace data. Because of
this, they enable you to perform on-disk sorting operations in a read-only or standby database.

You also use different views for viewing information about temp files than you would for data
files. The V$TEMPFILE and DBA_TEMP_FILES views are analogous to the V$DATAFILE and
DBA_DATA_FILES views.

To create a locally managed temporary tablespace, you use the CREATE TEMPORARY
TABLESPACE statement, which requires that you have the CREATE TABLESPACE system privilege.

The following statement creates a temporary tablespace in which each extent is 16M. Each
16M extent (which is the equivalent of 8000 blocks when the standard block size is 2K) is
represented by a bit in the bitmap for the file.

CREATE TEMPORARY TABLESPACE lmtemp TEMPFILE '/u02/oracle/data/lmtemp01.dbf'
 SIZE 20M REUSE
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

The extent management clause is optional for temporary tablespaces because all temporary
tablespaces are created with locally managed extents of a uniform size. If an extent size is
specified in the EXTENT SIZE clause, then it is used. If it is not specified, then, Oracle Database
uses the tablespace size and file sizes to determine the default extent size.

Note:

On some operating systems, the database does not allocate space for the temp file
until the temp file blocks are actually accessed. This delay in space allocation results
in faster creation and resizing of temp files, but it requires that sufficient disk space is
available when the temp files are later used. See your operating system
documentation to determine whether the database allocates temp file space in this
way on your system.

Chapter 11
Creating Tablespaces

11-17

11.2.6.3 Creating a Bigfile Temporary Tablespace
Just as for regular tablespaces, you can create single-file (bigfile) temporary tablespaces.

To create a bigfile temporary tablespace:

• Run the CREATE BIGFILE TEMPORARY TABLESPACE statement to create a single-temp file
tablespace.

See the sections "Creating a Bigfile Tablespace" and "Altering a Bigfile Tablespace" for
information about bigfile tablespaces, but consider that you are creating temporary tablespaces
that use temp files instead of data files.

11.2.6.4 Viewing Space Usage for Temporary Tablespaces
The DBA_TEMP_FREE_SPACE dictionary view contains information about space usage for each
temporary tablespace.

The information includes the space allocated and the free space. You can query this view for
these statistics using the following statement:

SELECT * from DBA_TEMP_FREE_SPACE;

TABLESPACE_NAME TABLESPACE_SIZE ALLOCATED_SPACE FREE_SPACE
----------------------------------- --------------- --------------- ----------
TEMP 250609664 250609664 249561088

11.2.7 Temporary Tablespace Groups
A temporary tablespace group is a tablespace group that is assigned as the default temporary
tablespace for the database.

• Multiple Temporary Tablespaces: Using Tablespace Groups
A tablespace group enables a user to consume temporary space from multiple
tablespaces. Using a tablespace group, rather than a single temporary tablespace, can
alleviate problems caused where one tablespace is inadequate to hold the results of a sort,
particularly on a table that has many partitions. A tablespace group enables parallel
execution servers in a single parallel operation to use multiple temporary tablespaces.

• Creating a Tablespace Group
You create a tablespace group implicitly when you include the TABLESPACE GROUP clause in
the CREATE TEMPORARY TABLESPACE or ALTER TABLESPACE statement and the specified
tablespace group does not currently exist.

• Changing Members of a Tablespace Group
You can add a tablespace to an existing tablespace group by specifying the existing group
name in the TABLESPACE GROUP clause of the CREATE TEMPORARY TABLESPACE or ALTER
TABLESPACE statement.

• Assigning a Tablespace Group as the Default Temporary Tablespace
Use the ALTER DATABASE...DEFAULT TEMPORARY TABLESPACE statement to assign a
tablespace group as the default temporary tablespace for the database.

11.2.7.1 Multiple Temporary Tablespaces: Using Tablespace Groups
A tablespace group enables a user to consume temporary space from multiple tablespaces.
Using a tablespace group, rather than a single temporary tablespace, can alleviate problems
caused where one tablespace is inadequate to hold the results of a sort, particularly on a table

Chapter 11
Creating Tablespaces

11-18

that has many partitions. A tablespace group enables parallel execution servers in a single
parallel operation to use multiple temporary tablespaces.

A tablespace group has the following characteristics:

• It contains at least one tablespace. There is no explicit limit on the maximum number of
tablespaces that are contained in a group.

• It shares the namespace of tablespaces, so its name cannot be the same as any
tablespace.

• You can specify a tablespace group name wherever a tablespace name would appear
when you assign a default temporary tablespace for the database or a temporary
tablespace for a user.

You do not explicitly create a tablespace group. Rather, it is created implicitly when you assign
the first temporary tablespace to the group. The group is deleted when the last temporary
tablespace it contains is removed from it.

The view DBA_TABLESPACE_GROUPS lists tablespace groups and their member tablespaces.

See Also:

Oracle Database Security Guide for more information about assigning a temporary
tablespace or tablespace group to a user

11.2.7.2 Creating a Tablespace Group
You create a tablespace group implicitly when you include the TABLESPACE GROUP clause in the
CREATE TEMPORARY TABLESPACE or ALTER TABLESPACE statement and the specified tablespace
group does not currently exist.

For example, if neither group1 nor group2 exists, then the following statements create those
groups, each of which has only the specified tablespace as a member:

CREATE TEMPORARY TABLESPACE lmtemp2 TEMPFILE '/u02/oracle/data/lmtemp201.dbf'
 SIZE 50M
 TABLESPACE GROUP group1;

ALTER TABLESPACE lmtemp TABLESPACE GROUP group2;

11.2.7.3 Changing Members of a Tablespace Group
You can add a tablespace to an existing tablespace group by specifying the existing group
name in the TABLESPACE GROUP clause of the CREATE TEMPORARY TABLESPACE or ALTER
TABLESPACE statement.

For example, the following statement adds a tablespace to an existing group. It creates and
adds tablespace lmtemp3 to group1, so that group1 contains tablespaces lmtemp2 and
lmtemp3.

CREATE TEMPORARY TABLESPACE lmtemp3 TEMPFILE '/u02/oracle/data/lmtemp301.dbf'
 SIZE 25M
 TABLESPACE GROUP group1;

Chapter 11
Creating Tablespaces

11-19

The following statement also adds a tablespace to an existing group, but in this case because
tablespace lmtemp2 already belongs to group1, it is in effect moved from group1 to group2:

ALTER TABLESPACE lmtemp2 TABLESPACE GROUP group2;

Now group2 contains both lmtemp and lmtemp2, while group1 consists of only tmtemp3.

You can remove a tablespace from a group as shown in the following statement:

ALTER TABLESPACE lmtemp3 TABLESPACE GROUP '';

Tablespace lmtemp3 no longer belongs to any group. Further, since there are no longer any
members of group1, this results in the implicit deletion of group1.

11.2.7.4 Assigning a Tablespace Group as the Default Temporary Tablespace
Use the ALTER DATABASE...DEFAULT TEMPORARY TABLESPACE statement to assign a tablespace
group as the default temporary tablespace for the database.

For example:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE group2;

Any user who has not explicitly been assigned a temporary tablespace will now use
tablespaces lmtemp and lmtemp2.

If a tablespace group is specified as the default temporary tablespace, you cannot drop any of
its member tablespaces. You must first remove the tablespace from the tablespace group.
Likewise, you cannot drop a single temporary tablespace as long as it is the default temporary
tablespace.

11.3 Consider Storing Tablespaces in the In-Memory Column
Store

You can enable a tablespace for the In-Memory Column Store during tablespace creation or by
altering a tablespace. When this enable a tablespace for the In-Memory Column Store, all
tables in the tablespace are enabled for the In-Memory Column Store by default.

Note:

This feature is available starting with Oracle Database 12c Release 1 (12.1.0.2).

The In-Memory Column Store is an optional portion of the system global area (SGA) that
stores copies of tables, table partitions, and other database objects that is optimized for rapid
scans. In the In-Memory Column Store, table data is stored by column rather than row in the
SGA.

See Also:

"Improving Query Performance with Oracle Database In-Memory"

Chapter 11
Consider Storing Tablespaces in the In-Memory Column Store

11-20

11.4 Specifying Nonstandard Block Sizes for Tablespaces
You can create tablespaces with block sizes different from the standard database block size,
which is specified by the DB_BLOCK_SIZE initialization parameter. This feature lets you transport
tablespaces with unlike block sizes between databases.

To create a tablespace with a block size different from the database standard block size:

• Use the BLOCKSIZE clause of the CREATE TABLESPACE statement.

In order for the BLOCKSIZE clause to succeed, you must have already set the DB_CACHE_SIZE
and at least one DB_nK_CACHE_SIZE initialization parameter. Further, and the integer you
specify in the BLOCKSIZE clause must correspond with the setting of one DB_nK_CACHE_SIZE
parameter setting. Although redundant, specifying a BLOCKSIZE equal to the standard block
size, as specified by the DB_BLOCK_SIZE initialization parameter, is allowed.

The following statement creates tablespace lmtbsb, but specifies a block size that differs from
the standard database block size (as specified by the DB_BLOCK_SIZE initialization parameter):

CREATE TABLESPACE lmtbsb DATAFILE '/u02/oracle/data/lmtbsb01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K
 BLOCKSIZE 8K;

See Also:

• "Oracle Database SQL Language Reference"

• "Setting the Buffer Cache Initialization Parameters" for information about the
DB_CACHE_SIZE and DB_nK_CACHE_SIZE parameter settings

• "Transporting Tablespaces Between Databases"

11.5 Controlling the Writing of Redo Records
For some database operations, you can control whether the database generates redo records.

Without redo, no media recovery is possible. However, suppressing redo generation can
improve performance, and may be appropriate for easily recoverable operations. An example
of such an operation is a CREATE TABLE...AS SELECT statement, which can be repeated in
case of database or instance failure.

To suppress redo when these operations are performed for objects within the tablespace:

• Specify the NOLOGGING clause in the CREATE TABLESPACE statement.

If you do not include this clause, or if you specify LOGGING instead, then the database
generates redo when changes are made to objects in the tablespace. Redo is never generated
for temporary segments or in temporary tablespaces, regardless of the logging attribute.

The logging attribute specified at the tablespace level is the default attribute for objects created
within the tablespace. You can override this default logging attribute by specifying LOGGING or
NOLOGGING at the schema object level--for example, in a CREATE TABLE statement.

Chapter 11
Specifying Nonstandard Block Sizes for Tablespaces

11-21

If you have a standby database, NOLOGGING mode causes problems with the availability and
accuracy of the standby database. To overcome this problem, you can specify FORCE LOGGING
mode. When you include the FORCE LOGGING clause in the CREATE TABLESPACE statement, you
force the generation of redo records for all operations that make changes to objects in a
tablespace. This overrides any specification made at the object level.

If you transport a tablespace that is in FORCE LOGGING mode to another database, the new
tablespace will not maintain the FORCE LOGGING mode.

See Also:

• Oracle Database SQL Language Reference for information about operations that
can be done in NOLOGGING mode

• "Oracle Database SQL Language Reference" for more information about FORCE
LOGGING mode and for information about the effects of the FORCE LOGGING clause
used with the CREATE DATABASE statement

11.6 Altering Tablespace Availability
You can take an online tablespace offline so that it is temporarily unavailable for general use.
The rest of the database remains open and available for users to access data. Conversely, you
can bring an offline tablespace online to make the schema objects within the tablespace
available to database users. The database must be open to alter the availability of a
tablespace.

To alter the availability of a tablespace, use the ALTER TABLESPACE statement. You must have
the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

• Taking Tablespaces Offline
Taking a tablespace offline makes it unavailable for normal access.

• Bringing Tablespaces Online
You can bring any tablespace in an Oracle Database online whenever the database is
open. A tablespace is normally online so that the data contained within it is available to
database users.

See Also:

"Altering Data File Availability" for information about altering the availability of
individual data files within a tablespace

11.6.1 Taking Tablespaces Offline
Taking a tablespace offline makes it unavailable for normal access.

You may want to take a tablespace offline for any of the following reasons:

• To make a portion of the database unavailable while allowing normal access to the
remainder of the database

Chapter 11
Altering Tablespace Availability

11-22

• To perform an offline tablespace backup (even though a tablespace can be backed up
while online and in use)

• To make an application and its group of tables temporarily unavailable while updating or
maintaining the application

• To rename or relocate tablespace data files

See "Renaming and Relocating Data Files" for details.

To take a tablespace offline:

• Run an ALTER TABLESPACE statement with the OFFLINE clause.

When a tablespace is taken offline, the database takes all the associated files offline.

You cannot take the following tablespaces offline:

• SYSTEM
• The undo tablespace

• Temporary tablespaces

Before taking a tablespace offline, consider altering the tablespace allocation of any users who
have been assigned the tablespace as a default tablespace. Doing so is advisable because
those users will not be able to access objects in the tablespace while it is offline.

You can specify any of the following parameters as part of the ALTER TABLESPACE...OFFLINE
statement:

Clause Description

NORMAL A tablespace can be taken offline normally if no error conditions exist for any
of the data files of the tablespace. No data file in the tablespace can be
currently offline as the result of a write error. When you specify OFFLINE
NORMAL, the database takes a checkpoint for all data files of the tablespace
as it takes them offline. NORMAL is the default.

TEMPORARY A tablespace can be taken offline temporarily, even if there are error
conditions for one or more files of the tablespace. When you specify
OFFLINE TEMPORARY, the database takes offline the data files that are not
already offline, checkpointing them as it does so.

If no files are offline, but you use the temporary clause, media recovery is
not required to bring the tablespace back online. However, if one or more
files of the tablespace are offline because of write errors, and you take the
tablespace offline temporarily, the tablespace requires recovery before you
can bring it back online.

IMMEDIATE A tablespace can be taken offline immediately, without the database taking a
checkpoint on any of the data files. When you specify OFFLINE IMMEDIATE,
media recovery for the tablespace is required before the tablespace can be
brought online. You cannot take a tablespace offline immediately if the
database is running in NOARCHIVELOG mode.

Note:

If you must take a tablespace offline, use the NORMAL clause (the default) if possible.
This setting guarantees that the tablespace will not require recovery to come back
online, even if after incomplete recovery you reset the redo log sequence using an
ALTER DATABASE OPEN RESETLOGS statement.

Chapter 11
Altering Tablespace Availability

11-23

Specify TEMPORARY only when you cannot take the tablespace offline normally. In this case, only
the files taken offline because of errors need to be recovered before the tablespace can be
brought online. Specify IMMEDIATE only after trying both the normal and temporary settings.

The following example takes the users tablespace offline normally:

ALTER TABLESPACE users OFFLINE NORMAL;

11.6.2 Bringing Tablespaces Online
You can bring any tablespace in an Oracle Database online whenever the database is open. A
tablespace is normally online so that the data contained within it is available to database users.

To bring a tablespace online:

• Run an ALTER TABLESPACE statement with the ONLINE clause.

If a tablespace to be brought online was not taken offline "cleanly" (that is, using the NORMAL
clause of the ALTER TABLESPACE OFFLINE statement), you must first perform media recovery
on the tablespace before bringing it online. Otherwise, the database returns an error and the
tablespace remains offline.

For example, the following statement brings the users tablespace online:

ALTER TABLESPACE users ONLINE;

See Also:

Oracle Database Backup and Recovery User's Guide for information about
performing media recovery

11.7 Using Read-Only Tablespaces
A tablespace can be put into read-only mode. This prevents any data stored in it from being
updated.

• About Read-Only Tablespaces
Making a tablespace read-only prevents write operations on the data files in the
tablespace.

• Making a Tablespace Read-Only
You can make a tablespace read-only using the ALTER TABLESPACE statement with the
READ ONLY clause.

• Making a Read-Only Tablespace Writable
Making a read-only tablespace writable allows write operations on the data files in the
tablespace.

• Creating a Read-Only Tablespace on a WORM Device
You can create a read-only tablespace on a CD-ROM or WORM (Write Once-Read Many)
device.

• Delaying the Opening of Data Files in Read-Only Tablespaces
You can delay the opening of data files for read-only tablespaces until there is an attempt
to access them.

Chapter 11
Using Read-Only Tablespaces

11-24

• Using Read-Only Tablespaces on Object Storage
Read-only tablespaces can be moved to and from Oracle object storage transparently,
storing portions of a database on lower-cost storage in the cloud.

11.7.1 About Read-Only Tablespaces
Making a tablespace read-only prevents write operations on the data files in the tablespace.

The primary purpose of read-only tablespaces is to eliminate the need to perform backup and
recovery of large, static portions of a database. Read-only tablespaces also provide a way to
protect historical data so that users cannot modify it. Making a tablespace read-only prevents
updates on all tables in the tablespace, regardless of a user's update privilege level.

Note:

Making a tablespace read-only cannot in itself be used to satisfy archiving or data
publishing requirements, because the tablespace can only be brought online in the
database in which it was created. However, you can meet such requirements by
using the transportable tablespace feature, as described in "Transporting
Tablespaces Between Databases".

You can drop items, such as tables or indexes, from a read-only tablespace, but you cannot
create or alter objects in a read-only tablespace. You can execute statements that update the
file description in the data dictionary, such as ALTER TABLE...ADD or ALTER TABLE...MODIFY,
but you will not be able to use the new description until the tablespace is made read/write.
Note that you cannot add a column of data type BLOB when you alter a table definition.

Read-only tablespaces can be transported to other databases. And, since read-only
tablespaces can never be updated, they can reside on CD-ROM or WORM (Write Once-Read
Many) devices.

See Also:

"Transporting Tablespaces Between Databases"

11.7.2 Making a Tablespace Read-Only
You can make a tablespace read-only using the ALTER TABLESPACE statement with the READ
ONLY clause.

All tablespaces are initially created as read/write. You must have the ALTER TABLESPACE or
MANAGE TABLESPACE system privilege.

Before you can make a tablespace read-only, the following conditions must be met.

• The tablespace must be online. This is necessary to ensure that there is no undo
information that must be applied to the tablespace.

• The tablespace cannot be the active undo tablespace or SYSTEM tablespace.

Chapter 11
Using Read-Only Tablespaces

11-25

• The tablespace must not currently be involved in an online backup, because the end of a
backup updates the header file of all data files in the tablespace.

• The tablespace cannot be a temporary tablespace.

To change a tablespace to read-only:

• Use the READ ONLY clause in the ALTER TABLESPACE statement.

For example the following statement makes the flights tablespace read-only:

ALTER TABLESPACE flights READ ONLY;

For better performance while accessing data in a read-only tablespace, you can issue a query
that accesses all of the blocks of the tables in the tablespace just before making it read-only. A
simple query, such as SELECT COUNT (*), executed against each table ensures that the data
blocks in the tablespace can be subsequently accessed most efficiently. This eliminates the
need for the database to check the status of the transactions that most recently modified the
blocks.

You can issue the ALTER TABLESPACE...READ ONLY statement while the database is processing
transactions. After the statement is issued, the tablespace is put into a transitional read-only
mode, and the ALTER command waits for existing transactions to complete by committing or by
rolling back. No further DML operations are allowed to the tablespace, and if a DML statement
attempts further changes, then an error is returned.

The ALTER TABLESPACE...READ ONLY statement waits for the following transactions to either
commit or roll back before returning: transactions that have pending or uncommitted changes
to the tablespace and that were started before you issued the statement. If a transaction
started before the statement remains active, but rolls back to a savepoint, rolling back its
changes to the tablespace, then the statement no longer waits for this active transaction.

If you find it is taking a long time for the ALTER TABLESPACE statement to complete, then you
can identify the transactions that are preventing the read-only state from taking effect. You can
then notify the owners of those transactions and decide whether to terminate the transactions,
if necessary.

The following example identifies the transaction entry for the ALTER TABLESPACE...READ ONLY
statement and displays its session address (saddr):

SELECT SQL_TEXT, SADDR
 FROM V$SQLAREA,V$SESSION
 WHERE V$SQLAREA.ADDRESS = V$SESSION.SQL_ADDRESS
 AND SQL_TEXT LIKE 'alter tablespace%';

SQL_TEXT SADDR
-- --------
alter tablespace tbs1 read only 80034AF0

The start SCN of each active transaction is stored in the V$TRANSACTION view. Displaying this
view sorted by ascending start SCN lists the transactions in execution order. From the
preceding example, you already know the session address of the transaction entry for the
read-only statement, and you can now locate it in the V$TRANSACTION view. All transactions with
smaller start SCN, which indicates an earlier execution, can potentially hold up the quiesce and
subsequent read-only state of the tablespace.

SELECT SES_ADDR, START_SCNB
 FROM V$TRANSACTION
 ORDER BY START_SCNB;

SES_ADDR START_SCNB

Chapter 11
Using Read-Only Tablespaces

11-26

-------- ----------
800352A0 3621 --> waiting on this txn
80035A50 3623 --> waiting on this txn
80034AF0 3628 --> this is the ALTER TABLESPACE statement
80037910 3629 --> don't care about this txn

You can now find the owners of the blocking transactions.

SELECT T.SES_ADDR, S.USERNAME, S.MACHINE
 FROM V$SESSION S, V$TRANSACTION T
 WHERE T.SES_ADDR = S.SADDR
 ORDER BY T.SES_ADDR

SES_ADDR USERNAME MACHINE
-------- -------------------- --------------------
800352A0 DAVIDB DAVIDBLAP --> Contact this user
80035A50 MIKEL LAB61 --> Contact this user
80034AF0 DBA01 STEVEFLAP
80037910 NICKD NICKDLAP

After making the tablespace read-only, it is advisable to back it up immediately. As long as the
tablespace remains read-only, no further backups of the tablespace are necessary, because no
changes can be made to it.

See Also:

Oracle Database Backup and Recovery User's Guide

11.7.3 Making a Read-Only Tablespace Writable
Making a read-only tablespace writable allows write operations on the data files in the
tablespace.

You must have the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

To change a tablespace to allow write operations:

• Use the READ WRITE keywords in the ALTER TABLESPACE statement

A prerequisite to making the tablespace read/write is that all of the data files in the tablespace,
as well as the tablespace itself, must be online. Use the DATAFILE...ONLINE clause of the
ALTER DATABASE statement to bring a data file online. The V$DATAFILE view lists the current
status of data files.

For example, the following statement makes the flights tablespace writable:

ALTER TABLESPACE flights READ WRITE;

Making a read-only tablespace writable updates the control file entry for the data files, so that
you can use the read-only version of the data files as a starting point for recovery.

Chapter 11
Using Read-Only Tablespaces

11-27

11.7.4 Creating a Read-Only Tablespace on a WORM Device
You can create a read-only tablespace on a CD-ROM or WORM (Write Once-Read Many)
device.

Follow these steps to create a read-only tablespace on a CD-ROM or WORM device.

1. Create a writable tablespace on another device. Create the objects that belong in the
tablespace and insert your data.

2. Alter the tablespace to make it read-only.

3. Copy the data files of the tablespace onto the WORM device. Use operating system
commands to copy the files.

4. Take the tablespace offline.

5. Rename the data files to coincide with the names of the data files you copied onto your
WORM device. Use ALTER TABLESPACE with the RENAME DATAFILE clause. Renaming the
data files changes their names in the control file.

6. Bring the tablespace back online.

11.7.5 Delaying the Opening of Data Files in Read-Only Tablespaces
You can delay the opening of data files for read-only tablespaces until there is an attempt to
access them.

When substantial portions of a very large database are stored in read-only tablespaces that
are located on slow-access devices or hierarchical storage, you should consider setting the
READ_ONLY_OPEN_DELAYED initialization parameter to TRUE. This speeds certain operations,
primarily opening the database, by causing data files in read-only tablespaces to be accessed
for the first time only when an attempt is made to read data stored within them.

Setting READ_ONLY_OPEN_DELAYED=TRUE has the following side-effects:

• A missing or bad read-only file is not detected at open time. It is only discovered when
there is an attempt to access it.

• ALTER SYSTEM CHECK DATAFILES does not check read-only files.

• ALTER TABLESPACE...ONLINE and ALTER DATABASE DATAFILE...ONLINE do not check read-
only files. They are checked only upon the first access.

• V$RECOVER_FILE, V$BACKUP, and V$DATAFILE_HEADER do not access read-only files. Read-
only files are indicated in the results list with the error "DELAYED OPEN", with zeroes for the
values of other columns.

• V$DATAFILE does not access read-only files. Read-only files have a size of "0" listed.

• V$RECOVERY_LOG does not access read-only files. Logs they could need for recovery are not
added to the list.

• ALTER DATABASE NOARCHIVELOG does not access read-only files. It proceeds even if there is
a read-only file that requires recovery.

Chapter 11
Using Read-Only Tablespaces

11-28

Note:

– RECOVER DATABASE and ALTER DATABASE OPEN RESETLOGS continue to
access all read-only data files regardless of the parameter value. To avoid
accessing read-only files for these operations, take those files offline.

– If a backup control file is used, the read-only status of some files may be
inaccurate. This can cause some of these operations to return unexpected
results. Care should be taken in this situation.

11.7.6 Using Read-Only Tablespaces on Object Storage
Read-only tablespaces can be moved to and from Oracle object storage transparently, storing
portions of a database on lower-cost storage in the cloud.

• Enabling a Database for Using Object Storage
You must configure your database and your database users appropriately for using read-
only tablespaces on objecct storage.

• Accessing Data in Object Storage
There are several prerequisites for accessing data in object storage.

• Dropping a Read-Only Tablespace and It's Data Files in Object Storage
You can delete a read-only tablespace and its data files from object storage.

11.7.6.1 Enabling a Database for Using Object Storage
You must configure your database and your database users appropriately for using read-only
tablespaces on objecct storage.

Accessing files in object storage requires access to the Internet for your database. Also, you
need to configure your database and your database users appropriately. The configuration
entails the following steps:

• Enable Internet access for your database through a proxy, if needed.

• Define access control exceptions (ACEs) for all the users or roles that need to access the
read-only tablespace in the object storage.

• Setting HTTP Proxy, If Needed
If you are using an HTTP proxy to connect to your Internet gateway, you need to configure
your database to allow the proper usage of your gateway.

• Setting ACEs for the Users Accessing the Tablespace in Object Storage
Access Control Exceptions define permissions to access external network services,
specifying which users can connect to which hosts and services. Thus, they control and
secure database interactions with external systems.

11.7.6.1.1 Setting HTTP Proxy, If Needed
If you are using an HTTP proxy to connect to your Internet gateway, you need to configure your
database to allow the proper usage of your gateway.

Configuring the HTTP proxy involves the following configuration steps.

1. Enable your database to allow access to the external network services through the
gateway.

Chapter 11
Using Read-Only Tablespaces

11-29

The following parameters are required to append the access control list of your database
using DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE:

Table 11-1 Parameters for DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE

Parameter Description

proxy_host=<your proxy host DNS name> The name or IP address of your http proxy
gateway host. For example, if your http proxy
setting is http://myproxyhost.mydomain:99,
set the valvue for PROXY_HOST to
myproxyhost.mydomain.

proxy_low_port=<your_proxy_low_port> Null or a port number.

proxy_high_port=<your_proxy_high_port> Null or a port number.

By default, there is no port restriction for TCP connections. For example, if you want to limit
the access to a specific port your http proxy is communicating on, use this port as both low
and high port.

For more details about configuring access control for external network services using the
DBMS_NETWORK_ACL_ADMIN package, see Configuring Access Control for External
Network Services.

2. Configure your database to use the HTTP proxy gateway.

The proxy URI information for communication with the object storage is set with database
property HTTP_PROXY, following the proxy URI format as set with UTL_HTTP.SET_PROXY().

proxy_uri=<your proxy URI address>

The proxy may include an optional TCP/IP port number on which the proxy server listens.
The syntax is [http://]host[:port][/], for example, www-proxy.my-company.com:80. If
the port is not specified for the proxy, port 80 is assumed.

Optionally, a port number can be specified for each domain or host. If the port number is
specified, the no-proxy restriction is only applied to the request at the port of the particular
domain or host, for example, corp.my-company.com, eng.my-company.com:80. When
NO_PROXY_DOMAINS is NULL and the proxy is set, all requests go through the proxy.
When the proxy is not set, UTL_HTTP sends requests to the target web servers directly.

You can define a username and password for the proxy to be specified in the proxy string.
The format is [http://][user[:password]@]host[:port][/].

For more details about UTL_HTTP.SET_PROXY, see SET_PROXY Procedure.

Setting the HTTP proxy in your database needs to be done in the CDB. For example:

alter database property set http_proxy='http://www-proxy.us.oracle.com:80';

11.7.6.1.2 Setting ACEs for the Users Accessing the Tablespace in Object Storage
Access Control Exceptions define permissions to access external network services, specifying
which users can connect to which hosts and services. Thus, they control and secure database
interactions with external systems.

Create a wallet containing the necessary certificates for accessing HTTP URIs and object
stores. Next, configure your Oracle environment to use the new SSL wallet.

Chapter 11
Using Read-Only Tablespaces

11-30

Set up ACEs for the users accessing the tablespace in object storage.

You need to enable the users that need to access the data in the read-only tablespace in the
object store. By default, an Oracle database does not allow any outside communication for any
user except SYS, so you need to enable the appropriate access control entries. In case your
database is behind a firewall, you need to provide the information about your Internet gateway
and configure the access control entries appropriately.

Note:

It is recommended to grant the necessary privileges through a role to make the
management of the necessary privileges easier for multiple users.

The following example script uses a local role CLOUD_USER and grants privileges to this role.
You can modify this script for your pluggable database environment. If desired, you may only
give privileges to individual users. Execute the script as a privileged administrator, such as
SYS or SYSTEM, within your pluggable database.

@$ORACLE_HOME/rdbms/admin/sqlsessstart.sql

-- target sample role
define cloudrole=CLOUD_USER

-- CUSTOMER SPECIFIC SETUP, NEEDS TO BE PROVIDED BY THE CUSTOMER
-- SSL Wallet directory
define sslwalletdir=<Set SSL Wallet Directory>

--
-- UNCOMMENT AND SET THE PROXY SETTINGS VARIABLES IF YOUR ENVIRONMENT NEEDS
PROXYS
--
-- define proxy_uri=<your proxy URI address>
-- define proxy_host=<your proxy DNS name>
-- define proxy_low_port=<your_proxy_low_port>
-- define proxy_high_port=<your_proxy_high_port>

-- Create New ACL / ACEs
begin
 -- Allow all hosts for HTTP/HTTP_PROXY
 dbms_network_acl_admin.append_host_ace(
 host => '*',
 lower_port => 443,
 upper_port => 443,
 ace => xs$ace_type(
 privilege_list => xs$name_list('http', 'http_proxy'),
 principal_name => upper('&cloudrole'),
 principal_type => xs_acl.ptype_db));

 --
 -- UNCOMMENT THE PROXY SETTINGS SECTION IF YOUR ENVIRONMENT NEEDS PROXYS
 --
 -- Allow Proxy for HTTP/HTTP_PROXY
 -- dbms_network_acl_admin.append_host_ace(
 -- host => '&proxy_host',

Chapter 11
Using Read-Only Tablespaces

11-31

 -- lower_port => &proxy_low_port,
 -- upper_port => &proxy_high_port,
 -- ace => xs$ace_type(
 -- privilege_list => xs$name_list('http', 'http_proxy'),
 -- principal_name => upper('&cloudrole'),
 -- principal_type => xs_acl.ptype_db));
 --
 -- END PROXY SECTION
 --

 -- Allow wallet access
 dbms_network_acl_admin.append_wallet_ace(
 wallet_path => 'file:&sslwalletdir',
 ace => xs$ace_type(
 privilege_list => xs$name_list('use_client_certificates',
'use_passwords'),
 principal_name => upper('&cloudrole'),
 principal_type => xs_acl.ptype_db));
end;
/

@$ORACLE_HOME/rdbms/admin/sqlsessend.sql

11.7.6.2 Accessing Data in Object Storage
There are several prerequisites for accessing data in object storage.

The prerequisites for accessing data in object storage are:

• Certificates are stored in the SSL wallet of the database.

• The HTTP proxy is identified and registered with the database.

• ACE is set up for the users accessing the read-only tablespace in object storage.

Assuming the prerequisites are successfully met, you can configure your database and
database users to work with tablespaces in object storage. The steps required are:

• Determine the bucket(s) to store your read-only tablespaces.

• Determine the details of your default credential. The default credential will be used to
manage the read-only tablespace. It will be used to move the tablespace to the object
store and to access the data in the object store.

Note:

You need the ALTER DATABASE privilege to manage tablespaces in addition to the
ACE.

• Creating a Default Credential For Your Pluggable Database
Accessing files in Object Storage requires authentication and authorization in OCI.

• Moving Read-Only Tablespaces to Object Storage
You can move read-only tablespaces that contain whole or partial objects to object
storage.

Chapter 11
Using Read-Only Tablespaces

11-32

• Querying Data in Object Storage
Accessing data from tables and partitions in Object Storage is completely transparent to
users and SQL clients.

11.7.6.2.1 Creating a Default Credential For Your Pluggable Database
Accessing files in Object Storage requires authentication and authorization in OCI.

Credentials are database objects that store the authentication information to access the object
store, such as a username and password. The data is encrypted and stored securely in the
database schema where the credential is created.

A credential with read and write privileges must exist for the bucket where you are planning to
store the files of the read-only tablespace. A database administrator must specify a
DEFAULT_CREDENTIAL pointing to this credential. A DEFAULT CREDENTIAL is a database-
wide property within your pluggable database and will be used for moving the files to object
storage and for any subsequent access to the tablespace stored in object storage.

You can create a credential using the DBMS_CREDENTIAL package. For example:

begin
 begin
 dbms_credential.drop_credential(credential_name => 'DEFAULT_CRED_NAME');
 exception when others then
 null;
 end;
 dbms_credential.create_credential(
 credential_name => 'DEFAULT_CRED_NAME',
 username => 'your_OCI_username',
 password => 'your_AUTH_token'
);
end;
/

Note:

Currently only SWIFT credentials are supported.

You specify a default credential in your pluggable database as follows:

alter database property set default_credential = 'SYSTEM.DEFAULT_CRED_NAME';

Standard database authentication is used to determine if a user can access objects in your
read-only tablespace stored in the object store.

You can remove the default credential using the following statement:

alter database property remove default_credential;

11.7.6.2.2 Moving Read-Only Tablespaces to Object Storage
You can move read-only tablespaces that contain whole or partial objects to object storage.

Chapter 11
Using Read-Only Tablespaces

11-33

This example describes a typical workflow for a partitioned table that contains time-based data
and implements a time-based range partitioning strategy based on the time information. Note
that while this example uses a partitioned table and the movement of some partitions to the
object storage, moving read-only tablespaces to object storage is not limited to partitioned
tables. In order to keep the example short and concise, the following simplifying assumptions
are made:

• Table ORDERS is range-partitioned on column TIME_ID of datatype DATE.

• Yearly partitioning strategy.

• Individual partitions are stored in their own tablespace. This is a simplifying assumption
since you could always move a partition online to another tablespace.

• No indexes or LOB segments. Again, this is a simplifying assumption since you could
always move or maintain index and LOB segments online as well.

• Beginning with 2024, data older than one year is considered read-only and is a candidate
for being stored in the object storage.

The table was created with the following DDL:

CREATE TABLE orders
(
 prod_id NUMBER NOT NULL,
 time_id DATE NOT NULL,
 quantity_sold NUMBER(10,2) NOT NULL,
 amount_sold NUMBER(10,2) NOT NULL
)
PARTITION BY RANGE (time_id)
 (PARTITION orders_2022 VALUES LESS THAN
 (TO_DATE('2023-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'NLS_CALENDAR=GREGORIAN'))
 TABLESPACE orders_2022,
 PARTITION orders_2023 VALUES LESS THAN
 (TO_DATE('2024-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'NLS_CALENDAR=GREGORIAN'))
 TABLESPACE orders_2023)
ENABLE ROW MOVEMENT;

Before moving a tablespace to object storage, the tablespace must be set to READ ONLY.

ALTER TABLESPACE orders_2022 READ ONLY;

As a best practice, you can make the tablespace read-only and wait for some well-defined
period of time before moving the files to object storage. This ensures that any attempts to
update the read-only data would be caught and an error would be returned. It is a lot faster to
move mutating data into another tablespace while the data is still on traditional storage. It will
be a lot slower if this data needs to be copied over from object storage if some future DML is
missed.

You can now move the datafiles representing your tablespace to the object store. For example:

alter database
 move datafile '+DATA_DG/orders_2022.dbf'
 to 'https://swiftobjectstorage.us-datacenter-1.myoraclecloud.com/v1/
mytenancy/mybucket/orders_2022.dbf';

Chapter 11
Using Read-Only Tablespaces

11-34

Note:

You must specify a fully qualified URI including the target file name for the file in the
object store. Only Oracle OCI object storage is supported.

11.7.6.2.3 Querying Data in Object Storage
Accessing data from tables and partitions in Object Storage is completely transparent to users
and SQL clients.

The database I/O sub-system will internally query and serve blocks from files stored in object
storage.

The following SQL will query the rows from the read-only partition ORDERS_2022 which was
moved to object storage.

SELECT prod_id
FROM orders
WHERE time_id < TO_DATE('2023-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
'NLS_CALENDAR=GREGORIAN');

Existing indexes, both global and local, work transparently. Querying HCC data and TDE
encrypted data also works transparently.

Note:

You must have the database-wide default credential set up for users to access the
tablespace in object storage.

11.7.6.3 Dropping a Read-Only Tablespace and It's Data Files in Object Storage
You can delete a read-only tablespace and its data files from object storage.

TYou can delete tablespaces with data files using the standard DROP TABLESPACE command.
The clause AND DATAFILES is used to delete the datafiles from the backend storage. This will
also delete the files from the object store. If the object store file has multiple chunks in object
store, all the chunks will be deleted as well as the manifest.

DROP TABLESPACE orders_2019 INCLUDING CONTENTS AND DATAFILES;

In the unlikely case where files are left in object storage, the DBA must manually clean up the
files using the OCI console, the object store CLI, or REST API.

11.8 Altering and Maintaining Tablespaces
You can alter and maintain tablespaces by performing such tasks as adding data files and
temp files to them.

• Increasing the Size of a Tablespace
You can increase the size of a tablespace by either increasing the size of a data file in the
tablespace or adding one.

Chapter 11
Altering and Maintaining Tablespaces

11-35

• Altering a Locally Managed Tablespace
You can add a data file to a locally managed tablespace, alter its availability, make it read-
only or read/write, rename it, or enable/disable autoextension.

• Altering a Bigfile Tablespace
You can resize or autoextend a bigfile tablespace.

• Shrinking a Tablespace
Use DBMS_SPACE.SHRINK_TABLESPACE to shrink the size of a tablespace by reorganizing it.

• Altering a Locally Managed Temporary Tablespace
You can alter a locally managed temporary tablespace to add a temp file, take a temp file
offline, or bring a temp file online.

• Shrinking a Locally Managed Temporary Tablespace
You can shrink locally managed temporary tablespaces and release unused space.

11.8.1 Increasing the Size of a Tablespace
You can increase the size of a tablespace by either increasing the size of a data file in the
tablespace or adding one.

See "Changing Data File Size" and "Creating Data Files and Adding Data Files to a
Tablespace " for more information.

Additionally, you can enable automatic file extension (AUTOEXTEND) to data files and bigfile
tablespaces. See "Enabling and Disabling Automatic Extension for a Data File".

11.8.2 Altering a Locally Managed Tablespace
You can add a data file to a locally managed tablespace, alter its availability, make it read-only
or read/write, rename it, or enable/disable autoextension.

You cannot alter a locally managed tablespace to a locally managed temporary tablespace, nor
can you change its method of segment space management. Coalescing free extents is
unnecessary for locally managed tablespaces. However, you can use the ALTER TABLESPACE
statement on locally managed tablespaces for some operations, including the following:

• Adding a data file. For example:

ALTER TABLESPACE lmtbsb
 ADD DATAFILE '/u02/oracle/data/lmtbsb02.dbf' SIZE 1M;

• Altering tablespace availability (ONLINE/OFFLINE).

• Making a tablespace read-only or read/write.

• Renaming a data file, or enabling or disabling the autoextension of the size of a data file in
the tablespace.

See Also:

• "Altering Tablespace Availability "

• "About Read-Only Tablespaces"

• "Managing Data Files and Temp Files"

Chapter 11
Altering and Maintaining Tablespaces

11-36

11.8.3 Altering a Bigfile Tablespace
You can resize or autoextend a bigfile tablespace.

Two clauses of the ALTER TABLESPACE statement support data file transparency when you are
using bigfile tablespaces:

• RESIZE: The RESIZE clause lets you resize the single data file in a bigfile tablespace to an
absolute size, without referring to the data file. For example:

ALTER TABLESPACE bigtbs RESIZE 80G;
• AUTOEXTEND (used outside of the ADD DATAFILE clause):

With a bigfile tablespace, you can use the AUTOEXTEND clause outside of the ADD DATAFILE
clause. For example:

ALTER TABLESPACE bigtbs AUTOEXTEND ON NEXT 20G;
An error is raised if you specify an ADD DATAFILE clause for a bigfile tablespace.

11.8.4 Shrinking a Tablespace
Use DBMS_SPACE.SHRINK_TABLESPACE to shrink the size of a tablespace by reorganizing it.

You may find that the data file size of a tablespace has grown very large while the actual
occupied space inside the tablespace is much smaller. This can happen, for example, when
many objects have been dropped, freeing up space inside the tablespace, and that free space
is not being reused. In such situations, you may wish to reduce the actual data file size to free
up space on your disks.

DBMS_SPACE.SHRINK_TABLESPACE reorganizes a tablespace and resizes the associated datafiles
to their smallest possible size. This is done by moving objects within the tablespace, either
online or offline.

While DBMS_SPACE.SHRINK_TABLESPACE reorganizes a tablespace and then resizes it, ALTER
TABLESPACE tablespace_name RESIZE only resizes a tablespace to a specific size.

There are important differences to be considered. A tablespace data file can only be resized to
just beyond the last used block in the data file. Due to the nature of a tablespace being a heap-
organized structure, there can be situations where unused blocks reside in the data file below
the last used block. This is often referred to as fragmentation. In case of fragmentation, ALTER
TABLESPACE tablespace_name RESIZE cannot reclaim the unused space sitting in between
used blocks. On the other hand, DBMS_SPACE.SHRINK_TABLESPACE defragments the tablespace
first, ensuring that there is no unused space between used blocks.
DBMS_SPACE.SHRINK_TABLESPACE generally provides better space savings than ALTER
TABLESPACE tablespace_name RESIZE. However, ALTER TABLESPACE tablespace_name
RESIZE is generally a much faster operation.

You can use DBMS_SPACE.SHRINK_TABLESPACE in three different ways:

• Analyze a tablespace for a suggested target size.

• Resize a tablespace to its minimum possible size.

• Attempt to resize a tablespace to a specified target size.

When resizing, the shrink operation will reorganize the tablespace which will take time. In any
case, before trying to shrink a tablespace, it is highly recommended to determine the potential
of a shrink operation by running it in analyze mode first. The result of this analysis contains

Chapter 11
Altering and Maintaining Tablespaces

11-37

useful information including a list of unsupported objects, a list of movable objects, the total
size of movable objects in the tablespace, and the suggested target size for the tablespace.
Analyzing a tablespace will take much less time that actually shrinking it.

When shrinking a smallfile tablespace, the data file sizes may increase or decrease depending
on the size of the objects placed in the data files.

Examples

This example analyzes bigfile tablespace TBS_1.

set serveroutput on
execute dbms_space.shrink_tablespace('TBS_1', shrink_mode =>
DBMS_SPACE.TS_SHRINK_MODE_ANALYZE);

-----------------------------------ANALYZE
RESULT---
1. { BG_TEST.SYS_IL0000081422C00004$$ | type: INDEX | blocks: 256 |
tablespace_name: TBS_1 }
2. { BG_TEST.SYS_IL0000081422C00005$$ | type: INDEX | blocks: 512 |
tablespace_name: TBS_1 }
3. { BG_TEST.T2 | type: TABLE | blocks: 512 | tablespace_name: TBS_1 }
4. { BG_TEST.T2_LOB1 | type: LOBSEGMENT | blocks: 45824 | tablespace_name:
TBS_1}
5. { BG_TEST.T2_LOB2 | type: LOBSEGMENT | blocks: 41216 | tablespace_name:
TBS_1}
Total Movable Objects: 5
Total Movable Size(GB): .67
Orginal Datafile Size(GB): 10
Suggested Target Size(GB): 2.09
Process Time: +00 00:00:03.94897

Alternatively, you could get the output through a CLOB variable.

variable result clob
execute dbms_space.shrink_tablespace('TBS_1', shrink_mode =>
DBMS_SPACE.TS_SHRINK_MODE_ANALYZE, shrink_result => :result);
set long 30000
print result

-----------------------------------ANALYZE
RESULT---
1. { BG_TEST.SYS_IL0000081422C00004$$ | type: INDEX | blocks: 256 |
tablespace_name: TBS_1 }
2. { BG_TEST.SYS_IL0000081422C00005$$ | type: INDEX | blocks: 512 |
tablespace_name: TBS_1 }
3. { BG_TEST.T2 | type: TABLE | blocks: 512 | tablespace_name: TBS_1 }
4. { BG_TEST.T2_LOB1 | type: LOBSEGMENT | blocks: 45824 | tablespace_name:
TBS_1}
5. { BG_TEST.T2_LOB2 | type: LOBSEGMENT | blocks: 41216 | tablespace_name:
TBS_1}
Total Movable Objects: 5
Total Movable Size(GB): 1.35
Orginal Datafile Size(GB): 10

Chapter 11
Altering and Maintaining Tablespaces

11-38

Suggested Target Size(GB): 2.09
Process Time: +00 00:00:03.94897

After analyzing a tablespace, you can shrink it.

This example shrinks the bigfile tablespace TBS_1 to its current minimum possible size.

set serveroutput on
execute dbms_space.shrink_tablespace('TBS_1');

-------------------SHRINK RESULT-------------------
Total Moved Objects: 5
Total Moved Size(GB): 1.35
Orginal Datafile Size(GB): 10
New Datafile Size(GB): 1.81
Process Time: +00 00:00:50.94897

Alternatively, you could get the output through a CLOB variable.

variable result clob
execute dbms_space.shrink_tablespace('TBS_1', shrink_result => :result);
set long 30000
print result

-------------------SHRINK RESULT-------------------
Total Moved Objects: 5
Total Moved Size(GB): 1.35
Orginal Datafile Size(GB): 10
New Datafile Size(GB): 1.81
Process Time: +00 00:00:50.94897

This example attempts to shrink the bigfile tablespace TBS_1 to 2.1GB. Note that TARGET_SIZE
is specified in bytes.

set serveroutput on
execute dbms_space.shrink_tablespace('TBS_1', target_size => 210000000);

-------------------SHRINK RESULT-------------------
Total Moved Objects: 5
Total Moved Size(GB): 1.35
Original Datafile Size(GB): 10
New Datafile Size(GB): 2.10
Process Time: +00 00:00:50.191512

During a long-running tablespace shrink operation, you can query V$SESSION_LONGOPS to see
the progress.

select sofar, totalwork from v$session_longops where opname='Tablespace
Shrink';

Chapter 11
Altering and Maintaining Tablespaces

11-39

Note:

• If you shrink a bigfile tablespace that has autoextend disabled, there will be
minimal or no free space left for new objects or data. You must manually resize
the tablespace to accommodate any new objects or data, or enable autoextend.

• It is possible for DBMS_SPACE.SRHRNK_TABLESPACE to partially fail. The
command always reports the reason if a move DDL failed, but the command still
resizes the datafile to a smaller size if it already successufully moved some
objects.

• DBMS_SPACE.SHRINK_TABLESPACE('TBS_1') is equivalent to
DBMS_SPACE.SHRINK_TABLESPACE('TBS_1', SHRINK_MODE =>
DBMS_SPACE.TS_SHRINK_MODE_ONLINE, TARGET_SIZE =>
TS_TARGET_MAX_SHRINK). TS_TARGET_MAX_SHRINK means the target
size will be automatically set based on tablespace usage (target size = sum of all
object size + buffer). However, it is the best effort to shrink to the target size, and
final size may be different than the target size.

• DBMS_SPACE.TS_SHRINK_MODE_AUTO mode can be used if an object can’t
be moved online but can be moved offline, and offline move is acceptable. An
offline move will block DMLs and queries. This mode won’t always succeed
because some objects can’t be moved either online or offline.

• See Restrictions on the ONLINE Clause in Oracle Database SQL Language
Reference for objects that cannot be moved online.

• The following objects cannot be moved offline:

1. tables with a LONG datatype

2. cluster tables

3. tables with reservable columns

• DBMS_SPACE.TS_SHRINK_MODE_ANALYZE mode will only do space related
estimation, but it can’t predict the success or failure of actual shrink. However,
you can get a list of unsupported objects by checking SHRINK_RESULT returned by
DBMS_SPACE.SRHINK_TABLESPACE('TBS_1', SHRINK_MODE =>
DBMS_SPACE.TS_SHRINK_MODE_ANALYZE, SHRINK_RESULT => :result). Currently,
the unsupported object list includes cluster tables and some advanced queueing
tables.

• It is possible to shrink the SYSAUX tablespace.

Related Topics

• SHRINK_TABLESPACE Procedure

Chapter 11
Altering and Maintaining Tablespaces

11-40

11.8.5 Altering a Locally Managed Temporary Tablespace
You can alter a locally managed temporary tablespace to add a temp file, take a temp file
offline, or bring a temp file online.

Note:

You cannot use the ALTER TABLESPACE statement, with the TEMPORARY keyword, to
change a locally managed permanent tablespace into a locally managed temporary
tablespace. You must use the CREATE TEMPORARY TABLESPACE statement to create a
locally managed temporary tablespace.

You can use ALTER TABLESPACE to add a temp file, take a temp file offline, or bring a temp file
online, as illustrated in the following examples:

ALTER TABLESPACE lmtemp
 ADD TEMPFILE '/u02/oracle/data/lmtemp02.dbf' SIZE 18M REUSE;

ALTER TABLESPACE lmtemp TEMPFILE OFFLINE;
ALTER TABLESPACE lmtemp TEMPFILE ONLINE;

Note:

You cannot take a temporary tablespace offline. Instead, you take its temp file offline.
The view V$TEMPFILE displays online status for a temp file.

The ALTER DATABASE statement can be used to alter temp files.

The following statements take offline and bring online temp files. They behave identically to the
last two ALTER TABLESPACE statements in the previous example.

ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' OFFLINE;
ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' ONLINE;

The following statement resizes a temp file:

ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' RESIZE 18M;

The following statement drops a temp file and deletes its operating system file:

ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' DROP
 INCLUDING DATAFILES;

The tablespace to which this temp file belonged remains. A message is written to the alert log
for the temp file that was deleted. If an operating system error prevents the deletion of the file,
the statement still succeeds, but a message describing the error is written to the alert log.

It is also possible to use the ALTER DATABASE statement to enable or disable the automatic
extension of an existing temp file, and to rename a temp file. See Oracle Database SQL
Language Reference for the required syntax.

Chapter 11
Altering and Maintaining Tablespaces

11-41

Note:

To rename a temp file, you take the temp file offline, use operating system
commands to rename or relocate the temp file, and then use the ALTER DATABASE
RENAME FILE command to update the database control files.

11.8.6 Shrinking a Locally Managed Temporary Tablespace
You can shrink locally managed temporary tablespaces and release unused space.

Large sort operations performed by the database may result in a temporary tablespace
growing and occupying a considerable amount of disk space. After the sort operation
completes, the extra space is not released; it is just marked as free and available for reuse.
Therefore, a single large sort operation might result in a large amount of allocated temporary
space that remains unused after the sort operation is complete. For this reason, the database
enables you to shrink locally managed temporary tablespaces and release unused space.

To shrink a temporary tablespace:

• Use the SHRINK SPACE clause of the ALTER TABLESPACE statement.

To shrink a specific temp file of a temporary tablespace:

• Use the SHRINK TEMPFILE clause of the ALTER TABLESPACE statement .

Shrinking frees as much space as possible while maintaining the other attributes of the
tablespace or temp file. The optional KEEP clause defines a minimum size for the tablespace or
temp file.

Shrinking is an online operation, which means that user sessions can continue to allocate sort
extents if needed, and already-running queries are not affected.

The following example shrinks the locally managed temporary tablespace lmtmp1 while
ensuring a minimum size of 20M.

ALTER TABLESPACE lmtemp1 SHRINK SPACE KEEP 20M;

The following example shrinks the temp file lmtemp02.dbf of the locally managed temporary
tablespace lmtmp2. Because the KEEP clause is omitted, the database attempts to shrink the
temp file to the minimum possible size.

ALTER TABLESPACE lmtemp2 SHRINK TEMPFILE '/u02/oracle/data/lmtemp02.dbf';

11.9 Renaming Tablespaces
Using the RENAME TO clause of the ALTER TABLESPACE, you can rename a permanent or
temporary tablespace.

For example, the following statement renames the users tablespace:

ALTER TABLESPACE users RENAME TO usersts;

When you rename a tablespace the database updates all references to the tablespace name in
the data dictionary, control file, and (online) data file headers. The database does not change
the tablespace ID so if this tablespace were, for example, the default tablespace for a user,
then the renamed tablespace would show as the default tablespace for the user in the
DBA_USERS view.

Chapter 11
Renaming Tablespaces

11-42

The following affect the operation of this statement:

• If the tablespace being renamed is the SYSTEM tablespace or the SYSAUX tablespace, then it
will not be renamed and an error is raised.

• If any data file in the tablespace is offline, or if the tablespace is offline, then the tablespace
is not renamed and an error is raised.

• If the tablespace is read only, then data file headers are not updated. This should not be
regarded as corruption; instead, it causes a message to be written to the alert log
indicating that data file headers have not been renamed. The data dictionary and control
file are updated.

• If the tablespace is the default temporary tablespace, then the corresponding entry in the
database properties table is updated and the DATABASE_PROPERTIES view shows the new
name.

• If the tablespace is an undo tablespace and if the following conditions are met, then the
tablespace name is changed to the new tablespace name in the server parameter file
(SPFILE).

– The server parameter file was used to start up the database.

– The tablespace name is specified as the UNDO_TABLESPACE for any instance.

If a traditional initialization parameter file (PFILE) is being used then a message is written
to the alert log stating that the initialization parameter file must be manually changed.

11.10 Dropping Tablespaces
You can drop a tablespace and its contents (the segments contained in the tablespace) from
the database if the tablespace and its contents are no longer required.

You must have the DROP TABLESPACE system privilege to drop a tablespace.

Note:

Once a tablespace has been dropped, the data in the tablespace is not recoverable.
Therefore, ensure that all data contained in a tablespace to be dropped will not be
required in the future. Also, immediately before and after dropping a tablespace from
a database, back up the database completely. This is strongly recommended so that
you can recover the database if you mistakenly drop a tablespace, or if the database
experiences a problem in the future after the tablespace has been dropped.

When you drop a tablespace, the file pointers in the control file of the associated database are
removed. You can optionally direct Oracle Database to delete the operating system files (data
files) that constituted the dropped tablespace. If you do not direct the database to delete the
data files at the same time that it deletes the tablespace, you must later use the appropriate
commands of your operating system to delete them.

You cannot drop a tablespace that contains any active segments. For example, if a table in the
tablespace is currently being used or the tablespace contains undo data needed to roll back
uncommitted transactions, you cannot drop the tablespace. The tablespace can be online or
offline, but it is best to take the tablespace offline before dropping it.

To drop a tablespace:

Chapter 11
Dropping Tablespaces

11-43

• Use the DROP TABLESPACE statement.

The following statement drops the users tablespace, including the segments in the tablespace:

DROP TABLESPACE users INCLUDING CONTENTS;

If the tablespace is empty (does not contain any tables, views, or other structures), you do not
need to specify the INCLUDING CONTENTS clause. Use the CASCADE CONSTRAINTS clause to drop
all referential integrity constraints from tables outside the tablespace that refer to primary and
unique keys of tables inside the tablespace.

To delete the data files associated with a tablespace at the same time that the tablespace is
dropped, use the INCLUDING CONTENTS AND DATAFILES clause. The following statement drops
the users tablespace and its associated data files:

DROP TABLESPACE users INCLUDING CONTENTS AND DATAFILES;

A message is written to the alert log for each data file that is deleted. If an operating system
error prevents the deletion of a file, the DROP TABLESPACE statement still succeeds, but a
message describing the error is written to the alert log.

See Also:

"Dropping Data Files"

11.11 Managing Lost Write Protection with Shadow Tablespaces
A data block lost write occurs when an I/O subsystem acknowledges the completion of the
block write, but the write did not occur in the persistent storage. Shadow lost write protection
can protect against lost writes.

• About Shadow Lost Write Protection
A data block lost write occurs when an I/O subsystem acknowledges the completion of the
block write even though the write did not occur or when a former image of the block
overwrites the current image. Shadow lost write protection can protect against lost writes
for tablespaces or for individual data files.

• Creating Shadow Tablespaces for Shadow Lost Write Protection
To create a shadow tablespace for shadow lost write protection, issue a CREATE BIGFILE
TABLESPACE statement with the LOST WRITE PROTECTION clause.

• Enabling Shadow Lost Write Protection for a Database
To enable shadow lost write protection for a multitenant container database (CDB), use the
ALTER DATABASE statement with the ENABLE LOST WRITE PROTECTION clause. To enable
shadow lost write protection for a pluggable database (PDB), use the ALTER PLUGGABLE
DATABASE statement with the ENABLE LOST WRITE PROTECTION clause.

• Enabling Shadow Lost Write Protection for Tablespaces and Data Files
You can enable shadow lost write protection for tablespaces and data files.

• Disabling Shadow Lost Write Protection for a Database
To disable shadow lost write protection for a multitenant container database (CDB), issue
an ALTER DATABASE statement with the DISABLE LOST WRITE PROTECTION clause. To
disable shadow lost write protection for a pluggable database (PDB), issue an ALTER
PLUGGABLE DATABASE statement with the DISABLE LOST WRITE PROTECTION clause.

Chapter 11
Managing Lost Write Protection with Shadow Tablespaces

11-44

• Removing or Suspending Shadow Lost Write Protection
You can remove or suspend shadow lost write protection for a tablespace or a data file.

• Dropping a Shadow Tablespace
You can drop a shadow tablespace using the DROP TABLESPACE statement. If you use the
DROP TABLESPACE statement with the INCLUDING CONTENTS clause, then the shadow
tablespace is dropped along with its contents. If you use the DROP TABLESPACE statement
without the INCLUDING CONTENTS clause, then before dropping the shadow tablespace, its
contents are moved to another shadow tablespace, if it exists and has a sufficient free
space.

11.11.1 About Shadow Lost Write Protection
A data block lost write occurs when an I/O subsystem acknowledges the completion of the
block write even though the write did not occur or when a former image of the block overwrites
the current image. Shadow lost write protection can protect against lost writes for tablespaces
or for individual data files.

Shadow lost write protection provides fast detection and immediate response to a lost write.
Using shadow lost write protection can minimize data loss and the time required to repair a
database.

To use shadow lost write protection, you must enable it for the database and create one or
more shadow tablespaces. A shadow tablespace is a special-purpose bigfile tablespace that
contains only system change numbers (SCNs) for tracked data files. You create a shadow
tablespace by including the LOST WRITE PROTECTION clause in the CREATE TABLESPACE
statement.

When a tracked data block is read from disk, shadow lost write protection can detect a lost
write by comparing the SCN for the block in the shadow tablespace with the SCN of the most
recent write in the block being read. If the shadow entry has an SCN greater than the data
block being read, then a lost write has occurred. When a lost write is detected, an error is
returned.

An undetected lost write can result in data corruption because the incorrect data can be used
for other DML transactions. Shadow lost write protection detects a lost write before it is
consumed to prevent data corruption. You can enable shadow lost write protection for specific
tablespaces and data files. Therefore, you can choose to enable it only for your most important
data. You do not need to use it to track all of your data. In addition, shadow tablespaces are
flexible. You can replace one shadow tablespace with another to change its configuration or
location.

Chapter 11
Managing Lost Write Protection with Shadow Tablespaces

11-45

Figure 11-1 Shadow Lost Write Protection

Shadow
Tablespace

10101

DBF5
Data File

10101

DBF6
Data File

Track Tablespace’s Data Files

Track Data
File

Track Tablespace’s Data Files

TBS3
Tablespace

10101

DBF3
Data File

10101

DBF4
Data File

TBS2
Tablespace

10101

DBF1
Data File

10101

DBF2
Data File

TBS1
Tablespace

10101 10101
10101

When shadow lost write protection is enabled, it is enabled for normal DML operations and
SQL*Loader conventional path load and direct path load operations. It is also enabled for
Recovery Manager (RMAN) backups. An RMAN backup checks the blocks being read for lost
writes and raises an error if such a block is found.

After shadow lost write protection is enabled for a tablespace or data file, you can suspend it if
you want to stop collecting new lost write information and checking for lost writes for them.
When shadow lost write protection is suspended. the tracking data is preserved in the shadow
tablespace, and you can re-enable shadow lost write protection. If you remove shadow lost
write protection for a data file or a tablespace, then its tracking data is deleted and is no longer
reusable.

You enable a tablespace for shadow lost write protection by including the LOST WRITE
PROTECTION clause in an ALTER TABLESPACE statement, and you enable a data file for shadow
lost write protection by including the LOST WRITE PROTECTION clause in an ALTER DATABASE
data_file_name statement. When shadow lost write protection is enabled for a tablespace, all
of the tablespace’s current and future data files are enabled for shadow lost write protection.

Oracle Database assigns a tracked data file to a specific shadow tablespace automatically. You
cannot specify which shadow tablespace is used for a particular data file. The amount of space
in shadow tablespaces should be at least 2% of the space used by the data files enabled for
shadow lost write protection.

Chapter 11
Managing Lost Write Protection with Shadow Tablespaces

11-46

Note:

• If you increase the size of a tracked data file, then shadow lost write protection
attempts to resize the tracking data in the corresponding shadow tablespace. If
there is insufficient space to track all of the data, then shadow lost write
protection inserts a warning message into the log and continues to track the data
that it can using the available shadow space.

• A flashback of a database causes any shadow lost write protection data to be
removed. After the flashback, shadow lost write protection tracks the data as it is
repopulated and updates are made to the shadow tracking data as block updates
occur.

• Shadow lost write protection is not related to lost write protection that is
configured with the DB_LOST_WRITE_PROTECT initialization parameter and a
standby database.

11.11.2 Creating Shadow Tablespaces for Shadow Lost Write Protection
To create a shadow tablespace for shadow lost write protection, issue a CREATE BIGFILE
TABLESPACE statement with the LOST WRITE PROTECTION clause.

A shadow tablespace can be used by any tablespace or data file enabled for shadow lost write
protection. The amount of space in shadow tablespaces should be at least 2% of the space
used by data files enabled for shadow lost write protection. A shadow tablespace must be a
bigfile tablespace.

Note:

For creating shadow tablespaces, the database compatibility level must be 18.0.0 or
higher.

To create a shadow tablespace in a database:

1. In SQL*Plus, connect to the database as a user with CREATE TABLESPACE system privilege.

2. Issue a CREATE BIGFILE TABLESPACE statement with the LOST WRITE PROTECTION clause.

Example 11-1 Creating a Shadow Tablespace for Shadow Lost Write Protection

This example creates the shadow_lwp1 tablespace as a shadow tablespace for shadow lost
write protection.

CREATE BIGFILE TABLESPACE shadow_lwp1 DATAFILE 'shadow_lwp1.df'
 SIZE 10M LOST WRITE PROTECTION;

11.11.3 Enabling Shadow Lost Write Protection for a Database
To enable shadow lost write protection for a multitenant container database (CDB), use the
ALTER DATABASE statement with the ENABLE LOST WRITE PROTECTION clause. To enable

Chapter 11
Managing Lost Write Protection with Shadow Tablespaces

11-47

shadow lost write protection for a pluggable database (PDB), use the ALTER PLUGGABLE
DATABASE statement with the ENABLE LOST WRITE PROTECTION clause.

Before you can enable individual tablespaces and data files for shadow lost write protection,
you must create at least one shadow tablespace, and you must enable the database that
contains it for shadow lost write protection. After doing so, you can use ALTER TABLESPACE
statements to enable tablespaces for shadow lost write protection, and you can use ALTER
DATABASE statements to enable data files for shadow lost write protection.

Note:

• For enabling shadow lost write protection for a database, the database
compatibility level must be 18.0.0 or higher, and at least one shadow tablespace
must exist.

• Enabling or disabling shadow lost write protection for a CDB root does not impact
the shadow lost write protection for the PDBs. Therefore, shadow lost write
protection can be enabled for a PDB even if it is disabled for the CDB root.

• When you enable shadow lost write protection for a database, a shadow
tablespace is automatically assigned to it.

To enable shadow lost write protection for a database:

1. In SQL*Plus, connect to a user with the required privileges:

• In a CDB root, connect as a user with ALTER DATABASE system privilege.

• In an application root, PDB, or application PDB, connect as a user with ALTER
PLUGGABLE DATABASE system privilege.

2. Do one of the following:

• For a CDB root, issue an ALTER DATABASE statement with the ENABLE LOST WRITE
PROTECTION clause.

• For an application root, PDB, or application PDB, issue an ALTER PLUGGABLE DATABASE
statement with the ENABLE LOST WRITE PROTECTION clause.

Example 11-2 Enabling Shadow Lost Write Protection for a CDB Root

ALTER DATABASE ENABLE LOST WRITE PROTECTION;

Example 11-3 Enabling Shadow Lost Write Protection for a PDB

ALTER PLUGGABLE DATABASE ENABLE LOST WRITE PROTECTION;

Related Topics

• Creating Shadow Tablespaces for Shadow Lost Write Protection
To create a shadow tablespace for shadow lost write protection, issue a CREATE BIGFILE
TABLESPACE statement with the LOST WRITE PROTECTION clause.

Chapter 11
Managing Lost Write Protection with Shadow Tablespaces

11-48

11.11.4 Enabling Shadow Lost Write Protection for Tablespaces and Data
Files

You can enable shadow lost write protection for tablespaces and data files.

To enable shadow lost write protection for a tablespace, issue an ALTER TABLESPACE statement
with the ENABLE LOST WRITE PROTECTION clause. To enable shadow lost write protection for a
data file, issue an ALTER DATABASE data_file_name statement with the ENABLE LOST WRITE
PROTECTION clause. When you enable shadow lost write protection for a tablespace, all of the
data files of the tablespace are enabled for shadow lost write protection, and any data files
added to the tablespace are enabled for shadow lost write protection.

Note:

• To enable shadow lost write protection for a tablespace or data file, shadow lost
write protection must be enabled for the database and at least one shadow
tablespace must exist.

• When you enable shadow lost write protection for a tablespace or data file, a
shadow tablespace is automatically assigned to it.

To enable shadow lost write protection for a tablespace or a data file:

1. In SQL*Plus, connect to the database as a user with the required privileges:

• If you are enabling shadow lost write protection for a tablespace, then connect as a
user with ALTER TABLESPACE privilege.

• If you are enabling shadow lost write protection for a data file used by a CDB root, then
connect as a user with ALTER DATABASE privilege.

• If you are enabling shadow lost write protection for a data file used by an application
root, PDB, or application PDB, then connect as a user with ALTER PLUGGABLE
DATABASE privilege.

2. Perform one of the following actions:

• To enable shadow lost write protection for a tablespace, issue an ALTER TABLESPACE
statement with the ENABLE LOST WRITE PROTECTION clause.

• To enable shadow lost write protection for a data file that is used by a CDB root, issue
an ALTER DATABASE DATAFILE data_file_name statement with the ENABLE LOST WRITE
PROTECTION clause, and replace data_file_name with the name of the data file.

• To enable shadow lost write protection for a data file that is used by an application
root, PDB, or application PDB, issue an ALTER PLUGGABLE DATABASE DATAFILE
data_file_name statement with the ENABLE LOST WRITE PROTECTION clause, and
replace data_file_name with the name of the data file.

Example 11-4 Enabling Shadow Lost Write Protection for a Tablespace

This example enables lost write protection for the tbsu1 tablespace.

ALTER TABLESPACE tbsu1 ENABLE LOST WRITE PROTECTION;

Chapter 11
Managing Lost Write Protection with Shadow Tablespaces

11-49

Example 11-5 Enabling Shadow Lost Write Protection for a Data File Used by a CDB
Root

This example enables shadow lost write protection for the dfile1.df data file.

ALTER DATABASE DATAFILE 'dfile1.df' ENABLE LOST WRITE PROTECTION;

Example 11-6 Enabling Shadow Lost Write Protection for a Data File Used by an
Application Root, a PDB, or an Application PDB

This example enables shadow lost write protection for the dfile2.df data file.

ALTER PLUGGABLE DATABASE DATAFILE 'dfile2.df' ENABLE LOST WRITE PROTECTION;

Related Topics

• Enabling Shadow Lost Write Protection for a Database
To enable shadow lost write protection for a multitenant container database (CDB), use the
ALTER DATABASE statement with the ENABLE LOST WRITE PROTECTION clause. To enable
shadow lost write protection for a pluggable database (PDB), use the ALTER PLUGGABLE
DATABASE statement with the ENABLE LOST WRITE PROTECTION clause.

• Creating Shadow Tablespaces for Shadow Lost Write Protection
To create a shadow tablespace for shadow lost write protection, issue a CREATE BIGFILE
TABLESPACE statement with the LOST WRITE PROTECTION clause.

11.11.5 Disabling Shadow Lost Write Protection for a Database
To disable shadow lost write protection for a multitenant container database (CDB), issue an
ALTER DATABASE statement with the DISABLE LOST WRITE PROTECTION clause. To disable
shadow lost write protection for a pluggable database (PDB), issue an ALTER PLUGGABLE
DATABASE statement with the DISABLE LOST WRITE PROTECTION clause.

When you disable shadow lost write protection for a database, no tablespaces or data files in
the database can be protected by shadow lost write protection.

Note:

• Disabling shadow lost write protection does not remove the data in the existing
shadow tablespace, but this data is no longer updated or checked. If you want to
remove the data in the shadow tablespace, then you can drop the shadow
tablespace using the DROP TABLESPACE statement with the INCLUDING CONTENTS
clause.

• Enabling or disabling shadow lost write protection for a CDB root does not impact
the shadow lost write protection for the PDBs.

To disable shadow lost write protection for a database:

1. In SQL*Plus, connect to a user with the required privileges:

• In a CDB root, connect as a user with ALTER DATABASE system privilege.

Chapter 11
Managing Lost Write Protection with Shadow Tablespaces

11-50

• In an application root, PDB, or application PDB, connect as a user with ALTER
PLUGGABLE DATABASE system privilege.

2. Do one of the following:

• For a CDB root, issue an ALTER DATABASE statement with the DISABLE LOST WRITE
PROTECTION clause.

• For an application root, PDB, or application PDB, issue an ALTER PLUGGABLE DATABASE
statement with the DISABLE LOST WRITE PROTECTION clause.

Example 11-7 Disabling Shadow Lost Write Protection for a CDB Root

ALTER DATABASE DISABLE LOST WRITE PROTECTION;

Example 11-8 Disabling Shadow Lost Write Protection for a PDB

ALTER PLUGGABLE DATABASE DISABLE LOST WRITE PROTECTION;

Related Topics

• Removing or Suspending Shadow Lost Write Protection
You can remove or suspend shadow lost write protection for a tablespace or a data file.

11.11.6 Removing or Suspending Shadow Lost Write Protection
You can remove or suspend shadow lost write protection for a tablespace or a data file.

When shadow lost write protection is no longer needed for a tablespace or data file, you can
choose one of the following options:

• You can remove shadow lost write protection. This option deletes tracking information for
the tablespace or data file from shadow tablespaces. This option also stops the collection
of new lost write information for the tablespace or data file and stops checking for new lost
writes for them.

• You can suspend shadow lost write protection. This option stops the collection of new lost
write information for the tablespace or data file and stops checking for new lost writes for
them. However, the old lost write information remains in the shadow tablespace. If shadow
lost write protection is re-enabled for the tablespace or data file, then the old lost write
information can be used for them.

When you remove or suspend shadow lost write protection for a tablespace, shadow lost write
protection is removed or suspended for all of the data files of the tablespace.

To remove or suspend shadow lost write protection for a tablespace or a data file:

1. In SQL*Plus, connect to the database as a user with the required privileges:

• If you are removing or suspending shadow lost write protection for a tablespace, then
connect as a user with ALTER TABLESPACE privilege.

• If you are removing or suspending shadow lost write protection for a data file used by a
CDB root, then connect as a user with ALTER DATABASE privilege.

• If you are removing or suspending shadow lost write protection for a data file used by
an application root, PDB, or application PDB, then connect as a user with ALTER
PLUGGABLE DATABASE privilege.

2. Perform one of the following actions:

Chapter 11
Managing Lost Write Protection with Shadow Tablespaces

11-51

• To remove or suspend shadow lost write protection for a tablespace, issue an ALTER
TABLESPACE statement with the REMOVE LOST WRITE PROTECTION clause or the SUSPEND
LOST WRITE PROTECTION clause, respectively.

• To remove or suspend shadow lost write protection for a data file that is used by a
CDB root, issue an ALTER DATABASE DATAFILE data_file_name statement with the
REMOVE LOST WRITE PROTECTION clause or SUSPEND LOST WRITE PROTECTION clause,
respectively, and replace data_file_name with the name of the data file.

• To remove or suspend shadow lost write protection for a data file that is used by an
application root, PDB, or application PDB, issue an ALTER PLUGGABLE DATABASE
DATAFILE data_file_name statement with the REMOVE LOST WRITE PROTECTION clause
or SUSPEND LOST WRITE PROTECTION clause, respectively, and replace data_file_name
with the name of the data file.

Example 11-9 Removing Shadow Lost Write Protection for a Tablespace

This example removes lost write protection for the tbsu1 tablespace.

ALTER TABLESPACE tbsu1 REMOVE LOST WRITE PROTECTION;

Example 11-10 Suspending Shadow Lost Write Protection for a Data File Used by a
CDB Root

This example suspends shadow lost write protection for the dfile1.df data file.

ALTER DATABASE DATAFILE 'dfile1.df' SUSPEND LOST WRITE PROTECTION;

Example 11-11 Removing Shadow Lost Write Protection for a Data File Used by a PDB

This example removes shadow lost write protection for the dfile2.df data file, which is used
by a PDB.

ALTER PLUGGABLE DATABASE DATAFILE 'dfile2.df' SUSPEND LOST WRITE PROTECTION;

11.11.7 Dropping a Shadow Tablespace
You can drop a shadow tablespace using the DROP TABLESPACE statement. If you use the DROP
TABLESPACE statement with the INCLUDING CONTENTS clause, then the shadow tablespace is
dropped along with its contents. If you use the DROP TABLESPACE statement without the
INCLUDING CONTENTS clause, then before dropping the shadow tablespace, its contents are
moved to another shadow tablespace, if it exists and has a sufficient free space.

11.12 Managing the SYSAUX Tablespace
The SYSAUX tablespace was installed as an auxiliary tablespace to the SYSTEM tablespace when
you created your database. Some database components that formerly created and used
separate tablespaces now occupy the SYSAUX tablespace.

If the SYSAUX tablespace becomes unavailable, core database functionality will remain
operational. The database features that use the SYSAUX tablespace could fail, or function with
limited capability.

Starting with Oracle Database 23ai, the SYSAUX tablespace is created as a bigfile tablespace
and much be managed as such.

Chapter 11
Managing the SYSAUX Tablespace

11-52

• Monitoring Occupants of the SYSAUX Tablespace
You can monitor the occupants of the SYSAUX tablespace.

• Moving Occupants Out Of or Into the SYSAUX Tablespace
The V$SYSAUX_OCCUPANTS view provides a move procedure for each occupant of the
SYSAUX tablespace.

• Controlling the Size of the SYSAUX Tablespace
The SYSAUX tablespace is occupied by several database components, and its total size is
governed by the space consumed by those components. The space consumed by the
components, in turn, depends on which features or functionality are being used and on the
nature of the database workload.

11.12.1 Monitoring Occupants of the SYSAUX Tablespace
You can monitor the occupants of the SYSAUX tablespace.

The list of registered occupants of the SYSAUX tablespace are discussed in "Oracle Database
SQL Language Reference". These components can use the SYSAUX tablespace, and their
installation provides the means of establishing their occupancy of the SYSAUX tablespace.

To monitor the occupants of the SYSAUX tablespace:

• Query the V$SYSAUX_OCCUPANTS view.

This view lists the following information about the occupants of the SYSAUX tablespace:

• Name of the occupant

• Occupant description

• Schema name

• Move procedure

• Current space usage

View information is maintained by the occupants.

See Also:

Oracle Database Reference for a detailed description of the V$SYSAUX_OCCUPANTS
view

11.12.2 Moving Occupants Out Of or Into the SYSAUX Tablespace
The V$SYSAUX_OCCUPANTS view provides a move procedure for each occupant of the SYSAUX
tablespace.

You will have an option at component install time to specify that you do not want the
component to reside in SYSAUX. Also, if you later decide that the component should be
relocated to a designated tablespace, you can use the move procedure for that component, as
specified in the V$SYSAUX_OCCUPANTS view, to perform the move.

The move procedure also lets you move a component from another tablespace into the SYSAUX
tablespace.

Chapter 11
Managing the SYSAUX Tablespace

11-53

11.12.3 Controlling the Size of the SYSAUX Tablespace
The SYSAUX tablespace is occupied by several database components, and its total size is
governed by the space consumed by those components. The space consumed by the
components, in turn, depends on which features or functionality are being used and on the
nature of the database workload.

The largest portion of the SYSAUX tablespace is occupied by the Automatic Workload
Repository (AWR). The space consumed by the AWR is determined by several factors,
including the number of active sessions in the system at any given time, the snapshot interval,
and the historical data retention period. A typical system with an average of 10 concurrent
active sessions may require approximately 200 MB to 300 MB of space for its AWR data. You
can control the size of the AWR by changing the snapshot interval and historical data retention
period.

Another major occupant of the SYSAUX tablespace is the embedded Oracle Enterprise Manager
Cloud Control repository. This repository is used by Cloud Control to store its metadata. The
size of this repository depends on database activity and on configuration-related information
stored in the repository.

Other database components in the SYSAUX tablespace will grow in size only if their associated
features (for example, Oracle Text and Oracle Streams) are in use. If the features are not used,
then these components do not have any significant effect on the size of the SYSAUX tablespace.

The following table provides guidelines on sizing the SYSAUX tablespace based on the system
configuration and expected load.

Parameter/
Recommendation

Small Medium Large

Number of CPUs 2 8 32

Number of concurrently
active sessions

10 20 100

Number of user objects:
tables and indexes

500 5,000 50,000

Estimated SYSAUX size
at steady state with
default configuration

500 MB 2 GB 5 GB

11.13 Correcting Problems with Locally Managed Tablespaces
Oracle Database includes aids for correcting problems with locally managed tablespaces.

• Diagnosing and Repairing Locally Managed Tablespace Problems
Oracle Database includes the DBMS_SPACE_ADMIN package, which is a collection of aids for
diagnosing and repairing problems in locally managed tablespaces.

• Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No Overlap)
The TABLESPACE_VERIFY procedure discovers that a segment has allocated blocks that are
marked free in the bitmap, but no overlap between segments is reported.

• Scenario 2: Dropping a Corrupted Segment
You cannot drop a segment because the bitmap has segment blocks marked "free". The
system has automatically marked the segment corrupted.

Chapter 11
Correcting Problems with Locally Managed Tablespaces

11-54

• Scenario 3: Fixing Bitmap Where Overlap is Reported
The TABLESPACE_VERIFY procedure reports some overlapping. Some of the real data must
be sacrificed based on previous internal errors.

• Scenario 4: Correcting Media Corruption of Bitmap Blocks
A set of bitmap blocks has media corruption.

• Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed Tablespace
Use the TABLESPACE_MIGRATE_TO_LOCAL procedure to migrate a dictionary-managed
tablespace to a locally managed tablespace.

11.13.1 Diagnosing and Repairing Locally Managed Tablespace Problems
Oracle Database includes the DBMS_SPACE_ADMIN package, which is a collection of aids for
diagnosing and repairing problems in locally managed tablespaces.

DBMS_SPACE_ADMIN Package Procedures

The following table lists the DBMS_SPACE_ADMIN package procedures. See Oracle Database
PL/SQL Packages and Types Reference for details on each procedure.

Procedure Description

ASSM_SEGMENT_VERIFY Verifies the integrity of segments created in tablespaces that
have automatic segment space management enabled. Outputs
a dump file named sid_ora_process_id.trc to the location
that corresponds to the Diag Trace entry in the V$DIAG_INFO
view.

Use SEGMENT_VERIFY for tablespaces with manual segment
space management.

ASSM_TABLESPACE_VERIFY Verifies the integrity of tablespaces that have automatic
segment space management enabled. Outputs a dump file
named sid_ora_process_id.trc to the location that
corresponds to the Diag Trace entry in the V$DIAG_INFO
view.

Use TABLESPACE_VERIFY for tablespaces with manual
segment space management.

DROP_EMPTY_SEGMENTS Drops segments from empty tables or table partitions and
dependent objects

MATERIALIZE_DEFERRED_SEGMENTS Materializes segments for tables and table partitions with
deferred segment creation and their dependent objects.

SEGMENT_CORRUPT Marks the segment corrupt or valid so that appropriate error
recovery can be done

SEGMENT_DROP_CORRUPT Drops a segment currently marked corrupt (without reclaiming
space)

SEGMENT_DUMP Dumps the segment header and bitmap blocks of a specific
segment to a dump file named sid_ora_process_id.trc in
the location that corresponds to the Diag Trace entry in the
V$DIAG_INFO view. Provides an option to select a slightly
abbreviated dump, which includes segment header and
includes bitmap block summaries, without percent-free states
of each block.

SEGMENT_VERIFY Verifies the consistency of the extent map of the segment

TABLESPACE_FIX_BITMAPS Marks the appropriate DBA range (extent) as free or used in
bitmap

Chapter 11
Correcting Problems with Locally Managed Tablespaces

11-55

Procedure Description

TABLESPACE_FIX_SEGMENT_STATES Fixes the state of the segments in a tablespace in which
migration was stopped

TABLESPACE_MIGRATE_FROM_LOCAL Migrates a locally managed tablespace to dictionary-managed
tablespace

TABLESPACE_MIGRATE_TO_LOCAL Migrates a dictionary-managed tablespace to a locally
managed tablespace

TABLESPACE_REBUILD_BITMAPS Rebuilds the appropriate bitmaps

TABLESPACE_REBUILD_QUOTAS Rebuilds quotas for a specific tablespace

TABLESPACE_RELOCATE_BITMAPS Relocates the bitmaps to the specified destination

TABLESPACE_VERIFY Verifies that the bitmaps and extent maps for the segments in
the tablespace are synchronized

The following scenarios describe typical situations in which you can use the DBMS_SPACE_ADMIN
package to diagnose and resolve problems.

Note:

Some of these procedures can result in lost and unrecoverable data if not used
properly. You should work with Oracle Support Services if you have doubts about
these procedures.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for details about the
DBMS_SPACE_ADMIN package

• "Viewing ADR Locations with the V$DIAG_INFO View"

11.13.2 Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free
(No Overlap)

The TABLESPACE_VERIFY procedure discovers that a segment has allocated blocks that are
marked free in the bitmap, but no overlap between segments is reported.

In this scenario, perform the following tasks:

1. Call the SEGMENT_DUMP procedure to dump the ranges that the administrator allocated to
the segment.

2. For each range, call the TABLESPACE_FIX_BITMAPS procedure with the
TABLESPACE_EXTENT_MAKE_USED option to mark the space as used.

3. Call TABLESPACE_REBUILD_QUOTAS to rebuild quotas.

Chapter 11
Correcting Problems with Locally Managed Tablespaces

11-56

11.13.3 Scenario 2: Dropping a Corrupted Segment
You cannot drop a segment because the bitmap has segment blocks marked "free". The
system has automatically marked the segment corrupted.

In this scenario, perform the following tasks:

1. Call the SEGMENT_VERIFY procedure with the SEGMENT_VERIFY_EXTENTS_GLOBAL option. If no
overlaps are reported, then proceed with steps 2 through 5.

2. Call the SEGMENT_DUMP procedure to dump the DBA ranges allocated to the segment.

3. For each range, call TABLESPACE_FIX_BITMAPS with the TABLESPACE_EXTENT_MAKE_FREE
option to mark the space as free.

4. Call SEGMENT_DROP_CORRUPT to drop the SEG$ entry.

5. Call TABLESPACE_REBUILD_QUOTAS to rebuild quotas.

11.13.4 Scenario 3: Fixing Bitmap Where Overlap is Reported
The TABLESPACE_VERIFY procedure reports some overlapping. Some of the real data must be
sacrificed based on previous internal errors.

After choosing the object to be sacrificed, in this case say, table t1, perform the following
tasks:

1. Make a list of all objects that t1 overlaps.

2. Drop table t1. If necessary, follow up by calling the SEGMENT_DROP_CORRUPT procedure.

3. Call the SEGMENT_VERIFY procedure on all objects that t1 overlapped. If necessary, call the
TABLESPACE_FIX_BITMAPS procedure to mark appropriate bitmap blocks as used.

4. Rerun the TABLESPACE_VERIFY procedure to verify that the problem is resolved.

11.13.5 Scenario 4: Correcting Media Corruption of Bitmap Blocks
A set of bitmap blocks has media corruption.

In this scenario, perform the following tasks:

1. Call the TABLESPACE_REBUILD_BITMAPS procedure, either on all bitmap blocks, or on a
single block if only one is corrupt.

2. Call the TABLESPACE_REBUILD_QUOTAS procedure to rebuild quotas.

3. Call the TABLESPACE_VERIFY procedure to verify that the bitmaps are consistent.

11.13.6 Scenario 5: Migrating from a Dictionary-Managed to a Locally
Managed Tablespace

Use the TABLESPACE_MIGRATE_TO_LOCAL procedure to migrate a dictionary-managed
tablespace to a locally managed tablespace.

This operation is done online, but space management operations are blocked until the
migration has been completed. Therefore, you can read or modify data while the migration is in

Chapter 11
Correcting Problems with Locally Managed Tablespaces

11-57

progress, but if you are loading a large amount of data that requires the allocation of additional
extents, then the operation may be blocked.

Assume that the database block size is 2K and the existing extent sizes in tablespace tbs_1
are 10, 50, and 10,000 blocks (used, used, and free). The MINIMUM EXTENT value is 20K (10
blocks). Allow the system to choose the bitmap allocation unit. The value of 10 blocks is
chosen, because it is the highest common denominator and does not exceed MINIMUM EXTENT.

The statement to convert tbs_1 to a locally managed tablespace is as follows:

EXEC DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL ('tbs_1');

If you choose to specify an allocation unit size, it must be a factor of the unit size calculated by
the system.

11.14 Migrating the SYSTEM Tablespace to a Locally Managed
Tablespace

Use the DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL procedure to migrate the SYSTEM
tablespace from dictionary-managed to locally managed.

Before performing the migration the following conditions must be met:

• The database has a default temporary tablespace that is not SYSTEM.
• There are no rollback segments in the dictionary-managed tablespace.

• There is at least one online rollback segment in a locally managed tablespace, or if using
automatic undo management, an undo tablespace is online.

• All tablespaces other than the tablespace containing the undo space (that is, the
tablespace containing the rollback segment or the undo tablespace) are in read-only mode.

• The SYSAUX tablespace is offline.

• The system is in restricted mode.

• There is a cold backup of the database.

All of these conditions, except for the cold backup, are enforced by the
TABLESPACE_MIGRATE_TO_LOCAL procedure.

The following statement performs the migration:

SQL> EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL('SYSTEM');

Note:

After the SYSTEM tablespace is migrated to locally managed, any dictionary-managed
tablespaces in the database cannot be made read/write. If you want to use the
dictionary-managed tablespaces in read/write mode, then Oracle recommends that
you first migrate these tablespaces to locally managed before migrating the SYSTEM
tablespace.

Chapter 11
Migrating the SYSTEM Tablespace to a Locally Managed Tablespace

11-58

11.15 Viewing Information About Tablespaces
Oracle Database includes data dictionary views that you can query for information about
tablespaces.

• Tablespace Data Dictionary Views
The following data dictionary and dynamic performance views provide useful information
about the tablespaces of a database.

• Example 1: Listing Tablespaces and Default Storage Parameters
You can query the DBA_TABLESPACES view to list the names and default storage
parameters.

• Example 2: Listing the Data Files and Associated Tablespaces of a Database
You can query the DBA_DATA_FILES view to list the names, sizes, and associated
tablespaces of a database.

• Example 3: Displaying Statistics for Free Space (Extents) of Each Tablespace
You can query the DBA_FREE_SPACE view to display statistics about free extents and
coalescing activity for each tablespace in the database.

11.15.1 Tablespace Data Dictionary Views
The following data dictionary and dynamic performance views provide useful information about
the tablespaces of a database.

View Description

V$TABLESPACE Name and number of all tablespaces from the control file.

V$ENCRYPTED_TABLESPACES Name and encryption algorithm of all encrypted tablespaces.

DBA_TABLESPACES,
USER_TABLESPACES

Descriptions of all (or user accessible) tablespaces.

DBA_TABLESPACE_GROUPS Displays the tablespace groups and the tablespaces that belong
to them.

DBA_SEGMENTS, USER_SEGMENTS Information about segments within all (or user accessible)
tablespaces.

DBA_EXTENTS, USER_EXTENTS Information about data extents within all (or user accessible)
tablespaces.

DBA_FREE_SPACE,
USER_FREE_SPACE

Information about free extents within all (or user accessible)
tablespaces.

DBA_TEMP_FREE_SPACE Displays the total allocated and free space in each temporary
tablespace.

V$DATAFILE Information about all data files, including tablespace number of
owning tablespace.

V$TEMPFILE Information about all temp files, including tablespace number of
owning tablespace.

DBA_DATA_FILES Shows files (data files) belonging to tablespaces.

DBA_TEMP_FILES Shows files (temp files) belonging to temporary tablespaces.

V$TEMP_EXTENT_MAP Information for all extents in all locally managed temporary
tablespaces.

Chapter 11
Viewing Information About Tablespaces

11-59

View Description

V$TEMP_EXTENT_POOL For locally managed temporary tablespaces: the state of
temporary space cached and used for by each instance.

V$TEMP_SPACE_HEADER Shows space used/free for each temp file.

DBA_USERS Default and temporary tablespaces for all users.

DBA_TS_QUOTAS Lists tablespace quotas for all users.

V$SORT_SEGMENT Information about every sort segment in a given instance. The
view is only updated when the tablespace is of the TEMPORARY
type.

V$TEMPSEG_USAGE Describes temporary (sort) segment usage by user for temporary
or permanent tablespaces.

11.15.2 Example 1: Listing Tablespaces and Default Storage Parameters
You can query the DBA_TABLESPACES view to list the names and default storage parameters.

To list the names and default storage parameters of all tablespaces in a database, use the
following query on the DBA_TABLESPACES view:

SELECT TABLESPACE_NAME "TABLESPACE",
 INITIAL_EXTENT "INITIAL_EXT",
 NEXT_EXTENT "NEXT_EXT",
 MIN_EXTENTS "MIN_EXT",
 MAX_EXTENTS "MAX_EXT",
 PCT_INCREASE
 FROM DBA_TABLESPACES;

TABLESPACE INITIAL_EXT NEXT_EXT MIN_EXT MAX_EXT PCT_INCREASE
---------- ----------- -------- ------- ------- ------------
RBS 1048576 1048576 2 40 0
SYSTEM 106496 106496 1 99 1
TEMP 106496 106496 1 99 0
TESTTBS 57344 16384 2 10 1
USERS 57344 57344 1 99 1

11.15.3 Example 2: Listing the Data Files and Associated Tablespaces of a
Database

You can query the DBA_DATA_FILES view to list the names, sizes, and associated tablespaces
of a database.

To list the names, sizes, and associated tablespaces of a database, enter the following query
on the DBA_DATA_FILES view:

SELECT FILE_NAME, BLOCKS, TABLESPACE_NAME
 FROM DBA_DATA_FILES;

FILE_NAME BLOCKS TABLESPACE_NAME
------------ ---------- -------------------
/U02/ORACLE/IDDB3/DBF/RBS01.DBF 1536 RBS
/U02/ORACLE/IDDB3/DBF/SYSTEM01.DBF 6586 SYSTEM
/U02/ORACLE/IDDB3/DBF/TEMP01.DBF 6400 TEMP
/U02/ORACLE/IDDB3/DBF/TESTTBS01.DBF 6400 TESTTBS
/U02/ORACLE/IDDB3/DBF/USERS01.DBF 384 USERS

Chapter 11
Viewing Information About Tablespaces

11-60

11.15.4 Example 3: Displaying Statistics for Free Space (Extents) of Each
Tablespace

You can query the DBA_FREE_SPACE view to display statistics about free extents and coalescing
activity for each tablespace in the database.

To produce statistics about free extents and coalescing activity for each tablespace in the
database, enter the following query:

SELECT TABLESPACE_NAME "TABLESPACE", FILE_ID,
 COUNT(*) "PIECES",
 MAX(blocks) "MAXIMUM",
 MIN(blocks) "MINIMUM",
 AVG(blocks) "AVERAGE",
 SUM(blocks) "TOTAL"
 FROM DBA_FREE_SPACE
GROUP BY TABLESPACE_NAME, FILE_ID;

TABLESPACE FILE_ID PIECES MAXIMUM MINIMUM AVERAGE TOTAL
---------- ------- ------ ------- ------- ------- ------
RBS 2 1 955 955 955 955
SYSTEM 1 1 119 119 119 119
TEMP 4 1 6399 6399 6399 6399
TESTTBS 5 5 6364 3 1278 6390
USERS 3 1 363 363 363 363

PIECES shows the number of free space extents in the tablespace file, MAXIMUM and MINIMUM
show the largest and smallest contiguous area of space in database blocks, AVERAGE shows
the average size in blocks of a free space extent, and TOTAL shows the amount of free space in
each tablespace file in blocks. This query is useful when you are going to create a new object
or you know that a segment is about to extend, and you want to ensure that there is enough
space in the containing tablespace.

Chapter 11
Viewing Information About Tablespaces

11-61

12
Managing Data Files and Temp Files

You can manage data files and temp files by performing tasks such as creating them, altering
them, and dropping them.

Note:

Temp files are a special class of data files that are associated only with temporary
tablespaces. Information in this chapter applies to both data files and temp files
except where differences are noted. Temp files are further described in "Creating a
Locally Managed Temporary Tablespace"

• Guidelines for Managing Data Files
You can follow guidelines for managing data files.

• Creating Data Files and Adding Data Files to a Tablespace
You can create data files and associate them with a tablespace using several different SQL
statements.

• Changing Data File Size
You can alter the size of a data file. For example, you can increase the size of one or more
data files when more space is needed in the database.

• Altering Data File Availability
You must alter data file availability to perform certain tasks, such as performing an offline
backup of a data file or relocating an offline data file.

• Renaming and Relocating Data Files
You can rename online or offline data files to either change their names or relocate them.

• Dropping Data Files
You use the DROP DATAFILE and DROP TEMPFILE clauses of the ALTER TABLESPACE statement
to drop a single data file or temp file.

• Verifying Data Blocks in Data Files
To configure the database to use checksums to verify data blocks, set the initialization
parameter DB_BLOCK_CHECKSUM to TYPICAL (the default).

• Copying Files Using the Database Server
You can use the DBMS_FILE_TRANSFER package to copy a file within a database or transfer
a file between databases.

• Mapping Files to Physical Devices
In an environment where data files are file system files, it is relatively straight forward to
see the association between a tablespace and the underlying device. Oracle Database
provides views, such as DBA_TABLESPACES, DBA_DATA_FILES, and V$DATAFILE, that provide
a mapping of files onto devices. These mappings, along with device statistics can be used
to evaluate I/O performance.

12-1

• Data Files Data Dictionary Views
A set of data dictionary views provides useful information about the data files of a
database.

See Also:

• Using Oracle Managed Files for information about creating data files and temp
files that are both created and managed by the Oracle Database server

• Oracle Database Concepts

12.1 Guidelines for Managing Data Files
You can follow guidelines for managing data files.

• About Data Files
Data files are physical files of the operating system that store the data of all logical
structures in the database. They must be explicitly created for each tablespace.

• Determine the Number of Data Files
You must determine the number of data files for your database.

• Determine the Size of Data Files
When creating a tablespace, you should estimate the potential size of database objects
and create sufficient data files.

• Place Data Files Appropriately
Tablespace location is determined by the physical location of the data files that constitute
that tablespace. Use the hardware resources of your computer appropriately.

• Store Data Files Separate from Redo Log Files
Data files should not be stored on the same disk drive that stores the database redo log
files. If the data files and redo log files are stored on the same disk drive and that disk drive
fails, the files cannot be used in your database recovery procedures.

12.1.1 About Data Files
Data files are physical files of the operating system that store the data of all logical structures
in the database. They must be explicitly created for each tablespace.

Oracle Database assigns each data file two associated file numbers, an absolute file number
and a relative file number, that are used to uniquely identify it. These numbers are described in
the following table:

Type of File Number Description

Absolute Uniquely identifies a data file in the database. This file number can be used in
many SQL statements that reference data files in place of using the file name.
The absolute file number can be found in the FILE# column of the
V$DATAFILE or V$TEMPFILE view, or in the FILE_ID column of the
DBA_DATA_FILES or DBA_TEMP_FILES view.

Chapter 12
Guidelines for Managing Data Files

12-2

Type of File Number Description

Relative Uniquely identifies a data file within a tablespace. For small and medium size
databases, relative file numbers usually have the same value as the absolute
file number. However, when the number of data files in a database exceeds a
threshold (typically 1023), the relative file number differs from the absolute file
number. In a bigfile tablespace, the relative file number is always 1024 (4096
on OS/390 platform).

12.1.2 Determine the Number of Data Files
You must determine the number of data files for your database.

• About Determining the Number of Data Files
At least one data file is required for the SYSTEM and SYSAUX tablespaces of a database.
Your database should contain several other tablespaces with their associated data files or
temp files. The number of data files that you anticipate creating for your database can
affect the settings of initialization parameters and the specification of CREATE DATABASE
statement clauses.

• Determine a Value for the DB_FILES Initialization Parameter
When starting an Oracle Database instance, the DB_FILES initialization parameter indicates
the amount of SGA space to reserve for data file information and thus, the maximum
number of data files that can be created for the instance.

• Consider Possible Limitations When Adding Data Files to a Tablespace
There are some limitations to consider when adding data files to a tablespace.

• Consider the Performance Impact of the Number of Data Files
The number of data files contained in a tablespace, and ultimately the database, can have
an impact upon performance.

12.1.2.1 About Determining the Number of Data Files
At least one data file is required for the SYSTEM and SYSAUX tablespaces of a database. Your
database should contain several other tablespaces with their associated data files or temp
files. The number of data files that you anticipate creating for your database can affect the
settings of initialization parameters and the specification of CREATE DATABASE statement
clauses.

Be aware that your operating system might impose limits on the number of data files contained
in your Oracle Database. Also consider that the number of data files, and how and where they
are allocated can affect the performance of your database.

Note:

One means of controlling the number of data files in your database and simplifying
their management is to use bigfile tablespaces. Bigfile tablespaces comprise a single,
very large data file and are especially useful in ultra large databases and where a
logical volume manager is used for managing operating system files. Bigfile
tablespaces are discussed in "Bigfile Tablespaces".

Consider the following guidelines when determining the number of data files for your database.

Chapter 12
Guidelines for Managing Data Files

12-3

12.1.2.2 Determine a Value for the DB_FILES Initialization Parameter
When starting an Oracle Database instance, the DB_FILES initialization parameter indicates the
amount of SGA space to reserve for data file information and thus, the maximum number of
data files that can be created for the instance.

This limit applies for the life of the instance. You can change the value of DB_FILES (by
changing the initialization parameter setting), but the new value does not take effect until you
shut down and restart the instance.

When determining a value for DB_FILES, take the following into consideration:

• If the value of DB_FILES is too low, you cannot add data files beyond the DB_FILES limit
without first shutting down the database.

• If the value of DB_FILES is too high, memory is unnecessarily consumed.

12.1.2.3 Consider Possible Limitations When Adding Data Files to a Tablespace
There are some limitations to consider when adding data files to a tablespace.

You can add data files to traditional smallfile tablespaces, subject to the following limitations:

• Operating systems often impose a limit on the number of files a process can open
simultaneously. More data files cannot be created when the operating system limit of open
files is reached.

• Operating systems impose limits on the number and size of data files.

• The database imposes a maximum limit on the number of data files for any Oracle
Database opened by any instance. This limit is operating system specific.

• You cannot exceed the number of data files specified by the DB_FILES initialization
parameter.

• When you issue CREATE DATABASE or CREATE CONTROLFILE statements, the MAXDATAFILES
parameter specifies an initial size of the data file portion of the control file. However, if you
attempt to add a new file whose number is greater than MAXDATAFILES, but less than or
equal to DB_FILES, the control file will expand automatically so that the data files section
can accommodate more files.

12.1.2.4 Consider the Performance Impact of the Number of Data Files
The number of data files contained in a tablespace, and ultimately the database, can have an
impact upon performance.

Oracle Database allows more data files in the database than the operating system defined
limit. The database DBWn processes can open all online data files. Oracle Database is
capable of treating open file descriptors as a cache, automatically closing files when the
number of open file descriptors reaches the operating system-defined limit. This can have a
negative performance impact. When possible, adjust the operating system limit on open file
descriptors so that it is larger than the number of online data files in the database.

Chapter 12
Guidelines for Managing Data Files

12-4

See Also:

• Your operating system specific Oracle documentation for more information on
operating system limits

• Oracle Database SQL Language Reference for more information about the
MAXDATAFILES parameter of the CREATE DATABASE or CREATE CONTROLFILE
statement

12.1.3 Determine the Size of Data Files
When creating a tablespace, you should estimate the potential size of database objects and
create sufficient data files.

Later, if needed, you can create additional data files and add them to a tablespace to increase
the total amount of disk space allocated to it, and consequently the database. Preferably, place
data files on multiple devices to ensure that data is spread evenly across all devices.

12.1.4 Place Data Files Appropriately
Tablespace location is determined by the physical location of the data files that constitute that
tablespace. Use the hardware resources of your computer appropriately.

For example, if several disk drives are available to store the database, consider placing
potentially contending data files on separate disks. This way, when users query information,
both disk drives can work simultaneously, retrieving data at the same time.

See Also:

Oracle Database Performance Tuning Guide for information about I/O and the
placement of data files

12.1.5 Store Data Files Separate from Redo Log Files
Data files should not be stored on the same disk drive that stores the database redo log files. If
the data files and redo log files are stored on the same disk drive and that disk drive fails, the
files cannot be used in your database recovery procedures.

If you multiplex your redo log files, then the likelihood of losing all of your redo log files is low,
so you can store data files on the same drive as some redo log files.

12.2 Creating Data Files and Adding Data Files to a Tablespace
You can create data files and associate them with a tablespace using several different SQL
statements.

In all cases, you can either specify the file specifications for the data files being created, or you
can use the Oracle Managed Files feature to create files that are created and managed by the
database server. The table includes a brief description of the statement, as used to create data

Chapter 12
Creating Data Files and Adding Data Files to a Tablespace

12-5

files, and references the section of this book where use of the statement is specifically
described:

SQL Statement Description Additional Information

CREATE TABLESPACE Creates a tablespace and the data files
that comprise it

"Creating Tablespaces"

CREATE TEMPORARY TABLESPACE Creates a locally-managed temporary
tablespace and the tempfiles (temp files
are a special kind of data file) that
comprise it

"Creating a Locally
Managed Temporary
Tablespace"

ALTER TABLESPACE ... ADD DATAFILE Creates and adds a data file to a
tablespace

"Altering a Locally Managed
Tablespace"

ALTER TABLESPACE ... ADD TEMPFILE Creates and adds a temp file to a
temporary tablespace

"Altering a Locally Managed
Temporary Tablespace"

CREATE DATABASE Creates a database and associated
data files

Oracle Multitenant
Administrator's Guide

ALTER DATABASE ... CREATE DATAFILE Creates a new empty data file in place
of an old one--useful to re-create a data
file that was lost with no backup.

See Oracle Database
Backup and Recovery
User's Guide.

If you add new data files to a tablespace and do not fully specify the file names, the database
creates the data files in the default database directory or the current directory, depending upon
your operating system. Oracle recommends you always specify a fully qualified name for a
data file. Unless you want to reuse existing files, make sure the new file names do not conflict
with other files. Old files that have been previously dropped will be overwritten.

If a statement that creates a data file fails, the database removes any created operating
system files. However, because of the large number of potential errors that can occur with file
systems and storage subsystems, there can be situations where you must manually remove
the files using operating system commands.

12.3 Changing Data File Size
You can alter the size of a data file. For example, you can increase the size of one or more
data files when more space is needed in the database.

• Enabling and Disabling Automatic Extension for a Data File
You can create data files or alter existing data files so that they automatically increase in
size when more space is needed in the database. The file size increases in specified
increments up to a specified maximum.

• Manually Resizing a Data File
You can manually increase or decrease the size of a data file using the ALTER DATABASE
statement.

12.3.1 Enabling and Disabling Automatic Extension for a Data File
You can create data files or alter existing data files so that they automatically increase in size
when more space is needed in the database. The file size increases in specified increments up
to a specified maximum.

Setting your data files to extend automatically provides these advantages:

• Reduces the need for immediate intervention when a tablespace runs out of space

Chapter 12
Changing Data File Size

12-6

• Ensures applications will not halt or be suspended because of failures to allocate extents

You can specify automatic file extension by specifying an AUTOEXTEND ON clause when you
create data files using the following SQL statements:

• CREATE DATABASE
• ALTER DATABASE
• CREATE TABLESPACE
• ALTER TABLESPACE
To enable or disable automatic extension for a data file:

1. Determine whether a data file is auto-extensible by querying the DBA_DATA_FILES view and
examining the AUTOEXTENSIBLE column.

2. Enable or disable automatic file extension for existing data files, or manually resize a data
file, using the ALTER DATABASE statement with the AUTOEXTEND clause. For a bigfile
tablespace, use the ALTER TABLESPACE statement with the AUTOEXTEND clause.

The following example enables automatic extension for a data file added to the users
tablespace:

ALTER TABLESPACE users
 ADD DATAFILE '/u02/oracle/rbdb1/users03.dbf' SIZE 10M
 AUTOEXTEND ON
 NEXT 512K
 MAXSIZE 250M;

The value of NEXT is the minimum size of the increments added to the file when it extends. The
value of MAXSIZE is the maximum size to which the file can automatically extend.

The next example disables the automatic extension for the data file.

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/users03.dbf'
 AUTOEXTEND OFF;

See Also:

Oracle Database SQL Language Reference for more information about the SQL
statements for creating or altering data files

12.3.2 Manually Resizing a Data File
You can manually increase or decrease the size of a data file using the ALTER DATABASE
statement.

Therefore, you can add more space to your database without adding more data files. This is
beneficial if you are concerned about reaching the maximum number of data files allowed in
your database.

For a bigfile tablespace, you can use the ALTER TABLESPACE statement to resize a data file. You
are not allowed to add a data file to a bigfile tablespace.

Manually reducing the sizes of data files enables you to reclaim unused space in the database.
This is useful for correcting errors in estimates of space requirements.

Chapter 12
Changing Data File Size

12-7

In the following example, assume that the data file /u02/oracle/rbdb1/stuff01.dbf has
extended up to 250M. However, because its tablespace now stores smaller objects, the data
file can be reduced in size.

The following statement decreases the size of data file /u02/oracle/rbdb1/stuff01.dbf:

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/stuff01.dbf'
 RESIZE 100M;

Note:

It is not always possible to decrease the size of a file to a specific value. It could be
that the file contains data beyond the specified decreased size, in which case the
database will return an error.

12.4 Altering Data File Availability
You must alter data file availability to perform certain tasks, such as performing an offline
backup of a data file or relocating an offline data file.

• About Altering Data File Availability
You can alter the availability of individual data files or temp files by taking them offline or
bringing them online. Offline data files are unavailable to the database and cannot be
accessed until they are brought back online.

• Bringing Data Files Online or Taking Offline in ARCHIVELOG Mode
To bring an individual data file online or take an individual data file offline, issue the ALTER
DATABASE statement and include the DATAFILE clause.

• Taking Data Files Offline in NOARCHIVELOG Mode
To take a data file offline when the database is in NOARCHIVELOG mode, use the ALTER
DATABASE statement with both the DATAFILE and OFFLINE FOR DROP clauses.

• Altering the Availability of All Data Files or Temp Files in a Tablespace
Clauses of the ALTER TABLESPACE statement allow you to change the online or offline
status of all of the data files or temp files within a tablespace.

12.4.1 About Altering Data File Availability
You can alter the availability of individual data files or temp files by taking them offline or
bringing them online. Offline data files are unavailable to the database and cannot be
accessed until they are brought back online.

Reasons for altering data file availability include the following:

• You want to perform an offline backup of a data file.

• You want to rename or relocate an offline data file. You can first take the data file offline or
take the tablespace offline.

• The database has problems writing to a data file and automatically takes the data file
offline. Later, after resolving the problem, you can bring the data file back online manually.

• A data file becomes missing or corrupted. You must take it offline before you can open the
database.

Chapter 12
Altering Data File Availability

12-8

The data files of a read-only tablespace can be taken offline or brought online, but bringing a
file online does not affect the read-only status of the tablespace. You cannot write to the data
file until the tablespace is returned to the read/write state.

Note:

You can make all data files of a tablespace temporarily unavailable by taking the
tablespace itself offline. You must leave these files in the tablespace to bring the
tablespace back online, although you can relocate or rename them following
procedures similar to those shown in "Renaming and Relocating Data Files".

For more information, see "Taking Tablespaces Offline".

To take a data file offline or bring it online, you must have the ALTER DATABASE system
privilege. To take all data files or temp files offline using the ALTER TABLESPACE statement, you
must have the ALTER TABLESPACE or MANAGE TABLESPACE system privilege. In an Oracle Real
Application Clusters environment, the database must be open in exclusive mode.

12.4.2 Bringing Data Files Online or Taking Offline in ARCHIVELOG Mode
To bring an individual data file online or take an individual data file offline, issue the ALTER
DATABASE statement and include the DATAFILE clause.

The following statement brings the specified data file online:

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/stuff01.dbf' ONLINE;

To take the same file offline, issue the following statement:

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/stuff01.dbf' OFFLINE;

Note:

To use this form of the ALTER DATABASE statement, the database must be in
ARCHIVELOG mode. This requirement prevents you from accidentally losing the data
file, since taking the data file offline while in NOARCHIVELOG mode is likely to result in
losing the file.

12.4.3 Taking Data Files Offline in NOARCHIVELOG Mode
To take a data file offline when the database is in NOARCHIVELOG mode, use the ALTER DATABASE
statement with both the DATAFILE and OFFLINE FOR DROP clauses.

• The OFFLINE keyword causes the database to mark the data file OFFLINE, whether or not it
is corrupted, so that you can open the database.

• The FOR DROP keywords mark the data file for subsequent dropping. Such a data file can no
longer be brought back online.

Chapter 12
Altering Data File Availability

12-9

Note:

This operation does not actually drop the data file. It remains in the data
dictionary, and you must drop it yourself using one of the following methods:

– An ALTER TABLESPACE ... DROP DATAFILE statement.

After an OFFLINE FOR DROP, this method works for dictionary managed
tablespaces only.

– A DROP TABLESPACE ... INCLUDING CONTENTS AND DATAFILES statement

– If the preceding methods fail, an operating system command to delete the
data file. This is the least desirable method, as it leaves references to the
data file in the data dictionary and control files.

The following statement takes the specified data file offline and marks it to be dropped:

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/users03.dbf' OFFLINE FOR DROP;

12.4.4 Altering the Availability of All Data Files or Temp Files in a
Tablespace

Clauses of the ALTER TABLESPACE statement allow you to change the online or offline status of
all of the data files or temp files within a tablespace.

Specifically, the statements that affect online/offline status are:

• ALTER TABLESPACE ... DATAFILE {ONLINE|OFFLINE}

• ALTER TABLESPACE ... TEMPFILE {ONLINE|OFFLINE}

You are required only to enter the tablespace name, not the individual data files or temp files.
All of the data files or temp files are affected, but the online/offline status of the tablespace
itself is not changed.

In most cases the preceding ALTER TABLESPACE statements can be issued whenever the
database is mounted, even if it is not open. However, the database must not be open if the
tablespace is the SYSTEM tablespace, an undo tablespace, or the default temporary tablespace.
The ALTER DATABASE DATAFILE and ALTER DATABASE TEMPFILE statements also have ONLINE/
OFFLINE clauses, however in those statements you must enter all of the file names for the
tablespace.

The syntax is different from the ALTER TABLESPACE...ONLINE|OFFLINE statement that alters
tablespace availability, because that is a different operation. The ALTER TABLESPACE statement
takes data files offline as well as the tablespace, but it cannot be used to alter the status of a
temporary tablespace or its temp file(s).

12.5 Renaming and Relocating Data Files
You can rename online or offline data files to either change their names or relocate them.

• Renaming and Relocating Online Data Files
You can use the ALTER DATABASE MOVE DATAFILE SQL statement to rename or relocate
online data files. This statement enables you to rename or relocate a data file while the
database is open and users are accessing the data file.

Chapter 12
Renaming and Relocating Data Files

12-10

• Renaming and Relocating Offline Data Files
You can rename and relocate offline data files.

12.5.1 Renaming and Relocating Online Data Files
You can use the ALTER DATABASE MOVE DATAFILE SQL statement to rename or relocate online
data files. This statement enables you to rename or relocate a data file while the database is
open and users are accessing the data file.

When you rename or relocate online data files, the pointers to the data files, as recorded in the
database control file, are changed. The files are also physically renamed or relocated at the
operating system level.

You might rename or relocate online data files because you want to allow users to access the
data files when you perform one of the following tasks:

• Move the data files from one type of storage to another

• Move data files that are accessed infrequently to lower cost storage

• Make a tablespace read-only and move its data files to write-once storage

• Move a database into Oracle Automatic Storage Management (Oracle ASM)

When you run the ALTER DATABASE MOVE DATAFILE statement and a file with the same name
exists in the destination location, you can specify the REUSE option to overwrite the existing file.
When REUSE is not specified, and a file with the same name exists in the destination location,
the existing file is not overwritten, and the statement returns an error.

By default, when you run the ALTER DATABASE MOVE DATAFILE statement and specify a new
location for a data file, the statement moves the data file. However, you can specify the KEEP
option to retain the data file in the old location and copy it to the new location. In this case, the
database only uses the data file in the new location when the statement completes
successfully.

When you rename or relocate a data file with ALTER DATABASE MOVE DATAFILE statement, Oracle
Database creates a copy of the data file when it is performing the operation. Ensure that there
is adequate disk space for the original data file and the copy during the operation.

You can view the name, location, and online status of each data file by querying the
DBA_DATA_FILES view.

Chapter 12
Renaming and Relocating Data Files

12-11

Note:

• The ALTER DATABASE MOVE DATAFILE statement raises an error if the specified
data file is offline.

• If you are using a standby database, then you can perform an online move data
file operation independently on the primary and on the standby (either physical or
logical). The standby is not affected when a data file is moved on the primary,
and vice versa. See Oracle Data Guard Concepts and Administration for more
information.

• A flashback operation does not relocate a moved data file to its previous location.
If you move a data file online from one location to another and later flash back
the database to a point in time before the move, then the data file remains in the
new location, but the contents of the data file are changed to the contents at the
time specified in the flashback. See Oracle Database Backup and Recovery
User's Guide for more information about flashback database operations.

• When you relocate a data file on the Windows platform, the original data file
might be retained in the old location, even when the KEEP option is omitted. In this
case, the database only uses the data file in the new location when the statement
completes successfully. You can delete the old data file manually after the
operation completes if necessary.

To rename or relocate online data files:

1. In SQL*Plus, connect to the database as a user with ALTER DATABASE system privilege.

2. Issue the ALTER DATABASE MOVE DATAFILE statement and specify the data file.

Example 12-1 Renaming an Online Data File

This example renames the data file user1.dbf to user01.dbf while keeping the data file in the
same location.

ALTER DATABASE MOVE DATAFILE '/u01/oracle/rbdb1/user1.dbf'
 TO '/u01/oracle/rbdb1/user01.dbf';

Example 12-2 Relocating an Online Data File

This example moves the data file user1.dbf from the /u01/oracle/rbdb1/ directory to the /u02/
oracle/rbdb1/ directory. After the operation, the file is no longer in the /u01/oracle/rbdb1/
directory.

ALTER DATABASE MOVE DATAFILE '/u01/oracle/rbdb1/user1.dbf'
 TO '/u02/oracle/rbdb1/user1.dbf';

Example 12-3 Copying an Online Data File

This example copies the data file user1.dbf from the /u01/oracle/rbdb1/ directory to the /u02/
oracle/rbdb1/ directory. After the operation, the old file is retained in the /u01/oracle/rbdb1/
directory.

ALTER DATABASE MOVE DATAFILE '/u01/oracle/rbdb1/user1.dbf'
 TO '/u02/oracle/rbdb1/user1.dbf' KEEP;

Chapter 12
Renaming and Relocating Data Files

12-12

Example 12-4 Relocating an Online Data File and Overwriting an Existing File

This example moves the data file user1.dbf from the /u01/oracle/rbdb1/ directory to the /u02/
oracle/rbdb1/ directory. If a file with the same name exists in the /u02/oracle/rbdb1/ directory,
then the statement overwrites the file.

ALTER DATABASE MOVE DATAFILE '/u01/oracle/rbdb1/user1.dbf'
 TO '/u02/oracle/rbdb1/user1.dbf' REUSE;

Example 12-5 Relocating an Online Data File to Oracle ASM

This example moves the data file user1.dbf from the /u01/oracle/rbdb1/ directory to an Oracle
ASM location.

ALTER DATABASE MOVE DATAFILE '/u01/oracle/rbdb1/user1.dbf'
 TO '+dgroup_01/data/orcl/datafile/user1.dbf';

Example 12-6 Moving a File from One ASM Location to Another ASM Location

This example moves the data file from one Oracle ASM location to another Oracle ASM
location.

ALTER DATABASE MOVE DATAFILE '+dgroup_01/data/orcl/datafile/user1.dbf'
 TO '+dgroup_02/data/orcl/datafile/user1.dbf';

You also can move an online data file with Oracle ASM by mirroring the data file and then
removing the original file location from the mirror. The online data file move operation might be
faster when you use Oracle ASM to move the file instead of the ALTER DATABASE MOVE DATAFILE
statement.

See Also:

• Oracle Database SQL Language Reference for more information about the ALTER
DATABASE statement

• Oracle Automatic Storage Management Administrator's Guide

12.5.2 Renaming and Relocating Offline Data Files
You can rename and relocate offline data files.

When you rename and relocate offline data files, only the pointers to the data files, as recorded
in the database control file, are changed. Files are not physically renamed, and they are not
copied at the operating system level.

• Procedures for Renaming and Relocating Offline Data Files in a Single Tablespace
You can rename and relocate offline data files that can be used for a single tablespace.
You must have ALTER TABLESPACE system privilege to perform these procedures.

• Renaming and Relocating Offline Data Files in Multiple Tablespaces
You can rename and relocate data files in one or more tablespaces using the ALTER
DATABASE RENAME FILE statement.

Chapter 12
Renaming and Relocating Data Files

12-13

12.5.2.1 Procedures for Renaming and Relocating Offline Data Files in a Single
Tablespace

You can rename and relocate offline data files that can be used for a single tablespace. You
must have ALTER TABLESPACE system privilege to perform these procedures.

• Renaming Offline Data Files in a Single Tablespace
You can rename offline data files in a single tablespace.

• Relocating Offline Data Files in a Single Tablespace
You can relocate offline data files in a single tablespace.

See Also:

"Taking Tablespaces Offline" for more information about taking tablespaces offline in
preparation for renaming or relocating data files

12.5.2.1.1 Renaming Offline Data Files in a Single Tablespace
You can rename offline data files in a single tablespace.

To rename offline data files in a single tablespace, complete the following steps:

1. Take the tablespace that contains the data files offline. The database must be open.

For example:

ALTER TABLESPACE users OFFLINE NORMAL;
2. Rename the data files using the operating system.

3. Use the ALTER TABLESPACE statement with the RENAME DATAFILE clause to change the file
names within the database.

For example, the following statement renames the data files /u02/oracle/rbdb1/
user1.dbf and /u02/oracle/rbdb1/user2.dbf to/u02/oracle/rbdb1/users01.dbf
and /u02/oracle/rbdb1/users02.dbf, respectively:

ALTER TABLESPACE users
 RENAME DATAFILE '/u02/oracle/rbdb1/user1.dbf',
 '/u02/oracle/rbdb1/user2.dbf'
 TO '/u02/oracle/rbdb1/users01.dbf',
 '/u02/oracle/rbdb1/users02.dbf';

Always provide complete file names (including their paths) to properly identify the old and
new data files. In particular, specify the old data file name exactly as it appears in the
DBA_DATA_FILES view of the data dictionary.

4. Back up the database. After making any structural changes to a database, always perform
an immediate and complete backup.

5. Bring the tablespace back online using an ALTER TABLESPACE statement with the ONLINE
clause:

ALTER TABLESPACE users ONLINE

Chapter 12
Renaming and Relocating Data Files

12-14

12.5.2.1.2 Relocating Offline Data Files in a Single Tablespace
You can relocate offline data files in a single tablespace.

Here is a sample procedure for relocating an offline data file.

Assume the following conditions:

• An open database has a tablespace named users that is made up of data files all located
on the same disk.

• The data files of the users tablespace are to be relocated to different and separate disk
drives.

• You are currently connected with administrator privileges to the open database.

• You have a current backup of the database.

Complete the following steps:

1. If you do not know the specific file names or sizes, you can obtain this information by
issuing the following query of the data dictionary view DBA_DATA_FILES:

SQL> SELECT FILE_NAME, BYTES FROM DBA_DATA_FILES
 2> WHERE TABLESPACE_NAME = 'USERS';

FILE_NAME BYTES
-- ----------------
/u02/oracle/rbdb1/users01.dbf 102400000
/u02/oracle/rbdb1/users02.dbf 102400000

2. Take the tablespace containing the data files offline:

ALTER TABLESPACE users OFFLINE NORMAL;
3. Copy the data files to their new locations and rename them using the operating system.

You can copy the files using the DBMS_FILE_TRANSFER package discussed in "Copying Files
Using the Database Server".

Note:

You can temporarily exit SQL*Plus to execute an operating system command to
copy a file by using the SQL*Plus HOST command.

4. Rename the data files within the database.

The data file pointers for the files that comprise the users tablespace, recorded in the
control file of the associated database, must now be changed from the old names to the
new names.

Use the ALTER TABLESPACE...RENAME DATAFILE statement.

ALTER TABLESPACE users
 RENAME DATAFILE '/u02/oracle/rbdb1/users01.dbf',
 '/u02/oracle/rbdb1/users02.dbf'
 TO '/u03/oracle/rbdb1/users01.dbf',
 '/u04/oracle/rbdb1/users02.dbf';

5. Back up the database. After making any structural changes to a database, always perform
an immediate and complete backup.

Chapter 12
Renaming and Relocating Data Files

12-15

6. Bring the tablespace back online using an ALTER TABLESPACE statement with the ONLINE
clause:

ALTER TABLESPACE users ONLINE

12.5.2.2 Renaming and Relocating Offline Data Files in Multiple Tablespaces
You can rename and relocate data files in one or more tablespaces using the ALTER DATABASE
RENAME FILE statement.

This method is the only choice if you want to rename or relocate data files of several
tablespaces in one operation. You must have the ALTER DATABASE system privilege.

Note:

To rename or relocate data files of the SYSTEM tablespace, the default temporary
tablespace, or the active undo tablespace you must use this ALTER DATABASE method
because you cannot take these tablespaces offline.

To rename data files in multiple tablespaces, follow these steps.

1. Ensure that the database is mounted but closed.

Note:

Optionally, the database does not have to be closed, but the data files (or temp
files) must be offline.

2. Copy the data files to be renamed to their new locations and new names, using the
operating system. You can copy the files using the DBMS_FILE_TRANSFER package
discussed in "Copying Files Using the Database Server".

3. Use ALTER DATABASE to rename the file pointers in the database control file.

For example, the following statement renames the data files/u02/oracle/rbdb1/
sort01.dbf and /u02/oracle/rbdb1/user3.dbf to /u02/oracle/rbdb1/temp01.dbf
and /u02/oracle/rbdb1/users03.dbf, respectively:

ALTER DATABASE
 RENAME FILE '/u02/oracle/rbdb1/sort01.dbf',
 '/u02/oracle/rbdb1/user3.dbf'
 TO '/u02/oracle/rbdb1/temp01.dbf',
 '/u02/oracle/rbdb1/users03.dbf';

Always provide complete file names (including their paths) to properly identify the old and
new data files. In particular, specify the old data file names exactly as they appear in the
DBA_DATA_FILES view.

4. Back up the database. After making any structural changes to a database, always perform
an immediate and complete backup.

Chapter 12
Renaming and Relocating Data Files

12-16

12.6 Dropping Data Files
You use the DROP DATAFILE and DROP TEMPFILE clauses of the ALTER TABLESPACE statement to
drop a single data file or temp file.

The data file must be empty. (A data file is considered to be empty when no extents remain
allocated from it.) When you drop a data file or temp file, references to the data file or temp file
are removed from the data dictionary and control files, and the physical file is deleted from the
file system or Oracle Automatic Storage Management (Oracle ASM) disk group.

The following example drops the data file identified by the alias example_df3.f in the Oracle
ASM disk group DGROUP1. The data file belongs to the example tablespace.

ALTER TABLESPACE example DROP DATAFILE '+DGROUP1/example_df3.f';

The next example drops the temp file lmtemp02.dbf, which belongs to the lmtemp tablespace.

ALTER TABLESPACE lmtemp DROP TEMPFILE '/u02/oracle/data/lmtemp02.dbf';

This is equivalent to the following statement:

ALTER DATABASE TEMPFILE '/u02/oracle/data/lmtemp02.dbf' DROP
 INCLUDING DATAFILES;

Note:

If there are sessions using a temp file, and you attempt to drop the temp file, then an
error is returned, and the temp file is not dropped. In this case, the temp file is taken
offline, and queries that attempt to use the temp file will fail while the temp file is
offline.

See Oracle Database SQL Language Reference for ALTER TABLESPACE syntax details.

Restrictions for Dropping Data Files

The following are restrictions for dropping data files and temp files:

• The database must be open.

• If a data file is not empty, it cannot be dropped.

If you must remove a data file that is not empty and that cannot be made empty by
dropping schema objects, you must drop the tablespace that contains the data file.

• You cannot drop the first or only data file in a tablespace.

Therefore, DROP DATAFILE cannot be used with a bigfile tablespace.

• You cannot drop data files in a read-only tablespace that was migrated from dictionary
managed to locally managed. Dropping a data file from all other read-only tablespaces is
supported.

• You cannot drop data files in the SYSTEM tablespace.

• If a data file in a locally managed tablespace is offline, it cannot be dropped.

Chapter 12
Dropping Data Files

12-17

See Also:

Dropping Tablespaces

12.7 Verifying Data Blocks in Data Files
To configure the database to use checksums to verify data blocks, set the initialization
parameter DB_BLOCK_CHECKSUM to TYPICAL (the default).

This setting causes the DBWn process and the direct loader to calculate a checksum for each
block and to store the checksum in the block header when writing the block to disk.

The checksum is verified when the block is read, but only if DB_BLOCK_CHECKSUM is TRUE and
the last write of the block stored a checksum. If corruption is detected, the database returns
message ORA-01578 and writes information about the corruption to the alert log.

The value of the DB_BLOCK_CHECKSUM parameter can be changed dynamically using the ALTER
SYSTEM statement. Regardless of the setting of this parameter, checksums are always used to
verify data blocks in the SYSTEM tablespace.

See Also:

Oracle Database Reference for more information about the DB_BLOCK_CHECKSUM
initialization parameter

12.8 Copying Files Using the Database Server
You can use the DBMS_FILE_TRANSFER package to copy a file within a database or transfer a file
between databases.

• About Copying Files Using the Database Server
You do not necessarily have to use the operating system to copy a file within a database,
or transfer a file between databases as you would do when using the transportable
tablespace feature. You can use the DBMS_FILE_TRANSFER package for this purpose.

• Copying a File on a Local File System
You can use the COPY_FILE procedure in the DBMS_FILE_TRANSFER package to copy a file
on a local file system.

• Third-Party File Transfer
Although the procedures in the DBMS_FILE_TRANSFER package typically are invoked as local
procedure calls, they can also be invoked as remote procedure calls. A remote procedure
call lets you copy a file within a database even when you are connected to a different
database.

• Advanced File Transfer Mechanisms
You can create more sophisticated file transfer mechanisms using both the
DBMS_FILE_TRANSFER package and the DBMS_SCHEDULER package.

Chapter 12
Verifying Data Blocks in Data Files

12-18

• File Transfer and the DBMS_SCHEDULER Package
You can use the DBMS_SCHEDULER package to transfer files automatically within a single
database and between databases.

12.8.1 About Copying Files Using the Database Server
You do not necessarily have to use the operating system to copy a file within a database, or
transfer a file between databases as you would do when using the transportable tablespace
feature. You can use the DBMS_FILE_TRANSFER package for this purpose.

The DBMS_FILE_TRANSFER package can use a local file system or an Oracle Automatic Storage
Management (Oracle ASM) disk group as the source or destination for a file transfer. Only
Oracle database files (data files, temp files, control files, and so on) can be involved in
transfers to and from Oracle ASM.

On UNIX systems, the owner of a file created by the DBMS_FILE_TRANSFER package is the
owner of the shadow process running the instance. Normally, this owner is ORACLE. A file
created using DBMS_FILE_TRANSFER is always writable and readable by all processes in the
database, but non privileged users who need to read or write such a file directly may need
access from a system administrator.

Caution:

Do not use the DBMS_FILE_TRANSFER package to copy or transfer a file that is being
modified by a database because doing so may result in an inconsistent file.

See Also:

• "Copying a File on a Local File System" for an example of using the
DBMS_FILE_TRANSFER package

• "Transporting Tablespaces Between Databases" for information about how to
transport tablespaces between databases

• Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_FILE_TRANSFER package.

12.8.2 Copying a File on a Local File System
You can use the COPY_FILE procedure in the DBMS_FILE_TRANSFER package to copy a file on a
local file system.

The following example illustrates using the COPY_FILE procedure in the DBMS_FILE_TRANSFER
package to copy a file on a local file system. The example copies a binary file named db1.dat
from the /usr/admin/source directory to the /usr/admin/destination directory as
db1_copy.dat on a local file system:

1. In SQL*Plus, connect as an administrative user who can grant privileges and create
directory objects using SQL.

Chapter 12
Copying Files Using the Database Server

12-19

2. Use the SQL command CREATE DIRECTORY to create a directory object for the directory
from which you want to copy the file. A directory object is similar to an alias for the
directory. For example, to create a directory object called SOURCE_DIR for the /usr/admin/
source directory on your computer system, execute the following statement:

CREATE DIRECTORY SOURCE_DIR AS '/usr/admin/source';
3. Use the SQL command CREATE DIRECTORY to create a directory object for the directory into

which you want to copy the binary file. For example, to create a directory object called
DEST_DIR for the /usr/admin/destination directory on your computer system, execute the
following statement:

CREATE DIRECTORY DEST_DIR AS '/usr/admin/destination';
4. Grant the required privileges to the user who will run the COPY_FILE procedure. In this

example, the strmadmin user runs the procedure.

GRANT EXECUTE ON DBMS_FILE_TRANSFER TO strmadmin;

GRANT READ ON DIRECTORY source_dir TO strmadmin;

GRANT WRITE ON DIRECTORY dest_dir TO strmadmin;
5. Connect as strmadmin user and provide the user password when prompted:

CONNECT strmadmin
6. Run the COPY_FILE procedure to copy the file:

BEGIN
 DBMS_FILE_TRANSFER.COPY_FILE(
 source_directory_object => 'SOURCE_DIR',
 source_file_name => 'db1.dat',
 destination_directory_object => 'DEST_DIR',
 destination_file_name => 'db1_copy.dat');
END;
/

The source_file_name parameter must specify a file that is in the directory specified by
the source_directory_object parameter before running the procedure, and the
destination_file_name parameter must specify the new name of the file in the new
location specified in the destination_directory_object parameter. Relative paths and
symbolic links are not allowed in the directory objects for the source_directory_object
and destination_directory_object parameters.

Caution:

Do not use the DBMS_FILE_TRANSFER package to copy or transfer a file that is being
modified by a database because doing so may result in an inconsistent file.

12.8.3 Third-Party File Transfer
Although the procedures in the DBMS_FILE_TRANSFER package typically are invoked as local
procedure calls, they can also be invoked as remote procedure calls. A remote procedure call
lets you copy a file within a database even when you are connected to a different database.

For example, you can make a copy of a file on database DB, even if you are connected to
another database, by executing the following remote procedure call:

Chapter 12
Copying Files Using the Database Server

12-20

DBMS_FILE_TRANSFER.COPY_FILE@DB(...)

Using remote procedure calls enables you to copy a file between two databases, even if you
are not connected to either database. For example, you can connect to database A and then
transfer a file from database B to database C. In this example, database A is the third party
because it is neither the source of nor the destination for the transferred file.

A third-party file transfer can both push and pull a file. Continuing with the previous example,
you can perform a third-party file transfer if you have a database link from A to either B or C,
and that database has a database link to the other database. Database A does not need a
database link to both B and C.

For example, if you have a database link from A to B, and another database link from B to C,
then you can run the following procedure at A to transfer a file from B to C:

DBMS_FILE_TRANSFER.PUT_FILE@B(...)

This configuration pushes the file.

Alternatively, if you have a database link from A to C, and another database link from C to B,
then you can run the following procedure at database A to transfer a file from B to C:

DBMS_FILE_TRANSFER.GET_FILE@C(...)

This configuration pulls the file.

12.8.4 Advanced File Transfer Mechanisms
You can create more sophisticated file transfer mechanisms using both the
DBMS_FILE_TRANSFER package and the DBMS_SCHEDULER package.

For example, when several databases have a copy of the file you want to transfer, you can
consider factors such as source availability, source load, and communication bandwidth to the
destination database when deciding which source database to contact first and which source
databases to try if failures occur. In this case, the information about these factors must be
available to you, and you must create the mechanism that considers these factors.

As another example, when early completion time is more important than load, you can submit
several Scheduler jobs to transfer files in parallel. As a final example, knowing something
about file layout on the source and destination databases enables you to minimize disk
contention by performing or scheduling simultaneous transfers only if they use different I/O
devices.

12.8.5 File Transfer and the DBMS_SCHEDULER Package
You can use the DBMS_SCHEDULER package to transfer files automatically within a single
database and between databases.

Third-party file transfers are also supported by the DBMS_SCHEDULER package. You can monitor
a long-running file transfer done by the Scheduler using the V$SESSION_LONGOPS dynamic
performance view at the databases reading or writing the file. Any database links used by a
Scheduler job must be fixed user database links.

You can use a restartable Scheduler job to improve the reliability of file transfers automatically,
especially if there are intermittent failures. If a file transfer fails before the destination file is
closed, then you can restart the file transfer from the beginning once the database has
removed any partially written destination file. Hence you should consider using a restartable

Chapter 12
Copying Files Using the Database Server

12-21

Scheduler job to transfer a file if the rest of the job is restartable. See Scheduling Jobs with
Oracle Scheduler for more information on Scheduler jobs.

Note:

If a single restartable job transfers several files, then you should consider restart
scenarios in which some of the files have been transferred already and some have
not been transferred yet.

12.9 Mapping Files to Physical Devices
In an environment where data files are file system files, it is relatively straight forward to see
the association between a tablespace and the underlying device. Oracle Database provides
views, such as DBA_TABLESPACES, DBA_DATA_FILES, and V$DATAFILE, that provide a mapping of
files onto devices. These mappings, along with device statistics can be used to evaluate I/O
performance.

However, with the introduction of host based Logical Volume Managers (LVM), and
sophisticated storage subsystems that provide RAID (Redundant Array of Inexpensive Disks)
features, it is not easy to determine file to device mapping. This poses a problem because it
becomes difficult to determine your "hottest" files when they are hidden behind a "black box".
This section presents the Oracle Database approach to resolving this problem.

Note:

This section presents an overview of the Oracle Database file mapping interface and
explains how to use the DBMS_STORAGE_MAP package and dynamic performance views
to expose the mapping of files onto physical devices. You can more easily access
this functionality through the Oracle Enterprise Manager Cloud Control. It provides an
easy to use graphical interface for mapping files to physical devices. See the Cloud
Control online help for more information.

• Overview of Oracle Database File Mapping Interface
To acquire an understanding of I/O performance, one must have detailed knowledge of the
storage hierarchy in which files reside.

• How the Oracle Database File Mapping Interface Works
Oracle Database file mapping includes the following components: the FMON is a
background process, the FMPUTL process, and mapping libraries.

• Using the Oracle Database File Mapping Interface
You can use the Oracle Database file mapping interface to enable file mapping and obtain
information about file mapping in a set of views.

• File Mapping Examples
Examples illustrates some of the powerful capabilities of the Oracle Database file mapping
feature.

Chapter 12
Mapping Files to Physical Devices

12-22

12.9.1 Overview of Oracle Database File Mapping Interface
To acquire an understanding of I/O performance, one must have detailed knowledge of the
storage hierarchy in which files reside.

Oracle Database provides a mechanism to show a complete mapping of a file to intermediate
layers of logical volumes to actual physical devices. This is accomplished though a set of
dynamic performance views (V$ views). Using these views, you can locate the exact disk on
which any block of a file resides.

To build these views, storage vendors must provide mapping libraries that are responsible for
mapping their particular I/O stack elements. The database communicates with these libraries
through an external non-Oracle Database process that is spawned by a background process
called FMON. FMON is responsible for managing the mapping information. Oracle provides a
PL/SQL package, DBMS_STORAGE_MAP, that you use to invoke mapping operations that populate
the mapping views.

Note:

If you are not using Oracle Automatic Storage Management, then the file mapping
interface is not available on Windows platforms. If you are using Oracle Automatic
Storage Management, then the file mapping interface is available on all platforms.

See Also:

Oracle Automatic Storage Management Administrator's Guide for information about
using file mapping with Oracle ASM

12.9.2 How the Oracle Database File Mapping Interface Works
Oracle Database file mapping includes the following components: the FMON is a background
process, the FMPUTL process, and mapping libraries.

• Components of File Mapping
The file mapping mechanism includes several components.

• Mapping Structures
You must understand mapping structures and the Oracle Database representation of these
structures to interpret the information in the mapping views.

• Example of Mapping Structures
An example illustrates mapping structures.

• Configuration ID
The configuration ID captures the version information associated with elements or files.

12.9.2.1 Components of File Mapping
The file mapping mechanism includes several components.

Chapter 12
Mapping Files to Physical Devices

12-23

The following figure shows the components of the file mapping mechanism.

Figure 12-1 Components of File Mapping

FMON mapping lib1

mapping libn

mapping lib0

SGA

Oracle Instance

FMPUTL

External

Process

.

.

.

Note:

Starting with Oracle Database 12c, the FILE_MAPPING initialization parameter, the
FMPUTL process, and the mapping libraries are deprecated.

• FMON
FMON is a background process started by the database whenever the FILE_MAPPING
initialization parameter is set to true. FMON builds map information and refreshing
mapping information when a change occurs.

• External Process (FMPUTL)
FMON spawns an external non-Oracle Database process called FMPUTL, that
communicates directly with the vendor supplied mapping libraries.

• Mapping Libraries
Oracle Database uses mapping libraries to discover mapping information for the elements
that are owned by a particular mapping library.

12.9.2.1.1 FMON
FMON is a background process started by the database whenever the FILE_MAPPING
initialization parameter is set to true. FMON builds map information and refreshing mapping
information when a change occurs.

FMON is responsible for:

• Building mapping information, which is stored in the SGA. This information is composed of
the following structures:

– Files

– File system extents

– Elements

– Subelements

These structures are explained in "Mapping Structures".

• Refreshing mapping information when a change occurs because of:

Chapter 12
Mapping Files to Physical Devices

12-24

– Changes to data files (size)

– Addition or deletion of data files

– Changes to the storage configuration (not frequent)

• Saving mapping information in the data dictionary to maintain a view of the information that
is persistent across startup and shutdown operations

• Restoring mapping information into the SGA at instance startup. This avoids the need for a
potentially expensive complete rebuild of the mapping information on every instance
startup.

You help control this mapping using procedures that are invoked with the DBMS_STORAGE_MAP
package.

12.9.2.1.2 External Process (FMPUTL)
FMON spawns an external non-Oracle Database process called FMPUTL, that communicates
directly with the vendor supplied mapping libraries.

This process obtains the mapping information through all levels of the I/O stack, assuming that
mapping libraries exist for all levels. On some platforms the external process requires that the
SETUID bit is set to ON because root privileges are needed to map through all levels of the I/O
mapping stack.

The external process is responsible for discovering the mapping libraries and dynamically
loading them into its address space.

12.9.2.1.3 Mapping Libraries
Oracle Database uses mapping libraries to discover mapping information for the elements that
are owned by a particular mapping library.

Through these mapping libraries information about individual I/O stack elements is
communicated. This information is used to populate dynamic performance views that can be
queried by users.

Mapping libraries need to exist for all levels of the stack for the mapping to be complete, and
different libraries may own their own parts of the I/O mapping stack. For example, a VERITAS
VxVM library would own the stack elements related to the VERITAS Volume Manager, and an
EMC library would own all EMC storage specific layers of the I/O mapping stack.

Mapping libraries are vendor supplied. However, Oracle currently supplies a mapping library
for EMC storage. The mapping libraries available to a database server are identified in a
special file named filemap.ora.

12.9.2.2 Mapping Structures
You must understand mapping structures and the Oracle Database representation of these
structures to interpret the information in the mapping views.

The following are the primary structures that compose the mapping information:

• Files

A file mapping structure provides a set of attributes for a file, including file size, number of
file system extents that the file is composed of, and the file type.

• File system extents

Chapter 12
Mapping Files to Physical Devices

12-25

A file system extent mapping structure describes a contiguous chunk of blocks residing on
one element. This includes the device offset, the extent size, the file offset, the type (data
or parity), and the name of the element where the extent resides.

Note:

File system extents are different from Oracle Database extents. File system
extents are physical contiguous blocks of data written to a device as managed by
the file system. Oracle Database extents are logical structures managed by the
database, such as tablespace extents.

• Elements

An element mapping structure is the abstract mapping structure that describes a storage
component within the I/O stack. Elements may be mirrors, stripes, partitions, RAID5,
concatenated elements, and disks. These structures are the mapping building blocks.

• Subelements

A subelement mapping structure describes the link between an element and the next
elements in the I/O mapping stack. This structure contains the subelement number, size,
the element name where the subelement exists, and the element offset.

All of these mapping structures are illustrated in the following example.

12.9.2.3 Example of Mapping Structures
An example illustrates mapping structures.

Consider an Oracle Database which is composed of two data files X and Y. Both files X and Y
reside on a file system mounted on volume A. File X is composed of two extents while file Y is
composed of only one extent.

The two extents of File X and the one extent of File Y both map to Element A. Element A is
striped to Elements B and C. Element A maps to Elements B and C by way of Subelements B0
and C1, respectively.

Element B is a partition of Element D (a physical disk), and is mapped to Element D by way of
subelement D0.

Element C is mirrored over Elements E and F (both physical disks), and is mirrored to those
physical disks by way of Subelements E0 and F1, respectively.

All of the mapping structures are illustrated in Figure 12-2.

Chapter 12
Mapping Files to Physical Devices

12-26

Figure 12-2 Illustration of Mapping Structures

File X File Extent 2

Element A

File YFile Extent 1 File Extent 1

Element B

Element D

Element C

Element E Element F

Sub B0 Sub C1

Sub D0 Sub E0 Sub F1

Note that the mapping structures represented are sufficient to describe the entire mapping
information for the Oracle Database instance and consequently to map every logical block
within the file into a (element name, element offset) tuple (or more in case of mirroring) at each
level within the I/O stack.

12.9.2.4 Configuration ID
The configuration ID captures the version information associated with elements or files.

The vendor library provides the configuration ID and updates it whenever a change occurs.
Without a configuration ID, there is no way for the database to tell whether the mapping has
changed.

There are two kinds of configuration IDs:

• Persistent

These configuration IDs are persistent across instance shutdown

• Non-persistent

The configuration IDs are not persistent across instance shutdown. The database is only
capable of refreshing the mapping information while the instance is up.

12.9.3 Using the Oracle Database File Mapping Interface
You can use the Oracle Database file mapping interface to enable file mapping and obtain
information about file mapping in a set of views.

• Enabling File Mapping
You can enable file mapping.

Chapter 12
Mapping Files to Physical Devices

12-27

• Using the DBMS_STORAGE_MAP Package
The DBMS_STORAGE_MAP package enables you to control the mapping operations.

• Obtaining Information from the File Mapping Views
Mapping information generated by DBMS_STORAGE_MAP package is captured in dynamic
performance views.

12.9.3.1 Enabling File Mapping
You can enable file mapping.

To enable file mapping:

1. Ensure that a valid filemap.ora file exists in the /opt/ORCLfmap/prot1_32/etc directory for
32-bit platforms, or in the /opt/ORCLfmap/prot1_64/etc directory for 64-bit platforms.

Note:

While the format and content of the filemap.ora file is discussed here, it is for
informational reasons only. The filemap.ora file is created by the database when
your system is installed. Until such time that vendors supply their own libraries,
there will be only one entry in the filemap.ora file, and that is the Oracle-supplied
EMC library. This file should be modified manually by uncommenting this entry
only if an EMC Symmetrix array is available.

The filemap.ora file is the configuration file that describes all of the available mapping
libraries. FMON requires that a filemap.ora file exists and that it points to a valid path to
mapping libraries. Otherwise, it will not start successfully.

The following row must be included in filemap.ora for each library:

lib=vendor_name:mapping_library_path

where:

• vendor_name should be Oracle for the EMC Symmetric library

• mapping_library_path is the full path of the mapping library

Note that the ordering of the libraries in this file is extremely important. The libraries are
queried based on their order in the configuration file.

The file mapping service can be started even if no mapping libraries are available. The
filemap.ora file still must be present even though it is empty. In this case, the mapping
service is constrained in the sense that new mapping information cannot be discovered.
Only restore and drop operations are allowed in such a configuration.

2. Set the FILE_MAPPING initialization parameter to TRUE.

The instance does not have to be shut down to set this parameter. You can set it using the
following ALTER SYSTEM statement:

ALTER SYSTEM SET FILE_MAPPING=TRUE;
3. Invoke the appropriate DBMS_STORAGE_MAP mapping procedure. You have two options:

• In a cold startup scenario, the Oracle Database is just started and no mapping
operation has been invoked yet. You execute the DBMS_STORAGE_MAP.MAP_ALL
procedure to build the mapping information for the entire I/O subsystem associated
with the database.

Chapter 12
Mapping Files to Physical Devices

12-28

• In a warm start scenario where the mapping information is already built, you have the
option to invoke the DBMS_STORAGE_MAP.MAP_SAVE procedure to save the mapping
information in the data dictionary. (Note that this procedure is invoked in
DBMS_STORAGE_MAP.MAP_ALL() by default.) This forces all of the mapping information in
the SGA to be flushed to disk.

Once you restart the database, use DBMS_STORAGE_MAP.RESTORE() to restore the
mapping information into the SGA. If needed, DBMS_STORAGE_MAP.MAP_ALL() can be
called to refresh the mapping information.

12.9.3.2 Using the DBMS_STORAGE_MAP Package
The DBMS_STORAGE_MAP package enables you to control the mapping operations.

The various procedures available to you are described in the following table.

Procedure Use to:

MAP_OBJECT Build the mapping information for the database object identified by object
name, owner, and type

MAP_ELEMENT Build mapping information for the specified element

MAP_FILE Build mapping information for the specified file name

MAP_ALL Build entire mapping information for all types of database files (excluding
archive logs)

DROP_ELEMENT Drop the mapping information for a specified element

DROP_FILE Drop the file mapping information for the specified file name

DROP_ALL Drop all mapping information in the SGA for this instance

SAVE Save into the data dictionary the required information needed to regenerate
the entire mapping

RESTORE Load the entire mapping information from the data dictionary into the shared
memory of the instance

LOCK_MAP Lock the mapping information in the SGA for this instance

UNLOCK_MAP Unlock the mapping information in the SGA for this instance

See Also:

• Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_STORAGE_MAP package

• "File Mapping Examples" for an example of using the DBMS_STORAGE_MAP
package

12.9.3.3 Obtaining Information from the File Mapping Views
Mapping information generated by DBMS_STORAGE_MAP package is captured in dynamic
performance views.

Brief descriptions of these views are presented here.

Chapter 12
Mapping Files to Physical Devices

12-29

View Description

V$MAP_LIBRARY Contains a list of all mapping libraries that have been dynamically loaded
by the external process

V$MAP_FILE Contains a list of all file mapping structures in the shared memory of the
instance

V$MAP_FILE_EXTENT Contains a list of all file system extent mapping structures in the shared
memory of the instance

V$MAP_ELEMENT Contains a list of all element mapping structures in the SGA of the
instance

V$MAP_EXT_ELEMENT Contains supplementary information for all element mapping

V$MAP_SUBELEMENT Contains a list of all subelement mapping structures in the shared
memory of the instance

V$MAP_COMP_LIST Contains supplementary information for all element mapping structures.

V$MAP_FILE_IO_STACK The hierarchical arrangement of storage containers for the file displayed
as a series of rows. Each row represents a level in the hierarchy.

However, the information generated by the DBMS_STORAGE_MAP.MAP_OBJECT procedure is
captured in a global temporary table named MAP_OBJECT. This table displays the hierarchical
arrangement of storage containers for objects. Each row in the table represents a level in the
hierarchy. A description of the MAP_OBJECT table follows.

Column Data Type Description

OBJECT_NAME VARCHAR2(2000) Name of the object

OBJECT_OWNER VARCHAR2(2000) Owner of the object

OBJECT_TYPE VARCHAR2(2000) Object type

FILE_MAP_IDX NUMBER File index (corresponds to FILE_MAP_IDX in V$MAP_FILE)

DEPTH NUMBER Element depth within the I/O stack

ELEM_IDX NUMBER Index corresponding to element

CU_SIZE NUMBER Contiguous set of logical blocks of the file, in HKB (half KB)
units, that is resident contiguously on the element

STRIDE NUMBER Number of HKB between contiguous units (CU) in the file
that are contiguous on this element. Used in RAID5 and
striped files.

NUM_CU NUMBER Number of contiguous units that are adjacent to each other
on this element that are separated by STRIDE HKB in the
file. In RAID5, the number of contiguous units also include
the parity stripes.

ELEM_OFFSET NUMBER Element offset in HKB units

FILE_OFFSET NUMBER Offset in HKB units from the start of the file to the first byte
of the contiguous units

DATA_TYPE VARCHAR2(2000) Data type (DATA, PARITY, or DATA AND PARITY)

PARITY_POS NUMBER Position of the parity. Only for RAID5. This field is needed
to distinguish the parity from the data part.

PARITY_PERIOD NUMBER Parity period. Only for RAID5.

Chapter 12
Mapping Files to Physical Devices

12-30

12.9.4 File Mapping Examples
Examples illustrates some of the powerful capabilities of the Oracle Database file mapping
feature.

These capabilities include:

• The ability to map all the database files that span a particular device

• The ability to map a particular file into its corresponding devices

• The ability to map a particular database object, including its block distribution at all levels
within the I/O stack

Consider an Oracle Database instance which is composed of two data files:

• t_db1.f
• t_db2.f
These files are created on a Solaris UFS file system mounted on a VERITAS VxVM host based
striped volume, /dev/vx/dsk/ipfdg/ipf-vol1, that consists of the following host devices as
externalized from an EMC Symmetrix array:

• /dev/vx/rdmp/c2t1d0s2
• /dev/vx/rdmp/c2t1d1s2
Note that the following examples require the execution of a MAP_ALL() operation.

• Example 1: Map All Database Files that Span a Device
An example illustrates returning all Oracle Database files associated with a host device.

• Example 2: Map a File Into Its Corresponding Devices
An example displays a topological graph of a data file.

• Example 3: Map a Database Object
An example displays the block distribution at all levels within the I/O stack for a table.

12.9.4.1 Example 1: Map All Database Files that Span a Device
An example illustrates returning all Oracle Database files associated with a host device.

The following query returns all Oracle Database files associated with the /dev/vx/rdmp/
c2t1d1s2 host device:

SELECT UNIQUE me.ELEM_NAME, mf.FILE_NAME
 FROM V$MAP_FILE_IO_STACK fs, V$MAP_FILE mf, V$MAP_ELEMENT me
 WHERE mf.FILE_MAP_IDX = fs.FILE_MAP_IDX
 AND me.ELEM_IDX = fs.ELEM_IDX
 AND me.ELEM_NAME = '/dev/vx/rdmp/c2t1d1s2';

The query results are:

ELEM_NAME FILE_NAME
------------------------ --------------------------------
/dev/vx/rdmp/c2t1d1s2 /oracle/dbs/t_db1.f
/dev/vx/rdmp/c2t1d1s2 /oracle/dbs/t_db2.f

Chapter 12
Mapping Files to Physical Devices

12-31

12.9.4.2 Example 2: Map a File Into Its Corresponding Devices
An example displays a topological graph of a data file.

The following query displays a topological graph of the /oracle/dbs/t_db1.f data file:

WITH fv AS
 (SELECT FILE_MAP_IDX, FILE_NAME FROM V$MAP_FILE
 WHERE FILE_NAME = '/oracle/dbs/t_db1.f')
SELECT fv.FILE_NAME, LPAD(' ', 4 * (LEVEL - 1)) || el.ELEM_NAME ELEM_NAME
 FROM V$MAP_SUBELEMENT sb, V$MAP_ELEMENT el, fv,
 (SELECT UNIQUE ELEM_IDX FROM V$MAP_FILE_IO_STACK io, fv
 WHERE io.FILE_MAP_IDX = fv.FILE_MAP_IDX) fs
 WHERE el.ELEM_IDX = sb.CHILD_IDX
 AND fs.ELEM_IDX = el.ELEM_IDX
 START WITH sb.PARENT_IDX IN
 (SELECT DISTINCT ELEM_IDX
 FROM V$MAP_FILE_EXTENT fe, fv
 WHERE fv.FILE_MAP_IDX = fe.FILE_MAP_IDX)
 CONNECT BY PRIOR sb.CHILD_IDX = sb.PARENT_IDX;

The resulting topological graph is:

FILE_NAME ELEM_NAME
----------------------- ---
/oracle/dbs/t_db1.f _sym_plex_/dev/vx/rdsk/ipfdg/ipf-vol1_-1_-1
/oracle/dbs/t_db1.f _sym_subdisk_/dev/vx/rdsk/ipfdg/ipf-vol1_0_0_0
/oracle/dbs/t_db1.f /dev/vx/rdmp/c2t1d0s2
/oracle/dbs/t_db1.f _sym_symdev_000183600407_00C
/oracle/dbs/t_db1.f _sym_hyper_000183600407_00C_0
/oracle/dbs/t_db1.f _sym_hyper_000183600407_00C_1
/oracle/dbs/t_db1.f _sym_subdisk_/dev/vx/rdsk/ipfdg/ipf-vol1_0_1_0
/oracle/dbs/t_db1.f /dev/vx/rdmp/c2t1d1s2
/oracle/dbs/t_db1.f _sym_symdev_000183600407_00D
/oracle/dbs/t_db1.f _sym_hyper_000183600407_00D_0
/oracle/dbs/t_db1.f _sym_hyper_000183600407_00D_1

12.9.4.3 Example 3: Map a Database Object
An example displays the block distribution at all levels within the I/O stack for a table.

This example displays the block distribution at all levels within the I/O stack for the
scott.bonus table.

A MAP_OBJECT() operation must first be executed as follows:

EXECUTE DBMS_STORAGE_MAP.MAP_OBJECT('BONUS','SCOTT','TABLE');

The query is as follows:

SELECT io.OBJECT_NAME o_name, io.OBJECT_OWNER o_owner, io.OBJECT_TYPE o_type,
 mf.FILE_NAME, me.ELEM_NAME, io.DEPTH,
 (SUM(io.CU_SIZE * (io.NUM_CU - DECODE(io.PARITY_PERIOD, 0, 0,
 TRUNC(io.NUM_CU / io.PARITY_PERIOD)))) / 2) o_size
 FROM MAP_OBJECT io, V$MAP_ELEMENT me, V$MAP_FILE mf
 WHERE io.OBJECT_NAME = 'BONUS'
 AND io.OBJECT_OWNER = 'SCOTT'
 AND io.OBJECT_TYPE = 'TABLE'
 AND me.ELEM_IDX = io.ELEM_IDX
 AND mf.FILE_MAP_IDX = io.FILE_MAP_IDX
 GROUP BY io.ELEM_IDX, io.FILE_MAP_IDX, me.ELEM_NAME, mf.FILE_NAME, io.DEPTH,

Chapter 12
Mapping Files to Physical Devices

12-32

 io.OBJECT_NAME, io.OBJECT_OWNER, io.OBJECT_TYPE
 ORDER BY io.DEPTH;

The following is the result of the query. Note that the o_size column is expressed in KB.

O_NAME O_OWNER O_TYPE FILE_NAME ELEM_NAME DEPTH O_SIZE
------ ------- ------ ------------------- ----------------------------- ------ ------
BONUS SCOTT TABLE /oracle/dbs/t_db1.f /dev/vx/dsk/ipfdg/ipf-vol1 0 20
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_plex_/dev/vx/rdsk/ipf 1 20
 pdg/if-vol1_-1_-1
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_subdisk_/dev/vx/rdsk/ 2 12
 ipfdg/ipf-vol1_0_1_0
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_subdisk_/dev/vx/rdsk/ipf 2 8
 dg/ipf-vol1_0_2_0
BONUS SCOTT TABLE /oracle/dbs/t_db1.f /dev/vx/rdmp/c2t1d1s2 3 12
BONUS SCOTT TABLE /oracle/dbs/t_db1.f /dev/vx/rdmp/c2t1d2s2 3 8
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_symdev_000183600407_00D 4 12
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_symdev_000183600407_00E 4 8
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_hyper_000183600407_00D_0 5 12
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_hyper_000183600407_00D_1 5 12
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_hyper_000183600407_00E_0 6 8
BONUS SCOTT TABLE /oracle/dbs/t_db1.f _sym_hyper_000183600407_00E_1 6 8

12.10 Data Files Data Dictionary Views
A set of data dictionary views provides useful information about the data files of a database.

View Description

DBA_DATA_FILES Provides descriptive information about each data file, including the
tablespace to which it belongs and the file ID. The file ID can be used
to join with other views for detail information.

DBA_EXTENTS
USER_EXTENTS

DBA view describes the extents comprising all segments in the
database. Contains the file ID of the data file containing the extent.
USER view describes extents of the segments belonging to objects
owned by the current user.

DBA_FREE_SPACE
USER_FREE_SPACE

DBA view lists the free extents in all tablespaces. Includes the file ID of
the data file containing the extent. USER view lists the free extents in
the tablespaces accessible to the current user.

V$DATAFILE Contains data file information from the control file

V$DATAFILE_HEADER Contains information from data file headers

This example illustrates the use of one of these views, V$DATAFILE.

SELECT NAME,
 FILE#,
 STATUS,
 CHECKPOINT_CHANGE# "CHECKPOINT"
 FROM V$DATAFILE;

NAME FILE# STATUS CHECKPOINT
-------------------------------- ----- ------- ----------
/u01/oracle/rbdb1/system01.dbf 1 SYSTEM 3839
/u02/oracle/rbdb1/temp01.dbf 2 ONLINE 3782
/u02/oracle/rbdb1/users03.dbf 3 OFFLINE 3782

FILE# lists the file number of each data file; the first data file in the SYSTEM tablespace created
with the database is always file 1. STATUS lists other information about a data file. If a data file

Chapter 12
Data Files Data Dictionary Views

12-33

is part of the SYSTEM tablespace, its status is SYSTEM (unless it requires recovery). If a data file
in a non-SYSTEM tablespace is online, its status is ONLINE. If a data file in a non-SYSTEM
tablespace is offline, its status can be either OFFLINE or RECOVER. CHECKPOINT lists the final
SCN (system change number) written for the most recent checkpoint of a data file.

Chapter 12
Data Files Data Dictionary Views

12-34

13
Transporting Data

Transporting data moves the data from one database to another.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers
to a non-CDB from a previous release.

• About Transporting Data
You can transport data at the following levels: database, tablespaces, tables, partitions,
and subpartitions.

• Transporting Databases
You can transport a database to a new Oracle Database instance.

• Transporting Tablespaces Between Databases
You can transport tablespaces between databases.

• Transporting Tables, Partitions, or Subpartitions Between Databases
You can transport tables, partitions, and subpartitions between databases.

• Converting Data Between Platforms
To transport tables across platforms, check platform endianness, and review other
restrictions.

• Guidelines for Transferring Data Files
You should follow a set of guidelines when transferring the data files.

13.1 About Transporting Data
You can transport data at the following levels: database, tablespaces, tables, partitions, and
subpartitions.

• Purpose of Transporting Data
Transporting data is much faster than performing either an export/import or unload/load of
the same data. It is faster because, for user-defined tablespaces, the data files containing
all of the actual data are copied to the target location, and you use Data Pump to transfer
only the metadata of the database objects to the new database.

• Transporting Data: Scenarios
Transporting data is useful in several scenarios.

• Transporting Data Across Platforms
You can transport data across platforms.

13-1

• General Limitations on Transporting Data
There are general limitations on transporting data. There are also limitations that are
specific to full transportable export/import, transportable tablespaces, or transportable
tables.

• Compatibility Considerations for Transporting Data
When transporting data, Oracle Database computes the lowest compatibility level at which
the target database must run.

13.1.1 Purpose of Transporting Data
Transporting data is much faster than performing either an export/import or unload/load of the
same data. It is faster because, for user-defined tablespaces, the data files containing all of the
actual data are copied to the target location, and you use Data Pump to transfer only the
metadata of the database objects to the new database.

You can transport data at any of the following levels:

• Database

You can use the full transportable export/import feature to move an entire database to a
different database instance.

• Tablespaces

You can use the transportable tablespaces feature to move a set of tablespaces
between databases.

• Tables, partitions, and subpartitions

You can use the transportable tables feature to move a set of tables, partitions, and
subpartitions between databases.

Transportable tablespaces and transportable tables only transports data that resides in user-
defined tablespaces. However, full transportable export/import transports data that resides in
both user-defined and administrative tablespaces, such as SYSTEM and SYSAUX. Full
transportable export/import transports metadata for objects contained within the user-defined
tablespaces and both the metadata and data for user-defined objects contained within the
administrative tablespaces. Specifically, with full transportable export/import, the export dump
file includes only the metadata for objects contained within the user-defined tablespaces, but it
includes both the metadata and the data for user-defined objects contained within the
administrative tablespaces.

13.1.2 Transporting Data: Scenarios
Transporting data is useful in several scenarios.

• Scenarios for Full Transportable Export/import
The full transportable export/import feature is useful in several scenarios.

• Scenarios for Transportable Tablespaces or Transportable Tables
The transportable tablespaces or transportable tables feature is useful in several
scenarios.

13.1.2.1 Scenarios for Full Transportable Export/import
The full transportable export/import feature is useful in several scenarios.

Chapter 13
About Transporting Data

13-2

• Moving a Non-CDB Into a CDB
The multitenant architecture enables an Oracle database to function as a multitenant
container database (CDB) that includes one or many customer-created pluggable
databases (PDBs). You can move a non-CDB into a CDB by transporting the database.

• Moving a Database to a New Computer System
You can use full transportable export/import to move a database from one computer
system to another. You might want to move a database to a new computer system to
upgrade the hardware or to move the database to a different platform.

• Upgrading to a New Release of Oracle Database
You can use full transportable export/import to upgrade a database from an Oracle
Database 11g Release 2 (11.2.0.3) or later to Oracle Database 19c.

13.1.2.1.1 Moving a Non-CDB Into a CDB
The multitenant architecture enables an Oracle database to function as a multitenant container
database (CDB) that includes one or many customer-created pluggable databases (PDBs).
You can move a non-CDB into a CDB by transporting the database.

The transported database becomes a pluggable database (PDB) associated with the CDB. Full
transportable export/import can move an Oracle Database 11g Release 2 (11.2.0.3) or later
into an Oracle Database 19c CDB efficiently.

See Also:

• "Transporting a Database Using an Export Dump File" for instructions that
describe transporting a non-CDB into a CDB using an export dump file

• "Transporting a Database Over the Network" for instructions that describe
transporting a non-CDB into a CDB over the network

• Oracle Multitenant Administrator's Guide

13.1.2.1.2 Moving a Database to a New Computer System
You can use full transportable export/import to move a database from one computer system to
another. You might want to move a database to a new computer system to upgrade the
hardware or to move the database to a different platform.

See Also:

• "Transporting Databases"

• "Transporting Data Across Platforms"

13.1.2.1.3 Upgrading to a New Release of Oracle Database
You can use full transportable export/import to upgrade a database from an Oracle Database
11g Release 2 (11.2.0.3) or later to Oracle Database 19c.

Chapter 13
About Transporting Data

13-3

To do so, install Oracle Database 19c and create an empty database. Next, use full
transportable export/import to transport the Oracle Database 11g Release 2 (11.2.0.3) or later
database into the Oracle Database 19c database.

See Also:

• "Transporting Databases"

• Oracle Database Installation Guide

13.1.2.2 Scenarios for Transportable Tablespaces or Transportable Tables
The transportable tablespaces or transportable tables feature is useful in several scenarios.

• Scenarios That Apply to Transportable Tablespaces or Transportable Tables
For some scenarios, either transportable tablespaces or transportable tables can be
useful. For other scenarios, only transportable tablespaces can be useful, or only
transportable tables can be useful.

• Transporting and Attaching Partitions for Data Warehousing
You can use transportable tables and tranportable tablespaces to attach partitions for data
warehousing.

• Publishing Structured Data on CDs
Transportable tablespaces and transportable tables both provide a way to publish
structured data on CDs.

• Mounting the Same Tablespace Read-Only on Multiple Databases
You can use transportable tablespaces to mount a tablespace read-only on multiple
databases.

• Archiving Historical Data
When you use transportable tablespaces or transportable tables, the transported data is a
self-contained set of files that can be imported into any Oracle database. Therefore, you
can archive old or historical data in an enterprise data warehouse using the transportable
tablespaces and transportable tables procedures.

• Using Transportable Tablespaces to Perform TSPITR
You can use transportable tablespaces to perform tablespace point-in-time recovery
(TSPITR).

• Copying or Moving Individual Tables
You can use transportable tables to move a table or a set of tables from one database to
another without transporting the entire tablespaces that contain the tables. You can also
copy or move individual partitions and subpartitions from one database to another using
transportable tables.

13.1.2.2.1 Scenarios That Apply to Transportable Tablespaces or Transportable Tables
For some scenarios, either transportable tablespaces or transportable tables can be useful.
For other scenarios, only transportable tablespaces can be useful, or only transportable tables
can be useful.

Table 13-1 shows which feature can be used for each scenario.

Chapter 13
About Transporting Data

13-4

Table 13-1 Scenarios for Transportable Tablespaces and Transportable Tables

Scenarios Transportable
Tablespaces

Transportable
Tables

Transporting and Attaching Partitions for Data Warehousing Yes Yes

Publishing Structured Data on CDs Yes Yes

Archiving Historical Data Yes Yes

Using Transportable Tablespaces to Perform TSPITR Yes No

Copying or Moving Individual Tables No Yes

The following sections describe these scenarios in more detail.

13.1.2.2.2 Transporting and Attaching Partitions for Data Warehousing
You can use transportable tables and tranportable tablespaces to attach partitions for data
warehousing.

Typical enterprise data warehouses contain one or more large fact tables. These fact tables
can be partitioned by date, making the enterprise data warehouse a historical database. You
can build indexes to speed up star queries. Oracle recommends that you build local indexes for
such historically partitioned tables to avoid rebuilding global indexes every time you drop the
oldest partition from the historical database.

Suppose every month you would like to load one month of data into the data warehouse. There
is a large fact table in the data warehouse called sales, which has the following columns:

CREATE TABLE sales (invoice_no NUMBER,
 sale_year INT NOT NULL,
 sale_month INT NOT NULL,
 sale_day INT NOT NULL)
 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 (partition jan2011 VALUES LESS THAN (2011, 2, 1),
 partition feb2011 VALUES LESS THAN (2011, 3, 1),
 partition mar2011 VALUES LESS THAN (2011, 4, 1),
 partition apr2011 VALUES LESS THAN (2011, 5, 1),
 partition may2011 VALUES LESS THAN (2011, 6, 1),
 partition jun2011 VALUES LESS THAN (2011, 7, 1));

You create a local non-prefixed index:

CREATE INDEX sales_index ON sales(invoice_no) LOCAL;

Initially, all partitions are empty, and are in the same default tablespace. Each month, you want
to create one partition and attach it to the partitioned sales table.

Suppose it is July 2011, and you would like to load the July sales data into the partitioned
table. In a staging database, you create a table, jul_sales with the same column types as the
sales table. Optionally, you can create a new tablespace, ts_jul, before you create the table,
and create the table in this tablespace. You can create the table jul_sales using the CREATE
TABLE ... AS SELECT statement. After creating and populating jul_sales, you can also create an
index, jul_sale_index, for the table, indexing the same column as the local index in the sales
table. For detailed information about creating and populating a staging table in a data
warehousing environment, see Oracle Database Data Warehousing Guide.

After creating the table and building the index, transport the table's data to the data warehouse
in one of the following ways:

Chapter 13
About Transporting Data

13-5

• You can use transportable tables to transport the jul_sales table to the data warehouse.

• If you created the ts_jul tablespace, then you can use transportable tablespaces to
transport the tablespace ts_jul to the data warehouse.

In the data warehouse, add a partition to the sales table for the July sales data. This also
creates another partition for the local non-prefixed index:

ALTER TABLE sales ADD PARTITION jul2011 VALUES LESS THAN (2011, 8, 1);

Attach the transported table jul_sales to the table sales by exchanging it with the new
partition:

ALTER TABLE sales EXCHANGE PARTITION jul2011 WITH TABLE jul_sales
 INCLUDING INDEXES
 WITHOUT VALIDATION;

This statement places the July sales data into the new partition jul2011, attaching the new
data to the partitioned table. This statement also converts the index jul_sale_index into a
partition of the local index for the sales table. This statement should return immediately,
because it only operates on the structural information and it simply switches database pointers.
If you know that the data in the new partition does not overlap with data in previous partitions,
you are advised to specify the WITHOUT VALIDATION clause. Otherwise, the statement goes
through all the new data in the new partition in an attempt to validate the range of that partition.

If all partitions of the sales table came from the same staging database (the staging database
is never destroyed), then the exchange statement always succeeds. In general, however, if
data in a partitioned table comes from different databases, then the exchange operation might
fail. For example, if the jan2011 partition of sales did not come from the same staging
database, then the preceding exchange operation can fail, returning the following error:

ORA-19728: data object number conflict between table JUL_SALES and partition JAN2011 in
table SALES

To resolve this conflict, move the offending partition by issuing the following statement:

ALTER TABLE sales MOVE PARTITION jan2011;

Then retry the exchange operation.

After the exchange succeeds, you can safely drop jul_sales and jul_sale_index (both are
now empty). Thus you have successfully loaded the July sales data into your data warehouse.

13.1.2.2.3 Publishing Structured Data on CDs
Transportable tablespaces and transportable tables both provide a way to publish structured
data on CDs.

You can copy the data to be published, including the data files and export dump file, to a CD.
This CD can then be distributed. If you are using transportable tablespaces, then you must
generate a transportable set before copying the data to the CD.

When customers receive this CD, they can add the CD contents to an existing database
without having to copy the data files from the CD to disk storage. For example, suppose on a
Microsoft Windows system D: drive is the CD drive. You can import the data in data file
catalog.f and the export dump file expdat.dmp as follows:

impdp user_name/password DUMPFILE=expdat.dmp DIRECTORY=dpump_dir
 TRANSPORT_DATAFILES='D:\catalog.f'

Chapter 13
About Transporting Data

13-6

You can remove the CD while the database is still up. Subsequent queries to the data return an
error indicating that the database cannot open the data files on the CD. However, operations to
other parts of the database are not affected. Placing the CD back into the drive makes the data
readable again.

Removing the CD is the same as removing the data files of a read-only tablespace. If you shut
down and restart the database, then the database indicates that it cannot find the removed
data file and does not open the database (unless you set the initialization parameter
READ_ONLY_OPEN_DELAYED to TRUE). When READ_ONLY_OPEN_DELAYED is set to TRUE, the
database reads the file only when someone queries the data. Thus, when transporting data
from a CD, set the READ_ONLY_OPEN_DELAYED initialization parameter to TRUE, unless the CD is
permanently attached to the database.

13.1.2.2.4 Mounting the Same Tablespace Read-Only on Multiple Databases
You can use transportable tablespaces to mount a tablespace read-only on multiple databases.

In this way, separate databases can share the same data on disk instead of duplicating data on
separate disks. The tablespace data files must be accessible by all databases. To avoid
database corruption, the tablespace must remain read-only in all the databases mounting the
tablespace, and the tablespace's data files must be read-only at the operating system level.

The following are two scenarios for mounting the same tablespace read-only on multiple
databases:

• The tablespace originates in a database that is separate from the databases that will share
the tablespace.

You generate a transportable set in the source database, put the transportable set onto a
disk that is accessible to all databases, and then import the metadata into each database
on which you want to mount the tablespace.

• The tablespace already belongs to one of the databases that will share the tablespace.

It is assumed that the data files are already on a shared disk. In the database where the
tablespace already exists, you make the tablespace read-only, generate the transportable
set, and then import the tablespace into the other databases, leaving the data files in the
same location on the shared disk.

You can make a disk accessible by multiple computers in several ways. You can use either a
cluster file system or raw disk. You can also use network file system (NFS), but be aware that if
a user queries the shared tablespace while NFS is down, the database will stop responding
until the NFS operation times out.

Later, you can drop the read-only tablespace in some of the databases. Doing so does not
modify the data files for the tablespace. Thus, the drop operation does not corrupt the
tablespace. Do not make the tablespace read/write unless only one database is mounting the
tablespace.

13.1.2.2.5 Archiving Historical Data
When you use transportable tablespaces or transportable tables, the transported data is a self-
contained set of files that can be imported into any Oracle database. Therefore, you can
archive old or historical data in an enterprise data warehouse using the transportable
tablespaces and transportable tables procedures.

Chapter 13
About Transporting Data

13-7

See Also:

Oracle Database Data Warehousing Guide for more details

13.1.2.2.6 Using Transportable Tablespaces to Perform TSPITR
You can use transportable tablespaces to perform tablespace point-in-time recovery (TSPITR).

See Also:

Oracle Database Backup and Recovery User's Guide for information about how to
perform TSPITR using transportable tablespaces

13.1.2.2.7 Copying or Moving Individual Tables
You can use transportable tables to move a table or a set of tables from one database to
another without transporting the entire tablespaces that contain the tables. You can also copy
or move individual partitions and subpartitions from one database to another using
transportable tables.

See Also:

"Transporting Tables, Partitions, or Subpartitions Between Databases"

13.1.3 Transporting Data Across Platforms
You can transport data across platforms.

The functionality of transporting data across platforms can be used to:

• Enable a database to be migrated from one platform to another.

• Provide an easier and more efficient means for content providers to publish structured data
and distribute it to customers running Oracle Database on different platforms.

• Simplify the distribution of data from a data warehouse environment to data marts, which
are often running on smaller platforms.

• Enable the sharing of read-only tablespaces between Oracle Database installations on
different operating systems or platforms, assuming that your storage system is accessible
from those platforms and the platforms all have the same endianness, as described in the
sections that follow.

Many, but not all, platforms are supported for cross-platform data transport. You can query the
V$TRANSPORTABLE_PLATFORM view to see the platforms that are supported, and to determine
each platform's endian format (byte ordering). The following query displays the platforms that
support cross-platform data transport:

COLUMN PLATFORM_NAME FORMAT A40
COLUMN ENDIAN_FORMAT A14

Chapter 13
About Transporting Data

13-8

SELECT PLATFORM_ID, PLATFORM_NAME, ENDIAN_FORMAT
 FROM V$TRANSPORTABLE_PLATFORM
 ORDER BY PLATFORM_ID;

PLATFORM_ID PLATFORM_NAME ENDIAN_FORMAT
----------- -- --------------
 1 Solaris[tm] OE (32-bit) Big
 2 Solaris[tm] OE (64-bit) Big
 3 HP-UX (64-bit) Big
 4 HP-UX IA (64-bit) Big
 5 HP Tru64 UNIX Little
 6 AIX-Based Systems (64-bit) Big
 7 Microsoft Windows IA (32-bit) Little
 8 Microsoft Windows IA (64-bit) Little
 9 IBM zSeries Based Linux Big
 10 Linux IA (32-bit) Little
 11 Linux IA (64-bit) Little
 12 Microsoft Windows x86 64-bit Little
 13 Linux x86 64-bit Little
 15 HP Open VMS Little
 16 Apple Mac OS Big
 17 Solaris Operating System (x86) Little
 18 IBM Power Based Linux Big
 19 HP IA Open VMS Little
 20 Solaris Operating System (x86-64) Little
 21 Apple Mac OS (x86-64) Little

If the source platform and the target platform are of the same endianness, then the data is
transported from the source platform to the target platform without any data conversion.

If the source platform and the target platform are of different endianness, then the data being
transported must be converted to the target platform format. You can convert the data using
one of the following methods:

• The GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package

When you use one of these procedures to move data files between the source platform
and the target platform, each block in each data file is converted to the target platform's
endianness. The conversion occurs on the target platform.

• The RMAN CONVERT command

Run the RMAN CONVERT command on the source or target platform. This command
converts the data being transported to the target platform format.

Note:

Conversion of data files between different endian formats is not supported for
data files having undo segments.

Before the data in a data file can be transported to a different platform, the data file header
must identify the platform to which it belongs. To transport read-only tablespaces between
Oracle Database installations on different platforms, make the data file read/write at least once.

Chapter 13
About Transporting Data

13-9

See Also:

"Converting Data Between Platforms"

13.1.4 General Limitations on Transporting Data
There are general limitations on transporting data. There are also limitations that are specific to
full transportable export/import, transportable tablespaces, or transportable tables.

Be aware of the following general limitations as you plan to transport data:

• The source and the target databases must use compatible database character sets.
Specifically, one of the following must be true:

– The database character sets of the source and the target databases are the same.

– The source database character set is a strict (binary) subset of the target database
character set, and the following three conditions are true:

* The source database is Oracle Database 10g Release 1 (10.1.0.3) or later.

* The tablespaces that you transport contain no table columns with character length
semantics, or the maximum character width is the same in both the source and
target database character sets.

* The data that you transport contain no columns with the CLOB data type, or the
source and the target database character sets are both single-byte or both
multibyte.

– The source database character set is a strict (binary) subset of the target database
character set, and the following two conditions are true:

* The source database is earlier than Oracle Database 10g Release 1 (10.1.0.3).

* The maximum character width is the same in the source and target database
character sets.

Note:

The subset-superset relationship between character sets recognized by Oracle
Database is documented in Oracle Database Globalization Support Guide.

• The source and the target databases must use compatible national character sets.
Specifically, one of the following must be true:

– The national character sets of the source and target databases are the same.

– The source database is Oracle Database 10g Release 1 (10.1.0.3) or later, and the
tablespaces to be transported contain no columns with NCHAR, NVARCHAR2, or NCLOB
data types.

• When running a transportable export operation, the following limitations apply:

– The default tablespace of the user performing the export must not be one of the
tablespaces being transported.

– The default tablespace of the user performing the export must be writable.

Chapter 13
About Transporting Data

13-10

• In a CDB, you cannot transport a tablespace to a target container that contains a
tablespace of the same name. However, different containers can have tablespaces with
the same name.

You can use the REMAP_TABLESPACE import parameter to import the database objects into a
different tablespace. Alternatively, before the transport operation, you can rename either
the tablespace to be transported or the target tablespace.

• Transporting data with XMLTypes has the following limitations:

– The target database must have XML DB installed.

– Schemas referenced by XMLType tables cannot be the XML DB standard schemas.

– If the schema for a transported XMLType table is not present in the target database,
then it is imported and registered. If the schema already exists in the target database,
then a message is displayed during import.

– You must use only Oracle Data Pump to export and import the metadata for data that
contains XMLTypes.

The following query returns a list of tablespaces that contain XMLTypes:

select distinct p.tablespace_name from dba_tablespaces p,
 dba_xml_tables x, dba_users u, all_all_tables t where
 t.table_name=x.table_name and t.tablespace_name=p.tablespace_name
 and x.owner=u.username;

See Oracle XML DB Developer’s Guide for information on XMLTypes.

• Types whose interpretation is application-specific and opaque to the database (such as
RAW, BFILE, and AnyType can be transported, but they are not converted as part of the
cross-platform transport operation. Their actual structure is known only to the application,
so the application must address any endianness issues after these types are moved to the
new platform. Types and objects that use these opaque types, either directly or indirectly,
are also subject to this limitation.

• When you transport a tablespace containing tables with TIMESTAMP WITH LOCAL TIME
ZONE (TSLTZ) data between databases with different time zones, the tables with the TSLTZ
data are not transported. Error messages describe the tables that were not transported.
However, tables in the tablespace that do not contain TSLTZ data are transported.

You can determine the time zone of a database with the following query:

SELECT DBTIMEZONE FROM DUAL;

You can alter the time zone for a database with an ALTER DATABASE SQL statement.

You can use Oracle Data Pump to perform a conventional export/import of tables with
TSLTZ data after the transport operation completes.

• Analytic workspaces cannot be part of cross-platform transport operations. If the source
platform and target platform are different, then use Data Pump export/import to export and
import analytic workspaces. See Oracle OLAP DML Reference for more information about
analytic workspaces.

Note:

Do not run the Oracle Data Pump export utility expdp or import utility impdp as
SYSDBA, except at the request of Oracle technical support. SYSDBA is used internally
and has specialized functions; its behavior is not the same as for general users.

Chapter 13
About Transporting Data

13-11

Related Topics

• Limitations on Full Transportable Export/import
There are limitations on full transportable export/import.

• Limitations on Transportable Tablespaces
When you use transportable tablespaces, review the encryption, timezone, object,
endianness, and other limitations that apply.

• Limitations on Transportable Tables
There are limitations on transportable tables.

• Character Sets

• XMLType Data Type

13.1.5 Compatibility Considerations for Transporting Data
When transporting data, Oracle Database computes the lowest compatibility level at which the
target database must run.

You can transport a tablespace or a table from a source database to a target database having
the same or higher compatibility setting using transportable tablespaces, even if the target
database is on the same or a different platform. The data transport operation fails if the
compatibility level of the source database is higher than the compatibility level of the target
database.

The following table shows the minimum compatibility requirements of the source and target
databases in various scenarios. The source and target database need not have the same
compatibility setting.

Table 13-2 Minimum Compatibility Requirements for Transport Scenarios

Transport Scenario Source Minimum Database
Compatibility

Target Minimum Database
Compatibility

Transporting a database using full
transportable export/import

12.0 (COMPATIBLE initialization
parameter setting for an Oracle
Database 12c or later database

12 (VERSION Oracle Data Pump
export parameter setting for an
11.2.0.3 or later database)

12.0 (COMPATIBLE initialization
parameter setting)

Transporting a tablespace
between databases on the same
platform using transportable
tablespaces

8.0 (COMPATIBLE initialization
parameter setting)

8.0 (COMPATIBLE initialization
parameter setting)

Transporting a tablespace with
different database block size than
the target database using
transportable tablespaces

9.0 (COMPATIBLE initialization
parameter setting)

9.0 (COMPATIBLE initialization
parameter setting)

Transporting a tablespace
between databases on different
platforms using transportable
tablespaces

10.0 (COMPATIBLE initialization
parameter setting)

10.0 (COMPATIBLE initialization
parameter setting)

Transporting tables between
databases

11.2.0 (COMPATIBLE initialization
parameter setting for an Oracle
Database 12c, or a later
database

11.2.0 (COMPATIBLE initialization
parameter setting)

Chapter 13
About Transporting Data

13-12

Note:

• When you use full transportable export and import, the source database must be
an Oracle Database 11g Release 2 (11.2.0.3) or later database, and the target
database must be an Oracle Database 12c or later database.

• When transporting a database from Oracle Database 11g Release 2 (11.2.0.3) or
later database to Oracle Database 12c or later database, you must set the
Oracle Data Pump export parameter VERSION to 12 or higher.

• When transporting a database from an Oracle Database 19c database to an
Oracle Database 19c database or later release, you must set the initialization
parameter COMPATIBLE to 19.0.0 or higher.

13.2 Transporting Databases
You can transport a database to a new Oracle Database instance.

• Introduction to Full Transportable Export/Import
You can use the full transportable export/import feature to copy an entire database from
one Oracle Database instance to another.

• Limitations on Full Transportable Export/import
There are limitations on full transportable export/import.

• Transporting a Database Using an Export Dump File
You can transport a database using an export dump file.

• Transporting a Database Over the Network
You can transport a database over the network.

13.2.1 Introduction to Full Transportable Export/Import
You can use the full transportable export/import feature to copy an entire database from one
Oracle Database instance to another.

You can use Oracle Data Pump to produce an export dump file, transport the dump file to the
target database if necessary, and then import the export dump file. Alternatively, you can use
Oracle Data Pump to copy the database over the network.

The tablespaces in the database being transported can be either dictionary managed or locally
managed. The tablespaces in the database are not required to be of the same block size as
the target database standard block size.

Starting with Oracle Database Release 21c, you can use Oracle Data Pump to export
databases to and import databases from the object store in Oracle Cloud. This simplifies
migration to Oracle Cloud.

Chapter 13
Transporting Databases

13-13

Note:

This method for transporting a database requires that you place the user-defined
tablespaces in the database in read-only mode until you complete the export. If this is
undesirable, then you can use the transportable tablespaces from backup feature
described in Oracle Database Backup and Recovery User's Guide.

Related Topics

• Exporting Data from On Premises Databases to Oracle Autonomous Databases

See Also:

"About Transporting Data"

13.2.2 Limitations on Full Transportable Export/import
There are limitations on full transportable export/import.

Be aware of the following limitations on full transportable export/import:

• The general limitations described in "General Limitations on Transporting Data" apply to
full transportable export/import.

• Full transportable export/import can export and import user-defined database objects in
administrative tablespaces using conventional Data Pump export/import, such as direct
path or external table. Administrative tablespaces are non-user tablespaces supplied with
Oracle Database, such as the SYSTEM and SYSAUX tablespaces.

• Full transportable export/import cannot transport a database object that is defined in both
an administrative tablespace (such as SYSTEM and SYSAUX) and a user-defined tablespace.
For example, a partitioned table might be stored in both a user-defined tablespace and an
administrative tablespace. If you have such database objects in your database, then you
can redefine them before transporting them so that they are stored entirely in either an
administrative tablespace or a user-defined tablespace. If the database objects cannot be
redefined, then you can use conventional Data Pump export/import.

• When transporting a database over the network using full transportable export/import,
auditing cannot be enabled for tables stored in an administrative tablespace (such as
SYSTEM and SYSAUX) when the audit trail information itself is stored in a user-defined
tablespace. See Oracle Database Security Guide for more information about auditing.

• Full transportable database import cannot be executed with Transaction Guard enabled.
Disable Transaction Guard during a full database import.

Related Topics

• Introduction to Auditing

Chapter 13
Transporting Databases

13-14

13.2.3 Transporting a Database Using an Export Dump File
You can transport a database using an export dump file.

The following list of tasks summarizes the process of transporting a database using an export
dump file. Details for each task are provided in the subsequent example.

1. At the source database, configure each of the user-defined tablespaces in read-only mode
and export the database.

Ensure that the following parameters are set to the specified values:

• TRANSPORTABLE=ALWAYS
• FULL=Y
If the source database is an Oracle Database 11g database (11.2.0.3 or later), then you
must set the VERSION parameter to 12 or higher.

If the source database contains any encrypted tablespaces or tablespaces containing
tables with encrypted columns, then you must either specify ENCRYPTION_PWD_PROMPT=YES,
or specify the ENCRYPTION_PASSWORD parameter.

The export dump file includes the metadata for objects contained within the user-defined
tablespaces and both the metadata and data for user-defined objects contained within the
administrative tablespaces, such as SYSTEM and SYSAUX.

2. Transport the export dump file.

Copy the export dump file to a place that is accessible to the target database.

3. Transport the data files for all of the user-defined tablespaces in the database.

Copy the data files to a place that is accessible to the target database.

If the source platform and target platform are different, then check the endian format of
each platform by running the query on the V$TRANSPORTABLE_PLATFORM view.

See "Transporting Data Across Platforms".

If the source platform's endian format is different from the target platform's endian format,
then use one of the following methods to convert the data files:

• Use the GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package to
transfer the data files. These procedures convert the data files to the target platform's
endian format automatically.

• Use the RMAN CONVERT command to convert the data files to the target platform's
endian format.

Note:

Conversion of data files between different endian formats is not supported for
data files having undo segments.

See "Converting Data Between Platforms" for more information.

4. (Optional) Restore the user-defined tablespaces to read/write mode on the source
database.

5. At the target database, import the database.

Chapter 13
Transporting Databases

13-15

When the import is complete, the user-defined tablespaces are in read/write mode.

Example

The tasks for transporting a database are illustrated in detail in this example. This example
assumes that the source platform is Solaris and the target platform is Microsoft Windows.

It also assumes that the source platform has the following data files and tablespaces:

Tablespace Type Data File

sales User-defined /u01/app/oracle/oradata/mydb/sales01.dbf
customers User-defined /u01/app/oracle/oradata/mydb/cust01.dbf
employees User-defined /u01/app/oracle/oradata/mydb/emp01.dbf
SYSTEM Administrative /u01/app/oracle/oradata/mydb/system01.dbf
SYSAUX Administrative /u01/app/oracle/oradata/mydb/sysaux01.dbf

The following assumptions are made for this example:

• The target database is a new database that is being populated with the data from the
source database. The name of the source database is mydb.

• Both the source database and the target database are Oracle Database 21c databases.

Complete the following tasks to transport the database using an export dump file:

Example 13-1 Task 1: Generate the Export Dump File

Generate the export dump file by completing the following steps:

1. Start SQL*Plus and connect to the database as an administrator or as a user who has
either the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

2. Make all of the user-defined tablespaces in the database read-only.

ALTER TABLESPACE sales READ ONLY;

ALTER TABLESPACE customers READ ONLY;

ALTER TABLESPACE employees READ ONLY;
3. Start the Oracle Data Pump export utility as a user with DATAPUMP_EXP_FULL_DATABASE

role, and specify the full transportable export/import options.

SQL> HOST

$ expdp user_name full=y dumpfile=expdat.dmp directory=data_pump_dir
 transportable=always logfile=export.log

Password: password

You must always specify TRANSPORTABLE=ALWAYS, which determines whether the
transportable option is used.

This example specifies the following Oracle Data Pump parameters:

• The FULL parameter specifies that the entire database is being exported.

• The DUMPFILE parameter specifies the name of the structural information export dump
file that will be created, expdat.dmp.

Chapter 13
Transporting Databases

13-16

• The DIRECTORY parameter specifies the directory object that points to the operating
system or Oracle Automatic Storage Management location of the dump file. You must
create the DIRECTORY object before starting Oracle Data Pump, and you must grant the
READ and WRITE object privileges on the directory to the user running the Export utility.

See CREATE DIRECTORY in Oracle Database SQL Language Reference for
information on the CREATE DIRECTORY command

In a non-CDB, the directory object DATA_PUMP_DIR is created automatically. Read and
write access to this directory is automatically granted to the DBA role, and thus to users
SYS and SYSTEM.

However, the directory object DATA_PUMP_DIR is not created automatically in a PDB.
Therefore, when importing into a PDB, create a directory object in the PDB, and
specify the directory object when you run Oracle Data Pump.

See Also:

– Tracking Progress Within an Oracle Data Pump Job in Oracle Database
Utilities for information about the default directory when the DIRECTORY
parameter is omitted

– Overview of Multitenant Administration in Oracle Multitenant
Administrator's Guide for more information about PDBs

• The LOGFILE parameter specifies the file name of the log file that the export utility will
write. In this example, the log file is written to the same directory as the dump file, but it
can be written to a different location.

To perform a full transportable export on an Oracle Database 11g Release 2 (11.2.0.3) or
later Oracle Database 11g database, use the VERSION parameter, as shown in the following
example:

expdp user_name full=y dumpfile=expdat.dmp directory=data_pump_dir
 transportable=always version=12 logfile=export.log

Full transportable import is supported only for Oracle Database 12c and later databases.

Note:

In this example, the Oracle Data Pump utility is used to export only data
dictionary structural information (metadata) for the user-defined tablespaces.
Actual data is unloaded only for the administrative tablespaces (SYSTEM and
SYSAUX), so this operation goes relatively quickly, even for large user-defined
tablespaces.

4. Check the log file for errors, and take note of the dump file and data files that you must
transport to the target database. expdp outputs the names and paths of these files in
messages similar to these:

**
Dump file set for SYSTEM.SYS_EXPORT_TRANSPORTABLE_01 is:
 /u01/app/oracle/admin/mydb/dpdump/expdat.dmp
**
Datafiles required for transportable tablespace SALES:

Chapter 13
Transporting Databases

13-17

 /u01/app/oracle/oradata/mydb/sales01.dbf
Datafiles required for transportable tablespace CUSTOMERS:
 /u01/app/oracle/oradata/mydb/cust01.dbf
Datafiles required for transportable tablespace EMPLOYEES:
 /u01/app/oracle/oradata/mydb/emp01.dbf

5. When finished, exit back to SQL*Plus:

$ exit

See Also:

Oracle Data Pump Export in Oracle Database Utilities

Example 13-2 Task 2: Transport the Export Dump File

Transport the dump file to the directory pointed to by the DATA_PUMP_DIR directory object, or to
any other directory of your choosing. The new location must be accessible to the target
database.

At the target database, run the following query to determine the location of DATA_PUMP_DIR:

SELECT * FROM DBA_DIRECTORIES WHERE DIRECTORY_NAME = 'DATA_PUMP_DIR';

OWNER DIRECTORY_NAME DIRECTORY_PATH
---------- ---------------- -----------------------------------
SYS DATA_PUMP_DIR C:\app\orauser\admin\orawin\dpdump\

Example 13-3 Task 3: Transport the Data Files for the User-Defined Tablespaces

Transport the data files of the user-defined tablespaces in the database to a place that is
accessible to the target database.

In this example, transfer the following data files from the source database to the target
database:

• sales01.dbf
• cust01.dbf
• emp01.dbf
If you are transporting the database to a platform different from the source platform, then
determine if cross-platform database transport is supported for both the source and target
platforms, and determine the endianness of each platform. If both platforms have the same
endianness, then no conversion is necessary. Otherwise, you must do a conversion of each
tablespace in the database, either at the source database or at the target database.

If you are transporting the database to a different platform, then you can run the following
query on each platform. If the query returns a row, then the platform supports cross-platform
tablespace transport.

SELECT d.PLATFORM_NAME, ENDIAN_FORMAT
 FROM V$TRANSPORTABLE_PLATFORM tp, V$DATABASE d
 WHERE tp.PLATFORM_NAME = d.PLATFORM_NAME;

The following is the query result from the source platform:

Chapter 13
Transporting Databases

13-18

PLATFORM_NAME ENDIAN_FORMAT
---------------------------------- --------------
Solaris[tm] OE (32-bit) Big

The following is the query result from the target platform:

PLATFORM_NAME ENDIAN_FORMAT
---------------------------------- --------------
Microsoft Windows IA (32-bit) Little

In this example, you can see that the endian formats are different. Therefore, in this case, a
conversion is necessary for transporting the database. Use either the GET_FILE or PUT_FILE
procedure in the DBMS_FILE_TRANSFER package to transfer the data files. These procedures
convert the data files to the target platform's endian format automatically. Transport the data
files to the location of the existing data files of the target database. On the Unix and Linux
platforms, this location is typically /u01/app/oracle/oradata/dbname/, or +DISKGROUP/
dbname/datafile/. Alternatively, you can use the RMAN CONVERT command to convert the
data files.

See "Converting Data Between Platforms" for more information.

Note:

If no endianness conversion of the tablespaces is needed, then you can transfer the
files using any file transfer method.

Example 13-4 Task 4 (Optional) Restore Tablespaces to Read/Write Mode

Make the transported tablespaces read/write again at the source database, as follows:

ALTER TABLESPACE sales READ WRITE;
ALTER TABLESPACE customers READ WRITE;
ALTER TABLESPACE employees READ WRITE;

You can postpone this task to first ensure that the import process succeeds.

Start the Oracle Data Pump import utility as a user with DATAPUMP_IMP_FULL_DATABASE role,
and specify the full transportable export/import options.

impdp user_name full=Y dumpfile=expdat.dmp directory=data_pump_dir
 transport_datafiles=
 '/u01/app/oracle/oradata/mydb/sales01.dbf',
 '/u01/app/oracle/oradata/mydb/cust01.dbf',
 '/u01/app/oracle/oradata/mydb/emp01.dbf'
 logfile=import.log

Password: password

Example 13-5 Task 5: At the Target Database, Import the Database

This example specifies the following Oracle Data Pump parameters:

• The FULL parameter specifies that the entire database is being imported in FULL mode.

• The DUMPFILE parameter specifies the exported file containing the metadata for the user-
defined tablespaces, and both the metadata and data for the administrative tablespaces
that will be imported.

Chapter 13
Transporting Databases

13-19

• The DIRECTORY parameter specifies the directory object that identifies the location of the
export dump file. You must create the DIRECTORY object before starting Oracle Data Pump,
and you must grant the READ and WRITE object privileges on the directory to the user
running the Import utility.

See CREATE DIRECTORY in Oracle Database SQL Language Reference.

In a non-CDB, the directory object DATA_PUMP_DIR is created automatically. Read and write
access to this directory is automatically granted to the DBA role, and thus to users SYS and
SYSTEM.

However, the directory object DATA_PUMP_DIR is not created automatically in a PDB.
Therefore, when importing into a PDB, create a directory object in the PDB and specify the
directory object when you run Data Pump.

See Also:

– Tracking Progress Within an Oracle Data Pump Job in Oracle Database
Utilities for information about the default directory when the DIRECTORY
parameter is omitted

– Oracle Multitenant Administrator's Guide for more information about PDBs

• The TRANSPORT_DATAFILES parameter identifies all of the data files that will be imported.

If there are many files, then you can specify the TRANSPORT_DATAFILES parameter multiple
times in a parameter file specified with the PARFILE parameter.

• The LOGFILE parameter specifies the file name of the log file that the import utility will write.
In this example, the log file is written to the directory from which the dump file is read, but it
can be written to a different location.

After this statement completes successfully, check the import log file to ensure that no
unexpected error has occurred.

When dealing with a large number of data files, specifying the list of data file names in the
statement line can be a laborious process. It can even exceed the statement line limit. In this
situation, you can use an import parameter file. For example, you can start the Oracle Data
Pump import utility as follows:

impdp user_name parfile='par.f'

For example, par.f might contain the following lines:

FULL=Y
DUMPFILE=expdat.dmp
DIRECTORY=data_pump_dir
TRANSPORT_DATAFILES=
'/u01/app/oracle/oradata/mydb/sales01.dbf',
'/u01/app/oracle/oradata/mydb/cust01.dbf',
'/u01/app/oracle/oradata/mydb/emp01.dbf'
LOGFILE=import.log

Chapter 13
Transporting Databases

13-20

Note:

• During the import, user-defined tablespaces might be temporarily made read/
write for metadata loading. Ensure that no user changes are made to the data
during the import. At the successful completion of the import, all user-defined
tablespaces are made read/write.

• When performing a network database import, the TRANSPORTABLE parameter must
be set to always.

• When you are importing into a PDB in a CDB, specify the connect identifier for
the PDB after the user name. For example, if the connect identifier for the PDB is
hrpdb, then enter the following when you run the Oracle Data Pump Import utility:

impdp user_name@hrpdb ...

See Also:

• Oracle Data Pump Import in Oracle Database Utilities

• Oracle Multitenant Administrator's Guide

13.2.4 Transporting a Database Over the Network
You can transport a database over the network.

To transport a database over the network, you perform an import using the NETWORK_LINK
parameter, the import is performed using a database link, and there is no dump file involved.

The following list of tasks summarizes the process of transporting a database over the
network. Details for each task are provided in the subsequent example.

1. Create a database link from the target database to the source database.

The import operation must be performed by a user on the target database with
DATAPUMP_IMP_FULL_DATABASE role, and the database link must connect to a user on the
source database with DATAPUMP_EXP_FULL_DATABASE role. The user on the source
database cannot be a user with SYSDBA administrative privilege. If the database link is a
connected user database link, then the user on the target database cannot be a user with
SYSDBA administrative privilege. See "Users of Database Links" for information about
connected user database links.

2. In the source database, make the user-defined tablespaces in the database read-only.

3. Transport the data files for the all of the user-defined tablespaces in the database.

Copy the data files to a place that is accessible to the target database.

If the source platform and target platform are different, then check the endian format of
each platform by running the query on the V$TRANSPORTABLE_PLATFORM view in
"Transporting Data Across Platforms".

If the source platform's endian format is different from the target platform's endian format,
then use one of the following methods to convert the data files:

Chapter 13
Transporting Databases

13-21

• Use the GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package to
transfer the data files. These procedures convert the data files to the target platform's
endian format automatically.

• Use the RMAN CONVERT command to convert the data files to the target platform's
endian format.

Note:

Conversion of data files between different endian formats is not supported for
data files having undo segments.

See "Converting Data Between Platforms" for more information.

4. At the target database, import the database.

Invoke the Data Pump utility to import the metadata for the user-defined tablespaces and
both the metadata and data for the administrative tablespaces.

Ensure that the following parameters are set to the specified values:

• TRANSPORTABLE=ALWAYS
• TRANSPORT_DATAFILES=list_of_datafiles
• FULL=Y
• NETWORK_LINK=source_database_link

Replace source_database_link with the name of the database link to the source
database.

• VERSION=12
If the source database is an Oracle Database 11g Release 2 (11.2.0.3) or later Oracle
Database 11g database, then the VERSION parameter is required and must be set to
12. If the source database is an Oracle Database 12c or later database, then the
VERSION parameter is not required.

If the source database contains any encrypted tablespaces or tablespaces containing
tables with encrypted columns, then you must either specify ENCRYPTION_PWD_PROMPT=YES,
or specify the ENCRYPTION_PASSWORD parameter.

The Data Pump network import copies the metadata for objects contained within the user-
defined tablespaces and both the metadata and data for user-defined objects contained
within the administrative tablespaces, such as SYSTEM and SYSAUX.

When the import is complete, the user-defined tablespaces are in read/write mode.

5. (Optional) Restore the user-defined tablespaces to read/write mode on the source
database.

Example

These tasks for transporting a database are illustrated more fully in the example that follows,
where it is assumed the following data files and tablespaces exist:

Tablespace Type Data File

sales User-defined /u01/app/oracle/oradata/mydb/sales01.dbf

customers User-defined /u01/app/oracle/oradata/mydb/cust01.dbf

Chapter 13
Transporting Databases

13-22

Tablespace Type Data File

employees User-defined /u01/app/oracle/oradata/mydb/emp01.dbf

SYSTEM Administrative /u01/app/oracle/oradata/mydb/system01.dbf

SYSAUX Administrative /u01/app/oracle/oradata/mydb/sysaux01.dbf

This example makes the following additional assumptions:

• The target database is a new database that is being populated with the data from the
source database. The name of the source database is sourcedb.

• The source database and target database are running on the same platform with the same
endianness.

To check the endianness of a platform, run the following query:

SELECT d.PLATFORM_NAME, ENDIAN_FORMAT
 FROM V$TRANSPORTABLE_PLATFORM tp, V$DATABASE d
 WHERE tp.PLATFORM_NAME = d.PLATFORM_NAME;

• The sales tablespace is encrypted. The other tablespaces are not encrypted.

• The source database is an Oracle Database 11g Release 2 (11.2.0.3) database and the
target database is an Oracle Database 19c database.

Note:

This example illustrates the tasks required to transport an Oracle Database 11g
Release 2 (11.2.0.3) to a new Oracle Database 19c PDB inside a CDB.

See Also:

Oracle Multitenant Administrator's Guide

Complete the following tasks to transport the database over the network:

Task 1 Create a Database Link from the Target Database to the Source Database
Create a database link from the target database to the source database by completing the
following steps:

1. Ensure that network connectivity is configured between the source database and the
target database.

See Oracle Database Net Services Administrator's Guide for instructions.

2. Start SQL*Plus and connect to the target database as the administrator who will transport
the database with Data Pump import. This user must have DATAPUMP_IMP_FULL_DATABASE
role to transport the database.

See "Connecting to the Database with SQL*Plus" for instructions.

3. Create the database link:

Chapter 13
Transporting Databases

13-23

CREATE PUBLIC DATABASE LINK sourcedb USING 'sourcedb';

Specify the service name for the source database in the using clause.

During the import operation, the database link must connect to a user on the source
database with DATAPUMP_EXP_FULL_DATABASE role. The user on the source database
cannot be a user with SYSDBA administrative privilege.

See Also:

• "Creating Database Links"

• Oracle Database SQL Language Reference

Task 2 Make the User-Defined Tablespaces Read-Only
Complete the following steps:

1. Start SQL*Plus and connect to the source database as an administrator or as a user who
has either the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

See "Connecting to the Database with SQL*Plus" for instructions.

2. Make all of the user-defined tablespaces in the database read-only.

ALTER TABLESPACE sales READ ONLY;

ALTER TABLESPACE customers READ ONLY;

ALTER TABLESPACE employees READ ONLY;

Task 3 Transport the Data Files for the User-Defined Tablespaces
Transport the data files to the location of the existing data files of the target database.
On the UNIX and Linux platforms, this location is typically /u01/app/oracle/oradata/dbname/ or
+DISKGROUP/dbname/datafile/.
In this example, transfer the following data files from the source database to the target
database:

• sales01.dbf
• cust01.dbf
• emp01.dbf

See Also:

"Guidelines for Transferring Data Files"

Task 4 At the Target Database, Import the Database
Invoke the Data Pump import utility as a user with DATAPUMP_IMP_FULL_DATABASE role and
specify the full transportable export/import options.

impdp user_name full=Y network_link=sourcedb transportable=always
 transport_datafiles=
 '/u01/app/oracle/oradata/mydb/sales01.dbf',
 '/u01/app/oracle/oradata/mydb/cust01.dbf',

Chapter 13
Transporting Databases

13-24

 '/u01/app/oracle/oradata/mydb/emp01.dbf'
 encryption_pwd_prompt=YES version=12 logfile=import.log

Password: password

This example specifies the following Data Pump parameters:

• The FULL parameter specifies that the entire database is being imported in FULL mode.

• The NETWORK_LINK parameter specifies the database link used for the network import.

• The TRANSPORTABLE parameter specifies that the import uses the transportable option.

• The TRANSPORT_DATAFILES parameter identifies all of the data files to be imported.

You can specify the TRANSPORT_DATAFILES parameter multiple times in a parameter file
specified with the PARFILE parameter if there are many data files.

• The ENCRYPTION_PWD_PROMPT parameter instructs Data Pump to prompt you for the
encryption password, and Data Pump encrypts data and metadata sent over the network
connection. Either the ENCRYPTION_PWD_PROMPT parameter or the ENCRYPTION_PASSWORD
parameter is required when encrypted tablespaces or tables with encrypted columns are
part of the import operation.

• The VERSION parameter is set to 12 because the source database is an Oracle Database
11g Release 2 (11.2.0.3) or later Oracle Database 11g database.

• The LOGFILE parameter specifies the file name of the log file to be written by the import
utility.

After this statement executes successfully, check the import log file to ensure that no
unexpected error has occurred.
When dealing with a large number of data files, specifying the list of data file names in the
statement line can be a laborious process. It can even exceed the statement line limit. In this
situation, you can use an import parameter file.
Use of an import parameter file is also recommended when encrypted tablespaces or tables
with encrypted columns are part of the import operation. In this case, specify
ENCRYPTION_PWD_PROMPT=YES in the import parameter file.
For example, you can invoke the Data Pump import utility as follows:

impdp user_name parfile='par.f'

For example, par.f might contain the following lines:

FULL=Y
NETWORK_LINK=sourcedb
TRANSPORTABLE=always
TRANSPORT_DATAFILES=
'/u01/app/oracle/oradata/mydb/sales01.dbf',
'/u01/app/oracle/oradata/mydb/cust01.dbf',
'/u01/app/oracle/oradata/mydb/emp01.dbf'
ENCRYPTION_PWD_PROMPT=YES
VERSION=12
LOGFILE=import.log

Chapter 13
Transporting Databases

13-25

Note:

• During the import, user-defined tablespaces might be temporarily made read/
write for metadata loading. Ensure that no user changes are made to the data
during the import. At the successful completion of the import, all user-defined
tablespaces are made read/write.

• When you are importing into a PDB in a CDB, specify the connect identifier for
the PDB after the user name. For example, if the connect identifier for the PDB
is hrpdb, then enter the following when you run the Oracle Data Pump Import
utility:

impdp user_name@hrpdb ...

See Also:

Oracle Database Utilities for information about using the import utility

Task 5 (Optional) Restore User-Defined Tablespaces to Read/Write Mode
Make the user-defined tablespaces read/write again at the source database, as follows:

ALTER TABLESPACE sales READ WRITE;

ALTER TABLESPACE customers READ WRITE;

ALTER TABLESPACE employees READ WRITE;

You can postpone this task to first ensure that the import process succeeds.

13.3 Transporting Tablespaces Between Databases
You can transport tablespaces between databases.

Note:

To import a transportable tablespace set into an Oracle database on a different
platform, both databases must have compatibility set to at least 10.0.0. See
"Compatibility Considerations for Transporting Data" for a discussion of database
compatibility for transporting tablespaces across release levels.

• Introduction to Transportable Tablespaces
You can use the transportable tablespaces feature to copy a set of tablespaces from one
Oracle Database to another.

• Limitations on Transportable Tablespaces
When you use transportable tablespaces, review the encryption, timezone, object,
endianness, and other limitations that apply.

• Transporting Tablespaces Between Databases
You can transport a tablespace or a set of tablespaces between databases.

Chapter 13
Transporting Tablespaces Between Databases

13-26

13.3.1 Introduction to Transportable Tablespaces
You can use the transportable tablespaces feature to copy a set of tablespaces from one
Oracle Database to another.

The tablespaces being transported can be either dictionary managed or locally managed. The
transported tablespaces are not required to be of the same block size as the target database
standard block size. These scenarios are discussed in "Transporting Data: Scenarios".

There are two ways to transport a tablespace:

• Manually, following the steps described in this section. This involves issuing commands to
SQL*Plus and Data Pump.

• Using the Transport Tablespaces Wizard in Oracle Enterprise Manager Cloud Control

To run the Transport Tablespaces Wizard:

1. Log in to Cloud Control with a user that has the DATAPUMP_EXP_FULL_DATABASE role.

2. Access the Database Home page.

3. From the Schema menu, select Database Export/Import, then Transport
Tablespaces.

Note:

• This method for transporting tablespaces requires that you place the tablespaces
to be transported in read-only mode until you complete the transporting process.
If this is undesirable, you can use the transportable tablespaces from backup
feature, described in Oracle Database Backup and Recovery User's Guide.

• You must use Data Pump for transportable tablespaces. The only circumstance
under which you can use the original import utility, IMP, is for a backward
migration of XMLType data to an Oracle Database 10g Release 2 (10.2) or earlier
database. See Oracle Database Utilities for more information on these utilities
and to Oracle XML DB Developer's Guide for more information on XMLTypes.

See Also:

• "About Transporting Data"

• Oracle Database Data Warehousing Guide for information about using
transportable tablespaces in a data warehousing environment

13.3.2 Limitations on Transportable Tablespaces
When you use transportable tablespaces, review the encryption, timezone, object, endianness,
and other limitations that apply.

Be aware of the following limitations for transportable tablespaces:

Chapter 13
Transporting Tablespaces Between Databases

13-27

• The general limitations described in "General Limitations on Transporting Data" apply to
transportable tablespaces.

• When transporting a tablespace set, objects with underlying objects (such as materialized
views) or contained objects (such as partitioned tables) are not transportable unless all of
the underlying or contained objects are in the tablespace set.

• Transportable tablespaces cannot transport tables with TIMESTAMP WITH TIMEZONE (TSTZ)
data across platforms with different time zone file versions. The transportable tablespace
operation skips these tables. You can export and import these tables conventionally.

• You cannot include administrative tablespaces, such as SYSTEM and SYSAUX in a
transportable tablespace set.

• Transportable tablespaces cannot contain any tables with columns that are encrypted
using TDE column encryption

• If a tablespace is encrypted using TDE, then you can only transport this tablespace to a
platform that uses the same endian format. If you need to transport the tablespace across
endianness, then you must decrypt, transport, and re-encrypt the tablespace. Starting with
Oracle Database Release 12.2, these operations can be performed online.

• Transportable tablespace sets include TDE policies only. Other security policies (such as
redaction policies, masking policies, and so on) are not included; they must be recreated
after the tablespace is imported into the new database.

Related Topics

• How Does Oracle Data Pump Handle Timestamp Data?

13.3.3 Transporting Tablespaces Between Databases
You can transport a tablespace or a set of tablespaces between databases.

Starting with Oracle Database Release 21c, transportable jobs can be restarted at or near the
point of failure.

The following list of tasks summarizes the process of transporting a tablespace. Details for
each task are provided in the subsequent example.

1. Pick a self-contained set of tablespaces.

2. At the source database, configure the set of tablespaces in read-only mode and generate a
transportable tablespace set.

A transportable tablespace set (or transportable set) consists of data files for the set of
tablespaces being transported and an export dump file containing structural information
(metadata) for the set of tablespaces. You use Oracle Data Pump to perform the export.

3. Transport the export dump file.

Copy the export dump file to a place that is accessible to the target database.

4. Transport the tablespace set.

Copy the data files to a directory that is accessible to the target database.

If the source platform and target platform are different, then check the endian format of
each platform by running the query on the V$TRANSPORTABLE_PLATFORM view.

If the source platform's endian format is different from the target platform's endian format,
then use one of the following methods to convert the data files:

Chapter 13
Transporting Tablespaces Between Databases

13-28

• Use the GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package to
transfer the data files. These procedures convert the data files to the target platform's
endian format automatically.

• Use the RMAN CONVERT command to convert the data files to the target platform's
endian format.

Note:

Conversion of data files between different endian formats is not supported for
data files having undo segments.

5. (Optional) Restore tablespaces to read/write mode on the source database.

6. At the target database, import the tablespace set.

Run the Oracle Data Pump utility to import the metadata for the tablespace set.

Example 13-6 Example

These tasks for transporting a tablespace are illustrated more fully in the example that follows,
where it is assumed the following data files and tablespaces exist:

Tablespace Data File

sales_1 /u01/app/oracle/oradata/salesdb/sales_101.dbf
sales_2 /u01/app/oracle/oradata/salesdb/sales_201.dbf

• Task 1: Pick a Self-Contained Set of Tablespaces
See how to determine if the tablespaces you want to use are self-contained, or have
dependencies.

• Task 2: Generate a Transportable Tablespace Set
After ensuring that you have a self-contained set of tablespaces that you want to transport,
generate a transportable tablespace set.

• Task 3: Transport the Export Dump File
Transport the dump file to the directory pointed to by the DATA_PUMP_DIR directory object,
or to any other directory of your choosing.

• Task 4: Transport the Tablespace Set
Transport the data files of the tablespaces to a directory that is accessible to the target
database.

• Task 5: (Optional) Restore Tablespaces to Read/Write Mode
Make the transported tablespaces read/write again at the source database.

• Task 6: Import the Tablespace Set
To complete the transportable tablespaces operation, import the tablespace set.

Related Topics

• Transporting Data Across Platforms
You can transport data across platforms.

• Converting Data Between Platforms
To transport tables across platforms, check platform endianness, and review other
restrictions.

Chapter 13
Transporting Tablespaces Between Databases

13-29

13.3.3.1 Task 1: Pick a Self-Contained Set of Tablespaces
See how to determine if the tablespaces you want to use are self-contained, or have
dependencies.

There may be logical or physical dependencies between the database objects in the
transportable set, and the database objects outside of the transportable set. You can only
transport a tablespace set that is self-contained, that is, none of the database objects inside a
tablespace set are dependent on any of the database objects outside of that tablespace set.

Some examples of self-contained tablespace violations are:

• An index inside the set of tablespaces is for a table outside of the set of tablespaces.

Note:

It is not a violation if a corresponding index for a table is outside of the set of
tablespaces.

• A partitioned table is partially contained in the set of tablespaces.

The tablespace set that you want to copy must contain either all partitions of a partitioned
table, or none of the partitions of a partitioned table. To transport a subset of a partition
table, you must exchange the partitions into tables.

See Oracle Database VLDB and Partitioning Guide for information about exchanging
partitions.

• A referential integrity constraint points to a table across a set boundary.

When transporting a set of tablespaces, you can choose to include referential integrity
constraints. However, doing so can affect whether a set of tablespaces is self-contained. If
you decide not to transport constraints, then the constraints are not considered as pointers.

• A table inside the set of tablespaces contains a LOB column that points to LOBs outside the
set of tablespaces.

• An XML DB schema (*.xsd) that was registered by user A imports a global schema that
was registered by user B, and the following is true: the default tablespace for user A is
tablespace A, the default tablespace for user B is tablespace B, and only tablespace A is
included in the set of tablespaces.

To determine whether a set of tablespaces is self-contained, run the TRANSPORT_SET_CHECK
procedure in the Oracle-supplied package DBMS_TTS. To run this procedure, you must have
been granted the EXECUTE_CATALOG_ROLE role (initially signed to SYS).

When you run the DBMS_TTS.TRANSPORT_SET_CHECK procedure, specify the list of tablespaces in
the transportable set to be checked for self containment. You can optionally specify if
constraints must be included. For strict or full containment, you must additionally set the
TTS_FULL_CHECK parameter to TRUE.

The strict or full containment check is for cases that require capturing not only references going
outside the transportable set, but also those coming into the set. Tablespace Point-in-Time
Recovery (TSPITR) is one such case where dependent objects must be fully contained or fully
outside the transportable set.

For example, it is a violation to perform TSPITR on a tablespace containing a table t, but not
its index i, because the index and data will be inconsistent after the transport. A full

Chapter 13
Transporting Tablespaces Between Databases

13-30

containment check ensures that there are no dependencies going outside or coming into the
transportable set. See the example for TSPITR in the Oracle Database Backup and Recovery
User’s Guide.

Note:

The default for transportable tablespaces is to check for self-containment, rather than
full containment.

Example 13-7 Determining Whether Tablespaces are Self-Contained

The following statement can be used to determine whether tablespaces sales_1 and sales_2
are self-contained, with referential integrity constraints taken into consideration (indicated by
TRUE).

EXECUTE DBMS_TTS.TRANSPORT_SET_CHECK('sales_1,sales_2', TRUE);

After running the DBMS_TTS.TRANSPORT_SET_CHECK procedure, you can see all the violations by
selecting from the TRANSPORT_SET_VIOLATIONS view. If the set of tablespaces is self-contained,
then this view is empty. The following example illustrates a case where there are two violations:
a foreign key constraint, dept_fk, across the tablespace set boundary, and a partitioned table,
jim.sales, that is partially contained in the tablespace set.

SELECT * FROM TRANSPORT_SET_VIOLATIONS;

VIOLATIONS

Constraint DEPT_FK between table JIM.EMP in tablespace SALES_1 and table
JIM.DEPT in tablespace OTHER
Partitioned table JIM.SALES is partially contained in the transportable set

You must resolve these violations before sales_1 and sales_2 are transportable. One choice
for bypassing the integrity constraint violation is to not to export the integrity constraints.

Related Topics

• DBMS_TTS in Oracle Database PL/SQL Packages and Types Reference

• Performing Fully Automated RMAN TSPITR in Oracle Database Backup and Recovery
User’s Guide

13.3.3.2 Task 2: Generate a Transportable Tablespace Set
After ensuring that you have a self-contained set of tablespaces that you want to transport,
generate a transportable tablespace set.

To generate a transportable tablespace set:

1. Start SQL*Plus and connect to the database as an administrator or as a user who has
either the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

2. Make all tablespaces in the set read-only.

ALTER TABLESPACE sales_1 READ ONLY;

ALTER TABLESPACE sales_2 READ ONLY;

Chapter 13
Transporting Tablespaces Between Databases

13-31

3. Run the Oracle Data Pump export utility as a user with DATAPUMP_EXP_FULL_DATABASE role,
and specify the tablespaces in the transportable set.

> expdp user_name PARFILE=my-export.par

Password: password

The contents of the my-export.par file are as follows:

DUMPFILE=expdat.dmp
DIRECTORY=data_pump_dir
TRANSPORT_TABLESPACES=sales_1,sales_2
LOGFILE=tts_export.log
EXCLUDE=TABLE_STATISTICS,INDEX_STATISTICS

Caution:

Never use AS SYSDBA When you are importing into Oracle Database 12c Release
1 (12.1) or higher, use LOGTIME=ALL and METRICS=Y.

To perform a transport tablespace operation with a strict containment check, use the
TRANSPORT_FULL_CHECK parameter, as shown in the following example:

expdp user_name dumpfile=expdat.dmp directory=data_pump_dir
 transport_tablespaces=sales_1,sales_2 transport_full_check=y
 logfile=tts_export.log

In this case, the Oracle Data Pump export utility verifies that there are no dependencies
between the objects inside the transportable set and objects outside the transportable set.
If the tablespace set being transported is not self-contained, then the export fails and
indicates that the transportable set is not self-contained. You must resolve these violations
and then run this task again.

Note:

In this example, the Oracle Data Pump utility is used to export only data
dictionary structural information (metadata) for the tablespaces. No actual data is
unloaded, so this operation goes relatively quickly even for large tablespace sets.

4. The expdp utility displays the names and paths of the dump file and the data files on the
command line as shown in the following example. These are the files that you need to
transport to the target database. Also, check the log file for any errors.

Dump file set for SYSTEM.SYS_EXPORT_TRANSPORTABLE_01 is:
 /u01/app/oracle/admin/salesdb/dpdump/expdat.dmp

Datafiles required for transportable tablespace SALES_1:
 /u01/app/oracle/oradata/salesdb/sales_101.dbf
Datafiles required for transportable tablespace SALES_2:
 /u01/app/oracle/oradata/salesdb/sales_201.dbf

Chapter 13
Transporting Tablespaces Between Databases

13-32

5. When the Oracle Data Pump export operation is completed, exit the expdp utility to return
to SQL*Plus:

$ EXIT

See Also:

• Tracking Progress Within an Oracle Data Pump Job in Oracle Database
Utilities for information about the default directory when the DIRECTORY
parameter is omitted

• Oracle Data Pump Export in Oracle Database Utilities for information about
using the Oracle Data Pump utility

13.3.3.3 Task 3: Transport the Export Dump File
Transport the dump file to the directory pointed to by the DATA_PUMP_DIR directory object, or to
any other directory of your choosing.

The new location must be accessible to the target database.

At the target database, run the following query to determine the location of DATA_PUMP_DIR:

SELECT * FROM DBA_DIRECTORIES WHERE DIRECTORY_NAME = 'DATA_PUMP_DIR';

OWNER DIRECTORY_NAME DIRECTORY_PATH
---------- ---------------- -----------------------------------
SYS DATA_PUMP_DIR C:\app\orauser\admin\orawin\dpdump\

13.3.3.4 Task 4: Transport the Tablespace Set
Transport the data files of the tablespaces to a directory that is accessible to the target
database.

In this example, transfer the following files from the source database to the target database:

• sales_101.dbf
• sales_201.dbf
If you are transporting the tablespace set to a platform different from the source platform, then
determine if cross-platform tablespace transport is supported for both the source and target
platforms, and determine the endianness of each platform. If both platforms have the same
endianness, then no conversion is necessary. If the platform endianness is different, then you
must convert the data, either at the source database or at the target database.

If you are transporting sales_1 and sales_2 to a different platform, then you can run the
following query on each platform. If the query returns a row, then the platform supports cross-
platform tablespace transport.

SELECT d.PLATFORM_NAME, ENDIAN_FORMAT
 FROM V$TRANSPORTABLE_PLATFORM tp, V$DATABASE d
 WHERE tp.PLATFORM_NAME = d.PLATFORM_NAME;

The following is the query result from the source platform:

Chapter 13
Transporting Tablespaces Between Databases

13-33

PLATFORM_NAME ENDIAN_FORMAT
---------------------------------- --------------
Solaris[tm] OE (32-bit) Big

The following is the result from the target platform:

PLATFORM_NAME ENDIAN_FORMAT
---------------------------------- --------------
Microsoft Windows IA (32-bit) Little

In this example, you can see that the source and target platform endian formats are different.
Therefore, in this case, a conversion is necessary for transporting the database. To transfer the
data files, use either the GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package.
These procedures convert the data files to the target platform's endian format automatically.
Transport the data files to the location of the existing data files of the target database. On Unix
and Linux platforms, this location is typically /u01/app/oracle/oradata/dbname/ or
+DISKGROUP/dbname/datafile/. Alternatively, you can use to convert the data files.

Note:

• If you use the RMAN CONVERT command, then conversion of data files between
different endian formats is not supported for data files having undo segments.

• If no endianness conversion of the tablespaces is needed, then you can transfer
the files using any file transfer method.

Related Topics

• Converting Data Between Platforms
To transport tables across platforms, check platform endianness, and review other
restrictions.

• Guidelines for Transferring Data Files
You should follow a set of guidelines when transferring the data files.

13.3.3.5 Task 5: (Optional) Restore Tablespaces to Read/Write Mode
Make the transported tablespaces read/write again at the source database.

The following statements make the sales_1 and sales_2 tablespaces read/write:

ALTER TABLESPACE sales_1 READ WRITE;
ALTER TABLESPACE sales_2 READ WRITE;

You can postpone this task to first ensure that the import process succeeds.

13.3.3.6 Task 6: Import the Tablespace Set
To complete the transportable tablespaces operation, import the tablespace set.

To import the tablespace set:

1. Run the Oracle Data Pump import utility as a user with DATAPUMP_IMP_FULL_DATABASE role
and import the tablespace metadata.

impdp user_name dumpfile=expdat.dmp directory=data_pump_dir
 transport_datafiles=

Chapter 13
Transporting Tablespaces Between Databases

13-34

 'c:\app\orauser\oradata\orawin\sales_101.dbf',
 'c:\app\orauser\oradata\orawin\sales_201.dbf'
 remap_schema=sales1:crm1 remap_schema=sales2:crm2
 logfile=tts_import.log

Password: password

This example specifies the following Data Pump parameters:

• The DUMPFILE parameter specifies the exported file containing the metadata for the
tablespaces to be imported.

• The DIRECTORY parameter specifies the directory object that identifies the location of
the export dump file. You must create the DIRECTORY object before running Data Pump,
and you must grant the READ and WRITE object privileges on the directory to the user
running the Import utility.

Caution:

Never use AS SYSDBA When you are importing into Oracle Database 12c
Release 1 (12.1) or higher, use LOGTIME=ALL and METRICS=Y.

See Also:

CREATE DIRECTORY for information on the CREATE DORECTORY command

However, the database does not create the directory object DATA_PUMP_DIR
automatically in a PDB. Therefore, when importing into a PDB, create a directory
object in the PDB and specify the directory object when you run Oracle Data Pump.

See Also:

– Tracking Progress Within an Oracle Data Pump Job in Oracle Database
Utilities for information about the default directory when the DIRECTORY
parameter is omitted

– Oracle Multitenant Administrator's Guide for more information about
PDBs

• The TRANSPORT_DATAFILES parameter identifies all of the data files containing the
tablespaces that you want to import.

If there are many data files, then you can specify the TRANSPORT_DATAFILES parameter
multiple times in a parameter file specified with the PARFILE parameter.

• The REMAP_SCHEMA parameter changes the ownership of database objects. If you do
not specify REMAP_SCHEMA, then all database objects (such as tables and indexes) are
created in the same user schema as in the source database, and those users must
already exist in the target database. If they do not exist, then the import utility returns
an error. In this example, objects in the tablespace set owned by sales1 in the source
database will be owned by crm1 in the target database after the tablespace set is

Chapter 13
Transporting Tablespaces Between Databases

13-35

imported. Similarly, objects owned by sales2 in the source database will be owned by
crm2 in the target database. In this case, the target database is not required to have
users sales1 and sales2, but must have users crm1 and crm2.

Starting with Oracle Database 12c Release 2 (12.2), Recovery Manager (RMAN)
RECOVER command can move tables to a different schema while remapping a table.

See Also:

Oracle Database Backup and Recovery User’s Guide

• The LOGFILE parameter specifies the file name of the log file to be written by the import
utility. In this example, the log file is written to the directory from which the dump file is
read, but it can be written to a different location.

After this statement runs successfully, all tablespaces in the set being copied remain in
read-only mode. Check the import log file to ensure that no error has occurred.

When dealing with a large number of data files, specifying the list of data file names in the
statement line can be a laborious process, as the data file list can even exceed the
statement line limit. In this situation, you can use an import parameter file. For example,
you can run the Oracle Data Pump import utility as follows:

impdp user_name parfile='par.f'

The par.f parameter file contains the following:

DUMPFILE=expdat.dmp
DIRECTORY=data_pump_dir
TRANSPORT_DATAFILES=
'C:\app\orauser\oradata\orawin\sales_101.dbf',
'C:\app\orauser\oradata\orawin\sales_201.dbf'
REMAP_SCHEMA=sales1:crm1 REMAP_SCHEMA=sales2:crm2
LOGFILE=tts_import.log

See Also:

Oracle Data Pump Import in Oracle Database Utilities

2. If required, put the tablespaces into read/write mode on the target database.

13.4 Transporting Tables, Partitions, or Subpartitions Between
Databases

You can transport tables, partitions, and subpartitions between databases.

• Introduction to Transportable Tables
You can use the transportable tables feature to copy a set of tables, partitions, or
subpartitions from one Oracle Database to another. A transportable tables operation
moves metadata for the specified tables, partitions, or subpartitions to the target database.

• Limitations on Transportable Tables
There are limitations on transportable tables.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-36

• Transporting Tables, Partitions, or Subpartitions Using an Export Dump File
You can transport tables, partitions, or subpartitions between databases using an export
file.

• Transporting Tables, Partitions, or Subpartitions Over the Network
To transport tables over the network, you perform an import using the NETWORK_LINK
parameter, the import is performed using a database link, and there is no dump file
involved.

13.4.1 Introduction to Transportable Tables
You can use the transportable tables feature to copy a set of tables, partitions, or subpartitions
from one Oracle Database to another. A transportable tables operation moves metadata for the
specified tables, partitions, or subpartitions to the target database.

A transportable tables operation automatically identifies the tablespaces used by the specified
tables. To move the data, you copy the data files for these tablespaces to the target database.
The Data Pump import automatically frees the blocks in the data files occupied by tables,
partitions, or subpartitions that were not part of the transportable tables operation. It also frees
the blocks occupied by the dependent objects of the tables that were not part of the
transportable tables operation.

You can transport the tables, partitions, and subpartitions in the following ways:

• Using an export dump file

During the export, specify the TABLES parameter and set the TRANSPORTABLE parameter to
ALWAYS. During import, do not specify the TRANSPORTABLE parameter. Data Pump import
recognizes the transportable tables operation automatically.

• Over the network

During the import, specify the TABLES parameter, set the TRANSPORTABLE parameter to
ALWAYS, and specify the NETWORK_LINK parameter to identify the source database.

13.4.2 Limitations on Transportable Tables
There are limitations on transportable tables.

Be aware of the following limitations for transportable tables:

• The general limitations described in "General Limitations on Transporting Data" apply to
transportable tables.

• You cannot transport a table to a target database that contains a table of the same name in
the same schema. However, you can use the REMAP_TABLE import parameter to import the
data into a different table. Alternatively, before the transport operation, you can rename
either the table to be transported or the target table.

Starting with Oracle Database 12c Release 2 (12.2), the Recovery Manager (RMAN)
RECOVER command can move tables to a different schema while remapping a table. See
Oracle Database Backup and Recovery User’s Guide for more information.

• You cannot transport tables with TIMESTAMP WITH TIMEZONE (TSTZ) data across platforms
with different time zone file versions.

See Oracle Database Utilities for more information.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-37

13.4.3 Transporting Tables, Partitions, or Subpartitions Using an Export
Dump File

You can transport tables, partitions, or subpartitions between databases using an export file.

The following list of tasks summarizes the process of transporting tables between databases
using an export dump file. Details for each task are provided in the subsequent example.

1. Pick a set of tables, partitions, or subpartitions.

If you are transporting partitions, then you can specify partitions from only one table in a
transportable tables operation, and no other tables can be transported in the same
operation. Also, if only a subset of a table's partitions are exported in a transportable tables
operation, then on import each partition becomes a non-partitioned table.

2. At the source database, place the tablespaces associated with the data files for the tables,
partitions, or subpartitions in read-only mode.

To view the tablespace for a table, query the DBA_TABLES view. To view the data file for a
tablespace, query the DBA_DATA_FILES view.

3. Perform the Data Pump export.

4. Transport the export dump file.

Copy the export dump file to a place that is accessible to the target database.

5. Transport the data files for the tables, partitions, or subpartitions.

Copy the data files to a place that is accessible to the target database.

If the source platform and target platform are different, then check the endian format of
each platform by running the query on the V$TRANSPORTABLE_PLATFORM view in
"Transporting Data Across Platforms".

If the source platform's endian format is different from the target platform's endian format,
then use one of the following methods to convert the data files:

• Use the GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package to
transfer the data files. These procedures convert the data files to the target platform's
endian format automatically.

• Use the RMAN CONVERT command to convert the data files to the target platform's
endian format.

Note:

Conversion of data files between different endian formats is not supported for
data files having undo segments.

See "Converting Data Between Platforms" for more information.

6. (Optional) Restore tablespaces to read/write mode on the source database.

7. At the target database, perform the import.

Invoke the Data Pump utility to import the metadata for the tables.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-38

Example

These tasks for transporting tables, partitions, and subpartitions using a Data Pump dump file
are illustrated more fully in the example that follows, where it is assumed that the following
partitions exist in the sh.sales_prt table:

• sales_q1_2000
• sales_q2_2000
• sales_q3_2000
• sales_q4_2000
This example transports two of these partitions to the target database.

The following SQL statements create the sales_prt table and its and partitions in the sh
schema and the tablespace and data file for the table. The statements also insert data into the
partitions by using data in the sh sample schemas.

CREATE TABLESPACE sales_prt_tbs
 DATAFILE 'sales_prt.dbf' SIZE 20M
 ONLINE;

CREATE TABLE sh.sales_prt
 (prod_id NUMBER(6),
 cust_id NUMBER,
 time_id DATE,
 channel_id CHAR(1),
 promo_id NUMBER(6),
 quantity_sold NUMBER(3),
 amount_sold NUMBER(10,2))
 PARTITION BY RANGE (time_id)
 (PARTITION SALES_Q1_2000 VALUES LESS THAN
 (TO_DATE('01-APR-2000','DD-MON-YYYY','NLS_DATE_LANGUAGE = American')),
 PARTITION SALES_Q2_2000 VALUES LESS THAN
 (TO_DATE('01-JUL-2000','DD-MON-YYYY','NLS_DATE_LANGUAGE = American')),
 PARTITION SALES_Q3_2000 VALUES LESS THAN
 (TO_DATE('01-OCT-2000','DD-MON-YYYY','NLS_DATE_LANGUAGE = American')),
 PARTITION SALES_Q4_2000 VALUES LESS THAN
 (TO_DATE('01-JAN-2001','DD-MON-YYYY','NLS_DATE_LANGUAGE = American')))
 TABLESPACE sales_prt_tbs;

INSERT INTO sh.sales_prt PARTITION(sales_q1_2000)
 SELECT * FROM sh.sales PARTITION(sales_q1_2000);

INSERT INTO sh.sales_prt PARTITION(sales_q2_2000)
 SELECT * FROM sh.sales PARTITION(sales_q2_2000);

INSERT INTO sh.sales_prt PARTITION(sales_q3_2000)
 SELECT * FROM sh.sales PARTITION(sales_q3_2000);

INSERT INTO sh.sales_prt PARTITION(sales_q4_2000)
 SELECT * FROM sh.sales PARTITION(sales_q4_2000);

COMMIT;

This example makes the following additional assumptions:

• The name of the source database is sourcedb.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-39

• The source database and target database are running on the same platform with the same
endianness. To check the endianness of a platform, run the following query:

SELECT d.PLATFORM_NAME, ENDIAN_FORMAT
 FROM V$TRANSPORTABLE_PLATFORM tp, V$DATABASE d
 WHERE tp.PLATFORM_NAME = d.PLATFORM_NAME;

• Only the sales_q1_2000 and sales_q2_2000 partitions are transported to the target
database. The other two partitions are not transported.

Complete the following tasks to transport the partitions using an export dump file:

Task 1 Generate the Export Dump File
Generate the export dump file by completing the following steps:

1. Start SQL*Plus and connect to the source database as an administrator or as a user who
has either the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

See "Connecting to the Database with SQL*Plus" for instructions.

2. Make all of the tablespaces that contain the tables being transported read-only.

ALTER TABLESPACE sales_prt_tbs READ ONLY;
3. Invoke the Data Pump export utility as a user with DATAPUMP_EXP_FULL_DATABASE role and

specify the transportable tables options.

SQL> HOST

expdp user_name dumpfile=sales_prt.dmp directory=data_pump_dir
 tables=sh.sales_prt:sales_q1_2000,sh.sales_prt:sales_q2_2000
 transportable=always logfile=exp.log

Password: password

You must always specify TRANSPORTABLE=ALWAYS, which specifies that the transportable
option is used.

This example specifies the following additional Data Pump parameters:

• The DUMPFILE parameter specifies the name of the structural information export dump
file to be created, sales_prt.dmp.

• The DIRECTORY parameter specifies the directory object that points to the operating
system or Oracle Automatic Storage Management location of the dump file. You must
create the DIRECTORY object before invoking Data Pump, and you must grant the READ
and WRITE object privileges on the directory to the user running the Export utility. See
Oracle Database SQL Language Reference for information on the CREATE DIRECTORY
command.

However, the directory object DATA_PUMP_DIR is not created automatically in a PDB.
Therefore, when importing into a PDB, create a directory object in the PDB and
specify the directory object when you run Data Pump.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-40

See Also:

– Oracle Database Utilities for information about the default directory
when the DIRECTORY parameter is omitted

– Oracle Multitenant Administrator's Guide for more information about
PDBs

• The TABLES parameter specifies the tables, partitions, or subpartitions being exported.

• The LOGFILE parameter specifies the file name of the log file to be written by the
export utility. In this example, the log file is written to the same directory as the dump
file, but it can be written to a different location.

4. Check the log file for unexpected errors, and take note of the dump file and data files that
you must transport to the target database. expdp outputs the names and paths of these
files in messages like these:

Processing object type TABLE_EXPORT/TABLE/PLUGTS_BLK
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/END_PLUGTS_BLK
Master table "SYSTEM"."SYS_EXPORT_TABLE_01" successfully loaded/unloaded
**
Dump file set for SYSTEM.SYS_EXPORT_TABLE_01 is:
 /u01/app/oracle/rdbms/log/sales_prt.dmp
**
Datafiles required for transportable tablespace SALES_PRT_TBS:
 /u01/app/oracle/oradata/sourcedb/sales_prt.dbf
Job "SYSTEM"."SYS_EXPORT_TABLE_01" successfully completed at 11:32:13

5. When finished, exit back to SQL*Plus:

$ exit

See Also:

Oracle Database Utilities for information about using the Data Pump utility

Task 2 Transport the Export Dump File
Transport the dump file to the directory pointed to by the DATA_PUMP_DIR directory object on
the target database, or to any other directory of your choosing. The new location must be
accessible to the target database.
In this example, transfer the sales_prt.dmp dump file from the source database to the target
database.
At the target database, run the following query to determine the location of DATA_PUMP_DIR:

SELECT * FROM DBA_DIRECTORIES WHERE DIRECTORY_NAME = 'DATA_PUMP_DIR';

OWNER DIRECTORY_NAME DIRECTORY_PATH
---------- ---------------- -----------------------------------
SYS DATA_PUMP_DIR /u01/app/oracle/rdbms/log/

Task 3 Transport the Data Files for the Tables
Transport the data files of the tablespaces containing the tables being transported to a place
that is accessible to the target database.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-41

Typically, you transport the data files to the location of the existing data files of the target
database. On the UNIX and Linux platforms, this location is typically /u01/app/oracle/oradata/
dbname/ or +DISKGROUP/dbname/datafile/.
In this example, transfer the sales_prt.dbf data file from the source database to the target
database.

See Also:

"Guidelines for Transferring Data Files"

Task 4 (Optional) Restore Tablespaces to Read/Write Mode
Make the tablespaces that contain the tables being transported read/write again at the source
database, as follows:

ALTER TABLESPACE sales_prt_tbs READ WRITE;

You can postpone this task to first ensure that the import process succeeds.

Task 5 At the Target Database, Import the Partitions
At the target database, invoke the Data Pump import utility as a user with
DATAPUMP_IMP_FULL_DATABASE role and specify the transportable tables options.

impdp user_name dumpfile=sales_prt.dmp directory=data_pump_dir
 transport_datafiles='/u01/app/oracle/oradata/targetdb/sales_prt.dbf'
 tables=sh.sales_prt:sales_q1_2000,sh.sales_prt:sales_q2_2000
 logfile=imp.log

Password: password

This example specifies the following Data Pump parameters:

• The DUMPFILE parameter specifies the exported file containing the metadata for the data to
be imported.

• The DIRECTORY parameter specifies the directory object that identifies the location of the
export dump file. You must create the DIRECTORY object before invoking Data Pump, and
you must grant the READ and WRITE object privileges on the directory to the user running
the Import utility. See Oracle Database SQL Language Reference for information on the
CREATE DIRECTORY command.

However, the directory object DATA_PUMP_DIR is not created automatically in a PDB.
Therefore, when importing into a PDB, create a directory object in the PDB and specify
the directory object when you run Data Pump.

See Also:

– Oracle Database Utilities for information about the default directory when the
DIRECTORY parameter is omitted

– Oracle Multitenant Administrator's Guide for more information about PDBs

• The TRANSPORT_DATAFILES parameter identifies all of the data files to be imported.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-42

You can specify the TRANSPORT_DATAFILES parameter multiple times in a parameter file
specified with the PARFILE parameter if there are many data files.

• The TABLES parameter specifies the tables, partitions, or subpartitions being imported.

• The LOGFILE parameter specifies the file name of the log file to be written by the import
utility. In this example, the log file is written to the directory from which the dump file is
read, but it can be written to a different location.

After this statement executes successfully, check the import log file to ensure that no
unexpected error has occurred.
When dealing with a large number of data files, specifying the list of data file names in the
statement line can be a laborious process. It can even exceed the statement line limit. In this
situation, you can use an import parameter file. For example, you can invoke the Data Pump
import utility as follows:

impdp user_name parfile='par.f'

For example, par.f might contain the following lines:

DUMPFILE=sales_prt.dmp
DIRECTORY=data_pump_dir
TRANSPORT_DATAFILES='/u01/app/oracle/oradata/targetdb/sales_prt.dbf'
TABLES=sh.sales_prt:sales_q1_2000,sh.sales_prt:sales_q2_2000
LOGFILE=imp.log

Note:

• The partitions are imported as separate tables in the target database because
this example transports a subset of partitions.

• During the import, tablespaces might be temporarily made read/write for
metadata loading. Ensure that no user changes are made to the data during the
import. At the successful completion of the import, all user-defined tablespaces
are made read/write.

• When performing a network database import, the TRANSPORTABLE parameter
must be set to always.

See Also:

Oracle Database Utilities for information about using the import utility

13.4.4 Transporting Tables, Partitions, or Subpartitions Over the Network
To transport tables over the network, you perform an import using the NETWORK_LINK
parameter, the import is performed using a database link, and there is no dump file involved.

The following list of tasks summarizes the process of transporting tables, partitions, and
subpartitions between databases over the network. Details for each task are provided in the
subsequent example.

1. Pick a set of tables, partitions, or subpartitions.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-43

If you are transporting partitions, then you can specify partitions from only one table in a
transportable tables operation, and no other tables can be transported in the same
operation. Also, if only a subset of a table's partitions are exported in a transportable tables
operation, then on import each partition becomes a non-partitioned table.

2. At the source database, place the tablespaces associated with the data files for the tables,
partitions, or subpartitions in read-only mode.

To view the tablespace for a table, query the DBA_TABLES view. To view the data file for a
tablespace, query the DBA_DATA_FILES view.

3. Transport the data files for the tables, partitions, or subpartitions.

Copy the data files to a place that is accessible to the target database.

If the source platform and target platform are different, then check the endian format of
each platform by running the query on the V$TRANSPORTABLE_PLATFORM view in
"Transporting Data Across Platforms".

If the source platform's endian format is different from the target platform's endian format,
then use one of the following methods to convert the data files:

• Use the GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package to
transfer the data files. These procedures convert the data files to the target platform's
endian format automatically.

• Use the RMAN CONVERT command to convert the data files to the target platform's
endian format.

Note:

Conversion of data files between different endian formats is not supported for
data files having undo segments.

See "Converting Data Between Platforms" for more information.

4. At the target database, perform the import.

Invoke the Data Pump utility to import the metadata for the tables.

5. (Optional) Restore tablespaces to read/write mode on the source database.

Example

These tasks for transporting tables over the network are illustrated more fully in the example
that follows, where it is assumed that the tables exist in the source database:

Table Tablespace Data File

hr.emp_ttbs emp_tsp /u01/app/oracle/oradata/sourcedb/emp.dbf

oe.orders_ttbs orders_tsp /u01/app/oracle/oradata/sourcedb/orders.dbf

This example transports these tables to the target database. To complete the example, these
tables must exist on the source database.

The following SQL statements create the tables in the hr schema and the tablespaces and
data files for the tables. The statements also insert data into the tables by using data in the hr
and oe sample schemas.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-44

CREATE TABLESPACE emp_tsp
 DATAFILE 'emp.dbf' SIZE 1M
 ONLINE;

CREATE TABLE hr.emp_ttbs(
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE,
 job_id VARCHAR2(10),
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4))
 TABLESPACE emp_tsp;

INSERT INTO hr.emp_ttbs SELECT * FROM hr.employees;

CREATE TABLESPACE orders_tsp
 DATAFILE 'orders.dbf' SIZE 1M
 ONLINE;

CREATE TABLE oe.orders_ttbs(
 order_id NUMBER(12),
 order_date TIMESTAMP WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6))
 TABLESPACE orders_tsp;

INSERT INTO oe.orders_ttbs SELECT * FROM oe.orders;

COMMIT;

This example makes the following additional assumptions:

• The name of the source database is sourcedb.

• The source database and target database are running on the same platform with the same
endianness. To check the endianness of a platform, run the following query:

SELECT d.PLATFORM_NAME, ENDIAN_FORMAT
 FROM V$TRANSPORTABLE_PLATFORM tp, V$DATABASE d
 WHERE tp.PLATFORM_NAME = d.PLATFORM_NAME;

Complete the following tasks to transport the tables over the network:

Task 1 Create a Database Link from the Target Database to the Source Database
Create a database link from the target database to the source database by completing the
following steps:

1. Ensure that network connectivity is configured between the source database and the
target database.

See Oracle Database Net Services Administrator's Guide for instructions.

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-45

2. Start SQL*Plus and connect to the target database as the administrator who will transport
the data with Data Pump import. This user must have DATAPUMP_IMP_FULL_DATABASE role
to transport the data.

See "Connecting to the Database with SQL*Plus" for instructions.

3. Create the database link:

CREATE PUBLIC DATABASE LINK sourcedb USING 'sourcedb';

Specify the service name for the source database in the using clause.

During the import operation, the database link must connect to a user on the source
database with DATAPUMP_EXP_FULL_DATABASE role. The user on the source database
cannot be a user with SYSDBA administrative privilege.

See Also:

• "Creating Database Links"

• Oracle Database SQL Language Reference

Task 2 Make the Tablespaces Containing the Tables Read-Only
At the source database, complete the following steps:

1. Start SQL*Plus and connect to the source database as an administrator or as a user who
has either the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

See "Connecting to the Database with SQL*Plus" for instructions.

2. Make all of the tablespaces that contain data to be transported read-only.

ALTER TABLESPACE emp_tsp READ ONLY;
ALTER TABLESPACE orders_tsp READ ONLY;

Task 3 Transport the Data Files for the Tables
Transport the data files of the tablespaces containing the tables being transported to a place
that is accessible to the target database.
Typically, you transport the data files to the location of the existing data files of the target
database. On the UNIX and Linux platforms, this location is typically /u01/app/oracle/oradata/
dbname/ or +DISKGROUP/dbname/datafile/.
In this example, transfer the emp.dbf and orders.dbf data files from the source database to
the target database.

See Also:

"Guidelines for Transferring Data Files"

Task 4 At the Target Database, Import the Database
Invoke the Data Pump import utility as a user with DATAPUMP_IMP_FULL_DATABASE role and
specify the full transportable export/import options.

impdp user_name network_link=sourcedb transportable=always
 transport_datafiles=
 '/u01/app/oracle/oradata/targetdb/emp.dbf'

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-46

 '/u01/app/oracle/oradata/targetdb/orders.dbf'
 tables=hr.emp_ttbs,oe.orders_ttbs
 logfile=import.log

Password: password

This example specifies the following Data Pump parameters:

• The NETWORK_LINK parameter specifies the database link to the source database used for
the network import.

• The TRANSPORTABLE parameter specifies that the import uses the transportable option.

• The TRANSPORT_DATAFILES parameter identifies all of the data files to be imported.

You can specify the TRANSPORT_DATAFILES parameter multiple times in a parameter file
specified with the PARFILE parameter if there are many data files.

• The TABLES parameter specifies the tables to be imported.

• The LOGFILE parameter specifies the file name of the log file to be written by the import
utility.

After this statement executes successfully, check the import log file to ensure that no
unexpected error has occurred.
When dealing with a large number of data files, specifying the list of data file names in the
statement line can be a laborious process. It can even exceed the statement line limit. In this
situation, you can use an import parameter file. For example, you can invoke the Data Pump
import utility as follows:

impdp user_name parfile='par.f'

For example, par.f might contain the following lines:

NETWORK_LINK=sourcedb
TRANSPORTABLE=always
TRANSPORT_DATAFILES=
 '/u01/app/oracle/oradata/targetdb/emp.dbf'
 '/u01/app/oracle/oradata/targetdb/orders.dbf'
TABLES=hr.emp_ttbs,oe.orders_ttbs
LOGFILE=import.log

Note:

During the import, user-defined tablespaces might be temporarily made read/write
for metadata loading. Ensure that no user changes are made to the data during the
import. At the successful completion of the import, all user-defined tablespaces are
made read/write.

See Also:

Oracle Database Utilities for information about using the import utility

Task 5 (Optional) Restore Tablespaces to Read/Write Mode
Make the tables that contain the tables being transported read/write again at the source
database, as follows:

Chapter 13
Transporting Tables, Partitions, or Subpartitions Between Databases

13-47

ALTER TABLESPACE emp_tsp READ WRITE;
ALTER TABLESPACE orders_tsp READ WRITE;

13.5 Converting Data Between Platforms
To transport tables across platforms, check platform endianness, and review other restrictions.

When you perform a transportable operation, and the source platform and the target platform
are of different endianness, you must convert the data being transported to the target platform
format. If the source platform and the target platform are of the same endianness, then data
conversion is not necessary. You can use the DBMS_FILE_TRANSFER package or the RMAN
CONVERT command to convert data.

Note:

Some limitations might apply that are not described in these sections. Refer to the
following documentation for more information:

• "Transporting Data Across Platforms" for information about checking the
endianness of platforms

• DBMS_FILE_TRANSFER in Oracle Database PL/SQL Packages and Types
Reference for information about limitations related to the DBMS_FILE_TRANSFER
package

• CONVERT IN Oracle Database Backup and Recovery Reference for information
about limitations related to the RMAN CONVERT command

• Converting Data Between Platforms Using the DBMS_FILE_TRANSFER Package
You can use the GET_FILE or PUT_FILE procedure of the DBMS_FILE_TRANSFER package to
convert data between platforms during a data file transfer.

• Converting Data Between Platforms Using RMAN
To convert data with the RMAN convert command, be aware of restrictions and follow
these guidelines.

13.5.1 Converting Data Between Platforms Using the
DBMS_FILE_TRANSFER Package

You can use the GET_FILE or PUT_FILE procedure of the DBMS_FILE_TRANSFER package to
convert data between platforms during a data file transfer.

When you use one of these procedures to move data files between the source platform and
the target platform, each block in each data file is converted to the target platform's
endianness.

This section uses an example to describe how to use the DBMS_FILE_TRANSFER package to
convert a data file to a different platform. The example makes the following assumptions:

• The GET_FILE procedure will transfer the data file.

• The mytable.342.123456789 data file is being transferred to a different platform.

• The endianness of the source platform is different from the endianness of the target
platform.

Chapter 13
Converting Data Between Platforms

13-48

• The global name of the source database is dbsa.example.com.

• Both the source database and the target database use Oracle Automatic Storage
Management (Oracle ASM).

Note:

You can also use the DBMS_FILE_TRANSFER package to transfer data files between
platforms with the same endianness.

Complete the following steps to convert the data file by transferring it with the GET_FILE
procedure:

1. Use SQL*Plus to connect to the source database as an administrative user who can create
directory objects.

2. Create a directory object to store the data files that you want to transfer to the target
database.

For example, to create a directory object named sales_dir_source for the +data/dbsa/
datafile directory, execute the following SQL statement:

CREATE OR REPLACE DIRECTORY sales_dir_source
 AS '+data/dbsa/datafile';

The specified file system directory must exist when you create the directory object.

3. Use SQL*Plus to connect to the target database as an administrative user who can create
database links, create directory objects, and run the procedures in the
DBMS_FILE_TRANSFER package.

4. Create a database link from the target database to the source database.

The connected user at the source database must have read privileges on the directory
object that you created in Step 2.

5. Create a directory object to store the data files that you want to transfer from the source
database.

The user at the local database who will run the procedure in the DBMS_FILE_TRANSFER
package must have write privileges on the directory object.

For example, to create a directory object named sales_dir_target for the +data/dbsb/
datafile directory, run the following SQL statement:

CREATE OR REPLACE DIRECTORY sales_dir_target
 AS '+data/dbsb/datafile';

6. Run the GET_FILE procedure in the DBMS_FILE_TRANSFER package to transfer the data file.

For example, run the following procedure to transfer the mytable.342.123456789 data file
from the source database to the target database using the database link you created in
Step 4:

BEGIN
 DBMS_FILE_TRANSFER.GET_FILE(
 source_directory_object => 'sales_dir_source',
 source_file_name => 'mytable.342.123456789',
 source_database => 'dbsa.example.com',
 destination_directory_object => 'sales_dir_target',
 destination_file_name => 'mytable');

Chapter 13
Converting Data Between Platforms

13-49

END;
/

Note:

In this example, the destination data file name is mytable. Oracle ASM does not
allow a fully qualified file name form in the destination_file_name parameter of the
GET_FILE procedure.

Related Topics

• About Connecting to the Database with SQL*Plus
Oracle Database includes the following components: the Oracle Database instance, which
is a collection of processes and memory, and a set of disk files that contain user data and
system data.

• Creating Database Links
To support application access to the data and schema objects throughout a distributed
database system, you must create all necessary database links.

• DBMS_FILE_TRANSFER in Oracle Database PL/SQL Packages and Types Reference

• Fully Qualified File Name Form in Oracle Automatic Storage Management Administrator's
Guide

• CREATE DATABASE LINK in Oracle Database SQL Language Reference

13.5.2 Converting Data Between Platforms Using RMAN
To convert data with the RMAN convert command, be aware of restrictions and follow these
guidelines.

When you use the RMAN CONVERT command to convert data, you can either convert the data
on the source platform after running Oracle Data Pump export, or you can convert the data on
the target platform before running Oracle Data Pump import. In either case, you must transfer
the data files from the source system to the target system.

To convert data, you can use the following RMAN CONVERT commands:

• CONVERT DATAFILE
• CONVERT TABLESPACE
• CONVERT DATABASE

Note:

• Datatype restrictions apply to the RMAN CONVERT command.

• RMAN CONVERT commands do not support conversion of data files between
different endian formats for data files having undo segments.

• Converting Tablespaces on the Source System After Export
You can use this example to see how to use the RMAN CONVERT TABLESPACE command to
convert tablespaces to a different platform.

Chapter 13
Converting Data Between Platforms

13-50

• Converting Data Files on the Target System Before Import
An example illustrates how to use the RMAN CONVERT DATAFILE command to convert data
files to a different platform.

Related Topics

• CONVERT in Oracle Database Backup and Recovery Reference

• Transporting Data Across Platforms in Oracle Database Backup and Recovery User’s
Guide

13.5.2.1 Converting Tablespaces on the Source System After Export
You can use this example to see how to use the RMAN CONVERT TABLESPACE command to
convert tablespaces to a different platform.

The example makes the following assumptions:

• The sales_1 and sales_2 tablespaces are being transported to a different platform.

• The endianness of the source platform is different from the endianness of the target
platform.

• You want to convert the data on the source system, before transporting the tablespace set
to the target system.

• You have completed the Oracle Data Pump export on the source database.

To convert the tablespaces on the source system, complete the following steps:

1. At a command prompt, start RMAN, and connect to the source database:

$ RMAN TARGET /

Recovery Manager: Release 12.1.0.1.0 - Production

Copyright (c) 1982, 2012, Oracle and/or its affiliates. All rights reserved.

connected to target database: salesdb (DBID=3295731590)
2. Use the RMAN CONVERT TABLESPACE command to convert the data files into a temporary

location on the source platform.

In this example, assume that the temporary location, directory /tmp, has already been
created. The converted data files are assigned names by the system.

RMAN> CONVERT TABLESPACE sales_1,sales_2
2> TO PLATFORM 'Microsoft Windows IA (32-bit)'
3> FORMAT '/tmp/%U';

Starting conversion at source at 30-SEP-08
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile conversion
input datafile file number=00007 name=/u01/app/oracle/oradata/salesdb/sales_101.dbf
converted datafile=/tmp/data_D-SALESDB_I-1192614013_TS-SALES_1_FNO-7_03jru08s
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:45
channel ORA_DISK_1: starting datafile conversion
input datafile file number=00008 name=/u01/app/oracle/oradata/salesdb/sales_201.dbf
converted datafile=/tmp/data_D-SALESDB_I-1192614013_TS-SALES_2_FNO-8_04jru0aa
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:25
Finished conversion at source at 30-SEP-08

Chapter 13
Converting Data Between Platforms

13-51

See Also:

Oracle Database Backup and Recovery Reference for a description of the RMAN
CONVERT command

3. Exit Recovery Manager:

RMAN> exit
Recovery Manager complete.

4. Transfer the data files to the target system.

Related Topics

• Guidelines for Transferring Data Files
You should follow a set of guidelines when transferring the data files.

13.5.2.2 Converting Data Files on the Target System Before Import
An example illustrates how to use the RMAN CONVERT DATAFILE command to convert data files
to a different platform.

During the conversion, you identify the data files by file name, not by tablespace name. Until
the tablespace metadata is imported, the target instance has no way of knowing the desired
tablespace names.

The example makes the following assumptions:

• You have not yet converted the data files for the tablespaces being transported.

If you used the DBMS_FILE_TRANSFER package to transfer the data files to the target system,
then the data files were converted automatically during the file transfer. See "Converting
Data Between Platforms Using the DBMS_FILE_TRANSFER Package".

• The following data files are being transported to a different platform:

– C:\Temp\sales_101.dbf

– C:\Temp\sales_201.dbf

• The endianness of the source platform is different from the endianness of the target
platform.

• You want to convert the data on the target system, before performing the Data Pump
import.

• The converted data files are placed in C:\app\orauser\oradata\orawin\, which is the location
of the existing data files for the target system:

Complete the following steps to convert the tablespaces on the target system:

1. If you are in SQL*Plus, then return to the host system:

SQL> HOST
2. Use the RMAN CONVERT DATAFILE command to convert the data files on the target

platform:

C:\>RMAN TARGET /

Recovery Manager: Release 12.1.0.1.0 - Production

Copyright (c) 1982, 2012, Oracle and/or its affiliates. All rights reserved.

Chapter 13
Converting Data Between Platforms

13-52

connected to target database: ORAWIN (DBID=3462152886)

RMAN> CONVERT DATAFILE
2>'C:\Temp\sales_101.dbf',
3>'C:\Temp\sales_201.dbf'
4>TO PLATFORM="Microsoft Windows IA (32-bit)"
5>FROM PLATFORM="Solaris[tm] OE (32-bit)"
6>DB_FILE_NAME_CONVERT=
7>'C:\Temp\', 'C:\app\orauser\oradata\orawin\'
8> PARALLELISM=4;

If the source location, the target location, or both do not use Oracle Automatic Storage
Management (Oracle ASM), then the source and target platforms are optional. RMAN
determines the source platform by examining the data file, and the target platform defaults
to the platform of the host running the conversion.

If both the source and target locations use Oracle ASM, then you must specify the source
and target platforms in the DB_FILE_NAME_CONVERT clause.

3. Exit Recovery Manager:

RMAN> exit
Recovery Manager complete.

Related Topics

• CONVERT in Oracle Database Backup and Recovery User’s Guide

13.6 Guidelines for Transferring Data Files
You should follow a set of guidelines when transferring the data files.

If both the source and target are file systems, then you can transport using:

• Any facility for copying flat files (for example, an operating system copy utility or ftp)

• The DBMS_FILE_TRANSFER package

• RMAN

• Any facility for publishing on CDs

If either the source or target is an Oracle Automatic Storage Management (Oracle ASM) disk
group, then you can use:

• ftp to or from the /sys/asm virtual folder in the XML DB repository

See Oracle Automatic Storage Management Administrator's Guide for more information.

• The DBMS_FILE_TRANSFER package

• RMAN

Do not transport the data files for the administrative tablespaces (such as SYSTEM and SYSAUX)
or any undo or temporary tablespaces.

If you are transporting data of a different block size than the standard block size of the
database receiving the data, then you must first have a DB_nK_CACHE_SIZE initialization
parameter entry in the receiving database parameter file.

For example, if you are transporting data with an 8K block size into a database with a 4K
standard block size, then you must include a DB_8K_CACHE_SIZE initialization parameter entry in

Chapter 13
Guidelines for Transferring Data Files

13-53

the parameter file. If it is not already included in the parameter file, then this parameter can be
set using the ALTER SYSTEM SET statement.

See Oracle Database Reference for information about specifying values for the
DB_nK_CACHE_SIZE initialization parameter.

Starting with Oracle Database 12c, the GET_FILE or PUT_FILE procedure in the
DBMS_FILE_TRANSFER package can convert data between platforms during the data file transfer.
See "Converting Data Between Platforms".

Starting with Oracle Database 12c, RMAN can transfer files using network-enabled restore.
RMAN restores database files, over the network, from a remote database instance by using
the FROM SERVICE clause of the RESTORE command. The primary advantage of network-enabled
restore is that it eliminates the requirement for a restore of the backup to a staging area on disk
and the need to transfer the copy. Therefore, network-enabled restore saves disk space and
time. This technique can also provide the following advantages during file transfer:
compression, encryption, and transfer of used data blocks only. See Oracle Database Backup
and Recovery User's Guide for more information.

Note:

Exercise caution when using the UNIX dd utility to copy raw-device files between
databases, and note that Oracle Database 12c and later do not support raw devices
for database files. The dd utility can be used to copy an entire source raw-device file,
or it can be invoked with options that instruct it to copy only a specific range of blocks
from the source raw-device file.

It is difficult to ascertain actual data file size for a raw-device file because of hidden
control information that is stored as part of the data file. If you must use the dd utility
to operate on raw devices, then specify the entire source raw-device file contents. If
you move database file content from a raw device to either ASM or a file system to
adhere to the desupport of raw devices with Oracle Database 12c and later, then use
an Oracle-provided tool such as RMAN.

See Also:

"Copying Files Using the Database Server" for information about using the
DBMS_FILE_TRANSFER package to copy the files that are being transported and their
metadata

Chapter 13
Guidelines for Transferring Data Files

13-54

14
Managing Undo

For a default installation, Oracle Database automatically manages undo. There is typically no
need for DBA intervention. However, if your installation uses Oracle Flashback operations, you
may need to perform some undo management tasks to ensure the success of these
operations.

• What Is Undo?
Oracle Database creates and manages information that is used to roll back, or undo,
changes to the database. Such information consists of records of the actions of
transactions, primarily before they are committed. These records are collectively referred
to as undo.

• Introduction to Automatic Undo Management
Oracle Database can manage undo information and space automatically.

• Setting the Minimum Undo Retention Period
You specify the minimum undo retention period (in seconds) by setting the
UNDO_RETENTION initialization parameter.

• Sizing a Fixed-Size Undo Tablespace
If you decide to use a fixed-size undo tablespace, then the Undo Advisor can help you
estimate needed capacity.

• Managing Undo Tablespaces
You manage undo tablespaces by completing tasks such as creating, altering, and
dropping them. You can also switch undo tablespaces and establish user quotas for undo
space.

• Migrating to Automatic Undo Management
If you are currently using rollback segments to manage undo space, Oracle strongly
recommends that you migrate your database to automatic undo management.

• Managing Temporary Undo
By default, undo records for temporary tables are stored in the undo tablespace and are
logged in the redo, which is the same way undo is managed for persistent tables. However,
you can use the TEMP_UNDO_ENABLED initialization parameter to separate undo for
temporary tables from undo for persistent tables. When this parameter is set to TRUE, the
undo for temporary tables is called temporary undo.

• Undo Space Data Dictionary Views
You can query a set of views for information about undo space in the automatic undo
management mode.

See Also:

Using Oracle Managed Files for information about creating an undo tablespace
whose data files are both created and managed by Oracle Database.

14-1

14.1 What Is Undo?
Oracle Database creates and manages information that is used to roll back, or undo, changes
to the database. Such information consists of records of the actions of transactions, primarily
before they are committed. These records are collectively referred to as undo.

Undo records are used to:

• Roll back transactions when a ROLLBACK statement is issued

• Recover the database

• Provide read consistency

• Analyze data as of an earlier point in time by using Oracle Flashback Query

• Recover from logical corruptions using Oracle Flashback features

When a ROLLBACK statement is issued, undo records are used to undo changes that were
made to the database by the uncommitted transaction. During database recovery, undo
records are used to undo any uncommitted changes applied from the redo log to the data files.
Undo records provide read consistency by maintaining the before image of the data for users
who are accessing the data at the same time that another user is changing it.

See Also:

Oracle Database Concepts

14.2 Introduction to Automatic Undo Management
Oracle Database can manage undo information and space automatically.

• Overview of Automatic Undo Management
Oracle provides a fully automated mechanism, referred to as automatic undo
management, for managing undo information and space. With automatic undo
management, the database manages undo segments in an undo tablespace.

• The Undo Retention Period
The undo retention period is the minimum amount of time that Oracle Database attempts
to retain old undo information before overwriting it.

14.2.1 Overview of Automatic Undo Management
Oracle provides a fully automated mechanism, referred to as automatic undo management, for
managing undo information and space. With automatic undo management, the database
manages undo segments in an undo tablespace.

Automatic undo management is the default mode for a newly installed database. An auto-
extending undo tablespace named UNDOTBS1 is automatically created when you create the
database with Database Configuration Assistant (DBCA).

You can also create an undo tablespace explicitly. The methods of creating an undo
tablespace are explained in "Creating an Undo Tablespace".

Chapter 14
What Is Undo?

14-2

When the database instance starts, the database automatically selects the first available undo
tablespace. If no undo tablespace is available, then the instance starts without an undo
tablespace and stores undo records in the SYSTEM tablespace. This is not recommended, and
an alert message is written to the alert log file to warn that the system is running without an
undo tablespace.

If the database contains multiple undo tablespaces, then you can optionally specify at startup
that you want to use a specific undo tablespace. This is done by setting the UNDO_TABLESPACE
initialization parameter, as shown in this example:

UNDO_TABLESPACE = undotbs_01

If the tablespace specified in the initialization parameter does not exist, the STARTUP command
fails. The UNDO_TABLESPACE parameter can be used to assign a specific undo tablespace to an
instance in an Oracle Real Application Clusters environment.

The database can also run in manual undo management mode. In this mode, undo space is
managed through rollback segments, and no undo tablespace is used.

Note:

Space management for rollback segments is complex. Oracle strongly recommends
leaving the database in automatic undo management mode.

The following is a summary of the initialization parameters for undo management:

Initialization Parameter Description

UNDO_MANAGEMENT If AUTO or null, enables automatic undo management. If MANUAL, sets
manual undo management mode. The default is AUTO.

UNDO_TABLESPACE Optional, and valid only in automatic undo management mode.
Specifies the name of an undo tablespace. Use only when the
database has multiple undo tablespaces and you want to direct the
database instance to use a particular undo tablespace.

When automatic undo management is enabled, if the initialization parameter file contains
parameters relating to manual undo management, they are ignored.

Note:

Earlier releases of Oracle Database default to manual undo management mode. To
change to automatic undo management, you must first create an undo tablespace
and then change the UNDO_MANAGEMENT initialization parameter to AUTO. If your Oracle
Database is Oracle9i or later and you want to change to automatic undo
management, see Oracle Database Upgrade Guide for instructions.

A null UNDO_MANAGEMENT initialization parameter defaults to automatic undo
management mode in Oracle Database 11g and later, but defaults to manual undo
management mode in earlier releases. You must therefore use caution when
upgrading a previous release to the current release. Oracle Database Upgrade Guide
describes the correct method of migrating to automatic undo management mode,
including information on how to size the undo tablespace.

Chapter 14
Introduction to Automatic Undo Management

14-3

14.2.2 The Undo Retention Period
The undo retention period is the minimum amount of time that Oracle Database attempts to
retain old undo information before overwriting it.

• About the Undo Retention Period
When automatic undo management is enabled, there is always a current undo retention
period, which is the minimum amount of time that Oracle Database attempts to retain old
undo information before overwriting it.

• Automatic Tuning of Undo Retention
Oracle Database automatically tunes the undo retention period based on how the undo
tablespace is configured.

• Retention Guarantee
To guarantee the success of long-running queries or Oracle Flashback operations, you can
enable retention guarantee.

• Undo Retention Tuning and Alert Thresholds
For a fixed-size undo tablespace, the database calculates the best possible retention
based on database statistics and on the size of the undo tablespace.

• Tracking the Tuned Undo Retention Period
You can determine the current retention period by querying the TUNED_UNDORETENTION
column of the V$UNDOSTAT view.

14.2.2.1 About the Undo Retention Period
When automatic undo management is enabled, there is always a current undo retention
period, which is the minimum amount of time that Oracle Database attempts to retain old undo
information before overwriting it.

After a transaction is committed, undo data is no longer needed for rollback or transaction
recovery purposes. However, for consistent read purposes, long-running queries may require
this old undo information for producing older images of data blocks. Furthermore, the success
of several Oracle Flashback features can also depend upon the availability of older undo
information. For these reasons, it is desirable to retain the old undo information for as long as
possible.

Old (committed) undo information that is older than the current undo retention period is said to
be expired and its space is available to be overwritten by new transactions. Old undo
information with an age that is less than the current undo retention period is said to be
unexpired and is retained for consistent read and Oracle Flashback operations.

Oracle Database automatically tunes the undo retention period based on undo tablespace size
and system activity. You can optionally specify a minimum undo retention period (in seconds)
by setting the UNDO_RETENTION initialization parameter. The exact impact this parameter on
undo retention is as follows:

• The UNDO_RETENTION parameter is ignored for a fixed size undo tablespace. The database
always tunes the undo retention period for the best possible retention, based on system
activity and undo tablespace size. See "Automatic Tuning of Undo Retention" for more
information.

• For an undo tablespace with the AUTOEXTEND option enabled, the database attempts to
honor the minimum retention period specified by UNDO_RETENTION. When space is low,
instead of overwriting unexpired undo information, the tablespace auto-extends. If the
MAXSIZE clause is specified for an auto-extending undo tablespace, when the maximum

Chapter 14
Introduction to Automatic Undo Management

14-4

size is reached, the database may begin to overwrite unexpired undo information. The
UNDOTBS1 tablespace that is automatically created by DBCA is auto-extending.

The UNDO_RETENTION parameter is not inhertiable in a CDB database.

If you want to set the parameter UNDO_RETENTION in all PDBs with the same value, use the
CONTAINER=ALL clause from the CDB$ROOT. For example,

alter session set container = cdb$root;
alter system set undo_retention = 2000 container=all scope=both;

This modified the parameter value only in memory for all PDBs, and in both the SPFILE and
memory for the CDB$ROOT. The parameter is not persisted across PDB restarts.

You can modify the UNDO_RETENTION parameter so that it is persistent across restarts in each
PDB. For example,

alter session set container = pdb1;
alter system set undo_retention = 2000 scope=both;

Note:

Modifying UNDO_RETENTION is only useful if you are using the Oracle Flashback
feature, like Flashback Query or Active Dataguard, that require undo to be retained
for longer than the longest running query in the system. The purpose of
UNDO_RETENTION is to enforce, on a best-effort basis, a minimum value of undo
retention by the autotuning algorithm, but it is not guaranteed.

14.2.2.2 Automatic Tuning of Undo Retention
Oracle Database automatically tunes the undo retention period based on how the undo
tablespace is configured.

Oracle Database automatically tunes the undo retention period based on various parameters
such as undo tablespace size, undo generation rate, maximum query length, and the
RETENTION GUARANTEE setting. A bigger undo tablespace size provides the ability to retain undo
for a longer duration. Therefore, it's important to choose the size of a fixed-size undo
tablespace or MAXSIZE of an AUTOEXTEND undo tablespace that is sufficiently large to
accommodate your workload. If you choose an undo tablespace size that is too small, the
following two errors could occur:

• DML could fail because there is not enough space to accommodate undo for new
transactions.

• Long-running queries could fail with a snapshot too old error, which means that there was
insufficient undo data for read consistency.

See Sizing a Fixed-Size Undo Tablespace for more information.

If the rate of undo consumption is high, undo cannot be retained for long by the database.
Therefore, the retention will be automatically tuned to a lower value. Alternately, a low undo
consumption rate will provide a higher undo retention.

See V$UNDOSTAT UNDOBLKS column to get the undo blocks consumed over 10-minute
intervals.

Chapter 14
Introduction to Automatic Undo Management

14-5

Whether the undo tablespace is fixed size or configured with the AUTOEXTEND option, the
database dynamically tunes the undo retention period to be somewhat longer than the longest-
running active query on the system. If queries run for a very long duration and the database
cannot provide a high retention, it dynamically tunes the undo retention period to a lower best
possible retention for that tablespace size and the current system load.

However, the retention period based on the longest-running active query may be insufficient to
accommodate Oracle Flashback operations. Oracle Flashback operations resulting in snapshot
too old errors are the indicator for which you must intervene to ensure that sufficient undo data
is retained to support these operations. To better accommodate Oracle Flashback features,
you should set the UNDO_RETENTION parameter to a value equal to the longest expected Oracle
Flashback operation.

See V$UNDOSTAT MAXQUERYLEN column to get the longest-running active query duration.

Setting the UNDO_RETENTION parameter for Active Data Guard does not have any effect since
the physical standby server does not run any DMLs. To accommodate the queries on Active
Data Guard, specify the minimum retention on the primary database instance using the
UNDO_RETENTION parameter and monitor V$UNDOSTAT’s TUNED_UNDORETENTION on the primary
server.

Note:

Automatic tuning of undo retention is not supported for LOBs. This is because undo
information for LOBs is stored in the segment itself and not in the undo tablespace.
For LOBs, the database attempts to honor the minimum undo retention period
specified by UNDO_RETENTION. However, if space becomes low, unexpired LOB undo
information may be overwritten.

See Also:

Setting the Minimum Undo Retention Period

Retention Guarantee

14.2.2.3 Retention Guarantee
To guarantee the success of long-running queries or Oracle Flashback operations, you can
enable retention guarantee.

If retention guarantee is enabled, then the specified minimum undo retention is guaranteed; the
database never overwrites unexpired undo data even if it means that transactions fail due to
lack of space in the undo tablespace. If retention guarantee is not enabled, then the database
can overwrite unexpired undo when space is low, thus lowering the undo retention for the
system. This option is disabled by default.

Chapter 14
Introduction to Automatic Undo Management

14-6

WARNING:

Enabling retention guarantee can cause multiple DML operations to fail. Use with
caution.

You enable retention guarantee by specifying the RETENTION GUARANTEE clause for the undo
tablespace when you create it with either the CREATE DATABASE or CREATE UNDO TABLESPACE
statement. Or, you can later specify this clause in an ALTER TABLESPACE statement. You disable
retention guarantee with the RETENTION NOGUARANTEE clause.

You can use the DBA_TABLESPACES view to determine the retention guarantee setting for the
undo tablespace. A column named RETENTION contains a value of GUARANTEE, NOGUARANTEE, or
NOT APPLY, where NOT APPLY is used for tablespaces other than the undo tablespace.

14.2.2.4 Undo Retention Tuning and Alert Thresholds
For a fixed-size undo tablespace, the database calculates the best possible retention based on
database statistics and on the size of the undo tablespace.

For optimal undo management, rather than tuning based on 100% of the tablespace size, the
database tunes the undo retention period based on 70% of the tablespace size, or on the
warning alert threshold percentage for space used, whichever is lower. (The warning alert
threshold defaults to 70%, but can be changed.) Therefore, if you set the warning alert
threshold of the undo tablespace below 70%, this may reduce the tuned size of the undo
retention period. For more information on tablespace alert thresholds, see "Managing
Tablespace Alerts".

14.2.2.5 Tracking the Tuned Undo Retention Period
You can determine the current retention period by querying the TUNED_UNDORETENTION column
of the V$UNDOSTAT view.

This view contains one row for each 10-minute statistics collection interval over the last 4 days.
(Beyond 4 days, the data is available in the DBA_HIST_UNDOSTAT view.) TUNED_UNDORETENTION is
given in seconds.

select to_char(begin_time, 'DD-MON-RR HH24:MI') begin_time,
to_char(end_time, 'DD-MON-RR HH24:MI') end_time, tuned_undoretention
from v$undostat order by end_time;

BEGIN_TIME END_TIME TUNED_UNDORETENTION
--------------- --------------- -------------------
04-FEB-05 00:01 04-FEB-05 00:11 12100
 ...
07-FEB-05 23:21 07-FEB-05 23:31 86700
07-FEB-05 23:31 07-FEB-05 23:41 86700
07-FEB-05 23:41 07-FEB-05 23:51 86700
07-FEB-05 23:51 07-FEB-05 23:52 86700

576 rows selected.

See Oracle Database Reference for more information about V$UNDOSTAT.

Chapter 14
Introduction to Automatic Undo Management

14-7

14.3 Setting the Minimum Undo Retention Period
You specify the minimum undo retention period (in seconds) by setting the UNDO_RETENTION
initialization parameter.

As described in "About the Undo Retention Period", the current undo retention period may be
automatically tuned to be greater than UNDO_RETENTION, or, unless retention guarantee is
enabled, less than UNDO_RETENTION if space in the undo tablespace is low.

To set the minimum undo retention period:

• Do one of the following:

– Set UNDO_RETENTION in the initialization parameter file.

UNDO_RETENTION = 1800
– Change UNDO_RETENTION at any time using the ALTER SYSTEM statement:

ALTER SYSTEM SET UNDO_RETENTION = 2400;
The effect of an UNDO_RETENTION parameter change is immediate, but it can only be honored if
the current undo tablespace has enough space. The UNDO_RETENTION parameter is not
inheritable in a CDB configuration and should only be changed from its default value to
accommodate Oracle Flashback operations or Active Data Guard.

14.4 Sizing a Fixed-Size Undo Tablespace
If you decide to use a fixed-size undo tablespace, then the Undo Advisor can help you
estimate needed capacity.

You can access the Undo Advisor through Oracle Enterprise Manager Database Express (EM
Express) or through the DBMS_ADVISOR PL/SQL package. EM Express is the preferred method
of accessing the advisor.

The Undo Advisor relies for its analysis on data collected in the Automatic Workload
Repository (AWR). It is therefore important that the AWR have adequate workload statistics
available so that the Undo Advisor can make accurate recommendations. For newly created
databases, adequate statistics may not be available immediately. In such cases, continue to
use the default auto-extending undo tablespace until at least one workload cycle completes.

An adjustment to the collection interval and retention period for AWR statistics can affect the
precision and the type of recommendations that the advisor produces. See Oracle Database
Performance Tuning Guide for more information.

To use the Undo Advisor, you first estimate these two values:

• The length of your expected longest running query

After the database has completed a workload cycle, you can view the Longest Running
Query field on the System Activity subpage of the Automatic Undo Management page.

• The longest interval that you will require for Oracle Flashback operations

For example, if you expect to run Oracle Flashback queries for up to 48 hours in the past,
your Oracle Flashback requirement is 48 hours.

You then take the maximum of these two values and use that value as input to the Undo
Advisor.

Chapter 14
Setting the Minimum Undo Retention Period

14-8

Running the Undo Advisor does not alter the size of the undo tablespace. The advisor just
returns a recommendation. You must use ALTER DATABASE statements to change the
tablespace data files to fixed sizes.

The following example assumes that the undo tablespace has one auto-extending data file
named undotbs.dbf. The example changes the tablespace to a fixed size of 300MB.

ALTER DATABASE DATAFILE '/oracle/dbs/undotbs.dbf' RESIZE 300M;
ALTER DATABASE DATAFILE '/oracle/dbs/undotbs.dbf' AUTOEXTEND OFF;

Note:

To make the undo tablespace fixed-size, Oracle suggests that you first allow enough
time after database creation to run a full workload, thus allowing the undo tablespace
to grow to its minimum required size to handle the workload. Then, you can use the
Undo Advisor to determine, if desired, how much larger to set the size of the undo
tablespace to allow for long-running queries and Oracle Flashback operations.

Note:

Oracle Enterprise Manager Database Express (EM Express) is deprecated, and will
be removed in a future Oracle Database release.

• Activating the Undo Advisor PL/SQL Interface
You can activate the Undo Advisor by creating an undo advisor task through the advisor
framework.

14.4.1 Activating the Undo Advisor PL/SQL Interface
You can activate the Undo Advisor by creating an undo advisor task through the advisor
framework.

The following example creates an undo advisor task to evaluate the undo tablespace. The
name of the advisor is 'Undo Advisor'. The analysis is based on Automatic Workload
Repository snapshots, which you must specify by setting parameters START_SNAPSHOT and
END_SNAPSHOT. In the following example, the START_SNAPSHOT is "1" and END_SNAPSHOT is "2".

DECLARE
 tid NUMBER;
 tname VARCHAR2(30);
 oid NUMBER;
BEGIN
 DBMS_ADVISOR.CREATE_TASK('Undo Advisor', tid, tname, 'Undo Advisor Task');
 DBMS_ADVISOR.CREATE_OBJECT(tname, 'UNDO_TBS', null, null, null, 'null', oid);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'TARGET_OBJECTS', oid);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'START_SNAPSHOT', 1);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'END_SNAPSHOT', 2);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'INSTANCE', 1);
 DBMS_ADVISOR.execute_task(tname);
END;
/

After you have created the advisor task, you can view the output and recommendations in the
Automatic Database Diagnostic Monitor in EM Express. This information is also available in the

Chapter 14
Sizing a Fixed-Size Undo Tablespace

14-9

DBA_ADVISOR_* data dictionary views (DBA_ADVISOR_TASKS, DBA_ADVISOR_OBJECTS,
DBA_ADVISOR_FINDINGS, DBA_ADVISOR_RECOMMENDATIONS, and so on).

Note:

Oracle Enterprise Manager Database Express (EM Express) is deprecated, and will
be removed in a future Oracle Database release.

See Also:

• "Using the Segment Advisor" for an example of creating an advisor task for a
different advisor

• Oracle Database Reference for information about the DBA_ADVISOR_* data
dictionary views

14.5 Managing Undo Tablespaces
You manage undo tablespaces by completing tasks such as creating, altering, and dropping
them. You can also switch undo tablespaces and establish user quotas for undo space.

• Creating an Undo Tablespace
Although Database Configuration Assistant (DBCA) automatically creates an undo
tablespace for new installations, there may be occasions when you want to manually
create an undo tablespace.

• Altering an Undo Tablespace
You can alter an undo tablespaces using the ALTER TABLESPACE statement.

• Dropping an Undo Tablespace
Use the DROP TABLESPACE statement to drop an undo tablespace.

• Switching Undo Tablespaces
You can switch from using one undo tablespace to another. Because the UNDO_TABLESPACE
initialization parameter is a dynamic parameter, the ALTER SYSTEM SET statement can be
used to assign a new undo tablespace.

• Establishing User Quotas for Undo Space
You can use the Oracle Database Resource Manager to establish user quotas for undo
space. The Database Resource Manager directive UNDO_POOL allows DBAs to limit the
amount of undo space consumed by a group of users (resource consumer group).

• Managing Space Threshold Alerts for the Undo Tablespace
Oracle Database provides proactive help in managing tablespace disk space use by
alerting you when tablespaces run low on available space.

14.5.1 Creating an Undo Tablespace
Although Database Configuration Assistant (DBCA) automatically creates an undo tablespace
for new installations, there may be occasions when you want to manually create an undo
tablespace.

Chapter 14
Managing Undo Tablespaces

14-10

• About Creating an Undo Tablespace
When you are creating a database, you can create an undo tablespace with the CREATE
DATABASE statement. In an existing database, you can create an undo tablespace with the
CREATE UNDO TABLESPACE statement.

• Using CREATE DATABASE to Create an Undo Tablespace
You can create a specific undo tablespace using the UNDO TABLESPACE clause of the
CREATE DATABASE statement.

• Using the CREATE UNDO TABLESPACE Statement
The CREATE UNDO TABLESPACE statement is the same as the CREATE TABLESPACE
statement, but the UNDO keyword is specified. The database determines most of the
attributes of the undo tablespace, but you can specify the DATAFILE clause.

14.5.1.1 About Creating an Undo Tablespace
When you are creating a database, you can create an undo tablespace with the CREATE
DATABASE statement. In an existing database, you can create an undo tablespace with the
CREATE UNDO TABLESPACE statement.

There are two methods of creating an undo tablespace. The first method creates the undo
tablespace when the CREATE DATABASE statement is issued. This occurs when you are creating
a new database, and the instance is started in automatic undo management mode
(UNDO_MANAGEMENT = AUTO). The second method is used with an existing database. It uses the
CREATE UNDO TABLESPACE statement.

You cannot create database objects in an undo tablespace. It is reserved for system-managed
undo data.

Oracle Database enables you to create a single-file undo tablespace. Single-file, or bigfile,
tablespaces are discussed in "Bigfile Tablespaces".

14.5.1.2 Using CREATE DATABASE to Create an Undo Tablespace
You can create a specific undo tablespace using the UNDO TABLESPACE clause of the CREATE
DATABASE statement.

The following statement illustrates using the UNDO TABLESPACE clause in a CREATE DATABASE
statement. The undo tablespace is named undotbs_01 and one data file, /u01/oracle/rbdb1/
undo0101.dbf, is allocated for it.

CREATE DATABASE rbdb1
 CONTROLFILE REUSE
 .
 .
 .
 UNDO TABLESPACE undotbs_01 DATAFILE '/u01/oracle/rbdb1/undo0101.dbf';

If the undo tablespace cannot be created successfully during CREATE DATABASE, the entire
CREATE DATABASE operation fails. You must clean up the database files, correct the error and
retry the CREATE DATABASE operation.

The CREATE DATABASE statement also lets you create a single-file undo tablespace at database
creation.

Related Topics

• Oracle Multitenant Administrator's Guide

Chapter 14
Managing Undo Tablespaces

14-11

• Oracle Database SQL Language Reference

14.5.1.3 Using the CREATE UNDO TABLESPACE Statement
The CREATE UNDO TABLESPACE statement is the same as the CREATE TABLESPACE statement,
but the UNDO keyword is specified. The database determines most of the attributes of the undo
tablespace, but you can specify the DATAFILE clause.

This example creates the undotbs_02 undo tablespace with the AUTOEXTEND option:

CREATE UNDO TABLESPACE undotbs_02
 DATAFILE '/u01/oracle/rbdb1/undo0201.dbf' SIZE 2M REUSE AUTOEXTEND ON;

You can create multiple undo tablespaces, but only one of them can be active at any one time.

See Also:

Oracle Database SQL Language Reference for the syntax for using the CREATE UNDO
TABLESPACE statement to create an undo tablespace

14.5.2 Altering an Undo Tablespace
You can alter an undo tablespaces using the ALTER TABLESPACE statement.

However, since most aspects of undo tablespaces are system managed, you need only be
concerned with the following actions:

• Adding a data file

• Renaming a data file

• Bringing a data file online or taking it offline

• Beginning or ending an open backup on a data file

• Enabling and disabling undo retention guarantee

These are also the only attributes you are permitted to alter.

If an undo tablespace runs out of space, or you want to prevent it from doing so, you can add
more files to it or resize existing data files.

The following example adds another data file to undo tablespace undotbs_01:

ALTER TABLESPACE undotbs_01
 ADD DATAFILE '/u01/oracle/rbdb1/undo0102.dbf' AUTOEXTEND ON NEXT 1M
 MAXSIZE UNLIMITED;

You can use the ALTER DATABASE...DATAFILE statement to resize or extend a data file.

Chapter 14
Managing Undo Tablespaces

14-12

See Also:

• "Changing Data File Size"

• Oracle Database SQL Language Reference for ALTER TABLESPACE syntax

14.5.3 Dropping an Undo Tablespace
Use the DROP TABLESPACE statement to drop an undo tablespace.

The following example drops the undo tablespace undotbs_01:

DROP TABLESPACE undotbs_01;

An undo tablespace can only be dropped if it is not currently used by any instance. If the undo
tablespace contains any outstanding transactions (for example, a transaction died but has not
yet been recovered), the DROP TABLESPACE statement fails. However, since DROP TABLESPACE
drops an undo tablespace even if it contains unexpired undo information (within retention
period), you must be careful not to drop an undo tablespace if undo information is needed by
some existing queries.

DROP TABLESPACE for undo tablespaces behaves like DROP TABLESPACE...INCLUDING
CONTENTS. All contents of the undo tablespace are removed.

See Also:

Oracle Database SQL Language Reference for DROP TABLESPACE syntax

14.5.4 Switching Undo Tablespaces
You can switch from using one undo tablespace to another. Because the UNDO_TABLESPACE
initialization parameter is a dynamic parameter, the ALTER SYSTEM SET statement can be used
to assign a new undo tablespace.

The following statement switches to a new undo tablespace:

ALTER SYSTEM SET UNDO_TABLESPACE = undotbs_02;

Assuming undotbs_01 is the current undo tablespace, after this command successfully
executes, the instance uses undotbs_02 in place of undotbs_01 as its undo tablespace.

If any of the following conditions exist for the tablespace being switched to, an error is reported
and no switching occurs:

• The tablespace does not exist

• The tablespace is not an undo tablespace

• The tablespace is already being used by another instance (in an Oracle RAC environment
only)

The database is online while the switch operation is performed, and user transactions can be
executed while this command is being executed. When the switch operation completes

Chapter 14
Managing Undo Tablespaces

14-13

successfully, all transactions started after the switch operation began are assigned to
transaction tables in the new undo tablespace.

The switch operation does not wait for transactions in the old undo tablespace to commit. If
there are any pending transactions in the old undo tablespace, the old undo tablespace enters
into a PENDING OFFLINE mode (status). In this mode, existing transactions can continue to
execute, but undo records for new user transactions cannot be stored in this undo tablespace.

An undo tablespace can exist in this PENDING OFFLINE mode, even after the switch operation
completes successfully. A PENDING OFFLINE undo tablespace cannot be used by another
instance, nor can it be dropped. Eventually, after all active transactions have committed, the
undo tablespace automatically goes from the PENDING OFFLINE mode to the OFFLINE mode.
From then on, the undo tablespace is available for other instances (in an Oracle Real
Application Cluster environment).

If the parameter value for UNDO TABLESPACE is set to '' (two single quotes), then the current
undo tablespace is switched out and the next available undo tablespace is switched in. Use
this statement with care because there may be no undo tablespace available.

The following example unassigns the current undo tablespace:

ALTER SYSTEM SET UNDO_TABLESPACE = '';

14.5.5 Establishing User Quotas for Undo Space
You can use the Oracle Database Resource Manager to establish user quotas for undo space.
The Database Resource Manager directive UNDO_POOL allows DBAs to limit the amount of undo
space consumed by a group of users (resource consumer group).

You can specify an undo pool for each consumer group. An undo pool controls the amount of
total undo that can be generated by a consumer group. When the total undo generated by a
consumer group exceeds its undo limit, the current UPDATE transaction generating the undo is
terminated. No other members of the consumer group can perform further updates until undo
space is freed from the pool.

When no UNDO_POOL directive is explicitly defined, users are allowed unlimited undo space.

See Also:

Managing Resources with Oracle Database Resource Manager

14.5.6 Managing Space Threshold Alerts for the Undo Tablespace
Oracle Database provides proactive help in managing tablespace disk space use by alerting
you when tablespaces run low on available space.

See "Managing Tablespace Alerts" for information on how to set alert thresholds for the undo
tablespace.

In addition to the proactive undo space alerts, Oracle Database also provides alerts if your
system has long-running queries that cause SNAPSHOT TOO OLD errors. To prevent excessive
alerts, the long query alert is issued at most once every 24 hours. When the alert is generated,
you can check the Undo Advisor Page of EM Express to get more information about the undo
tablespace.

Chapter 14
Managing Undo Tablespaces

14-14

Note:

Oracle Enterprise Manager Database Express (EM Express) is deprecated, and will
be removed in a future Oracle Database release.

14.6 Migrating to Automatic Undo Management
If you are currently using rollback segments to manage undo space, Oracle strongly
recommends that you migrate your database to automatic undo management.

For instructions, see Oracle Database Upgrade Guide.

14.7 Managing Temporary Undo
By default, undo records for temporary tables are stored in the undo tablespace and are
logged in the redo, which is the same way undo is managed for persistent tables. However,
you can use the TEMP_UNDO_ENABLED initialization parameter to separate undo for temporary
tables from undo for persistent tables. When this parameter is set to TRUE, the undo for
temporary tables is called temporary undo.

• About Managing Temporary Undo
Temporary undo records are stored in the database's temporary tablespaces and thus are
not logged in the redo log. When temporary undo is enabled, some of the segments used
by the temporary tablespaces store the temporary undo, and these segments are called
temporary undo segments.

• Enabling and Disabling Temporary Undo
You can enable or disable temporary undo for a session or for the system. To do so, set
the TEMP_UNDO_ENABLED initialization parameter.

14.7.1 About Managing Temporary Undo
Temporary undo records are stored in the database's temporary tablespaces and thus are not
logged in the redo log. When temporary undo is enabled, some of the segments used by the
temporary tablespaces store the temporary undo, and these segments are called temporary
undo segments.

When temporary undo is enabled, it might be necessary to increase the size of the temporary
tablespaces to account for the undo records.

Enabling temporary undo provides the following benefits:

• Temporary undo reduces the amount of undo stored in the undo tablespaces.

Less undo in the undo tablespaces can result in more realistic undo retention period
requirements for undo records.

• Temporary undo reduces the size of the redo log.

Performance is improved because less data is written to the redo log, and components that
parse redo log records, such as LogMiner, perform better because there is less redo data
to parse.

• Temporary undo enables data manipulation language (DML) operations on temporary
tables in a physical standby database with the Oracle Active Data Guard option. However,

Chapter 14
Migrating to Automatic Undo Management

14-15

data definition language (DDL) operations that create temporary tables must be issued on
the primary database.

You can enable temporary undo for a specific session or for the whole system. When you
enable temporary undo for a session using an ALTER SESSION statement, the session creates
temporary undo without affecting other sessions. When you enable temporary undo for the
system using an ALTER SYSTEM statement, all existing sessions and new sessions create
temporary undo.

When a session uses temporary objects for the first time, the current value of the
TEMP_UNDO_ENABLED initialization parameter is set for the rest of the session. Therefore, if
temporary undo is enabled for a session and the session uses temporary objects, then
temporary undo cannot be disabled for the session. Similarly, if temporary undo is disabled for
a session and the session uses temporary objects, then temporary undo cannot be enabled for
the session.

Temporary undo is enabled by default for a physical standby database with the Oracle Active
Data Guard option. The TEMP_UNDO_ENABLED initialization parameter has no effect on a physical
standby database with Active Data Guard option because of the default setting.

Note:

Temporary undo can be enabled only if the compatibility level of the database is
12.0.0 or higher.

See Also:

• "Creating a Temporary Table"

• "About the Undo Retention Period"

• Oracle Database Reference for more information about the TEMP_UNDO_ENABLED
initialization parameter

• Oracle Data Guard Concepts and Administration

• Oracle Database Concepts for more information about temporary undo segments

14.7.2 Enabling and Disabling Temporary Undo
You can enable or disable temporary undo for a session or for the system. To do so, set the
TEMP_UNDO_ENABLED initialization parameter.

To enable or disable temporary undo:

1. In SQL*Plus, connect to the database.

If you are enabling or disabling temporary undo for a session, then start the session in
SQL*Plus.

If you are enabling or disabling temporary undo for the system, then connect as an
administrative user with the ALTER SYSTEM system privilege in SQL*Plus.

See "Connecting to the Database with SQL*Plus".

Chapter 14
Managing Temporary Undo

14-16

2. Set the TEMP_UNDO_ENABLED initialization parameter:

• To enable temporary undo for a session, run the following SQL statement:

ALTER SESSION SET TEMP_UNDO_ENABLED = TRUE;
• To disable temporary undo for a session, run the following SQL statement:

ALTER SESSION SET TEMP_UNDO_ENABLED = FALSE;
• To enable temporary undo for the system, run the following SQL statement:

ALTER SYSTEM SET TEMP_UNDO_ENABLED = TRUE;

After temporary undo is enabled for the system, a session can disable temporary undo
using the ALTER SESSION statement.

• To disable temporary undo for the system, run the following SQL statement:

ALTER SYSTEM SET TEMP_UNDO_ENABLED = FALSE;

After temporary undo is disabled for the system, a session can enable temporary undo
using the ALTER SESSION statement.

You can also enable temporary undo for the system by setting TEMP_UNDO_ENABLED to TRUE in a
server parameter file or a text initialization parameter file. In this case, all new sessions create
temporary undo unless temporary undo is disabled for the system by an ALTER SYSTEM
statement or for a session by an ALTER SESSION statement.

See Also:

• Oracle Database Reference for more information about the TEMP_UNDO_ENABLED
initialization parameter

• Oracle Data Guard Concepts and Administration for information about enabling
and disabling temporary undo in an Oracle Data Guard environment

14.8 Undo Space Data Dictionary Views
You can query a set of views for information about undo space in the automatic undo
management mode.

In addition to views listed here, you can obtain information from the views available for viewing
tablespace and data file information. See "Data Files Data Dictionary Views" for information on
getting information about those views.

The following dynamic performance views are useful for obtaining space information about the
undo tablespace:

View Description

V$UNDOSTAT Contains statistics for monitoring and tuning undo space. Use this
view to help estimate the amount of undo space required for the
current workload. The database also uses this information to help
tune undo usage in the system. This view is meaningful only in
automatic undo management mode.

Chapter 14
Undo Space Data Dictionary Views

14-17

View Description

V$TEMPUNDOSTAT Contains statistics for monitoring and tuning temporary undo
space. Use this view to help estimate the amount of temporary
undo space required in the temporary tablespaces for the current
workload. The database also uses this information to help tune
temporary undo usage in the system. This view is meaningful only
when temporary undo is enabled.

V$ROLLSTAT For automatic undo management mode, information reflects
behavior of the undo segments in the undo tablespace

V$TRANSACTION Contains undo segment information

DBA_UNDO_EXTENTS Shows the status and size of each extent in the undo tablespace.

DBA_HIST_UNDOSTAT Contains statistical snapshots of V$UNDOSTAT information.

The V$UNDOSTAT view is useful for monitoring the effects of transaction execution on undo
space in the current instance. Statistics are available for undo space consumption, transaction
concurrency, the tuning of undo retention, and the length and SQL ID of long-running queries
in the instance.

Each row in the view contains statistics collected in the instance for a ten-minute interval. The
rows are in descending order by the BEGIN_TIME column value. Each row belongs to the time
interval marked by (BEGIN_TIME, END_TIME). Each column represents the data collected for the
particular statistic in that time interval. The first row of the view contains statistics for the
(partial) current time period. The view contains a total of 576 rows, spanning a 4 day cycle.

The following example shows the results of a query on the V$UNDOSTAT view.

 SELECT TO_CHAR(BEGIN_TIME, 'MM/DD/YYYY HH24:MI:SS') BEGIN_TIME,
 TO_CHAR(END_TIME, 'MM/DD/YYYY HH24:MI:SS') END_TIME,
 UNDOTSN, UNDOBLKS, TXNCOUNT, MAXCONCURRENCY AS "MAXCON"
 FROM v$UNDOSTAT WHERE rownum <= 144;

 BEGIN_TIME END_TIME UNDOTSN UNDOBLKS TXNCOUNT MAXCON
 ------------------- ------------------- ---------- ---------- ---------- ----------
 10/28/2004 14:25:12 10/28/2004 14:32:17 8 74 12071108 3
 10/28/2004 14:15:12 10/28/2004 14:25:12 8 49 12070698 2
 10/28/2004 14:05:12 10/28/2004 14:15:12 8 125 12070220 1
 10/28/2004 13:55:12 10/28/2004 14:05:12 8 99 12066511 3
 ...
 10/27/2004 14:45:12 10/27/2004 14:55:12 8 15 11831676 1
 10/27/2004 14:35:12 10/27/2004 14:45:12 8 154 11831165 2

 144 rows selected.

The preceding example shows how undo space is consumed in the system for the previous 24
hours from the time 14:35:12 on 10/27/2004.

Chapter 14
Undo Space Data Dictionary Views

14-18

15
Using Oracle Managed Files

Oracle Database can manage the files that comprise the database.

• About Oracle Managed Files
Oracle Managed Files eases database administration, reduces errors, and reduces wasted
disk space.

• Enabling the Creation and Use of Oracle Managed Files
You set certain initialization parameters to enable and use Oracle Managed Files.

• Creating Oracle Managed Files
You can use Oracle Managed Files to create data files, temp files, control files, redo log
files, and archived log.

• Operation of Oracle Managed Files
The file names of Oracle Managed Files are accepted in SQL statements wherever a file
name is used to identify an existing file.

• Scenarios for Using Oracle Managed Files
Scenarios illustrate how to use Oracle Managed Files.

15.1 About Oracle Managed Files
Oracle Managed Files eases database administration, reduces errors, and reduces wasted
disk space.

• What Is Oracle Managed Files?
Using Oracle Managed Files simplifies the administration of an Oracle Database. Oracle
Managed Files eliminates the need for you, the DBA, to directly manage the operating
system files that comprise an Oracle Database.

• Who Can Use Oracle Managed Files?
Oracle Managed Files is most useful for certain types of databases.

• What Is a Logical Volume Manager?
A logical volume manager (LVM) is a software package available with most operating
systems. Sometimes it is called a logical disk manager (LDM). It allows pieces of multiple
physical disks to be combined into a single contiguous address space that appears as one
disk to higher layers of software.

• What Is a File System?
A file system is a data structure built inside a contiguous disk address space. A file
manager (FM) is a software package that manipulates file systems, but it is sometimes
called the file system.

• Benefits of Using Oracle Managed Files
Oracle Managed Files provides several benefits.

• Oracle Managed Files and Existing Functionality
Using Oracle Managed Files does not eliminate any existing functionality.

15-1

15.1.1 What Is Oracle Managed Files?
Using Oracle Managed Files simplifies the administration of an Oracle Database. Oracle
Managed Files eliminates the need for you, the DBA, to directly manage the operating system
files that comprise an Oracle Database.

With Oracle Managed Files, you specify file system directories in which the database
automatically creates, names, and manages files at the database object level. For example,
you need only specify that you want to create a tablespace; you do not need to specify the
name and path of the tablespace's data file with the DATAFILE clause. This feature works well
with a logical volume manager (LVM).

The database internally uses standard file system interfaces to create and delete files as
needed for the following database structures:

• Tablespaces

• Redo log files

• Control files

• Archived logs

• Block change tracking files

• Flashback logs

• RMAN backups

Through initialization parameters, you specify the file system directory to be used for a
particular type of file. The database then ensures that a unique file, an Oracle managed file, is
created and deleted when no longer needed.

This feature does not affect the creation or naming of administrative files such as trace files,
audit files, alert logs, and core files.

See Also:

Oracle Automatic Storage Management Administrator's Guide for information about
Oracle Automatic Storage Management (Oracle ASM), the Oracle Database
integrated file system and volume manager that extends the power of Oracle
Managed Files. With Oracle Managed Files, files are created and managed
automatically for you, but with Oracle ASM, you get the additional benefits of features
such as striping, software mirroring, and dynamic storage configuration, without the
need to purchase a third-party logical volume manager.

15.1.2 Who Can Use Oracle Managed Files?
Oracle Managed Files is most useful for certain types of databases.

Oracle Managed Files are most useful for the following types of databases:

• Databases that are supported by the following:

– A logical volume manager that supports striping/RAID and dynamically extensible
logical volumes

Chapter 15
About Oracle Managed Files

15-2

– A file system that provides large, extensible files

• Low end or test databases

Because Oracle Managed Files require that you use the operating system file system, you lose
control over how files are laid out on the disks, and thus, you lose some I/O tuning ability.

15.1.3 What Is a Logical Volume Manager?
A logical volume manager (LVM) is a software package available with most operating systems.
Sometimes it is called a logical disk manager (LDM). It allows pieces of multiple physical disks
to be combined into a single contiguous address space that appears as one disk to higher
layers of software.

An LVM can make the logical volume have better capacity, performance, reliability, and
availability characteristics than any of the underlying physical disks. It uses techniques such as
mirroring, striping, concatenation, and RAID 5 to implement these characteristics.

Some LVMs allow the characteristics of a logical volume to be changed after it is created, even
while it is in use. The volume may be resized or mirrored, or it may be relocated to different
physical disks.

15.1.4 What Is a File System?
A file system is a data structure built inside a contiguous disk address space. A file manager
(FM) is a software package that manipulates file systems, but it is sometimes called the file
system.

All operating systems have file managers. The primary task of a file manager is to allocate and
deallocate disk space into files within a file system.

A file system allows the disk space to be allocated to a large number of files. Each file is made
to appear as a contiguous address space to applications such as Oracle Database. The files
may not actually be contiguous within the disk space of the file system. Files can be created,
read, written, resized, and deleted. Each file has a name associated with it that is used to refer
to the file.

A file system is commonly built on top of a logical volume constructed by an LVM. Thus all the
files in a particular file system have the same performance, reliability, and availability
characteristics inherited from the underlying logical volume. A file system is a single pool of
storage that is shared by all the files in the file system. If a file system is out of space, then
none of the files in that file system can grow. Space available in one file system does not affect
space in another file system. However some LVM/FM combinations allow space to be added or
removed from a file system.

An operating system can support multiple file systems. Multiple file systems are constructed to
give different storage characteristics to different files as well as to divide the available disk
space into pools that do not affect each other.

15.1.5 Benefits of Using Oracle Managed Files
Oracle Managed Files provides several benefits.

Consider the following benefits of using Oracle Managed Files:

• They make the administration of the database easier.

Chapter 15
About Oracle Managed Files

15-3

There is no need to invent file names and define specific storage requirements. A
consistent set of rules is used to name all relevant files. The file system defines the
characteristics of the storage and the pool where it is allocated.

• They reduce corruption caused by administrators specifying the wrong file.

Each Oracle managed file and file name is unique. Using the same file in two different
databases is a common mistake that can cause very large down times and loss of
committed transactions. Using two different names that refer to the same file is another
mistake that causes major corruptions.

• They reduce wasted disk space consumed by obsolete files.

Oracle Database automatically removes old Oracle Managed Files when they are no
longer needed. Much disk space is wasted in large systems simply because no one is sure
if a particular file is still required. This also simplifies the administrative task of removing
files that are no longer required on disk and prevents the mistake of deleting the wrong file.

• They simplify creation of test and development databases.

You can minimize the time spent making decisions regarding file structure and naming,
and you have fewer file management tasks. You can focus better on meeting the actual
requirements of your test or development database.

• Oracle Managed Files make development of portable third-party tools easier.

Oracle Managed Files eliminate the need to put operating system specific file names in
SQL scripts.

15.1.6 Oracle Managed Files and Existing Functionality
Using Oracle Managed Files does not eliminate any existing functionality.

Existing databases are able to operate as they always have. New files can be created as
managed files while old ones are administered in the old way. Thus, a database can have a
mixture of Oracle managed and unmanaged files.

15.2 Enabling the Creation and Use of Oracle Managed Files
You set certain initialization parameters to enable and use Oracle Managed Files.

• Initialization Parameters That Enable Oracle Managed Files
The following table lists the initialization parameters that enable the use of Oracle
Managed Files.

• Setting the DB_CREATE_FILE_DEST Initialization Parameter
The DB_CREATE_FILE_DEST initialization parameter specifies the location of important
database files.

• Setting the DB_RECOVERY_FILE_DEST Parameter
Include the DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE parameters in
your initialization parameter file to identify the default location for the Fast Recovery Area.

• Setting the DB_CREATE_ONLINE_LOG_DEST_n Initialization Parameters
The DB_CREATE_ONLINE_LOG_DEST_n initialization parameters specify the locations of the
redo log files and the control files.

Chapter 15
Enabling the Creation and Use of Oracle Managed Files

15-4

15.2.1 Initialization Parameters That Enable Oracle Managed Files
The following table lists the initialization parameters that enable the use of Oracle Managed
Files.

Initialization Parameter Description

DB_CREATE_FILE_DEST Defines the location of the default file system directory or Oracle
ASM disk group where the database creates data files or temp files
when no file specification is given in the create operation. Also used
as the default location for redo log and control files if
DB_CREATE_ONLINE_LOG_DEST_n are not specified.

DB_CREATE_ONLINE_LOG_DEST_n Defines the location of the default file system directory or Oracle
ASM disk group for redo log files and control file creation when no
file specification is given in the create operation. By changing n, you
can use this initialization parameter multiple times, where n
specifies a multiplexed copy of the redo log or control file. You can
specify up to five multiplexed copies.

DB_RECOVERY_FILE_DEST Defines the location of the Fast Recovery Area, which is the default
file system directory or Oracle ASM disk group where the database
creates RMAN backups when no format option is used, archived
logs when no other local destination is configured, and flashback
logs. Also used as the default location for redo log and control files
or multiplexed copies of redo log and control files if
DB_CREATE_ONLINE_LOG_DEST_n are not specified. When this
parameter is specified, the DB_RECOVERY_FILE_DEST_SIZE
initialization parameter must also be specified.

The file system directories specified by these parameters must already exist; the database
does not create them. The directory must also have permissions to allow the database to
create the files in it.

The default location is used whenever a location is not explicitly specified for the operation
creating the file. The database creates the file name, and a file thus created is an Oracle
managed file.

Both of these initialization parameters are dynamic, and can be set using the ALTER SYSTEM or
ALTER SESSION statement.

See Also:

• Oracle Database Reference for additional information about initialization
parameters

• "How Oracle Managed Files Are Named"

Chapter 15
Enabling the Creation and Use of Oracle Managed Files

15-5

15.2.2 Setting the DB_CREATE_FILE_DEST Initialization Parameter
The DB_CREATE_FILE_DEST initialization parameter specifies the location of important database
files.

Include the DB_CREATE_FILE_DEST initialization parameter in your initialization parameter file to
identify the default location for the database server to create:

• Data files

• Temp files

• Redo log files

• Control files

• Block change tracking files

You specify the name of a file system directory that becomes the default location for the
creation of the operating system files for these entities. The following example sets /u01/app/
oracle/oradata as the default directory to use when creating Oracle Managed Files:

DB_CREATE_FILE_DEST = '/u01/app/oracle/oradata'

15.2.3 Setting the DB_RECOVERY_FILE_DEST Parameter
Include the DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE parameters in your
initialization parameter file to identify the default location for the Fast Recovery Area.

The Fast Recovery Area contains:

• Redo log files or multiplexed copies of redo log files

• Control files or multiplexed copies of control files

• RMAN backups (data file copies, control file copies, backup pieces, control file
autobackups)

• Archived logs

• Flashback logs

You specify the name of file system directory that becomes the default location for creation of
the operating system files for these entities. For example:

DB_RECOVERY_FILE_DEST = '/u01/app/oracle/fast_recovery_area'
DB_RECOVERY_FILE_DEST_SIZE = 20G

15.2.4 Setting the DB_CREATE_ONLINE_LOG_DEST_n Initialization
Parameters

The DB_CREATE_ONLINE_LOG_DEST_n initialization parameters specify the locations of the redo
log files and the control files.

Include the DB_CREATE_ONLINE_LOG_DEST_n initialization parameters in your initialization
parameter file to identify the default locations for the database server to create:

• Redo log files

• Control files

Chapter 15
Enabling the Creation and Use of Oracle Managed Files

15-6

You specify the name of a file system directory or Oracle ASM disk group that becomes the
default location for the creation of the files for these entities. You can specify up to five
multiplexed locations.

For the creation of redo log files and control files only, this parameter overrides any default
location specified in the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST initialization
parameters. If you do not specify a DB_CREATE_FILE_DEST parameter, but you do specify the
DB_CREATE_ONLINE_LOG_DEST_n parameter, then only redo log files and control files can be
created as Oracle Managed Files.

It is recommended that you specify at least two parameters. For example:

DB_CREATE_ONLINE_LOG_DEST_1 = '/u02/oradata'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u03/oradata'

This allows multiplexing, which provides greater fault-tolerance for the redo log and control file
if one of the destinations fails.

15.3 Creating Oracle Managed Files
You can use Oracle Managed Files to create data files, temp files, control files, redo log files,
and archived log.

• When Oracle Database Creates Oracle Managed Files
Oracle Database creates Oracle Managed Files when certain conditions are met.

• How Oracle Managed Files Are Named
The file names of Oracle Managed Files comply with the Optimal Flexible Architecture
(OFA) standard for file naming.

• Creating Oracle Managed Files at Database Creation
The CREATE DATABASE statement can perform actions related to Oracle Managed Files.

• Creating Data Files for Tablespaces Using Oracle Managed Files
Oracle Database can create data files for tablespaces using Oracle Managed Files when
certain conditions are met.

• Creating Temp Files for Temporary Tablespaces Using Oracle Managed Files
Oracle Database can create temp files for temporary tablespaces using Oracle Managed
Files when certain conditions are met.

• Creating Control Files Using Oracle Managed Files
Oracle Database can create control files using Oracle Managed Files when certain
conditions are met.

• Creating Redo Log Files Using Oracle Managed Files
Redo log files are created at database creation time. They can also be created when you
issue either of the following statements: ALTER DATABASE ADD LOGFILE and ALTER
DATABASE OPEN RESETLOGS.

• Creating Archived Logs Using Oracle Managed Files
Archived logs are created by a background process or by a SQL statement.

15.3.1 When Oracle Database Creates Oracle Managed Files
Oracle Database creates Oracle Managed Files when certain conditions are met.

If you have met any of the following conditions, then Oracle Database creates Oracle Managed
Files for you, as appropriate, when no file specification is given in the create operation:

Chapter 15
Creating Oracle Managed Files

15-7

• You have included any of the DB_CREATE_FILE_DEST, DB_RECOVERY_FILE_DEST, or
DB_CREATE_ONLINE_LOG_DEST_n initialization parameters in your initialization parameter file.

• You have issued the ALTER SYSTEM statement to dynamically set any of
DB_RECOVERY_FILE_DEST, DB_CREATE_FILE_DEST, or DB_CREATE_ONLINE_LOG_DEST_n
initialization parameters

• You have issued the ALTER SESSION statement to dynamically set any of the
DB_CREATE_FILE_DEST, DB_RECOVERY_FILE_DEST, or DB_CREATE_ONLINE_LOG_DEST_n
initialization parameters.

If a statement that creates an Oracle managed file finds an error or does not complete due to
some failure, then any Oracle Managed Files created by the statement are automatically
deleted as part of the recovery of the error or failure. However, because of the large number of
potential errors that can occur with file systems and storage subsystems, there can be
situations where you must manually remove the files using operating system commands.

15.3.2 How Oracle Managed Files Are Named
The file names of Oracle Managed Files comply with the Optimal Flexible Architecture (OFA)
standard for file naming.

Note:

The naming scheme described in this section applies only to files created in
operating system file systems. The naming scheme for files created in Oracle
Automatic Storage Management (Oracle ASM) disk groups is described in Oracle
Automatic Storage Management Administrator's Guide.

The assigned names are intended to meet the following requirements:

• Database files are easily distinguishable from all other files.

• Files of one database type are easily distinguishable from other database types.

• Files are clearly associated with important attributes specific to the file type. For example,
a data file name may include the tablespace name to allow for easy association of data file
to tablespace, or an archived log name may include the thread, sequence, and creation
date.

No two Oracle Managed Files are given the same name. The name that is used for creation of
an Oracle managed file is constructed from three sources:

• The default creation location

• A file name template that is chosen based on the type of the file. The template also
depends on the operating system platform and whether or not Oracle Automatic Storage
Management is used.

• A unique string created by Oracle Database or the operating system. This ensures that file
creation does not damage an existing file and that the file cannot be mistaken for some
other file.

As a specific example, file names for Oracle Managed Files have the following format on a
Solaris file system:

destination_prefix/o1_mf_%t_%u_.dbf

Chapter 15
Creating Oracle Managed Files

15-8

where:

• destination_prefix is destination_location/db_unique_name/datafile

where:

– destination_location is the location specified in DB_CREATE_FILE_DEST
– db_unique_name is the globally unique name (DB_UNIQUE_NAME initialization parameter)

of the target database. If there is no DB_UNIQUE_NAME parameter, then the DB_NAME
initialization parameter value is used.

• %t is the tablespace name.

• %u is an eight-character string that guarantees uniqueness

For example, assume the following parameter settings:

DB_CREATE_FILE_DEST = /u01/app/oracle/oradata
DB_UNIQUE_NAME = PAYROLL

Then an example data file name would be:

/u01/app/oracle/oradata/PAYROLL/datafile/o1_mf_tbs1_2ixh90q_.dbf

Names for other file types are similar. Names on other platforms are also similar, subject to the
constraints of the naming rules of the platform.

The examples on the following pages use Oracle managed file names as they might appear
with a Solaris file system as an OMF destination.

Note:

The database identifies an Oracle managed file based on its name. If you rename the
file, the database is no longer able to recognize it as an Oracle managed file and will
not manage the file accordingly.

15.3.3 Creating Oracle Managed Files at Database Creation
The CREATE DATABASE statement can perform actions related to Oracle Managed Files.

Note:

The rules and defaults in this section also apply to creating a database with Database
Configuration Assistant (DBCA). With DBCA, you use a graphical interface to enable
Oracle Managed Files and to specify file locations that correspond to the initialization
parameters described in this section.

• Specifying Control Files at Database Creation
At database creation, the control file is created in the files specified by the CONTROL_FILES
initialization parameter.

Chapter 15
Creating Oracle Managed Files

15-9

• Specifying Redo Log Files at Database Creation
The LOGFILE clause is not required in the CREATE DATABASE statement, and omitting it
provides a simple means of creating Oracle managed redo log files.

• Specifying the SYSTEM and SYSAUX Tablespace Data Files at Database Creation
The DATAFILE or SYSAUX DATAFILE clause is not required in the CREATE DATABASE
statement, and omitting it provides a simple means of creating Oracle managed data files
for the SYSTEM and SYSAUX tablespaces.

• Specifying the Undo Tablespace Data File at Database Creation
The DATAFILE subclause of the UNDO TABLESPACE clause is optional and a file name is not
required in the file specification.

• Specifying the Default Temporary Tablespace Temp File at Database Creation
The TEMPFILE subclause is optional for the DEFAULT TEMPORARY TABLESPACE clause and a
file name is not required in the file specification.

• CREATE DATABASE Statement Using Oracle Managed Files: Examples
Examples illustrate creating a database with the CREATE DATABASE statement when using
the Oracle Managed Files feature.

See Also:

Oracle Database SQL Language Reference for a description of the CREATE DATABASE
statement

15.3.3.1 Specifying Control Files at Database Creation
At database creation, the control file is created in the files specified by the CONTROL_FILES
initialization parameter.

If the CONTROL_FILES parameter is not set and at least one of the initialization parameters
required for the creation of Oracle Managed Files is set, then an Oracle managed control file is
created in the default control file destinations. In order of precedence, the default destination is
defined as follows:

• One or more control files as specified in the DB_CREATE_ONLINE_LOG_DEST_n initialization
parameter. The file in the first directory is the primary control file. When
DB_CREATE_ONLINE_LOG_DEST_n is specified, the database does not create a control file in
DB_CREATE_FILE_DEST or in DB_RECOVERY_FILE_DEST (the Fast Recovery Area).

• If no value is specified for DB_CREATE_ONLINE_LOG_DEST_n, but values are set for both the
DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST, then the database creates one control
file in each location. The location specified in DB_CREATE_FILE_DEST is the primary control
file.

• If a value is specified only for DB_CREATE_FILE_DEST, then the database creates one
control file in that location.

• If a value is specified only for DB_RECOVERY_FILE_DEST, then the database creates one
control file in that location.

If the CONTROL_FILES parameter is not set and none of these initialization parameters are set,
then the Oracle Database default action is operating system dependent. At least one copy of a
control file is created in an operating system dependent default location. Any copies of control
files created in this fashion are not Oracle Managed Files, and you must add a CONTROL_FILES
initialization parameter to any initialization parameter file.

Chapter 15
Creating Oracle Managed Files

15-10

If the database creates an Oracle managed control file, and if there is a server parameter file,
then the database creates a CONTROL_FILES initialization parameter entry in the server
parameter file. If there is no server parameter file, then you must manually include a
CONTROL_FILES initialization parameter entry in the text initialization parameter file.

See Also:

Managing Control Files

15.3.3.2 Specifying Redo Log Files at Database Creation
The LOGFILE clause is not required in the CREATE DATABASE statement, and omitting it provides
a simple means of creating Oracle managed redo log files.

If the LOGFILE clause is omitted, then redo log files are created in the default redo log file
destinations. In order of precedence, the default destination is defined as follows:

• If either the DB_CREATE_ONLINE_LOG_DEST_n is set, then the database creates a log file
member in each directory specified, up to the value of the MAXLOGMEMBERS initialization
parameter.

• If the DB_CREATE_ONLINE_LOG_DEST_n parameter is not set, but both the
DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST initialization parameters are set, then
the database creates one Oracle managed log file member in each of those locations. The
log file in the DB_CREATE_FILE_DEST destination is the first member.

• If only the DB_CREATE_FILE_DEST initialization parameter is specified, then the database
creates a log file member in that location.

• If only the DB_RECOVERY_FILE_DEST initialization parameter is specified, then the database
creates a log file member in that location.

The default size of an Oracle managed redo log file is 100 MB.

Optionally, you can create Oracle managed redo log files, and override default attributes, by
including the LOGFILE clause but omitting a file name. Redo log files are created the same way,
except for the following: If no file name is provided in the LOGFILE clause of CREATE DATABASE,
and none of the initialization parameters required for creating Oracle Managed Files are
provided, then the CREATE DATABASE statement fails.

See Also:

" Managing the Redo Log"

Chapter 15
Creating Oracle Managed Files

15-11

15.3.3.3 Specifying the SYSTEM and SYSAUX Tablespace Data Files at Database
Creation

The DATAFILE or SYSAUX DATAFILE clause is not required in the CREATE DATABASE statement,
and omitting it provides a simple means of creating Oracle managed data files for the SYSTEM
and SYSAUX tablespaces.

If the DATAFILE clause is omitted, then one of the following actions occurs:

• If DB_CREATE_FILE_DEST is set, then one Oracle managed data file for the SYSTEM
tablespace and another for the SYSAUX tablespace are created in the DB_CREATE_FILE_DEST
directory.

• If DB_CREATE_FILE_DEST is not set, then the database creates one SYSTEM and one SYSAUX
tablespace data file whose names and sizes are operating system dependent. Any SYSTEM
or SYSAUX tablespace data file created in this manner is not an Oracle managed file.

By default, Oracle managed data files, including those for the SYSTEM and SYSAUX tablespaces,
are 100MB and autoextensible. When autoextension is required, the database extends the
data file by its existing size or 100 MB, whichever is smaller. You can also explicitly specify the
autoextensible unit using the NEXT parameter of the STORAGE clause when you specify the data
file (in a CREATE or ALTER TABLESPACE operation).

Optionally, you can create an Oracle managed data file for the SYSTEM or SYSAUX tablespace
and override default attributes. This is done by including the DATAFILE clause, omitting a file
name, but specifying overriding attributes. When a file name is not supplied and the
DB_CREATE_FILE_DEST parameter is set, an Oracle managed data file for the SYSTEM or SYSAUX
tablespace is created in the DB_CREATE_FILE_DEST directory with the specified attributes being
overridden. However, if a file name is not supplied and the DB_CREATE_FILE_DEST parameter is
not set, then the CREATE DATABASE statement fails.

When overriding the default attributes of an Oracle managed file, if a SIZE value is specified
but no AUTOEXTEND clause is specified, then the data file is not autoextensible.

15.3.3.4 Specifying the Undo Tablespace Data File at Database Creation
The DATAFILE subclause of the UNDO TABLESPACE clause is optional and a file name is not
required in the file specification.

If a file name is not supplied and the DB_CREATE_FILE_DEST parameter is set, then an Oracle
managed data file is created in the DB_CREATE_FILE_DEST directory. If DB_CREATE_FILE_DEST is
not set, then the statement fails with a syntax error.

The UNDO TABLESPACE clause itself is optional in the CREATE DATABASE statement. If it is not
supplied, and automatic undo management mode is enabled (the default), then a default undo
tablespace named SYS_UNDOTS is created and a 20 MB data file that is autoextensible is
allocated as follows:

• If DB_CREATE_FILE_DEST is set, then an Oracle managed data file is created in the indicated
directory.

• If DB_CREATE_FILE_DEST is not set, then the data file location is operating system specific.

Chapter 15
Creating Oracle Managed Files

15-12

See Also:

" Managing Undo "

15.3.3.5 Specifying the Default Temporary Tablespace Temp File at Database
Creation

The TEMPFILE subclause is optional for the DEFAULT TEMPORARY TABLESPACE clause and a file
name is not required in the file specification.

If a file name is not supplied and the DB_CREATE_FILE_DEST parameter set, then an Oracle
managed temp file is created in the DB_CREATE_FILE_DEST directory. If DB_CREATE_FILE_DEST is
not set, then the CREATE DATABASE statement fails with a syntax error.

The DEFAULT TEMPORARY TABLESPACE clause itself is optional. If it is not specified, then no
default temporary tablespace is created.

The default size for an Oracle managed temp file is 100 MB and the file is autoextensible with
an unlimited maximum size.

15.3.3.6 CREATE DATABASE Statement Using Oracle Managed Files: Examples
Examples illustrate creating a database with the CREATE DATABASE statement when using the
Oracle Managed Files feature.

CREATE DATABASE: Example 1

This example creates a database with the following Oracle Managed Files:

• A SYSTEM tablespace data file in directory /u01/app/oracle/oradata that is autoextensible
up to an unlimited size.

• A SYSAUX tablespace data file in directory /u01/app/oracle/oradata that is autoextensible
up to an unlimited size. The tablespace is locally managed with automatic segment-space
management.

• Two online log groups with two members of 100 MB each, one each in /u02/oradata
and /u03/oradata.

• If automatic undo management mode is enabled (the default), then an undo tablespace
data file in directory /u01/app/oracle/oradata that is 20 MB and autoextensible up to an
unlimited size. An undo tablespace named SYS_UNDOTS is created.

• If no CONTROL_FILES initialization parameter is specified, then two control files, one each
in /u02/oradata and /u03/oradata. The control file in /u02/oradata is the primary control
file.

The following parameter settings relating to Oracle Managed Files, are included in the
initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/app/oracle/oradata'
DB_CREATE_ONLINE_LOG_DEST_1 = '/u02/oradata'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u03/oradata'

The following statement is issued at the SQL prompt:

CREATE DATABASE sample;

Chapter 15
Creating Oracle Managed Files

15-13

To create the database with a locally managed SYSTEM tablespace, add the EXTENT MANAGEMENT
LOCAL clause:

CREATE DATABASE sample EXTENT MANAGEMENT LOCAL;

Without this clause, the SYSTEM tablespace is dictionary managed. Oracle recommends that
you create a locally managed SYSTEM tablespace.

CREATE DATABASE: Example 2

This example creates a database with the following Oracle Managed Files:

• A SYSTEM tablespace data file in directory /u01/app/oracle/oradata that is autoextensible
up to an unlimited size.

• A SYSAUX tablespace data file in directory /u01/app/oracle/oradata that is autoextensible
up to an unlimited size. The tablespace is locally managed with automatic segment-space
management.

• Two redo log files of 100 MB each in directory /u01/app/oracle/oradata. They are not
multiplexed.

• An undo tablespace data file in directory /u01/app/oracle/oradata that is 20 MB and
autoextensible up to an unlimited size. An undo tablespace named SYS_UNDOTS is created.

• A control file in /u01/app/oracle/oradata.

In this example, it is assumed that:

• No DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified in the
initialization parameter file.

• No CONTROL_FILES initialization parameter was specified in the initialization parameter file.

• Automatic undo management mode is enabled.

The following statements are issued at the SQL prompt:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u01/app/oracle/oradata';
CREATE DATABASE sample2 EXTENT MANAGEMENT LOCAL;

This database configuration is not recommended for a production database. The example
illustrates how a very low-end database or simple test database can easily be created. To
better protect this database from failures, at least one more control file should be created and
the redo log should be multiplexed.

CREATE DATABASE: Example 3

In this example, the file size for the Oracle Managed Files for the default temporary tablespace
and undo tablespace are specified. A database with the following Oracle Managed Files is
created:

• A 400 MB SYSTEM tablespace data file in directory /u01/app/oracle/oradata. Because
SIZE is specified, the file in not autoextensible.

• A 200 MB SYSAUX tablespace data file in directory /u01/app/oracle/oradata. Because
SIZE is specified, the file in not autoextensible. The tablespace is locally managed with
automatic segment-space management.

• Two redo log groups with two members of 100 MB each, one each in directories /u02/
oradata and /u03/oradata.

Chapter 15
Creating Oracle Managed Files

15-14

• For the default temporary tablespace dflt_ts, a 10 MB temp file in directory /u01/app/
oracle/oradata. Because SIZE is specified, the file in not autoextensible.

• For the undo tablespace undo_ts, a 100 MB data file in directory /u01/app/oracle/
oradata. Because SIZE is specified, the file is not autoextensible.

• If no CONTROL_FILES initialization parameter was specified, then two control files, one each
in directories /u02/oradata and /u03/oradata. The control file in /u02/oradata is the
primary control file.

The following parameter settings are included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/app/oracle/oradata'
DB_CREATE_ONLINE_LOG_DEST_1 = '/u02/oradata'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u03/oradata'

The following statement is issued at the SQL prompt:

CREATE DATABASE sample3
EXTENT MANAGEMENT LOCAL
DATAFILE SIZE 400M
SYSAUX DATAFILE SIZE 200M
DEFAULT TEMPORARY TABLESPACE dflt_ts TEMPFILE SIZE 10M
UNDO TABLESPACE undo_ts DATAFILE SIZE 100M;

See Also:

Oracle Multitenant Administrator's Guide

15.3.4 Creating Data Files for Tablespaces Using Oracle Managed Files
Oracle Database can create data files for tablespaces using Oracle Managed Files when
certain conditions are met.

• About Creating Data Files for Tablespaces Using Oracle Managed Files
When certain conditions are met, the following SQL statements can create data files for
tablespaces using Oracle Managed Files: CREATE TABLESPACE, CREATE UNDO TABLESPACE,
and ALTER TABLESPACE ... ADD DATAFILE.

• CREATE TABLESPACE: Examples
Examples illustrate creating tablespaces with Oracle Managed Files.

• CREATE UNDO TABLESPACE: Example
An example illustrates creating an undo tablespace.

• ALTER TABLESPACE: Example
An example illustrates adding an Oracle managed autoextensible data file to a tablespace.

15.3.4.1 About Creating Data Files for Tablespaces Using Oracle Managed Files
When certain conditions are met, the following SQL statements can create data files for
tablespaces using Oracle Managed Files: CREATE TABLESPACE, CREATE UNDO TABLESPACE, and
ALTER TABLESPACE ... ADD DATAFILE.

The following statements can create data files:

• CREATE TABLESPACE

Chapter 15
Creating Oracle Managed Files

15-15

• CREATE UNDO TABLESPACE
• ALTER TABLESPACE ... ADD DATAFILE
When creating a tablespace, either a permanent tablespace or an undo tablespace, the
DATAFILE clause is optional. When you include the DATAFILE clause, the file name is optional. If
the DATAFILE clause or file name is not provided, then the following rules apply:

• If the DB_CREATE_FILE_DEST initialization parameter is specified, then an Oracle managed
data file is created in the location specified by the parameter.

• If the DB_CREATE_FILE_DEST initialization parameter is not specified, then the statement
creating the data file fails.

When you add a data file to a tablespace with the ALTER TABLESPACE...ADD DATAFILE
statement the file name is optional. If the file name is not specified, then the same rules apply
as discussed in the previous paragraph.

By default, an Oracle managed data file for a permanent tablespace is 100 MB and is
autoextensible with an unlimited maximum size. However, if in your DATAFILE clause you
override these defaults by specifying a SIZE value (and no AUTOEXTEND clause), then the data
file is not autoextensible.

See Also:

• "Specifying the SYSTEM and SYSAUX Tablespace Data Files at Database
Creation"

• "Specifying the Undo Tablespace Data File at Database Creation"

• " Managing Tablespaces"

15.3.4.2 CREATE TABLESPACE: Examples
Examples illustrate creating tablespaces with Oracle Managed Files.

See Also:

Oracle Database SQL Language Reference for a description of the CREATE
TABLESPACE statement

CREATE TABLESPACE: Example 1

The following example sets the default location for data file creations to /u01/oradata and then
creates a tablespace tbs_1 with a data file in that location. The data file is 100 MB and is
autoextensible with an unlimited maximum size.

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u01/oradata';
SQL> CREATE TABLESPACE tbs_1;

Chapter 15
Creating Oracle Managed Files

15-16

CREATE TABLESPACE: Example 2

This example creates a tablespace named tbs_2 with a data file in the directory /u01/oradata.
The data file initial size is 400 MB, and because the SIZE clause is specified, the data file is
not autoextensible.

The following parameter setting is included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/oradata'

The following statement is issued at the SQL prompt:

SQL> CREATE TABLESPACE tbs_2 DATAFILE SIZE 400M;

CREATE TABLESPACE: Example 3

This example creates a tablespace named tbs_3 with an autoextensible data file in the
directory /u01/oradata with a maximum size of 800 MB and an initial size of 100 MB:

The following parameter setting is included in the initialization parameter file:

DB_CREATE_FILE_DEST = '/u01/oradata'

The following statement is issued at the SQL prompt:

SQL> CREATE TABLESPACE tbs_3 DATAFILE AUTOEXTEND ON MAXSIZE 800M;

CREATE TABLESPACE: Example 4

The following example sets the default location for data file creations to /u01/oradata and then
creates a tablespace named tbs_4 in that directory with two data files. Both data files have an
initial size of 200 MB, and because a SIZE value is specified, they are not autoextensible

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u01/oradata';
SQL> CREATE TABLESPACE tbs_4 DATAFILE SIZE 200M, SIZE 200M;

15.3.4.3 CREATE UNDO TABLESPACE: Example
An example illustrates creating an undo tablespace.

The following example creates an undo tablespace named undotbs_1 with a data file in the
directory /u01/oradata. The data file for the undo tablespace is 100 MB and is autoextensible
with an unlimited maximum size.

1. Set the following initialization parameter:

DB_CREATE_FILE_DEST = '/u01/oradata'
2. Issue the following SQL statement:

SQL> CREATE UNDO TABLESPACE undotbs_1;

See Also:

Oracle Database SQL Language Reference for a description of the CREATE UNDO
TABLESPACE statement

Chapter 15
Creating Oracle Managed Files

15-17

15.3.4.4 ALTER TABLESPACE: Example
An example illustrates adding an Oracle managed autoextensible data file to a tablespace.

This example adds an Oracle managed autoextensible data file to the tbs_1 tablespace. The
data file has an initial size of 100 MB and a maximum size of 800 MB.

1. Set the following initialization parameter:

DB_CREATE_FILE_DEST = '/u01/oradata'
2. Issue the following SQL statement:

SQL> ALTER TABLESPACE tbs_1 ADD DATAFILE AUTOEXTEND ON MAXSIZE 800M;

See Also:

Oracle Database SQL Language Reference for a description of the ALTER
TABLESPACE statement

15.3.5 Creating Temp Files for Temporary Tablespaces Using Oracle
Managed Files

Oracle Database can create temp files for temporary tablespaces using Oracle Managed Files
when certain conditions are met.

• About Creating Temp Files for Temporary Tablespaces Using Oracle Managed Files
When certain conditions are met, the following SQL statements can create temp files for
tablespaces using Oracle Managed Files: CREATE TEMPORARY TABLESPACE and ALTER
TABLESPACE ... ADD TEMPFILE.

• CREATE TEMPORARY TABLESPACE: Example
An example illustrates creating a temporary tablespace.

• ALTER TABLESPACE... ADD TEMPFILE: Example
An example illustrates adding a temp file to a temporary tablespace.

15.3.5.1 About Creating Temp Files for Temporary Tablespaces Using Oracle
Managed Files

When certain conditions are met, the following SQL statements can create temp files for
tablespaces using Oracle Managed Files: CREATE TEMPORARY TABLESPACE and ALTER
TABLESPACE ... ADD TEMPFILE.

The following statements that create temp files are relevant to the discussion in this section:

• CREATE TEMPORARY TABLESPACE
• ALTER TABLESPACE ... ADD TEMPFILE
When creating a temporary tablespace the TEMPFILE clause is optional. If you include the
TEMPFILE clause, then the file name is optional. If the TEMPFILE clause or file name is not
provided, then the following rules apply:

Chapter 15
Creating Oracle Managed Files

15-18

• If the DB_CREATE_FILE_DEST initialization parameter is specified, then an Oracle managed
temp file is created in the location specified by the parameter.

• If the DB_CREATE_FILE_DEST initialization parameter is not specified, then the statement
creating the temp file fails.

When you add a temp file to a tablespace with the ALTER TABLESPACE...ADD TEMPFILE
statement the file name is optional. If the file name is not specified, then the same rules apply
as discussed in the previous paragraph.

When overriding the default attributes of an Oracle managed file, if a SIZE value is specified
but no AUTOEXTEND clause is specified, then the data file is not autoextensible.

See Also:

"Specifying the Default Temporary Tablespace Temp File at Database Creation"

15.3.5.2 CREATE TEMPORARY TABLESPACE: Example
An example illustrates creating a temporary tablespace.

The following example sets the default location for data file creations to /u01/oradata and then
creates a tablespace named temptbs_1 with a temp file in that location. The temp file is 100
MB and is autoextensible with an unlimited maximum size.

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u01/oradata';
SQL> CREATE TEMPORARY TABLESPACE temptbs_1;

See Also:

Oracle Database SQL Language Reference for a description of the CREATE
TABLESPACE statement

15.3.5.3 ALTER TABLESPACE... ADD TEMPFILE: Example
An example illustrates adding a temp file to a temporary tablespace.

The following example sets the default location for data file creations to /u03/oradata and then
adds a temp file in the default location to a tablespace named temptbs_1. The temp file initial
size is 100 MB. It is autoextensible with an unlimited maximum size.

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u03/oradata';
SQL> ALTER TABLESPACE TBS_1 ADD TEMPFILE;

See Also:

Oracle Database SQL Language Reference for a description of the ALTER
TABLESPACE statement

Chapter 15
Creating Oracle Managed Files

15-19

15.3.6 Creating Control Files Using Oracle Managed Files
Oracle Database can create control files using Oracle Managed Files when certain conditions
are met.

• About Creating Control Files Using Oracle Managed Files
When certain conditions are met, the CREATE CONTROLFILE SQL statements can create
control files using Oracle Managed Files.

• CREATE CONTROLFILE Using NORESETLOGS Keyword: Example
An example illustrates creating a control file using the CREATE CONTROLFILE statement with
the NORESETLOGS keyword.

• CREATE CONTROLFILE Using RESETLOGS Keyword: Example
An example illustrates creating a control file using the CREATE CONTROLFILE statement with
the RESETLOGS keyword.

15.3.6.1 About Creating Control Files Using Oracle Managed Files
When certain conditions are met, the CREATE CONTROLFILE SQL statements can create control
files using Oracle Managed Files.

When you issue the CREATE CONTROLFILE statement, a control file is created (or reused, if
REUSE is specified) in the files specified by the CONTROL_FILES initialization parameter. If the
CONTROL_FILES parameter is not set, then the control file is created in the default control file
destinations. The default destination is determined according to the precedence documented in
"Specifying Control Files at Database Creation".

If Oracle Database creates an Oracle managed control file, and there is a server parameter
file, then the database creates a CONTROL_FILES initialization parameter for the server
parameter file. If there is no server parameter file, then you must create a CONTROL_FILES
initialization parameter manually and include it in the initialization parameter file.

If the data files in the database are Oracle Managed Files, then the database-generated file
names for the files must be supplied in the DATAFILE clause of the statement.

If the redo log files are Oracle Managed Files, then the NORESETLOGS or RESETLOGS keyword
determines what can be supplied in the LOGFILE clause:

• If the NORESETLOGS keyword is used, then the database-generated file names for the Oracle
managed redo log files must be supplied in the LOGFILE clause.

• If the RESETLOGS keyword is used, then the redo log file names can be supplied as with the
CREATE DATABASE statement. See "Specifying Redo Log Files at Database Creation".

The sections that follow contain examples of using the CREATE CONTROLFILE statement with
Oracle Managed Files.

See Also:

• Oracle Database SQL Language Reference for a description of the CREATE
CONTROLFILE statement

• "Specifying Control Files at Database Creation"

Chapter 15
Creating Oracle Managed Files

15-20

15.3.6.2 CREATE CONTROLFILE Using NORESETLOGS Keyword: Example
An example illustrates creating a control file using the CREATE CONTROLFILE statement with the
NORESETLOGS keyword.

The following CREATE CONTROLFILE statement is generated by an ALTER DATABASE BACKUP
CONTROLFILE TO TRACE statement for a database with Oracle managed data files and redo log
files:

CREATE CONTROLFILE
 DATABASE sample
 LOGFILE
 GROUP 1 ('/u01/oradata/SAMPLE/onlinelog/o1_mf_1_o220rtt9_.log',
 '/u02/oradata/SAMPLE/onlinelog/o1_mf_1_v2o0b2i3_.log')
 SIZE 100M,
 GROUP 2 ('/u01/oradata/SAMPLE/onlinelog/o1_mf_2_p22056iw_.log',
 '/u02/oradata/SAMPLE/onlinelog/o1_mf_2_p02rcyg3_.log')
 SIZE 100M
 NORESETLOGS
 DATAFILE '/u01/oradata/SAMPLE/datafile/o1_mf_system_xu34ybm2_.dbf'
 SIZE 100M,
 '/u01/oradata/SAMPLE/datafile/o1_mf_sysaux_aawbmz51_.dbf'
 SIZE 100M,
 '/u01/oradata/SAMPLE/datafile/o1_mf_sys_undo_apqbmz51_.dbf'
 SIZE 100M
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG;

15.3.6.3 CREATE CONTROLFILE Using RESETLOGS Keyword: Example
An example illustrates creating a control file using the CREATE CONTROLFILE statement with the
RESETLOGS keyword.

The following is an example of a CREATE CONTROLFILE statement with the RESETLOGS option.
Some combination of DB_CREATE_FILE_DEST, DB_RECOVERY_FILE_DEST, and
DB_CREATE_ONLINE_LOG_DEST_n or must be set.

CREATE CONTROLFILE
 DATABASE sample
 RESETLOGS
 DATAFILE '/u01/oradata/SAMPLE/datafile/o1_mf_system_aawbmz51_.dbf',
 '/u01/oradata/SAMPLE/datafile/o1_mf_sysaux_axybmz51_.dbf',
 '/u01/oradata/SAMPLE/datafile/o1_mf_sys_undo_azzbmz51_.dbf'
 SIZE 100M
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG;

Later, you must issue the ALTER DATABASE OPEN RESETLOGS statement to re-create the redo log
files. This is discussed in "Using the ALTER DATABASE OPEN RESETLOGS Statement". If
the previous log files are Oracle Managed Files, then they are not deleted.

Chapter 15
Creating Oracle Managed Files

15-21

15.3.7 Creating Redo Log Files Using Oracle Managed Files
Redo log files are created at database creation time. They can also be created when you issue
either of the following statements: ALTER DATABASE ADD LOGFILE and ALTER DATABASE OPEN
RESETLOGS.

• Using the ALTER DATABASE ADD LOGFILE Statement
The ALTER DATABASE ADD LOGFILE statement lets you later add a new group to your
current redo log.

• Using the ALTER DATABASE OPEN RESETLOGS Statement
If you previously created a control file specifying RESETLOGS and either did not specify file
names or specified nonexistent file names, then the database creates redo log files for you
when you issue the ALTER DATABASE OPEN RESETLOGS statement.

See Also:

Oracle Database SQL Language Reference for a description of the ALTER DATABASE
statement

15.3.7.1 Using the ALTER DATABASE ADD LOGFILE Statement
The ALTER DATABASE ADD LOGFILE statement lets you later add a new group to your current
redo log.

The file name in the ADD LOGFILE clause is optional if you are using Oracle Managed Files. If a
file name is not provided, then a redo log file is created in the default log file destination. The
default destination is determined according to the precedence documented in "Specifying Redo
Log Files at Database Creation".

If a file name is not provided and you have not provided one of the initialization parameters
required for creating Oracle Managed Files, then the statement returns an error.

The default size for an Oracle managed log file is 100 MB.

You continue to add and drop redo log file members by specifying complete file names.

See Also:

• "Specifying Redo Log Files at Database Creation"

• "About Creating Control Files Using Oracle Managed Files"

Adding New Redo Log Files: Example

The following example creates a log group with a member in /u01/oradata and another
member in /u02/oradata. The size of each log file is 100 MB.

The following parameter settings are included in the initialization parameter file:

Chapter 15
Creating Oracle Managed Files

15-22

DB_CREATE_ONLINE_LOG_DEST_1 = '/u01/oradata'
DB_CREATE_ONLINE_LOG_DEST_2 = '/u02/oradata'

The following statement is issued at the SQL prompt:

SQL> ALTER DATABASE ADD LOGFILE;

15.3.7.2 Using the ALTER DATABASE OPEN RESETLOGS Statement
If you previously created a control file specifying RESETLOGS and either did not specify file
names or specified nonexistent file names, then the database creates redo log files for you
when you issue the ALTER DATABASE OPEN RESETLOGS statement.

The rules for determining the directories in which to store redo log files, when none are
specified in the control file, are the same as those discussed in "Specifying Redo Log Files at
Database Creation".

15.3.8 Creating Archived Logs Using Oracle Managed Files
Archived logs are created by a background process or by a SQL statement.

Archived logs are created in the DB_RECOVERY_FILE_DEST location when:

• The ARC or LGWR background process archives an online redo log or

• An ALTER SYSTEM ARCHIVE LOG CURRENT statement is issued.

For example, assume that the following parameter settings are included in the initialization
parameter file:

DB_RECOVERY_FILE_DEST_SIZE = 20G
DB_RECOVERY_FILE_DEST = '/u01/oradata'
LOG_ARCHIVE_DEST_1 = 'LOCATION=USE_DB_RECOVERY_FILE_DEST'

15.4 Operation of Oracle Managed Files
The file names of Oracle Managed Files are accepted in SQL statements wherever a file name
is used to identify an existing file.

These file names, like other file names, are stored in the control file and, if using Recovery
Manager (RMAN) for backup and recovery, in the RMAN catalog. They are visible in all of the
usual fixed and dynamic performance views that are available for monitoring data files and
temp files (for example, V$DATAFILE or DBA_DATA_FILES).

The following are some examples of statements using database-generated file names:

SQL> ALTER DATABASE
 2> RENAME FILE '/u01/oradata/mydb/datafile/o1_mf_tbs01_ziw3bopb_.dbf'
 3> TO '/u01/oradata/mydb/tbs0101.dbf';

SQL> ALTER DATABASE
 2> DROP LOGFILE '/u01/oradata/mydb/onlinelog/o1_mf_1_wo94n2xi_.log';

SQL> ALTER TABLE emp
 2> ALLOCATE EXTENT
 3> (DATAFILE '/u01/oradata/mydb/datafile/o1_mf_tbs1_2ixfh90q_.dbf');

You can backup and restore Oracle managed data files, temp files, and control files as you
would corresponding non Oracle Managed Files. Using database-generated file names does

Chapter 15
Operation of Oracle Managed Files

15-23

not impact the use of logical backup files such as export files. This is particularly important for
tablespace point-in-time recovery (TSPITR) and transportable tablespace export files.

There are some cases where Oracle Managed Files behave differently, including operations
that drop files or rename file, and operations involving standby databases.

• Dropping Data Files and Temp Files
Unlike files that are not managed by the database, when an Oracle managed data file or
temp file is dropped, the file name is removed from the control file and the file is
automatically deleted from the file system.

• Dropping Redo Log Files
When an Oracle managed redo log file is dropped, its Oracle Managed Files are deleted.
You specify the group or members to be dropped.

• Renaming Files
With Oracle Managed Files, SQL statements that rename files do not actually rename the
files on the operating system, but rather, the names in the control file are changed.

• Managing Standby Databases
The data files, control files, and redo log files in a standby database can be managed by
the database. This is independent of whether Oracle Managed Files are used on the
primary database.

15.4.1 Dropping Data Files and Temp Files
Unlike files that are not managed by the database, when an Oracle managed data file or temp
file is dropped, the file name is removed from the control file and the file is automatically
deleted from the file system.

The statements that delete Oracle Managed Files when they are dropped are:

• DROP TABLESPACE
• ALTER DATABASE TEMPFILE ... DROP
You can also use these statements, which always delete files, Oracle managed or not:

• ALTER TABLESPACE ... DROP DATAFILE
• ALTER TABLESPACE ... DROP TEMPFILE

15.4.2 Dropping Redo Log Files
When an Oracle managed redo log file is dropped, its Oracle Managed Files are deleted. You
specify the group or members to be dropped.

The following statements drop and delete redo log files:

• ALTER DATABASE DROP LOGFILE
• ALTER DATABASE DROP LOGFILE MEMBER

15.4.3 Renaming Files
With Oracle Managed Files, SQL statements that rename files do not actually rename the files
on the operating system, but rather, the names in the control file are changed.

The following statements are used to rename files:

• ALTER DATABASE RENAME FILE

Chapter 15
Operation of Oracle Managed Files

15-24

• ALTER TABLESPACE ... RENAME DATAFILE
You must specify each file name using the conventions for file names on your operating system
when you issue this statement.

Note:

If the old file is an Oracle managed file and it exists, then it is deleted.

15.4.4 Managing Standby Databases
The data files, control files, and redo log files in a standby database can be managed by the
database. This is independent of whether Oracle Managed Files are used on the primary
database.

When recovery of a standby database encounters redo for the creation of a data file, if the data
file is an Oracle managed file, then the recovery process creates an empty file in the local
default file system location. This allows the redo for the new file to be applied immediately
without any human intervention.

When recovery of a standby database encounters redo for the deletion of a tablespace, it
deletes any Oracle managed data files in the local file system. Note that this is independent of
the INCLUDING DATAFILES option issued at the primary database.

15.5 Scenarios for Using Oracle Managed Files
Scenarios illustrate how to use Oracle Managed Files.

• Scenario 1: Create and Manage a Database with Multiplexed Redo Logs
An example illustrates creating and managing a database with multiplexed redo logs.

• Scenario 2: Create and Manage a Database with Database and Fast Recovery Areas
An example illustrates creating and managing a database with both database and fast
recovery areas.

• Scenario 3: Adding Oracle Managed Files to an Existing Database
An example illustrates adding Oracle Managed Files to an existing database.

15.5.1 Scenario 1: Create and Manage a Database with Multiplexed Redo
Logs

An example illustrates creating and managing a database with multiplexed redo logs.

In this scenario, a DBA creates a database where the data files and redo log files are created
in separate directories. The redo log files and control files are multiplexed. The database uses
an undo tablespace, and has a default temporary tablespace. The following are tasks involved
with creating and maintaining this database.

1. Setting the initialization parameters

The DBA includes three generic file creation defaults in the initialization parameter file
before creating the database. Automatic undo management mode (the default) is also
specified.

DB_CREATE_FILE_DEST = '/u01/oradata'
DB_CREATE_ONLINE_LOG_DEST_1 = '/u02/oradata'

Chapter 15
Scenarios for Using Oracle Managed Files

15-25

DB_CREATE_ONLINE_LOG_DEST_2 = '/u03/oradata'
UNDO_MANAGEMENT = AUTO

The DB_CREATE_FILE_DEST parameter sets the default file system directory for the data files
and temp files.

The DB_CREATE_ONLINE_LOG_DEST_1 and DB_CREATE_ONLINE_LOG_DEST_2 parameters set
the default file system directories for redo log file and control file creation. Each redo log
file and control file is multiplexed across the two directories.

2. Creating a database

Once the initialization parameters are set, the database can be created by using this
statement:

SQL> CREATE DATABASE sample
2> DEFAULT TEMPORARY TABLESPACE dflttmp;

Because a DATAFILE clause is not present and the DB_CREATE_FILE_DEST initialization
parameter is set, the SYSTEM tablespace data file is created in the default file system (/u01/
oradata in this scenario). The file name is uniquely generated by the database. The file is
autoextensible with an initial size of 100 MB and an unlimited maximum size. The file is an
Oracle managed file. A similar data file is created for the SYSAUX tablespace.

Because a LOGFILE clause is not present, two redo log groups are created. Each log group
has two members, with one member in the DB_CREATE_ONLINE_LOG_DEST_1 location and
the other member in the DB_CREATE_ONLINE_LOG_DEST_2 location. The file names are
uniquely generated by the database. The log files are created with a size of 100 MB. The
log file members are Oracle Managed Files.

Similarly, because the CONTROL_FILES initialization parameter is not present, and two
DB_CREATE_ONLINE_LOG_DEST_n initialization parameters are specified, two control files are
created. The control file located in the DB_CREATE_ONLINE_LOG_DEST_1 location is the
primary control file; the control file located in the DB_CREATE_ONLINE_LOG_DEST_2 location is
a multiplexed copy. The file names are uniquely generated by the database. They are
Oracle Managed Files. Assuming there is a server parameter file, a CONTROL_FILES
initialization parameter is generated.

Automatic undo management mode is specified, but because an undo tablespace is not
specified and the DB_CREATE_FILE_DEST initialization parameter is set, a default undo
tablespace named UNDOTBS is created in the directory specified by DB_CREATE_FILE_DEST.
The data file is a 20 MB data file that is autoextensible. It is an Oracle managed file.

Lastly, a default temporary tablespace named dflttmp is specified. Because
DB_CREATE_FILE_DEST is included in the parameter file, the temp file for dflttmp is created
in the directory specified by that parameter. The temp file is 100 MB and is autoextensible
with an unlimited maximum size. It is an Oracle managed file.

The resultant file tree, with generated file names, is as follows:

/u01
 /oradata
 /SAMPLE
 /datafile
 /o1_mf_system_cmr7t30p_.dbf
 /o1_mf_sysaux_cmr7t88p_.dbf
 /o1_mf_sys_undo_2ixfh90q_.dbf
 /o1_mf_dflttmp_157se6ff_.tmp
/u02
 /oradata
 /SAMPLE
 /onlinelog

Chapter 15
Scenarios for Using Oracle Managed Files

15-26

 /o1_mf_1_0orrm31z_.log
 /o1_mf_2_2xyz16am_.log
 /controlfile
 /o1_mf_cmr7t30p_.ctl
/u03
 /oradata
 /SAMPLE
 /onlinelog
 /o1_mf_1_ixfvm8w9_.log
 /o1_mf_2_q89tmp28_.log
 /controlfile
 /o1_mf_x1sr8t36_.ctl

The internally generated file names can be seen when selecting from the usual views. For
example:

SQL> SELECT NAME FROM V$DATAFILE;

NAME
--
/u01/oradata/SAMPLE/datafile/o1_mf_system_cmr7t30p_.dbf
/u01/oradata/SAMPLE/datafile/o1_mf_sysaux_cmr7t88p_.dbf
/u01/oradata/SAMPLE/datafile/o1_mf_sys_undo_2ixfh90q_.dbf

3 rows selected
3. Managing control files

The control file was created when generating the database, and a CONTROL_FILES
initialization parameter was added to the parameter file. If needed, then the DBA can re-
create the control file or build a new one for the database using the CREATE CONTROLFILE
statement.

The correct Oracle managed file names must be used in the DATAFILE and LOGFILE
clauses. The ALTER DATABASE BACKUP CONTROLFILE TO TRACE statement generates a
script with the correct file names. Alternatively, the file names can be found by selecting
from the V$DATAFILE, V$TEMPFILE, and V$LOGFILE views. The following example re-creates
the control file for the sample database:

CREATE CONTROLFILE REUSE
 DATABASE sample
 LOGFILE
 GROUP 1('/u02/oradata/SAMPLE/onlinelog/o1_mf_1_0orrm31z_.log',
 '/u03/oradata/SAMPLE/onlinelog/o1_mf_1_ixfvm8w9_.log'),
 GROUP 2('/u02/oradata/SAMPLE/onlinelog/o1_mf_2_2xyz16am_.log',
 '/u03/oradata/SAMPLE/onlinelog/o1_mf_2_q89tmp28_.log')
 NORESETLOGS
 DATAFILE '/u01/oradata/SAMPLE/datafile/o1_mf_system_cmr7t30p_.dbf',
 '/u01/oradata/SAMPLE/datafile/o1_mf_sysaux_cmr7t88p_.dbf',
 '/u01/oradata/SAMPLE/datafile/o1_mf_sys_undo_2ixfh90q_.dbf',
 '/u01/oradata/SAMPLE/datafile/o1_mf_dflttmp_157se6ff_.tmp'
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG;

The control file created by this statement is located as specified by the CONTROL_FILES
initialization parameter that was generated when the database was created. The REUSE
clause causes any existing files to be overwritten.

4. Managing the redo log

Chapter 15
Scenarios for Using Oracle Managed Files

15-27

To create a new group of redo log files, the DBA can use the ALTER DATABASE ADD
LOGFILE statement. The following statement adds a log file with a member in the
DB_CREATE_ONLINE_LOG_DEST_1 location and a member in the
DB_CREATE_ONLINE_LOG_DEST_2 location. These files are Oracle Managed Files.

SQL> ALTER DATABASE ADD LOGFILE;

Log file members continue to be added and dropped by specifying complete file names.

The GROUP clause can be used to drop a log group. In the following example the operating
system file associated with each Oracle managed log file member is automatically deleted.

SQL> ALTER DATABASE DROP LOGFILE GROUP 3;
5. Managing tablespaces

The default storage for all data files for future tablespace creations in the sample database
is the location specified by the DB_CREATE_FILE_DEST initialization parameter (/u01/
oradata in this scenario). Any data files for which no file name is specified, are created in
the file system specified by the initialization parameter DB_CREATE_FILE_DEST. For
example:

SQL> CREATE TABLESPACE tbs_1;

The preceding statement creates a tablespace whose storage is in /u01/oradata. A data
file is created with an initial of 100 MB and it is autoextensible with an unlimited maximum
size. The data file is an Oracle managed file.

When the tablespace is dropped, the Oracle Managed Files for the tablespace are
automatically removed. The following statement drops the tablespace and all the Oracle
Managed Files used for its storage:

SQL> DROP TABLESPACE tbs_1;

Once the first data file is full, the database does not automatically create a new data file.
More space can be added to the tablespace by adding another Oracle managed data file.
The following statement adds another data file in the location specified by
DB_CREATE_FILE_DEST:

SQL> ALTER TABLESPACE tbs_1 ADD DATAFILE;

The default file system can be changed by changing the initialization parameter. This does
not change any existing data files. It only affects future creations. This can be done
dynamically using the following statement:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST='/u04/oradata';
6. Archiving redo information

Archiving of redo log files is no different for Oracle Managed Files, than it is for unmanaged
files. A file system location for the archived redo log files can be specified using the
LOG_ARCHIVE_DEST_n initialization parameters. The file names are formed based on the
LOG_ARCHIVE_FORMAT parameter or its default. The archived logs are not Oracle Managed
Files.

7. Backup, restore, and recover

Since an Oracle managed file is compatible with standard operating system files, you can
use operating system utilities to backup or restore Oracle Managed Files. All existing
methods for backing up, restoring, and recovering the database work for Oracle Managed
Files.

Chapter 15
Scenarios for Using Oracle Managed Files

15-28

15.5.2 Scenario 2: Create and Manage a Database with Database and Fast
Recovery Areas

An example illustrates creating and managing a database with both database and fast
recovery areas.

In this scenario, a DBA creates a database where the control files and redo log files are
multiplexed. Archived logs and RMAN backups are created in the Fast Recovery Area. The
following tasks are involved in creating and maintaining this database:

1. Setting the initialization parameters

The DBA includes the following generic file creation defaults:

DB_CREATE_FILE_DEST = '/u01/oradata'
DB_RECOVERY_FILE_DEST_SIZE = 10G
DB_RECOVERY_FILE_DEST = '/u02/oradata'
LOG_ARCHIVE_DEST_1 = 'LOCATION = USE_DB_RECOVERY_FILE_DEST'

The DB_CREATE_FILE_DEST parameter sets the default file system directory for data files,
temp files, control files, and redo logs.

The DB_RECOVERY_FILE_DEST parameter sets the default file system directory for control
files, redo logs, and RMAN backups.

The LOG_ARCHIVE_DEST_1 configuration 'LOCATION=USE_DB_RECOVERY_FILE_DEST' redirects
archived logs to the DB_RECOVERY_FILE_DEST location.

The DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters set the default
directory for log file and control file creation. Each redo log and control file is multiplexed
across the two directories.

2. Creating a database

3. Managing control files

4. Managing the redo log

5. Managing tablespaces

Tasks 2, 3, 4, and 5 are the same as in Scenario 1, except that the control files and redo
logs are multiplexed across the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST
locations.

6. Archiving redo log information

Archiving online logs is no different for Oracle Managed Files than it is for unmanaged
files. The archived logs are created in DB_RECOVERY_FILE_DEST and are Oracle Managed
Files.

7. Backup, restore, and recover

An Oracle managed file is compatible with standard operating system files, so you can use
operating system utilities to backup or restore Oracle Managed Files. All existing methods
for backing up, restoring, and recovering the database work for Oracle Managed Files.
When no format option is specified, all disk backups by RMAN are created in the
DB_RECOVERY_FILE_DEST location. The backups are Oracle Managed Files.

Chapter 15
Scenarios for Using Oracle Managed Files

15-29

15.5.3 Scenario 3: Adding Oracle Managed Files to an Existing Database
An example illustrates adding Oracle Managed Files to an existing database.

Assume in this case that an existing database does not have any Oracle Managed Files, but
the DBA would like to create new tablespaces with Oracle Managed Files and locate them in
directory /u03/oradata.

1. Setting the initialization parameters

To allow automatic data file creation, set the DB_CREATE_FILE_DEST initialization parameter
to the file system directory in which to create the data files. This can be done dynamically
as follows:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/u03/oradata';
2. Creating tablespaces

Once DB_CREATE_FILE_DEST is set, the DATAFILE clause can be omitted from a CREATE
TABLESPACE statement. The data file is created in the location specified by
DB_CREATE_FILE_DEST by default. For example:

SQL> CREATE TABLESPACE tbs_2;

When the tbs_2 tablespace is dropped, its data files are automatically deleted.

Chapter 15
Scenarios for Using Oracle Managed Files

15-30

16
Using Persistent Memory Database

Mapping the database directly into persistent memory (PMEM) provides significant
performance enhancements.

• About Persistent Memory Database
The Persistent Memory Database feature includes directly mapped buffer cache and
Persistent Memory Filestore (PMEM Filestore).

• Setting Initialization Parameters for Persistent Memory Database
You can set the PMEM_FILESTORE initialization parameter to specify a PMEM Filestore that
the Oracle Database instance will mount automatically when it is started.

• Creating a PMEM Filestore for an Oracle Database
To use the Persistent Memory Database feature, you create a PMEM filestore for Oracle
Database files.

• Managing a PMEM Filestore
You can view information about a PMEM filestore and perform various operations on the
PMEM filestore, including mounting and dismounting, changing the attributes, and
dropping the filestore.

16.1 About Persistent Memory Database
The Persistent Memory Database feature includes directly mapped buffer cache and Persistent
Memory Filestore (PMEM Filestore).

• What Is Persistent Memory Database?

• What Is Oracle Persistent Memory Filestore?

• What Is Directly Mapped Buffer Cache?

• Benefits of Using Persistent Memory Database

16.1.1 What Is Persistent Memory Database?
The Persistent Memory Database feature enables you to place database files in non-volatile
memory. This feature supports a single-instance Oracle Database instance on PMEM
Filestore.

16.1.2 What Is Oracle Persistent Memory Filestore?
PMEM Filestore is a pointer-switching PMEM file system that supports atomic updates of
Oracle Database data blocks. PMEM Filestore is the underlying file store used for a Persistent
Memory database. PMEM Filestore provides the external interface for mapping and accessing
an Oracle database directly in persistent memory.

Managing an Oracle database on PMEM Filestore is similar to managing an Oracle database
on a native file system. PMEM Filestore implements the Filesystem in Userspace (FUSE)
protocol, enabling Oracle DBAs to perform normal file-level maintenance. FUSE allows non-
privileged (non-root) users, such as the Oracle Database software owner, to create and
manage filesystems as well as the directories and files contained within them.

16-1

A typical file system uses raw storage as its backing store, while PMEM Filestore gets storage
from a native operating system file in a PMEM DAX file system. This file is called the backing
file and is visible as a file in the operating system. PMEM Filestore subdivides the storage
within the backing file and presents it as a local file system.

After a PMEM Filestore is created and mounted, you will see a local file system under the user-
specified mount point. This local file system supports directories and common operating
system commands such as ls and cp. This local file system is the PMEM Filestore and can be
used to store Oracle Database files. Note that the PMEM Filestore is only visible when the
Oracle Database instance is started.

You can use PMEM Filestore for database datafiles and control files. For performance reasons,
Oracle recommends that you store redo log files as independent files in a DAX-aware
filesystem such as EXT4/XFS. Administrative files such as trace files and audit files cannot be
stored in PMEM Filestore. The server parameter file (SPFILE) cannot be stored in PMEM
Filestore because PMEM Filestore configuration parameters can be specified in the SPFILE.

16.1.3 What Is Directly Mapped Buffer Cache?
Directly mapped buffer cache is a mechanism in Oracle Database to directly read data on
persistent memory, bypassing the traditional DRAM buffer cache. This mechanism also tracks
data access and automatically brings frequently read data, and data for updating, from PMEM
to DRAM buffer cache for faster access. The directly mapped buffer cache mechanism is
automatically invoked when a datafile is placed in a PMEM filestore.

16.1.4 Benefits of Using Persistent Memory Database
With Oracle Persistent Memory Database, database files can be placed in persistent memory
which enables Oracle to take advantage of performance enhancements inherent to this
technology. Consider the following benefits of using Persistent Memory Database:

• The PMEM Filestore provides atomic writes to full Oracle database blocks. This eliminates
the need for media recovery due to partially written blocks after a power outage.

• Persistent Memory Database performs I/O to PMEM storage via memory copy. This is
much faster than performing I/O via traditional operating system calls.

• Database queries save the traditional read from storage and memory copy into buffer
cache because the Oracle Database server accesses data directly from persistent
memory.

16.2 Setting Initialization Parameters for Persistent Memory
Database

You can set the PMEM_FILESTORE initialization parameter to specify a PMEM Filestore that the
Oracle Database instance will mount automatically when it is started.

• Persistent Memory Database Initialization Parameters

16.2.1 Persistent Memory Database Initialization Parameters
The PMEM_FILESTORE initialization parameter specifies a PMEM Filestore that the Oracle
Database instance will automatically mount when it is started. The parameter is set to an
ordered pair of strings. The first string in the parameter value list is the directory where PMEM
Filestore is mounted. The second string is the backing file.

Chapter 16
Setting Initialization Parameters for Persistent Memory Database

16-2

A PMEM Filestore backing file is visible as a file in the operating system file system hierarchy.
While a typical file system uses raw storage as its backing store, PMEM Filestore gets storage
from a native operating system file in a PMEM DAX file system. On Linux, the PMEM Filestore
backing file should be in an XFS or ext4 file system mounted using the -o dax option.

16.3 Creating a PMEM Filestore for an Oracle Database
To use the Persistent Memory Database feature, you create a PMEM filestore for Oracle
Database files.

• Creating a PMEM Filestore Before Creating the Database

• Creating a Database on PMEM Storage Using Oracle DBCA
Starting with Oracle Database 23ai, you can use Oracle Database Configuration Assistant
(Oracle DBCA), in either interactive or silent mode, to select persistent memory (PMEM) as
your storage option when creating a single-instance database.

• Creating an Oracle Database in the PMEM Filestore

• Migrating an Oracle Database to a PMEM Filestore

16.3.1 Creating a PMEM Filestore Before Creating the Database
Perform the following steps to create a PMEM filestore for an Oracle database:

1. Start the Oracle Database instance in NOMOUNT mode.

2. Execute the CREATE PMEM FILESTORE command to create the PMEM filestore and provide:

• A mount point for the file store. The final subdirectory name must be the same as the
PMEM filestore name.

• A backing file from a native XFS or ext4 file system mounted in DAX mode.The
backing file is used by the PMEM filestore to keep all the files created in the filestore.

• A block size, which will typically be the same as the default block size of the database
datafiles.
As an example:

CREATE PMEM FILESTORE db1_pmemfs
MOUNTPOINT '/u1/db/db1_pmemfs'
BACKINGFILE '/u1/db_storage/db1'
SIZE 2T
BLOCKSIZE 8K
AUTOEXTEND ON NEXT 10G
MAXSIZE 3T;

The PMEM filestore is automatically mounted after it is created. The PMEM filestore
will appear under the specified mount point as if it is a native file system.

3. Configure the PMEM filestore to be mounted during instance startup.
If you used an SPFILE to start the database instance, the server adds the PMEM_FILESTORE
initialization parameter to the SPFILE. This parameter causes the PMEM filestore to be
automatically mounted when the database instance is started. The SPFILE will contain this
entry following the execution of the CREATE PMEM FILESTORE command:
PMEM_FILESTORE=(‘/u1/db/db1_pmemfs’, ‘/u1/db_storage/db1’). The first string in the
parameter value list is the directory where the PMEM filestore is mounted. The second
string is the backing file.

Chapter 16
Creating a PMEM Filestore for an Oracle Database

16-3

If you did not use an SPFILE to start the database instance, you must manually add the
PMEM_FILESTORE initialization parameter so that the PMEM filestore is mounted during
instance startup. Or you must manually mount the PMEM filestore using the ALTER PMEM
FILESTORE … MOUNT command.

16.3.2 Creating a Database on PMEM Storage Using Oracle DBCA
Starting with Oracle Database 23ai, you can use Oracle Database Configuration Assistant
(Oracle DBCA), in either interactive or silent mode, to select persistent memory (PMEM) as
your storage option when creating a single-instance database.

Perform the following steps to create a PMEM filestore for an Oracle database using DBCA:

1. Start Oracle Database Configuration Assistant (Oracle DBCA).

$ cd $ORACLE_HOME/bin
$./dbca

2. In the Select Database Operation screen, select Create a database and click Next.

3. In the Select Database Creation Mode screen, select Advanced configuration and click
Next.

4. In the Select Database Deployment type screen, select Oracle single instance
database, as the Database type. Select an appropriate template for your database. Click
Next.

5. In the Specify Database Identification Details page, for the Global database name,
enter the database name in the form database_name.domain_name. In the SID field, enter
the system identifier. The SID defaults to the database name and uniquely identifies the
instance that runs the database.
You can choose to create either an empty container database (CDB) or a CDB with one or
more pluggable databases (PDB). Enter the number of PDBs to create in the Number of
PDBs field. In the PDB Name field, specify a name to use for the PDB or PDBs to be
created. When you create multiple PDBs, the PDB name you specify is used as a prefix for
the PDBs to be created. Click Next.

6. In the Select Database Storage Option screen, select Use following for the database
storage attributes.
Specify the Database files storage type as PMEM File System. Browse to specify the
location of your PMEM storage in the Database files location field.

Specify the PMEM File System. The PMEM File System can use either a PMEM filestore,
a DAX-enabled file system, or the Oracle Memory Speed file system. Specify the PMEM
File System Size.

Select Use Oracle-Managed Files (OMF), to directly manage operating system files
comprising an Oracle Database.

7. Respond to the configuration screens and prompts as needed to complete the database
creation process. Configuration screens vary depending on the configuration option that
you select.

Note:

Click Help if you have any questions about the information you are asked to submit
during database creation.

Chapter 16
Creating a PMEM Filestore for an Oracle Database

16-4

16.3.3 Creating an Oracle Database in the PMEM Filestore
After creating the PMEM filestore, you can use it as if it is a native file system to create an
Oracle Database. You can create the database under the mount point you specified when you
created the PMEM filestore. See Oracle Multitenant Administrator's Guide for detailed
information.

16.3.4 Migrating an Oracle Database to a PMEM Filestore
After creating the PMEM filestore, perform the following steps to migrate an existing Oracle
Database or select tablespaces to the PMEM filestore:

1. Copy the database files by using the RMAN RESTORE command or operating system
commands.

2. Optionally, change the block size of the redo log files by creating new online redo log files
and then dropping the existing redo log files.

You can also use the ALTER DATABASE command with the MOVE DATAFILE clause to move an
online datafile to the PMEM filestore.

16.4 Managing a PMEM Filestore
You can view information about a PMEM filestore and perform various operations on the
PMEM filestore, including mounting and dismounting, changing the attributes, and dropping the
filestore.

• Viewing Information About a PMEM Filestore
V$PMEM_FILESTORE provides information about the PMEM filestore.

• Mounting a PMEM Filestore
If you did not set the PMEM_FILESTORE initialization parameter to automatically mount the
PMEM filestore when the database instance is started, you must mount the PMEM filestore
manually.

• Dismounting a PMEM Filestore
If you want to alter the attributes of the PMEM filestore, you must first dismount the
filestore.

• Changing the Attributes of a PMEM Filestore
You can change the attributes of a PMEM filestore, including the mount point, the backing
file, and the size.

• Dropping a PMEM Filestore
You can drop a PMEM filestore whether it is empty or not.

16.4.1 Viewing Information About a PMEM Filestore
V$PMEM_FILESTORE provides information about the PMEM filestore.

You can query V$PMEM_FILESTORE to view information about the PMEM filestore including:

• Directory path for the mount point of the PMEM filestore

• File path for the backing file of the PMEM filestore

• Block size of the PMEM filestore (in bytes)

Chapter 16
Managing a PMEM Filestore

16-5

• Current size of the PMEM filestore (in bytes)

• Whether it is autoextensible and details about the autoextensible configuration

• Space usage (free space and used space)

16.4.2 Mounting a PMEM Filestore
If you did not set the PMEM_FILESTORE initialization parameter to automatically mount the PMEM
filestore when the database instance is started, you must mount the PMEM filestore manually.

The following statement is used to mount the PMEM filestore:

• ALTER PMEM FILESTORE filestore_name MOUNT
If the initialization parameter file does not include the PMEM_FILESTORE parameter, you must
include the MOUNTPOINT and BACKINGFILE clauses, along with the FORCE keyword when you
execute this command.

You can also include the MOUNTPOINT and BACKINGFILE clauses with the FORCE keyword to
specify different file paths than were specified in the intialization parameter file. If you used a
server parameter file (SPFILE) to start the database instance, it will be updated with the file
paths specified in the ALTER PMEM FILESTORE MOUNT command.

You must be connected to the root container (CDB$ROOT) as a user with the SYSDBA privilege to
execute this command.

16.4.3 Dismounting a PMEM Filestore
If you want to alter the attributes of the PMEM filestore, you must first dismount the filestore.

The following statement is used to dismount the PMEM filestore:

• ALTER PMEM FILESTORE filestore_name DISMOUNT
You must be connected to the root container (CDB$ROOT) as a user with the SYSDBA privilege to
execute this command.

16.4.4 Changing the Attributes of a PMEM Filestore
You can change the attributes of a PMEM filestore, including the mount point, the backing file,
and the size.

The following statement is used to change the attributes of the PMEM filestore:

• ALTER PMEM FILESTORE
If you want to change the mount point or backing file, you must first dismount the filestore. See
Dismounting a PMEM Filestore.

You cannot change the block size of the filestore.

You must be connected to the root container (CDB$ROOT) as a user with the SYSDBA privilege to
execute this command.

16.4.5 Dropping a PMEM Filestore
You can drop a PMEM filestore whether it is empty or not.

The following statement is used to drop the PMEM filestore:

Chapter 16
Managing a PMEM Filestore

16-6

• DROP PMEM FILESTORE
Specify INCLUDING CONTENTS to remove all of the files in the PMEM filestore. To drop the
filestore immediately, use the FORCE keyword with INCLUDING CONTENTS. Specify EXCLUDING
CONTENTS so that the PMEM filestore will be dropped only when it is empty.

If the database instance was started with an SPFILE, the SPFILE will be updated when DROP
PMEM FILESTORE is executed.

Chapter 16
Managing a PMEM Filestore

16-7

Part III
Schema Objects

You can create and manage schema objects in Oracle Database.

• Managing Schema Objects
You can create and manage several types of schema objects with Oracle Database.

• Managing Space for Schema Objects
Managing space for schema objects involves tasks such as managing tablespace alerts
and space allocation, reclaiming unused space, dropping unused object storage,
monitoring space usage, and capacity planning.

• Managing Tables
Managing tables includes tasks such as creating tables, loading tables, altering tables, and
dropping tables.

• Managing Indexes

• Managing Clusters
Using clusters can improve performance and reduce disk space requirements.

• Managing Hash Clusters
Hash clusters can improve the performance of data retrieval.

• Managing Views, Sequences, and Synonyms
You can create and manage views, sequences, and synonyms with Oracle Database.

• Repairing Corrupted Data
You can detect and correct data block corruption.

17
Managing Schema Objects

You can create and manage several types of schema objects with Oracle Database.

• About Common and Local Objects
A common object is defined in either the CDB root or an application root, and can be
referenced using metadata links or object links. A local object is every object that is not a
common object.

• About the Container for Schema Objects
Schema objects are created in the current container.

• Creating Multiple Tables and Views in a Single Operation
You can create several tables and views and grant privileges in one operation using the
CREATE SCHEMA statement. If an individual table, view or grant fails, the entire statement is
rolled back. None of the objects are created, nor are the privileges granted.

• Analyzing Tables, Indexes, and Clusters
You can collecting statistics on schema objects, analyze the statistics, and validate the
schema objects.

• Truncating Tables and Clusters
You can delete all rows of a table or all rows in a group of clustered tables so that the table
(or cluster) still exists, but is completely empty. For example, consider a table that contains
monthly data, and at the end of each month, you must empty it (delete all rows) after
archiving its data.

• Enabling and Disabling Triggers
Database triggers are procedures that are stored in the database and activated ("fired")
when specific conditions occur, such as adding a row to a table.

• Managing Integrity Constraints
Integrity constraints are rules that restrict the values for one or more columns in a table.
Constraint clauses can appear in either CREATE TABLE or ALTER TABLE statements, and
identify the column or columns affected by the constraint and identify the conditions of the
constraint.

• Renaming Schema Objects
There are several ways to rename an object.

• Managing Object Dependencies
Oracle Database provides an automatic mechanism to ensure that a dependent object is
always up to date with respect to its referenced objects. You can also manually recompile
invalid object.

• Managing Object Name Resolution
Object names referenced in SQL statements can consist of several pieces, separated by
periods. Oracle Database performs specific actions to resolve an object name.

• Switching to a Different Schema
Use an ALTER SESSION SQL statement to switch to a different schema.

• Managing Editions
Application developers who are upgrading their applications using edition-based
redefinition may ask you to perform edition-related tasks that require DBA privileges.

17-1

• Displaying Information About Schema Objects
Oracle Database provides a PL/SQL package that enables you to determine the DDL that
created an object and data dictionary views that you can use to display information about
schema objects.

17.1 About Common and Local Objects
A common object is defined in either the CDB root or an application root, and can be
referenced using metadata links or object links. A local object is every object that is not a
common object.

Database-supplied common objects are defined in CDB$ROOT and cannot be changed. Oracle
Database does not support creation of common objects in CDB$ROOT.

You can create most schema objects—such as tables, views, PL/SQL and Java program units,
sequences, and so on—as common objects in an application root. If the object exists in an
application root, then it is called an application common object.

A local user can own a common object. Also, a common user can own a local object, but only
when the object is not data-linked or metadata-linked, and is also neither a metadata link nor a
data link.

See Also:

Oracle Database Security Guide to learn more about privilege management for
common objects

17.2 About the Container for Schema Objects
Schema objects are created in the current container.

Before you create schema objects, ensure that you are in the container that store these
schema objects.

To create a schema object in a pluggable database (PDB), connect to the PDB as a common
user or local user with the required privileges. Then, run the required SQL*Plus command.

17.3 Creating Multiple Tables and Views in a Single Operation
You can create several tables and views and grant privileges in one operation using the CREATE
SCHEMA statement. If an individual table, view or grant fails, the entire statement is rolled back.
None of the objects are created, nor are the privileges granted.

Specifically, the CREATE SCHEMA statement can include only CREATE TABLE, CREATE VIEW, and
GRANT statements. You must have the privileges necessary to issue the included statements.
You are not actually creating a schema, that is done when the user is created with a CREATE
USER statement. Rather, you are populating the schema.

The following statement creates two tables and a view that joins data from the two tables:

CREATE SCHEMA AUTHORIZATION scott
 CREATE TABLE dept (

Chapter 17
About Common and Local Objects

17-2

 deptno NUMBER(3,0) PRIMARY KEY,
 dname VARCHAR2(15),
 loc VARCHAR2(25))
 CREATE TABLE emp (
 empno NUMBER(5,0) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5,0),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3,0) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept)
 CREATE VIEW sales_staff AS
 SELECT empno, ename, sal, comm
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst
 GRANT SELECT ON sales_staff TO human_resources;

The CREATE SCHEMA statement does not support Oracle Database extensions to the ANSI
CREATE TABLE and CREATE VIEW statements, including the STORAGE clause.

See Also:

Oracle Database SQL Language Reference for syntax and other information about
the CREATE SCHEMA statement

17.4 Analyzing Tables, Indexes, and Clusters
You can collecting statistics on schema objects, analyze the statistics, and validate the schema
objects.

• About Analyzing Tables, Indexes, and Clusters
You can collect information about schema objects and analyze that information.

• Using DBMS_STATS to Collect Table and Index Statistics
You can use the DBMS_STATS package or the ANALYZE statement to gather statistics about
the physical storage characteristics of a table, index, or cluster. These statistics are stored
in the data dictionary and can be used by the optimizer to choose the most efficient
execution plan for SQL statements accessing analyzed objects.

• Validating Tables, Indexes, Clusters, and Materialized Views
To verify the integrity of the structure of a table, index, cluster, or materialized view, use the
ANALYZE statement with the VALIDATE STRUCTURE option.

• Cross Validation of a Table and an Index with a Query
In some cases, an ANALYZE statement takes an inordinate amount of time to complete. In
these cases, you can use a SQL query to validate an index.

• Listing Chained Rows of Tables and Clusters
You can look at the chained and migrated rows of a table or cluster using the ANALYZE
statement with the LIST CHAINED ROWS clause. The results of this statement are stored in a
specified table created explicitly to accept the information returned by the LIST CHAINED
ROWS clause. These results are useful in determining whether you have enough room for
updates to rows.

Chapter 17
Analyzing Tables, Indexes, and Clusters

17-3

17.4.1 About Analyzing Tables, Indexes, and Clusters
You can collect information about schema objects and analyze that information.

You analyze a schema object (table, index, or cluster) to:

• Collect and manage statistics for it

• Verify the validity of its storage format

• Identify migrated and chained rows of a table or cluster

Note:

Do not use the COMPUTE and ESTIMATE clauses of ANALYZE to collect optimizer
statistics. These clauses have been deprecated. Instead, use the DBMS_STATS
package, which lets you collect statistics in parallel, collect global statistics for
partitioned objects, and fine tune your statistics collection in other ways. The cost-
based optimizer, which depends upon statistics, will eventually use only statistics that
have been collected by DBMS_STATS. See Oracle Database PL/SQL Packages and
Types Reference for more information on the DBMS_STATS package.

You must use the ANALYZE statement (rather than DBMS_STATS) for statistics collection
not related to the cost-based optimizer, such as:

• To use the VALIDATE or LIST CHAINED ROWS clauses

• To collect information on freelist blocks

17.4.2 Using DBMS_STATS to Collect Table and Index Statistics
You can use the DBMS_STATS package or the ANALYZE statement to gather statistics about the
physical storage characteristics of a table, index, or cluster. These statistics are stored in the
data dictionary and can be used by the optimizer to choose the most efficient execution plan
for SQL statements accessing analyzed objects.

Oracle recommends using the more versatile DBMS_STATS package for gathering optimizer
statistics, but you must use the ANALYZE statement to collect statistics unrelated to the
optimizer, such as empty blocks, average space, and so forth.

The DBMS_STATS package allows both the gathering of statistics, including utilizing parallel
execution, and the external manipulation of statistics. Statistics can be stored in tables outside
of the data dictionary, where they can be manipulated without affecting the optimizer. Statistics
can be copied between databases or backup copies can be made.

The following DBMS_STATS procedures enable the gathering of optimizer statistics:

• GATHER_INDEX_STATS
• GATHER_TABLE_STATS
• GATHER_SCHEMA_STATS
• GATHER_DATABASE_STATS

Chapter 17
Analyzing Tables, Indexes, and Clusters

17-4

See Also:

– Oracle Database SQL Tuning Guide for information about using DBMS_STATS
to gather statistics for the optimizer

– Oracle Database PL/SQL Packages and Types Reference for a description
of the DBMS_STATS package

17.4.3 Validating Tables, Indexes, Clusters, and Materialized Views
To verify the integrity of the structure of a table, index, cluster, or materialized view, use the
ANALYZE statement with the VALIDATE STRUCTURE option.

If the structure is valid, then no error is returned. However, if the structure is corrupt, then you
receive an error message.

For example, in rare cases such as hardware or other system failures, an index can become
corrupted and not perform correctly. When validating the index, you can confirm that every
entry in the index points to the correct row of the associated table. If the index is corrupt, then
you can drop and re-create it.

If a table, index, or cluster is corrupt, then drop it and re-create it. If a materialized view is
corrupt, then perform a complete refresh and ensure that you have remedied the problem. If
the problem is not corrected, then drop and re-create the materialized view.

The following statement analyzes the emp table:

ANALYZE TABLE emp VALIDATE STRUCTURE;

You can validate an object and all dependent objects (for example, indexes) by including the
CASCADE option. The following statement validates the emp table and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

By default the CASCADE option performs a complete validation. Because this operation can be
resource intensive, you can perform a faster version of the validation by using the FAST clause.
This version checks for the existence of corruptions using an optimized check algorithm, but
does not report details about the corruption. If the FAST check finds a corruption, then you can
then use the CASCADE option without the FAST clause to locate it. The following statement
performs a fast validation on the emp table and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE FAST;

If fast validation takes an inordinate amount of time, then you have the option of validating
individual indexes with a SQL query. See "Cross Validation of a Table and an Index with a
Query".

You can specify that you want to perform structure validation online while DML is occurring
against the object being validated. Validation is less comprehensive with ongoing DML
affecting the object, but this is offset by the flexibility of being able to perform ANALYZE online.
The following statement validates the emp table and all associated indexes online:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE ONLINE;

Chapter 17
Analyzing Tables, Indexes, and Clusters

17-5

See Also:

Oracle Database SQL Language Reference for more information on the ANALYZE
statement

17.4.4 Cross Validation of a Table and an Index with a Query
In some cases, an ANALYZE statement takes an inordinate amount of time to complete. In these
cases, you can use a SQL query to validate an index.

If the query determines that there is an inconsistency between a table and an index, then you
can use an ANALYZE statement for a thorough analysis of the index. Since typically most
objects in a database are not corrupt, you can use this quick query to eliminate a number of
tables as candidates for corruption and only use the ANALYZE statement on tables that might
be corrupt.

To validate an index, run the following query:

SELECT /*+ FULL(ALIAS) PARALLEL(ALIAS, DOP) */ SUM(ORA_HASH(ROWID))
 FROM table_name ALIAS
 WHERE ALIAS.index_column IS NOT NULL
 MINUS SELECT /*+ INDEX_FFS(ALIAS index_name)
 PARALLEL_INDEX(ALIAS, index_name, DOP) */ SUM(ORA_HASH(ROWID))
 FROM table_name ALIAS WHERE ALIAS.index_column IS NOT NULL;

When you run the query, make the following substitutions:

• Enter the table name for the table_name placeholder.

• Enter the index column for the index_column placeholder.

• Enter the index name for the index_name placeholder.

If the query returns any rows, then there is a possible inconsistency, and you can use an
ANALYZE statement for further diagnosis.

See Also:

Oracle Database SQL Language Reference for more information about the ANALYZE
statement

17.4.5 Listing Chained Rows of Tables and Clusters
You can look at the chained and migrated rows of a table or cluster using the ANALYZE
statement with the LIST CHAINED ROWS clause. The results of this statement are stored in a
specified table created explicitly to accept the information returned by the LIST CHAINED ROWS
clause. These results are useful in determining whether you have enough room for updates to
rows.

• Creating a CHAINED_ROWS Table
To create the table to accept data returned by an ANALYZE...LIST CHAINED ROWS statement,
execute the UTLCHAIN.SQL or UTLCHN1.SQL script.

Chapter 17
Analyzing Tables, Indexes, and Clusters

17-6

• Eliminating Migrated or Chained Rows in a Table
You can use the information in the CHAINED_ROWS table to reduce or eliminate migrated and
chained rows in an existing table.

17.4.5.1 Creating a CHAINED_ROWS Table
To create the table to accept data returned by an ANALYZE...LIST CHAINED ROWS statement,
execute the UTLCHAIN.SQL or UTLCHN1.SQL script.

These scripts are provided by the database. They create a table named CHAINED_ROWS in the
schema of the user submitting the script.

Note:

Your choice of script to execute for creating the CHAINED_ROWS table depends on the
compatibility level of your database and the type of table you are analyzing. See the
Oracle Database SQL Language Reference for more information.

After a CHAINED_ROWS table is created, you specify it in the INTO clause of the ANALYZE
statement. For example, the following statement inserts rows containing information about the
chained rows in the emp_dept cluster into the CHAINED_ROWS table:

ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO CHAINED_ROWS;

See Also:

• Oracle Database Reference for a description of the CHAINED_ROWS table

• "Using the Segment Advisor" for information on how the Segment Advisor reports
tables with excess row chaining.

17.4.5.2 Eliminating Migrated or Chained Rows in a Table
You can use the information in the CHAINED_ROWS table to reduce or eliminate migrated and
chained rows in an existing table.

Use the following procedure:

1. Use the ANALYZE statement to collect information about migrated and chained rows.

ANALYZE TABLE order_hist LIST CHAINED ROWS;
2. Query the output table:

SELECT *
FROM CHAINED_ROWS
WHERE TABLE_NAME = 'ORDER_HIST';

OWNER_NAME TABLE_NAME CLUST... HEAD_ROWID TIMESTAMP
---------- ---------- -----... ------------------ ---------
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAA 04-MAR-96

Chapter 17
Analyzing Tables, Indexes, and Clusters

17-7

SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAB 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAC 04-MAR-96

The output lists all rows that are either migrated or chained.

3. If the output table shows that you have many migrated or chained rows, then you can
eliminate migrated rows by continuing through the following steps:

4. Create an intermediate table with the same columns as the existing table to hold the
migrated and chained rows:

CREATE TABLE int_order_hist
 AS SELECT *
 FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST');

5. Delete the migrated and chained rows from the existing table:

DELETE FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST');

6. Insert the rows of the intermediate table into the existing table:

INSERT INTO order_hist
 SELECT *
 FROM int_order_hist;

7. Drop the intermediate table:

DROP TABLE int_order_history;
8. Delete the information collected in step 1 from the output table:

DELETE FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST';

9. Use the ANALYZE statement again, and query the output table.

Any rows that appear in the output table are chained. You can eliminate chained rows only by
increasing your data block size. It might not be possible to avoid chaining in all situations.
Chaining is often unavoidable with tables that have a LONG column or large CHAR or VARCHAR2
columns.

17.5 Truncating Tables and Clusters
You can delete all rows of a table or all rows in a group of clustered tables so that the table (or
cluster) still exists, but is completely empty. For example, consider a table that contains
monthly data, and at the end of each month, you must empty it (delete all rows) after archiving
its data.

• Using DELETE to Truncate a Table
You can delete the rows of a table using the DELETE SQL statement.

• Using DROP and CREATE to Truncate a Table
You can drop a table and then re-create the table to truncate it.

• Using TRUNCATE
You can delete all rows of the table using the TRUNCATE statement.

Chapter 17
Truncating Tables and Clusters

17-8

17.5.1 Using DELETE to Truncate a Table
You can delete the rows of a table using the DELETE SQL statement.

For example, the following statement deletes all rows from the emp table:

DELETE FROM emp;

If there are many rows present in a table or cluster when using the DELETE statement,
significant system resources are consumed as the rows are deleted. For example, CPU time,
redo log space, and undo segment space from the table and any associated indexes require
resources. Also, as each row is deleted, triggers can be fired. The space previously allocated
to the resulting empty table or cluster remains associated with that object. With DELETE you can
choose which rows to delete, whereas TRUNCATE and DROP affect the entire object.

See Also:

Oracle Database SQL Language Reference for syntax and other information about
the DELETE statement

17.5.2 Using DROP and CREATE to Truncate a Table
You can drop a table and then re-create the table to truncate it.

For example, the following statements drop and then re-create the emp table:

DROP TABLE emp;
CREATE TABLE emp (...);

When dropping and re-creating a table or cluster, all associated indexes, integrity constraints,
and triggers are also dropped, and all objects that depend on the dropped table or clustered
table are invalidated. Also, all grants for the dropped table or clustered table are dropped.

17.5.3 Using TRUNCATE
You can delete all rows of the table using the TRUNCATE statement.

For example, the following statement truncates the emp table:

TRUNCATE TABLE emp;

Using the TRUNCATE statement provides a fast, efficient method for deleting all rows from a
table or cluster. A TRUNCATE statement does not generate any undo information and it commits
immediately. It is a DDL statement and cannot be rolled back. A TRUNCATE statement does not
affect any structures associated with the table being truncated (constraints and triggers) or
authorizations. A TRUNCATE statement also specifies whether space currently allocated for the
table is returned to the containing tablespace after truncation.

You can truncate any table or cluster in your own schema. Any user who has the DROP ANY
TABLE system privilege can truncate a table or cluster in any schema.

Before truncating a table or clustered table containing a parent key, all referencing foreign keys
in different tables must be disabled. A self-referential constraint does not have to be disabled.

Chapter 17
Truncating Tables and Clusters

17-9

As a TRUNCATE statement deletes rows from a table, triggers associated with the table are not
fired. Also, a TRUNCATE statement does not generate any audit information corresponding to
DELETE statements if auditing is enabled. Instead, a single audit record is generated for the
TRUNCATE statement being issued.

A hash cluster cannot be truncated, nor can tables within a hash or index cluster be individually
truncated. Truncation of an index cluster deletes all rows from all tables in the cluster. If all the
rows must be deleted from an individual clustered table, use the DELETE statement or drop and
re-create the table.

The TRUNCATE statement has several options that control whether space currently allocated for
a table or cluster is returned to the containing tablespace after truncation.

These options also apply to any associated indexes. When a table or cluster is truncated, all
associated indexes are also truncated. The storage parameters for a truncated table, cluster,
or associated indexes are not changed as a result of the truncation.

These TRUNCATE options are:

• DROP STORAGE, the default option, reduces the number of extents allocated to the resulting
table to the original setting for MINEXTENTS. Freed extents are then returned to the system
and can be used by other objects.

• DROP ALL STORAGE drops the segment. In addition to the TRUNCATE TABLE statement, DROP
ALL STORAGE also applies to the ALTER TABLE TRUNCATE (SUB)PARTITION statement. This
option also drops any dependent object segments associated with the partition being
truncated.

DROP ALL STORAGE is not supported for clusters.

TRUNCATE TABLE emp DROP ALL STORAGE;
• REUSE STORAGE specifies that all space currently allocated for the table or cluster remains

allocated to it. For example, the following statement truncates the emp_dept cluster, leaving
all extents previously allocated for the cluster available for subsequent inserts and deletes:

TRUNCATE CLUSTER emp_dept REUSE STORAGE;

See Also:

• Oracle Database SQL Language Reference for syntax and other information
about the TRUNCATE TABLE statement

• Oracle Database SQL Language Reference for syntax and other information
about the TRUNCATE CLUSTER statement

• Oracle Database Security Guide for information about auditing

17.6 Enabling and Disabling Triggers
Database triggers are procedures that are stored in the database and activated ("fired") when
specific conditions occur, such as adding a row to a table.

You can use triggers to supplement the standard capabilities of the database to provide a
highly customized database management system. For example, you can create a trigger to

Chapter 17
Enabling and Disabling Triggers

17-10

restrict DML operations against a table, allowing only statements issued during regular
business hours.

• About Enabling and Disabling Triggers
An enabled trigger executes its trigger body if a triggering statement is issued and the
trigger restriction, if any, evaluates to true. By default, triggers are enabled when first
created. A disabled trigger does not execute its trigger body, even if a triggering statement
is issued and the trigger restriction (if any) evaluates to true.

• Enabling Triggers
You enable a disabled trigger using the ALTER TRIGGER statement with the ENABLE option.

• Disabling Triggers
You disable a trigger using the ALTER TRIGGER statement with the DISABLE option.

17.6.1 About Enabling and Disabling Triggers
An enabled trigger executes its trigger body if a triggering statement is issued and the trigger
restriction, if any, evaluates to true. By default, triggers are enabled when first created. A
disabled trigger does not execute its trigger body, even if a triggering statement is issued and
the trigger restriction (if any) evaluates to true.

Database triggers can be associated with a table, schema, or database. They are implicitly
fired when:

• DML statements are executed (INSERT, UPDATE, DELETE) against an associated table

• Certain DDL statements are executed (for example: ALTER, CREATE, DROP) on objects within
a database or schema

• A specified database event occurs (for example: STARTUP, SHUTDOWN, SERVERERROR)

This is not a complete list. See the Oracle Database SQL Language Reference for a full list of
statements and database events that cause triggers to fire.

Create triggers with the CREATE TRIGGER statement. They can be defined as firing BEFORE or
AFTER the triggering event, or INSTEAD OF it. The following statement creates a trigger
scott.emp_permit_changes on table scott.emp. The trigger fires before any of the specified
statements are executed.

CREATE TRIGGER scott.emp_permit_changes
 BEFORE
 DELETE OR INSERT OR UPDATE
 ON scott.emp
 .
 .
 .
pl/sql block
 .
 .
 .

You can later remove a trigger from the database by issuing the DROP TRIGGER statement.

To enable or disable triggers using the ALTER TABLE statement, you must own the table, have
the ALTER object privilege for the table, or have the ALTER ANY TABLE system privilege. To
enable or disable an individual trigger using the ALTER TRIGGER statement, you must own the
trigger or have the ALTER ANY TRIGGER system privilege.

Chapter 17
Enabling and Disabling Triggers

17-11

See Also:

• Oracle Database Concepts for a more detailed description of triggers

• Oracle Database SQL Language Reference for syntax of the CREATE TRIGGER
statement

• Oracle Database PL/SQL Language Reference for information about creating
and using triggers

17.6.2 Enabling Triggers
You enable a disabled trigger using the ALTER TRIGGER statement with the ENABLE option.

To enable the disabled trigger named reorder on the inventory table, enter the following
statement:

ALTER TRIGGER reorder ENABLE;

To enable all triggers defined for a specific table, use the ALTER TABLE statement with the
ENABLE ALL TRIGGERS option. To enable all triggers defined for the INVENTORY table, enter the
following statement:

ALTER TABLE inventory
 ENABLE ALL TRIGGERS;

See Also:

Oracle Database SQL Language Reference for syntax and other information about
the ALTER TRIGGER statement

17.6.3 Disabling Triggers
You disable a trigger using the ALTER TRIGGER statement with the DISABLE option.

Consider temporarily disabling a trigger if one of the following conditions is true:

• An object that the trigger references is not available.

• You must perform a large data load and want it to proceed quickly without firing triggers.

• You are loading data into the table to which the trigger applies.

To disable the trigger reorder on the inventory table, enter the following statement:

ALTER TRIGGER reorder DISABLE;

You can disable all triggers associated with a table at the same time using the ALTER TABLE
statement with the DISABLE ALL TRIGGERS option. For example, to disable all triggers defined
for the inventory table, enter the following statement:

ALTER TABLE inventory
 DISABLE ALL TRIGGERS;

Chapter 17
Enabling and Disabling Triggers

17-12

17.7 Managing Integrity Constraints
Integrity constraints are rules that restrict the values for one or more columns in a table.
Constraint clauses can appear in either CREATE TABLE or ALTER TABLE statements, and identify
the column or columns affected by the constraint and identify the conditions of the constraint.

• Integrity Constraint States
Integrity constraints enforce business rules and prevent the entry of invalid information into
tables.

• Setting Integrity Constraints Upon Definition
When an integrity constraint is defined in a CREATE TABLE or ALTER TABLE statement, it can
be enabled, disabled, or validated or not validated as determined by your specification of
the ENABLE/DISABLE clause. If the ENABLE/DISABLE clause is not specified in a constraint
definition, the database automatically enables and validates the constraint.

• Modifying, Renaming, or Dropping Existing Integrity Constraints
You can use the ALTER TABLE statement to enable, disable, modify, or drop a constraint.
When the database is using a UNIQUE or PRIMARY KEY index to enforce a constraint, and
constraints associated with that index are dropped or disabled, the index is dropped,
unless you specify otherwise.

• Deferring Constraint Checks
When the database checks a constraint, it signals an error if the constraint is not satisfied.
You can defer checking the validity of constraints until the end of a transaction. When you
issue the SET CONSTRAINTS statement, the SET CONSTRAINTS mode lasts for the duration of
the transaction, or until another SET CONSTRAINTS statement resets the mode.

• Reporting Constraint Exceptions
If exceptions exist when a constraint is validated, then an error is returned and the integrity
constraint remains novalidated. When a statement is not successfully executed because
integrity constraint exceptions exist, the statement is rolled back. If exceptions exist, then
you cannot validate the constraint until all exceptions to the constraint are either updated
or deleted.

• Viewing Constraint Information
Oracle Database provides a set of views that enable you to see constraint definitions on
tables and to identify columns that are specified in constraints.

See Also:

• Oracle Database Concepts for a more thorough discussion of integrity
constraints

• Oracle Database Development Guide for detailed information and examples of
using integrity constraints in applications

17.7.1 Integrity Constraint States
Integrity constraints enforce business rules and prevent the entry of invalid information into
tables.

Chapter 17
Managing Integrity Constraints

17-13

• About Integrity Constraint States
You can specify that a constraint is enabled (ENABLE) or disabled (DISABLE). If a constraint
is enabled, data is checked as it is entered or updated in the database, and data that does
not conform to the constraint is prevented from being entered. If a constraint is disabled,
then data that does not conform can be allowed to enter the database.

• About Disabling Constraints
To enforce the rules defined by integrity constraints, the constraints should always be
enabled, but you can consider disabling them in certain situations.

• About Enabling Constraints
While a constraint is enabled, no row violating the constraint can be inserted into the table.

• About the Enable Novalidate Constraint State
When a constraint is in the enable novalidate state, all subsequent statements are checked
for conformity to the constraint. However, any existing data in the table is not checked.

• Efficient Use of Integrity Constraints: A Procedure
It is important to use integrity constraint states in a particular order.

17.7.1.1 About Integrity Constraint States
You can specify that a constraint is enabled (ENABLE) or disabled (DISABLE). If a constraint is
enabled, data is checked as it is entered or updated in the database, and data that does not
conform to the constraint is prevented from being entered. If a constraint is disabled, then data
that does not conform can be allowed to enter the database.

Additionally, you can specify that existing data in the table must conform to the constraint
(VALIDATE). Conversely, if you specify NOVALIDATE, you are not ensured that existing data
conforms.

An integrity constraint defined on a table can be in one of the following states:

• ENABLE, VALIDATE
• ENABLE, NOVALIDATE
• DISABLE, VALIDATE
• DISABLE, NOVALIDATE
For details about the meaning of these states and an understanding of their consequences,
see the Oracle Database SQL Language Reference. Some of these consequences are
discussed here.

17.7.1.2 About Disabling Constraints
To enforce the rules defined by integrity constraints, the constraints should always be enabled,
but you can consider disabling them in certain situations.

However, consider temporarily disabling the integrity constraints of a table for the following
performance reasons:

• When loading large amounts of data into a table

• When performing batch operations that make massive changes to a table (for example,
changing every employee's number by adding 1000 to the existing number)

• When importing or exporting one table at a time

In all three cases, temporarily disabling integrity constraints can improve the performance of
the operation, especially in data warehouse configurations.

Chapter 17
Managing Integrity Constraints

17-14

It is possible to enter data that violates a constraint while that constraint is disabled. Thus, you
should always enable the constraint after completing any of the operations listed in the
preceding bullet list.

17.7.1.3 About Enabling Constraints
While a constraint is enabled, no row violating the constraint can be inserted into the table.

However, while the constraint is disabled such a row can be inserted. This row is known as an
exception to the constraint. If the constraint is in the enable novalidated state, violations
resulting from data entered while the constraint was disabled remain. The rows that violate the
constraint must be either updated or deleted in order for the constraint to be put in the
validated state.

You can identify exceptions to a specific integrity constraint while attempting to enable the
constraint. See "Reporting Constraint Exceptions". All rows violating constraints are noted in
an EXCEPTIONS table, which you can examine.

17.7.1.4 About the Enable Novalidate Constraint State
When a constraint is in the enable novalidate state, all subsequent statements are checked for
conformity to the constraint. However, any existing data in the table is not checked.

A table with enable novalidated constraints can contain invalid data, but it is not possible to
add new invalid data to it. Enabling constraints in the novalidated state is most useful in data
warehouse configurations that are uploading valid OLTP data.

Enabling a constraint does not require validation. Enabling a constraint novalidate is much
faster than enabling and validating a constraint. Also, validating a constraint that is already
enabled does not require any DML locks during validation (unlike validating a previously
disabled constraint). Enforcement guarantees that no violations are introduced during the
validation. Hence, enabling without validating enables you to reduce the downtime typically
associated with enabling a constraint.

17.7.1.5 Efficient Use of Integrity Constraints: A Procedure
It is important to use integrity constraint states in a particular order.

Using integrity constraint states in the following order can ensure the best benefits:

1. Set state of constraint to DISABLE.

2. Perform the operation (load, export, import).

3. Set state of constraint to ENABLE NOVALIDATE.

4. Set state of constraint to ENABLE.

For example:

SQL> CREATE TABLE eg(n NUMBER NOT NULL CONSTRAINT n_gt_0 CHECK (n > 0));

Table created.

SQL> SELECT status AS enabled, validated
 FROM user_constraints
 WHERE table_name = 'EG' and constraint_name = 'N_GT_0';

ENABLED VALIDATED

Chapter 17
Managing Integrity Constraints

17-15

-------- -------------
ENABLED VALIDATED

SQL> ALTER TABLE eg MODIFY CONSTRAINT n_gt_0 DISABLE;

Table altered.

SQL> SELECT status AS enabled, validated
 FROM user_constraints
 WHERE table_name = 'EG' and constraint_name = 'N_GT_0';

ENABLED VALIDATED
-------- -------------
DISABLED NOT VALIDATED

SQL> ALTER TABLE eg MODIFY CONSTRAINT n_gt_0 enable NOVALIDATE;

Table altered.

SQL> SELECT status AS enabled, validated
 FROM user_constraints
 WHERE table_name = 'EG' and constraint_name = 'N_GT_0';

ENABLED VALIDATED
-------- -------------
ENABLED NOT VALIDATED

SQL> ALTER TABLE eg MODIFY CONSTRAINT n_gt_0 ENABLE;

Table altered.

SQL> SELECT status AS enabled, validated
 FROM user_constraints
 WHERE table_name = 'EG' and constraint_name = 'N_GT_0';

ENABLED VALIDATED
-------- -------------
ENABLED VALIDATED

Some benefits of using constraints in this order are:

• No locks are held.

• All constraints can go to enable state concurrently.

• Constraint enabling is done in parallel.

• Concurrent activity on table is permitted.

The PRIMARY KEY and FOREIGN KEY constraints may not permit concurrent activity due to
waits for library cache locks.

17.7.2 Setting Integrity Constraints Upon Definition
When an integrity constraint is defined in a CREATE TABLE or ALTER TABLE statement, it can be
enabled, disabled, or validated or not validated as determined by your specification of the

Chapter 17
Managing Integrity Constraints

17-16

ENABLE/DISABLE clause. If the ENABLE/DISABLE clause is not specified in a constraint definition,
the database automatically enables and validates the constraint.

• Disabling Constraints Upon Definition
You can disable an integrity constraint when you define it.

• Enabling Constraints Upon Definition
You can enable an integrity constraint when you define it.

17.7.2.1 Disabling Constraints Upon Definition
You can disable an integrity constraint when you define it.

The following CREATE TABLE and ALTER TABLE statements both define and disable integrity
constraints:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY DISABLE, . . . ;

ALTER TABLE emp
 ADD PRIMARY KEY (empno) DISABLE;

An ALTER TABLE statement that defines and disables an integrity constraint never fails because
of rows in the table that violate the integrity constraint. The definition of the constraint is
allowed because its rule is not enforced.

17.7.2.2 Enabling Constraints Upon Definition
You can enable an integrity constraint when you define it.

The following CREATE TABLE and ALTER TABLE statements both define and enable integrity
constraints:

CREATE TABLE emp (
 empno NUMBER(5) CONSTRAINT emp.pk PRIMARY KEY, . . . ;

ALTER TABLE emp
 ADD CONSTRAINT emp.pk PRIMARY KEY (empno);

An ALTER TABLE statement that defines and attempts to enable an integrity constraint can fail
because rows of the table violate the integrity constraint. If this case, the statement is rolled
back and the constraint definition is not stored and not enabled.

When you enable a UNIQUE or PRIMARY KEY constraint an associated index is created.

Note:

An efficient procedure for enabling a constraint that can make use of parallelism is
described in "Efficient Use of Integrity Constraints: A Procedure".

See Also:

"Creating an Index Associated with a Constraint"

Chapter 17
Managing Integrity Constraints

17-17

17.7.3 Modifying, Renaming, or Dropping Existing Integrity Constraints
You can use the ALTER TABLE statement to enable, disable, modify, or drop a constraint. When
the database is using a UNIQUE or PRIMARY KEY index to enforce a constraint, and constraints
associated with that index are dropped or disabled, the index is dropped, unless you specify
otherwise.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot disable or drop the
PRIMARY or UNIQUE key constraint or the index.

• Disabling and Enabling Constraints
You can disable enabled integrity constraints and enable disabled integrity constraints.

• Renaming Constraints
The ALTER TABLE...RENAME CONSTRAINT statement enables you to rename any currently
existing constraint for a table. The new constraint name must not conflict with any existing
constraint names for a user.

• Dropping Constraints
You can drop an integrity constraint if the rule that it enforces is no longer true, or if the
constraint is no longer needed.

17.7.3.1 Disabling and Enabling Constraints
You can disable enabled integrity constraints and enable disabled integrity constraints.

The following statements disable integrity constraints. The second statement specifies that the
associated indexes are to be kept.

ALTER TABLE dept
 DISABLE CONSTRAINT dname_ukey;

ALTER TABLE dept
 DISABLE PRIMARY KEY KEEP INDEX,
 DISABLE UNIQUE (dname, loc) KEEP INDEX;

The following statements enable novalidate disabled integrity constraints:

ALTER TABLE dept
 ENABLE NOVALIDATE CONSTRAINT dname_ukey;

ALTER TABLE dept
 ENABLE NOVALIDATE PRIMARY KEY,
 ENABLE NOVALIDATE UNIQUE (dname, loc);

The following statements enable or validate disabled integrity constraints:

ALTER TABLE dept
 MODIFY CONSTRAINT dname_key VALIDATE;

ALTER TABLE dept
 MODIFY PRIMARY KEY ENABLE NOVALIDATE;

The following statements enable disabled integrity constraints:

ALTER TABLE dept
 ENABLE CONSTRAINT dname_ukey;

ALTER TABLE dept

Chapter 17
Managing Integrity Constraints

17-18

 ENABLE PRIMARY KEY,
 ENABLE UNIQUE (dname, loc);

To disable or drop a UNIQUE key or PRIMARY KEY constraint and all dependent FOREIGN KEY
constraints in a single step, use the CASCADE option of the DISABLE or DROP clauses. For
example, the following statement disables a PRIMARY KEY constraint and any FOREIGN KEY
constraints that depend on it:

ALTER TABLE dept
 DISABLE PRIMARY KEY CASCADE;

17.7.3.2 Renaming Constraints
The ALTER TABLE...RENAME CONSTRAINT statement enables you to rename any currently
existing constraint for a table. The new constraint name must not conflict with any existing
constraint names for a user.

The following statement renames the dname_ukey constraint for table dept:

ALTER TABLE dept
 RENAME CONSTRAINT dname_ukey TO dname_unikey;

When you rename a constraint, all dependencies on the base table remain valid.

The RENAME CONSTRAINT clause provides a means of renaming system generated constraint
names.

17.7.3.3 Dropping Constraints
You can drop an integrity constraint if the rule that it enforces is no longer true, or if the
constraint is no longer needed.

You can drop the constraint using the ALTER TABLE statement with one of the following clauses:

• DROP PRIMARY KEY
• DROP UNIQUE
• DROP CONSTRAINT
The following two statements drop integrity constraints. The second statement keeps the index
associated with the PRIMARY KEY constraint:

ALTER TABLE dept
 DROP UNIQUE (dname, loc);

ALTER TABLE emp
 DROP PRIMARY KEY KEEP INDEX
 DROP CONSTRAINT dept_fkey;

If FOREIGN KEYs reference a UNIQUE or PRIMARY KEY, you must include the CASCADE
CONSTRAINTS clause in the DROP statement, or you cannot drop the constraint.

17.7.4 Deferring Constraint Checks
When the database checks a constraint, it signals an error if the constraint is not satisfied. You
can defer checking the validity of constraints until the end of a transaction. When you issue the
SET CONSTRAINTS statement, the SET CONSTRAINTS mode lasts for the duration of the
transaction, or until another SET CONSTRAINTS statement resets the mode.

Chapter 17
Managing Integrity Constraints

17-19

Note:

• You cannot issue a SET CONSTRAINT statement inside a trigger.

• Deferrable unique and primary keys must use nonunique indexes.

• Set All Constraints Deferred
When constraints must be deferred for a transaction, you must set all constraints deferred
before you actually begin processing any data within the application being used to
manipulate the data.

• Check the Commit (Optional)
You can check for constraint violations before committing by issuing the SET CONSTRAINTS
ALL IMMEDIATE statement just before issuing the COMMIT.

17.7.4.1 Set All Constraints Deferred
When constraints must be deferred for a transaction, you must set all constraints deferred
before you actually begin processing any data within the application being used to manipulate
the data.

Use the following DML statement to set all deferrable constraints deferred:

SET CONSTRAINTS ALL DEFERRED;

Note:

The SET CONSTRAINTS statement applies only to the current transaction. The defaults
specified when you create a constraint remain as long as the constraint exists. The
ALTER SESSION SET CONSTRAINTS statement applies for the current session only.

17.7.4.2 Check the Commit (Optional)
You can check for constraint violations before committing by issuing the SET CONSTRAINTS ALL
IMMEDIATE statement just before issuing the COMMIT.

If there are any problems with a constraint, then this statement fails and the constraint causing
the error is identified. If you commit while constraints are violated, then the transaction is rolled
back and you receive an error message.

17.7.5 Reporting Constraint Exceptions
If exceptions exist when a constraint is validated, then an error is returned and the integrity
constraint remains novalidated. When a statement is not successfully executed because
integrity constraint exceptions exist, the statement is rolled back. If exceptions exist, then you
cannot validate the constraint until all exceptions to the constraint are either updated or
deleted.

To determine which rows violate the integrity constraint, issue the ALTER TABLE statement with
the EXCEPTIONS option in the ENABLE clause. The EXCEPTIONS option places the rowid, table
owner, table name, and constraint name of all exception rows into a specified table.

Chapter 17
Managing Integrity Constraints

17-20

You must create an appropriate exceptions report table to accept information from the
EXCEPTIONS option of the ENABLE clause before enabling the constraint. You can create an
exception table by executing the UTLEXCPT.SQL script or the UTLEXPT1.SQL script.

Note:

Your choice of script to execute for creating the EXCEPTIONS table depends on the
type of table you are analyzing. See the Oracle Database SQL Language Reference
for more information.

Both of these scripts create a table named EXCEPTIONS. You can create additional exceptions
tables with different names by modifying and resubmitting the script.

The following statement attempts to validate the PRIMARY KEY of the dept table, and if
exceptions exist, information is inserted into a table named EXCEPTIONS:

ALTER TABLE dept ENABLE PRIMARY KEY EXCEPTIONS INTO EXCEPTIONS;

If duplicate primary key values exist in the dept table and the name of the PRIMARY KEY
constraint on dept is sys_c00610, then the following query will display those exceptions:

SELECT * FROM EXCEPTIONS;

The following exceptions are shown:

fROWID OWNER TABLE_NAME CONSTRAINT
------------------ --------- -------------- -----------
AAAAZ9AABAAABvqAAB SCOTT DEPT SYS_C00610
AAAAZ9AABAAABvqAAG SCOTT DEPT SYS_C00610

A more informative query would be to join the rows in an exception report table and the master
table to list the actual rows that violate a specific constraint, as shown in the following
statement and results:

SELECT deptno, dname, loc FROM dept, EXCEPTIONS
 WHERE EXCEPTIONS.constraint = 'SYS_C00610'
 AND dept.rowid = EXCEPTIONS.row_id;

DEPTNO DNAME LOC
---------- -------------- -----------
10 ACCOUNTING NEW YORK
10 RESEARCH DALLAS

All rows that violate a constraint must be either updated or deleted from the table containing
the constraint. When updating exceptions, you must change the value violating the constraint
to a value consistent with the constraint or to a null. After the row in the master table is updated
or deleted, the corresponding rows for the exception in the exception report table should be
deleted to avoid confusion with later exception reports. The statements that update the master
table and the exception report table should be in the same transaction to ensure transaction
consistency.

To correct the exceptions in the previous examples, you might issue the following transaction:

UPDATE dept SET deptno = 20 WHERE dname = 'RESEARCH';
DELETE FROM EXCEPTIONS WHERE constraint = 'SYS_C00610';
COMMIT;

Chapter 17
Managing Integrity Constraints

17-21

When managing exceptions, the goal is to eliminate all exceptions in your exception report
table.

Note:

While you are correcting current exceptions for a table with the constraint disabled, it
is possible for other users to issue statements creating new exceptions. You can
avoid this by marking the constraint ENABLE NOVALIDATE before you start eliminating
exceptions.

See Also:

Oracle Database Reference for a description of the EXCEPTIONS table

17.7.6 Viewing Constraint Information
Oracle Database provides a set of views that enable you to see constraint definitions on tables
and to identify columns that are specified in constraints.

View Description

DBA_CONSTRAINTS
ALL_CONSTRAINTS
USER_CONSTRAINTS

DBA view describes all constraint definitions in the database. ALL
view describes constraint definitions accessible to current user.
USER view describes constraint definitions owned by the current
user.

DBA_CONS_COLUMNS
ALL_CONS_COLUMNS
USER_CONS_COLUMNS

DBA view describes all columns in the database that are specified in
constraints. ALL view describes only those columns accessible to
current user that are specified in constraints. USER view describes
only those columns owned by the current user that are specified in
constraints.

See Also:

• Oracle Database Reference for information about the *_CONSTRAINTS views

• Oracle Database Reference for information about the *_CONS_COLUMNS views

17.8 Renaming Schema Objects
There are several ways to rename an object.

To rename an object, it must be in your schema. You can rename schema objects in either of
the following ways:

• Drop and re-create the object

Chapter 17
Renaming Schema Objects

17-22

• Rename the object using the RENAME statement

• Rename the object using the ALTER ... RENAME statement (for indexes and triggers)

If you drop and re-create an object, all privileges granted for that object are lost. Privileges
must be regranted when the object is re-created.

A table, view, sequence, or a private synonym of a table, view, or sequence can be renamed
using the RENAME statement. When using the RENAME statement, integrity constraints, indexes,
and grants made for the object are carried forward for the new name. For example, the
following statement renames the sales_staff view:

RENAME sales_staff TO dept_30;

Note:

You cannot use RENAME for a stored PL/SQL program unit, public synonym, or cluster.
To rename such an object, you must drop and re-create it.

Before renaming a schema object, consider the following effects:

• All views and PL/SQL program units dependent on a renamed object become invalid, and
must be recompiled before next use.

• All synonyms for a renamed object return an error when used.

See Also:

Oracle Database SQL Language Reference for syntax of the RENAME statement

17.9 Managing Object Dependencies
Oracle Database provides an automatic mechanism to ensure that a dependent object is
always up to date with respect to its referenced objects. You can also manually recompile
invalid object.

• About Object Dependencies and Object Invalidation
Some types of schema objects reference other objects. An object that references another
object is called a dependent object, and an object being referenced is a referenced
object. These references are established at compile time, and if the compiler cannot
resolve them, the dependent object being compiled is marked invalid.

• Manually Recompiling Invalid Objects with DDL
You can use an ALTER statement to manually recompile a single schema object.

• Manually Recompiling Invalid Objects with PL/SQL Package Procedures
The RECOMP_SERIAL procedure recompiles all invalid objects in a specified schema, or all
invalid objects in the database if you do not supply the schema name argument. The
RECOMP_PARALLEL procedure does the same, but in parallel, employing multiple CPUs.

Chapter 17
Managing Object Dependencies

17-23

17.9.1 About Object Dependencies and Object Invalidation
Some types of schema objects reference other objects. An object that references another
object is called a dependent object, and an object being referenced is a referenced object.
These references are established at compile time, and if the compiler cannot resolve them, the
dependent object being compiled is marked invalid.

For example, a view contains a query that references tables or other views, and a PL/SQL
subprogram might invoke other subprograms and might use static SQL to reference tables or
views.

Oracle Database provides an automatic mechanism to ensure that a dependent object is
always up to date with respect to its referenced objects. When a dependent object is created,
the database tracks dependencies between the dependent object and its referenced objects.
When a referenced object is changed in a way that might affect a dependent object, the
dependent object is marked invalid. An invalid dependent object must be recompiled against
the new definition of a referenced object before the dependent object can be used.
Recompilation occurs automatically when the invalid dependent object is referenced.

It is important to be aware of changes that can invalidate schema objects, because invalidation
affects applications running on the database. This section describes how objects become
invalid, how you can identify invalid objects, and how you can validate invalid objects.

Object Invalidation

In a typical running application, you would not expect to see views or stored procedures
become invalid, because applications typically do not change table structures or change view
or stored procedure definitions during normal execution. Changes to tables, views, or PL/SQL
units typically occur when an application is patched or upgraded using a patch script or ad-hoc
DDL statements. Dependent objects might be left invalid after a patch has been applied to
change a set of referenced objects.

Use the following query to display the set of invalid objects in the database:

SELECT object_name, object_type FROM dba_objects
WHERE status = 'INVALID';

The Database Home page in Oracle Enterprise Manager Cloud Control displays an alert when
schema objects become invalid.

Object invalidation affects applications in two ways. First, an invalid object must be revalidated
before it can be used by an application. Revalidation adds latency to application execution. If
the number of invalid objects is large, the added latency on the first execution can be
significant. Second, invalidation of a procedure, function or package can cause exceptions in
other sessions concurrently executing the procedure, function or package. If a patch is applied
when the application is in use in a different session, the session executing the application
notices that an object in use has been invalidated and raises one of the following 4 exceptions:
ORA-04061, ORA-04064, ORA-04065 or ORA-04068. These exceptions must be remedied by
restarting application sessions following a patch.

You can force the database to recompile a schema object using the appropriate SQL statement
with the COMPILE clause. See "Manually Recompiling Invalid Objects with DDL" for more
information.

If you know that there are a large number of invalid objects, use the UTL_RECOMP PL/SQL
package to perform a mass recompilation. See "Manually Recompiling Invalid Objects with
PL/SQL Package Procedures" for details.

Chapter 17
Managing Object Dependencies

17-24

The following are some general rules for the invalidation of schema objects:

• Between a referenced object and each of its dependent objects, the database tracks the
elements of the referenced object that are involved in the dependency. For example, if a
single-table view selects only a subset of columns in a table, only those columns are
involved in the dependency. For each dependent of an object, if a change is made to the
definition of any element involved in the dependency (including dropping the element), the
dependent object is invalidated. Conversely, if changes are made only to definitions of
elements that are not involved in the dependency, the dependent object remains valid.

In many cases, therefore, developers can avoid invalidation of dependent objects and
unnecessary extra work for the database if they exercise care when changing schema
objects.

• Dependent objects are cascade invalidated. If any object becomes invalid for any reason,
all of that object's dependent objects are immediately invalidated.

• If you revoke any object privileges on a schema object, dependent objects are cascade
invalidated.

See Also:

Oracle Database Concepts for more detailed information about schema object
dependencies

17.9.2 Manually Recompiling Invalid Objects with DDL
You can use an ALTER statement to manually recompile a single schema object.

For example, to recompile package body Pkg1, you would execute the following DDL
statement:

ALTER PACKAGE pkg1 COMPILE REUSE SETTINGS;

See Also:

Oracle Database SQL Language Reference for syntax and other information about
the various ALTER statements

17.9.3 Manually Recompiling Invalid Objects with PL/SQL Package
Procedures

The RECOMP_SERIAL procedure recompiles all invalid objects in a specified schema, or all
invalid objects in the database if you do not supply the schema name argument. The
RECOMP_PARALLEL procedure does the same, but in parallel, employing multiple CPUs.

Following an application upgrade or patch, it is good practice to revalidate invalid objects to
avoid application latencies that result from on-demand object revalidation. Oracle provides the
UTL_RECOMP package to assist in object revalidation.

Chapter 17
Managing Object Dependencies

17-25

Examples

Execute the following PL/SQL block to revalidate all invalid objects in the database, in parallel
and in dependency order:

begin
 utl_recomp.recomp_parallel();
end;
/

You can also revalidate individual invalid objects using the package DBMS_UTILITY. The
following PL/SQL block revalidates the procedure UPDATE_SALARY in schema HR:

begin
 dbms_utility.validate('HR', 'UPDATE_SALARY', namespace=>1);
end;
/

The following PL/SQL block revalidates the package body HR.ACCT_MGMT:

begin
 dbms_utility.validate('HR', 'ACCT_MGMT', namespace=>2);
end;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
on the UTL_RECOMP package

• Oracle Database PL/SQL Packages and Types Reference for more information
on the DBMS_UTILITY package

17.10 Managing Object Name Resolution
Object names referenced in SQL statements can consist of several pieces, separated by
periods. Oracle Database performs specific actions to resolve an object name.

The following describes how the database resolves an object name.

1. Oracle Database attempts to qualify the first piece of the name referenced in the SQL
statement. For example, in scott.emp, scott is the first piece. If there is only one piece,
the one piece is considered the first piece.

a. In the current schema, the database searches for an object whose name matches the
first piece of the object name. If it does not find such an object, it continues with step
1.b.

b. The database searches for a public synonym that matches the first piece of the name.
If it does not find one, it continues with step 1.c.

c. The database searches for a schema whose name matches the first piece of the
object name. If it finds one, then the schema is the qualified schema, and it continues
with step 1.d.

Chapter 17
Managing Object Name Resolution

17-26

If no schema is found in step 1.c, the object cannot be qualified and the database
returns an error.

d. In the qualified schema, the database searches for an object whose name matches the
second piece of the object name.

If the second piece does not correspond to an object in the previously qualified
schema or there is not a second piece, then the database returns an error.

2. A schema object has been qualified. Any remaining pieces of the name must match a valid
part of the found object. For example, if scott.emp.deptno is the name, scott is qualified
as a schema, emp is qualified as a table, and deptno must correspond to a column
(because emp is a table). If emp is qualified as a package, deptno must correspond to a
public constant, variable, procedure, or function of that package.

When global object names are used in a distributed database, either explicitly or indirectly
within a synonym, the local database resolves the reference locally. For example, it resolves a
synonym to global object name of a remote table. The partially resolved statement is shipped
to the remote database, and the remote database completes the resolution of the object as
described here.

Because of how the database resolves references, it is possible for an object to depend on the
nonexistence of other objects. This situation occurs when the dependent object uses a
reference that would be interpreted differently were another object present. For example,
assume the following:

• At the current point in time, the company schema contains a table named emp.

• A PUBLIC synonym named emp is created for company.emp and the SELECT privilege for
company.emp is granted to the PUBLIC role.

• The jward schema does not contain a table or private synonym named emp.

• The user jward creates a view in their schema with the following statement:

CREATE VIEW dept_salaries AS
 SELECT deptno, MIN(sal), AVG(sal), MAX(sal) FROM emp
 GROUP BY deptno
 ORDER BY deptno;

When jward creates the dept_salaries view, the reference to emp is resolved by first looking
for jward.emp as a table, view, or private synonym, none of which is found, and then as a
public synonym named emp, which is found. As a result, the database notes that
jward.dept_salaries depends on the nonexistence of jward.emp and on the existence of
public.emp.

Now assume that jward decides to create a new view named emp in their schema using the
following statement:

CREATE VIEW emp AS
 SELECT empno, ename, mgr, deptno
 FROM company.emp;

Notice that jward.emp does not have the same structure as company.emp.

As it attempts to resolve references in object definitions, the database internally makes note of
dependencies that the new dependent object has on "nonexistent" objects--schema objects
that, if they existed, would change the interpretation of the object's definition. Such
dependencies must be noted in case a nonexistent object is later created. If a nonexistent
object is created, all dependent objects must be invalidated so that dependent objects can be
recompiled and verified and all dependent function-based indexes must be marked unusable.

Chapter 17
Managing Object Name Resolution

17-27

Therefore, in the previous example, as jward.emp is created, jward.dept_salaries is
invalidated because it depends on jward.emp. Then when jward.dept_salaries is used, the
database attempts to recompile the view. As the database resolves the reference to emp, it
finds jward.emp (public.emp is no longer the referenced object). Because jward.emp does not
have a sal column, the database finds errors when replacing the view, leaving it invalid.

In summary, you must manage dependencies on nonexistent objects checked during object
resolution in case the nonexistent object is later created.

See Also:

"Schema Objects and Database Links" for information about name resolution in a
distributed database

17.11 Switching to a Different Schema
Use an ALTER SESSION SQL statement to switch to a different schema.

The following statement sets the schema of the current session to the schema name specified
in the statement.

ALTER SESSION SET CURRENT_SCHEMA = <schema name>

In subsequent SQL statements, Oracle Database uses this schema name as the schema
qualifier when the qualifier is omitted. In addition, the database uses the temporary tablespace
of the specified schema for sorts, joins, and storage of temporary database objects. The
session retains its original privileges and does not acquire any extra privileges by the
preceding ALTER SESSION statement.

In the following example, provide the password when prompted:

CONNECT scott
ALTER SESSION SET CURRENT_SCHEMA = joe;
SELECT * FROM emp;

Because emp is not schema-qualified, the table name is resolved under schema joe. But if
scott does not have select privilege on table joe.emp, then scott cannot execute the SELECT
statement.

17.12 Managing Editions
Application developers who are upgrading their applications using edition-based redefinition
may ask you to perform edition-related tasks that require DBA privileges.

• About Editions and Edition-Based Redefinition
Edition-based redefinition enables you to upgrade an application's database objects while
the application is in use, thus minimizing or eliminating down time. This is accomplished by
changing (redefining) database objects in a private environment known as an edition.

• DBA Tasks for Edition-Based Redefinition
A user must have the required privileges to perform tasks related to edition-based
redefinition.

Chapter 17
Switching to a Different Schema

17-28

• Setting the Database Default Edition
There is always a default edition for the database. This is the edition that a database
session initially uses if it does not explicitly indicate an edition when connecting.

• Querying the Database Default Edition
The database default edition is stored as a database property.

• Setting the Edition Attribute of a Database Service
You can set the edition attribute of a database service when you create the service, or you
can modify an existing database service to set its edition attribute.

• Using an Edition
To view or modify objects in a particular edition, you must use the edition first. You can
specify an edition to use when you connect to the database. If you do not specify an
edition, then your session starts in the database default edition.

• Editions Data Dictionary Views
There are several data dictionary views that aid with managing editions.

17.12.1 About Editions and Edition-Based Redefinition
Edition-based redefinition enables you to upgrade an application's database objects while the
application is in use, thus minimizing or eliminating down time. This is accomplished by
changing (redefining) database objects in a private environment known as an edition.

Only when all changes have been made and tested do you make the new version of the
application available to users.

See Also:

Oracle Database Development Guide for a complete discussion of edition-based
redefinition

17.12.2 DBA Tasks for Edition-Based Redefinition
A user must have the required privileges to perform tasks related to edition-based redefinition.

Table 17-1 summarizes the edition-related tasks that require privileges typically granted only to
DBAs. Any user that is granted the DBA role can perform these tasks.

Table 17-1 DBA Tasks for Edition-Based Redefinition

Task See

Grant or revoke privileges to create, alter, and drop
editions

The CREATE EDITION and DROP EDITION SQL
statements

Enable editions for a schema Oracle Database Development Guide

Set the database default edition "Setting the Database Default Edition"

Set the edition attribute of a database service "Setting the Edition Attribute of a Database
Service"

Chapter 17
Managing Editions

17-29

17.12.3 Setting the Database Default Edition
There is always a default edition for the database. This is the edition that a database session
initially uses if it does not explicitly indicate an edition when connecting.

To set the database default edition:

1. Connect to the database as a user with the ALTER DATABASE privilege and USE privilege
WITH GRANT OPTION on the edition.

2. Enter the following statement:

ALTER DATABASE DEFAULT EDITION = edition_name;

See Also:

"Connecting to the Database with SQL*Plus"

17.12.4 Querying the Database Default Edition
The database default edition is stored as a database property.

To query the database default edition:

1. Connect to the database as any user.

2. Enter the following statement:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES WHERE
 PROPERTY_NAME = 'DEFAULT_EDITION';

PROPERTY_VALUE

ORA$BASE

Note:

The property name DEFAULT_EDITION is case sensitive and must be supplied as
upper case.

17.12.5 Setting the Edition Attribute of a Database Service
You can set the edition attribute of a database service when you create the service, or you can
modify an existing database service to set its edition attribute.

Note:

The number of database services for an instance has an upper limit. See Oracle
Database Reference for more information about this limit.

Chapter 17
Managing Editions

17-30

• About Setting the Edition Attribute of a Database Service
When you set the edition attribute of a service, all subsequent connections that specify the
service, such as client connections and DBMS_SCHEDULER jobs, use this edition as the initial
session edition. However, if a session connection specifies a different edition, then the
edition specified in the session connection is used for the session edition.

• Setting the Edition Attribute During Database Service Creation
You can use the SRVCTL utility or the DBMS_SERVICE package to set the edition attribute of a
database service when you create the service.

• Setting the Edition Attribute of an Existing Database Service
You can use the SRVCTL utility or the DBMS_SERVICE package to set the edition attribute of
an existing database service.

17.12.5.1 About Setting the Edition Attribute of a Database Service
When you set the edition attribute of a service, all subsequent connections that specify the
service, such as client connections and DBMS_SCHEDULER jobs, use this edition as the initial
session edition. However, if a session connection specifies a different edition, then the edition
specified in the session connection is used for the session edition.

To check the edition attribute of a database service, query the EDITION column in the
ALL_SERVICES view or the DBA_SERVICES view.

17.12.5.2 Setting the Edition Attribute During Database Service Creation
You can use the SRVCTL utility or the DBMS_SERVICE package to set the edition attribute of a
database service when you create the service.

Follow the instructions in "Oracle Database SQL Language Reference" and use the
appropriate option for setting the edition attribute for the database service:

• If your single-instance database is being managed by Oracle Restart, use the SRVCTL utility
to create the database service and specify the -edition option to set its edition attribute.

For the database with the DB_UNIQUE_NAME of dbcrm, this example creates a new database
service named crmbatch and sets the edition attribute of the database service to e2:

srvctl add service -db dbcrm -service crmbatch -edition e2
• If your single-instance database is not being managed by Oracle Restart, use the

DBMS_SERVICE.CREATE_SERVICE procedure, and specify the edition parameter to set the
edition attribute of the database service.

17.12.5.3 Setting the Edition Attribute of an Existing Database Service
You can use the SRVCTL utility or the DBMS_SERVICE package to set the edition attribute of an
existing database service.

To set the edition attribute of an existing database service:

1. Stop the database service.

2. Set the edition attribute of the database service using the appropriate option:

• If your single-instance database is being managed by Oracle Restart, use the SRVCTL
utility to modify the database service and specify the -edition option to set its edition
attribute.

Chapter 17
Managing Editions

17-31

For the database with the DB_UNIQUE_NAME of dbcrm, this example modifies a database
service named crmbatch and sets the edition attribute of the service to e3:

srvctl modify service -db dbcrm -service crmbatch -edition e3
• If your single-instance database is not being managed by Oracle Restart, use the

DBMS_SERVICE.MODIFY_SERVICE procedure, and specify the edition parameter to set
the edition attribute of the database service. Ensure that the modify_edition
parameter is set to TRUE when you run the MODIFY_SERVICE procedure.

3. Start the database service.

See Also:

• Configuring Automatic Restart of an Oracle Database for information managing
database services using Oracle Restart

• Oracle Database PL/SQL Packages and Types Reference for information about
managing database services using the DBMS_SERVICE package

17.12.6 Using an Edition
To view or modify objects in a particular edition, you must use the edition first. You can specify
an edition to use when you connect to the database. If you do not specify an edition, then your
session starts in the database default edition.

To use a different edition, submit the following statement:

ALTER SESSION SET EDITION=edition_name;

The following statements first set the current edition to e2 and then to ora$base:

ALTER SESSION SET EDITION=e2;
...
ALTER SESSION SET EDITION=ora$base;

See Also:

• Oracle Database Development Guide for more information about using editions,
and for instructions for determining the current edition

• "Connecting to the Database with SQL*Plus"

17.12.7 Editions Data Dictionary Views
There are several data dictionary views that aid with managing editions.

The following table lists three of them. For a complete list, see Oracle Database Development
Guide.

Chapter 17
Managing Editions

17-32

View Description

*_EDITIONS Lists all editions in the database. (Note: USER_EDITIONS does not exist.)

*_OBJECTS Describes every object in the database that is visible (actual or inherited) in
the current edition.

*_OBJECTS_AE Describes every actual object in the database, across all editions.

17.13 Displaying Information About Schema Objects
Oracle Database provides a PL/SQL package that enables you to determine the DDL that
created an object and data dictionary views that you can use to display information about
schema objects.

• Using a PL/SQL Package to Display Information About Schema Objects
The Oracle-supplied PL/SQL package procedure DBMS_METADATA.GET_DDL lets you obtain
metadata (in the form of DDL used to create the object) about a schema object.

• Schema Objects Data Dictionary Views
These views display general information about schema objects.

17.13.1 Using a PL/SQL Package to Display Information About Schema
Objects

The Oracle-supplied PL/SQL package procedure DBMS_METADATA.GET_DDL lets you obtain
metadata (in the form of DDL used to create the object) about a schema object.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_METADATA package

Example: Using the DBMS_METADATA Package

The DBMS_METADATA package is a powerful tool for obtaining the complete definition of a
schema object. It enables you to obtain all of the attributes of an object in one pass. The object
is described as DDL that can be used to (re)create it.

In the following statements the GET_DDL function is used to fetch the DDL for all tables in the
current schema, filtering out nested tables and overflow segments. The SET_TRANSFORM_PARAM
(with the handle value equal to DBMS_METADATA.SESSION_TRANSFORM meaning "for the current
session") is used to specify that storage clauses are not to be returned in the SQL DDL.
Afterwards, the session-level transform parameters are reset to their defaults. Once set,
transform parameter values remain in effect until specifically reset to their defaults.

EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(
 DBMS_METADATA.SESSION_TRANSFORM,'STORAGE',false);
SELECT DBMS_METADATA.GET_DDL('TABLE',u.table_name)
 FROM USER_ALL_TABLES u
 WHERE u.nested='NO'
 AND (u.iot_type is null or u.iot_type='IOT');
EXECUTE DBMS_METADATA.SET_TRANSFORM_PARAM(
 DBMS_METADATA.SESSION_TRANSFORM,'DEFAULT');

Chapter 17
Displaying Information About Schema Objects

17-33

The output from DBMS_METADATA.GET_DDL is a LONG data type. When using SQL*Plus, your
output may be truncated by default. Issue the following SQL*Plus command before issuing the
DBMS_METADATA.GET_DDL statement to ensure that your output is not truncated:

SQL> SET LONG 9999

17.13.2 Schema Objects Data Dictionary Views
These views display general information about schema objects.

View Description

DBA_OBJECTS
ALL_OBJECTS
USER_OBJECTS

DBA view describes all schema objects in the database. ALL view
describes objects accessible to current user. USER view describes
objects owned by the current user.

DBA_CATALOG
ALL_CATALOG
USER_CATALOG

List the name, type, and owner (USER view does not display owner) for
all tables, views, synonyms, and sequences in the database.

DBA_DEPENDENCIES
ALL_DEPENDENCIES
USER_DEPENDENCIES

List all dependencies between procedures, packages, functions,
package bodies, and triggers, including dependencies on views without
any database links.

• Example 1: Displaying Schema Objects By Type
You can query the USER_OBJECTS view to list all of the objects owned by the user issuing
the query.

• Example 2: Displaying Dependencies of Views and Synonyms
When you create a view or a synonym, the view or synonym is based on its underlying
base object. The ALL_DEPENDENCIES, USER_DEPENDENCIES, and DBA_DEPENDENCIES data
dictionary views can be used to reveal the dependencies for a view.

17.13.2.1 Example 1: Displaying Schema Objects By Type
You can query the USER_OBJECTS view to list all of the objects owned by the user issuing the
query.

The following query lists all of the objects owned by the user issuing the query:

SELECT OBJECT_NAME, OBJECT_TYPE
 FROM USER_OBJECTS;

The following is the query output:

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------
EMP_DEPT CLUSTER
EMP TABLE
DEPT TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

Chapter 17
Displaying Information About Schema Objects

17-34

17.13.2.2 Example 2: Displaying Dependencies of Views and Synonyms
When you create a view or a synonym, the view or synonym is based on its underlying base
object. The ALL_DEPENDENCIES, USER_DEPENDENCIES, and DBA_DEPENDENCIES data dictionary
views can be used to reveal the dependencies for a view.

The ALL_SYNONYMS, USER_SYNONYMS, and DBA_SYNONYMS data dictionary views can be used to list
the base object of a synonym. For example, the following query lists the base objects for the
synonyms created by user jward:

SELECT TABLE_OWNER, TABLE_NAME, SYNONYM_NAME
 FROM DBA_SYNONYMS
 WHERE OWNER = 'JWARD';

The following is the query output:

TABLE_OWNER TABLE_NAME SYNONYM_NAME
---------------------- ----------- -----------------
SCOTT DEPT DEPT
SCOTT EMP EMP

Chapter 17
Displaying Information About Schema Objects

17-35

18
Managing Space for Schema Objects

Managing space for schema objects involves tasks such as managing tablespace alerts and
space allocation, reclaiming unused space, dropping unused object storage, monitoring space
usage, and capacity planning.

• Managing Tablespace Alerts
Oracle Database provides proactive help in managing disk space for tablespaces by
alerting you when available space is running low.

• Managing Resumable Space Allocation
You can suspend, and later resume, the execution of large database operations.

• Reclaiming Unused Space
You can reclaim unused space. Segment Advisor, is an Oracle Database component that
identifies segments that have space available for reclamation.

• Dropping Unused Object Storage
The DBMS_SPACE_ADMIN package includes the DROP_EMPTY_SEGMENTS procedure, which
enables you to drop segments for empty tables and partitions that have been migrated
from previous releases. This includes segments of dependent objects of the table, such as
index segments, where possible.

• Understanding Space Usage of Data Types
When creating tables and other data structures, you must know how much space they will
require. Each data type has different space requirements.

• Displaying Information About Space Usage for Schema Objects
Oracle Database provides data dictionary views and PL/SQL packages that allow you to
display information about the space usage of schema objects.

• Capacity Planning for Database Objects
Oracle Database provides two ways to plan capacity for database objects: with Cloud
Control or with the DBMS_SPACE PL/SQL package. Three procedures in the DBMS_SPACE
package enable you to predict the size of new objects and monitor the size of existing
database objects.

18.1 Managing Tablespace Alerts
Oracle Database provides proactive help in managing disk space for tablespaces by alerting
you when available space is running low.

• About Managing Tablespace Alerts
Two alert thresholds are defined by default: warning and critical. The warning threshold is
the limit at which space is beginning to run low. The critical threshold is a serious limit that
warrants your immediate attention. The database issues alerts at both thresholds.

• Setting Alert Thresholds
For each tablespace, you can set just percent-full thresholds, just free-space-remaining
thresholds, or both types of thresholds simultaneously. Setting either type of threshold to
zero disables it.

18-1

• Viewing Alerts
You view alerts by accessing a Database Home page in Cloud Control and viewing the
Incidents and Problems section.

• Limitations
Threshold-based alerts have the some limitations.

18.1.1 About Managing Tablespace Alerts
Two alert thresholds are defined by default: warning and critical. The warning threshold is the
limit at which space is beginning to run low. The critical threshold is a serious limit that
warrants your immediate attention. The database issues alerts at both thresholds.

There are two ways to specify alert thresholds for both locally managed and dictionary
managed tablespaces:

• By percent full

For both warning and critical thresholds, when space used becomes greater than or equal
to a percent of total space, an alert is issued.

• By free space remaining (in kilobytes (KB))

For both warning and critical thresholds, when remaining space falls below an amount in
KB, an alert is issued. Free-space-remaining thresholds are more useful for very large
tablespaces.

Alerts for locally managed tablespaces are server-generated. For dictionary managed
tablespaces, Oracle Enterprise Manager Cloud Control (Cloud Control) provides this
functionality. See "Monitoring a Database with Server-Generated Alerts" for more information.

New tablespaces are assigned alert thresholds as follows:

• Locally managed tablespace—When you create a new locally managed tablespace, it is
assigned the default threshold values defined for the database. A newly created database
has a default of 85% full for the warning threshold and 97% full for the critical threshold.
Defaults for free space remaining thresholds for a new database are both zero (disabled).
You can change these database defaults, as described later in this section.

• Dictionary managed tablespace—When you create a new dictionary managed
tablespace, it is assigned the threshold values that Cloud Control lists for "All others" in the
metrics categories "Tablespace Free Space (MB) (dictionary managed)" and "Tablespace
Space Used (%) (dictionary managed)." You change these values on the Metric and Policy
Settings page.

Note:

In a database that is upgraded from Oracle 9i or earlier to Oracle Database 10g or
later, database defaults for all locally managed tablespace alert thresholds are set to
zero. This setting effectively disables the alert mechanism to avoid excessive alerts in
a newly migrated database.

Chapter 18
Managing Tablespace Alerts

18-2

18.1.2 Setting Alert Thresholds
For each tablespace, you can set just percent-full thresholds, just free-space-remaining
thresholds, or both types of thresholds simultaneously. Setting either type of threshold to zero
disables it.

The ideal setting for the warning threshold is one that issues an alert early enough for you to
resolve the problem before it becomes critical. The critical threshold should be one that issues
an alert still early enough so that you can take immediate action to avoid loss of service.

To set alert threshold values for locally managed tablespaces:

• Do one of the following:

– Use the Tablespaces page of Cloud Control.

See the Cloud Control online help for information about changing the space usage
alert thresholds for a tablespace.

– Use the DBMS_SERVER_ALERT.SET_THRESHOLD package procedure.

See Oracle Database PL/SQL Packages and Types Reference for details.

To set alert threshold values for dictionary managed tablespaces:

• Use the Tablespaces page of Cloud Control.

See the Cloud Control online help for information about changing the space usage alert
thresholds for a tablespace.

Example - Setting an Alert Threshold with Cloud Control

You receive an alert in Cloud Control when a space usage threshold for a tablespace is
reached. There are two types of space usage alerts that you can enable: warning, for when
tablespace space is somewhat low, and critical, for when the tablespace is almost completely
full and action must be taken immediately.

For both warning and critical alerts, you can specify alert thresholds in the following ways:

• By space used (%)

When space used becomes greater than or equal to a percentage of total space, an alert is
issued.

• By free space (MB)

When remaining space falls below an amount (in MB), an alert is issued.

Free-space thresholds are more useful for large tablespaces. For example, for a 10 TB
tablespace, setting the percentage full critical alert to as high as 99 percent means that the
database would issue an alert when there is still 100 GB of free space remaining. Usually,
100 GB remaining would not be a critical situation, and the alert would not be useful. For
this tablespace, it might be better to use a free-space threshold, which you could set to
issue a critical alert when 5 GB of free space remains.

For both warning and critical alerts for a tablespace, you can enable either the space used
threshold or the free-space threshold, or you can enable both thresholds.

To change space usage alert thresholds for tablespaces:

1. Go to the Database Home page.

Chapter 18
Managing Tablespace Alerts

18-3

2. From the Administration menu, select Storage, then Tablespaces.

The Tablespaces page appears.

3. Select the tablespace whose threshold you want to change, and then click Edit.

The Edit Tablespace page appears, showing the General subpage.

4. Click the Thresholds tab at the top of the page to display the Thresholds subpage.

5. In the Space Used (%) section, do one of the following:

• Accept the default thresholds.

• Select Specify Thresholds, and then enter a Warning (%) threshold and a Critical
(%) threshold.

• Select Disable Thresholds to disable the percentage full thresholds.

6. In the Free Space (MB) section, do one of the following:

• Accept the default thresholds.

• Select Specify Thresholds, and then enter a Warning (MB) threshold and a Critical
(MB) threshold.

• Select Disable Thresholds to disable the threshold for free space remaining.

7. Click Apply.

A confirmation message appears.

Example—Setting an Alert Threshold Value with a Package Procedure

The following example sets the free-space-remaining thresholds in the USERS tablespace to 10
MB (warning) and 2 MB (critical), and disables the percent-full thresholds. The USERS
tablespace is a locally managed tablespace.

BEGIN
DBMS_SERVER_ALERT.SET_THRESHOLD(
 metrics_id => DBMS_SERVER_ALERT.TABLESPACE_BYT_FREE,
 warning_operator => DBMS_SERVER_ALERT.OPERATOR_LE,
 warning_value => '10240',
 critical_operator => DBMS_SERVER_ALERT.OPERATOR_LE,
 critical_value => '2048',
 observation_period => 1,
 consecutive_occurrences => 1,
 instance_name => NULL,
 object_type => DBMS_SERVER_ALERT.OBJECT_TYPE_TABLESPACE,
 object_name => 'USERS');

DBMS_SERVER_ALERT.SET_THRESHOLD(
 metrics_id => DBMS_SERVER_ALERT.TABLESPACE_PCT_FULL,
 warning_operator => DBMS_SERVER_ALERT.OPERATOR_GT,
 warning_value => '0',
 critical_operator => DBMS_SERVER_ALERT.OPERATOR_GT,
 critical_value => '0',
 observation_period => 1,
 consecutive_occurrences => 1,
 instance_name => NULL,
 object_type => DBMS_SERVER_ALERT.OBJECT_TYPE_TABLESPACE,
 object_name => 'USERS');
END;
/

Chapter 18
Managing Tablespace Alerts

18-4

Note:

When setting nonzero values for percent-full thresholds, use the greater-than-or-
equal-to operator, OPERATOR_GE.

Restoring a Tablespace to Database Default Thresholds

After explicitly setting values for locally managed tablespace alert thresholds, you can cause
the values to revert to the database defaults by setting them to NULL with
DBMS_SERVER_ALERT.SET_THRESHOLD.

Modifying Database Default Thresholds

To modify database default thresholds for locally managed tablespaces, invoke
DBMS_SERVER_ALERT.SET_THRESHOLD as shown in the previous example, but set object_name to
NULL. All tablespaces that use the database default are then switched to the new default.

18.1.3 Viewing Alerts
You view alerts by accessing a Database Home page in Cloud Control and viewing the
Incidents and Problems section.

You can also view alerts for locally managed tablespaces with the DBA_OUTSTANDING_ALERTS
view. See "Server-Generated Alerts Data Dictionary Views" for more information.

18.1.4 Limitations
Threshold-based alerts have the some limitations.

These limitations include the following:

• Alerts are not issued for locally managed tablespaces that are offline or in read-only mode.
However, the database reactivates the alert system for such tablespaces after they
become read/write or available.

• When you take a tablespace offline or put it in read-only mode, you should disable the
alerts for the tablespace by setting the thresholds to zero. You can then reenable the alerts

Chapter 18
Managing Tablespace Alerts

18-5

by resetting the thresholds when the tablespace is once again online and in read/write
mode.

See Also:

• "Monitoring a Database with Server-Generated Alerts" for additional information
on server-generated alerts in general

• Oracle Database PL/SQL Packages and Types Reference for information on the
procedures of the DBMS_SERVER_ALERT package and how to use them

• "Reclaiming Unused Space" for various ways to reclaim space that is no longer
being used in the tablespace

• "Purging Objects in the Recycle Bin" for information on reclaiming recycle bin
space

18.2 Managing Resumable Space Allocation
You can suspend, and later resume, the execution of large database operations.

• Resumable Space Allocation Overview
Oracle Database provides a means for suspending, and later resuming, the execution of
large database operations in the event of space allocation failures. Therefore, you can take
corrective action instead of the Oracle Database server returning an error to the user. After
the error condition is corrected, the suspended operation automatically resumes. This
feature is called resumable space allocation. The statements that are affected are called
resumable statements.

• Enabling and Disabling Resumable Space Allocation
You enable and disable resumable space allocation by running SQL statements and
setting certain initialization parameters.

• Using a LOGON Trigger to Set Default Resumable Mode
Another method of setting default resumable mode, other than setting the
RESUMABLE_TIMEOUT initialization parameter, is that you can register a database level LOGON
trigger to alter a user's session to enable resumable and set a timeout interval.

• Detecting Suspended Statements
When a resumable statement is suspended, the error is not raised to the client. In order for
corrective action to be taken, Oracle Database provides alternative methods for notifying
users of the error and for providing information about the circumstances.

• Operation-Suspended Alert
When a resumable session is suspended, an operation-suspended alert is issued on the
object that needs allocation of resource for the operation to complete.

• Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger
An example illustrates how to create a system wide AFTER SUSPEND trigger and register it
as user SYS at the database level.

18.2.1 Resumable Space Allocation Overview
Oracle Database provides a means for suspending, and later resuming, the execution of large
database operations in the event of space allocation failures. Therefore, you can take

Chapter 18
Managing Resumable Space Allocation

18-6

corrective action instead of the Oracle Database server returning an error to the user. After the
error condition is corrected, the suspended operation automatically resumes. This feature is
called resumable space allocation. The statements that are affected are called resumable
statements.

• How Resumable Space Allocation Works
An overview shows how resumable space allocation works.

• What Operations are Resumable?
Some operations are resumable.

• What Errors are Correctable?
Some errors are correctable.

• Resumable Space Allocation and Distributed Operations
In a distributed environment, if a user enables or disables resumable space allocation, or a
DBA alters the RESUMABLE_TIMEOUT initialization parameter, then the local instance is
affected. RESUMABLE cannot be enabled remotely.

• Parallel Execution and Resumable Space Allocation
In parallel execution, if one of the parallel execution server processes encounters a
correctable error, then that server process suspends its execution.

18.2.1.1 How Resumable Space Allocation Works
An overview shows how resumable space allocation works.

1. A statement executes in resumable mode only if its session has been enabled for
resumable space allocation by one of the following actions:

• The ALTER SESSION ENABLE RESUMABLE statement is issued in the session before the
statement executes when the RESUMABLE_TIMEOUT initialization parameter is set to a
nonzero value.

• The ALTER SESSION ENABLE RESUMABLE TIMEOUT timeout_value statement is issued
in the session before the statement executes, and the timeout_value is a nonzero
value.

2. A resumable statement is suspended when one of the following conditions occur (these
conditions result in corresponding errors being signalled for non-resumable statements):

• Out of space condition

• Maximum extents reached condition

• Space quota exceeded condition.

3. When the execution of a resumable statement is suspended, there are mechanisms to
perform user supplied operations, log errors, and query the status of the statement
execution. When a resumable statement is suspended the following actions are taken:

• The error is reported in the alert log.

• The system issues the Resumable Session Suspended alert.

• If the user registered a trigger on the AFTER SUSPEND system event, the user trigger is
executed. A user supplied PL/SQL procedure can access the error message data
using the DBMS_RESUMABLE package and the DBA_ or USER_RESUMABLE view.

4. Suspending a statement automatically results in suspending the transaction. Thus all
transactional resources are held through a statement suspend and resume.

Chapter 18
Managing Resumable Space Allocation

18-7

5. When the error condition is resolved (for example, as a result of user intervention or
perhaps sort space released by other queries), the suspended statement automatically
resumes execution and the Resumable Session Suspended alert is cleared.

6. A suspended statement can be forced to throw the exception using the
DBMS_RESUMABLE.ABORT() procedure. This procedure can be called by a DBA, or by the
user who issued the statement.

7. A suspension time out interval, specified by the RESUMABLE_TIMEOUT initialization parameter
or by the timeout value in the ALTER SESSION ENABLE RESUMABLE TIMEOUT statement, is
associated with resumable statements. A resumable statement that is suspended for the
timeout interval wakes up and returns the exception to the user if the error condition is not
resolved within the timeout interval.

8. A resumable statement can be suspended and resumed multiple times during execution.

18.2.1.2 What Operations are Resumable?
Some operations are resumable.

The following operations are resumable:

• Queries

SELECT statements that run out of temporary space (for sort areas) are candidates for
resumable execution. When using OCI, the calls OCIStmtExecute() and OCIStmtFetch()
are candidates.

• DML

INSERT, UPDATE, and DELETE statements are candidates. The interface used to execute
them does not matter; it can be OCI, PL/SQL, or another interface. Also, INSERT
INTO...SELECT from external tables can be resumable.

• Import/Export

As for SQL*Loader, a command line parameter controls whether statements are resumable
after recoverable errors.

• DDL

The following statements are candidates for resumable execution:

– CREATE TABLE ... AS SELECT
– CREATE INDEX
– ALTER INDEX ... REBUILD
– ALTER TABLE ... MOVE PARTITION
– ALTER TABLE ... SPLIT PARTITION
– ALTER INDEX ... REBUILD PARTITION
– ALTER INDEX ... SPLIT PARTITION
– CREATE MATERIALIZED VIEW
– CREATE MATERIALIZED VIEW LOG

18.2.1.3 What Errors are Correctable?
Some errors are correctable.

Chapter 18
Managing Resumable Space Allocation

18-8

There are three classes of correctable errors:

• Out of space condition

The operation cannot acquire any more extents for a table/index/temporary segment/undo
segment/cluster/LOB/table partition/index partition in a tablespace. For example, the
following errors fall in this category:

ORA-01653 unable to extend table ... in tablespace ...
ORA-01654 unable to extend index ... in tablespace ...

• Maximum extents reached condition

The number of extents in a table/index/temporary segment/undo segment/cluster/LOB/
table partition/index partition equals the maximum extents defined on the object. For
example, the following errors fall in this category:

ORA-01631 max # extents ... reached in table ...
ORA-01632 max # extents ... reached in index ...

• Space quota exceeded condition

The user has exceeded their assigned space quota in the tablespace. Specifically, this is
noted by the following error:

ORA-01536 space quote exceeded for tablespace string

18.2.1.4 Resumable Space Allocation and Distributed Operations
In a distributed environment, if a user enables or disables resumable space allocation, or a
DBA alters the RESUMABLE_TIMEOUT initialization parameter, then the local instance is affected.
RESUMABLE cannot be enabled remotely.

In a distributed transaction, sessions on remote instances are suspended only if the remote
instance has already enabled RESUMABLE on the instance or sessions at its site.

18.2.1.5 Parallel Execution and Resumable Space Allocation
In parallel execution, if one of the parallel execution server processes encounters a correctable
error, then that server process suspends its execution.

Other parallel execution server processes will continue executing their respective tasks, until
either they encounter an error or are blocked (directly or indirectly) by the suspended server
process. When the correctable error is resolved, the suspended process resumes execution
and the parallel operation continues execution. If the suspended operation is terminated, then
the parallel operation terminates, throwing the error to the user.

Different parallel execution server processes may encounter one or more correctable errors.
This may result in firing an AFTER SUSPEND trigger multiple times, in parallel. Also, if a parallel
execution server process encounters a non-correctable error while another parallel execution
server process is suspended, the suspended statement is immediately terminated.

For parallel execution, every parallel execution coordinator and server process has its own
entry in the DBA_ or USER_RESUMABLE view.

18.2.2 Enabling and Disabling Resumable Space Allocation
You enable and disable resumable space allocation by running SQL statements and setting
certain initialization parameters.

Chapter 18
Managing Resumable Space Allocation

18-9

• About Enabling and Disabling Resumable Space Allocation
Resumable space allocation is only possible when statements are executed within a
session that has resumable mode enabled.

• Setting the RESUMABLE_TIMEOUT Initialization Parameter
You can specify a default system wide timeout interval by setting the RESUMABLE_TIMEOUT
initialization parameter.

• Using ALTER SESSION to Enable and Disable Resumable Space Allocation
Within a session, a user can issue the ALTER SESSION SET statement to set the
RESUMABLE_TIMEOUT initialization parameter and enable resumable space allocation,
change a timeout value, or to disable resumable mode.

18.2.2.1 About Enabling and Disabling Resumable Space Allocation
Resumable space allocation is only possible when statements are executed within a session
that has resumable mode enabled.

Resumable space allocation is enabled for a session when the ALTER SESSION ENABLE
RESUMABLE statement is executed, and the RESUMABLE_TIMEOUT initialization parameter is set to
a non-zero value for the session. When the RESUMABLE_TIMEOUT initialization parameter is set
at the system level, it is the default for an ALTER SESSION ENABLE RESUMABLE statement that
does not specify a timeout value. When an ALTER SESSION ENABLE RESUMABLE statement
specifies a timeout value, it overrides the system default.

Resumable space allocation is disabled for a session in all of the following cases when the
ALTER SESSION ENABLE RESUMABLE statement is executed:

• The session does not execute an ALTER SESSION ENABLE RESUMABLE statement.

• The session executes an ALTER SESSION DISABLE RESUMABLE statement.

• The session executes an ALTER SESSION ENABLE RESUMABLE statement, and the timeout
value is zero.

Note:

Because suspended statements can hold up some system resources, users must be
granted the RESUMABLE system privilege before they are allowed to enable resumable
space allocation and execute resumable statements.

18.2.2.2 Setting the RESUMABLE_TIMEOUT Initialization Parameter
You can specify a default system wide timeout interval by setting the RESUMABLE_TIMEOUT
initialization parameter.

For example, the following setting of the RESUMABLE_TIMEOUT parameter in the initialization
parameter file sets the timeout period to 1 hour:

RESUMABLE_TIMEOUT = 3600

If this parameter is set to 0, then resumable space allocation is disabled even for sessions that
run an ALTER SESSION ENABLE RESUMABLE statement without a timeout value.

Chapter 18
Managing Resumable Space Allocation

18-10

You can also use the ALTER SYSTEM SET statement to change the value of this parameter at the
system level. For example, the following statement disables resumable space allocation for all
sessions that run an ALTER SESSION ENABLE RESUMABLE statement without a timeout value:

ALTER SYSTEM SET RESUMABLE_TIMEOUT=0;

18.2.2.3 Using ALTER SESSION to Enable and Disable Resumable Space Allocation
Within a session, a user can issue the ALTER SESSION SET statement to set the
RESUMABLE_TIMEOUT initialization parameter and enable resumable space allocation, change a
timeout value, or to disable resumable mode.

A user can enable resumable mode for a session with the default system RESUMABLE_TIMEOUT
value using the following SQL statement:

ALTER SESSION ENABLE RESUMABLE;

To disable resumable mode, a user issues the following statement:

ALTER SESSION DISABLE RESUMABLE;

The default for a new session is resumable mode disabled.

The user can also specify a timeout interval, and can provide a name used to identify a
resumable statement. These are discussed separately in following sections.

• Specifying a Timeout Interval
When you enable resumable mode, you can set a timeout period, after which a suspended
statement will error if no intervention has taken place.

• Naming Resumable Statements
Resumable statements can be identified by name.

See Also:

"Using a LOGON Trigger to Set Default Resumable Mode"

18.2.2.3.1 Specifying a Timeout Interval
When you enable resumable mode, you can set a timeout period, after which a suspended
statement will error if no intervention has taken place.

The following statement specifies that resumable transactions will time out and error after 3600
seconds:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600;

The value of TIMEOUT remains in effect until it is changed by another ALTER SESSION ENABLE
RESUMABLE statement, it is changed by another means, or the session ends. If the
RESUMABLE_TIMEOUT initialization parameter is not set, then the default timeout interval when
using the ENABLE RESUMABLE TIMEOUT clause to enable resumable mode is 7200 seconds.

Chapter 18
Managing Resumable Space Allocation

18-11

See Also:

"Setting the RESUMABLE_TIMEOUT Initialization Parameter " for other methods of
changing the timeout interval for resumable space allocation

18.2.2.3.2 Naming Resumable Statements
Resumable statements can be identified by name.

The following statement assigns a name to resumable statements:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600 NAME 'insert into table';

The NAME value remains in effect until it is changed by another ALTER SESSION ENABLE
RESUMABLE statement, or the session ends. The default value for NAME is 'User
username(userid), Session sessionid, Instance instanceid'.

The name of the statement is used to identify the resumable statement in the DBA_RESUMABLE
and USER_RESUMABLE views.

18.2.3 Using a LOGON Trigger to Set Default Resumable Mode
Another method of setting default resumable mode, other than setting the RESUMABLE_TIMEOUT
initialization parameter, is that you can register a database level LOGON trigger to alter a user's
session to enable resumable and set a timeout interval.

Note:

If there are multiple triggers registered that change default mode and timeout for
resumable statements, the result will be unspecified because Oracle Database does
not guarantee the order of trigger invocation.

18.2.4 Detecting Suspended Statements
When a resumable statement is suspended, the error is not raised to the client. In order for
corrective action to be taken, Oracle Database provides alternative methods for notifying users
of the error and for providing information about the circumstances.

• Notifying Users: The AFTER SUSPEND System Event and Trigger
When a resumable statement encounters a correctable error, the system internally
generates the AFTER SUSPEND system event. Users can register triggers for this event at
both the database and schema level. If a user registers a trigger to handle this system
event, the trigger is executed after a SQL statement has been suspended.

• Using Views to Obtain Information About Suspended Statements
You can query a set of views for information about the status of resumable statements.

• Using the DBMS_RESUMABLE Package
The DBMS_RESUMABLE package helps control resumable space allocation.

Chapter 18
Managing Resumable Space Allocation

18-12

18.2.4.1 Notifying Users: The AFTER SUSPEND System Event and Trigger
When a resumable statement encounters a correctable error, the system internally generates
the AFTER SUSPEND system event. Users can register triggers for this event at both the
database and schema level. If a user registers a trigger to handle this system event, the trigger
is executed after a SQL statement has been suspended.

SQL statements executed within a AFTER SUSPEND trigger are always non-resumable and are
always autonomous. Transactions started within the trigger use the SYSTEM rollback segment.
These conditions are imposed to overcome deadlocks and reduce the chance of the trigger
experiencing the same error condition as the statement.

Users can use the USER_RESUMABLE or DBA_RESUMABLE views, or the
DBMS_RESUMABLE.SPACE_ERROR_INFO function, within triggers to get information about the
resumable statements.

Triggers can also call the DBMS_RESUMABLE package to terminate suspended statements and
modify resumable timeout values. In the following example, the default system timeout is
changed by creating a system wide AFTER SUSPEND trigger that calls DBMS_RESUMABLE to set the
timeout to 3 hours:

CREATE OR REPLACE TRIGGER resumable_default_timeout
AFTER SUSPEND
ON DATABASE
BEGIN
 DBMS_RESUMABLE.SET_TIMEOUT(10800);
END;
/

See Also:

Oracle Database PL/SQL Language Reference for information about triggers and
system events

18.2.4.2 Using Views to Obtain Information About Suspended Statements
You can query a set of views for information about the status of resumable statements.

View Description

DBA_RESUMABLE
USER_RESUMABLE

These views contain rows for all currently executing or suspended
resumable statements. They can be used by a DBA, AFTER SUSPEND
trigger, or another session to monitor the progress of, or obtain specific
information about, resumable statements.

V$SESSION_WAIT When a statement is suspended the session invoking the statement is
put into a wait state. A row is inserted into this view for the session with
the EVENT column containing "statement suspended, wait error to be
cleared".

Chapter 18
Managing Resumable Space Allocation

18-13

18.2.4.3 Using the DBMS_RESUMABLE Package
The DBMS_RESUMABLE package helps control resumable space allocation.

You can invoke the following procedures:

Procedure Description

ABORT(sessionID) This procedure terminates a suspended resumable
statement. The parameter sessionID is the session ID in
which the statement is executing. For parallel DML/DDL,
sessionID is any session ID which participates in the
parallel DML/DDL.

Oracle Database guarantees that the ABORT operation
always succeeds. It may be called either inside or outside of
the AFTER SUSPEND trigger.

The caller of ABORT must be the owner of the session with
sessionID, have ALTER SYSTEM privilege, or have DBA
privileges.

GET_SESSION_TIMEOUT(sessionID) This function returns the current timeout value of resumable
space allocation for the session with sessionID. This
returned timeout is in seconds. If the session does not exist,
this function returns -1.

SET_SESSION_TIMEOUT(sessionID,
timeout)

This procedure sets the timeout interval of resumable space
allocation for the session with sessionID. The parameter
timeout is in seconds. The new timeout setting will
applies to the session immediately. If the session does not
exist, no action is taken.

GET_TIMEOUT() This function returns the current timeout value of
resumable space allocation for the current session. The
returned value is in seconds.

SET_TIMEOUT(timeout) This procedure sets a timeout value for resumable space
allocation for the current session. The parameter timeout
is in seconds. The new timeout setting applies to the
session immediately.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details about the
DBMS_RESUMABLE package.

18.2.5 Operation-Suspended Alert
When a resumable session is suspended, an operation-suspended alert is issued on the object
that needs allocation of resource for the operation to complete.

Once the resource is allocated and the operation completes, the operation-suspended alert is
cleared. See "Managing Tablespace Alerts" for more information on system-generated alerts.

Chapter 18
Managing Resumable Space Allocation

18-14

18.2.6 Resumable Space Allocation Example: Registering an AFTER
SUSPEND Trigger

An example illustrates how to create a system wide AFTER SUSPEND trigger and register it as
user SYS at the database level.

Whenever a resumable statement is suspended in any session, this trigger can have either of
two effects:

• If an undo segment has reached its space limit, then a message is sent to the DBA and the
statement is terminated.

• If any other recoverable error has occurred, the timeout interval is reset to 8 hours.

Here are the statements for this example:

CREATE OR REPLACE TRIGGER resumable_default
AFTER SUSPEND
ON DATABASE
DECLARE
 /* declare transaction in this trigger is autonomous */
 /* this is not required because transactions within a trigger
 are always autonomous */
 PRAGMA AUTONOMOUS_TRANSACTION;
 cur_sid NUMBER;
 cur_inst NUMBER;
 errno NUMBER;
 err_type VARCHAR2;
 object_owner VARCHAR2;
 object_type VARCHAR2;
 table_space_name VARCHAR2;
 object_name VARCHAR2;
 sub_object_name VARCHAR2;
 error_txt VARCHAR2;
 msg_body VARCHAR2;
 ret_value BOOLEAN;
 mail_conn UTL_SMTP.CONNECTION;
BEGIN
 -- Get session ID
 SELECT DISTINCT(SID) INTO cur_SID FROM V$MYSTAT;

 -- Get instance number
 cur_inst := userenv('instance');

 -- Get space error information
 ret_value :=
 DBMS_RESUMABLE.SPACE_ERROR_INFO(err_type,object_type,object_owner,
 table_space_name,object_name, sub_object_name);
 /*
 -- If the error is related to undo segments, log error, send email
 -- to DBA, and terminate the statement. Otherwise, set timeout to 8 hours.
 --
 -- sys.rbs_error is a table which is to be
 -- created by a DBA manually and defined as
 -- (sql_text VARCHAR2(1000), error_msg VARCHAR2(4000),
 -- suspend_time DATE)
 */

 IF OBJECT_TYPE = 'UNDO SEGMENT' THEN
 /* LOG ERROR */

Chapter 18
Managing Resumable Space Allocation

18-15

 INSERT INTO sys.rbs_error (
 SELECT SQL_TEXT, ERROR_MSG, SUSPEND_TIME
 FROM DBMS_RESUMABLE
 WHERE SESSION_ID = cur_sid AND INSTANCE_ID = cur_inst
);
 SELECT ERROR_MSG INTO error_txt FROM DBMS_RESUMABLE
 WHERE SESSION_ID = cur_sid and INSTANCE_ID = cur_inst;

 -- Send email to receipient through UTL_SMTP package
 msg_body:='Subject: Space Error Occurred

 Space limit reached for undo segment ' || object_name ||
 on ' || TO_CHAR(SYSDATE, 'Month dd, YYYY, HH:MIam') ||
 '. Error message was ' || error_txt;

 mail_conn := UTL_SMTP.OPEN_CONNECTION('localhost', 25);
 UTL_SMTP.HELO(mail_conn, 'localhost');
 UTL_SMTP.MAIL(mail_conn, 'sender@localhost');
 UTL_SMTP.RCPT(mail_conn, 'recipient@localhost');
 UTL_SMTP.DATA(mail_conn, msg_body);
 UTL_SMTP.QUIT(mail_conn);

 -- Terminate the statement
 DBMS_RESUMABLE.ABORT(cur_sid);
 ELSE
 -- Set timeout to 8 hours
 DBMS_RESUMABLE.SET_TIMEOUT(28800);
 END IF;

 /* commit autonomous transaction */
 COMMIT;
END;
/

18.3 Reclaiming Unused Space
You can reclaim unused space. Segment Advisor, is an Oracle Database component that
identifies segments that have space available for reclamation.

• About Reclaimable Unused Space
Over time, updates and deletes on objects within a tablespace can create pockets of
empty space that individually are not large enough to be reused for new data. This type of
empty space is referred to as fragmented free space.

• The Segment Advisor
The Segment Advisor identifies segments that have space available for reclamation.

• Shrinking Database Segments Online
You use online segment shrink to reclaim fragmented free space below the high water
mark in an Oracle Database segment.

• Deallocating Unused Space
When you deallocate unused space, the database frees the unused space at the unused
(high water mark) end of the database segment and makes the space available for other
segments in the tablespace.

Chapter 18
Reclaiming Unused Space

18-16

18.3.1 About Reclaimable Unused Space
Over time, updates and deletes on objects within a tablespace can create pockets of empty
space that individually are not large enough to be reused for new data. This type of empty
space is referred to as fragmented free space.

Objects with fragmented free space can result in much wasted space, and can impact
database performance. The preferred way to defragment and reclaim this space is to perform
an online segment shrink. This process consolidates fragmented free space below the high
water mark and compacts the segment. After compaction, the high water mark is moved,
resulting in new free space above the high water mark. That space above the high water mark
is then deallocated. The segment remains available for queries and DML during most of the
operation, and no extra disk space need be allocated.

You use the Segment Advisor to identify segments that would benefit from online segment
shrink. Only segments in locally managed tablespaces with automatic segment space
management (ASSM) are eligible. Other restrictions on segment type exist. For more
information, see "Shrinking Database Segments Online".

If a table with reclaimable space is not eligible for online segment shrink, or if you want to
make changes to logical or physical attributes of the table while reclaiming space, then you can
use online table redefinition as an alternative to segment shrink. Online redefinition is also
referred to as reorganization. Unlike online segment shrink, it requires extra disk space to be
allocated. See "Redefining Tables Online" for more information.

18.3.2 The Segment Advisor
The Segment Advisor identifies segments that have space available for reclamation.

• About the Segment Advisor
The Segment Advisor performs its analysis by examining usage and growth statistics in the
Automatic Workload Repository (AWR), and by sampling the data in the segment.

• Using the Segment Advisor
To use the Segment Advisor, check the results of Automatic Segment Advisor, and,
optionally, run the Segment Advisor manually.

• Automatic Segment Advisor
The Automatic Segment Advisor is an automated maintenance task that is configured to
run during all maintenance windows.

• Running the Segment Advisor Manually
You can manually run the Segment Advisor at any time with Cloud Control or with PL/SQL
package procedure calls.

• Viewing Segment Advisor Results
The Segment Advisor creates several types of results: recommendations, findings, actions,
and objects.

• Configuring the Automatic Segment Advisor
The Automatic Segment Advisor is an automated maintenance task. As such, you can use
Cloud Control or PL/SQL package procedure calls to modify when (and if) this task runs.
You can also control the resources allotted to it by modifying the appropriate resource
plans.

• Viewing Automatic Segment Advisor Information
You can query views to display information specific to the Automatic Segment Advisor.

Chapter 18
Reclaiming Unused Space

18-17

18.3.2.1 About the Segment Advisor
The Segment Advisor performs its analysis by examining usage and growth statistics in the
Automatic Workload Repository (AWR), and by sampling the data in the segment.

It is configured to run during maintenance windows as an automated maintenance task, and
you can also run it on demand (manually). The Segment Advisor automated maintenance task
is known as the Automatic Segment Advisor. You can use this information for capacity planning
and for arriving at an informed decision about which segments to shrink.

The Segment Advisor generates the following types of advice:

• If the Segment Advisor determines that an object has a significant amount of free space, it
recommends online segment shrink. If the object is a table that is not eligible for shrinking,
as in the case of a table in a tablespace without automatic segment space management,
the Segment Advisor recommends online table redefinition.

• If the Segment Advisor determines that a table could benefit from compression with the
advanced row compression method, it makes a recommendation to that effect. (Automatic
Segment Advisor only. See "Automatic Segment Advisor".)

• If the Segment Advisor encounters a table with row chaining above a certain threshold, it
records that fact that the table has an excess of chained rows.

Note:

The Segment Advisor flags only the type of row chaining that results from
updates that increase row length.

If you receive a space management alert, or if you decide that you want to reclaim space, you
should start with the Segment Advisor.

18.3.2.2 Using the Segment Advisor
To use the Segment Advisor, check the results of Automatic Segment Advisor, and, optionally,
run the Segment Advisor manually.

To use the Segment Advisor:

1. Check the results of the Automatic Segment Advisor.

To understand the Automatic Segment Advisor, see "Automatic Segment Advisor", later in
this section. For details on how to view results, see "Viewing Segment Advisor Results".

2. (Optional) Obtain updated results on individual segments by rerunning the Segment
Advisor manually.

See "Running the Segment Advisor Manually", later in this section.

18.3.2.3 Automatic Segment Advisor
The Automatic Segment Advisor is an automated maintenance task that is configured to run
during all maintenance windows.

The Automatic Segment Advisor does not analyze every database object. Instead, it examines
database statistics, samples segment data, and then selects the following objects to analyze:

Chapter 18
Reclaiming Unused Space

18-18

• Tablespaces that have exceeded a critical or warning space threshold

• Segments that have the most activity

• Segments that have the highest growth rate

In addition, the Automatic Segment Advisor evaluates tables that are at least 10MB and that
have at least three indexes to determine the amount of space saved if the tables are
compressed with the advanced row compression method.

If an object is selected for analysis but the maintenance window expires before the Segment
Advisor can process the object, the object is included in the next Automatic Segment Advisor
run.

You cannot change the set of tablespaces and segments that the Automatic Segment Advisor
selects for analysis. You can, however, enable or disable the Automatic Segment Advisor task,
change the times during which the Automatic Segment Advisor is scheduled to run, or adjust
automated maintenance task system resource utilization. See "Configuring the Automatic
Segment Advisor" for more information.

See Also:

• "Viewing Segment Advisor Results"

• Managing Automated Database Maintenance Tasks

• "Consider Using Table Compression" for more information on advanced row
compression

18.3.2.4 Running the Segment Advisor Manually
You can manually run the Segment Advisor at any time with Cloud Control or with PL/SQL
package procedure calls.

Reasons to manually run the Segment Advisor include the following:

• You want to analyze a tablespace or segment that was not selected by the Automatic
Segment Advisor.

• You want to repeat the analysis of an individual tablespace or segment to get more up-to-
date recommendations.

You can request advice from the Segment Advisor at three levels:

• Segment level—Advice is generated for a single segment, such as an unpartitioned table,
a partition or subpartition of a partitioned table, an index, or a LOB column.

• Object level—Advice is generated for an entire object, such as a table or index. If the
object is partitioned, advice is generated on all the partitions of the object. In addition, if
you run Segment Advisor manually from Cloud Control, you can request advice on the
object's dependent objects, such as indexes and LOB segments for a table.

• Tablespace level—Advice is generated for every segment in a tablespace.

The OBJECT_TYPE column of Table 18-2 shows the types of objects for which you can request
advice.

• Running the Segment Advisor Manually with Cloud Control
You can run the Segment Advisor manually with Cloud Control

Chapter 18
Reclaiming Unused Space

18-19

• Running the Segment Advisor Manually with PL/SQL
You can run the Segment Advisor with the DBMS_ADVISOR package.

18.3.2.4.1 Running the Segment Advisor Manually with Cloud Control
You can run the Segment Advisor manually with Cloud Control

You must have the OEM_ADVISOR role to run the Segment Advisor manually with Cloud Control.
There are two ways to run the Segment Advisor:

• Using the Segment Advisor Wizard

This method enables you to request advice at the tablespace level or object level. At the
object level, you can request advice on tables, indexes, table partitions, and index
partitions.

• Using the Run Segment Advisor command on a schema object page.

For example, if you display a list of tables on the Tables page (accessible from the Schema
menu), you can select a table and then select Run Segment Advisor from the Actions
menu.

Figure 18-1 Tables page

This method enables you to include the schema object's dependent objects in the
Segment Advisor run. For example, if you select a table and select Run Segment
Advisor, Cloud Control displays the table's dependent objects, such as partitions, index
segments, LOB segments, and so on. You can then select dependent objects to include in
the run.

In both cases, Cloud Control creates the Segment Advisor task as an Oracle Database
Scheduler job. You can schedule the job to run immediately, or can take advantage of
advanced scheduling features offered by the Scheduler.

To run the Segment Advisor manually with the Segment Advisor Wizard:

1. Access the Database Home page.

2. From the Performance menu, select Advisors Home.

The Advisor Central page appears. (See Figure 18-2.)

Chapter 18
Reclaiming Unused Space

18-20

3. Under Advisors, click Segment Advisor.

The first page of the Segment Advisor wizard appears.

4. Follow the wizard steps to schedule the Segment Advisor job, and then click Submit on
the final wizard page.

The Advisor Central page reappears, with the new Segment Advisor job at the top of the
list under the Results heading. The job status is SCHEDULED or RUNNING. (If you do not see
your job, then use the search fields above the list to display it.)

5. Check the status of the job. If it is not COMPLETED, then use the Refresh control at the top of
the page to refresh the page. (Do not use your browser's Refresh icon.)

When the job status changes to COMPLETED, select the job by clicking in the Select column,
and then click View Result.

Figure 18-2 Advisor Central page

See Also:

Scheduling Jobs with Oracle Scheduler for more information about the advanced
scheduling features of the Scheduler.

18.3.2.4.2 Running the Segment Advisor Manually with PL/SQL
You can run the Segment Advisor with the DBMS_ADVISOR package.

You use package procedures to create a Segment Advisor task, set task arguments, and then
execute the task. You must have the ADVISOR privilege. Table 18-1 shows the procedures that
are relevant for the Segment Advisor. See Oracle Database PL/SQL Packages and Types
Reference for more details on these procedures.

Chapter 18
Reclaiming Unused Space

18-21

Table 18-1 DBMS_ADVISOR package procedures relevant to the Segment Advisor

Package Procedure Name Description

CREATE_TASK Use this procedure to create the Segment Advisor task. Specify 'Segment Advisor' as
the value of the ADVISOR_NAME parameter.

CREATE_OBJECT Use this procedure to identify the target object for segment space advice. The
parameter values of this procedure depend upon the object type. Table 18-2 lists the
parameter values for each type of object.

Note: To request advice on an IOT overflow segment, use an object type of TABLE,
TABLE PARTITION, or TABLE SUBPARTITION. Use the following query to find the
overflow segment for an IOT and to determine the overflow segment table name to use
with CREATE_OBJECT:

select table_name, iot_name, iot_type from dba_tables;

SET_TASK_PARAMETER Use this procedure to describe the segment advice that you need. Table 18-3 shows
the relevant input parameters of this procedure. Parameters not listed here are not
used by the Segment Advisor.

EXECUTE_TASK Use this procedure to execute the Segment Advisor task.

Table 18-2 Input Parameters for DBMS_ADVISOR.CREATE_OBJECT

OBJECT_TYPE ATTR1 ATTR2 ATTR3 ATTR4

TABLESPACE tablespace name NULL NULL Unused. Specify
NULL.

TABLE schema name table name NULL Unused. Specify
NULL.

INDEX schema name index name NULL Unused. Specify
NULL.

TABLE PARTITION schema name table name table partition
name

Unused. Specify
NULL.

INDEX PARTITION schema name index name index partition
name

Unused. Specify
NULL.

TABLE
SUBPARTITION

schema name table name table
subpartition
name

Unused. Specify
NULL.

INDEX
SUBPARTITION

schema name index name index
subpartition
name

Unused. Specify
NULL.

LOB schema name segment name NULL Unused. Specify
NULL.

LOB PARTITION schema name segment name lob partition
name

Unused. Specify
NULL.

LOB
SUBPARTITION

schema name segment name lob
subpartition
name

Unused. Specify
NULL.

Chapter 18
Reclaiming Unused Space

18-22

Table 18-3 Input for DBMS_ADVISOR.SET_TASK_PARAMETER

Input Parameter Description Possible Values Default Value

time_limit The time limit for the
Segment Advisor run,
specified in seconds.

Any number of seconds UNLIMITED

recommend_all Whether the Segment
Advisor should generate
findings for all segments.

TRUE: Findings are generated
on all segments specified,
whether or not space
reclamation is recommended.

FALSE: Findings are
generated only for those
objects that generate
recommendations for space
reclamation.

TRUE

Example

The example that follows shows how to use the DBMS_ADVISOR procedures to run the Segment
Advisor for the sample table hr.employees. The user executing these package procedures
must have the EXECUTE object privilege on the package or the ADVISOR system privilege.

Note that passing an object type of TABLE to DBMS_ADVISOR.CREATE_OBJECT amounts to an
object level request. If the table is not partitioned, the table segment is analyzed (without any
dependent segments like index or LOB segments). If the table is partitioned, the Segment
Advisor analyzes all table partitions and generates separate findings and recommendations for
each.

variable id number;
begin
 declare
 name varchar2(100);
 descr varchar2(500);
 obj_id number;
 begin
 name:='Manual_Employees';
 descr:='Segment Advisor Example';

 dbms_advisor.create_task (
 advisor_name => 'Segment Advisor',
 task_id => :id,
 task_name => name,
 task_desc => descr);

 dbms_advisor.create_object (
 task_name => name,
 object_type => 'TABLE',
 attr1 => 'HR',
 attr2 => 'EMPLOYEES',
 attr3 => NULL,
 attr4 => NULL,
 attr5 => NULL,
 object_id => obj_id);

 dbms_advisor.set_task_parameter(
 task_name => name,
 parameter => 'recommend_all',
 value => 'TRUE');

Chapter 18
Reclaiming Unused Space

18-23

 dbms_advisor.execute_task(name);
 end;
end;
/

18.3.2.5 Viewing Segment Advisor Results
The Segment Advisor creates several types of results: recommendations, findings, actions,
and objects.

You can view results in the following ways:

• With Cloud Control

• By querying the DBA_ADVISOR_* views

• By calling the DBMS_SPACE.ASA_RECOMMENDATIONS function

Table 18-4 describes the various result types and their associated DBA_ADVISOR_* views.

Table 18-4 Segment Advisor Result Types

Result Type Associated View Description

Recommendations DBA_ADVISOR_RECOMMENDATI
ONS

If a segment would benefit from a segment shrink,
reorganization, or compression, the Segment Advisor
generates a recommendation for the segment. Table 18-5
shows examples of generated findings and recommendations.

Findings DBA_ADVISOR_FINDINGS Findings are a report of what the Segment Advisor observed in
analyzed segments. Findings include space used and free
space statistics for each analyzed segment. Not all findings
result in a recommendation. (There may be only a few
recommendations, but there could be many findings.) When
running the Segment Advisor manually with PL/SQL, if you
specify 'TRUE' for recommend_all in the
SET_TASK_PARAMETER procedure, then the Segment Advisor
generates a finding for each segment that qualifies for analysis,
whether or not a recommendation is made for that segment.
For row chaining advice, the Automatic Segment Advisor
generates findings only, and not recommendations. If the
Automatic Segment Advisor has no space reclamation
recommendations to make, it does not generate findings.
However, the Automatic Segment Advisor may generate
findings for tables that could benefit from advanced row
compression.

Actions DBA_ADVISOR_ACTIONS Every recommendation is associated with a suggested action
to perform: either segment shrink, online redefinition
(reorganization), or compression. The DBA_ADVISOR_ACTIONS
view provides either the SQL that you can use to perform a
segment shrink or table compression, or a suggestion to
reorganize the object.

Objects DBA_ADVISOR_OBJECTS All findings, recommendations, and actions are associated with
an object. If the Segment Advisor analyzes multiple segments,
as with a tablespace or partitioned table, then one entry is
created in the DBA_ADVISOR_OBJECTS view for each analyzed
segment. Table 18-2 defines the columns in this view to query
for information on the analyzed segments. You can correlate
the objects in this view with the objects in the findings,
recommendations, and actions views.

Chapter 18
Reclaiming Unused Space

18-24

• Viewing Segment Advisor Results with Cloud Control
With Cloud Control, you can view Segment Advisor results for both Automatic Segment
Advisor runs and manual Segment Advisor runs.

• Viewing Segment Advisor Results by Querying the DBA_ADVISOR_* Views
You can view Segment Advisor results by querying the DBA_ADVISOR_* views.

• Viewing Segment Advisor Results with DBMS_SPACE.ASA_RECOMMENDATIONS
The ASA_RECOMMENDATIONS procedure in the DBMS_SPACE package returns a nested table
object that contains findings or recommendations for Automatic Segment Advisor runs and,
optionally, manual Segment Advisor runs.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details on the
DBMS_SPACE.ASA_RECOMMENDATIONS function

18.3.2.5.1 Viewing Segment Advisor Results with Cloud Control
With Cloud Control, you can view Segment Advisor results for both Automatic Segment
Advisor runs and manual Segment Advisor runs.

You can view the following types of results:

• All recommendations (multiple automatic and manual Segment Advisor runs)

• Recommendations from the last Automatic Segment Advisor run

• Recommendations from a specific run

• Row chaining findings

You can also view a list of the segments that were analyzed by the last Automatic Segment
Advisor run.

To view Segment Advisor results with Cloud Control—All runs:

1. Access the Database Home page.

2. From the Administration menu, select Storage, then Segment Advisor.

The Segment Advisor Recommendations page appears. Recommendations are organized
by tablespace.

3. If any recommendations are present, select a tablespace, and then click
Recommendation Details.

The Recommendation Details page appears. You can initiate the recommended activity
from this page (shrink or reorganize).

Tip:

The list entries are sorted in descending order by reclaimable space. You can
click column headings to change the sort order or to change from ascending to
descending order.

Chapter 18
Reclaiming Unused Space

18-25

To view Segment Advisor results with Cloud Control—Last Automatic Segment Advisor
run:

1. Access the Database Home page.

2. From the Administration menu, select Storage, then Segment Advisor.

The Segment Advisor Recommendations page appears. Recommendations are organized
by tablespace.

The Segment Advisor Recommendations page appears.

3. In the View list, select Recommendations from Last Automatic Run.

4. If any recommendations are present, select a tablespace and click Recommendation
Details.

The Recommendation Details page appears. You can initiate the recommended activity
from this page (shrink or reorganize).

To view Segment Advisor results with Cloud Control—Specific run:

1. Access the Database Home page.

2. From the Performance menu, select Advisors Home.

The Advisor Central page appears. (See Figure 18-2.)

3. Check that your task appears in the list under the Results heading. If it does not, complete
these steps:

a. In the Search section of the page, under Advisor Type, select Segment Advisor.

b. In the Advisor Runs list, select All or the desired time period.

c. (Optional) Enter a task name.

d. Click Go.

Your Segment Advisor task appears in the Results section.

4. Check the status of the job. If it is not COMPLETED, use the Refresh control at the top of the
page to refresh the page. (Do not use your browser's Refresh icon.)

5. Click the task name.

The Segment Advisor Task page appears, with recommendations organized by
tablespace.

6. Select a tablespace in the list, and then click Recommendation Details.

The Recommendation Details page appears. You can initiate the recommended activity
from this page (shrink or reorganize).

To view row chaining findings:

1. Access the Database Home page.

2. From the Administration menu, select Storage, then Segment Advisor.

The Segment Advisor Recommendations page appears. Recommendations are organized
by tablespace.

The Segment Advisor Recommendations page appears.

3. Under the Related Links heading, click Chained Row Analysis.

The Chained Row Analysis page appears, showing all segments that have chained rows,
with a chained rows percentage for each.

Chapter 18
Reclaiming Unused Space

18-26

18.3.2.5.2 Viewing Segment Advisor Results by Querying the DBA_ADVISOR_* Views
You can view Segment Advisor results by querying the DBA_ADVISOR_* views.

The headings of Table 18-5 show the columns in the DBA_ADVISOR_* views that contain output
from the Segment Advisor. See Oracle Database Reference for a description of these views.
The table contents summarize the possible outcomes. In addition, Table 18-2 defines the
columns in the DBA_ADVISOR_OBJECTS view that contain information on the analyzed segments.

Before querying the DBA_ADVISOR_* views, you can check that the Segment Advisor task is
complete by querying the STATUS column in DBA_ADVISOR_TASKS.

select task_name, status from dba_advisor_tasks
 where owner = 'STEVE' and advisor_name = 'Segment Advisor';

TASK_NAME STATUS
------------------------------ -----------
Manual Employees COMPLETED

The following example shows how to query the DBA_ADVISOR_* views to retrieve findings from
all Segment Advisor runs submitted by user STEVE:

select af.task_name, ao.attr2 segname, ao.attr3 partition, ao.type, af.message
 from dba_advisor_findings af, dba_advisor_objects ao
 where ao.task_id = af.task_id
 and ao.object_id = af.object_id
 and ao.owner = 'STEVE';

TASK_NAME SEGNAME PARTITION TYPE MESSAGE
------------------ ------------ --------------- ---------------- --------------------------
Manual_Employees EMPLOYEES TABLE The free space in the obje
 ct is less than 10MB.

Manual_Salestable4 SALESTABLE4 SALESTABLE4_P1 TABLE PARTITION Perform shrink, estimated
 savings is 74444154 bytes.

Manual_Salestable4 SALESTABLE4 SALESTABLE4_P2 TABLE PARTITION The free space in the obje
 ct is less than 10MB.

Table 18-5 Segment Advisor Outcomes: Summary

MESSAGE column of
DBA_ADVISOR_FINDINGS

MORE_INFO column of
DBA_ADVISOR_FINDINGS

BENEFIT_TYPE column of
DBA_ADVISOR_RECOMMEN
DATIONS

ATTR1 column of
DBA_ADVISOR_ACTIONS

Insufficient information to
make a recommendation.

- - -

The free space in the object
is less than 10MB.

Allocated Space:xxx: Used
Space:xxx: Reclaimable
Space :xxx

- -

The object has some free
space but cannot be shrunk
because...

Allocated Space:xxx: Used
Space:xxx: Reclaimable
Space :xxx

- -

Chapter 18
Reclaiming Unused Space

18-27

Table 18-5 (Cont.) Segment Advisor Outcomes: Summary

MESSAGE column of
DBA_ADVISOR_FINDINGS

MORE_INFO column of
DBA_ADVISOR_FINDINGS

BENEFIT_TYPE column of
DBA_ADVISOR_RECOMMEN
DATIONS

ATTR1 column of
DBA_ADVISOR_ACTIONS

The free space in the object
is less than the size of the
last extent.

Allocated Space:xxx: Used
Space:xxx: Reclaimable
Space :xxx

- -

Perform shrink, estimated
savings is xxx bytes.

Allocated Space:xxx: Used
Space:xxx: Reclaimable
Space :xxx

Perform shrink, estimated
savings is xxx bytes.

The command to execute.
For example: ALTER object
SHRINK SPACE;)

Enable row movement of the
table schema.table and
perform shrink, estimated
savings is xxx bytes.

Allocated Space:xxx: Used
Space:xxx: Reclaimable
Space :xxx

Enable row movement of the
table schema.table and perform
shrink, estimated savings is xxx
bytes

The command to execute.
For example: ALTER object
SHRINK SPACE;)

Perform re-org on the object
object, estimated savings is
xxx bytes.

(Note: This finding is for
objects with reclaimable
space that are not eligible for
online segment shrink.)

Allocated Space:xxx: Used
Space:xxx: Reclaimable
Space :xxx

Perform re-org on the object
object, estimated savings is xxx
bytes.

Perform re-org

The object has chained rows
that can be removed by re-
org.

xx percent chained rows can
be removed by re-org.

- -

Compress object
object_name, estimated
savings is xxx bytes.

(This outcome is generated
by the Automatic Segment
Advisor only)

Compress object
object_name, estimated
savings is xxx bytes.

- The command to execute.
For example: ALTER TABLE
T1 ROW STORE COMPRESS
ADVANCED
For this finding, see also the
ATTR2 column of
DBA_ADVISOR_ACTIONS.

18.3.2.5.3 Viewing Segment Advisor Results with DBMS_SPACE.ASA_RECOMMENDATIONS
The ASA_RECOMMENDATIONS procedure in the DBMS_SPACE package returns a nested table object
that contains findings or recommendations for Automatic Segment Advisor runs and, optionally,
manual Segment Advisor runs.

Calling this procedure may be easier than working with the DBA_ADVISOR_* views, because the
procedure performs all the required joins for you and returns information in an easily
consumable format.

The following query returns recommendations by the most recent run of the Auto Segment
Advisor, with the suggested command to run to follow the recommendations:

select tablespace_name, segment_name, segment_type, partition_name,
recommendations, c1 from
table(dbms_space.asa_recommendations('FALSE', 'FALSE', 'FALSE'));

TABLESPACE_NAME SEGMENT_NAME SEGMENT_TYPE
------------------------------ ------------------------------ --------------
PARTITION_NAME

Chapter 18
Reclaiming Unused Space

18-28

RECOMMENDATIONS

C1

TVMDS_ASSM ORDERS1 TABLE PARTITION
ORDERS1_P2
Perform shrink, estimated savings is 57666422 bytes.
alter table "STEVE"."ORDERS1" modify partition "ORDERS1_P2" shrink space

TVMDS_ASSM ORDERS1 TABLE PARTITION
ORDERS1_P1
Perform shrink, estimated savings is 45083514 bytes.
alter table "STEVE"."ORDERS1" modify partition "ORDERS1_P1" shrink space

TVMDS_ASSM_NEW ORDERS_NEW TABLE

Perform shrink, estimated savings is 155398992 bytes.
alter table "STEVE"."ORDERS_NEW" shrink space

TVMDS_ASSM_NEW ORDERS_NEW_INDEX INDEX

Perform shrink, estimated savings is 102759445 bytes.
alter index "STEVE"."ORDERS_NEW_INDEX" shrink space

See Oracle Database PL/SQL Packages and Types Reference for details on
DBMS_SPACE.ASA_RECOMMENDATIONS.

18.3.2.6 Configuring the Automatic Segment Advisor
The Automatic Segment Advisor is an automated maintenance task. As such, you can use
Cloud Control or PL/SQL package procedure calls to modify when (and if) this task runs. You
can also control the resources allotted to it by modifying the appropriate resource plans.

You can call PL/SQL package procedures to make these changes, but the easier way to is to
use Cloud Control.

To configure the Automatic Segment Advisor task with Cloud Control:

1. Log in to Cloud Control as user SYSTEM.
2. Access the Database Home page.

3. From the Administration menu, select Storage, then Segment Advisor.

The Segment Advisor Recommendations page appears.

4. Under the Related Links heading, click the link entitled Automated Maintenance Tasks.

The Automated Maintenance Tasks page appears.

5. Click Configure.

The Automated Maintenance Tasks Configuration page appears.

Chapter 18
Reclaiming Unused Space

18-29

6. To completely disable the Automatic Segment Advisor, under Task Settings, select
Disabled next to the Segment Advisor label, and then click Apply.

7. To disable the Automatic Segment Advisor for specific maintenance windows, clear the
desired check boxes under the Segment Advisor column, and then click Apply.

8. To modify the start and end times and durations of maintenance windows, click Edit
Window Group.

The Edit Window Group page appears. Click the name of a maintenance window, and then
click Edit to change the window's schedule.

See Also:

• Managing Automated Database Maintenance Tasks

18.3.2.7 Viewing Automatic Segment Advisor Information
You can query views to display information specific to the Automatic Segment Advisor.

View Description

DBA_AUTO_SEGADV_SUMMARY Each row of this view summarizes one Automatic Segment
Advisor run. Fields include number of tablespaces and
segments processed, and number of recommendations
made.

Chapter 18
Reclaiming Unused Space

18-30

View Description

DBA_AUTO_SEGADV_CTL Contains control information that the Automatic Segment
Advisor uses to select and process segments. Each row
contains information on a single object (tablespace or
segment), including whether the object has been processed,
and if so, the task ID under which it was processed and the
reason for selecting it.

18.3.3 Shrinking Database Segments Online
You use online segment shrink to reclaim fragmented free space below the high water mark in
an Oracle Database segment.

The benefits of segment shrink are these:

• Compaction of data leads to better cache utilization, which in turn leads to better online
transaction processing (OLTP) performance.

• The compacted data requires fewer blocks to be scanned in full table scans, which in turns
leads to better decision support system (DSS) performance.

Segment shrink is an online, in-place operation. DML operations and queries can be issued
during the data movement phase of segment shrink. Concurrent DML operations are blocked
for a short time at the end of the shrink operation, when the space is deallocated. Indexes are
maintained during the shrink operation and remain usable after the operation is complete.
Segment shrink does not require extra disk space to be allocated.

Segment shrink reclaims unused space both above and below the high water mark. In
contrast, space deallocation reclaims unused space only above the high water mark. In shrink
operations, by default, the database compacts the segment, adjusts the high water mark, and
releases the reclaimed space.

Segment shrink requires that rows be moved to new locations. Therefore, you must first enable
row movement in the object you want to shrink and disable any rowid-based triggers defined
on the object. You enable row movement in a table with the ALTER TABLE ... ENABLE ROW
MOVEMENT command.

Shrink operations can be performed only on segments in locally managed tablespaces with
automatic segment space management (ASSM). Within an ASSM tablespace, all segment
types are eligible for online segment shrink except these:

• IOT mapping tables

• Tables with rowid based materialized views

• Tables with function-based indexes

• SECUREFILE LOBs

• Tables compressed with the following compression methods:

– Basic table compression using ROW STORE COMPRESS BASIC
– Warehouse compression using COLUMN STORE COMPRESS FOR QUERY
– Archive compression using COLUMN STORE COMPRESS FOR ARCHIVE
However, tables compressed with advanced row compression using ROW STORE COMPRESS
ADVANCED are eligible for online segment shrink. See "Consider Using Table Compression"
for information about table compression methods.

Chapter 18
Reclaiming Unused Space

18-31

Note:

Shrinking database segments online might cause dependent database objects to
become invalid. See "About Object Dependencies and Object Invalidation".

See Also:

Oracle Database SQL Language Reference for more information on the ALTER TABLE
command.

Invoking Online Segment Shrink

Before invoking online segment shrink, view the findings and recommendations of the
Segment Advisor. For more information, see "Using the Segment Advisor".

You invoke online segment shrink with Cloud Control or with SQL commands in SQL*Plus. The
remainder of this section discusses the command line method.

Note:

You can invoke segment shrink directly from the Recommendation Details page in
Cloud Control. Or, to invoke segment shrink for an individual table in Cloud Control,
display the table on the Tables page, select the table, and then click Shrink Segment
in the Actions list. (See Figure 18-1.) Perform a similar operation in Cloud Control to
shrink indexes, materialized views, and so on.

You can shrink space in a table, index-organized table, index, partition, subpartition,
materialized view, or materialized view log. You do this using ALTER TABLE, ALTER INDEX, ALTER
MATERIALIZED VIEW, or ALTER MATERIALIZED VIEW LOG statement with the SHRINK SPACE clause.

Two optional clauses let you control how the shrink operation proceeds:

• The COMPACT clause lets you divide the shrink segment operation into two phases. When
you specify COMPACT, Oracle Database defragments the segment space and compacts the
table rows but postpones the resetting of the high water mark and the deallocation of the
space until a future time. This option is useful if you have long-running queries that might
span the operation and attempt to read from blocks that have been reclaimed. The
defragmentation and compaction results are saved to disk, so the data movement does not
have to be redone during the second phase. You can reissue the SHRINK SPACE clause
without the COMPACT clause during off-peak hours to complete the second phase.

• The CASCADE clause extends the segment shrink operation to all dependent segments of
the object. For example, if you specify CASCADE when shrinking a table segment, all
indexes of the table will also be shrunk. (You need not specify CASCADE to shrink the
partitions of a partitioned table.) To see a list of dependent segments of a given object, you
can run the OBJECT_DEPENDENT_SEGMENTS procedure of the DBMS_SPACE package.

As with other DDL operations, segment shrink causes subsequent SQL statements to be
reparsed because of invalidation of cursors unless you specify the COMPACT clause.

Chapter 18
Reclaiming Unused Space

18-32

Examples

Shrink a table and all of its dependent segments (including BASICFILE and SECUREFILE LOB
segments):

ALTER TABLE employees SHRINK SPACE CASCADE;

Shrink a BASICFILE LOB segment only:

ALTER TABLE employees MODIFY LOB (perf_review) (SHRINK SPACE);

Shrink a single partition of a partitioned table:

ALTER TABLE customers MODIFY PARTITION cust_P1 SHRINK SPACE;

Shrink an IOT index segment and the overflow segment:

ALTER TABLE cities SHRINK SPACE CASCADE;

Shrink an IOT overflow segment only:

ALTER TABLE cities OVERFLOW SHRINK SPACE;

Shrink a SECUREFILE LOB segment and its partitions:

ALTER TABLE employees MODIFY LOB (sperf_review) (SHRINK SPACE);

See Also:

• Oracle Database SQL Language Reference for the syntax and restrictions of the
ALTER TABLE, ALTER INDEX, ALTER MATERIALIZED VIEW, and ALTER MATERIALIZED
VIEW LOG statements with the SHRINK SPACE clause

• Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about LOB segments

18.3.4 Deallocating Unused Space
When you deallocate unused space, the database frees the unused space at the unused (high
water mark) end of the database segment and makes the space available for other segments
in the tablespace.

Before deallocation, you can run the UNUSED_SPACE procedure of the DBMS_SPACE package,
which returns information about the position of the high water mark and the amount of unused
space in a segment. For segments in locally managed tablespaces with automatic segment
space management, use the SPACE_USAGE procedure for more accurate information on unused
space.

Chapter 18
Reclaiming Unused Space

18-33

See Also:

Oracle Database PL/SQL Packages and Types Reference contains the description of
the DBMS_SPACE package

The following statements deallocate unused space in a segment (table, index or cluster):

ALTER TABLE table DEALLOCATE UNUSED KEEP integer;
ALTER INDEX index DEALLOCATE UNUSED KEEP integer;
ALTER CLUSTER cluster DEALLOCATE UNUSED KEEP integer;

The KEEP clause is optional and lets you specify the amount of space retained in the segment.
You can verify that the deallocated space is freed by examining the DBA_FREE_SPACE view.

See Also:

• Oracle Database SQL Language Reference for details on the syntax and
semantics of deallocating unused space

• Oracle Database Reference for more information about the DBA_FREE_SPACE view

18.4 Dropping Unused Object Storage
The DBMS_SPACE_ADMIN package includes the DROP_EMPTY_SEGMENTS procedure, which enables
you to drop segments for empty tables and partitions that have been migrated from previous
releases. This includes segments of dependent objects of the table, such as index segments,
where possible.

The following example drops empty segments from every table in the database.

BEGIN
 DBMS_SPACE_ADMIN.DROP_EMPTY_SEGMENTS();
END;

The following drops empty segments from the HR.EMPLOYEES table, including dependent
objects.

BEGIN
 DBMS_SPACE_ADMIN.DROP_EMPTY_SEGMENTS(
 schema_name => 'HR',
 table_name => 'EMPLOYEES');
END;

This procedure requires 11.2.0 or higher compatibility level.

Chapter 18
Dropping Unused Object Storage

18-34

See Also:

See Oracle Database PL/SQL Packages and Types Reference for details about this
procedure

18.5 Understanding Space Usage of Data Types
When creating tables and other data structures, you must know how much space they will
require. Each data type has different space requirements.

The Oracle Database PL/SQL Language Reference and Oracle Database SQL Language
Reference contain extensive descriptions of data types and their space requirements.

18.6 Displaying Information About Space Usage for Schema
Objects

Oracle Database provides data dictionary views and PL/SQL packages that allow you to
display information about the space usage of schema objects.

• Using PL/SQL Packages to Display Information About Schema Object Space Usage
A set of DBMS_SPACE subprograms provide information about schema objects.

• Schema Objects Space Usage Data Dictionary Views
A set of data dictionary views display information about space usage in schema objects.

18.6.1 Using PL/SQL Packages to Display Information About Schema
Object Space Usage

A set of DBMS_SPACE subprograms provide information about schema objects.

Package and Procedure/Function Description

DBMS_SPACE.UNUSED_SPACE Returns information about unused space in an object (table,
index, or cluster).

DBMS_SPACE.FREE_BLOCKS Returns information about free data blocks in an object (table,
index, or cluster) whose segment free space is managed by
free lists (segment space management is MANUAL).

DBMS_SPACE.SPACE_USAGE Returns information about free data blocks in an object (table,
index, or cluster) whose segment space management is AUTO.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_SPACE package

Chapter 18
Understanding Space Usage of Data Types

18-35

Example: Using DBMS_SPACE.UNUSED_SPACE

The following SQL*Plus example uses the DBMS_SPACE package to obtain unused space
information.

SQL> VARIABLE total_blocks NUMBER
SQL> VARIABLE total_bytes NUMBER
SQL> VARIABLE unused_blocks NUMBER
SQL> VARIABLE unused_bytes NUMBER
SQL> VARIABLE lastextf NUMBER
SQL> VARIABLE last_extb NUMBER
SQL> VARIABLE lastusedblock NUMBER
SQL> exec DBMS_SPACE.UNUSED_SPACE('SCOTT', 'EMP', 'TABLE', :total_blocks, -
> :total_bytes,:unused_blocks, :unused_bytes, :lastextf, -
> :last_extb, :lastusedblock);

PL/SQL procedure successfully completed.

SQL> PRINT

TOTAL_BLOCKS

 5

TOTAL_BYTES

 10240

...

LASTUSEDBLOCK

 3

18.6.2 Schema Objects Space Usage Data Dictionary Views
A set of data dictionary views display information about space usage in schema objects.

These views display information about space usage in schema objects:

View Description

DBA_SEGMENTS
USER_SEGMENTS

DBA view describes storage allocated for all database segments. User
view describes storage allocated for segments for the current user.

DBA_EXTENTS
USER_EXTENTS

DBA view describes extents comprising all segments in the database.
User view describes extents comprising segments for the current user.

DBA_FREE_SPACE
USER_FREE_SPACE

DBA view lists free extents in all tablespaces. User view shows free
space information for tablespaces for which the user has quota.

• Example 1: Displaying Segment Information
You can query the DBA_SEGMENTS view to display segment information.

• Example 2: Displaying Extent Information
You can query the DBA_EXTENTS data dictionary view for information about the currently
allocated extents in a database.

Chapter 18
Displaying Information About Space Usage for Schema Objects

18-36

• Example 3: Displaying the Free Space (Extents) in a Tablespace
You can query the DBA_FREE_SPACE data dictionary view for information about the free
extents (extents not allocated to any segment) in a database.

18.6.2.1 Example 1: Displaying Segment Information
You can query the DBA_SEGMENTS view to display segment information.

The following query returns the name and size of each index segment in schema hr:

SELECT SEGMENT_NAME, TABLESPACE_NAME, BYTES, BLOCKS, EXTENTS
 FROM DBA_SEGMENTS
 WHERE SEGMENT_TYPE = 'INDEX'
 AND OWNER='HR'
 ORDER BY SEGMENT_NAME;

The query output is:

SEGMENT_NAME TABLESPACE_NAME BYTES BLOCKS EXTENTS
------------------------- --------------- -------- ------ -------
COUNTRY_C_ID_PK EXAMPLE 65536 32 1
DEPT_ID_PK EXAMPLE 65536 32 1
DEPT_LOCATION_IX EXAMPLE 65536 32 1
EMP_DEPARTMENT_IX EXAMPLE 65536 32 1
EMP_EMAIL_UK EXAMPLE 65536 32 1
EMP_EMP_ID_PK EXAMPLE 65536 32 1
EMP_JOB_IX EXAMPLE 65536 32 1
EMP_MANAGER_IX EXAMPLE 65536 32 1
EMP_NAME_IX EXAMPLE 65536 32 1
JHIST_DEPARTMENT_IX EXAMPLE 65536 32 1
JHIST_EMPLOYEE_IX EXAMPLE 65536 32 1
JHIST_EMP_ID_ST_DATE_PK EXAMPLE 65536 32 1
JHIST_JOB_IX EXAMPLE 65536 32 1
JOB_ID_PK EXAMPLE 65536 32 1
LOC_CITY_IX EXAMPLE 65536 32 1
LOC_COUNTRY_IX EXAMPLE 65536 32 1
LOC_ID_PK EXAMPLE 65536 32 1
LOC_STATE_PROVINCE_IX EXAMPLE 65536 32 1
REG_ID_PK EXAMPLE 65536 32 1

19 rows selected.

18.6.2.2 Example 2: Displaying Extent Information
You can query the DBA_EXTENTS data dictionary view for information about the currently
allocated extents in a database.

For example, the following query identifies the extents allocated to each index segment in the
hr schema and the size of each of those extents:

SELECT SEGMENT_NAME, SEGMENT_TYPE, TABLESPACE_NAME, EXTENT_ID, BYTES, BLOCKS
 FROM DBA_EXTENTS
 WHERE SEGMENT_TYPE = 'INDEX'
 AND OWNER='HR'
 ORDER BY SEGMENT_NAME;

The query output is:

SEGMENT_NAME SEGMENT_TYPE TABLESPACE_NAME EXTENT_ID BYTES BLOCKS
------------------------- ------------ --------------- --------- -------- ------
COUNTRY_C_ID_PK INDEX EXAMPLE 0 65536 32

Chapter 18
Displaying Information About Space Usage for Schema Objects

18-37

DEPT_ID_PK INDEX EXAMPLE 0 65536 32
DEPT_LOCATION_IX INDEX EXAMPLE 0 65536 32
EMP_DEPARTMENT_IX INDEX EXAMPLE 0 65536 32
EMP_EMAIL_UK INDEX EXAMPLE 0 65536 32
EMP_EMP_ID_PK INDEX EXAMPLE 0 65536 32
EMP_JOB_IX INDEX EXAMPLE 0 65536 32
EMP_MANAGER_IX INDEX EXAMPLE 0 65536 32
EMP_NAME_IX INDEX EXAMPLE 0 65536 32
JHIST_DEPARTMENT_IX INDEX EXAMPLE 0 65536 32
JHIST_EMPLOYEE_IX INDEX EXAMPLE 0 65536 32
JHIST_EMP_ID_ST_DATE_PK INDEX EXAMPLE 0 65536 32
JHIST_JOB_IX INDEX EXAMPLE 0 65536 32
JOB_ID_PK INDEX EXAMPLE 0 65536 32
LOC_CITY_IX INDEX EXAMPLE 0 65536 32
LOC_COUNTRY_IX INDEX EXAMPLE 0 65536 32
LOC_ID_PK INDEX EXAMPLE 0 65536 32
LOC_STATE_PROVINCE_IX INDEX EXAMPLE 0 65536 32
REG_ID_PK INDEX EXAMPLE 0 65536 32

19 rows selected.

For the hr schema, no segment has multiple extents allocated to it.

18.6.2.3 Example 3: Displaying the Free Space (Extents) in a Tablespace
You can query the DBA_FREE_SPACE data dictionary view for information about the free extents
(extents not allocated to any segment) in a database.

For example, the following query reveals the amount of free space available as free extents in
the SMUNDO tablespace:

SELECT TABLESPACE_NAME, FILE_ID, BYTES, BLOCKS
 FROM DBA_FREE_SPACE
 WHERE TABLESPACE_NAME='SMUNDO';

The query output is:

TABLESPACE_NAME FILE_ID BYTES BLOCKS
--------------- -------- -------- ------
SMUNDO 3 65536 32
SMUNDO 3 65536 32
SMUNDO 3 65536 32
SMUNDO 3 65536 32
SMUNDO 3 65536 32
SMUNDO 3 65536 32
SMUNDO 3 131072 64
SMUNDO 3 131072 64
SMUNDO 3 65536 32
SMUNDO 3 3407872 1664

10 rows selected.

18.7 Capacity Planning for Database Objects
Oracle Database provides two ways to plan capacity for database objects: with Cloud Control
or with the DBMS_SPACE PL/SQL package. Three procedures in the DBMS_SPACE package enable
you to predict the size of new objects and monitor the size of existing database objects.

This documentation discusses the PL/SQL method. See Cloud Control online help and "Using
the Segment Advisor" for details on capacity planning with Cloud Control.

Chapter 18
Capacity Planning for Database Objects

18-38

• Estimating the Space Use of a Table
The size of a database table can vary greatly depending on tablespace storage attributes,
tablespace block size, and many other factors. The CREATE_TABLE_COST procedure of the
DBMS_SPACE package lets you estimate the space use cost of creating a table.

• Estimating the Space Use of an Index
The CREATE_INDEX_COST procedure of the DBMS_SPACE package lets you estimate the space
use cost of creating an index on an existing table.

• Obtaining Object Growth Trends
The OBJECT_GROWTH_TREND function of the DBMS_SPACE package produces a table of one or
more rows, where each row describes the space use of the object at a specific time.

18.7.1 Estimating the Space Use of a Table
The size of a database table can vary greatly depending on tablespace storage attributes,
tablespace block size, and many other factors. The CREATE_TABLE_COST procedure of the
DBMS_SPACE package lets you estimate the space use cost of creating a table.

See Oracle Database PL/SQL Packages and Types Reference for details on the parameters of
this procedure.

The procedure has two variants. The first variant uses average row size to estimate size. The
second variant uses column information to estimate table size. Both variants require as input
the following values:

• TABLESPACE_NAME: The tablespace in which the object will be created. The default is the
SYSTEM tablespace.

• ROW_COUNT: The anticipated number of rows in the table.

• PCT_FREE: The percentage of free space you want to reserve in each block for future
expansion of existing rows due to updates.

In addition, the first variant also requires as input a value for AVG_ROW_SIZE, which is the
anticipated average row size in bytes.

The second variant also requires for each anticipated column values for COLINFOS, which is an
object type comprising the attributes COL_TYPE (the data type of the column) and COL_SIZE (the
number of characters or bytes in the column).

The procedure returns two values:

• USED_BYTES: The actual bytes used by the data, including overhead for block metadata,
PCT_FREE space, and so forth.

• ALLOC_BYTES: The amount of space anticipated to be allocated for the object taking into
account the tablespace extent characteristics.

Chapter 18
Capacity Planning for Database Objects

18-39

Note:

The default size of the first extent of any new segment for a partitioned table is 8 MB
instead of 64 KB. This helps improve performance of inserts and queries on
partitioned tables. Although partitioned tables will start with a larger initial size, once
sufficient data is inserted, the space consumption will be the same as in previous
releases. You can override this default by setting the INITIAL size in the storage
clause for the table. This new default only applies to table partitions and LOB
partitions.

18.7.2 Estimating the Space Use of an Index
The CREATE_INDEX_COST procedure of the DBMS_SPACE package lets you estimate the space
use cost of creating an index on an existing table.

The procedure requires as input the following values:

• DDL: The CREATE INDEX statement that would create the index. The table specified in this
DDL statement must be an existing table.

• [Optional] PLAN_TABLE: The name of the plan table to use. The default is NULL.

The results returned by this procedure depend on statistics gathered on the segment.
Therefore, be sure to obtain statistics shortly before executing this procedure. In the absence
of recent statistics, the procedure does not issue an error, but it may return inappropriate
results. The procedure returns the following values:

• USED_BYTES: The number of bytes representing the actual index data.

• ALLOC_BYTES: The amount of space allocated for the index in the tablespace.

18.7.3 Obtaining Object Growth Trends
The OBJECT_GROWTH_TREND function of the DBMS_SPACE package produces a table of one or
more rows, where each row describes the space use of the object at a specific time.

The function retrieves the space use totals from the Automatic Workload Repository or
computes current space use and combines it with historic space use changes retrieved from
Automatic Workload Repository. See Oracle Database PL/SQL Packages and Types
Reference for detailed information on the parameters of this function.

The function requires as input the following values:

• OBJECT_OWNER: The owner of the object.

• OBJECT_NAME: The name of the object.

• PARTITION_NAME: The name of the table or index partition, is relevant. Specify NULL
otherwise.

• OBJECT_TYPE: The type of the object.

• START_TIME: A TIMESTAMP value indicating the beginning of the growth trend analysis.

• END_TIME: A TIMESTAMP value indicating the end of the growth trend analysis. The default is
"NOW".

Chapter 18
Capacity Planning for Database Objects

18-40

• INTERVAL: The length in minutes of the reporting interval during which the function should
retrieve space use information.

• SKIP_INTERPOLATED: Determines whether the function should omit values based on
recorded statistics before and after the INTERVAL ('YES') or not ('NO'). This setting is useful
when the result table will be displayed as a table rather than a chart, because you can see
more clearly how the actual recording interval relates to the requested reporting interval.

The function returns a table, each of row of which provides space use information on the object
for one interval. If the return table is very large, the results are pipelined so that another
application can consume the information as it is being produced. The output table has the
following columns:

• TIMEPOINT: A TIMESTAMP value indicating the time of the reporting interval.

Records are not produced for values of TIME that precede the oldest recorded statistics for
the object.

• SPACE_USAGE: The number of bytes actually being used by the object data.

• SPACE_ALLOC: The number of bytes allocated to the object in the tablespace at that time.

• QUALITY: A value indicating how well the requested reporting interval matches the actual
recording of statistics. This information is useful because there is no guaranteed reporting
interval for object size use statistics, and the actual reporting interval varies over time and
from object to object.

The values of the QUALITY column are:

• – GOOD: The value whenever the value of TIME is based on recorded statistics with a
recorded timestamp within 10% of the INTERVAL specified in the input parameters.

– INTERPOLATED: The value did not meet the criteria for GOOD, but was based on recorded
statistics before and after the value of TIME. Current in-memory statistics can be
collected across all instances in a cluster and treated as the "recorded" value for the
present time.

– PROJECTION: The value of TIME is in the future as of the time the table was produced. In
an Oracle Real Application Clusters environment, the rules for recording statistics
allow each instance to choose independently which objects will be selected.

The output returned by this function is an aggregation of values recorded across all
instances in an Oracle RAC environment. Each value can be computed from a
combination of GOOD and INTERPOLATED values. The aggregate value returned is marked
GOOD if at least 80% of that value was derived from GOOD instance values.

Chapter 18
Capacity Planning for Database Objects

18-41

19
Managing Tables

Managing tables includes tasks such as creating tables, loading tables, altering tables, and
dropping tables.

Live SQL:

To view and run examples related to the ones in this chapter on Oracle Live SQL, go
to Oracle Live SQL: Creating and Modifying Tables.

• About Tables
Tables are the basic unit of data storage in an Oracle Database. Data is stored in rows and
columns.

• Guidelines for Managing Tables
Following guidelines can make the management of your tables easier and can improve
performance when creating the table, as well as when loading, updating, and querying the
table data.

• Creating Tables
Create tables using the SQL statement CREATE TABLE.

• Loading Tables
There are several techniques for loading data into tables.

• Optimizing the Performance of Bulk Updates
The EXECUTE_UPDATE procedure in the DBMS_REDEFINITION package can optimize the
performance of bulk updates to a table. Performance is optimized because the updates are
not logged in the redo log.

• Automatically Collecting Statistics on Tables
The PL/SQL package DBMS_STATS lets you generate and manage statistics for cost-based
optimization. You can use this package to gather, modify, view, export, import, and delete
statistics. You can also use this package to identify or name statistics that have been
gathered.

• Altering Tables
You alter a table using the ALTER TABLE statement. To alter a table, the table must be
contained in your schema, or you must have either the ALTER object privilege for the table
or the ALTER ANY TABLE system privilege.

• Redefining Tables Online
You can modify the logical or physical structure of a table.

• Researching and Reversing Erroneous Table Changes
To enable you to research and reverse erroneous changes to tables, Oracle Database
provides a group of features that you can use to view past states of database objects or to
return database objects to a previous state without using point-in-time media recovery.
These features are known as Oracle Flashback features.

19-1

https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html

• Recovering Tables Using Oracle Flashback Table
Oracle Flashback Table enables you to restore a table to its state as of a previous point in
time.

• Dropping Tables
To drop a table that you no longer need, use the DROP TABLE statement.

• Using Flashback Drop and Managing the Recycle Bin
When you drop a table, the database does not immediately remove the space associated
with the table. The database renames the table and places it and any associated objects in
a recycle bin, where, in case the table was dropped in error, it can be recovered at a later
time. This feature is called Flashback Drop, and the FLASHBACK TABLE statement is used to
restore the table.

• Managing Index-Organized Tables
An index-organized table's storage organization is a variant of a primary B-tree index.
Unlike a heap-organized table, data is stored in primary key order.

• Managing Partitioned Tables
Partitioned tables enable your data to be broken down into smaller, more manageable
pieces called partitions, or even subpartitions. Each partition can have separate physical
attributes, such as compression enabled or disabled, type of compression, physical
storage settings, and tablespace, thus providing a structure that can be better tuned for
availability and performance. In addition, each partition can be managed individually, which
can simplify and reduce the time required for backup and administration.

• Managing External Tables
External tables are the tables that do not reside in the database. They reside outside the
database, in Object storage or external files, such as operating system files or Hadoop
Distributed File System (HDFS) files.

• Managing Hybrid Partitioned Tables
A hybrid partitioned table is a partitioned table in which some partitions reside in the
database and some partitions reside outside the database in external files, such as
operating system files or Hadoop Distributed File System (HDFS) files.

• Managing Immutable Tables
Immutable tables provide protection against unauthorized data modification.

• Managing Blockchain Tables
Blockchain tables protect data that records important actions, assets, entities, and
documents from unauthorized modification or deletion by criminals, hackers, and fraud.
Blockchain tables prevent unauthorized changes made using the database and detect
unauthorized changes that bypass the database.

• Tables Data Dictionary Views
You can query a set of data dictionary views for information about tables.

19.1 About Tables
Tables are the basic unit of data storage in an Oracle Database. Data is stored in rows and
columns.

You define a table with a table name, such as employees, and a set of columns. You give each
column a column name, such as employee_id, last_name, and job_id; a data type, such as
VARCHAR2, DATE, or NUMBER; and a width. The width can be predetermined by the data type, as
in DATE. If columns are of the NUMBER data type, define precision and scale instead of width. A
row is a collection of column information corresponding to a single record.

Chapter 19
About Tables

19-2

You can specify rules for each column of a table. These rules are called integrity constraints.
One example is a NOT NULL integrity constraint. This constraint forces the column to contain a
value in every row.

You can invoke Transparent Data Encryption to encrypt data before storing it. If users attempt
to circumvent the database access control mechanisms by looking inside Oracle data files
directly with operating system tools, encryption prevents these users from viewing sensitive
data.

Tables can also include virtual columns. A virtual column is like any other table column,
except that its value is derived by evaluating an expression. The expression can include
columns from the same table, constants, SQL functions, and user-defined PL/SQL functions.
You cannot explicitly write to a virtual column.

Some column types, such as LOBs, varrays, and nested tables, are stored in their own
segments. LOBs and varrays are stored in LOB segments, while nested tables are stored in
storage tables. You can specify a STORAGE clause for these segments that will override storage
parameters specified at the table level.

After you create a table, you insert rows of data using SQL statements or using an Oracle bulk
load utility. Table data can then be queried, deleted, or updated using SQL.

See Also:

• Oracle Database Concepts for an overview of tables

• Oracle Database SQL Language Reference for descriptions of Oracle Database
data types

• Managing Space for Schema Objects for guidelines for managing space for
tables

• Managing Schema Objects for information on additional aspects of managing
tables, such as specifying integrity constraints and analyzing tables

• Oracle Database Transparent Data Encryption Guide for a discussion of
Transparent Data Encryption

19.2 Guidelines for Managing Tables
Following guidelines can make the management of your tables easier and can improve
performance when creating the table, as well as when loading, updating, and querying the
table data.

• Design Tables Before Creating Them
Usually, the application developer is responsible for designing the elements of an
application, including the tables. Database administrators are responsible for establishing
the attributes of the underlying tablespace that will hold the application tables.

• Specify the Type of Table to Create
You can create different types of tables with Oracle Database.

• Specify the Location of Each Table
It is advisable to specify the TABLESPACE clause in a CREATE TABLE statement to identify the
tablespace that is to store the new table. For partitioned tables, you can optionally identify
the tablespace that is to store each partition.

Chapter 19
Guidelines for Managing Tables

19-3

• Consider Parallelizing Table Creation
You can use parallel execution when creating tables using a subquery (AS SELECT) in the
CREATE TABLE statement. Because multiple processes work together to create the table,
performance of the table creation operation is improved.

• Consider Using NOLOGGING When Creating Tables
To create a table most efficiently use the NOLOGGING clause in the CREATE TABLE...AS
SELECT statement. The NOLOGGING clause causes minimal redo information to be generated
during the table creation.

• Consider Using Table Compression
As your database grows in size, consider using table compression to save space and
improve performance.

• Managing Table Compression Using Enterprise Manager Cloud Control
You can manage table compression with Oracle Enterprise Manager Cloud Control.

• Consider Using Segment-Level and Row-Level Compression Tiering
Segment-level compression tiering enables you to specify compression at the segment
level within a table. Row-level compression tiering enables you to specify compression at
the row level within a table. You can use a combination of these on the same table for fine-
grained control over how the data in the table is stored and managed.

• Consider Using Attribute-Clustered Tables
An attribute-clustered table is a heap-organized table that stores data in close proximity on
disk based on user-specified clustering directives.

• Consider Using Zone Maps
A zone is a set of contiguous data blocks on disk. A zone map tracks the minimum and
maximum of specified columns for all individual zones.

• Consider Storing Tables in the In-Memory Column Store
The In-Memory Column Store is an optional portion of the system global area (SGA) that
stores copies of tables, table partitions, and other database objects that is optimized for
rapid scans. In the In-Memory Column Store, table data is stored by column rather than
row in the SGA.

• Consider Using Invisible Columns
You can use invisible column to make changes to a table without disrupting applications
that use the table.

• Consider Encrypting Columns That Contain Sensitive Data
You can encrypt individual table columns that contain sensitive data. Examples of sensitive
data include social security numbers, credit card numbers, and medical records. Column
encryption is transparent to your applications, with some restrictions.

• Understand Deferred Segment Creation
When you create heap-organized tables in a locally managed tablespace, the database
defers table segment creation until the first row is inserted.

• Materializing Segments
The DBMS_SPACE_ADMIN package includes the MATERIALIZE_DEFERRED_SEGMENTS()
procedure, which enables you to materialize segments for tables, table partitions, and
dependent objects created with deferred segment creation enabled.

• Estimate Table Size and Plan Accordingly
Estimate the sizes of tables before creating them. Preferably, do this as part of database
planning. Knowing the sizes, and uses, for database tables is an important part of
database planning.

• Restrictions to Consider When Creating Tables
There are restrictions to consider when you create tables.

Chapter 19
Guidelines for Managing Tables

19-4

19.2.1 Design Tables Before Creating Them
Usually, the application developer is responsible for designing the elements of an application,
including the tables. Database administrators are responsible for establishing the attributes of
the underlying tablespace that will hold the application tables.

Either the DBA or the applications developer, or both working jointly, can be responsible for the
actual creation of the tables, depending upon the practices for a site. Working with the
application developer, consider the following guidelines when designing tables:

• Use descriptive names for tables, columns, indexes, and clusters.

• Be consistent in abbreviations and in the use of singular and plural forms of table names
and columns.

• Document the meaning of each table and its columns with the COMMENT command.

• Normalize each table.

• Select the appropriate data type for each column.

• Consider whether your applications would benefit from adding one or more virtual columns
to some tables.

• Define columns that allow nulls last, to conserve storage space.

• Cluster tables whenever appropriate, to conserve storage space and optimize performance
of SQL statements.

Before creating a table, you should also determine whether to use integrity constraints.
Integrity constraints can be defined on the columns of a table to enforce the business rules of
your database automatically.

19.2.2 Specify the Type of Table to Create
You can create different types of tables with Oracle Database.

Here are the types of tables that you can create:

Type of Table Description

Ordinary (heap-organized)
table

This is the basic, general purpose type of table which is the primary
subject of this chapter. Its data is stored as an unordered collection
(heap).

Clustered table A clustered table is a table that is part of a cluster. A cluster is a group of
tables that share the same data blocks because they share common
columns and are often used together.

Clusters and clustered tables are discussed in Managing Clusters.

Index-organized table Unlike an ordinary (heap-organized) table, data for an index-organized
table is stored in a B-tree index structure in a primary key sorted manner.
Besides storing the primary key column values of an index-organized
table row, each index entry in the B-tree stores the nonkey column
values as well.

Index-organized tables are discussed in "Managing Index-Organized
Tables ".

Chapter 19
Guidelines for Managing Tables

19-5

Type of Table Description

Partitioned table Partitioned tables enable your data to be broken down into smaller, more
manageable pieces called partitions, or even subpartitions. Each
partition can have separate physical attributes, such as compression
enabled or disabled, type of compression, physical storage settings, and
tablespace, thus providing a structure that can be better tuned for
availability and performance. In addition, each partition can be managed
individually, which can simplify and reduce the time required for backup
and administration.

Partitioned tables are discussed in Oracle Database VLDB and
Partitioning Guide.

External table An external table is a table that does not reside in the database, but
resides outside the database in external files, such as operating system
files or Hadoop Distributed File System (HDFS) files.

External tables are discussed in Managing External Tables.

Hybrid partitioned table A hybrid partitioned table is a partitioned table in which some partitions
reside in the database and some partitions reside outside the database
in external files, such as operating system files or Hadoop Distributed
File System (HDFS) files.

Hybrid partitioned tables are discussed in Oracle Database VLDB and
Partitioning Guide.

19.2.3 Specify the Location of Each Table
It is advisable to specify the TABLESPACE clause in a CREATE TABLE statement to identify the
tablespace that is to store the new table. For partitioned tables, you can optionally identify the
tablespace that is to store each partition.

Ensure that you have the appropriate privileges and quota on any tablespaces that you use. If
you do not specify a tablespace in a CREATE TABLE statement, the table is created in your
default tablespace.

When specifying the tablespace to contain a new table, ensure that you understand
implications of your selection. By properly specifying a tablespace during the creation of each
table, you can increase the performance of the database system and decrease the time
needed for database administration.

The following situations illustrate how not specifying a tablespace, or specifying an
inappropriate one, can affect performance:

• If users' objects are created in the SYSTEM tablespace, the performance of the database
can suffer, since both data dictionary objects and user objects must contend for the same
data files. Users' objects should not be stored in the SYSTEM tablespace. To avoid this,
ensure that all users are assigned default tablespaces when they are created in the
database.

• If application-associated tables are arbitrarily stored in various tablespaces, the time
necessary to complete administrative operations (such as backup and recovery) for the
data of that application can be increased.

19.2.4 Consider Parallelizing Table Creation
You can use parallel execution when creating tables using a subquery (AS SELECT) in the
CREATE TABLE statement. Because multiple processes work together to create the table,
performance of the table creation operation is improved.

Chapter 19
Guidelines for Managing Tables

19-6

Parallelizing table creation is discussed in the section "Parallelizing Table Creation".

19.2.5 Consider Using NOLOGGING When Creating Tables
To create a table most efficiently use the NOLOGGING clause in the CREATE TABLE...AS SELECT
statement. The NOLOGGING clause causes minimal redo information to be generated during the
table creation.

Using the NOLOGGING clause has the following benefits:

• Space is saved in the redo log files.

• The time it takes to create the table is decreased.

• Performance improves for parallel creation of large tables.

The NOLOGGING clause also specifies that subsequent direct loads using SQL*Loader and direct
load INSERT operations are not logged. Subsequent DML statements (UPDATE, DELETE, and
conventional path insert) are unaffected by the NOLOGGING attribute of the table and generate
redo.

If you cannot afford to lose the table after you have created it (for example, you will no longer
have access to the data used to create the table) you should take a backup immediately after
the table is created. In some situations, such as for tables that are created for temporary use,
this precaution may not be necessary.

In general, the relative performance improvement of specifying NOLOGGING is greater for larger
tables than for smaller tables. For small tables, NOLOGGING has little effect on the time it takes to
create a table. However, for larger tables the performance improvement can be significant,
especially when also parallelizing the table creation.

19.2.6 Consider Using Table Compression
As your database grows in size, consider using table compression to save space and improve
performance.

• About Table Compression
Compression saves disk space, reduces memory use in the database buffer cache, and
can significantly speed query execution during reads.

• Examples Related to Table Compression
Examples illustrate using table compression.

• Compression and Partitioned Tables
A table can have both compressed and uncompressed partitions, and different partitions
can use different compression methods. If the compression settings for a table and one of
its partitions do not match, then the partition setting has precedence for the partition.

• Determining If a Table Is Compressed
In the *_TABLES data dictionary views, compressed tables have ENABLED in the
COMPRESSION column.

• Determining Which Rows Are Compressed
To determine the compression level of a row, use the GET_COMPRESSION_TYPE function in
the DBMS_COMPRESSION package.

• Changing the Compression Level
You can change the compression level for a partition, table, or tablespace.

Chapter 19
Guidelines for Managing Tables

19-7

• Adding and Dropping Columns in Compressed Tables
Some restrictions apply when adding columns to a compressed table or dropping columns
from a compressed table.

• Exporting and Importing Hybrid Columnar Compression Tables
Hybrid Columnar Compression tables can be imported using the impdp command of the
Data Pump Import utility.

• Restoring a Hybrid Columnar Compression Table
There may be times when a Hybrid Columnar Compression table must be restored from a
backup. The table can be restored to a system that supports Hybrid Columnar
Compression, or to a system that does not support Hybrid Columnar Compression.

• Notes and Restrictions for Compressed Tables
Consider notes and restrictions related to compressed tables.

• Packing Compressed Tables
If you use conventional DML on a table compressed with basic table compression or
Hybrid Columnar Compression, then all inserted and updated rows are stored
uncompressed or in a less-compressed format. To "pack" the compressed table so that
these rows are compressed, use an ALTER TABLE MOVE statement.

19.2.6.1 About Table Compression
Compression saves disk space, reduces memory use in the database buffer cache, and can
significantly speed query execution during reads.

Compression has a cost in CPU overhead for data loading and DML. However, this cost is
offset by reduced I/O requirements. Because compressed table data stays compressed in
memory, compression can also improve performance for DML operations, as more rows can fit
in the database buffer cache (and flash cache if it is enabled).

Table compression is completely transparent to applications. It is useful in decision support
systems (DSS), online transaction processing (OLTP) systems, and archival systems.

You can specify compression for a tablespace, a table, or a partition. If specified at the
tablespace level, then all tables created in that tablespace are compressed by default.

Oracle Database supports several methods of table compression. They are summarized in
Table 19-1.

Table 19-1 Table Compression Methods

Table
Compression
Method

Compression
Level

CPU Overhead Applications Notes

Basic table
compression

High Minimal DSS None.

Advanced row
compression

High Minimal OLTP, DSS None.

Warehouse
compression
(Hybrid Columnar
Compression)

Higher Higher DSS The compression
level and CPU
overhead depend
on compression
level specified
(LOW or HIGH).

Chapter 19
Guidelines for Managing Tables

19-8

Table 19-1 (Cont.) Table Compression Methods

Table
Compression
Method

Compression
Level

CPU Overhead Applications Notes

Archive
compression
(Hybrid Columnar
Compression)

Highest Highest Archiving The compression
level and CPU
overhead depend
on compression
level specified
(LOW or HIGH).

When you use basic table compression, warehouse compression, or archive compression,
compression only occurs when data is bulk loaded or array inserted into a table.

Basic table compression supports limited data types and SQL operations.

Advanced row compression is intended for OLTP applications and compresses data
manipulated by any SQL operation. When you use advanced row compression, compression
occurs while data is being inserted, updated, or bulk loaded into a table. Operations that permit
advanced row compression include:

• Single-row inserts and updates

Inserts and updates are not compressed immediately. When updating an already
compressed block, any columns that are not updated usually remain compressed. Updated
columns are stored in an uncompressed format similar to any uncompressed block. The
updated values are re-compressed when the block reaches a database-controlled
threshold. Inserted data is also compressed when the data in the block reaches a
database-controlled threshold.

• Array inserts

Array inserts include INSERT INTO SELECT SQL statements without the APPEND hint, and
array inserts from programmatic interfaces such as PL/SQL and the Oracle Call Interface
(OCI).

• The following direct-path INSERT methods:

– Direct path SQL*Loader

– CREATE TABLE AS SELECT statements

– Parallel INSERT statements

– INSERT statements with an APPEND or APPEND_VALUES hint

Inserts performed with these direct-path INSERT methods are compressed immediately.

Warehouse compression and archive compression achieve the highest compression levels
because they use Hybrid Columnar Compression technology. Hybrid Columnar Compression
technology uses a modified form of columnar storage instead of row-major storage. This
enables the database to store similar data together, which improves the effectiveness of
compression algorithms. For data that is updated, Hybrid Columnar Compression uses more
CPU and moves the updated rows to row format so that future updates are faster. Because of
this optimization, you should use it only for data that is updated infrequently.

The higher compression levels of Hybrid Columnar Compression are achieved only with data
that is direct-path inserted or array inserted. Conventional inserts and updates are supported,
but cause rows to be moved from columnar to row format, and reduce the compression level.

Chapter 19
Guidelines for Managing Tables

19-9

You can use Automatic Data Optimization (ADO) policies to move these rows back to the
desired level of Hybrid Columnar Compression automatically.

With Hybrid Columnar Compression (warehouse and archive), for array inserts to be
compressed immediately, the following conditions must be met:

• The table must be stored in a locally managed tablespace with Automatic Segment Space
Management (ASSM) enabled.

• The database compatibility level must be at 12.2.0 or higher.

Regardless of the compression method, DELETE operations on a compressed block are
identical to DELETE operations on a non-compressed block. Any space obtained on a data
block, caused by SQL DELETE operations, is reused by subsequent SQL INSERT operations.
With Hybrid Columnar Compression technology, when all the rows in a compression unit are
deleted, the space in the compression unit is available for reuse.

Table 19-2 lists characteristics of each table compression method.

Table 19-2 Table Compression Characteristics

Table Compression Method CREATE/ALTER
TABLE Syntax

Direct-Path or
Array Inserts

Notes

Basic table compression ROW STORE COMPRESS
[BASIC]

Rows are
compressed with
basic table
compression.

ROW STORE COMPRESS and ROW STORE
COMPRESS BASIC are equivalent.

Rows inserted without using direct-path
or array insert and updated rows are
uncompressed.

Advanced row compression ROW STORE COMPRESS
ADVANCED

Rows are
compressed with
advanced row
compression.

Rows inserted with or without using
direct-path or array insert and updated
rows are compressed using advanced
row compression.

Warehouse compression (Hybrid
Columnar Compression)

COLUMN STORE
COMPRESS FOR QUERY
[LOW|HIGH]

Rows are
compressed with
warehouse
compression.

This compression method can result in
high CPU overhead.

Updated rows and rows inserted without
using direct-path or array insert are
stored in row format instead of column
format, and thus have a lower
compression level.

Archive compression (Hybrid
Columnar Compression)

COLUMN STORE
COMPRESS FOR
ARCHIVE [LOW|HIGH]

Rows are
compressed with
archive compression.

This compression method can result in
high CPU overhead.

Updated rows and rows inserted without
using direct-path or array insert are
stored in row format instead of column
format, and thus have a lower
compression level.

You specify table compression with the COMPRESS clause of the CREATE TABLE statement. You
can enable compression for an existing table by using these clauses in an ALTER TABLE
statement. In this case, only data that is inserted or updated after compression is enabled is
compressed. Using the ALTER TABLE MOVE statement also enables compression for data that is
inserted and updated, but it compresses existing data as well. Similarly, you can disable table
compression for an existing compressed table with the ALTER TABLE...NOCOMPRESS statement. In
this case, all data that was already compressed remains compressed, and new data is inserted
uncompressed.

Chapter 19
Guidelines for Managing Tables

19-10

The COLUMN STORE COMPRESS FOR QUERY HIGH option is the default data warehouse
compression mode. It provides good compression and performance when using Hybrid
Columnar Compression on Exadata storage. The COLUMN STORE COMPRESS FOR QUERY LOW
option should be used in environments where load performance is critical. It loads faster than
data compressed with the COLUMN STORE COMPRESS FOR QUERY HIGH option.

The COLUMN STORE COMPRESS FOR ARCHIVE LOW option is the default archive compression
mode. It provides a high compression level and is ideal for infrequently-accessed data. The
COLUMN STORE COMPRESS FOR ARCHIVE HIGH option should be used for data that is rarely
accessed.

A compression advisor, provided by the DBMS_COMPRESSION package, helps you determine the
expected compression level for a particular table with a particular compression method.

Note:

Hybrid Columnar Compression is dependent on the underlying storage system. See
Oracle Database Licensing Information for more information.

See Also:

• Oracle Database Concepts for an overview of table compression

• "About Tablespaces with Default Compression Attributes"

19.2.6.2 Examples Related to Table Compression
Examples illustrate using table compression.

Example 19-1 Creating a Table with Advanced Row Compression

The following example enables advanced row compression on the table orders:

CREATE TABLE orders ... ROW STORE COMPRESS ADVANCED;

Data for the orders table is compressed during direct-path INSERT, array insert, and
conventional DML.

Example 19-2 Creating a Table with Basic Table Compression

The following statements, which are equivalent, enable basic table compression on the
sales_history table, which is a fact table in a data warehouse:

CREATE TABLE sales_history ... ROW STORE COMPRESS BASIC;

CREATE TABLE sales_history ... ROW STORE COMPRESS;

Frequent queries are run against this table, but no DML is expected.

Example 19-3 Using Direct-Path Insert to Insert Rows Into a Table

This example demonstrates using the APPEND hint to insert rows into the sales_history table
using direct-path INSERT.

Chapter 19
Guidelines for Managing Tables

19-11

INSERT /*+ APPEND */ INTO sales_history SELECT * FROM sales WHERE cust_id=8890;
COMMIT;

Example 19-4 Using an Array Insert to Insert Rows Into a Table

This example demonstrates using an array insert in SQL to insert rows into the sales_history
table.

INSERT INTO sales_history SELECT * FROM sales WHERE cust_id=8890;
COMMIT;

This example demonstrates using an array insert in PL/SQL to insert rows into the
hr.jobs_test table.

DECLARE
 TYPE table_def IS TABLE OF hr.jobs%ROWTYPE;
 array table_def := table_def();
BEGIN
 SELECT * BULK COLLECT INTO array FROM hr.jobs;
 FORALL i in array.first .. array.last
 INSERT INTO hr.jobs_test VALUES array(i);
COMMIT;
END;
/

Note:

With Hybrid Columnar Compression (warehouse and archive), for array inserts
performed in SQL, PL/SQL, or OCI to be compressed immediately, the table must be
stored in a locally managed tablespace with Automatic Segment Space Management
(ASSM) enabled, and the database compatibility level must be at 12.2.0 or higher.

Example 19-5 Creating a Table with Warehouse Compression

This example enables Hybrid Columnar Compression on the table sales_history:

CREATE TABLE sales_history ... COLUMN STORE COMPRESS FOR QUERY;

The table is created with the default COLUMN STORE COMPRESS FOR QUERY HIGH option. This
option provides a higher level of compression than basic table compression or advanced row
compression. It works well when frequent queries are run against this table and no DML is
expected.

Example 19-6 Creating a Table with Archive Compression

The following example enables Hybrid Columnar Compression on the table sales_history:

CREATE TABLE sales_history ... COLUMN STORE COMPRESS FOR ARCHIVE;

The table is created with the default COLUMN STORE COMPRESS FOR ARCHIVE LOW option. This
option provides a higher level of compression than basic, advanced row, or warehouse
compression. It works well when load performance is critical and data is accessed infrequently.
The default COLUMN STORE COMPRESS FOR ARCHIVE LOW option provides a lower level of
compression than the COLUMN STORE COMPRESS FOR ARCHIVE HIGH option.

Chapter 19
Guidelines for Managing Tables

19-12

19.2.6.3 Compression and Partitioned Tables
A table can have both compressed and uncompressed partitions, and different partitions can
use different compression methods. If the compression settings for a table and one of its
partitions do not match, then the partition setting has precedence for the partition.

To change the compression method for a partition, do one of the following:

• To change the compression method for new data only, use ALTER TABLE ... MODIFY
PARTITION ... COMPRESS ...

• To change the compression method for both new and existing data, use either ALTER
TABLE ... MOVE PARTITION ... COMPRESS ... or online table redefinition.

When you execute these statements, specify the compression method. For example, run the
following statement to change the compression method to advanced row compression for both
new and existing data:

ALTER TABLE ... MOVE PARTITION ... ROW STORE COMPRESS ADVANCED...

19.2.6.4 Determining If a Table Is Compressed
In the *_TABLES data dictionary views, compressed tables have ENABLED in the COMPRESSION
column.

For partitioned tables, this column is null, and the COMPRESSION column of the
*_TAB_PARTITIONS views indicates the partitions that are compressed. In addition, the
COMPRESS_FOR column indicates the compression method in use for the table or partition.

SQL> SELECT table_name, compression, compress_for FROM user_tables;

TABLE_NAME COMPRESSION COMPRESS_FOR
---------------- ------------ -----------------
T1 DISABLED
T2 ENABLED BASIC
T3 ENABLED ADVANCED
T4 ENABLED QUERY HIGH
T5 ENABLED ARCHIVE LOW

SQL> SELECT table_name, partition_name, compression, compress_for
 FROM user_tab_partitions;

TABLE_NAME PARTITION_NAME COMPRESSION COMPRESS_FOR
----------- ---------------- ----------- ------------------------------
SALES Q4_2004 ENABLED ARCHIVE HIGH
 ...
SALES Q3_2008 ENABLED QUERY HIGH
SALES Q4_2008 ENABLED QUERY HIGH
SALES Q1_2009 ENABLED ADVANCED
SALES Q2_2009 ENABLED ADVANCED

19.2.6.5 Determining Which Rows Are Compressed
To determine the compression level of a row, use the GET_COMPRESSION_TYPE function in the
DBMS_COMPRESSION package.

For example, the following query returns the compression type for a row in the hr.employees
table:

Chapter 19
Guidelines for Managing Tables

19-13

SELECT DECODE(DBMS_COMPRESSION.GET_COMPRESSION_TYPE(
 ownname => 'HR',
 tabname => 'EMPLOYEES',
 subobjname => '',
 row_id => 'AAAVEIAAGAAAABTAAD'),
 1, 'No Compression',
 2, 'Advanced Row Compression',
 4, 'Hybrid Columnar Compression for Query High',
 8, 'Hybrid Columnar Compression for Query Low',
 16, 'Hybrid Columnar Compression for Archive High',
 32, 'Hybrid Columnar Compression for Archive Low',
 4096, 'Basic Table Compression',
 'Unknown Compression Type') compression_type
FROM DUAL;

See Also:

Oracle Database PL/SQL Packages and Types Reference for additional information
about GET_COMPRESSION_TYPE

19.2.6.6 Changing the Compression Level
You can change the compression level for a partition, table, or tablespace.

For example, suppose a company uses warehouse compression for its sales data, but sales
data older than six months is rarely accessed. If the sales data is stored in a table that is
partitioned based on the age of the data, then the compression level for the older data can be
changed to archive compression to free disk space.

To change the compression level for a partition or subpartition, you can use the following
statements:

• ALTER TABLE ... MOVE PARTITION ... ONLINE
• ALTER TABLE ... MOVE SUBPARTITION ... ONLINE
These two statements support the ONLINE keyword, which enables DML operations to run
uninterrupted on the partition or subpartition that is being moved. These statements also
automatically keep all the indexes updated while the partition or subpartition is being moved.
You can also use the ALTER TABLE...MODIFY PARTITION statement or online redefinition to
change the compression level for a partition.

If a table is not partitioned, then you can use the ALTER TABLE...MOVE...COMPRESS FOR...
statement to change the compression level. The ALTER TABLE...MOVE statement does not
permit DML statements against the table while the command is running. However, you can
also use online redefinition to compress a table, which keeps the table available for queries
and DML statements during the redefinition.

To change the compression level for a tablespace, use the ALTER TABLESPACE statement.

Chapter 19
Guidelines for Managing Tables

19-14

See Also:

• "Moving a Table to a New Segment or Tablespace" for additional information
about the ALTER TABLE command

• "Redefining Tables Online"

• Oracle Database PL/SQL Packages and Types Reference for additional
information about the DBMS_REDEFINITION package

19.2.6.7 Adding and Dropping Columns in Compressed Tables
Some restrictions apply when adding columns to a compressed table or dropping columns
from a compressed table.

The following restrictions apply when adding columns to compressed tables:

• Advanced row compression, warehouse compression, and archive compression: If a
default value is specified for an added column and the table is already populated, then the
conditions for optimized add column behavior must be met. These conditions are
described in Oracle Database SQL Language Reference.

The following restrictions apply when dropping columns in compressed tables:

• Basic table compression: Dropping a column is not supported.

• Advanced row compression, warehouse compression, and archive compression: DROP
COLUMN is supported, but internally the database sets the column UNUSED to avoid long-
running decompression and recompression operations.

19.2.6.8 Exporting and Importing Hybrid Columnar Compression Tables
Hybrid Columnar Compression tables can be imported using the impdp command of the Data
Pump Import utility.

By default, the impdp command preserves the table properties, and the imported table is a
Hybrid Columnar Compression table. On tablespaces not supporting Hybrid Columnar
Compression, the impdp command fails with an error. The tables can also be exported using
the expdp command.

You can import the Hybrid Columnar Compression table as an uncompressed table using the
TRANSFORM=SEGMENT_ATTRIBUTES:n option clause of the impdp command.

An uncompressed or advanced row-compressed table can be converted to Hybrid Columnar
Compression format during import. To convert a non-Hybrid Columnar Compression table to a
Hybrid Columnar Compression table, do the following:

1. Specify default compression for the tablespace using the ALTER TABLESPACE ... SET
DEFAULT COMPRESS command.

2. Override the SEGMENT_ATTRIBUTES option of the imported table during import.

Chapter 19
Guidelines for Managing Tables

19-15

See Also:

• Oracle Database Utilities for additional information about the Data Pump Import
utility

• Oracle Database SQL Language Reference for additional information about the
ALTER TABLESPACE command

19.2.6.9 Restoring a Hybrid Columnar Compression Table
There may be times when a Hybrid Columnar Compression table must be restored from a
backup. The table can be restored to a system that supports Hybrid Columnar Compression, or
to a system that does not support Hybrid Columnar Compression.

When restoring a table with Hybrid Columnar Compression to a system that supports Hybrid
Columnar Compression, restore the file using Oracle Recovery Manager (RMAN) as usual.

When a Hybrid Columnar Compression table is restored to a system that does not support
Hybrid Columnar Compression, you must convert the table from Hybrid Columnar
Compression to advanced row compression or an uncompressed format. To restore the table,
do the following:

1. Ensure there is sufficient storage in environment to hold the data in uncompressed or
advanced row compression format.

2. Use RMAN to restore the Hybrid Columnar Compression tablespace.

3. Complete one of the following actions to convert the table from Hybrid Columnar
Compression to advanced row compression or an uncompressed format:

• Use the following statement to change the data compression from Hybrid Columnar
Compression to ROW STORE COMPRESS ADVANCED:

ALTER TABLE table_name MOVE ROW STORE COMPRESS ADVANCED;
• Use the following statement to change the data compression from Hybrid Columnar

Compression to NOCOMPRESS:

ALTER TABLE table_name MOVE NOCOMPRESS;
• Use the following statement to change each partition to NOCOMPRESS:

ALTER TABLE table_name MOVE PARTITION partition_name NOCOMPRESS;

Change each partition separately.

If DML is required on the partition while it is being moved, then include the ONLINE
keyword:

ALTER TABLE table_name MOVE PARTITION partition_name NOCOMPRESS ONLINE;

Moving a partition online might take longer than moving a partition offline.

• Use the following statement to move the data to NOCOMPRESS in parallel:

ALTER TABLE table_name MOVE NOCOMPRESS PARALLEL;

Chapter 19
Guidelines for Managing Tables

19-16

See Also:

• Oracle Database Backup and Recovery User's Guide for additional information
about RMAN

• Oracle Database SQL Language Reference for additional information about the
ALTER TABLE command

19.2.6.10 Notes and Restrictions for Compressed Tables
Consider notes and restrictions related to compressed tables.

The following are notes and restrictions related to compressed tables:

• Advanced row compression, warehouse compression, and archive compression are not
supported for the following types of tables:

– Index-organized tables

– External tables

– Tables with LONG or LONG RAW columns

– Temporary tables

– Tables with ROWDEPENDENCIES enabled

– Clustered tables

• Online segment shrink is not supported for tables compressed with the following
compression methods:

– Basic table compression using ROW STORE COMPRESS BASIC
– Warehouse compression using COLUMN STORE COMPRESS FOR QUERY
– Archive compression using COLUMN STORE COMPRESS FOR ARCHIVE

• The table compression methods described in this section do not apply to SecureFiles large
objects (LOBs). SecureFiles LOBs have their own compression methods. See Oracle
Database SecureFiles and Large Objects Developer's Guide for more information.

• Compression technology uses CPU. Ensure that you have enough available CPU to
handle the additional load.

• Tables created with basic table compression have the PCT_FREE parameter automatically
set to 0 unless you specify otherwise.

19.2.6.11 Packing Compressed Tables
If you use conventional DML on a table compressed with basic table compression or Hybrid
Columnar Compression, then all inserted and updated rows are stored uncompressed or in a
less-compressed format. To "pack" the compressed table so that these rows are compressed,
use an ALTER TABLE MOVE statement.

This operation takes an exclusive lock on the table, and therefore prevents any updates and
loads until it completes. If this is not acceptable, then you can use online table redefinition.

Chapter 19
Guidelines for Managing Tables

19-17

When you move a partition or subpartition, you can use the ALTER TABLE MOVE statement to
compress the partition or subpartition while still allowing DML operations to run interrupted on
the partition or subpartition that is being moved.

See Also:

• Oracle Database SQL Language Reference for more details on the ALTER
TABLE...COMPRESS and ALTER TABLE...MOVE statements, including restrictions

• Oracle Database VLDB and Partitioning Guide for more information on table
partitioning

• "Redefining Tables Online"

• "Moving a Table to a New Segment or Tablespace" for more information about
moving a table, partition, or subpartition

19.2.7 Managing Table Compression Using Enterprise Manager Cloud
Control

You can manage table compression with Oracle Enterprise Manager Cloud Control.

• Table Compression and Enterprise Manager Cloud Control
Enterprise Manager displays several central compression pages that summarize the
compression features at the database and tablespace levels and contains links to different
compression pages. The Compression pages display summaries of the compressed
storage space at the database level and the tablespace level.

• Viewing the Compression Summary at the Database Level
You can view the Compression Summary information at the database level.

• Viewing the Compression Summary at the Tablespace Level
You can view the Compression Summary information at the tablespace level.

• Estimating the Compression Ratio
You can run the Compression Advisor to calculate the compression ratio for a specific
object.

• Compressing an Object
You can compress an object such as a table.

• Viewing Compression Advice
You can view compression advice from the Segment Advisor and take actions based on
them.

• Initiating Automatic Data Optimization on an Object
You can initiate Automatic Data Optimization on an object.

19.2.7.1 Table Compression and Enterprise Manager Cloud Control
Enterprise Manager displays several central compression pages that summarize the
compression features at the database and tablespace levels and contains links to different
compression pages. The Compression pages display summaries of the compressed storage
space at the database level and the tablespace level.

Chapter 19
Guidelines for Managing Tables

19-18

On the database level, the Compression Summary for Database page shows the total
database size (total size of all the objects, both compressed and uncompressed), the total size
of compressed objects in the database, the total size of uncompressed objects in the database
and the ratio of the total size of compressed objects to the total database size. This provides
you with a general idea on how much storage space within a database is compressed. You can
then take action based on the information displayed.

Likewise on the tablespace level, the Compression Summary for Tablespace page shows the
total tablespace size (total size of all the objects, both compressed and uncompressed), the
total size of compressed objects in the tablespace, the total size of uncompressed objects in
the tablespace and the ratio of the total size of compressed objects to the total tablespace size.

You can use the Compression feature to perform the following tasks:

• View a summary of the compressed storage space for the top 100 tablespaces at the
database level or the top 100 objects at the tablespace level. You can view a summary on
how much storage space is compressed within each of top 100 tablespaces that use the
most database storage, including the total size of the tablespace, the compressed size of a
tablespace, the uncompressed size of tablespace, and the percentage of compressed
storage within a tablespace. You can then perform compression tasks based on the
information displayed.

• View the storage size that is compressed by each compression type for four object types:
Table, Index, LOB (Large Objects), and DBFS (Oracle Database File System).

• Calculate the compression ratio for a specific object.

• Compress an object (tablespace, table, partition or LOB). This allows you to save storage
space. You can run the Compression Advisor to ascertain how much space can be saved
and then perform the compression action on the object.

• View compression advice from the Segment Advisor. You can access a link to the Segment
Advisor to compress segments.

19.2.7.2 Viewing the Compression Summary at the Database Level
You can view the Compression Summary information at the database level.

1. From the Administration menu, choose Storage, then select Compression.

Enterprise Manager displays the Compression Summary for Top 100 Tablespaces page.

2. You can view the summary information about the storage compression at the database
level, including in the Space Usage section the total database size, the total size of
compressed objects in the database, and the ratio of the total size of compressed objects
to the total database size, and the uncompressed objects size. Similar information for
segment counts is also shown here in the Segment Count section.

3. You can view the storage size that is used by each compression type for four object types:
Table, Index, LOB (Large Objects), and DBFS (Oracle Database File System). Clicking
each color in the chart displays a Compression Summary of Segments page, which shows
compression information for the top 100 segments by size in the database for a particular
object type and compression type.

19.2.7.3 Viewing the Compression Summary at the Tablespace Level
You can view the Compression Summary information at the tablespace level.

1. From the Administration menu, choose Storage, then select Compression.

Enterprise Manager displays the Compression Summary for Top 100 Tablespaces page.

Chapter 19
Guidelines for Managing Tables

19-19

2. In the Top 100 Permanent Tablespaces by Size table, click on the row for the tablespace
for which you want to view the compression summary.

3. Click Show Compression Details.

Enterprise Manager displays the Compression Summary for Top 100 Objects in
Tablespace page. From this page, you can view the total tablespace size, the total size of
compressed objects in the tablespace, the ratio of the total size of compressed objects to
the total tablespace size, and the uncompressed objects size in a tablespace.

You can also view the compressed tablespace storage size by each compression type for
four object types: Table, Index, LOB and DBFS. Clicking each color in the chart displays
the Compression Summary of Segments dialog box, which shows compression information
for the top 100 segments by size in the tablespace for a particular object type and
compression type.

Finally, you can view the compression summary for each of the top 100 segments that use
the most tablespace storage.

19.2.7.4 Estimating the Compression Ratio
You can run the Compression Advisor to calculate the compression ratio for a specific object.

1. From the Administration menu, choose Storage, then select Compression.

Enterprise Manager displays the Compression Summary for Top 100 Tablespaces page.

2. From the Top 100 Permanent Tablespaces by Size table, select a tablespace and click
Show Compression Details to view the compression details for the selected tablespace.

Enterprise Manager displays the Top 100 Objects By Size table.

3. Select an object and click Estimate Compression Ratio for the object.

Enterprise Manager displays the Estimate Compression Ratio dialog box. Enter the
following information:

• Under the Input Parameters section, enter or select a Temporary Scratch Tablespace.
You can enter the name directly or you can choose from the list that appears when you
click the icon.

• Enter the Compression Type. You can choose from Basic, Advanced, Query Low,
Query High, Archive Low, or Archive High. For HCC compression types (Query Low,
Query High, Archive Low, or Archive High.), be sure the table contains at least one
million rows.

• In the Schedule Job section, enter the Name of the job and a Description.

• In the Schedule section, enter the job information such as when to Start, whether or
not to Repeat the job, whether or not there should be a Grace Period, and Duration
information.

• Enter the Database Credentials and the Host Credentials in their respective sections.

• Click OK.

The job runs either immediately or is scheduled, and you are returned to the Compression
Summary for Top 100 Objects in Tablespace page.

19.2.7.5 Compressing an Object
You can compress an object such as a table.

1. From the Administration menu, choose Storage, then select Compression.

Chapter 19
Guidelines for Managing Tables

19-20

Enterprise Manager displays the Compression Summary for Top 100 Tablespaces page.

2. From the Top 100 Permanent Tablespaces by Size table, select a tablespace and click
Show Compression Details to view Compression details for the selected tablespace.

Enterprise Manager displays the Compression Summary for Top 100 Objects in
Tablespace page.

3. Choose an object, such as a table, and click Compress to compress the object.

19.2.7.6 Viewing Compression Advice
You can view compression advice from the Segment Advisor and take actions based on them.

1. From the Administration menu, choose Storage, then select Compression.

Enterprise Manager displays the Compression Summary for Top 100 Tablespaces page.

2. In the Compression Advice section, click the number that displays in the Segments with
Compression Advice field.

Enterprise Manager displays the Segment Advisor Recommendations page. You can use
the Automatic Segment Advisor job to detect segment issues within maintenance windows.
The recommendations are derived from the most recent runs of automatic and user-
scheduled segment advisor jobs.

19.2.7.7 Initiating Automatic Data Optimization on an Object
You can initiate Automatic Data Optimization on an object.

1. From the Administration menu, choose Storage, then select Compression.

Enterprise Manager displays the Compression Summary for Top 100 Tablespaces page.

2. From the Top 100 Permanent Tablespaces by Size table, select a tablespace and click
Show Compression Details to view the compression details for the selected tablespace.

Enterprise Manager displays the Compression Summary for Top 100 Objects in
Tablespace page.

3. From the Top 100 Objects by Size table, select an object and click Automatic Data
Compression.

Enterprise Manager displays the Edit page for the object where you can initiate Automatic
Data Optimization on the object.

19.2.8 Consider Using Segment-Level and Row-Level Compression Tiering
Segment-level compression tiering enables you to specify compression at the segment level
within a table. Row-level compression tiering enables you to specify compression at the row
level within a table. You can use a combination of these on the same table for fine-grained
control over how the data in the table is stored and managed.

As user modifications to segments and rows change over time, it is often beneficial to change
the compression level for them. For example, some segments and rows might be modified
often for a short period of time after they are added to the database, but modifications might
become less frequent over time.

You can use compression tiering to specify which segments and rows are compressed based
on rules. For example, you can specify that rows that have not been modified in two weeks are

Chapter 19
Guidelines for Managing Tables

19-21

compressed with advanced row compression. You can also specify that segments that have
not been modified in six months are compressed with warehouse compression.

The following prerequisites must be met before you can use segment-level and row-level
compression tiering:

• The HEAT_MAP initialization parameter must be set to ON.

• The COMPATIBLE initialization parameter must be set to 12.0.0 or higher.

To use segment-level compression tiering or row-level compression tiering, execute one of the
following SQL statements and include an Automatic Data Optimization (ADO) policy that
specifies the rules:

• CREATE TABLE
• ALTER TABLE
Example 19-7 Row-Level Compression Tiering

This example specifies row-level compression tiering for the oe.orders table. Oracle Database
compresses rows using warehouse (QUERY) compression after 14 days with no modifications.

ALTER TABLE oe.orders ILM ADD POLICY
 COLUMN STORE COMPRESS FOR QUERY
 ROW
 AFTER 14 DAYS OF NO MODIFICATION;

Example 19-8 Segment-Level Compression Tiering

This example specifies segment-level compression tiering for the oe.order_items table.
Oracle Database compresses segments using archive (ARCHIVE HIGH) compression after six
months with no modifications to any rows in the segment and no queries accessing any rows in
the segment.

ALTER TABLE oe.order_items ILM ADD POLICY
 COLUMN STORE COMPRESS FOR ARCHIVE HIGH
 SEGMENT
 AFTER 6 MONTHS OF NO ACCESS;

Note:

These examples specify Hybrid Columnar Compression, which is dependent on the
underlying storage system. See Oracle Database Licensing Information for more
information.

See Also:

• "Consider Using Table Compression" for information about different compression
levels

• "Improving Query Performance with Oracle Database In-Memory"

• Oracle Database VLDB and Partitioning Guide for more information about
segment-level and row-level compression tiering

Chapter 19
Guidelines for Managing Tables

19-22

19.2.9 Consider Using Attribute-Clustered Tables
An attribute-clustered table is a heap-organized table that stores data in close proximity on disk
based on user-specified clustering directives.

Note:

This feature is available starting with Oracle Database 12c Release 1 (12.1.0.2).

The directives are as follows:

• The CLUSTERING ... BY LINEAR ORDER directive orders data in a table according to specified
columns.

BY LINEAR ORDER clustering, which is the default, is best when queries qualify the prefix of
columns specified in the clustering clause. For example, if queries of sh.sales often
specify either a customer ID or both customer ID and product ID, then you could cluster
data in the table using the linear column order cust_id, prod_id. Note that the specified
columns can be in multiple tables.

• The CLUSTERING ... BY INTERLEAVED ORDER directive orders data in one or more tables
using a special algorithm, similar to a z-order function, that permits multicolumn I/O
reduction.

BY INTERLEAVED ORDER clustering is best when queries specify a variety of column
combinations. The columns can be in one or more tables. For example, if queries of
sh.sales specify different dimensions in different orders, then you could cluster data in the
sales table according to columns in these dimensions.

Attribute clustering is available for the following types of operations:

• Direct-path INSERT
See "Improving INSERT Performance with Direct-Path INSERT".

• Online redefinition

See "Redefining Tables Online".

• Data movement operations, such as ALTER TABLE ... MOVE operations

See "Moving a Table to a New Segment or Tablespace".

• Partition maintenance operations that create new segments, such as ALTER TABLE ...
MERGE PARTITION operations

See Oracle Database VLDB and Partitioning Guide.

Attribute clustering is ignored for conventional DML.

An attribute-clustered table has the following advantages:

• More optimized single block I/O is possible for table lookups when attribute clustering is
aligned with common index access. For example, optimized I/O is possible for an index
range scan on the leading column you chose for attribute clustering.

• Data ordering enables more optimal pruning for Exadata storage indexes and in-memory
min/max pruning.

• You can cluster fact tables based on joined attributes from other tables.

Chapter 19
Guidelines for Managing Tables

19-23

• Attribute clustering can improve data compression and in this way indirectly improve table
scan costs. When the same values are close to each other on disk, the database can more
easily compress them.

Attribute-clustered tables are often used in data warehousing environments, but they are useful
in any environment that can benefit from these advantages. Use the CLUSTERING clause in a
CREATE TABLE SQL statement to create an attribute-clustered table.

See Also:

• Oracle Database Concepts for conceptual information about attribute-clustered
tables

• Oracle Database Data Warehousing Guide for information about using attribute-
clustered tables

• Oracle Database SQL Language Reference

19.2.10 Consider Using Zone Maps
A zone is a set of contiguous data blocks on disk. A zone map tracks the minimum and
maximum of specified columns for all individual zones.

When a SQL statement contains predicates on columns stored in a zone map, the database
compares the predicate values to the minimum and maximum stored in the zone to determine
which zones to read during SQL execution. The primary benefit of zone maps is I/O reduction
for table scans. I/O is reduced by skipping table blocks that are not needed in the query result.
Use the CREATE MATERIALIZED ZONEMAP SQL statement to create a zone map.

Whenever attribute clustering is specified on a table, you can automatically create a zone map
on the clustered columns. Due to clustering, minimum and maximum values of the columns are
correlated with consecutive data blocks in the attribute-clustered table, which allows for more
effective I/O pruning using the associated zone map.

Note:

Zone maps and attribute-clustered tables can be used together or separately.

Starting with Oracle Database Release 21c, you can automatically create and maintain basic
zone maps for partitioned and non-partitioned heap tables. Use the
DBMS_AUTO_ZONEMAP.CONFIGURE procedure to manage automatic zone map creation and
maintenance.

See Also:

Oracle Database Licensing Information User Manual for details on which features are
supported for different editions and services.

Chapter 19
Guidelines for Managing Tables

19-24

See Also:

• "Consider Using Attribute-Clustered Tables"

• Oracle Database Concepts for conceptual information about zone maps

• Oracle Database Data Warehousing Guide for information about using zone
maps

• Oracle Database SQL Language Reference for information about the CREATE
MATERIALIZED ZONEMAP statement

19.2.11 Consider Storing Tables in the In-Memory Column Store
The In-Memory Column Store is an optional portion of the system global area (SGA) that
stores copies of tables, table partitions, and other database objects that is optimized for rapid
scans. In the In-Memory Column Store, table data is stored by column rather than row in the
SGA.

Note:

This feature is available starting with Oracle Database 12c Release 1 (12.1.0.2).

See Also:

• "Improving Query Performance with Oracle Database In-Memory"

• Oracle Database Concepts

19.2.12 Consider Using Invisible Columns
You can use invisible column to make changes to a table without disrupting applications that
use the table.

• Understand Invisible Columns
You can make individual table columns invisible. Any generic access of a table does not
show the invisible columns in the table.

• Invisible Columns and Column Ordering
There are special considerations for invisible columns and column ordering.

19.2.12.1 Understand Invisible Columns
You can make individual table columns invisible. Any generic access of a table does not show
the invisible columns in the table.

For example, the following operations do not display invisible columns in the output:

• SELECT * FROM statements in SQL

Chapter 19
Guidelines for Managing Tables

19-25

• DESCRIBE commands in SQL*Plus

• %ROWTYPE attribute declarations in PL/SQL

• Describes in Oracle Call Interface (OCI)

You can use a SELECT statement to display output for an invisible column only if you explicitly
specify the invisible column in the column list. Similarly, you can insert a value into an invisible
column only if you explicitly specify the invisible column in the column list for the INSERT
statement. If you omit the column list in the INSERT statement, then the statement can only
insert values into visible columns.

You can make a column invisible during table creation or when you add a column to a table,
and you can later alter the table to make the same column visible. You can also alter a table to
make a visible column invisible.

You might use invisible columns if you want to make changes to a table without disrupting
applications that use the table. After you add an invisible column to a table, queries and other
operations that must access the invisible column must refer to the column explicitly by name.
When you migrate the application to account for the invisible columns, you can make the
invisible columns visible.

Virtual columns can be invisible. Also, you can use an invisible column as a partitioning key
during table creation.

The following restrictions apply to invisible columns:

• The following types of tables cannot have invisible columns:

– External tables

– Cluster tables

– Temporary tables

• Attributes of user-defined types cannot be invisible.

Note:

Invisible columns are not the same as system-generated hidden columns. You can
make invisible columns visible, but you cannot make hidden columns visible.

See Also:

• "Creating Tables"

• "Adding Table Columns"

• "Modifying an Existing Column Definition"

19.2.12.2 Invisible Columns and Column Ordering
There are special considerations for invisible columns and column ordering.

Chapter 19
Guidelines for Managing Tables

19-26

The database usually stores columns in the order in which they were listed in the CREATE TABLE
statement. If you add a new column to a table, then the new column becomes the last column
in the table's column order.

When a table contains one or more invisible columns, the invisible columns are not included in
the column order for the table. Column ordering is important when all of the columns in a table
are accessed. For example, a SELECT * FROM statement displays columns in the table's column
order. Because invisible columns are not included in this type of generic access of a table, they
are not included in the column order.

When you make an invisible column visible, the column is included in the table's column order
as the last column. When you make a visible column invisible, the invisible column is not
included in the column order, and the order of the visible columns in the table might be re-
arranged.

For example, consider the following table with an invisible column:

CREATE TABLE mytable (a INT, b INT INVISIBLE, c INT);

Because column b is invisible, this table has the following column order:

Column Column Order

a 1

c 2

Next, make column b visible:

ALTER TABLE mytable MODIFY (b VISIBLE);

When you make column b visible, it becomes the last column in the table's column order.
Therefore, the table has the following column order:

Column Column Order

a 1

c 2

b 3

Consider another example that illustrates column ordering in tables with invisible columns. The
following table does not contain any invisible columns:

CREATE TABLE mytable2 (x INT, y INT, z INT);

This table has the following column order:

Column Column Order

x 1

y 2

z 3

Next, make column y invisible:

ALTER TABLE mytable2 MODIFY (y INVISIBLE);

Chapter 19
Guidelines for Managing Tables

19-27

When you make column y invisible, column y is no longer included in the table's column order,
and it changes the column order of column z. Therefore, the table has the following column
order:

Column Column Order

x 1

z 2

Make column y visible again:

ALTER TABLE mytable2 MODIFY (y VISIBLE);

Column y is now last in the table's column order:

Column Column Order

x 1

z 2

y 3

19.2.13 Consider Encrypting Columns That Contain Sensitive Data
You can encrypt individual table columns that contain sensitive data. Examples of sensitive
data include social security numbers, credit card numbers, and medical records. Column
encryption is transparent to your applications, with some restrictions.

Although encryption is not meant to solve all security problems, it does protect your data from
users who try to circumvent the security features of the database and access database files
directly through the operating system file system.

Column encryption uses the Transparent Data Encryption feature of Oracle Database, which
requires that you create a keystore to store the master encryption key for the database. The
keystore must be open before you can create a table with encrypted columns and before you
can store or retrieve encrypted data. When you open the keystore, it is available to all
sessions, and it remains open until you explicitly close it or until the database is shut down.

Transparent Data Encryption supports industry-standard encryption algorithms, including the
following types of encryption algorithms Advanced Encryption Standard (AES) and Triple Data
Encryption Standard (3DES) algorithms:

• Advanced Encryption Standard (AES)

• ARIA

• GHOST

• SEED

• Triple Data Encryption Standard (3DES)

See Oracle Database Transparent Data Encryption Guide for detailed information about the
supported encryption algorithms.

You choose the algorithm to use when you create the table. All encrypted columns in the table
use the same algorithm. The default is AES192. The encryption key length is implied by the
algorithm name. For example, the AES128 algorithm uses 128-bit keys.

Chapter 19
Guidelines for Managing Tables

19-28

If you plan on encrypting many columns in one or more tables, you may want to consider
encrypting an entire tablespace instead and storing these tables in that tablespace. Tablespace
encryption, which also uses the Transparent Data Encryption feature but encrypts at the
physical block level, can perform better than encrypting many columns. Another reason to
encrypt at the tablespace level is to address the following limitations of column encryption:

• Certain data types, such as object data types, are not supported for column encryption.

• You cannot use the transportable tablespace feature for a tablespace that includes tables
with encrypted columns.

• Other restrictions, which are detailed in Oracle Database Transparent Data Encryption
Guide.

See Also:

• Oracle Database Transparent Data Encryption Guide for more information about
Transparent Data Encryption

• Oracle Database Enterprise User Security Administrator's Guide for instructions
for creating and opening keystores

• Oracle Database SQL Language Reference for information about the CREATE
TABLE statement

• Oracle Real Application Clusters Administration and Deployment Guide for
information on using a keystore in an Oracle Real Application Clusters
environment

19.2.14 Understand Deferred Segment Creation
When you create heap-organized tables in a locally managed tablespace, the database defers
table segment creation until the first row is inserted.

In addition, segment creation is deferred for any LOB columns of the table, any indexes
created implicitly as part of table creation, and any indexes subsequently explicitly created on
the table.

The advantages of this space allocation method are the following:

• It saves a significant amount of disk space in applications that create hundreds or
thousands of tables upon installation, many of which might never be populated.

• It reduces application installation time.

There is a small performance penalty when the first row is inserted, because the new segment
must be created at that time.

To enable deferred segment creation, compatibility must be set to 11.2.0 or higher.

The new clauses for the CREATE TABLE statement are:

• SEGMENT CREATION DEFERRED
• SEGMENT CREATION IMMEDIATE

Chapter 19
Guidelines for Managing Tables

19-29

These clauses override the default setting of the DEFERRED_SEGMENT_CREATION initialization
parameter, TRUE, which defers segment creation. To disable deferred segment creation, set this
parameter to FALSE.

Note that when you create a table with deferred segment creation, the new table appears in
the *_TABLES views, but no entry for it appears in the *_SEGMENTS views until you insert the first
row.

You can verify deferred segment creation by viewing the SEGMENT_CREATED column in
*_TABLES, *_INDEXES, and *_LOBS views for nonpartitioned tables, and in *_TAB_PARTITIONS,
*_IND_PARTITIONS, and *_LOB_PARTITIONS views for partitioned tables.

Note:

With this new allocation method, it is essential that you do proper capacity planning
so that the database has enough disk space to handle segment creation when tables
are populated. See "Capacity Planning for Database Objects ".

The following example creates two tables to demonstrate deferred segment creation. The first
table uses the SEGMENT CREATION DEFERRED clause. No segments are created for it initially. The
second table uses the SEGMENT CREATION IMMEDIATE clause and, therefore, segments are
created for it immediately.

CREATE TABLE part_time_employees (
 empno NUMBER(8),
 name VARCHAR2(30),
 hourly_rate NUMBER (7,2)
)
 SEGMENT CREATION DEFERRED;

CREATE TABLE hourly_employees (
 empno NUMBER(8),
 name VARCHAR2(30),
 hourly_rate NUMBER (7,2)
)
 SEGMENT CREATION IMMEDIATE
 PARTITION BY RANGE(empno)
 (PARTITION empno_to_100 VALUES LESS THAN (100),
 PARTITION empno_to_200 VALUES LESS THAN (200));

The following query against USER_SEGMENTS returns two rows for HOURLY_EMPLOYEES, one for
each partition, but returns no rows for PART_TIME_EMPLOYEES because segment creation for
that table was deferred.

SELECT segment_name, partition_name FROM user_segments;

SEGMENT_NAME PARTITION_NAME
-------------------- ------------------------------
HOURLY_EMPLOYEES EMPNO_TO_100
HOURLY_EMPLOYEES EMPNO_TO_200

The USER_TABLES view shows that PART_TIME_EMPLOYEES has no segments:

SELECT table_name, segment_created FROM user_tables;

Chapter 19
Guidelines for Managing Tables

19-30

TABLE_NAME SEGMENT_CREATED
------------------------------ --
PART_TIME_EMPLOYEES NO
HOURLY_EMPLOYEES N/A

For the HOURLY_EMPLOYEES table, which is partitioned, the segment_created column is N/A
because the USER_TABLES view does not provide that information for partitioned tables. It is
available from the USER_TAB_PARTITIONS view, shown below.

SELECT table_name, segment_created, partition_name
 FROM user_tab_partitions;

TABLE_NAME SEGMENT_CREATED PARTITION_NAME
-------------------- -------------------- ------------------------------
HOURLY_EMPLOYEES YES EMPNO_TO_100
HOURLY_EMPLOYEES YES EMPNO_TO_200

The following statements add employees to these tables.

INSERT INTO hourly_employees VALUES (99, 'FRose', 20.00);
INSERT INTO hourly_employees VALUES (150, 'LRose', 25.00);

INSERT INTO part_time_employees VALUES (50, 'KReilly', 10.00);

Repeating the same SELECT statements as before shows that PART_TIME_EMPLOYEES now has a
segment, due to the insertion of row data. HOURLY_EMPLOYEES remains as before.

SELECT segment_name, partition_name FROM user_segments;

SEGMENT_NAME PARTITION_NAME
-------------------- ------------------------------
PART_TIME_EMPLOYEES
HOURLY_EMPLOYEES EMPNO_TO_100
HOURLY_EMPLOYEES EMPNO_TO_200

SELECT table_name, segment_created FROM user_tables;

TABLE_NAME SEGMENT_CREATED
-------------------- --------------------
PART_TIME_EMPLOYEES YES
HOURLY_EMPLOYEES N/A

The USER_TAB_PARTITIONS view does not change.

See Also:

Oracle Database SQL Language Reference for notes and restrictions on deferred
segment creation

Chapter 19
Guidelines for Managing Tables

19-31

19.2.15 Materializing Segments
The DBMS_SPACE_ADMIN package includes the MATERIALIZE_DEFERRED_SEGMENTS() procedure,
which enables you to materialize segments for tables, table partitions, and dependent objects
created with deferred segment creation enabled.

You can add segments as needed, rather than starting with more than you need and using
database resources unnecessarily.

The following example materializes segments for the EMPLOYEES table in the HR schema.

BEGIN
 DBMS_SPACE_ADMIN.MATERIALIZE_DEFERRED_SEGMENTS(
 schema_name => 'HR',
 table_name => 'EMPLOYEES');
END;

See Also:

Oracle Database PL/SQL Packages and Types Reference for details about this
procedure

19.2.16 Estimate Table Size and Plan Accordingly
Estimate the sizes of tables before creating them. Preferably, do this as part of database
planning. Knowing the sizes, and uses, for database tables is an important part of database
planning.

You can use the combined estimated size of tables, along with estimates for indexes, undo
space, and redo log files, to determine the amount of disk space that is required to hold an
intended database. From these estimates, you can make correct hardware purchases.

You can use the estimated size and growth rate of an individual table to better determine the
attributes of a tablespace and its underlying data files that are best suited for the table. This
can enable you to more easily manage the table disk space and improve I/O performance of
applications that use the table.

See Also:

"Capacity Planning for Database Objects "

19.2.17 Restrictions to Consider When Creating Tables
There are restrictions to consider when you create tables.

Here are some restrictions that may affect your table planning and usage:

• Tables containing object types cannot be imported into a pre-Oracle8 database.

Chapter 19
Guidelines for Managing Tables

19-32

• You cannot merge an exported table into a preexisting table having the same name in a
different schema.

• You cannot move types and extent tables to a different schema when the original data still
exists in the database.

• Oracle Database has a limit on the total number of columns that a table (or attributes that
an object type) can have. See Oracle Database Reference for this limit.

Further, when you create a table that contains user-defined type data, the database maps
columns of user-defined type to relational columns for storing the user-defined type data.
This causes additional relational columns to be created. This results in "hidden" relational
columns that are not visible in a DESCRIBE table statement and are not returned by a
SELECT * statement. Therefore, when you create an object table, or a relational table with
columns of REF, varray, nested table, or object type, be aware that the total number of
columns that the database actually creates for the table can be more than those you
specify.

See Also:

Oracle Database Object-Relational Developer's Guide for more information about
user-defined types

19.3 Creating Tables
Create tables using the SQL statement CREATE TABLE.

To create a new table in your schema, you must have the CREATE TABLE system privilege. To
create a table in another user's schema, you must have the CREATE ANY TABLE system
privilege. Additionally, the owner of the table must have a quota for the tablespace that
contains the table, or the UNLIMITED TABLESPACE system privilege.

• Example: Creating a Table
An example illustrates creating a table.

• Creating a Temporary Table
Temporary tables are useful in applications where a result set is to be buffered (temporarily
persisted), perhaps because it is constructed by running multiple DML operations. You can
create either a global temporary table or a private temporary table.

• Parallelizing Table Creation
When you specify the AS SELECT clause to create a table and populate it with data from
another table, you can use parallel execution.

See Also:

• Oracle Database SQL Language Reference for exact syntax of the CREATE TABLE
and other SQL statements discussed in this chapter

• Oracle Database JSON Developer’s Guide for an example of creating a table
with JSON columns

Chapter 19
Creating Tables

19-33

19.3.1 Example: Creating a Table
An example illustrates creating a table.

When you issue the following statement, you create a table named admin_emp in the hr
schema and store it in the admin_tbs tablespace:

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
and Modifying Tables.

CREATE TABLE hr.admin_emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 ssn NUMBER(9) ENCRYPT USING 'AES256',
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 photo BLOB,
 sal NUMBER(7,2),
 hrly_rate NUMBER(7,2) GENERATED ALWAYS AS (sal/2080),
 comm NUMBER(7,2),
 deptno NUMBER(3) NOT NULL
 CONSTRAINT admin_dept_fkey REFERENCES hr.departments
 (department_id),
 comments VARCHAR2(32767),
 status VARCHAR2(10) INVISIBLE)
 TABLESPACE admin_tbs
 STORAGE (INITIAL 50K);

COMMENT ON TABLE hr.admin_emp IS 'Enhanced employee table';

Note the following about this example:

• Integrity constraints are defined on several columns of the table.

• The STORAGE clause specifies the size of the first extent. See Oracle Database SQL
Language Reference for details on this clause.

• Encryption is defined on one column (ssn), through the Transparent Data Encryption
feature of Oracle Database. The keystore must therefore be open for this CREATE TABLE
statement to succeed.

• The photo column is of data type BLOB, which is a member of the set of data types called
large objects (LOBs). LOBs are used to store semi-structured data (such as an XML tree)
and unstructured data (such as the stream of bits in a color image).

• One column is defined as a virtual column (hrly_rate). This column computes the
employee's hourly rate as the yearly salary divided by 2,080. See Oracle Database SQL
Language Reference for a discussion of rules for virtual columns.

• The comments column is a VARCHAR2 column that is larger than 4000 bytes. Beginning with
Oracle Database 12c, the maximum size for the VARCHAR2, NVARCHAR2, and RAW data types
is increased to 32767 bytes.

Chapter 19
Creating Tables

19-34

https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html

To use extended data types, set the MAX_STRING_SIZE initialization parameter to EXTENDED.
See Oracle Database Reference for information about setting this parameter.

• The status column is invisible.

• A COMMENT statement is used to store a comment for the table. You query the
*_TAB_COMMENTS data dictionary views to retrieve such comments. See Oracle Database
SQL Language Reference for more information.

See Also:

• Oracle Database SQL Language Reference for a description of the data types
that you can specify for table columns

• "Managing Integrity Constraints"

• "Understand Invisible Columns"

• Oracle Database Transparent Data Encryption Guide for information about
Transparent Data Encryption

• Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about LOBs.

19.3.2 Creating a Temporary Table
Temporary tables are useful in applications where a result set is to be buffered (temporarily
persisted), perhaps because it is constructed by running multiple DML operations. You can
create either a global temporary table or a private temporary table.

• Overview of Temporary Tables
A temporary table holds data that exists only for the duration of a transaction or session.

• Considerations When Creating Temporary Tables
Be aware of some considerations when you create temporary tables.

• Creating Global Temporary Tables
Global temporary tables are permanent database objects that are stored on disk and
visible to all sessions connected to the database.

• Creating Private Temporary Tables
Private temporary tables are temporary database objects that are dropped at the end of a
transaction or session. Private temporary tables are stored in memory and each one is
visible only to the session that created it.

19.3.2.1 Overview of Temporary Tables
A temporary table holds data that exists only for the duration of a transaction or session.

Data in a temporary table is private to the session. Each session can only see and modify its
own data.

You can create either a global temporary table or a private temporary table. The following
table shows the essential differences between them.

Chapter 19
Creating Tables

19-35

Table 19-3 Temporary Table Characteristics

Characteristic Global Private

Naming rules Same as for permanent tables Must be prefixed with ORA$PTT_
Visibility of table definition All sessions Only the session that created the

table

Storage of table definition Disk Memory only

Types Transaction-specific (ON COMMIT
DELETE ROWS) or session-
specific (ON COMMIT PRESERVE
ROWS)

Transaction-specific (ON COMMIT
DROP DEFINITION) or session-
specific (ON COMMIT PRESERVE
DEFINITION)

A third type of temporary table, known as a cursor-duration temporary table, is created by
the database automatically for certain types of queries.

See Also:

Oracle Database SQL Tuning Guide to learn more about cursor-duration temporary
tables

19.3.2.2 Considerations When Creating Temporary Tables
Be aware of some considerations when you create temporary tables.

Unlike permanent tables, temporary tables do not automatically allocate a segment when they
are created. Instead, segments are allocated when the first INSERT (or CREATE TABLE AS
SELECT) is performed. Therefore, if a SELECT, UPDATE, or DELETE is performed before the first
INSERT, then the table appears to be empty.

DDL operations (except TRUNCATE) are allowed on an existing temporary table only if no
session is currently bound to that temporary table.

If you rollback a transaction, the data you entered is lost, although the table definition persists.

A transaction-specific temporary table allows only one transaction at a time. If there are several
autonomous transactions in a single transaction scope, each autonomous transaction can use
the table only as soon as the previous one commits.

Because the data in a temporary table is, by definition, temporary, backup and recovery of
temporary table data is not available in the event of a system failure. To prepare for such a
failure, you should develop alternative methods for preserving temporary table data.

19.3.2.3 Creating Global Temporary Tables
Global temporary tables are permanent database objects that are stored on disk and visible to
all sessions connected to the database.

• About Creating Global Temporary Tables
The metadata of a global temporary table is visible to multiple users and their sessions, but
its content is local to a session.

Chapter 19
Creating Tables

19-36

• Examples: Creating a Global Temporary Table
Examples illustrate how to create a global temporary table.

19.3.2.3.1 About Creating Global Temporary Tables
The metadata of a global temporary table is visible to multiple users and their sessions, but its
content is local to a session.

For example, assume a Web-based airlines reservations application allows a customer to
create several optional itineraries. Each itinerary is represented by a row in a global temporary
table. The application updates the rows to reflect changes in the itineraries. When the
customer decides which itinerary they want to use, the application moves the row for that
itinerary to a persistent table.

During the session, the itinerary data is private. At the end of the session, the optional
itineraries are dropped.

The definition of a global temporary table is visible to all sessions, but the data in a global
temporary table is visible only to the session that inserts the data into the table.

Use the CREATE GLOBAL TEMPORARY TABLE statement to create a global temporary table. The
ON COMMIT clause indicates if the data in the table is transaction-specific (the default) or
session-specific, the implications of which are as follows:

ON COMMIT Setting Implications

DELETE ROWS This creates a global temporary table that is transaction specific. A session
becomes bound to the global temporary table with a transactions first insert
into the table. The binding goes away at the end of the transaction. The
database truncates the table (delete all rows) after each commit.

PRESERVE ROWS This creates a global temporary table that is session specific. A session gets
bound to the global temporary table with the first insert into the table in the
session. This binding goes away at the end of the session or by issuing a
TRUNCATE of the table in the session. The database truncates the table when
you terminate the session.

19.3.2.3.2 Examples: Creating a Global Temporary Table
Examples illustrate how to create a global temporary table.

This statement creates a global temporary table that is transaction specific:

CREATE GLOBAL TEMPORARY TABLE admin_work_area_trans
 (startdate DATE,
 enddate DATE,
 class CHAR(20))
 ON COMMIT DELETE ROWS;

This statement creates a global temporary table that is session specific:

CREATE GLOBAL TEMPORARY TABLE admin_work_area_session
 (startdate DATE,
 enddate DATE,
 class CHAR(20))
 ON COMMIT PRESERVE ROWS;

Indexes can be created on global temporary tables. They are also temporary and the data in
the index has the same session or transaction scope as the data in the underlying table.

Chapter 19
Creating Tables

19-37

By default, rows in a global temporary table are stored in the default temporary tablespace of
the user who creates it. However, you can assign a global temporary table to another
tablespace upon creation of the global temporary table by using the TABLESPACE clause of
CREATE GLOBAL TEMPORARY TABLE. You can use this feature to conserve space used by global
temporary tables. For example, if you must perform many small global temporary table
operations and the default temporary tablespace is configured for sort operations and thus
uses a large extent size, these small operations will consume lots of unnecessary disk space.
In this case it is better to allocate a second temporary tablespace with a smaller extent size.

The following two statements create a temporary tablespace with a 64 KB extent size, and
then a new global temporary table in that tablespace.

CREATE TEMPORARY TABLESPACE tbs_t1
 TEMPFILE 'tbs_t1.f' SIZE 50m REUSE AUTOEXTEND ON
 MAXSIZE UNLIMITED
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 64K;

CREATE GLOBAL TEMPORARY TABLE admin_work_area
 (startdate DATE,
 enddate DATE,
 class CHAR(20))
 ON COMMIT DELETE ROWS
 TABLESPACE tbs_t1;

See Also:

• "About Temporary Tablespaces"

• Oracle Database SQL Language Reference for more information about using the
CREATE TABLE statement to create a global temporary table, including restrictions
that apply

19.3.2.4 Creating Private Temporary Tables
Private temporary tables are temporary database objects that are dropped at the end of a
transaction or session. Private temporary tables are stored in memory and each one is visible
only to the session that created it.

• About Creating Private Temporary Tables
The metadata and content of a private temporary table is visible only within the session
that created the it.

• Examples: Creating a Private Temporary Table
These examples illustrate creating a private temporary table.

19.3.2.4.1 About Creating Private Temporary Tables
The metadata and content of a private temporary table is visible only within the session that
created the it.

Private temporary tables are useful in the following situations:

• When an application stores temporary data in transient tables that are populated once,
read few times, and then dropped at the end of a transaction or session

Chapter 19
Creating Tables

19-38

• When a session is maintained indefinitely and must create different temporary tables for
different transactions

• When the creation of a temporary table must not start a new transaction or commit an
existing transaction

• When different sessions of the same user must use the same name for a temporary table

• When a temporary table is required for a read-only database

For example, assume a reporting application uses only one schema, but the application uses
multiple connections with the schema to run different reports. The sessions use private
temporary tables for calculations during individual transactions, and each session creates a
private temporary table with the same name. When each transaction commits, its temporary
data is no longer needed. Both the definition of a private temporary table and the data in a
private temporary table is visible only to the session that created the table.

Use the CREATE PRIVATE TEMPORARY TABLE statement to create a private temporary table. The
ON COMMIT clause indicates if the data in the table is transaction-specific (the default) or
session-specific, the implications of which are as follows:

ON COMMIT Setting Implications

DROP DEFINITION This creates a private temporary table that is transaction specific. All data in
the table is lost, and the table is dropped at the end of transaction.

PRESERVE
DEFINITION

This creates a private temporary table that is session specific. All data in the
table is lost, and the table is dropped at the end of the session that created the
table.

Note:

Names of private temporary tables must be prefixed according to the initialization
parameter private_temp_table_prefix.

19.3.2.4.2 Examples: Creating a Private Temporary Table
These examples illustrate creating a private temporary table.

This statement creates a private temporary table that is transaction specific:

CREATE PRIVATE TEMPORARY TABLE ORA$PTT_sales_ptt_transaction
 (time_id DATE,
 amount_sold NUMBER(10,2))
 ON COMMIT DROP DEFINITION;

This statement creates a private temporary table that is session specific:

CREATE PRIVATE TEMPORARY TABLE ORA$PTT_sales_ptt_session
 (time_id DATE,
 amount_sold NUMBER(10,2))
 ON COMMIT PRESERVE DEFINITION;

By default, rows in a private temporary table are stored in the default temporary tablespace of
the user who creates it. However, you can assign a private temporary table to another
temporary tablespace during the creation of the temporary table by using the TABLESPACE
clause of CREATE PRIVATE TEMPORARY TABLE statement.

Chapter 19
Creating Tables

19-39

See Also:

• "About Temporary Tablespaces"

• Oracle Database SQL Language Reference for more information about using the
CREATE TABLE statement to create a private temporary table, including restrictions
that apply

19.3.3 Parallelizing Table Creation
When you specify the AS SELECT clause to create a table and populate it with data from
another table, you can use parallel execution.

The CREATE TABLE...AS SELECT statement contains two parts: a CREATE part (DDL) and a
SELECT part (query). Oracle Database can parallelize both parts of the statement. The CREATE
part is parallelized if one of the following is true:

• A PARALLEL clause is included in the CREATE TABLE...AS SELECT statement

• An ALTER SESSION FORCE PARALLEL DDL statement is specified

The query part is parallelized if all of the following are true:

• The query includes a parallel hint specification (PARALLEL or PARALLEL_INDEX) or the
CREATE part includes the PARALLEL clause or the schema objects referred to in the query
have a PARALLEL declaration associated with them.

• At least one of the tables specified in the query requires either a full table scan or an index
range scan spanning multiple partitions.

If you parallelize the creation of a table, that table then has a parallel declaration (the PARALLEL
clause) associated with it. Any subsequent DML or queries on the table, for which
parallelization is possible, will attempt to use parallel execution.

The following simple statement parallelizes the creation of a table and stores the result in a
compressed format, using table compression:

CREATE TABLE hr.admin_emp_dept
 PARALLEL COMPRESS
 AS SELECT * FROM hr.employees
 WHERE department_id = 10;

In this case, the PARALLEL clause tells the database to select an optimum number of parallel
execution servers when creating the table.

See Also:

• Oracle Database VLDB and Partitioning Guide for detailed information on using
parallel execution

• "Managing Processes for Parallel SQL Execution"

Chapter 19
Creating Tables

19-40

19.4 Loading Tables
There are several techniques for loading data into tables.

Note:

The default size of the first extent of any new segment for a partitioned table is 8 MB
instead of 64 KB. This helps improve performance of inserts and queries on
partitioned tables. Although partitioned tables will start with a larger initial size, once
sufficient data is inserted, the space consumption will be the same as in previous
releases. You can override this default by setting the INITIAL size in the storage
clause for the table. This new default only applies to table partitions and LOB
partitions.

• Methods for Loading Tables
There are several means of inserting or initially loading data into your tables.

• Improving INSERT Performance with Direct-Path INSERT
When loading large amounts of data, you can improve load performance by using direct-
path INSERT.

• Using Conventional Inserts to Load Tables
During conventional INSERT operations, the database reuses free space in the table,
interleaving newly inserted data with existing data. During such operations, the database
also maintains referential integrity constraints. Unlike direct-path INSERT operations,
conventional INSERT operations do not require an exclusive lock on the table.

• Avoiding Bulk INSERT Failures with DML Error Logging
You can avoid bulk INSERT failures by using the DML error logging feature.

19.4.1 Methods for Loading Tables
There are several means of inserting or initially loading data into your tables.

Most commonly used are the following:

Chapter 19
Loading Tables

19-41

Method Description

SQL*Loader This Oracle utility program loads data from external files into tables of
an Oracle Database.

Starting with Oracle Database 12c, SQL*Loader supports express
mode. SQL*Loader express mode eliminates the need for a control
file. Express mode simplifies loading data from external files. With
express mode, SQL*Loader attempts to use the external table load
method. If the external table load method is not possible, then
SQL*Loader attempts to use direct path. If direct path is not possible,
then SQL*Loader uses conventional path.

SQL*Loader express mode automatically identifies the input
datatypes based on the table column types and controls parallelism.
SQL*Loader uses defaults to simplify usage, but you can override
many of the defaults with command line parameters. You optionally
can specify the direct path or the conventional path load method
instead of using express mode.

For information about SQL*Loader, see Oracle Database Utilities.

CREATE TABLE ... AS SELECT
statement (CTAS)

Using this SQL statement you can create a table and populate it with
data selected from another existing table, including an external table.

INSERT statement The INSERT statement enables you to add rows to a table, either by
specifying the column values or by specifying a subquery that selects
data from another existing table, including an external table.

One form of the INSERT statement enables direct-path INSERT,
which can improve performance, and is useful for bulk loading. See
"Improving INSERT Performance with Direct-Path INSERT".

If you are inserting a lot of data and want to avoid statement
termination and rollback if an error is encountered, you can insert
with DML error logging. See "Avoiding Bulk INSERT Failures with
DML Error Logging".

MERGE statement The MERGE statement enables you to insert rows into or update rows
of a table, by selecting rows from another existing table. If a row in
the new data corresponds to an item that already exists in the table,
then an UPDATE is performed, else an INSERT is performed.

Note:

Only a few details and examples of inserting data into tables are included in this
book. Oracle documentation specific to data warehousing and application
development provide more extensive information about inserting and manipulating
data in tables. See:

• Oracle Database Data Warehousing Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

See Also:

"Managing External Tables"

Chapter 19
Loading Tables

19-42

19.4.2 Improving INSERT Performance with Direct-Path INSERT
When loading large amounts of data, you can improve load performance by using direct-path
INSERT.

• About Direct-Path INSERT
Direct-path insert operations are typically faster than conventional insert operations.

• How Direct-Path INSERT Works
You can use direct-path INSERT on both partitioned and nonpartitioned tables.

• Loading Data with Direct-Path INSERT
You can load data with direct-path INSERT by using direct-path INSERT SQL statements,
inserting data in parallel mode, or by using the Oracle SQL*Loader utility in direct-path
mode. A direct-path INSERT can be done in either serial or parallel mode.

• Logging Modes for Direct-Path INSERT
Direct-path INSERT lets you choose whether to log redo and undo information during the
insert operation.

• Additional Considerations for Direct-Path INSERT

19.4.2.1 About Direct-Path INSERT
Direct-path insert operations are typically faster than conventional insert operations.

Oracle Database inserts data into a table in one of two ways:

• During conventional INSERT operations, the database reuses free space in the table,
interleaving newly inserted data with existing data. During such operations, the database
also maintains referential integrity constraints.

• During direct-path INSERT operations, the database appends the inserted data after
existing data in the table. Data is written directly into data files, bypassing the buffer cache.
Free space in the table is not reused, and referential integrity constraints are ignored.
Direct-path INSERT can perform significantly better than conventional insert.

The database can insert data either in serial mode, where one process executes the
statement, or in parallel mode, where multiple processes work together simultaneously to run a
single SQL statement. The latter is referred to as parallel execution.

The following are benefits of direct-path INSERT:

• During direct-path INSERT, you can disable the logging of redo and undo entries to reduce
load time. Conventional insert operations, in contrast, must always log such entries,
because those operations reuse free space and maintain referential integrity.

• Direct-path INSERT operations ensure atomicity of the transaction, even when run in
parallel mode. Atomicity cannot be guaranteed during parallel direct path loads (using
SQL*Loader).

When performing parallel direct path loads, one notable difference between SQL*Loader and
INSERT statements is the following: If errors occur during parallel direct path loads with
SQL*Loader, the load completes, but some indexes could be marked UNUSABLE at the end of
the load. Parallel direct-path INSERT, in contrast, rolls back the statement if errors occur during
index update.

Chapter 19
Loading Tables

19-43

Note:

A conventional INSERT operation checks for violations of NOT NULL constraints during
the insert. Therefore, if a NOT NULL constraint is violated for a conventional INSERT
operation, then the error is returned during the insert. A direct-path INSERT operation
checks for violations of NOT NULL constraints before the insert. Therefore, if a NOT
NULL constraint is violated for a direct-path INSERT operation, then the error is
returned before the insert.

19.4.2.2 How Direct-Path INSERT Works
You can use direct-path INSERT on both partitioned and nonpartitioned tables.

• Serial Direct-Path INSERT into Partitioned or Nonpartitioned Tables
The single process inserts data beyond the current high water mark of the table segment
or of each partition segment. (The high-water mark is the level at which blocks have
never been formatted to receive data.) When a COMMIT runs, the high-water mark is
updated to the new value, making the data visible to users.

• Parallel Direct-Path INSERT into Partitioned Tables
This situation is analogous to serial direct-path INSERT. Each parallel execution server is
assigned one or more partitions, with no more than one process working on a single
partition.

• Parallel Direct-Path INSERT into Nonpartitioned Tables
Each parallel execution server allocates a new temporary segment and inserts data into
that temporary segment. When a COMMIT runs, the parallel execution coordinator merges
the new temporary segments into the primary table segment, where it is visible to users.

19.4.2.2.1 Serial Direct-Path INSERT into Partitioned or Nonpartitioned Tables
The single process inserts data beyond the current high water mark of the table segment or of
each partition segment. (The high-water mark is the level at which blocks have never been
formatted to receive data.) When a COMMIT runs, the high-water mark is updated to the new
value, making the data visible to users.

19.4.2.2.2 Parallel Direct-Path INSERT into Partitioned Tables
This situation is analogous to serial direct-path INSERT. Each parallel execution server is
assigned one or more partitions, with no more than one process working on a single partition.

Each parallel execution server inserts data beyond the current high-water mark of its assigned
partition segment(s). When a COMMIT runs, the high-water mark of each partition segment is
updated to its new value, making the data visible to users.

19.4.2.2.3 Parallel Direct-Path INSERT into Nonpartitioned Tables
Each parallel execution server allocates a new temporary segment and inserts data into that
temporary segment. When a COMMIT runs, the parallel execution coordinator merges the new
temporary segments into the primary table segment, where it is visible to users.

Chapter 19
Loading Tables

19-44

19.4.2.3 Loading Data with Direct-Path INSERT
You can load data with direct-path INSERT by using direct-path INSERT SQL statements,
inserting data in parallel mode, or by using the Oracle SQL*Loader utility in direct-path mode.
A direct-path INSERT can be done in either serial or parallel mode.

• Serial Mode Inserts with SQL Statements
There are various ways to activate direct-path INSERT in serial mode with SQL.

• Parallel Mode Inserts with SQL Statements
When you are inserting in parallel mode, direct-path INSERT is the default. However, you
can insert in parallel mode using conventional INSERT by using the NOAPPEND PARALLEL hint.

19.4.2.3.1 Serial Mode Inserts with SQL Statements
There are various ways to activate direct-path INSERT in serial mode with SQL.

You can activate direct-path INSERT in serial mode with SQL in the following ways:

• If you are performing an INSERT with a subquery, specify the APPEND hint in each INSERT
statement, either immediately after the INSERT keyword, or immediately after the SELECT
keyword in the subquery of the INSERT statement.

• If you are performing an INSERT with the VALUES clause, specify the APPEND_VALUES hint in
each INSERT statement immediately after the INSERT keyword. Direct-path INSERT with the
VALUES clause is best used when there are hundreds of thousands or millions of rows to
load. The typical usage scenario is for array inserts using OCI. Another usage scenario
might be inserts in a FORALL statement in PL/SQL.

If you specify the APPEND hint (as opposed to the APPEND_VALUES hint) in an INSERT statement
with a VALUES clause, the APPEND hint is ignored and a conventional insert is performed.

The following is an example of using the APPEND hint to perform a direct-path INSERT:

INSERT /*+ APPEND */ INTO sales_hist SELECT * FROM sales WHERE cust_id=8890;

The following PL/SQL code fragment is an example of using the APPEND_VALUES hint:

FORALL i IN 1..numrecords
 INSERT /*+ APPEND_VALUES */ INTO orderdata
 VALUES(ordernum(i), custid(i), orderdate(i),shipmode(i), paymentid(i));
COMMIT;

19.4.2.3.2 Parallel Mode Inserts with SQL Statements
When you are inserting in parallel mode, direct-path INSERT is the default. However, you can
insert in parallel mode using conventional INSERT by using the NOAPPEND PARALLEL hint.

To run in parallel DML mode, the following requirements must be met:

• You must have Oracle Enterprise Edition installed.

• You must enable parallel DML in your session. To do this, submit the following statement:

ALTER SESSION { ENABLE | FORCE } PARALLEL DML;
• You must meet at least one of the following requirements:

– Specify the parallel attribute for the target table, either at create time or subsequently

– Specify the PARALLEL hint for each insert operation

Chapter 19
Loading Tables

19-45

– Set the database initialization parameter PARALLEL_DEGREE_POLICY to AUTO
To disable direct-path INSERT, specify the NOAPPEND hint in each INSERT statement. Doing so
overrides parallel DML mode.

Note:

You cannot query or modify data inserted using direct-path INSERT immediately after
the insert is complete. If you attempt to do so, an ORA-12838 error is generated. You
must first issue a COMMIT statement before attempting to read or modify the newly-
inserted data.

See Also:

• "Using Conventional Inserts to Load Tables"

• Oracle Database SQL Tuning Guide for more information on using hints

• Oracle Database SQL Language Reference for more information on the
subquery syntax of INSERT statements and for additional restrictions on using
direct-path INSERT

19.4.2.4 Logging Modes for Direct-Path INSERT
Direct-path INSERT lets you choose whether to log redo and undo information during the insert
operation.

You specify the logging mode for direct-path INSERT in the following ways:

• You can specify logging mode for a table, partition, index, or LOB storage at create time (in
a CREATE statement) or subsequently (in an ALTER statement).

• If you do not specify either LOGGING or NOLOGGING at these times:

– The logging attribute of a partition defaults to the logging attribute of its table.

– The logging attribute of a table or index defaults to the logging attribute of the
tablespace in which it resides.

– The logging attribute of LOB storage defaults to LOGGING if you specify CACHE for LOB
storage. If you do not specify CACHE, then the logging attributes defaults to that of the
tablespace in which the LOB values resides.

• You set the logging attribute of a tablespace in a CREATE TABLESPACE or ALTER TABLESPACE
statements.

Note:

If the database or tablespace is in FORCE LOGGING mode, then direct-path INSERT
always logs, regardless of the logging setting.

Chapter 19
Loading Tables

19-46

• Direct-Path INSERT with Logging
In this mode, Oracle Database performs full redo logging for instance and media recovery.

• Direct-Path INSERT without Logging
In this mode, Oracle Database inserts data without redo or undo logging. Instead, the
database logs a small number of block range invalidation redo records and periodically
updates the control file with information about the most recent direct write.

19.4.2.4.1 Direct-Path INSERT with Logging
In this mode, Oracle Database performs full redo logging for instance and media recovery.

If the database is in ARCHIVELOG mode, then you can archive redo logs to tape. If the database
is in NOARCHIVELOG mode, then you can recover instance crashes but not disk failures.

19.4.2.4.2 Direct-Path INSERT without Logging
In this mode, Oracle Database inserts data without redo or undo logging. Instead, the database
logs a small number of block range invalidation redo records and periodically updates the
control file with information about the most recent direct write.

Direct-path INSERT without logging improves performance. However, if you subsequently must
perform media recovery, the invalidation redo records mark a range of blocks as logically
corrupt, because no redo data was logged for them. Therefore, it is important that you back up
the data after such an insert operation.

You can significantly improve the performance of unrecoverable direct-path inserts by disabling
the periodic update of the control files. You do so by setting the initialization parameter
DB_UNRECOVERABLE_SCN_TRACKING to FALSE. However, if you perform an unrecoverable direct-
path insert with these control file updates disabled, you will no longer be able to accurately
query the database to determine if any data files are currently unrecoverable.

See Also:

• Oracle Database Backup and Recovery User's Guide for more information about
unrecoverable data files

• The section "Determining If a Backup Is Required After Unrecoverable
Operations" in Oracle Data Guard Concepts and Administration

19.4.2.5 Additional Considerations for Direct-Path INSERT
When using direct-path INSERT, consider issues related to compressed tables, index
maintenance, disk space, and locking.

• Compressed Tables and Direct-Path INSERT
If a table is created with the basic table compression, then you must use direct-path
INSERT to compress table data as it is loaded. If a table is created with advanced row,
warehouse, or archive compression, then best compression ratios are achieved with direct-
path INSERT.

• Index Maintenance with Direct-Path INSERT
Oracle Database performs index maintenance at the end of direct-path INSERT operations
on tables (partitioned or nonpartitioned) that have indexes.

Chapter 19
Loading Tables

19-47

• Space Considerations with Direct-Path INSERT
Direct-path INSERT requires more space than conventional path INSERT.

• Locking Considerations with Direct-Path INSERT
During direct-path INSERT, the database obtains exclusive locks on the table (or on all
partitions of a partitioned table).

19.4.2.5.1 Compressed Tables and Direct-Path INSERT
If a table is created with the basic table compression, then you must use direct-path INSERT to
compress table data as it is loaded. If a table is created with advanced row, warehouse, or
archive compression, then best compression ratios are achieved with direct-path INSERT.

See "Consider Using Table Compression" for more information.

19.4.2.5.2 Index Maintenance with Direct-Path INSERT
Oracle Database performs index maintenance at the end of direct-path INSERT operations on
tables (partitioned or nonpartitioned) that have indexes.

This index maintenance is performed by the parallel execution servers for parallel direct-path
INSERT or by the single process for serial direct-path INSERT. You can avoid the performance
impact of index maintenance by making the index unusable before the INSERT operation and
then rebuilding it afterward.

See Also:

"Making an Index Unusable"

19.4.2.5.3 Space Considerations with Direct-Path INSERT
Direct-path INSERT requires more space than conventional path INSERT.

All serial direct-path INSERT operations, as well as parallel direct-path INSERT into partitioned
tables, insert data above the high-water mark of the affected segment. This requires some
additional space.

Parallel direct-path INSERT into nonpartitioned tables requires even more space, because it
creates a temporary segment for each degree of parallelism. If the nonpartitioned table is not in
a locally managed tablespace in automatic segment-space management mode, you can
modify the values of the NEXT and PCTINCREASE storage parameter and MINIMUM EXTENT
tablespace parameter to provide sufficient (but not excess) storage for the temporary
segments. Choose values for these parameters so that:

• The size of each extent is not too small (no less than 1 MB). This setting affects the total
number of extents in the object.

• The size of each extent is not so large that the parallel INSERT results in wasted space on
segments that are larger than necessary.

After the direct-path INSERT operation is complete, you can reset these parameters to settings
more appropriate for serial operations.

Chapter 19
Loading Tables

19-48

19.4.2.5.4 Locking Considerations with Direct-Path INSERT
During direct-path INSERT, the database obtains exclusive locks on the table (or on all
partitions of a partitioned table).

As a result, users cannot perform any concurrent insert, update, or delete operations on the
table, and concurrent index creation and build operations are not permitted. Concurrent
queries, however, are supported, but the query will return only the information before the insert
operation.

19.4.3 Using Conventional Inserts to Load Tables
During conventional INSERT operations, the database reuses free space in the table,
interleaving newly inserted data with existing data. During such operations, the database also
maintains referential integrity constraints. Unlike direct-path INSERT operations, conventional
INSERT operations do not require an exclusive lock on the table.

Several other restrictions apply to direct-path INSERT operations that do not apply to
conventional INSERT operations. See Oracle Database SQL Language Reference for
information about these restrictions.

You can perform a conventional INSERT operation in serial mode or in parallel mode using the
NOAPPEND hint.

The following is an example of using the NOAPPEND hint to perform a conventional INSERT in
serial mode:

INSERT /*+ NOAPPEND */ INTO sales_hist SELECT * FROM sales WHERE cust_id=8890;

The following is an example of using the NOAPPEND hint to perform a conventional INSERT in
parallel mode:

INSERT /*+ NOAPPEND PARALLEL */ INTO sales_hist
 SELECT * FROM sales;

To run in parallel DML mode, the following requirements must be met:

• You must have Oracle Enterprise Edition installed.

• You must enable parallel DML in your session. To do this, submit the following statement:

ALTER SESSION { ENABLE | FORCE } PARALLEL DML;
• You must meet at least one of the following requirements:

– Specify the parallel attribute for the target table, either at create time or subsequently

– Specify the PARALLEL hint for each insert operation

– Set the database initialization parameter PARALLEL_DEGREE_POLICY to AUTO

19.4.4 Avoiding Bulk INSERT Failures with DML Error Logging
You can avoid bulk INSERT failures by using the DML error logging feature.

• Inserting Data with DML Error Logging
When you load a table using an INSERT statement with subquery, if an error occurs, the
statement is terminated and rolled back in its entirety. This can be wasteful of time and

Chapter 19
Loading Tables

19-49

system resources. For such INSERT statements, you can avoid this situation by using the
DML error logging feature.

• Error Logging Table Format
The error logging table has a specific format.

• Creating an Error Logging Table
You can create an error logging table manually, or you can use a PL/SQL package to
automatically create one for you.

• Error Logging Restrictions and Caveats
Some errors are not logged in error logging tables.

19.4.4.1 Inserting Data with DML Error Logging
When you load a table using an INSERT statement with subquery, if an error occurs, the
statement is terminated and rolled back in its entirety. This can be wasteful of time and system
resources. For such INSERT statements, you can avoid this situation by using the DML error
logging feature.

To use DML error logging, you add a statement clause that specifies the name of an error
logging table into which the database records errors encountered during DML operations.
When you add this error logging clause to the INSERT statement, certain types of errors no
longer terminate and roll back the statement. Instead, each error is logged and the statement
continues. You then take corrective action on the erroneous rows at a later time.

DML error logging works with INSERT, UPDATE, MERGE, and DELETE statements. This section
focuses on INSERT statements.

To insert data with DML error logging:

1. Create an error logging table. (Optional)

You can create the table manually or use the DBMS_ERRLOG package to automatically create
it for you. See "Creating an Error Logging Table" for details.

2. Execute an INSERT statement and include an error logging clause. This clause:

• Optionally references the error logging table that you created. If you do not provide an
error logging table name, the database logs to an error logging table with a default
name. The default error logging table name is ERR$_ followed by the first 25 characters
of the name of the table that is being inserted into.

• Optionally includes a tag (a numeric or string literal in parentheses) that gets added to
the error log to help identify the statement that caused the errors. If the tag is omitted,
a NULL value is used.

• Optionally includes a REJECT LIMIT subclause.

This subclause indicates the maximum number of errors that can be encountered
before the INSERT statement terminates and rolls back. You can also specify
UNLIMITED. The default reject limit is zero, which means that upon encountering the
first error, the error is logged and the statement rolls back. For parallel DML
operations, the reject limit is applied to each parallel execution server.

Note:

If the statement exceeds the reject limit and rolls back, the error logging table
retains the log entries recorded so far.

Chapter 19
Loading Tables

19-50

See Oracle Database SQL Language Reference for error logging clause syntax
information.

3. Query the error logging table and take corrective action for the rows that generated errors.

See "Error Logging Table Format", later in this section, for details on the error logging table
structure.

Example 19-9 Inserting Data with DML Error Logging

The following statement inserts rows into the DW_EMPL table and logs errors to the ERR_EMPL
table. The tag 'daily_load' is copied to each log entry. The statement terminates and rolls
back if the number of errors exceeds 25.

INSERT INTO dw_empl
 SELECT employee_id, first_name, last_name, hire_date, salary, department_id
 FROM employees
 WHERE hire_date > sysdate - 7
 LOG ERRORS INTO err_empl ('daily_load') REJECT LIMIT 25

For more examples, see Oracle Database SQL Language Reference and Oracle Database
Data Warehousing Guide.

19.4.4.2 Error Logging Table Format
The error logging table has a specific format.

The error logging table consists of two parts:

• A mandatory set of columns that describe the error. For example, one column contains the
Oracle error number.

Table 19-4 lists these error description columns.

• An optional set of columns that contain data from the row that caused the error. The
column names match the column names from the table being inserted into (the "DML
table").

The number of columns in this part of the error logging table can be zero, one, or more, up
to the number of columns in the DML table. If a column exists in the error logging table that
has the same name as a column in the DML table, the corresponding data from the
offending row being inserted is written to this error logging table column. If a DML table
column does not have a corresponding column in the error logging table, the column is not
logged. If the error logging table contains a column with a name that does not match a
DML table column, the column is ignored.

Because type conversion errors are one type of error that might occur, the data types of
the optional columns in the error logging table must be types that can capture any value
without data loss or conversion errors. (If the optional log columns were of the same types
as the DML table columns, capturing the problematic data into the log could suffer the
same data conversion problem that caused the error.) The database makes a best effort to
log a meaningful value for data that causes conversion errors. If a value cannot be derived,
NULL is logged for the column. An error on insertion into the error logging table causes the
statement to terminate.

Table 19-5 lists the recommended error logging table column data types to use for each
data type from the DML table. These recommended data types are used when you create
the error logging table automatically with the DBMS_ERRLOG package.

Chapter 19
Loading Tables

19-51

Table 19-4 Mandatory Error Description Columns

Column Name Data Type Description

ORA_ERR_NUMBER$ NUMBER Oracle error number

ORA_ERR_MESG$ VARCHAR2(2000) Oracle error message text

ORA_ERR_ROWID$ ROWID Rowid of the row in error (for update and
delete)

ORA_ERR_OPTYP$ VARCHAR2(2) Type of operation: insert (I), update (U),
delete (D)

Note: Errors from the update clause and
insert clause of a MERGE operation are
distinguished by the U and I values.

ORA_ERR_TAG$ VARCHAR2(2000) Value of the tag supplied by the user in
the error logging clause

Table 19-5 Error Logging Table Column Data Types

DML Table Column Type Error Logging Table Column Type Notes

NUMBER VARCHAR2(4000) Able to log conversion errors

CHAR/VARCHAR2(n) VARCHAR2(4000) Logs any value without information loss

NCHAR/NVARCHAR2(n) NVARCHAR2(4000) Logs any value without information loss

DATE/TIMESTAMP VARCHAR2(4000) Logs any value without information loss.
Converts to character format with the
default date/time format mask

RAW RAW(2000) Logs any value without information loss

ROWID UROWID Logs any rowid type

LONG/LOB Not supported

User-defined types Not supported

19.4.4.3 Creating an Error Logging Table
You can create an error logging table manually, or you can use a PL/SQL package to
automatically create one for you.

• Creating an Error Logging Table Automatically
You use the DBMS_ERRLOG package to automatically create an error logging table.

• Creating an Error Logging Table Manually
You use standard DDL to manually create the error logging table.

19.4.4.3.1 Creating an Error Logging Table Automatically
You use the DBMS_ERRLOG package to automatically create an error logging table.

The CREATE_ERROR_LOG procedure creates an error logging table with all of the mandatory error
description columns plus all of the columns from the named DML table, and performs the data
type mappings shown in Table 19-5.

The following statement creates the error logging table used in the previous example.

Chapter 19
Loading Tables

19-52

EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('DW_EMPL', 'ERR_EMPL');

See Oracle Database PL/SQL Packages and Types Reference for details on DBMS_ERRLOG.

19.4.4.3.2 Creating an Error Logging Table Manually
You use standard DDL to manually create the error logging table.

See "Error Logging Table Format" for table structure requirements. You must include all
mandatory error description columns. They can be in any order, but must be the first columns
in the table.

19.4.4.4 Error Logging Restrictions and Caveats
Some errors are not logged in error logging tables.

Oracle Database logs the following errors during DML operations:

• Column values that are too large

• Constraint violations (NOT NULL, unique, referential, and check constraints)

• Errors raised during trigger execution

• Errors resulting from type conversion between a column in a subquery and the
corresponding column of the table

• Partition mapping errors

• Certain MERGE operation errors (ORA-30926: Unable to get a stable set of rows for MERGE
operation.)

Some errors are not logged, and cause the DML operation to terminate and roll back. For a list
of these errors and for other DML logging restrictions, see the discussion of the
error_logging_clause in the INSERT section of Oracle Database SQL Language Reference.

• Space Considerations
Ensure that you consider space requirements before using DML error logging. You require
available space not only for the table being inserted into, but also for the error logging
table.

• Security
The user who issues the INSERT statement with DML error logging must have INSERT
privileges on the error logging table.

19.4.4.4.1 Space Considerations
Ensure that you consider space requirements before using DML error logging. You require
available space not only for the table being inserted into, but also for the error logging table.

19.4.4.4.2 Security
The user who issues the INSERT statement with DML error logging must have INSERT privileges
on the error logging table.

Chapter 19
Loading Tables

19-53

See Also:

Oracle Database SQL Language Reference and Oracle Database Data Warehousing
Guide for DML error logging examples.

19.5 Optimizing the Performance of Bulk Updates
The EXECUTE_UPDATE procedure in the DBMS_REDEFINITION package can optimize the
performance of bulk updates to a table. Performance is optimized because the updates are not
logged in the redo log.

The EXECUTE_UPDATE procedure automatically uses the components of online table redefinition,
such an interim table, a materialized view, and a materialized view log, to enable optimized
bulk updates to a table. The EXECUTE_UPDATE procedure also removes fragmentation of the
affected rows and ensures that the update is atomic. If the bulk updates raise any errors, then
you can use the ABORT_UPDATE procedure to undo the changes made by the EXECUTE_UPDATE
procedure.

The following restrictions apply to the EXECUTE_UPDATE procedure:

• All of the restrictions that apply to online table redefinition apply to the EXECUTE_UPDATE
procedure and the ABORT_UPDATE procedure.

• You cannot run more than one EXECUTE_UPDATE procedure on a table at the same time.

• While the EXECUTE_UPDATE procedure is running on a table, do not make DML changes on
the table from a different session. These DML changes are lost when the EXECUTE_UPDATE
procedure completes.

• The table cannot have any triggers that fire on UPDATE statements.

• The UPDATE statement passed to the EXECUTE_UPDATE procedure cannot have a table with a
partition-extended name.

• The table cannot have the following user-defined types: varrays, REFs, and nested tables.

• The table cannot have the following Oracle-supplied types: ANYTYPE, ANYDATASET, URI
types, SDO_TOPO_GEOMETRY, SDO_GEORASTER, and Expression.

• The table cannot have the following types of columns: hidden column, virtual column,
unused column, pseudocolumns, or identity column.

• The table cannot be an object table.

• The table cannot have a Virtual Private Database (VPD) policy.

• The table cannot have check constraints.

• The table cannot be enabled for row archival.

To optimize the performance of bulk updates:

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

2. Run the EXECUTE_UPDATE procedure, and specify the SQL statement that performs the bulk
update.

Chapter 19
Optimizing the Performance of Bulk Updates

19-54

If errors result, then use the ABORT_UPDATE procedure to undo the changes made by the
EXECUTE_UPDATE procedure.

3. Perform a back up of the updated data.

Because the EXECUTE_UPDATE procedure does not log changes in the redo log, recovery is
not possible until you perform a back up of the database or of the tablespace that contains
the updated table.

Example 19-10 Performing an Optimized Bulk Update of Product Data

This example performs a bulk update on the oe.order_items table. Specifically, it sets the
unit_price of each order item with a product_id of 3106 to 45. If the bulk update fails, then
the ABORT_UPDATE procedure cancels all of the changes performed by the EXECUTE_UPDATE
procedure, which returns the data to its state before the procedure was run.

DECLARE
 update_stmt VARCHAR2(300) := 'UPDATE oe.order_items SET unit_price = 45
 WHERE product_id = 3106';
BEGIN
 DBMS_REDEFINITION.EXECUTE_UPDATE(update_stmt);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE ('No Data found for SELECT');
 DBMS_REDEFINITION.ABORT_UPDATE(update_stmt);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE ('Reason for failure is'|| SQLERRM);
 IF (SQLCODE = 100)
 THEN
 DBMS_REDEFINITION.ABORT_UPDATE(update_stmt);
 END IF;
END;
/

19.6 Automatically Collecting Statistics on Tables
The PL/SQL package DBMS_STATS lets you generate and manage statistics for cost-based
optimization. You can use this package to gather, modify, view, export, import, and delete
statistics. You can also use this package to identify or name statistics that have been gathered.

Formerly, you enabled DBMS_STATS to automatically gather statistics for a table by specifying
the MONITORING keyword in the CREATE (or ALTER) TABLE statement. The MONITORING and
NOMONITORING keywords have been deprecated and statistics are collected automatically. If you
do specify these keywords, they are ignored.

Monitoring tracks the approximate number of INSERT, UPDATE, and DELETE operations for the
table since the last time statistics were gathered. Information about how many rows are
affected is maintained in the SGA, until periodically (about every three hours) SMON
incorporates the data into the data dictionary. This data dictionary information is made visible
through the DBA_TAB_MODIFICATIONS,ALL_TAB_MODIFICATIONS, or USER_TAB_MODIFICATIONS
views. The database uses these views to identify tables with stale statistics.

The default for the STATISTICS_LEVEL initialization parameter is TYPICAL, which enables
automatic statistics collection. Automatic statistics collection and the DBMS_STATS package
enable the optimizer to generate accurate execution plans. Setting the STATISTICS_LEVEL
initialization parameter to BASIC disables the collection of many of the important statistics

Chapter 19
Automatically Collecting Statistics on Tables

19-55

required by Oracle Database features and functionality. To disable monitoring of all tables, set
the STATISTICS_LEVEL initialization parameter to BASIC. Automatic statistics collection and the
DBMS_STATS package enable the optimizer to generate accurate execution plans.

See Also:

• Oracle Database Reference for detailed information on the STATISTICS_LEVEL
initialization parameter

• Oracle Database SQL Tuning Guide for information on managing optimizer
statistics

• Oracle Database PL/SQL Packages and Types Reference for information about
using the DBMS_STATS package

• "About Automated Maintenance Tasks" for information on using the Scheduler to
collect statistics automatically

19.7 Altering Tables
You alter a table using the ALTER TABLE statement. To alter a table, the table must be
contained in your schema, or you must have either the ALTER object privilege for the table or
the ALTER ANY TABLE system privilege.

Note:

Before altering a table, familiarize yourself with the consequences of doing so. The
Oracle Database SQL Language Reference lists many of these consequences in the
descriptions of the ALTER TABLE clauses.

If a view, materialized view, trigger, domain index, function-based index, check
constraint, function, procedure of package depends on a base table, the alteration of
the base table or its columns can affect the dependent object. See "Managing Object
Dependencies" for information about how the database manages dependencies.

• Reasons for Using the ALTER TABLE Statement
There are several reasons to use the ALTER TABLE statement.

• Altering Physical Attributes of a Table
There are several considerations when you alter the physical attributes of a table.

• Moving a Table to a New Segment or Tablespace
You can move a table to a new segment or tablespace to enable compression or to
perform data maintenance.

• Manually Allocating Storage for a Table
Oracle Database dynamically allocates additional extents for the data segment of a table,
as required. However, perhaps you want to allocate an additional extent for a table
explicitly. For example, in an Oracle Real Application Clusters environment, an extent of a
table can be allocated explicitly for a specific instance.

Chapter 19
Altering Tables

19-56

• Modifying an Existing Column Definition
Use the ALTER TABLE...MODIFY statement to modify an existing column definition. You can
modify column data type, default value, column constraint, column expression (for virtual
columns), column encryption, and visible/invisible property.

• Adding Table Columns
To add a column to an existing table, use the ALTER TABLE...ADD statement.

• Renaming Table Columns
Oracle Database lets you rename existing columns in a table. Use the RENAME COLUMN
clause of the ALTER TABLE statement to rename a column.

• Dropping Table Columns
You can drop columns that are no longer needed from a table, including an index-
organized table. This provides a convenient means to free space in a database, and
avoids your having to export/import data then re-create indexes and constraints.

• Placing a Table in Read-Only Mode
You can place a table in read-only mode with the ALTER TABLE...READ ONLY statement, and
return it to read/write mode with the ALTER TABLE...READ WRITE statement.

19.7.1 Reasons for Using the ALTER TABLE Statement
There are several reasons to use the ALTER TABLE statement.

You can use the ALTER TABLE statement to perform any of the following actions that affect a
table:

• Modify physical characteristics (INITRANS or storage parameters)

• Move the table to a new segment or tablespace

• Explicitly allocate an extent or deallocate unused space

• Add, drop, or rename columns, or modify an existing column definition (data type, length,
default value, NOT NULL integrity constraint, column expression (for virtual columns), and
encryption properties.)

• Modify the logging attributes of the table

• Modify the CACHE/NOCACHE attributes

• Add, modify or drop integrity constraints associated with the table

• Enable or disable integrity constraints or triggers associated with the table

• Modify the degree of parallelism for the table

• Rename a table

• Put a table in read-only mode and return it to read/write mode

• Add or modify index-organized table characteristics

• Alter the characteristics of an external table

• Add or modify LOB columns

• Add or modify object type, nested table, or varray columns

• Modify table partitions

Starting with Oracle Database 12c, you can perform some operations on more than two
partitions or subpartitions at a time, such as split partition and merge partitions operations.
See Oracle Database VLDB and Partitioning Guide for information.

Chapter 19
Altering Tables

19-57

Many of these operations are discussed in succeeding sections.

19.7.2 Altering Physical Attributes of a Table
There are several considerations when you alter the physical attributes of a table.

When altering the transaction entry setting INITRANS of a table, note that a new setting for
INITRANS applies only to data blocks subsequently allocated for the table.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new settings for the
other storage parameters (for example, NEXT, PCTINCREASE) affect only extents subsequently
allocated for the table. The size of the next extent allocated is determined by the current values
of NEXT and PCTINCREASE, and is not based on previous values of these parameters.

See Also:

The discussions of the physical attributes clause and the storage clause in Oracle
Database SQL Language Reference

19.7.3 Moving a Table to a New Segment or Tablespace
You can move a table to a new segment or tablespace to enable compression or to perform
data maintenance.

• About Moving a Table to a New Segment or Tablespace
The ALTER TABLE...MOVE [PARTITION|SUBPARTITION] statement enables you to move a
table, partition, or subpartition to change any physical storage attribute, such as
compression, or the tablespace, assuming you have the appropriate quota in the target
tablespace.

• Moving a Table
Use the ALTER TABLE...MOVE statement to move a table to a new segment or tablespace.

• Moving a Table Partition or Subpartition Online
Use the ALTER TABLE...MOVE PARTITION statement or ALTER TABLE...MOVE
SUBPARTITION statement to move a table partition or subpartition, respectively.

19.7.3.1 About Moving a Table to a New Segment or Tablespace
The ALTER TABLE...MOVE [PARTITION|SUBPARTITION] statement enables you to move a table,
partition, or subpartition to change any physical storage attribute, such as compression, or the
tablespace, assuming you have the appropriate quota in the target tablespace.

ALTER TABLE...MOVE statements support the ONLINE keyword, which enables data
manipulation language (DML) operations to run uninterrupted on the table, partition, or
subpartition that is being moved. The following statements move a table, partition, or
subpartition online:

• ALTER TABLE ... MOVE ... ONLINE
• ALTER TABLE ... MOVE PARTITION ... ONLINE
• ALTER TABLE ... MOVE SUBPARTITION ... ONLINE

Chapter 19
Altering Tables

19-58

Moving a table changes the rowids of the rows in the table. If you move a table and include the
ONLINE keyword and the UPDATE INDEXES clause, then the indexes remain usable during the
move operation. If you include the UPDATE INDEXES clause but not the ONLINE keyword, then
the indexes are usable immediately after the move operation. The UPDATE INDEXES clause can
only change the storage properties for the global indexes on the table or storage properties for
the index partitions of any global partitioned index on the table. If you do not include the UPDATE
INDEXES clause, then the changes to the rowids cause the indexes on the table to be marked
UNUSABLE, and DML accessing the table using these indexes receive an ORA-01502 error. In
this case, the indexes on the table must be dropped or rebuilt.

A move operation causes any statistics for the table to become invalid, and new statistics
should be collected after moving the table.

If the table includes LOB column(s), then this statement can be used to move the table along
with LOB data and LOB index segments (associated with this table) that are explicitly specified. If
not specified, then the default is to not move the LOB data and LOB index segments.

19.7.3.2 Moving a Table
Use the ALTER TABLE...MOVE statement to move a table to a new segment or tablespace.

When you use the ONLINE keyword with this statement, data manipulation language (DML)
operations can continue to run uninterrupted on the table that is being moved. If you do not
include the ONLINE keyword, then concurrent DML operations are not possible on the data in
the table during the move operation.

To move a table:

1. In SQL*Plus, connect as a user with the necessary privileges to alter the table.

See Oracle Database SQL Language Reference for information about the privileges
required to alter a table.

2. Run the ALTER TABLE ... MOVE statement.

Example 19-11 Moving a Table to a New Tablespace in Online Mode

The following statement moves the hr.jobs table online to a new segment and tablespace,
specifying new storage parameters. The ONLINE keyword means that DML operations can run
on the table uninterrupted during the move operation. The hr_tbs tablespace must exist.

ALTER TABLE hr.jobs MOVE ONLINE
 STORAGE (INITIAL 20K
 NEXT 40K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 0)
 TABLESPACE hr_tbs;

Example 19-12 Moving a Table and Updating the Table’s Indexes

Assume the following statements created a table and its indexes:

CREATE TABLE dept_exp (
 DEPTNO NUMBER (2) NOT NULL,
 DNAME VARCHAR2 (14),
 LOC VARCHAR2 (13))
 TABLESPACE tbs_1;

Chapter 19
Altering Tables

19-59

CREATE INDEX i1_deptno ON dept_exp(deptno) TABLESPACE tbs_1;
CREATE INDEX i2_dname ON dept_exp(dname) TABLESPACE tbs_1;

The following statement moves the table to a new tablespace (tbs_2) and compresses the
table. It also moves index i2_dbname to tablespace tbs_2 and specifies that both the
i1_deptno index and the i2_dname index are usable after the move operation.

ALTER TABLE dept_exp MOVE
 COMPRESS TABLESPACE tbs_2
 UPDATE INDEXES
 (i1_deptno TABLESPACE tbs_1,
 i2_dname TABLESPACE tbs_2);

Notice that this statement does not include the ONLINE keyword. However, the ONLINE keyword
is supported if DML operations must be able to run on the table uninterrupted during the move
operation, or if the indexes must be usable during the move operation.

Before running these statements, the tbs_1 and tbs_2 tablespaces must exist.

19.7.3.3 Moving a Table Partition or Subpartition Online
Use the ALTER TABLE...MOVE PARTITION statement or ALTER TABLE...MOVE SUBPARTITION
statement to move a table partition or subpartition, respectively.

When you use the ONLINE keyword with either of these statements, DML operations can
continue to run uninterrupted on the partition or subpartition that is being moved. If you do not
include the ONLINE keyword, then DML operations are not permitted on the data in the partition
or subpartition until the move operation is complete.

When you include the UPDATE INDEXES clause, these statements maintain both local and global
indexes during the move. Therefore, using the ONLINE keyword with these statements
eliminates the time it takes to regain partition performance after the move by maintaining global
indexes and manually rebuilding indexes.

Some restrictions apply to moving table partitions and subpartitions. See Oracle Database
SQL Language Reference for information about these restrictions.

To move a table partition or subpartition online:

1. In SQL*Plus, connect as a user with the necessary privileges to alter the table and move
the partition or subpartition.

See Oracle Database SQL Language Reference for information about the required
privileges.

See "Connecting to the Database with SQL*Plus".

2. Run the ALTER TABLE ... MOVE PARTITION or ALTER TABLE ... MOVE SUBPARTITION
statement.

Example 19-13 Moving a Table Partition to a New Segment

The following statement moves the sales_q4_2003 partition of the sh.sales table to a new
segment with advanced row compression and index maintenance included:

ALTER TABLE sales MOVE PARTITION sales_q4_2003
 ROW STORE COMPRESS ADVANCED UPDATE INDEXES ONLINE;

Chapter 19
Altering Tables

19-60

See Also:

• Oracle Database VLDB and Partitioning Guide

• Oracle Database SQL Language Reference

19.7.4 Manually Allocating Storage for a Table
Oracle Database dynamically allocates additional extents for the data segment of a table, as
required. However, perhaps you want to allocate an additional extent for a table explicitly. For
example, in an Oracle Real Application Clusters environment, an extent of a table can be
allocated explicitly for a specific instance.

You can allocate a new extent for a table using the ALTER TABLE...ALLOCATE EXTENT
statement.

You can also explicitly deallocate unused space using the DEALLOCATE UNUSED clause of ALTER
TABLE. This is described in "Reclaiming Unused Space".

19.7.5 Modifying an Existing Column Definition
Use the ALTER TABLE...MODIFY statement to modify an existing column definition. You can
modify column data type, default value, column constraint, column expression (for virtual
columns), column encryption, and visible/invisible property.

You can increase the length of an existing column, or decrease it, if all existing data satisfies
the new length. Beginning with Oracle Database 12c, you can specify a maximum size of
32767 bytes for the VARCHAR2, NVARCHAR2, and RAW data types. Before this release, the
maximum size was 4000 bytes for the VARCHAR2 and NVARCHAR2 data types, and 2000 bytes for
the RAW data type. To use extended data types, set the MAX_STRING_SIZE initialization
parameter to EXTENDED.

You can change a column from byte semantics to CHAR semantics or vice versa. You must set
the initialization parameter BLANK_TRIMMING=TRUE to decrease the length of a non-empty CHAR
column.

If you are modifying a table to increase the length of a column of data type CHAR, then realize
that this can be a time consuming operation and can require substantial additional storage,
especially if the table contains many rows. This is because the CHAR value in each row must be
blank-padded to satisfy the new column length.

If you modify the visible/invisible property of a column, then you cannot include any other
column modification options in the same SQL statement.

Example 19-14 Changing the Length of a Column to a Size Larger Than 4000 Bytes

This example changes the length of the product_description column in the
oe.product_information table to 32767 bytes.

ALTER TABLE oe.product_information MODIFY(product_description VARCHAR2(32767));

Chapter 19
Altering Tables

19-61

See Also:

• Oracle Database SQL Language Reference for additional information about
modifying table columns and additional restrictions

• Oracle Database Reference for information about the MAX_STRING_SIZE
initialization parameter

19.7.6 Adding Table Columns
To add a column to an existing table, use the ALTER TABLE...ADD statement.

The following statement alters the hr.admin_emp table to add a new column named bonus:

ALTER TABLE hr.admin_emp
 ADD (bonus NUMBER (7,2));

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
and Modifying Tables.

If a new column is added to a table, then the column is initially NULL unless you specify the
DEFAULT clause. If you specify the DEFAULT clause for a nullable column for some table types,
then the default value is stored as metadata, but the column itself is not populated with data.
However, subsequent queries that specify the new column are rewritten so that the default
value is returned in the result set. This behavior optimizes the resource usage and storage
requirements for the operation.

You can add a column with a NOT NULL constraint only if the table does not contain any rows, or
you specify a default value.

Note:

• If you enable basic table compression on a table, then you can add columns only
if you do not specify default values.

• If you enable advanced row compression on a table, then you can add columns
to that table with or without default values.

• If the new column is a virtual column, its value is determined by its column
expression. (Note that a virtual column's value is calculated only when it is
queried.)

Chapter 19
Altering Tables

19-62

https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html

See Also:

• Oracle Database SQL Language Reference for rules and restrictions for adding
table columns

• "Consider Using Table Compression"

• Oracle Database Concepts

• "Example: Creating a Table" for an example of a virtual column

19.7.7 Renaming Table Columns
Oracle Database lets you rename existing columns in a table. Use the RENAME COLUMN clause
of the ALTER TABLE statement to rename a column.

The new name must not conflict with the name of any existing column in the table. No other
clauses are allowed with the RENAME COLUMN clause.

The following statement renames the comm column of the hr.admin_emp table.

ALTER TABLE hr.admin_emp
 RENAME COLUMN comm TO commission;

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
and Modifying Tables.

As noted earlier, altering a table column can invalidate dependent objects. However, when you
rename a column, the database updates associated data dictionary tables to ensure that
function-based indexes and check constraints remain valid.

Oracle Database also lets you rename column constraints. This is discussed in "Renaming
Constraints".

Note:

The RENAME TO clause of ALTER TABLE appears similar in syntax to the RENAME
COLUMN clause, but is used for renaming the table itself.

19.7.8 Dropping Table Columns
You can drop columns that are no longer needed from a table, including an index-organized
table. This provides a convenient means to free space in a database, and avoids your having
to export/import data then re-create indexes and constraints.

Chapter 19
Altering Tables

19-63

https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html

Note:

You cannot drop all columns from a table, nor can you drop columns from a table
owned by SYS. Any attempt to do so results in an error.

• Removing Columns from Tables
When you issue an ALTER TABLE...DROP COLUMN statement, the column descriptor and the
data associated with the target column are removed from each row in the table. You can
drop multiple columns with one statement.

• Marking Columns Unused
If you are concerned about the length of time it could take to drop column data from all of
the rows in a large table, you can use the ALTER TABLE...SET UNUSED statement.

• Removing Unused Columns
The ALTER TABLE...DROP UNUSED COLUMNS statement is the only action allowed on unused
columns. It physically removes unused columns from the table and reclaims disk space.

• Dropping Columns in Compressed Tables
If you enable advanced row compression on a table, then you can drop table columns. If
you enable basic table compression only, then you cannot drop columns.

See Also:

Oracle Database SQL Language Reference for information about additional
restrictions and options for dropping columns from a table

19.7.8.1 Removing Columns from Tables
When you issue an ALTER TABLE...DROP COLUMN statement, the column descriptor and the
data associated with the target column are removed from each row in the table. You can drop
multiple columns with one statement.

The following statements are examples of dropping columns from the hr.admin_emp table. The
first statement drops only the sal column:

ALTER TABLE hr.admin_emp DROP COLUMN sal;

The next statement drops both the bonus and comm columns:

ALTER TABLE hr.admin_emp DROP (bonus, commission);

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
and Modifying Tables.

Chapter 19
Altering Tables

19-64

https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html

19.7.8.2 Marking Columns Unused
If you are concerned about the length of time it could take to drop column data from all of the
rows in a large table, you can use the ALTER TABLE...SET UNUSED statement.

This statement marks one or more columns as unused, but does not actually remove the target
column data or restore the disk space occupied by these columns. However, a column that is
marked as unused is not displayed in queries or data dictionary views, and its name is
removed so that a new column can reuse that name. In most cases, constraints, indexes, and
statistics defined on the column are also removed. The exception is that any internal indexes
for LOB columns that are marked unused are not removed.

To mark the hiredate and mgr columns as unused, execute the following statement:

ALTER TABLE hr.admin_emp SET UNUSED (hiredate, mgr);

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
and Modifying Tables.

You can later remove columns that are marked as unused by issuing an ALTER TABLE...DROP
UNUSED COLUMNS statement. Unused columns are also removed from the target table whenever
an explicit drop of any particular column or columns of the table is issued.

The data dictionary views USER_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS, or
DBA_UNUSED_COL_TABS can be used to list all tables containing unused columns. The COUNT field
shows the number of unused columns in the table.

SELECT * FROM DBA_UNUSED_COL_TABS;

OWNER TABLE_NAME COUNT
--------------------------- --------------------------- -----
HR ADMIN_EMP 2

For external tables, the SET UNUSED statement is transparently converted into an ALTER TABLE
DROP COLUMN statement. Because external tables consist of metadata only in the database, the
DROP COLUMN statement performs equivalently to the SET UNUSED statement.

19.7.8.3 Removing Unused Columns
The ALTER TABLE...DROP UNUSED COLUMNS statement is the only action allowed on unused
columns. It physically removes unused columns from the table and reclaims disk space.

In the ALTER TABLE statement that follows, the optional clause CHECKPOINT is specified. This
clause causes a checkpoint to be applied after processing the specified number of rows, in this
case 250. Checkpointing cuts down on the amount of undo logs accumulated during the drop
column operation to avoid a potential exhaustion of undo space.

ALTER TABLE hr.admin_emp DROP UNUSED COLUMNS CHECKPOINT 250;

Chapter 19
Altering Tables

19-65

https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
and Modifying Tables.

19.7.8.4 Dropping Columns in Compressed Tables
If you enable advanced row compression on a table, then you can drop table columns. If you
enable basic table compression only, then you cannot drop columns.

See Also:

"Consider Using Table Compression"

19.7.9 Placing a Table in Read-Only Mode
You can place a table in read-only mode with the ALTER TABLE...READ ONLY statement, and
return it to read/write mode with the ALTER TABLE...READ WRITE statement.

An example of a table for which read-only mode makes sense is a configuration table. If your
application contains configuration tables that are not modified after installation and that must
not be modified by users, your application installation scripts can place these tables in read-
only mode.

To place a table in read-only mode, you must have the ALTER TABLE privilege on the table or
the ALTER ANY TABLE privilege. In addition, the COMPATIBLE initialization parameter must be set
to 11.2.0 or higher.

The following example places the SALES table in read-only mode:

ALTER TABLE SALES READ ONLY;

The following example returns the table to read/write mode:

ALTER TABLE SALES READ WRITE;

When a table is in read-only mode, operations that attempt to modify table data are disallowed.
A SELECT column_list ON table_name statement on a table must always return the same
data set after a table or partition has been placed in read-only mode.

The following operations are not permitted on a read-only table:

• All DML operations on the read-only table or on a read-only partition

• TRUNCATE TABLE
• SELECT FOR UPDATE
• ALTER TABLE RENAME/DROP COLUMN
• DROP of a read-only partition or a partition of a read only table

• ALTER TABLE SET COLUMN UNUSED

Chapter 19
Altering Tables

19-66

https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html

• ALTER TABLE DROP/TRUNCATE/EXCHANGE (SUB)PARTITION
• ALTER TABLE UPGRADE INCLUDING DATA or ALTER TYPE CASCADE INCLUDING TABLE DATA for a

type with read-only table dependents

• Online redefinition

• FLASHBACK TABLE
The following operations are permitted on a read-only table:

• SELECT
• CREATE/ALTER/DROP INDEX
• ALTER TABLE ADD/MODIFY COLUMN
• ALTER TABLE ADD/MODIFY/DROP/ENABLE/DISABLE CONSTRAINT
• ALTER TABLE for physical property changes

• ALTER TABLE DROP UNUSED COLUMNS
• ALTER TABLE ADD/COALESCE/MERGE/MODIFY/MOVE/RENAME/SPLIT (SUB)PARTITION
• ALTER TABLE MOVE
• ALTER TABLE ENABLE ROW MOVEMENT and ALTER TABLE SHRINK
• RENAME TABLE and ALTER TABLE RENAME TO
• DROP TABLE
• ALTER TABLE DEALLOCATE UNUSED
• ALTER TABLE ADD/DROP SUPPLEMENTAL LOG

See Also:

• Oracle Database SQL Language Reference for more information about the ALTER
TABLE statement

• Oracle Database VLDB and Partitioning Guide for more information about read-
only partitions

19.8 Redefining Tables Online
You can modify the logical or physical structure of a table.

• About Redefining Tables Online
In any database system, it is occasionally necessary to modify the logical or physical
structure of a table to improve the performance of queries or DML, accommodate
application changes, or Manage storage. You can redefine tables online with the
DBMS_REDEFINITION package.

• Features of Online Table Redefinition
Online table redefinition enables you to modify a table in several different ways while the
table remains online.

Chapter 19
Redefining Tables Online

19-67

• Privileges Required for the DBMS_REDEFINITION Package
Execute privileges on the DBMS_REDEFINITION package are required to run subprograms in
the package. Execute privileges on the DBMS_REDEFINITION package are granted to
EXECUTE_CATALOG_ROLE.

• Restrictions for Online Redefinition of Tables
Several restrictions apply to online redefinition of tables.

• Performing Online Redefinition with the REDEF_TABLE Procedure
You can use the REDEF_TABLE procedure in the DBMS_REDEFINITION package to perform
online redefinition of a table's storage properties.

• Redefining Tables Online with Multiple Procedures in DBMS_REDEFINITION
You can use multiple procedures in the DBMS_REDEFINITION package to redefine tables
online.

• Results of the Redefinition Process
There are several results of the redefinition process.

• Performing Intermediate Synchronization
During the redefinition process, you can synchronize the interim table with the original
table if there were a large number of DML statements executed on the original table.

• Refreshing Dependent Materialized Views During Online Table Redefinition
To refresh dependent fast refreshable materialized views during online table redefinition,
set the refresh_dep_mviews parameter to Y in the REDEF_TABLE procedure or the
START_REDEF_TABLE procedure.

• Monitoring Online Table Redefinition Progress
You can query the V$ONLINE_REDEF view to monitor the progress of an online table
redefinition operation.

• Restarting Online Table Redefinition After a Failure
If online table redefinition fails, then you can check the DBA_REDEFINITION_STATUS view to
see the error information and restartable information.

• Rolling Back Online Table Redefinition
You can enable roll back of a table after online table redefinition to return the table to its
original definition and preserve DML changes made to the table.

• Terminating Online Table Redefinition and Cleaning Up After Errors
You can terminate the online redefinition process. Doing so drops temporary logs and
tables associated with the redefinition process. After this procedure is called, you can drop
the interim table and its dependent objects.

• Online Redefinition of One or More Partitions
You can redefine online one or more partitions of a table. This is useful if, for example, you
want to move partitions to a different tablespace and keep the partitions available for DML
during the operation.

• Online Table Redefinition Examples
Examples illustrate online redefinition of tables.

19.8.1 About Redefining Tables Online
In any database system, it is occasionally necessary to modify the logical or physical structure
of a table to improve the performance of queries or DML, accommodate application changes,
or Manage storage. You can redefine tables online with the DBMS_REDEFINITION package.

Oracle Database provides a mechanism to make table structure modifications without
significantly affecting the availability of the table. The mechanism is called online table

Chapter 19
Redefining Tables Online

19-68

redefinition. Redefining tables online provides a substantial increase in availability compared
to traditional methods of redefining tables.

When a table is redefined online, it is accessible to both queries and DML during much of the
redefinition process. Typically, the table is locked in the exclusive mode only during a very
small window that is independent of the size of the table and complexity of the redefinition, and
that is completely transparent to users. However, if there are many concurrent DML operations
during redefinition, then a longer wait might be necessary before the table can be locked.

Online table redefinition requires an amount of free space that is approximately equivalent to
the space used by the table being redefined. More space may be required if new columns are
added.

You can perform online table redefinition with the Oracle Enterprise Manager Cloud Control
(Cloud Control) Reorganize Objects wizard or with the DBMS_REDEFINITION package.

Note:

To invoke the Reorganize Objects wizard:

1. On the Tables page of Cloud Control, click in the Select column to select the
table to redefine.

2. In the Actions list, select Reorganize.

3. Click Go.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a description of the
DBMS_REDEFINITION package

19.8.2 Features of Online Table Redefinition
Online table redefinition enables you to modify a table in several different ways while the table
remains online.

Online table redefinition enables you to:

• Modify the storage parameters of a table or cluster

• Move a table or cluster to a different tablespace

Note:

If it is not important to keep a table available for DML when moving it to another
tablespace, then you can use the simpler ALTER TABLE MOVE command. See
"Moving a Table to a New Segment or Tablespace".

• Add, modify, or drop one or more columns in a table or cluster

Chapter 19
Redefining Tables Online

19-69

• Add or drop partitioning support (non-clustered tables only)

• Change partition structure

• Change physical properties of a single table partition or subpartition, including moving it to
a different tablespace in the same schema

Starting with Oracle Database 12c, you can move a partition or subpartition online without
using online table redefinition. DML operations can continue to run uninterrupted on the
partition or subpartition that is being moved. See "Moving a Table to a New Segment or
Tablespace".

• Change physical properties of a materialized view log or an Oracle Database Advanced
Queuing queue table

Note:

The REDEF_TABLE procedure in the DBMS_REDEFINITION package does not
support changing physical properties of an Oracle Database Advanced Queuing
queue table.

• Add support for parallel queries

• Re-create a table or cluster to reduce fragmentation

Note:

In many cases, online segment shrink is an easier way to reduce fragmentation.
See "Reclaiming Unused Space".

• Change the organization of a normal table (heap organized) to an index-organized table, or
do the reverse.

• Convert a relational table into a table with object columns, or do the reverse.

• Convert an object table into a relational table or a table with object columns, or do the
reverse.

• Compress, or change the compression type for, a table, partition, index key, or LOB
columns.

• Convert LOB columns from BasicFiles LOB storage to SecureFiles LOB storage, or do the
reverse.

• You can enable roll back of a table after online table redefinition to return the table to its
original definition and preserve DML changes made to the table.

• You can refresh dependent fast refreshable materialized views during online table
redefinition by setting the refresh_dep_mviews parameter to Y in the REDEF_TABLE
procedure or the START_REDEF_TABLE procedure.

• You can query the V$ONLINE_REDEF view to monitor the progress of an online table
redefinition operation.

• When online table redefinition fails, often you can correct the problem that caused the
failure and restart the online redefinition process where it last stopped.

You can combine two or more of the usage examples above into one operation. See "Example
8" in "Online Table Redefinition Examples" for an example.

Chapter 19
Redefining Tables Online

19-70

19.8.3 Privileges Required for the DBMS_REDEFINITION Package
Execute privileges on the DBMS_REDEFINITION package are required to run subprograms in the
package. Execute privileges on the DBMS_REDEFINITION package are granted to
EXECUTE_CATALOG_ROLE.

In addition, for a user to redefine a table in the user's schema using the package, the user
must be granted the following privileges:

• CREATE TABLE
• CREATE MATERIALIZED VIEW
The CREATE TRIGGER privilege is also required to execute the COPY_TABLE_DEPENDENTS
procedure.

For a user to redefine a table in other schemas using the package, the user must be granted
the following privileges:

• CREATE ANY TABLE
• ALTER ANY TABLE
• DROP ANY TABLE
• LOCK ANY TABLE
• SELECT ANY TABLE
The following additional privileges are required to execute COPY_TABLE_DEPENDENTS on tables in
other schemas:

• CREATE ANY TRIGGER
• CREATE ANY INDEX

19.8.4 Restrictions for Online Redefinition of Tables
Several restrictions apply to online redefinition of tables.

The following restrictions apply to the online redefinition of tables:

• If the table is to be redefined using primary key or pseudo-primary keys (unique keys or
constraints with all component columns having not null constraints), then the post-
redefinition table must have the same primary key or pseudo-primary key columns. If the
table is to be redefined using rowids, then the table must not be an index-organized table.

• After redefining a table that has a materialized view log, the subsequent refresh of any
dependent materialized view must be a complete refresh.

There is an exception to this restriction. When online table redefinition uses the
REDEF_TABLE or START_REDEF_TABLE procedure, and the refresh_dep_mviews parameter is
set to Y in the procedure, any dependent materialized views configured for incremental
refresh are refreshed during the online table redefinition operation.

• Tables that are replicated in an n-way master configuration can be redefined, but horizontal
subsetting (subset of rows in the table), vertical subsetting (subset of columns in the table),
and column transformations are not allowed.

• The overflow table of an index-organized table cannot be redefined online independently.

Chapter 19
Redefining Tables Online

19-71

• Tables for which Flashback Data Archive is enabled cannot be redefined online. You
cannot enable Flashback Data Archive for the interim table.

• Tables with LONG columns can be redefined online, but those columns must be converted to
CLOBS. Also, LONG RAW columns must be converted to BLOBS. Tables with LOB columns are
acceptable.

• On a system with sufficient resources for parallel execution, and in the case where the
interim table is not partitioned, redefinition of a LONG column to a LOB column can be
executed in parallel, provided that:

– The segment used to store the LOB column in the interim table belongs to a locally
managed tablespace with Automatic Segment Space Management (ASSM) enabled.

– There is a simple mapping from one LONG column to one LOB column, and the interim
table has only one LOB column.

In the case where the interim table is partitioned, the normal methods for parallel execution
for partitioning apply.

• Tables in the SYS and SYSTEM schema cannot be redefined online.

• Temporary tables cannot be redefined.

• A subset of rows in the table cannot be redefined.

• Only simple deterministic expressions, sequences, and SYSDATE can be used when
mapping the columns in the interim table to those of the original table. For example,
subqueries are not allowed.

• If new columns are being added as part of the redefinition and there are no column
mappings for these columns, then they must not be declared NOT NULL until the redefinition
is complete.

• There cannot be any referential constraints between the table being redefined and the
interim table.

• Table redefinition cannot be done NOLOGGING.

• For materialized view logs and queue tables, online redefinition is restricted to changes in
physical properties. No horizontal or vertical subsetting is permitted, nor are any column
transformations. The only valid value for the column mapping string is NULL.

• You cannot perform online redefinition on a partition that includes one or more nested
tables.

• You can convert a VARRAY to a nested table with the CAST operator in the column mapping.
However, you cannot convert a nested table to a VARRAY.

• When the columns in the col_mapping parameter of the
DBMS_REDEFINITION.START_REDEF_TABLE procedure include a sequence, the orderby_cols
parameter must be NULL.

• For tables with a Virtual Private Database (VPD) security policy, when the copy_vpd_opt
parameter is specified as DBMS_REDEFINITION.CONS_VPD_AUTO, the following restrictions
apply:

– The column mapping string between the original table and interim table must be NULL
or '*'.

– No VPD policies can exist on the interim table.

See "Handling Virtual Private Database (VPD) Policies During Online Redefinition". Also,
see Oracle Database Security Guide for information about VPD policies.

Chapter 19
Redefining Tables Online

19-72

• Online redefinition cannot run on multiple tables concurrently in separate
DBMS_REDEFINITION sessions if the tables are related by reference partitioning.

See Oracle Database VLDB and Partitioning Guide for more information about reference
partitioning.

• Online redefinition of an object table or XMLType table can cause a dangling REF in other
tables if those other tables have a REF column that references the redefined table.

See Oracle Database SQL Language Reference for more information about dangling REFs.

• Tables that use Oracle Label Security (OLS) cannot be redefined online.

See Oracle Label Security Administrator’s Guide.

• Tables with fine-grained access control cannot be redefined online.

• Tables that use Oracle Real Application Security cannot be redefined online.

See Oracle Database Security Guide.

19.8.5 Performing Online Redefinition with the REDEF_TABLE Procedure
You can use the REDEF_TABLE procedure in the DBMS_REDEFINITION package to perform online
redefinition of a table's storage properties.

The REDEF_TABLE procedure enables you to perform online redefinition a table's storage
properties in a single step when you want to change the following properties:

• Tablespace changes, including a tablespace change for a table, partition, index, or LOB
columns

• Compression type changes, including a compression type change for a table, partition,
index key, or LOB columns

• For LOB columns, a change to SECUREFILE or BASICFILE storage

When your online redefinition operation is not limited to these changes, you must perform
online redefinition of the table using multiple steps. The steps include invoking multiple
procedures in the DBMS_REDEFINITION package, including the following procedures:
CAN_REDEF_TABLE, START_REDEF_TABLE, COPY_TABLE_DEPENDENTS, and FINISH_REDEF_TABLE.

Note:

Online table redefinition rollback is not supported when the REDEF_TABLE procedure is
used to redefine a table.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for procedure details

• Example 1 in "Online Table Redefinition Examples"

• "Performing Online Redefinition with Multiple Procedures in
DBMS_REDEFINITION" for more information

Chapter 19
Redefining Tables Online

19-73

19.8.6 Redefining Tables Online with Multiple Procedures in
DBMS_REDEFINITION

You can use multiple procedures in the DBMS_REDEFINITION package to redefine tables online.

• Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION
You can use multiple procedures in the DBMS_REDEFINITION package to perform online
redefinition of a table.

• Constructing a Column Mapping String
The column mapping string that you pass as an argument to START_REDEF_TABLE contains
a comma-delimited list of column mapping pairs.

• Handling Virtual Private Database (VPD) Policies During Online Redefinition
If the original table being redefined has VPD policies specified for it, then you can use the
copy_vpd_opt parameter in the START_REDEF_TABLE procedure to handle these policies
during online redefinition.

• Creating Dependent Objects Automatically
You use the COPY_TABLE_DEPENDENTS procedure to automatically create dependent objects
on the interim table.

• Creating Dependent Objects Manually
If you manually create dependent objects on the interim table with SQL*Plus or Cloud
Control, then you must use the REGISTER_DEPENDENT_OBJECT procedure to register the
dependent objects. Registering dependent objects enables the redefinition completion
process to restore dependent object names to what they were before redefinition.

19.8.6.1 Performing Online Redefinition with Multiple Procedures in
DBMS_REDEFINITION

You can use multiple procedures in the DBMS_REDEFINITION package to perform online
redefinition of a table.

To redefine a table online using multiple steps:

1. Choose the redefinition method: by key or by rowid

By key—Select a primary key or pseudo-primary key to use for the redefinition. Pseudo-
primary keys are unique keys with all component columns having NOT NULL constraints.
For this method, the versions of the tables before and after redefinition should have the
same primary key columns. This is the preferred and default method of redefinition.

By rowid—Use this method if no key is available. In this method, a hidden column named
M_ROW$$ is added to the post-redefined version of the table. It is recommended that this
column be dropped or marked as unused after the redefinition is complete. The final phase
of redefinition automatically sets this column unused. You can then use the ALTER TABLE ...
DROP UNUSED COLUMNS statement to drop it.

You cannot use this method on index-organized tables.

2. Verify that the table can be redefined online by invoking the CAN_REDEF_TABLE procedure. If
the table is not a candidate for online redefinition, then this procedure raises an error
indicating why the table cannot be redefined online.

3. Create an empty interim table (in the same schema as the table to be redefined) with all of
the desired logical and physical attributes. If columns are to be dropped, then do not
include them in the definition of the interim table. If a column is to be added, then add the

Chapter 19
Redefining Tables Online

19-74

column definition to the interim table. If a column is to be modified, then create it in the
interim table with the properties that you want.

It is not necessary to create the interim table with all the indexes, constraints, grants, and
triggers of the table being redefined, because these will be defined in step 7 when you
copy dependent objects.

4. If you are redefining a partitioned table with the rowid method, then enable row movement
on the interim table.

ALTER TABLE ... ENABLE ROW MOVEMENT;
5. (Optional) If you are redefining a large table and want to improve the performance of the

next step by running it in parallel, issue the following statements:

ALTER SESSION FORCE PARALLEL DML PARALLEL degree-of-parallelism;
ALTER SESSION FORCE PARALLEL QUERY PARALLEL degree-of-parallelism;

6. Start the redefinition process by calling START_REDEF_TABLE, providing the following:

• The schema and table name of the table to be redefined in the uname and orig_table
parameters, respectively

• The interim table name in the int_table parameter

• A column mapping string that maps the columns of table to be redefined to the
columns of the interim table in the col_mapping parameter

See "Constructing a Column Mapping String" for details.

• The redefinition method in the options_flag parameter

Package constants are provided for specifying the redefinition method.
DBMS_REDEFINITION.CONS_USE_PK is used to indicate that the redefinition should be
done using primary keys or pseudo-primary keys.
DBMS_REDEFINITION.CONS_USE_ROWID is use to indicate that the redefinition should be
done using rowids. If this argument is omitted, the default method of redefinition
(CONS_USE_PK) is assumed.

• Optionally, the columns to be used in ordering rows in the orderby_cols parameter

• The partition name or names in the part_name parameter when redefining one partition
or multiple partitions of a partitioned table

See "Online Redefinition of One or More Partitions" for details.

• The method for handling Virtual Private Database (VPD) policies defined on the table
in the copy_vpd_opt parameter

See "Handling Virtual Private Database (VPD) Policies During Online Redefinition" for
details.

Because this process involves copying data, it may take a while. The table being redefined
remains available for queries and DML during the entire process.

Note:

• You can query the DBA_REDEFINITION_OBJECTS view to list the objects
currently involved in online redefinition.

• If START_REDEF_TABLE fails for any reason, you must call ABORT_REDEF_TABLE,
otherwise subsequent attempts to redefine the table will fail.

Chapter 19
Redefining Tables Online

19-75

7. Copy dependent objects (such as triggers, indexes, materialized view logs, grants, and
constraints) and statistics from the table being redefined to the interim table, using one of
the following two methods. Method 1 is the preferred method because it is more automatic,
but there may be times that you would choose to use method 2. Method 1 also enables
you to copy table statistics to the interim table.

• Method 1: Automatically Creating Dependent Objects

Use the COPY_TABLE_DEPENDENTS procedure to automatically create dependent objects
on the interim table. This procedure also registers the dependent objects. Registering
the dependent objects enables the identities of these objects and their copied
counterparts to be automatically swapped later as part of the redefinition completion
process. The result is that when the redefinition is completed, the names of the
dependent objects will be the same as the names of the original dependent objects.

For more information, see "Creating Dependent Objects Automatically".

• Method 2: Manually Creating Dependent Objects

You can manually create dependent objects on the interim table and then register
them. For more information, see "Creating Dependent Objects Manually".

Note:

In Oracle9i, you were required to manually create the triggers, indexes,
grants, and constraints on the interim table, and there may still be situations
where you want to or must do so. In such cases, any referential constraints
involving the interim table (that is, the interim table is either a parent or a
child table of the referential constraint) must be created disabled. When
online redefinition completes, the referential constraint is automatically
enabled. In addition, until the redefinition process is either completed or
terminated, any trigger defined on the interim table does not execute.

8. Execute the FINISH_REDEF_TABLE procedure to complete the redefinition of the table.
During this procedure, the original table is locked in exclusive mode for a very short time,
independent of the amount of data in the original table. However, FINISH_REDEF_TABLE will
wait for all pending DML to commit before completing the redefinition.

You can use the dml_lock_timeout parameter in the FINISH_REDEF_TABLE procedure to
specify how long the procedure waits for pending DML to commit. The parameter specifies
the number of seconds to wait before the procedure ends gracefully. When you specify a
non-NULL value for this parameter, you can restart the FINISH_REDEF_TABLE procedure, and
it continues from the point at which it timed out. When the parameter is set to NULL, the
procedure does not time out. In this case, if you stop the procedure manually, then you
must terminate the online table redefinition using the ABORT_REDEF_TABLE procedure and
start over from step 6.

9. Wait for any long-running queries against the interim (former) table to complete, and then
drop the interim table.

If you drop the interim table while there are active queries running against it, you may
encounter error ORA-08103 object no longer exists.

Chapter 19
Redefining Tables Online

19-76

See Also:

• "Online Table Redefinition Examples"

• Oracle Database PL/SQL Packages and Types Reference for package details

19.8.6.2 Constructing a Column Mapping String
The column mapping string that you pass as an argument to START_REDEF_TABLE contains a
comma-delimited list of column mapping pairs.

Each pair has the following syntax:

[expression] column_name

The column_name term indicates a column in the interim table. The optional expression can
include columns from the table being redefined, constants, operators, function or method calls,
and so on, in accordance with the rules for expressions in a SQL SELECT statement. However,
only simple deterministic subexpressions—that is, subexpressions whose results do not vary
between one evaluation and the next—plus sequences and SYSDATE can be used. No
subqueries are permitted. In the simplest case, the expression consists of just a column name
from the table being redefined.

If an expression is present, its value is placed in the designated interim table column during
redefinition. If the expression is omitted, it is assumed that both the table being redefined and
the interim table have a column named column_name, and the value of that column in the table
being redefined is placed in the same column in the interim table.

For example, if the override column in the table being redefined is to be renamed to
override_commission, and every override commission is to be raised by 2%, the correct
column mapping pair is:

override*1.02 override_commission

If you supply '*' or NULL as the column mapping string, it is assumed that all the columns (with
their names unchanged) are to be included in the interim table. Otherwise, only those columns
specified explicitly in the string are considered. The order of the column mapping pairs is
unimportant.

For examples of column mapping strings, see "Online Table Redefinition Examples".

Data Conversions

When mapping columns, you can convert data types, with some restrictions.

If you provide '*' or NULL as the column mapping string, only the implicit conversions permitted
by SQL are supported. For example, you can convert from CHAR to VARCHAR2, from INTEGER to
NUMBER, and so on.

To perform other data type conversions, including converting from one object type to another or
one collection type to another, you must provide a column mapping pair with an expression
that performs the conversion. The expression can include the CAST function, built-in functions
like TO_NUMBER, conversion functions that you create, and so on.

Chapter 19
Redefining Tables Online

19-77

19.8.6.3 Handling Virtual Private Database (VPD) Policies During Online Redefinition
If the original table being redefined has VPD policies specified for it, then you can use the
copy_vpd_opt parameter in the START_REDEF_TABLE procedure to handle these policies during
online redefinition.

You can specify the following values for this parameter:

Parameter Value Description

DBMS_REDEFINITION.CONS_VPD_NONE Specify this value if there are no VPD policies on
the original table. This value is the default.

If this value is specified, and VPD policies exist for
the original table, then an error is raised.

DBMS_REDEFINITION.CONS_VPD_AUTO Specify this value to copy the VPD policies
automatically from the original table to the new
table during online redefinition.

DBMS_REDEFINITION.CONS_VPD_MANUAL Specify this value to copy the VPD policies
manually from the original table to the new table
during online redefinition.

If there are no VPD policies specified for the original table, then specify the default value of
DBMS_REDEFINITION.CONS_VPD_NONE for the copy_vpd_opt parameter.

Specify DBMS_REDEFINITION.CONS_VPD_AUTO for the copy_vpd_opt parameter when the column
names and column types are the same for the original table and the interim table. To use this
value, the column mapping string between original table and interim table must be NULL or '*'.
When you use DBMS_REDEFINITION.CONS_VPD_AUTO for the copy_vpd_opt parameter, only the
table owner and the user invoking online redefinition can access the interim table during online
redefinition.

Specify DBMS_REDEFINITION.CONS_VPD_MANUAL for the copy_vpd_opt parameter when either of
the following conditions are true:

• There are VPD policies specified for the original table, and there are column mappings
between the original table and the interim table.

• You want to add or modify VPD policies during online redefinition of the table.

To copy the VPD policies manually, you specify the VPD policies for the interim table before
you run the START_REDEF_TABLE procedure. When online redefinition of the table is complete,
the redefined table has the modified policies.

See Also:

• "Restrictions for Online Redefinition of Tables" for restrictions related to tables
with VPD policies

• "Online Table Redefinition Examples" for an example that redefines a table with
VPD policies

• Oracle Database Security Guide

Chapter 19
Redefining Tables Online

19-78

19.8.6.4 Creating Dependent Objects Automatically
You use the COPY_TABLE_DEPENDENTS procedure to automatically create dependent objects on
the interim table.

You can discover if errors occurred while copying dependent objects by checking the
num_errors output argument. If the ignore_errors argument is set to TRUE, the
COPY_TABLE_DEPENDENTS procedure continues copying dependent objects even if an error is
encountered when creating an object. You can view these errors by querying the
DBA_REDEFINITION_ERRORS view.

Reasons for errors include:

• A lack of system resources

• A change in the logical structure of the table that would require recoding the dependent
object.

See Example 3 in "Online Table Redefinition Examples" for a discussion of this type of
error.

If ignore_errors is set to FALSE, the COPY_TABLE_DEPENDENTS procedure stops copying objects
as soon as any error is encountered.

After you correct any errors you can again attempt to copy the dependent objects by
reexecuting the COPY_TABLE_DEPENDENTS procedure. Optionally you can create the objects
manually and then register them as explained in "Creating Dependent Objects Manually". The
COPY_TABLE_DEPENDENTS procedure can be used multiple times as necessary. If an object has
already been successfully copied, it is not copied again.

19.8.6.5 Creating Dependent Objects Manually
If you manually create dependent objects on the interim table with SQL*Plus or Cloud Control,
then you must use the REGISTER_DEPENDENT_OBJECT procedure to register the dependent
objects. Registering dependent objects enables the redefinition completion process to restore
dependent object names to what they were before redefinition.

The following are examples changes that require you to create dependent objects manually:

• Moving an index to another tablespace

• Modifying the columns of an index

• Modifying a constraint

• Modifying a trigger

• Modifying a materialized view log

When you run the REGISTER_DEPENDENT_OBJECT procedure, you must specify that type of the
dependent object with the dep_type parameter. You can specify the following constants in this
parameter:

• DEMS_REDEFINITION.CONS_INDEX when the dependent object is an index

• DEMS_REDEFINITION.CONS_CONSTRAINT when the dependent object type is a constraint

• DEMS_REDEFINITION.CONS_TRIGGER when the dependent object is a trigger

• DEMS_REDEFINITION.CONS_MVLOG when the dependent object is a materialized view log

Chapter 19
Redefining Tables Online

19-79

You would also use the REGISTER_DEPENDENT_OBJECT procedure if the COPY_TABLE_DEPENDENTS
procedure failed to copy a dependent object and manual intervention is required.

You can query the DBA_REDEFINITION_OBJECTS view to determine which dependent objects are
registered. This view shows dependent objects that were registered explicitly with the
REGISTER_DEPENDENT_OBJECT procedure or implicitly with the COPY_TABLE_DEPENDENTS
procedure. Only current information is shown in the view.

The UNREGISTER_DEPENDENT_OBJECT procedure can be used to unregister a dependent object
on the table being redefined and on the interim table.

Note:

• Manually created dependent objects do not have to be identical to their
corresponding original dependent objects. For example, when manually creating
a materialized view log on the interim table, you can log different columns. In
addition, the interim table can have more or fewer dependent objects.

• If the table being redefined includes named LOB segments, then the LOB
segment names are replaced by system-generated names during online
redefinition. To avoid this, you can create the interim table with new LOB
segment names.

See Also:

Example 4 in "Online Table Redefinition Examples" for an example that registers a
dependent object

19.8.7 Results of the Redefinition Process
There are several results of the redefinition process.

The following are the end results of the redefinition process:

• The original table is redefined with the columns, indexes, constraints, grants, triggers, and
statistics of the interim table, assuming that either REDEF_TABLE or COPY_TABLE_DEPENDENTS
was used.

• Dependent objects that were registered, either explicitly using
REGISTER_DEPENDENT_OBJECT or implicitly using COPY_TABLE_DEPENDENTS, are renamed
automatically so that dependent object names on the redefined table are the same as
before redefinition.

Note:

If no registration is done or no automatic copying is done, then you must
manually rename the dependent objects.

Chapter 19
Redefining Tables Online

19-80

• The referential constraints involving the interim table now involve the redefined table and
are enabled.

• Any indexes, triggers, materialized view logs, grants, and constraints defined on the
original table (before redefinition) are transferred to the interim table and are dropped when
the user drops the interim table. Any referential constraints involving the original table
before the redefinition now involve the interim table and are disabled.

• Some PL/SQL objects, views, synonyms, and other table-dependent objects may become
invalidated. Only those objects that depend on elements of the table that were changed
are invalidated. For example, if a PL/SQL procedure queries only columns of the redefined
table that were unchanged by the redefinition, the procedure remains valid. See "Managing
Object Dependencies" for more information about schema object dependencies.

19.8.8 Performing Intermediate Synchronization
During the redefinition process, you can synchronize the interim table with the original table if
there were a large number of DML statements executed on the original table.

After the redefinition process has been started by calling START_REDEF_TABLE and before
FINISH_REDEF_TABLE has been called, a large number of DML statements might have been
executed on the original table. If you know that this is the case, then it is recommended that
you periodically synchronize the interim table with the original table.

When you start an online table redefinition operation with the START_REDEF_TABLE procedure, it
creates an internal materialized view to facilitate synchronization. This internal materialized
view is refreshed to synchronize the interim table with the original table.

To synchronize the interim table with the original table:

• Run the SYNC_INTERIM_TABLE procedure in the DBMS_REDEFINITION package.

Calling this procedure reduces the time taken by FINISH_REDEF_TABLE to complete the
redefinition process. There is no limit to the number of times that you can call
SYNC_INTERIM_TABLE.

The small amount of time that the original table is locked during FINISH_REDEF_TABLE is
independent of whether SYNC_INTERIM_TABLE has been called.

19.8.9 Refreshing Dependent Materialized Views During Online Table
Redefinition

To refresh dependent fast refreshable materialized views during online table redefinition, set
the refresh_dep_mviews parameter to Y in the REDEF_TABLE procedure or the
START_REDEF_TABLE procedure.

A dependent materialized view is any materialized view that is defined on the table being
redefined. Performing a complete refresh of dependent materialized views after online table
redefinition can be time consuming. You can incrementally refresh fast refreshable materialized
views during online table redefinition to make the operation more efficient.

The following restrictions apply to refreshing a dependent materialized view:

• The materialized view must be fast refreshable.

• ROWID materialized views are not supported.

• Materialized join views are not supported.

Chapter 19
Redefining Tables Online

19-81

A complete refresh of dependent ROWID materialized views and materialized join views is
required after online table redefinition.

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Perform an online redefinition of a table using one of the following methods:

• Running the REDEF_TABLE procedure and ensuring that the refresh_dep_mviews
parameter is set to Y.
With this method, fast refresh of dependent materialized views is performed once at
the end of the redefinition operation.

• Starting online table redefinition with the START_REDEF_TABLE procedure and ensuring
that the refresh_dep_mviews parameter is set to Y. This method ends with the
FINISH_REDEF_TABLE procedure.
With this method, fast refresh of dependent materialized views is performed when the
START_REDEF_TABLE procedure is run, each time the SYNC_INTERIM_TABLE procedure is
run, and when the FINISH_REDEF_TABLE procedure is run.

Note:

– You can check the value of the refresh_dep_mviews parameter for an
online table redefinition operation by querying the
DBA_REDEFINITION_STATUS view.

– You can check on the progress of a refresh that is run automatically
during online table redefinition by querying the
REFRESH_STATEMENT_SQL_ID and REFRESH_STATEMENT columns in the
V$ONLINE_REDEF view. You can use the SQL_ID value returned in the
REFRESH_STATEMENT_SQL_ID column to monitor the progress of a refresh
in views such as the V$SQL view and the V$SQL_MONITOR view.

– If you want to change the value of the refresh_dep_mviews parameter
during an online table redefinition operation, then you can use the
DBMS_REDEFINITION.SET_PARAM procedure to reset the parameter.

Example 19-15 Refreshing Dependent Materialized Views While Running the
REDEF_TABLE Procedure

hr.employees

BEGIN
 DBMS_REDEFINITION.REDEF_TABLE(
 uname => 'HR',
 tname => 'EMPLOYEES',
 table_compression_type => 'ROW STORE COMPRESS ADVANCED',
 refresh_dep_mviews => 'Y');
END;
/

Chapter 19
Redefining Tables Online

19-82

Example 19-16 Refreshing Dependent Materialized Views While Starting with the
START_REDEF_TABLE Procedure

Assume that you want to redefine the oe.orders table. The table definition is:

CREATE TABLE oe.orders(
 order_id NUMBER(12),
 order_date TIMESTAMP WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6));

This example redefines the table to increase the size of the order_mode column to 16. The
interim table definition is:

CREATE TABLE oe.int_orders(
 order_id NUMBER(12),
 order_date TIMESTAMP WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(16),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6));

Also assume that this table has dependent materialized views. The table has a materialized
view log created with the following statement:

CREATE MATERIALIZED VIEW LOG ON oe.orders WITH PRIMARY KEY, ROWID;

The oe.orders table has the following dependent materialized views:

CREATE MATERIALIZED VIEW oe.orders_pk REFRESH FAST AS
 SELECT * FROM oe.orders;

CREATE MATERIALIZED VIEW oe.orders_rowid REFRESH FAST WITH ROWID AS
 SELECT * FROM oe.orders;

The oe.orders_pk materialized view is a fast refreshable, primary key materialized view.
Therefore, it can be refreshed during online table redefinition.

The oe.orders_rowid materialized view is fast refreshable, but it is a ROWID materialized view.
Therefore, it cannot be refreshed during online table redefinition.

Complete the following steps to perform online table redefinition on the oe.orders table while
refreshing the oe.orders_pk materialized view:

1. Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'oe',

Chapter 19
Redefining Tables Online

19-83

 orig_table => 'orders',
 int_table => 'int_orders',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK,
 refresh_dep_mviews => 'Y');
END;
/

2. Copy dependent objects. (Automatically create any triggers, indexes, materialized view
logs, grants, and constraints on oe.int_orders.)

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

3. Check the redefinition status:

SELECT REDEFINITION_ID, REFRESH_DEP_MVIEWS
 FROM DBA_REDEFINITION_STATUS
 WHERE BASE_TABLE_OWNER = 'OE' AND BASE_TABLE_NAME = 'ORDERS';

4. Perform DML on the original table. For example:

INSERT INTO oe.orders VALUES(3000,sysdate,'direct',102,1,42283.2,154,NULL);
COMMIT;

5. Synchronize the interim table oe.int_orders. This step refreshes the dependent
materialized view oe.orders_pk.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'OE',
 orig_table => 'ORDERS',
 int_table => 'INT_ORDERS');
END;
/

6. Check the refresh status of the dependent materialized views for the oe.orders table:

SELECT m.OWNER, m.MVIEW_NAME, m.STALENESS, m.LAST_REFRESH_DATE
 FROM ALL_MVIEWS m, ALL_MVIEW_DETAIL_RELATIONS d
 WHERE m.OWNER=d.OWNER AND
 m. MVIEW_NAME=d.MVIEW_NAME AND
 d.DETAILOBJ_OWNER = 'OE' AND
 d.DETAILOBJ_NAME = 'ORDERS';

The oe.orders_pk materialized view was refreshed during the previous step, so it has
FRESH for its STALENESS status. The oe.orders_rowid materialized view was not refreshed
during the previous step, so it has NEEDS_COMPLILE for its STALENESS status.

7. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(

Chapter 19
Redefining Tables Online

19-84

 uname => 'OE',
 orig_table => 'ORDERS',
 int_table => 'INT_ORDERS');
END;
/

You can query the oe.orders_pk materialized view to confirm that the new row inserted
into the oe.orders table exist in the materialized view because it was refreshed during
online table redefinition.

Related Topics

• Monitoring Online Table Redefinition Progress
You can query the V$ONLINE_REDEF view to monitor the progress of an online table
redefinition operation.

19.8.10 Monitoring Online Table Redefinition Progress
You can query the V$ONLINE_REDEF view to monitor the progress of an online table redefinition
operation.

During the process of redefining a table online, some operations can take a long time to
execute. While these operations are executing, you can query the V$ONLINE_REDEF view for
detailed information about the progress of the operation. For example, it can take a long time
for the DBMS_REDEFINITION.START_REDEF_TABLE procedure to load data into the interim table.

The V$ONLINE_REDEF view provides a percentage complete value for the operation in the
PROGRESS column. This view shows the current step in the total number of steps required to
complete the operation in the OPERATION column. For example, if there are 10 steps in the
operation, then this column might show Step 6 out of 10. The view also includes a
SUBOPERATION column and a DETAILED_MESSAGE column for more granular information about
the current operation.

During the online table redefinition process, an internal materialized view is created, and this
materialized view is refreshed during some operations to keep the original table and the interim
table synchronized. You can check on the progress of a refresh that is run automatically during
online table redefinition by querying the REFRESH_STATEMENT_SQL_ID and REFRESH_STATEMENT
columns in the V$ONLINE_REDEF view. You can use the SQL_ID value returned in the
REFRESH_STATEMENT_SQL_ID column to monitor the progress of a refresh in views such as the
V$SQL view and the V$SQL_MONITOR view.

1. Connect to the database in a session that is separate from the session that is performing
online table redefinition.

2. Query the V$ONLINE_REDEF view.

Example 19-17 Monitoring Online Table Redefinition Progress

This example redefines the Oracle-supplied sh.customers table by adding a
cust_alt_phone_number column.

CREATE TABLE customers (
 cust_id NUMBER NOT NULL,
 cust_first_name VARCHAR2(20) NOT NULL,
 cust_last_name VARCHAR2(40) NOT NULL,
 cust_gender CHAR(1) NOT NULL,
 cust_year_of_birth NUMBER(4) NOT NULL,
 cust_marital_status VARCHAR2(20),

Chapter 19
Redefining Tables Online

19-85

 cust_street_address VARCHAR2(40) NOT NULL,
 cust_postal_code VARCHAR2(10) NOT NULL,
 cust_city VARCHAR2(30) NOT NULL,
 cust_city_id NUMBER NOT NULL,
 cust_state_province VARCHAR2(40) NOT NULL,
 cust_state_province_id NUMBER NOT NULL,
 country_id NUMBER NOT NULL,
 cust_main_phone_number VARCHAR2(25) NOT NULL,
 cust_income_level VARCHAR2(30),
 cust_credit_limit NUMBER,
 cust_email VARCHAR2(50),
 cust_total VARCHAR2(14) NOT NULL,
 cust_total_id NUMBER NOT NULL,
 cust_src_id NUMBER,
 cust_eff_from DATE,
 cust_eff_to DATE,
 cust_valid VARCHAR2(1));

This table contains a large amount of data, and some of the operations in the online table
redefinition process will take time. This example monitors various operations by querying the
V$ONLINE_REDEF view.

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Create an interim table sh.int_customers.

CREATE TABLE sh.int_customers (
 cust_id NUMBER NOT NULL,
 cust_first_name VARCHAR2(20) NOT NULL,
 cust_last_name VARCHAR2(40) NOT NULL,
 cust_gender CHAR(1) NOT NULL,
 cust_year_of_birth NUMBER(4) NOT NULL,
 cust_marital_status VARCHAR2(20),
 cust_street_address VARCHAR2(40) NOT NULL,
 cust_postal_code VARCHAR2(10) NOT NULL,
 cust_city VARCHAR2(30) NOT NULL,
 cust_city_id NUMBER NOT NULL,
 cust_state_province VARCHAR2(40) NOT NULL,
 cust_state_province_id NUMBER NOT NULL,
 country_id NUMBER NOT NULL,
 cust_main_phone_number VARCHAR2(25) NOT NULL,
 cust_income_level VARCHAR2(30),
 cust_credit_limit NUMBER,
 cust_email VARCHAR2(50),
 cust_total VARCHAR2(14) NOT NULL,
 cust_total_id NUMBER NOT NULL,
 cust_src_id NUMBER,
 cust_eff_from DATE,
 cust_eff_to DATE,
 cust_valid VARCHAR2(1),
 cust_alt_phone_number VARCHAR2(25));

3. Start the redefinition process, and monitor the progress of the operation.

Chapter 19
Redefining Tables Online

19-86

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'sh',
 orig_table => 'customers',
 int_table => 'int_customers',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

As this operation is running, and in a session that is separate from the session that is
performing online table redefinition, query the V$ONLINE_REDEF view to monitor its
progress:

SELECT * FROM V$ONLINE_REDEF;

Output from this query might show the following:

• START_REDEF_TABLE for OPERATION
• complete refresh the materialized view for SUBOPERATION
• step 6 out of 7 for PROGRESS

4. Copy dependent objects. (Automatically create any triggers, indexes, materialized view
logs, grants, and constraints on sh.int_customers.)

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'sh',
 orig_table => 'customers',
 int_table => 'int_customers',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

As this operation is running, and in a session that is separate from the session that is
performing online table redefinition, query the V$ONLINE_REDEF view to monitor its
progress:

SELECT * FROM V$ONLINE_REDEF;

Output from this query might show the following:

• COPY_TABLE_DEPENDENTS for OPERATION
• copy the indexes for SUBOPERATION
• step 3 out of 7 for PROGRESS
Note that the ignore_errors argument is set to TRUE for this call. The reason is that the
interim table was created with a primary key constraint, and when COPY_TABLE_DEPENDENTS
attempts to copy the primary key constraint and index from the original table, errors occur.
You can ignore these errors.

Chapter 19
Redefining Tables Online

19-87

5. Synchronize the interim table hr.int_emp_redef.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'sh',
 orig_table => 'customers',
 int_table => 'int_customers');
END;
/

6. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'sh',
 orig_table => 'customers',
 int_table => 'int_customers');
END;
/

Related Topics

• Refreshing Dependent Materialized Views During Online Table Redefinition
To refresh dependent fast refreshable materialized views during online table redefinition,
set the refresh_dep_mviews parameter to Y in the REDEF_TABLE procedure or the
START_REDEF_TABLE procedure.

19.8.11 Restarting Online Table Redefinition After a Failure
If online table redefinition fails, then you can check the DBA_REDEFINITION_STATUS view to see
the error information and restartable information.

If RESTARTABLE is Y, then you can correct the error and restart the online redefinition process
where it last stopped. If RESTARTABLE is N, you must stop the redefinition operation.

In some cases, it is possible to restart the online redefinition of a table after a failure.
Restarting the operation means that the online redefinition process begins where it stopped
because of the failure, and no work is lost. For example, if a SYNC_INTERIM_TABLE procedure
call fails because of an “unable to extent table in tablespace” error, then the problem can be
corrected by increasing the size of the tablespace that ran out of space and rerunning the
SYNC_INTERIM_TABLE procedure call.

If online table redefinition fails, then you can complete the following steps to restart it:

1. Query the DBA_REDEFINITION_STATUS view to determine the cause of the failure and the
action required to correct it.

For example, run the following query:

SELECT BASE_TABLE_NAME,
 INTERIM_OBJECT_NAME,
 OPERATION,
 STATUS,
 RESTARTABLE,
 ACTION
 FROM DBA_REDEFINITION_STATUS;

If the RESTARTABLE value is Y, then the operation can be restarted. If the RESTARTABLE value
is N, then the operation cannot be restarted, and redefinition must be performed again from
the beginning.

Chapter 19
Redefining Tables Online

19-88

2. Perform the action specified in the query results from the previous step.

3. Restart the online redefinition with the operation specified in the query results, and run all
of the subsequent operations to finish online redefinition of the table.

Example 19-18 SYNC_INTERIM_TABLE Procedure Call Failure

This example illustrates restarting an online redefinition operation that failed on a
SYNC_INTERIM_TABLE procedure call with the following error:

BEGIN
DBMS_REDEFINITION.SYNC_INTERIM_TABLE('U1', 'ORIG', 'INT');
END;
/
ORA-42009: error occurred while synchronizing the redefinition
ORA-01653: unable to extend table U1.INT by 8 in tablespace my_tbs
ORA-06512: at "SYS.DBMS_REDEFINITION", line 148
ORA-06512: at "SYS.DBMS_REDEFINITION", line 2807
ORA-06512: at line 2

1. Query the DBA_REDEFINITION_STATUS view:

SELECT BASE_TABLE_NAME, INT_TABLE_NAME, OPERATION, STATUS, RESTARTABLE,
ACTION
 FROM DBA_REDEFINITION_STATUS;

BASE_TABLE_NAME INT_OBJ_NAME OPERATION STATUS RESTARTABLE ACTION
--------------- ------------ ------------------ ------- -----------

ORIG INT SYNC_INTERIM_TABLE FAILED Y Fix
error

The online redefinition operation can be restarted because RESTARTABLE is Y in the query
results. To restart the operation, correct the error returned when the operation failed and
restart the operation. In this example, the error is “ORA-01653: unable to extend table
U1.INT by 8 in tablespace my_tbs”.

2. Increase the size of the my_tbs tablespace by adding a data file to it:

ALTER TABLESPACE my_tbs
 ADD DATAFILE '/u02/oracle/data/my_tbs2.dbf' SIZE 100M;

3. Rerun SYNC_INTERIM_TABLE procedure call:

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE('U1', 'ORIG', 'INT');
END;
/

Chapter 19
Redefining Tables Online

19-89

Example 19-19 Materialized View Log Problem

After the redefinition is started on the original table, there can be a problem with the
materialized view log. For example, the materialized view log might be accidentally dropped or
corrupted for some reason. In such cases, errors similar to the following are returned:

ERROR at line 1:
ORA-42010: error occurred while synchronizing the redefinition
ORA-12034: materialized view log on "HR"."T1" younger than last refresh

Assume a table that was created with the following SQL statement is being redefined:

CREATE TABLE hr.t1(
 c1 NUMBER PRIMARY KEY,
 c2 NUMBER)
 TABLESPACE example_tbs;

Assume an interim table was created with the following SQL statement that changes the table’s
tablespace:

CREATE TABLE hr.int_t1(
 c1 NUMBER PRIMARY KEY,
 c2 NUMBER)
 TABLESPACE hr_tbs;

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'hr',
 orig_table => 't1',
 int_table => 'int_t1');
END;
/

3. Drop the materialized view log on the original table.

DROP MATERIALIZED VIEW LOG ON hr.t1;

4. Create a new materialized view log on the original table.

CREATE MATERIALIZED VIEW LOG ON hr.t1
 WITH COMMIT SCN PURGE
 IMMEDIATE ASYNCHRONOUS;

5. Synchronize the interim table hr.int_t1.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(

Chapter 19
Redefining Tables Online

19-90

 uname => 'hr',
 orig_table => 't1',
 int_table => 'int_t1');
END;
/
BEGIN
*
ERROR at line 1:
ORA-42010: error occurred while synchronizing the redefinition
ORA-12034: materialized view log on "HR"."T1" younger than last refresh

6. Because an error was returned, check the DBA_REDEFINITION_STATUS view.

COLUMN BASE_OBJECT_NAME FORMAT A11
COLUMN OPERATION FORMAT A10
COLUMN STATUS FORMAT A10
COLUMN RESTARTABLE FORMAT A11
COLUMN ERR_TXT FORMAT A15
COLUMN ACTION FORMAT A18

SELECT BASE_OBJECT_NAME, OPERATION, STATUS, RESTARTABLE, ERR_TXT, ACTION
 FROM DBA_REDEFINITION_STATUS
 ORDER BY BASE_TABLE_NAME, BASE_OBJECT_NAME;

BASE_OBJECT OPERATION STATUS RESTARTABLE ERR_TXT ACTION
----------- ---------- ---------- ----------- ---------------

T1 SYNC_REDEF Failure N ORA-12034: mate Abort
redefinition
 _TABLE rialized view l
 og on "HR"."T1"
 younger than l
 ast refresh

The online redefinition operation cannot be restarted because RESTARTABLE is N in the
query results, and the ACTION column indicates that the online table redefinition operation
must be terminated.

7. Terminate the online table redefinition operation.

BEGIN
 DBMS_REDEFINITION.ABORT_REDEF_TABLE(
 uname => 'hr',
 orig_table => 't1',
 int_table => 'int_t1');
END;
/

19.8.12 Rolling Back Online Table Redefinition
You can enable roll back of a table after online table redefinition to return the table to its
original definition and preserve DML changes made to the table.

Chapter 19
Redefining Tables Online

19-91

• About Online Table Redefinition Rollback
After online table redefinition, you can roll back the table to its definition before online table
redefinition while preserving all data manipulation language (DML) changes made to the
table.

• Performing Online Table Redefinition Rollback
The ROLLBACK procedure in the DBMS_REDEFINITION package returns a table that was
redefined online to its original definition while preserving DML changes.

19.8.12.1 About Online Table Redefinition Rollback
After online table redefinition, you can roll back the table to its definition before online table
redefinition while preserving all data manipulation language (DML) changes made to the table.

In some cases, you might want to undo an online redefinition of a table. For example, the
performance of operations on the table might be worse after the redefinition than it was before
the redefinition. In these cases, you can roll back the table to its original definition while
preserving all of the DML changes made to the table after it was redefined. Online table
redefinition rollback is used mainly when redefinition changes the storage characteristics of the
table, and the changes unexpectedly result in degraded performance.

To enable rollback of online table redefinition, the ENABLE_ROLLBACK parameter must be set to
TRUE in the DBMS_REDEFINITION.START_TABLE_REDEF procedure. When this parameter is set to
true, Oracle Database maintains the interim table created during redefinition after redefinition is
complete. You can run the SYNC_INTERIM_TABLE procedure to synchronize the interim table
periodically to apply DML changes made to the redefined table to the interim table. An internal
materialized view and materialized view log enables maintenance of the interim table. If you
decide to roll back the online table redefinition, then the interim table is synchronized, and
Oracle Database switches back to it so that the table has its original definition.

The following restrictions apply to online table redefinition rollback:

• When there is no one to one mapping of the original table’s columns to interim table’s
columns, there must be no operators or functions in column mappings during redefinition.

There can be operators and functions in column mappings when there is a one to one
mapping of the original table’s columns to interim table’s columns.

• When rollback is enabled for a redefinition, the table cannot be redefined again until the
online table redefinition is rolled back or terminated.

19.8.12.2 Performing Online Table Redefinition Rollback
The ROLLBACK procedure in the DBMS_REDEFINITION package returns a table that was redefined
online to its original definition while preserving DML changes.

To use the ROLLBACK procedure, online table redefinition rollback must be enabled during online
table redefinition. If you decide to retain the changes made by online table redefinition, then
you can run the ABORT_ROLLBACK procedure.

1. Perform an online redefinition of a table, starting with the START_REDEF_TABLE procedure
and ending with the FINISH_REDEF_TABLE procedure.

The ENABLE_ROLLBACK parameter must be set to TRUE in the START_REDEF_TABLE
procedure. The default for this parameter is FALSE.

2. Optional: Periodically, run the SYNC_INTERIM_TABLE procedure to apply DML changes
made to the redefined table to the interim table.

Chapter 19
Redefining Tables Online

19-92

You can improve the performance of the online table redefinition rollback if you periodically
apply the DML changes to the interim table.

3. Choose one of the following options:

• If you want to undo the changes made by online table redefinition and return to the
original table definition, then run the ROLLBACK procedure in the DBMS_REDEFINITION
package.

• If you want to retain the changes made by online table redefinition, then run the
ABORT_ROLLBACK procedure in the DBMS_REDEFINITION package.
Terminating the rollback stops maintenance of the interim table and removes the
materialized view and materialized view log that enabled rollback.

Example 19-20 Rolling Back Online Table Redefinition

This example illustrates online redefinition of a table by changing the storage characteristics for
the table. Specifically, this example compresses the tablespace for the table during online
redefinition. Assume that you want to evaluate the performance of the table after online
redefinition is complete. If the table does not perform as well as expected, then you want to be
able to roll back the changes made by online redefinition.

Assume that the following statements created the original tablespace and table:

CREATE TABLESPACE tst_rollback_tbs
 DATAFILE 'tst_rollback_tbs.dbf' SIZE 10M
 ONLINE;

CREATE TABLE hr.tst_rollback
 (rllbck_id NUMBER(6) PRIMARY KEY,
 rllbck_name VARCHAR2(20))
 TABLESPACE tst_rollback_tbs
 STORAGE (INITIAL 2M);

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Create a compressed tablespace for the interim table.

CREATE TABLESPACE tst_cmp_rollback_tbs
 DEFAULT ROW STORE COMPRESS ADVANCED
 DATAFILE 'tst_cmp_rollback_tbs.dbf' SIZE 10M
 ONLINE;

3. Create an interim table hr.int_tst_rollback.

CREATE TABLE hr.int_tst_rollback
 (rllbck_id NUMBER(6) PRIMARY KEY,
 rllbck_name VARCHAR2(20))
 TABLESPACE tst_cmp_rollback_tbs
 STORAGE (INITIAL 2M);

Ensure that the interim table uses the compressed tablespace created in the previous step.

4. Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(

Chapter 19
Redefining Tables Online

19-93

 uname => 'hr',
 orig_table => 'tst_rollback',
 int_table => 'int_tst_rollback',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK,
 enable_rollback => TRUE);
END;
/

Ensure that enable_rollback is set to TRUE so that the changes made by online
redefinition can be rolled back.

5. Copy dependent objects.

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'hr',
 orig_table => 'tst_rollback',
 int_table => 'int_tst_rollback',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

6. Query the DBA_REDEFINITION_ERRORS view to check for errors.

SET LONG 8000
SET PAGES 8000
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A20
COLUMN BASE_TABLE_NAME HEADING 'Base Table Name' FORMAT A10
COLUMN DDL_TXT HEADING 'DDL That Caused Error' FORMAT A40

SELECT OBJECT_NAME, BASE_TABLE_NAME, DDL_TXT FROM
 DBA_REDEFINITION_ERRORS;

You can ignore errors related to the primary key and indexes.

7. Synchronize the interim table hr.int_tst_rollback.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'hr',
 orig_table => 'tst_rollback',
 int_table => 'int_tst_rollback');
END;
/

8. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'hr',
 orig_table => 'tst_rollback',
 int_table => 'int_tst_rollback');
END;
/

The table hr.tst_rollbck is locked in the exclusive mode only for a small window toward
the end of this step. After this call the table hr.tst_rollback is redefined such that it has

Chapter 19
Redefining Tables Online

19-94

all the attributes of the hr.int_tst_rollback table. In this example, the tablespace for the
hr.tst_rollbck table is now compressed.

9. During the evaluation period, you can periodically synchronize the interim table
hr.int_tst_rollback.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'hr',
 orig_table => 'tst_rollback',
 int_table => 'int_tst_rollback');
END;
/

Synchronizing the tables updates the original table with the DML changes made to the
redefined table. When you synchronize the tables periodically, a rollback operation is more
efficient because fewer DML changes must be made to the original table. You can query
the STATUS column of the DBA_REDEFINITION_STATUS view to determine the status of the
rollback operation.

10. Perform one of the following actions:

• Assume that the redefined table did not perform as well as expected, and roll back the
changes made by online redefinition.

BEGIN
 DBMS_REDEFINITION.ROLLBACK(
 uname => 'hr',
 orig_table => 'tst_rollback',
 int_table => 'int_tst_rollback');
END;
/

• Assume that the redefined table performed as expected, and terminate the rollback to
retain the changes made by online table redefinition and clean up the database objects
that enable rollback.

BEGIN
 DBMS_REDEFINITION.ABORT_ROLLBACK(
 uname => 'hr',
 orig_table => 'tst_rollback',
 int_table => 'int_tst_rollback');
END;
/

19.8.13 Terminating Online Table Redefinition and Cleaning Up After Errors
You can terminate the online redefinition process. Doing so drops temporary logs and tables
associated with the redefinition process. After this procedure is called, you can drop the interim
table and its dependent objects.

To terminate the online redefinition process in the event that an error is raised during the
redefinition process, or if you choose to terminate the redefinition process manually:

• Run the ABORT_REDEF_TABLE procedure.

If the online redefinition process must be restarted, if you do not first call ABORT_REDEF_TABLE,
then subsequent attempts to redefine the table will fail.

Chapter 19
Redefining Tables Online

19-95

Note:

It is not necessary to call the ABORT_REDEF_TABLE procedure if the redefinition
process stops because the FINISH_REDEF_TABLE procedure has timed out. The
dml_lock_timeout parameter in the FINISH_REDEF_TABLE procedure controls the
time-out period. See step 8 in "Performing Online Redefinition with Multiple
Procedures in DBMS_REDEFINITION" for more information

19.8.14 Online Redefinition of One or More Partitions
You can redefine online one or more partitions of a table. This is useful if, for example, you
want to move partitions to a different tablespace and keep the partitions available for DML
during the operation.

You can redefine multiple partitions in a table at one time. If you do, then multiple interim tables
are required during the table redefinition process. Ensure that you have enough free space and
undo space to complete the table redefinition.

When you redefine multiple partitions, you can specify that the redefinition continues even if it
encounters an error for a particular partition. To do so, set the continue_after_errors
parameter to TRUE in redefinition procedures in the DBMS_REDEFINITION package. You can
check the DBA_REDEFINITION_STATUS view to see if any errors were encountered during the
redefinition process. The STATUS column in this view shows whether the redefinition process
succeeded or failed for each partition.

You can also redefine an entire table one partition at a time to reduce resource requirements.
For example, to move a very large table to a different tablespace, you can move it one partition
at a time to minimize the free space and undo space required to complete the move.

Redefining partitions differs from redefining a table in the following ways:

• There is no need to copy dependent objects. It is not valid to use the
COPY_TABLE_DEPENDENTS procedure when redefining a single partition.

• You must manually create and register any local indexes on the interim table.

See "Creating Dependent Objects Manually".

• The column mapping string for START_REDEF_TABLE must be NULL.

Note:

Starting with Oracle Database 12c, you can use the simpler ALTER TABLE...MOVE
PARTITION ... ONLINE statement to move a partition or subpartition online without
using online table redefinition. DML operations can continue to run uninterrupted on
the partition or subpartition that is being moved. See "Moving a Table to a New
Segment or Tablespace".

• Rules for Online Redefinition of a Single Partition
The underlying mechanism for redefinition of a single partition is the exchange partition
capability of the database (ALTER TABLE...EXCHANGE PARTITION).

Chapter 19
Redefining Tables Online

19-96

See Also:

Oracle Database VLDB and Partitioning Guide

19.8.14.1 Rules for Online Redefinition of a Single Partition
The underlying mechanism for redefinition of a single partition is the exchange partition
capability of the database (ALTER TABLE...EXCHANGE PARTITION).

Rules and restrictions for online redefinition of a single partition are therefore governed by this
mechanism. Here are some general restrictions:

• No logical changes (such as adding or dropping a column) are permitted.

• No changes to the partitioning method (such as changing from range partitioning to hash
partitioning) are permitted.

Here are the rules for defining the interim table:

• If the partition being redefined is a range, hash, or list partition, then the interim table must
be nonpartitioned.

• If the partition being redefined is a range partition of a composite range-hash partitioned
table, then the interim table must be a hash partitioned table. In addition, the partitioning
key of the interim table must be identical to the subpartitioning key of the range-hash
partitioned table, and the number of partitions in the interim table must be identical to the
number of subpartitions in the range partition being redefined.

• If the partition being redefined is a range partition of a composite range-list partitioned
table, then the interim table must be a list partitioned table. In addition, the partitioning key
of the interim table must be identical to the subpartitioning key of the range-list partitioned
table, and the values lists of the interim table's list partitions must exactly match the values
lists of the list subpartitions in the range partition being redefined.

• If you define the interim table as compressed, then you must use the by-key method of
redefinition, not the by-rowid method.

These additional rules apply if the table being redefined is a partitioned index-organized table:

• The interim table must also be index-organized.

• The original and interim tables must have primary keys on the same columns, in the same
order.

• If prefix compression is enabled, then it must be enabled for both the original and interim
tables, with the same prefix length.

• Both the original and interim tables must have overflow segments, or neither can have
them. Likewise for mapping tables.

Chapter 19
Redefining Tables Online

19-97

See Also:

• The section "Exchanging Partitions" in Oracle Database VLDB and Partitioning
Guide

• "Online Table Redefinition Examples" for examples that redefine tables with
partitions

19.8.15 Online Table Redefinition Examples
Examples illustrate online redefinition of tables.

For the following examples, see Oracle Database PL/SQL Packages and Types Reference for
descriptions of all DBMS_REDEFINITION subprograms.

Example Description

Example 1 Redefines a table's storage properties in a single step with
the REDEF_TABLE procedure.

Example 2 Redefines a table by adding new columns and adding
partitioning.

Example 3 Demonstrates redefinition with object data types.

Example 4 Demonstrates redefinition with manually registered
dependent objects.

Example 5 Redefines multiple partitions, moving them to different
tablespaces.

Example 6 Redefines a table with virtual private database (VPD) policies
without changing the properties of any of the table's columns.

Example 7 Redefines a table with VPD policies and changes the
properties of one of the table's columns.

Example 8 Redefines a table by making multiple changes using online
redefinition.

Example 1

This example illustrates online redefinition of a table's storage properties using the
REDEF_TABLE procedure.

The original table, named print_ads, is defined in the pm schema as follows:

 Name Null? Type
 --- -------- ----------------------------
 AD_ID NUMBER(6)
 AD_TEXT CLOB

In this table, the LOB column ad_text uses BasicFiles LOB storage.

An index for the table was created with the following SQL statement:

CREATE INDEX pm.print_ads_ix
 ON print_ads (ad_id)
 TABLESPACE example;

The table is redefined as follows:

Chapter 19
Redefining Tables Online

19-98

• The table is compressed with advanced row compression.

• The table's tablespace is changed from EXAMPLE to NEWTBS. This example assumes that the
NEWTBS tablespace exists.

• The index is compressed with COMPRESS 1 compression.

• The index's tablespace is changed from EXAMPLE to NEWIDXTBS. This example assumes that
the NEWIDXTBS tablespace exists.

• The LOB column in the table is compressed with COMPRESS HIGH compression.

• The tablespace for the LOB column is changed from EXAMPLE to NEWLOBTBS. This example
assumes that the NEWLOBTBS tablespace exists.

• The LOB column is changed to SecureFiles LOB storage.

The steps in this redefinition are illustrated below.

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Run the REDEF_TABLE procedure:

BEGIN
 DBMS_REDEFINITION.REDEF_TABLE(
 uname => 'PM',
 tname => 'PRINT_ADS',
 table_compression_type => 'ROW STORE COMPRESS ADVANCED',
 table_part_tablespace => 'NEWTBS',
 index_key_compression_type => 'COMPRESS 1',
 index_tablespace => 'NEWIDXTBS',
 lob_compression_type => 'COMPRESS HIGH',
 lob_tablespace => 'NEWLOBTBS',
 lob_store_as => 'SECUREFILE');
END;
/

Note:

If an errors occurs, then the interim table is dropped, and the REDEF_TABLE procedure
must be re-executed.

Example 2

This example illustrates online redefinition of a table by adding new columns and adding
partitioning.

The original table, named emp_redef, is defined in the hr schema as follows:

 Name Type
 --------- ----------------------------
 EMPNO NUMBER(5) <- Primary key
 ENAME VARCHAR2(15)
 JOB VARCHAR2(10)
 DEPTNO NUMBER(3)

Chapter 19
Redefining Tables Online

19-99

The table is redefined as follows:

• New columns mgr, hiredate, sal, and bonus are added.

• The new column bonus is initialized to 0 (zero).

• The column deptno has its value increased by 10.

• The redefined table is partitioned by range on empno.

The steps in this redefinition are illustrated below.

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Verify that the table is a candidate for online redefinition. In this case you specify that the
redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'hr',
 tname =>'emp_redef',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

3. Create an interim table hr.int_emp_redef.

CREATE TABLE hr.int_emp_redef
 (empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 deptno NUMBER(3) NOT NULL,
 bonus NUMBER (7,2) DEFAULT(0))
 PARTITION BY RANGE(empno)
 (PARTITION emp1000 VALUES LESS THAN (1000) TABLESPACE admin_tbs,
 PARTITION emp2000 VALUES LESS THAN (2000) TABLESPACE admin_tbs2);

Ensure that the specified tablespaces exist.

4. Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'hr',
 orig_table => 'emp_redef',
 int_table => 'int_emp_redef',
 col_mapping => 'empno empno, ename ename, job job, deptno+10 deptno,
 0 bonus',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

5. Copy dependent objects. (Automatically create any triggers, indexes, materialized view
logs, grants, and constraints on hr.int_emp_redef.)

DECLARE
num_errors PLS_INTEGER;

Chapter 19
Redefining Tables Online

19-100

BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'hr',
 orig_table => 'emp_redef',
 int_table => 'int_emp_redef',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

Note that the ignore_errors argument is set to TRUE for this call. The reason is that the
interim table was created with a primary key constraint, and when COPY_TABLE_DEPENDENTS
attempts to copy the primary key constraint and index from the original table, errors occur.
You can ignore these errors, but you must run the query shown in the next step to see if
there are other errors.

6. Query the DBA_REDEFINITION_ERRORS view to check for errors.

SET LONG 8000
SET PAGES 8000
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A20
COLUMN BASE_TABLE_NAME HEADING 'Base Table Name' FORMAT A10
COLUMN DDL_TXT HEADING 'DDL That Caused Error' FORMAT A40

SELECT OBJECT_NAME, BASE_TABLE_NAME, DDL_TXT FROM
 DBA_REDEFINITION_ERRORS;

Object Name Base Table DDL That Caused Error
-------------------- ---------- --
SYS_C006796 EMP_REDEF CREATE UNIQUE INDEX "HR"."TMP$$_SYS_C006
 7960" ON "HR"."INT_EMP_REDEF" ("EMPNO")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MIN
 EXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GRO
 UPS 1
 BUFFER_POOL DEFAULT)
 TABLESPACE "ADMIN_TBS"
SYS_C006794 EMP_REDEF ALTER TABLE "HR"."INT_EMP_REDEF" MODIFY
 ("ENAME" CONSTRAINT "TMP$$_SYS_C0067940"
 NOT NULL ENABLE NOVALIDATE)
SYS_C006795 EMP_REDEF ALTER TABLE "HR"."INT_EMP_REDEF" MODIFY
 ("DEPTNO" CONSTRAINT "TMP$$_SYS_C0067950
 " NOT NULL ENABLE NOVALIDATE)
SYS_C006796 EMP_REDEF ALTER TABLE "HR"."INT_EMP_REDEF" ADD CON
 STRAINT "TMP$$_SYS_C0067960" PRIMARY KEY
 ("EMPNO")
 USING INDEX PCTFREE 10 INITRANS 2 MAXT
 RANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MIN
 EXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GRO
 UPS 1
 BUFFER_POOL DEFAULT)
 TABLESPACE "ADMIN_TBS" ENABLE NOVALID
 ATE

Chapter 19
Redefining Tables Online

19-101

These errors are caused by the existing primary key constraint on the interim table and can
be ignored. Note that with this approach, the names of the primary key constraint and
index on the post-redefined table are changed. An alternate approach, one that avoids
errors and name changes, would be to define the interim table without a primary key
constraint. In this case, the primary key constraint and index are copied from the original
table.

Note:

The best approach is to define the interim table with a primary key constraint, use
REGISTER_DEPENDENT_OBJECT to register the primary key constraint and index,
and then copy the remaining dependent objects with COPY_TABLE_DEPENDENTS.
This approach avoids errors and ensures that the redefined table always has a
primary key and that the dependent object names do not change.

7. (Optional) Synchronize the interim table hr.int_emp_redef.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'hr',
 orig_table => 'emp_redef',
 int_table => 'int_emp_redef');
END;
/

8. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'hr',
 orig_table => 'emp_redef',
 int_table => 'int_emp_redef');
END;
/

The table hr.emp_redef is locked in the exclusive mode only for a small window toward
the end of this step. After this call the table hr.emp_redef is redefined such that it has all
the attributes of the hr.int_emp_redef table.

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this
procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in
DBMS_REDEFINITION" for more information.

9. Wait for any long-running queries against the interim table to complete, and then drop the
interim table.

Example 3

This example redefines a table to change columns into object attributes. The redefined table
gets a new column that is an object type.

The original table, named customer, is defined as follows:

Name Type
------------ -------------
CID NUMBER <- Primary key
NAME VARCHAR2(30)
STREET VARCHAR2(100)
CITY VARCHAR2(30)

Chapter 19
Redefining Tables Online

19-102

STATE VARCHAR2(2)
ZIP NUMBER(5)

The type definition for the new object is:

CREATE TYPE addr_t AS OBJECT (
 street VARCHAR2(100),
 city VARCHAR2(30),
 state VARCHAR2(2),
 zip NUMBER(5, 0));
/

Here are the steps for this redefinition:

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Verify that the table is a candidate for online redefinition. Specify that the redefinition is to
be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'steve',
 tname =>'customer',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

3. Create the interim table int_customer.

CREATE TABLE int_customer(
 CID NUMBER,
 NAME VARCHAR2(30),
 ADDR addr_t);

Note that no primary key is defined on the interim table. When dependent objects are
copied in step 6, the primary key constraint and index are copied.

4. Because customer is a very large table, specify parallel operations for the next step.

ALTER SESSION FORCE PARALLEL DML PARALLEL 4;
ALTER SESSION FORCE PARALLEL QUERY PARALLEL 4;

5. Start the redefinition process using primary keys.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'steve',
 orig_table => 'customer',
 int_table => 'int_customer',
 col_mapping => 'cid cid, name name,
 addr_t(street, city, state, zip) addr');
END;
/

Note that addr_t(street, city, state, zip) is a call to the object constructor.

6. Copy dependent objects.

Chapter 19
Redefining Tables Online

19-103

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'steve',
 orig_table => 'customer',
 int_table => 'int_customer',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => FALSE,
 num_errors => num_errors,
 copy_statistics => TRUE);
END;
/

Note that for this call, the final argument indicates that table statistics are to be copied to
the interim table.

7. Optionally synchronize the interim table.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'steve',
 orig_table => 'customer',
 int_table => 'int_customer');
END;
/

8. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'steve',
 orig_table => 'customer',
 int_table => 'int_customer');
END;
/

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this
procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in
DBMS_REDEFINITION" for more information.

9. Wait for any long-running queries against the interim table to complete, and then drop the
interim table.

Example 4

This example addresses the situation where a dependent object must be manually created and
registered.

The table to be redefined is defined as follows:

CREATE TABLE steve.t1
 (c1 NUMBER);

The table has an index for column c1:

CREATE INDEX steve.index1 ON steve.t1(c1);

Consider the case where column c1 becomes column c2 after the redefinition. In this case,
COPY_TABLE_DEPENDENTS tries to create an index on the interim table corresponding to index1,

Chapter 19
Redefining Tables Online

19-104

and tries to create it on a column c1, which does not exist in the interim table. This results in an
error. You must therefore manually create the index on column c2 and register it.

Here are the steps for this redefinition:

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Ensure that t1 is a candidate for online redefinition with CAN_REDEF_TABLE, and then begin
the redefinition process with START_REDEF_TABLE.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'steve',
 tname => 't1',
 options_flag => DBMS_REDEFINITION.CONS_USE_ROWID);
END;
/

3. Create the interim table int_t1 and create an index int_index1 on column c2.

CREATE TABLE steve.int_t1
 (c2 NUMBER);

CREATE INDEX steve.int_index1 ON steve.int_t1(c2);
4. Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1',
 col_mapping => 'c1 c2',
 options_flag => DBMS_REDEFINITION.CONS_USE_ROWID);
END;
/

5. Register the original (index1) and interim (int_index1) dependent objects.

BEGIN
 DBMS_REDEFINITION.REGISTER_DEPENDENT_OBJECT(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1',
 dep_type => DBMS_REDEFINITION.CONS_INDEX,
 dep_owner => 'steve',
 dep_orig_name => 'index1',
 dep_int_name => 'int_index1');
END;
/

6. Copy the dependent objects.

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1',

Chapter 19
Redefining Tables Online

19-105

 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

7. Optionally synchronize the interim table.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1');
END;
/

8. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'steve',
 orig_table => 't1',
 int_table => 'int_t1');
END;
/

9. Wait for any long-running queries against the interim table to complete, and then drop the
interim table.

Example 5

This example demonstrates redefining multiple partitions. It moves two of the partitions of a
range-partitioned sales table to new tablespaces. The table containing the partitions to be
redefined is defined as follows:

CREATE TABLE steve.salestable
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 TABLESPACE users
 PARTITION BY RANGE(s_saledate)
 (PARTITION sal10q1 VALUES LESS THAN (TO_DATE('01-APR-2010', 'DD-MON-YYYY')),
 PARTITION sal10q2 VALUES LESS THAN (TO_DATE('01-JUL-2010', 'DD-MON-YYYY')),
 PARTITION sal10q3 VALUES LESS THAN (TO_DATE('01-OCT-2010', 'DD-MON-YYYY')),
 PARTITION sal10q4 VALUES LESS THAN (TO_DATE('01-JAN-2011', 'DD-MON-YYYY')));

This example moves the sal10q1 partition to the sales1 tablespace and the sal10q2 partition
to the sales2 tablespace. The sal10q3 and sal10q4 partitions are not moved.

To move the partitions, the tablespaces sales1 and sales2 must exist. The following examples
create these tablespaces:

CREATE TABLESPACE sales1 DATAFILE '/u02/oracle/data/sales01.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TABLESPACE sales2 DATAFILE '/u02/oracle/data/sales02.dbf' SIZE 50M
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

Chapter 19
Redefining Tables Online

19-106

Note:

You can also complete this operation by executing two ALTER TABLE ... MOVE
PARTITION ... ONLINE statements. See "Moving a Table to a New Segment or
Tablespace".

The table has a local partitioned index that is defined as follows:

CREATE INDEX steve.sales_index ON steve.salestable
 (s_saledate, s_productid, s_custid) LOCAL;

Here are the steps. In the following procedure calls, note the extra argument: partition name
(part_name).

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Ensure that salestable is a candidate for redefinition.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'steve',
 tname => 'salestable',
 options_flag => DBMS_REDEFINITION.CONS_USE_ROWID,
 part_name => 'sal10q1, sal10q2');
END;
/

3. Create the interim tables in the new tablespaces. Because this is a redefinition of a range
partition, the interim tables are nonpartitioned.

CREATE TABLE steve.int_salestb1
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 TABLESPACE sales1;

CREATE TABLE steve.int_salestb2
 (s_productid NUMBER,
 s_saledate DATE,
 s_custid NUMBER,
 s_totalprice NUMBER)
 TABLESPACE sales2;

4. Start the redefinition process using rowid.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'steve',
 orig_table => 'salestable',
 int_table => 'int_salestb1, int_salestb2',
 col_mapping => NULL,
 options_flag => DBMS_REDEFINITION.CONS_USE_ROWID,
 part_name => 'sal10q1, sal10q2',
 continue_after_errors => TRUE);

Chapter 19
Redefining Tables Online

19-107

END;
/

Notice that the part_name parameter specifies both of the partitions and that the int_table
parameter specifies the interim table for each partition. Also, the continue_after_errors
parameter is set to TRUE so that the redefinition process continues even if it encounters an
error for a particular partition.

5. Manually create any local indexes on the interim tables.

CREATE INDEX steve.int_sales1_index ON steve.int_salestb1
(s_saledate, s_productid, s_custid)
TABLESPACE sales1;

CREATE INDEX steve.int_sales2_index ON steve.int_salestb2
(s_saledate, s_productid, s_custid)
TABLESPACE sales2;

6. Optionally synchronize the interim tables.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'steve',
 orig_table => 'salestable',
 int_table => 'int_salestb1, int_salestb2',
 part_name => 'sal10q1, sal10q2',
 continue_after_errors => TRUE);
END;
/

7. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'steve',
 orig_table => 'salestable',
 int_table => 'int_salestb1, int_salestb2',
 part_name => 'sal10q1, sal10q2',
 continue_after_errors => TRUE);
END;
/

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this
procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in
DBMS_REDEFINITION" for more information.

8. Wait for any long-running queries against the interim tables to complete, and then drop the
interim tables.

9. (Optional) Query the DBA_REDEFINITION_STATUS view to ensure that the redefinition
succeeded for each partition.

SELECT BASE_TABLE_OWNER, BASE_TABLE_NAME, OPERATION, STATUS
 FROM DBA_REDEFINITION_STATUS;

If redefinition failed for any partition, then query the DBA_REDEFINITION_ERRORS view to
determine the cause of the failure. Correct the conditions that caused the failure, and rerun
online redefinition.

The following query shows that two of the partitions in the table have been moved to the new
tablespaces:

SELECT PARTITION_NAME, TABLESPACE_NAME FROM DBA_TAB_PARTITIONS
 WHERE TABLE_NAME = 'SALESTABLE';

Chapter 19
Redefining Tables Online

19-108

PARTITION_NAME TABLESPACE_NAME
------------------------------ ------------------------------
SAL10Q1 SALES1
SAL10Q2 SALES2
SAL10Q3 USERS
SAL10Q4 USERS

4 rows selected.

Example 6

This example illustrates online redefinition of a table with virtual private database (VPD)
policies. The example disables all triggers for a table without changing any of the column
names or column types in the table.

The table to be redefined is defined as follows:

CREATE TABLE hr.employees(
 employee_id NUMBER(6) PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn NOT NULL,
 email VARCHAR2(25)
 CONSTRAINT emp_email_nn NOT NULL,
 phone_number VARCHAR2(20),
 hire_date DATE
 CONSTRAINT emp_hire_date_nn NOT NULL,
 job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn NOT NULL,
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4),
 CONSTRAINT emp_salary_min
 CHECK (salary > 0),
 CONSTRAINT emp_email_uk
 UNIQUE (email));

If you installed the HR sample schema, then this table exists in your database.

Assume that the following auth_emp_dep_100 function is created for the VPD policy:

CREATE OR REPLACE FUNCTION hr.auth_emp_dep_100(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 AS
 return_val VARCHAR2 (400);
 unm VARCHAR2(30);
 BEGIN
 SELECT USER INTO unm FROM DUAL;
 IF (unm = 'HR') THEN
 return_val := NULL;
 ELSE
 return_val := 'DEPARTMENT_ID = 100';
 END IF;
 RETURN return_val;
END auth_emp_dep_100;
/

Chapter 19
Redefining Tables Online

19-109

The following ADD_POLICY procedure specifies a VPD policy for the original table hr.employees
using the auth_emp_dep_100 function:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'employees_policy',
 function_schema => 'hr',
 policy_function => 'auth_emp_dep_100',
 statement_types => 'select, insert, update, delete'
);
 END;
/

In this example, the hr.employees table is redefined to disable all of its triggers. No column
names or column types are changed during redefinition. Therefore, specify
DBMS_REDEFINITION.CONS_VPD_AUTO for the copy_vpd_opt in the START_REFEF_TABLE
procedure.

The steps in this redefinition are illustrated below.

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table and the required privileges for managing VPD policies.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package" and EXECUTE privilege on the DBMS_RLS package.

See "Connecting to the Database with SQL*Plus".

2. Verify that the table is a candidate for online redefinition. In this case you specify that the
redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE('hr','employees',
 DBMS_REDEFINITION.CONS_USE_PK);
END;
/

3. Create an interim table hr.int_employees.

CREATE TABLE hr.int_employees(
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE,
 job_id VARCHAR2(10),
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4));

4. Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE (
 uname => 'hr',
 orig_table => 'employees',
 int_table => 'int_employees',
 col_mapping => NULL,
 options_flag => DBMS_REDEFINITION.CONS_USE_PK,
 orderby_cols => NULL,

Chapter 19
Redefining Tables Online

19-110

 part_name => NULL,
 copy_vpd_opt => DBMS_REDEFINITION.CONS_VPD_AUTO);
END;
/

When the copy_vpd_opt parameter is set to DBMS_REDEFINITION.CONS_VPD_AUTO, only the
table owner and the user invoking online redefinition can access the interim table during
online redefinition.

Also, notice that the col_mapping parameter is set to NULL. When the copy_vpd_opt
parameter is set to DBMS_REDEFINITION.CONS_VPD_AUTO, the col_mapping parameter must
be NULL or '*'. See "Handling Virtual Private Database (VPD) Policies During Online
Redefinition".

5. Copy dependent objects. (Automatically create any triggers, indexes, materialized view
logs, grants, and constraints on hr.int_employees.)

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'hr',
 orig_table => 'employees',
 int_table => 'int_employees',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => FALSE,
 num_errors => num_errors);
END;
/

6. Disable all of the triggers on the interim table.

ALTER TABLE hr.int_employees
 DISABLE ALL TRIGGERS;

7. (Optional) Synchronize the interim table hr.int_employees.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'hr',
 orig_table => 'employees',
 int_table => 'int_employees');
END;
/

8. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'hr',
 orig_table => 'employees',
 int_table => 'int_employees');
END;
/

The table hr.employees is locked in the exclusive mode only for a small window toward
the end of this step. After this call the table hr.employees is redefined such that it has all
the attributes of the hr.int_employees table.

Chapter 19
Redefining Tables Online

19-111

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this
procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in
DBMS_REDEFINITION" for more information.

9. Wait for any long-running queries against the interim table to complete, and then drop the
interim table.

Example 7

This example illustrates online redefinition of a table with virtual private database (VPD)
policies. The example changes the name of a column in the table.

The table to be redefined is defined as follows:

CREATE TABLE oe.orders(
 order_id NUMBER(12) PRIMARY KEY,
 order_date TIMESTAMP WITH LOCAL TIME ZONE CONSTRAINT order_date_nn NOT NULL,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6) CONSTRAINT order_customer_id_nn NOT NULL,
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6),
 CONSTRAINT order_mode_lov
 CHECK (order_mode in ('direct','online')),
 CONSTRAINT order_total_min
 check (order_total >= 0));

If you installed the OE sample schema, then this table exists in your database.

Assume that the following auth_orders function is created for the VPD policy:

CREATE OR REPLACE FUNCTION oe.auth_orders(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 AS
 return_val VARCHAR2 (400);
 unm VARCHAR2(30);
 BEGIN
 SELECT USER INTO unm FROM DUAL;
 IF (unm = 'OE') THEN
 return_val := NULL;
 ELSE
 return_val := 'SALES_REP_ID = 159';
 END IF;
 RETURN return_val;
END auth_orders;
/

The following ADD_POLICY procedure specifies a VPD policy for the original table oe.orders
using the auth_orders function:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'oe',
 object_name => 'orders',
 policy_name => 'orders_policy',
 function_schema => 'oe',
 policy_function => 'auth_orders',
 statement_types => 'select, insert, update, delete');

Chapter 19
Redefining Tables Online

19-112

 END;
/

In this example, the table is redefined to change the sales_rep_id column to sale_pid. When
one or more column names or column types change during redefinition, you must specify
DBMS_REDEFINITION.CONS_VPD_MANUAL for the copy_vpd_opt in the START_REFEF_TABLE
procedure.

The steps in this redefinition are illustrated below.

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table and the required privileges for managing VPD policies.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package" and EXECUTE privilege on the DBMS_RLS package.

See "Connecting to the Database with SQL*Plus".

2. Verify that the table is a candidate for online redefinition. In this case you specify that the
redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'oe',
 tname => 'orders',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

3. Create an interim table oe.int_orders.

CREATE TABLE oe.int_orders(
 order_id NUMBER(12),
 order_date TIMESTAMP WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_pid NUMBER(6),
 promotion_id NUMBER(6));

Note that the sales_rep_id column is changed to the sales_pid column in the interim
table.

4. Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE (
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders',
 col_mapping => 'order_id order_id, order_date order_date, order_mode
 order_mode, customer_id customer_id, order_status
 order_status, order_total order_total, sales_rep_id
 sales_pid, promotion_id promotion_id',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK,
 orderby_cols => NULL,
 part_name => NULL,
 copy_vpd_opt => DBMS_REDEFINITION.CONS_VPD_MANUAL);
END;
/

Chapter 19
Redefining Tables Online

19-113

Because a column name is different in the original table and the interim table,
DBMS_REDEFINITION.CONS_VPD_MANUAL must be specified for the copy_vpd_opt parameter.
See "Handling Virtual Private Database (VPD) Policies During Online Redefinition".

5. Create the VPD policy on the interim table.

In this example, complete the following steps:

a. Create a new function called auth_orders_sales_pid for the VPD policy that specifies
the sales_pid column instead of the sales_rep_id column:

CREATE OR REPLACE FUNCTION oe.auth_orders_sales_pid(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 AS
 return_val VARCHAR2 (400);
 unm VARCHAR2(30);
 BEGIN
 SELECT USER INTO unm FROM DUAL;
 IF (unm = 'OE') THEN
 return_val := NULL;
 ELSE
 return_val := 'SALES_PID = 159';
 END IF;
 RETURN return_val;
END auth_orders_sales_pid;
/

b. Run the ADD_POLICY procedure and specify the new function auth_orders_sales_pid
and the interim table int_orders:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'oe',
 object_name => 'int_orders',
 policy_name => 'orders_policy',
 function_schema => 'oe',
 policy_function => 'auth_orders_sales_pid',
 statement_types => 'select, insert, update, delete');
 END;
/

6. Copy dependent objects. (Automatically create any triggers, indexes, materialized view
logs, grants, and constraints on oe.int_orders.)

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

Chapter 19
Redefining Tables Online

19-114

Note that the ignore_errors argument is set to TRUE for this call. The reason is that the
original table has an index and a constraint related to the sales_rep_id column, and this
column is changed to sales_pid in the interim table. The next step shows the errors and
describes how to create the index and the constraint on the interim table.

7. Query the DBA_REDEFINITION_ERRORS view to check for errors.

SET LONG 8000
SET PAGES 8000
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A20
COLUMN BASE_TABLE_NAME HEADING 'Base Table Name' FORMAT A10
COLUMN DDL_TXT HEADING 'DDL That Caused Error' FORMAT A40

SELECT OBJECT_NAME, BASE_TABLE_NAME, DDL_TXT FROM
 DBA_REDEFINITION_ERRORS;

Object Name Base Table DDL That Caused Error
-------------------- ---------- --
ORDERS_SALES_REP_FK ORDERS ALTER TABLE "OE"."INT_ORDERS" ADD CONSTR
 AINT "TMP$$_ORDERS_SALES_REP_FK1" FOREIG
 N KEY ("SALES_REP_ID")
 REFERENCES "HR"."EMPLOYEES"
 ("EMPLOYE
 E_ID") ON DELETE SET NULL DISABLE
ORD_SALES_REP_IX ORDERS CREATE INDEX "OE"."TMP$$_ORD_SALES_REP_I
 X0" ON "OE"."INT_ORDERS" ("SALES_REP_ID"
)
 PCTFREE 10 INITRANS 2 MAXTRANS 255 COM
 PUTE STATISTICS
 STORAGE(INITIAL 65536 NEXT 1048576 MIN
 EXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GRO
 UPS 1
 BUFFER_POOL DEFAULT)
 TABLESPACE "EXAMPLE"
TMP$$_ORDERS_SALES_R ORDERS ALTER TABLE "OE"."INT_ORDERS" ADD CONSTR
EP_FK0 AINT "TMP$$_TMP$$_ORDERS_SALES_RE0" FORE
 IGN KEY ("SALES_REP_ID")
 REFERENCES "HR"."INT_EMPLOYEES"
 ("EMP
 LOYEE_ID") ON DELETE SET NULL DISABLE

If necessary, correct the errors reported in the output.

In this example, original table has an index and a foreign key constraint on the
sales_rep_id column. The index and the constraint could not be copied to the interim
table because the name of the column changed from sales_rep_id to sales_pid.

To correct the problems, add the index and the constraint on the interim table by
completing the following steps:

a. Add the index:

ALTER TABLE oe.int_orders
 ADD (CONSTRAINT orders_sales_pid_fk
 FOREIGN KEY (sales_pid)
 REFERENCES hr.employees(employee_id)
 ON DELETE SET NULL);

b. Add the foreign key constraint:

CREATE INDEX ord_sales_pid_ix ON oe.int_orders (sales_pid);
8. (Optional) Synchronize the interim table oe.int_orders.

Chapter 19
Redefining Tables Online

19-115

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders');
END;
/

9. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'oe',
 orig_table => 'orders',
 int_table => 'int_orders');
END;
/

The table oe.orders is locked in the exclusive mode only for a small window toward the
end of this step. After this call the table oe.orders is redefined such that it has all the
attributes of the oe.int_orders table.

Consider specifying a non-NULL value for the dml_lock_timeout parameter in this
procedure. See step 8 in "Performing Online Redefinition with Multiple Procedures in
DBMS_REDEFINITION" for more information.

10. Wait for any long-running queries against the interim table to complete, and then drop the
interim table.

Example 8

This example illustrates making multiple changes to a table using online redefinition.

The table to be redefined is defined as follows:

CREATE TABLE testredef.original(
 col1 NUMBER PRIMARY KEY,
 col2 VARCHAR2(10),
 col3 CLOB,
 col4 DATE)
ORGANIZATION INDEX;

The table is redefined as follows:

• The table is compressed with advanced row compression.

• The LOB column is changed to SecureFiles LOB storage.

• The table's tablespace is changed from example to testredeftbs, and the table's block
size is changed from 8KB to 16KB.

This example assumes that the database block size is 8KB. This example also assumes
that the DB_16K_CACHE_SIZE initialization parameter is set and that the testredef
tablespace was created with a 16KB block size. For example:

CREATE TABLESPACE testredeftbs
 DATAFILE '/u01/app/oracle/oradata/testredef01.dbf' SIZE 500M EXTENT MANAGEMENT
LOCAL AUTOALLOCATE
 SEGMENT SPACE MANAGEMENT AUTO
 BLOCKSIZE 16384;

• The table is partitioned on the col1 column.

• The col5 column is added.

Chapter 19
Redefining Tables Online

19-116

• The col2 column is dropped.

• Columns col3 and col4 are renamed, and their position in the table is changed.

• The type of the col3 column is changed from DATE to TIMESTAMP.

• The table is changed from an index-organized table (IOT) to a heap-organized table.

• The table is defragmented.

To demonstrate defragmentation, the table must be populated. For the purposes of this
example, you can use this PL/SQL block to populate the table:

DECLARE
 V_CLOB CLOB;
BEGIN
 FOR I IN 0..999 LOOP
 V_CLOB := NULL;
 FOR J IN 1..1000 LOOP
 V_CLOB := V_CLOB||TO_CHAR(I,'0000');
 END LOOP;
 INSERT INTO testredef.original VALUES(I,TO_CHAR(I),V_CLOB,SYSDATE+I);
 COMMIT;
 END LOOP;
 COMMIT;
END;
/

Run the following SQL statement to fragment the table by deleting every third row:

DELETE FROM testredef.original WHERE (COL1/3) <> TRUNC(COL1/3);

You can confirm the fragmentation by using the DBMS_SPACE.SPACE_USAGE procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SPACE.SPACE_USAGE procedure

The steps in this redefinition are illustrated below.

1. In SQL*Plus, connect as a user with the required privileges for performing online
redefinition of a table.

Specifically, the user must have the privileges described in "Privileges Required for the
DBMS_REDEFINITION Package".

See "Connecting to the Database with SQL*Plus".

2. Verify that the table is a candidate for online redefinition. In this case you specify that the
redefinition is to be done using primary keys or pseudo-primary keys.

BEGIN
 DBMS_REDEFINITION.CAN_REDEF_TABLE(
 uname => 'testredef',
 tname => 'original',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

3. Create an interim table testredef.interim.

Chapter 19
Redefining Tables Online

19-117

CREATE TABLE testredef.interim(
 col1 NUMBER,
 col3 TIMESTAMP,
 col4 CLOB,
 col5 VARCHAR2(3))
 LOB(col4) STORE AS SECUREFILE (NOCACHE FILESYSTEM_LIKE_LOGGING)
 PARTITION BY RANGE (COL1) (
 PARTITION par1 VALUES LESS THAN (333),
 PARTITION par2 VALUES LESS THAN (666),
 PARTITION par3 VALUES LESS THAN (MAXVALUE))
 TABLESPACE testredeftbs
 ROW STORE COMPRESS ADVANCED;

4. Start the redefinition process.

BEGIN
 DBMS_REDEFINITION.START_REDEF_TABLE(
 uname => 'testredef',
 orig_table => 'original',
 int_table => 'interim',
 col_mapping => 'col1 col1, TO_TIMESTAMP(col4) col3, col3 col4',
 options_flag => DBMS_REDEFINITION.CONS_USE_PK);
END;
/

5. Copy the dependent objects.

DECLARE
num_errors PLS_INTEGER;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname => 'testredef',
 orig_table => 'original',
 int_table => 'interim',
 copy_indexes => DBMS_REDEFINITION.CONS_ORIG_PARAMS,
 copy_triggers => TRUE,
 copy_constraints => TRUE,
 copy_privileges => TRUE,
 ignore_errors => TRUE,
 num_errors => num_errors);
END;
/

6. Optionally synchronize the interim table.

BEGIN
 DBMS_REDEFINITION.SYNC_INTERIM_TABLE(
 uname => 'testredef',
 orig_table => 'original',
 int_table => 'interim');
END;
/

7. Complete the redefinition.

BEGIN
 DBMS_REDEFINITION.FINISH_REDEF_TABLE(
 uname => 'testredef',
 orig_table => 'original',
 int_table => 'interim');
END;
/

Chapter 19
Redefining Tables Online

19-118

See Also:

Oracle Database Sample Schemas

19.9 Researching and Reversing Erroneous Table Changes
To enable you to research and reverse erroneous changes to tables, Oracle Database
provides a group of features that you can use to view past states of database objects or to
return database objects to a previous state without using point-in-time media recovery. These
features are known as Oracle Flashback features.

To research an erroneous change, you can use multiple Oracle Flashback queries to view row
data at specific points in time. A more efficient approach would be to use Oracle Flashback
Version Query to view all changes to a row over a period of time. With this feature, you append
a VERSIONS clause to a SELECT statement that specifies a system change number (SCN) or
timestamp range between which you want to view changes to row values. The query also can
return associated metadata, such as the transaction responsible for the change.

After you identify an erroneous transaction, you can use Oracle Flashback Transaction Query
to identify other changes that were made by the transaction. You can then use Oracle
Flashback Transaction to reverse the erroneous transaction. (Note that Oracle Flashback
Transaction must also reverse all dependent transactions—subsequent transactions involving
the same rows as the erroneous transaction.) You also have the option of using Oracle
Flashback Table, described in "Recovering Tables Using Oracle Flashback Table".

Note:

You must be using automatic undo management to use Oracle Flashback features.
See "Introduction to Automatic Undo Management ".

See Also:

Oracle Database Development Guide for information about Oracle Flashback
features.

19.10 Recovering Tables Using Oracle Flashback Table
Oracle Flashback Table enables you to restore a table to its state as of a previous point in time.

It provides a fast, online solution for recovering a table that has been accidentally modified or
deleted by a user or application. In many cases, Oracle Flashback Table eliminates the need
for you to perform more complicated point-in-time recovery operations.

Oracle Flashback Table:

• Restores all data in a specified table to a previous point in time described by a timestamp
or SCN.

• Performs the restore operation online.

Chapter 19
Researching and Reversing Erroneous Table Changes

19-119

• Automatically maintains all of the table attributes, such as indexes, triggers, and
constraints that are necessary for an application to function with the flashed-back table.

• Maintains any remote state in a distributed environment. For example, all of the table
modifications required by replication if a replicated table is flashed back.

• Maintains data integrity as specified by constraints. Tables are flashed back provided none
of the table constraints are violated. This includes any referential integrity constraints
specified between a table included in the FLASHBACK TABLE statement and another table
that is not included in the FLASHBACK TABLE statement.

• Even after a flashback operation, the data in the original table is not lost. You can later
revert to the original state.

Note:

You must be using automatic undo management to use Oracle Flashback Table. See
"Introduction to Automatic Undo Management ".

See Also:

Oracle Database Backup and Recovery User's Guide for more information about the
FLASHBACK TABLE statement.

19.11 Dropping Tables
To drop a table that you no longer need, use the DROP TABLE statement.

The table must be contained in your schema or you must have the DROP ANY TABLE system
privilege.

Note:

Before dropping a table, familiarize yourself with the consequences of doing so:

• Dropping a table removes the table definition from the data dictionary. All rows of
the table are no longer accessible.

• All indexes and triggers associated with a table are dropped.

• All views and PL/SQL program units dependent on a dropped table remain, yet
become invalid (not usable). See "Managing Object Dependencies" for
information about how the database manages dependencies.

• All synonyms for a dropped table remain, but return an error when used.

• All extents allocated for a table that is dropped are returned to the free space of
the tablespace and can be used by any other object requiring new extents or new
objects. All rows corresponding to a clustered table are deleted from the blocks
of the cluster. Clustered tables are the subject of Managing Clusters.

Chapter 19
Dropping Tables

19-120

The following statement drops the hr.int_admin_emp table:

DROP TABLE hr.int_admin_emp;

If the table to be dropped contains any primary or unique keys referenced by foreign keys of
other tables and you intend to drop the FOREIGN KEY constraints of the child tables, then
include the CASCADE clause in the DROP TABLE statement, as shown below:

DROP TABLE hr.admin_emp CASCADE CONSTRAINTS;

When you drop a table, normally the database does not immediately release the space
associated with the table. Rather, the database renames the table and places it in a recycle
bin, where it can later be recovered with the FLASHBACK TABLE statement if you find that you
dropped the table in error. If you should want to immediately release the space associated with
the table at the time you issue the DROP TABLE statement, include the PURGE clause as shown in
the following statement:

DROP TABLE hr.admin_emp PURGE;

Perhaps instead of dropping a table, you want to truncate it. The TRUNCATE statement provides
a fast, efficient method for deleting all rows from a table, but it does not affect any structures
associated with the table being truncated (column definitions, constraints, triggers, and so
forth) or authorizations. The TRUNCATE statement is discussed in "Truncating Tables and
Clusters".

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
and Modifying Tables.

19.12 Using Flashback Drop and Managing the Recycle Bin
When you drop a table, the database does not immediately remove the space associated with
the table. The database renames the table and places it and any associated objects in a
recycle bin, where, in case the table was dropped in error, it can be recovered at a later time.
This feature is called Flashback Drop, and the FLASHBACK TABLE statement is used to restore
the table.

Before discussing the use of the FLASHBACK TABLE statement for this purpose, it is important to
understand how the recycle bin works, and how you manage its contents.

• What Is the Recycle Bin?
The recycle bin is actually a data dictionary table containing information about dropped
objects. Dropped tables and any associated objects such as indexes, constraints, nested
tables, and so on are not removed and still occupy space.

• Enabling and Disabling the Recycle Bin
When the recycle bin is enabled, dropped tables and their dependent objects are placed in
the recycle bin. When the recycle bin is disabled, dropped tables and their dependent
objects are not placed in the recycle bin; they are dropped, and you must use other means
to recover them (such as recovering from backup).

• Viewing and Querying Objects in the Recycle Bin
Oracle Database provides two views for obtaining information about objects in the recycle
bin.

Chapter 19
Using Flashback Drop and Managing the Recycle Bin

19-121

https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-tables/create-modify.html

• Purging Objects in the Recycle Bin
If you decide that you are never going to restore an item from the recycle bin, then you can
use the PURGE statement to remove the items and their associated objects from the recycle
bin and release their storage space. You need the same privileges as if you were dropping
the item.

• Restoring Tables from the Recycle Bin
Use the FLASHBACK TABLE ... TO BEFORE DROP statement to recover objects from the recycle
bin.

19.12.1 What Is the Recycle Bin?
The recycle bin is actually a data dictionary table containing information about dropped objects.
Dropped tables and any associated objects such as indexes, constraints, nested tables, and so
on are not removed and still occupy space.

They continue to count against user space quotas, until specifically purged from the recycle bin
or the unlikely situation where they must be purged by the database because of tablespace
space constraints.

Each user can be thought of as having their own recycle bin, because, unless a user has the
SYSDBA privilege, the only objects that the user has access to in the recycle bin are those that
the user owns. A user can view their objects in the recycle bin using the following statement:

SELECT * FROM RECYCLEBIN;

Only the DROP TABLE SQL statement places objects in the recycle bin. It adds the table and its
associated objects so that they can be recovered as a group. In addition to the table itself, the
associated objects that are added to the recycle bin can include the following types of objects:

• Nested tables

• LOB segments

• Indexes

• Constraints (excluding foreign key constraints)

• Triggers

• Clusters

When you drop a tablespace including its contents, the objects in the tablespace are not
placed in the recycle bin and the database purges any entries in the recycle bin for objects
located in the tablespace. The database also purges any recycle bin entries for objects in a
tablespace when you drop the tablespace, not including contents, and the tablespace is
otherwise empty. Likewise:

• When you drop a user, any objects belonging to the user are not placed in the recycle bin
and any objects in the recycle bin are purged.

• When you drop a cluster, its member tables are not placed in the recycle bin and any
former member tables in the recycle bin are purged.

• When you drop a type, any dependent objects such as subtypes are not placed in the
recycle bin and any former dependent objects in the recycle bin are purged.

Object Naming in the Recycle Bin

When a dropped table is moved to the recycle bin, the table and its associated objects are
given system-generated names. This is necessary to avoid name conflicts that may arise if
multiple tables have the same name. This could occur under the following circumstances:

Chapter 19
Using Flashback Drop and Managing the Recycle Bin

19-122

• A user drops a table, re-creates it with the same name, then drops it again.

• Two users have tables with the same name, and both users drop their tables.

The renaming convention is as follows:

BIN$unique_id$version

where:

• unique_id is a 26-character globally unique identifier for this object, which makes the
recycle bin name unique across all databases

• version is a version number assigned by the database

19.12.2 Enabling and Disabling the Recycle Bin
When the recycle bin is enabled, dropped tables and their dependent objects are placed in the
recycle bin. When the recycle bin is disabled, dropped tables and their dependent objects are
not placed in the recycle bin; they are dropped, and you must use other means to recover them
(such as recovering from backup).

Disabling the recycle bin does not purge or otherwise affect objects already in the recycle bin.
The recycle bin is enabled by default.

You enable and disable the recycle bin by changing the recyclebin initialization parameter.
This parameter is not dynamic, so a database restart is required when you change it with an
ALTER SYSTEM statement.

To enable the recycle bin:

1. Issue one of the following statements:

ALTER SESSION SET recyclebin = ON;

ALTER SYSTEM SET recyclebin = ON SCOPE = SPFILE;
2. If you used ALTER SYSTEM, restart the database.

To disable the recycle bin:

1. Issue one of the following statements:

ALTER SESSION SET recyclebin = OFF;

ALTER SYSTEM SET recyclebin = OFF SCOPE = SPFILE;
2. If you used ALTER SYSTEM, restart the database.

See Also:

Oracle Multitenant Administrator's Guide for a description of dynamic and static
initialization parameters

Chapter 19
Using Flashback Drop and Managing the Recycle Bin

19-123

19.12.3 Viewing and Querying Objects in the Recycle Bin
Oracle Database provides two views for obtaining information about objects in the recycle bin.

View Description

USER_RECYCLEBIN This view can be used by users to see their own dropped objects in the
recycle bin. It has a synonym RECYCLEBIN, for ease of use.

DBA_RECYCLEBIN This view gives administrators visibility to all dropped objects in the
recycle bin

One use for these views is to identify the name that the database has assigned to a dropped
object, as shown in the following example:

SELECT object_name, original_name FROM dba_recyclebin
 WHERE owner = 'HR';

OBJECT_NAME ORIGINAL_NAME
------------------------------ --------------------------------
BIN$yrMKlZaLMhfgNAgAIMenRA==$0 EMPLOYEES

You can also view the contents of the recycle bin using the SQL*Plus command SHOW
RECYCLEBIN.

SQL> show recyclebin

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
EMPLOYEES BIN$yrMKlZaVMhfgNAgAIMenRA==$0 TABLE 2003-10-27:14:00:19

You can query objects that are in the recycle bin, just as you can query other objects. However,
you must specify the name of the object as it is identified in the recycle bin. For example:

SELECT * FROM "BIN$yrMKlZaVMhfgNAgAIMenRA==$0";

19.12.4 Purging Objects in the Recycle Bin
If you decide that you are never going to restore an item from the recycle bin, then you can use
the PURGE statement to remove the items and their associated objects from the recycle bin and
release their storage space. You need the same privileges as if you were dropping the item.

When you use the PURGE statement to purge a table, you can use the name that the table is
known by in the recycle bin or the original name of the table. The recycle bin name can be
obtained from either the DBA_ or USER_RECYCLEBIN view as shown in "Viewing and Querying
Objects in the Recycle Bin". The following hypothetical example purges the table
hr.int_admin_emp, which was renamed to BIN$jsleilx392mk2=293$0 when it was placed in
the recycle bin:

PURGE TABLE "BIN$jsleilx392mk2=293$0";

You can achieve the same result with the following statement:

PURGE TABLE int_admin_emp;

You can use the PURGE statement to purge all the objects in the recycle bin that are from a
specified tablespace or only the tablespace objects belonging to a specified user, as shown in
the following examples:

Chapter 19
Using Flashback Drop and Managing the Recycle Bin

19-124

PURGE TABLESPACE example;
PURGE TABLESPACE example USER oe;

Users can purge the recycle bin of their own objects, and release space for objects, by using
the following statement:

PURGE RECYCLEBIN;

If you have the SYSDBA privilege or the PURGE DBA_RECYCLEBIN system privilege, then you can
purge the entire recycle bin by specifying DBA_RECYCLEBIN, instead of RECYCLEBIN in the
previous statement.

You can also use the PURGE statement to purge an index from the recycle bin or to purge from
the recycle bin all objects in a specified tablespace.

See Also:

Oracle Database SQL Language Reference for more information on the PURGE
statement

19.12.5 Restoring Tables from the Recycle Bin
Use the FLASHBACK TABLE ... TO BEFORE DROP statement to recover objects from the recycle bin.

You can specify either the name of the table in the recycle bin or the original table name. An
optional RENAME TO clause lets you rename the table as you recover it. The recycle bin name
can be obtained from either the DBA_ or USER_RECYCLEBIN view as shown in "Viewing and
Querying Objects in the Recycle Bin". To use the FLASHBACK TABLE ... TO BEFORE DROP
statement, you need the same privileges required to drop the table.

The following example restores int_admin_emp table and assigns to it a new name:

FLASHBACK TABLE int_admin_emp TO BEFORE DROP
 RENAME TO int2_admin_emp;

The system-generated recycle bin name is very useful if you have dropped a table multiple
times. For example, suppose you have three versions of the int2_admin_emp table in the
recycle bin and you want to recover the second version. You can do this by issuing two
FLASHBACK TABLE statements, or you can query the recycle bin and then flashback to the
appropriate system-generated name, as shown in the following example. Including the create
time in the query can help you verify that you are restoring the correct table.

SELECT object_name, original_name, createtime FROM recyclebin;

OBJECT_NAME ORIGINAL_NAME CREATETIME
------------------------------ --------------- -------------------
BIN$yrMKlZaLMhfgNAgAIMenRA==$0 INT2_ADMIN_EMP 2006-02-05:21:05:52
BIN$yrMKlZaVMhfgNAgAIMenRA==$0 INT2_ADMIN_EMP 2006-02-05:21:25:13
BIN$yrMKlZaQMhfgNAgAIMenRA==$0 INT2_ADMIN_EMP 2006-02-05:22:05:53

FLASHBACK TABLE "BIN$yrMKlZaVMhfgNAgAIMenRA==$0" TO BEFORE DROP;

Restoring Dependent Objects

When you restore a table from the recycle bin, dependent objects such as indexes do not get
their original names back; they retain their system-generated recycle bin names. You must

Chapter 19
Using Flashback Drop and Managing the Recycle Bin

19-125

manually rename dependent objects to restore their original names. If you plan to manually
restore original names for dependent objects, ensure that you make note of each dependent
object's system-generated recycle bin name before you restore the table.

The following is an example of restoring the original names of some of the indexes of the
dropped table JOB_HISTORY, from the HR sample schema. The example assumes that you are
logged in as the HR user.

1. After dropping JOB_HISTORY and before restoring it from the recycle bin, run the following
query:

SELECT OBJECT_NAME, ORIGINAL_NAME, TYPE FROM RECYCLEBIN;

OBJECT_NAME ORIGINAL_NAME TYPE
------------------------------ ------------------------- --------
BIN$DBo9UChtZSbgQFeMiAdCcQ==$0 JHIST_JOB_IX INDEX
BIN$DBo9UChuZSbgQFeMiAdCcQ==$0 JHIST_EMPLOYEE_IX INDEX
BIN$DBo9UChvZSbgQFeMiAdCcQ==$0 JHIST_DEPARTMENT_IX INDEX
BIN$DBo9UChwZSbgQFeMiAdCcQ==$0 JHIST_EMP_ID_ST_DATE_PK INDEX
BIN$DBo9UChxZSbgQFeMiAdCcQ==$0 JOB_HISTORY TABLE

2. Restore the table with the following command:

FLASHBACK TABLE JOB_HISTORY TO BEFORE DROP;
3. Run the following query to verify that all JOB_HISTORY indexes retained their system-

generated recycle bin names:

SELECT INDEX_NAME FROM USER_INDEXES WHERE TABLE_NAME = 'JOB_HISTORY';

INDEX_NAME

BIN$DBo9UChwZSbgQFeMiAdCcQ==$0
BIN$DBo9UChtZSbgQFeMiAdCcQ==$0
BIN$DBo9UChuZSbgQFeMiAdCcQ==$0
BIN$DBo9UChvZSbgQFeMiAdCcQ==$0

4. Restore the original names of the first two indexes as follows:

ALTER INDEX "BIN$DBo9UChtZSbgQFeMiAdCcQ==$0" RENAME TO JHIST_JOB_IX;
ALTER INDEX "BIN$DBo9UChuZSbgQFeMiAdCcQ==$0" RENAME TO JHIST_EMPLOYEE_IX;

Note that double quotes are required around the system-generated names.

19.13 Managing Index-Organized Tables
An index-organized table's storage organization is a variant of a primary B-tree index. Unlike a
heap-organized table, data is stored in primary key order.

• What Are Index-Organized Tables?
An index-organized table has a storage organization that is a variant of a primary B-tree.
Unlike an ordinary (heap-organized) table whose data is stored as an unordered collection
(heap), data for an index-organized table is stored in a B-tree index structure in a primary
key sorted manner. Each leaf block in the index structure stores both the key and nonkey
columns.

• Creating Index-Organized Tables
Index-organized tables provide fast primary key access and high availability.

• Maintaining Index-Organized Tables
Index-organized tables differ from ordinary tables only in physical organization. Logically,
they are manipulated in the same manner as ordinary tables. You can specify an index-

Chapter 19
Managing Index-Organized Tables

19-126

organized table just as you would specify a regular table in INSERT, SELECT, DELETE, and
UPDATE statements.

• Creating Secondary Indexes on Index-Organized Tables
A secondary index is an index on an index-organized table. The secondary index is an
independent schema object and is stored separately from the index-organized table.

• Analyzing Index-Organized Tables
Just like ordinary tables, index-organized tables are analyzed using the DBMS_STATS
package, or the ANALYZE statement.

• Using the ORDER BY Clause with Index-Organized Tables
If an ORDER BY clause only references the primary key column or a prefix of it, then the
optimizer avoids the sorting overhead, as the rows are returned sorted on the primary key
columns.

• Converting Index-Organized Tables to Regular Tables
You can convert index-organized tables to regular (heap organized) tables using the
Oracle import or export utilities, or the CREATE TABLE...AS SELECT statement.

19.13.1 What Are Index-Organized Tables?
An index-organized table has a storage organization that is a variant of a primary B-tree.
Unlike an ordinary (heap-organized) table whose data is stored as an unordered collection
(heap), data for an index-organized table is stored in a B-tree index structure in a primary key
sorted manner. Each leaf block in the index structure stores both the key and nonkey columns.

The structure of an index-organized table provides the following benefits:

• Fast random access on the primary key because an index-only scan is sufficient. And,
because there is no separate table storage area, changes to the table data (such as
adding new rows, updating rows, or deleting rows) result only in updating the index
structure.

• Fast range access on the primary key because the rows are clustered in primary key order.

• Lower storage requirements because duplication of primary keys is avoided. They are not
stored both in the index and underlying table, as is true with heap-organized tables.

Index-organized tables have full table functionality. They support features such as constraints,
triggers, LOB and object columns, partitioning, parallel operations, online reorganization, and
replication. And, they offer these additional features:

• Prefix compression

• Overflow storage area and specific column placement

• Secondary indexes, including bitmap indexes.

Index-organized tables are ideal for OLTP applications, which require fast primary key access
and high availability. For example, queries and DML on an orders table used in electronic order
processing are predominantly based on primary key access, and heavy volume of concurrent
DML can cause row chaining and inefficient space usage in indexes, resulting in a frequent
need to reorganize. Because an index-organized table can be reorganized online and without
invalidating its secondary indexes, the window of unavailability is greatly reduced or eliminated.

Index-organized tables are suitable for modeling application-specific index structures. For
example, content-based information retrieval applications containing text, image and audio
data require inverted indexes that can be effectively modeled using index-organized tables. A
fundamental component of an internet search engine is an inverted index that can be modeled
using index-organized tables.

Chapter 19
Managing Index-Organized Tables

19-127

These are but a few of the applications for index-organized tables.

See Also:

• Oracle Database Concepts for a more thorough description of index-organized
tables

• Oracle Database VLDB and Partitioning Guide for information about partitioning
index-organized tables

19.13.2 Creating Index-Organized Tables
Index-organized tables provide fast primary key access and high availability.

• About Creating Index-Organized Tables
You use the CREATE TABLE statement to create index-organized tables.

• Example: Creating an Index-Organized Table
An example illustrates creating an index-organized table.

• Restrictions for Index-Organized Tables
Several restrictions apply when you are creating an index-organized table.

• Creating Index-Organized Tables That Contain Object Types
Index-organized tables can store object types.

• Choosing and Monitoring a Threshold Value
Choose a threshold value that can accommodate your key columns, as well as the first few
nonkey columns (if they are frequently accessed).

• Using the INCLUDING Clause
In addition to specifying PCTTHRESHOLD, you can use the INCLUDING clause to control which
nonkey columns are stored with the key columns in an index-organized table.

• Parallelizing Index-Organized Table Creation
The CREATE TABLE...AS SELECT statement enables you to create an index-organized table
and load data from an existing table into it. By including the PARALLEL clause, the load can
be done in parallel.

• Using Prefix Compression
Creating an index-organized table using prefix compression (also known as key
compression) enables you to eliminate repeated occurrences of key column prefix values.

19.13.2.1 About Creating Index-Organized Tables
You use the CREATE TABLE statement to create index-organized tables.

When you create an index-organized table, but you must provide additional information:

• An ORGANIZATION INDEX qualifier, which indicates that this is an index-organized table

• A primary key, specified through a column constraint clause (for a single column primary
key) or a table constraint clause (for a multiple-column primary key).

Optionally, you can specify the following:

Chapter 19
Managing Index-Organized Tables

19-128

• An OVERFLOW clause, which preserves dense clustering of the B-tree index by enabling the
storage of some of the nonkey columns in a separate overflow data segment.

• A PCTTHRESHOLD value, which, when an overflow segment is being used, defines the
maximum size of the portion of the row that is stored in the index block, as a percentage of
block size. Rows columns that would cause the row size to exceed this maximum are
stored in the overflow segment. The row is broken at a column boundary into two pieces, a
head piece and tail piece. The head piece fits in the specified threshold and is stored along
with the key in the index leaf block. The tail piece is stored in the overflow area as one or
more row pieces. Thus, the index entry contains the key value, the nonkey column values
that fit the specified threshold, and a pointer to the rest of the row.

• An INCLUDING clause, which can be used to specify the nonkey columns that are to be
stored in the index block with the primary key.

19.13.2.2 Example: Creating an Index-Organized Table
An example illustrates creating an index-organized table.

The following statement creates an index-organized table:

CREATE TABLE admin_docindex(
 token char(20),
 doc_id NUMBER,
 token_frequency NUMBER,
 token_offsets VARCHAR2(2000),
 CONSTRAINT pk_admin_docindex PRIMARY KEY (token, doc_id))
 ORGANIZATION INDEX
 TABLESPACE admin_tbs
 PCTTHRESHOLD 20
 OVERFLOW TABLESPACE admin_tbs2;

This example creates an index-organized table named admin_docindex, with a primary key
composed of the columns token and doc_id. The OVERFLOW and PCTTHRESHOLD clauses specify
that if the length of a row exceeds 20% of the index block size, then the column that exceeded
that threshold and all columns after it are moved to the overflow segment. The overflow
segment is stored in the admin_tbs2 tablespace.

See Also:

Oracle Database SQL Language Reference for more information about the syntax to
create an index-organized table

19.13.2.3 Restrictions for Index-Organized Tables
Several restrictions apply when you are creating an index-organized table.

The following are restrictions on creating index-organized tables.

• The maximum number of columns is 1000.

• The maximum number of columns in the index portion of a row is 255, including both key
and nonkey columns. If more than 255 columns are required, you must use an overflow
segment.

• The maximum number of columns that you can include in the primary key is 32.

Chapter 19
Managing Index-Organized Tables

19-129

• PCTTHRESHOLD must be in the range of 1–50. The default is 50.

• All key columns must fit within the specified threshold.

• If the maximum size of a row exceeds 50% of the index block size and you do not specify
an overflow segment, the CREATE TABLE statement fails.

• Index-organized tables cannot have virtual columns.

• When a table has a foreign key, and the parent of the foreign key is an index-organized
table, a session that updates a row that contains the foreign key can stop responding when
another session is updating a non-key column in the parent table.

For example, consider a scenario in which a departments table is an index-organized
table, and department_id is its primary key. There is an employees table with a
department_id column that is a foreign key of the departments table. Assume a session is
updating the department_name in a row in the departments table for which the
department_id is 20 while another session is updating a row in the employees table for
which the department_id is 20. In this case, the session updating the employees table can
stop responding until the session updating the departments table commits or rolls back.

• Index-organized tables that contain one or more LOB columns cannot be moved in
parallel.

19.13.2.4 Creating Index-Organized Tables That Contain Object Types
Index-organized tables can store object types.

The following example creates object type admin_typ, then creates an index-organized table
containing a column of object type admin_typ:

CREATE OR REPLACE TYPE admin_typ AS OBJECT
 (col1 NUMBER, col2 VARCHAR2(6));
CREATE TABLE admin_iot (c1 NUMBER primary key, c2 admin_typ)
 ORGANIZATION INDEX;

You can also create an index-organized table of object types. For example:

CREATE TABLE admin_iot2 OF admin_typ (col1 PRIMARY KEY)
 ORGANIZATION INDEX;

Another example, that follows, shows that index-organized tables store nested tables
efficiently. For a nested table column, the database internally creates a storage table to hold all
the nested table rows.

CREATE TYPE project_t AS OBJECT(pno NUMBER, pname VARCHAR2(80));
/
CREATE TYPE project_set AS TABLE OF project_t;
/
CREATE TABLE proj_tab (eno NUMBER, projects PROJECT_SET)
 NESTED TABLE projects STORE AS emp_project_tab
 ((PRIMARY KEY(nested_table_id, pno))
 ORGANIZATION INDEX)
 RETURN AS LOCATOR;

The rows belonging to a single nested table instance are identified by a nested_table_id
column. If an ordinary table is used to store nested table columns, the nested table rows
typically get de-clustered. But when you use an index-organized table, the nested table rows
can be clustered based on the nested_table_id column.

Chapter 19
Managing Index-Organized Tables

19-130

See Also:

• Oracle Database SQL Language Reference for details of the syntax used for
creating index-organized tables

• Oracle Database VLDB and Partitioning Guide for information about creating
partitioned index-organized tables

• Oracle Database Object-Relational Developer's Guide for information about
object types

19.13.2.5 Choosing and Monitoring a Threshold Value
Choose a threshold value that can accommodate your key columns, as well as the first few
nonkey columns (if they are frequently accessed).

After choosing a threshold value, you can monitor tables to verify that the value you specified
is appropriate. You can use the ANALYZE TABLE ... LIST CHAINED ROWS statement to determine
the number and identity of rows exceeding the threshold value.

See Also:

• "Listing Chained Rows of Tables and Clusters" for more information about
chained rows

• Oracle Database SQL Language Reference for syntax of the ANALYZE statement

19.13.2.6 Using the INCLUDING Clause
In addition to specifying PCTTHRESHOLD, you can use the INCLUDING clause to control which
nonkey columns are stored with the key columns in an index-organized table.

The database accommodates all nonkey columns up to and including the column specified in
the INCLUDING clause in the index leaf block, provided it does not exceed the specified
threshold. All nonkey columns beyond the column specified in the INCLUDING clause are stored
in the overflow segment. If the INCLUDING and PCTTHRESHOLD clauses conflict, PCTTHRESHOLD
takes precedence.

Chapter 19
Managing Index-Organized Tables

19-131

Note:

Oracle Database moves all primary key columns of an indexed-organized table to the
beginning of the table (in their key order) to provide efficient primary key–based
access. As an example:

CREATE TABLE admin_iot4(a INT, b INT, c INT, d INT,
 primary key(c,b))
 ORGANIZATION INDEX;

The stored column order is: c b a d (instead of: a b c d). The last primary key
column is b, based on the stored column order. The INCLUDING column can be the
last primary key column (b in this example), or any nonkey column (that is, any
column after b in the stored column order).

The following CREATE TABLE statement is similar to the one shown earlier in "Example:
Creating an Index-Organized Table" but is modified to create an index-organized table where
the token_offsets column value is always stored in the overflow area:

CREATE TABLE admin_docindex2(
 token CHAR(20),
 doc_id NUMBER,
 token_frequency NUMBER,
 token_offsets VARCHAR2(2000),
 CONSTRAINT pk_admin_docindex2 PRIMARY KEY (token, doc_id))
 ORGANIZATION INDEX
 TABLESPACE admin_tbs
 PCTTHRESHOLD 20
 INCLUDING token_frequency
 OVERFLOW TABLESPACE admin_tbs2;

Here, only nonkey columns before token_offsets (in this case a single column only) are
stored with the key column values in the index leaf block.

19.13.2.7 Parallelizing Index-Organized Table Creation
The CREATE TABLE...AS SELECT statement enables you to create an index-organized table
and load data from an existing table into it. By including the PARALLEL clause, the load can be
done in parallel.

The following statement creates an index-organized table in parallel by selecting rows from the
conventional table hr.jobs:

CREATE TABLE admin_iot3(i PRIMARY KEY, j, k, l)
 ORGANIZATION INDEX
 PARALLEL
 AS SELECT * FROM hr.jobs;

This statement provides an alternative to parallel bulk-load using SQL*Loader.

Chapter 19
Managing Index-Organized Tables

19-132

19.13.2.8 Using Prefix Compression
Creating an index-organized table using prefix compression (also known as key compression)
enables you to eliminate repeated occurrences of key column prefix values.

Prefix compression breaks an index key into a prefix and a suffix entry. Compression is
achieved by sharing the prefix entries among all the suffix entries in an index block. This
sharing can lead to huge savings in space, allowing you to store more keys in each index block
while improving performance.

You can enable prefix compression using the COMPRESS clause while:

• Creating an index-organized table

• Moving an index-organized table

You can also specify the prefix length (as the number of key columns), which identifies how the
key columns are broken into a prefix and suffix entry.

CREATE TABLE admin_iot5(i INT, j INT, k INT, l INT, PRIMARY KEY (i, j, k))
 ORGANIZATION INDEX COMPRESS;

The preceding statement is equivalent to the following statement:

CREATE TABLE admin_iot6(i INT, j INT, k INT, l INT, PRIMARY KEY(i, j, k))
 ORGANIZATION INDEX COMPRESS 2;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4) the repeated occurrences
of (1,2), (1,3) are compressed away.

You can also override the default prefix length used for compression as follows:

CREATE TABLE admin_iot7(i INT, j INT, k INT, l INT, PRIMARY KEY (i, j, k))
 ORGANIZATION INDEX COMPRESS 1;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4), the repeated occurrences
of 1 are compressed away.

You can disable compression as follows:

ALTER TABLE admin_iot5 MOVE NOCOMPRESS;

One application of prefix compression is in a time-series application that uses a set of time-
stamped rows belonging to a single item, such as a stock price. Index-organized tables are
attractive for such applications because of the ability to cluster rows based on the primary key.
By defining an index-organized table with primary key (stock symbol, time stamp), you can
store and manipulate time-series data efficiently. You can achieve more storage savings by
compressing repeated occurrences of the item identifier (for example, the stock symbol) in a
time series by using an index-organized table with prefix compression.

See Also:

Oracle Database Concepts for more information about prefix compression

Chapter 19
Managing Index-Organized Tables

19-133

19.13.3 Maintaining Index-Organized Tables
Index-organized tables differ from ordinary tables only in physical organization. Logically, they
are manipulated in the same manner as ordinary tables. You can specify an index-organized
table just as you would specify a regular table in INSERT, SELECT, DELETE, and UPDATE
statements.

• Altering Index-Organized Tables
All of the alter options available for ordinary tables are available for index-organized tables.
This includes ADD, MODIFY, and DROP COLUMNS and CONSTRAINTS. However, the primary key
constraint for an index-organized table cannot be dropped, deferred, or disabled.

• Moving (Rebuilding) Index-Organized Tables
Because index-organized tables are primarily stored in a B-tree index, you can encounter
fragmentation as a consequence of incremental updates. However, you can use the ALTER
TABLE...MOVE statement to rebuild the index and reduce this fragmentation.

19.13.3.1 Altering Index-Organized Tables
All of the alter options available for ordinary tables are available for index-organized tables.
This includes ADD, MODIFY, and DROP COLUMNS and CONSTRAINTS. However, the primary key
constraint for an index-organized table cannot be dropped, deferred, or disabled.

You can use the ALTER TABLE statement to modify physical and storage attributes for both
primary key index and overflow data segments. All the attributes specified before the OVERFLOW
keyword are applicable to the primary key index segment. All attributes specified after the
OVERFLOW key word are applicable to the overflow data segment. For example, you can set the
INITRANS of the primary key index segment to 4 and the overflow of the data segment
INITRANS to 6 as follows:

ALTER TABLE admin_docindex INITRANS 4 OVERFLOW INITRANS 6;

You can also alter PCTTHRESHOLD and INCLUDING column values. A new setting is used to break
the row into head and overflow tail pieces during subsequent operations. For example, the
PCTHRESHOLD and INCLUDING column values can be altered for the admin_docindex table as
follows:

ALTER TABLE admin_docindex PCTTHRESHOLD 15 INCLUDING doc_id;

By setting the INCLUDING column to doc_id, all the columns that follow token_frequency and
token_offsets, are stored in the overflow data segment.

For index-organized tables created without an overflow data segment, you can add an overflow
data segment by using the ADD OVERFLOW clause. For example, you can add an overflow
segment to table admin_iot3 as follows:

ALTER TABLE admin_iot3 ADD OVERFLOW TABLESPACE admin_tbs2;

19.13.3.2 Moving (Rebuilding) Index-Organized Tables
Because index-organized tables are primarily stored in a B-tree index, you can encounter
fragmentation as a consequence of incremental updates. However, you can use the ALTER
TABLE...MOVE statement to rebuild the index and reduce this fragmentation.

The following statement rebuilds the index-organized table admin_docindex:

ALTER TABLE admin_docindex MOVE;

Chapter 19
Managing Index-Organized Tables

19-134

You can rebuild index-organized tables online using the ONLINE keyword. The overflow data
segment, if present, is rebuilt when the OVERFLOW keyword is specified. For example, to rebuild
the admin_docindex table but not the overflow data segment, perform a move online as
follows:

ALTER TABLE admin_docindex MOVE ONLINE;

To rebuild the admin_docindex table along with its overflow data segment perform the move
operation as shown in the following statement. This statement also illustrates moving both the
table and overflow data segment to new tablespaces.

ALTER TABLE admin_docindex MOVE TABLESPACE admin_tbs2
 OVERFLOW TABLESPACE admin_tbs3;

In this last statement, an index-organized table with a LOB column (CLOB) is created. Later,
the table is moved with the LOB index and data segment being rebuilt and moved to a new
tablespace.

CREATE TABLE admin_iot_lob
 (c1 number (6) primary key,
 admin_lob CLOB)
 ORGANIZATION INDEX
 LOB (admin_lob) STORE AS (TABLESPACE admin_tbs2);
.
.
.
ALTER TABLE admin_iot_lob MOVE LOB (admin_lob) STORE AS (TABLESPACE admin_tbs3);

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for information
about LOBs in index-organized tables

19.13.4 Creating Secondary Indexes on Index-Organized Tables
A secondary index is an index on an index-organized table. The secondary index is an
independent schema object and is stored separately from the index-organized table.

• About Secondary Indexes on Index-Organized Tables
You can create secondary indexes on an index-organized tables to provide multiple access
paths.

• Creating a Secondary Index on an Index-Organized Table
You can create a secondary index on an index-organized table.

• Maintaining Physical Guesses in Logical Rowids
A logical rowid can include a guess, which identifies the block location of a row at the time
the guess is made. Instead of doing a full key search, the database uses the guess to
search the block directly.

• Specifying Bitmap Indexes on Index-Organized Tables
Bitmap indexes on index-organized tables are supported, provided the index-organized
table is created with a mapping table.

Chapter 19
Managing Index-Organized Tables

19-135

19.13.4.1 About Secondary Indexes on Index-Organized Tables
You can create secondary indexes on an index-organized tables to provide multiple access
paths.

Secondary indexes on index-organized tables differ from indexes on ordinary tables in two
ways:

• They store logical rowids instead of physical rowids. This is necessary because the
inherent movability of rows in a B-tree index results in the rows having no permanent
physical addresses. If the physical location of a row changes, its logical rowid remains
valid. One effect of this is that a table maintenance operation, such as ALTER TABLE ...
MOVE, does not make the secondary index unusable.

• The logical rowid also includes a physical guess which identifies the database block
address at which the row is likely to be found. If the physical guess is correct, a secondary
index scan would incur a single additional I/O once the secondary key is found. The
performance would be similar to that of a secondary index-scan on an ordinary table.

Unique and non-unique secondary indexes, function-based secondary indexes, and bitmap
indexes are supported as secondary indexes on index-organized tables.

19.13.4.2 Creating a Secondary Index on an Index-Organized Table
You can create a secondary index on an index-organized table.

The following statement shows the creation of a secondary index on the docindex index-
organized table where doc_id and token are the key columns:

CREATE INDEX Doc_id_index on Docindex(Doc_id, Token);

This secondary index allows the database to efficiently process a query, such as the following,
the involves a predicate on doc_id:

SELECT Token FROM Docindex WHERE Doc_id = 1;

19.13.4.3 Maintaining Physical Guesses in Logical Rowids
A logical rowid can include a guess, which identifies the block location of a row at the time the
guess is made. Instead of doing a full key search, the database uses the guess to search the
block directly.

However, as new rows are inserted, guesses can become stale. The indexes are still usable
through the primary key-component of the logical rowid, but access to rows is slower.

1. Collect index statistics with the DBMS_STATS package to monitor the staleness of guesses.

The database checks whether the existing guesses are still valid and records the
percentage of rows with valid guesses in the data dictionary.

2. Query the PCT_DIRECT_ACCESS column of the DBA_INDEXES view (and related views) to
show the statistics related to existing guesses.

3. To obtain fresh guesses, you can rebuild the secondary index.

Rebuilding a secondary index on an index-organized table involves reading the base table,
unlike rebuilding an index on an ordinary table.

Chapter 19
Managing Index-Organized Tables

19-136

A quicker, more light weight means of fixing the guesses is to use the ALTER INDEX ... UPDATE
BLOCK REFERENCES statement. This statement is performed online, while DML is still allowed on
the underlying index-organized table.

After you rebuild a secondary index, or otherwise update the block references in the guesses,
collect index statistics again.

19.13.4.4 Specifying Bitmap Indexes on Index-Organized Tables
Bitmap indexes on index-organized tables are supported, provided the index-organized table is
created with a mapping table.

This is done by specifying the MAPPING TABLE clause in the CREATE TABLE statement that you
use to create the index-organized table, or in an ALTER TABLE statement to add the mapping
table later.

See Also:

Oracle Database Concepts for a description of mapping tables

19.13.5 Analyzing Index-Organized Tables
Just like ordinary tables, index-organized tables are analyzed using the DBMS_STATS package,
or the ANALYZE statement.

• Collecting Optimizer Statistics for Index-Organized Tables
To collect optimizer statistics, use the DBMS_STATS package.

• Validating the Structure of Index-Organized Tables
Use the ANALYZE statement to validate the structure of your index-organized table or to list
any chained rows.

19.13.5.1 Collecting Optimizer Statistics for Index-Organized Tables
To collect optimizer statistics, use the DBMS_STATS package.

For example, the following statement gathers statistics for the index-organized countries table
in the hr schema:

EXECUTE DBMS_STATS.GATHER_TABLE_STATS ('HR','COUNTRIES');

The DBMS_STATS package analyzes both the primary key index segment and the overflow data
segment, and computes logical as well as physical statistics for the table.

• The logical statistics can be queried using USER_TABLES, ALL_TABLES or DBA_TABLES.

• You can query the physical statistics of the primary key index segment using
USER_INDEXES, ALL_INDEXES or DBA_INDEXES (and using the primary key index name). For
example, you can obtain the primary key index segment physical statistics for the table
admin_docindex as follows:

SELECT LAST_ANALYZED, BLEVEL,LEAF_BLOCKS, DISTINCT_KEYS
 FROM DBA_INDEXES WHERE INDEX_NAME= 'PK_ADMIN_DOCINDEX';

Chapter 19
Managing Index-Organized Tables

19-137

• You can query the physical statistics for the overflow data segment using the USER_TABLES,
ALL_TABLES or DBA_TABLES. You can identify the overflow entry by searching for IOT_TYPE
= 'IOT_OVERFLOW'. For example, you can obtain overflow data segment physical attributes
associated with the admin_docindex table as follows:

SELECT LAST_ANALYZED, NUM_ROWS, BLOCKS, EMPTY_BLOCKS
 FROM DBA_TABLES WHERE IOT_TYPE='IOT_OVERFLOW'
 and IOT_NAME= 'ADMIN_DOCINDEX';

See Also:

– Oracle Database SQL Tuning Guide for more information about collecting
optimizer statistics

– Oracle Database PL/SQL Packages and Types Reference for more
information about of the DBMS_STATS package

19.13.5.2 Validating the Structure of Index-Organized Tables
Use the ANALYZE statement to validate the structure of your index-organized table or to list any
chained rows.

These operations are discussed in the following sections located elsewhere in this book:

• "Validating Tables, Indexes, Clusters, and Materialized Views"

• "Listing Chained Rows of Tables and Clusters"

Note:

There are special considerations when listing chained rows for index-organized
tables. These are discussed in the Oracle Database SQL Language Reference.

19.13.6 Using the ORDER BY Clause with Index-Organized Tables
If an ORDER BY clause only references the primary key column or a prefix of it, then the
optimizer avoids the sorting overhead, as the rows are returned sorted on the primary key
columns.

The following queries avoid sorting overhead because the data is already sorted on the
primary key:

SELECT * FROM admin_docindex2 ORDER BY token, doc_id;
SELECT * FROM admin_docindex2 ORDER BY token;

If, however, you have an ORDER BY clause on a suffix of the primary key column or non-
primary-key columns, additional sorting is required (assuming no other secondary indexes are
defined).

SELECT * FROM admin_docindex2 ORDER BY doc_id;
SELECT * FROM admin_docindex2 ORDER BY token_frequency;

Chapter 19
Managing Index-Organized Tables

19-138

19.13.7 Converting Index-Organized Tables to Regular Tables
You can convert index-organized tables to regular (heap organized) tables using the Oracle
import or export utilities, or the CREATE TABLE...AS SELECT statement.

To convert an index-organized table to a regular table:

• Export the index-organized table data using conventional path.

• Create a regular table definition with the same definition.

• Import the index-organized table data, making sure IGNORE=y (ensures that object exists
error is ignored).

Note:

Before converting an index-organized table to a regular table, be aware that
index-organized tables cannot be exported using pre-Oracle8 versions of the
Export utility.

See Also:

Oracle Database Utilities for more details about using the original IMP utility and
the Data Pump import and export utilities

19.14 Managing Partitioned Tables
Partitioned tables enable your data to be broken down into smaller, more manageable pieces
called partitions, or even subpartitions. Each partition can have separate physical attributes,
such as compression enabled or disabled, type of compression, physical storage settings, and
tablespace, thus providing a structure that can be better tuned for availability and performance.
In addition, each partition can be managed individually, which can simplify and reduce the time
required for backup and administration.

See Oracle Database VLDB and Partitioning Guide for more information about managing
partitioned tables.

19.15 Managing External Tables
External tables are the tables that do not reside in the database. They reside outside the
database, in Object storage or external files, such as operating system files or Hadoop
Distributed File System (HDFS) files.

• About External Tables
Oracle Database allows you read-only access to data in external tables. External tables
are defined as tables that do not reside in the database, and they can be in any format for
which an access driver is provided.

• Creating External Tables
You create external tables using the CREATE TABLE statement with an ORGANIZATION
EXTERNAL clause. This statement creates only metadata in the data dictionary.

Chapter 19
Managing Partitioned Tables

19-139

• Altering External Tables
You can modify an external table with the ALTER TABLE statement.

• Preprocessing External Tables
External tables can be preprocessed by user-supplied preprocessor programs. By using a
preprocessing program, users can use data from a file that is not in a format supported by
the driver.

• Overriding Parameters for External Tables in a Query
The EXTERNAL MODIFY clause of a SELECT statement modifies external table parameters.

• Using Inline External Tables
Inline external tables enable the runtime definition of an external table as part of a SQL
statement, without creating the external table as persistent object in the data dictionary.

• Partitioning External Tables
For large amounts of data, partitioning for external tables provides fast query performance
and enhanced data maintenance.

• Dropping External Tables
For an external table, the DROP TABLE statement removes only the table metadata in the
database. It has no affect on the actual data, which resides outside of the database.

• System and Object Privileges for External Tables
System and object privileges for external tables are a subset of those for regular table.

• Using SQL*Loader for External Tables with Partition Values in File Paths
To enhance management of large numbers of data files in object stores, you can use
external table partitioning with folder names as part of the file paths.

19.15.1 About External Tables
Oracle Database allows you read-only access to data in external tables. External tables are
defined as tables that do not reside in the database, and they can be in any format for which
an access driver is provided.

By providing the database with metadata describing an external table, the database is able to
expose the data in the external table as if it were data residing in a regular database table. The
external data can be queried directly and in parallel using SQL.

You can, for example, select, join, or sort external table data. You can also create views and
synonyms for external tables. However, no DML operations (UPDATE, INSERT, or DELETE) are
possible, and no indexes can be created, on external tables.

External tables provide a framework to unload the result of an arbitrary SELECT statement into a
platform-independent Oracle-proprietary format that can be used by Oracle Data Pump.
External tables provide a valuable means for performing basic extraction, transformation, and
loading (ETL) tasks that are common for data warehousing.

You define the metadata for external tables with the CREATE TABLE...ORGANIZATION EXTERNAL
statement. This external table definition can be thought of as a view that allows running any
SQL query against external data without requiring that the external data first be loaded into the
database. An access driver is the mechanism used to read the external data in the table. When
you use external tables to unload data, the metadata is automatically created based on the
data types in the SELECT statement.

Oracle Database provides access drivers for external tables. The default access driver is
ORACLE_LOADER, which allows the reading of data from external files using the Oracle loader
technology. The ORACLE_LOADER access driver provides data mapping capabilities which are a
subset of the control file syntax of SQL*Loader utility. Another access driver, ORACLE_DATAPUMP,

Chapter 19
Managing External Tables

19-140

lets you unload data—that is, read data from the database and insert it into an external table,
represented by one or more external files—and then reload it into an Oracle Database.

Starting with Oracle Database 12c Release 2 (12.2), new access drivers ORACLE_HIVE and
ORACLE_HDFS are available. The ORACLE_HIVE access driver can extract data stored in Apache
Hive. The ORACLE_HDFS access driver can extract data stored in a Hadoop Distributed File
System (HDFS).

Starting with Oracle Database 18c, inline external tables are supported. Inline external tables
enable the runtime definition of an external table as part of a SQL statement, without creating
the external table as persistent object in the data dictionary.

Starting with Oracle Database Release 19.10, Object storage is supported as a source for
external table data. This enables Oracle databases to use data stored in Cloud applications.
Additional data formats such as ORC, Parquet, and Avro are supported with the
ORACLE_BIGDATA access driver.

Note:

The ANALYZE statement is not supported for gathering statistics for external tables.
Use the DBMS_STATS package instead.

See Also:

• Oracle Database SQL Language Reference for restrictions that apply to external
tables

• Oracle Database Utilities for information about access drivers

• Oracle Database Data Warehousing Guide for information about using external
tables for ETL in a data warehousing environment

• Oracle Database SQL Tuning Guide for information about using the DBMS_STATS
package

• Oracle Database Utilities for information about the ORACLE_HIVE and ORACLE_HDFS
drivers and for more information about external tables

Chapter 19
Managing External Tables

19-141

19.15.2 Creating External Tables
You create external tables using the CREATE TABLE statement with an ORGANIZATION EXTERNAL
clause. This statement creates only metadata in the data dictionary.

Note:

• Starting with Oracle Database 12c Release 2 (12.2), you can partition external
tables for fast query performance and enhanced data maintenance for large
amounts of data.

• External tables can have virtual columns. However, a virtual column in an
external table cannot be defined using the evaluation_edition_clause or the
unusable_edition_clause.

Example 19-21 Creating an External Table and Loading Data

This example creates an external table and then uploads the data to a database table.
Alternatively, you can unload data through the external table framework by specifying the AS
subquery clause of the CREATE TABLE statement. External table data pump unload can use
only the ORACLE_DATAPUMP access driver.

The data for the external table resides in the two text files empxt1.dat and empxt2.dat.

The file empxt1.dat contains the following sample data:

360,Jane,Janus,ST_CLERK,121,17-MAY-2001,3000,0,50,jjanus
361,Mark,Jasper,SA_REP,145,17-MAY-2001,8000,.1,80,mjasper
362,Brenda,Starr,AD_ASST,200,17-MAY-2001,5500,0,10,bstarr
363,Alex,Alda,AC_MGR,145,17-MAY-2001,9000,.15,80,aalda

The file empxt2.dat contains the following sample data:

401,Jesse,Cromwell,HR_REP,203,17-MAY-2001,7000,0,40,jcromwel
402,Abby,Applegate,IT_PROG,103,17-MAY-2001,9000,.2,60,aapplega
403,Carol,Cousins,AD_VP,100,17-MAY-2001,27000,.3,90,ccousins
404,John,Richardson,AC_ACCOUNT,205,17-MAY-2001,5000,0,110,jrichard

The following SQL statements create an external table named admin_ext_employees in the hr
schema and load data from the external table into the hr.employees table.

CONNECT / AS SYSDBA;
-- Set up directories and grant access to hr
CREATE OR REPLACE DIRECTORY admin_dat_dir
 AS '/flatfiles/data';
CREATE OR REPLACE DIRECTORY admin_log_dir
 AS '/flatfiles/log';
CREATE OR REPLACE DIRECTORY admin_bad_dir
 AS '/flatfiles/bad';
GRANT READ ON DIRECTORY admin_dat_dir TO hr;
GRANT WRITE ON DIRECTORY admin_log_dir TO hr;
GRANT WRITE ON DIRECTORY admin_bad_dir TO hr;
-- hr connects. Provide the user password (hr) when prompted.
CONNECT hr
-- create the external table
CREATE TABLE admin_ext_employees

Chapter 19
Managing External Tables

19-142

 (employee_id NUMBER(4),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 job_id VARCHAR2(10),
 manager_id NUMBER(4),
 hire_date DATE,
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 department_id NUMBER(4),
 email VARCHAR2(25)
)
 ORGANIZATION EXTERNAL
 (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY admin_dat_dir
 ACCESS PARAMETERS
 (
 records delimited by newline
 badfile admin_bad_dir:'empxt%a_%p.bad'
 logfile admin_log_dir:'empxt%a_%p.log'
 fields terminated by ','
 missing field values are null
 (employee_id, first_name, last_name, job_id, manager_id,
 hire_date char date_format date mask "dd-mon-yyyy",
 salary, commission_pct, department_id, email
)
)
 LOCATION ('empxt1.dat', 'empxt2.dat')
)
 PARALLEL
 REJECT LIMIT UNLIMITED;
-- enable parallel for loading (good if lots of data to load)
ALTER SESSION ENABLE PARALLEL DML;
-- load the data in hr employees table
INSERT INTO employees (employee_id, first_name, last_name, job_id, manager_id,
 hire_date, salary, commission_pct, department_id, email)
 SELECT * FROM admin_ext_employees;

The following paragraphs contain descriptive information about this example.

The first few statements in this example create the directory objects for the operating system
directories that contain the data sources, and for the bad record and log files specified in the
access parameters. You must also grant READ or WRITE directory object privileges, as
appropriate.

Note:

When creating a directory object or BFILEs, ensure that the following conditions are
met:

• The operating system file must not be a symbolic or hard link.

• The operating system directory path named in the Oracle Database directory
object must be an existing OS directory path.

• The operating system directory path named in the directory object should not
contain any symbolic links in its components.

Chapter 19
Managing External Tables

19-143

The TYPE specification indicates the access driver of the external table. The access driver is
the API that interprets the external data for the database. If you omit the TYPE specification,
ORACLE_LOADER is the default access driver. You must specify the ORACLE_DATAPUMP access
driver if you specify the AS subquery clause to unload data from one Oracle Database and
reload it into the same or a different Oracle Database.

The access parameters, specified in the ACCESS PARAMETERS clause, are opaque to the
database. These access parameters are defined by the access driver, and are provided to the
access driver by the database when the external table is accessed. See Oracle Database
Utilities for a description of the ORACLE_LOADER access parameters.

The PARALLEL clause enables parallel query on the data sources. The granule of parallelism is
by default a data source, but parallel access within a data source is implemented whenever
possible. For example, if PARALLEL=3 were specified, then multiple parallel execution servers
could be working on a data source. But, parallel access within a data source is provided by the
access driver only if all of the following conditions are met:

• The media allows random positioning within a data source.

• It is possible to find a record boundary from a random position.

• The data files are large enough to make it worthwhile to break up into multiple chunks.

Note:

Specifying a PARALLEL clause is of value only when dealing with large amounts of
data. Otherwise, it is not advisable to specify a PARALLEL clause, and doing so
can be detrimental.

The REJECT LIMIT clause specifies that there is no limit on the number of errors that can occur
during a query of the external data. For parallel access, the REJECT LIMIT applies to each
parallel execution server independently. For example, if a REJECT LIMIT of 10 is specified, then
each parallel query process can allow up to 10 rejections. Therefore, with a parallel degree of
two and a REJECT LIMIT of 10, the statement might fail with between 10 and 20 rejections. If
one parallel server processes all 10 rejections, then the limit is reached, and the statement is
terminated. However, one parallel execution server could process nine rejections and another
parallel execution server could process nine rejections and the statement will succeed with 18
rejections. Hence, the only precisely enforced values for REJECT LIMIT on parallel query are 0
and UNLIMITED.

In this example, the INSERT INTO TABLE statement generates a dataflow from the external data
source to the Oracle Database SQL engine where data is processed. As data is parsed by the
access driver from the external table sources and provided to the external table interface, the
external data is converted from its external representation to its Oracle Database internal data
type.

Example 19-22 Creating an External Table for Data Stored in Oracle Cloud

This example creates an external table that enables you to access data stored in Oracle Cloud
Infrastructure Object Storage (Object Storage).

Before you create the external table, you must create a credential object to store your object
storage credentials. The credential object stores, in an encrypted format, the user name and
password (or API signing key) required to access Object Storage credentials. The credential
password must match the Auth Token created for the user name in your Cloud service. Ensure
that the identity specified by the credential has access to the underlying data in Object Store.
Note that this step is required only once, unless your object store credentials change.

Chapter 19
Managing External Tables

19-144

The following example creates a credential object named MY_OCI_CRED.

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'MY_OCI_CRED',
 username => 'oss_user@example.com',
 password => 'password');
END;
/

Create an external table on top of your source files using the
DBMS_CLOUD.CREATE_EXTERNAL_TABLE procedure. This procedure supports external files in the
supported cloud object storage services. The credential is a table level property; therefore, the
external files must be on the same object store.

The following statement creates an external table to access data stored in Object Storage. The
external table is based on the source file channels.txt.

BEGIN
 DBMS_CLOUD.CREATE_EXTERNAL_TABLE(
 table_name =>'CHANNELS_EXT',
 credential_name =>'MY_OCI_CRED',
 file_uri_list =>'https://objectstorage.us-phoenix-1.oraclecloud.com/n/
namespace-string/b/bucketname/o/channels.txt',
 format => json_object('delimiter' value ','),
 column_list => 'CHANNEL_ID NUMBER, CHANNEL_DESC VARCHAR2(20),
CHANNEL_CLASS VARCHAR2(20)');
END;
/

where:

• credential_name is the name of the credential object created, MY_OCI_CRED.

• file_uri_list is a comma delimited list of the source files you want to query.

• format defines the options you can specify to describe the format of the source file.

• column_list is a comma delimited list of the column definitions in the source files.

See Also:

• Oracle Database SQL Language Reference provides details of the syntax of the
CREATE TABLE statement for creating external tables and specifies restrictions on
the use of clauses

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_CLOUD package and its procedures

Chapter 19
Managing External Tables

19-145

19.15.3 Altering External Tables
You can modify an external table with the ALTER TABLE statement.

You can use any of the ALTER TABLE clauses shown in Table 19-6 to change the characteristics
of an external table. No other clauses are permitted.

Table 19-6 ALTER TABLE Clauses for External Tables

ALTER TABLE
Clause

Description Example

REJECT LIMIT Changes the reject limit. The default
value is 0. ALTER TABLE

admin_ext_employees
REJECT LIMIT 100;

PROJECT COLUMN Determines how the access driver
validates rows in subsequent queries:

• PROJECT COLUMN REFERENCED: the
access driver processes only the
columns in the select list of the
query. This setting may not provide
a consistent set of rows when
querying a different column list
from the same external table. This
is the default setting for big data
access drivers ORACLE_HDFS and
ORACLE_HIVE access drivers.

• PROJECT COLUMN ALL: the access
driver processes all of the columns
defined on the external table. This
setting always provides a
consistent set of rows when
querying an external table. This is
the default. This is also the default
setting for ORACLE_LOADER and
ORACLE_DATAPUMP access drivers.

ALTER TABLE
admin_ext_employees
PROJECT COLUMN REFERENCED;

ALTER TABLE
admin_ext_employees
PROJECT COLUMN ALL;

DEFAULT DIRECTORY Changes the default directory
specification. ALTER TABLE

admin_ext_employees
DEFAULT DIRECTORY
admin_dat2_dir;

ACCESS PARAMETERS Allows access parameters to be
changed without dropping and re-
creating the external table metadata.

ALTER TABLE
admin_ext_employees
ACCESS PARAMETERS
(FIELDS TERMINATED BY ';');

Chapter 19
Managing External Tables

19-146

Table 19-6 (Cont.) ALTER TABLE Clauses for External Tables

ALTER TABLE
Clause

Description Example

LOCATION Allows data sources to be changed
without dropping and re-creating the
external table metadata.

ALTER TABLE
admin_ext_employees
LOCATION ('empxt3.txt',
'empxt4.txt');

PARALLEL No difference from regular tables.
Allows degree of parallelism to be
changed.

No new syntax

ADD COLUMN No difference from regular tables.
Allows a column to be added to an
external table. Virtual columns are not
permitted.

No new syntax

MODIFY COLUMN No difference from regular tables.
Allows an external table column to be
modified. Virtual columns are not
permitted.

No new syntax

SET UNUSED Transparently converted into an ALTER
TABLE DROP COLUMN command.
Because external tables consist of
metadata only in the database, the
DROP COLUMN command performs
equivalently to the SET UNUSED
command.

No new syntax

DROP COLUMN No difference from regular tables.
Allows an external table column to be
dropped.

No new syntax

RENAME TO No difference from regular tables.
Allows external table to be renamed.

No new syntax

19.15.4 Preprocessing External Tables
External tables can be preprocessed by user-supplied preprocessor programs. By using a
preprocessing program, users can use data from a file that is not in a format supported by the
driver.

Caution:

There are security implications to consider when using the PREPROCESSOR clause. See
Oracle Database Security Guide for more information.

For example, a user may want to access data stored in a compressed format. Specifying a
decompression program for the ORACLE_LOADER access driver allows the data to be
decompressed as the access driver processes the data.

Chapter 19
Managing External Tables

19-147

To use the preprocessing feature, you must specify the PREPROCESSOR clause in the access
parameters of the ORACLE_LOADER access driver. The preprocessor must be a directory object,
and the user accessing the external table must have EXECUTE privileges for the directory object.
The following example includes the PREPROCESSOR clause and specifies the directory and
preprocessor program.

CREATE TABLE sales_transactions_ext
(PROD_ID NUMBER,
 CUST_ID NUMBER,
 TIME_ID DATE,
 CHANNEL_ID CHAR,
 PROMO_ID NUMBER,
 QUANTITY_SOLD NUMBER,
 AMOUNT_SOLD NUMBER(10,2),
 UNIT_COST NUMBER(10,2),
 UNIT_PRICE NUMBER(10,2))
ORGANIZATION external
(TYPE oracle_loader
 DEFAULT DIRECTORY data_file_dir
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE
 CHARACTERSET AL32UTF8
 PREPROCESSOR exec_file_dir:'zcat'
 BADFILE log_file_dir:'sh_sales.bad_xt'
 LOGFILE log_file_dir:'sh_sales.log_xt'
 FIELDS TERMINATED BY "|" LDRTRIM
 (PROD_ID,
 CUST_ID,
 TIME_ID,
 CHANNEL_ID,
 PROMO_ID,
 QUANTITY_SOLD,
 AMOUNT_SOLD,
 UNIT_COST,
 UNIT_PRICE))
 location ('sh_sales.dat.gz')
)REJECT LIMIT UNLIMITED;

The PREPROCESSOR clause is not available for databases that use Oracle Database Vault.

Note:

On the Windows platform, a preprocessor program must have a .bat or .cmd
extension.

See Also:

• Oracle Database Utilities provides information more information about the
PREPROCESSOR clause

• Oracle Database Security Guide for more information about the security
implications of the PREPROCESSOR clause

Chapter 19
Managing External Tables

19-148

19.15.5 Overriding Parameters for External Tables in a Query
The EXTERNAL MODIFY clause of a SELECT statement modifies external table parameters.

You can override the following clauses for an external table in an EXTERNAL MODIFY clause:

• DEFAULT DIRECTORY
• LOCATION
• ACCESS PARAMETERS
• REJECT LIMIT
You can modify more than one clause in a single query. A bind variable can be specified for
LOCATION and REJECT LIMIT, but not for DEFAULT DIRECTORY or ACCESS PARAMETERS.

The modifications only apply to the query. They do not affect the table permanently.

For partitioned external tables, only table-level clauses can be overridden.

1. Connect to the database as a user with the privileges required to query the external table.

2. Issue a SELECT statement on the external table with the EXTERNAL MODIFY clause.

Example 19-23 Overriding Parameters for External Tables in a Query

Assume an external table named sales_external has a REJECT LIMIT set to 25. The following
query modifies this setting to REJECT LIMIT UNLIMITED:

SELECT * FROM sales_external EXTERNAL MODIFY (LOCATION ('sales_9.csv')
 REJECT LIMIT UNLIMITED);

19.15.6 Using Inline External Tables
Inline external tables enable the runtime definition of an external table as part of a SQL
statement, without creating the external table as persistent object in the data dictionary.

With inline external tables, the same syntax that is used to create an external table with a
CREATE TABLE statement can be used in a SELECT statement at runtime. Specify inline external
tables in the FROM clause of a query block. Queries that include inline external tables can also
include regular tables for joins, aggregation, and so on.

The following SQL statement performs a runtime query on external data:

SELECT * FROM EXTERNAL (
 (time_id DATE NOT NULL,
 prod_id INTEGER NOT NULL,
 quantity_sold NUMBER(10,2),
 amount_sold NUMBER(10,2))
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY data_dir1
 ACCESS PARAMETERS (
 RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY '|')
 LOCATION ('sales_9.csv') REJECT LIMIT UNLIMITED) sales_external;

Chapter 19
Managing External Tables

19-149

Although no table named sales_external was created previously, this query reads the
external data and returns the results.

Note:

Inline external tables do not support partitioning. The query can control which
directories and files to scan, so that pruning can be accomplished by omitting files
that are not needed for the query.

19.15.7 Partitioning External Tables
For large amounts of data, partitioning for external tables provides fast query performance and
enhanced data maintenance.

• About Partitioning External Tables
Partitioning data in external tables is similar to partitioning tables stored in the database,
but there are some differences. The files for the partitioned external table can be stored on
a file system, in Apache Hive storage, or in a Hadoop Distributed File System (HDFS).

• Restrictions for Partitioned External Tables
Some restrictions apply to partitioned external tables.

• Creating a Partitioned External Table
You create a non-composite partitioned external table by issuing a CREATE TABLE
statement with the ORGANIZATION EXTERNAL clause and the PARTITION BY clause. To
create a composite partitioned external table, the SUBPARTITION BY clause must also be
included.

• Altering a Partitioned External Table
You can use the ALTER TABLE statement to modify table-level external parameters, but not
the partition-level and subpartition-level parameters, of a partitioned external table.

19.15.7.1 About Partitioning External Tables
Partitioning data in external tables is similar to partitioning tables stored in the database, but
there are some differences. The files for the partitioned external table can be stored on a file
system, in Apache Hive storage, or in a Hadoop Distributed File System (HDFS).

Before attempting to partition external tables, you should understand the concepts related to
partitioning in Oracle Database VLDB and Partitioning Guide.

The main reason to partition external tables is to take advantage of the same performance
improvements provided by partitioning tables stored in the database. Specifically, partition
pruning and partition-wise joins can improve query performance. Partition pruning means that
queries can focus on a subset of the data in an external table instead of all of the data because
the query can apply to only one partition. Partition-wise joins can be applied when two tables
are being joined and both tables are partitioned on the join key, or when a reference partitioned
table is joined with its parent table. Partition-wise joins break a large join into smaller joins that
occur between each of the partitions, completing the overall join in less time.

Most of the partitioning strategies that are supported for tables in the database are supported
for external tables. External tables can be partitioned by range or list, and composite
partitioning is supported. However, hash partitioning is not supported for external tables.

Chapter 19
Managing External Tables

19-150

For a partitioned table that is stored in the database, storage for each partition is specified with
a tablespace. For a partitioned external table, storage for each partition is specified by
indicating the directory and files for each partition.

Clauses for Creating Partitioned External Tables

The clauses for creating a non-partitioned external table are the following:

• TYPE - Specifies the access driver for the type of external table (ORACLE_LOADER,
ORACLE_DATAPUMP, ORACLE_HIVE, and ORACLE_HDFS).

• DEFAULT DIRECTORY - Specifies with a directory object the default directory to use for all
input and output files that do not explicitly name a directory object.

• ACCESS PARAMETERS - Describe the external data source.

• LOCATION - Specifies the files for the external table.

• REJECT LIMIT - Specifies the number of errors that can occur during a query of the
external data.

When you create a partitioned external table, you must include a PARTITION clause that defines
each partition. The following table describes the clauses allowed at each level during external
table creation.

Table 19-7 External Table Clauses and Partitioning

Clause Table Level Partition Level Subpartition Level

TYPE Allowed Not Allowed Not Allowed

DEFAULT DIRECTORY Allowed Allowed Allowed

ACCESS PARAMETERS Allowed Not Allowed Not Allowed

LOCATION Not allowed Allowed Allowed

REJECT LIMIT Allowed Not allowed Not allowed

For a non-composite partitioned table, files for a partition must be specified in the LOCATION
clause for the partition. For a composite partitioned table, files for a subpartition must be
specified in the LOCATION clause for the subpartition. When a partition has subpartitions, the
LOCATION clause can be specified for subpartitions but not for the partition. If the LOCATION
clause is omitted for a partition or subpartition, then an empty partition or subpartition is
created.

In the LOCATION clause, the files are named in the form directory:file, and one clause can
specify multiple files. The directory portion is optional. The following rules apply for the
directory used by a partition or subpartition:

• When a directory is specified in the LOCATION clause for a partition or subpartition, then it
applies to that location only.

• In the LOCATION clause for a specific partition, for each file that does not have a directory
specification, use the directory specified in the DEFAULT DIRECTORY clause for the partition
or table level, in order.

For example, when the ORGANIZATION EXTERNAL clause of a CREATE TABLE statement
includes a DEFAULT DIRECTORY clause, and a PARTITION clause in the statement does not
specify a directory for a file in its LOCATION clause, the file uses the directory specified in
the DEFAULT DIRECTORY clause for the table.

Chapter 19
Managing External Tables

19-151

• In the LOCATION clause for a specific subpartition, for each file that does not have a
directory specification, use the directory specified in the DEFAULT DIRECTORY clause for the
subpartition, partition, or table level, in order.

For example, when a PARTITION clause includes a DEFAULT DIRECTORY clause, and a
SUBPARITION clause in the partition does not specify a directory for a file in its LOCATION
clause, the file uses the directory specified in the DEFAULT DIRECTORY clause for the
partition.

• The default directory for a partition or subpartition cannot be specified in a LOCATION
clause. It can only be specified in a DEFAULT DIRECTORY clause.

See Also:

Example 19-25 illustrates the directory rules

Using the ORACLE_HIVE Access Driver

Apache Hive has its own partitioning. To create partitioned external tables, use the
CREATE_EXTDDL_FOR_HIVE procedure in the DBMS_HADOOP package. This procedure generates
data definition language (DDL) statements that you can use to create a partitioned external
table that corresponds with the partitioning in the Apache Hive storage.

The DBMS_HADOOP package also includes the SYNC_PARTITIONS_FOR_HIVE procedure. This
procedure automatically synchronizes the partitioning of the partitioned external table in the
Apache Hive storage with the partitioning metadata of the same table stored in the Oracle
Database.

Related Topics

• Altering External Tables
You can modify an external table with the ALTER TABLE statement.

• Oracle Database Utilities

• Oracle Database PL/SQL Packages and Types Reference

19.15.7.2 Restrictions for Partitioned External Tables
Some restrictions apply to partitioned external tables.

The following are restrictions for partitioned external tables:

• All restrictions that apply to non-partitioned external tables also apply to partitioned
external tables.

• Partitioning restrictions that apply to tables stored in the database also apply to partitioned
external tables, such as the maximum number of partitions.

• Oracle Database cannot guarantee that the external files for partitions contain data that
satisfies partitioning definitions.

• Only the DEFAULT DIRECTORY and LOCATION clauses can be specified in a PARTITION or
SUBPARTITION clause.

• When altering a partitioned external table with the ALTER TABLE statement, the following
clauses are not supported: MODIFY PARTITION, EXCHANGE PARTITION, MOVE PARTITION,
MERGE PARTITIONS, SPLIT PARTITION, COALESCE PARTITION, and TRUNCATE PARTITION.

Chapter 19
Managing External Tables

19-152

• Reference partitioning, automatic list partitioning, and interval partitioning are not
supported.

• Subpartition templates are not supported.

• The ORACLE_DATAPUMP access driver cannot populate external files for partitions using a
CREATE TABLE AS SELECT statement.

• Incremental statistics are not gathered for partitioned external tables.

• In addition to restrictions on partitioning methods that can be used for the other
drivers, range and composite partitioning are not supported for the ORACLE_HIVE access
driver.

• A SELECT statement with the EXTERNAL MODIFY clause cannot override partition-level or
subpartition-level clauses. Only external clauses supported at the table level can be
overridden with the EXTERNAL MODIFY clause. Because the LOCATION clause is not allowed
at the table level for a partitioned external table, it cannot be overridden with the EXTERNAL
MODIFY clause.

See Also:

• "About External Tables"

• Oracle Database SQL Language Reference provides details of the syntax of the
CREATE TABLE statement for creating external tables and specifies restrictions on
the use of clauses

19.15.7.3 Creating a Partitioned External Table
You create a non-composite partitioned external table by issuing a CREATE TABLE statement
with the ORGANIZATION EXTERNAL clause and the PARTITION BY clause. To create a composite
partitioned external table, the SUBPARTITION BY clause must also be included.

The PARTITION BY clause and the SUBPARTITION BY clause specify the locations of the
external files for each partition and subpartition.

To create a partitioned external table, the database must be at 12.2.0 compatibility level or
higher.

1. Connect to the database as a user with the privileges required to create the external table.

See Oracle Database SQL Language Reference for information about the required
privileges.

2. Issue a CREATE TABLE statement with the ORGANIZATION EXTERNAL clause and the
PARTITION BY clause. For a composite partitioned table, include the SUBPARTITION BY
clause also.

Example 19-24 Creating a Partitioned External Table with Access Parameters Common
to All Partitions

This example creates an external table named orders_external_range that is partitioned by
the date data in the order_date column. The ACCESS PARAMETERS clause is specified at the
table level for the ORACLE_LOADER access driver. The data_dir1 directory object is the default
directory object used for the partitions month1, month2, and month3. The pmax partition specifies

Chapter 19
Managing External Tables

19-153

the data_dir2 directory object in the DEFAULT DIRECTORY clause, so the data_dir2 directory
object is used for the pmax partition.

-- Set up directories and grant access to oe
CREATE OR REPLACE DIRECTORY data_dir1
 AS '/flatfiles/data1';
CREATE OR REPLACE DIRECTORY data_dir2
 AS '/flatfiles/data2';
CREATE OR REPLACE DIRECTORY bad_dir
 AS '/flatfiles/bad';
CREATE OR REPLACE DIRECTORY log_dir
 AS '/flatfiles/log';
GRANT READ ON DIRECTORY data_dir1 TO oe;
GRANT READ ON DIRECTORY data_dir2 TO oe;
GRANT WRITE ON DIRECTORY bad_dir TO oe;
GRANT WRITE ON DIRECTORY log_dir TO oe;
-- oe connects. Provide the user password (oe) when prompted.
CONNECT oe
-- create the partitioned external table
CREATE TABLE orders_external_range(
 order_id NUMBER(12),
 order_date DATE NOT NULL,
 customer_id NUMBER(6) NOT NULL,
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6))
ORGANIZATION EXTERNAL(
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY data_dir1
 ACCESS PARAMETERS(
 RECORDS DELIMITED BY NEWLINE
 BADFILE bad_dir: 'sh%a_%p.bad'
 LOGFILE log_dir: 'sh%a_%p.log'
 FIELDS TERMINATED BY '|'
 MISSING FIELD VALUES ARE NULL))
PARALLEL
REJECT LIMIT UNLIMITED
PARTITION BY RANGE (order_date)
 (PARTITION month1 VALUES LESS THAN (TO_DATE('31-12-2014', 'DD-MM-YYYY'))
 LOCATION ('sales_1.csv'),
 PARTITION month2 VALUES LESS THAN (TO_DATE('31-01-2015', 'DD-MM-YYYY'))
 LOCATION ('sales_2.csv'),
 PARTITION month3 VALUES LESS THAN (TO_DATE('28-02-2015', 'DD-MM-YYYY'))
 LOCATION ('sales_3.csv'),
 PARTITION pmax VALUES LESS THAN (MAXVALUE)
 DEFAULT DIRECTORY data_dir2 LOCATION('sales_4.csv'));

In the previous example, the default directory data_dir2 is specified for the pmax partition. You
can also specify the directory for a specific location in this partition in the LOCATION clause in
the following way:

PARTITION pmax VALUES LESS THAN (MAXVALUE)
 LOCATION ('data_dir2:sales_4.csv')

Chapter 19
Managing External Tables

19-154

Note that, in this case, the directory data_dir2 is specified for the location sales_4.csv, but
the data_dir2 directory is not the default directory for the partition. Therefore, the default
directory for the pmax partition is the same as the default directory for the table, which is
data_dir1.

Example 19-25 Creating a Composite List-Range Partitioned External Table

This example creates an external table named accounts that is partitioned by the data in the
region column. This partition is subpartitioned using range on the data in the balance column.
The ACCESS PARAMETERS clause is specified at the table level for the ORACLE_LOADER access
driver. A LOCATION clause is specified for each subpartition.

There is a table-level DEFAULT DIRECTORY clause set to the data_dir1 directory object, and this
directory object is used for all of the subpartitions, except for the following:

• There is a partition-level DEFAULT DIRECTORY clause set to the data_dir2 directory object
for partition p_southcentral. In that partition, the following subpartitions use this default
directory: p_sc_low, p_sc_high, and p_sc_extraordinary.

• In partition p_southcentral, the subpartition p_sc_average has a subpartition-level
DEFAULT DIRECTORY clause set to the data_dir3 directory object, and this subpartition uses
the data_dir3 directory object.

• As previously stated, the default directory for the p_sc_high subpartition is data_dir2. The
p_sc_high subpartition does not have a DEFAULT DIRECTORY clause, and the default
directory data_dir2 is inherited from the DEFAULT DIRECTORY specified in the PARTITION
BY clause for the partition p_southcentral. The files in the p_sc_high subpartition use the
following directories:

– The psch1.csv file uses data_dir2, the default directory for the subpartition.

– The psch2.csv file uses the data_dir4 directory because the data_dir4 directory is
specified for that location.

-- Set up the directories and grant access to oe
CREATE OR REPLACE DIRECTORY data_dir1
 AS '/stage/data1_dir';
CREATE OR REPLACE DIRECTORY data_dir2
 AS '/stage/data2_dir';
CREATE OR REPLACE DIRECTORY data_dir3
 AS '/stage/data3_dir';
CREATE OR REPLACE DIRECTORY data_dir4
 AS '/stage/data4_dir';
CREATE OR REPLACE DIRECTORY bad_dir
 AS '/stage/bad_dir';
CREATE OR REPLACE DIRECTORY log_dir
 AS '/stage/log_dir';
GRANT READ ON DIRECTORY data_dir1 TO oe;
GRANT READ ON DIRECTORY data_dir2 TO oe;
GRANT READ ON DIRECTORY data_dir3 TO oe;
GRANT READ ON DIRECTORY data_dir4 TO oe;
GRANT WRITE ON DIRECTORY bad_dir TO oe;
GRANT WRITE ON DIRECTORY log_dir TO oe;
-- oe connects. Provide the user password (oe) when prompted.
CONNECT oe
-- create the partitioned external table
CREATE TABLE accounts
(id NUMBER,

Chapter 19
Managing External Tables

19-155

 account_number NUMBER,
 customer_id NUMBER,
 balance NUMBER,
 branch_id NUMBER,
 region VARCHAR(2),
 status VARCHAR2(1)
)
ORGANIZATION EXTERNAL(
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY data_dir1
 ACCESS PARAMETERS(
 RECORDS DELIMITED BY NEWLINE
 BADFILE bad_dir: 'sh%a_%p.bad'
 LOGFILE log_dir: 'sh%a_%p.log'
 FIELDS TERMINATED BY '|'
 MISSING FIELD VALUES ARE NULL))
PARALLEL
REJECT LIMIT UNLIMITED
PARTITION BY LIST (region)
SUBPARTITION BY RANGE (balance)
(PARTITION p_northwest VALUES ('OR', 'WA')
 (SUBPARTITION p_nw_low VALUES LESS THAN (1000) LOCATION ('pnwl.csv'),
 SUBPARTITION p_nw_average VALUES LESS THAN (10000) LOCATION ('pnwa.csv'),
 SUBPARTITION p_nw_high VALUES LESS THAN (100000) LOCATION ('pnwh.csv'),
 SUBPARTITION p_nw_extraordinary VALUES LESS THAN (MAXVALUE) LOCATION
('pnwe.csv')
),
 PARTITION p_southwest VALUES ('AZ', 'UT', 'NM')
 (SUBPARTITION p_sw_low VALUES LESS THAN (1000) LOCATION ('pswl.csv'),
 SUBPARTITION p_sw_average VALUES LESS THAN (10000) LOCATION ('pswa.csv'),
 SUBPARTITION p_sw_high VALUES LESS THAN (100000) LOCATION ('pswh.csv'),
 SUBPARTITION p_sw_extraordinary VALUES LESS THAN (MAXVALUE) LOCATION
('pswe.csv')
),
 PARTITION p_northeast VALUES ('NY', 'VM', 'NJ')
 (SUBPARTITION p_ne_low VALUES LESS THAN (1000) LOCATION ('pnel.csv'),
 SUBPARTITION p_ne_average VALUES LESS THAN (10000) LOCATION ('pnea.csv'),
 SUBPARTITION p_ne_high VALUES LESS THAN (100000) LOCATION ('pneh.csv'),
 SUBPARTITION p_ne_extraordinary VALUES LESS THAN (MAXVALUE) LOCATION
('pnee.csv')
),
 PARTITION p_southeast VALUES ('FL', 'GA')
 (SUBPARTITION p_se_low VALUES LESS THAN (1000) LOCATION ('psel.csv'),
 SUBPARTITION p_se_average VALUES LESS THAN (10000) LOCATION ('psea.csv'),
 SUBPARTITION p_se_high VALUES LESS THAN (100000) LOCATION ('pseh.csv'),
 SUBPARTITION p_se_extraordinary VALUES LESS THAN (MAXVALUE) LOCATION
('psee.csv')
),
 PARTITION p_northcentral VALUES ('SD', 'WI')
 (SUBPARTITION p_nc_low VALUES LESS THAN (1000) LOCATION ('pncl.csv'),
 SUBPARTITION p_nc_average VALUES LESS THAN (10000) LOCATION ('pnca.csv'),
 SUBPARTITION p_nc_high VALUES LESS THAN (100000) LOCATION ('pnch.csv'),
 SUBPARTITION p_nc_extraordinary VALUES LESS THAN (MAXVALUE) LOCATION
('pnce.csv')
),
 PARTITION p_southcentral VALUES ('OK', 'TX') DEFAULT DIRECTORY data_dir2

Chapter 19
Managing External Tables

19-156

 (SUBPARTITION p_sc_low VALUES LESS THAN (1000) LOCATION ('pscl.csv'),
 SUBPARTITION p_sc_average VALUES LESS THAN (10000)
 DEFAULT DIRECTORY data_dir3 LOCATION ('psca.csv'),
 SUBPARTITION p_sc_high VALUES LESS THAN (100000)
 LOCATION ('psch1.csv','data_dir4:psch2.csv'),
 SUBPARTITION p_sc_extraordinary VALUES LESS THAN (MAXVALUE)
 LOCATION ('psce.csv')
)
);

See Also:

Oracle Database VLDB and Partitioning Guide

19.15.7.4 Altering a Partitioned External Table
You can use the ALTER TABLE statement to modify table-level external parameters, but not the
partition-level and subpartition-level parameters, of a partitioned external table.

The locations of external files are specified in the PARTITION BY and SUBPARTITION BY clauses.
External files for a partition are specified in the partition’s PARTITION BY clause. External files
for a subpartition are specified in the subpartition's SUBPARTITION BY clause.

The only exception is that the LOCATION clause cannot be specified at the table level during the
creation of a partitioned external table. Therefore, the LOCATION clause cannot be added at the
table level in an ALTER TABLE statement that modifies a partitioned external table.

At the partition level, only ADD, DROP, and RENAME operations are supported. An ALTER TABLE
statement cannot modify the attributes of existing partitions and subpartitions. However, you
can include the DEFAULT DIRECTORY and LOCATION clauses in a PARTITION clause or
SUBPARTITION clause when you add a new partition or subpartition.

1. Connect to the database as a user with the privileges required to alter the external table.

2. Issue an ALTER TABLE statement.

Example 19-26 Renaming a Partition of a Partitioned External Table

This example renames a partition of the partitioned external table named
orders_external_range.

ALTER TABLE orders_external_range RENAME PARTITION pmax TO other_months;

19.15.8 Dropping External Tables
For an external table, the DROP TABLE statement removes only the table metadata in the
database. It has no affect on the actual data, which resides outside of the database.

19.15.9 System and Object Privileges for External Tables
System and object privileges for external tables are a subset of those for regular table.

Only the following system privileges are applicable to external tables:

Chapter 19
Managing External Tables

19-157

• ALTER ANY TABLE
• CREATE ANY TABLE
• DROP ANY TABLE
• READ ANY TABLE
• SELECT ANY TABLE
Only the following object privileges are applicable to external tables:

• ALTER
• READ
• SELECT
However, object privileges associated with a directory are:

• READ
• WRITE
For external tables, READ privileges are required on directory objects that contain data sources,
while WRITE privileges are required for directory objects containing bad, log, or discard files.

19.15.10 Using SQL*Loader for External Tables with Partition Values in File
Paths

To enhance management of large numbers of data files in object stores, you can use external
table partitioning with folder names as part of the file paths.

External table columns also can return the file name of the source file for each row.

Starting in Oracle Database 23ai, External table partitioning where the partition key and
partition value together (for example, /state=CA) or only the only the partition value (for
example, /state/CA/) comprise a folder name in the file path. Also, an external table column
can return the file name of the source file for each row.

External tables pointing to data in the object store can consist of a large number of files. These
files can be organized across multiple directories, and even multiple directory trees. The
partition values can be in the directory name or file name. For example, you can have files for
different months or different states in separate directories. This can be a requirement for Hive-
generated tables in the object store.

19.16 Managing Hybrid Partitioned Tables
A hybrid partitioned table is a partitioned table in which some partitions reside in the database
and some partitions reside outside the database in external files, such as operating system
files or Hadoop Distributed File System (HDFS) files.

Note:

The restrictions that apply to external tables also apply to hybrid partitioned tables.

Chapter 19
Managing Hybrid Partitioned Tables

19-158

See Also:

• "Partitioning External Tables"

• Oracle Database VLDB and Partitioning Guide for more information about
managing hybrid partitioned tables

19.17 Managing Immutable Tables
Immutable tables provide protection against unauthorized data modification.

• About Immutable Tables
Immutable tables are append-only tables that prevent unauthorized data modifications by
insiders and accidental data modifications resulting from human errors.

• Guidelines for Managing Immutable Tables
You can follow guidelines for working with immutable tables.

• Creating Immutable Tables
Use the CREATE IMMUTABLE TABLE statement to create an immutable table. The immutable
table is created in the specified schema, and the table metadata is added to the data
dictionary.

• Altering Immutable Tables
You can modify the retention period for an immutable table and the retention period for
rows within the immutable table.

• Adding and Dropping User Columns in Immutable Tables
Beginning with version 2 immutable tables, user columns may be added or dropped.

• Creating Row Versions in Immutable Tables
You can record the sequence in which immutable table rows were inserted, based on a set
of columns.

• Deleting Rows from Immutable Tables
Only rows that are outside the specified retention period can be deleted from an immutable
table.

• Dropping Immutable Tables
An immutable table can be dropped if it is empty or after it has not been modified for a
period of time that is defined by its retention period.

• Immutable Tables Data Dictionary Views
Data dictionary views provide information about immutable tables in the database.

19.17.1 About Immutable Tables
Immutable tables are append-only tables that prevent unauthorized data modifications by
insiders and accidental data modifications resulting from human errors.

Unauthorized modifications can be attempted by compromised or rogue employees who have
access to insider credentials.

New rows can be added to an immutable table, but existing rows cannot be modified. You must
specify a retention period both for the immutable table and for rows within the immutable table.
Rows become obsolete after the specified row retention period. Only obsolete rows can be
deleted from the immutable table.

Chapter 19
Managing Immutable Tables

19-159

Immutable tables contain system-generated hidden columns. The columns are the same as
those for blockchain tables. When a row is inserted, a non-NULL value is set for the
ORABCTAB_CREATION_TIME$ and ORABCTAB_USER_NUMBER$ columns. Unless row versions are
used on the immutable table, the value of the remaining system-generated hidden columns is
set to NULL.

Using immutable tables requires no changes to existing applications.

Table 19-8 Differences Between Immutable Tables and Blockchain Tables

Immutable Tables Blockchain Tables

Immutable tables prevent unauthorized changes by
rogue or compromised insiders who have access to
user credentials.

In addition to preventing unauthorized changes by
rogue or compromised insiders, blockchain tables
provide the following functionality:

• detects unauthorized changes made by
bypassing Oracle Database software

• detects end user impersonation and insertion
of data in a user's name but without their
authorization

• prevents data tampering and ensures that data
was actually inserted into the table

Rows are not chained together. Each row, except the first row, is chained to the
previous row by using a cryptographic hash. The
hash value of a row is computed based on the row
data and the hash value of the previous row in the
chain. Any modification to a row breaks the chain,
thereby indicating that the row was tampered.

Inserting rows does not require additional
processing at commit time.

Additional processing time is required, at commit
time, to chain rows.

Related Topics

• Hidden Columns in Blockchain Tables
Each row in a blockchain table contains hidden columns whose values are managed by
the database.

19.17.2 Guidelines for Managing Immutable Tables
You can follow guidelines for working with immutable tables.

• Specify the Retention Period for the Immutable Table
Use the NO DROP clause in a CREATE IMMUTABLE TABLE statement to set the retention
period for the immutable table.

• Specify the Retention Period for Rows in the Immutable Table
Use the NO DELETE clause in a CREATE IMMUTABLE TABLE statement to specify the retention
period for rows in the immutable table.

• Restrictions for Immutable Tables
Using immutable tables is subject to certain restrictions.

19.17.2.1 Specify the Retention Period for the Immutable Table
Use the NO DROP clause in a CREATE IMMUTABLE TABLE statement to set the retention period for
the immutable table.

Chapter 19
Managing Immutable Tables

19-160

Unless the immutable table is empty, it cannot be dropped while it is within the specified
retention period.

Specify one of the following clauses:

• NO DROP
Immutable table cannot be dropped, unless it is empty.

• NO DROP UNTIL n DAYS IDLE
Immutable table cannot be dropped if the newest row is less than n days old. The minimum
value that is allowed for n is 0. However, to ensure security of immutable tables, it is
recommended that you set the minimum value to at least 16.

To set the table retention period to 0 days, the initialization parameter
BLOCKCHAIN_TABLE_MAX_NO_DROP must be set to its default value or 0. This setting is useful
for testing immutable tables. Note that when this parameter is set to 0, the only allowed
retention period is 0 days. To subsequently set a non-zero retention period, you must reset
the value of the BLOCKCHAIN_TABLE_MAX_NO_DROP initialization parameter.

Use the ALTER TABLE statement to increase the retention period for an immutable table. You
cannot reduce the retention period.

19.17.2.2 Specify the Retention Period for Rows in the Immutable Table
Use the NO DELETE clause in a CREATE IMMUTABLE TABLE statement to specify the retention
period for rows in the immutable table.

The retention period controls when rows can be deleted from an immutable table.

Use one of the following options to specify the row retention period:

• NO DELETE [LOCKED]
Rows cannot be deleted from the immutable table when NO DELETE is used.

To ensure that rows are never deleted from the immutable table, use the NO DELETE
LOCKED clause in the CREATE IMMUTABLE TABLE statement. The LOCKED keyword specifies
that the row retention setting cannot be modified.

• NO DELETE UNTIL n DAYS AFTER INSERT [LOCKED]
A row cannot be deleted until n days after it was added. Use the ALTER TABLE statement
with the NO DELETE UNTIL clause to modify this setting and increase the retention period.
You cannot reduce the retention period.

The minimum value for n is 16 days. If LOCKED is included, you cannot subsequently modify
the row retention.

19.17.2.3 Restrictions for Immutable Tables
Using immutable tables is subject to certain restrictions.

• The following data types are not supported with immutable tables: ROWID, UROWID, LONG,
object type, REF, varray, nested table, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH
LOCAL TIME ZONE, BFILE, and XMLType.

XMLType tables are also not supported.

• Immutable tables can not be index-organized tables, ORGANIZATION CUBE, ORGANIZATION
EXTERNAL, or hybrid partitioned.

Chapter 19
Managing Immutable Tables

19-161

• For a V1 immutable table, the maximum number of user-created columns is 20 less than
what is possible in an ordinary table. For a V2 immutable table, the maximum number of
user-created columns is 40 less than what is possible in an ordinary table.

• The following operations are not supported with V2 immutable tables:

– Creating immutable tables in the CDB root or application root

– Updating rows, merging rows, and dropping partitions

– Truncating the immutable table

– Sharded tables

– Direct-path loading

– Inserting data using parallel DML when row version is not enabled

– Flashback table

– Defining BEFORE ROW triggers that fire for update operations (other triggers are allowed)

– Creating Automatic Data Optimization (ADO) policies

– Creating Oracle Label Security (OLS) policies

– Online redefinition using the DBMS_REDEFINITION package

– Transient Logical Standby and rolling upgrades

DDL and DML on immutable tables are not supported and not replicated.

– Logical Standby and Oracle GoldenGate

DDL and DML on immutable tables succeed on the primary database but are not
replicated to standby databases.

– Converting a regular table to an immutable table or vice versa

– ON DELETE CASCADE and ON DELETE SET NULL are not allowed for CREATE DDL

• Flashback Database and point-in-time recovery of a database undo the changes made to
all tables, including immutable tables. For example, if a database is flashed back to SCN
1000, or a backup is restored and recovered up to SCN 1000, all changes since SCN 1000
are removed from the database.

Oracle Database does not prevent flashback and point-in-time recovery operations since
they may be required to undo physical and logical corruptions.

• Correctly enforcing retention policies in immutable tables relies on the system time. The
privilege to change the system time must not be granted widely, and changes to the
system time must be audited and reviewed.

For a list of operations supported in V1 immutable tables, see Database Administrator's Guide
21c.

19.17.3 Creating Immutable Tables
Use the CREATE IMMUTABLE TABLE statement to create an immutable table. The immutable
table is created in the specified schema, and the table metadata is added to the data
dictionary.

The COMPATIBLE initialization parameter must be set to 19.11.0.0 or higher for a V1 immutable
table and 23.0.0.0 or higher for a V2 immutable table.

Chapter 19
Managing Immutable Tables

19-162

https://docs.oracle.com/en/database/oracle/oracle-database/21/admin/managing-tables.html#GUID-21D76E99-96BF-4F07-89C0-5C6E248E424F
https://docs.oracle.com/en/database/oracle/oracle-database/21/admin/managing-tables.html#GUID-21D76E99-96BF-4F07-89C0-5C6E248E424F

The CREATE TABLE system privilege is required to create immutable tables in your own schema.
The CREATE ANY TABLE system privilege is required to create immutable tables in another
user's schema. The NO DROP and NO DELETE clauses are mandatory in a CREATE IMMUTABLE
TABLE statement.

Example 19-27 Creating an Immutable Table

The following example creates an immutable table named trade_ledger in your user schema.
A row cannot be deleted until 100 days after it has been inserted. The immutable table can be
dropped only after 40 days of inactivity.

CREATE IMMUTABLE TABLE trade_ledger (id NUMBER, luser VARCHAR2(40), value
NUMBER)
 NO DROP UNTIL 40 DAYS IDLE
 NO DELETE UNTIL 100 DAYS AFTER INSERT;

19.17.4 Altering Immutable Tables
You can modify the retention period for an immutable table and the retention period for rows
within the immutable table.

The immutable table must be contained in your schema, or you must have either the ALTER
object privilege for the immutable table or the ALTER ANY TABLE system privilege.

Use the ALTER TABLE statement with the NO DROP or NO DELETE clauses to alter the definition of
an immutable table.

Note that you cannot reduce the retention period for an immutable table.

Example 19-28 Modifying the Retention Period for an Immutable Table

The following statement modifies the definition of the immutable table trade_ledger and
specifies that it cannot be dropped if the newest row is less than 50 days old. The previous
value for the NO DROP clause was 40 days.

ALTER TABLE trade_ledger NO DROP UNTIL 50 DAYS IDLE;

Example 19-29 Modifying the Retention Period for Immutable Tables Rows

The following statement modifies the definition of the immutable table trade_ledger and
specifies that a row cannot be deleted until 120 days after it was created.

ALTER TABLE trade_ledger NO DELETE UNTIL 120 DAYS AFTER INSERT;

19.17.5 Adding and Dropping User Columns in Immutable Tables
Beginning with version 2 immutable tables, user columns may be added or dropped.

You can add or drop user columns from immutable tables beginning with version 2 immutable
tables. Adding or dropping user columns from version 1 immutable tables is not allowed. The
physical columns and data are not actually dropped but marked as invisible.

For consistency, you can now add or drop user columns from version 2 blockchain tables.

Chapter 19
Managing Immutable Tables

19-163

Related Topics

• Adding and Dropping User Columns in Blockchain Tables

19.17.6 Creating Row Versions in Immutable Tables
You can record the sequence in which immutable table rows were inserted, based on a set of
columns.

Immutable table row versions allows you to accurately track the sequencing of related row
inserts into an immutable table for a set of columns over which row versions are defined.
Oracle automatically creates a view defined for the immutable table that allows you to see just
the latest row inserted for the specific set of column values. The view has the same columns
as the immutable table and filters all row versions except the last row version, as ordered by
the hidden column ORABCTAB_ROW_VERSION$. The view name uses the naming convention
Immutable_Table_Name_LAST$.

If you wish to use the immutable table row version feature, you must specify the WITH ROW
VERSION clause when creating the table. The following syntax may be used:

WITH ROW VERSION <row_version_name> (col1 [, col2 [, col3]])

The row version feature is supported for immutable tables with or without primary keys. When
a primary key is defined for the immutable table, the primary key columns must not be identical
to the set of row version columns.

The row version feature has the following restrictions:

• You can specify at most three columns with the WITH ROW VERSION clause.

• The column types are restricted to NUMBER, CHAR, VARCHAR2, and RAW.

• The <row_version_name> must be supplied when creating the table.

• Row versions cannot be used with version 1 immutable tables.

19.17.7 Deleting Rows from Immutable Tables
Only rows that are outside the specified retention period can be deleted from an immutable
table.

The SYS user, the owner of an immutable table's schema, or a database user with delete
privileges on an immutable table can delete rows from the immutable table.

Use the DBMS_IMMUTABLE_TABLE.DELETE_EXPIRED_ROWS procedure to delete all rows that are
beyond the specified retention period or obsolete rows that were created before a specified
time.

Example 19-30 Deleting all Expired Rows from an Immutable Table

The following example, when connected as SYS, deletes all rows in the immutable table
trade_ledger that are outside the retention window. The number of rows deleted is stored in
the output parameter num_rows.

DECLARE
 num_rows NUMBER;
BEGIN
 DBMS_IMMUTABLE_TABLE.DELETE_EXPIRED_ROWS('EXAMPLES','TRADE_LEDGER', NULL,

Chapter 19
Managing Immutable Tables

19-164

num_rows);
 DBMS_OUTPUT.PUT_LINE('Number_of_rows_deleted = ' || num_rows);
END;
/

Example 19-31 Deleting Eligible Rows Based on their Creation Time

The following example when connected as SYS, deletes obsolete rows that were created at
least 30 days before the current system date. The number of rows deleted is stored in the
output parameter num_rows.

DECLARE
 num_rows NUMBER;
BEGIN
 DBMS_IMMUTABLE_TABLE.DELETE_EXPIRED_ROWS('EXAMPLES','TRADE_LEDGER',
SYSDATE-30, num_rows);
 DBMS_OUTPUT.PUT_LINE('Number_of_rows_deleted=' || num_rows);
END;
/

19.17.8 Dropping Immutable Tables
An immutable table can be dropped if it is empty or after it has not been modified for a period
of time that is defined by its retention period.

The immutable table must be contained in your schema or you must have the DROP ANY TABLE
system privilege.

Use the DROP TABLE statement to drop an immutable table. Dropping an immutable table
removes its definition from the data dictionary, deletes all its rows, and deletes any indexes and
triggers defined on the table.

The following statement drops the immutable table named trade_ledger in the examples
schema:

DROP TABLE examples.trade_ledger;

Related Topics

• Setting the Table Retention Threshold

19.17.9 Immutable Tables Data Dictionary Views
Data dictionary views provide information about immutable tables in the database.

Query one of the following views for information about immutable tables:
DBA_IMMUTABLE_TABLES, USER_IMMUTABLE_TABLES, or ALL_IMMUTABLE_TABLES. The information
includes the row retention period and table retention period. The DBA view describes all the
immutable tables in the database, ALL view describes all immutable tables accessible to the
user, and USER view is limited to immutable tables owned by the user. The views
DBA_IMMUTABLE_ROW_VERSION_COLS, USER_IMMUTABLE_ROW_VERSION_COLS, and
ALL_IMMUTABLE_ROW_VERSION_COLS show the columns that define row versions in immutable
tables.

Chapter 19
Managing Immutable Tables

19-165

When an immutable table undergoes schema evolution, columns may be added, logically
dropped, or renamed. When this occurs, a new epoch is created for the immutable table. The
views DBA_IMMUTABLE_TABLE_EPOCHS, ALL_IMMUTABLE_TABLE_EPOCHS, and
USER_IMMUTABLE_TABLE_EPOCHS show the epochs for immutable tables. The views
DBA_IMMUTABLE_TABLE_COLUMNS, ALL_IMMUTABLE_TABLE_COLUMNS, and
USER_IMMUTABLE_TABLE_COLUMNS show the valid columns in each epoch.

Example 19-32 Displaying Immutable Table Information

The following query displays details of the immutable table trade_ledger in the examples
schema.

SELECT row_retention "Row Retention Period", row_retention_locked "Row
Retention Lock", table_inactivity_retention "Table Retention Period"
FROM dba_immutable_tables
WHERE table_name = 'TRADE_LEDGER';

Row Retention Period Row Retention Locked Table Retention Period
-------------------- -------------------- ----------------------
 110 NO 16

19.18 Managing Blockchain Tables
Blockchain tables protect data that records important actions, assets, entities, and documents
from unauthorized modification or deletion by criminals, hackers, and fraud. Blockchain tables
prevent unauthorized changes made using the database and detect unauthorized changes that
bypass the database.

• About Blockchain Tables
Blockchain tables are insert-only tables that organize rows into a number of system and
user-defined chains. Each row in a chain, except the first row, is chained to the previous
row in the chain by using a cryptographic hash.

• Guidelines for Managing Blockchain Tables
You can follow guidelines for creating and using blockchain tables.

• Creating Blockchain Tables
You create a blockchain table using the CREATE BLOCKCHAIN TABLE statement. This
statement creates the blockchain table in the specified schema and the table metadata in
the data dictionary.

• Adding and Dropping User Columns in Blockchain Tables
Beginning with version 2 blockchain tables, user columns may be added or dropped.

• Creating Row Versions in Blockchain Tables
Blockchain (and immutable) tables do not permit updates of existing data, but you can
insert multiple versions of a row identified as part of a same record by common values in a
specified set of columns.

• Creating User Chains in Blockchain Tables
In addition to the system chains, you may create user-defined chains for a blockchain
table.

• Altering Blockchain Tables
You can modify the retention period for the blockchain table and for rows within the
blockchain table.

• Adding Certificates Used to Sign Blockchain Table Rows
Certificates can be used to verify the signature of a blockchain table row.

Chapter 19
Managing Blockchain Tables

19-166

• Adding the Certificate of a Certificate Authority to the Database
The digital certificate used to sign blockchain table rows is issued by a Certificate Authority.

• Deleting Certificates in Blockchain Tables
Delete any certificates that are no longer required to verify the signature of blockchain
table rows.

• Adding a User Signature to Blockchain Table Rows
Signing a row adds a user signature for a previously created row. A signature is optional
and provides additional security against tampering.

• Allowing a Delegate to Sign Blockchain Table Rows
A blockchain table row may be digitally signed by a delegate instead of, or in addition to,
the user that inserted the row.

• Countersigning Blockchain Table Rows
The user inserting the row or a user with SIGN privilege can request a countersignature.
For a countersignature to be produced, the row must be signed by the inserting user, or by
a delegate.

• Validating Data in Blockchain Tables
A PL/SQL procedure verifies that rows in a blockchain table were not modified since they
were inserted.

• Verifying the Integrity of Blockchain Tables
Maintain the integrity of blockchain tables by continuously verifying that the blockchain
table data has not been compromised.

• Deleting Rows from Blockchain Tables
Only rows that are outside the retention period can be deleted from a blockchain table.

• Dropping Blockchain Tables
A blockchain table can be dropped if it contains no rows or after it has not been modified
for a period of time that is defined by its retention period.

• Setting the Table Retention Threshold
Oracle Database prevents blockchain and immutable tables from being deleted before
their idle period expires.

• Determining the Data Format for Row Content to Compute Row Hash
To compute the hash value for a row, the data format for row content is determined using
the DBMS_BLOCKCHAIN_TABLE.GET_BYTES_FOR_ROW_HASH procedure.

• Determining the Data Format to Compute Row Signature
You can determine the data format for the row content that is used to compute the user
signature or the delegate signature of a row. The row signature is computed based on the
hash value of that row.

• Displaying the Byte Values of Data in Blockchain Tables
You can retrieve the byte values of data, both rows and columns, in a blockchain table.

• Creating a Regular Table with Blockchain History Log
You can specify the use of a blockchain table to protect any changes tracked by Flashback
Data Archive, thereby creating an immutable and cryptographically verifiable audit trail for
any changes in your regular tables.

• Blockchain Tables Data Dictionary Views
Data dictionary views provide information about blockchain tables.

Chapter 19
Managing Blockchain Tables

19-167

19.18.1 About Blockchain Tables
Blockchain tables are insert-only tables that organize rows into a number of system and user-
defined chains. Each row in a chain, except the first row, is chained to the previous row in the
chain by using a cryptographic hash.

Rows in a blockchain table are tamper-resistant. Each row contains a cryptographic hash value
which is based on the data in that row and the hash value of the previous row in the chain. If a
row is tampered with, the hash value of the row changes, and this causes the hash value of the
next row in the chain to change. For enhanced fraud protection, an optional user signature can
be added to a row. If you sign a blockchain table row, a digital certificate must be used. While
verifying the chains in a blockchain table, the database needs the certificate to verify the row
signature.

Blockchain tables can be indexed and partitioned. You can control whether and when rows are
deleted from a blockchain table. You can also control whether the blockchain table can be
dropped. Blockchain tables can be used along with (regular) tables in transactions and queries.

Blockchain tables can be used to implement blockchain applications where the participants
trust the Oracle Database, but want a means to verify that their data has not been tampered.
The participants are different database users who trust Oracle Database to maintain a
verifiable, tamper-resistant blockchain of transactions. All participants must have privileges to
insert data into the blockchain table. The contents of the blockchain are defined and managed
by the application. By leveraging a trusted provider with verifiable crypto-secure data
management practices, such applications can avoid the distributed consensus requirements.
This provides most of the protection of the distributed peer-to-peer blockchains, but with much
higher throughput and lower transaction latency compared to peer-to-peer blockchains using
distributed consensus.

Use blockchain tables when immutability of data is critical for your centralized applications and
you need to maintain a tamper-resistant ledger of current and historical transactions. You can
use blockchain table to record an audit log of actions or transactions pertaining to your
application. You can also build a more complete application with specific business logic using
blockchain table ledger by adding triggers and stored procedures required to perform the tasks
(for example, verify input data, create or transfer digital assets, and other tasks) leveraging the
ledger provided by the blockchain table. You must define the triggers or stored procedures
required to perform the tasks that will implement a centralized blockchain. Information Lifecycle
Management (ILM) may be used to manage the lifecycle of data in blockchain tables. When
the data in one or more partitions of a blockchain table is old, it can be moved to cheaper
storage using ILM techniques.

• Benefits of Using Blockchain Tables
Blockchain tables address data protection challenges faced by enterprises and
governments by focusing on protecting data from criminals, hackers, and fraud.

• Chaining Rows in Blockchain Tables
A row in a blockchain table is chained to the previous row in the chain, and the chain of
rows is verifiable by all participants.

• Hidden Columns in Blockchain Tables
Each row in a blockchain table contains hidden columns whose values are managed by
the database.

19.18.1.1 Benefits of Using Blockchain Tables
Blockchain tables address data protection challenges faced by enterprises and governments
by focusing on protecting data from criminals, hackers, and fraud.

Chapter 19
Managing Blockchain Tables

19-168

Traditional data security technologies focus on preventing unauthorized users from accessing
vital data. Techniques include using passwords, privileges, encryption, and firewalls.
Blockchain tables provide enhanced data security by preventing unauthorized modification or
deletion of data that records important actions, assets, entities, and documents. Unauthorized
modification of important records can result in loss of assets, loss of business, and possible
legal issues.

Blockchain tables provide the following benefits:

• Prevents unauthorized modification of data by insiders or criminals who use stolen insider
insider credentials

This is achieved by making the table insert-only. The database does not permit
modification or deletion of existing data by removing the ability of users to perform the
following actions:

– Update or delete rows

– Convert the blockchain table to an updatable table or vice-versa

– Modify table metadata in the database dictionary

• Prevents undetected modification of data by hackers

This is achieved by using the following techniques:

– Cryptographic chaining of blockchain table rows on insert by using database-
calculated row hashes, which include the current row’s data and previous row’s hash
and a corresponding PL/SQL function to verify the chains

A change to any row causes the chain to break thereby indicating that rows were
subject to tampering. Cryptographic chaining is effective even when hackers take
control of the database or operating system. Data changes that bypass SQL can be
detected using an Oracle-provided PL/SQL function.

– Cryptographic digest of the blockchain table generated on request and signed with the
database schema owner’s private key for non-repudiation

One kind of cryptographic digest is computed based on the content of the blockchain
table (metadata columns for the last row of every system chain in the table). Therefore,
any data modification results in a change to the digest value. You can periodically
compute a cryptographic digest and distribute it to safe repositories or interested
parties. To detect cover-ups of unauthorized changes made by the database operator
or highly sophisticated hackers, you can verify the digest on a range of rows between
two timestamps by using an Oracle-provided PL/SQL function.

• Prevents undetected, unauthorized modifications of data by using stolen end-user
credentials

This is achieved by using the following techniques:

– Cryptographic signing of new data by the end user by using an Oracle-provided
PL/SQL function to insert a signature over the row data

End users can use a digital certificate and a private key to cryptographically sign rows
that they insert into a blockchain table. This guards against impersonation by another
end user, hackers with stolen end-user credentials, or unauthorized users who bypass
application credential checking. It can also help to verify that data being recorded has
not been modified in transit or in the application, and that it was actually inserted by
the end user. A user’s signature provides non-repudiation because the end user
cannot claim that the data was inserted by some other user if it is signed by their
private key and verified by the public key using a PKI certificate provided by the user.

– Cryptographic signing of the blockchain table digest by the table schema owner

Chapter 19
Managing Blockchain Tables

19-169

The signed digest for a blockchain table ensures that the end user data was received
and recorded, signature provided by the end user matches the recorded data, and
cryptographic digest includes the new data. It prevents repudiation of data by end
users.

• Prevents unauthorized modifications made by using the database and detects
unauthorized changes that bypass the database

• Integrates blockchain technology in the Oracle database, thereby enhancing data
protection with minimal changes to existing applications and no new infrastructure
requirements

• Enables users to mix database and regular tables in queries and transactions

• Enables the use of advanced Oracle database functionality, including analytics capabilities,
on cryptographically secured data

• Starting with Oracle Database 23ai, this can be automated through the use of blockchain-
enabled Flashback Data Archive and specifying BLOCKCHAIN in the FLASHBACK clause in the
CREATE TABLE statement. Enables users to maintain history of all transactions in or other
changes to regular tables by creating a paired blockchain table for an audit trail and
recording the history in the blockchain table by using a triggered stored procedure on the
original table

19.18.1.2 Chaining Rows in Blockchain Tables
A row in a blockchain table is chained to the previous row in the chain, and the chain of rows is
verifiable by all participants.

For each Oracle Real Application Clusters (Oracle RAC) instance, a version 1 blockchain table
by default contains thirty two system chains, ranging from 0 through 31. A system chain in a
version 1 blockchain table contains multiple rows and is identified by a unique combination of
instance ID and chain ID. Beginning with version 2 blockchain tables, the global unique
identifier of the database that inserted the row as well as these two identifiers uniquely identify
the system chain. A row consists of user columns and hidden columns (created by the
database). When a row is inserted, it is assigned a unique sequence number within the chain,
and linked to the previous row in the chain. The sequence number of a row is 1 higher than the
sequence number of the previous row in the chain. Each row, except the first row in a chain,
has a unique previous row. A row in a version 1 blockchain table can be uniquely identified
using a combination of the instance ID, chain ID, and sequence number. Beginning with
version 2 blockchain tables, the global unique identifier of the database that inserted the row is
also needed to uniquely identify a row. For version 1 blockchain tables, it is recommended that
you create an index on the combination of instance ID, chain ID, and sequence number.
Beginning with version 2 blockchain tables, the index should be on the combination of
database global unique identifier, instance ID, chain ID, and sequence number.

User chains may also be created when creating the blockchain table. The user chain is based
on a set of at most three user columns. Rows with the same value for the user columns will be
added to the same user chain, as well as a system chain.

Figure 19-1 illustrates how rows are chained. The row data for a row consists of the user
columns and certain hidden columns. The hash value of a row is computed based on the row
data and the hash value of the previous row in the chain. The SHA2-512 hashing algorithm is
used to compute the hash value. Rows are chained together by using the hash value.

Chapter 19
Managing Blockchain Tables

19-170

Figure 19-1 Rows in a Single Chain of a Blockchain Table

Row Data 1

Row Data 2

Row 3

.

.

.

Row 7

Certain hidden columnsColumn nColumn 2Column 1 . . .Row 8

Certain hidden columnsColumn nColumn 2Column 1 . . .Row 2

Certain hidden columnsColumn nColumn 2Column 1 . . .Row 1

.

.

.

Row Data Row Hash

Hash8=hash(Row Data 8 and Hash7)

Row Data 8

Hash2=hash(Row Data 2 and Hash1)

Hash1=hash(Row Data 1 and Hash0*)

*Hash0 is a fixed, constant value.

A single transaction can insert rows into multiple blockchain tables. Rows in a blockchain table
that are inserted by a single transaction are added to the same system chain, and their
positions on the chain respect the order in which they were inserted into the blockchain table.
The system chain for the rows is selected automatically by the database when the transaction
commits.

When multiple users insert rows simultaneously into the same chain in a blockchain table, the
sequence for adding the rows depends on the commit order of the transactions that inserted
these rows.

Rows are linked to the blockchain when the transaction commits. Inserting a large number of
rows in a single transaction results in a higher commit latency. Therefore, it is better to avoid
inserting a very large number of rows in a single transaction.

Related Topics

• Creating User Chains

• Blockchain Tables Reference
You can independently verify the hash value and signature of a row by using its row
content.

19.18.1.3 Hidden Columns in Blockchain Tables
Each row in a blockchain table contains hidden columns whose values are managed by the
database.

Hidden columns are populated when an inserted row is committed. They are used to
implement sequencing of rows and verify that data is tamper-resistant. You can create indexes
on hidden columns. Hidden columns can only be displayed by explicitly including the column
names in the query.

Chapter 19
Managing Blockchain Tables

19-171

Only the following hidden columns may be set when inserting a row into a blockchain table:

• ORABCTAB_SIGNATURE_ALG$
• ORABCTAB_SIGNATURE_CERT$
• ORABCTAB_DELEGATE_SIGNATURE_CERT$
• ORABCTAB_DELEGATE_SIGNATURE_ALG$
• ORABCTAB_DELEGATE_USER_NUMBER$

Table 19-9 Hidden Columns in Blockchain Tables

Column Name Data Type Description

ORABCTAB_INST_ID$ NUMBER Instance ID of the database
instance in which the row is
inserted.

ORABCTAB_CHAIN_ID$ NUMBER ID of the system chain, in the
database instance, into which the
row is inserted. By default, valid
values for chain ID are 0 through
31.

ORABCTAB_SEQ_NUM$ NUMBER Sequence number of the row on
the system chain. Each row
inserted into a system chain of a
blockchain table is assigned a
unique sequence number that
starts with 1. The sequence
number of a row is 1 higher than
the sequence number of the
previous row in the chain. Missing
rows can be detected using this
column.

The combination of instance ID,
chain ID, and sequence number
uniquely identifies a row in a
version 1 blockchain table.
Beginning with version 2
blockchain tables, the global
unique identifier of the database
that inserted the row is also
needed to uniquely identify the
row.

ORABCTAB_CREATION_TIME$ TIMESTAMP WITH TIME ZONE Time, in UTC format, when a row
is created.

ORABCTAB_USER_NUMBER$ NUMBER User ID of the database user who
inserted the row.

ORABCTAB_HASH$ RAW(2000) Hash value of the row. The hash
value is computed based on the
row content of the row and the
hash value of the previous row in
the system chain.

ORABCTAB_SIGNATURE$ RAW(2000) User signature of the row. The
signature is computed using the
hash value of the row.

Chapter 19
Managing Blockchain Tables

19-172

Table 19-9 (Cont.) Hidden Columns in Blockchain Tables

Column Name Data Type Description

ORABCTAB_SIGNATURE_ALG$ NUMBER Signature algorithm used to
produce the user signature of a
signed row.

ORABCTAB_SIGNATURE_CERT$ RAW(16) GUID of the certificate associated
with the user signature on a
signed row.

ORABCTAB_SPARE$ RAW(2000) This column is reserved for future
use.

Table 19-10 Additional Hidden Columns in V2 Blockchain Tables

Column Name Data Type Description

ORABCTAB_COUNTERSIGNATURE$ RAW(2000) The countersignature for the row.
The countersignature is
computed using the columns in
the row and any signatures on
the row when the
countersignature is procured.

ORABCTAB_COUNTERSIGNATURE_
ALG$

NUMBER Signature algorithm used to
produce the countersignature of
the row.

ORABCTAB_COUNTERSIGNATURE_
CERT$

RAW(1000) GUID of the certificate associated
with the countersignature of the
row.

ORABCTAB_COUNTERSIGNATURE_
ROW_FORMAT_FLAG$

NUMBER For internal use only.

ORABCTAB_COUNTERSIGNATURE_
ROW_FORMAT_VERSION$

VARCHAR2(4000) For internal use only.

ORABCTAB_DELEGATE_SIGNATUR
E$

RAW(2000) Delegate signature of the row.
The signature is computed using
the hash value of the row.

ORABCTAB_DELEGATE_SIGNATUR
E_ALG$

NUMBER Signature algorithm used to
produce the delegate signature of
the row.

ORABCTAB_DELEGATE_SIGNATUR
E_CERT$

RAW(1000) GUID of the certificate associated
with the delegate signature of the
row.

ORABCTAB_DELEGATE_USER_NUM
BER$

NUMBER User ID of the database user who
signed the row as a delegate.

ORABCTAB_LAST_ROW_VERSION_
NUMBER$

RAW(1) Non-NULL only when the row is
the last row in a user chain or the
last row in a row version
sequence.

ORABCTAB_PDB_GUID$ RAW(2000) The GUID of the pluggable
database that originally inserted
the row.

Chapter 19
Managing Blockchain Tables

19-173

Table 19-10 (Cont.) Additional Hidden Columns in V2 Blockchain Tables

Column Name Data Type Description

ORABCTAB_ROW_VERSION$ NUMBER When a blockchain table is
created with row versions or user
chains, the sequence number of
the row in a row version
sequence or in a user chain. The
first row in a row version
sequence or in a user chain has a
row version of 1.

ORABCTAB_TS$ TIMESTAMP(6) A virtual column used when
interval partitioning is added to
the blockchain table.

ORABCTAB_USER_CHAIN_HASH$ RAW(2000) When the blockchain table is
created with user chains, the
hash value of the row for the user
chain that contains the row.

19.18.2 Guidelines for Managing Blockchain Tables
You can follow guidelines for creating and using blockchain tables.

Note:

The guidelines for creating tables are also applicable to blockchain tables. Additional
guidelines are described in this section.

• For each chain in a database instance, periodically save the current hash and the
corresponding sequence number outside the database. This enables you to verify that no
chain in the blockchain table has been shortened or overwritten.

• In an Oracle Data Guard environment, consider using the maximum protection mode or
maximum availability mode to avoid loss of data.

• Specify the Retention Period for the Blockchain Table
Use the NO DROP clause in a CREATE BLOCKCHAIN TABLE statement to specify the retention
period for the blockchain table.

• Specify the Retention Period for Rows in the Blockchain Table
Use the NO DELETE clause in a CREATE BLOCKCHAIN TABLE statement to specify the
retention period for rows in the blockchain table.

• Exporting and Importing Blockchain Tables with Oracle Data Pump
To export or import blockchain tables, review these minimum requirements, restrictions,
and guidelines.

• Restrictions for Blockchain Tables
Using blockchain tables is subject to certain restrictions.

19.18.2.1 Specify the Retention Period for the Blockchain Table
Use the NO DROP clause in a CREATE BLOCKCHAIN TABLE statement to specify the retention
period for the blockchain table.

Chapter 19
Managing Blockchain Tables

19-174

If a blockchain table contains rows, it cannot be dropped while it is within the specified
retention period.

Include one of the following clauses to specify retention period:

• NO DROP
Blockchain table cannot be dropped.

• NO DROP UNTIL n DAYS IDLE
Blockchain table cannot be dropped if the newest row is less than n days old. The
minimum value that is allowed for n is 0. However, to ensure the security of blockchain
tables, it is recommended that you set the minimum value to at least 16.

Unless the user has been granted the TABLE RETENTION system privilege, the
BLOCKCHAIN_TABLE_RETENTION_THRESHOLD initialization parameter sets the default value
that controls the maximum permitted idle time in the NO DROP clause.

To set the table retention period to zero days, the dynamic initialization parameter
BLOCKCHAIN_TABLE_MAX_NO_DROP must be set to its default value or zero. This setting is
useful for testing blockchain tables. Note that when this parameter is set to zero, the only
allowed retention period is 0 days. To subsequently set a non-zero retention period, you
must reset the value of the BLOCKCHAIN_TABLE_MAX_NO_DROP parameter.

Use the ALTER TABLE statement to increase the retention period for a blockchain table. You
cannot reduce the retention period.

19.18.2.2 Specify the Retention Period for Rows in the Blockchain Table
Use the NO DELETE clause in a CREATE BLOCKCHAIN TABLE statement to specify the retention
period for rows in the blockchain table.

The retention period controls when rows can be deleted from a blockchain table. Use one of
the following options to specify the retention period:

• NO DELETE [LOCKED]
Rows cannot be deleted from the blockchain table when NO DELETE is used.

To ensure that rows are never deleted from the blockchain table, use the NO DELETE
LOCKED clause in the CREATE BLOCKCHAIN TABLE statement. The LOCKED keyword specifies
that the row retention setting cannot be modified.

• NO DELETE UNTIL n DAYS AFTER INSERT [LOCKED]
A row cannot be deleted until n days after the it was added. You can use the ALTER TABLE
statement with the NO DELETE UNTIL clause to modify this setting and increase the
retention period. You cannot reduce the retention period.

The minimum value for n is 16 days. If LOCKED is included, you cannot subsequently modify
the row retention.

19.18.2.3 Exporting and Importing Blockchain Tables with Oracle Data Pump
To export or import blockchain tables, review these minimum requirements, restrictions, and
guidelines.

If you use Oracle Data Pump with blockchain tables, then you can use only CONVENTIONAL
access_method or, beginning with Oracle Database 23ai, Transportable Tablespaces (TTS).

Blockchain tables are exported only under the following conditions:

Chapter 19
Managing Blockchain Tables

19-175

• The VERSION parameter for the export is explicitly set to 21.0.0.0.0 or later.

• The VERSION parameter is set to (or defaults to) COMPATIBLE, and the database
compatibility is set to 21.0.0.0.0 or later.

• The VERSION parameter is set to LATEST, and the database release is set to 21.0.0.0.0 or
later.

If you attempt to use Oracle Data Pump options that are not supported with blockchain tables,
then you receive errors when you attempt to use those options.

The following options of Oracle Data Pump are not supported with blockchain tables:

• ACCESS_METHOD=[DIRECT_PATH, EXTERNAL_TABLE, INSERT_AS_SELECT]
• TABLE_EXISTS_ACTION=[REPLACE | APPEND | TRUNCATE]

These options result in errors when you attempt to use them to import data into an existing
blockchain table.

• CONTENT=DATA_ONLY
This option results in error when you attempt to import data into a blockchain table.

• PARTITION_OPTIONS= [DEPARTITIONING | MERGE]
If you request departitioning using this option with blockchain tables, then the blockchain
tables are skipped during departitioning.

• NETWORK IMPORT
• TRANSPORTABLE in Oracle Database 23ai Free and earlier Oracle Database releases

• SAMPLE, QUERY, and REMAP_DATA

19.18.2.4 Restrictions for Blockchain Tables
Using blockchain tables is subject to certain restrictions.

• The following data types are not supported with blockchain tables: ROWID, UROWID, LONG,
object type, REF, varray, nested table, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH
LOCAL TIME ZONE, BFILE, and XMLType.

XMLType tables are not supported.

• Immutable tables can not be index-organized tables, ORGANIZATION CUBE, ORGANIZATION
EXTERNAL, or hybrid partitioned.

• For a V1 blockchain table, the maximum number of user-created columns is 20 less than
what is possible in an ordinary table. For a V2 blockchain table, the maximum number of
user-created columns is 40 less than what is possible in an ordinary table.

• The following operations are not supported with V2 blockchain tables:

– Creating blockchain tables in the CDB root or application root

– Updating rows and merging rows

– Truncating the blockchain table

– Dropping partitions

– Sharded tables

– Direct-path loading and inserting data using parallel DML

– Flashback table

Chapter 19
Managing Blockchain Tables

19-176

– Defining BEFORE ROW triggers that fire for update operations (other triggers are allowed)

– Creating Automatic Data Optimization (ADO) policies

– Creating Oracle Virtual Private Database (VPD) policies

– Creating Oracle Label Security (OLS) policies

– Online redefinition using the DBMS_REDEFINITION package

– Transient Logical Standby and rolling upgrades

DDL and DML on blockchain tables are not supported and not replicated.

– Logical Standby and Oracle GoldenGate

DDL and DML on blockchain tables succeed on the primary database but are not
replicated to standby databases.

– Converting a regular table to a blockchain table or vice versa

– ON DELETE CASCADE and ON DELETE SET NULL are not allowed for CREATE DDL

• Flashback Database and point-in-time recovery of a database undo the changes made to
all tables, including blockchain tables. For example, if a database is flashed back to SCN
1000, or a backup is restored and recovered up to SCN 1000, all changes since SCN 1000
are removed from the database.

Oracle Database does not prevent flashback and point-in-time recovery operations since
they may be required to undo physical and logical corruptions. To detect any loss of data in
a blockchain table, you must periodically publish a signed blockchain digest.

• Correctly enforcing retention policies in blockchain tables relies on the system time. The
privilege to change the system time must not be granted widely, and changes to the
system time must be audited and reviewed.

For a list of operations supported in V1 blockchain tables, see Database Administrator's Guide
21c.

19.18.3 Creating Blockchain Tables
You create a blockchain table using the CREATE BLOCKCHAIN TABLE statement. This statement
creates the blockchain table in the specified schema and the table metadata in the data
dictionary.

Note:

Blockchain tables cannot be created in the root container and in an application root
container. The COMPATIBLE initialization parameter must be set to 19.10.0.0 or
higher to create a V1 blockchain table and 23.0.0.0 or higher to create a V2
blockchain table.

The CREATE TABLE system privilege is required to create blockchain tables in your own
schema. The CREATE ANY TABLE system privilege is required to create blockchain tables in
another user's schema.

The NO DROP, NO DELETE, HASHING USING, and VERSION clauses are mandatory in a CREATE
BLOCKCHAIN TABLE statement.

Chapter 19
Managing Blockchain Tables

19-177

http://www.oracle.com/pls/topic/lookup?ctx=db21&id=ADMIN-GUID-43470B0C-DE4A-4640-9278-B066901C3926
http://www.oracle.com/pls/topic/lookup?ctx=db21&id=ADMIN-GUID-43470B0C-DE4A-4640-9278-B066901C3926

Example 19-33 Creating a Simple Blockchain Table

This example creates a blockchain table named bank_ledger, with the specified columns, in
your schema. Rows can never be deleted. The blockchain table can be dropped only after 31
days of inactivity.

CREATE BLOCKCHAIN TABLE bank_ledger (bank VARCHAR2(128), deposit_date DATE,
deposit_amount NUMBER)
 NO DROP UNTIL 31 DAYS IDLE
 NO DELETE LOCKED
 HASHING USING "SHA2_512" VERSION "v1";

Example 19-34 Creating a Partitioned Blockchain Table

This example creates a blockchain table bctab_part with the specified columns and partitions.
The table can be dropped only after 16 days of inactivity. Rows cannot be deleted until 25 days
after they were inserted. The blockchain table is partitioned on the trans_date column.

CREATE BLOCKCHAIN TABLE bctab_part (trans_id number primary key, sender
varchar2(50), recipient varchar2(50), trans_date DATE, amount number)
 NO DROP UNTIL 16 DAYS IDLE
 NO DELETE UNTIL 25 DAYS AFTER INSERT
 HASHING USING "SHA2_512" VERSION "v1"
 PARTITION BY RANGE(trans_date)
 (PARTITION p1 VALUES LESS THAN (TO_DATE('30-09-2019','dd-mm-yyyy')),
 PARTITION p2 VALUES LESS THAN (TO_DATE('31-12-2019','dd-mm-yyyy')),
 PARTITION p3 VALUES LESS THAN (TO_DATE('31-03-2020','dd-mm-yyyy')),
 PARTITION p4 VALUES LESS THAN (TO_DATE('30-06-2020','dd-mm-yyyy'))
);

Example 19-35 Displaying Version 1 Blockchain Table Columns (including hidden
columns)

This example displays the details of columns, including hidden columns, in a version 1
blockchain table.

 Col ID Column Name Data Type Data
Length
---------- ------------------------------ ------------------------------

 1 BANK
VARCHAR2 128
 2 DEPOSIT_DATE
DATE 7
 3 DEPOSIT_AMOUNT
NUMBER 22
 4 ORABCTAB_INST_ID$
NUMBER 22
 5 ORABCTAB_CHAIN_ID$
NUMBER 22
 6 ORABCTAB_SEQ_NUM$
NUMBER 22
 7 ORABCTAB_CREATION_TIME$ TIMESTAMP(6) WITH TIME
ZONE 13
 8 ORABCTAB_USER_NUMBER$

Chapter 19
Managing Blockchain Tables

19-178

NUMBER 22
 9 ORABCTAB_HASH$
RAW 2000
 10 ORABCTAB_SIGNATURE$
RAW 2000
 11 ORABCTAB_SIGNATURE_ALG$
NUMBER 22
 12 ORABCTAB_SIGNATURE_CERT$
RAW 16
 13 ORABCTAB_SPARE$
RAW 2000

13 rows selected.

19.18.4 Adding and Dropping User Columns in Blockchain Tables
Beginning with version 2 blockchain tables, user columns may be added or dropped.

You can add or drop user columns from blockchain tables beginning with version 2 blockchain
tables. Adding or dropping user columns from version 1 blockchain tables is not allowed. The
physical columns and data are not actually dropped but marked as invisible. This is required in
order to maintain the cryptographic hash chains across these rows. It also allows the
verification procedures to work and blockchain digests to remain valid across the entire table.

For consistency, you can now add or drop user columns from version 2 immutable tables.

Related Topics

• Adding and Dropping User Columns in Immutable Tables

19.18.5 Creating Row Versions in Blockchain Tables
Blockchain (and immutable) tables do not permit updates of existing data, but you can insert
multiple versions of a row identified as part of a same record by common values in a specified
set of columns.

Blockchain table row versions allows you to accurately track the sequencing of related row
inserts into a blockchain table for a set of columns over which row versions are defined. Oracle
automatically creates a view defined for the blockchain table that allows you to see just the
latest row inserted for the specific set of column values. The view has the same columns as
the blockchain table and filters all row versions except the last row version, as ordered by the
hidden column ORABCTAB_ROW_VERSION$. The view name uses the naming convention
Blockchain_Table_Name_LAST$.

If you wish to use the blockchain table row version feature, you must specify the WITH ROW
VERSION clause when creating the table. The following syntax may be used:

WITH ROW VERSION [AND USER CHAIN] <row_version_name> (col1 [, col2 [, col3]])

The row version feature is supported for blockchain tables with or without primary keys. When
a primary key is defined for the blockchain table, the primary key columns must not be
identical to the set of row version columns.

The row version feature has the following restrictions:

• You can specify at most three columns with the WITH ROW VERSION clause.

Chapter 19
Managing Blockchain Tables

19-179

• The column types are restricted to NUMBER, CHAR, VARCHAR2, and RAW.

• The <row_version_name> must be supplied when creating the table.

• Row versions cannot be used with version 1 blockchain tables.

19.18.6 Creating User Chains in Blockchain Tables
In addition to the system chains, you may create user-defined chains for a blockchain table.

In addition to system chains, you may want rows inserted into user-defined chains. These
user-defined chains are based on values from a set of user columns specified when the
blockchain table is created. Rows with the same value for the user columns will be combined
together in the same user chain. For example, in a bank a user can specify that rows with the
same account number column be in the same user chain. Rows that are inserted for the same
bank and same account number are chained together in a user chain, in addition to being
combined into a system chain. In this example, if there are a total of 100 different account-bank
pairs in the blockchain table, then there will be 100 user chains.

The cryptographic hash for a user chain is stored in the hidden column
ORABCTAB_USER_CHAIN_HASH$. Rows in a user chain are ordered by the hidden column
ORABCTAB_ROW_VERSION$.

User chains are supported in a blockchain table with or without a primary key. However, when
a primary key is defined, the set of primary key columns must not be identical to the set of user
chain columns.

To create a blockchain table with user chains, include the

WITH USER CHAIN <row_version_name> (col1[, col2[, col3]])

or

WITH ROW VERSION AND USER CHAIN <row_version_name> (col1[, col2[, col3]])

clause when defining the table. At most three user-defined columns can be specified with the
clause. The name of the user chain is identified by <row_version_name> and is used during the
chain verification procedure if there are also user chains. When this clause is included, rows
with identical values in the specified user-defined columns are sequenced using the Oracle
managed hidden column ORABCTAB_ROW_VERSION$.

Below is an example of creating a blockchain table with user chains:

CREATE BLOCKCHAIN TABLE bank_ledger
(
 bank VARCHAR2(128),
 account_no NUMBER,
 deposit_date DATE,
 deposit_amount NUMBER
)
 NO DROP UNTIL 31 DAYS IDLE
 NO DELETE LOCKED
 HASHING USING "SHA2_512" WITH ROW VERSION
 AND USER CHAIN bank_accounts (bank, account_no) VERSION "v2";

User chains have the following restrictions:

Chapter 19
Managing Blockchain Tables

19-180

• You can specify at most three columns with the WITH ROW VERSION AND USER CHAIN
clause.

• The column types are restricted to NUMBER, CHAR, VARCHAR2, and RAW.

• User chains cannot be used with version 1 blockchain tables.

19.18.7 Altering Blockchain Tables
You can modify the retention period for the blockchain table and for rows within the blockchain
table.

The retention period cannot be reduced while altering a blockchain table definition. For
example, assume you create a blockchain table and set the retention period to 30 days. You
cannot subsequently alter it and set the retention period to 20 days.

• Use the ALTER TABLE statement with the NO DROP or NO DELETE clauses. Using the NO
DELETE LOCKED clause specifies that rows can never be deleted from the blockchain table.

The following statement modifies the definition of the blockchain table bank_ledger and
specifies that it cannot be dropped if the newest row is less than 16 days old.

ALTER TABLE bank_ledger NO DROP UNTIL 16 DAYS IDLE;

The following statement modifies the definition of the blockchain table bctab and specifies
that rows cannot be deleted until 20 days after they were created. The LOCKED clause
indicates that this setting can never be modified.

ALTER TABLE bctab NO DELETE UNTIL 20 DAYS AFTER INSERT LOCKED;

19.18.8 Adding Certificates Used to Sign Blockchain Table Rows
Certificates can be used to verify the signature of a blockchain table row.

You need to obtain an X.509 digital certificate from a Certificate Authority (CA). This certificate
is added to the database, as a BLOB, and then used to add and verify the signature of one or
more blockchain table rows. Multiple certificates can be used to sign rows in one blockchain
table. You can use OpenSSL APIs to manipulate digital certificates.

The digital certificate to be added must be stored as a BLOB in the database.

• Use the DBMS_USER_CERTS.ADD_CERTIFICATE procedure to add a certificate.

When a certificate is added to the database, it is assigned a unique certificate ID. This ID is
the output of the DBMS_USER_CERTS.ADD_CERTIFICATE procedure. The certificate ID is used
when adding and verifying signatures for a blockchain table row. You must remember or
look up this certificate ID, else you cannot use the associated digital certificate.

Example 19-36 Adding a Digital Certificate to the Database

This example adds the digital certificate that is stored, in binary format, in the file u1_cert.der.
This file is stored in the MY_DIR directory object. Procedures in the DBMS_LOB package are used
to open the certificate and read its contents into the variable buffer. The variable cert_id
stores the procedure output, the certificate ID.

DECLARE
 file BFILE;

Chapter 19
Managing Blockchain Tables

19-181

 buffer BLOB;
 amount NUMBER := 32767;
 cert_id RAW(16);
BEGIN
 file := BFILENAME('MY_DIR', 'u1_cert.der');
 DBMS_LOB.FILEOPEN(file);
 DBMS_LOB.READ(file, amount, 1, buffer);
 DBMS_LOB.FILECLOSE(file);
 DBMS_USER_CERTS.ADD_CERTIFICATE(buffer, cert_id);
 DBMS_OUTPUT.PUT_LINE('Certificate ID = ' || cert_id);
END;
/
Certificate ID = 9D267F1C280B60D8E053E5885A0A25FA

PL/SQL procedure successfully completed.

Example 19-37 Viewing Information About Certificates

This example displays information about the existing certificates by querying the
DBA_CERTIFICATES data dictionary view. Other views that contain information about certificates
are CDB_CERTIFICATES and USER_CERTIFICATES.

SELECT user_name, distinguished_name, UTL_RAW.LENGTH(certificate_id)
CERT_ID_LEN, DBMS_LOB.GETLENGTH(certificate) CERT_LEN
FROM DBA_CERTIFICATES ORDER BY user_name;

USER_NAME DISTINGUISHED_NAME

CERT_ID_LEN CERT_LEN
------------- ----------
U1 CN=USER1,OU=Americas,O=oracle,L=redwoodshores,ST=CA,C=US
 16 835

U2 CN=USER2,OU=IT-Department,O=Global-Security,L=London,ST=London,C=GB
 16 1465

19.18.9 Adding the Certificate of a Certificate Authority to the Database
The digital certificate used to sign blockchain table rows is issued by a Certificate Authority.

The digital certificate associated with an identity and private key used to sign blockchain (and
immutable) table rows. The public key in the certificate is used in the process of verifying the
private key signature over the current row contents provided by the user when signing a row.

A Certificate Revocation List (CRL) stores the list of digital certificates that were revoked by the
Certificate Authority (CA) before their specified expiration date. The CRL and the digital
certificate of the CA are used during the process of validating user digital certificates. Before a
user signs a row using a digital certificate, the CRL is checked to verify that the digital
certificate has not been revoked. The digital certificate of the CA is used to verify the
authenticity of the CRL.

You must download the CRL associated with your Certificate Authority and store it in the
WALLET_ROOT/PDB_GUID/bctable/crl directory. WALLET_ROOT is an initialization parameter that
specifies the path to the root of a directory tree containing a subdirectory for each pluggable

Chapter 19
Managing Blockchain Tables

19-182

database (PDB), and PDB_GUID is the GUID of the pluggable database (PDB) that contains the
blockchain table.

The certificate to be added to the database must be stored as a BLOB in the database.

• Use the DBMS_USER_CERTS.ADD_CERTIFICATE procedure to add the digital certificate of a
Certificate Authority to the database.

The database assigns a unique certificate ID to the new certificate. This ID is the output
parameter of the DBMS_USER_CERTS.ADD_CERTIFICATE procedure. You must note down this
certificate ID for later use.

After the certificate is added, rename the downloaded CRL as ca_cert_id.crl, where
ca_cert_id is the unique certificate ID of the Certificate Authority. The file name must be in this
format for the database to be able to use it to verify the validity of user digital certificates.

19.18.10 Deleting Certificates in Blockchain Tables
Delete any certificates that are no longer required to verify the signature of blockchain table
rows.

To delete a certificate from the database, you must either be SYS or be the owner of the
certificate. You must also know the GUID that was generated when the certificate was added to
the database.

• Use the DBMS_USER_CERTS.DROP_CERTIFICATE procedure to delete a certificate.

Example 19-38 Deleting a Certificate

This example deletes the certificate whose GUID is
9CCC45ABA31D5DC2E0532A26C40A860F.

declare
 certificate_guid RAW(16):='9CCC45ABA31D5DC2E0532A26C40A860F';
begin
 DBMS_USER_CERTS.DROP_CERTIFICATE(certificate_guid);
end;

19.18.11 Adding a User Signature to Blockchain Table Rows
Signing a row adds a user signature for a previously created row. A signature is optional and
provides additional security against tampering.

You must use a digital certificate when adding a signature to a blockchain table row. The
signature is validated using the specified digital certificate and signature algorithm. The
signature algorithms supported are SIGN_ALGO_RSA_SHA2_256,
SIGN_ALGO_RSA_SHA2_384, and SIGN_ALGO_RSA_SHA2_512.

Before adding a user signature to a row, Oracle Database verifies that the current user owns
the row being updated, the hash (if provided) matches the stored hash value of the row, and
the digital certificate used to sign the row is valid. The database checks the Certificate
Revocation List (CRL) file for the list of digital certificates that were revoked by the Certificate
Authority before their scheduled expiration date. If the certificate of the Certificate Authority
who issued the user's digital certificate is not added to the database, or the CRL file is not in
the specified location, the user certificate is assumed to be valid.

The prerequisites for signing a blockchain table row are as follows:

• You must have the INSERT privilege on the blockchain table.

Chapter 19
Managing Blockchain Tables

19-183

• The existing signature of the row to which a signature is being added must be NULL.

• The CRL of the Certificate Authority who issued the digital certificate used to sign the row
must be stored in the WALLET_ROOT/PDB_GUID/bctable/crl directory.

WALLET_ROOT is an initialization parameter that specifies the path to the root of a directory
tree containing a subdirectory for each pluggable database (PDB), and PDB_GUID
represents the GUID of the pluggable database (PDB) that contains the blockchain table.

• The name of the CRL file must be in the format ca_cert_id.crl, where ca_cert_id
represents the unique certificate ID of the Certificate Authority.

To add a signature to an existing blockchain table row:

• Run the DBMS_BLOCKCHAIN_TABLE.SIGN_ROW procedure.

Specify the following input values: blockchain table name, schema that contains the
blockchain table, instance ID, chain ID, sequence ID, user signature, certificate ID of the
user's digital certificate, and signature algorithm.

Note:

The DBMS_BLOCKCHAIN_TABLE.SIGN_ROW procedure depends on information specific to
a pluggable database (PDB) and is applicable only to rows that were inserted in the
current PDB by users, applications, or utilities other than Oracle Data Pump and
Oracle GoldenGate. For example, suppose you insert a row into a blockchain table in
the PDB my_pdb1, commit the transaction, use Oracle Data Pump to export the
blockchain table, and use Oracle Data Pump to import the blockchain table into the
PDB my_pdb2. If you try to sign this row in the PDB my_pdb2 by using the
DBMS_BLOCKCHAIN_TABLE.SIGN_ROW procedure, an exception is raised.

Before you use Oracle Data Pump to create a copy of the blockchain table, you must
sign all rows in a blockchain table that need to be signed.

Example 19-39 Signing a Blockchain Table Row

This example adds a signature to the row in the bank_ledger table with bank name as
'my_bank'. This table is in the examples schema. The signature is computed outside the
database, by using standard OpenSSL commands, and stored in binary format in the file
ulr1_sign.dat. The signature algorithm used is
DBMS_BLOCKCHAIN_TABLE.SIGN_ALGO_RSA_SHA2_512. The variable cert_guid represents the
GUID of the certificate that was added to the database and can be used to verify the signature.

DECLARE
 inst_id binary_integer;
 chain_id binary_integer;
 sequence_no binary_integer;
 file BFILE;
 amount NUMBER;
 signature RAW(2000);
 cert_guid RAW (16) := HEXTORAW('9CCC45ABA31D5DC2E0532A26C40A860F');
BEGIN
 SELECT ORABCTAB_INST_ID$, ORABCTAB_CHAIN_ID$, ORABCTAB_SEQ_NUM$
 INTO inst_id, chain_id, sequence_no
 FROM bank_ledger
 WHERE bank='my_bank';

Chapter 19
Managing Blockchain Tables

19-184

 file := bfilename('MY_DIR1', 'u1r1_sign.dat');
 DBMS_LOB.FILEOPEN(file);
 dbms_lob.READ(file, amount, 1, signature);
 dbms_lob.FILECLOSE(file);
 DBMS_BLOCKCHAIN_TABLE.SIGN_ROW('EXAMPLES','BANK_LEDGER', inst_id,
 chain_id, sequence_no, NULL, signature, cert_guid,
 DBMS_BLOCKCHAIN_TABLE.SIGN_ALGO_RSA_SHA2_512);
END;
/

PL/SQL procedure successfully completed.

SQL> SELECT bank, UTL_RAW.LENGTH(ORABCTAB_SIGNATURE$) sign_len,
 2 ORABCTAB_SIGNATURE_ALG$,
 3 UTL_RAW.LENGTH(ORABCTAB_SIGNATURE_CERT$) sign_cert_guid_len
 4 FROM examples.bank_ledger
 5 ORDER BY bank;

BANK SIGN_LEN ORABCTAB_SIGNATURE_ALG$ SIGN_CERT_GUID_LEN
---------------- ---------- ----------------------- ------------------
my_bank 512 1 16
bank2 256 3 16

Related Topics

• Adding the Certificate of a Certificate Authority to the Database
The digital certificate used to sign blockchain table rows is issued by a Certificate Authority.

• Oracle Database PL/SQL Packages and Types Reference

19.18.12 Allowing a Delegate to Sign Blockchain Table Rows
A blockchain table row may be digitally signed by a delegate instead of, or in addition to, the
user that inserted the row.

There are many cases where rows need to be signed additionally or alternatively by a delegate
of the end user. One example is a bank manager signing a row inserted by an end user. A
delegate signer is another database user that can add their signature on a row that is
computed over the row's system cryptographic hash. A row can be signed by an end user, a
delegate, or both, using the SIGN_ROW() API. A delegate’s signature is accepted only if the
signature can be verified using the delegate’s certificate, and the certificate ID of the delegate’s
certificate is recorded in a database dictionary table.

A delegate signer must be granted the SIGN privilege on the blockchain table. For example:

GRANT SIGN ON account_tab TO scott;

If the row being signed by the delegate has a non-NULL ORABCTAB_DELEGATE_USER_NUMBER$
column, the user number of the delegate must be equal to the value in this column.

Four hidden columns in the blockchain table track delegate signatures. The columns are:

Chapter 19
Managing Blockchain Tables

19-185

Table 19-11 Delegate Signature Columns

Column Name Description

ORABCTAB_DELEGATE_USER_NUMBER$ Delegate user ID

ORABCTAB_DELEGATE_SIGNATURE_ALG$ Delegate signature algorithm

ORABCTAB_DELEGATE_SIGNATURE_CERT$ Delegate PKI certificate ID

ORABCTAB_DELEGATE_SIGNATURE$ Delegate signature

Related Topics

• SIGN_ROW Procedure

19.18.13 Countersigning Blockchain Table Rows
The user inserting the row or a user with SIGN privilege can request a countersignature. For a
countersignature to be produced, the row must be signed by the inserting user, or by a
delegate.

When a row is signed by an end user or delegate, the user may want to procure a
countersignature for the row. A countersignature can be considered a blockchain table digest
specifically for the row that has already been signed by an end user or delegate.

Use one of the following procedures to countersign a row:

• SIGN_ROW_WITH_COUNTERSIGNATURE
• SIGN_ROW_SPECIFIED_BY_KEY_COLUMNS_WITH_COUNTERSIGNATURE
• COUNTERSIGN_ROW
• COUNTERSIGN_ROW_SPECIFIED_BY_KEY_COLUMNS
When a row is countersigned, the countersignature is returned to the row signer and also
saved in the blockchain table. The user requesting the countersignature can save this
information for non-repudiation purposes in a separate data store, such as Oracle Blockchain
Platform. The database itself does not offer any support for saving this information in an
external data store outside the database.

The countersignature is computed over a well-defined sequence of bytes, which includes the
end-user signature, the delegate signature, or both signatures. Oracle recommends saving the
countersignature outside the database for non-repudiation purposes even though the
countersignature is saved with the blockchain table.

Five hidden columns in the blockchain table track countersignatures. The columns are:

Table 19-12 Countersignature Columns

Column Name Description

ORABCTAB_COUNTERSIGNATURE_ALG$ Countersignature algorithm

ORABCTAB_COUNTERSIGNATURE_CERT$ Countersignature PKI certificate ID

ORABCTAB_COUNTERSIGNATURE_ROW_FORMAT_VE
RSION$

Countersignature signed bytes row format version

Chapter 19
Managing Blockchain Tables

19-186

Table 19-12 (Cont.) Countersignature Columns

Column Name Description

ORABCTAB_COUNTERSIGNATURE_ROW_FORMAT_FL
AG$

The flag bits indicate whether the end user
signature, the delegate signature, or both
signatures are used in the computation of
countersignature.

ORABCTAB_COUNTERSIGNATURE$ Countersignature

Related Topics

• SIGN_ROW Procedure

19.18.14 Validating Data in Blockchain Tables
A PL/SQL procedure verifies that rows in a blockchain table were not modified since they were
inserted.

This provides evidence that there has been no tampering or deletion of the data, or detects any
possible tampering or deletion that may have happened outside the database and is an
important component of the tamper-resistance feature.

You must have the SELECT privilege on the blockchain table to run this procedure.

• Use the DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS procedure to verify the integrity of the hash
column in a blockchain table. If a row contains a signature, the signature can be verified.

You can validate all rows in the blockchain table or specify criteria to filter rows that must
be validated. Rows can be filtered using the instance ID, chain ID, or row creation time.

Example 19-40 Validating Blockchain Table Rows In a Specific Instance

The following PL/SQL block verifies that the rows in the blockchain table bank_ledger, with
instance IDs between 1 and 4, have not been tampered with since they were created.

Because the verify_signature parameter of the DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS
procedure is omitted, the default value of TRUE is used. The row contents and the row
signature (if present) are verified. If the verify_signature parameter is set to FALSE, the row
contents are verified, but the row signature is not. Because the verify_delegate_signature
and verify_countersignature parameters default to TRUE, delegate signatures and
countersignatures will be verified in the following PL/SQL block. You may chose to skip
signature verification to conserve the additional time and resources spent on this process.

DECLARE
 verify_rows NUMBER;
 instance_id NUMBER;
BEGIN
 FOR instance_id IN 1 .. 4 LOOP
 DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS('EXAMPLES','BANK_LEDGER',
NULL, NULL, instance_id, NULL, verify_rows);
 DBMS_OUTPUT.PUT_LINE('Number of rows verified in instance Id '||
instance_id || ' = '|| verify_rows);
 END LOOP;
END;
/

Chapter 19
Managing Blockchain Tables

19-187

Number of rows verified in instance Id 1 = 3
Number of rows verified in instance Id 2 = 12
Number of rows verified in instance Id 3 = 8
Number of rows verified in instance Id 4 = 10

PL/SQL procedure successfully completed.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about the DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS procedure

19.18.15 Verifying the Integrity of Blockchain Tables
Maintain the integrity of blockchain tables by continuously verifying that the blockchain table
data has not been compromised.

To verify the integrity of blockchain table data:

1. Verify the links between all the chains in the blockchain table by using the
DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS procedure.

For rows that contain one or more signatures, the signatures should also be verified.

2. Generate a signature and signed digest for the blockchain table using the
DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST function.

Assume that this signature and signed digest were generated at time T1. Store these
generated details, including the generated date and time, in your repository. The repository
must be outside the database that stores the blockchain table. It can be another relational
database.

3. At another point in time, generate a signature and signed digest for the blockchain table
using the DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST function.

Assume that this signature and signed digest were generated at time T2. Store the
generated details, with generation date and time, in your repository.

4. Verify the integrity of rows that were created between time T1 and T2 by running the
DBMS_BLOCKCHAIN_TABLE.VERIFY_TABLE_BLOCKCHAIN procedure.

The inputs to this procedure are the signed digests generated at times T1 and T2. The
integrity of rows is verified using the time information that is part of the signed digest.

5. Repeat the process in Steps 2 through 4, at different time periods, to verify the integrity of
rows inserted between different time periods.

For example, compute the signed digest at times T3 and T4 and then verify the integrity of
rows created in the period between times T3 and T4.

It is recommended that you verify of the integrity of blockchain table data at regular intervals.
This technique of continuous comparison and verification, between different periods of times,
provides a guarantee that the rows in the blockchain table are not compromised.

• Generating a Signed Digest for Blockchain Tables
The signed digest consists of metadata and data about the last row in each system chain
of a blockchain table. It can be used when verifying the integrity of blockchain table data.

Chapter 19
Managing Blockchain Tables

19-188

• Verifying Blockchain Table Rows Created in a Specified Time Period
Verifying rows created between specified time periods enables you to validate the integrity
of the blockchain table during that period.

19.18.15.1 Generating a Signed Digest for Blockchain Tables
The signed digest consists of metadata and data about the last row in each system chain of a
blockchain table. It can be used when verifying the integrity of blockchain table data.

The database computes a signature that is based on the contents of the signed digest. The
signature uses the private key and certificate of the blockchain table owner. You can use third-
party tools to verify the signature generated by the database. Ensure that you store the
signature and signed digest generated at various times in your repository.

An important aspect of maintaining the integrity of blockchain table data is to ensure that all
rows are intact. Computing a signed digest provides a snapshot of the metadata and data
about the last row in all system chains at a particular time. You must store this information in a
repository. Signed digests generated at various times comprise the input to the
DBMS_BLOCKCHAIN_TABLE.VERIFY_TABLE_BLOCKCHAIN procedure. Use this procedure to verify
the integrity of rows created between two specified times.

Prerequisites

The certificate of blockchain table owner must be added to database using
DBMS_USER_CERTS.ADD_CERTIFICATE procedure. The PKI private key and certificate of
blockchain table owner must be stored in a wallet that is located in the WALLET_ROOT/
pdb_guid/bctable/ directory, where pdb_guid is the GUID of the PDB that contains the
blockchain table. WALLET_ROOT specifies the path to the root of a directory tree containing a
subdirectory for each PDB, under which a directory structure is used to store the various
wallets associated with the PDB.

To generate a signed digest and signature for a blockchain table:

• Use the DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST function.
The function first checks if the certificate of the blockchain table owner is valid. It then
computes a signed digest of data type BLOB and a PL/SQL array version of the signed
digest. The signed digest contains metadata and data of the last row in each system chain
of the blockchain table. The PL/SQL array identifies the last row in each system chain of
the signed digest. The function returns a signature that is based on the signed digest.

Note:

A signed digest contains table information specific to a pluggable database (PDB).
Therefore, you can use this signed digest only in the PDB in which it was created and
only for the table that was used to create the digest.

Example 19-41 Generating a Signed Digest and Signature for Blockchain Tables

This example computes the signed digest and generates a signature for the blockchain table
EXAMPLES.BANK_LEDGER. The signed digest is in binary format and consists of metadata and
data of the last row in each system chain. It is stored in signed_bytes. The PL/SQL array
version of the signed digest is stored in the output parameter signed_row_array. The GUID of

Chapter 19
Managing Blockchain Tables

19-189

the certificate used to generate the signature is stored in certificate_guid. The algorithm
used is DBMS_BLOCKCHAIN_TABLE.SIGN_ALGO_RSA_SHA2_512.

DECLARE
 signed_bytes BLOB:=EMPTY_BLOB();
 signed_row_array SYS.ORABCTAB_ROW_ARRAY_T;
 certificate_guid RAW(2000);
 signature RAW(2000);
BEGIN
 signature := DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST('EXAMPLES',
 'BANK_LEDGER', signed_bytes, signed_row_array,
 certificate_guid,
dbms_blockchain_table.SIGN_ALGO_RSA_SHA2_512);
 DBMS_OUTPUT.PUT_LINE('Certificate GUID = ' || certificate_guid);
 DBMS_OUTPUT.PUT_LINE('Signature length = ' || UTL_RAW.LENGTH(signature));
 DBMS_OUTPUT.PUT_LINE('Number of chains = ' || signed_row_array.count);
 DBMS_OUTPUT.PUT_LINE('Signature content buffer length = ' ||
DBMS_LOB.GETLENGTH(signed_bytes));
END;
/

Certificate GUID = AF27H7FE3EEA473GE0783FE56A0AFCEB
Signature length = 256
Number of chains = 10
Signature content buffer length = 1248

PL/SQL procedure successfully completed.

Related Topics

• Format of the Signed Digest in Blockchain Tables
The signed digest consists of metadata and data about the last row in each chain of a
blockchain table.

19.18.15.2 Verifying Blockchain Table Rows Created in a Specified Time Period
Verifying rows created between specified time periods enables you to validate the integrity of
the blockchain table during that period.

The DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS procedure by default verifies the integrity of all
rows in the blockchain table. Instead of verifying the entire table every time, you can just verify
the rows that were created since the most recent verification. For example, if you ran
DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS two days ago, you can verify only the rows added since
that verification.

To verify blockchain table rows created within a specified time period:

• Use the DBMS_BLOCKCHAIN_TABLE.VERIFY_TABLE_BLOCKCHAIN procedure.

The inputs to this procedure are two digests (signed or unsigned) that were generated at
different times by using the DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST
function or the DBMS_BLOCKCHAIN_TABLE.GET_BLOCKCHAIN_DIGEST function. The time period
for verification is determined by using the information in the digests. The minimum row
creation time from the first digest and the maximum row creation time from the second
digest are considered. The output is the number of rows verified.

Chapter 19
Managing Blockchain Tables

19-190

Note:

Both digests must be generated in the current pluggable database (PDB) and for the
same blockchain table. For example, assume that you create a digest for a
blockchain table in the PDB my_pdb1, use Oracle Data Pump to export the blockchain
table, and then use Oracle Data Pump to import the blockchain table into the PDB
my_pdb2. The digest created in the PDB my_pdb1 cannot be used in the PDB my_pdb2.
You need to create a new digest in the PDB my_pdb2.

Example 19-42 Verifying Blockchain Table Rows Created Between a Specified Time
Period

This example verifies the rows created in the EXAMPLES.BANK_LEDGER blockchain table within a
specified time period. The signed digest of the blockchain table at two different times is stored
in signed_bytes1 and signed_bytes2. The value of signed_bytes1 is read from the
signed_digest_repo table which is a repository for signed digests and signatures. The value
of signed_bytes2 is computed using the
DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST function. Rows created between the
minimum row creation time in signed_bytes1 and the maximum row creation time in
signed_bytes2 are considered for the verification.

DECLARE
 signature RAW(2000);
 sign_row_array SYS.ORABCTAB_ROW_ARRAY_T;
 signed_bytes1 BLOB;
 certificate_guid RAW(2000);
 signed_bytes2 BLOB;
 rows_verified NUMBER;
BEGIN
 SELECT signed_digest INTO signed_bytes1 FROM signed_digest_repo WHERE
time>=SYSDATE-1;
 signature :=
DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST('EXAMPLES',
 'BANK_LEDGER', signed_bytes2, sign_row_array,
certificate_guid);

DBMS_BLOCKCHAIN_TABLE.VERIFY_TABLE_BLOCKCHAIN(signed_bytes2,signed_bytes1,
rows_verified);
 dbms_output.put_line('Rows verified = ' || rows_verified);
END;
/

Rows verified = 10
PL/SQL procedure successfully completed.

19.18.16 Deleting Rows from Blockchain Tables
Only rows that are outside the retention period can be deleted from a blockchain table.

The SYS user, the owner of a blockchain table's schema, or a database user with delete
privileges on a blockchain table can delete rows from the blockchain table.

Chapter 19
Managing Blockchain Tables

19-191

The PL/SQL procedure DBMS_BLOCKCHAIN_TABLE.DELETE_EXPIRED_ROWS deletes rows that are
beyond the retention period from a blockchain table. You can either delete all rows outside the
retention period or rows that were created before a specified date.

Example 19-43 Deleting Eligible Rows from a Blockchain Table

The following example, when connected as SYS, deletes all rows in the blockchain table
bank_ledger that are outside the retention window. The number of rows deleted is stored in the
output parameter num_rows.

DECLARE
 num_rows NUMBER;
BEGIN
 DBMS_BLOCKCHAIN_TABLE.DELETE_EXPIRED_ROWS('EXAMPLES','BANK_LEDGER',
NULL, num_rows);
 DBMS_OUTPUT.PUT_LINE('Number_of_rows_deleted=' || num_rows);
END;
/
Number_of_rows_deleted=2

PL/SQL procedure successfully completed.

Example 19-44 Deleting Eligible Rows Based on their Creation Time

The following example, when connected as SYS, deletes rows outside the retention period that
were created before 10-OCT-2019. The number of rows deleted is stored in the output
parameter num_rows.

DECLARE
 num_rows NUMBER;
BEGIN
 DBMS_BLOCKCHAIN_TABLE.DELETE_EXPIRED_ROWS('EXAMPLES','BANK_LEDGER',
TO_DATE('10-OCT-19','DD-MON-YY'), num_rows);
 DBMS_OUTPUT.PUT_LINE('Number_of_rows_deleted=' || num_rows);
END;
 Number_of_rows_deleted=5

 PL/SQL procedure successfully completed.

19.18.17 Dropping Blockchain Tables
A blockchain table can be dropped if it contains no rows or after it has not been modified for a
period of time that is defined by its retention period.

The blockchain table must be contained in your schema or you must have the DROP ANY TABLE
system privilege. It is recommended that you include the PURGE option when you drop a
blockchain table.

• Use the DROP TABLE statement to drop a blockchain table. Dropping a blockchain table
removes its definition from the data dictionary, deletes all its rows, and deletes any indexes
and triggers defined on the blockchain table.

Chapter 19
Managing Blockchain Tables

19-192

The following command drops the blockchain table named my_blockchain_table in the
examples schema:

DROP TABLE examples.my_blockchain_table PURGE;

19.18.18 Setting the Table Retention Threshold
Oracle Database prevents blockchain and immutable tables from being deleted before their
idle period expires.

To avoid having someone misuse this capability to set a very long retention time and fill up the
tablespace for a table that can not be dropped, the Oracle Database provides controls over the
privileges required and maximum retention period that can be set without this privilege.

Database users, including database administrators and SYS, cannot drop a blockchain table or
an immutable table that contains rows before its idle period expires. This is not a serious
problem when a table's idle period is only a few days or a few weeks, but a table's idle period
can be set to tens of years or even hundreds of years. The idle periods for blockchain and
immutable tables can be controlled by setting the parameter
BLOCKCHAIN_TABLE_RETENTION_THRESHOLD to an appropriate small value and by limiting grants
of the powerful TABLE RETENTION system privilege. A user without the TABLE RETENTION
privilege can set the idle period on a new or existing table up to the value specified by
BLOCKCHAIN_TABLE_RETENTION_THRESHOLD. This parameter defaults to 16 days. In contrast, a
user with the TABLE RETENTION privilege can set the idle period on a new or existing table up to
the maximum value of 365,000 days regardless of the setting for
BLOCKCHAIN_TABLE_RETENTION_THRESHOLD.

Related Topics

• System Privilege BLOCKCHAIN_TABLE_RETENTION_THRESHOLD

• TABLE RETENTION System Privilege

19.18.19 Determining the Data Format for Row Content to Compute Row
Hash

To compute the hash value for a row, the data format for row content is determined using the
DBMS_BLOCKCHAIN_TABLE.GET_BYTES_FOR_ROW_HASH procedure.

If you want to independently verify the hash value of a row that was computed by the
database, first determine the data format for its row content (in bytes). Then use the SHA2-512
hashing algorithm on the combination of row content and hash value of the previous row in the
chain.

To enable the database character set and the national character set to be changed without
invalidating row hashes in blockchain tables, each row hash in a blockchain table is computed
over normalized values for each column with a character data type or a character LOB data
type. Specifically, the value in a VARCHAR2 column or a CHAR column is converted to an
AL32UTF8 representation before being hashed. The value in an NVARCHAR2 column, an NCHAR
column, a CLOB column, or an NCLOB column is converted to an AL16UTF16 representation
before being hashed. A column value already in AL32UTF8 or AL16UTF16 is not converted
but may be checked for invalid character codes.

CHAR and NCHAR values are further normalized by removing trailing blanks. A CHAR or NCHAR
value consisting of all blanks is normalized to a single blank to avoid becoming a null.

Chapter 19
Managing Blockchain Tables

19-193

Use the DBMS_BLOCKCHAIN_TABLE.GET_BYTES_FOR_ROW_HASH procedure to determine the data
format for row content when computing the row hash. This procedure returns the bytes, in
column position order, for the specified row followed by the hash value (in data format) of the
previous row in the chain.

To specify a row in a version 1 blockchain table, you must provide the instance ID, chain ID,
and sequence number of the row. To specify a row in a version 2 blockchain table, you must
also provide the global unique identifier of the database that inserted the row.

Example 19-45 Verifying the Stored Row Hash Value

This example retrieves the data format for the row content of the most recently-added row in a
specific database instance and system chain of the BANK_LEDGER table. The DBMS_CRYPTO.HASH
function is used to compute the hash value. To independently verify the hash value, the
computed hash value is compared with the value retrieved from the database.

You must have the permissions required to run the DBMS_CRYPTO package. The value for data
format must be 1.

set serveroutput on;

DECLARE
 row_data BLOB;
 row_id ROWID;
 row_hash RAW(64);
 computed_hash RAW(64);
 buffer RAW(4000);
 inst_id BINARY_INTEGER;
 chain_id BINARY_INTEGER;
 sequence_no BINARY_INTEGER;
BEGIN
 -- Get the row details and hash value of the most recently inserted
row with the specified instance ID and chain ID
 SELECT MAX(ORABCTAB_SEQ_NUM$) INTO sequence_no
 FROM EXAMPLES.BANK_LEDGER
 WHERE ORABCTAB_INST_ID$=1 AND ORABCTAB_CHAIN_ID$=4;
 SELECT ORABCTAB_INST_ID$, ORABCTAB_CHAIN_ID$, ORABCTAB_SEQ_NUM$,
ORABCTAB_HASH$ INTO inst_id, chain_id, sequence_no, row_hash
 FROM EXAMPLES.BANK_LEDGER
 WHERE ORABCTAB_INST_ID$=1 AND ORABCTAB_CHAIN_ID$=4 AND
ORABCTAB_SEQ_NUM$ = sequence_no;
 -- Compute the row hash externally from row column bytes
 DBMS_BLOCKCHAIN_TABLE.GET_BYTES_FOR_ROW_HASH('EXAMPLES',
'BANK_LEDGER', inst_id, chain_id, sequence_no, 1, row_data);
 computed_hash := DBMS_CRYPTO.HASH(row_data, DBMS_CRYPTO.HASH_SH512);
 -- Verify that the row's hash and externally computed hash are same
 if UTL_RAW.COMPARE(row_hash, computed_hash) = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Hash verification successful');
 else
 DBMS_OUTPUT.PUT_LINE('Hash verification failed');
END IF;
END;

Hash verification successful

PL/SQL procedure successfully completed.

Chapter 19
Managing Blockchain Tables

19-194

Related Topics

• Blockchain Tables Reference
You can independently verify the hash value and signature of a row by using its row
content.

19.18.20 Determining the Data Format to Compute Row Signature
You can determine the data format for the row content that is used to compute the user
signature or the delegate signature of a row. The row signature is computed based on the hash
value of that row.

Use the DBMS_BLOCKCHAIN_TABLE.GET_BYTES_FOR_ROW_SIGNATURE procedure to determine the
data format for row content to compute the row signature. This procedure returns the bytes for
the specified row, in row content format.

Example 19-46 Computing the Signature of a Row in the Blockchain Table

This example computes the bytes for the row with bank value 'my_bank' in the
examples.bank_ledger table. The bytes are stored in the variable row_data.

DECLARE
 row_data BLOB;
 buffer RAW(4000);
 inst_id BINARY_INTEGER;
 chain_id BINARY_INTEGER;
 sequence_no BINARY_INTEGER;
 row_len BINARY_INTEGER;
BEGIN
 SELECT ORABCTAB_INST_ID$, ORABCTAB_CHAIN_ID$, ORABCTAB_SEQ_NUM$ INTO
inst_id, chain_id, sequence_no
 FROM EXAMPLES.BANK_LEDGER where bank='my_bank';

DBMS_BLOCKCHAIN_TABLE.GET_BYTES_FOR_ROW_SIGNATURE('EXAMPLES','BANK_LEDGER',ins
t_id, chain_id, sequence_no, 1, row_data);
 row_len := DBMS_LOB.GETLENGTH(row_data);
 DBMS_LOB.READ(row_data, row_len, 1, buffer);
END;
/

PL/SQL procedure successfully completed.

19.18.21 Displaying the Byte Values of Data in Blockchain Tables
You can retrieve the byte values of data, both rows and columns, in a blockchain table.

Use one of the following procedures to view the byte values of data in a blockchain table or a
regular table:

• Use the DBMS_TABLE_DATA.GET_BYTES_FOR_COLUMN procedure to determine the column
data, in bytes, for a single column.

Chapter 19
Managing Blockchain Tables

19-195

The following example determines the byte value for one bank column in the bank_ledger
table of the examples schema.

DECLARE
 row_id ROWID;
 col_data BLOB;
 buffer RAW(4000);
 data_len BINARY_INTEGER;
begin
 SELECT rowid INTO row_id FROM bank_ledger WHERE bank='my_bank';
 DBMS_TABLE_DATA.GET_BYTES_FOR_COLUMN('EXAMPLES', 'BANK_LEDGER',
row_id,'BANK', col_data);
 data_len := dbms_lob.getlength(col_data);
 DBMS_LOB.READ(col_data, data_len, 1, buffer);
 DBMS_OUTPUT.PUT_LINE('len=' || data_len || ', data=' ||
RAWTOHEX(buffer));
end;

• Use the DBMS_TABLE_DATA.GET_BYTES_FOR_COLUMNS procedure to determine the column
data, in bytes, for a set of columns. The set of columns is provided to the procedure using
a VARRAY.

• Use the DBMS_TABLE_DATA.GET_BYTES_FOR_ROW procedure to determine the row data, in
bytes, for a single row.

The following example displays the row data, in bytes, for a specific row in the table
bank_ledger.

DECLARE
 row_data blob;
 data_len binary_integer;
 row_id rowid;
 inst_id binary_integer;
 chain_id binary_integer;
 sequence_no binary_integer;
BEGIN
 SELECT rowid INTO row_id FROM bank_ledger WHERE bank='my_bank';
 DBMS_TABLE_DATA.GET_BYTES_FOR_ROW('EXAMPLES','BANK_LEDGER',row_id,
row_data);
 data_len := DBMS_LOB.GETLENGTH(row_data);
 DBMS_OUTPUT.PUT_LINE('Row data-length=' || data_len);
END;
/

Row data-length=908.

PL/SQL procedure successfully completed.

Related Topics

• Blockchain Tables Reference
You can independently verify the hash value and signature of a row by using its row
content.

Chapter 19
Managing Blockchain Tables

19-196

19.18.22 Creating a Regular Table with Blockchain History Log
You can specify the use of a blockchain table to protect any changes tracked by Flashback
Data Archive, thereby creating an immutable and cryptographically verifiable audit trail for any
changes in your regular tables.

Oracle has a feature called Flashback Data Archive that allows users to track changes in a
table. The tracked historical changes allows users to query past data in the tracked table.
Conceptually, Flashback Data Archive is a "logical" redo log for the tracked table that can be
queried for past contents of the tracked table.

You can secure the Flashback Data Archive contents using the blockchain table feature. This
allows you to determine whether anyone has tampered with the content of a table. A
blockchain log history table can be thought of as maintaining a cryptographically secure logical
redo log for changes to a tracked user table.

When creating a table whose changes are being tracked in a flashback data archive, you can
specify the optional keyword BLOCKCHAIN. With the BLOCKCHAIN keyword, the flashback
data archive rows are chained together in system chains using the blockchain cryptographic
hashing scheme.

For example, to create a blockchain Flashback Data Archive, include the BLOCKCHAIN keyword:

CREATE TABLE part
(
 part_id NUMBER CONSTRAINT part_pk PRIMARY KEY,
 description VARCHAR2(50)
)
 BLOCKCHAIN FLASHBACK ARCHIVE fba_1year;

19.18.23 Blockchain Tables Data Dictionary Views
Data dictionary views provide information about blockchain tables.

Query one of the following views: DBA_BLOCKCHAIN_TABLES, ALL_BLOCKCHAIN_TABLES, or
USER_BLOCKCHAIN_TABLES for information about blockchain tables. Information includes the row
retention period, table retention period, and hashing algorithm used to chain rows. The DBA
view describes all the blockchain tables in the database, ALL view describes all blockchain
tables accessible to the user, and USER view is limited to blockchain tables owned by the user.

Example 19-47 Displaying Blockchain Table Information

The following command displays the details of blockchain table bank_ledger in the examples
schema.

SELECT row_retention "Row Retention Period", row_retention_locked "Row
Retention Lock", table_inactivity_retention "Table Retention Period",
hash_algorithm "Hash Algorithm"
FROM dba_blockchain_tables WHERE table_name='BANK_LEDGER';

Row Retention Period Row Retention Lock Table Retention Period Hash
Algorithm
-------------------- ------------------ ------------------------

 16 YES 31 SHA2_512

Chapter 19
Managing Blockchain Tables

19-197

The views DBA_BLOCKCHAIN_ROW_VERSION_COLS, ALL_BLOCKCHAIN_ROW_VERSION_COLS, and
USER_BLOCKCHAIN_ROW_VERSION_COLS show the columns that define row versions and user
chains in blockchain tables.

When a blockchain table undergoes schema evolution, columns may be added, logically
dropped, or renamed. When this occurs, a new epoch is created for the blockchain table. The
views DBA_BLOCKCHAIN_TABLE_EPOCHS, ALL_BLOCKCHAIN_TABLE_EPOCHS, and
USER_BLOCKCHAIN_TABLE_EPOCHS show the epochs for blockchain tables. The views
DBA_BLOCKCHAIN_TABLE_HASH_COL_ORDER, ALL_BLOCKCHAIN_TABLE_HASH_COL_ORDER, and
USER_BLOCKCHAIN_TABLE_HASH_COL_ORDER show the valid columns and their ordering in each
epoch. The views DBA_BLOCKCHAIN_TABLE_CHAINS, ALL_BLOCKCHAIN_TABLE_CHAINS, and
USER_BLOCKCHAIN_TABLE_CHAINS contain general information about system chains as well as
epoch-specific information for system chains. Note that a new epoch is also created for a
version 1 blockchain table when the blockchain table is imported.

19.19 Tables Data Dictionary Views
You can query a set of data dictionary views for information about tables.

View Description

DBA_TABLES
ALL_TABLES
USER_TABLES

DBA view describes all relational tables in the database. ALL view
describes all tables accessible to the user. USER view is restricted to
tables owned by the user. Some columns in these views contain
statistics that are generated by the DBMS_STATS package or
ANALYZE statement.

DBA_TAB_COLUMNS
ALL_TAB_COLUMNS
USER_TAB_COLUMNS

These views describe the columns of tables, views, and clusters in
the database. Some columns in these views contain statistics that
are generated by the DBMS_STATS package or ANALYZE statement.

DBA_ALL_TABLES
ALL_ALL_TABLES
USER_ALL_TABLES

These views describe all relational and object tables in the database.
Object tables are not specifically discussed in this book.

DBA_TAB_COMMENTS
ALL_TAB_COMMENTS
USER_TAB_COMMENTS

These views display comments for tables and views. Comments are
entered using the COMMENT statement.

DBA_COL_COMMENTS
ALL_COL_COMMENTS
USER_COL_COMMENTS

These views display comments for table and view columns.
Comments are entered using the COMMENT statement.

DBA_EXTERNAL_TABLES
ALL_EXTERNAL_TABLES
USER_EXTERNAL_TABLES

These views list the specific attributes of external tables in the
database.

DBA_EXTERNAL_LOCATIONS
ALL_EXTERNAL_LOCATIONS
USER_EXTERNAL_LOCATIONS

These views list the data sources for external tables.

DBA_XTERNAL_PART_TABLES
ALL_XTERNAL_PART_TABLES
USER_XTERNAL_PART_TABLES

These views list the specific attributes of partitioned external tables
in the database.

Chapter 19
Tables Data Dictionary Views

19-198

View Description

DBA_XTERNAL_TAB_PARTITIONS
ALL_XTERNAL_TAB_PARTITIONS
USER_XTERNAL_TAB_PARTITION
S

These views list the partition-level information for partitioned external
tables in the database.

DBA_XTERNAL_TAB_SUBPARTITI
ONS
ALL_XTERNAL_TAB_SUBPARTITI
ONS
USER_XTERNAL_TAB_SUBPARTIT
IONS

These views list the subpartition-level information for partitioned
external tables in the database.

DBA_XTERNAL_LOC_PARTITIONS
ALL_XTERNAL_LOC_PARTITIONS
USER_XTERNAL_LOC_PARTITION
S

These views list the data sources for partitions in external tables.

DBA_XTERNAL_LOC_SUBPARTITI
ONS
ALL_XTERNAL_LOC_SUBPARTITI
ONS
USER_XTERNAL_LOC_SUBPARTIT
IONS

These views list the data sources for subpartitions in external tables.

DBA_TAB_HISTOGRAMS
ALL_TAB_HISTOGRAMS
USER_TAB_HISTOGRAMS

These views describe histograms on tables and views.

DBA_TAB_STATISTICS
ALL_TAB_STATISTICS
USER_TAB_STATISTICS

These views contain optimizer statistics for tables.

DBA_TAB_COL_STATISTICS
ALL_TAB_COL_STATISTICS
USER_TAB_COL_STATISTICS

These views provide column statistics and histogram information
extracted from the related TAB_COLUMNS views.

DBA_TAB_MODIFICATIONS
ALL_TAB_MODIFICATIONS
USER_TAB_MODIFICATIONS

These views describe tables that have been modified since the last
time table statistics were gathered on them. They are not populated
immediately, but after a time lapse (usually 3 hours).

DBA_ENCRYPTED_COLUMNS
ALL_ENCRYPTED_COLUMNS
USER_ENCRYPTED_COLUMNS

These views list table columns that are encrypted, and for each
column, lists the encryption algorithm in use.

DBA_UNUSED_COL_TABS
ALL_UNUSED_COL_TABS
USER_UNUSED_COL_TABS

These views list tables with unused columns, as marked by the
ALTER TABLE ... SET UNUSED statement.

DBA_PARTIAL_DROP_TABS
ALL_PARTIAL_DROP_TABS
USER_PARTIAL_DROP_TABS

These views list tables that have partially completed DROP COLUMN
operations. These operations could be incomplete because the
operation was interrupted by the user or a system failure.

Chapter 19
Tables Data Dictionary Views

19-199

Example: Displaying Column Information

Column information, such as name, data type, length, precision, scale, and default data values
can be listed using one of the views ending with the _COLUMNS suffix. For example, the following
query lists all of the default column values for the emp and dept tables:

SELECT TABLE_NAME, COLUMN_NAME, DATA_TYPE, DATA_LENGTH, LAST_ANALYZED
 FROM DBA_TAB_COLUMNS
 WHERE OWNER = 'HR'
 ORDER BY TABLE_NAME;

The following is the output from the query:

TABLE_NAME COLUMN_NAME DATA_TYPE DATA_LENGTH LAST_ANALYZED
-------------------- -------------------- ---------- ------------ -------------
COUNTRIES COUNTRY_ID CHAR 2 05-FEB-03
COUNTRIES COUNTRY_NAME VARCHAR2 40 05-FEB-03
COUNTRIES REGION_ID NUMBER 22 05-FEB-03
DEPARTMENTS DEPARTMENT_ID NUMBER 22 05-FEB-03
DEPARTMENTS DEPARTMENT_NAME VARCHAR2 30 05-FEB-03
DEPARTMENTS MANAGER_ID NUMBER 22 05-FEB-03
DEPARTMENTS LOCATION_ID NUMBER 22 05-FEB-03
EMPLOYEES EMPLOYEE_ID NUMBER 22 05-FEB-03
EMPLOYEES FIRST_NAME VARCHAR2 20 05-FEB-03
EMPLOYEES LAST_NAME VARCHAR2 25 05-FEB-03
EMPLOYEES EMAIL VARCHAR2 25 05-FEB-03
.
.
.
LOCATIONS COUNTRY_ID CHAR 2 05-FEB-03
REGIONS REGION_ID NUMBER 22 05-FEB-03
REGIONS REGION_NAME VARCHAR2 25 05-FEB-03

51 rows selected.

See Also:

• Oracle Database Object-Relational Developer's Guide for information about
object tables

• Oracle Database SQL Tuning Guide for information about histograms and
generating statistics for tables

• "About Analyzing Tables, Indexes, and Clusters"

Chapter 19
Tables Data Dictionary Views

19-200

20
Managing Indexes

Indexes can provide faster data access. You can create, alter, monitor, and drop indexes.

• About Indexes
Indexes are optional structures associated with tables and clusters that allow SQL queries
to execute more quickly against a table.

• Guidelines for Managing Indexes
You can follow guidelines for managing indexes.

• Creating Indexes
You can create several different types of indexes. You can create indexes explicitly, and
you can create indexes associated with constraints.

• Altering Indexes
You can alter an index by completing tasks such as changing its storage characteristics,
rebuilding it, making it unusable, or making it visible or invisible.

• Monitoring Space Use of Indexes
If key values in an index are inserted, updated, and deleted frequently, then the index can
lose its acquired space efficiency over time.

• Dropping Indexes
You can drop an index with the DROP INDEX statement.

• Managing Automatic Indexes
You can use the automatic indexing feature to configure and use automatic indexes in an
Oracle database to improve database performance.

• Indexes Data Dictionary Views
You can query a set of data dictionary views for information about indexes.

20.1 About Indexes
Indexes are optional structures associated with tables and clusters that allow SQL queries to
execute more quickly against a table.

Just as the index in this manual helps you locate information faster than if there were no index,
an Oracle Database index provides a faster access path to table data. You can use indexes
without rewriting any queries. Your results are the same, but you see them more quickly.

Oracle Database provides several indexing schemes that provide complementary performance
functionality. These are:

• B-tree indexes: the default and the most common

• B-tree cluster indexes: defined specifically for cluster

• Hash cluster indexes: defined specifically for a hash cluster

• Global and local indexes: relate to partitioned tables and indexes

• Reverse key indexes: most useful for Oracle Real Application Clusters applications

• Bitmap indexes: compact; work best for columns with a small set of values

20-1

• Function-based indexes: contain the precomputed value of a function/expression

• Domain indexes: specific to an application or cartridge.

• Hierarchical navigable small world indexes: default type of index created for an in-memory
neighbor graph vector index.

• Inverted file flat vector indexes: default type of index created for a neighbor partition vector
index

Indexes are logically and physically independent of the data in the associated table. Being
independent structures, they require storage space. You can create or drop an index without
affecting the base tables, database applications, or other indexes. The database automatically
maintains indexes when you insert, update, and delete rows of the associated table. If you
drop an index, all applications continue to work. However, access to previously indexed data
might be slower.

See Also:

• Oracle Database Concepts for an overview of indexes

• Managing Space for Schema Objects

20.2 Guidelines for Managing Indexes
You can follow guidelines for managing indexes.

• Create Indexes After Inserting Table Data
Data is often inserted or loaded into a table using either the SQL*Loader or an import
utility. It is more efficient to create an index for a table after inserting or loading the data. If
you create one or more indexes before loading data, then the database must update every
index as each row is inserted.

• Index the Correct Tables and Columns
Follow guidelines about tables and columns that are suitable for indexing.

• Order Index Columns for Performance
The order of columns in the CREATE INDEX statement can affect query performance. In
general, specify the most frequently used columns first.

• Limit the Number of Indexes for Each Table
A table can have any number of indexes. However, the more indexes there are, the more
overhead is incurred as the table is modified.

• Drop Indexes That Are No Longer Required
It is best practice to drop indexes that are no longer required.

• Indexes and Deferred Segment Creation
Index segment creation is deferred when the associated table defers segment creation.
This is because index segment creation reflects the behavior of the table with which it is
associated.

• Estimate Index Size and Set Storage Parameters
Estimating the size of an index before creating one can facilitate better disk space planning
and management.

Chapter 20
Guidelines for Managing Indexes

20-2

• Specify the Tablespace for Each Index
Indexes can be created in any tablespace. An index can be created in the same or
different tablespace as the table it indexes.

• Consider Parallelizing Index Creation
You can parallelize index creation, much the same as you can parallelize table creation.
Because multiple processes work together to create the index, the database can create the
index more quickly than if a single server process created the index sequentially.

• Consider Creating Indexes with NOLOGGING
You can create an index and generate minimal redo log records by specifying NOLOGGING in
the CREATE INDEX statement.

• Understand When to Use Unusable or Invisible Indexes
Use unusable or invisible indexes when you want to improve the performance of bulk
loads, test the effects of removing an index before dropping it, or otherwise suspend the
use of an index by the optimizer.

• Understand When to Create Multiple Indexes on the Same Set of Columns
You can create multiple indexes on the same set of columns when the indexes are different
in some way. For example, you can create a B-tree index and a bitmap index on the same
set of columns.

• Consider Costs and Benefits of Coalescing or Rebuilding Indexes
Improper sizing or increased growth can produce index fragmentation. To eliminate or
reduce fragmentation, you can rebuild or coalesce the index. But before you perform either
task weigh the costs and benefits of each option and choose the one that works best for
your situation.

• Consider Cost Before Disabling or Dropping Constraints
Because unique and primary keys have associated indexes, you should factor in the cost
of dropping and creating indexes when considering whether to disable or drop a UNIQUE or
PRIMARY KEY constraint.

• Consider Using the In-Memory Column Store to Reduce the Number of Indexes
The In-Memory Column Store is an optional portion of the system global area (SGA) that
stores copies of tables, table partitions, and other database objects that is optimized for
rapid scans. In the In-Memory Column Store, table data is stored by column rather than
row in the SGA.

See Also:

• Oracle Database Concepts for conceptual information about indexes and
indexing, including descriptions of the various indexing schemes offered by
Oracle

• Oracle Database SQL Tuning Guide and Oracle Database Data Warehousing
Guide for information about bitmap indexes

• Oracle Database Data Cartridge Developer's Guide for information about defining
domain-specific operators and indexing schemes and integrating them into the
Oracle Database server

20.2.1 Create Indexes After Inserting Table Data
Data is often inserted or loaded into a table using either the SQL*Loader or an import utility. It
is more efficient to create an index for a table after inserting or loading the data. If you create

Chapter 20
Guidelines for Managing Indexes

20-3

one or more indexes before loading data, then the database must update every index as each
row is inserted.

Creating an index on a table that already has data requires sort space. Some sort space
comes from memory allocated for the index creator. The amount for each user is determined
by the initialization parameter SORT_AREA_SIZE. The database also swaps sort information to
and from temporary segments that are only allocated during the index creation in the user's
temporary tablespace.

Under certain conditions, data can be loaded into a table with SQL*Loader direct-path load,
and an index can be created as data is loaded.

See Also:

Oracle Database Utilities for information about using SQL*Loader for direct-path load

20.2.2 Index the Correct Tables and Columns
Follow guidelines about tables and columns that are suitable for indexing.

Use the following guidelines for determining when to create an index:

• Create an index if you frequently want to retrieve less than 15% of the rows in a large
table. The percentage varies greatly according to the relative speed of a table scan and
how the row data is distributed in relation to the index key. The faster the table scan, the
lower the percentage; the more clustered the row data, the higher the percentage.

• To improve performance on joins of multiple tables, index columns used for joins.

Note:

Primary and unique keys automatically have indexes, but you might want to
create an index on a foreign key.

• If a query is taking too long, then check the table size. If it has changed significantly, the
existing indexes (if any) may need to be reviewed.

Columns That Are Suitable for Indexing

Some columns are strong candidates for indexing. Columns with one or more of the following
characteristics are candidates for indexing:

• Values are relatively unique in the column.

• There is a wide range of values (good for regular indexes).

• There is a small range of values (good for bitmap indexes).

• The column contains many nulls, but queries often select all rows having a value. In this
case, use the following phrase:

WHERE COL_X > -9.99 * power(10,125)

Using the preceding phrase is preferable to:

WHERE COL_X IS NOT NULL

Chapter 20
Guidelines for Managing Indexes

20-4

This is because the first uses an index on COL_X (assuming that COL_X is a numeric
column).

Columns That Are Not Suitable for Indexing

Columns with the following characteristics are less suitable for indexing:

• There are many nulls in the column, and you do not search on the not null values.

LONG and LONG RAW columns cannot be indexed.

Virtual Columns

You can create unique or non-unique indexes on virtual columns. A table index defined on a
virtual column is equivalent to a function-based index on the table.

See Also:

"Creating a Function-Based Index"

20.2.3 Order Index Columns for Performance
The order of columns in the CREATE INDEX statement can affect query performance. In general,
specify the most frequently used columns first.

If you create a single index across columns to speed up queries that access, for example,
col1, col2, and col3; then queries that access just col1, or that access just col1 and col2,
are also speeded up. But a query that accessed just col2, just col3, or just col2 and col3
does not use the index.

Note:

In some cases, such as when the leading column has very low cardinality, the
database may use a skip scan of this type of index. See Oracle Database Concepts
for more information about index skip scan.

20.2.4 Limit the Number of Indexes for Each Table
A table can have any number of indexes. However, the more indexes there are, the more
overhead is incurred as the table is modified.

Specifically, when rows are inserted or deleted, all indexes on the table must be updated as
well. Also, when a column is updated, all indexes that contain the column must be updated.

Thus, there is a trade-off between the speed of retrieving data from a table and the speed of
updating the table. For example, if a table is primarily read-only, then having more indexes can
be useful; but if a table is heavily updated, then having fewer indexes could be preferable.

20.2.5 Drop Indexes That Are No Longer Required
It is best practice to drop indexes that are no longer required.

Chapter 20
Guidelines for Managing Indexes

20-5

Consider dropping an index if:

• It does not speed up queries. The table could be very small, or there could be many rows
in the table but very few index entries.

• The queries in your applications do not use the index.

• The index must be dropped before being rebuilt.

See Also:

"Monitoring Index Usage"

20.2.6 Indexes and Deferred Segment Creation
Index segment creation is deferred when the associated table defers segment creation. This is
because index segment creation reflects the behavior of the table with which it is associated.

See Also:

"Understand Deferred Segment Creation" for further information

20.2.7 Estimate Index Size and Set Storage Parameters
Estimating the size of an index before creating one can facilitate better disk space planning
and management.

You can use the combined estimated size of indexes, along with estimates for tables, the undo
tablespace, and redo log files, to determine the amount of disk space that is required to hold
an intended database. From these estimates, you can make correct hardware purchases and
other decisions.

Use the estimated size of an individual index to better manage the disk space that the index
uses. When an index is created, you can set appropriate storage parameters and improve I/O
performance of applications that use the index. For example, assume that you estimate the
maximum size of an index before creating it. If you then set the storage parameters when you
create the index, then fewer extents are allocated for the table data segment, and all of the
index data is stored in a relatively contiguous section of disk space. This decreases the time
necessary for disk I/O operations involving this index.

The maximum size of a single index entry is dependent on the block size of the database.

Storage parameters of an index segment created for the index used to enforce a primary key
or unique key constraint can be set in either of the following ways:

• In the ENABLE ... USING INDEX clause of the CREATE TABLE or ALTER TABLE statement

• In the STORAGE clause of the ALTER INDEX statement

Chapter 20
Guidelines for Managing Indexes

20-6

See Also:

• Oracle Database Reference for more information about the limits related to index
size

• Oracle Database SQL Language Reference for information about creating an
index on an extended data type column

20.2.8 Specify the Tablespace for Each Index
Indexes can be created in any tablespace. An index can be created in the same or different
tablespace as the table it indexes.

If you use the same tablespace for a table and its index, then it can be more convenient to
perform database maintenance (such as tablespace or file backup) or to ensure application
availability. All the related data is always online together.

Using different tablespaces (on different disks) for a table and its index produces better
performance than storing the table and index in the same tablespace. Disk contention is
reduced. But, if you use different tablespaces for a table and its index, and one tablespace is
offline (containing either data or index), then the statements referencing that table are not
guaranteed to work.

20.2.9 Consider Parallelizing Index Creation
You can parallelize index creation, much the same as you can parallelize table creation.
Because multiple processes work together to create the index, the database can create the
index more quickly than if a single server process created the index sequentially.

When creating an index in parallel, storage parameters are used separately by each query
server process. Therefore, an index created with an INITIAL value of 5M and a parallel degree
of 12 consumes at least 60M of storage during index creation.

See Also:

Oracle Database VLDB and Partitioning Guide for information about using parallel
execution

20.2.10 Consider Creating Indexes with NOLOGGING
You can create an index and generate minimal redo log records by specifying NOLOGGING in the
CREATE INDEX statement.

Note:

Because indexes created using NOLOGGING are not archived, perform a backup after
you create the index.

Chapter 20
Guidelines for Managing Indexes

20-7

Creating an index with NOLOGGING has the following benefits:

• Space is saved in the redo log files.

• The time it takes to create the index is decreased.

• Performance improves for parallel creation of large indexes.

In general, the relative performance improvement is greater for larger indexes created without
LOGGING than for smaller ones. Creating small indexes without LOGGING has little effect on the
time it takes to create an index. However, for larger indexes the performance improvement can
be significant, especially when you are also parallelizing the index creation.

20.2.11 Understand When to Use Unusable or Invisible Indexes
Use unusable or invisible indexes when you want to improve the performance of bulk loads,
test the effects of removing an index before dropping it, or otherwise suspend the use of an
index by the optimizer.

Unusable indexes

An unusable index is ignored by the optimizer and is not maintained by DML. One reason to
make an index unusable is to improve bulk load performance. (Bulk loads go more quickly if
the database does not need to maintain indexes when inserting rows.) Instead of dropping the
index and later re-creating it, which requires you to recall the exact parameters of the CREATE
INDEX statement, you can make the index unusable, and then rebuild it.

You can create an index in the unusable state, or you can mark an existing index or index
partition unusable. In some cases the database may mark an index unusable, such as when a
failure occurs while building the index. When one partition of a partitioned index is marked
unusable, the other partitions of the index remain valid.

An unusable index or index partition must be rebuilt, or dropped and re-created, before it can
be used. Truncating a table makes an unusable index valid.

When you make an existing index unusable, its index segment is dropped.

The functionality of unusable indexes depends on the setting of the SKIP_UNUSABLE_INDEXES
initialization parameter. When SKIP_UNUSABLE_INDEXES is TRUE (the default), then:

• DML statements against the table proceed, but unusable indexes are not maintained.

• DML statements terminate with an error if there are any unusable indexes that are used to
enforce the UNIQUE constraint.

• For nonpartitioned indexes, the optimizer does not consider any unusable indexes when
creating an access plan for SELECT statements. The only exception is when an index is
explicitly specified with the INDEX() hint.

• For a partitioned index where one or more of the partitions is unusable, the optimizer can
use table expansion. With table expansion, the optimizer transforms the query into a UNION
ALL statement, with some subqueries accessing indexed partitions and other subqueries
accessing partitions with unusable indexes. The optimizer can choose the most efficient
access method available for a partition. See Oracle Database SQL Tuning Guide for more
information about table expansion.

When SKIP_UNUSABLE_INDEXES is FALSE, then:

• If any unusable indexes or index partitions are present, then any DML statements that
would cause those indexes or index partitions to be updated are terminated with an error.

Chapter 20
Guidelines for Managing Indexes

20-8

• For SELECT statements, if an unusable index or unusable index partition is present, but the
optimizer does not choose to use it for the access plan, then the statement proceeds.
However, if the optimizer does choose to use the unusable index or unusable index
partition, then the statement terminates with an error.

Invisible Indexes

You can create invisible indexes or make an existing index invisible. An invisible index is
ignored by the optimizer unless you explicitly set the OPTIMIZER_USE_INVISIBLE_INDEXES
initialization parameter to TRUE at the session or system level. Unlike unusable indexes, an
invisible index is maintained during DML statements. Although you can make a partitioned
index invisible, you cannot make an individual index partition invisible while leaving the other
partitions visible.

Using invisible indexes, you can do the following:

• Test the removal of an index before dropping it.

• Use temporary index structures for certain operations or modules of an application without
affecting the overall application.

• Add an index to a set of columns on which an index already exists.

See Also:

• "Creating an Unusable Index"

• "Creating an Invisible Index"

• "Making an Index Unusable"

• "Making an Index Invisible or Visible"

20.2.12 Understand When to Create Multiple Indexes on the Same Set of
Columns

You can create multiple indexes on the same set of columns when the indexes are different in
some way. For example, you can create a B-tree index and a bitmap index on the same set of
columns.

When you have multiple indexes on the same set of columns, only one of these indexes can
be visible at a time, and any other indexes must be invisible.

You might create different indexes on the same set of columns because they provide the
flexibility to meet your requirements. You can also create multiple indexes on the same set of
columns to perform application migrations without dropping an existing index and recreating it
with different attributes.

Different types of indexes are useful in different scenarios. For example, B-tree indexes are
often used in online transaction processing (OLTP) systems with many concurrent
transactions, while bitmap indexes are often used in data warehousing systems that are mostly
used for queries. Similarly, locally and globally partitioned indexes are useful in different
scenarios. Locally partitioned indexes are easy to manage because partition maintenance
operations automatically apply to them. Globally partitioned indexes are useful when you want
the partitioning scheme of an index to be different from its table's partitioning scheme.

Chapter 20
Guidelines for Managing Indexes

20-9

You can create multiple indexes on the same set of columns when at least one of the following
index characteristics is different:

• The indexes are of different types.

See "About Indexes" and Oracle Database Concepts for information about the different
types of indexes.

However, the following exceptions apply:

– You cannot create a B-tree index and a B-tree cluster index on the same set of
columns.

– You cannot create a B-tree index and an index-organized table on the same set of
columns.

• The indexes use different partitioning.

Partitioning can be different in any of the following ways:

– Indexes that are not partitioned and indexes that are partitioned

– Indexes that are locally partitioned and indexes that are globally partitioned

– Indexes that differ in partitioning type (range or hash)

• The indexes have different uniqueness properties.

You can create both a unique and a non-unique index on the same set of columns.

See Also:

• "Creating Multiple Indexes on the Same Set of Columns"

• "Understand When to Use Unusable or Invisible Indexes"

20.2.13 Consider Costs and Benefits of Coalescing or Rebuilding Indexes
Improper sizing or increased growth can produce index fragmentation. To eliminate or reduce
fragmentation, you can rebuild or coalesce the index. But before you perform either task weigh
the costs and benefits of each option and choose the one that works best for your situation.

Table 20-1 is a comparison of the costs and benefits associated with rebuilding and coalescing
indexes.

Table 20-1 Costs and Benefits of Coalescing or Rebuilding Indexes

Rebuild Index Coalesce Index

Quickly moves index to another tablespace Cannot move index to another tablespace

Higher costs: requires more disk space Lower costs: does not require more disk space

Creates new tree, shrinks height if applicable Coalesces leaf blocks within same branch of tree

Enables you to quickly change storage and
tablespace parameters without having to drop the
original index

Quickly frees up index leaf blocks for use

In situations where you have B-tree index leaf blocks that can be freed up for reuse, you can
merge those leaf blocks using the following statement:

Chapter 20
Guidelines for Managing Indexes

20-10

ALTER INDEX vmoore COALESCE;

Figure 20-1 illustrates the effect of an ALTER INDEX COALESCE on the index vmoore. Before
performing the operation, the first two leaf blocks are 50% full. Therefore, you have an
opportunity to reduce fragmentation and completely fill the first block, while freeing up the
second.

Figure 20-1 Coalescing Indexes

B-tree Index

Before ALTER INDEX vmoore COALESCE;

B-tree Index

After ALTER INDEX vmoore COALESCE;

20.2.14 Consider Cost Before Disabling or Dropping Constraints
Because unique and primary keys have associated indexes, you should factor in the cost of
dropping and creating indexes when considering whether to disable or drop a UNIQUE or
PRIMARY KEY constraint.

If the associated index for a UNIQUE key or PRIMARY KEY constraint is extremely large, then you
can save time by leaving the constraint enabled rather than dropping and re-creating the large
index. You also have the option of explicitly specifying that you want to keep or drop the index
when dropping or disabling a UNIQUE or PRIMARY KEY constraint.

See Also:

"Managing Integrity Constraints"

20.2.15 Consider Using the In-Memory Column Store to Reduce the
Number of Indexes

The In-Memory Column Store is an optional portion of the system global area (SGA) that
stores copies of tables, table partitions, and other database objects that is optimized for rapid
scans. In the In-Memory Column Store, table data is stored by column rather than row in the
SGA.

Chapter 20
Guidelines for Managing Indexes

20-11

Note:

This feature is available starting with Oracle Database 12c Release 1 (12.1.0.2).

For tables used in OLTP or data warehousing environments, multiple indexes typically are
created to improve the performance of analytic and reporting queries. These indexes can
impede the performance of data manipulation language (DML) statements. When a table is
stored in the In-Memory Column Store, indexes used for analytic or reporting queries can be
greatly reduced or eliminated without affecting query performance. Eliminating these indexes
can improve the performance of transactions and data loading operations.

See Also:

"Improving Query Performance with Oracle Database In-Memory"

20.3 Creating Indexes
You can create several different types of indexes. You can create indexes explicitly, and you
can create indexes associated with constraints.

Live SQL:

To view and run examples related to creating indexes on Oracle Live SQL, go to
Oracle Live SQL: Creating Indexes.

• Prerequisites for Creating Indexes
Prerequisites must be met before you can create indexes.

• Creating an Index Explicitly
You can create indexes explicitly (outside of integrity constraints) using the SQL statement
CREATE INDEX.

• Creating a Unique Index Explicitly
Indexes can be unique or non-unique. Unique indexes guarantee that no two rows of a
table have duplicate values in the key column (or columns). Non-unique indexes do not
impose this restriction on the column values.

• Creating an Index Associated with a Constraint
You can create an index associated with a constraint when you issue the CREATE TABLE or
ALTER TABLE SQL statement.

• Creating a Large Index
When creating an extremely large index, consider allocating a larger temporary tablespace
for the index creation.

• Creating an Index Online
You can create and rebuild indexes online. Therefore, you can update base tables at the
same time you are building or rebuilding indexes on that table.

Chapter 20
Creating Indexes

20-12

https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html

• Creating a Function-Based Index
Function-based indexes facilitate queries that qualify a value returned by a function or
expression. The value of the function or expression is precomputed and stored in the
index.

• Creating a Compressed Index
As your database grows in size, consider using index compression to save disk space.

• Creating an Unusable Index
When you create an index in the UNUSABLE state, it is ignored by the optimizer and is not
maintained by DML. An unusable index must be rebuilt, or dropped and re-created, before
it can be used.

• Creating an Invisible Index
An invisible index is an index that is ignored by the optimizer unless you explicitly set the
OPTIMIZER_USE_INVISIBLE_INDEXES initialization parameter to TRUE at the session or
system level.

• Creating Multiple Indexes on the Same Set of Columns
You can create multiple indexes on the same set of columns when the indexes are different
in some way.

• Creating a Vector Index
You can create vector indexes to make vector searches faster.

20.3.1 Prerequisites for Creating Indexes
Prerequisites must be met before you can create indexes.

To create an index in your own schema, at least one of the following prerequisites must be
met:

• The table or cluster to be indexed is in your own schema.

• You have INDEX privilege on the table to be indexed.

• You have CREATE ANY INDEX system privilege.

To create an index in another schema, all of the following prerequisites must be met:

• You have CREATE ANY INDEX system privilege.

• The owner of the other schema has a quota for the tablespaces to contain the index or
index partitions, or UNLIMITED TABLESPACE system privilege.

20.3.2 Creating an Index Explicitly
You can create indexes explicitly (outside of integrity constraints) using the SQL statement
CREATE INDEX.

The following statement creates an index named emp_ename for the ename column of the emp
table:

CREATE INDEX emp_ename ON emp(ename)
 TABLESPACE users
 STORAGE (INITIAL 20K
 NEXT 20k);

Notice that several storage settings and a tablespace are explicitly specified for the index. If
you do not specify storage options (such as INITIAL and NEXT) for an index, then the default
storage options of the default or specified tablespace are automatically used.

Chapter 20
Creating Indexes

20-13

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
Indexes.

See Also:

Oracle Database SQL Language Reference for syntax and restrictions on the use of
the CREATE INDEX statement

20.3.3 Creating a Unique Index Explicitly
Indexes can be unique or non-unique. Unique indexes guarantee that no two rows of a table
have duplicate values in the key column (or columns). Non-unique indexes do not impose this
restriction on the column values.

Use the CREATE UNIQUE INDEX statement to create a unique index. The following example
creates a unique index:

CREATE UNIQUE INDEX dept_unique_index ON dept (dname)
 TABLESPACE indx;

Alternatively, you can define UNIQUE integrity constraints on the desired columns. The database
enforces UNIQUE integrity constraints by automatically defining a unique index on the unique
key. This is discussed in the following section. However, it is advisable that any index that
exists for query performance, including unique indexes, be created explicitly.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
Indexes.

See Also:

Oracle Database SQL Tuning Guide for more information about creating an index for
performance

20.3.4 Creating an Index Associated with a Constraint
You can create an index associated with a constraint when you issue the CREATE TABLE or
ALTER TABLE SQL statement.

Chapter 20
Creating Indexes

20-14

https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html

• About Creating an Index Associated with a Constraint
Oracle Database enforces a UNIQUE key or PRIMARY KEY integrity constraint on a table by
creating a unique index on the unique key or primary key.

• Specifying Storage Options for an Index Associated with a Constraint
You can set the storage options for the indexes associated with UNIQUE and PRIMARY KEY
constraints using the USING INDEX clause.

• Specifying the Index Associated with a Constraint
You can specify details about the indexes associated with constraints.

20.3.4.1 About Creating an Index Associated with a Constraint
Oracle Database enforces a UNIQUE key or PRIMARY KEY integrity constraint on a table by
creating a unique index on the unique key or primary key.

This index is automatically created by the database when the constraint is enabled. No action
is required by you when you issue the CREATE TABLE or ALTER TABLE statement to create the
index, but you can optionally specify a USING INDEX clause to exercise control over its creation.
This includes both when a constraint is defined and enabled, and when a defined but disabled
constraint is enabled.

To enable a UNIQUE or PRIMARY KEY constraint, thus creating an associated index, the owner of
the table must have a quota for the tablespace intended to contain the index, or the UNLIMITED
TABLESPACE system privilege. The index associated with a constraint always takes the name of
the constraint, unless you optionally specify otherwise.

Note:

An efficient procedure for enabling a constraint that can make use of parallelism is
described in "Efficient Use of Integrity Constraints: A Procedure".

20.3.4.2 Specifying Storage Options for an Index Associated with a Constraint
You can set the storage options for the indexes associated with UNIQUE and PRIMARY KEY
constraints using the USING INDEX clause.

The following CREATE TABLE statement enables a PRIMARY KEY constraint and specifies the
storage options of the associated index:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY, age INTEGER)
 ENABLE PRIMARY KEY USING INDEX
 TABLESPACE users;

20.3.4.3 Specifying the Index Associated with a Constraint
You can specify details about the indexes associated with constraints.

If you require more explicit control over the indexes associated with UNIQUE and PRIMARY KEY
constraints, the database lets you:

• Specify an existing index that the database is to use to enforce the constraint

• Specify a CREATE INDEX statement that the database is to use to create the index and
enforce the constraint

Chapter 20
Creating Indexes

20-15

These options are specified using the USING INDEX clause. The following statements present
some examples.

Example 1:

CREATE TABLE a (
 a1 INT PRIMARY KEY USING INDEX (create index ai on a (a1)));

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
Indexes.

Example 2:

CREATE TABLE b(
 b1 INT,
 b2 INT,
 CONSTRAINT bu1 UNIQUE (b1, b2)
 USING INDEX (create unique index bi on b(b1, b2)),
 CONSTRAINT bu2 UNIQUE (b2, b1) USING INDEX bi);

Example 3:

CREATE TABLE c(c1 INT, c2 INT);
CREATE INDEX ci ON c (c1, c2);
ALTER TABLE c ADD CONSTRAINT cpk PRIMARY KEY (c1) USING INDEX ci;

If a single statement creates an index with one constraint and also uses that index for another
constraint, the system will attempt to rearrange the clauses to create the index before reusing
it.

See Also:

"Managing Integrity Constraints"

20.3.5 Creating a Large Index
When creating an extremely large index, consider allocating a larger temporary tablespace for
the index creation.

To do so, complete the following steps:

1. Create a new temporary tablespace using the CREATE TABLESPACE or CREATE TEMPORARY
TABLESPACE statement.

2. Use the TEMPORARY TABLESPACE option of the ALTER USER statement to make this your new
temporary tablespace.

3. Create the index using the CREATE INDEX statement.

4. Drop this tablespace using the DROP TABLESPACE statement. Then use the ALTER USER
statement to reset your temporary tablespace to your original temporary tablespace.

Chapter 20
Creating Indexes

20-16

https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html

Using this procedure can avoid the problem of expanding your usual, and usually shared,
temporary tablespace to an unreasonably large size that might affect future performance.

20.3.6 Creating an Index Online
You can create and rebuild indexes online. Therefore, you can update base tables at the same
time you are building or rebuilding indexes on that table.

You can perform DML operations while the index build is taking place, but DDL operations are
not allowed. Parallel DML is not supported when creating or rebuilding an index online.

The following statements illustrate online index build operations:

CREATE INDEX emp_name ON emp (mgr, emp1, emp2, emp3) ONLINE;

Note:

Keep in mind that the time that it takes on online index build to complete is
proportional to the size of the table and the number of concurrently executing DML
statements. Therefore, it is best to start online index builds when DML activity is low.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
Indexes.

See Also:

"Rebuilding an Existing Index"

20.3.7 Creating a Function-Based Index
Function-based indexes facilitate queries that qualify a value returned by a function or
expression. The value of the function or expression is precomputed and stored in the index.

In addition to the prerequisites for creating a conventional index, if the index is based on user-
defined functions, then those functions must be marked DETERMINISTIC. Also, a function-based
index is executed with the credentials of the owner of the function, so you must have the
EXECUTE object privilege on the function.

Chapter 20
Creating Indexes

20-17

https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html

Note:

CREATE INDEX stores the timestamp of the most recent function used in the function-
based index. This timestamp is updated when the index is validated. When
performing tablespace point-in-time recovery of a function-based index, if the
timestamp on the most recent function used in the index is newer than the timestamp
stored in the index, then the index is marked invalid. You must use the ANALYZE
INDEX...VALIDATE STRUCTURE statement to validate this index.

To illustrate a function-based index, consider the following statement that defines a function-
based index (area_index) defined on the function area(geo):

CREATE INDEX area_index ON rivers (area(geo));

In the following SQL statement, when area(geo) is referenced in the WHERE clause, the
optimizer considers using the index area_index.

SELECT id, geo, area(geo), desc
 FROM rivers
 WHERE Area(geo) >5000;

Because a function-based index depends upon any function it is using, it can be invalidated
when a function changes. If the function is valid, then you can use an ALTER INDEX...ENABLE
statement to enable a function-based index that has been disabled. The ALTER
INDEX...DISABLE statement lets you disable the use of a function-based index. Consider doing
this if you are working on the body of the function.

Note:

An alternative to creating a function-based index is to add a virtual column to the
target table and index the virtual column. See "About Tables" for more information.

See Also:

• Oracle Database Concepts for more information about function-based indexes

• Oracle Database Development Guide for information about using function-based
indexes in applications and examples of their use

20.3.8 Creating a Compressed Index
As your database grows in size, consider using index compression to save disk space.

• Creating an Index Using Prefix Compression
Creating an index using prefix compression (also known as key compression) eliminates
repeated occurrences of key column prefix values. Prefix compression is most useful for
non-unique indexes with a large number of duplicates on the leading columns.

Chapter 20
Creating Indexes

20-18

• Creating an Index Using Advanced Index Compression
Advanced index compression works well on all supported indexes, including those that are
not good candidates for prefix compression. Creating an index using advanced index
compression can reduce the size of all unique and non-unique indexes and improves the
compression ratio significantly, while still providing efficient access to the indexes.

20.3.8.1 Creating an Index Using Prefix Compression
Creating an index using prefix compression (also known as key compression) eliminates
repeated occurrences of key column prefix values. Prefix compression is most useful for non-
unique indexes with a large number of duplicates on the leading columns.

Prefix compression breaks an index key into a prefix and a suffix entry. Compression is
achieved by sharing the prefix entries among all the suffix entries in an index block. This
sharing can lead to substantial savings in space, allowing you to store more keys for each
index block while improving performance.

Prefix compression can be useful in the following situations:

• You have a non-unique index where ROWID is appended to make the key unique. If you use
prefix compression here, then the duplicate key is stored as a prefix entry on the index
block without the ROWID. The remaining rows become suffix entries consisting of only the
ROWID.

• You have a unique multicolumn index.

You enable prefix compression using the COMPRESS clause. The prefix length (as the number of
key columns) can also be specified to identify how the key columns are broken into a prefix
and suffix entry. For example, the following statement compresses duplicate occurrences of a
key in the index leaf block:

CREATE INDEX hr.emp_ename ON emp(ename)
 TABLESPACE users
 COMPRESS 1;

You can also specify the COMPRESS clause during rebuild. For example, during rebuild, you can
disable compression as follows:

ALTER INDEX hr.emp_ename REBUILD NOCOMPRESS;

The COMPRESSION column in the ALL_INDEXES view and ALL_PART_INDEXES views shows
whether an index is compressed, and, if it is compressed, the type of compression enabled for
the index.

Live SQL:

View and run a related example on Oracle Live SQL at Oracle Live SQL: Creating
Indexes.

Chapter 20
Creating Indexes

20-19

https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html
https://livesql.oracle.com/apex/livesql/docs/admin/managing-indexes/create.html

See Also:

• Oracle Database SQL Language Reference

• Oracle Database Concepts for a more detailed discussion of prefix compression

20.3.8.2 Creating an Index Using Advanced Index Compression
Advanced index compression works well on all supported indexes, including those that are not
good candidates for prefix compression. Creating an index using advanced index compression
can reduce the size of all unique and non-unique indexes and improves the compression ratio
significantly, while still providing efficient access to the indexes.

For a partitioned index, you can specify the compression type on a partition by partition basis.
You can also specify advanced index compression on index partitions even when the parent
index is not compressed.

Advanced index compression works at the block level to provide the best compression for each
block.

You can enable advanced index compression using the COMPRESS ADVANCED clause and can
specify the following compression levels:

• LOW: This level provides lower compression ratio at minimal CPU overhead. Before
enabling COMPRESS ADVANCED LOW, the database must be at 12.1.0 or higher compatibility
level.

• HIGH: This level, the default, provides higher compression ratio at some CPU overhead.
Before enabling COMPRESS ADVANCED HIGH, the database must be at 12.2.0 or higher
compatibility level.

When a CREATE INDEX DDL statement is executed, a block is filled with rows. At high
compression level, when the block is full, it is compressed with advanced index
compression if enough space is saved to insert the next row. When a block becomes full,
the block might be recompressed using advanced index compression to avoid splitting the
block if enough space is saved to insert the incoming key.

The COMPRESSION column in the ALL_INDEXES view shows whether an index is compressed,
and, if it is compressed, the type of compression enabled for the index. The possible values for
the COMPRESSION column are ADVANCED HIGH, ADVANCED LOW, DISABLED, or ENABLED. The
COMPRESSION column in the ALL_IND_PARTITIONS and ALL_IND_SUBPARTITIONS views indicates
whether index compression is ENABLED or DISABLED for the partition or subpartition.

Note:

• Advanced index compression is not supported for bitmap indexes or index-
organized tables.

• When low level advanced index compression is enabled, advanced index
compression cannot be specified on a single column unique index. This
restriction does not apply when high level advanced index compression is
enabled.

Chapter 20
Creating Indexes

20-20

Example 20-1 Enabling Low Level Advanced Index Compression During Index
Creation

For example, the following statement enables low level advanced index compression during
the creation of the hr.emp_mndp_ix index:

CREATE INDEX hr.emp_mndp_ix ON hr.employees(manager_id, department_id)
 COMPRESS ADVANCED LOW;

Example 20-2 Enabling High Level Advanced Index Compression During Index Rebuild

You can also specify the COMPRESS ADVANCED clause during an index rebuild. For example,
during rebuild, you can enable high level advanced index compression for the
hr.emp_manager_ix index as follows:

ALTER INDEX hr.emp_manager_ix REBUILD COMPRESS ADVANCED HIGH;

20.3.9 Creating an Unusable Index
When you create an index in the UNUSABLE state, it is ignored by the optimizer and is not
maintained by DML. An unusable index must be rebuilt, or dropped and re-created, before it
can be used.

If the index is partitioned, then all index partitions are marked UNUSABLE.

The database does not create an index segment when creating an unusable index.

The following procedure illustrates how to create unusable indexes and query the database for
details about the index.

To create an unusable index:

1. If necessary, create the table to be indexed.

For example, create a hash-partitioned table called hr.employees_part as follows:

sh@PROD> CONNECT hr
Enter password: **
Connected.

hr@PROD> CREATE TABLE employees_part
 2 PARTITION BY HASH (employee_id) PARTITIONS 2
 3 AS SELECT * FROM employees;

Table created.

hr@PROD> SELECT COUNT(*) FROM employees_part;

 COUNT(*)

 107

2. Create an index with the keyword UNUSABLE.

The following example creates a locally partitioned index on employees_part, naming the
index partitions p1_i_emp_ename and p2_i_emp_ename, and making p1_i_emp_ename
unusable:

hr@PROD> CREATE INDEX i_emp_ename ON employees_part (employee_id)
 2 LOCAL (PARTITION p1_i_emp_ename UNUSABLE, PARTITION p2_i_emp_ename);

Index created.

Chapter 20
Creating Indexes

20-21

3. (Optional) Verify that the index is unusable by querying the data dictionary.

The following example queries the status of index i_emp_ename and its two partitions,
showing that only partition p2_i_emp_ename is unusable:

hr@PROD> SELECT INDEX_NAME AS "INDEX OR PARTITION NAME", STATUS
 2 FROM USER_INDEXES
 3 WHERE INDEX_NAME = 'I_EMP_ENAME'
 4 UNION ALL
 5 SELECT PARTITION_NAME AS "INDEX OR PARTITION NAME", STATUS
 6 FROM USER_IND_PARTITIONS
 7 WHERE PARTITION_NAME LIKE '%I_EMP_ENAME%';

INDEX OR PARTITION NAME STATUS
------------------------------ --------
I_EMP_ENAME N/A
P1_I_EMP_ENAME UNUSABLE
P2_I_EMP_ENAME USABLE

4. (Optional) Query the data dictionary to determine whether storage exists for the partitions.

For example, the following query shows that only index partition p2_i_emp_ename occupies
a segment. Because you created p1_i_emp_ename as unusable, the database did not
allocate a segment for it.

hr@PROD> COL PARTITION_NAME FORMAT a14
hr@PROD> COL SEG_CREATED FORMAT a11
hr@PROD> SELECT p.PARTITION_NAME, p.STATUS AS "PART_STATUS",
 2 p.SEGMENT_CREATED AS "SEG_CREATED",
 3 FROM USER_IND_PARTITIONS p, USER_SEGMENTS s
 4 WHERE s.SEGMENT_NAME = 'I_EMP_ENAME';

PARTITION_NAME PART_STA SEG_CREATED
-------------- -------- -----------
P2_I_EMP_ENAME USABLE YES
P1_I_EMP_ENAME UNUSABLE NO

See Also:

• "Understand When to Use Unusable or Invisible Indexes"

• "Making an Index Unusable"

• Oracle Database SQL Language Reference for more information on creating
unusable indexes, including restrictions.

20.3.10 Creating an Invisible Index
An invisible index is an index that is ignored by the optimizer unless you explicitly set the
OPTIMIZER_USE_INVISIBLE_INDEXES initialization parameter to TRUE at the session or system
level.

To create an invisible index:

• Use the CREATE INDEX statement with the INVISIBLE keyword.

The following statement creates an invisible index named emp_ename for the ename column
of the emp table:

Chapter 20
Creating Indexes

20-22

CREATE INDEX emp_ename ON emp(ename)
 TABLESPACE users
 STORAGE (INITIAL 20K
 NEXT 20k)
 INVISIBLE;

See Also:

• "Understand When to Use Unusable or Invisible Indexes"

• "Making an Index Invisible or Visible"

• Oracle Database SQL Language Reference for more information on creating
invisible indexes

20.3.11 Creating Multiple Indexes on the Same Set of Columns
You can create multiple indexes on the same set of columns when the indexes are different in
some way.

To create multiple indexes on the same set of columns, the following prerequisites must be
met:

• The prerequisites for required privileges in "Creating Indexes".

• Only one index on the same set of columns can be visible at any point in time.

If you are creating a visible index, then any existing indexes on the set of columns must be
invisible..

Alternatively, you can create an invisible index on the set of columns.

For example, the following steps create a B-tree index and a bitmap index on the same set of
columns in the oe.orders table:

1. Create a B-tree index on the customer_id and sales_rep_id columns in the oe.orders
table:

CREATE INDEX oe.ord_customer_ix1 ON oe.orders (customer_id, sales_rep_id);

The oe.ord_customer_ix1 index is visible by default.

2. Alter the index created in Step 1 to make it invisible:

ALTER INDEX oe.ord_customer_ix1 INVISIBLE;

Alternatively, you can add the INVISIBLE clause in Step 1 to avoid this step.

3. Create a bitmap index on the customer_id and sales_rep_id columns in the oe.orders
table:

CREATE BITMAP INDEX oe.ord_customer_ix2 ON oe.orders (customer_id, sales_rep_id);

The oe.ord_customer_ix2 index is visible by default.

If the oe.ord_customer_ix1 index created in Step 1 is visible, then the CREATE BITMAP
INDEX statement in this step returns an error.

Chapter 20
Creating Indexes

20-23

See Also:

• "Understand When to Create Multiple Indexes on the Same Set of Columns"

• "Understand When to Use Unusable or Invisible Indexes"

• "Creating an Invisible Index"

20.3.12 Creating a Vector Index
You can create vector indexes to make vector searches faster.

To create vector indexes, see Oracle Database AI Vector Search User's Guide.

20.4 Altering Indexes
You can alter an index by completing tasks such as changing its storage characteristics,
rebuilding it, making it unusable, or making it visible or invisible.

• About Altering Indexes
To alter an index, your schema must contain the index, or you must have the ALTER ANY
INDEX system privilege.

• Altering Storage Characteristics of an Index
Alter the storage parameters of any index, including those created by the database to
enforce primary and unique key integrity constraints, using the ALTER INDEX statement.

• Rebuilding an Existing Index
When you rebuild an index, you use an existing index as the data source. Creating an
index in this manner enables you to change storage characteristics or move to a new
tablespace. Rebuilding an index based on an existing data source removes intra-block
fragmentation.

• Making an Index Unusable
When you make an index unusable, it is ignored by the optimizer and is not maintained by
DML. When you make one partition of a partitioned index unusable, the other partitions of
the index remain valid.

• Making an Index Invisible or Visible
Making an index invisible is an alternative to making it unusable or dropping it.

• Renaming an Index
You can rename an index using an ALTER INDEX statement with the RENAME clause.

• Monitoring Index Usage
Oracle Database automatically monitors indexes to determine whether they are being
used. If an index is not being used, then it can be dropped, eliminating unnecessary
statement overhead.

20.4.1 About Altering Indexes
To alter an index, your schema must contain the index, or you must have the ALTER ANY INDEX
system privilege.

With the ALTER INDEX statement, you can:

• Rebuild or coalesce an existing index

Chapter 20
Altering Indexes

20-24

• Deallocate unused space or allocate a new extent

• Specify parallel execution (or not) and alter the degree of parallelism

• Alter storage parameters or physical attributes

• Specify LOGGING or NOLOGGING
• Enable or disable prefix compression

• Enable or disable advanced compression

• Mark the index unusable

• Make the index invisible

• Rename the index

• Start or stop the monitoring of index usage

You cannot alter index column structure.

See Also:

• Oracle Database SQL Language Reference for details on the ALTER INDEX
statement

20.4.2 Altering Storage Characteristics of an Index
Alter the storage parameters of any index, including those created by the database to enforce
primary and unique key integrity constraints, using the ALTER INDEX statement.

For example, the following statement alters the emp_ename index:

ALTER INDEX emp_ename
 STORAGE (NEXT 40);

The parameters INITIAL and MINEXTENTS cannot be altered. All new settings for the other
storage parameters affect only extents subsequently allocated for the index.

For indexes that implement integrity constraints, you can adjust storage parameters by issuing
an ALTER TABLE statement that includes the USING INDEX subclause of the ENABLE clause. For
example, the following statement changes the storage options of the index created on table
emp to enforce the primary key constraint:

ALTER TABLE emp
 ENABLE PRIMARY KEY USING INDEX;

See Also:

Oracle Database SQL Language Reference for syntax and restrictions on the use of
the ALTER INDEX statement

Chapter 20
Altering Indexes

20-25

20.4.3 Rebuilding an Existing Index
When you rebuild an index, you use an existing index as the data source. Creating an index in
this manner enables you to change storage characteristics or move to a new tablespace.
Rebuilding an index based on an existing data source removes intra-block fragmentation.

Compared to dropping the index and using the CREATE INDEX statement, rebuilding an existing
index offers better performance. Before rebuilding an existing index, compare the costs and
benefits associated with rebuilding to those associated with coalescing indexes as described in
"Consider Costs and Benefits of Coalescing or Rebuilding Indexes".

The following statement rebuilds the existing index emp_name:

ALTER INDEX emp_name REBUILD;

The REBUILD clause must immediately follow the index name, and precede any other options. It
cannot be used with the DEALLOCATE UNUSED clause.

You have the option of rebuilding the index online. Rebuilding online enables you to update
base tables at the same time that you are rebuilding. The following statement rebuilds the
emp_name index online:

ALTER INDEX emp_name REBUILD ONLINE;

To rebuild an index in a different user's schema online, the ALTER ANY INDEX system privileges
is required.

Note:

Online index rebuilding has stricter limitations on the maximum key length that can be
handled, compared to other methods of rebuilding an index. If an ORA-1450
(maximum key length exceeded) error occurs when rebuilding online, try rebuilding
offline, coalescing, or dropping and recreating the index.

If you do not have the space required to rebuild an index, you can choose instead to coalesce
the index. Coalescing an index is an online operation.

See Also:

• "Creating an Index Online"

• "Monitoring Space Use of Indexes"

20.4.4 Making an Index Unusable
When you make an index unusable, it is ignored by the optimizer and is not maintained by
DML. When you make one partition of a partitioned index unusable, the other partitions of the
index remain valid.

You must rebuild or drop and re-create an unusable index or index partition before using it.

Chapter 20
Altering Indexes

20-26

The following procedure illustrates how to make an index and index partition unusable, and
how to query the object status.

To make an index unusable:

1. Query the data dictionary to determine whether an existing index or index partition is
usable or unusable.

For example, issue the following query (output truncated to save space):

hr@PROD> SELECT INDEX_NAME AS "INDEX OR PART NAME", STATUS, SEGMENT_CREATED
 2 FROM USER_INDEXES
 3 UNION ALL
 4 SELECT PARTITION_NAME AS "INDEX OR PART NAME", STATUS, SEGMENT_CREATED
 5 FROM USER_IND_PARTITIONS;

INDEX OR PART NAME STATUS SEG
------------------------------ -------- ---
I_EMP_ENAME N/A N/A
JHIST_EMP_ID_ST_DATE_PK VALID YES
JHIST_JOB_IX VALID YES
JHIST_EMPLOYEE_IX VALID YES
JHIST_DEPARTMENT_IX VALID YES
EMP_EMAIL_UK VALID NO
.
.
.
COUNTRY_C_ID_PK VALID YES
REG_ID_PK VALID YES
P2_I_EMP_ENAME USABLE YES
P1_I_EMP_ENAME UNUSABLE NO

22 rows selected.

The preceding output shows that only index partition p1_i_emp_ename is unusable.

2. Make an index or index partition unusable by specifying the UNUSABLE keyword.

The following example makes index emp_email_uk unusable:

hr@PROD> ALTER INDEX emp_email_uk UNUSABLE;

Index altered.

The following example makes index partition p2_i_emp_ename unusable:

hr@PROD> ALTER INDEX i_emp_ename MODIFY PARTITION p2_i_emp_ename UNUSABLE;

Index altered.

3. (Optional) Query the data dictionary to verify the status change.

For example, issue the following query (output truncated to save space):

hr@PROD> SELECT INDEX_NAME AS "INDEX OR PARTITION NAME", STATUS,
 2 SEGMENT_CREATED
 3 FROM USER_INDEXES
 4 UNION ALL
 5 SELECT PARTITION_NAME AS "INDEX OR PARTITION NAME", STATUS,
 6 SEGMENT_CREATED
 7 FROM USER_IND_PARTITIONS;

INDEX OR PARTITION NAME STATUS SEG
------------------------------ -------- ---

Chapter 20
Altering Indexes

20-27

I_EMP_ENAME N/A N/A
JHIST_EMP_ID_ST_DATE_PK VALID YES
JHIST_JOB_IX VALID YES
JHIST_EMPLOYEE_IX VALID YES
JHIST_DEPARTMENT_IX VALID YES
EMP_EMAIL_UK UNUSABLE NO
.
.
.
COUNTRY_C_ID_PK VALID YES
REG_ID_PK VALID YES
P2_I_EMP_ENAME UNUSABLE NO
P1_I_EMP_ENAME UNUSABLE NO

22 rows selected.

A query of space consumed by the i_emp_ename and emp_email_uk segments shows that
the segments no longer exist:

hr@PROD> SELECT SEGMENT_NAME, BYTES
 2 FROM USER_SEGMENTS
 3 WHERE SEGMENT_NAME IN ('I_EMP_ENAME', 'EMP_EMAIL_UK');

no rows selected

See Also:

• "Understand When to Use Unusable or Invisible Indexes"

• "Creating an Unusable Index"

• Oracle Database SQL Language Reference for more information about the
UNUSABLE keyword, including restrictions

20.4.5 Making an Index Invisible or Visible
Making an index invisible is an alternative to making it unusable or dropping it.

An invisible index is ignored by the optimizer unless you explicitly set the
OPTIMIZER_USE_INVISIBLE_INDEXES initialization parameter to TRUE at the session or system
level. You cannot make an individual index partition invisible. Attempting to do so produces an
error.

To make an index invisible:

• Submit the following SQL statement:

ALTER INDEX index INVISIBLE;

To make an invisible index visible again:

• Submit the following SQL statement:

ALTER INDEX index VISIBLE;

Chapter 20
Altering Indexes

20-28

Note:

If there are multiple indexes on the same set of columns, then only one of these
indexes can be visible at any point in time. If you try to make an index on a set of
columns visible, and another index on the same set of columns is visible, then an
error is returned.

To determine whether an index is visible or invisible:

• Query the dictionary views USER_INDEXES, ALL_INDEXES, or DBA_INDEXES.

For example, to determine if the index ind1 is invisible, issue the following query:

SELECT INDEX_NAME, VISIBILITY FROM USER_INDEXES
 WHERE INDEX_NAME = 'IND1';

INDEX_NAME VISIBILITY
---------- ----------
IND1 VISIBLE

See Also:

• "Understand When to Use Unusable or Invisible Indexes"

• "Creating an Invisible Index"

• "Creating Multiple Indexes on the Same Set of Columns"

20.4.6 Renaming an Index
You can rename an index using an ALTER INDEX statement with the RENAME clause.

To rename an index, issue this statement:

ALTER INDEX index_name RENAME TO new_name;

20.4.7 Monitoring Index Usage
Oracle Database automatically monitors indexes to determine whether they are being used. If
an index is not being used, then it can be dropped, eliminating unnecessary statement
overhead.

The view DBA_INDEX_USAGE can be queried for the index to see if the index has been accessed.
The view contains a TOTAL_ACCESS_COUNT column whose value is incremented if the index has
been used within the time period being monitored. The view also contains the last time the
index was used. The DBA_INDEX_USAGE displays cummulative statistics for each index.

SQL> SELECT object_id, name, owner, total_access_count, total_exec_count,
last_used
 FROM dba_index_usage
 WHERE name = 'OBJECT_ID_IDX';

Chapter 20
Altering Indexes

20-29

 OBJECT_ID NAME OWNER TOTAL_ACCESS_COUNT TOTAL_EXEC_COUNT
LAST_USED
---------- ---------------- ------------ ------------------ ----------------

 107585 OBJECT_ID_IDX C##TESTID 1 1
08-Mar-2024 04:34:29

The view V$INDEX_USAGE_INFO keeps tracks of index usage since the last flush, which occurs
every fifteen minutes.

SQL> SELECT index_stats_enabled, index_stats_collection_type,
active_elem_count, last_flush_time
 FROM v$index_usage_info;

INDEX_STATS_ENABLED INDEX_STATS_COLLECTION_TYPE ACTIVE_ELEM_COUNT
LAST_FLUSH_TIME
------------------- --------------------------- -----------------

 1 0 0 08-MAR-24
05.04.33.564 AM

20.5 Monitoring Space Use of Indexes
If key values in an index are inserted, updated, and deleted frequently, then the index can lose
its acquired space efficiency over time.

Monitor index efficiency of space usage at regular intervals by first analyzing the index
structure, using the ANALYZE INDEX...VALIDATE STRUCTURE statement, and then querying the
INDEX_STATS view:

SELECT PCT_USED FROM INDEX_STATS WHERE NAME = 'index';

The percentage of index space usage varies according to how often index keys are inserted,
updated, or deleted. Develop a history of average efficiency of space usage for an index by
performing the following sequence of operations several times:

• Analyzing statistics

• Validating the index

• Checking PCT_USED
• Dropping and rebuilding (or coalescing) the index

When you find that index space usage drops below its average, you can condense the index
space by dropping the index and rebuilding it, or coalescing it.

See Also:

"About Analyzing Tables, Indexes, and Clusters"

Chapter 20
Monitoring Space Use of Indexes

20-30

20.6 Dropping Indexes
You can drop an index with the DROP INDEX statement.

To drop an index, the index must be contained in your schema, or you must have the DROP ANY
INDEX system privilege.

Some reasons for dropping an index include:

• The index is no longer required.

• The index is not providing anticipated performance improvements for queries issued
against the associated table. For example, the table might be very small, or there might be
many rows in the table but very few index entries.

• Applications do not use the index to query the data.

• The index has become invalid and must be dropped before being rebuilt.

• The index has become too fragmented and must be dropped before being rebuilt.

When you drop an index, all extents of the index segment are returned to the containing
tablespace and become available for other objects in the tablespace.

How you drop an index depends on whether you created the index explicitly with a CREATE
INDEX statement, or implicitly by defining a key constraint on a table. If you created the index
explicitly with the CREATE INDEX statement, then you can drop the index with the DROP INDEX
statement. The following statement drops the emp_ename index:

DROP INDEX emp_ename;

You cannot drop only the index associated with an enabled UNIQUE key or PRIMARY KEY
constraint. To drop a constraints associated index, you must disable or drop the constraint
itself.

Note:

If a table is dropped, all associated indexes are dropped automatically.

See Also:

• Oracle Database SQL Language Reference for syntax and restrictions on the
use of the DROP INDEX statement

• "Managing Integrity Constraints"

• "Making an Index Invisible or Visible" for an alternative to dropping indexes

20.7 Managing Automatic Indexes
You can use the automatic indexing feature to configure and use automatic indexes in an
Oracle database to improve database performance.

Chapter 20
Dropping Indexes

20-31

• About Automatic Indexing
The automatic indexing feature automates the index management tasks in an Oracle
database. Automatic indexing automatically creates and drops indexes in a database
based on the changes in application workload, thus improving database performance. The
automatically managed indexes are known as auto indexes.

• How Automatic Indexing Works
This section describes how automatic indexing works.

• Configuring Automatic Indexing in an Oracle Database
You can configure automatic indexing in an Oracle database using the
DBMS_AUTO_INDEX.CONFIGURE procedure.

• Generating Automatic Indexing Reports
You can generate reports related to automatic indexing operations in an Oracle database
using the REPORT_ACTIVITY and REPORT_LAST_ACTIVITY functions of the DBMS_AUTO_INDEX
package.

• Views Containing the Automatic Indexing Information
You can query a set of data dictionary views for getting information about the auto indexes
in an Oracle database.

20.7.1 About Automatic Indexing
The automatic indexing feature automates the index management tasks in an Oracle
database. Automatic indexing automatically creates and drops indexes in a database based on
the changes in application workload, thus improving database performance. The automatically
managed indexes are known as auto indexes.

Index structures are an essential feature to database performance. Indexes are critical for
OLTP applications, which use large data sets and run millions of SQL statements a day.
Indexes are also critical for data warehousing applications, which typically query a relatively
small amount of data from very large tables. If you do not update the indexes whenever there
are changes in the application workload, the existing indexes can cause the database
performance to deteriorate considerably.

Automatic indexing improves database performance by managing indexes automatically and
dynamically in an Oracle database based on changes in the application workload.

Automatic indexing provides the following functionality:

• Runs the automatic indexing process in the background periodically at a predefined time
interval.

• Analyzes application workload, and accordingly creates new indexes and drops the
existing underperforming indexes to improve database performance.

• Rebuilds the indexes that are marked unusable due to table partitioning maintenance
operations, such as ALTER TABLE MOVE.

• Provides PL/SQL APIs for configuring automatic indexing in a database and generating
reports related to automatic indexing operations.

Chapter 20
Managing Automatic Indexes

20-32

Note:

• Auto indexes are local B-tree indexes.

• Auto indexes can be created for partitioned as well as non-partitioned tables.

• Auto indexes cannot be created for temporary tables.

• Automatic indexing uses the SQL performance analyzer framework internally to
measure SQL statement performance. Automatic indexing will not function if Real
Application Testing is explicitly excluded when linking the SQL executable. Real
Application Testing is excluded if the RAT_OFF parameter is supplied to the make
command. Explicitly excluding Real Application Testing and using automatic
indexing will generate error ORA-00438: Real Application Testing Option
not installed.

20.7.2 How Automatic Indexing Works
This section describes how automatic indexing works.

The automatic indexing process runs in the background every 15 minutes and performs the
following operations:

1. Identifies auto index candidates

Auto index candidates are identified based on the usage of table columns in SQL
statements.

Ensure that table statistics are up to date. Tables without statistics are not considered for
auto indexing. Tables with stale statistics are not considered for auto indexing, if real-time
statistics are not available.

2. Creates invisible auto indexes for the auto index candidates

The auto index candidates are created as invisible auto indexes, that is, these auto
indexes cannot be used in SQL statements.

Automatic indexes can be single-column or multi-column. They are considered for the
following:

• Table columns (including virtual columns)

• Partitioned and non-partitioned tables

• Selected expressions (for example, JSON expressions)

3. Verifies invisible auto indexes against SQL statements

The invisible auto indexes are validated against SQL statements.

If the performance of SQL statements is improved by using these indexes, then the
indexes are configured as visible indexes, so that they can be used in SQL statements.

If the performance of SQL statements is not improved by using these indexes, then the
indexes remain invisible.

4. Deletes the unused auto indexes

The auto indexes that are not used for a long period are deleted.

Chapter 20
Managing Automatic Indexes

20-33

Note:

By default, the unused auto indexes are deleted after 373 days. The period for
retaining the unused auto indexes in a database can be configured using the
DBMS_AUTO_INDEX.CONFIGURE procedure.

See Also:

"Configuring Automatic Indexing in an Oracle Database"

20.7.3 Configuring Automatic Indexing in an Oracle Database
You can configure automatic indexing in an Oracle database using the
DBMS_AUTO_INDEX.CONFIGURE procedure.

The following examples describe some of the configuration settings that can be specified using
the DBMS_AUTO_INDEX.CONFIGURE procedure:

Enabling and disabling automatic indexing in a database

You can use the AUTO_INDEX_MODE configuration setting to enable or disable automatic indexing
in a database.

The following statement enables automatic indexing in a database and creates any new auto
indexes as visible indexes, so that they can be used in SQL statements:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_MODE','IMPLEMENT');

The configuration parameter AUTO_INDEX_INCLUDE_DML_COST enables the optimizer to decide
on a case-by-case basis if it will proceed with automatic indexing. This decision is based on an
evaluation of how the overhead of automatic indexing will adversely affect performance for
applications with intense DML activity. The following statement enables DML cost awareness
when running automatic indexing:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_INCLUDE_DML_COST','IMPLEMENT')

The following statement enables automatic indexing in a database, but creates any new auto
indexes as invisible indexes, so that they cannot be used in SQL statements:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_MODE','REPORT ONLY');

The following statement disables automatic indexing in a database so that no new auto
indexes are created (existing auto indexes remain enabled):

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_MODE','OFF');

Chapter 20
Managing Automatic Indexes

20-34

Specifying schemas that can use auto indexes

You can use the AUTO_INDEX_SCHEMA configuration setting to specify schemas that can use
auto indexes.

Note:

When automatic indexing is enabled in a database, all the schemas in the database
can use auto indexes by default.

The following statements add the SH and HR schemas to the exclusion list, so that the SH and HR
schemas cannot use auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_SCHEMA', 'SH', FALSE);
EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_SCHEMA', 'HR', FALSE);

The following statement removes the HR schema from the exclusion list, so that the HR schema
can use auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_SCHEMA', 'HR', NULL);

The following statement removes all the schema from the exclusion list, so that all the
schemas in the database can use auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_SCHEMA', NULL, TRUE);

Specifying tables that can use auto indexes

You can use the AUTO_INDEX_TABLE configuration setting to specify tables that can use auto
indexes. When you enable automatic indexing for a schema, all the tables in that schema can
use auto indexes. However, if there is a conflict between the schema level and table level
setting, the table level setting takes precedence.

The following statement includes the PRODUCTS table in the SH schema for automatic indexing:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_TABLE','SH.PRODUCTS',TRUE);

The following statements add the SALES and PRODUCTS tables in the SH schema to the exclusion
list, so that these tables cannot use auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_TABLE', 'SH.SALES', FALSE);
EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_TABLE', 'SH.PRODUCTS', FALSE);

The following statement removes the SH.SALES table from the exclusion list, so that the table
can use auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_TABLE', 'SH.SALES', NULL);

Chapter 20
Managing Automatic Indexes

20-35

The following statement removes all the tables from the exclusion list, so that all the tables in
the database can use auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_TABLE', NULL, TRUE);

The following statement checks the current configuration setting:

SELECT parameter_name, parameter_value FROM dba_auto_index_config WHERE
parameter_name = 'AUTO_INDEX_TABLE';

Specifying a retention period for unused auto indexes

You can use the AUTO_INDEX_RETENTION_FOR_AUTO configuration setting to specify a period for
retaining unused auto indexes in a database. The unused auto indexes are deleted after the
specified retention period.

Note:

By default, the unused auto indexes are deleted after 373 days.

The following statement sets the retention period for unused auto indexes to 90 days.

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_RETENTION_FOR_AUTO', '90');

The following statement resets the retention period for auto indexes to the default value of 373
days.

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_RETENTION_FOR_AUTO', NULL);

Specifying a retention period for unused non-auto indexes

You can use the AUTO_INDEX_RETENTION_FOR_MANUAL configuration setting to specify a period
for retaining unused non-auto indexes (manually created indexes) in a database. The unused
non-auto indexes are deleted after the specified retention period.

Note:

By default, the unused non-auto indexes are never deleted by the automatic indexing
process.

The following statement sets the retention period for unused non-auto indexes to 60 days.

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_RETENTION_FOR_MANUAL', '60');

The following statement sets the retention period for unused non-auto indexes to NULL so that
they are never deleted by the automatic indexing process.

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_RETENTION_FOR_MANUAL', NULL);

Chapter 20
Managing Automatic Indexes

20-36

Specifying a retention period for automatic indexing logs

You can use the AUTO_INDEX_REPORT_RETENTION configuration setting to specify a period for
retaining automatic indexing logs in a database. The automatic indexing logs are deleted after
the specified retention period.

Note:

By default, the automatic indexing logs are deleted after 373 days.

The following statement sets the retention period for automatic indexing logs to 60 days.

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_REPORT_RETENTION', '60');

The following statement resets the retention period for automatic indexing logs to the default
value 373 days.

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_REPORT_RETENTION', NULL);

Note:

Automatic indexing reports are generated based on the automatic indexing logs.
Therefore, automatic indexing reports cannot be generated for a period that is more
than the retention period of the automatic indexing logs specified using the
AUTO_INDEX_REPORT_RETENTION configuration setting.

Specifying a tablespace to store auto indexes

You can use the AUTO_INDEX_DEFAULT_TABLESPACE configuration setting to specify a tablespace
to store auto indexes. Note that you cannot specify an Oracle-owned tablespace (such as
SYSAUX) as the default tablespace.

Note:

By default, the permanent tablespace specified during the database creation is used
for storing auto indexes.

The following statement specifies the tablespace of TBS_AUTO to store auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_DEFAULT_TABLESPACE', 'TBS_AUTO');

Specifying percentage of tablespace to allocate for auto indexes

You can use the AUTO_INDEX_SPACE_BUDGET configuration setting to specify percentage of
tablespace to allocate for auto indexes. You can specify this configuration setting only when
the tablespace used for storing auto indexes is the default permanent tablespace specified
during the database creation, that is, when no value is specified for the
AUTO_INDEX_DEFAULT_TABLESPACE configuration setting.

Chapter 20
Managing Automatic Indexes

20-37

The following statement allocates 5 percent of the tablespace for auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_SPACE_BUDGET', '5');

Configuring advanced index compression for auto indexes

You can use the AUTO_INDEX_COMPRESSION configuration setting to specify whether advanced
index compression must be used with auto indexes. Advanced index compression is part of the
Oracle Advanced Compression option.

The following example enables advanced index compression when creating auto indexes:

EXEC DBMS_AUTO_INDEX.CONFIGURE('AUTO_INDEX_COMPRESSION','ON');

See Also:

Oracle Database Licensing Information User Manual for information about the Oracle
Advanced Compression option.

Related Topics

• Enabling and Managing Automatic Indexing with DBMS_AUTO_INDEX.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a complete list of
configuration settings related to automatic indexing that can be specified using the
DBMS_AUTO_INDEX.CONFIGURE procedure

20.7.4 Generating Automatic Indexing Reports
You can generate reports related to automatic indexing operations in an Oracle database using
the REPORT_ACTIVITY and REPORT_LAST_ACTIVITY functions of the DBMS_AUTO_INDEX package.

See Also:

Oracle Database PL/SQL Packages and Types Reference for the syntax of the
REPORT_ACTIVITY and REPORT_LAST_ACTIVITY functions of the DBMS_AUTO_INDEX
package.

Chapter 20
Managing Automatic Indexes

20-38

Generating a report of automatic indexing operations for a specific period

The following example generates a report containing typical information about the automatic
indexing operations for the last 24 hours. The report is generated in the plain text format by
default.

set linesize 130
set long 100000
set pagesize 0

var report clob
column report format a120

begin
 :report := DBMS_AUTO_INDEX.REPORT_LAST_ACTIVITY();
end;
/

select :report report from dual;

The following example generates a report containing basic information about the automatic
indexing operations for the month of November 2022. The report is generated in the HTML
format and includes only the summary of automatic indexing operations.

set linesize 130
set long 100000
set pagesize 0

var report clob
column report format a120

begin
 :report := DBMS_AUTO_INDEX.REPORT_ACTIVITY(
 activity_start => TO_TIMESTAMP('2022-11-01', 'YYYY-MM-DD'),
 activity_end => TO_TIMESTAMP('2022-12-01', 'YYYY-MM-DD'),
 type => 'HTML',
 section => 'SUMMARY',
 level => 'BASIC');
end;
/

select :report report from dual;

Generating a report of the last automatic indexing operation

The following example generates a report containing typical information about the last
automatic indexing operation. The report is generated in the plain text format by default.

set linesize 130
set long 100000
set pagesize 0

var report clob
column report format a120

Chapter 20
Managing Automatic Indexes

20-39

begin
 :report := DBMS_AUTO_INDEX.REPORT_LAST_ACTIVITY();
end;
/

select :report report from dual;

The following example generates a report containing basic information about the last automatic
indexing operation. The report includes the summary, index details, and error information of the
last automatic indexing operation. The report is generated in the HTML format.

set linesize 130
set long 100000
set pagesize 0

var report clob
column report format a120

begin
 :report := DBMS_AUTO_INDEX.REPORT_LAST_ACTIVITY(
 type => 'HTML',
 section => 'SUMMARY +INDEX_DETAILS +ERRORS',
 level => 'BASIC');
end;
/

select :report report from dual;

20.7.5 Views Containing the Automatic Indexing Information
You can query a set of data dictionary views for getting information about the auto indexes in
an Oracle database.

The following views show information about the automatic indexing configuration settings and
the auto indexes created in an Oracle database:

View Description

DBA_AUTO_INDEX_CONFIG
Shows the current configuration settings for automatic
indexing.

DBA_INDEXES
ALL_INDEXES
USER_INDEXES

The AUTO column in these views indicates whether an index is
an auto index (YES) or not (NO).

Chapter 20
Managing Automatic Indexes

20-40

See Also:

Oracle Database Reference for complete descriptions of these views

20.8 Indexes Data Dictionary Views
You can query a set of data dictionary views for information about indexes.

The following views show information about indexes:

View Description

DBA_INDEXES ALL_INDEXES USER_INDEXES DBA view shows information about indexes on all tables in the
database. ALL view shows information about indexes on all
tables accessible to the user. USER view is restricted to
indexes owned by the user. Some columns in these views
contain statistics that are generated by the DBMS_STATS
package or the ANALYZE statement.

DBA_IND_COLUMNS ALL_IND_COLUMNS
USER_IND_COLUMNS

These views show information about the columns of indexes
on tables. Some columns in these views contain statistics
that are generated by the DBMS_STATS package or ANALYZE
statement.

DBA_IND_PARTITIONS
ALL_IND_PARTITIONSALL_IND_PARTITIONS
USER_IND_PARTITIONS

These views show the following information about each index
partition: the partitioning details, the storage parameters for
the partition, and various partition statistics generated by the
DBMS_STATS package.

DBA_IND_EXPRESSIONS ALL_IND_EXPRESSIONS
USER_IND_EXPRESSIONS

These views show information about the expressions of
function-based indexes on tables.

DBA_IND_STATISTICS ALL_IND_STATISTICS
USER_IND_STATISTICS

These views show information about the optimizer statistics
for indexes.

INDEX_STATS INDEX_HISTOGRAM These views show the information about the last ANALYZE
INDEX...VALIDATE STRUCTURE statement.

USER_OBJECT_USAGE This view shows the index usage information produced by
the ALTER INDEX...MONITORING USAGE statement.

See Also:

Oracle Database Reference for the complete descriptions of these views

Chapter 20
Indexes Data Dictionary Views

20-41

21
Managing Clusters

Using clusters can improve performance and reduce disk space requirements.

• About Clusters
A cluster provides an optional method of storing table data. A cluster is made up of a
group of tables that share the same data blocks. The tables are grouped together because
they share common columns and are often used together.

• Guidelines for Managing Clusters
You can follow guidelines for managing clusters.

• Creating Clusters and Objects That Use Them
You create a cluster using the CREATE CLUSTER statement. You create clustered table using
the CREATE TABLE statement with the CLUSTER clause. You create a cluster index using the
CREATE INDEX statement with the CLUSTER clause.

• Altering Clusters and Objects That Use Them
You can alter a cluster to change its physical attributes, size, and default degree of
parallelism.

• Dropping Clusters and Objects That Use Them
You drop a cluster using the DROP CLUSTER statement. You drop a clustered table using the
DROP TABLE statement. You drop a cluster index using the DROP INDEX statement.

• Clusters Data Dictionary Views
You can query a set of data dictionary views for information about clusters.

21.1 About Clusters
A cluster provides an optional method of storing table data. A cluster is made up of a group of
tables that share the same data blocks. The tables are grouped together because they share
common columns and are often used together.

For example, the emp and dept table share the deptno column. When you cluster the emp and
dept tables (see Figure 21-1), Oracle Database physically stores all rows for each department
from both the emp and dept tables in the same data blocks.

Because clusters store related rows of different tables together in the same data blocks,
properly used clusters offer two primary benefits:

• Disk I/O is reduced and access time improves for joins of clustered tables.

• The cluster key is the column, or group of columns, that the clustered tables have in
common. You specify the columns of the cluster key when creating the cluster. You
subsequently specify the same columns when creating every table added to the cluster.
Each cluster key value is stored only once each in the cluster and the cluster index, no
matter how many rows of different tables contain the value.

Therefore, less storage might be required to store related table and index data in a cluster
than is necessary in non-clustered table format. For example, in Figure 21-1, notice how
each cluster key (each deptno) is stored just once for many rows that contain the same
value in both the emp and dept tables.

21-1

After creating a cluster, you can create tables in the cluster. However, before any rows can be
inserted into the clustered tables, a cluster index must be created. Using clusters does not
affect the creation of additional indexes on the clustered tables; they can be created and
dropped as usual.

You should not use clusters for tables that are frequently accessed individually.

Figure 21-1 Clustered Table Data

Related data stored

together, more

efficiently

Related data stored

apart, taking up

more space

Clustered Tables Unclustered Tables

DNAME10 LOC

SALES BOSTON

EMPNO ENAME

1000

1321

1841

SMITH

JONES

WARD

. . .

. . .

. . .

. . .

DNAME20 LOC

ADMIN NEW YORK

EMPNO ENAME

932

1139

1277

KEHR

WILSON

NORMAN

. . .

. . .

. . .

. . .

Clustered Key

(DEPTO)

ENAMEEMPNO

932

1000

1139

1277

1321

1841

DEPTNO

KEHR

SMITH

WILSON

NORMAN

JONES

WARD

20

10

20

20

10

10

. . .

. . .

. . .

. . .

. . .

. . .

. . .

EMP TABLE

DNAMEDEPTNO

10

20

LOC

SALES

ADMIN

BOSTON

NEW YORK

DEPT Table

Chapter 21
About Clusters

21-2

See Also:

• Managing Hash Clusters for a description of another type of cluster: a hash
cluster

• Managing Space for Schema Objects is recommended reading before attempting
tasks described in this chapter

21.2 Guidelines for Managing Clusters
You can follow guidelines for managing clusters.

• Choose Appropriate Tables for the Cluster
Use clusters for tables that are primarily queries and frequently queried together.

• Choose Appropriate Columns for the Cluster Key
Choose cluster key columns carefully. If multiple columns are used in queries that join the
tables, make the cluster key a composite key. In general, the characteristics that indicate a
good cluster index are the same as those for any index.

• Specify the Space Required by an Average Cluster Key and Its Associated Rows
The CREATE CLUSTER statement has an optional clause, SIZE, which is the estimated
number of bytes required by an average cluster key and its associated rows.

• Specify the Location of Each Cluster and Cluster Index Rows
Always specify the TABLESPACE clause in a CREATE CLUSTER/INDEX statement to identify the
tablespace to store the new cluster or index.

• Estimate Cluster Size and Set Storage Parameters
Before creating a cluster, estimate the cluster size and set the storage parameters for the
data segments of a cluster.

See Also:

• Oracle Database Concepts for more information about clusters

• Oracle Database SQL Tuning Guide for guidelines on when to use clusters

21.2.1 Choose Appropriate Tables for the Cluster
Use clusters for tables that are primarily queries and frequently queried together.

Use clusters for tables for which the following conditions are true:

• The tables are primarily queried--that is, tables that are not predominantly inserted into or
updated.

• Records from the tables are frequently queried together or joined.

Chapter 21
Guidelines for Managing Clusters

21-3

21.2.2 Choose Appropriate Columns for the Cluster Key
Choose cluster key columns carefully. If multiple columns are used in queries that join the
tables, make the cluster key a composite key. In general, the characteristics that indicate a
good cluster index are the same as those for any index.

For information about characteristics of a good index, see "Guidelines for Managing Indexes".

A good cluster key has enough unique values so that the group of rows corresponding to each
key value fills approximately one data block. Having too few rows for each cluster key value
can waste space and result in negligible performance gains. Cluster keys that are so specific
that only a few rows share a common value can cause wasted space in blocks, unless a small
SIZE was specified at cluster creation time (see "Specify the Space Required by an Average
Cluster Key and Its Associated Rows ").

Too many rows for each cluster key value can cause extra searching to find rows for that key.
Cluster keys on values that are too general (for example, male and female) result in excessive
searching and can result in worse performance than with no clustering.

A cluster index cannot be unique or include a column defined as long.

21.2.3 Specify the Space Required by an Average Cluster Key and Its
Associated Rows

The CREATE CLUSTER statement has an optional clause, SIZE, which is the estimated number of
bytes required by an average cluster key and its associated rows.

The database uses the SIZE parameter when performing the following tasks:

• Estimating the number of cluster keys (and associated rows) that can fit in a clustered data
block

• Limiting the number of cluster keys placed in a clustered data block. This maximizes the
storage efficiency of keys within a cluster.

SIZE does not limit the space that can be used by a given cluster key. For example, if SIZE is
set such that two cluster keys can fit in one data block, any amount of the available data block
space can still be used by either of the cluster keys.

By default, the database stores only one cluster key and its associated rows in each data block
of the cluster data segment. Although block size can vary from one operating system to the
next, the rule of one key for each block is maintained as clustered tables are imported to other
databases on other systems.

If all the rows for a given cluster key value cannot fit in one block, the blocks are chained
together to speed access to all the values with the given key. The cluster index points to the
beginning of the chain of blocks, each of which contains the cluster key value and associated
rows. If the cluster SIZE is such that multiple keys fit in a block, then blocks can belong to
multiple chains.

21.2.4 Specify the Location of Each Cluster and Cluster Index Rows
Always specify the TABLESPACE clause in a CREATE CLUSTER/INDEX statement to identify the
tablespace to store the new cluster or index.

Chapter 21
Guidelines for Managing Clusters

21-4

If you have the proper privileges and tablespace quota, you can create a new cluster and the
associated cluster index in any tablespace that is currently online.

The cluster and its cluster index can be created in different tablespaces. In fact, creating a
cluster and its index in different tablespaces that are stored on different storage devices allows
table data and index data to be retrieved simultaneously with minimal disk contention.

21.2.5 Estimate Cluster Size and Set Storage Parameters
Before creating a cluster, estimate the cluster size and set the storage parameters for the data
segments of a cluster.

The following are benefits of estimating cluster size before creating the cluster:

• You can use the combined estimated size of clusters, along with estimates for indexes and
redo log files, to determine the amount of disk space that is required to hold an intended
database. From these estimates, you can make correct hardware purchases and other
decisions.

• You can use the estimated size of an individual cluster to better manage the disk space
that the cluster will use. When a cluster is created, you can set appropriate storage
parameters and improve I/O performance of applications that use the cluster.

Set the storage parameters for the data segments of a cluster using the STORAGE clause of the
CREATE CLUSTER or ALTER CLUSTER statement, rather than the individual CREATE or ALTER
statements that put tables into the cluster. Storage parameters specified when creating or
altering a clustered table are ignored. The storage parameters set for the cluster override the
table storage parameters.

21.3 Creating Clusters and Objects That Use Them
You create a cluster using the CREATE CLUSTER statement. You create clustered table using the
CREATE TABLE statement with the CLUSTER clause. You create a cluster index using the CREATE
INDEX statement with the CLUSTER clause.

• Creating Clusters
You create a cluster using the CREATE CLUSTER statement.

• Creating Clustered Tables
You create a table in a cluster using the CREATE TABLE statement with the CLUSTER clause.

• Creating Cluster Indexes
A cluster index must be created before any rows can be inserted into any clustered table.

21.3.1 Creating Clusters
You create a cluster using the CREATE CLUSTER statement.

To create a cluster in your schema, you must have the CREATE CLUSTER system privilege and a
quota for the tablespace intended to contain the cluster or the UNLIMITED TABLESPACE system
privilege.

To create a cluster in another user's schema you must have the CREATE ANY CLUSTER system
privilege, and the owner must have a quota for the tablespace intended to contain the cluster
or the UNLIMITED TABLESPACE system privilege.

The following statement creates a cluster named emp_dept, which stores the emp and dept
tables, clustered by the deptno column:

Chapter 21
Creating Clusters and Objects That Use Them

21-5

CREATE CLUSTER emp_dept (deptno NUMBER(3))
 SIZE 600
 TABLESPACE users
 STORAGE (INITIAL 200K
 NEXT 300K
 MINEXTENTS 2
 PCTINCREASE 33);

If no INDEX keyword is specified, as is true in this example, an index cluster is created by
default. You can also create a HASH cluster, when hash parameters (HASHKEYS, HASH IS, or
SINGLE TABLE HASHKEYS) are specified. Hash clusters are described in Managing Hash
Clusters.

21.3.2 Creating Clustered Tables
You create a table in a cluster using the CREATE TABLE statement with the CLUSTER clause.

To create a table in a cluster, you must have either the CREATE TABLE or CREATE ANY TABLE
system privilege. You do not need a tablespace quota or the UNLIMITED TABLESPACE system
privilege to create a table in a cluster.

For example, the emp and dept tables can be created in the emp_dept cluster using the
following statements:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 . . .
 deptno NUMBER(3) REFERENCES dept)
 CLUSTER emp_dept (deptno);

CREATE TABLE dept (
 deptno NUMBER(3) PRIMARY KEY, . . .)
 CLUSTER emp_dept (deptno);

Note:

You can specify the schema for a clustered table in the CREATE TABLE statement. A
clustered table can be in a different schema than the schema containing the cluster.
Also, the names of the columns are not required to match, but their structure must
match.

See Also:

Oracle Database SQL Language Reference for syntax of the CREATE TABLE
statement for creating cluster tables

Chapter 21
Creating Clusters and Objects That Use Them

21-6

21.3.3 Creating Cluster Indexes
A cluster index must be created before any rows can be inserted into any clustered table.

To create a cluster index, one of the following conditions must be true:

• Your schema contains the cluster.

• You have the CREATE ANY INDEX system privilege.

In either case, you must also have either a quota for the tablespace intended to contain the
cluster index, or the UNLIMITED TABLESPACE system privilege.

The following statement creates a cluster index for the emp_dept cluster:

CREATE INDEX emp_dept_index
 ON CLUSTER emp_dept
 TABLESPACE users
 STORAGE (INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 10
 PCTINCREASE 33);

The cluster index clause (ON CLUSTER) identifies the cluster, emp_dept, for which the cluster
index is being created. The statement also explicitly specifies several storage settings for the
cluster and cluster index.

See Also:

Oracle Database SQL Language Reference for syntax of the CREATE INDEX
statement for creating cluster indexes

21.4 Altering Clusters and Objects That Use Them
You can alter a cluster to change its physical attributes, size, and default degree of parallelism.

• Altering Clusters
You alter a cluster using the ALTER CLUSTER statement.

• Altering Clustered Tables
You can alter clustered tables using the ALTER TABLE statement, but some parameters of a
clustered table cannot be set with the ALTER TABLE statement.

• Altering Cluster Indexes
You alter cluster indexes exactly as you do other indexes.

21.4.1 Altering Clusters
You alter a cluster using the ALTER CLUSTER statement.

To alter a cluster, your schema must contain the cluster or you must have the ALTER ANY
CLUSTER system privilege. You can alter an existing cluster to change the following settings:

• Physical attributes (INITRANS and storage characteristics)

Chapter 21
Altering Clusters and Objects That Use Them

21-7

• The average amount of space required to store all the rows for a cluster key value (SIZE)

• The default degree of parallelism

Additionally, you can explicitly allocate a new extent for the cluster, or deallocate any unused
extents at the end of the cluster. The database dynamically allocates additional extents for the
data segment of a cluster as required. In some circumstances, however, you might want to
explicitly allocate an additional extent for a cluster. For example, when using Real Application
Clusters, you can allocate an extent of a cluster explicitly for a specific instance. You allocate a
new extent for a cluster using the ALTER CLUSTER statement with the ALLOCATE EXTENT clause.

When you alter the cluster size parameter (SIZE) of a cluster, the new settings apply to all data
blocks used by the cluster, including blocks already allocated and blocks subsequently
allocated for the cluster. Blocks already allocated for the table are reorganized when necessary
(not immediately).

When you alter the transaction entry setting INITRANS of a cluster, the new setting for INITRANS
applies only to data blocks subsequently allocated for the cluster.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new settings for the
other storage parameters affect only extents subsequently allocated for the cluster.

To alter a cluster, use the ALTER CLUSTER statement.

See Also:

Oracle Database SQL Language Reference for syntax of the ALTER CLUSTER
statement

21.4.2 Altering Clustered Tables
You can alter clustered tables using the ALTER TABLE statement, but some parameters of a
clustered table cannot be set with the ALTER TABLE statement.

However, any data block space parameters, transaction entry parameters, or storage
parameters you set in an ALTER TABLE statement for a clustered table generate an error
message (ORA-01771, illegal option for a clustered table). The database uses the
parameters of the cluster for all clustered tables. Therefore, you can use the ALTER TABLE
statement only to add or modify columns, drop non-cluster-key columns, or add, drop, enable,
or disable integrity constraints or triggers for a clustered table. For information about altering
tables, see "Altering Tables".

See Also:

Oracle Database SQL Language Reference for syntax of the ALTER TABLE statement

21.4.3 Altering Cluster Indexes
You alter cluster indexes exactly as you do other indexes.

See "Altering Indexes".

Chapter 21
Altering Clusters and Objects That Use Them

21-8

Note:

When estimating the size of cluster indexes, remember that the index is on each
cluster key, not the actual rows. Therefore, each key appears only once in the index.

21.5 Dropping Clusters and Objects That Use Them
You drop a cluster using the DROP CLUSTER statement. You drop a clustered table using the
DROP TABLE statement. You drop a cluster index using the DROP INDEX statement.

• Dropping Clusters
You can drop a cluster using the DROP CLUSTER statement.

• Dropping Clustered Tables
Clustered tables can be dropped individually without affecting the cluster, other clustered
tables, or the cluster index. A clustered table is dropped just as a nonclustered table is
dropped, with the DROP TABLE statement.

• Dropping Cluster Indexes
A cluster index can be dropped without affecting the cluster or its clustered tables.
However, clustered tables cannot be used if there is no cluster index; you must re-create
the cluster index to allow access to the cluster.

21.5.1 Dropping Clusters
You can drop a cluster using the DROP CLUSTER statement.

A cluster can be dropped if the tables within the cluster are no longer needed. When a cluster
is dropped, so are the tables within the cluster and the corresponding cluster index. All extents
belonging to both the cluster data segment and the index segment of the cluster index are
returned to the containing tablespace and become available for other segments within the
tablespace.

To drop a cluster that contains no tables, and its cluster index, use the DROP CLUSTER
statement. For example, the following statement drops the empty cluster named emp_dept:

DROP CLUSTER emp_dept;

If the cluster contains one or more clustered tables and you intend to drop the tables as well,
add the INCLUDING TABLES clause of the DROP CLUSTER statement, as follows:

DROP CLUSTER emp_dept INCLUDING TABLES;

If the INCLUDING TABLES clause is not included and the cluster contains tables, an error is
returned.

If one or more tables in a cluster contain primary or unique keys that are referenced by
FOREIGN KEY constraints of tables outside the cluster, the cluster cannot be dropped unless the
dependent FOREIGN KEY constraints are also dropped. This can be easily done using the
CASCADE CONSTRAINTS clause of the DROP CLUSTER statement, as shown in the following
example:

DROP CLUSTER emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

Chapter 21
Dropping Clusters and Objects That Use Them

21-9

The database returns an error if you do not use the CASCADE CONSTRAINTS clause and
constraints exist.

See Also:

Oracle Database SQL Language Reference for syntax of the DROP CLUSTER
statement

21.5.2 Dropping Clustered Tables
Clustered tables can be dropped individually without affecting the cluster, other clustered
tables, or the cluster index. A clustered table is dropped just as a nonclustered table is
dropped, with the DROP TABLE statement.

To drop a cluster, your schema must contain the cluster or you must have the DROP ANY
CLUSTER system privilege. You do not need additional privileges to drop a cluster that contains
tables, even if the clustered tables are not owned by the owner of the cluster.

See "Dropping Table Columns ".

Note:

When you drop a single table from a cluster, the database deletes each row of the
table individually. To maximize efficiency when you intend to drop an entire cluster,
drop the cluster including all tables by using the DROP CLUSTER statement with the
INCLUDING TABLES clause. Drop an individual table from a cluster (using the DROP
TABLE statement) only if you want the rest of the cluster to remain.

21.5.3 Dropping Cluster Indexes
A cluster index can be dropped without affecting the cluster or its clustered tables. However,
clustered tables cannot be used if there is no cluster index; you must re-create the cluster
index to allow access to the cluster.

Cluster indexes are sometimes dropped as part of the procedure to rebuild a fragmented
cluster index.

Note:

Hash cluster indexes cannot be dropped.

See Also:

"Dropping Indexes"

Chapter 21
Dropping Clusters and Objects That Use Them

21-10

21.6 Clusters Data Dictionary Views
You can query a set of data dictionary views for information about clusters.

The following views display information about clusters:

View Description

DBA_CLUSTERS
ALL_CLUSTERS
USER_CLUSTERS

DBA view describes all clusters in the database. ALL view describes all
clusters accessible to the user. USER view is restricted to clusters owned
by the user. Some columns in these views contain statistics that are
generated by the DBMS_STATS package or ANALYZE statement.

DBA_CLU_COLUMNS
USER_CLU_COLUMNS

These views map table columns to cluster columns

See Also:

Oracle Database Reference for complete descriptions of these views

Chapter 21
Clusters Data Dictionary Views

21-11

22
Managing Hash Clusters

Hash clusters can improve the performance of data retrieval.

• About Hash Clusters
Storing a table in a hash cluster is an optional way to improve the performance of data
retrieval. A hash cluster provides an alternative to a non-clustered table with an index or an
index cluster.

• When to Use Hash Clusters
You can decide when to use hash clusters by contrasting situations where hashing is most
useful against situations where there is no advantage. If you find your decision is to use
indexing rather than hashing, then you should consider whether to store a table individually
or as part of a cluster.

• Creating Different Types of Hash Clusters
You can use the CREATE CLUSTER statement with the HASHKEYS clause to create different
types of hash clusters.

• Altering Hash Clusters
You can alter a hash cluster with the ALTER CLUSTER statement.

• Dropping Hash Clusters
You can drop a hash cluster using the DROP CLUSTER statement.

• Hash Clusters Data Dictionary Views
You can query a set of data dictionary views for information about hash clusters.

22.1 About Hash Clusters
Storing a table in a hash cluster is an optional way to improve the performance of data
retrieval. A hash cluster provides an alternative to a non-clustered table with an index or an
index cluster.

With an indexed table or index cluster, Oracle Database locates the rows in a table using key
values that the database stores in a separate index. To use hashing, you create a hash cluster
and load tables into it. The database physically stores the rows of a table in a hash cluster and
retrieves them according to the results of a hash function.

Oracle Database uses a hash function to generate a distribution of numeric values, called
hash values, that are based on specific cluster key values. The key of a hash cluster, like the
key of an index cluster, can be a single column or composite key (multiple column key). To find
or store a row in a hash cluster, the database applies the hash function to the cluster key value
of the row. The resulting hash value corresponds to a data block in the cluster, which the
database then reads or writes on behalf of the issued statement.

To find or store a row in an indexed table or cluster, a minimum of two (there are usually more)
I/Os must be performed:

• One or more I/Os to find or store the key value in the index

• Another I/O to read or write the row in the table or cluster

22-1

In contrast, the database uses a hash function to locate a row in a hash cluster; no I/O is
required. As a result, a minimum of one I/O operation is necessary to read or write a row in a
hash cluster.

See Also:

Managing Space for Schema Objects is recommended reading before attempting
tasks described in this chapter.

22.2 When to Use Hash Clusters
You can decide when to use hash clusters by contrasting situations where hashing is most
useful against situations where there is no advantage. If you find your decision is to use
indexing rather than hashing, then you should consider whether to store a table individually or
as part of a cluster.

Note:

Even if you decide to use hashing, a table can still have separate indexes on any
columns, including the cluster key.

• Situations Where Hashing Is Useful
Hashing is useful when most queries are equality queries on the cluster key and the tables
in the hash cluster are primarily static in size.

• Situations Where Hashing Is Not Advantageous
Hashing is not advantageous in certain situations.

22.2.1 Situations Where Hashing Is Useful
Hashing is useful when most queries are equality queries on the cluster key and the tables in
the hash cluster are primarily static in size.

Hashing is useful when you have the following conditions:

• Most queries are equality queries on the cluster key:

SELECT ... WHERE cluster_key = ...;

In such cases, the cluster key in the equality condition is hashed, and the corresponding
hash key is usually found with a single read. In comparison, for an indexed table the key
value must first be found in the index (usually several reads), and then the row is read from
the table (another read).

• The tables in the hash cluster are primarily static in size so that you can determine the
number of rows and amount of space required for the tables in the cluster. If tables in a
hash cluster require more space than the initial allocation for the cluster, performance
degradation can be substantial because overflow blocks are required.

Chapter 22
When to Use Hash Clusters

22-2

22.2.2 Situations Where Hashing Is Not Advantageous
Hashing is not advantageous in certain situations.

Hashing is not advantageous in the following situations:

• Most queries on the table retrieve rows over a range of cluster key values. For example, in
full table scans or queries such as the following, a hash function cannot be used to
determine the location of specific hash keys. Instead, the equivalent of a full table scan
must be done to fetch the rows for the query.

SELECT . . . WHERE cluster_key < . . . ;

With an index, key values are ordered in the index, so cluster key values that satisfy the
WHERE clause of a query can be found with relatively few I/Os.

• The table is not static, but instead is continually growing. If a table grows without limit, the
space required over the life of the table (its cluster) cannot be predetermined.

• Applications frequently perform full-table scans on the table and the table is sparsely
populated. A full-table scan in this situation takes longer under hashing.

• You cannot afford to preallocate the space that the hash cluster will eventually need.

22.3 Creating Different Types of Hash Clusters
You can use the CREATE CLUSTER statement with the HASHKEYS clause to create different types
of hash clusters.

• Creating Hash Clusters
You create a hash cluster using a CREATE CLUSTER statement, but you specify a HASHKEYS
clause.

• Creating a Sorted Hash Cluster
A sorted hash cluster stores the rows corresponding to each value of the hash function in
such a way that the database can efficiently return them in sorted order. For applications
that always consume data in sorted order, sorted hash clusters can retrieve data faster by
minimizing logical I/Os.

• Creating Single-Table Hash Clusters
You can create a single-table hash cluster, which provides fast access to rows in a table.
However, this table must be the only table in the hash cluster.

• Controlling Space Use Within a Hash Cluster
When creating a hash cluster, it is important to choose the cluster key correctly and set the
HASH IS, SIZE, and HASHKEYS parameters so that performance and space use are optimal.
The following guidelines describe how to set these parameters.

• Estimating Size Required by Hash Clusters
As with index clusters, it is important to estimate the storage required for the data in a hash
cluster.

Chapter 22
Creating Different Types of Hash Clusters

22-3

22.3.1 Creating Hash Clusters
You create a hash cluster using a CREATE CLUSTER statement, but you specify a HASHKEYS
clause.

The following statement creates a cluster named trial_cluster, clustered by the trialno
column (the cluster key):

CREATE CLUSTER trial_cluster (trialno NUMBER(5,0))
 TABLESPACE users
 STORAGE (INITIAL 250K
 NEXT 50K
 MINEXTENTS 1
 MAXEXTENTS 3
 PCTINCREASE 0)
 HASH IS trialno
 HASHKEYS 150;

The following statement creates the trial table in the trial_cluster hash cluster:

CREATE TABLE trial (
 trialno NUMBER(5,0) PRIMARY KEY,
 ...)
 CLUSTER trial_cluster (trialno);

As with index clusters, the key of a hash cluster can be a single column or a composite key
(multiple column key). In the preceding example, the key is the trialno column.

The HASHKEYS value, in this case 150, specifies and limits the number of unique hash values
that the hash function can generate. The database rounds the number specified to the nearest
prime number.

If no HASH IS clause is specified, then the database uses an internal hash function. If the
cluster key is already a unique identifier that is uniformly distributed over its range, then you
can bypass the internal hash function and specify the cluster key as the hash value, as in the
preceding example. You can also use the HASH IS clause to specify a user-defined hash
function.

You cannot create a cluster index on a hash cluster, and you need not create an index on a
hash cluster key.

See Also:

Managing Clusters for additional information about creating tables in a cluster,
guidelines for setting parameters of the CREATE CLUSTER statement common to index
and hash clusters, and the privileges required to create any cluster

22.3.2 Creating a Sorted Hash Cluster
A sorted hash cluster stores the rows corresponding to each value of the hash function in
such a way that the database can efficiently return them in sorted order. For applications that

Chapter 22
Creating Different Types of Hash Clusters

22-4

always consume data in sorted order, sorted hash clusters can retrieve data faster by
minimizing logical I/Os.

Assume that a telecommunications company stores detailed call records for a fixed number of
originating telephone numbers through a telecommunications switch. From each originating
telephone number there can be an unlimited number of calls.

The application stores calls records as calls are made. Each call has a detailed call record
identified by a timestamp. For example, the application stores a call record with timestamp 0,
then a call record with timestamp 1, and so on.

When generating bills for each originating phone number, the application processes them in
first-in, first-out (FIFO) order. The following table shows sample details for three originating
phone numbers:

telephone_number call_timestamp

6505551212 0, 1, 2, 3, 4, ...

6505551213 0, 1, 2, 3, 4, ...

6505551214 0, 1, 2, 3, 4, ...

In the following SQL statements, the telephone_number column is the hash key. The hash
cluster is sorted on the call_timestamp and call_duration columns. The example uses the
same names for the clustering and sorting columns in the table definition as in the cluster
definition, but this is not required. The number of hash keys is based on 10-digit telephone
numbers.

CREATE CLUSTER call_detail_cluster (
 telephone_number NUMBER,
 call_timestamp NUMBER SORT,
 call_duration NUMBER SORT)
 HASHKEYS 10000
 HASH IS telephone_number
 SIZE 256;

CREATE TABLE call_detail (
 telephone_number NUMBER,
 call_timestamp NUMBER SORT,
 call_duration NUMBER SORT,
 other_info VARCHAR2(30))
 CLUSTER call_detail_cluster (
 telephone_number, call_timestamp, call_duration);

Example 22-1 Data Inserted in Sequential Order

Suppose that you seed the call_detail table with the rows in FIFO order as shown in this
example.

INSERT INTO call_detail VALUES (6505551212, 0, 9, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 1, 17, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 2, 5, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 3, 90, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 0, 35, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 1, 6, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 2, 4, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 3, 4, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 0, 15, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 1, 20, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 2, 1, 'misc info');

Chapter 22
Creating Different Types of Hash Clusters

22-5

INSERT INTO call_detail VALUES (6505551214, 3, 25, 'misc info');
COMMIT;

Example 22-2 Querying call_detail

In this example, you SET AUTOTRACE ON, and then query the call_detail table for the call
details for the phone number 6505551212.

SQL> SET AUTOTRACE ON;
SQL> SELECT * FROM call_detail WHERE telephone_number = 6505551212;

TELEPHONE_NUMBER CALL_TIMESTAMP CALL_DURATION OTHER_INFO
---------------- -------------- ------------- ------------------------------
 6505551212 0 9 misc info
 6505551212 1 17 misc info
 6505551212 2 5 misc info
 6505551212 3 90 misc info

Execution Plan
--
Plan hash value: 2118876266

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | 1 | 56 | 0 (0)|
|* 1 | TABLE ACCESS HASH| CALL_DETAIL | 1 | 56 | |
--

The query retrieves the rows ordered by timestamp even though no sort appears in the query
plan.

Suppose you then delete the existing rows and insert the same rows out of sequence:

DELETE FROM call_detail;
INSERT INTO call_detail VALUES (6505551213, 3, 4, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 0, 15, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 0, 9, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 1, 20, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 2, 1, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 1, 6, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 2, 4, 'misc info');
INSERT INTO call_detail VALUES (6505551214, 3, 25, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 1, 17, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 2, 5, 'misc info');
INSERT INTO call_detail VALUES (6505551212, 3, 90, 'misc info');
INSERT INTO call_detail VALUES (6505551213, 0, 35, 'misc info');
COMMIT;

If you rerun the same query of call_detail, the database again retrieves the rows in sorted
order even though no ORDER BY clause is specified. No SORT ORDER BY operation appears in
the query plan because the database performs an internal sort.

Now assume that you create a nonclustered table call_detail_nonclustered and then load it
with the same sample values in Example 22-1. To retrieve the data in sorted order, you must
use an ORDER BY clause as follows:

SQL> SELECT * FROM call_detail_nonclustered WHERE telephone_number = 6505551212
 2 ORDER BY call_timestamp, call_duration;

TELEPHONE_NUMBER CALL_TIMESTAMP CALL_DURATION OTHER_INFO
---------------- -------------- ------------- ------------------------------

Chapter 22
Creating Different Types of Hash Clusters

22-6

 6505551212 0 9 misc info
 6505551212 1 17 misc info
 6505551212 2 5 misc info
 6505551212 3 90 misc info

Execution Plan
--
Plan hash value: 2555750302

--
|Id| Operation | Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		4	224	4 (25)	00:00:01
1	SORT ORDER BY		4	224	4 (25)	00:00:01
*2	TABLE ACCESS FULL	CALL_DETAIL_NONCLUSTERED	4	224	3 (0)	00:00:01
--

The preceding plan shows that in the nonclustered case the sort is more expensive than in the
clustered case. The rows, bytes, cost, and time are all greater in the case of the table that is
not stored in a sorted hash cluster.

22.3.3 Creating Single-Table Hash Clusters
You can create a single-table hash cluster, which provides fast access to rows in a table.
However, this table must be the only table in the hash cluster.

Essentially, there must be a one-to-one mapping between hash keys and data rows. The
following statement creates a single-table hash cluster named peanut with the cluster key
variety:

CREATE CLUSTER peanut (variety NUMBER)
 SIZE 512 SINGLE TABLE HASHKEYS 500;

The database rounds the HASHKEYS value up to the nearest prime number, so this cluster has a
maximum of 503 hash key values, each of size 512 bytes. The SINGLE TABLE clause is valid
only for hash clusters. HASHKEYS must also be specified.

See Also:

Oracle Database SQL Language Reference for the syntax of the CREATE CLUSTER
statement

22.3.4 Controlling Space Use Within a Hash Cluster
When creating a hash cluster, it is important to choose the cluster key correctly and set the
HASH IS, SIZE, and HASHKEYS parameters so that performance and space use are optimal. The
following guidelines describe how to set these parameters.

• Choosing the Key
Choosing the correct cluster key is dependent on the most common types of queries
issued against the clustered tables.

• Setting HASH IS
Specify the HASH IS parameter only if the cluster key is a single column of the NUMBER data
type, and contains uniformly distributed integers.

Chapter 22
Creating Different Types of Hash Clusters

22-7

• Setting SIZE
SIZE should be set to the average amount of space required to hold all rows for any given
hash key.

• Setting HASHKEYS
Specify the HASHKEYS clause to create a hash cluster and specify the number of hash
values for the hash cluster.

• Controlling Space in Hash Clusters
Examples illustrate how to correctly choose the cluster key and set the HASH IS, SIZE, and
HASHKEYS parameters. For all examples, assume that the data block size is 2K and that on
average, 1950 bytes of each block is available data space (block size minus overhead).

22.3.4.1 Choosing the Key
Choosing the correct cluster key is dependent on the most common types of queries issued
against the clustered tables.

For example, consider the emp table in a hash cluster. If queries often select rows by employee
number, the empno column should be the cluster key. If queries often select rows by department
number, the deptno column should be the cluster key. For hash clusters that contain a single
table, the cluster key is typically the entire primary key of the contained table.

The key of a hash cluster, like that of an index cluster, can be a single column or a composite
key (multiple column key). A hash cluster with a composite key must use the internal hash
function of the database.

22.3.4.2 Setting HASH IS
Specify the HASH IS parameter only if the cluster key is a single column of the NUMBER data
type, and contains uniformly distributed integers.

If these conditions apply, you can distribute rows in the cluster so that each unique cluster key
value hashes, with no collisions (two cluster key values having the same hash value), to a
unique hash value. If these conditions do not apply, omit this clause so that you use the
internal hash function.

22.3.4.3 Setting SIZE
SIZE should be set to the average amount of space required to hold all rows for any given hash
key.

Therefore, to properly determine SIZE, you must be aware of the characteristics of your data:

• If the hash cluster is to contain only a single table and the hash key values of the rows in
that table are unique (one row for each value), SIZE can be set to the average row size in
the cluster.

• If the hash cluster is to contain multiple tables, SIZE can be set to the average amount of
space required to hold all rows associated with a representative hash value.

Further, once you have determined a (preliminary) value for SIZE, consider the following. If the
SIZE value is small (more than four hash keys can be assigned for each data block) you can
use this value for SIZE in the CREATE CLUSTER statement. However, if the value of SIZE is large
(four or fewer hash keys can be assigned for each data block), then you should also consider
the expected frequency of collisions and whether performance of data retrieval or efficiency of
space usage is more important to you.

Chapter 22
Creating Different Types of Hash Clusters

22-8

• If the hash cluster does not use the internal hash function (if you specified HASH IS) and
you expect few or no collisions, you can use your preliminary value of SIZE. No collisions
occur and space is used as efficiently as possible.

• If you expect frequent collisions on inserts, the likelihood of overflow blocks being allocated
to store rows is high. To reduce the possibility of overflow blocks and maximize
performance when collisions are frequent, you should adjust SIZE as shown in the
following chart.

Available Space for each Block / Calculated
SIZE

Setting for SIZE

1 SIZE
2 SIZE + 15%

3 SIZE + 12%

4 SIZE + 8%

>4 SIZE

Overestimating the value of SIZE increases the amount of unused space in the cluster. If
space efficiency is more important than the performance of data retrieval, disregard the
adjustments shown in the preceding table and use the original value for SIZE.

22.3.4.4 Setting HASHKEYS
Specify the HASHKEYS clause to create a hash cluster and specify the number of hash values for
the hash cluster.

For maximum distribution of rows in a hash cluster, the database rounds the HASHKEYS value up
to the nearest prime number.

22.3.4.5 Controlling Space in Hash Clusters
Examples illustrate how to correctly choose the cluster key and set the HASH IS, SIZE, and
HASHKEYS parameters. For all examples, assume that the data block size is 2K and that on
average, 1950 bytes of each block is available data space (block size minus overhead).

• Controlling Space in Hash Clusters: Example 1
An example illustrates controlling space in hash clusters.

• Controlling Space in Hash Clusters: Example 2
An example illustrates controlling space in hash clusters.

22.3.4.5.1 Controlling Space in Hash Clusters: Example 1
An example illustrates controlling space in hash clusters.

You decide to load the emp table into a hash cluster. Most queries retrieve employee records by
their employee number. You estimate that the maximum number of rows in the emp table at any
given time is 10000 and that the average row size is 55 bytes.

In this case, empno should be the cluster key. Because this column contains integers that are
unique, the internal hash function can be bypassed. SIZE can be set to the average row size,
55 bytes. Note that 34 hash keys are assigned for each data block. HASHKEYS can be set to the
number of rows in the table, 10000. The database rounds this value up to the next highest
prime number: 10007.

Chapter 22
Creating Different Types of Hash Clusters

22-9

CREATE CLUSTER emp_cluster (empno
NUMBER)
. . .
SIZE 55
HASH IS empno HASHKEYS 10000;

22.3.4.5.2 Controlling Space in Hash Clusters: Example 2
An example illustrates controlling space in hash clusters.

In this example, conditions are similar to the example in "Controlling Space in Hash Clusters:
Example 1 ". In this case, however, rows are usually retrieved by department number. At most,
there are 1000 departments with an average of 10 employees for each department.
Department numbers increment by 10 (0, 10, 20, 30, . . .).

In this case, deptno should be the cluster key. Since this column contains integers that are
uniformly distributed, the internal hash function can be bypassed. A preliminary value of SIZE
(the average amount of space required to hold all rows for each department) is 55 bytes * 10,
or 550 bytes. Using this value for SIZE, only three hash keys can be assigned for each data
block. If you expect some collisions and want maximum performance of data retrieval, slightly
alter your estimated SIZE to prevent collisions from requiring overflow blocks. By adjusting
SIZE by 12%, to 620 bytes (see "Setting SIZE"), there is more space for rows from expected
collisions.

HASHKEYS can be set to the number of unique department numbers, 1000. The database
rounds this value up to the next highest prime number: 1009.

CREATE CLUSTER emp_cluster (deptno NUMBER)
. . .
SIZE 620
HASH IS deptno HASHKEYS 1000;

22.3.5 Estimating Size Required by Hash Clusters
As with index clusters, it is important to estimate the storage required for the data in a hash
cluster.

Oracle Database guarantees that the initial allocation of space is sufficient to store the hash
table according to the settings SIZE and HASHKEYS. If settings for the storage parameters
INITIAL, NEXT, and MINEXTENTS do not account for the hash table size, incremental (additional)
extents are allocated until at least SIZE*HASHKEYS is reached. For example, assume that the
data block size is 2K, the available data space for each block is approximately 1900 bytes
(data block size minus overhead), and that the STORAGE and HASH parameters are specified in
the CREATE CLUSTER statement as follows:

STORAGE (INITIAL 100K
 NEXT 150K
 MINEXTENTS 1
 PCTINCREASE 0)
SIZE 1500
HASHKEYS 100

In this example, only one hash key can be assigned for each data block. Therefore, the initial
space required for the hash cluster is at least 100*2K or 200K. The settings for the storage
parameters do not account for this requirement. Therefore, an initial extent of 100K and a
second extent of 150K are allocated to the hash cluster.

Alternatively, assume the HASH parameters are specified as follows:

Chapter 22
Creating Different Types of Hash Clusters

22-10

SIZE 500 HASHKEYS 100

In this case, three hash keys are assigned to each data block. Therefore, the initial space
required for the hash cluster is at least 34*2K or 68K. The initial settings for the storage
parameters are sufficient for this requirement (an initial extent of 100K is allocated to the hash
cluster).

22.4 Altering Hash Clusters
You can alter a hash cluster with the ALTER CLUSTER statement.

For example, the following ALTER CLUSTER statement alters the emp_dept cluster:

ALTER CLUSTER emp_dept . . . ;

The implications for altering a hash cluster are identical to those for altering an index cluster,
described in "Altering Clusters". However, the SIZE, HASHKEYS, and HASH IS parameters cannot
be specified in an ALTER CLUSTER statement. To change these parameters, you must re-create
the cluster, then copy the data from the original cluster.

22.5 Dropping Hash Clusters
You can drop a hash cluster using the DROP CLUSTER statement.

For example, the following DROP CLUSTER statement drops the emp_dept cluster:

DROP CLUSTER emp_dept;

A table in a hash cluster is dropped using the DROP TABLE statement. The implications of
dropping hash clusters and tables in hash clusters are the same as those for dropping index
clusters.

See Also:

"Dropping Clusters"

22.6 Hash Clusters Data Dictionary Views
You can query a set of data dictionary views for information about hash clusters.

The following views display information about hash clusters:

View Description

DBA_CLUSTERS
ALL_CLUSTERS
USER_CLUSTERS

DBA view describes all clusters (including hash clusters)
in the database. ALL view describes all clusters
accessible to the user. USER view is restricted to clusters
owned by the user. Some columns in these views contain
statistics that are generated by the DBMS_STATS package
or ANALYZE statement.

DBA_CLU_COLUMNS
USER_CLU_COLUMNS

These views map table columns to cluster columns.

Chapter 22
Altering Hash Clusters

22-11

View Description

DBA_CLUSTER_HASH_EXPRESSIONS
ALL_CLUSTER_HASH_EXPRESSIONS
USER_CLUSTER_HASH_EXPRESSIONS

These views list hash functions for hash clusters.

Chapter 22
Hash Clusters Data Dictionary Views

22-12

23
Managing Views, Sequences, and Synonyms

You can create and manage views, sequences, and synonyms with Oracle Database.

• Managing Views
You can perform tasks such as creating views, replacing views, altering views, and
dropping views.

• Managing Sequences
You can perform tasks such as creating sequences, altering sequences, using sequences,
and dropping sequences.

• Managing Synonyms
You can perform tasks such as creating synonyms, using synonyms, and dropping
synonyms.

• Views, Synonyms, and Sequences Data Dictionary Views
You can query data dictionary views for information about views, synonyms, and
sequences.

23.1 Managing Views
You can perform tasks such as creating views, replacing views, altering views, and dropping
views.

Live SQL:

To view and run examples related to managing views on Oracle Live SQL, go to
Oracle Live SQL: Creating, Replacing, and Dropping a View.

• About Views
A view is a logical representation of a table or combination of tables. In essence, a view is
a stored query.

• Creating Views and Join Views
You can create views using the CREATE VIEW statement. Each view is defined by a query
that references tables, materialized views, or other views. You can also create join views
that specify multiple base tables or views in the FROM clause.

• Replacing Views
You can replace a view by dropping it and re-creating it or by issuing a CREATE VIEW
statement that contains the OR REPLACE clause.

• Using Views in Queries
You can query a view. You can also perform data manipulation language (DML) operations
on views, with some restrictions.

• DML Statements and Join Views
Restrictions apply when issuing DML statements on join views.

23-1

https://livesql.oracle.com/apex/livesql/docs/admin/managing-views/create-modify.html

• Altering Views
You use the ALTER VIEW statement only to explicitly recompile a view that is invalid.

• Dropping Views
You can drop a view with the DROP VIEW statement.

23.1.1 About Views
A view is a logical representation of a table or combination of tables. In essence, a view is a
stored query.

A view derives its data from the tables on which it is based. These tables are called base
tables. Base tables might in turn be actual tables or might be views themselves. All operations
performed on a view actually affect the base table of the view. You can use views in almost the
same way as tables. You can query, update, insert into, and delete from views, just as you can
standard tables.

Views can provide a different representation (such as subsets or supersets) of the data that
resides within other tables and views. Views are very powerful because they allow you to tailor
the presentation of data to different types of users.

Note:

One special type of view is the editioning view, which is used only to support online
upgrade of applications using edition-based redefinition. The remainder of this
section on managing views describes all views except editioning views. See Oracle
Database Development Guide for a discussion of editioning views and edition-based
redefinition.

See Also:

Oracle Database Concepts for an overview of views

23.1.2 Creating Views and Join Views
You can create views using the CREATE VIEW statement. Each view is defined by a query that
references tables, materialized views, or other views. You can also create join views that
specify multiple base tables or views in the FROM clause.

• Creating Views
You can create a view with the CREATE VIEW statement.

• Creating Join Views
You can also create views that specify multiple base tables or views in the FROM clause of a
CREATE VIEW statement. These are called join views.

• Expansion of Defining Queries at View Creation Time
When a view is created, Oracle Database expands any wildcard (*) in a top-level view
query into a column list. The resulting query is stored in the data dictionary; any subqueries
are left intact.

Chapter 23
Managing Views

23-2

• Creating Views with Errors
If there are no syntax errors in a CREATE VIEW statement, then the database can create the
view even if the defining query of the view cannot be executed. In this case, the view is
considered "created with errors."

23.1.2.1 Creating Views
You can create a view with the CREATE VIEW statement.

To create a view, you must meet the following requirements:

• To create a view in your schema, you must have the CREATE VIEW privilege. To create a
view in another user's schema, you must have the CREATE ANY VIEW system privilege. You
can acquire these privileges explicitly or through a role.

• The owner of the view (whether it is you or another user) must have been explicitly granted
privileges to access all objects referenced in the view definition. The owner cannot have
obtained these privileges through roles. Also, the functionality of the view depends on the
privileges of the view owner. For example, if the owner of the view has only the INSERT
privilege for Scott's emp table, then the view can be used only to insert new rows into the
emp table, not to SELECT, UPDATE, or DELETE rows.

• If the owner of the view intends to grant access to the view to other users, the owner must
have received the object privileges to the base objects with the GRANT OPTION or the
system privileges with the ADMIN OPTION.

You can create views using the CREATE VIEW statement. Each view is defined by a query that
references tables, materialized views, or other views. As with all subqueries, the query that
defines a view cannot contain the FOR UPDATE clause.

The following statement creates a view on a subset of data in the hr.departments table:

CREATE VIEW departments_hq AS
 SELECT department_id, department_name, location_id
 FROM hr.departments
 WHERE location_id = 1700
 WITH CHECK OPTION CONSTRAINT departments_hq_cnst;

The query that defines the departments_hq view references only rows in location 1700.
Furthermore, the CHECK OPTION creates the view with the constraint (named
departments_hq_cnst) so that INSERT and UPDATE statements issued against the view cannot
result in rows that the view cannot select. For example, the following INSERT statement
successfully inserts a row into the departments table with the departments_hq view, which
contains all rows with location 1700:

INSERT INTO departments_hq VALUES (300, 'NETWORKING', 1700);

However, the following INSERT statement returns an error because it attempts to insert a row
for location 2700, which cannot be selected using the departments_hq view:

INSERT INTO departments_hq VALUES (301, 'TRANSPORTATION', 2700);

The view could have been constructed specifying the WITH READ ONLY clause, which prevents
any updates, inserts, or deletes from being done to the base table through the view. If no WITH
clause is specified, the view, with some restrictions, is inherently updatable.

You can also create views with invisible columns. For example, the following statements
creates the departments_hq_man view and makes the manager_id column invisible:

Chapter 23
Managing Views

23-3

CREATE VIEW departments_hq_man
 (department_id, department_name, manager_id INVISIBLE, location_id)
 AS SELECT department_id, department_name, manager_id, location_id
 FROM hr.departments
 WHERE location_id = 1700
 WITH CHECK OPTION CONSTRAINT departments_hq_man_cnst;

See Also:

• Oracle Database SQL Language Reference for syntax and semantics of the
CREATE VIEW statement

• "Understand Invisible Columns"

23.1.2.2 Creating Join Views
You can also create views that specify multiple base tables or views in the FROM clause of a
CREATE VIEW statement. These are called join views.

The following statement creates the division1_staff view that joins data from the emp and
dept tables:

CREATE VIEW division1_staff AS
 SELECT ename, empno, job, dname
 FROM emp, dept
 WHERE emp.deptno IN (10, 30)
 AND emp.deptno = dept.deptno;

An updatable join view is a join view where UPDATE, INSERT, and DELETE operations are
allowed. See "Updating a Join View" for further discussion.

23.1.2.3 Expansion of Defining Queries at View Creation Time
When a view is created, Oracle Database expands any wildcard (*) in a top-level view query
into a column list. The resulting query is stored in the data dictionary; any subqueries are left
intact.

The column names in an expanded column list are enclosed in quotation marks to account for
the possibility that the columns of the base object were originally entered with quotes and
require them for the query to be syntactically correct.

As an example, assume that the dept view is created as follows:

CREATE VIEW dept AS SELECT * FROM scott.dept;

The database stores the defining query of the dept view as:

SELECT "DEPTNO", "DNAME", "LOC" FROM scott.dept;

Views created with errors do not have wildcards expanded. However, if the view is eventually
compiled without errors, wildcards in the defining query are expanded.

Chapter 23
Managing Views

23-4

23.1.2.4 Creating Views with Errors
If there are no syntax errors in a CREATE VIEW statement, then the database can create the
view even if the defining query of the view cannot be executed. In this case, the view is
considered "created with errors."

For example, when a view is created that refers to a nonexistent table or an invalid column of
an existing table, or when the view owner does not have the required privileges, the view can
be created anyway and entered into the data dictionary. However, the view is not yet usable.

To create a view with errors, you must include the FORCE clause of the CREATE VIEW statement.

CREATE FORCE VIEW AS ...;

By default, views with errors are created as INVALID. When you try to create such a view, the
database returns a message indicating the view was created with errors. If conditions later
change so that the query of an invalid view can be executed, the view can be recompiled and
be made valid (usable). For information changing conditions and their impact on views, see
"Managing Object Dependencies".

23.1.3 Replacing Views
You can replace a view by dropping it and re-creating it or by issuing a CREATE VIEW statement
that contains the OR REPLACE clause.

To replace a view, you must have all of the privileges required to drop and create a view. If the
definition of a view must change, the view must be replaced; you cannot use an ALTER VIEW
statement to change the definition of a view. You can replace views in the following ways:

• You can drop and re-create the view.

Note:

When a view is dropped, all grants of corresponding object privileges are
revoked from roles and users. After the view is re-created, privileges must be
regranted.

• You can redefine the view with a CREATE VIEW statement that contains the OR REPLACE
clause. The OR REPLACE clause replaces the current definition of a view and preserves the
current security authorizations. For example, assume that you created the sales_staff
view as shown earlier, and, in addition, you granted several object privileges to roles and
other users. However, now you must redefine the sales_staff view to change the
department number specified in the WHERE clause. You can replace the current version of
the sales_staff view with the following statement:

CREATE OR REPLACE VIEW sales_staff AS
 SELECT empno, ename, deptno
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Before replacing a view, consider the following effects:

• Replacing a view replaces the view definition in the data dictionary. All underlying objects
referenced by the view are not affected.

Chapter 23
Managing Views

23-5

• If a constraint in the CHECK OPTION was previously defined but not included in the new view
definition, the constraint is dropped.

• All views dependent on a replaced view become invalid (not usable). In addition,
dependent PL/SQL program units may become invalid, depending on what was changed in
the new version of the view. For example, if only the WHERE clause of the view changes,
dependent PL/SQL program units remain valid. However, if any changes are made to the
number of view columns or to the view column names or data types, dependent PL/SQL
program units are invalidated. See "Managing Object Dependencies" for more information
on how the database manages such dependencies.

23.1.4 Using Views in Queries
You can query a view. You can also perform data manipulation language (DML) operations on
views, with some restrictions.

To issue a query or an INSERT, UPDATE, or DELETE statement against a view, you must have the
SELECT, READ, INSERT, UPDATE, or DELETE object privilege for the view, respectively, either
explicitly or through a role.

Views can be queried in the same manner as tables. For example, to query the
Division1_staff view, enter a valid SELECT statement that references the view:

SELECT * FROM Division1_staff;

ENAME EMPNO JOB DNAME
--
CLARK 7782 MANAGER ACCOUNTING
KING 7839 PRESIDENT ACCOUNTING
MILLER 7934 CLERK ACCOUNTING
ALLEN 7499 SALESMAN SALES
WARD 7521 SALESMAN SALES
JAMES 7900 CLERK SALES
TURNER 7844 SALESMAN SALES
MARTIN 7654 SALESMAN SALES
BLAKE 7698 MANAGER SALES

With some restrictions, rows can be inserted into, updated in, or deleted from a base table
using a view. The following statement inserts a new row into the emp table using the
sales_staff view:

INSERT INTO sales_staff
 VALUES (7954, 'OSTER', 30);

Restrictions on DML operations for views use the following criteria in the order listed:

1. If a view is defined by a query that contains SET or DISTINCT operators, a GROUP BY clause,
or a group function, then rows cannot be inserted into, updated in, or deleted from the base
tables using the view.

2. If a view is defined with WITH CHECK OPTION, a row cannot be inserted into, or updated in,
the base table (using the view), if the view cannot select the row from the base table.

3. If a NOT NULL column that does not have a DEFAULT clause is omitted from the view, then a
row cannot be inserted into the base table using the view.

4. If the view was created by using an expression, such as DECODE(deptno, 10,
"SALES", ...), then rows cannot be inserted into or updated in the base table using the
view.

Chapter 23
Managing Views

23-6

The constraint created by WITH CHECK OPTION of the sales_staff view only allows rows that
have a department number of 30 to be inserted into, or updated in, the emp table. Alternatively,
assume that the sales_staff view is defined by the following statement (that is, excluding the
deptno column):

CREATE VIEW sales_staff AS
 SELECT empno, ename
 FROM emp
 WHERE deptno = 10
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Considering this view definition, you can update the empno or ename fields of existing records,
but you cannot insert rows into the emp table through the sales_staff view because the view
does not let you alter the deptno field. If you had defined a DEFAULT value of 10 on the deptno
field, then you could perform inserts.

When a user attempts to reference an invalid view, the database returns an error message to
the user:

ORA-04063: view 'view_name' has errors

This error message is returned when a view exists but is unusable due to errors in its query
(whether it had errors when originally created or it was created successfully but became
unusable later because underlying objects were altered or dropped).

23.1.5 DML Statements and Join Views
Restrictions apply when issuing DML statements on join views.

• Updating a Join View
An updatable join view (also referred to as a modifiable join view) is a view that contains
multiple tables in the top-level FROM clause of the SELECT statement, and is not restricted by
the WITH READ ONLY clause.

• Key-Preserved Tables
A table is key-preserved if every key of the table can also be a key of the result of the join
that is based on the table. So, a key-preserved table has its keys preserved through a join.

• Rules for DML Statements and Join Views
The general rule is that any UPDATE, DELETE, or INSERT statement on a join view can modify
only one underlying base table.

• Updating Views That Involve Outer Joins
Views that involve outer joins are modifiable in some cases.

• Using the UPDATABLE_ COLUMNS Views
A set of views can assist you in identifying inherently updatable join views.

23.1.5.1 Updating a Join View
An updatable join view (also referred to as a modifiable join view) is a view that contains
multiple tables in the top-level FROM clause of the SELECT statement, and is not restricted by the
WITH READ ONLY clause.

The rules for updatable join views are shown in the following table. Views that meet these
criteria are said to be inherently updatable.

Chapter 23
Managing Views

23-7

Rule Description

General Rule Any INSERT, UPDATE, or DELETE operation on a join view can modify only one
underlying base table at a time.

UPDATE Rule Rows from a join view can be updated if the join column keys in the base
tables are unique. That is, the WHERE clause in the UPDATE statement must be
deterministic. If the base tables are not key-preserved, you must ensure that
the join column keys are unique. If the view is defined with the WITH CHECK
OPTION clause, then all join columns and all columns of repeated tables are
not updatable.

DELETE Rule Rows from a join view can be deleted as long as there is exactly one key-
preserved table in the join. The key preserved table can be repeated in the
FROM clause. If the view is defined with the WITH CHECK OPTION clause and
the key preserved table is repeated, then the rows cannot be deleted from the
view.

INSERT Rule An INSERT statement must not explicitly or implicitly refer to the columns of a
non-key-preserved table. If the join view is defined with the WITH CHECK
OPTION clause, INSERT statements are not permitted.

There are data dictionary views that indicate whether the columns in a join view are inherently
updatable. See "Using the UPDATABLE_ COLUMNS Views" for descriptions of these views.

Note:

There are some additional restrictions and conditions that can affect whether a join
view is inherently updatable. Specifics are listed in the description of the CREATE VIEW
statement in the Oracle Database SQL Language Reference.

If a view is not inherently updatable, it can be made updatable by creating an
INSTEAD OF trigger on it. See Oracle Database PL/SQL Language Reference for
information about triggers.

Additionally, if a view is a join on other nested views, then the other nested views
must be mergeable into the top level view. For a discussion of mergeable and
unmergeable views, and more generally, how the optimizer optimizes statements that
reference views, see the Oracle Database SQL Tuning Guide.

Examples illustrating the rules for inherently updatable join views, and a discussion of key-
preserved tables, are presented in following sections. The examples in these sections work
only if you explicitly define the primary and foreign keys in the tables, or define unique indexes.
The following statements create the appropriately constrained table definitions for emp and
dept.

CREATE TABLE dept (
 deptno NUMBER(4) PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp (
 empno NUMBER(4) PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 sal NUMBER(7,2),

Chapter 23
Managing Views

23-8

 comm NUMBER(7,2),
 deptno NUMBER(2),
 FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO));

You could also omit the primary and foreign key constraints listed in the preceding example,
and create a UNIQUE INDEX on dept (deptno) to make the following examples work.

The following statement created the emp_dept join view which is referenced in the examples:

CREATE VIEW emp_dept AS
 SELECT emp.empno, emp.ename, emp.deptno, emp.sal, dept.dname, dept.loc
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND dept.loc IN ('DALLAS', 'NEW YORK', 'BOSTON');

23.1.5.2 Key-Preserved Tables
A table is key-preserved if every key of the table can also be a key of the result of the join that
is based on the table. So, a key-preserved table has its keys preserved through a join.

Note:

It is not necessary that the key or keys of a table be selected for it to be key
preserved. It is sufficient that if the key or keys were selected, then they would also
be keys of the result of the join.

The concept of a key-preserved table is fundamental to understanding the restrictions on
modifying join views. Each row in a key-preserved table appears at most only once in a join
view based on this table. If a table T is joined to a table S using the condition T.col1 = S.col3,
then T is key-preserved if the join key is S.col3 are unique. The data in a table is not relevant
when determining whether a table is key-preserved. Instead, the constraints on the table
determine if a table is key-preserved. Key-preserved tables are joined with a source table
using the primary key or unique key of the source table.

For example, in the emp_dept view, because emp is joined with the primary key of dept, emp is a
key-preserved table. If, in the emp table, there was at most one employee in each department,
then deptno would be unique in the result of a join of emp and dept, but dept would still not be
a key-preserved table.

If you select all rows from the emp_dept view, the results are:

EMPNO ENAME DEPTNO DNAME LOC
---------- ---------- ------- -------------- -----------
 7782 CLARK 10 ACCOUNTING NEW YORK
 7839 KING 10 ACCOUNTING NEW YORK
 7934 MILLER 10 ACCOUNTING NEW YORK
 7369 SMITH 20 RESEARCH DALLAS
 7876 ADAMS 20 RESEARCH DALLAS
 7902 FORD 20 RESEARCH DALLAS
 7788 SCOTT 20 RESEARCH DALLAS
 7566 JONES 20 RESEARCH DALLAS
8 rows selected.

In this view, emp is a key-preserved table, because empno is a key of the emp table, and also a
key of the result of the join. dept is not a key-preserved table, because although deptno is a
key of the dept table, it is not a key of the join.

Chapter 23
Managing Views

23-9

23.1.5.3 Rules for DML Statements and Join Views
The general rule is that any UPDATE, DELETE, or INSERT statement on a join view can modify
only one underlying base table.

• UPDATE Statements and Join Views
Examples illustrate UPDATE statements that can modify join views.

• DELETE Statements and Join Views
For most join views, a delete is successful only if there is one and only one key-preserved
table in the join. The key-preserved table can be repeated in the FROM clause.

• INSERT Statements and Join Views
Examples illustrate INSERT statements that can modify join views.

23.1.5.3.1 UPDATE Statements and Join Views
Examples illustrate UPDATE statements that can modify join views.

Starting with Oracle Database Release 21c, it is not mandatory for all updatable columns in a
join view to map to columns of a key-preserved table. The columns in a non-key-preserved
table can be updated if the UPDATE operation only updates columns from a single table and the
update is deterministic, meaning that it updates each row only once.

The following example shows an UPDATE statement that successfully modifies the emp_dept
view:

UPDATE emp_dept
 SET sal = sal * 1.10
 WHERE deptno = 10;

The following UPDATE statement successfully modifies the LOC column in the DEPT table (the
non-key-preserved table) because it updates only one row in the EMP table:

UPDATE emp_dept
 SET loc = 'BOSTON'
 WHERE ename = 'SMITH';

The following UPDATE statement results in an ORA-30926 error because the update operation is
non-deterministic:

UPDATE emp_dept
 SET loc = 'BOSTON'
 WHERE ename = 'S%';

A row from the dept table is joined to multiple rows from emp table (with ename = 'SCOTT' and
ename = 'SMITH'). Therefore, an attempt is made to modify the same row multiple times. To
make the UPDATE is deterministic, ensure that a row from the dept table is only joined to one
row from emp table.

In general, all updatable columns of a join view must map to columns of a key-preserved table.
If the view is defined using the WITH CHECK OPTION clause, then all join columns and all
columns taken from tables that are referenced more than once in the view are not modifiable.

So, for example, if the emp_dept view were defined using WITH CHECK OPTION, the following
UPDATE statement would fail:

Chapter 23
Managing Views

23-10

UPDATE emp_dept
 SET deptno = 10
 WHERE ename = 'SMITH';

The statement fails because it is trying to update a join column.

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the UPDATE statement

23.1.5.3.2 DELETE Statements and Join Views
For most join views, a delete is successful only if there is one and only one key-preserved
table in the join. The key-preserved table can be repeated in the FROM clause.

The following DELETE statement works on the emp_dept view:

DELETE FROM emp_dept
 WHERE ename = 'SMITH';

This DELETE statement on the emp_dept view is valid because it can be translated to a DELETE
operation on the base emp table, and because the emp table is the only key-preserved table in
the join.

In the following view, a DELETE operation is permitted, because although there are two key-
preserved tables, they are the same table. That is, the key-preserved table is repeated. In this
case, the delete statement operates on the first table in the FROM clause (e1, in this example):

CREATE VIEW emp_emp AS
 SELECT e1.ename, e2.empno, e2.deptno
 FROM emp e1, emp e2
 WHERE e1.empno = e2.empno;

If a view is defined using the WITH CHECK OPTION clause and the key-preserved table is
repeated, rows cannot be deleted from such a view.

CREATE VIEW emp_mgr AS
 SELECT e1.ename, e2.ename mname
 FROM emp e1, emp e2
 WHERE e1.mgr = e2.empno
 WITH CHECK OPTION;

Chapter 23
Managing Views

23-11

Note:

• If the DELETE statement uses the same column in its WHERE clause that was used
to create the view as a join condition, then the delete operation can be successful
when there are different key-preserved tables in the join. In this case, the DELETE
statement operates on the first table in the FROM clause, and the tables in the
FROM clause can be different from the tables in the WHERE clause.

• The DELETE statement is successful, even if it does not use the WHERE clause.

• The DELETE statement is successful, even if it uses a different column in its WHERE
clause than the one that was used to create the view as a join condition.

• The DELETE statement operates on the second table in the FROM clause in all the
cases, because no primary key is defined on the second table.

• If a primary key is defined on the second table, then the DELETE statement
operates on the first table in the FROM clause.

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the DELETE statement

23.1.5.3.3 INSERT Statements and Join Views
Examples illustrate INSERT statements that can modify join views.

The following INSERT statement on the emp_dept view succeeds:

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES ('KURODA', 9010, 40);

This statement works because only one key-preserved base table is being modified (emp), and
40 is a valid deptno in the dept table (thus satisfying the FOREIGN KEY integrity constraint on
the emp table).

An INSERT statement, such as the following, would fail for the same reason that such an
UPDATE on the base emp table would fail: the FOREIGN KEY integrity constraint on the emp table is
violated (because there is no deptno 77).

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES ('KURODA', 9010, 77);

The following INSERT statement would fail with an error (ORA-01776 cannot modify more than
one base table through a join view):

INSERT INTO emp_dept (empno, ename, loc)
 VALUES (9010, 'KURODA', 'BOSTON');

An INSERT cannot implicitly or explicitly refer to columns of a non-key-preserved table. If the
join view is defined using the WITH CHECK OPTION clause, then you cannot perform an INSERT
to it.

Chapter 23
Managing Views

23-12

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the INSERT statement

23.1.5.4 Updating Views That Involve Outer Joins
Views that involve outer joins are modifiable in some cases.

For example:

CREATE VIEW emp_dept_oj1 AS
 SELECT empno, ename, e.deptno, dname, loc
 FROM emp e, dept d
 WHERE e.deptno = d.deptno (+);

The statement:

SELECT * FROM emp_dept_oj1;

Results in:

EMPNO ENAME DEPTNO DNAME LOC
------- ---------- ------- -------------- -------------
7369 SMITH 40 OPERATIONS BOSTON
7499 ALLEN 30 SALES CHICAGO
7566 JONES 20 RESEARCH DALLAS
7654 MARTIN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7782 CLARK 10 ACCOUNTING NEW YORK
7788 SCOTT 20 RESEARCH DALLAS
7839 KING 10 ACCOUNTING NEW YORK
7844 TURNER 30 SALES CHICAGO
7876 ADAMS 20 RESEARCH DALLAS
7900 JAMES 30 SALES CHICAGO
7902 FORD 20 RESEARCH DALLAS
7934 MILLER 10 ACCOUNTING NEW YORK
7521 WARD 30 SALES CHICAGO
14 rows selected.

Columns in the base emp table of emp_dept_oj1 are modifiable through the view, because emp
is a key-preserved table in the join.

The following view also contains an outer join:

CREATE VIEW emp_dept_oj2 AS
SELECT e.empno, e.ename, e.deptno, d.dname, d.loc
FROM emp e, dept d
WHERE e.deptno (+) = d.deptno;

The following statement:

SELECT * FROM emp_dept_oj2;

Results in:

EMPNO ENAME DEPTNO DNAME LOC
---------- ---------- --------- -------------- ----

Chapter 23
Managing Views

23-13

7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS
7499 ALLEN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7654 MARTIN 30 SALES CHICAGO
7900 JAMES 30 SALES CHICAGO
7844 TURNER 30 SALES CHICAGO
7521 WARD 30 SALES CHICAGO
 OPERATIONS BOSTON
15 rows selected.

In this view, emp is no longer a key-preserved table, because the empno column in the result of
the join can have nulls (the last row in the preceding SELECT statement). So, UPDATE, DELETE,
and INSERT operations cannot be performed on this view.

In the case of views containing an outer join on other nested views, a table is key preserved if
the view or views containing the table are merged into their outer views, all the way to the top.
A view which is being outer-joined is currently merged only if it is "simple." For example:

SELECT col1, col2, ... FROM T;

The select list of the view has no expressions.

If you are in doubt whether a view is modifiable, then you can select from the
USER_UPDATABLE_COLUMNS view to see if it is. For example:

SELECT owner, table_name, column_name, updatable FROM USER_UPDATABLE_COLUMNS
 WHERE TABLE_NAME = 'EMP_DEPT_VIEW';

This returns output similar to the following:

OWNER TABLE_NAME COLUMN_NAM UPD
---------- ---------- ---------- ---
SCOTT EMP_DEPT_V EMPNO NO
SCOTT EMP_DEPT_V ENAME NO
SCOTT EMP_DEPT_V DEPTNO NO
SCOTT EMP_DEPT_V DNAME NO
SCOTT EMP_DEPT_V LOC NO
5 rows selected.

23.1.5.5 Using the UPDATABLE_ COLUMNS Views
A set of views can assist you in identifying inherently updatable join views.

View Description

DBA_UPDATABLE_COLUMNS Shows all columns in all tables and views that are modifiable.

ALL_UPDATABLE_COLUMNS Shows all columns in all tables and views accessible to the user
that are modifiable.

USER_UPDATABLE_COLUMNS Shows all columns in all tables and views in the user's schema
that are modifiable.

The updatable columns in view emp_dept are shown below.

Chapter 23
Managing Views

23-14

SELECT COLUMN_NAME, UPDATABLE
 FROM USER_UPDATABLE_COLUMNS
 WHERE TABLE_NAME = 'EMP_DEPT';

COLUMN_NAME UPD
------------------------------ ---
EMPNO YES
ENAME YES
DEPTNO YES
SAL YES
DNAME NO
LOC NO

6 rows selected.

See Also:

Oracle Database Reference for complete descriptions of the updatable column views

23.1.6 Altering Views
You use the ALTER VIEW statement only to explicitly recompile a view that is invalid.

To change the definition of a view, see "Replacing Views".

The ALTER VIEW statement lets you locate recompilation errors before run time. To ensure that
the alteration does not affect the view or other objects that depend on it, you can explicitly
recompile a view after altering one of its base tables.

To use the ALTER VIEW statement, the view must be in your schema, or you must have the
ALTER ANY TABLE system privilege.

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the ALTER VIEW statement

23.1.7 Dropping Views
You can drop a view with the DROP VIEW statement.

You can drop any view contained in your schema. To drop a view in another user's schema,
you must have the DROP ANY VIEW system privilege. Drop a view using the DROP VIEW
statement. For example, the following statement drops the emp_dept view:

DROP VIEW emp_dept;

Chapter 23
Managing Views

23-15

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the DROP VIEW statement

23.2 Managing Sequences
You can perform tasks such as creating sequences, altering sequences, using sequences, and
dropping sequences.

• About Sequences
Sequences are database objects from which multiple users can generate unique integers.
The sequence generator generates sequential numbers, which can be used to generate
unique primary keys automatically, and to coordinate keys across multiple rows or tables.

• Creating Sequences
Create a sequence using the CREATE SEQUENCE statement.

• Altering Sequences
Alter a sequence using the ALTER SEQUENCE statement.

• Using Sequences
A sequence can be accessed and incremented by multiple users.

• Dropping Sequences
If a sequence is no longer required, you can drop the sequence using the DROP SEQUENCE
statement.

23.2.1 About Sequences
Sequences are database objects from which multiple users can generate unique integers. The
sequence generator generates sequential numbers, which can be used to generate unique
primary keys automatically, and to coordinate keys across multiple rows or tables.

Without sequences, sequential values can only be produced programmatically. A new primary
key value can be obtained by selecting the most recently produced value and incrementing it.
This method requires a lock during the transaction and causes multiple users to wait for the
next value of the primary key; this waiting is known as serialization. If developers have such
constructs in applications, then you should encourage the developers to replace them with
access to sequences. Sequences eliminate serialization and improve the concurrency of an
application.

See Also:

Oracle Database Concepts for an overview of sequences

Chapter 23
Managing Sequences

23-16

23.2.2 Creating Sequences
Create a sequence using the CREATE SEQUENCE statement.

To create a sequence in your schema, you must have the CREATE SEQUENCE system privilege.
To create a sequence in another user's schema, you must have the CREATE ANY SEQUENCE
privilege.

For example, the following statement creates a sequence used to generate employee numbers
for the empno column of the emp table:

CREATE SEQUENCE emp_sequence
 INCREMENT BY 1
 START WITH 1
 NOMAXVALUE
 NOCYCLE
 CACHE 10;

Notice that several parameters can be specified to control the function of sequences. You can
use these parameters to indicate whether the sequence is ascending or descending, the
starting point of the sequence, the minimum and maximum values, and the interval between
sequence values. The NOCYCLE option indicates that the sequence cannot generate more
values after reaching its maximum or minimum value.

The CACHE clause preallocates a set of sequence numbers and keeps them in memory so that
sequence numbers can be accessed faster. When the last of the sequence numbers in the
cache has been used, the database reads another set of numbers into the cache.

The database might skip sequence numbers if you choose to cache a set of sequence
numbers. For example, when an instance abnormally shuts down (for example, when an
instance failure occurs or a SHUTDOWN ABORT statement is issued), sequence numbers that
have been cached but not used are lost. Also, sequence numbers that have been used but not
saved are lost as well. The database might also skip cached sequence numbers after an
export and import. See Oracle Database Utilities for details.

See Also:

• Oracle Database SQL Language Reference for the CREATE SEQUENCE statement
syntax

• Oracle Real Application Clusters Administration and Deployment Guide for
information about using sequences in an Oracle Real Application Clusters
environment

23.2.3 Altering Sequences
Alter a sequence using the ALTER SEQUENCE statement.

To alter a sequence, your schema must contain the sequence, you must have the ALTER object
privilege on the sequence, or you must have the ALTER ANY SEQUENCE system privilege. You
can alter a sequence to change any of the parameters that define how it generates sequence
numbers. To change the starting point of a sequence, you can either drop the sequence and
then re-create it, or use the RESTART clause to restart the sequence. For an ascending

Chapter 23
Managing Sequences

23-17

sequence, the RESTART clause resets NEXTVAL to MINVALUE. For a descending sequence,
NEXTVAL is reset to MAXVALUE.

The following example alters the emp_sequence sequence:

ALTER SEQUENCE emp_sequence
 INCREMENT BY 10
 MAXVALUE 10000
 CYCLE
 CACHE 20;

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the ALTER SEQUENCE statement

23.2.4 Using Sequences
A sequence can be accessed and incremented by multiple users.

To use a sequence, your schema must contain the sequence or you must have been granted
the SELECT object privilege for another user's sequence. Once a sequence is defined, it can be
accessed and incremented by multiple users (who have SELECT object privilege for the
sequence containing the sequence) with no waiting. The database does not wait for a
transaction that has incremented a sequence to complete before that sequence can be
incremented again.

The examples outlined in the following sections show how sequences can be used in parent/
child table relationships. Assume an order entry system is partially comprised of two tables,
orders_tab (parent table) and line_items_tab (child table), that hold information about
customer orders. A sequence named order_seq is defined by the following statement:

CREATE SEQUENCE Order_seq
 START WITH 1
 INCREMENT BY 1
 NOMAXVALUE
 NOCYCLE
 CACHE 20;

• Referencing a Sequence
A sequence is referenced in SQL statements with the NEXTVAL and CURRVAL
pseudocolumns; each new sequence number is generated by a reference to the sequence
pseudocolumn NEXTVAL, while the current sequence number can be repeatedly referenced
using the pseudo-column CURRVAL.

• Caching Sequence Numbers
Caching sequence numbers can improve access time.

• Making a Sequence Scalable
A sequence can be made scalable by specifying the SCALE clause in the CREATE SEQUENCE
or ALTER SEQUENCE statement.

Chapter 23
Managing Sequences

23-18

23.2.4.1 Referencing a Sequence
A sequence is referenced in SQL statements with the NEXTVAL and CURRVAL pseudocolumns;
each new sequence number is generated by a reference to the sequence pseudocolumn
NEXTVAL, while the current sequence number can be repeatedly referenced using the pseudo-
column CURRVAL.

NEXTVAL and CURRVAL are not reserved words or keywords and can be used as pseudocolumn
names in SQL statements such as SELECT, INSERT, or UPDATE.

• Generating Sequence Numbers with NEXTVAL
To generate and use a sequence number, reference seq_name.NEXTVAL in a SQL
statement.

• Using Sequence Numbers with CURRVAL
To use or refer to the current sequence value of your session, reference
seq_name.CURRVAL in a SQL statement.

• Uses and Restrictions of NEXTVAL and CURRVAL
CURRVAL and NEXTVAL can be used in specific places, and restrictions apply to their use.

23.2.4.1.1 Generating Sequence Numbers with NEXTVAL
To generate and use a sequence number, reference seq_name.NEXTVAL in a SQL statement.

For example, assume a customer places an order. The sequence number can be referenced in
a values list. For example:

INSERT INTO Orders_tab (Orderno, Custno)
 VALUES (Order_seq.NEXTVAL, 1032);

Or, the sequence number can be referenced in the SET clause of an UPDATE statement. For
example:

UPDATE Orders_tab
 SET Orderno = Order_seq.NEXTVAL
 WHERE Orderno = 10112;

The sequence number can also be referenced outermost SELECT of a query or subquery. For
example:

SELECT Order_seq.NEXTVAL FROM dual;

As defined, the first reference to order_seq.NEXTVAL returns the value 1. Each subsequent
statement that references order_seq.NEXTVAL generates the next sequence number (2, 3,
4,. . .). The pseudo-column NEXTVAL can be used to generate as many new sequence numbers
as necessary. However, only a single sequence number can be generated for each row. In
other words, if NEXTVAL is referenced more than once in a single statement, then the first
reference generates the next number, and all subsequent references in the statement return
the same number.

Once a sequence number is generated, the sequence number is available only to the session
that generated the number. Independent of transactions committing or rolling back, other users
referencing order_seq.NEXTVAL obtain unique values. If two users are accessing the same
sequence concurrently, then the sequence numbers each user receives might have gaps
because sequence numbers are also being generated by the other user.

Chapter 23
Managing Sequences

23-19

23.2.4.1.2 Using Sequence Numbers with CURRVAL
To use or refer to the current sequence value of your session, reference seq_name.CURRVAL in
a SQL statement.

CURRVAL can only be used if seq_name.NEXTVAL has been referenced in the current user
session (in the current or a previous transaction). CURRVAL can be referenced as many times as
necessary, including multiple times within the same statement. The next sequence number is
not generated until NEXTVAL is referenced. Continuing with the previous example, you would
finish placing the customer's order by inserting the line items for the order:

INSERT INTO Line_items_tab (Orderno, Partno, Quantity)
 VALUES (Order_seq.CURRVAL, 20321, 3);

INSERT INTO Line_items_tab (Orderno, Partno, Quantity)
 VALUES (Order_seq.CURRVAL, 29374, 1);

Assuming the INSERT statement given in the previous section generated a new sequence
number of 347, both rows inserted by the statements in this section insert rows with order
numbers of 347.

23.2.4.1.3 Uses and Restrictions of NEXTVAL and CURRVAL
CURRVAL and NEXTVAL can be used in specific places, and restrictions apply to their use.

CURRVAL and NEXTVAL can be used in the following places:

• VALUES clause of INSERT statements

• The SELECT list of a SELECT statement

• A view query or materialized view query

However, the use of CURRVAL and NEXTVAL in a materialized view query makes the
materialized view complex. Therefore, it cannot be fast refreshed.

• The SET clause of an UPDATE statement

CURRVAL and NEXTVAL cannot be used in these places:

• A subquery

• A SELECT statement with the DISTINCT operator

• A SELECT statement with a GROUP BY or ORDER BY clause

• A SELECT statement that is combined with another SELECT statement with the UNION,
INTERSECT, or MINUS set operator

• The WHERE clause of a SELECT statement

• The condition of a CHECK constraint

23.2.4.2 Caching Sequence Numbers
Caching sequence numbers can improve access time.

• About Caching Sequence Numbers
Sequence numbers can be kept in the sequence cache in the System Global Area (SGA).
Sequence numbers can be accessed more quickly in the sequence cache than they can
be read from disk.

Chapter 23
Managing Sequences

23-20

• About Automatic Sizing of the Sequence Cache
Automatic resizing of the sequence cache improves performance significantly for fast insert
workloads that use sequences.

• The Number of Entries in the Sequence Cache
When an application accesses a sequence in the sequence cache, the sequence numbers
are read quickly. However, if an application accesses a sequence that is not in the cache,
then the sequence must be read from disk to the cache before the sequence numbers are
used.

• The Number of Values in Each Sequence Cache Entry
When a sequence is read into the sequence cache, sequence values are generated and
stored in a cache entry. These values can then be accessed quickly.

23.2.4.2.1 About Caching Sequence Numbers
Sequence numbers can be kept in the sequence cache in the System Global Area (SGA).
Sequence numbers can be accessed more quickly in the sequence cache than they can be
read from disk.

The sequence cache consists of entries. Each entry can hold many sequence numbers for a
single sequence.

Follow these guidelines for fast access to all sequence numbers:

• Be sure the sequence cache can hold all the sequences used concurrently by your
applications.

• Increase the number of values for each sequence held in the sequence cache.

23.2.4.2.2 About Automatic Sizing of the Sequence Cache
Automatic resizing of the sequence cache improves performance significantly for fast insert
workloads that use sequences.

The automatic sequence cache size on each instance is dynamically computed based on the
rate of usage of sequence numbers. Each instance caches the maximum of the manually
configured sequence cache size and the projected cache size requirement for the next 10
seconds. Based on the sequence usage, the sequence cache size can shrink or grow. The
minimum size to which the cache can shrink is the manually configured cache size. To prevent
the sequence cache size from growing indefinitely, the cache size and each increment in the
cache size is capped.

For cycle sequences, the upper bound for the automatic sequence cache size is the size of
one cycle.

23.2.4.2.3 The Number of Entries in the Sequence Cache
When an application accesses a sequence in the sequence cache, the sequence numbers are
read quickly. However, if an application accesses a sequence that is not in the cache, then the
sequence must be read from disk to the cache before the sequence numbers are used.

If your applications use many sequences concurrently, then your sequence cache might not be
large enough to hold all the sequences. In this case, access to sequence numbers might often
require disk reads. For fast access to all sequences, be sure your cache has enough entries to
hold all the sequences used concurrently by your applications.

Chapter 23
Managing Sequences

23-21

Automatic Sizing of Sequence Cache

Starting with Oracle Database 21c, the size of the sequence cache on each instance is
dynamically computed. The automatic sequence cache size is based on the rate of usage of
sequence numbers. Each instance caches the maximum of the manually configured sequence
cache size and the projected cache size requirement for the next 10 seconds. Based on the
sequence usage, the sequence cache size can shrink or grow. To prevent the sequence cache
size from growing indefinitely, the cache size and each increment in the cache size is capped.

Restrictions on automatic sequence cache size include the following:

• For cycle sequences, the upper bound for the automatic sequence cache size is the size of
one cycle.

.

• Automatic sequence caching is not available for ordered sequences on Oracle Real
Application Clusters (Oracle RAC).

Note:

Automatic tuning of sequence cache sizes is available with Oracle Autonomous
Database only.

23.2.4.2.4 The Number of Values in Each Sequence Cache Entry
When a sequence is read into the sequence cache, sequence values are generated and stored
in a cache entry. These values can then be accessed quickly.

The number of sequence values stored in the cache is determined by the CACHE parameter in
the CREATE SEQUENCE statement. The default value for this parameter is 20.

This CREATE SEQUENCE statement creates the seq2 sequence so that 50 values of the sequence
are stored in the SEQUENCE cache:

CREATE SEQUENCE seq2
 CACHE 50;

The first 50 values of seq2 can then be read from the cache. When the 51st value is accessed,
the next 50 values will be read from disk.

Choosing a high value for CACHE lets you access more successive sequence numbers with
fewer reads from disk to the sequence cache. However, if there is an instance failure, then all
sequence values in the cache are lost. Cached sequence numbers also could be skipped after
an export and import if transactions continue to access the sequence numbers while the export
is running.

If you use the NOCACHE option in the CREATE SEQUENCE statement, then the values of the
sequence are not stored in the sequence cache. In this case, every access to the sequence
requires a disk read. Such disk reads slow access to the sequence. This CREATE SEQUENCE
statement creates the SEQ3 sequence so that its values are never stored in the cache:

CREATE SEQUENCE seq3
 NOCACHE;

Chapter 23
Managing Sequences

23-22

23.2.4.3 Making a Sequence Scalable
A sequence can be made scalable by specifying the SCALE clause in the CREATE SEQUENCE or
ALTER SEQUENCE statement.

A scalable sequence is particularly efficient when used to generate unordered primary or
unique keys for data ingestion workloads having high level of concurrency. Single Oracle
database instances as well as Oracle RAC databases benefit from this feature. Scalable
sequences significantly reduce the sequence and index block contention and provide better
data load scalability compared to the solution of configuring a very large sequence cache using
the CACHE clause of CREATE SEQUENCE or ALTER SEQUENCE statement.

Note:

In addition to using a scalable sequence, you can also partition the data to increase
the performance of a data load operation.

The following is the syntax for defining a scalable sequence:

CREATE | ALTER SEQUENCE sequence_name
 ...
 SCALE [EXTEND | NOEXTEND] | NOSCALE
 ...

When the SCALE clause is specified, a 6 digit numeric scalable sequence offset number is
prefixed to the digits of the sequence:

 scalable sequence number = 6 digit scalable sequence offset number ||
normal sequence number

where,

• || is the concatenation operator.

• 6 digit scalable sequence offset number = 3 digit instance offset number || 3 digit session
offset number.

The 3 digit instance offset number is generated as [(instance id % 100) + 100]. The 3
digit session offset number is generated as [session id % 1000].

Additionally, you can also specify EXTEND or NOEXTEND option for the SCALE clause:

• EXTEND option

When the EXTEND option is specified for the SCALE clause, the scalable sequence values
are of the length [X digits + Y digits], where X is the number of digits in the scalable
sequence offset number (default is 6 digits), and Y is the number of digits specified in the
MAXVALUE clause.

Chapter 23
Managing Sequences

23-23

For example, for an ascending scalable sequence with MINVALUE of 1, MAXVALUE of 100 (3
digits), and EXTEND option specified, the scalable sequence values will be of 9 digits (6 digit
scalable sequence offset number + 3 digit MAXVALUE) and will be of the form:

 6 digit scalable sequence offset number || 001
 6 digit scalable sequence offset number || 002
 6 digit scalable sequence offset number || 003
 ...
 6 digit scalable sequence offset number || 100

• NOEXTEND option

When the NOEXTEND option is specified for the SCALE clause, which is the default option, the
number of scalable sequence digits cannot exceed the number of digits specified in the
MAXVALUE clause.

For example, for an ascending scalable sequence with MINVALUE of 1, MAXVALUE of
1000000 (7 digits), and NOEXTEND option specified, the scalable sequence values will be of
7 digits, because MAXVALUE of 1000000 contains 7 digits, and will be of the form:

 6 digit scalable sequence offset number || 1
 6 digit scalable sequence offset number || 2
 6 digit scalable sequence offset number || 3
 ...
 6 digit scalable sequence offset number || 9

Note that the NEXTVAL operation on this scalable sequence after the sequence value of [6
digit scalable sequence offset number || 9] will report the following error message,
because the next scalable sequence value is [6 digit scalable sequence offset
number || 10], which contains 8 digits and is greater than MAXVALUE of 1000000 that
contains 7 digits:

ORA-64603: NEXTVAL cannot be instantiated for SQ. Widen the sequence by 1
digits or alter sequence with SCALE EXTEND.

Note:

The NOEXTEND option is useful for integration with the existing applications where
sequences are used to populate fixed width columns.

To convert an existing scalable sequence to a non-scalable sequence, use the NOSCALE clause
in the ALTER SEQUENCE statement.

Note:

Oracle recommends that you should not specify ordering for a scalable sequence,
because scalable sequence numbers are globally unordered.

Chapter 23
Managing Sequences

23-24

To know whether a sequence is scalable or whether a scalable sequence is extendable, check
the values of the following columns of the DBA_SEQUENCES, USER_SEQUENCES, and
ALL_SEQUENCES views.

Table 23-1 Columns Related to Scalable Sequences in the DBA_SEQUENCES,
USER_SEQUENCES, and ALL_SEQUENCES Views

Column Name Description

SCALE_FLAG Indicates whether the sequence is a scalable sequence:

• Y
• N

EXTEND_FLAG Indicates whether the scalable sequence is extendable, that is, whether the
EXTEND option is applied for the scalable sequence, so that sequence values can
extend beyond the value specified for MAXVALUE:

• Y
• N

23.2.5 Dropping Sequences
If a sequence is no longer required, you can drop the sequence using the DROP SEQUENCE
statement.

You can drop any sequence in your schema. To drop a sequence in another schema, you must
have the DROP ANY SEQUENCE system privilege. For example, the following statement drops the
order_seq sequence:

DROP SEQUENCE order_seq;

When a sequence is dropped, its definition is removed from the data dictionary. Any synonyms
for the sequence remain, but return an error when referenced.

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the DROP SEQUENCE statement

23.3 Managing Synonyms
You can perform tasks such as creating synonyms, using synonyms, and dropping synonyms.

• About Synonyms
A synonym is an alias for a schema object.

• Creating Synonyms
Create a synonym using the CREATE SYNONYM statement.

• Using Synonyms in DML Statements
A synonym can be referenced in a DML statement the same way that the underlying object
of the synonym can be referenced.

Chapter 23
Managing Synonyms

23-25

• Dropping Synonyms
Drop a synonym that is no longer required using DROP SYNONYM statement. To drop a
private synonym, omit the PUBLIC keyword. To drop a public synonym, include the PUBLIC
keyword.

23.3.1 About Synonyms
A synonym is an alias for a schema object.

Synonyms can provide a level of security by masking the name and owner of an object and by
providing location transparency for remote objects of a distributed database. Also, they are
convenient to use and reduce the complexity of SQL statements for database users.

Synonyms allow underlying objects to be renamed or moved, where only the synonym must be
redefined and applications based on the synonym continue to function without modification.

You can create both public and private synonyms. A public synonym is owned by the special
user group named PUBLIC and is accessible to every user in a database. A private synonym is
contained in the schema of a specific user and available only to the user and to grantees for
the underlying object.

Synonyms themselves are not securable. When you grant object privileges on a synonym, you
are really granting privileges on the underlying object, and the synonym is acting only as an
alias for the object in the GRANT statement.

See Also:

Oracle Database Concepts for a more complete description of synonyms

23.3.2 Creating Synonyms
Create a synonym using the CREATE SYNONYM statement.

To create a private synonym in your own schema, you must have the CREATE SYNONYM
privilege. To create a private synonym in another user's schema, you must have the CREATE
ANY SYNONYM privilege. To create a public synonym, you must have the CREATE PUBLIC
SYNONYM system privilege.

When you create a synonym, the underlying schema object need not exist, nor do you need
privileges to access the object for the CREATE SYNONYM statement to succeed. The following
statement creates a public synonym named public_emp on the emp table contained in the
schema of jward:

CREATE PUBLIC SYNONYM public_emp FOR jward.emp

When you create a synonym for a remote procedure or function, you must qualify the remote
object with its schema name. Alternatively, you can create a local public synonym on the
database where the remote object resides, in which case the database link must be included in
all subsequent calls to the procedure or function.

Chapter 23
Managing Synonyms

23-26

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the CREATE SYNONYM statement

23.3.3 Using Synonyms in DML Statements
A synonym can be referenced in a DML statement the same way that the underlying object of
the synonym can be referenced.

You can successfully use any private synonym contained in your schema or any public
synonym, assuming that you have the necessary privileges to access the underlying object,
either explicitly, from an enabled role, or from PUBLIC. You can also reference any private
synonym contained in another schema if you have been granted the necessary object
privileges for the underlying object.

You can reference another user's synonym using only the object privileges that you have been
granted. For example, if you have only the SELECT privilege on the jward.emp table, and the
synonym jward.employee is created for jward.emp, you can query the jward.employee
synonym, but you cannot insert rows using the jward.employee synonym.

For example, if a synonym named employee refers to a table or view, then the following
statement is valid:

INSERT INTO employee (empno, ename, job)
 VALUES (emp_sequence.NEXTVAL, 'SMITH', 'CLERK');

If the synonym named fire_emp refers to a standalone procedure or package procedure, then
you could execute it with the command

EXECUTE Fire_emp(7344);

23.3.4 Dropping Synonyms
Drop a synonym that is no longer required using DROP SYNONYM statement. To drop a private
synonym, omit the PUBLIC keyword. To drop a public synonym, include the PUBLIC keyword.

You can drop any private synonym in your own schema. To drop a private synonym in another
user's schema, you must have the DROP ANY SYNONYM system privilege. To drop a public
synonym, you must have the DROP PUBLIC SYNONYM system privilege.

For example, the following statement drops the private synonym named emp:

DROP SYNONYM emp;

The following statement drops the public synonym named public_emp:

DROP PUBLIC SYNONYM public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All objects that
reference a dropped synonym remain. However, they become invalid (not usable). For more
information about how dropping synonyms can affect other schema objects, see "Managing
Object Dependencies".

Chapter 23
Managing Synonyms

23-27

See Also:

Oracle Database SQL Language Reference for syntax and additional information
about the DROP SYNONYM statement

23.4 Views, Synonyms, and Sequences Data Dictionary Views
You can query data dictionary views for information about views, synonyms, and sequences.

The following views display information about views, synonyms, and sequences:

View Description

DBA_VIEWS
ALL_VIEWS
USER_VIEWS

DBA view describes all views in the database. ALL view is
restricted to views accessible to the current user. USER view is
restricted to views owned by the current user.

DBA_SYNONYMS
ALL_SYNONYMS
USER_SYNONYMS

These views describe synonyms.

DBA_SEQUENCES
ALL_SEQUENCES
USER_SEQUENCES

These views describe sequences.

DBA_UPDATABLE_COLUMNS
ALL_UPDATABLE_COLUMNS
USER_UPDATABLE_COLUMNS

These views describe all columns in join views that are
updatable.

Chapter 23
Views, Synonyms, and Sequences Data Dictionary Views

23-28

24
Repairing Corrupted Data

You can detect and correct data block corruption.

Note:

If you are not familiar with the DBMS_REPAIR package, then it is recommended that
you work with an Oracle Support Services analyst when performing any of the repair
procedures included in this package.

• Options for Repairing Data Block Corruption
Oracle Database provides different methods for detecting and correcting data block
corruption.

• About the DBMS_REPAIR Package
The DBMS_REPAIR package contains data corruption repair procedures that enable you to
detect and repair corrupt blocks in tables and indexes.

• Using the DBMS_REPAIR Package
You can use the DBMS_REPAIR package to address data block corruption:

• DBMS_REPAIR Examples
Examples illustrate how to use the DBMS_REPAIR package.

24.1 Options for Repairing Data Block Corruption
Oracle Database provides different methods for detecting and correcting data block corruption.

One method of correction is to drop and re-create an object after the corruption is detected.
However, this is not always possible or desirable. If data block corruption is limited to a subset
of rows, then another option is to rebuild the table by selecting all data except for the corrupt
rows.

Another way to manage data block corruption is to use the DBMS_REPAIR package. You can use
DBMS_REPAIR to detect and repair corrupt blocks in tables and indexes. You can continue to use
objects while you attempt to rebuild or repair them.

You can also use the Recovery Manager (RMAN) command RECOVER BLOCK to recover a
corrupt data block or set of data blocks.

Note:

Any corruption that involves the loss of data requires analysis and understanding of
how that data fits into the overall database system. Depending on the nature of the
repair, you might lose data, and logical inconsistencies can be introduced. You must
determine whether the repair approach provided by this package is the appropriate
tool for each specific corruption problem.

24-1

See Also:

Oracle Database Backup and Recovery Reference for more information about the
RECOVER BLOCK RMAN command

24.2 About the DBMS_REPAIR Package
The DBMS_REPAIR package contains data corruption repair procedures that enable you to detect
and repair corrupt blocks in tables and indexes.

• DBMS_REPAIR Procedures
Procedures in the DBMS_REPAIR package enable you to detect and repair corrupt blocks.

• Limitations and Restrictions for DBMS_REPAIR Procedures
Some limitations and restrictions apply to DBMS_REPAIR procedures.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on
the syntax, restrictions, and exceptions for the DBMS_REPAIR procedures

24.2.1 DBMS_REPAIR Procedures
Procedures in the DBMS_REPAIR package enable you to detect and repair corrupt blocks.

The following table lists the procedures included in the DBMS_REPAIR package.

Procedure Name Description

ADMIN_TABLES Provides administrative functions (create, drop, purge) for repair or
orphan key tables.

Note: These tables are always created in the SYS schema.

CHECK_OBJECT Detects and reports corruptions in a table or index

DUMP_ORPHAN_KEYS Reports on index entries that point to rows in corrupt data blocks

FIX_CORRUPT_BLOCKS Marks blocks as software corrupt that have been previously identified
as corrupt by the CHECK_OBJECT procedure

REBUILD_FREELISTS Rebuilds the free lists of the object

SEGMENT_FIX_STATUS Provides the capability to fix the corrupted state of a bitmap entry
when segment space management is AUTO

SKIP_CORRUPT_BLOCKS When used, ignores blocks marked corrupt during table and index
scans. If not used, you get error ORA-01578 when encountering
blocks marked corrupt.

These procedures are further described, with examples of their use, in "DBMS_REPAIR
Examples".

Chapter 24
About the DBMS_REPAIR Package

24-2

24.2.2 Limitations and Restrictions for DBMS_REPAIR Procedures
Some limitations and restrictions apply to DBMS_REPAIR procedures.

DBMS_REPAIR procedures have the following limitations:

• Tables with LOB data types, nested tables, and varrays are supported, but the out-of-line
columns are ignored.

• Clusters are supported in the SKIP_CORRUPT_BLOCKS and REBUILD_FREELISTS procedures,
but not in the CHECK_OBJECT procedure.

• Index-organized tables and LOB indexes are not supported.

• Global temporary tables are not supported.

• The DUMP_ORPHAN_KEYS procedure does not operate on bitmap indexes or function-based
indexes.

• The DUMP_ORPHAN_KEYS procedure processes keys that are no more than 3,950 bytes long.

24.3 Using the DBMS_REPAIR Package
You can use the DBMS_REPAIR package to address data block corruption:

• Task 1: Detect and Report Corruptions
The first task is the detection and reporting of corruptions. Reporting not only indicates
what is wrong with a block, but also identifies the associated repair directive.

• Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
Before using DBMS_REPAIR you must weigh the benefits of its use in relation to the liabilities.
You should also examine other options available for addressing corrupt objects.

• Task 3: Make Objects Usable
DBMS_REPAIR makes the object usable by ignoring corruptions during table and index
scans.

• Task 4: Repair Corruptions and Rebuild Lost Data
After making an object usable, perform the following repair activities.

24.3.1 Task 1: Detect and Report Corruptions
The first task is the detection and reporting of corruptions. Reporting not only indicates what is
wrong with a block, but also identifies the associated repair directive.

• About Detecting and Reporting Corruptions
There are several ways to detect corruptions.

• DBMS_REPAIR: Using the CHECK_OBJECT and ADMIN_TABLES Procedures
The CHECK_OBJECT procedure checks and reports block corruptions for a specified object.
The ADMIN_TABLES procedure creates a repair table that facilitates correcting corruptions.

• DB_VERIFY: Performing an Offline Database Check
Use DB_VERIFY as an offline diagnostic utility when you encounter data corruption.

• ANALYZE: Reporting Corruption
The ANALYZE TABLE...VALIDATE STRUCTURE statement validates the structure of the
analyzed object. If the database encounters corruption in the structure of the object, then
an error message is returned. In this case, drop and re-create the object.

Chapter 24
Using the DBMS_REPAIR Package

24-3

• DB_BLOCK_CHECKING Initialization Parameter
You can enable database block checking by setting the DB_BLOCK_CHECKING initialization
parameter to TRUE.

24.3.1.1 About Detecting and Reporting Corruptions
There are several ways to detect corruptions.

Table 24-1 describes the different detection methodologies.

Table 24-1 Comparison of Corruption Detection Methods

Detection Method Description

DBMS_REPAIR PL/SQL package Performs block checking for a specified table, partition, or index. It
populates a repair table with results.

DB_VERIFY utility Performs block checking on an offline database

ANALYZE TABLE SQL statement Used with the VALIDATE STRUCTURE option, the ANALYZE TABLE
statement verifies the integrity of the structure of an index, table, or
cluster; checks or verifies that tables and indexes are
synchronized.

DB_BLOCK_CHECKING initialization
parameter

When DB_BLOCK_CHECKING=TRUE, corrupt blocks are identified
before they are marked corrupt. Checks are performed when
changes are made to a block.

24.3.1.2 DBMS_REPAIR: Using the CHECK_OBJECT and ADMIN_TABLES
Procedures

The CHECK_OBJECT procedure checks and reports block corruptions for a specified object. The
ADMIN_TABLES procedure creates a repair table that facilitates correcting corruptions.

The CHECK_OBJECT procedure is similar to the ANALYZE...VALIDATE STRUCTURE statement for
indexes and tables, block checking is performed for index and data blocks.

Not only does CHECK_OBJECT report corruptions, but it also identifies any fixes that would occur
if FIX_CORRUPT_BLOCKS is subsequently run on the object. This information is made available by
populating a repair table, which must first be created by the ADMIN_TABLES procedure.

After you run the CHECK_OBJECT procedure, a simple query on the repair table shows the
corruptions and repair directives for the object. With this information, you can assess how best
to address the reported problems.

24.3.1.3 DB_VERIFY: Performing an Offline Database Check
Use DB_VERIFY as an offline diagnostic utility when you encounter data corruption.

See Also:

Oracle Database Utilities for more information about DB_VERIFY

Chapter 24
Using the DBMS_REPAIR Package

24-4

24.3.1.4 ANALYZE: Reporting Corruption
The ANALYZE TABLE...VALIDATE STRUCTURE statement validates the structure of the analyzed
object. If the database encounters corruption in the structure of the object, then an error
message is returned. In this case, drop and re-create the object.

You can use the CASCADE clause of the ANALYZE TABLE statement to check the structure of the
table and all of its indexes in one operation. Because this operation can consume significant
resources, there is a FAST option that performs a lightweight check. See "Validating Tables,
Indexes, Clusters, and Materialized Views" for details.

See Also:

• Oracle Database SQL Language Reference for more information about the
ANALYZE statement

24.3.1.5 DB_BLOCK_CHECKING Initialization Parameter
You can enable database block checking by setting the DB_BLOCK_CHECKING initialization
parameter to TRUE.

This checks data and index blocks for internal consistency whenever they are modified.
DB_BLOCK_CHECKING is a dynamic parameter, modifiable by the ALTER SYSTEM SET statement.
Block checking is always enabled for the system tablespace.

Caution:

Before enabling block checking with this parameter, Oracle recommends that you
detect and repair any logical corruptions in the database. Otherwise, a block that
contain logical corruption will be marked as "soft corrupt" after block checking is
enabled and the block is modified by a DML statement. This will result in ORA-1578
errors and the block will be unreadable.

See Also:

Oracle Database Reference for more information about the DB_BLOCK_CHECKING
initialization parameter.

Oracle Database Backup and Recovery User’s Guide for more information about
detecting and repairing logical corruptions.

Chapter 24
Using the DBMS_REPAIR Package

24-5

24.3.2 Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
Before using DBMS_REPAIR you must weigh the benefits of its use in relation to the liabilities.
You should also examine other options available for addressing corrupt objects.

Begin by answering the following questions:

• What is the extent of the corruption?

To determine if there are corruptions and repair actions, execute the CHECK_OBJECT
procedure and query the repair table.

• What other options are available for addressing block corruptions? Consider the following:

– If the data is available from another source, then drop, re-create, and repopulate the
object.

– Issue the CREATE TABLE...AS SELECT statement from the corrupt table to create a new
one.

– Ignore the corruption by excluding corrupt rows from SELECT statements.

– Perform media recovery.

• What logical corruptions or side effects are introduced when you use DBMS_REPAIR to make
an object usable? Can these be addressed? What is the effort required to do so?

You might not have access to rows in blocks marked corrupt. However, a block can be
marked corrupt even if there are rows that you can validly access.

It is also possible that referential integrity constraints are broken when blocks are marked
corrupt. If this occurs, then disable and reenable the constraint; any inconsistencies are
reported. After fixing all problems, you should be able to reenable the constraint.

Logical corruption can occur when there are triggers defined on the table. For example, if
rows are reinserted, should insert triggers be fired or not? You can address these issues
only if you understand triggers and their use in your installation.

If indexes and tables are not synchronized, then execute the DUMP_ORPHAN_KEYS procedure
to obtain information from the keys that might be useful in rebuilding corrupted data. Then
issue the ALTER INDEX...REBUILD ONLINE statement to synchronize the table with its
indexes.

• If repair involves loss of data, can this data be retrieved?

You can retrieve data from the index when a data block is marked corrupt. The
DUMP_ORPHAN_KEYS procedure can help you retrieve this information.

24.3.3 Task 3: Make Objects Usable
DBMS_REPAIR makes the object usable by ignoring corruptions during table and index scans.

• Corruption Repair: Using the FIX_CORRUPT_BLOCKS and SKIP_CORRUPT_BLOCKS
Procedures
You can make a corrupt object usable by establishing an environment that skips
corruptions that remain outside the scope of DBMS_REPAIR capabilities.

• Implications When Skipping Corrupt Blocks
When skipping corrupt blocks, a query can return different results in some situations.

Chapter 24
Using the DBMS_REPAIR Package

24-6

24.3.3.1 Corruption Repair: Using the FIX_CORRUPT_BLOCKS and
SKIP_CORRUPT_BLOCKS Procedures

You can make a corrupt object usable by establishing an environment that skips corruptions
that remain outside the scope of DBMS_REPAIR capabilities.

If corruptions involve a loss of data, such as a bad row in a data block, then all such blocks are
marked corrupt by the FIX_CORRUPT_BLOCKS procedure. Then you can run the
SKIP_CORRUPT_BLOCKS procedure, which skips blocks that are marked as corrupt. When the
SKIP_FLAG parameter in the procedure is set, table and index scans skip all blocks marked
corrupt. This applies to both media and software corrupt blocks.

24.3.3.2 Implications When Skipping Corrupt Blocks
When skipping corrupt blocks, a query can return different results in some situations.

If an index and table are not synchronized, then a SET TRANSACTION READ ONLY transaction
can be inconsistent in situations where one query probes only the index, and a subsequent
query probes both the index and the table. If the table block is marked corrupt, then the two
queries return different results, thereby breaking the rules of a read-only transaction. One way
to approach this is not to skip corruptions in a SET TRANSACTION READ ONLY transaction.

A similar issue occurs when selecting rows that are chained. A query of the same row may or
may not access the corruption, producing different results.

24.3.4 Task 4: Repair Corruptions and Rebuild Lost Data
After making an object usable, perform the following repair activities.

• Recover Data Using the DUMP_ORPHAN_KEYS Procedures
The DUMP_ORPHAN_KEYS procedure reports on index entries that point to rows in corrupt
data blocks. All such index entries are inserted into an orphan key table that stores the key
and rowid of the corruption.

• Fix Segment Bitmaps Using the SEGMENT_FIX_STATUS Procedure
Use the SEGMENT_FIX_STATUS procedure if free space in segments is being managed by
using bitmaps (SEGMENT SPACE MANAGEMENT AUTO).

24.3.4.1 Recover Data Using the DUMP_ORPHAN_KEYS Procedures
The DUMP_ORPHAN_KEYS procedure reports on index entries that point to rows in corrupt data
blocks. All such index entries are inserted into an orphan key table that stores the key and
rowid of the corruption.

After the index entry information has been retrieved, you can rebuild the index using the ALTER
INDEX...REBUILD ONLINE statement.

24.3.4.2 Fix Segment Bitmaps Using the SEGMENT_FIX_STATUS Procedure
Use the SEGMENT_FIX_STATUS procedure if free space in segments is being managed by using
bitmaps (SEGMENT SPACE MANAGEMENT AUTO).

Chapter 24
Using the DBMS_REPAIR Package

24-7

This procedure recalculates the state of a bitmap entry based on the current contents of the
corresponding block. Alternatively, you can specify that a bitmap entry be set to a specific
value. Usually the state is recalculated correctly and there is no need to force a setting.

24.4 DBMS_REPAIR Examples
Examples illustrate how to use the DBMS_REPAIR package.

• Examples: Building a Repair Table or Orphan Key Table
A repair table provides information about the corruptions. An orphan key table provides
information about index entries that point to corrupt rows.

• Example: Detecting Corruption
An example illustrates detecting corruption with the CHECK_OBJECT procedure.

• Example: Fixing Corrupt Blocks
An example illustrates fixing corrupt blocks with the FIX_CORRUPT_BLOCKS procedure.

• Example: Finding Index Entries Pointing to Corrupt Data Blocks
An example illustrates finding index entries pointing to corrupt data blocks using the
DUMP_ORPHAN_KEYS procedure.

• Example: Skipping Corrupt Blocks
An example illustrates skipping corrupt blocks using the SKIP_CORRUPT_BLOCKS procedure.

24.4.1 Examples: Building a Repair Table or Orphan Key Table
A repair table provides information about the corruptions. An orphan key table provides
information about index entries that point to corrupt rows.

• About Repair Tables or Orphan Key Tables
The ADMIN_TABLES procedure is used to create, purge, or drop a repair table or an orphan
key table.

• Example: Creating a Repair Table
An example illustrates creating a repair table using the ADMIN_TABLES procedure.

• Example: Creating an Orphan Key Table
An example illustrates creating an orphan key table using the ADMIN_TABLES procedure.

24.4.1.1 About Repair Tables or Orphan Key Tables
The ADMIN_TABLES procedure is used to create, purge, or drop a repair table or an orphan key
table.

A repair table provides information about the corruptions that were found by the CHECK_OBJECT
procedure and how these will be addressed if the FIX_CORRUPT_BLOCKS procedure is run.
Further, it is used to drive the execution of the FIX_CORRUPT_BLOCKS procedure.

An orphan key table is used when the DUMP_ORPHAN_KEYS procedure is executed and it
discovers index entries that point to corrupt rows. The DUMP_ORPHAN_KEYS procedure populates
the orphan key table by logging its activity and providing the index information in a usable
manner.

Chapter 24
DBMS_REPAIR Examples

24-8

24.4.1.2 Example: Creating a Repair Table
An example illustrates creating a repair table using the ADMIN_TABLES procedure.

The following example creates a repair table for the users tablespace.

BEGIN
 DBMS_REPAIR.ADMIN_TABLES (
 TABLE_NAME => 'REPAIR_TABLE',
 TABLE_TYPE => dbms_repair.repair_table,
 ACTION => dbms_repair.create_action,
 TABLESPACE => 'USERS');
END;
/

For each repair or orphan key table, a view is also created that eliminates any rows that pertain
to objects that no longer exist. The name of the view corresponds to the name of the repair or
orphan key table and is prefixed by DBA_ (for example, DBA_REPAIR_TABLE or
DBA_ORPHAN_KEY_TABLE).

The following query describes the repair table that was created for the users tablespace.

DESC REPAIR_TABLE

 Name Null? Type
 ---------------------------- -------- --------------
 OBJECT_ID NOT NULL NUMBER
 TABLESPACE_ID NOT NULL NUMBER
 RELATIVE_FILE_ID NOT NULL NUMBER
 BLOCK_ID NOT NULL NUMBER
 CORRUPT_TYPE NOT NULL NUMBER
 SCHEMA_NAME NOT NULL VARCHAR2(128)
 OBJECT_NAME NOT NULL VARCHAR2(128)
 BASEOBJECT_NAME VARCHAR2(128)
 PARTITION_NAME VARCHAR2(128)
 CORRUPT_DESCRIPTION VARCHAR2(2000)
 REPAIR_DESCRIPTION VARCHAR2(200)
 MARKED_CORRUPT NOT NULL VARCHAR2(10)
 CHECK_TIMESTAMP NOT NULL DATE
 FIX_TIMESTAMP DATE
 REFORMAT_TIMESTAMP DATE

24.4.1.3 Example: Creating an Orphan Key Table
An example illustrates creating an orphan key table using the ADMIN_TABLES procedure.

This example illustrates the creation of an orphan key table for the users tablespace.

BEGIN
 DBMS_REPAIR.ADMIN_TABLES (
 TABLE_NAME => 'ORPHAN_KEY_TABLE',
 TABLE_TYPE => dbms_repair.orphan_table,
 ACTION => dbms_repair.create_action,
 TABLESPACE => 'USERS');
END;
/

The orphan key table is described in the following query:

Chapter 24
DBMS_REPAIR Examples

24-9

DESC ORPHAN_KEY_TABLE

 Name Null? Type
 ---------------------------- -------- -----------------
 SCHEMA_NAME NOT NULL VARCHAR2(128)
 INDEX_NAME NOT NULL VARCHAR2(128)
 IPART_NAME VARCHAR2(128)
 INDEX_ID NOT NULL NUMBER
 TABLE_NAME NOT NULL VARCHAR2(128)
 PART_NAME VARCHAR2(128)
 TABLE_ID NOT NULL NUMBER
 KEYROWID NOT NULL ROWID
 KEY NOT NULL ROWID
 DUMP_TIMESTAMP NOT NULL DATE

24.4.2 Example: Detecting Corruption
An example illustrates detecting corruption with the CHECK_OBJECT procedure.

The CHECK_OBJECT procedure checks the specified object, and populates the repair table with
information about corruptions and repair directives. You can optionally specify a range, partition
name, or subpartition name when you want to check a portion of an object.

Validation consists of checking all blocks in the object that have not previously been marked
corrupt. For each block, the transaction and data layer portions are checked for self
consistency. During CHECK_OBJECT, if a block is encountered that has a corrupt buffer cache
header, then that block is skipped.

The following is an example of executing the CHECK_OBJECT procedure for the scott.dept
table.

SET SERVEROUTPUT ON
DECLARE num_corrupt INT;
BEGIN
 num_corrupt := 0;
 DBMS_REPAIR.CHECK_OBJECT (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME => 'DEPT',
 REPAIR_TABLE_NAME => 'REPAIR_TABLE',
 CORRUPT_COUNT => num_corrupt);
 DBMS_OUTPUT.PUT_LINE('number corrupt: ' || TO_CHAR (num_corrupt));
END;
/

SQL*Plus outputs the following line, indicating one corruption:

number corrupt: 1

Querying the repair table produces information describing the corruption and suggesting a
repair action.

SELECT OBJECT_NAME, BLOCK_ID, CORRUPT_TYPE, MARKED_CORRUPT,
 CORRUPT_DESCRIPTION, REPAIR_DESCRIPTION
 FROM REPAIR_TABLE;

OBJECT_NAME BLOCK_ID CORRUPT_TYPE MARKED_COR
------------------------------ ---------- ------------ ----------
CORRUPT_DESCRIPTION
--
REPAIR_DESCRIPTION
--

Chapter 24
DBMS_REPAIR Examples

24-10

DEPT 3 1 FALSE
kdbchk: row locked by non-existent transaction
 table=0 slot=0
 lockid=32 ktbbhitc=1
mark block software corrupt

The corrupted block has not yet been marked corrupt, so this is the time to extract any
meaningful data. After the block is marked corrupt, the entire block must be skipped.

24.4.3 Example: Fixing Corrupt Blocks
An example illustrates fixing corrupt blocks with the FIX_CORRUPT_BLOCKS procedure.

Use the FIX_CORRUPT_BLOCKS procedure to fix the corrupt blocks in specified objects based on
information in the repair table that was generated by the CHECK_OBJECT procedure. Before
changing a block, the block is checked to ensure that the block is still corrupt. Corrupt blocks
are repaired by marking the block software corrupt. When a repair is performed, the associated
row in the repair table is updated with a timestamp.

This example fixes the corrupt block in table scott.dept that was reported by the
CHECK_OBJECT procedure.

SET SERVEROUTPUT ON
DECLARE num_fix INT;
BEGIN
 num_fix := 0;
 DBMS_REPAIR.FIX_CORRUPT_BLOCKS (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME=> 'DEPT',
 OBJECT_TYPE => dbms_repair.table_object,
 REPAIR_TABLE_NAME => 'REPAIR_TABLE',
 FIX_COUNT=> num_fix);
 DBMS_OUTPUT.PUT_LINE('num fix: ' || TO_CHAR(num_fix));
END;
/

SQL*Plus outputs the following line:

num fix: 1

The following query confirms that the repair was done.

SELECT OBJECT_NAME, BLOCK_ID, MARKED_CORRUPT
 FROM REPAIR_TABLE;

OBJECT_NAME BLOCK_ID MARKED_COR
------------------------------ ---------- ----------
DEPT 3 TRUE

24.4.4 Example: Finding Index Entries Pointing to Corrupt Data Blocks
An example illustrates finding index entries pointing to corrupt data blocks using the
DUMP_ORPHAN_KEYS procedure.

The DUMP_ORPHAN_KEYS procedure reports on index entries that point to rows in corrupt data
blocks. For each index entry, a row is inserted into the specified orphan key table. The orphan
key table must have been previously created.

This information can be useful for rebuilding lost rows in the table and for diagnostic purposes.

Chapter 24
DBMS_REPAIR Examples

24-11

Note:

This should be run for every index associated with a table identified in the repair
table.

In this example, pk_dept is an index on the scott.dept table. It is scanned to determine if
there are any index entries pointing to rows in the corrupt data block.

SET SERVEROUTPUT ON
DECLARE num_orphans INT;
BEGIN
 num_orphans := 0;
 DBMS_REPAIR.DUMP_ORPHAN_KEYS (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME => 'PK_DEPT',
 OBJECT_TYPE => dbms_repair.index_object,
 REPAIR_TABLE_NAME => 'REPAIR_TABLE',
 ORPHAN_TABLE_NAME=> 'ORPHAN_KEY_TABLE',
 KEY_COUNT => num_orphans);
 DBMS_OUTPUT.PUT_LINE('orphan key count: ' || TO_CHAR(num_orphans));
END;
/

The following output indicates that there are three orphan keys:

orphan key count: 3

Index entries in the orphan key table implies that the index should be rebuilt. This guarantees
that a table probe and an index probe return the same result set.

24.4.5 Example: Skipping Corrupt Blocks
An example illustrates skipping corrupt blocks using the SKIP_CORRUPT_BLOCKS procedure.

The SKIP_CORRUPT_BLOCKS procedure enables or disables the skipping of corrupt blocks during
index and table scans of the specified object. When the object is a table, skipping applies to
the table and its indexes. When the object is a cluster, it applies to all of the tables in the
cluster, and their respective indexes.

The following example enables the skipping of software corrupt blocks for the scott.dept
table:

BEGIN
 DBMS_REPAIR.SKIP_CORRUPT_BLOCKS (
 SCHEMA_NAME => 'SCOTT',
 OBJECT_NAME => 'DEPT',
 OBJECT_TYPE => dbms_repair.table_object,
 FLAGS => dbms_repair.skip_flag);
END;
/

Querying scott's tables using the DBA_TABLES view shows that SKIP_CORRUPT is enabled for
table scott.dept.

SELECT OWNER, TABLE_NAME, SKIP_CORRUPT FROM DBA_TABLES
 WHERE OWNER = 'SCOTT';

OWNER TABLE_NAME SKIP_COR

Chapter 24
DBMS_REPAIR Examples

24-12

------------------------------ ------------------------------ --------
SCOTT ACCOUNT DISABLED
SCOTT BONUS DISABLED
SCOTT DEPT ENABLED
SCOTT DOCINDEX DISABLED
SCOTT EMP DISABLED
SCOTT RECEIPT DISABLED
SCOTT SALGRADE DISABLED
SCOTT SCOTT_EMP DISABLED
SCOTT SYS_IOT_OVER_12255 DISABLED
SCOTT WORK_AREA DISABLED

10 rows selected.

Chapter 24
DBMS_REPAIR Examples

24-13

Part IV
Database Resource Management and Task
Scheduling

You can manage automated database maintenance tasks, database resources, and task
scheduling.

• Managing Automated Database Maintenance Tasks
Oracle Database has automated several common maintenance tasks typically performed
by database administrators. These automated maintenance tasks are performed when the
system load is expected to be light. You can enable and disable individual maintenance
tasks, and can configure when these tasks run and what resource allocations they are
allotted.

• Managing Resources with Oracle Database Resource Manager
Oracle Database Resource Manager (Resource Manager) enables you to manage
resource allocation for a database.

• Oracle Scheduler Concepts
You can schedule tasks with Oracle Scheduler.

• Scheduling Jobs with Oracle Scheduler
You can create, run, and manage jobs with Oracle Scheduler.

• Administering Oracle Scheduler
You can configure, manage, monitor, and troubleshoot Oracle Scheduler.

• Managing Transactions
Managing transactions include tasks such as setting transaction priority and automatically
rolling back transactions.

25
Managing Automated Database Maintenance
Tasks

Oracle Database has automated several common maintenance tasks typically performed by
database administrators. These automated maintenance tasks are performed when the system
load is expected to be light. You can enable and disable individual maintenance tasks, and can
configure when these tasks run and what resource allocations they are allotted.

Note:

This chapter explains how to administer automated maintenance tasks using PL/SQL
packages. An easier way is to use the graphical interface of Oracle Enterprise
Manager Cloud Control (Cloud Control).

To manage automatic maintenance tasks with Cloud Control:

1. Access the Database Home Page.

2. From the Administration menu, select Oracle Scheduler, then Automated
Maintenance Tasks.

3. On the Automated Maintenance Tasks page, click Configure.

• About Automated Maintenance Tasks
Automated maintenance tasks are tasks that are started automatically at regular intervals
to perform maintenance operations on the database. An example is a task that gathers
statistics on schema objects for the query optimizer.

• About Maintenance Windows
A maintenance window is a contiguous time interval during which automated
maintenance tasks are run. Maintenance windows are Oracle Scheduler windows that
belong to the window group named MAINTENANCE_WINDOW_GROUP.

• Configuring Automated Maintenance Tasks
To enable or disable specific maintenance tasks in any subset of maintenance windows,
you can use the DBMS_AUTO_TASK_ADMIN PL/SQL package.

• Configuring Maintenance Windows
You may want to adjust the predefined maintenance windows to a time suitable to your
database environment or create a new maintenance window. You can customize
maintenance windows using the DBMS_SCHEDULER PL/SQL package.

• Configuring Resource Allocations for Automated Maintenance Tasks
You can reduce or increase resource allocation to the automated maintenance tasks.

• Automated Maintenance Tasks Reference
Oracle Database has predefined maintenance windows. It also has data dictionary views
that you can query for information about automated maintenance.

25-1

25.1 About Automated Maintenance Tasks
Automated maintenance tasks are tasks that are started automatically at regular intervals to
perform maintenance operations on the database. An example is a task that gathers statistics
on schema objects for the query optimizer.

Automated maintenance tasks run in maintenance windows, which are predefined time
intervals that are intended to occur during a period of low system load. You can customize
maintenance windows based on the resource usage patterns of your database, or disable
certain default windows from running. You can also create your own maintenance windows.

Oracle Database has these predefined automated maintenance tasks:

• Automatic Optimizer Statistics Collection—Collects optimizer statistics for all schema
objects in the database for which there are no statistics or only stale statistics. The
statistics gathered by this task are used by the SQL query optimizer to improve the
performance of SQL execution.

See Also:

Oracle Database SQL Tuning Guide for more information on automatic statistics
collection

• Optimizer Statistics Advisor—Analyzes how statistics are being gathered and suggests
changes that can be made to fine tune statistics collection.

See Also:

Oracle Database SQL Tuning Guide

• Automatic Segment Advisor— Identifies segments that have space available for
reclamation, and makes recommendations on how to defragment those segments.

You can also run the Segment Advisor manually to obtain more up-to-the-minute
recommendations or to obtain recommendations on segments that the Automatic Segment
Advisor did not examine for possible space reclamation.

See Also:

"Using the Segment Advisor" for more information.

• Automatic SQL Tuning Advisor—Examines the performance of high-load SQL
statements, and makes recommendations on how to tune those statements. You can
configure this advisor to automatically implement SQL profile recommendations.

See Also:

Oracle Database SQL Tuning Guide for more information on SQL Tuning Advisor

Chapter 25
About Automated Maintenance Tasks

25-2

• SQL Plan Management (SPM) Evolve Advisor—Evolves plans that have recently been
added to the SQL plan baseline. The advisor simplifies plan evolution by eliminating the
requirement to do it manually.

See Also:

Oracle Database SQL Tuning Guide for more information on SPM Evolve Advisor

By default, all of these automated maintenance tasks are configured to run in all maintenance
windows.

25.2 About Maintenance Windows
A maintenance window is a contiguous time interval during which automated maintenance
tasks are run. Maintenance windows are Oracle Scheduler windows that belong to the window
group named MAINTENANCE_WINDOW_GROUP.

A Scheduler window can be a simple repeating interval (such as "between midnight and 6
a.m., every Saturday"), or a more complex interval (such as "between midnight and 6 a.m., on
the last workday of every month, excluding company holidays").

When a maintenance window opens, Oracle Database creates an Oracle Scheduler job for
each maintenance task that is scheduled to run in that window. Each job is assigned a job
name that is generated at run time. All automated maintenance task job names begin with
ORA$AT. For example, the job for the Automatic Segment Advisor might be called
ORA$AT_SA_SPC_SY_26. When an automated maintenance task job finishes, it is deleted from
the Oracle Scheduler job system. However, the job can still be found in the Scheduler job
history.

Note:

To view job history, you must log in as the SYS user.

In the case of a very long maintenance window, all automated maintenance tasks except
Automatic SQL Tuning Advisor are restarted every four hours. This feature ensures that
maintenance tasks are run regularly, regardless of window size.

The framework of automated maintenance tasks relies on maintenance windows being defined
in the database. Table 25-1 lists the maintenance windows that are automatically defined with
each new Oracle Database installation.

See Also:

• "About Jobs and Supporting Scheduler Objects" for more information on windows
and groups.

Chapter 25
About Maintenance Windows

25-3

25.3 Configuring Automated Maintenance Tasks
To enable or disable specific maintenance tasks in any subset of maintenance windows, you
can use the DBMS_AUTO_TASK_ADMIN PL/SQL package.

• Enabling and Disabling Maintenance Tasks for all Maintenance Windows
With a single operation, you can disable or enable a particular automated maintenance
task for all maintenance windows.

• Enabling and Disabling Maintenance Tasks for Specific Maintenance Windows
By default, all maintenance tasks run in all predefined maintenance windows. You can
disable a maintenance task for a specific window.

25.3.1 Enabling and Disabling Maintenance Tasks for all Maintenance
Windows

With a single operation, you can disable or enable a particular automated maintenance task for
all maintenance windows.

You can disable a particular automated maintenance task for all maintenance windows with a
single operation. You do so by calling the DISABLE procedure of the DBMS_AUTO_TASK_ADMIN
PL/SQL package without supplying the window_name argument. For example, you can
completely disable the Automatic SQL Tuning Advisor task as follows:

BEGIN
 dbms_auto_task_admin.disable(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

To enable this maintenance task again, use the ENABLE procedure, as follows:

BEGIN
 dbms_auto_task_admin.enable(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

The task names to use for the client_name argument are listed in the DBA_AUTOTASK_CLIENT
database dictionary view.

To enable or disable all automated maintenance tasks for all windows, call the ENABLE or
DISABLE procedure with no arguments.

EXECUTE DBMS_AUTO_TASK_ADMIN.DISABLE;

Chapter 25
Configuring Automated Maintenance Tasks

25-4

See Also:

• "Automated Maintenance Tasks Database Dictionary Views"

• Oracle Database PL/SQL Packages and Types Reference for more information
on the DBMS_AUTO_TASK_ADMIN PL/SQL package.

25.3.2 Enabling and Disabling Maintenance Tasks for Specific Maintenance
Windows

By default, all maintenance tasks run in all predefined maintenance windows. You can disable
a maintenance task for a specific window.

The following example disables the Automatic SQL Tuning Advisor from running in the window
MONDAY_WINDOW:

BEGIN
 dbms_auto_task_admin.disable(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => 'MONDAY_WINDOW');
END;
/

25.4 Configuring Maintenance Windows
You may want to adjust the predefined maintenance windows to a time suitable to your
database environment or create a new maintenance window. You can customize maintenance
windows using the DBMS_SCHEDULER PL/SQL package.

• Modifying a Maintenance Window
The DBMS_SCHEDULER PL/SQL package includes a SET_ATTRIBUTE procedure for modifying
the attributes of a window.

• Creating a New Maintenance Window
To create a new maintenance window, you must create an Oracle Scheduler window object
and then add it to the window group MAINTENANCE_WINDOW_GROUP.

• Removing a Maintenance Window
To remove an existing maintenance window, remove it from the
MAINTENANCE_WINDOW_GROUP window group.

25.4.1 Modifying a Maintenance Window
The DBMS_SCHEDULER PL/SQL package includes a SET_ATTRIBUTE procedure for modifying the
attributes of a window.

For example, the following script changes the duration of the maintenance window
SATURDAY_WINDOW to 4 hours:

BEGIN
 dbms_scheduler.disable(
 name => 'SATURDAY_WINDOW');
 dbms_scheduler.set_attribute(

Chapter 25
Configuring Maintenance Windows

25-5

 name => 'SATURDAY_WINDOW',
 attribute => 'DURATION',
 value => numtodsinterval(4, 'hour'));
 dbms_scheduler.enable(
 name => 'SATURDAY_WINDOW');
END;
/

Note that you must use the DBMS_SCHEDULER.DISABLE subprogram to disable the window
before making changes to it, and then re-enable the window with DBMS_SCHEDULER.ENABLE
when you are finished. If you change a window when it is currently open, the change does not
take effect until the next time the window opens.

See Also:

"Managing Job Scheduling and Job Priorities with Windows" for more information
about modifying windows.

25.4.2 Creating a New Maintenance Window
To create a new maintenance window, you must create an Oracle Scheduler window object
and then add it to the window group MAINTENANCE_WINDOW_GROUP.

You use the DBMS_SCHEDULER.CREATE_WINDOW package procedure to create the window, and the
DBMS_SCHEDULER.ADD_GROUP_MEMBER procedure to add the new window to the window group.

The following example creates a maintenance window named EARLY_MORNING_WINDOW. This
window runs for one hour daily between 5 a.m. and 6 a.m.

BEGIN
 DBMS_SCHEDULER.CREATE_WINDOW(
 window_name => 'EARLY_MORNING_WINDOW',
 duration => NUMTODSINTERVAL(1, 'hour'),
 resource_plan => 'DEFAULT_MAINTENANCE_PLAN',
 repeat_interval => 'FREQ=DAILY;BYHOUR=5;BYMINUTE=0;BYSECOND=0');
 DBMS_SCHEDULER.ADD_GROUP_MEMBER(
 group_name => 'MAINTENANCE_WINDOW_GROUP',
 member => 'EARLY_MORNING_WINDOW');
END;
/

See Also:

• "Creating Windows"

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_SCHEDULER package

Chapter 25
Configuring Maintenance Windows

25-6

25.4.3 Removing a Maintenance Window
To remove an existing maintenance window, remove it from the MAINTENANCE_WINDOW_GROUP
window group.

The window continues to exist but no longer runs automated maintenance tasks. Any other
Oracle Scheduler jobs assigned to this window continue to run as usual.

The following example removes EARLY_MORNING_WINDOW from the window group:

BEGIN
 DBMS_SCHEDULER.REMOVE_GROUP_MEMBER(
 group_name => 'MAINTENANCE_WINDOW_GROUP',
 member => 'EARLY_MORNING_WINDOW');
END;
/

See Also:

• "Removing a Member from a Window Group"

• "Dropping Windows"

• Oracle Database PL/SQL Packages and Types Reference for information on the
DBMS_SCHEDULER package

25.5 Configuring Resource Allocations for Automated
Maintenance Tasks

You can reduce or increase resource allocation to the automated maintenance tasks.

• About Resource Allocations for Automated Maintenance Tasks
By default, all predefined maintenance windows use the resource plan
DEFAULT_MAINTENANCE_PLAN. Automated maintenance tasks run under its subplan
ORA$AUTOTASK. This subplan divides its portion of total resource allocation equally among
the maintenance tasks.

• Changing Resource Allocations for Automated Maintenance Tasks
To change the resource allocation for automated maintenance tasks within a maintenance
window, you must change the percentage of resources allocated to the subplan
ORA$AUTOTASK in the resource plan for that window.

See Also:

Managing Resources with Oracle Database Resource Manager

Chapter 25
Configuring Resource Allocations for Automated Maintenance Tasks

25-7

25.5.1 About Resource Allocations for Automated Maintenance Tasks
By default, all predefined maintenance windows use the resource plan
DEFAULT_MAINTENANCE_PLAN. Automated maintenance tasks run under its subplan
ORA$AUTOTASK. This subplan divides its portion of total resource allocation equally among the
maintenance tasks.

DEFAULT_MAINTENANCE_PLAN defines the following resource allocations:

Consumer Group/subplan Level 1 Maximum Utilization Limit

ORA$AUTOTASK 5% 90

OTHER_GROUPS 20% -

SYS_GROUP 75% -

In this plan, any sessions in the SYS_GROUP consumer group get priority. (Sessions in this group
are sessions created by user accounts SYS and SYSTEM.) Any resource allocation that is unused
by sessions in SYS_GROUP is then shared by sessions belonging to the other consumer groups
and subplans in the plan. Of that allocation, 5% goes to maintenance tasks and 20% goes to
user sessions. The maximum utilization limit for ORA$AUTOTASK is 90. Therefore, even if the
CPU is idle, this group/plan cannot be allocated more than 90% of the CPU resources.

To reduce or increase resource allocation to the automated maintenance tasks, you make
adjustments to DEFAULT_MAINTENANCE_PLAN. See "Changing Resource Allocations for
Automated Maintenance Tasks" for more information.

Note that as with any resource plan, the portion of an allocation that is not used by a consumer
group or subplan is available for other consumer groups or subplans. Note also that the
Database Resource Manager does not begin to limit resource allocations according to
resource plans until 100% of CPU is being used.

Note:

Although DEFAULT_MAINTENANCE_PLAN is the default, you can assign any resource
plan to any maintenance window. If you do change a maintenance window resource
plan, ensure that you include the subplan ORA$AUTOTASK in the new plan.

See Also:

Managing Resources with Oracle Database Resource Manager for more information
on resource plans.

Chapter 25
Configuring Resource Allocations for Automated Maintenance Tasks

25-8

25.5.2 Changing Resource Allocations for Automated Maintenance Tasks
To change the resource allocation for automated maintenance tasks within a maintenance
window, you must change the percentage of resources allocated to the subplan ORA$AUTOTASK
in the resource plan for that window.

(By default, the resource plan for each predefined maintenance window is
DEFAULT_MAINTENANCE_PLAN.) You must also adjust the resource allocation for one or more
other subplans or consumer groups in the window's resource plan such that the resource
allocation at the top level of the plan adds up to 100%. For information on changing resource
allocations, see Managing Resources with Oracle Database Resource Manager.

25.6 Automated Maintenance Tasks Reference
Oracle Database has predefined maintenance windows. It also has data dictionary views that
you can query for information about automated maintenance.

• Predefined Maintenance Windows
By default there are seven predefined maintenance windows, each one representing a day
of the week.

• Automated Maintenance Tasks Database Dictionary Views
You can query a set of data dictionary views for information about automated maintenance
tasks.

25.6.1 Predefined Maintenance Windows
By default there are seven predefined maintenance windows, each one representing a day of
the week.

The weekend maintenance windows, SATURDAY_WINDOW and SUNDAY_WINDOW, are longer in
duration than the weekday maintenance windows. The window group
MAINTENANCE_WINDOW_GROUP consists of these seven windows. The list of predefined
maintenance windows is given in Table 25-1.

Table 25-1 Predefined Maintenance Windows

Window Name Description

MONDAY_WINDOW Starts at 10 p.m. on Monday and ends at 2 a.m.

TUESDAY_WINDOW Starts at 10 p.m. on Tuesday and ends at 2 a.m.

WEDNESDAY_WINDOW Starts at 10 p.m. on Wednesday and ends at 2 a.m.

THURSDAY_WINDOW Starts at 10 p.m. on Thursday and ends at 2 a.m.

FRIDAY_WINDOW Starts at 10 p.m. on Friday and ends at 2 a.m.

SATURDAY_WINDOW Starts at 6 a.m. on Saturday and is 20 hours long.

SUNDAY_WINDOW Starts at 6 a.m. on Sunday and is 20 hours long.

Chapter 25
Automated Maintenance Tasks Reference

25-9

25.6.2 Automated Maintenance Tasks Database Dictionary Views
You can query a set of data dictionary views for information about automated maintenance
tasks.

Table 25-2 displays information about database dictionary views for automated maintenance
tasks:

Table 25-2 Automated Maintenance Tasks Database Dictionary Views

View Name Description

DBA_AUTOTASK_CLIENT_JOB Contains information about currently running Scheduler jobs
created for automated maintenance tasks. It provides
information about some objects targeted by those jobs, as
well as some additional statistics from previous instantiations
of the same task. Some of this additional data is taken from
generic Scheduler views.

DBA_AUTOTASK_CLIENT Provides statistical data for each automated maintenance task
over 7-day and 30-day periods.

DBA_AUTOTASK_JOB_HISTORY Lists the history of automated maintenance task job runs.
Jobs are added to this view after they finish executing.

DBA_AUTOTASK_WINDOW_CLIENTS Lists the windows that belong to
MAINTENANCE_WINDOW_GROUP, along with the Enabled or
Disabled status for the window for each maintenance task.
Primarily used by Cloud Control.

DBA_AUTOTASK_CLIENT_HISTORY Provides per-window history of job execution counts for each
automated maintenance task. This information is viewable in
the Job History page of Cloud Control.

See Also:

"Resource Manager Data Dictionary Views" for column descriptions for views.

Chapter 25
Automated Maintenance Tasks Reference

25-10

26
Managing Resources with Oracle Database
Resource Manager

Oracle Database Resource Manager (Resource Manager) enables you to manage resource
allocation for a database.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers
to a non-CDB from a previous release.

Note:

This chapter discusses using PL/SQL package procedures to administer the
Resource Manager. An easier way to administer the Resource Manager is with the
graphical user interface of Oracle Enterprise Manager Cloud Control (Cloud Control).
For instructions about administering Resource Manager with Cloud Control, see the
Cloud Control online help.

To use Resource Manager with Cloud Control:

1. Access the Database Home Page.

2. From the Administration menu, select Resource Manager.

• About Oracle Database Resource Manager
Oracle Database Resource Manager (the Resource Manager) enables you to manage
multiple workloads within a database that are contending for system and database
resources.

• Enabling Oracle Database Resource Manager and Switching Plans
You enable Oracle Database Resource Manager (the Resource Manager) by setting the
RESOURCE_MANAGER_PLAN initialization parameter. This parameter specifies the top plan,
identifying the plan to be used for the current instance. If no plan is specified with this
parameter, the Resource Manager is not enabled.

• Assigning Sessions to Resource Consumer Groups
There are automatic and manual methods that database administrators, users, and
applications can use to assign sessions to resource consumer groups. When a session is
assigned to a resource consumer group, Oracle Database Resource Manager (the
Resource Manager) can manage resource allocation for it.

26-1

• Managing Resource Plans
Resource Manager allocates resources to pluggable databases (PDBs) in a multitenant
container database (CDB).

• Putting It All Together: Oracle Database Resource Manager Examples
Examples illustrate how to allocate resources with Resource Manager.

• Managing Multiple Database Instances on a Single Server
Oracle Database provides a method for managing CPU allocations on a multi-CPU server
running multiple database instances. This method is called instance caging. Instance
caging and Oracle Database Resource Manager (the Resource Manager) work together to
support desired levels of service across multiple instances.

• Maintaining Consumer Groups, Plans, and Directives
You can maintain consumer groups, resource plans, and resource plan directives for
Oracle Database Resource Manager (the Resource Manager). You perform maintenance
tasks using the DBMS_RESOURCE_MANAGER PL/SQL package.

• Viewing Database Resource Manager Configuration and Status
You can use several static data dictionary views and dynamic performance views to view
the current configuration and status of Oracle Database Resource Manager (the Resource
Manager).

• Interacting with Operating-System Resource Control
Many operating systems provide tools for resource management. These tools often contain
"workload manager" or "resource manager" in their names, and are intended to allow
multiple applications to share the resources of a single server, using an administrator-
defined policy. Examples are Hewlett Packard's Process Resource Manager or Solaris
Containers, Zones, and Resource Pools.

• Oracle Database Resource Manager Reference
Resource Manager includes predefined resource plans, consumer groups, and consumer
groups mapping rules. You can query data dictionary views for information about your
Resource Manager configuration.

• Operating System CPU Resource Management
Starting with Oracle Database 23ai, Oracle offers an alternative method for CPU resource
management, which operates across all database instances on the server.

26.1 About Oracle Database Resource Manager
Oracle Database Resource Manager (the Resource Manager) enables you to manage multiple
workloads within a database that are contending for system and database resources.

Note:

The Resource Manager manages activity in the CDB root automatically.

• CDB and PDB Resource Management
Using Oracle Resource Manager (Resource Manager), you can create CDB resource
plans and set initialization parameters to allocate resources to PDBs.

• Purpose of Resource Management
When database resource allocation decisions are left to the operating system, workload
management can be problematic. The Resource Manager helps solve these problems.

Chapter 26
About Oracle Database Resource Manager

26-2

• Consumer Groups, Plans, and Plan Directives
Resource Manager includes several elements that you can manage.

• User Interface for PDB Resource Management
You can manage PDB resources using DBMS_RESOURCE_MANAGER and initialization
parameters.

26.1.1 CDB and PDB Resource Management
Using Oracle Resource Manager (Resource Manager), you can create CDB resource plans
and set initialization parameters to allocate resources to PDBs.

In a CDB, multiple workloads within multiple PDBs can complete for system and CDB
resources. Resource Manager can manage resources on two levels: CDB and PDB.

CDB Resource Plans

A CDB resource plan allocates resources to its PDBs according to its set of resource plan
directives (directives). A parent-child relationship exists between a CDB resource plan and its
directives. Each resource plan directive references either a set of PDBs or an individual PDB.

A performance profile specifies shares of system resources for a set of PDBs. PDB
performance profiles enable you to manage resources for large numbers of PDBs by
specifying Resource Manager directives for profiles instead of individual PDBs.

The directives control allocation of CPU and parallel execution servers. A directive can control
the allocation of resources to PDBs based on the share value that you specify for each PDB or
PDB performance profile. A higher share value results in more guaranteed resources. For
PDBs and PDB performance profiles, you can also set utilization limits for CPU and parallel
servers.

You can create a CDB resource plan by using the CREATE_CDB_PLAN procedure in the
DBMS_RESOURCE_MANAGER PL/SQL package, and set a CDB resource plan using the
RESOURCE_MANAGER_PLAN parameter. You create directives for a CDB resource plan by using
the CREATE_CDB_PLAN_DIRECTIVE procedure.

PDB Resource Plans

A CDB resource plan allocates a portion of the system resources to a PDB. A PDB resource
plan determines how this portion is allocated within the PDB.

You can create a PDB resource plan by using the CREATE_PLAN procedure in the
DBMS_RESOURCE_MANAGER PL/SQL package, and set a PDB resource plan using the
RESOURCE_MANAGER_PLAN parameter. You create directives for a PDB resource plan by using the
CREATE_PLAN_DIRECTIVE procedure.

PDB-Level Memory Controls

In a CDB, PDBs may contend for SGA or PGA memory. When you set the following
initialization parameters with the PDB as the current container, the parameters limit the
memory usage of the current PDB.

Examples of important parameters include:

• SGA_TARGET specifies the maximum SGA that the PDB can use at any time.

• PGA_AGGREGATE_LIMIT sets the maximum PGA that the PDB can use at any time.

The only shared memory sizing parameter that should be set for a PDB is SGA_TARGET, which
specifies the maximum SGA that the PDB can use at any time.

Chapter 26
About Oracle Database Resource Manager

26-3

PDB-Level I/O Controls

Intensive disk I/O can cause poor performance. Several factors can result in excess disk I/O,
such as poorly designed SQL or index and table scans in high-volume transactions. If one PDB
generates excessive disk I/O, then it can degrade the performance of other PDBs in the same
CDB.

On non-Engineered Systems, use one or both of the following initialization parameters to limit
the I/O generated by a particular PDB:

• MAX_IOPS limits the number of I/O operations for each second.

• MAX_MBPS limits the MB/s for I/O operations.

For Engineered Systems, manage PDB I/Os with I/O Resource Management.

See Also:

• Managing Resource Plans

• Oracle Database Reference to learn more about DB_CACHE_SIZE and other
initialization parameters

• Oracle Database PL/SQL Packages and Types Reference to learn more about
the DBMS_RESOURCE_MANAGER package

• Oracle Exadata Storage Server Software User's Guide to learn more about I/O
Resource Management

26.1.2 Purpose of Resource Management
When database resource allocation decisions are left to the operating system, workload
management can be problematic. The Resource Manager helps solve these problems.

• Purpose of Resource Management for a CDB
Resource Manager allows a CDB to have more control over how hardware resources are
allocated.

• Purpose of Resource Management for PDBs
In a CDB, workloads within multiple PDBs can compete for system and CDB resources.
Resource plans solve this problem.

26.1.2.1 Purpose of Resource Management for a CDB
Resource Manager allows a CDB to have more control over how hardware resources are
allocated.

Resource Management Problems for a CDB

When database resource allocation decisions are left to the operating system, you may
encounter the following problems with workload management:

• Excessive overhead

Excessive overhead results from operating system context switching between Oracle
Database server processes when the number of server processes is high.

Chapter 26
About Oracle Database Resource Manager

26-4

• Inefficient scheduling

The operating system deschedules database servers while they hold latches, which is
inefficient.

• Inappropriate allocation of resources

The operating system distributes resources equally among all active processes and cannot
prioritize one task over another.

• Inability to manage database-specific resources, such as parallel execution servers and
active sessions

The Resource Manager Solution

The Resource Manager helps to overcome these problems by allowing a CDB more control
over how hardware resources are allocated. In an environment with multiple concurrent user
sessions that run jobs with differing priorities, all sessions should not be treated equally. The
Resource Manager enables you to classify sessions into groups based on session attributes,
and to then allocate resources to those groups in a way that optimizes hardware utilization for
your application environment.

With the Resource Manager, you can:

• Guarantee certain sessions a minimum amount of CPU regardless of the load on the
system and the number of users.

• Distribute available CPU by allocating percentages of CPU time to different users and
applications. In a data warehouse, a higher percentage can be given to ROLAP (relational
online analytical processing) applications than to batch jobs.

• Limit the degree of parallelism of any operation performed by members of a group of
users.

• Manage the order of parallel statements in the parallel statement queue. Parallel
statements from a critical application can be enqueued ahead of parallel statements from a
low priority group of users.

• Limit the number of parallel execution servers that a group of users can use. This ensures
that all the available parallel execution servers are not allocated to only one group of users.

• Create an active session pool. An active session pool consists of a specified maximum
number of user sessions allowed to be concurrently active within a group of users.
Additional sessions beyond the maximum are queued for execution, but you can specify a
timeout period, after which queued jobs will terminate. The active session pool limits the
total number of sessions actively competing for resources, thereby enabling active
sessions to make faster progress.

• Monitor resources

Automatically record statistics about resource usage. You can examine these statistics
using real-time SQL monitoring and the Resource Manager dynamic performance views
(the V$RSRC_* views). See "Monitoring Oracle Database Resource Manager" for
information about using real-time SQL monitoring and the Resource Manager dynamic
performance views.

• Limit the amount of PGA memory used by each session that belongs to a group of users.

• Manage runaway sessions or calls in the following ways:

– By detecting when a session or call consumes more than a specified amount of CPU,
physical I/O, logical I/O, or elapsed time, and then automatically either terminating the
session or call, or switching to a consumer group with a lower resource allocation or a
limit on the percentage of CPU that the group can use. The SQL statements that are

Chapter 26
About Oracle Database Resource Manager

26-5

terminated due to their excessive consumption of system resources are quarantined,
that is, they are not allowed to run again by generating compilation errors during their
subsequent runs.

A logical I/O, also known as a buffer I/O, refers to reads and writes of buffers in the
buffer cache. When a requested buffer is not found in memory, the database performs
a physical I/O to copy the buffer from either disk or the flash cache into memory, and
then a logical I/O to read the cached buffer.

– By recording detailed information about SQL statements that consume more than a
specified amount of CPU, physical I/O, logical I/O, or elapsed time with real-time SQL
monitoring.

– By using the Automatic Workload Repository (AWR) to analyze a persistent record of
SQL statements that consume more than a specified amount of CPU, physical I/O,
logical I/O, or elapsed time.

– By logging information about a runaway session without taking any other action related
to the session.

• Prevent the execution of operations that the optimizer estimates will run for a longer time
than a specified limit.

• Limit the amount of time that a session can be idle. This can be further defined to mean
only sessions that are blocking other sessions.

• Allow a database to use different resource plans, based on changing workload
requirements. You can dynamically change the resource plan, for example, from a daytime
resource plan to a nighttime resource plan, without having to shut down and restart the
instance. You can also schedule a resource plan change with Oracle Scheduler. See
Oracle Scheduler Concepts for more information.

26.1.2.2 Purpose of Resource Management for PDBs
In a CDB, workloads within multiple PDBs can compete for system and CDB resources.
Resource plans solve this problem.

Resource Management Problems for PDBs

When multiple PDBs in a CDB are contending for resources, you may encounter the following
problems with workload management:

• Inappropriate allocation of resources among PDBs

The operating system distributes resources equally among all active processes and cannot
prioritize one task over another. Therefore, one or more PDBs might use an inordinate
amount of the system resources, leaving the other PDBs starved for resources.

• Inappropriate allocation of resources within a single PDB

One or more sessions connected to a single PDB might use an inordinate amount of the
system resources, leaving other sessions connected to the same PDB starved for
resources.

• Inconsistent performance of PDBs

A single PDB might perform inconsistently when other PDBs are competing for more
system resources or less system resources at various times.

• Lack of resource usage data for PDBs

Resource usage data is critical for monitoring and tuning PDBs. Operating system
monitoring tools are typically not useful because there are multiple PDBs running on the
system.

Chapter 26
About Oracle Database Resource Manager

26-6

The Resource Management Solution in the Multitenant Environment

Resource Manager helps to overcome these problems by enabling you to prioritize and limit
the resource usage of specific PDBs. With the Resource Manager, you can:

• Specify that different PDBs should receive different shares of the system resources so that
more resources are allocated to the more important PDBs

• Limit the CPU usage of a particular PDB

• Limit the number of parallel execution servers that a particular PDB can use

• Limit the memory usage of a particular PDB

• Specify the amount of memory guaranteed for a particular PDB

• Specify the maximum amount of memory a particular PDB can use

• Use PDB performance profiles for different sets of PDB

A performance profile for a set of PDBs can specify shares of system resources, CPU
usage, and number of parallel execution servers. PDB performance profiles enable you to
manage resources for large numbers of PDBs by specifying Resource Manager directives
for profiles instead of individual PDBs.

• Limit the resource usage of different sessions connected to a single PDB

• Limit the I/O generated by specific PDBs

• Monitor the resource usage of PDBs

26.1.3 Consumer Groups, Plans, and Plan Directives
Resource Manager includes several elements that you can manage.

• About the Elements of Resource Manager
The elements of the Resource Manager include resource consumer groups, resource
plans, and resource plan directives.

• About Resource Consumer Groups
A resource consumer group (consumer group) is a collection of user sessions that are
grouped together based on their processing needs.

• About Resource Plan Directives
The Resource Manager allocates resources to consumer groups according to the set of
resource plan directives (directives) that belong to the currently active resource plan.

• About Resource Plans
A resource plan is a container for directives that specify how resources are allocated to
resource consumer groups.

• About Subplans
Instead of referencing a consumer group, a resource plan directive (directive) can
reference another resource plan. In this case, the plan is referred to as a subplan.

26.1.3.1 About the Elements of Resource Manager
The elements of the Resource Manager include resource consumer groups, resource plans,
and resource plan directives.

Chapter 26
About Oracle Database Resource Manager

26-7

Element Description

Resource consumer
group

A group of sessions that are grouped together based on resource
requirements. The Resource Manager allocates resources to resource
consumer groups, not to individual sessions.

Resource plan A container for directives that specify how resources are allocated to resource
consumer groups. You specify how the database allocates resources by
activating a specific resource plan.

Resource plan directive Associates a resource consumer group with a particular plan and specifies
how resources are to be allocated to that resource consumer group.

You use the DBMS_RESOURCE_MANAGER PL/SQL package to create and maintain these elements.
The elements are stored in tables in the data dictionary. You can view information about them
with data dictionary views.

See Also:

"Resource Manager Data Dictionary Views"

26.1.3.2 About Resource Consumer Groups
A resource consumer group (consumer group) is a collection of user sessions that are grouped
together based on their processing needs.

When a session is created, it is automatically mapped to a consumer group based on mapping
rules that you set up. As a database administrator (DBA), you can manually switch a session to
a different consumer group. Similarly, an application can run a PL/SQL package procedure that
switches its session to a particular consumer group.

Because the Resource Manager allocates resources (such as CPU) only to consumer groups,
when a session becomes a member of a consumer group, its resource allocation is determined
by the allocation for the consumer group.

There are special consumer groups that are always present in the data dictionary. They cannot
be modified or deleted. They are:

• SYS_GROUP
This is the initial consumer group for all sessions created by user accounts SYS or SYSTEM.
This initial consumer group can be overridden by session-to-consumer group mapping
rules.

• OTHER_GROUPS
This consumer group contains all sessions that have not been assigned to a consumer
group. Every resource plan must contain a directive to OTHER_GROUPS.

There can be no more than 28 resource consumer groups in any active plan.

• Consumer Groups for PDBs
In a CDB, background and administrative tasks map to the Resource Manager consumer
groups that run them optimally.

Chapter 26
About Oracle Database Resource Manager

26-8

See Also:

• Table 26-18

• "Specifying Session-to-Consumer Group Mapping Rules"

26.1.3.2.1 Consumer Groups for PDBs
In a CDB, background and administrative tasks map to the Resource Manager consumer
groups that run them optimally.

Resource Manager uses the following rules to map a task to a consumer group:

• A task is mapped to a consumer group in the container that starts the task.

If a task starts in the CDB root, then the task maps to a consumer group in the CDB root. If
the task starts in a PDB, then the task maps to a consumer group in the PDB.

• Many maintenance and administrative tasks automatically map to a consumer group.

For example, automated maintenance tasks map to ORA$AUTOTASK. In certain cases, the
tasks map to a consumer group, but the mapping is modifiable. Such tasks include RMAN
backup, RMAN image copy, Oracle Data Pump, and In-Memory population.

Note:

Oracle Database Administrator’s Guide to learn more about the mapping rules for
predefined consumer groups

26.1.3.3 About Resource Plan Directives
The Resource Manager allocates resources to consumer groups according to the set of
resource plan directives (directives) that belong to the currently active resource plan.

There is a parent-child relationship between a resource plan and its resource plan directives.
Each directive references one consumer group, and no two directives for the currently active
plan can reference the same consumer group.

A directive has several ways in which it can limit resource allocation for a consumer group. For
example, it can control how much CPU the consumer group gets as a percentage of total CPU,
and it can limit the total number of sessions that can be active in the consumer group.

CDB resource plan allocates resources to its PDBs according to its set of resource plan
directives (directives). A parent-child relationship exists between a CDB resource plan and its
resource plan directives. Each directive references either a set of PDBs in a performance
profile, or a single PDB. You can specify directives for both individual PDBs and for PDB
performance profiles in the same CDB. No two directives for the currently active plan can
reference the same PDB or the same PDB performance profile.

• Resources Managed by the Resource Manager
Resource plan directives specify how resources are allocated to resource consumer
groups or subplans. Each directive can specify several different methods for allocating
resources to its consumer group or subplan.

Chapter 26
About Oracle Database Resource Manager

26-9

• Resource Plan Directives for PDBs
Directives control allocation of CPU and parallel execution servers.

• Performance Profiles for PDBs
A PDB performance profile configures resource plan directives for a set of PDBs that
have the same priorities and resource controls.

26.1.3.3.1 Resources Managed by the Resource Manager
Resource plan directives specify how resources are allocated to resource consumer groups or
subplans. Each directive can specify several different methods for allocating resources to its
consumer group or subplan.

• CPU
To manage CPU resources, Resource Manager allocates resources among consumer
groups and redistributes CPU resources that were allocated but were not used. You can
also set a limit on the amount of CPU resources that can be allocated to a particular
consumer group.

• Exadata I/O
Management attributes enable you to specify CPU resource allocation for Exadata I/O.

• Parallel Execution Servers
Resource Manager can manage usage of the available parallel execution servers for a
database.

• Program Global Area (PGA)
To manage PGA resources, Resource Manager can limit the amount of PGA memory that
can be allocated to each session in a particular consumer group.

• Runaway Queries
Runaway sessions and calls can adversely impact overall performance if they are not
managed properly. Resource Manager can take action when a session or call consumes
more than a specified amount of CPU, physical I/O, logical I/O, or elapsed time. Resource
Manager can either switch the session or call to a consumer group that is allocated a small
amount of CPU or terminate the session or call.

• Active Session Pool with Queuing
You can control the maximum number of concurrently active sessions allowed within a
consumer group. This maximum defines the active session pool.

• Undo Pool
You can specify an undo pool for each consumer group. An undo pool controls the total
amount of undo for uncommitted transactions that can be generated by a consumer group.

• Idle Time Limit
You can specify an amount of time that a session can be idle, after which it is terminated.

26.1.3.3.1.1 CPU

To manage CPU resources, Resource Manager allocates resources among consumer groups
and redistributes CPU resources that were allocated but were not used. You can also set a
limit on the amount of CPU resources that can be allocated to a particular consumer group.

• Management Attributes
Management attributes enable you to specify how CPU resources are to be allocated
among consumer groups and subplans.

Chapter 26
About Oracle Database Resource Manager

26-10

• Utilization Limit
Use the UTILIZATION_LIMIT attribute to impose an absolute upper limit on CPU utilization
for a resource consumer group. This absolute limit overrides any redistribution of CPU
within a plan.

26.1.3.3.1.1.1 Management Attributes
Management attributes enable you to specify how CPU resources are to be allocated among
consumer groups and subplans.

Multiple levels of CPU resource allocation (up to eight levels) provide a means of prioritizing
CPU usage within a plan. Consumer groups and subplans at level 2 get resources that were
not allocated at level 1 or that were allocated at level 1 but were not completely consumed by a
consumer group or subplan at level 1. Similarly, resource consumers at level 3 are allocated
resources only when some allocation remains from levels 1 and 2. The same rules apply to
levels 4 through 8. Multiple levels not only provide a way of prioritizing, but they provide a way
of explicitly specifying how all primary and leftover resources are to be used.

Use the management attributes MGMT_Pn, where n is an integer between 1 and 8, to specify
multiple levels of CPU resource allocation. For example, use the MGMT_P1 directive attribute to
specify CPU resource allocation at level 1 and MGMT_P2 directive attribute to specify resource
allocation at level 2.

Use management attributes with parallel statement directive attributes, such as Degree of
Parallelism Limit and Parallel Server Limit, to control parallel statement queuing. When parallel
statement queuing is used, management attributes are used to determine which consumer
group is allowed to issue the next parallel statement. For example, if you set the MGMT_P1
directive attribute for a consumer group to 80, that group has an 80% chance of issuing the
next parallel statement.

See Also:

Oracle Database VLDB and Partitioning Guide for information about parallel
statement queuing

Table 26-1 illustrates a simple resource plan with three levels.

Table 26-1 A Simple Three-Level Resource Plan

Consumer Group Level 1 CPU
Allocation

Level 2 CPU
Allocation

Level 3 CPU
Allocation

HIGH_GROUP 80%

LOW_GROUP 50%

MAINT_SUBPLAN 50%

OTHER_GROUPS 100%

High priority applications run within HIGH_GROUP, which is allocated 80% of CPU. Because
HIGH_GROUP is at level one, it gets priority for CPU utilization, but only up to 80% of CPU. This
leaves a remaining 20% of CPU to be shared 50-50 by LOW_GROUP and the MAINT_SUPLAN at
level 2. Any unused allocation from levels 1 and 2 are then available to OTHER_GROUPS at level
3. Because OTHER_GROUPS has no sibling consumer groups or subplans at its level, 100% is
specified.

Chapter 26
About Oracle Database Resource Manager

26-11

Within a particular level, CPU allocations are not fixed. If there is not sufficient load in a
particular consumer group or subplan, residual CPU can be allocated to remaining consumer
groups or subplans. Thus, when there is only one level, unused allocation by any consumer
group or subplan can be redistributed to other "sibling" consumer groups or subplans. If there
are multiple levels, then the unused allocation is distributed to the consumer groups or
subplans at the next level. If the last level has unused allocations, these allocations can be
redistributed to all other levels in proportion to their designated allocations.

As an example of redistribution of unused allocations from one level to another, if during a
particular period, HIGH_GROUP consumes only 25% of CPU, then 75% is available to be shared
by LOW_GROUP and MAINT_SUBPLAN. Any unused portion of the 75% at level 2 is then made
available to OTHER_GROUPS at level 3. However, if OTHER_GROUPS has no session activity at level
3, then the 75% at level 2 can be redistributed to all other consumer groups and subplans in
the plan proportionally.

26.1.3.3.1.1.2 Utilization Limit
Use the UTILIZATION_LIMIT attribute to impose an absolute upper limit on CPU utilization for a
resource consumer group. This absolute limit overrides any redistribution of CPU within a plan.

In the previous scenario, suppose that due to inactivity elsewhere, LOW_GROUP acquires 90% of
CPU. Suppose that you do not want to allow LOW_GROUP to use 90% of the server because you
do not want non-critical sessions to inundate the CPUs. The UTILIZATION_LIMIT attribute of
resource plan directives can prevent this situation.

Setting the UTILIZATION_LIMIT attribute is optional. If you omit this attribute for a consumer
group, there is no limit on the amount of CPU that the consumer group can use. Therefore, if
all the other applications are idle, a consumer group that does not have UTILIZATION_LIMIT
set can be allocated 100% of the CPU resources.

You can also use the UTILIZATION_LIMIT attribute as the sole means of limiting CPU utilization
for consumer groups, without specifying level limits.

Table 26-2 shows a variation of the previous plan. In this plan, using UTILIZATION_LIMIT, CPU
utilization is capped at 75% for LOW_GROUP, 50% for MAINT_SUBPLAN, and 75% for
OTHER_GROUPS. (Note that the sum of all utilization limits can exceed 100%. Each limit is applied
independently.)

Table 26-2 A Three-Level Resource Plan with Utilization Limits

Consumer Group Level 1 CPU
Allocation

Level 2 CPU
Allocation

Level 3 CPU
Allocation

Utilization Limit

HIGH_GROUP 80%

LOW_GROUP 50% 75%

MAINT_SUBPLAN 50% 50%

OTHER_GROUPS 100% 75%

In the example described in Table 26-2, if HIGH_GROUP is using only 10% of the CPU at a given
time, then the remaining 90% is available to LOW_GROUP and the consumer groups in
MAINT_SUBPLAN at level 2. If LOW_GROUP uses only 20% of the CPU, then 70% can be allocated
to MAINT_SUBPLAN. However, MAINT_SUBPLAN has a UTILIZATION_LIMIT of 50%. Therefore,
even though more CPU resources are available, the server cannot allocate more than 50% of
the CPU to the consumer groups that belong to the subplan MAINT_SUBPLAN.

You can set UTILIZATION_LIMIT for both a subplan and the consumer groups that the subplan
contains. In such cases, the limit for a consumer group is computed using the limits specified

Chapter 26
About Oracle Database Resource Manager

26-12

for the subplan and that consumer group. For example, the MAINT_SUBPLAN contains the
consumer groups MAINT_GROUP1 and MAINT_GROUP2. MAINT_GROUP1 has UTILIZATION_LIMIT set
to 40%. However, the limit for MAINT_SUBPLAN is set to 50%. Therefore, the limit for consumer
group MAINT_GROUP1 is computed as 40% of 50%, or 20%. For an example of how to compute
UTILIZATION_LIMIT for a consumer group when limits are specified for both the consumer
group and the subplan to which the group belongs, see "Example 4 - Specifying a Utilization
Limit for Consumer Groups and Subplans".

See Also:

• "Creating Resource Plan Directives "

• "Putting It All Together: Oracle Database Resource Manager Examples"

26.1.3.3.1.2 Exadata I/O

Management attributes enable you to specify CPU resource allocation for Exadata I/O.

See Also:

The Exadata documentation for information about using management attributes for
Exadata I/O

26.1.3.3.1.3 Parallel Execution Servers

Resource Manager can manage usage of the available parallel execution servers for a
database.

• Degree of Parallelism Limit
You can limit the maximum degree of parallelism for any operation within a consumer
group. Use the PARALLEL_DEGREE_LIMIT_P1 directive attribute to specify the degree of
parallelism for a consumer group.

• Parallel Server Limit
Use the PARALLEL_SERVER_LIMIT directive attribute to specify the maximum percentage of
the parallel execution server pool that a particular consumer group can use. The number of
parallel execution servers used by a particular consumer group is counted as the sum of
the parallel execution servers used by all sessions in that consumer group.

• Parallel Queue Timeout
The PARALLEL_QUEUE_TIMEOUT directive attribute enables you to specify the maximum time,
in seconds, that a parallel statement can wait in the parallel statement queue before it is
timed out.

26.1.3.3.1.3.1 Degree of Parallelism Limit
You can limit the maximum degree of parallelism for any operation within a consumer group.
Use the PARALLEL_DEGREE_LIMIT_P1 directive attribute to specify the degree of parallelism for a
consumer group.

The degree of parallelism limit applies to one operation within a consumer group; it does not
limit the total degree of parallelism across all operations within the consumer group. However,

Chapter 26
About Oracle Database Resource Manager

26-13

you can combine both the PARALLEL_DEGREE_LIMIT_P1 and the PARALLEL_SERVER_LIMIT
directive attributes to achieve the desired control. For more information about the
PARALLEL_SERVER_LIMIT attribute, see "Parallel Server Limit".

See Also:

Oracle Database VLDB and Partitioning Guide for more information about degree of
parallelism in producer/consumer operations

26.1.3.3.1.3.2 Parallel Server Limit
Use the PARALLEL_SERVER_LIMIT directive attribute to specify the maximum percentage of the
parallel execution server pool that a particular consumer group can use. The number of parallel
execution servers used by a particular consumer group is counted as the sum of the parallel
execution servers used by all sessions in that consumer group.

It is possible for a single consumer group to launch enough parallel statements to use all of the
available parallel execution servers. If this happens when a high-priority parallel statement
from a different consumer group is run, then no parallel execution servers are available to
allocate to this group. You can avoid such a scenario by limiting the number of parallel
execution servers that can be used by a particular consumer group. You can also set the
directive PARALLEL_STMT_CRITICAL to BYPASS_QUEUE for the high-priority consumer group so
that parallel statements from the consumer group bypass the parallel statement queue.

For example, assume that the total number of parallel execution servers is 32, as set by the
PARALLEL_SERVERS_TARGET initialization parameter, and the PARALLEL_SERVER_LIMIT directive
attribute for the consumer group MY_GROUP is set to 50%. This consumer group can use a
maximum of 50% of 32, or 16 parallel execution servers.

If your resource plan has management attributes (MGMT_P1, MGMT_P2, and so on), then a
separate parallel statement queue is managed as a First In First Out (FIFO) queue for each
management attribute.

If your resource plan does not have any management attributes, then a single parallel
statement queue is managed as a FIFO queue.

In the case of an Oracle Real Application Clusters (Oracle RAC) environment, the target
number of parallel execution servers is the sum of (PARALLEL_SERVER_LIMIT *
PARALLEL_SERVERS_TARGET / 100) across all Oracle RAC instances. If a consumer group is
using the number of parallel execution servers computed above or more, then it has exceeded
its limit, and its parallel statements will be queued.

If a consumer group does not have any parallel statements running within an Oracle RAC
database, then the first parallel statement is allowed to exceed the limit specified by
PARALLEL_SERVER_LIMIT.

Note:

In an Oracle Real Application Clusters (Oracle RAC) environment, the
PARALLEL_SERVER_LIMIT attribute applies to the entire cluster and not to a single
instance.

Chapter 26
About Oracle Database Resource Manager

26-14

• Managing Parallel Statement Queuing Using Parallel Server Limit
The PARALLEL_SERVER_LIMIT attribute enables you to specify when parallel statements
from a consumer group can be queued. Oracle Database maintains a separate parallel
statement queue for each consumer group.

See Also:

• "Creating Resource Plan Directives "

• "Managing Parallel Statement Queuing Using Parallel Server Limit"

• Oracle Database VLDB and Partitioning Guide for information about parallel
statement queuing

26.1.3.3.1.3.2.1 Managing Parallel Statement Queuing Using Parallel Server Limit
The PARALLEL_SERVER_LIMIT attribute enables you to specify when parallel statements from a
consumer group can be queued. Oracle Database maintains a separate parallel statement
queue for each consumer group.

A parallel statement from a consumer group is not run and instead is added to the parallel
statement queue of that consumer group if the following conditions are met:

• PARALLEL_DEGREE_POLICY is set to AUTO.

Setting this initialization parameter to AUTO enables automatic degree of parallelism (Auto
DOP), parallel statement queuing, and in-memory parallel execution.

Note that parallel statements which have PARALLEL_DEGREE_POLICY set to MANUAL or
LIMITED are executed immediately and are not added to the parallel statement queue.

• The number of active parallel execution servers across all consumer groups exceeds the
PARALLEL_SERVERS_TARGET initialization parameter setting. This condition applies
regardless of whether you specify PARALLEL_SERVER_LIMIT. If PARALLEL_SERVER_LIMIT is
not specified, then it defaults to 100%.

• The sum of the number of active parallel execution servers for the consumer group and the
degree of parallelism of the parallel statement exceeds the target number of active parallel
execution servers.

The target number of active parallel execution servers is computed as follows:

PARALLEL_SERVER_LIMIT/100 * PARALLEL_SERVERS_TARGET

Note:

Although parallel execution server usage is monitored for all sessions, the parallel
execution server directive attributes you set affect only sessions for which parallel
statement queuing is enabled (PARALLEL_DEGREE_POLICY is set to AUTO). If a session
has the PARALLEL_DEGREE_POLICY set to MANUAL, parallel statements from this session
are not queued. However, any parallel execution servers used by such sessions are
included in the count that is used to determine the limit for PARALLEL_SERVER_LIMIT.
Even if this limit is exceeded, parallel statements from this session are not queued.

Chapter 26
About Oracle Database Resource Manager

26-15

See Also:

"Parallel Server Limit"

26.1.3.3.1.3.3 Parallel Queue Timeout
The PARALLEL_QUEUE_TIMEOUT directive attribute enables you to specify the maximum time, in
seconds, that a parallel statement can wait in the parallel statement queue before it is timed
out.

When you use parallel statement queuing, if the database does not have sufficient resources
to execute a parallel statement, the statement is queued until the required resources become
available. However, there is a chance that a parallel statement may be waiting in the parallel
statement queue for longer than is desired. You can prevent such scenarios by specifying the
maximum time a parallel statement can wait in the parallel statement queue.

The PARALLEL_QUEUE_TIMEOUT attribute can be set for each consumer group. This attribute is
applicable even if you do not specify other management attributes (MGMT_P1, MGMT_P2, and so
on) in your resource plan.

See Also:

Oracle Database VLDB and Partitioning Guide for more information about parallel
statement queuing

Note:

Because the parallel statement queue is clusterwide, all directives related to the
parallel statement queue are also clusterwide.

You can control how a timed out parallel statement is handled by setting the
PQ_TIMEOUT_ACTION attribute for each consumer group. You can set this attribute to the
following values:

• CANCEL - The statement execution ends with the error ORA-07454. This is the default action
for a timed out parallel statement.

• RUN - The statement runs immediately. If there are not sufficient parallel servers to run the
statement immediately, then the statement is downgraded to run at a lower degree of
parallelism.

See Also:

"Example of Managing Parallel Statements Using Directive Attributes" for more
information about the combined use of all the parallel execution server directive
attributes

Chapter 26
About Oracle Database Resource Manager

26-16

26.1.3.3.1.4 Program Global Area (PGA)

To manage PGA resources, Resource Manager can limit the amount of PGA memory that can
be allocated to each session in a particular consumer group.

To limit the PGA resources for each session in a consumer group, set the session_pga_limit
parameter in the package procedure DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE. The
value of this parameter is the maximum amount of PGA memory, in megabytes, allowed for
each session in the consumer group. If a session exceeds the limit set for its consumer group,
then error ORA-10260 is raised. This limit includes parallel query child processes and job
queue processes.

For example, poorly written PL/SQL code can consume an unbounded amount of PGA. You
can use the session_pga_limit parameter to limit sessions that run PL/SQL code to ensure
that those sessions do not use an inordinate amount of PGA resource.

The following table illustrates a simple resource plan with PGA limits.

Table 26-3 A Simple Resource Plan with PGA Limits

Consumer Group session_pga_limit Value

HIGH_GROUP 20

LOW_GROUP 10

MAINT_SUBPLAN Null (unlimited)

OTHER_GROUPS Null (unlimited)

In this resource plan, high priority applications run within HIGH_GROUP, and each session in that
group is limited to 20 MB of PGA resource. The sessions used by the lower priority
applications within LOW_GROUP are limited to 10 MB of PGA resource. The sessions used for
maintenance jobs within MAINT_SUPLAN and other sessions within OTHER_GROUPS can use
unlimited PGA resource.

Note:

You can limit the PGA usage of a whole instance with the PGA_AGGREGATE_LIMIT
initialization parameter.

26.1.3.3.1.5 Runaway Queries

Runaway sessions and calls can adversely impact overall performance if they are not
managed properly. Resource Manager can take action when a session or call consumes more
than a specified amount of CPU, physical I/O, logical I/O, or elapsed time. Resource Manager
can either switch the session or call to a consumer group that is allocated a small amount of
CPU or terminate the session or call.

Chapter 26
About Oracle Database Resource Manager

26-17

Note:

Starting with Oracle Database 12c Release 2 (12.2), Resource Manager can also
limit the amount of PGA memory that can be allocated to each session in a particular
consumer group.

• Automatic Consumer Group Switching
You can control resource allocation by specifying criteria that, if met, causes the automatic
switching of a session to a specified consumer group.

• Canceling SQL and Terminating Sessions
You can use the Resource Manager to cancel long-running SQL queries or to terminate
long-running sessions based on their amount of consumption of system resources, such as
CPU and I/O.

• Execution Time Limit
You can specify a maximum execution time allowed for an operation.

See Also:

"Program Global Area (PGA)"

26.1.3.3.1.5.1 Automatic Consumer Group Switching
You can control resource allocation by specifying criteria that, if met, causes the automatic
switching of a session to a specified consumer group.

Typically, this method is used to switch a session from a high-priority consumer group—one
that receives a high proportion of system resources—to a lower priority consumer group
because that session exceeded the expected resource consumption for a typical session in the
group.

See "Specifying Automatic Switching by Setting Resource Limits" for more information.

26.1.3.3.1.5.2 Canceling SQL and Terminating Sessions
You can use the Resource Manager to cancel long-running SQL queries or to terminate long-
running sessions based on their amount of consumption of system resources, such as CPU
and I/O.

The SQL queries canceled by the Resource Manager can be configured for quarantine using
theDBMS_SQLQ package subprograms, so that those queries are not allowed to run again.

See Also:

• "Specifying Automatic Switching by Setting Resource Limits" for more
information about how to configure the Resource Manager to cancel SQL queries
or to terminate sessions based on their consumption of system resources

• "Quarantine for Execution Plans for SQL Statements Consuming Excessive
System Resources" for more information about how to configure quarantine
settings for SQL queries using the DBMS_SQLQ package subprograms

Chapter 26
About Oracle Database Resource Manager

26-18

26.1.3.3.1.5.3 Execution Time Limit
You can specify a maximum execution time allowed for an operation.

If the database estimates that an operation will run longer than the specified maximum
execution time, then the operation is terminated with an error. This error can be trapped and
the operation rescheduled.

26.1.3.3.1.6 Active Session Pool with Queuing

You can control the maximum number of concurrently active sessions allowed within a
consumer group. This maximum defines the active session pool.

An active session is a session that is actively processing a transaction or SQL statement.
Specifically, an active session is either in a transaction, holding a user enqueue, or has an
open cursor and has not been idle for over 5 seconds. An active session is considered active
even if it is blocked, for example waiting for an I/O request to complete. When the active
session pool is full, a session that is trying to process a call is placed into a queue. When an
active session completes, the first session in the queue can then be removed from the queue
and scheduled for execution. You can also specify a period after which a session in the
execution queue times out, causing the call to terminate with an error.

Active session limits should not be used for OLTP workloads. In addition, active session limits
should not be used to implement connection pooling or parallel statement queuing.

To manage parallel statements, you must use parallel statement queuing with the
PARALLEL_SERVER_LIMIT attribute and management attributes (MGMT_P1, MGMT_P2, and so on).

26.1.3.3.1.7 Undo Pool

You can specify an undo pool for each consumer group. An undo pool controls the total
amount of undo for uncommitted transactions that can be generated by a consumer group.

When the total undo generated by a consumer group exceeds its undo limit, the current DML
statement generating the undo is terminated. No other members of the consumer group can
perform further data manipulation until undo space is freed from the pool.

26.1.3.3.1.8 Idle Time Limit

You can specify an amount of time that a session can be idle, after which it is terminated.

You can also specify a more stringent idle time limit that applies to sessions that are idle and
blocking other sessions.

26.1.3.3.2 Resource Plan Directives for PDBs
Directives control allocation of CPU and parallel execution servers.

A directive can control the allocation of resources to PDBs based on the share value that you
specify for each PDB or PDB performance profile. A higher share value results in more
resources. The settings apply to the set of PDBs that use each profile.

For example, you can specify that salespdb is allocated double the resources allocated to
hrpdb by setting the share value for salespdb twice as high as the share value for hrpdb.
Similarly, you can specify that the salespdb performance profile is allocated double the
resources allocated to the hrpdb performance profile by setting the share value for the
salespdb performance profile twice as high as the share value for the hrpdb performance
profile.

Chapter 26
About Oracle Database Resource Manager

26-19

You can also specify utilization limits for PDBs and PDB performance profiles. The limit
controls allocation to the PDB or performance profile. For example, the limit can control how
much CPU salespdb gets as a percentage of the total CPU available to the CDB.

You can use both shares and utilization limits together for precise control over the resources
allocated to each PDB and PDB performance profile in a CDB.

See Also:

Oracle Database SQL Language Reference for more information about PDB
lockdown profiles

26.1.3.3.3 Performance Profiles for PDBs
A PDB performance profile configures resource plan directives for a set of PDBs that have
the same priorities and resource controls.

For example, you might create a performance profiles called Gold, Silver, and Bronze. Each
profile specifies a different set of directives depending on the importance of the type of PDB.
Gold PDBs are more mission critical than Silver PDBs, which are more mission critical than
Bronze PDBs. A PDB specifies its performance profile with the DB_PERFORMANCE_PROFILE
initialization parameter.

You can use PDB lockdown profiles to specify PDB initialization parameters that control
resources, such as SGA_TARGET and PGA_AGGREGATE_LIMIT. A lockdown profile prevents the
PDB administrator from modifying the settings.

Oracle recommends using matching names for performance profiles and lockdown profiles. To
prevent PDB owners from switching profiles, Oracle recommends putting the PDB
performance profile in the PDB lockdown profile.

26.1.3.4 About Resource Plans
A resource plan is a container for directives that specify how resources are allocated to
resource consumer groups.

In addition to the resource plans that are predefined for each Oracle database, you can create
any number of resource plans. However, only one resource plan is active at a time. When a
resource plan is active, each of its child resource plan directives controls resource allocation
for a different consumer group. Each plan must include a directive that allocates resources to
the consumer group named OTHER_GROUPS. OTHER_GROUPS applies to all sessions that belong to
a consumer group that is not part of the currently active plan.

Chapter 26
About Oracle Database Resource Manager

26-20

Note:

Although the term "resource plan" (or just "plan") denotes one element of the
Resource Manager, in this chapter it is also used to refer to a complete resource plan
schema, which includes the resource plan element itself, its resource plan directives,
and the consumer groups that the directives reference. For example, when this
chapter refers to the DAYTIME resource plan, it could mean either the resource plan
element named DAYTIME, or the particular resource allocation schema that the
DAYTIME resource plan and its directives define. Thus, for brevity, it is acceptable to
say, "the DAYTIME plan favors interactive applications over batch applications."

• About CDB Resource Plans
Create CDB resource plans that allocate shares and resource limits for PDBs.

• About PDB Resource Plans
A PDB resource plan determines how the resources for a specific PDB are allocated to
consumer groups within this PDB.

• Example: A Simple Resource Plan
An example illustrates a simple resource plan.

26.1.3.4.1 About CDB Resource Plans
Create CDB resource plans that allocate shares and resource limits for PDBs.

• Shares for Allocating Resources to PDBs
To allocate resources among PDBs, assign a share value to each PDB or performance
profile. A higher share value results in more guaranteed resources for a PDB or the PDBs
that use the performance profile.

• Utilization Limits for PDBs
A utilization limit restrains the system resource usage of a specific PDB or a specific PDB
performance profile.

• The Default Directive for PDBs
When you do not explicitly define directives for a PDB, the PDB uses the default directive
for PDBs.

26.1.3.4.1.1 Shares for Allocating Resources to PDBs

To allocate resources among PDBs, assign a share value to each PDB or performance profile.
A higher share value results in more guaranteed resources for a PDB or the PDBs that use the
performance profile.

Specify a share value for a PDB using the
DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE procedure and for a PDB performance
profile using the DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE procedure. In both
cases, the shares parameter specifies the share value for the PDB. Multiple PDBs can use the
same PDB performance profile.

The following figure shows an example of three PDBs with share values specified for them in a
CDB resource plan.

Chapter 26
About Oracle Database Resource Manager

26-21

Figure 26-1 Shares in a CDB Resource Plan

CDB resource plan in root

Directive:

share = 3
Directive:

share = 3
Directive:

share = 1

PDB
salespdb

PDB
servicespdb

PDB
hrpdb

The preceding figure shows that the total number of shares is seven (3 plus 3 plus 1). The
salespdb and the servicespdb PDB are each guaranteed 3/7 of the resources, while the hrpdb
PDB is guaranteed 1/7 of the resources. However, any PDB can use more than the guaranteed
amount of a resource when no resource contention exists.

The following table shows the resource allocation to the PDBs in the preceding figure based on
the share values. The table assumes that loads of the PDBs consume all system resources
allocated.

Table 26-4 Resource Allocation for Sample PDBs

Resource Resource Allocation See Also

CPU The salespdb and servicespdb PDBs can
consume the same amount of CPU
resources. The salespdb and servicespdb
PDBs are each guaranteed three times more
CPU resource than the hrpdb PDB.

CPU for more information about
this resource

Parallel execution
servers

Queued parallel queries from the salespdb
and servicespdb PDBs are selected
equally. Queued parallel queries from the
salespdb and servicespdb PDBs are
selected three times as often as queued
parallel queries from the hrpdb PDB.

Degree of Parallelism Limit for
more information about this
resource

26.1.3.4.1.2 Utilization Limits for PDBs

A utilization limit restrains the system resource usage of a specific PDB or a specific PDB
performance profile.

You can specify utilization limits for CPU and parallel execution servers. Utilization limits for a
PDB are set by the CDB resource plan.

The following table describes utilization limits for PDBs and the Resource Manager action
taken when a PDB reaches a utilization limit. For limits specified with a PDB performance
profile, the limit applies to every PDB that uses the PDB performance profile. For example, if
pdb1 and pdb20 have a performance profile BRONZE, and if BRONZE has a limit set to 10%, then
pdb1 has a 10% limit and pdb20 has a 10% limit.

Chapter 26
About Oracle Database Resource Manager

26-22

Table 26-5 Utilization Limits for PDBs

Resource Resource Utilization Limit Resource Manager Action When Limit Is
Reached

CPU The CPU utilization limit for sessions connected to
a PDB is set by the utilization_limit
parameter in subprograms of the
DBMS_RESOURCE_MANAGER package. The
utilization_limit parameter specifies the
percentage of the system resources that a PDB
can use. The value ranges from 0 to 100.

You can also limit CPU for a PDB by setting the
initialization parameters CPU_COUNT (upper limit)
and CPU_MIN_COUNT (lower limit). For example, if
you set CPU_COUNT to 8 and CPU_MIN_COUNT
to .1 at the PDB level, then the PDB cannot use
more than 8 CPU threads at any time and must
have at least 1 CPU thread 10% of the time. If
both utilization_limit and CPU_COUNT are
specified, then the more restrictive (lower) value is
enforced.

Resource Manager throttles the PDB sessions so
that the CPU utilization for the PDB does not
exceed the utilization limit.

Parallel execution
servers

You can limit the number of parallel execution
servers in a PDB by means of parallel statement
queuing. The limit is a “queuing point” because
the database queues parallel queries when the
limit is reached.

You can set the limit (queuing point) in either of
the following ways:

• The value of the
PARALLEL_SERVERS_TARGET initialization
parameter setting in the PDB

• The value of the
PARALLEL_SERVERS_TARGET initialization
parameter setting in the CDB root multiplied
by the value of the
parallel_server_limit directive set for
the PDB in the CDB resource manager plan

For example, if the
PARALLEL_SERVERS_TARGET initialization
parameter is set to 200 in the CDB root, and
if the parallel_server_limit directive for
a PDB is set to 10%, then utilization limit for
the PDB is 20 parallel execution servers (200
* .10).

If the limit is set in both preceding ways, then the
lower limit of the two is used. See Oracle
Database Reference for the default value for
PARALLEL_SERVERS_TARGET.

Note: Oracle recommends using the
PARALLEL_SERVERS_TARGET initialization
parameter instead of the
parallel_server_limit directive in a CDB
plan.

Resource Manager queues parallel queries when
the number of parallel execution servers used by
the PDB would exceed the limit.

Note: In a CDB, parallel statements are queued
based on the PARALLEL_SERVERS_TARGET
settings at both the PDB and CDB level. A
statement is queued when the number of parallel
servers used by the PDB exceeds the target for
the PDB or when the number of parallel servers
used by all PDBs exceeds the target for the CDB.

The following figure shows an example of three PDBs with shares and utilization limits
specified for them in a CDB resource plan.

Chapter 26
About Oracle Database Resource Manager

26-23

Figure 26-2 Shares and Utilization Limits in a CDB Resource Plan

CDB resource plan in root

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 1
utilization_limit = 70
parallel_server_limit = 70

PDB
salespdb

PDB
servicespdb

PDB
hrpdb

The preceding figure shows that there are no utilization limits on the salespdb and
servicespdb PDBs because utilization_limit and parallel_server_limit are both set to
100% for them. However, the hrpdb PDB is limited to 70% of the applicable system resources
because utilization_limit and parallel_server_limit are both set to 70%.

Note:

This scenario assumes that the PARALLEL_SERVERS_TARGET initialization parameter
does not specify a lower limit in a PDB. When the PARALLEL_SERVERS_TARGET
initialization parameter specifies a lower limit for parallel execution servers in a PDB,
the lower limit is used.

See Also:

• Parallel Execution Servers

• Oracle Database Reference to learn about CPU_COUNT

26.1.3.4.1.3 The Default Directive for PDBs

When you do not explicitly define directives for a PDB, the PDB uses the default directive for
PDBs.

The following table shows the attributes of the initial default directive for PDBs.

Table 26-6 Initial Default Directive Attributes for PDBs

Directive Attribute Value

shares 1

utilization_limit 100

Chapter 26
About Oracle Database Resource Manager

26-24

Table 26-6 (Cont.) Initial Default Directive Attributes for PDBs

Directive Attribute Value

parallel_server_limit 100

When a PDB is plugged into a CDB and no directive is defined for it, the PDB uses the default
directive for PDBs.

You can create new directives for the new PDB. You can also change the default directive
attribute values for PDBs by using the UPDATE_CDB_DEFAULT_DIRECTIVE procedure in the
DBMS_RESOURCE_MANAGER package.

When a PDB is unplugged from a CDB, the directive for the PDB is retained. If the same PDB
is plugged back into the CDB, then it uses the directive defined for it if the directive was not
deleted manually.

Figure 26-3 shows an example of the default directive in a CDB resource plan.

Figure 26-3 Default Directive in a CDB Resource Plan

. . .

CDB resource plan in root

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 1
utilization_limit = 70
parallel_server_limit = 70

PDB
salespdb

PDB
servicespdb

PDB
marketingpdb

PDB
testingpdb

PDB
hrpdb

Default Directive:

share = 1
utilization_limit = 50
parallel_server_limit = 50

Figure 26-3 shows that the default PDB directive specifies that the share is 1, the
utilization_limit is 50%, and the parallel_server_limit is 50%. Any PDB that is part of
the CDB and does not have directives defined for it uses the default PDB directive. Figure 26-3
shows the PDBs marketingpdb and testingpdb using the default PDB directive. Therefore,
marketingpdb and testingpdb each get 1 share and utilization limits of 50.

Chapter 26
About Oracle Database Resource Manager

26-25

See Also:

• "Creating New CDB Resource Plan Directives for a PDB"

• "Updating the Default Directive for PDBs in a CDB Resource Plan"

• "Parallel Server Limit"

• Oracle Multitenant Administrator's Guide for information about creating and
removing PDBs and application containers

• Oracle Multitenant Administrator's Guide for information about unplugging a PDB
from a CDB

26.1.3.4.2 About PDB Resource Plans
A PDB resource plan determines how the resources for a specific PDB are allocated to
consumer groups within this PDB.

A PDB resource plan differs from a CDB resource plan, which determines the amount of
resources allocated to each PDB. The following restrictions apply to PDB resource plans:

• A PDB resource plan cannot have subplans.

• A PDB resource plan cannot have a multiple-level scheduling policy.

If you create a PDB by upgrading a non-CDB from a previous release, and if the non-CDB
contains resource plans, then these resource plans might not conform to the preceding
restrictions. In this case, Oracle Database automatically transforms these resource plans into
equivalent PDB resource plans that meet these requirements. The original resource plans and
directives are recorded in the DBA_RSRC_PLANS and DBA_RSRC_PLAN_DIRECTIVES views with the
LEGACY status.

• CDB Resource Plan Requirements When Creating PDB Resource Plans
When you create PDB resource plans, the CDB resource plan must meet certain
requirements.

• PDB Resource Plan: Example
A one-to-many relationship exists between CDB resource plans and PDB resource plans.

See Also:

• "About CDB Resource Plans"

• Resources Managed by the Resource Manager

26.1.3.4.2.1 CDB Resource Plan Requirements When Creating PDB Resource Plans

When you create PDB resource plans, the CDB resource plan must meet certain requirements.

Create directives for a CDB resource plan by using the
DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE procedure. Create directives for a PDB
resource plan using the CREATE_PLAN_DIRECTIVE procedure in the same package. When you
create one or more PDB resource plans and there is no CDB resource plan, the CDB uses the
DEFAULT_CDB_PLAN that is supplied with Oracle Database.

Chapter 26
About Oracle Database Resource Manager

26-26

When the CDB resource plan is set to DEFAULT_CDB_PLAN or DEFAULT_MAINTENANCE_PLAN, the
share value and utilization limit for each PDB is determined as follows:

share = CPU_MIN_COUNT of the PDB

utilization_limit = CPU_COUNT of the PDB/CPU_COUNT of the CDB

The following table describes the requirements for the CDB resource plan and the results when
the requirements are not met. The parameter values described in the "CDB Resource Plan
Requirements" column are for the CREATE_CDB_PLAN_DIRECTIVE procedure. The parameter
values described in the "Results When Requirements Are Not Met" column are for the
CREATE_PLAN_DIRECTIVE procedure.

Table 26-7 CDB Resource Plan Requirements for PDB Resource Plans

Resource CDB Resource Plan Requirements Results When Requirements Are Not Met

CPU One of the following requirements must be met:

• A share value must be specified for the PDB
using the shares parameter.

• A utilization limit for CPU below 100 must be
specified for the PDB using the
utilization_limit parameter.

These values can be set in a directive for the
specific PDB or in a default directive.

The CPU allocation policy of the PDB resource
plan is not enforced.

The CPU limit specified by the
utilization_limit parameter in the PDB
resource plan is not enforced.

Parallel execution
servers

One of the following requirements must be met:

• A share value must be specified for the PDB
using the shares parameter.

• A parallel server limit below 100 must be
specified for the PDB using the
parallel_server_limit parameter.

These values can be set in a directive for the
specific PDB or in a default directive.

The parallel execution server allocation policy of
the PDB resource plan is not enforced.

The parallel server limit specified by
parallel_server_limit in the PDB resource
plan is not enforced. However, you can set the
PARALLEL_SERVERS_TARGET initialization
parameter in a PDB to enforce the parallel limit.

26.1.3.4.2.2 PDB Resource Plan: Example

A one-to-many relationship exists between CDB resource plans and PDB resource plans.

The following figure shows an example of a CDB resource plan and a PDB resource plan.

Chapter 26
About Oracle Database Resource Manager

26-27

Figure 26-4 A CDB Resource Plan and a PDB Resource Plan

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

CDB resource plan in root

Directive:

share = 3
utilization_limit = 100
parallel_server_limit = 100

Directive:

share = 1
utilization_limit = 70
parallel_server_limit = 70

PDB
salespdb

PDB
servicespdb

PDB
hrpdb

PDB
resource plan for

servicespdb

Directive 1:

75% of CPU
Directive 2:

15% of CPU
Directive 3:

10% of CPU

Consumer group
“OLTP”

Consumer group
“REPORTING”

Consumer group
“OTHER_GROUPS”

The preceding figure shows some of the directives in a PDB resource plan for the servicespdb
PDB. Other PDBs in the CDB can also have PDB resource plans.

26.1.3.4.3 Example: A Simple Resource Plan
An example illustrates a simple resource plan.

Figure 26-5 shows a simple resource plan for an organization that runs online transaction
processing (OLTP) applications and reporting applications simultaneously during the daytime.
The currently active plan, DAYTIME, allocates CPU resources among three resource consumer
groups. Specifically, OLTP is allotted 75% of the CPU time, REPORTS is allotted 15%, and
OTHER_GROUPS receives the remaining 10%. Any group can use more resources than it is
guaranteed if there is no resource contention. For example, OLTP is guaranteed 75% of the
CPU, but if there is no resource contention, it can use up to 100% of the CPU.

Chapter 26
About Oracle Database Resource Manager

26-28

Figure 26-5 A Simple Resource Plan

Directive 2�
15% of CPU

Directive 3�
10% of CPU

Directive 1�
75% of CPU

Consumer Group�
"REPORTING"

Consumer Group�
"OTHER_GROUPS"

Consumer Group�
"OLTP"

Resource Plan�
"DAYTIME"

Oracle Database provides a procedure (CREATE_SIMPLE_PLAN) that enables you to quickly
create a simple resource plan. This procedure is discussed in "Creating a Simple Resource
Plan ".

Note:

The currently active resource plan does not enforce allocations until CPU usage is at
100%. If the CPU usage is below 100%, the database is not CPU-bound and hence
there is no need to enforce allocations to ensure that all sessions get their
designated resource allocation.

In addition, when allocations are enforced, unused allocation by any consumer group
can be used by other consumer groups. In the previous example, if the OLTP group
does not use all of its allocation, the Resource Manager permits the REPORTS group or
OTHER_GROUPS group to use the unused allocation.

26.1.3.5 About Subplans
Instead of referencing a consumer group, a resource plan directive (directive) can reference
another resource plan. In this case, the plan is referred to as a subplan.

The subplan itself has directives that allocate resources to consumer groups and other
subplans. The resource allocation scheme then works like this: The top resource plan (the
currently active plan) divides resources among consumer groups and subplans. Each subplan
allocates its portion of the total resource allocation among its consumer groups and subplans.
You can create hierarchical plans with any number of subplans.

You create a resource subplan in the same way that you create a resource plan. To create a
plan that is to be used only as a subplan, you use the SUB_PLAN argument in the package
procedure DBMS_RESOURCE_MANAGER.CREATE_PLAN.

In any top level plan, you can reference a subplan only once. A subplan is not required to have
a directive to OTHER_GROUPS and cannot be set as a resource plan.

• Example: A Resource Plan with Subplans
An example illustrates a resource plan with subplans.

Chapter 26
About Oracle Database Resource Manager

26-29

26.1.3.5.1 Example: A Resource Plan with Subplans
An example illustrates a resource plan with subplans.

In this example, the Great Bread Company allocates the CPU resource as shown in
Figure 26-6. The figure illustrates a top plan (GREAT_BREAD) and all of its descendents. For
simplicity, the requirement to include the OTHER_GROUPS consumer group is ignored, and
resource plan directives are not shown, even though they are part of the plan. Rather, the CPU
percentages that the directives allocate are shown along the connecting lines between plans,
subplans, and consumer groups.

Figure 26-6 A Resource Plan With Subplans

GREAT_BREAD

plan

SALES_TEAM

plan

DEVELOP_TEAM

plan

MARKET

group

50%

CPU

50%

CPU

50%

CPU

50%

CPU

20%

CPU

WHOLESALE

group

BREAD

group

MUFFIN

group

60%

CPU

RETAIL

group

20%

CPU

The GREAT_BREAD plan allocates resources as follows:

• 20% of CPU resources to the consumer group MARKET
• 60% of CPU resources to subplan SALES_TEAM, which in turn divides its share equally

between the WHOLESALE and RETAIL consumer groups

• 20% of CPU resources to subplan DEVELOP_TEAM, which in turn divides its resources
equally between the BREAD and MUFFIN consumer groups

It is possible for a subplan or consumer group to have multiple parents. An example would be if
the MARKET group were included in the SALES_TEAM subplan. However, a plan cannot contain
any loops. For example, the SALES_TEAM subplan cannot have a directive that references the
GREAT_BREAD plan.

See Also:

"Putting It All Together: Oracle Database Resource Manager Examples" for an
example of a more complex resource plan.

26.1.4 User Interface for PDB Resource Management
You can manage PDB resources using DBMS_RESOURCE_MANAGER and initialization parameters.

Chapter 26
About Oracle Database Resource Manager

26-30

• About Resource Manager Administration Privileges
You must have the required privileges to administer the Resource Manager.

• DBMS_RESOURCE_MANAGER for CDBs and PDBs
The DBMS_RESOURCE_MANAGER package maintains plans, consumer groups, and plan
directives for CDBs and PDBs.

• Initialization Parameters for PDB-Level Resources
Use initialization parameters to control CPU, memory, sessions, and I/O in a PDB.

26.1.4.1 About Resource Manager Administration Privileges
You must have the required privileges to administer the Resource Manager.

You must have the system privilege ADMINISTER_RESOURCE_MANAGER to administer the
Resource Manager. This privilege (with the ADMIN option) is granted to database administrators
through the DBA role.

Being an administrator for the Resource Manager enables you to execute all of the procedures
in the DBMS_RESOURCE_MANAGER PL/SQL package.

You may, as an administrator with the ADMIN option, choose to grant the administrative privilege
to other users or roles. To do so, use the DBMS_RESOURCE_MANAGER_PRIVS PL/SQL package.
The relevant package procedures are listed in the following table.

Procedure Description

GRANT_SYSTEM_PRIVILEGE Grants the ADMINISTER_RESOURCE_MANAGER system
privilege to a user or role.

REVOKE_SYSTEM_PRIVILEGE Revokes the ADMINISTER_RESOURCE_MANAGER system
privilege from a user or role.

The following PL/SQL block grants the administrative privilege to user HR, but does not grant HR
the ADMIN option. Therefore, HR can execute all of the procedures in the
DBMS_RESOURCE_MANAGER package, but HR cannot use the GRANT_SYSTEM_PRIVILEGE procedure
to grant the administrative privilege to others.

BEGIN
 DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE(
 GRANTEE_NAME => 'HR',
 PRIVILEGE_NAME => 'ADMINISTER_RESOURCE_MANAGER',
 ADMIN_OPTION => FALSE);
END;
/

You can revoke this privilege using the REVOKE_SYSTEM_PRVILEGE procedure.

Note:

The ADMINISTER_RESOURCE_MANAGER system privilege can only be granted or revoked
using the DBMS_RESOURCE_MANAGER_PRIVS package. It cannot be granted or revoked
through the SQL GRANT or REVOKE statements.

Chapter 26
About Oracle Database Resource Manager

26-31

See Also:

• Oracle Database PL/SQL Packages and Types Reference. for information about
the DBMS_RESOURCE_MANAGER package

• Oracle Database PL/SQL Packages and Types Reference. for information about
the DBMS_RESOURCE_MANAGER_PRIVS package

• Oracle Database Security Guide for information about the ADMIN option

26.1.4.2 DBMS_RESOURCE_MANAGER for CDBs and PDBs
The DBMS_RESOURCE_MANAGER package maintains plans, consumer groups, and plan directives
for CDBs and PDBs.

The following table describes the program units related to managing resources in PDBs.

Table 26-8 DBMS_RESOURCE_MANAGER Program Units

PL/SQL Program Unit Description

CREATE_CDB_PLAN_DIRECTIVE This procedure creates the plan directives of the CDB
resource plan. Plan directives specify the resource allocation
policy for PDBs.

CREATE_CDB_PROFILE_DIRECTIVE This procedure creates the performance profile directives of
the CDB resource plan. The directives specify the resource
allocation policy for PDBs that use the performance profile.

CREATE_CDB_PLAN This procedure creates entries that define CDB resource
plans.

UPDATE_CDB_DEFAULT_DIRECTIVE This procedure updates the plan directives of the CDB
resource plan.

UPDATE_CDB_PLAN This procedure updates the CDB resource plan.

Note:

Oracle Database PL/SQL Packages and Types Reference to learn more about
DBMS_RESOURCE_MANAGER

26.1.4.3 Initialization Parameters for PDB-Level Resources
Use initialization parameters to control CPU, memory, sessions, and I/O in a PDB.

• CPU-Related Initialization Parameters for PDBs
The CPU_COUNT initialization parameter specifies the number of CPU threads available to a
PDB.

• Memory-Related Initialization Parameters for PDBs
Several initialization parameters control the SGA and PGA usage of a PDB.

• Session-Related Initialization Parameters for PDBs
Several initialization parameters control how sessions consume resources in a PDB.

Chapter 26
About Oracle Database Resource Manager

26-32

• I/O-Related Initialization Parameters for PDBs
The MAX_IOPS and MAX_MBPS initialization parameters limit the disk I/O generated by a PDB.

26.1.4.3.1 CPU-Related Initialization Parameters for PDBs
The CPU_COUNT initialization parameter specifies the number of CPU threads available to a
PDB.

The term CPU thread refers to a thread of execution on a CPU core. For example, a server
might have 4 CPU sockets. Each CPU in a socket might have 2 cores, making a total of 8
cores. If each CPU core were multithreaded, with 2 threads of execution in each core, then the
server would have a total of 16 CPU threads.

If CPU Resource Management is enabled for the CDB, then the PDB-level CPU_MIN_COUNT and
CPU_COUNT initialization parameters manage CPU resources for the PDB. CPU Resource
Management is enabled, for example, when the DEFAULT_CDB_PLAN is set at the CDB level. The
CPU Resource Manager cages (restricts) the CPU for the PDB according to the lesser of
CPU_COUNT and the PDB-level utilization_limit directive, if it exists. If the CDB resource
plan has no shares or utilization limits set in non-default directives, then the CPU Resource
Manager uses the PDB-level CPU_MIN_COUNT to set the PDB shares in its CDB resource plan.

Note:

CPU_COUNT and CPU_MIN_COUNT do not specify where the threads must be obtained,
that is, on which specific CPU or core.

Table 26-9 Initialization Parameters That Control CPU Usage in PDBs

Initialization
Parameter

Description Default Value at PDB
Level

CPU_COUNT Specifies the maximum number of CPU threads that the PDB can use
at one time.

If set to a nonzero value, then Oracle Database uses this count rather
than the actual number of CPUs, thus disabling dynamic CPU
reconfiguration.

CPU_COUNT works the same way as the utilization_limit directive
in the CDB plan. However, the CPU_COUNT limit is expressed in terms of
number of CPU threads rather than utilization percentage. If both the
utilization_limit and CPU_COUNT are specified, then the lower
limit is enforced.

Note: When the PDB is plugged into a new container, the CPU_COUNT
setting remains with the plugged-in PDB.

CPU_COUNT of the CDB

Chapter 26
About Oracle Database Resource Manager

26-33

Table 26-9 (Cont.) Initialization Parameters That Control CPU Usage in PDBs

Initialization
Parameter

Description Default Value at PDB
Level

CPU_MIN_COUNT Specifies the minimum number of CPU threads for the PDB.

Valid values are 0.1 to the CPU_COUNT setting. The value must be a
multiple of 0.05. When less than 1, the value specifies the minimum
percentage of time that the PDB requires a thread. For example, a
setting of 0.1 means that over a span of 10 seconds, the PDB requires
a CPU thread at least 1 second.

The CDB is oversubscribed when the sum of the PDB-level
CPU_MIN_COUNT settings across all PDBs that are open on a database
instance exceeds the CDB-level CPU_MIN_COUNT setting. For example,
if a single-instance CDB containing 100 PDBs has a CPU_MIN_COUNT of
8, and if each PDB has a CPU_MIN_COUNT setting of .1, then the CDB
is oversubscribed. The minimum CPU is only guaranteed when the
CDB is not oversubscribed.

CPU_COUNT

26.1.4.3.2 Memory-Related Initialization Parameters for PDBs
Several initialization parameters control the SGA and PGA usage of a PDB.

When the PDB is the current container, the initialization parameters in the following table
control the memory usage of the current PDB. When one or more of these parameters is set
for a PDB, ensure that the CDB and the other PDBs have sufficient memory for their
operations.

The initialization parameters in the following table control the memory usage of PDBs only if
the following conditions are met:

• The NONCDB_COMPATIBLE initialization parameter is set to FALSE in the CDB root.

• The MEMORY_TARGET initialization parameter is not set or is set to 0 (zero) in the CDB root.

Chapter 26
About Oracle Database Resource Manager

26-34

Table 26-10 Initialization Parameters That Control the Memory Usage of PDBs

Initialization Parameter Description (When Set at PDB Level) Default at PDB Level

DB_CACHE_SIZE Sets the minimum guaranteed buffer cache size for the
PDB. This parameter is optional at the PDB level.

If the SGA_TARGET initialization parameter is not set, and
if the DB_CACHE_SIZE initialization parameter is set at
the CDB level, then the following requirements must be
met:

• The value of DB_CACHE_SIZE set in a PDB must be
less than or equal to 50% of the DB_CACHE_SIZE
value at the CDB level.

• The sum of the DB_CACHE_SIZE values across all
the PDBs in the CDB must be less than or equal to
50% of the DB_CACHE_SIZE value at the CDB level.

If SGA_TARGET is set at the CDB level, then the following
requirements must be met to avoid an error:

• The values of DB_CACHE_SIZE plus
SHARED_POOL_SIZE in a PDB must be less than or
equal to 50% of the PDB’s SGA_TARGET value.

• The values of DB_CACHE_SIZE plus
SHARED_POOL_SIZE in a PDB must be less than or
equal to 50% of the SGA_TARGET value at the CDB
level.

• The sum of DB_CACHE_SIZE plus
SHARED_POOL_SIZE across all the PDBs in a CDB
must be less than or equal to 50% of the
SGA_TARGET value at the CDB level.

None

Chapter 26
About Oracle Database Resource Manager

26-35

Table 26-10 (Cont.) Initialization Parameters That Control the Memory Usage of PDBs

Initialization Parameter Description (When Set at PDB Level) Default at PDB Level

SHARED_POOL_SIZE Sets the minimum guaranteed shared pool size for the
PDB.

If the SGA_TARGET initialization parameter is not set, but
the SHARED_POOL_SIZE initialization parameter is set at
the CDB level, then the following requirements must be
met:

• The value of SHARED_POOL_SIZE set in a PDB must
be less than or equal to 50% of the
SHARED_POOL_SIZE value at the CDB level.

• The sum of the SHARED_POOL_SIZE values across
all the PDBs in the CDB must be less than or equal
to 50% of the SHARED_POOL_SIZE value at the CDB
level.

When the SGA_TARGET initialization parameter is set to a
nonzero value at the CDB level, the following
requirements must be met to avoid an error:

• The values of DB_CACHE_SIZE plus
SHARED_POOL_SIZE in a PDB must be less than or
equal to 50% of the PDB’s SGA_TARGET value.

• The values of DB_CACHE_SIZE plus
SHARED_POOL_SIZE in a PDB must be less than or
equal to 50% of the SGA_TARGET value at the CDB
level.

• The sum of DB_CACHE_SIZE plus
SHARED_POOL_SIZE across all the PDBs in a CDB
must be less than or equal to 50% of the
SGA_TARGET value at the CDB level.

None

When this parameter is not set at
the PDB level, the PDB has no limit
for the amount of shared pool it can
use, other than the CDB's shared
pool size.

SGA_MIN_SIZE Sets the minimum SGA size for the PDB.

The setting must meet the following requirements:

• SGA_TARGET initialization parameter must not be set
or must be set to 0 (zero) in the CDB root.
Otherwise, setting SGA_MIN_SIZE in a PDB has no
effect.

• It must be less than or equal to 50% of the setting
for the SGA_TARGET in the CDB root.

• It must be less than or equal to 50% of the setting
for the SGA_TARGET in the PDB.

• The sum of the SGA_MIN_SIZE settings for all PDBs
must be less than or equal to 50% of the setting for
the SGA_TARGET in the CDB root.

Note that setting SGA_MIN_SIZE at the CDB level has no
effect.

0

SGA_TARGET Sets the maximum SGA size for the PDB.

The PDB enforces the PDB-level SGA_TARGET setting
only if the SGA_TARGET initialization parameter is set to a
nonzero value in the CDB root. The SGA_TARGET setting
in the PDB must be less than or equal to the
SGA_TARGET setting in the CDB root.

SGA_TARGET at the CDB level
multiplied by ratio of PDB-level
CPU_COUNT / CDB-level
CPU_COUNT

Chapter 26
About Oracle Database Resource Manager

26-36

Table 26-10 (Cont.) Initialization Parameters That Control the Memory Usage of PDBs

Initialization Parameter Description (When Set at PDB Level) Default at PDB Level

PGA_AGGREGATE_LIMIT Sets the maximum PGA size for the PDB.

If you set PGA_AGGREGATE_LIMIT manually, then the
value must meet the following requirements:

• It must be less than or equal to the setting for the
PGA_AGGREGATE_LIMIT in the CDB root.

• It must be greater than or equal to two times the
setting for the PGA_AGGREGATE_TARGET in the PDB.

PGA_AGGREGATE_LIMIT at the
CDB level multiplied by ratio of
PDB-level CPU_COUNT / CDB-level
CPU_COUNT

PGA_AGGREGATE_TARGET Sets the target aggregate PGA size for the PDB.

If you set PGA_AGGREGATE_TARGET manually, then the
value must meet the following requirements:

• It must be less than or equal to the
PGA_AGGREGATE_TARGET value set at the CDB
level.

• It must be less than or equal to 50% of the
PGA_AGGREGATE_LIMIT initialization parameter
value set at the CDB level.

• It must be less than or equal to 50% of the
PGA_AGGREGATE_LIMIT value set in the PDB.

PGA_AGGREGATE_TARGET at the
CDB level multiplied by ratio of
PDB-level CPU_COUNT / CDB-level
CPU_COUNT

Example 26-1 Setting the Maximum Aggregate PGA Memory Available for a PDB

With the PDB as the current container, run the following SQL statement to set the
PGA_AGGREGATE_LIMIT initialization parameter both in memory and in the SPFILE to 90 MB:

ALTER SYSTEM SET PGA_AGGREGATE_LIMIT = 90M SCOPE = BOTH;

Example 26-2 Setting the Minimum SGA Size for a PDB

With the PDB as the current container, run the following SQL statement to set the
SGA_MIN_SIZE initialization parameter both in memory and in the SPFILE to 500 MB:

ALTER SYSTEM SET SGA_MIN_SIZE = 500M SCOPE = BOTH;

26.1.4.3.3 Session-Related Initialization Parameters for PDBs
Several initialization parameters control how sessions consume resources in a PDB.

Chapter 26
About Oracle Database Resource Manager

26-37

Table 26-11 Initialization Parameters That Control the Session Usage of PDBs

Initialization Parameter Description (When Set at PDB Level) Default at PDB Level

SESSIONS Sets the maximum of number of sessions that a PDB
can use.

If the PDB tries to use more sessions than configured by
its SESSIONS parameter, then an ORA-00018 error
message is generated. For PDBs, the SESSIONS
parameter does not count recursive sessions and
therefore does not require the 10% adjustment.

The SESSIONS parameter for a PDB can only be
modified by the PDB. It cannot be set higher than the
SESSIONS value set at the CDB level.

SESSIONS at the CDB level
multiplied by ratio of PDB-level
CPU_COUNT / CDB-level
CPU_COUNT

MAX_IDLE_TIME Specifies the maximum number of minutes that a
session can be idle. After the maximum is reached,
Oracle Database automatically terminates the session.

0 (not set)

MAX_IDLE_BLOCKER_TIME Sets the number of minutes that a session can be idle
before it is a candidate for termination.

With this parameter, an idle session is terminated if it is
blocking another session. Oracle Database considers a
session blocked in any of the following situations:

• The session is holding a lock needed by another
session.

• The session is a parallel operation and its consumer
group, PDB, or CDB has either reached its
maximum parallel server limit or has queued
parallel operations.

• The PDB or database instance for the session is
about to hit its sessions or processes limit.

Unlike MAX_IDLE_TIME, MAX_IDLE_BLOCKER_TIME
terminates resources only when they are needed.

0 (not set)

26.1.4.3.4 I/O-Related Initialization Parameters for PDBs
The MAX_IOPS and MAX_MBPS initialization parameters limit the disk I/O generated by a PDB.

A large amount of disk I/O can cause poor performance. Several factors can result in excess
disk I/O, such as poorly designed SQL or index and table scans in high-volume transactions. If
one PDB is generating heavy disk I/O, then it can degrade the performance of other PDBs.

Use one or both of the following initialization parameters to limit the I/O generated by a specific
PDB:

• The MAX_IOPS initialization parameter limits the number of I/O operations for each second.

• The MAX_IOPS initialization parameter limits the megabytes for I/O operations for each
second.

If you set both preceding initialization parameters for a single PDB, then Oracle Database
enforces both limits. The MAX_IOPS and MAX_IOPS limits are not enforced for Oracle Exadata,
which uses I/O Resource Management (IORM) to manage I/Os between PDBs.

If these initialization parameters are set with the CDB root as the current container, then the
values become the default values for all containers in the CDB. If they are set with an
application root as the current container, then the values become the default values for all
application PDBs in the application container. When they are set with a PDB or application

Chapter 26
About Oracle Database Resource Manager

26-38

PDB as the current container, then the settings take precedence over the default settings in the
CDB root or the application root.

The default for both initialization parameters is 0 (zero). If these initialization parameters are
set to 0 (zero) in a PDB, and the CDB root is set to 0, then there is no I/O limit for the PDB. If
these initialization parameters are set to 0 (zero) in an application PDB, and its application root
is set to 0, then there is no I/O limit for the application PDB.

Critical I/O operations, such as ones for the control file and password file, are exempted from
the limit and continue to run even if the limit is reached. However, all I/O operations, including
critical I/O operations, are counted when the number of I/O operations and the megabytes for
I/O operations are calculated.

You can use the DBA_HIST_RSRC_PDB_METRIC view to calculate a reasonable I/O limit for a PDB.
Consider the values in the following columns when calculating a limit: IOPS, IOMBPS,
IOPS_THROTTLE_EXEMPT, and IOMBPS_THROTTLE_EXEMPT. The rsmgr:io rate limit wait event
indicates that a limit was reached.

Example 26-3 Limiting the I/O Generated by a PDB

With the PDB as the current container, run the following SQL statement to set the MAX_IOPS
initialization parameter both in memory and in the SPFILE to a limit of 1,000 I/O operations for
each second:

ALTER SYSTEM SET MAX_IOPS = 1000 SCOPE = BOTH;

Example 26-4 Limiting the Megabytes of I/O Generated by a PDB

With the PDB as the current container, run the following SQL statement to set the MAX_MBPS
initialization parameter both in memory and in the SPFILE to a limit of 200 MB of I/O for each
second:

ALTER SYSTEM SET MAX_MBPS = 200 SCOPE = BOTH;

See Also:

• Oracle Multitenant Administrator's Guide for information about modifying a PDB
at the system level

• Oracle Database Reference for more information about the MAX_IOPS initialization
parameter

• Oracle Database Reference for more information about the MAX_MBPS initialization
parameter

26.2 Enabling Oracle Database Resource Manager and
Switching Plans

You enable Oracle Database Resource Manager (the Resource Manager) by setting the
RESOURCE_MANAGER_PLAN initialization parameter. This parameter specifies the top plan,

Chapter 26
Enabling Oracle Database Resource Manager and Switching Plans

26-39

identifying the plan to be used for the current instance. If no plan is specified with this
parameter, the Resource Manager is not enabled.

By default the Resource Manager is not enabled, except in the following situations:

• During preconfigured maintenance windows, described later in this section.

• When Oracle Database In-Memory is enabled by setting the INMEMORY_SIZE initialization
parameter to a value greater than 0.

The following statement in a text initialization parameter file activates the Resource Manager
upon database startup and sets the top plan as mydb_plan.

RESOURCE_MANAGER_PLAN = mydb_plan

You can also activate or deactivate the Resource Manager, or change the current top plan,
using the DBMS_RESOURCE_MANAGER.SWITCH_PLAN package procedure or the ALTER SYSTEM
statement.

The following SQL statement sets the top plan to mydb_plan, and activates the Resource
Manager if it is not already active:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'mydb_plan';

An error message is returned if the specified plan does not exist in the data dictionary.

Automatic Enabling of the Resource Manager by Oracle Scheduler Windows

The Resource Manager automatically activates if an Oracle Scheduler window that specifies a
resource plan opens. When the Scheduler window closes, the resource plan associated with
the window is disabled, and the resource plan that was running before the Scheduler window
opened is reenabled. (If no resource plan was enabled before the window opened, then the
Resource Manager is disabled.) In an Oracle Real Application Clusters environment, a
Scheduler window applies to all instances, so the window's resource plan is enabled on every
instance.

Note that by default a set of automated maintenance tasks run during maintenance windows,
which are predefined Scheduler windows that are members of the MAINTENANCE_WINDOW_GROUP
window group and which specify the DEFAULT_MAINTENANCE_PLAN resource plan. Thus, the
Resource Manager activates by default during maintenance windows. You can modify these
maintenance windows to use a different resource plan, if desired.

Note:

If you change the plan associated with maintenance windows, then ensure that you
include the subplan ORA$AUTOTASK in the new plan.

See Also:

• "Windows"

• Managing Automated Database Maintenance Tasks

Chapter 26
Enabling Oracle Database Resource Manager and Switching Plans

26-40

Disabling Plan Switches by Oracle Scheduler Windows

In some cases, the automatic change of Resource Manager plans at Scheduler window
boundaries may be undesirable. For example, if you have an important task to finish, and if you
set the Resource Manager plan to give your task priority, then you expect that the plan will
remain the same until you change it. However, because a Scheduler window could activate
after you have set your plan, the Resource Manager plan might change while your task is
running.

To prevent this situation, you can set the RESOURCE_MANAGER_PLAN initialization parameter to the
name of the plan that you want for the system and prepend "FORCE:" to the name, as shown in
the following SQL statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'FORCE:mydb_plan';

Using the prefix FORCE: indicates that the current resource plan can be changed only when the
database administrator changes the value of the RESOURCE_MANAGER_PLAN initialization
parameter. This restriction can be lifted by rerunning the command without preceding the plan
name with "FORCE:".

The DBMS_RESOURCE_MANAGER.SWITCH_PLAN package procedure has a similar capability.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on
DBMS_RESOURCE_MANAGER.SWITCH_PLAN.

Disabling the Resource Manager

To disable the Resource Manager, complete the following steps:

1. Issue the following SQL statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = '';
2. Disassociate the Resource Manager from all Oracle Scheduler windows.

To do so, for any Scheduler window that references a resource plan in its resource_plan
attribute, use the DBMS_SCHEDULER.SET_ATTRIBUTE procedure to set resource_plan to the
empty string (''). Qualify the window name with the SYS schema name if you are not logged
in as user SYS. You can view Scheduler windows with the DBA_SCHEDULER_WINDOWS data
dictionary view. See "Altering Windows" and Oracle Database PL/SQL Packages and
Types Reference for more information.

Note:

By default, all maintenance windows reference the DEFAULT_MAINTENANCE_PLAN
resource plan. To completely disable the Resource Manager, you must alter all
maintenance windows to remove this plan. However, use caution, because
resource consumption by automated maintenance tasks will no longer be
regulated, which may adversely affect the performance of your other sessions.
See Managing Automated Database Maintenance Tasks for more information on
maintenance windows.

Chapter 26
Enabling Oracle Database Resource Manager and Switching Plans

26-41

26.3 Assigning Sessions to Resource Consumer Groups
There are automatic and manual methods that database administrators, users, and
applications can use to assign sessions to resource consumer groups. When a session is
assigned to a resource consumer group, Oracle Database Resource Manager (the Resource
Manager) can manage resource allocation for it.

Note:

Sessions that are not assigned to a consumer group are placed in the consumer
group OTHER_GROUPS.

• Overview of Assigning Sessions to Resource Consumer Groups
Before you enable the Resource Manager, you must specify how user sessions are
assigned to resource consumer groups.

• Assigning an Initial Resource Consumer Group
The initial consumer group of a session is determined by the mapping rules that you
configure.

• Specifying Session-to-Consumer Group Mapping Rules
You can create and prioritize session-to-consumer group mapping rules.

• Switching Resource Consumer Groups
You can switch the resource consumer group of a session.

• Specifying Automatic Consumer Group Switching
You can configure the Resource Manager to automatically switch a session to another
consumer group when a certain condition is met.

• Granting and Revoking the Switch Privilege
A user or application must have the switch privilege to switch a session to a specified
resource consumer group.

26.3.1 Overview of Assigning Sessions to Resource Consumer Groups
Before you enable the Resource Manager, you must specify how user sessions are assigned
to resource consumer groups.

You do this by creating mapping rules that enable the Resource Manager to automatically
assign each session to a consumer group upon session startup, based upon session
attributes. After a session is assigned to its initial consumer group and is running, you can call
a procedure to manually switch the session to a different consumer group. You would typically
do this if the session is using excessive resources and must be moved to a consumer group
that is more limited in its resource allocation. You can also grant the switch privilege to users
and to applications so that they can switch their sessions from one consumer group to another.

The database can also automatically switch a session from one consumer group to another
(typically lower priority) consumer group when there are changes in session attributes or when
a session exceeds designated resource consumption limits.

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-42

26.3.2 Assigning an Initial Resource Consumer Group
The initial consumer group of a session is determined by the mapping rules that you configure.

For information on how to configure mapping rules, see "Specifying Session-to-Consumer
Group Mapping Rules".

26.3.3 Specifying Session-to-Consumer Group Mapping Rules
You can create and prioritize session-to-consumer group mapping rules.

• About Session-to-Consumer Group Mapping Rules
You can specify the initial consumer group for a session and dynamically switch the
session to a different consumer group if the session attributes change.

• Creating Consumer Group Mapping Rules
You use the SET_CONSUMER_GROUP_MAPPING procedure to map a session attribute/value pair
to a consumer group.

• Modifying and Deleting Consumer Group Mapping Rules
To modify a consumer group mapping rule, run the SET_CONSUMER_GROUP_MAPPING
procedure against the desired attribute/value pair, specifying a new consumer group.

• Creating Mapping Rule Priorities
To resolve conflicting mapping rules, you can establish a priority ordering of the session
attributes from most important to least important.

26.3.3.1 About Session-to-Consumer Group Mapping Rules
You can specify the initial consumer group for a session and dynamically switch the session to
a different consumer group if the session attributes change.

By creating session-to-consumer group mapping rules, you can:

• Specify the initial consumer group for a session based on session attributes.

• Enable the Resource Manager to dynamically switch a running session to another
consumer group based on changing session attributes.

The mapping rules are based on session attributes such as the user name, the service that the
session used to connect to the database, or the name of the client program.

To resolve conflicts among mapping rules, the Resource Manager orders the rules by priority.
For example, suppose user SCOTT connects to the database with the SALES service. If one
mapping rule states that user SCOTT starts in the MED_PRIORITY consumer group, and another
states that sessions that connect with the SALES service start in the HIGH_PRIORITY consumer
group, mapping rule priorities resolve this conflict.

There are two types of session attributes upon which mapping rules are based: login attributes
and run-time attributes. The login attributes are meaningful only at session login time, when the
Resource Manager determines the initial consumer group of the session. Run-time attributes
apply any time during and after session login. You can reassign a logged in session to another
consumer group by changing any of its run-time attributes.

You use the SET_CONSUMER_GROUP_MAPPING and SET_CONSUMER_GROUP_MAPPING_PRI procedures
to configure the automatic assignment of sessions to consumer groups. You must use a
pending area for these procedures. (You must create the pending area, run the procedures,

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-43

optionally validate the pending area, and then submit the pending area. For examples of using
the pending area, see "Creating a Complex Resource Plan".)

A session is automatically switched to a consumer group through mapping rules at distinct
points in time:

• When the session first logs in, the mapping rules are evaluated to determine the initial
group of the session.

• If a session attribute is dynamically changed to a new value (which is only possible for run-
time attributes), then the mapping rules are reevaluated, and the session might be
switched to another consumer group.

Predefined Consumer Group Mapping Rules

Each Oracle database comes with a set of predefined consumer group mapping rules:

• As described in "About Resource Consumer Groups", all sessions created by user
accounts SYS or SYSTEM are initially mapped to the SYS_GROUP consumer group.

• Sessions performing a data load with Data Pump or performing backup or copy operations
with RMAN are automatically mapped to the predefined consumer groups designated in
Table 26-19.

You can use the DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING procedure to modify
or delete any of these predefined mapping rules.

See Also:

• "Assigning an Initial Resource Consumer Group"

• "Specifying Automatic Switching with Mapping Rules"

26.3.3.2 Creating Consumer Group Mapping Rules
You use the SET_CONSUMER_GROUP_MAPPING procedure to map a session attribute/value pair to a
consumer group.

The parameters for this procedure are the following:

Parameter Description

ATTRIBUTE The session attribute type, specified as a package constant

VALUE The value of the attribute

CONSUMER_GROUP The consumer group to map to for this attribute/value pair

ATTRIBUTE can be one of the following:

Attribute Type Description

ORACLE_USER Login The Oracle Database user name

SERVICE_NAME Login The database service name used
by the client to establish a
connection

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-44

Attribute Type Description

CLIENT_OS_USER Login The operating system user name
of the client that is logging in

CLIENT_PROGRAM Login The name of the client program
used to log in to the server

CLIENT_MACHINE Login The name of the computer from
which the client is making the
connection

CLIENT_ID Login The client identifier for the
session

The client identifier session
attribute is set by the
DBMS_SESSION.SET_IDENTIFIE
R procedure.

MODULE_NAME Run-time The module name in the currently
running application as set by the
DBMS_APPLICATION_INFO.SET_
MODULE procedure or the
equivalent OCI attribute setting

MODULE_NAME_ACTION Run-time A combination of the current
module and the action being
performed as set by either of the
following procedures or their
equivalent OCI attribute setting:

• DBMS_APPLICATION_INFO.
SET_MODULE

• DBMS_APPLICATION_INFO.
SET_ACTION

The attribute is specified as the
module name followed by a
period (.), followed by the action
name
(module_name.action_name).

SERVICE_MODULE Run-time A combination of service and
module names in this form:
service_name.module_name

SERVICE_MODULE_ACTION Run-time A combination of service name,
module name, and action name,
in this form:
service_name.module_name.a
ction_name

ORACLE_FUNCTION Run-time An RMAN or Data Pump
operation. Valid values are
DATALOAD, BACKUP, and COPY.
There are predefined mappings
for each of these values. If your
session is performing any of
these functions, it is automatically
mapped to a predefined
consumer group. See Table 26-19
for details.

For example, the following PL/SQL block causes user SCOTT to map to the DEV_GROUP
consumer group every time that they log in:

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-45

BEGIN
 DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING
 (DBMS_RESOURCE_MANAGER.ORACLE_USER, 'SCOTT', 'DEV_GROUP');
END;
/

Again, you must create a pending area before running the SET_CONSUMER_GROUP_MAPPING
procedure.

You can use wildcards for the value of most attributes in the value parameter in the
SET_CONSUMER_GROUP_MAPPING procedure. To specify values with wildcards, use the same
semantics as the SQL LIKE operator. Specifically, wildcards use the following semantics:

• % for a multicharacter wildcard

• _ for a single character wildcard

• \ to escape the wildcards

Wildcards can only be used if the attribute is one of the following:

• CLIENT_OS_USER
• CLIENT_PROGRAM
• CLIENT_MACHINE
• MODULE_NAME
• MODULE_NAME_ACTION
• SERVICE_MODULE
• SERVICE_MODULE_ACTION

26.3.3.3 Modifying and Deleting Consumer Group Mapping Rules
To modify a consumer group mapping rule, run the SET_CONSUMER_GROUP_MAPPING procedure
against the desired attribute/value pair, specifying a new consumer group.

To delete a rule, run the SET_CONSUMER_GROUP_MAPPING procedure against the desired attribute/
value pair and specify a NULL consumer group.

26.3.3.4 Creating Mapping Rule Priorities
To resolve conflicting mapping rules, you can establish a priority ordering of the session
attributes from most important to least important.

You use the SET_CONSUMER_GROUP_MAPPING_PRI procedure to set the priority of each attribute to
a unique integer from 1 (most important) to 12 (least important). The following example
illustrates this setting of priorities:

BEGIN
 DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING_PRI(
 EXPLICIT => 1,
 SERVICE_MODULE_ACTION => 2,
 SERVICE_MODULE => 3,
 MODULE_NAME_ACTION => 4,
 MODULE_NAME => 5,
 SERVICE_NAME => 6,
 ORACLE_USER => 7,
 CLIENT_PROGRAM => 8,
 CLIENT_OS_USER => 9,

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-46

 CLIENT_MACHINE => 10,
 CLIENT_ID => 11);
END;
/

In this example, the priority of the database user name is set to 7 (less important), while the
priority of the module name is set to 5 (more important).

Note:

SET_CONSUMER_GROUP_MAPPING_PRI requires that you include the pseudo-attribute
EXPLICIT as an argument. It must be set to 1. It indicates that explicit consumer
group switches have the highest priority. You explicitly switch consumer groups with
these package procedures, which are described in detail in Oracle Database PL/SQL
Packages and Types Reference:

• DBMS_SESSION.SWITCH_CURRENT_CONSUMER_GROUP
• DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_SESS
• DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_USER

To illustrate how mapping rule priorities work, continuing with the previous example, assume
that in addition to the mapping of user SCOTT to the DEV_GROUP consumer group, there is also a
module name mapping rule as follows:

BEGIN
 DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING
 (DBMS_RESOURCE_MANAGER.MODULE_NAME, 'EOD_REPORTS', 'LOW_PRIORITY');
END;
/

Now if the application in user SCOTT's session sets its module name to EOD_REPORTS, the
session is reassigned to the LOW_PRIORITY consumer group, because module name mapping
has a higher priority than database user mapping.

You can query the view DBA_RSRC_MAPPING_PRIORITY to see the current priority ordering of
session attributes.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information about
setting the module name with the DBMS_APPLICATION_INFO.SET_MODULE
procedure

• "Granting and Revoking the Switch Privilege"

26.3.4 Switching Resource Consumer Groups
You can switch the resource consumer group of a session.

• Manually Switching Resource Consumer Groups
You can change the resource consumer group of running sessions.

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-47

• Enabling Users or Applications to Manually Switch Consumer Groups
You can grant a user the switch privilege so that they can switch their current consumer
group using the SWITCH_CURRENT_CONSUMER_GROUP procedure in the DBMS_SESSION
package.

26.3.4.1 Manually Switching Resource Consumer Groups
You can change the resource consumer group of running sessions.

• About Manually Switching Resource Consumer Groups
The DBMS_RESOURCE_MANAGER PL/SQL package provides two procedures that enable you to
change the resource consumer group of running sessions.

• Switching a Single Session
The SWITCH_CONSUMER_GROUP_FOR_SESS procedure causes the specified session to
immediately be moved into the specified resource consumer group. In effect, this
procedure can raise or lower priority of the session.

• Switching All Sessions for a User
The SWITCH_CONSUMER_GROUP_FOR_USER procedure changes the resource consumer group
for all sessions pertaining to the specified user name.

26.3.4.1.1 About Manually Switching Resource Consumer Groups
The DBMS_RESOURCE_MANAGER PL/SQL package provides two procedures that enable you to
change the resource consumer group of running sessions.

Both of these procedures can also change the consumer group of any parallel execution server
sessions associated with the coordinator session. The changes made by these procedures
pertain to current sessions only; they are not persistent. They also do not change the initial
consumer groups for users.

Instead of terminating a session of a user who is using excessive CPU, you can change that
user's consumer group to one that is allocated fewer resources.

26.3.4.1.2 Switching a Single Session
The SWITCH_CONSUMER_GROUP_FOR_SESS procedure causes the specified session to immediately
be moved into the specified resource consumer group. In effect, this procedure can raise or
lower priority of the session.

The SWITCH_CONSUMER_GROUP_FOR_SESS procedure is Oracle Real Application Clusters (Oracle
RAC) instance specific. You must connect to the pluggable database in the same Oracle RAC
instance where the session to be switched is running and then run this procedure.

The following PL/SQL block switches a specific session to a new consumer group. The session
identifier (SID) is 17, the session serial number (SERIAL#) is 12345, and the new consumer
group is the HIGH_PRIORITY consumer group.

BEGIN
 DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_SESS ('17', '12345',
 'HIGH_PRIORITY');
END;
/

The SID, session serial number, and current resource consumer group for a session are
viewable using the V$SESSION view.

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-48

See Also:

Oracle Database Reference for details about the V$SESSION view.

26.3.4.1.3 Switching All Sessions for a User
The SWITCH_CONSUMER_GROUP_FOR_USER procedure changes the resource consumer group for
all sessions pertaining to the specified user name.

The following PL/SQL block switches all sessions that belong to user HR to the LOW_GROUP
consumer group:

BEGIN
 DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_USER ('HR',
 'LOW_GROUP');
END;
/

26.3.4.2 Enabling Users or Applications to Manually Switch Consumer Groups
You can grant a user the switch privilege so that they can switch their current consumer group
using the SWITCH_CURRENT_CONSUMER_GROUP procedure in the DBMS_SESSION package.

A user can run this procedure from an interactive session, for example from SQL*Plus, or an
application can call this procedure to switch its session, effectively dynamically changing its
priority.

The SWITCH_CURRENT_CONSUMER_GROUP procedure enables users to switch to only those
consumer groups for which they have the switch privilege. If the caller is another procedure,
then this procedure enables users to switch to a consumer group for which the owner of that
procedure has switch privileges.

The parameters for this procedure are the following:

Parameter Description

NEW_CONSUMER_GROUP The consumer group to which the user is switching.

OLD_CONSUMER_GROUP Returns the name of the consumer group from which the user switched.
Can be used to switch back later.

INITIAL_GROUP_ON_ERROR Controls behavior if a switching error occurs.

If TRUE, in the event of an error, the user is switched to the initial consumer
group.

If FALSE, raises an error.

The following SQL*Plus session illustrates switching to a new consumer group. By printing the
value of the output parameter old_group, the example illustrates how the old consumer group
name is saved.

SET serveroutput on
DECLARE
 old_group varchar2(30);
BEGIN
 DBMS_SESSION.SWITCH_CURRENT_CONSUMER_GROUP('BATCH_GROUP', old_group, FALSE);
 DBMS_OUTPUT.PUT_LINE('OLD GROUP = ' || old_group);

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-49

END;
/

The following line is output:

OLD GROUP = OLTP_GROUP

Note that the Resource Manager considers a switch to have taken place even if the
SWITCH_CURRENT_CONSUMER_GROUP procedure is called to switch the session to the consumer
group that it is already in.

Note:

The Resource Manager also works in environments where a generic database user
name is used to log on to an application. The DBMS_SESSION package can be called to
switch the consumer group assignment of a session at session startup, or as
particular modules are called.

See Also:

• "Granting and Revoking the Switch Privilege"

• Oracle Database PL/SQL Packages and Types Reference for additional
examples and more information about the DBMS_SESSION package

26.3.5 Specifying Automatic Consumer Group Switching
You can configure the Resource Manager to automatically switch a session to another
consumer group when a certain condition is met.

Automatic switching can occur when: a session attribute changes, causing a new mapping rule
to take effect, or a session exceeds the CPU, physical I/O, or logical I/O resource consumption
limits set by its consumer group, or it exceeds the elapsed time limit set by its consumer group.

• Specifying Automatic Switching with Mapping Rules
If a session attribute changes while the session is running, then the session-to-consumer
group mapping rules are reevaluated. If a new rule takes effect, then the session might be
moved to a different consumer group.

• Specifying Automatic Switching by Setting Resource Limits
You can manage runaway sessions or calls that use CPU, physical I/O, or logical I/O
resources beyond a specified limit. A runaway session is a SQL query, while a runaway
call is a PL/SQL call.

26.3.5.1 Specifying Automatic Switching with Mapping Rules
If a session attribute changes while the session is running, then the session-to-consumer
group mapping rules are reevaluated. If a new rule takes effect, then the session might be
moved to a different consumer group.

See "Specifying Session-to-Consumer Group Mapping Rules" for more information.

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-50

26.3.5.2 Specifying Automatic Switching by Setting Resource Limits
You can manage runaway sessions or calls that use CPU, physical I/O, or logical I/O resources
beyond a specified limit. A runaway session is a SQL query, while a runaway call is a PL/SQL
call.

When you create a resource plan directive for a consumer group, you can specify limits for
CPU, physical I/O, or logical I/O resource consumption for sessions in that group. You can
specify limits for physical I/O and logical I/O separately. You can also specify a limit for elapsed
time. If the SWITCH_FOR_CALL resource plan directive is set to FALSE, then Resource Manager
enforces these limits from the start of the session. If the SWITCH_FOR_CALL resource plan
directive is set to TRUE, then Resource Manager enforces these limits from the start of the SQL
operation or PL/SQL block.

You can then specify the action that is to be taken if any single session or call exceeds one of
these limits. The possible actions are the following:

• The session is dynamically switched to a designated consumer group.

The target consumer group is typically one that has lower resource allocations.

• The session is terminated.

• The session's current SQL statement is terminated.

• Information about the session is logged, but no other action is taken for the session.

The following are the resource plan directive attributes that are involved in this type of
automatic session switching.

• SWITCH_GROUP
• SWITCH_TIME
• SWITCH_ESTIMATE
• SWITCH_IO_MEGABYTES
• SWITCH_IO_REQS
• SWITCH_FOR_CALL
• SWITCH_IO_LOGICAL
• SWITCH_ELAPSED_TIME
See "Creating Resource Plan Directives " for descriptions of these attributes.

Switches occur for sessions that are running and consuming resources, not waiting for user
input or waiting for CPU cycles. After a session is switched, it continues in the target consumer
group until it becomes idle, at which point it is switched back to its original consumer group.
However, if SWITCH_FOR_CALL is set to TRUE, then the Resource Manager does not wait until the
session is idle to return it to its original resource consumer group. Instead, the session is
returned when the current top-level call completes. A top-level call in PL/SQL is an entire
PL/SQL block treated as one call. A top-level call in SQL is an individual SQL statement.

SWITCH_FOR_CALL is useful for three-tier applications where the middle tier server is using
session pooling.

A switched session is allowed to continue running even if the active session pool for the new
group is full. Under these conditions, a consumer group can have more sessions running than
specified by its active session pool.

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-51

When SWITCH_FOR_CALL is FALSE, the Resource Manager views a session as idle if a certain
amount of time passes between calls. This time interval is a few seconds and is not
configurable.

The following are examples of automatic switching based on resource limits. You must create a
pending area before running these examples.

Example 1

The following PL/SQL block creates a resource plan directive for the OLTP group that switches
any session in that group to the LOW_GROUP consumer group if a call in the sessions exceeds 5
seconds of CPU time. This example prevents unexpectedly long queries from consuming too
many resources. The switched-to consumer group is typically one with lower resource
allocations.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OLTP',
 COMMENT => 'OLTP group',
 MGMT_P1 => 75,
 SWITCH_GROUP => 'LOW_GROUP',
 SWITCH_TIME => 5);
END;
/

Example 2

The following PL/SQL block creates a resource plan directive for the OLTP group that
temporarily switches any session in that group to the LOW_GROUP consumer group if the session
exceeds 10,000 physical I/O requests or exceeds 2,500 Megabytes of data transferred. The
session is returned to its original group after the offending top call is complete.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OLTP',
 COMMENT => 'OLTP group',
 MGMT_P1 => 75,
 SWITCH_GROUP => 'LOW_GROUP',
 SWITCH_IO_REQS => 10000,
 SWITCH_IO_MEGABYTES => 2500,
 SWITCH_FOR_CALL => TRUE);
END;
/

Example 3

The following PL/SQL block creates a resource plan directive for the REPORTING group that
terminates any session that exceeds 60 seconds of CPU time. This example prevents runaway
queries from consuming too many resources.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'REPORTING',
 COMMENT => 'Reporting group',
 MGMT_P1 => 75,
 SWITCH_GROUP => 'KILL_SESSION',
 SWITCH_TIME => 60);

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-52

END;
/

In this example, the reserved consumer group name KILL_SESSION is specified for
SWITCH_GROUP. Therefore, the session is terminated when the switch criteria is met. Other
reserved consumer group names are CANCEL_SQL and LOG_ONLY. When CANCEL_SQL is
specified, the current call is canceled when switch criteria are met, but the session is not
terminated. When LOG_ONLY is specified, information about the session is recorded in real-time
SQL monitoring, but no specific action is taken for the session.

Example 4

The following PL/SQL block creates a resource plan directive for the OLTP group that
temporarily switches any session in that group to the LOW_GROUP consumer group if the session
exceeds 100 logical I/O requests. The session is returned to its original group after the
offending top call is complete.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OLTP',
 COMMENT => 'OLTP group',
 MGMT_P1 => 75,
 SWITCH_GROUP => 'LOW_GROUP',
 SWITCH_IO_LOGICAL => 100,
 SWITCH_FOR_CALL => TRUE);
END;
/

Example 5

The following PL/SQL block creates a resource plan directive for the OLTP group that
temporarily switches any session in that group to the LOW_GROUP consumer group if a call in a
session exceeds five minutes (300 seconds). The session is returned to its original group after
the offending top call is complete.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OLTP',
 COMMENT => 'OLTP group',
 MGMT_P1 => 75,
 SWITCH_GROUP => 'LOW_GROUP',
 SWITCH_FOR_CALL => TRUE,
 SWITCH_ELAPSED_TIME => 300);
END;
/

See Also:

• "Creating Resource Plan Directives "

• "What Solutions Does the Resource Manager Provide for Workload
Management?" for information about logical I/O

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-53

26.3.6 Granting and Revoking the Switch Privilege
A user or application must have the switch privilege to switch a session to a specified resource
consumer group.

• About Granting and Revoking the Switch Privilege
Using the DBMS_RESOURCE_MANAGER_PRIVS PL/SQL package, you can grant or revoke the
switch privilege to a user, role, or PUBLIC. The switch privilege enables a user or
application to switch a session to a specified resource consumer group.

• Granting the Switch Privilege
You can grant a user the privilege to switch to a specific consumer group using the
GRANT_SWITCH_CONSUMER_GROUP procedure.

• Revoking Switch Privileges
You can revoke a user’s privilege to switch to a specific consumer group using the
REVOKE_SWITCH_CONSUMER_GROUP procedure.

26.3.6.1 About Granting and Revoking the Switch Privilege
Using the DBMS_RESOURCE_MANAGER_PRIVS PL/SQL package, you can grant or revoke the switch
privilege to a user, role, or PUBLIC. The switch privilege enables a user or application to switch
a session to a specified resource consumer group.

The package also enables you to revoke the switch privilege. The relevant package
procedures are listed in the following table.

Procedure Description

GRANT_SWITCH_CONSUMER_GROUP Grants permission to a user, role, or PUBLIC to switch to
a specified resource consumer group.

REVOKE_SWITCH_CONSUMER_GROUP Revokes permission for a user, role, or PUBLIC to switch
to a specified resource consumer group.

OTHER_GROUPS has switch privileges granted to PUBLIC. Therefore, all users are automatically
granted the switch privilege for this consumer group.

The following switches do not require explicit switch privilege:

• There is a consumer group mapping specified by the SET_CONSUMER_GROUP_MAPPING
procedure in the DBMS_RESOURCE_MANAGER package, and a session is switching to a
different consumer group due to the mapping. See "Creating Consumer Group Mapping
Rules".

• There is an automatic consumer group switch when a switch condition is met based on the
setting of the switch_group parameter of a resource plan directive.

Explicit switch privilege is required for a user to switch a session to a consumer group in all
other cases.

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-54

See Also:

• "Enabling Users or Applications to Manually Switch Consumer Groups"

• "Specifying Automatic Consumer Group Switching"

26.3.6.2 Granting the Switch Privilege
You can grant a user the privilege to switch to a specific consumer group using the
GRANT_SWITCH_CONSUMER_GROUP procedure.

The following example grants user SCOTT the privilege to switch to consumer group OLTP.

BEGIN
 DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP (
 GRANTEE_NAME => 'SCOTT',
 CONSUMER_GROUP => 'OLTP',
 GRANT_OPTION => TRUE);
END;
/

User SCOTT is also granted permission to grant switch privileges for OLTP to others.

If you grant permission to a role to switch to a particular resource consumer group, then any
user who is granted that role and has enabled that role can switch their session to that
consumer group.

If you grant PUBLIC the permission to switch to a particular consumer group, then any user can
switch to that group.

If the GRANT_OPTION argument is TRUE, then users granted switch privilege for the consumer
group can also grant switch privileges for that consumer group to others.

26.3.6.3 Revoking Switch Privileges
You can revoke a user’s privilege to switch to a specific consumer group using the
REVOKE_SWITCH_CONSUMER_GROUP procedure.

The following example revokes user SCOTT's privilege to switch to consumer group OLTP.

BEGIN
 DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP (
 REVOKEE_NAME => 'SCOTT',
 CONSUMER_GROUP => 'OLTP');
END;
/

If you revoke a user's switch privileges for a particular consumer group, any subsequent
attempts by that user to switch to that consumer group manually will fail. The user's session
will then be automatically assigned to OTHER_GROUPS.

If you revoke from a role the switch privileges to a consumer group, any users who had switch
privileges for the consumer group only through that role are no longer able to switch to that
consumer group.

Chapter 26
Assigning Sessions to Resource Consumer Groups

26-55

If you revoke switch privileges to a consumer group from PUBLIC, any users other than those
who are explicitly assigned switch privileges either directly or through a role are no longer able
to switch to that consumer group.

26.4 Managing Resource Plans
Resource Manager allocates resources to pluggable databases (PDBs) in a multitenant
container database (CDB).

This chapter assumes that you meet the following prerequisites:

• You understand how to configure and manage a CDB.

Note:

• You can complete the tasks in this chapter using SQL*Plus or Oracle SQL
Developer.

• You can also administer the Resource Manager with the graphical user interface
of Oracle Enterprise Manager Cloud Control (Cloud Control).

• For simplicity, this chapter refers to PDBs, application roots, and application
PDBs as “PDBs.”

• Managing CDB Resource Plans
In a CDB, PDBs might have different levels of priority. You can create CDB resource plans
to distribute resources to different PDBs based on these priorities.

• Managing PDB Resource Plans
You can create, enable, and modify resource plans for individual PDBs.

• Creating a Simple Resource Plan
You can quickly create a simple resource plan that is adequate for many situations using
the CREATE_SIMPLE_PLAN procedure.

• Creating a Complex Resource Plan
When your situation calls for a more complex resource plan, you must create the plan, with
its directives and consumer groups, in a staging area called the pending area, and then
validate the plan before storing it in the data dictionary.

26.4.1 Managing CDB Resource Plans
In a CDB, PDBs might have different levels of priority. You can create CDB resource plans to
distribute resources to different PDBs based on these priorities.

• Creating a CDB Resource Plan for Managing PDBs
To create a CDB resource plan for individual PDBs and define the directives for the plan,
use the DBMS_RESOURCE_MANAGER package.

• Creating a CDB Resource Plan for Managing PDBs: Scenario
This scenario illustrates each of the steps involved in creating a CDB resource plan for
individual PDBs.

Chapter 26
Managing Resource Plans

26-56

• Creating a CDB Resource Plan with PDB Performance Profiles
Use the DBMS_RESOURCE_MANAGER package to create a CDB resource plan for PDB
performance profiles and define the directives for the plan. Each PDB that uses a profile
adopts the CDB resource plan directive.

• Creating a CDB Resource Plan for PDB Performance Profiles: Scenario
This scenario illustrates the steps involved in creating a CDB resource plan for PDB
performance profiles.

• Enabling a CDB Resource Plan
You enable the Resource Manager for a CDB by setting the RESOURCE_MANAGER_PLAN
initialization parameter in the root.

• Modifying a CDB Resource Plan
Modifying a CDB resource plan includes tasks such as updating the plan, creating,
updating, or deleting plan directives for PDBs, and updating default directives.

• Disabling a CDB Resource Plan
Disable the Resource Manager for a CDB by unsetting the RESOURCE_MANAGER_PLAN
initialization parameter in the CDB root.

• Viewing Information About Plans and Directives in a CDB
You can view information about CDB resource plans, CDB resource plan directives, and
predefined resource plans in a CDB.

26.4.1.1 Creating a CDB Resource Plan for Managing PDBs
To create a CDB resource plan for individual PDBs and define the directives for the plan, use
the DBMS_RESOURCE_MANAGER package.

The general steps for creating a CDB resource plan for individual PDBs are the following:

1. Create the pending area using the CREATE_PENDING_AREA procedure.

2. Create the CDB resource plan using the CREATE_CDB_PLAN procedure.

3. Create directives for the PDBs using the CREATE_CDB_PLAN_DIRECTIVE procedure.

4. (Optional) Update the default PDB directive using the UPDATE_CDB_DEFAULT_DIRECTIVE
procedure.

5. Validate the pending area using the VALIDATE_PENDING_AREA procedure.

6. Submit the pending area using the SUBMIT_PENDING_AREA procedure.

26.4.1.2 Creating a CDB Resource Plan for Managing PDBs: Scenario
This scenario illustrates each of the steps involved in creating a CDB resource plan for
individual PDBs.

The scenario assumes that you want to create a CDB resource plan for a CDB named newcdb.
The plan includes a directive for each PDB. In this scenario, you also update the default
directive and the AutoTask directive.

The directives are defined using various procedures in the DBMS_RESOURCE_MANAGER package.
The attributes of each directive are defined using parameters in these procedures. Table 26-12
describes the types of directives in the plan.

Chapter 26
Managing Resource Plans

26-57

Table 26-12 Attributes for PDB Directives in a CDB Resource Plan

Directive Attribute Description See Also

shares Resource allocation share for CPU
and parallel execution server
resources.

"Shares for Allocating
Resources to PDBs"

utilization_limit Resource utilization limit for CPU. "Utilization Limits for PDBs"

parallel_server_limit Maximum percentage of parallel
execution servers that a PDB can use
before queuing parallel statements.

When the parallel_server_limit
directive is specified for a PDB, the
limit is the
PARALLEL_SERVERS_TARGET value of
the CDB root multiplied by the value
of the parallel_server_limit
parameter in the
CREATE_CDB_PLAN_DIRECTIVE
procedure.

Note: Oracle recommends using the
PARALLEL_SERVERS_TARGET
initialization parameter instead of the
parallel_server_limit directive
in a CDB plan.

"Utilization Limits for PDBs"

Table 26-13 describes how the CDB resource plan allocates resources to its PDBs using the
directive attributes described in Table 26-12.

Table 26-13 Sample Directives for PDBs in a CDB Resource Plan

PDB shares Directive utilization_limit Directive parallel_server_limit
Directive

salespdb 3 Unlimited Unlimited

servicespdb 3 Unlimited Unlimited

hrpdb 1 70 70

Default 1 50 50

AutoTask 1 75 75

The salespdb and servicespdb PDBs are more important than the other PDBs in the CDB.
Therefore, they get a higher share (3), unlimited CPU utilization resource, and unlimited
parallel execution server resource.

The default directive applies to PDBs for which specific directives have not been defined. For
this scenario, assume that the CDB has several PDBs that use the default directive. This
scenario updates the default directive.

In addition, this scenario updates the AutoTask directive. The AutoTask directive applies to
automatic maintenance tasks that are run in the root maintenance window.

Chapter 26
Managing Resource Plans

26-58

To create a CDB resource plan:

1. Create a pending area using the CREATE_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

2. Create a CDB resource plan named newcdb_plan using the CREATE_CDB_PLAN procedure:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN(
 plan => 'newcdb_plan',
 comment => 'CDB resource plan for newcdb');
END;
/

3. Create the CDB resource plan directives for the PDBs using the
CREATE_CDB_PLAN_DIRECTIVE procedure. Each directive specifies how resources are
allocated to a specific PDB.

Table 26-13 describes the directives for the salespdb, servicespdb, and hrpdb PDBs in
this scenario. Run the following procedures to create these directives:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'salespdb',
 shares => 3,
 utilization_limit => 100,
 parallel_server_limit => 100);
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'servicespdb',
 shares => 3,
 utilization_limit => 100,
 parallel_server_limit => 100);
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'hrpdb',
 shares => 1,
 utilization_limit => 70,
 parallel_server_limit => 70);
END;
/

All other PDBs in this CDB use the default PDB directive.

Chapter 26
Managing Resource Plans

26-59

4. If the current default CDB resource plan directive for PDBs does not meet your
requirements, then update the directive using the UPDATE_CDB_DEFAULT_DIRECTIVE
procedure.

The default directive applies to PDBs for which specific directives have not been defined.
See "The Default Directive for PDBs" for more information.

Table 26-13 describes the default directive that PDBs use in this scenario. Run the
following procedure to update the default directive:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_DEFAULT_DIRECTIVE(
 plan => 'newcdb_plan',
 new_shares => 1,
 new_utilization_limit => 50,
 new_parallel_server_limit => 50);
END;
/

5. Validate the pending area using the VALIDATE_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

6. Submit the pending area using the SUBMIT_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

26.4.1.3 Creating a CDB Resource Plan with PDB Performance Profiles
Use the DBMS_RESOURCE_MANAGER package to create a CDB resource plan for PDB performance
profiles and define the directives for the plan. Each PDB that uses a profile adopts the CDB
resource plan directive.

The general steps for creating a CDB resource plan with PDB performance profiles are the
following:

1. Create the pending area using the CREATE_PENDING_AREA procedure.

2. Create the CDB resource plan using the CREATE_CDB_PLAN procedure.

3. Create directives for the PDB performance profiles using the
CREATE_CDB_PROFILE_DIRECTIVE procedure.

4. (Optional) Update the default PDB directive using the UPDATE_CDB_DEFAULT_DIRECTIVE
procedure.

5. Validate the pending area using the VALIDATE_PENDING_AREA procedure.

6. Submit the pending area using the SUBMIT_PENDING_AREA procedure.

7. For each PDB that will use a profile, set the DB_PERFORMANCE_PROFILE initialization
parameter and specify the profile name.

Chapter 26
Managing Resource Plans

26-60

26.4.1.4 Creating a CDB Resource Plan for PDB Performance Profiles: Scenario
This scenario illustrates the steps involved in creating a CDB resource plan for PDB
performance profiles.

The scenario assumes that you want to create a CDB resource plan for a CDB named newcdb.
The plan includes a directive for each PDB performance profile. In this scenario, you also
update the default directive and the AutoTask directive.

In the CDB resource plan, you give each profile a name. In each PDB, you set the
DB_PERFORMANCE_PROFILE initialization parameter to specify which PDB performance profile the
PDB uses.

The directives are defined using various procedures in the DBMS_RESOURCE_MANAGER package.
The attributes of each directive are defined using parameters in these procedures. The
following table describes the types of directives in the plan.

Table 26-14 Attributes for PDB Performance Profile Directives in a CDB Resource Plan

Directive Attribute Description See Also

shares Resource allocation share for CPU
and parallel execution server
resources.

"Shares for Allocating
Resources to PDBs"

utilization_limit Resource utilization limit for CPU. "Utilization Limits for PDBs"

parallel_server_limit Maximum percentage of parallel
execution servers that a PDB can use.

When the parallel_server_limit
directive is specified for a PDB
performance profile, the limit is the
value of the
PARALLEL_SERVERS_TARGET
initialization parameter setting in the
CDB root multiplied by the value of
the parallel_server_limit
parameter in the
CREATE_CDB_PROFILE_DIRECTIVE
procedure.

"Utilization Limits for PDBs"

The following table describes how the CDB resource plan allocates resources to its PDB
performance profiles using the directive attributes described in Table 26-14.

Table 26-15 Sample Directives for PDB Performance Profiles in a CDB Resource Plan

PDB shares Directive utilization_limit Directive parallel_server_limit Directive

gold 3 Unlimited Unlimited

silver 2 40 40

bronze 1 20 20

Default 1 10 10

AutoTask 2 60 60

Chapter 26
Managing Resource Plans

26-61

The default directive applies to PDBs for which specific directives have not been defined. For
this scenario, assume that the CDB has several PDBs that use the default directive. This
scenario updates the default directive.

In addition, this scenario updates the AutoTask directive. The AutoTask directive applies to
automatic maintenance tasks that are run in the root maintenance window.

To create a CDB resource plan for PDB performance profiles:

1. For each PDB that will use a profile, set the DB_PERFORMANCE_PROFILE initialization
parameter to the name of the profile that the PDB will use.

a. Run an ALTER SYSTEM statement to set the parameter.

For example, with the PDB as the current container, run the following SQL statement:

ALTER SYSTEM SET DB_PERFORMANCE_PROFILE=gold SCOPE=spfile;

b. Close the PDB:

ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE;

c. Open the PDB:

ALTER PLUGGABLE DATABASE OPEN;

2. Create a pending area using the CREATE_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Create a CDB resource plan named newcdb_plan using the CREATE_CDB_PLAN procedure:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN(
 plan => 'newcdb_plan',
 comment => 'CDB resource plan for newcdb');
END;
/

4. Create the CDB resource plan directives for the PDBs using the
CREATE_CDB_PLAN_DIRECTIVE procedure. Each directive specifies how resources are
allocated to a specific PDB.

Table 26-13 describes the directives for the gold, silver, and bronze profiles in this
scenario. Run the following procedures to create these directives:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'gold',
 shares => 3,
 utilization_limit => 100,
 parallel_server_limit => 100);
END;
/

BEGIN

Chapter 26
Managing Resource Plans

26-62

 DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'silver',
 shares => 2,
 utilization_limit => 40,
 parallel_server_limit => 40);
END;
/

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'bronze',
 shares => 1,
 utilization_limit => 20,
 parallel_server_limit => 20);
END;
/

All other PDBs in this CDB use the default PDB directive.

5. If the current default CDB resource plan directive for PDBs does not meet your
requirements, then update the directive using the UPDATE_CDB_DEFAULT_DIRECTIVE
procedure.

The default directive applies to PDBs for which specific directives have not been defined.

Table 26-13 describes the default directive that PDBs use in this scenario. Run the
following procedure to update the default directive:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_DEFAULT_DIRECTIVE(
 plan => 'newcdb_plan',
 new_shares => 1,
 new_utilization_limit => 10,
 new_parallel_server_limit => 10);
END;
/

6. Validate the pending area using the VALIDATE_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

7. Submit the pending area using the SUBMIT_PENDING_AREA procedure:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

"The Default Directive for PDBs"

Chapter 26
Managing Resource Plans

26-63

26.4.1.5 Enabling a CDB Resource Plan
You enable the Resource Manager for a CDB by setting the RESOURCE_MANAGER_PLAN
initialization parameter in the root.

This parameter specifies the top plan, which is the plan to be used for the current CDB
instance. If no plan is specified with this parameter, then the Resource Manager is not enabled.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To enable a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Perform one of the following actions:

• Use an ALTER SYSTEM statement to set the RESOURCE_MANAGER_PLAN initialization
parameter to the CDB resource plan.

The following example sets the CDB resource plan to newcdb_plan using an ALTER
SYSTEM statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'newcdb_plan';

• In a text initialization parameter file, set the RESOURCE_MANAGER_PLAN initialization
parameter to the CDB resource plan, and restart the CDB.

The following example sets the CDB resource plan to newcdb_plan in an initialization
parameter file:

RESOURCE_MANAGER_PLAN = 'newcdb_plan'

See Also:

• Oracle Multitenant Administrator's Guide for information about accessing a
container in a CDB

• Oracle Scheduler Concepts to learn how to schedule a CDB resource plan
change with Oracle Scheduler

26.4.1.6 Modifying a CDB Resource Plan
Modifying a CDB resource plan includes tasks such as updating the plan, creating, updating, or
deleting plan directives for PDBs, and updating default directives.

• Updating a CDB Resource Plan
You can update a CDB resource plan to change its comment using the UPDATE_CDB_PLAN
procedure.

Chapter 26
Managing Resource Plans

26-64

• Managing CDB Resource Plan Directives for a PDB
You can create, update, and delete CDB resource plan directives for a PDB.

• Managing CDB Resource Plan Directives for a PDB Performance Profile
You can create, update, and delete CDB resource plan directives for a PDB performance
profile.

• Updating the Default Directive for PDBs in a CDB Resource Plan
You can update the default directive for PDBs in a CDB resource plan using the
UPDATE_CDB_DEFAULT_DIRECTIVE procedure. The default directive applies to PDBs for
which specific directives have not been defined.

• Updating the Default Directive for Maintenance Tasks in a CDB Resource Plan
You can update the AutoTask directive in a CDB resource plan using the
UPDATE_CDB_AUTOTASK_DIRECTIVE procedure. The AutoTask directive applies to automatic
maintenance tasks that are run in the root maintenance window.

• Deleting a CDB Resource Plan
You can delete a CDB resource plan using the DELETE_CDB_PLAN procedure.

26.4.1.6.1 Updating a CDB Resource Plan
You can update a CDB resource plan to change its comment using the UPDATE_CDB_PLAN
procedure.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To update a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_PLAN procedure, and enter a new comment in the new_comment
parameter.

For example, the following procedure changes the comment for the newcdb_plan CDB
resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_PLAN(
 plan => 'newcdb_plan',
 new_comment => 'CDB plan for PDBs in newcdb');
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

Chapter 26
Managing Resource Plans

26-65

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

• "About CDB Resource Plans"

• Oracle Multitenant Administrator's Guide

26.4.1.6.2 Managing CDB Resource Plan Directives for a PDB
You can create, update, and delete CDB resource plan directives for a PDB.

• Creating New CDB Resource Plan Directives for a PDB
When you create a PDB in a CDB, you can create a CDB resource plan directive for the
PDB using the CREATE_CDB_PLAN_DIRECTIVE procedure. The directive specifies how
resources are allocated to the new PDB.

• Updating CDB Resource Plan Directives for a PDB
You can update the CDB resource plan directive for a PDB using the
UPDATE_CDB_PLAN_DIRECTIVE procedure. The directive specifies how resources are
allocated to the PDB.

• Deleting CDB Resource Plan Directives for a PDB
You can delete the CDB resource plan directive for a PDB using the
DELETE_CDB_PLAN_DIRECTIVE procedure.

26.4.1.6.2.1 Creating New CDB Resource Plan Directives for a PDB

When you create a PDB in a CDB, you can create a CDB resource plan directive for the PDB
using the CREATE_CDB_PLAN_DIRECTIVE procedure. The directive specifies how resources are
allocated to the new PDB.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To create a new CDB resource plan directive for a PDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the CREATE_CDB_PLAN_DIRECTIVE procedure, and specify the appropriate values for
the new PDB.

Chapter 26
Managing Resource Plans

26-66

For example, the following procedure allocates resources to a PDB named operpdb in the
newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'operpdb',
 shares => 1,
 utilization_limit => 20,
 parallel_server_limit => 30);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

• "About CDB Resource Plans"

• Oracle Multitenant Administrator's Guide

26.4.1.6.2.2 Updating CDB Resource Plan Directives for a PDB

You can update the CDB resource plan directive for a PDB using the
UPDATE_CDB_PLAN_DIRECTIVE procedure. The directive specifies how resources are allocated to
the PDB.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To update a CDB resource plan directive for a PDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_PLAN_DIRECTIVE procedure, and specify the new resource allocation
values for the PDB.

Chapter 26
Managing Resource Plans

26-67

For example, the following procedure updates the resource allocation to a PDB named
operpdb in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'operpdb',
 new_shares => 1,
 new_utilization_limit => 10,
 new_parallel_server_limit => 20);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

• Oracle Multitenant Administrator's Guide

• "About CDB Resource Plans"

26.4.1.6.2.3 Deleting CDB Resource Plan Directives for a PDB

You can delete the CDB resource plan directive for a PDB using the
DELETE_CDB_PLAN_DIRECTIVE procedure.

You might delete the directive for a PDB if you unplug or drop the PDB. However, you can
retain the directive, and if the PDB is plugged into the CDB in the future, the existing directive
applies to the PDB.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To delete a CDB resource plan directive for a PDB:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the DELETE_CDB_PLAN_DIRECTIVE procedure, and specify the CDB resource plan and
the PDB.

Chapter 26
Managing Resource Plans

26-68

For example, the following procedure deletes the directive for a PDB named operpdb in the
newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.DELETE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 pluggable_database => 'operpdb');
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

See Also:

• Oracle Multitenant Administrator's Guide

• "About CDB Resource Plans"

26.4.1.6.3 Managing CDB Resource Plan Directives for a PDB Performance Profile
You can create, update, and delete CDB resource plan directives for a PDB performance
profile.

• Creating New CDB Resource Plan Directives for a PDB Performance Profile
You can create a CDB resource plan directive for the a new PDB performance profile using
the CREATE_CDB_PROFILE_DIRECTIVE procedure. The directive specifies how resources are
allocated to the all PDBs that use the new profile.

• Updating CDB Resource Plan Directives for a PDB Performance Profile
Update the CDB resource plan directive for a PDB performance profile using the
UPDATE_CDB_PROFILE_DIRECTIVE procedure. The directive specifies how resources are
allocated to the PDBs that use the PDB performance profile.

• Deleting CDB Resource Plan Directives for a PDB Performance Profile
You can delete the CDB resource plan directive for a PDB performance profile using the
DELETE_CDB_PROFILE_DIRECTIVE procedure.

Chapter 26
Managing Resource Plans

26-69

26.4.1.6.3.1 Creating New CDB Resource Plan Directives for a PDB Performance Profile

You can create a CDB resource plan directive for the a new PDB performance profile using the
CREATE_CDB_PROFILE_DIRECTIVE procedure. The directive specifies how resources are
allocated to the all PDBs that use the new profile.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To create a new CDB resource plan directive for a PDB performance profile:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the CREATE_CDB_PROFILE_DIRECTIVE procedure, and specify the appropriate values for
the new PDB performance profile.

For example, the following procedure allocates resources to a PDB performance profile
named copper in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'copper',
 shares => 1,
 utilization_limit => 20,
 parallel_server_limit => 30);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Note:

For a PDB to use the new profile, the PDB must have the DB_PERFORMANCE_PROFILE
initialization parameter set to the profile name.

Chapter 26
Managing Resource Plans

26-70

See Also:

• "About CDB Resource Plans"

• Oracle Multitenant Administrator's Guide for information about accessing
containers in a CDB

26.4.1.6.3.2 Updating CDB Resource Plan Directives for a PDB Performance Profile

Update the CDB resource plan directive for a PDB performance profile using the
UPDATE_CDB_PROFILE_DIRECTIVE procedure. The directive specifies how resources are
allocated to the PDBs that use the PDB performance profile.

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To update a CDB resource plan directive for a PDB performance profile:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_PROFILE_DIRECTIVE procedure, and specify the new resource
allocation values for the PDB performance profile.

For example, the following procedure updates the resource allocation for a PDB
performance profile named copper in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_PROFILE_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'copper',
 new_shares => 1,
 new_utilization_limit => 10,
 new_parallel_server_limit => 20);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 26
Managing Resource Plans

26-71

See Also:

• "About CDB Resource Plans"

• Oracle Multitenant Administrator's Guide for information about accessing
containers in a CDB

26.4.1.6.3.3 Deleting CDB Resource Plan Directives for a PDB Performance Profile

You can delete the CDB resource plan directive for a PDB performance profile using the
DELETE_CDB_PROFILE_DIRECTIVE procedure.

If no PDBs use a performance profile, then you might delete the directive for the profile.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To delete a CDB resource plan directive for a PDB performance profile:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the DELETE_CDB_PROFILE_DIRECTIVE procedure, and specify the CDB resource plan
and the PDB performance profile.

For example, the following procedure deletes the directive for a PDB named operpdb in the
newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.DELETE_CDB_PLAN_DIRECTIVE(
 plan => 'newcdb_plan',
 profile => 'operpdb');
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 26
Managing Resource Plans

26-72

See Also:

• Oracle Multitenant Administrator's Guide for information about accessing
containers in a CDB

• "About CDB Resource Plans"

26.4.1.6.4 Updating the Default Directive for PDBs in a CDB Resource Plan
You can update the default directive for PDBs in a CDB resource plan using the
UPDATE_CDB_DEFAULT_DIRECTIVE procedure. The default directive applies to PDBs for which
specific directives have not been defined.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To update the default directive for PDBs in a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_DEFAULT_DIRECTIVE procedure, and specify the appropriate default
resource allocation values.

For example, the following procedure updates the default directive for PDBs in the
newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_DEFAULT_DIRECTIVE(
 plan => 'newcdb_plan',
 new_shares => 2,
 new_utilization_limit => 40);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 26
Managing Resource Plans

26-73

See Also:

• "The Default Directive for PDBs"

• "About CDB Resource Plans"

• Oracle Multitenant Administrator's Guide for information about accessing
containers in a CDB

26.4.1.6.5 Updating the Default Directive for Maintenance Tasks in a CDB Resource Plan
You can update the AutoTask directive in a CDB resource plan using the
UPDATE_CDB_AUTOTASK_DIRECTIVE procedure. The AutoTask directive applies to automatic
maintenance tasks that are run in the root maintenance window.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To update the AutoTask directive for maintenance tasks in a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the UPDATE_CDB_AUTOTASK_DIRECTIVE procedure, and specify the appropriate
AutoTask resource allocation values.

For example, the following procedure updates the AutoTask directive for maintenance
tasks in the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_CDB_AUTOTASK_DIRECTIVE(
 plan => 'newcdb_plan',
 new_shares => 2,
 new_utilization_limit => 60);
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 26
Managing Resource Plans

26-74

See Also:

• Oracle Multitenant Administrator's Guide for information about accessing
containers

• "About CDB Resource Plans"

26.4.1.6.6 Deleting a CDB Resource Plan
You can delete a CDB resource plan using the DELETE_CDB_PLAN procedure.

The resource plan must be disabled. You might delete a CDB resource plan if the plan is no
longer needed. You can enable a different CDB resource plan, or you can disable Resource
Manager for the CDB.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To delete a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Run the DELETE_CDB_PLAN procedure, and specify the CDB resource plan.

For example, the following procedure deletes the newcdb_plan CDB resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.DELETE_CDB_PLAN(
 plan => 'newcdb_plan');
END;
/

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 26
Managing Resource Plans

26-75

See Also:

• "About CDB Resource Plans"

• Oracle Multitenant Administrator's Guide for information about accessing
containers

• "Enabling a CDB Resource Plan"

• "Disabling a CDB Resource Plan"

26.4.1.7 Disabling a CDB Resource Plan
Disable the Resource Manager for a CDB by unsetting the RESOURCE_MANAGER_PLAN
initialization parameter in the CDB root.

A CDB resource plan that specifies shares or utilization limits for PDBs is required to enable
CPU management, both between PDBs and within a PDB. If a resource plan with shares or
utilization limits is enabled for a PDB, and if the CDB resource plan is not specified, then the
CDB resource plan is set to DEFAULT_CDB_PLAN. This setting gives equal shares to all PDBs
and specifies no utilization limits. To disable CPU resource management throughout the CDB,
set RESOURCE_MANAGER_PLAN to ORA$INTERNAL_CDB_PLAN.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To disable a CDB resource plan:

1. In SQL*Plus, ensure that the current container is the root.

2. Perform one of the following actions:

• Use an ALTER SYSTEM statement to unset the RESOURCE_MANAGER_PLAN initialization
parameter for the CDB.

The following example unsets the RESOURCE_MANAGER_PLAN initialization parameter
using an ALTER SYSTEM statement:

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = '';

• In an initialization parameter file, unset the RESOURCE_MANAGER_PLAN initialization
parameter, and restart the CDB.

The following example unsets the RESOURCE_MANAGER_PLAN initialization parameter in
an initialization parameter file:

RESOURCE_MANAGER_PLAN =

Chapter 26
Managing Resource Plans

26-76

See Also:

• Oracle Multitenant Administrator's Guide for information about accessing a
container

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide for information about starting up a
database

26.4.1.8 Viewing Information About Plans and Directives in a CDB
You can view information about CDB resource plans, CDB resource plan directives, and
predefined resource plans in a CDB.

• Viewing CDB Resource Plans
An example illustrates using the DBA_CDB_RSRC_PLANS view to display all CDB resource
plans defined in the CDB.

• Viewing CDB Resource Plan Directives
An example illustrates using the DBA_CDB_RSRC_PLAN_DIRECTIVES view to display all
directives defined in all CDB resource plans in the CDB.

See Also:

About Resource Manager Views for information about monitoring Oracle Database
Resource Manager

26.4.1.8.1 Viewing CDB Resource Plans
An example illustrates using the DBA_CDB_RSRC_PLANS view to display all CDB resource plans
defined in the CDB.

The DEFAULT_CDB_PLAN is supplied with Oracle Database. You can use this default plan if it
meets your requirements.

To view CDB resource plans:

1. Start SQL*Plus or SQL Developer, and log in to the CDB root.

2. Run the following query:

COLUMN PLAN FORMAT A30
COLUMN STATUS FORMAT A10
COLUMN COMMENTS FORMAT A35

SELECT PLAN, STATUS, COMMENTS
FROM DBA_CDB_RSRC_PLANS
ORDER BY PLAN;

Chapter 26
Managing Resource Plans

26-77

Your output looks similar to the following:

PLAN STATUS COMMENTS
------------------------ ----------- ----------------------------
DEFAULT_CDB_PLAN Default CDB plan
DEFAULT_MAINTENANCE_PLAN Default CDB maintenance plan
NEWCDB_PLAN CDB plan for PDBs in newcdb
ORA$INTERNAL_CDB_PLAN Internal CDB plan

Note:

Plans in the pending area have a status of PENDING. Plans in the pending area are
being edited. Any plan that is not in the pending area has a NULL status.

See Also:

"About CDB Resource Plans"

26.4.1.8.2 Viewing CDB Resource Plan Directives
An example illustrates using the DBA_CDB_RSRC_PLAN_DIRECTIVES view to display all directives
defined in all CDB resource plans in the CDB.

The DEFAULT_CDB_PLAN is a default CDB plan that is supplied with Oracle Database. With
DEFAULT_CDB_PLAN, every PDB has 1 share and a utilization limit of 100. If the CDB resource
plan has no CPU directives configured, that is, the shares and utilization_limits directives
are unset, then CPU Resource Manager uses the PDB-level CPU_MIN_COUNT and CPU_COUNT
parameters to manage CPU. Note that ORA$DEFAULT_PDB_DIRECTIVE is the default directive for
PDBs.

To view CDB resource plan directives:

1. Start SQL*Plus or SQL Developer, and log in to the CDB root.

2. Run the following query:

COLUMN PLAN HEADING 'Plan' FORMAT A24
COLUMN PLUGGABLE_DATABASE HEADING 'Pluggable Database' FORMAT A25
COLUMN SHARES HEADING 'Shares' FORMAT 999
COLUMN UTILIZATION_LIMIT HEADING 'Utilization|Limit' FORMAT 999
COLUMN PARALLEL_SERVER_LIMIT HEADING 'Parallel|Server|Limit' FORMAT 999

SELECT PLAN,
 PLUGGABLE_DATABASE,
 SHARES,
 UTILIZATION_LIMIT,
 PARALLEL_SERVER_LIMIT
 FROM DBA_CDB_RSRC_PLAN_DIRECTIVES
 ORDER BY PLAN;

Chapter 26
Managing Resource Plans

26-78

Your output looks similar to the following:

 Parallel
 Utilization Server
Plan Pluggable Database Shares Limit Limit
------------------------ ------------------------- ------ ----------- --------
DEFAULT_CDB_PLAN ORA$DEFAULT_PDB_DIRECTIVE 1 100 100
DEFAULT_CDB_PLAN ORA$AUTOTASK 90 100
DEFAULT_MAINTENANCE_PLAN ORA$AUTOTASK 90 100
DEFAULT_MAINTENANCE_PLAN ORA$DEFAULT_PDB_DIRECTIVE 1 100 100
NEWCDB_PLAN HRPDB 1 70 70
NEWCDB_PLAN SALESPDB 3 100 100
NEWCDB_PLAN ORA$DEFAULT_PDB_DIRECTIVE 1 50 50
NEWCDB_PLAN ORA$AUTOTASK 1 75 75
NEWCDB_PLAN SERVICESPDB 3 100 100

The preceding output shows the directives for the newcdb_plan created in "Creating a CDB
Resource Plan for Managing PDBs: Scenario" and modified in "Modifying a CDB Resource
Plan".

See Also:

• "About CDB Resource Plans"

• "The Default Directive for PDBs"

26.4.2 Managing PDB Resource Plans
You can create, enable, and modify resource plans for individual PDBs.

• Creating a PDB Resource Plan
You create a PDB resource plan by using procedures in the DBMS_RESOURCE_MANAGER
PL/SQL package.

• Enabling a PDB Resource Plan
Enable a PDB resource plan by setting the RESOURCE_MANAGER_PLAN initialization parameter
to the plan with an ALTER SYSTEM statement when the current container is the PDB.

• Modifying a PDB Resource Plan
You can use the DBMS_RESOURCE_MANAGER package to modify a PDB resource plan.

• Disabling a PDB Resource Plan
You disable a PDB resource plan by unsetting the RESOURCE_MANAGER_PLAN initialization
parameter in the PDB.

26.4.2.1 Creating a PDB Resource Plan
You create a PDB resource plan by using procedures in the DBMS_RESOURCE_MANAGER PL/SQL
package.

A CDB resource plan allocates a portion of the system's resources to a PDB. A PDB resource
plan determines how this portion is allocated within the PDB.

The following is a summary of the steps required to create a PDB resource plan:

Chapter 26
Managing Resource Plans

26-79

1. In SQL*Plus, ensure that the current container is a PDB.

2. Create a pending area using the CREATE_PENDING_AREA procedure.

3. Create, modify, or delete consumer groups using the CREATE_CONSUMER_GROUP procedure.

4. Map sessions to consumer groups using the SET_CONSUMER_GROUP_MAPPING procedure.

5. Create the PDB resource plan using the CREATE_PLAN procedure.

6. Create PDB resource plan directives using the CREATE_PLAN_DIRECTIVE procedure.

7. Validate the pending area using the VALIDATE_PENDING_AREA procedure.

8. Submit the pending area using the SUBMIT_PENDING_AREA procedure.

Ensure that the current container is a PDB and that the user has the required privileges when
you complete these steps. See "Creating a Complex Resource Plan" for detailed information
about completing these steps.

You also have the option of creating a simple resource plan that is adequate for many
situations using the CREATE_SIMPLE_PLAN procedure. See "Creating a Simple Resource Plan "
for information about creating a simple resource plan.

Note:

Some restrictions apply to PDB resource plans. See "About PDB Resource Plans" for
information.

26.4.2.2 Enabling a PDB Resource Plan
Enable a PDB resource plan by setting the RESOURCE_MANAGER_PLAN initialization parameter to
the plan with an ALTER SYSTEM statement when the current container is the PDB.

If no plan is specified with this parameter, then no PDB resource plan is enabled for the PDB.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To enable a PDB resource plan:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Use an ALTER SYSTEM statement to set the RESOURCE_MANAGER_PLAN initialization
parameter to the PDB resource plan.

You can also schedule a PDB resource plan change with Oracle Scheduler.

Example 26-5 Enabling a PDB Resource Plan

The following example sets the PDB resource plan to salespdb_plan.

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'salespdb_plan';

Chapter 26
Managing Resource Plans

26-80

See Also:

• Oracle Multitenant Administrator's Guide for information about accessing a
container

• " Oracle Scheduler Concepts" to learn how to schedule a PDB resource plan
change with Oracle Scheduler

26.4.2.3 Modifying a PDB Resource Plan
You can use the DBMS_RESOURCE_MANAGER package to modify a PDB resource plan.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To modify a PDB resource plan:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Create a pending area:

exec DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

3. Modify the PDB resource plan by completing one or more of the following tasks:

• Update a consumer group using the UPDATE_CONSUMER_GROUP procedure.

• Delete a consumer group using the DELETE_CONSUMER_GROUP procedure.

• Update a resource plan using the UPDATE_PLAN procedure.

• Delete a resource plan using the DELETE_PLAN procedure.

• Update a resource plan directive using the UPDATE_PLAN_DIRECTIVE procedure.

• Delete a resource plan directive using the DELETE_PLAN_DIRECTIVE procedure.

4. Validate the pending area:

exec DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();

5. Submit the pending area:

exec DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 26
Managing Resource Plans

26-81

See Also:

• "About PDB Resource Plans"

• Oracle Multitenant Administrator's Guide for information about accessing a
container

• "Maintaining Consumer Groups, Plans, and Directives" for instructions about
completing the consumer group tasks

26.4.2.4 Disabling a PDB Resource Plan
You disable a PDB resource plan by unsetting the RESOURCE_MANAGER_PLAN initialization
parameter in the PDB.

Prerequisites

The CDB must exist and must contain PDBs. To complete a task that uses the
DBMS_RESOURCE_MANAGER package, you must have ADMINISTER_RESOURCE_MANAGER system
privilege.

To disable a PDB resource plan:

1. In SQL*Plus, ensure that the current container is a PDB.

2. Use an ALTER SYSTEM statement to unset the RESOURCE_MANAGER_PLAN initialization
parameter for the PDB.

Example 26-6 Disabling a PDB Resource Plan

The following example disables the PDB resource plan.

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = '';

See Also:

• "Oracle Multitenant Administrator's Guide" for information about modifying a PDB
at the system level

• Oracle Multitenant Administrator's Guide for information about accessing a
container

26.4.3 Creating a Simple Resource Plan
You can quickly create a simple resource plan that is adequate for many situations using the
CREATE_SIMPLE_PLAN procedure.

This procedure enables you to both create consumer groups and allocate resources to them by
executing a single procedure call. Using this procedure, you are not required to invoke the
procedures that are described in succeeding sections for creating a pending area, creating
each consumer group individually, specifying resource plan directives, and so on.

Chapter 26
Managing Resource Plans

26-82

You specify the following arguments for the CREATE_SIMPLE_PLAN procedure:

Parameter Description

SIMPLE_PLAN Name of the plan

CONSUMER_GROUP1 Consumer group name for first group

GROUP1_PERCENT CPU resource allocated to this group

CONSUMER_GROUP2 Consumer group name for second group

GROUP2_PERCENT CPU resource allocated to this group

CONSUMER_GROUP3 Consumer group name for third group

GROUP3_PERCENT CPU resource allocated to this group

CONSUMER_GROUP4 Consumer group name for fourth group

GROUP4_PERCENT CPU resource allocated to this group

CONSUMER_GROUP5 Consumer group name for fifth group

GROUP5_PERCENT CPU resource allocated to this group

CONSUMER_GROUP6 Consumer group name for sixth group

GROUP6_PERCENT CPU resource allocated to this group

CONSUMER_GROUP7 Consumer group name for seventh group

GROUP7_PERCENT CPU resource allocated to this group

CONSUMER_GROUP8 Consumer group name for eighth group

GROUP8_PERCENT CPU resource allocated to this group

You can specify up to eight consumer groups with this procedure. The only resource allocation
method supported is CPU. The plan uses the EMPHASIS CPU allocation policy (the default) and
each consumer group uses the ROUND_ROBIN scheduling policy (also the default).

Example: Creating a Simple Plan with the CREATE_SIMPLE_PLAN Procedure

The following PL/SQL block creates a simple resource plan with two user-specified consumer
groups:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN(SIMPLE_PLAN => 'SIMPLE_PLAN1',
 CONSUMER_GROUP1 => 'MYGROUP1', GROUP1_PERCENT => 80,
 CONSUMER_GROUP2 => 'MYGROUP2', GROUP2_PERCENT => 20);
END;
/

After executing the preceding statements, you can display the plan created using the following
query:

SELECT plan, group_or_subplan, mgmt_p1
FROM dba_rsrc_plan_directives
WHERE plan = 'SIMPLE_PLAN1';

Chapter 26
Managing Resource Plans

26-83

The plan created in a non-multitenant environment is:

PLAN GROUP_OR_SUBPLAN MGMT_P1
-------------------- -------------------- ----------
SIMPLE_PLAN1 MYGROUP1 80
SIMPLE_PLAN1 MYGROUP2 20
SIMPLE_PLAN1 SYS_GROUP 50
SIMPLE_PLAN1 OTHER_GROUPS 5

The plan created in a multitenant environment is:

PLAN GROUP_OR_SUBPLAN MGMT_P1
-------------------- -------------------- ----------
SIMPLE_PLAN1 MYGROUP1 80
SIMPLE_PLAN1 MYGROUP2 20
SIMPLE_PLAN1 OTHER_GROUPS 5

See Also:

• "Creating a Resource Plan" for more information on the EMPHASIS CPU allocation
policy

• "Creating Resource Consumer Groups " for more information on the
ROUND_ROBIN scheduling policy

• "Elements of the Resource Manager"

26.4.4 Creating a Complex Resource Plan
When your situation calls for a more complex resource plan, you must create the plan, with its
directives and consumer groups, in a staging area called the pending area, and then validate
the plan before storing it in the data dictionary.

The following is a summary of the steps required to create a complex resource plan.

Note:

A complex resource plan is any resource plan that is not created with the
DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN procedure.

Step 1: Create a pending area.

Step 2: Create, modify, or delete consumer groups.

Step 3: Map sessions to consumer groups.

Step 4: Create the resource plan.

Step 5: Create resource plan directives.

Chapter 26
Managing Resource Plans

26-84

Step 6: Validate the pending area.

Step 7: Submit the pending area.

You use procedures in the DBMS_RESOURCE_MANAGER PL/SQL package to complete these steps.

• About the Pending Area
The pending area is a staging area where you can create a new resource plan, update an
existing plan, or delete a plan without affecting currently running applications.

• Creating a Pending Area
You create a pending area with the CREATE_PENDING_AREA procedure.

• Creating Resource Consumer Groups
You create a resource consumer group using the CREATE_CONSUMER_GROUP procedure.

• Mapping Sessions to Consumer Groups
You can map sessions to consumer groups using the SET_CONSUMER_GROUP_MAPPING
procedure.

• Creating a Resource Plan
You create a resource plan with the CREATE_PLAN procedure.

• Creating Resource Plan Directives
You use the CREATE_PLAN_DIRECTIVE procedure to create resource plan directives. Each
directive belongs to a plan or subplan and allocates resources to either a consumer group
or subplan.

• Validating the Pending Area
At any time when you are making changes in the pending area, you can call
VALIDATE_PENDING_AREA to ensure that the pending area is valid so far.

• Submitting the Pending Area
After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make
your changes active.

• Clearing the Pending Area
You can clear the pending area at any time using the CLEAR_PENDING_AREA procedure.

See Also:

• Predefined Consumer Group Mapping Rules

• Oracle Database PL/SQL Packages and Types Reference for details on the
DBMS_RESOURCE_MANAGER PL/SQL package.

• "Elements of the Resource Manager"

26.4.4.1 About the Pending Area
The pending area is a staging area where you can create a new resource plan, update an
existing plan, or delete a plan without affecting currently running applications.

When you create a pending area, the database initializes it and then copies existing plans into
the pending area so that they can be updated.

Chapter 26
Managing Resource Plans

26-85

Tip:

After you create the pending area, if you list all plans by querying the
DBA_RSRC_PLANS data dictionary view, you see two copies of each plan: one with the
PENDING status, and one without. The plans with the PENDING status reflect any
changes you made to the plans since creating the pending area. Pending changes
can also be viewed for consumer groups using DBA_RSRC_CONSUMER_GROUPS and for
resource plan directives using DBA_RSRC_PLAN_DIRECTIVES. See Resource Manager
Data Dictionary Views for more information.

After you make changes in the pending area, you validate the pending area and then submit it.
Upon submission, all pending changes are applied to the data dictionary, and the pending area
is cleared and deactivated.

If you attempt to create, update, or delete a plan (or create, update, or delete consumer groups
or resource plan directives) without first creating the pending area, you receive an error
message.

Submitting the pending area does not activate any new plan that you create; it just stores new
or updated plan information in the data dictionary. However, if you modify a plan that is
currently active, the plan is reactivated with the new plan definition. See "Enabling Oracle
Database Resource Manager and Switching Plans" for information about activating a resource
plan.

When you create a pending area, no other users can create one until you submit or clear the
pending area or log out.

26.4.4.2 Creating a Pending Area
You create a pending area with the CREATE_PENDING_AREA procedure.

Example: Creating a pending area:

The following PL/SQL block creates and initializes a pending area:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
END;
/

26.4.4.3 Creating Resource Consumer Groups
You create a resource consumer group using the CREATE_CONSUMER_GROUP procedure.

You can specify the following parameters:

Parameter Description

CONSUMER_GROUP Name to assign to the consumer group.

COMMENT Any comment.

CPU_MTH Deprecated. Use MGMT_MTH.

Chapter 26
Managing Resource Plans

26-86

Parameter Description

MGMT_MTH The resource allocation method for distributing CPU among sessions in the
consumer group. The default is 'ROUND-ROBIN', which uses a round-robin
scheduler to ensure that sessions are fairly executed. 'RUN-TO-
COMPLETION' specifies that long-running sessions are scheduled ahead of
other sessions. This setting helps long-running sessions (such as batch
processes) complete sooner.

Example: Creating a Resource Consumer Group

The following PL/SQL block creates a consumer group called OLTP with the default (ROUND-
ROBIN) method of allocating resources to sessions in the group:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'OLTP',
 COMMENT => 'OLTP applications');
END;
/

See Also:

• "Updating a Consumer Group"

• "Deleting a Consumer Group"

26.4.4.4 Mapping Sessions to Consumer Groups
You can map sessions to consumer groups using the SET_CONSUMER_GROUP_MAPPING
procedure.

You can specify the following parameters:

Parameter Description

ATTRIBUTE Session attribute type, specified as a package constant.

VALUE Value of the attribute.

CONSUMER_GROUP Name of the consumer group.

Example: Mapping a Session to a Consumer Group

The following PL/SQL block maps the oe user to the OLTP consumer group:

BEGIN
 DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING(
 ATTRIBUTE => DBMS_RESOURCE_MANAGER.ORACLE_USER,
 VALUE => 'OE',
 CONSUMER_GROUP => 'OLTP');
END;
/

Chapter 26
Managing Resource Plans

26-87

See Also:

"Creating Consumer Group Mapping Rules"

26.4.4.5 Creating a Resource Plan
You create a resource plan with the CREATE_PLAN procedure.

You can specify the parameters shown in the following table. The first two parameters are
required. The remainder are optional.

Parameter Description

PLAN Name to assign to the plan.

COMMENT Any descriptive comment.

CPU_MTH Deprecated. Use MGMT_MTH.

ACTIVE_SESS_POOL_MTH Active session pool resource allocation method.
ACTIVE_SESS_POOL_ABSOLUTE is the default and only method
available.

PARALLEL_DEGREE_LIMIT_MTH Resource allocation method for specifying a limit on the
PARALLEL_DEGREE_LIMIT_ABSOLUTE is the default and only method
available.

QUEUEING_MTH Queuing resource allocation method. Controls the order in which
queued inactive sessions are removed from the queue and added to
the active session pool. FIFO_TIMEOUT is the default and only method
available.

MGMT_MTH Resource allocation method for specifying how much CPU each
consumer group or subplan gets. 'EMPHASIS', the default method, is
for single-level or multilevel plans that use percentages to specify how
CPU is distributed among consumer groups. 'RATIO' is for single-
level plans that use ratios to specify how CPU is distributed.

SUB_PLAN If TRUE, the plan cannot be used as the top plan; it can be used as a
subplan only. Default is FALSE.

Example: Creating a Resource Plan

The following PL/SQL block creates a resource plan named DAYTIME:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'DAYTIME',
 COMMENT => 'More resources for OLTP applications');
END;
/

• About the RATIO CPU Allocation Method
The RATIO method is an alternate CPU allocation method intended for simple plans that
have only a single level of CPU allocation.

26.4.4.5.1 About the RATIO CPU Allocation Method
The RATIO method is an alternate CPU allocation method intended for simple plans that have
only a single level of CPU allocation.

Chapter 26
Managing Resource Plans

26-88

Instead of percentages, you specify numbers corresponding to the ratio of CPU that you want
to give to each consumer group. To use the RATIO method, you set the MGMT_MTH argument for
the CREATE_PLAN procedure to 'RATIO'. See "Creating Resource Plan Directives " for an
example of a plan that uses this method.

See Also:

• "Updating a Plan"

• "Deleting a Plan"

26.4.4.6 Creating Resource Plan Directives
You use the CREATE_PLAN_DIRECTIVE procedure to create resource plan directives. Each
directive belongs to a plan or subplan and allocates resources to either a consumer group or
subplan.

Note:

The set of directives for a resource plan and its subplans can name a particular
subplan only once.

You can specify directives for a particular consumer group in a top plan and its
subplans. However, Oracle recommends that the set of directives for a resource plan
and its subplans name a particular consumer group only once.

You can specify the following parameters:

Parameter Description

PLAN Name of the resource plan to which the directive belongs.

GROUP_OR_SUBPLAN Name of the consumer group or subplan to which to allocate
resources.

COMMENT Any comment.

CPU_P1 Deprecated. Use MGMT_P1.

CPU_P2 Deprecated. Use MGMT_P2.

CPU_P3 Deprecated. Use MGMT_P3.

CPU_P4 Deprecated. Use MGMT_P4.

CPU_P5 Deprecated. Use MGMT_P5.

CPU_P6 Deprecated. Use MGMT_P6.

CPU_P7 Deprecated. Use MGMT_P7.

CPU_P8 Deprecated. Use MGMT_P8.

ACTIVE_SESS_POOL_P1 Specifies the maximum number of concurrently active sessions for a
consumer group. Other sessions await execution in an inactive session
queue. Default is UNLIMITED.

Chapter 26
Managing Resource Plans

26-89

Parameter Description

QUEUEING_P1 Specifies time (in seconds) after which a session in an inactive session
queue (waiting for execution) times out and the call is terminated.
Default is UNLIMITED.

PARALLEL_DEGREE_LIMIT_P1 Specifies a limit on the degree of parallelism for any operation. Default
is UNLIMITED.

SWITCH_GROUP Specifies the consumer group to which a session is switched if switch
criteria are met.

If the group name is CANCEL_SQL, then the current call is canceled
when switch criteria are met. If the group name is CANCEL_SQL, then
the SWITCH_FOR_CALL parameter is always set to TRUE, overriding the
user-specified setting.

If the group name is KILL_SESSION, then the session is terminated
when switch criteria are met.

If the group name is LOG_ONLY, then information about the session is
recorded in real-time SQL monitoring, but no specific action is taken for
the session.

If NULL, then the session is not switched and no additional logging is
performed. The default is NULL. An error is returned if this parameter is
set to NULL and any other switch parameter is set to non-NULL.

Note: The following consumer group names are reserved:
CANCEL_SQL, KILL_SESSION, and LOG_ONLY. An error results if you
attempt to create a consumer group with one of these names.

SWITCH_TIME Specifies the time (in CPU seconds) that a call can execute before an
action is taken. Default is UNLIMITED. The action is specified by
SWITCH_GROUP.

SWITCH_ESTIMATE If TRUE, the database estimates the execution time of each call, and if
estimated execution time exceeds SWITCH_TIME, the session is
switched to the SWITCH_GROUP before beginning the call. Default is
FALSE.

The execution time estimate is obtained from the optimizer. The
accuracy of the estimate is dependent on many factors, especially the
quality of the optimizer statistics. In general, you should expect
statistics to be no more accurate than ± 10 minutes.

MAX_EST_EXEC_TIME Specifies the maximum execution time (in CPU seconds) allowed for a
call. If the optimizer estimates that a call will take longer than
MAX_EST_EXEC_TIME, the call is not allowed to proceed and
ORA-07455 is issued. If the optimizer does not provide an estimate,
this directive has no effect. Default is UNLIMITED.

The accuracy of the estimate is dependent on many factors, especially
the quality of the optimizer statistics.

UNDO_POOL Sets a maximum in kilobytes (K) on the total amount of undo for
uncommitted transactions that can be generated by a consumer group.
Default is UNLIMITED.

MAX_IDLE_TIME Indicates the maximum session idle time, in seconds. Default is NULL,
which implies unlimited.

MAX_IDLE_BLOCKER_TIME Indicates the maximum session idle time of a blocking session, in
seconds. Default is NULL, which implies unlimited.

SWITCH_TIME_IN_CALL Deprecated. Use SWITCH_FOR_CALL.

Chapter 26
Managing Resource Plans

26-90

Parameter Description

MGMT_P1 For a plan with the MGMT_MTH parameter set to EMPHASIS, specifies the
CPU percentage to allocate at the first level. For MGMT_MTH set to
RATIO, specifies the weight of CPU usage. Default is NULL for all
MGMT_Pn parameters.

MGMT_P2 For EMPHASIS, specifies CPU percentage to allocate at the second
level. Not applicable for RATIO.

MGMT_P3 For EMPHASIS, specifies CPU percentage to allocate at the third level.
Not applicable for RATIO.

MGMT_P4 For EMPHASIS, specifies CPU percentage to allocate at the fourth level.
Not applicable for RATIO.

MGMT_P5 For EMPHASIS, specifies CPU percentage to allocate at the fifth level.
Not applicable for RATIO.

MGMT_P6 For EMPHASIS, specifies CPU percentage to allocate at the sixth level.
Not applicable for RATIO.

MGMT_P7 For EMPHASIS, specifies CPU percentage to allocate at the seventh
level. Not applicable for RATIO.

MGMT_P8 For EMPHASIS, specifies CPU percentage to allocate at the eighth
level. Not applicable for RATIO.

SWITCH_IO_MEGABYTES Specifies the number of megabytes of physical I/O that a session can
transfer (read and write) before an action is taken. Default is
UNLIMITED. The action is specified by SWITCH_GROUP.

SWITCH_IO_REQS Specifies the number of physical I/O requests that a session can
execute before an action is taken. Default is UNLIMITED. The action is
specified by SWITCH_GROUP.

SWITCH_FOR_CALL If TRUE, a session that was automatically switched to another consumer
group (according to SWITCH_TIME, SWITCH_IO_MEGABYTES, or
SWITCH_IO_REQS) is returned to its original consumer group when the
top level call completes. Default is NULL.

PARALLEL_QUEUE_TIMEOUT Specifies the maximum time, in seconds, that a parallel statement can
wait in the parallel statement queue before it is timed out.

PARALLEL_SERVER_LIMIT Specifies the maximum percentage of the parallel execution server
pool that a particular consumer group can use. The number of parallel
execution servers used by a particular consumer group is counted as
the sum of the parallel execution servers used by all sessions in that
consumer group.

UTILIZATION_LIMIT Specifies the maximum CPU utilization percentage permitted for the
consumer group. This value overrides any level allocations for CPU
(MGMT_P1 through MGMT_P8), and also imposes a limit on total CPU
utilization when unused allocations are redistributed. You can specify
this attribute and leave MGMT_P1 through MGMT_P8 NULL.

SWITCH_IO_LOGICAL Number of logical I/O requests that will trigger the action specified by
SWITCH_GROUP. As with other switch directives, if SWITCH_FOR_CALL
is TRUE, then the number of logical I/O requests is accumulated from
the start of a call. Otherwise, the number of logical I/O requests is
accumulated for the length of the session.

Chapter 26
Managing Resource Plans

26-91

Parameter Description

SWITCH_ELAPSED_TIME Elapsed time, in seconds, that will trigger the action specified by
SWITCH_GROUP. As with other switch directives, if SWITCH_FOR_CALL
is TRUE, then the elapsed time is accumulated from the start of a call.
Otherwise, the elapsed time is accumulated for the length of the
session.

SHARES Allocates resources among pluggable databases (PDBs) in a
multitenant container database (CDB). Also allocates resources among
consumer groups in a PDB.

PARALLEL_STMT_CRITICAL Specifies whether parallel statements from the consumer group are
critical.

When BYPASS_QUEUE is specified, parallel statements from the
consumer group are critical. These statements bypass the parallel
queue and are executed immediately.

When FALSE or NULL (the default) is specified, parallel statements from
the consumer group are not critical. These statements are added to the
parallel queue when necessary.

SESSION_PGA_LIMIT Specifies the maximum amount of PGA memory, in megabytes, that
can be allocated to each session in a particular consumer group. If a
session exceeds the limit, then its process is terminated with an
ORA-10260 error.

Example 1

The following PL/SQL block creates a resource plan directive for plan DAYTIME. (It assumes
that the DAYTIME plan and OLTP consumer group are already created in the pending area.)

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OLTP',
 COMMENT => 'OLTP group',
 MGMT_P1 => 75);
END;
/

This directive assigns 75% of CPU resources to the OLTP consumer group at level 1.

You can also create the REPORTING consumer group, and then execute the following PL/SQL
block:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'REPORTING',
 COMMENT => 'Reporting group',
 MGMT_P1 => 15,
 PARALLEL_DEGREE_LIMIT_P1 => 8,
 ACTIVE_SESS_POOL_P1 => 4,
 SESSION_PGA_LIMIT => 20);

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'This one is required',
 MGMT_P1 => 10);

Chapter 26
Managing Resource Plans

26-92

END;
/

In this plan, consumer group REPORTING has a maximum degree of parallelism of 8 for any
operation, while none of the other consumer groups are limited in their degree of parallelism. In
addition, the REPORTING group has a maximum of 4 concurrently active sessions. Each session
can use a maximum of 20 MB of PGA memory.

Example 2

This example uses the RATIO method to allocate CPU, which uses ratios instead of
percentages. Suppose your application suite offers three service levels to clients: Gold, Silver,
and Bronze. You create three consumer groups named GOLD_CG, SILVER_CG, and BRONZE_CG,
and you create the following resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN
 (PLAN => 'SERVICE_LEVEL_PLAN',
 MGMT_MTH => 'RATIO',
 COMMENT => 'Plan that supports three service levels');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE
 (PLAN => 'SERVICE_LEVEL_PLAN',
 GROUP_OR_SUBPLAN => 'GOLD_CG',
 COMMENT => 'Gold service level customers',
 MGMT_P1 => 10);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE
 (PLAN => 'SERVICE_LEVEL_PLAN',
 GROUP_OR_SUBPLAN => 'SILVER_CG',
 COMMENT => 'Silver service level customers',
 MGMT_P1 => 5);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE
 (PLAN => 'SERVICE_LEVEL_PLAN',
 GROUP_OR_SUBPLAN => 'BRONZE_CG',
 COMMENT => 'Bronze service level customers',
 MGMT_P1 => 2);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE
 (PLAN => 'SERVICE_LEVEL_PLAN',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'Lowest priority sessions',
 MGMT_P1 => 1);
END;
/

The ratio of CPU allocation is 10:5:2:1 for the GOLD_CG, SILVER_CG, BRONZE_CG, and
OTHER_GROUPS consumer groups, respectively.

If sessions exist only in the GOLD_CG and SILVER_CG consumer groups, then the ratio of CPU
allocation is 10:5 between the two groups.

• Conflicting Resource Plan Directives
Although this is allowed, Oracle strongly recommends that you avoid referencing the same
consumer group from a top plan and any of its subplans.

26.4.4.6.1 Conflicting Resource Plan Directives
Although this is allowed, Oracle strongly recommends that you avoid referencing the same
consumer group from a top plan and any of its subplans.

Chapter 26
Managing Resource Plans

26-93

You may have occasion to reference the same consumer group from the top plan and any
number of subplans. This results in multiple resource plan directives referring to the same
consumer group.

Similarly, when multiple resource plan directives refer to the same consumer group, they have
conflicting directives. Although this is allowed, Oracle strongly recommends that you avoid
multiple resource plan directives that refer to the same consumer group.

See Also:

• "Updating a Resource Plan Directive"

• "Deleting a Resource Plan Directive"

26.4.4.7 Validating the Pending Area
At any time when you are making changes in the pending area, you can call
VALIDATE_PENDING_AREA to ensure that the pending area is valid so far.

The following rules must be adhered to, and are checked by the validate procedure:

• No plan can contain any loops. A loop occurs when a subplan contains a directive that
references a plan that is above the subplan in the plan hierarchy. For example, a subplan
cannot reference the top plan.

• All plans and resource consumer groups referred to by plan directives must exist.

• All plans must have plan directives that point to either plans or resource consumer groups.

• All percentages in any given level must not add up to greater than 100.

• A plan that is currently being used as a top plan by an active instance cannot be deleted.

• The following parameters can appear only in plan directives that refer to resource
consumer groups, not other resource plans:

– ACTIVE_SESS_POOL_P1
– MAX_EST_EXEC_TIME
– MAX_IDLE_BLOCKER_TIME
– MAX_IDLE_TIME
– PARALLEL_DEGREE_LIMIT_P1
– QUEUEING_P1
– SESSION_PGA_LIMIT
– SWITCH_ESTIMATE
– SWITCH_FOR_CALL
– SWITCH_GROUP
– SWITCH_IO_MEGABYTES
– SWITCH_IO_REQS
– SWITCH_TIME

Chapter 26
Managing Resource Plans

26-94

– UNDO_POOL
– UTILIZATION_LIMIT

• There can be no more than 28 resource consumer groups in any active plan. Also, at most,
a plan can have 28 children.

• Plans and resource consumer groups cannot have the same name.

• There must be a plan directive for OTHER_GROUPS somewhere in any active plan. This
ensures that a session that is not part of any of the consumer groups included in the
currently active plan is allocated resources (as specified by the directive for
OTHER_GROUPS).

VALIDATE_PENDING_AREA raises an error if any of the preceding rules are violated. You can then
make changes to fix any problems and call the procedure again.

It is possible to create "orphan" consumer groups that have no plan directives referring to
them. This allows the creation of consumer groups that will not currently be used, but might be
part of some plan to be implemented in the future.

Example: Validating the Pending Area:

The following PL/SQL block validates the pending area.

BEGIN
 DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
END;
/

See Also:

"About the Pending Area"

26.4.4.8 Submitting the Pending Area
After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make your
changes active.

The submit procedure also performs validation, so you do not necessarily need to make
separate calls to the validate procedure. However, if you are making major changes to plans,
debugging problems is often easier if you incrementally validate your changes. No changes are
submitted (made active) until validation is successful on all of the changes in the pending area.

The SUBMIT_PENDING_AREA procedure clears (deactivates) the pending area after successfully
validating and committing the changes.

Note:

A call to SUBMIT_PENDING_AREA might fail even if VALIDATE_PENDING_AREA succeeds.
This can happen if, for example, a plan being deleted is loaded by an instance after a
call to VALIDATE_PENDING_AREA, but before a call to SUBMIT_PENDING_AREA.

Chapter 26
Managing Resource Plans

26-95

Example: Submitting the Pending Area:

The following PL/SQL block submits the pending area:

BEGIN
 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

See Also:

"About the Pending Area"

26.4.4.9 Clearing the Pending Area
You can clear the pending area at any time using the CLEAR_PENDING_AREA procedure.

This PL/SQL block causes all of your changes to be cleared from the pending area and
deactivates the pending area:

BEGIN
 DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA();
END;
/

After calling CLEAR_PENDING_AREA, you must call the CREATE_PENDING_AREA procedure before
you can again attempt to make changes.

See Also:

"About the Pending Area"

26.5 Putting It All Together: Oracle Database Resource Manager
Examples

Examples illustrate how to allocate resources with Resource Manager.

• Multilevel Plan Example
An example illustrates a multilevel plan.

• Examples of Using the Utilization Limit Attribute
You can use the UTILIZATION_LIMIT directive attribute to limit the CPU utilization for
applications. One of the most common scenarios in which this attribute can be used is for
database consolidation.

• Example of Using Several Resource Allocation Methods
An example illustrates using several resource allocation methods.

• Example of Managing Parallel Statements Using Directive Attributes
An example illustrates managing parallel statements using directive attributes.

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-96

• An Oracle-Supplied Mixed Workload Plan
Oracle Database includes a predefined resource plan, MIXED_WORKLOAD_PLAN, that
prioritizes interactive operations over batch operations, and includes the required subplans
and consumer groups recommended by Oracle.

26.5.1 Multilevel Plan Example
An example illustrates a multilevel plan.

The following PL/SQL block creates a multilevel plan as illustrated in Figure 26-7. Default
resource allocation method settings are used for all plans and resource consumer groups.

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'bugdb_plan',
 COMMENT => 'Resource plan/method for bug users sessions');
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'maildb_plan',
 COMMENT => 'Resource plan/method for mail users sessions');
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'mydb_plan',
 COMMENT => 'Resource plan/method for bug and mail users sessions');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Online_group',
 COMMENT => 'Resource consumer group/method for online bug users sessions');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Batch_group',
 COMMENT => 'Resource consumer group/method for batch job bug users sessions');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Bug_Maint_group',
 COMMENT => 'Resource consumer group/method for users sessions for bug db maint');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Users_group',
 COMMENT => 'Resource consumer group/method for mail users sessions');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Postal_Service_group',
 COMMENT => 'Resource consumer group/method for mail service');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'Mail_Maint_group',
 COMMENT => 'Resource consumer group/method for users sessions for mail db maint');
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'bugdb_plan',
 GROUP_OR_SUBPLAN => 'Online_group',
 COMMENT => 'online bug users sessions at level 1', MGMT_P1 => 80, MGMT_P2=> 0);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'bugdb_plan',
 GROUP_OR_SUBPLAN => 'Batch_group',
 COMMENT => 'batch bug users sessions at level 1', MGMT_P1 => 20, MGMT_P2 => 0,
 PARALLEL_DEGREE_LIMIT_P1 => 8);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'bugdb_plan',
 GROUP_OR_SUBPLAN => 'Bug_Maint_group',
 COMMENT => 'bug maintenance users sessions at level 2', MGMT_P1 => 0, MGMT_P2 => 100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'bugdb_plan',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'all other users sessions at level 3', MGMT_P1 => 0, MGMT_P2 => 0,
 MGMT_P3 => 100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'maildb_plan',
 GROUP_OR_SUBPLAN => 'Postal_Service_group',
 COMMENT => 'mail service at level 1', MGMT_P1 => 40, MGMT_P2 => 0);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'maildb_plan',
 GROUP_OR_SUBPLAN => 'Users_group',
 COMMENT => 'mail users sessions at level 2', MGMT_P1 => 0, MGMT_P2 => 80);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'maildb_plan',
 GROUP_OR_SUBPLAN => 'Mail_Maint_group',
 COMMENT => 'mail maintenance users sessions at level 2', MGMT_P1 => 0, MGMT_P2 => 20);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'maildb_plan',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'all other users sessions at level 3', MGMT_P1 => 0, MGMT_P2 => 0,
 MGMT_P3 => 100);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'mydb_plan',
 GROUP_OR_SUBPLAN => 'maildb_plan',
 COMMENT=> 'all mail users sessions at level 1', MGMT_P1 => 30);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'mydb_plan',
 GROUP_OR_SUBPLAN => 'bugdb_plan',
 COMMENT => 'all bug users sessions at level 1', MGMT_P1 => 70);
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-97

END;
/

The preceding call to VALIDATE_PENDING_AREA is optional because the validation is implicitly
performed in SUBMIT_PENDING_AREA.

Figure 26-7 Multilevel Plan Schema

MYDB

PLAN

MAILDB

PLAN

BUGDB

PLAN

100% @

Level 2

20% @

Level 1

80% @

Level 1

100% @

Level 3

100% @

Level 3

40% @

Level 1

20% @

Level 2

80% @

Level 2

70% @

Level 1

MAIL MAINT

GROUP

ONLINE

GROUP

BATCH

GROUP

BUG MAINT

GROUP

USERS

GROUP

POSTMAN

GROUP

30% @

Level 1

OTHER

GROUPS

In this plan schema, CPU resources are allocated as follows:

• Under mydb_plan, 30% of CPU is allocated to the maildb_plan subplan, and 70% is
allocated to the bugdb_plan subplan. Both subplans are at level 1. Because mydb_plan
itself has no levels below level 1, any resource allocations that are unused by either
subplan at level 1 can be used by its sibling subplan. Thus, if maildb_plan uses only 20%
of CPU, then 80% of CPU is available to bugdb_plan.

• maildb_plan and bugdb_plan define allocations at levels 1, 2, and 3. The levels in these
subplans are independent of levels in their parent plan, mydb_plan. That is, all plans and
subplans in a plan schema have their own level 1, level 2, level 3, and so on.

• Of the 30% of CPU allocated to maildb_plan, 40% of that amount (effectively 12% of total
CPU) is allocated to Postal_Service_group at level 1. Because Postal_Service_group
has no siblings at level 1, there is an implied 60% remaining at level 1. This 60% is then
shared by Users_group and Mail_Maint_group at level 2, at 80% and 20%, respectively. In
addition to this 60%, Users_group and Mail_Maint_group can also use any of the 40% not
used by Postal_Service_group at level 1.

• CPU resources not used by either Users_group or Mail_Maint_group at level 2 are
allocated to OTHER_GROUPS, because in multilevel plans, unused resources are reallocated
to consumer groups or subplans at the next lower level, not to siblings at the same level.
Thus, if Users_group uses only 70% instead of 80%, the remaining 10% cannot be used by
Mail_Maint_group. That 10% is available only to OTHER_GROUPS at level 3.

• The 70% of CPU allocated to the bugdb_plan subplan is allocated to its consumer groups
in a similar fashion. If either Online_group or Batch_group does not use its full allocation,
the remainder may be used by Bug_Maint_group. If Bug_Maint_group does not use all of
that allocation, the remainder goes to OTHER_GROUPS.

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-98

26.5.2 Examples of Using the Utilization Limit Attribute
You can use the UTILIZATION_LIMIT directive attribute to limit the CPU utilization for
applications. One of the most common scenarios in which this attribute can be used is for
database consolidation.

During database consolidation, you may need to be able to do the following:

• Manage the performance impact that one application can have on another.

One method of managing this performance impact is to create a consumer group for each
application and allocate resources to each consumer group.

• Limit the utilization of each application.

Typically, in addition to allocating a specific percentage of the CPU resources to each
consumer group, you may need to limit the maximum CPU utilization for each group. This
limit prevents a consumer group from using all of the CPU resources when all the other
consumer groups are idle.

In some cases, you may want all application users to experience consistent performance
regardless of the workload from other applications. This can be achieved by specifying a
utilization limit for each consumer group in a resource plan.

The following examples demonstrate how to use the UTILIZATION_LIMIT resource plan
directive attribute to:

• Restrict total database CPU utilization

• Quarantine runaway queries

• Limit CPU usage for applications

• Limit CPU utilization during maintenance windows

Example 1 - Restricting Overall Database CPU Utilization

In this example, regardless of database load, system workload from Oracle Database never
exceeds 90% of CPU, leaving 10% of CPU for other applications sharing the server.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'MAXCAP_PLAN',
 COMMENT => 'Limit overall database CPU');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'MAXCAP_PLAN',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'This group is mandatory',
 UTILIZATION_LIMIT => 90);

 DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

Because there is no plan directive other than the one for OTHER_GROUPS, all sessions are
mapped to OTHER_GROUPS.

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-99

Example 2 - Quarantining Runaway Queries

In this example, runaway queries are switched to a consumer group with a utilization limit of
20%, limiting the amount of resources that they can consume until you can intervene. A
runaway query is characterized here as one that takes more than 10 minutes of CPU time.
Assume that session mapping rules start all sessions in START_GROUP.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'START_GROUP',
 COMMENT => 'Sessions start here');

 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'QUARANTINE_GROUP',
 COMMENT => 'Sessions switched here to quarantine them');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'Quarantine_plan',
 COMMENT => 'Quarantine runaway queries');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'Quarantine_plan',
 GROUP_OR_SUBPLAN => 'START_GROUP',
 COMMENT => 'Max CPU 10 minutes before switch',
 MGMT_P1 => 75,
 switch_group => 'QUARANTINE_GROUP',
 switch_time => 600);

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'Quarantine_plan',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'Mandatory',
 MGMT_P1 => 25);

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 PLAN => 'Quarantine_plan',
 GROUP_OR_SUBPLAN => 'QUARANTINE_GROUP',
 COMMENT => 'Limited CPU',
 MGMT_P2 => 100,
 UTILIZATION_LIMIT => 20);

 DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

Note:

Although you could set the utilization limit to zero for QUARANTINE_GROUP, thus
completely quarantining runaway queries, it is recommended that you avoid doing
this. If the runaway query is holding any resources—PGA memory, locks, and so on
—required by any other session, then a zero allocation setting could lead to a
deadlock.

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-100

Example 3 - Limiting CPU for Applications

In this example, assume that mapping rules map application sessions into one of four
application groups. Each application group is allocated a utilization limit of 30%. This limits
CPU utilization of any one application to 30%. The sum of the UTILIZATION_LIMIT values
exceeds 100%, which is permissible and acceptable in a situation where all applications are
not active simultaneously.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
 CONSUMER_GROUP => 'APP1_GROUP',
 COMMENT => 'Apps group 1');
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'APP2_GROUP',
 COMMENT => 'Apps group 2');
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'APP3_GROUP',
 COMMENT => 'Apps group 3');
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'APP4_GROUP',
 COMMENT => 'Apps group 4');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'apps_plan',
 COMMENT => 'Application consolidation');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'apps_plan',
 GROUP_OR_SUBPLAN => 'APP1_GROUP',
 COMMENT => 'Apps group 1',
 UTILIZATION_LIMIT => 30);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'apps_plan',
 GROUP_OR_SUBPLAN => 'APP2_GROUP',
 COMMENT => 'Apps group 2',
 UTILIZATION_LIMIT => 30);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'apps_plan',
 GROUP_OR_SUBPLAN => 'APP3_GROUP',
 COMMENT => 'Apps group 3',
 UTILIZATION_LIMIT => 30);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'apps_plan',
 GROUP_OR_SUBPLAN => 'APP4_GROUP',
 COMMENT => 'Apps group 4',
 UTILIZATION_LIMIT => 30);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'apps_plan',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'Mandatory',
 UTILIZATION_LIMIT => 20);

 DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

If all four application groups can fully use the CPU allocated to them (30% in this case), then
the minimum CPU that is allocated to each application group is computed as a ratio of the

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-101

application group's limit to the total of the limits of all application groups. In this example, all
four application groups are allocated a utilization limit of 30%. Therefore, when all four groups
fully use their limits, the CPU allocation to each group is 30/(30+30+30+30) = 25%.

Example 4 - Specifying a Utilization Limit for Consumer Groups and Subplans

The following example describes how the utilization limit is computed for scenarios, such as
the one in Figure 26-8, where you set UTILIZATION_LIMIT for a subplan and for consumer
groups within the subplan. For simplicity, the requirement to include the OTHER_GROUPS
consumer group is ignored, and resource plan directives are not shown, even though they are
part of the plan.

Figure 26-8 Resource Plan with Maximum Utilization for Subplan and Consumer Groups

APPS PLAN

APP1 GROUP APP2 SUBPLAN APP3 GROUP

APP2 OLTP GROUP
APP2 REPORTS

SUBPLAN

APP2 ADHOC GROUP APP2 REPORT GROUP

UTILIZATION_LIMIT=40%UTILIZATION_LIMIT=40%

UTILIZATION_LIMIT=90%

UTILIZATION_LIMIT=50% UTILIZATION_LIMIT=50%

The following PL/SQL block creates the plan described in Figure 26-8.

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'APP1_GROUP',
 COMMENT => 'Group for application #1');
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'APP2_OLTP_GROUP',
 COMMENT => 'Group for OLTP activity in application #2');
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'APP2_ADHOC_GROUP',
 COMMENT => 'Group for ad-hoc queries in application #2');
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'APP2_REPORT_GROUP',
 COMMENT => 'Group for reports in application #2');
 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'APPS_PLAN',
 COMMENT => 'Plan for managing 3 applications');
 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'APP2_SUBPLAN',
 COMMENT => 'Subplan for managing application #2',

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-102

 SUB_PLAN => TRUE);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'APP2_REPORTS_SUBPLAN',
 COMMENT => 'Subplan for managing reports in application #2',
 SUB_PLAN => TRUE);

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'APPS_PLAN',
 GROUP_OR_SUBPLAN => 'APP1_GROUP',
 COMMENT => 'Limit CPU for application #1 to 40%',
 UTILIZATION_LIMIT => 40);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'APPS_PLAN',
 GROUP_OR_SUBPLAN => 'APP2_SUBPLAN',
 COMMENT => 'Limit CPU for application #2 to 40%',
 UTILIZATION_LIMIT => 40);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'APP2_SUBPLAN',
 GROUP_OR_SUBPLAN => 'APP2_OLTP_GROUP',
 COMMENT => 'Limit CPU for OLTP to 90% of application #2',
 UTILIZATION_LIMIT => 90);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'APP2_SUBPLAN',
 GROUP_OR_SUBPLAN => 'APP2_REPORTS_SUBPLAN',
 COMMENT => 'Subplan for ad-hoc and normal reports for application #2');
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'APP2_REPORTS_SUBPLAN',
 GROUP_OR_SUBPLAN => 'APP2_ADHOC_GROUP',
 COMMENT => 'Limit CPU for ad-hoc queries to 50% of application #2
reports',
 UTILIZATION_LIMIT => 50);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'APP2_REPORTS_SUBPLAN',
 GROUP_OR_SUBPLAN => 'APP2_REPORT_GROUP',
 COMMENT => 'Limit CPU for reports to 50% of application #2 reports',
 UTILIZATION_LIMIT => 50);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'APPS_PLAN',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'No directives for default users');
 DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

In this example, the maximum CPU utilization for the consumer group APP1_GROUP and subplan
APP2_SUBPLAN is set to 40%. The limit for the consumer groups APP2_ADHOC_GROUP and
APP2_REPORT_GROUP is set to 50%.

Because there is no limit specified for the subplan APP2_REPORTS_SUBPLAN, it inherits the limit of
its parent subplan APP2_SUBPLAN, which is 40%. The absolute limit for the consumer group
APP2_REPORT_GROUP is computed as 50% of its parent subplan, which is 50% of 40%, or 20%.

Similarly, because the consumer group APP2_ADHOC_GROUP is contained in the subplan
APP2_REPORTS_SUBPLAN, its limit is computed as a percentage of its parent subplan. The
utilization limit for the consumer group APP2_ADHOC_GROUP is 50% of 40%, or 20%.

The maximum CPU utilization for the consumer group APP2_OLTP_GROUP is set to 90%. The
parent subplan of APP2_OLTP_GROUP, APP2_SUBPLAN, has a limit of 40%. Therefore, the absolute
limit for the group APP2_OLTP_GROUP is 90% of 40%, or 36%.

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-103

26.5.3 Example of Using Several Resource Allocation Methods
An example illustrates using several resource allocation methods.

The example presented here could represent a plan for a database supporting a packaged
ERP (Enterprise Resource Planning) or CRM (Customer Relationship Management)
application. The work in such an environment can be highly varied. There may be a mix of
short transactions and quick queries, in combination with longer running batch jobs that include
large parallel queries. The goal is to give good response time to OLTP (Online Transaction
Processing), while allowing batch jobs to run in parallel.

The plan is summarized in the following table.

Group CPU Resource
Allocation %

Parallel
Statement
Queuing

Automatic
Consumer
Group
Switching

Maximum
Estimated
Execution
Time

Undo Pool PGA Limit for
Each Session

oltp 60% -- Switch to group:
batch
Switch time: 3
secs

-- 200K 20M

batch 30% Parallel server
limit: 8

Parallel queue
timeout: 600
secs

-- 3600 secs -- --

OTHER_GROUPS 10% -- -- -- -- --

The following statements create the preceding plan, which is named erp_plan:

BEGIN
DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.CREATE_PLAN(PLAN => 'erp_plan',
 COMMENT => 'Resource plan/method for ERP Database');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'oltp',
 COMMENT => 'Resource consumer group/method for OLTP jobs');
DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(CONSUMER_GROUP => 'batch',
 COMMENT => 'Resource consumer group/method for BATCH jobs');
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'erp_plan',
 GROUP_OR_SUBPLAN => 'oltp', COMMENT => 'OLTP sessions', MGMT_P1 => 60,
 SWITCH_GROUP => 'batch', SWITCH_TIME => 3, UNDO_POOL => 200,
 SWITCH_FOR_CALL => TRUE, SESSION_PGA_LIMIT => 20);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'erp_plan',
 GROUP_OR_SUBPLAN => 'batch', COMMENT => 'BATCH sessions', MGMT_P1 => 30,
 PARALLEL_SERVER_LIMIT => 8, PARALLEL_QUEUE_TIMEOUT => 600,
 MAX_EST_EXEC_TIME => 3600);
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(PLAN => 'erp_plan',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS', COMMENT => 'mandatory', MGMT_P1 => 10);
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

26.5.4 Example of Managing Parallel Statements Using Directive Attributes
An example illustrates managing parallel statements using directive attributes.

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-104

A typical data warehousing environment consists of different types of users with varying
resource requirements. Users with common processing needs are grouped into a consumer
group. The consumer group URGENT_GROUP consists of users who run reports that provide
important information to top management. This group generates a large number of parallel
queries. Users from the consumer group ETL_GROUP import data from source systems and
perform extract, transform, and load (ETL) operations. The group OTHER_GROUPS contains users
who execute ad-hoc queries. You must manage the requirements of these diverse groups of
users while optimizing performance.

You can use the following directive attributes to manage and optimize the execution of parallel
statements:

• MGMT_Pn

• PARALLEL_SERVER_LIMIT
• PARALLEL_STMT_CRITICAL
• PARALLEL_QUEUE_TIMEOUT
• PQ_TIMEOUT_ACTION
• PARALLEL_DEGREE_LIMIT_P1
• SHARES

Note:

• The MGMT_Pn management attributes and SHARES attribute control how a parallel
statement is selected from the parallel statement queue for execution. You can
prioritize the parallel statements of one consumer group over another by setting a
higher value for the management attributes of that group.

• In a multitenant environment, if you want more per-workload management, then
you can use the SHARES attribute to specify the share of resource allocation for
pluggable databases (PDBs), which includes the parallel statement queuing
resource. Alternatively, you can use the other directive attributes mentioned
above.

Table 26-16 describes the resource allocations of the plan DW_PLAN, which can be used to
manage the needs of the data warehouse users. This plan contains the consumer groups
URGENT_GROUP, ETL_GROUP, and OTHER_GROUPS. This example demonstrates the use of directive
attributes in ensuring that one application or consumer group does not use all the available
parallel execution servers.

Table 26-16 Resource Plan with Parallel Statement Directives

Consumer Group Level 1 CPU
Allocation

Level 2 CPU
Allocation

Level 3 CPU
Allocation

PARALLEL_D
EGREE_LIMIT
_P1

PARALLEL_SE
RVER_LIMIT

PARALLEL_Q
UEUE_TIMEO
UT

URGENT_GROUP 100% 12

ETL_GROUP 100% 8 50%

OTHER_GROUPS 100% 2 50% 360

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-105

In this example, the parameter PARALLEL_SERVERS_TARGET initialization parameter is set to 64,
which means that the number of parallel execution servers available is 64. The total number of
parallel execution servers that can be used for parallel statement execution before
URGENT_GROUP sessions with PARALLEL_DEGREE_POLICY set to AUTO are added to the parallel
statement queue is equal to 64. Because the PARALLEL_SERVER_LIMIT attribute of ETL_GROUP
and OTHER_GROUPS is 50%, the maximum number of parallel execution servers that can be used
by these groups is 50% of 64, or 32 parallel execution servers each.

Note that parallel statements from a consumer group will only be queued if the
PARALLEL_DEGREE_POLICY parameter is set to AUTO and the total number of active servers for
the consumer group is higher than PARALLEL_SERVERS_TARGET. If PARALLEL_DEGREE_POLICY is
set to MANUAL or LIMITED, then the statements are run provided there are enough parallel
execution servers available. The parallel execution servers used by such a statement will count
toward the total number of parallel execution servers used by the consumer group. However,
the parallel statement will not be added to the parallel statement queue.

Tip:

For low-priority applications, it is a common practice to set low values for
PARALLEL_DEGREE_LIMIT_P1 and PARALLEL_SERVER_LIMIT.

Because URGENT_GROUP has 100% of the allocation at level 1, its parallel statements will always
be dequeued ahead of the other consumer groups from the parallel statement queue. Although
URGENT_GROUP has no PARALLEL_SERVER_LIMIT directive attribute, a statement issued by a
session in this group might still be queued if there are not enough available parallel execution
servers to run it.

When you create the resource plan directive for the URGENT_GROUP, you can set the
PARALLEL_STMT_CRITICAL parameter to BYPASS_QUEUE. With this setting, parallel statements
from the consumer group bypass the parallel statements queue and are executed immediately.
However, the number of parallel execution servers might exceed the setting of the
PARALLEL_SERVERS_TARGET initialization parameter, and the degree of parallelism might be
lower if the limit set by the PARALLEL_MAX_SERVERS initialization parameter is reached.

The degree of parallelism, represented by PARALLEL_DEGREE_LIMIT_P1, is set to 12 for
URGENT_GROUP. Therefore, each parallel statement from URGENT_GROUP can use a maximum of
12 parallel execution servers. Similarly, each parallel statement from the ETL_GROUP can use a
maximum of 8 parallel execution servers and each parallel statement from the OTHER_GROUPS
can use 2 parallel execution servers.

Suppose, at a given time, the only parallel statements are from the ETL_GROUP, and they are
using 26 out of the 32 parallel execution servers available to this group. Sessions from this
consumer group have PARALLEL_DEGREE_POLICY set to AUTO. If another parallel statement with
the PARALLEL_DEGREE_LIMIT_P1 attribute set to 8 is launched from ETL_GROUP, then this query
cannot be run immediately because the available parallel execution servers in the ETL_GROUP is
32-26=6 parallel execution servers. The new parallel statement is queued until the number of
parallel execution servers it requires is available in ETL_GROUP.

While the parallel statements in ETL_GROUP are being executed, suppose a parallel statement is
launched from OTHER_GROUPS. This group still has 32 parallel execution servers available and
so the parallel statement is executed.

The PARALLEL_QUEUE_TIMEOUT attribute for OTHER_GROUPS is set to 360. Therefore, any parallel
statement from this group can remain in the parallel execution server queue for 360 seconds

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-106

only. After this time, the parallel statement is removed from the queue and the error ORA-07454
is returned.

See Also:

• "Parallel Execution Servers"

• "Creating Resource Plan Directives "

26.5.5 An Oracle-Supplied Mixed Workload Plan
Oracle Database includes a predefined resource plan, MIXED_WORKLOAD_PLAN, that prioritizes
interactive operations over batch operations, and includes the required subplans and
consumer groups recommended by Oracle.

MIXED_WORKLOAD_PLAN is defined as follows:

Group or
Subplan

CPU Resource Allocation

Level 1 Level 2 Level 3 Automatic
Consumer
Group
Switching

Max Degree of
Parallelism

BATCH_GROUP 100%

INTERACTIVE_
GROUP

85% Switch to group:
BATCH_GROUP
Switch time: 60
seconds

Switch for call:
TRUE

1

ORA$AUTOTASK 5%

OTHER_GROUPS 5%

SYS_GROUP 100%

In this plan, because INTERACTIVE_GROUP is intended for short transactions, any call that
consumes more than 60 seconds of CPU time is automatically switched to BATCH_GROUP, which
is intended for longer batch operations.

You can use this predefined plan if it is appropriate for your environment. (You can modify the
plan, or delete it if you do not intend to use it.) Note that there is nothing special about the
names BATCH_GROUP and INTERACTIVE_GROUP. The names reflect only the intended purposes of
the groups, and it is up to you to map application sessions to these groups and adjust CPU
resource allocation percentages accordingly so that you achieve proper resource management
for your interactive and batch applications. For example, to ensure that your interactive
applications run under the INTERACTIVE_GROUP consumer group, you must map your interactive
applications' user sessions to this consumer group based on user name, service name,
program name, module name, or action, as described in "Specifying Session-to-Consumer
Group Mapping Rules". You must map your batch applications to the BATCH_GROUP in the same
way. Finally, you must enable this plan as described in "Enabling Oracle Database Resource
Manager and Switching Plans".

Chapter 26
Putting It All Together: Oracle Database Resource Manager Examples

26-107

See Table 26-17 and Table 26-18 for explanations of the other resource consumer groups and
subplans in this plan.

26.6 Managing Multiple Database Instances on a Single Server
Oracle Database provides a method for managing CPU allocations on a multi-CPU server
running multiple database instances. This method is called instance caging. Instance caging
and Oracle Database Resource Manager (the Resource Manager) work together to support
desired levels of service across multiple instances.

• About Instance Caging
A simple way to limit CPU consumption for each database instance is to use instance
caging. Instance caging is a method that uses an initialization parameter to limit the
number of CPUs that an instance can use simultaneously.

• Enabling Instance Caging
You can enable instance caging using by creating a resource plan with CPU directives and
setting the CPU_COUNT initialization parameter.

26.6.1 About Instance Caging
A simple way to limit CPU consumption for each database instance is to use instance caging.
Instance caging is a method that uses an initialization parameter to limit the number of CPUs
that an instance can use simultaneously.

You might decide to run multiple Oracle database instances on a single multi-CPU server. A
typical reason to do so would be server consolidation—using available hardware resources
more efficiently. When running multiple instances on a single server, the instances compete for
CPU. One resource-intensive database instance could significantly degrade the performance
of the other instances. For example, on a 16-CPU system with four database instances, the
operating system might be running one database instance on the majority of the CPUs during
a period of heavy load for that instance. This could degrade performance in the other three
instances. CPU allocation decisions such as this are made solely by the operating system; the
user generally has no control over them.

In the previous example, if you use instance caging to limit the number of CPUs to four for
each of the four instances, there is less likelihood that one instance can interfere with the
others. When constrained to four CPUs, an instance might become CPU-bound. This is when
the Resource Manager begins to do its work to allocate CPU among the various database
sessions according to the resource plan that you set for the instance. Thus, instance caging
and the Resource Manager together provide a simple, effective way to manage multiple
instances on a single server.

There are two typical approaches to instance caging for a server:

• Over-subscribing—You would use this approach for non-critical databases such as
development and test systems, or low-load non-critical production systems. In this
approach, the sum of the CPU limits for each instance exceeds the actual number of CPUs
on the system. For example, on a 4-CPU system with four database instances, you might
limit each instance to three CPUs. When a server is over-subscribed in this way, the
instances can impact each other's performance. However, instance caging limits the
impact and helps provide somewhat predictable performance. However, if one of the
instances has a period of high load, the CPUs are available to handle it. This is a
reasonable approach for non-critical systems, because one or more of the instances may
frequently be idle or at a very low load.

Chapter 26
Managing Multiple Database Instances on a Single Server

26-108

• Partitioning—This approach is for critical production systems, where you want to prevent
instances from interfering with each other. You allocate CPUs such that the sum of all
allocations is equal to the number of CPUs on the server. For example, on a 16-server
system, you might allocate 8 CPUs to the first instance, 4 CPUs to the second, and 2 each
to the remaining two instances. By dedicating CPU resources to each database instance,
the load on one instance cannot affect another's, and each instance performs predictably.

Using Instance Caging with Utilization Limit

If you enable instance caging and set a utilization limit in your resource plan, then the absolute
limit is computed as a percentage of the allocated CPU resources.

For example, if you enable instance caging and set the CPU_COUNT to 4, and a consumer group
has a utilization limit of 50%, then the consumer group can use a maximum of 50% of 4 CPUs,
which is 2 CPUs.

26.6.2 Enabling Instance Caging
You can enable instance caging using by creating a resource plan with CPU directives and
setting the CPU_COUNT initialization parameter.

To enable instance caging, do the following for each instance on the server:

1. Enable the Resource Manager by assigning a resource plan, and ensure that the resource
plan has CPU directives, using the MGMT_P1 through MGMT_P8 parameters.

See "Enabling Oracle Database Resource Manager and Switching Plans" for instructions.

2. Set the cpu_count initialization parameter.

This is a dynamic parameter, and can be set with the following statement:

ALTER SYSTEM SET CPU_COUNT = 4;

26.7 Maintaining Consumer Groups, Plans, and Directives
You can maintain consumer groups, resource plans, and resource plan directives for Oracle
Database Resource Manager (the Resource Manager). You perform maintenance tasks using
the DBMS_RESOURCE_MANAGER PL/SQL package.

• Updating a Consumer Group
You use the UPDATE_CONSUMER_GROUP procedure to update consumer group information.

• Deleting a Consumer Group
The DELETE_CONSUMER_GROUP procedure deletes the specified consumer group.

• Updating a Plan
You use the UPDATE_PLAN procedure to update plan information.

• Deleting a Plan
The DELETE_PLAN procedure deletes the specified plan as well as all the plan directives
associated with it.

• Updating a Resource Plan Directive
Use the UPDATE_PLAN_DIRECTIVE procedure to update plan directives.

• Deleting a Resource Plan Directive
To delete a resource plan directive, use the DELETE_PLAN_DIRECTIVE procedure.

Chapter 26
Maintaining Consumer Groups, Plans, and Directives

26-109

See Also:

• Predefined Consumer Group Mapping Rules

• Oracle Database PL/SQL Packages and Types Reference for details on the
DBMS_RESOURCE_MANAGER PL/SQL package.

26.7.1 Updating a Consumer Group
You use the UPDATE_CONSUMER_GROUP procedure to update consumer group information.

To update a consumer group:

1. Create a pending area.

2. Run the UPDATE_CONSUMER_GROUP procedure .

If you do not specify the arguments for the UPDATE_CONSUMER_GROUP procedure, then they
remain unchanged in the data dictionary.

3. Submit the pending area.

Related Topics

• Creating a Pending Area
You create a pending area with the CREATE_PENDING_AREA procedure.

• Submitting the Pending Area
After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make
your changes active.

26.7.2 Deleting a Consumer Group
The DELETE_CONSUMER_GROUP procedure deletes the specified consumer group.

To delete a consumer group:

1. Create a pending area.

2. Run the DELETE_CONSUMER_GROUP procedure .

3. Submit the pending area.

Upon deletion of a consumer group, all users having the deleted group as their initial consumer
group are assigned the OTHER_GROUPS as their initial consumer group. All currently running
sessions belonging to a deleted consumer group are assigned to a new consumer group,
based on the consumer group mapping rules. If no consumer group is found for a session
through mapping, the session is switched to the OTHER_GROUPS.

You cannot delete a consumer group if it is referenced by a resource plan directive.

Related Topics

• Creating a Pending Area
You create a pending area with the CREATE_PENDING_AREA procedure.

• Submitting the Pending Area
After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make
your changes active.

Chapter 26
Maintaining Consumer Groups, Plans, and Directives

26-110

26.7.3 Updating a Plan
You use the UPDATE_PLAN procedure to update plan information.

To update a plan:

1. Create a pending area.

2. Run the UPDATE_PLAN procedure. For example, the following PL/SQL block updates the
COMMENT parameter:

BEGIN
 DBMS_RESOURCE_MANAGER.UPDATE_PLAN(
 PLAN => 'DAYTIME',
 NEW_COMMENT => '50% more resources for OLTP applications');
END;
/

If you do not specify the arguments for the UPDATE_PLAN procedure, they remain
unchanged in the data dictionary.

3. Submit the pending area.

Related Topics

• Creating a Pending Area
You create a pending area with the CREATE_PENDING_AREA procedure.

• Submitting the Pending Area
After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make
your changes active.

26.7.4 Deleting a Plan
The DELETE_PLAN procedure deletes the specified plan as well as all the plan directives
associated with it.

To delete a plan:

1. Create a pending area.

2. Run the DELETE_PLAN_CASCADE procedure. For example, the following PL/SQL block
deletes the great_bread plan and its directives.

BEGIN
 DBMS_RESOURCE_MANAGER.DELETE_PLAN(PLAN => 'great_bread');
END;
/

If you do not specify the arguments for the UPDATE_PLAN procedure, they remain
unchanged in the data dictionary.

The resource consumer groups referenced by the deleted directives are not deleted, but
they are no longer associated with the great_bread plan.

The DELETE_PLAN_CASCADE procedure deletes the specified plan as well as all its
descendants: plan directives and those subplans and resource consumer groups that are
not marked by the database as mandatory. If DELETE_PLAN_CASCADE encounters an error,
then it rolls back, leaving the plan unchanged.

You cannot delete the currently active plan.

Chapter 26
Maintaining Consumer Groups, Plans, and Directives

26-111

3. Submit the pending area.

Related Topics

• Creating a Pending Area
You create a pending area with the CREATE_PENDING_AREA procedure.

• Submitting the Pending Area
After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make
your changes active.

26.7.5 Updating a Resource Plan Directive
Use the UPDATE_PLAN_DIRECTIVE procedure to update plan directives.

To update a resource plan directive:

1. Create a pending area.

2. Run the UPDATE_PLAN_DIRECTIVE procedure.

The following example adds a comment to a directive:

BEGIN
 DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.UPDATE_PLAN_DIRECTIVE(
 PLAN => 'SIMPLE_PLAN1',
 GROUP_OR_SUBPLAN => 'MYGROUP1',
 NEW_COMMENT => 'Higher priority'
);
 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

To clear (nullify) a comment, pass a null string (''). To clear (zero or nullify) any numeric
directive parameter, set its new value to -1:

BEGIN
 DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
 DBMS_RESOURCE_MANAGER.UPDATE_PLAN_DIRECTIVE(
 PLAN => 'SIMPLE_PLAN1',
 GROUP_OR_SUBPLAN => 'MYGROUP1',
 NEW_MAX_EST_EXEC_TIME => -1
);
 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

If you do not specify an argument for the UPDATE_PLAN_DIRECTIVE procedure, then its
corresponding parameter in the directive remains unchanged.

3. Submit the pending area.

Related Topics

• Creating a Pending Area
You create a pending area with the CREATE_PENDING_AREA procedure.

• Submitting the Pending Area
After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make
your changes active.

Chapter 26
Maintaining Consumer Groups, Plans, and Directives

26-112

26.7.6 Deleting a Resource Plan Directive
To delete a resource plan directive, use the DELETE_PLAN_DIRECTIVE procedure.

To delete a resource plan directive:

1. Create a pending area.

2. Run the DELETE_PLAN_DIRECTIVE procedure.

3. Submit the pending area.

Related Topics

• Creating a Pending Area
You create a pending area with the CREATE_PENDING_AREA procedure.

• Submitting the Pending Area
After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make
your changes active.

26.8 Viewing Database Resource Manager Configuration and
Status

You can use several static data dictionary views and dynamic performance views to view the
current configuration and status of Oracle Database Resource Manager (the Resource
Manager).

• About Resource Manager Views
A set of dynamic performance views enable you to monitor the results of your Oracle
Database Resource Manager settings.

• Viewing Consumer Groups Granted to Users or Roles
The DBA_RSRC_CONSUMER_GROUP_PRIVS view displays the consumer groups granted to
users or roles.

• Viewing Plan Information
An example illustrates using the DBA_RSRC_PLANS view to display all of the resource plans
defined in the database.

• Viewing Current Consumer Groups for Sessions
You can use the V$SESSION view to display the consumer groups that are currently
assigned to sessions.

• Viewing the Currently Active Plans
The V$RSRC_PLAN view displays currently active plans.

• Monitoring PDBs Managed by Oracle Database Resource Manager
A set of dynamic performance views enables you to monitor the results of your Oracle
Database Resource Manager settings for PDBs.

See Also:

Oracle Database Reference for details on all static data dictionary views and dynamic
performance views

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-113

26.8.1 About Resource Manager Views
A set of dynamic performance views enable you to monitor the results of your Oracle Database
Resource Manager settings.

Use the following dynamic performance views to help you monitor the results of your Oracle
Database Resource Manager settings:

• V$RSRC_PLAN

• V$RSRC_CONSUMER_GROUP

• V$RSRC_SESSION_INFO

• V$RSRC_PLAN_HISTORY

• V$RSRC_CONS_GROUP_HISTORY

• V$RSRCMGRMETRIC

• V$RSRCMGRMETRIC_HISTORY

These views provide:

• Current status information

• History of resource plan activations

• Current and historical statistics on resource consumption and CPU waits by both resource
consumer group and session

In addition, historical statistics are available through the DBA_HIST_RSRC_PLAN and
DBA_HIST_RSRC_CONSUMER_GROUP views, which contain Automatic Workload Repository (AWR)
snapshots of the V$RSRC_PLAN_HISTORY and V$RSRC_CONS_GROUP_HISTORY, respectively.

For assistance with tuning, the views V$RSRCMGRMETRIC and V$RSRCMGRMETRIC_HISTORY show
how much time was spent waiting for CPU and how much CPU was consumed per minute for
every consumer group for the past hour. These metrics can also be viewed graphically with
Cloud Control, on the Resource Manager Statistics page.

When Resource Manager is enabled, Resource Manager automatically records statistics about
resource usage, and you can examine these statistics using real-time SQL monitoring and
Resource Manager dynamic performance views.

You can use real-time SQL monitoring by accessing the SQL Monitor page in Cloud Control or
by querying the V$SQL_MONITOR view and other related views. The V$SQL_MONITOR view also
includes information about the last action performed by Resource Manager for a consumer
group in the following columns: RM_CONSUMER_GROUP, RM_LAST_ACTION,
RM_LAST_ACTION_REASON, and RM_LAST_ACTION_TIME.

In addition, the following dynamic performance views contain statistics about resource usage:

• V$RSRCMGRMETRIC
• V$RSRCMGRMETRIC_HISTORY
• V$RSRC_CONSUMER_GROUP
• V$RSRC_CONS_GROUP_HISTORY

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-114

See Also:

Oracle Database SQL Tuning Guide for more information about real-time SQL
monitoring

V$RSRC_PLAN

This view displays the currently active resource plan and its subplans.

SELECT name, is_top_plan FROM v$rsrc_plan;

NAME IS_TOP_PLAN
-------------------------------- -----------
DEFAULT_PLAN TRUE
ORA$AUTOTASK FALSE
ORA$AUTOTASK_HIGH_SUB_PLAN FALSE

The plan for which IS_TOP_PLAN is TRUE is the currently active (top) plan, and the other plans
are subplans of either the top plan or of other subplans in the list.

This view also contains other information, including the following:

• The INSTANCE_CAGING column shows whether instance caging is enabled.

• The CPU_MANAGED column shows whether CPU is being managed.

• The PARALLEL_EXECUTION_MANAGED column shows whether parallel statement queuing is
enabled.

See Also:

Oracle Database Reference

V$RSRC_CONSUMER_GROUP

Use the V$RSRC_CONSUMER_GROUP view to monitor resources consumed, including CPU, I/O,
and parallel execution servers. It can also be used to monitor statistics related to CPU
resource management, runaway query management, parallel statement queuing, and so on.
All of the statistics are cumulative from the time when the plan was activated.

SELECT name, active_sessions, queue_length,
 consumed_cpu_time, cpu_waits, cpu_wait_time
 FROM v$rsrc_consumer_group;

NAME ACTIVE_SESSIONS QUEUE_LENGTH CONSUMED_CPU_TIME CPU_WAITS CPU_WAIT_TIME
------------------ --------------- ------------ ----------------- ---------- -------------
OLTP_ORDER_ENTRY 1 0 29690 467 6709
OTHER_GROUPS 0 0 5982366 4089 60425
SYS_GROUP 1 0 2420704 914 19540
DSS_QUERIES 4 2 4594660 3004 55700

In the preceding query results, the DSS_QUERIES consumer group has four sessions in its active
session pool and two more sessions queued for activation.

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-115

A key measure in this view is CPU_WAIT_TIME. This indicates the total time that sessions in the
consumer group waited for CPU because of resource management. Not included in this
measure are waits due to latch or enqueue contention, I/O waits, and so on.

Note:

The V$RSRC_CONSUMER_GROUP view records statistics for resources that are not
currently being managed by Resource Manager. when the STATISTICS_LEVEL
initialization parameter is set to ALL or TYPICAL.

See Also:

Oracle Database Reference

V$RSRC_SESSION_INFO

Use this view to monitor the status of one or more sessions. The view shows how the session
has been affected by the Resource Manager. It provides information such as:

• The consumer group that the session currently belongs to.

• The consumer group that the session originally belonged to.

• The session attribute that was used to map the session to the consumer group.

• Session state (RUNNING, WAIT_FOR_CPU, QUEUED, and so on).

• Current and cumulative statistics for metrics, such as CPU consumed, wait times, queued
time, and number of active parallel servers used. Current statistics reflect statistics for the
session since it joined its current consumer group. Cumulative statistics reflect statistics for
the session in all consumer groups to which it has belonged since it was created.

SELECT se.sid sess_id, co.name consumer_group,
 se.state, se.consumed_cpu_time cpu_time, se.cpu_wait_time, se.queued_time
 FROM v$rsrc_session_info se, v$rsrc_consumer_group co
 WHERE se.current_consumer_group_id = co.id;

SESS_ID CONSUMER_GROUP STATE CPU_TIME CPU_WAIT_TIME QUEUED_TIME
------- ------------------ -------- --------- ------------- -----------
 113 OLTP_ORDER_ENTRY WAITING 137947 28846 0
 135 OTHER_GROUPS IDLE 785669 11126 0
 124 OTHER_GROUPS WAITING 50401 14326 0
 114 SYS_GROUP RUNNING 495 0 0
 102 SYS_GROUP IDLE 88054 80 0
 147 DSS_QUERIES WAITING 460910 512154 0

CPU_WAIT_TIME in this view has the same meaning as in the V$RSRC_CONSUMER_GROUP view, but
applied to an individual session.

You can join this view with the V$SESSION view for more information about a session.

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-116

See Also:

• Oracle Database Reference

• Oracle Database VLDB and Partitioning Guide

V$RSRC_PLAN_HISTORY

This view shows when resource plans were enabled or disabled on the instance. Each
resource plan activation or deactivation is assigned a sequence number. For each entry in the
view, the V$RSRC_CONS_GROUP_HISTORY view has a corresponding entry for each consumer
group in the plan that shows the cumulative statistics for the consumer group. The two views
are joined by the SEQUENCE# column in each.

SELECT sequence# seq, name plan_name,
to_char(start_time, 'DD-MON-YY HH24:MM') start_time,
to_char(end_time, 'DD-MON-YY HH24:MM') end_time, window_name
FROM v$rsrc_plan_history;

 SEQ PLAN_NAME START_TIME END_TIME WINDOW_NAME
---- -------------------------- --------------- --------------- ----------------
 1 29-MAY-07 23:05 29-MAY-07 23:05
 2 DEFAULT_MAINTENANCE_PLAN 29-MAY-07 23:05 30-MAY-07 02:05 TUESDAY_WINDOW
 3 30-MAY-07 02:05 30-MAY-07 22:05
 4 DEFAULT_MAINTENANCE_PLAN 30-MAY-07 22:05 31-MAY-07 02:05 WEDNESDAY_WINDOW
 5 31-MAY-07 02:05 31-MAY-07 22:05
 6 DEFAULT_MAINTENANCE_PLAN 31-MAY-07 22:05 THURSDAY_WINDOW

A null value under PLAN_NAME indicates that no plan was active.

AWR snapshots of this view are stored in the DBA_HIST_RSRC_PLAN view.

See Also:

Oracle Database Reference

V$RSRC_CONS_GROUP_HISTORY

This view helps you understand how resources were shared among the consumer groups over
time. The sequence# column corresponds to the column of the same name in the
V$RSRC_PLAN_HISTORY view. Therefore, you can determine the plan that was active for each
row of consumer group statistics.

SELECT sequence# seq, name, cpu_wait_time, cpu_waits,
consumed_cpu_time FROM v$rsrc_cons_group_history;

 SEQ NAME CPU_WAIT_TIME CPU_WAITS CONSUMED_CPU_TIME
---- ------------------------- ------------- ---------- -----------------
 2 SYS_GROUP 18133 691 33364431
 2 OTHER_GROUPS 51252 825 181058333
 2 ORA$AUTOTASK_MEDIUM_GROUP 21 5 4019709
 2 ORA$AUTOTASK_URGENT_GROUP 35 1 198760
 2 ORA$AUTOTASK_STATS_GROUP 0 0 0
 2 ORA$AUTOTASK_SPACE_GROUP 0 0 0
 2 ORA$AUTOTASK_SQL_GROUP 0 0 0

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-117

 2 ORA$AUTOTASK_HEALTH_GROUP 0 0 0
 4 SYS_GROUP 40344 85 42519265
 4 OTHER_GROUPS 123295 1040 371481422
 4 ORA$AUTOTASK_MEDIUM_GROUP 1 4 7433002
 4 ORA$AUTOTASK_URGENT_GROUP 22959 158 19964703
 4 ORA$AUTOTASK_STATS_GROUP 0 0 0
 .
 .

AWR snapshots of this view are stored in the DBA_HIST_RSRC_CONSUMER_GROUP view. Use
DBA_HIST_RSRC_CONSUMER_GROUP with DBA_HIST_RSRC_PLAN to determine the plan that was
active for each historical set of consumer group statistics.

Note:

The V$RSRC_CONS_GROUP_HISTORY view records statistics for resources that are not
currently being managed by Resource Manager. when the STATISTICS_LEVEL
initialization parameter is set to ALL or TYPICAL.

See Also:

• Oracle Database Reference

• Oracle Database Performance Tuning Guide for information about the AWR.

V$RSRCMGRMETRIC

This view enables you to track CPU metrics in milliseconds, in terms of number of sessions, or
in terms of utilization for the past one minute. It provides real-time metrics for each consumer
group and is very useful in scenarios where you are running workloads and want to
continuously monitor CPU resource utilization.

Use this view to compare the maximum possible CPU utilization and average CPU utilization
percentage for consumer groups with other consumer group settings such as CPU time used,
time waiting for CPU, average number of sessions that are consuming CPU, and number of
sessions that are waiting for CPU allocation. For example, you can view the amount of CPU
resources a consumer group used and how long it waited for resource allocation. Or, you can
view how many sessions from each consumer group are executed against the total number of
active sessions.

To track CPU consumption in terms of CPU utilization, use the CPU_UTILIZATION_LIMIT and
AVG_CPU_UTILIZATION columns. AVG_CPU_UTILIZATION lists the average percentage of the
server's CPU that is consumed by a consumer group. CPU_UTILIZATION_LIMIT represents the
maximum percentage of the server's CPU that a consumer group can use. This limit is set
using the UTILIZATION_LIMIT directive attribute.

SELECT consumer_group_name, cpu_utilization_limit,
avg_cpu_utilization FROM v$rsrcmgrmetric;

Use the CPU_CONSUMED_TIME and CPU_TIME_WAIT columns to track CPU consumption and
throttling in milliseconds. The column NUM_CPUS represents the number of CPUs that Resource
Manager is managing.

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-118

SELECT consumer_group_name, cpu_consumed_time,
cpu_wait_time, num_cpus FROM v$rsrcmgrmetric;

To track the CPU consumption and throttling in terms of number of sessions, use the
RUNNING_SESSIONS_LIMIT, AVG_RUNNING_SESSIONS, and AVG_WAITING_SESSIONS columns.
RUNNING_SESSIONS_LIMIT lists the maximum number of sessions, from a particular consumer
group, that can be running at any time. This limit is defined by the UTILIZATION_LIMIT directive
attribute that you set either for the consumer group or for a subplan that contains the consumer
group. For each consumer group, AVG_RUNNING_SESSIONS lists the average number of sessions
that are consuming CPU and AVG_WAITING_SESSIONS lists the average number of sessions that
are waiting for CPU.

SELECT sequence#, consumer_group_name, running_sessions_limit,
avg_running_sessions, avg_waiting_sessions FROM v$rsrcmgrmetric;

To track parallel statements and parallel server use for a consumer group, use the
AVG_ACTIVE_PARALLEL_STMTS, AVG_QUEUED_PARALLEL_STMTS, AVG_ACTIVE_PARALLEL_SERVERS,
AVG_QUEUED_PARALLEL_SERVERS, and PARALLEL_SERVERS_LIMIT columns.
AVG_ACTIVE_PARALLEL_STMTS and AVG_ACTIVE_PARALLEL_SERVERS list the average number of
parallel statements running and the average number of parallel servers used by the parallel
statements. AVG_QUEUED_PARALLEL_STMTS and AVG_QUEUED_PARALLEL_SERVERS list the average
number of parallel statements queued and average number of parallel servers that were
requested by queued parallel statements. PARALLEL_SERVERS_LIMIT lists the number of parallel
servers allowed to be used by the consumer group.

SELECT avg_active_parallel_stmts, avg_queued_parallel_stmts,
avg_active_parallel_servers, avg_queued_parallel_servers, parallel_servers_limit
FROM v$rsrcmgrmetric;

Note:

The V$RSRCMGRMETRIC view records statistics for resources that are not currently
being managed by Resource Manager. when the STATISTICS_LEVEL initialization
parameter is set to ALL or TYPICAL.

See Also:

Oracle Database Reference

V$RSRCMGRMETRIC_HISTORY

The columns in the V$RSRCMGRMETRIC_HISTORY are the same view as V$RSRCMGRMETRIC.
The only difference between these views is that V$RSRCMGRMETRIC contains metrics for
the past one minute only, whereas V$RSRCMGRMETRIC_HISTORY contains metrics for the last 60
minutes.

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-119

Note:

The V$RSRCMGRMETRIC_HISTORY view records statistics for resources that are not
currently being managed by Resource Manager. when the STATISTICS_LEVEL
initialization parameter is set to ALL or TYPICAL.

See Also:

Oracle Database Reference

26.8.2 Viewing Consumer Groups Granted to Users or Roles
The DBA_RSRC_CONSUMER_GROUP_PRIVS view displays the consumer groups granted to users or
roles.

Specifically, it displays the groups to which a user or role is allowed to belong or be switched.
For example, in the view shown below, user SCOTT always starts in the SALES consumer group,
can switch to the MARKETING group through a specific grant, and can switch to the
DEFAULT_CONSUMER_GROUP (OTHER_GROUPS) and LOW_GROUP groups because they are granted to
PUBLIC. SCOTT also can grant the SALES group but not the MARKETING group to other users.

SELECT * FROM dba_rsrc_consumer_group_privs;

GRANTEE GRANTED_GROUP GRANT_OPTION INITIAL_GROUP
------------------ ------------------------------ ------------ -------------
PUBLIC DEFAULT_CONSUMER_GROUP YES YES
PUBLIC LOW_GROUP NO NO
SCOTT MARKETING NO NO
SCOTT SALES YES YES
SYSTEM SYS_GROUP NO YES

SCOTT was granted the ability to switch to these groups using the
DBMS_RESOURCE_MANAGER_PRIVS package.

26.8.3 Viewing Plan Information
An example illustrates using the DBA_RSRC_PLANS view to display all of the resource plans
defined in the database.

All plans have a NULL status, meaning that they are not in the pending area.

Note:

Plans in the pending area have a status of PENDING. Plans in the pending area are
being edited.

SELECT plan,status,comments FROM dba_rsrc_plans;

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-120

PLAN STATUS COMMENTS
--------------------------- -------- --
DSS_PLAN Example plan for DSS workloads that prio...
ETL_CRITICAL_PLAN Example plan for DSS workloads that prio...
MIXED_WORKLOAD_PLAN Example plan for a mixed workload that p...
DEFAULT_MAINTENANCE_PLAN Default plan for maintenance windows tha...
DEFAULT_PLAN Default, basic, pre-defined plan that pr...
INTERNAL_QUIESCE Plan for quiescing the database. This p...
INTERNAL_PLAN Internally-used plan for disabling the r...
.
.
.

26.8.4 Viewing Current Consumer Groups for Sessions
You can use the V$SESSION view to display the consumer groups that are currently assigned to
sessions.

The following example queries the V$SESSION view:

SELECT sid,serial#,username,resource_consumer_group FROM v$session;

SID SERIAL# USERNAME RESOURCE_CONSUMER_GROUP
----- ------- ------------------------ --------------------------------
 11 136 SYS SYS_GROUP
 13 16570 SCOTT SALES
 ...

26.8.5 Viewing the Currently Active Plans
The V$RSRC_PLAN view displays currently active plans.

This example sets mydb_plan, as created by the example shown in "Multilevel Plan Example",
as the top level plan. It then queries the V$RSRC_PLAN view to display the currently active plans.
The view displays the current top level plan and all of its descendent subplans.

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = mydb_plan;

System altered.

SELECT name, is_top_plan FROM v$rsrc_plan;

NAME IS_TOP_PLAN

MYDB_PLAN TRUE
MAILDB_PLAN FALSE
BUGDB_PLAN FALSE

26.8.6 Monitoring PDBs Managed by Oracle Database Resource Manager
A set of dynamic performance views enables you to monitor the results of your Oracle
Database Resource Manager settings for PDBs.

• About Resource Manager Views for PDBs
You can monitor the results of your Oracle Database Resource Manager settings for PDBs
using views.

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-121

• Monitoring CPU Usage for PDBs
The V$RSRCPDBMETRIC view enables you to track CPU metrics in milliseconds, in terms of
number of sessions, or in terms of utilization for the past one minute.

• Monitoring Parallel Execution for PDBs
The V$RSRCPDBMETRIC view enables you to track parallel statements and parallel server
use for PDBs.

• Monitoring the I/O Generated by PDBs
The V$RSRCPDBMETRIC view enables you to track the amount of I/O generated by PDBs.

• Monitoring Memory Usage for PDBs
The V$RSRCPDBMETRIC view enables you to track the amount memory used by PDBs.

26.8.6.1 About Resource Manager Views for PDBs
You can monitor the results of your Oracle Database Resource Manager settings for PDBs
using views.

The following views are available:

• V$RSRCPDBMETRIC
The V$RSRCPDBMETRIC view provides current statistics on resource consumption for PDBs,
including CPU usage, parallel execution, I/O generated, and memory usage.

• V$RSRCPDBMETRIC_HISTORY
The columns in the V$RSRCPDBMETRIC_HISTORY view are the same as the columns in the
V$RSRCPDBMETRIC view. The only difference between these views is that the
V$RSRCPDBMETRIC view contains metrics for the past one minute only, whereas the
V$RSRCPDBMETRIC_HISTORY view contains metrics for the last 60 minutes.

• V$RSRC_PDB
The V$RSRC_PDB view provides cumulative statistics. The statistics are accumulated since
the time that the CDB resource plan was set.

• DBA_HIST_RSRC_PDB_METRIC
This view contains the historical statistics of V$RSRCPDBMETRIC_HISTORY, taken using
Automatic Workload Repository (AWR) snapshots.

Note:

The V$RSRCPDBMETRIC and V$RSRCPDBMETRIC_HISTORY views record statistics for
resources that are not currently being managed by Resource Manager when the
STATISTICS_LEVEL initialization parameter is set to ALL or TYPICAL.

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-122

See Also:

• Oracle Database SQL Tuning Guide for more information about real-time SQL
monitoring

• Oracle Database Reference to learn about V$RSRCPDBMETRIC,
V$RSRCPDBMETRIC_HISTORY, V$RSRC_PDB, and DBA_HIST_RSRC_PDB_METRIC

26.8.6.2 Monitoring CPU Usage for PDBs
The V$RSRCPDBMETRIC view enables you to track CPU metrics in milliseconds, in terms of
number of sessions, or in terms of utilization for the past one minute.

The view provides real-time metrics for each PDB and is very useful in scenarios where you
are running workloads and want to continuously monitor CPU resource utilization.

The active CDB resource plan manages CPU usage for a PDB. Use this view to compare the
maximum and average CPU utilization for PDBs with other PDB settings such as the following:

• CPU time used

• Time waiting for CPU

• Average number of sessions that are consuming CPU

• Number of sessions that are waiting for CPU allocation

For example, you can view the amount of CPU resources a PDB used and how long it waited
for resource allocation. Alternatively, you can view how many sessions from each PDB are
executed against the total number of active sessions.

Tracking CPU Consumption in Terms of CPU Utilization for PDBs

To track CPU consumption in terms of CPU utilization, query the CPU_UTILIZATION_LIMIT and
AVG_CPU_UTILIZATION columns. AVG_CPU_UTILIZATION lists the average percentage of the
server's CPU that is consumed by a PDB. CPU_UTILIZATION_LIMIT represents the maximum
percentage of the server's CPU that a PDB can use. This limit is set using the
UTILIZATION_LIMIT directive attribute.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID,
 p.PDB_NAME,
 r.CPU_UTILIZATION_LIMIT,
 r.AVG_CPU_UTILIZATION
FROM V$RSRCPDBMETRIC r,
 CDB_PDBS p
WHERE r.CON_ID = p.CON_ID;

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-123

Tracking CPU Consumption and Throttling for PDBs

Use the CPU_CONSUMED_TIME and CPU_TIME_WAIT columns to track CPU consumption and
throttling in milliseconds for each PDB. The column NUM_CPUS represents the number of CPUs
that Resource Manager is managing.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID,
 p.PDB_NAME,
 r.CPU_CONSUMED_TIME,
 r.CPU_WAIT_TIME,
 r.NUM_CPUS
FROM V$RSRCPDBMETRIC r,
 CDB_PDBS p
WHERE r.CON_ID = p.CON_ID;

Tracking CPU Consumption and Throttling in Terms of Number of Sessions for PDBs

To track the CPU consumption and throttling in terms of number of sessions, use the
RUNNING_SESSIONS_LIMIT, AVG_RUNNING_SESSIONS, and AVG_WAITING_SESSIONS columns.
RUNNING_SESSIONS_LIMIT lists the maximum number of sessions from a particular PDB that
can be running at any time. This limit is defined by the UTILIZATION_LIMIT directive attribute
that you set for the PDB. AVG_RUNNING_SESSIONS lists the average number of sessions that are
consuming CPU, and AVG_WAITING_SESSIONS lists the average number of sessions that are
waiting for CPU.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID,
 p.PDB_NAME,
 r.RUNNING_SESSIONS_LIMIT,
 r.AVG_RUNNING_SESSIONS,
 r.AVG_WAITING_SESSIONS
FROM V$RSRCPDBMETRIC r,
 CDB_PDBS p
WHERE r.CON_ID = p.CON_ID;

26.8.6.3 Monitoring Parallel Execution for PDBs
The V$RSRCPDBMETRIC view enables you to track parallel statements and parallel server use for
PDBs.

Parallel execution servers for a PDB are managed with the active CDB resource plan of the
PDB's CDB. To track parallel statements and parallel server use for PDBs, use the
AVG_ACTIVE_PARALLEL_STMTS, AVG_QUEUED_PARALLEL_STMTS, AVG_ACTIVE_PARALLEL_SERVERS,
AVG_QUEUED_PARALLEL_SERVERS, and PARALLEL_SERVERS_LIMIT columns.

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-124

AVG_ACTIVE_PARALLEL_STMTS and AVG_ACTIVE_PARALLEL_SERVERS list the average number of
parallel statements running and the average number of parallel servers used by the parallel
statements. AVG_QUEUED_PARALLEL_STMTS and AVG_QUEUED_PARALLEL_SERVERS list the average
number of parallel statements queued and average number of parallel servers that were
requested by queued parallel statements. PARALLEL_SERVERS_LIMIT lists the number of parallel
servers allowed to be used by the PDB.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID, p.PDB_NAME, r.AVG_ACTIVE_PARALLEL_STMTS,
r.AVG_QUEUED_PARALLEL_STMTS,
 r.AVG_ACTIVE_PARALLEL_SERVERS, r.AVG_QUEUED_PARALLEL_SERVERS,
r.PARALLEL_SERVERS_LIMIT
 FROM V$RSRCPDBMETRIC r, CDB_PDBS p
 WHERE r.CON_ID = p.CON_ID;

26.8.6.4 Monitoring the I/O Generated by PDBs
The V$RSRCPDBMETRIC view enables you to track the amount of I/O generated by PDBs.

I/O is limited for a PDB by setting the MAX_IOPS initialization parameter or the MAX_MBPS
initialization parameter in the PDB. Use this view to compare the I/O generated by PDBs in
terms of the number of operations each second and the number of megabytes each second.

Tracking the Number of I/O Operations Generated Each Second by PDBs

To track the I/O operations generated each second by PDBs during the previous minute, use
the IOPS column.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID, p.PDB_NAME, r.IOPS
 FROM V$RSRCPDBMETRIC r, CDB_PDBS p
 WHERE r.CON_ID = p.CON_ID;

Tracking the Number Megabytes Generated for I/O Operations Each Second by PDBs

To track number of megabytes generated for I/O operations each second by PDBs during the
previous minute, use the IOMBPS column.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID, p.PDB_NAME, r.IOMBPS
 FROM V$RSRCPDBMETRIC r, CDB_PDBS p
 WHERE r.CON_ID = p.CON_ID;

Chapter 26
Viewing Database Resource Manager Configuration and Status

26-125

26.8.6.5 Monitoring Memory Usage for PDBs
The V$RSRCPDBMETRIC view enables you to track the amount memory used by PDBs.

Use this view to track the amount of SGA, PGA, buffer cache, and shared pool memory
currently used by PDBs.

To track the current memory usage, in bytes, for specific PDBs, use the SGA_BYTES, PGA_BYTES,
BUFFER_CACHE_BYTES, and SHARED_POOL_BYTES columns.

The following query displays this information by showing the container ID (CON_ID) and name
of each PDB:

COLUMN PDB_NAME FORMAT A10

SELECT r.CON_ID, p.PDB_NAME, r.SGA_BYTES, r.PGA_BYTES, r.BUFFER_CACHE_BYTES,
r.SHARED_POOL_BYTES
 FROM V$RSRCPDBMETRIC r, CDB_PDBS p
 WHERE r.CON_ID = p.CON_ID;

26.9 Interacting with Operating-System Resource Control
Many operating systems provide tools for resource management. These tools often contain
"workload manager" or "resource manager" in their names, and are intended to allow multiple
applications to share the resources of a single server, using an administrator-defined policy.
Examples are Hewlett Packard's Process Resource Manager or Solaris Containers, Zones,
and Resource Pools.

• Guidelines for Using Operating-System Resource Control
Follow guidelines if you use operating-system resource control.

26.9.1 Guidelines for Using Operating-System Resource Control
Follow guidelines if you use operating-system resource control.

If you choose to use operating-system resource control with Oracle Database, then you must
use it judiciously, according to the following guidelines:

• If you have multiple instances on a node, and you want to distribute resources among
them, then each instance should be assigned to a dedicated operating-system resource
manager group or managed entity. To run multiple instances in the managed entity, use
instance caging to manage how the CPU resources within the managed entity should be
distributed among the instances. When Oracle Database Resource Manager is managing
CPU resources, it expects a fixed amount of CPU resources for the instance. Without
instance caging, it expects the available CPU resources to be equal to the number of
CPUs in the managed entity. With instance caging, it expects the available CPU resources
to be equal to the value of the CPU_COUNT initialization parameter. If there are less CPU
resources than expected, then the Oracle Database Resource Manager is not as effective
at enforcing the resource allocations in the resource plan. The PDB-level parameter
CPU_MIN_COUNT is used to set the PDB share in the resource plan and the PDB-level
CPU_COUNT to set the PDB utilization limit in the resource plan. See "Managing Multiple
Database Instances on a Single Server" for information about instance caging.

• The dedicated entity running all the instance's processes must run at one priority (or
resource consumption) level.

Chapter 26
Interacting with Operating-System Resource Control

26-126

• The CPU resources assigned to the dedicated entity cannot be changed more frequently
than once every few minutes.

If the operating-system resource manager is rapidly changing the CPU resources allocated
to an Oracle instance, then the Oracle Database Resource Manager might not manage
CPU resources effectively. In particular, if the CPU resources allocated to the Oracle
instance changes more frequently than every couple of minutes, then these changes might
not be observed by Oracle because it only checks for such changes every couple of
minutes. In these cases, Oracle Database Resource Manager can over-schedule
processes if it concludes that more CPU resources are available than there actually are,
and it can under-schedule processes if it concludes that less CPU resources are available
than there actually are. If it over-schedules processes, then the UTILIZATION_LIMIT
directives might be exceeded, and the CPU directives might not be accurately enforced. If
it under-schedules processes, then the Oracle instance might not fully use the server's
resources.

• Process priority management must not be enabled.

• Management of individual database processes at different priority levels (for example,
using the nice command on UNIX platforms) is not supported. Severe consequences,
including instance crashes, can result. Similar undesirable results are possible if operating-
system resource control is permitted to manage the memory to which an Oracle Database
instance is pinned.

Related Topics

• CPU-Related Initialization Parameters for PDBs

26.10 Oracle Database Resource Manager Reference
Resource Manager includes predefined resource plans, consumer groups, and consumer
groups mapping rules. You can query data dictionary views for information about your
Resource Manager configuration.

• Predefined Resource Plans and Consumer Groups
Oracle Database includes predefined resource plans.

• Predefined Consumer Group Mapping Rules
Oracle Database includes predefined consumer group mapping rules.

• Resource Manager Data Dictionary Views
You can query a set of data dictionary views for information relating to database resource
management.

26.10.1 Predefined Resource Plans and Consumer Groups
Oracle Database includes predefined resource plans.

Table 26-17 lists the resource plans and Table 26-18 lists the resource consumer groups that
are predefined in each Oracle database. You can verify these by querying the views
DBA_RSRC_PLANS and DBA_RSRC_CONSUMER_GROUPS.

The following query displays the CPU allocations in the example plan DSS_PLAN:

SELECT group_or_subplan, mgmt_p1, mgmt_p2, mgmt_p3, mgmt_p4
 FROM dba_rsrc_plan_directives WHERE plan = 'DSS_PLAN';

GROUP_OR_SUBPLAN MGMT_P1 MGMT_P2 MGMT_P3 MGMT_P4
------------------------------ ---------- ---------- ---------- ----------
SYS_GROUP 75 0 0 0

Chapter 26
Oracle Database Resource Manager Reference

26-127

DSS_CRITICAL_GROUP 18 0 0 0
DSS_GROUP 3 0 0 0
ETL_GROUP 1 0 0 0
BATCH_GROUP 1 0 0 0
ORA$AUTOTASK 1 0 0 0
OTHER_GROUPS 1 0 0 0

Table 26-17 Predefined Resource Plans

Resource Plan Description

DEFAULT_MAINTENANCE_PLAN Default plan for maintenance windows. See "About Resource
Allocations for Automated Maintenance Tasks" for details of this plan.
Because maintenance windows are regular Oracle Scheduler windows,
you can change the resource plan associated with them, if desired. If
you do change a maintenance window resource plan, ensure that you
include the subplan ORA$AUTOTASK in the new plan.

DEFAULT_PLAN Basic default plan that prioritizes SYS_GROUP operations and allocates
minimal resources for automated maintenance and diagnostics
operations.

DSS_PLAN Example plan for a data warehouse that prioritizes critical DSS queries
over non-critical DSS queries and ETL operations.

ETL_CRITICAL_PLAN Example plan for a data warehouse that prioritizes ETL operations over
DSS queries.

INTERNAL_PLAN For disabling the resource manager. For internal use only.

INTERNAL_QUIESCE For quiescing the database. This plan cannot be activated directly. To
activate, use the QUIESCE command.

MIXED_WORKLOAD_PLAN Example plan for a mixed workload that prioritizes interactive
operations over batch operations. See "An Oracle-Supplied Mixed
Workload Plan" for details.

Table 26-18 Predefined Resource Consumer Groups

Resource Consumer Group Description

BATCH_GROUP Consumer group for batch operations. Referenced by the example plan
MIXED_WORKLOAD_PLAN.

DSS_CRITICAL_GROUP Consumer group for critical DSS queries. Referenced by the example
plans DSS_PLAN and ETL_CRITICAL_PLAN.

DSS_GROUP Consumer group for non-critical DSS queries. Referenced by the
example plans DSS_PLAN and ETL_CRITICAL_PLAN.

ETL_GROUP Consumer group for ETL jobs. Referenced by the example plans
DSS_PLAN and ETL_CRITICAL_PLAN.

INTERACTIVE_GROUP Consumer group for interactive, OLTP operations. Referenced by the
example plan MIXED_WORKLOAD_PLAN.

LOW_GROUP Consumer group for low-priority sessions.

ORA$AUTOTASK Consumer group for maintenance tasks.

Chapter 26
Oracle Database Resource Manager Reference

26-128

Table 26-18 (Cont.) Predefined Resource Consumer Groups

Resource Consumer Group Description

OTHER_GROUPS Default consumer group for all sessions that do not have an explicit
initial consumer group, are not mapped to a consumer group with
session-to-consumer group mapping rules, or are mapped to a
consumer group that is not in the currently active resource plan.

OTHER_GROUPS must have a resource plan directive specified in every
plan. It cannot be assigned explicitly to sessions through mapping
rules.

SYS_GROUP Consumer group for system administrators. It is the initial consumer
group for all sessions created by user accounts SYS or SYSTEM. This
initial consumer group can be overridden by session-to-consumer
group mapping rules.

26.10.2 Predefined Consumer Group Mapping Rules
Oracle Database includes predefined consumer group mapping rules.

Table 26-19 summarizes the consumer group mapping rules that are predefined in Oracle
Database. You can verify these rules by querying the view DBA_RSRC_GROUP_MAPPINGS. You can
use the DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING procedure to modify or delete
any of these mapping rules.

Table 26-19 Predefined Consumer Group Mapping Rules

Attribute Value Mapped
Consumer Group

Notes

ORACLE_USER SYS SYS_GROUP
ORACLE_USER SYSTEM SYS_GROUP
ORACLE_FUNCTION BACKUP BATCH_GROUP The session is running a backup

operation with RMAN. The session is
automatically switched to BATCH_GROUP
when the operation begins.

ORACLE_FUNCTION COPY BATCH_GROUP The session is running a copy operation
with RMAN. The session is automatically
switched to BATCH_GROUP when the
operation begins.

ORACLE_FUNCTION DATALOAD ETL_GROUP The session is performing a data load
operation with Data Pump. The session
is automatically switched to ETL_GROUP
when the operation begins.

See Also:

"Specifying Session-to-Consumer Group Mapping Rules"

Chapter 26
Oracle Database Resource Manager Reference

26-129

26.10.3 Resource Manager Data Dictionary Views
You can query a set of data dictionary views for information relating to database resource
management.

Table 26-20 lists views that are associated with the Resource Manager.

Table 26-20 Resource Manager Data Dictionary Views

View Description

DBA_RSRC_CONSUMER_GROUP_PRIV
S
USER_RSRC_CONSUMER_GROUP_PRI
VS

DBA view lists all resource consumer groups and the users and
roles to which they have been granted. USER view lists all resource
consumer groups granted to the user.

DBA_RSRC_CONSUMER_GROUPS Lists all resource consumer groups that exist in the database.

DBA_RSRC_MANAGER_SYSTEM_PRIV
S
USER_RSRC_MANAGER_SYSTEM_PRI
VS

DBA view lists all users and roles that have been granted
Resource Manager system privileges. USER view lists all the users
that are granted system privileges for the
DBMS_RESOURCE_MANAGER package.

DBA_RSRC_PLAN_DIRECTIVES Lists all resource plan directives that exist in the database.

DBA_RSRC_PLANS Lists all resource plans that exist in the database.

DBA_RSRC_GROUP_MAPPINGS Lists all of the various mapping pairs for all of the session
attributes.

DBA_RSRC_MAPPING_PRIORITY Lists the current mapping priority of each attribute.

DBA_HIST_RSRC_PLAN Displays historical information about resource plan activation. This
view contains AWR snapshots of V$RSRC_PLAN_HISTORY.

DBA_HIST_RSRC_CONSUMER_GROUP Displays historical statistical information about consumer groups.
This view contains AWR snapshots of
V$RSRC_CONS_GROUP_HISTORY.

DBA_USERS
USER_USERS

DBA view contains information about all users of the database. It
contains the initial resource consumer group for each user. USER
view contains information about the current user. It contains the
current user's initial resource consumer group.

V$RSRC_CONS_GROUP_HISTORY For each entry in the view V$RSRC_PLAN_HISTORY, contains an
entry for each consumer group in the plan showing the cumulative
statistics for the consumer group.

V$RSRC_CONSUMER_GROUP Displays information about active resource consumer groups. This
view can be used for tuning.

V$RSRCMGRMETRIC Displays a history of resources consumed and cumulative CPU
wait time (due to resource management) per consumer group for
the past minute.

V$RSRCMGRMETRIC_HISTORY Displays a history of resources consumed and cumulative CPU
wait time (due to resource management) per consumer group for
the past hour on a minute-by-minute basis. If a new resource plan
is enabled, the history is cleared.

V$RSRC_PLAN Displays the names of all currently active resource plans.

V$RSRC_PLAN_HISTORY Shows when Resource Manager plans were enabled or disabled
on the instance. It helps you understand how resources were
shared among the consumer groups over time.

Chapter 26
Oracle Database Resource Manager Reference

26-130

Table 26-20 (Cont.) Resource Manager Data Dictionary Views

View Description

V$RSRC_SESSION_INFO Displays Resource Manager statistics for each session. Shows
how the session has been affected by the Resource Manager.
Can be used for tuning.

V$SESSION Lists session information for each current session. Specifically,
lists the name of the resource consumer group of each current
session.

26.11 Operating System CPU Resource Management
Starting with Oracle Database 23ai, Oracle offers an alternative method for CPU resource
management, which operates across all database instances on the server.

In previous releases, Oracle offered one method of CPU resource management, which
operated within a database instance. Starting with Oracle Database 23ai, you can set
RESOURCE_MANAGER_CPU_SCOPE to control the scope of CPU resource management. This
parameter allows you to choose between the two control methods.

Setting RESOURCE_MANAGER_CPU_SCOPE to SERVER_WIDE enables server-level inter-instance CPU
resource management. Introduced in Oracle Database 23ai, this method can be used when
multiple database instances share a Linux server. It enables CPU resource management
across all database instances on the server. With this method, Oracle automatically configures
Linux control groups (cgroups) with the desired CPU sharing and CPU utilization limits, and
then places database sessions into the appropriate cgroups.

In order to use this method, the following system and database requirements must be met:

• This method requires the Linux operating system. It is supported on Oracle Autonomous
Database, Oracle Database Exadata Cloud@Customer, Oracle Database Exadata Cloud
Service, and on-premises Oracle Exadata systems. This method is not supported on non-
Exadata Linux systems.

• The server operating system must be Unbreakable Enterprise Kernel (UEK) version 5 or
later.

You can configure this method as follows:

• Oracle Autonomous Database: All system and database requirements are installed and
configured by default. RESOURCE_MANAGER_CPU_SCOPE is set to SERVER_WIDE by default.

• Oracle Database Exadata Cloud@Customer: All system and database requirements are
installed and configured by default. RESOURCE_MANAGER_CPU_SCOPE is set to INSTANCE_ONLY
by default. You must set it to SERVER_WIDE if you want to use this method.

• Oracle Database Exadata Cloud Service and on-premises Oracle Exadata systems: The
Exadata image meets all system and database requirements.
RESOURCE_MANAGER_CPU_SCOPE is set to INSTANCE_ONLY by default. You must set it to
SERVER_WIDE if you want to use this method.

When you specify the SERVER_WIDE setting, the value of the PROCESSOR_GROUP_NAME
initialization parameter is ignored.

Setting RESOURCE_MANAGER_CPU_SCOPE to INSTANCE_ONLY enables CPU resource management
only within the database instance. This is the method of CPU resource management used in
releases prior to Oracle Database 23ai. It is supported on all Oracle Databases.

Chapter 26
Operating System CPU Resource Management

26-131

Related Topics

• RESOURCE_MANAGER_CPU_SCOPE

• V_RSRC_PLAN

• V_RSRC_PLAN_HISTORY

Chapter 26
Operating System CPU Resource Management

26-132

27
Oracle Scheduler Concepts

You can schedule tasks with Oracle Scheduler.

• Overview of Oracle Scheduler
Oracle Database includes Oracle Scheduler, an enterprise job scheduler to help you
simplify the scheduling of hundreds or even thousands of tasks. Oracle Scheduler (the
Scheduler) is implemented by the procedures and functions in the DBMS_SCHEDULER
PL/SQL package.

• Jobs and Supporting Scheduler Objects
You use jobs and other scheduler objects for task scheduling.

• More About Jobs
There are different types of jobs. A job instance represents a specific run of a job. You can
supply job arguments to override the default program argument values.

• Scheduler Architecture
Scheduler components handle jobs.

• Processes to Close a PDB
If a PDB is closed with the immediate option, then the coordinator terminates jobs running
in the PDB, and the jobs must be recovered before they can run again.

• Scheduler Support for Oracle Data Guard
Beginning with Oracle Database 11g Release 1 (11.1), the Scheduler can run jobs based
on whether a database is a primary database or a logical standby in an Oracle Data Guard
environment.

27.1 Overview of Oracle Scheduler
Oracle Database includes Oracle Scheduler, an enterprise job scheduler to help you simplify
the scheduling of hundreds or even thousands of tasks. Oracle Scheduler (the Scheduler) is
implemented by the procedures and functions in the DBMS_SCHEDULER PL/SQL package.

The Scheduler enables you to control when and where various computing tasks take place in
the enterprise environment. The Scheduler helps you effectively manage and plan these tasks.
By ensuring that many routine computing tasks occur without manual intervention, you can
lower operating costs, implement more reliable routines, minimize human error, and shorten
the time windows needed.

The Scheduler provides sophisticated, flexible enterprise scheduling functionality, which you
can use to:

• Run database program units

You can run program units, that is, PL/SQL anonymous blocks, PL/SQL stored procedures,
and Java stored procedures on the local database or on one or more remote Oracle
databases.

• Run external executables, (executables that are external to the database)

You can run external executables, such as applications, shell scripts, and batch files, on
the local system or on one or more remote systems. Remote systems do not require an

27-1

Oracle Database installation; they require only a Scheduler agent. Scheduler agents are
available for all platforms supported by Oracle Database and some additional platforms.

• Schedule job execution using the following methods:

– Time-based scheduling

You can schedule a job to run at a particular date and time, either once or on a
repeating basis. You can define complex repeat intervals, such as "every Monday and
Thursday at 3:00 a.m. except on public holidays" or "the last Wednesday of each
business quarter." See "Creating, Running, and Managing Jobs" for more information.

– Event-based scheduling

You can start jobs in response to system or business events. Your applications can
detect events and then signal the Scheduler. Depending on the type of signal sent, the
Scheduler starts a specific job. Examples of event-based scheduling include starting
jobs when a file arrives on a system, when inventory falls below predetermined levels,
or when a transaction fails. Beginning with Oracle Database 11g Release 2 (11.2), a
Scheduler object called a file watcher simplifies the task of configuring a job to start
when a file arrives on a local or remote system. See "Using Events to Start Jobs " for
more information.

– Dependency scheduling

You can set the Scheduler to run tasks based on the outcome of one or more previous
tasks. You can define complex dependency chains that include branching and nested
chains. See "Creating and Managing Job Chains" for more information.

• Prioritize jobs based on business requirements.

The Scheduler provides control over resource allocation among competing jobs, thus
aligning job processing with your business needs. This is accomplished in the following
ways:

– Controlling Resources by Job Class

You can group jobs that share common characteristics and behavior into larger entities
called job classes. You can prioritize among the classes by controlling the resources
allocated to each class. Therefore, you can ensure that your critical jobs have priority
and enough resources to complete. For example, for a critical project to load a data
warehouse, you can combine all the data warehousing jobs into one class and give it
priority over other jobs by allocating a high percentage of the available resources to it.
You can also assign relative priorities to the jobs within a job class.

– Controlling Job Prioritization based on Schedules

You can change job priorities based on a schedule. Because your definition of a critical
job can change over time, the Scheduler also enables you to change the priority
among your jobs over that time frame. For example, extract, transfer, and load (ETL)
jobs used to load a data warehouse may be critical during non-peak hours but not
during peak hours. Additionally, jobs that must run during the close of a business
quarter may need to take priority over the ETL jobs. In these cases, you can change
the priority among the job classes by changing the resources allocated to each class.
See "Creating Job Classes" and "Creating Windows" for more information.

• Manage and monitor jobs

You can manage and monitor the multiple states that jobs go through, from creation to
completion. The Scheduler logs activity so that you can easily track information such as
the status of the job and the last run time of the job by querying views using Oracle
Enterprise Manager Cloud Control or SQL. These views provide valuable information
about jobs and their execution that can help you schedule and better manage your jobs.

Chapter 27
Overview of Oracle Scheduler

27-2

For example, a DBA can easily track all jobs that failed for a particular user. See
"Scheduler Data Dictionary Views".

When you create a multiple-destination job, a job that is defined at one database but that
runs on multiple remote hosts, you can monitor the status of the job at each destination
individually or the overall status of the parent job as a whole.

For advanced job monitoring, your applications can subscribe to job state change
notifications that the Scheduler delivers in event queues. The Scheduler can also send e-
mail notifications when a job changes state.

See "Monitoring and Managing the Scheduler".

• Execute and manage jobs in a clustered environment

A cluster is a set of database instances that cooperates to perform the same task. Oracle
Real Application Clusters (Oracle RAC) provides scalability and reliability without any
change to your applications. The Scheduler fully supports execution of jobs in such a
clustered environment. To balance the load on your system and for better performance,
you can also specify the database service where you want a job to run. See "The
Scheduler and Real Application Clusters" for more information.

27.2 Jobs and Supporting Scheduler Objects
You use jobs and other scheduler objects for task scheduling.

• About Jobs and Supporting Scheduler Objects
To use the Scheduler, you create Scheduler objects. Schema objects define the what,
when, and where for job scheduling. Scheduler objects enable a modular approach to
managing tasks. One advantage of the modular approach is that objects can be reused
when creating new tasks that are similar to existing tasks.

• Programs
A program object (program) describes what is to be run by the Scheduler.

• Schedules
A schedule object (schedule) specifies when and how many times a job is run.

• Jobs
A job describes a user-defined task.

• Destinations
You can specify external and database destinations for running a job.

• File Watchers
A file watcher object (file watcher) defines the location, name, and other properties of a file
whose arrival on a system causes the Scheduler to start a job.

• Credentials
Credentials are user name and password pairs stored in a dedicated database object.

• Chains
Chains are the means by which you can implement dependency scheduling, in which job
starts depend on the outcomes of one or more previous jobs.

• Job Classes
Job classes enable you to assign the same attributes to member jobs, set resource
allocation for member jobs, and group jobs for prioritization.

• Windows
A window is an interval of time to run a job.

Chapter 27
Jobs and Supporting Scheduler Objects

27-3

• Groups
A group designates a list of Scheduler objects.

• Incompatibilities
An incompatibility definition (or, incompatibility) specifies incompatible jobs or programs,
where only one of the group can be running at a time.

27.2.1 About Jobs and Supporting Scheduler Objects
To use the Scheduler, you create Scheduler objects. Schema objects define the what, when,
and where for job scheduling. Scheduler objects enable a modular approach to managing
tasks. One advantage of the modular approach is that objects can be reused when creating
new tasks that are similar to existing tasks.

The principal Scheduler object is the job. A job defines the action to perform, the schedule for
the action, and the location or locations where the action takes place. Most other scheduler
objects are created to support jobs.

Note:

The Oracle Scheduler job replaces the DBMS_JOB package, which is still supported for
backward compatibility. This chapter assumes that you are only using Scheduler
jobs. If you are using both at once, or migrating from DBMS_JOB to Scheduler jobs, see
Support for DBMS_JOB.

Each of these objects is described in detail later in this section.

Because Scheduler objects belong to schemas, you can grant object privileges on them. Some
Scheduler objects, including job classes, windows, and window groups, are always created in
the SYS schema, even if the user is not SYS. All other objects are created in the user's own
schema or in a designated schema.

See Also:

"Scheduler Privileges"

27.2.2 Programs
A program object (program) describes what is to be run by the Scheduler.

A program includes:

• An action: For example, the name of a stored procedure, the name of an executable found
in the operating system file system (an "external executable"), or the text of a PL/SQL
anonymous block.

• A type: STORED_PROCEDURE, PLSQL_BLOCK, SQL_SCRIPT, EXTERNAL_SCRIPT, BACKUP_SCRIPT,
or EXECUTABLE, where EXECUTABLE indicates an external executable.

• Number of arguments: The number of arguments that the stored procedure or external
executable accepts.

Chapter 27
Jobs and Supporting Scheduler Objects

27-4

A program is a separate entity from a job. A job runs at a certain time or because a certain
event occurred, and invokes a certain program. You can create jobs that point to existing
program objects, which means that different jobs can use the same program and run the
program at different times and with different settings. With the right privileges, different users
can use the same program without having to redefine it. Therefore, you can create program
libraries, where users can select from a list of existing programs.

If a stored procedure or external executable referenced by the program accepts arguments,
you define these arguments in a separate step after creating the program. You can optionally
define a default value for each argument.

See Also:

• "Creating Programs"

• "Jobs" for an overview of jobs

27.2.3 Schedules
A schedule object (schedule) specifies when and how many times a job is run.

Schedules can be shared by multiple jobs. For example, the end of a business quarter may be
a common time frame for many jobs. Rather than defining an end-of-quarter schedule each
time a new job is defined, job creators can point to a named schedule.

There are two types of schedules:

• time schedules

With time schedules, you can schedule jobs to run immediately or at a later time. Time
schedules include a start date and time, optional end date and time, and optional repeat
interval.

• event schedules

With event schedules, you can specify that a job executes when a certain event occurs,
such as inventory falling below a threshold or a file arriving on a system. For more
information on events, see "Using Events to Start Jobs ".

See Also:

"Creating Schedules"

27.2.4 Jobs
A job describes a user-defined task.

• About Jobs
A job object (job) is a collection of metadata that describes a user-defined task. It defines
what must be executed (the action), when (the one-time or recurring schedule or a
triggering event), where (the destinations), and with what credentials. A job has an owner,
which is the schema in which it is created.

Chapter 27
Jobs and Supporting Scheduler Objects

27-5

• Specifying a Job Action
You can specify a job action by specifying the database program unit or external
executable to be run or the name of an existing program object (program).

• Specifying a Job Schedule
You can specify a job schedule by setting attributes of the job object or the name of an
existing schedule object (schedule).

• Specifying a Job Destination
You can specify a job destination in several different ways.

• Specifying a Job Credential
You can specify a job credential by specifying a named credential object or by allowing the
credential attribute of the job to remain NULL.

27.2.4.1 About Jobs
A job object (job) is a collection of metadata that describes a user-defined task. It defines what
must be executed (the action), when (the one-time or recurring schedule or a triggering event),
where (the destinations), and with what credentials. A job has an owner, which is the schema
in which it is created.

A job that runs a database program unit is known as a database job. A job that runs an
external executable is known as an external job.

Jobs that run database program units at one or more remote locations are called remote
database jobs. Jobs that run external executables at one or more remote locations are called
remote external jobs.

You define where a job runs by specifying a one or more destinations. Destinations are also
Scheduler objects and are described later in this section. If you do not specify a destination, it
is assumed that the job runs on the local database.

27.2.4.2 Specifying a Job Action
You can specify a job action by specifying the database program unit or external executable to
be run or the name of an existing program object (program).

You specify the job action in one of the following ways:

• By specifying as a job attribute the database program unit or external executable to be run.
This is known as specifying the job action inline.

• By specifying as a job attribute the name of an existing program, that specifies the
database program unit or external executable to be run. The job owner must have the
EXECUTE privilege on the program or the EXECUTE ANY PROGRAM system privilege.

27.2.4.3 Specifying a Job Schedule
You can specify a job schedule by setting attributes of the job object or the name of an existing
schedule object (schedule).

You specify the job schedule in one of the following ways:

• By setting attributes of the job object to define start and end dates and a repeat interval, or
to define an event that starts the job. This is known as specifying the schedule inline.

• By specifying as a job attribute the name of an existing schedule, which defines start and
end dates and a repeat interval, or defines an event.

Chapter 27
Jobs and Supporting Scheduler Objects

27-6

27.2.4.4 Specifying a Job Destination
You can specify a job destination in several different ways.

You specify the job destinations in one of the following ways:

• By specifying as a job attribute a single named destination object. In this case, the job runs
on one remote location.

• By specifying as a job attribute a named destination group, which is equivalent to a list of
remote locations. In this case, the job runs on all remote locations.

• By not specifying a destination attribute, in which case the job runs locally. The job runs
either of the following:

– A database program unit on the local database (the database on which the job is
created)

– An external executable on the local host, depending on the job action type

27.2.4.5 Specifying a Job Credential
You can specify a job credential by specifying a named credential object or by allowing the
credential attribute of the job to remain NULL.

You specify the job credentials in one of the following ways:

• By specifying as a job attribute a named credential object, which contains a database user
name and password (for database jobs).

The job runs as the user named in the credential.

• By allowing the credential attribute of the job to remain NULL, in which case a local
database job runs as the job owner. (See Table 27-1.) The job owner is the schema in
which the job was created.

Note:

A local database job always runs as the user is who is the job owner and will ignore
any named credential.

After you create a job and enable it, the Scheduler automatically runs the job according to its
schedule or when the specified event is detected. You can view the run status of job and its job
log by querying data dictionary views. If a job runs on multiple destinations, you can query the
status of the job at each destination.

Chapter 27
Jobs and Supporting Scheduler Objects

27-7

See Also:

• "Destinations"

• "More About Jobs"

• "Creating Jobs"

• "Scheduler Data Dictionary Views"

27.2.5 Destinations
You can specify external and database destinations for running a job.

• About Destinations
A destination object (destination) defines a location for running a job.

• About Destinations and Scheduler Agents
The remote location specified in a destination object must have a Scheduler agent running,
and the agent must be registered with the database creating the job.

27.2.5.1 About Destinations
A destination object (destination) defines a location for running a job.

There are two types of destinations:

• External destination: Specifies a remote host name and IP address for running a remote
external job.

• Database destination: Specifies a remote database instance for running a remote
database job.

Jobs that run external executables (external jobs) must specify external destinations, and jobs
that run database program units (database jobs) must specify database destinations.

If you specify a destination when you create a job, the job runs on that destination. If you do
not specify a destination, the job runs locally, on the system on which it is created.

You can also create a destination group, which consists of a list of destinations, and reference
this destination group when creating a job. In this case, the job runs on all destinations in the
group.

Note:

Destination groups can also include the keyword LOCAL as a group member,
indicating that the job also runs on the local host or local database.

See Also:

"Groups"

Chapter 27
Jobs and Supporting Scheduler Objects

27-8

No object privileges are required to use a destination created by another user.

27.2.5.2 About Destinations and Scheduler Agents
The remote location specified in a destination object must have a Scheduler agent running,
and the agent must be registered with the database creating the job.

The Scheduler agent enables the local Scheduler to communicate with the remote host, start
and stop jobs there, and return remote job status to the local database. For complete details,
see "Specifying Destinations".

• External Destinations
You cannot explicitly create external destinations. They are created in your local database
when you register a Scheduler agent with that database.

• Database Destinations
You create database destinations with the
DBMS_SCHEDULER.CREATE_DATABASE_DESTINATION procedure.

27.2.5.2.1 External Destinations
You cannot explicitly create external destinations. They are created in your local database
when you register a Scheduler agent with that database.

The name assigned to the external destination is the name of the agent. You can configure an
agent name after you install it, or you can accept the default agent name, which is the first part
of the host name (before the first dot separator). For example, if you install an agent on the
host dbhost1.us.example.com, the agent name defaults to DBHOST1.

27.2.5.2.2 Database Destinations
You create database destinations with the DBMS_SCHEDULER.CREATE_DATABASE_DESTINATION
procedure.

Note:

If you have multiple database instances running on the local host, you can run jobs
on the other instances by creating database destinations for those instances. Thus,
"remote" database instances do not necessarily have to reside on remote hosts. The
local host must be running a Scheduler agent to support running remote database
jobs on these additional instances.

See Also:

• "Specifying Destinations"

• "Installing and Configuring the Scheduler Agent on a Remote Host"

Chapter 27
Jobs and Supporting Scheduler Objects

27-9

27.2.6 File Watchers
A file watcher object (file watcher) defines the location, name, and other properties of a file
whose arrival on a system causes the Scheduler to start a job.

You create a file watcher and then create any number of event-based jobs or event schedules
that reference the file watcher. When the file watcher detects the arrival of the designated file, it
raises a file arrival event. The job started by the file arrival event can retrieve the event
message to learn about the newly arrived file.

A file watcher can watch for a file on the local system (the same host computer running Oracle
Database) or a remote system, provided that the remote system is running the Scheduler
agent.

To use file watchers, the database Java virtual machine (JVM) component must be installed.

See "About File Watchers" for more information.

See Also:

"Creating File Watchers and File Watcher Jobs"

27.2.7 Credentials
Credentials are user name and password pairs stored in a dedicated database object.

Scheduler jobs use credentials to authenticate themselves with a database instance or the
operating system in order to run. You use credentials for:

• Remote database jobs: The credential contains a database user name and password. The
stored procedure or PL/SQL block specified in the remote database job runs as this
database user.

• External jobs (local or remote): The credential contains a host operating system user name
and password. The external executable of the job then runs with this user name and
password.

• File watchers: The credential contains a host operating system user name and password.
The job that processes the file arrival event uses this user name and password to access
the arrived file.

You can query the *_CREDENTIALS views to see a list of credentials in the database. Credential
passwords are stored obfuscated, and are not displayed in these views.

See Also:

• "Specifying Scheduler Job Credentials"

• Oracle Database Security Guide for information about creating a credential using
the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure

Chapter 27
Jobs and Supporting Scheduler Objects

27-10

27.2.8 Chains
Chains are the means by which you can implement dependency scheduling, in which job starts
depend on the outcomes of one or more previous jobs.

A chain consists of multiple steps that are combined using dependency rules. The dependency
rules define the conditions that can be used to start or stop a step or the chain itself.
Conditions can include the success, failure, or completion- or exit-codes of previous steps.
Logical expressions, such as AND/OR, can be used in the conditions. In a sense, a chain
resembles a decision tree, with many possible paths for selecting which tasks run and when.

In its simplest form, a chain consists of two or more Scheduler program objects (programs) that
are linked together for a single, combined objective. An example of a chain might be "run
program A followed by program B, and then run program C only if programs A and B complete
successfully, otherwise wait an hour and then run program D."

As an example, you might want to create a chain to combine the different programs necessary
for a successful financial transaction, such as validating and approving a loan application, and
then funding the loan.

A Scheduler job can point to a chain instead of pointing to a single program object. The job
then serves to start the chain. This job is referred to as the chain job. Multiple chain jobs can
point to the same chain, and more than one of these jobs can run simultaneously, thereby
creating multiple instances of the same chain, each at a different point of progress in the chain.

Each position within a chain is referred to as a step. Typically, after an initial set of chain steps
has started, the execution of successive steps depends on the completion of one or more
previous steps. Each step can point to one of the following:

• A program object (program)

The program can run a database program unit (such as a stored procedure or PL/SQL
anonymous block) or an external executable.

• Another chain (a nested chain)

Chains can be nested to any level.

• An event schedule, inline event, or file watcher

After starting a step that points to an event schedule or that has an inline event
specification, the step waits until the specified event is raised. Likewise, a step that
references a file watcher inline or that points to an event schedule that references a file
watcher waits until the file arrival event is raised. For a file arrival event or any other type of
event, when the event occurs, the step completes, and steps that are dependent on the
event step can run. A common example of an event in a chain is a user intervention, such
an approval or rejection.

Multiple steps in the chain can invoke the same program or nested chain.

For each step, you can specify either a database destination or an external destination on
which the step should run. If a destination is not specified, the step runs on the originating
(local) database or the local host. Each step in a chain can run on a different destination.

Figure 27-1 shows a chain with multiple branches. The figure makes use of icons to indicate
BEGIN, END, and a nested chain, which is Step 7, in the lower subbranch.

In this figure, rules could be defined as follows:

• If Step 1 completes successfully, start Step 2.

Chapter 27
Jobs and Supporting Scheduler Objects

27-11

• If Step 1 fails with error code 20100, start Step 3.

• If Step 1 fails with any other error code, end the chain.

Additional rules govern the running of steps 4, 5, 6, and 7.

Figure 27-1 Chain with Multiple Branches

Step 7

Step 4

Step 3

Step 6

Step 5

Step 2

Step 1

Begin End

While a job pointing to a chain is running, the current state of all steps of the running chain can
be monitored. For every step, the Scheduler creates a step job with the same job name and
owner as the chain job. Each step job additionally has a step job subname to uniquely identify
it. The step job subname is included as the JOB_SUBNAME column in the views
*_SCHEDULER_RUNNING_JOBS, *_SCHEDULER_JOB_LOG, and *_SCHEDULER_JOB_RUN_DETAILS, and
as the STEP_JOB_SUBNAME column in the *_SCHEDULER_RUNNING_CHAINS views.

See Also:

"Creating and Managing Job Chains"

27.2.9 Job Classes
Job classes enable you to assign the same attributes to member jobs, set resource allocation
for member jobs, and group jobs for prioritization.

You typically create job classes only when you are in the role of Scheduler administrator.

Job classes provide a way to:

• Assign the same set of attribute values to member jobs

Each job class specifies a set of attributes, such as logging level. When you assign a job to
a job class, the job inherits those attributes. For example, you can specify the same policy
for purging log entries for all payroll jobs.

Chapter 27
Jobs and Supporting Scheduler Objects

27-12

• Set service affinity for member jobs

You can set the service attribute of a job class to a desired database service name. This
determines the instances in a Real Application Clusters environment that run the member
jobs, and optionally, the system resources that are assigned to member jobs. See "Service
Affinity when Using the Scheduler" for more information.

• Set resource allocation for member jobs

Job classes provide the link between the Database Resource Manager and the Scheduler,
because each job class can specify a resource consumer group as an attribute. Member
jobs then belong to the specified consumer group and are assigned resources according to
settings in the current resource plan.

Alternatively, you can leave the resource_consumer_group attribute NULL and set the
service attribute of a job class to a desired database service name. That service can in
turn be mapped to a resource consumer group. If both the resource_consumer_group and
service attributes are set, and the designated service maps to a resource consumer
group, the resource consumer group named in the resource_consumer_group attribute
takes precedence.

See Managing Resources with Oracle Database Resource Manager for more information
on mapping services to consumer groups.

• Group jobs for prioritization

Within the same job class, you can assign priority values of 1-5 to individual jobs so that if
two jobs in the class are scheduled to start at the same time, the one with the higher
priority takes precedence. This ensures that you do not have a less important job
preventing the timely completion of a more important one.

If two jobs have the same assigned priority value, the job with the earlier start date takes
precedence. If no priority is assigned to a job, its priority defaults to 3.

Note:

Job priorities are used only to prioritize among jobs in the same class.

There is no guarantee that a high priority job in class A will be started before a
low priority job in class B, even if they share the same schedule. Prioritizing
among jobs of different classes depends on the current resource plan and on the
designated resource consumer group or service name of each job class.

When defining job classes, try to classify jobs by functionality. Consider dividing jobs into
groups that access similar data, such as marketing, production, sales, finance, and human
resources.

The default public classes are as follows:

• DEFAULT_JOB_CLASS: This is the default job class for regular jobs.

• DEFAULT_IN_MEMORY_JOB_CLASS: This is the default job class for in-memory runtime and in-
memory full jobs.

• ORA$AUTOTASK_JOB_CLASS: This is the job class used by autotask jobs. The resource
consumer group of this job class is ORA$AUTOTASK.

Some of the restrictions to keep in mind are:

Chapter 27
Jobs and Supporting Scheduler Objects

27-13

• A job must be part of exactly one class. When you create a job, you can specify which
class the job is part of. If you do not specify a class, the job automatically becomes part of
the class DEFAULT_JOB_CLASS.

• Dropping a class while there are still jobs in that class results in an error. You can force a
class to be dropped even if there are still jobs that are members of that class, but all jobs
referring to that class are then automatically disabled and assigned to the class
DEFAULT_JOB_CLASS. Jobs belonging to the dropped class that are already running continue
to run under class settings determined at the start of the job.

See Also:

• "Creating Job Classes"

• Oracle Database Reference to view job classes

27.2.10 Windows
A window is an interval of time to run a job.

• About Windows
You create windows to automatically start jobs or to change resource allocation among
jobs during various time periods of the day, week, and so on. A window is represented by
an interval of time with a well-defined beginning and end, such as "from 12am-6am".

• Overlapping Windows
Although Oracle does not recommend it, windows can overlap.

27.2.10.1 About Windows
You create windows to automatically start jobs or to change resource allocation among jobs
during various time periods of the day, week, and so on. A window is represented by an
interval of time with a well-defined beginning and end, such as "from 12am-6am".

You typically create windows only when you are in the role of Scheduler administrator.

Windows work with job classes to control resource allocation. Each window specifies the
resource plan to activate when the window opens (becomes active), and each job class
specifies a resource consumer group or specifies a database service, which can map to a
consumer group. A job that runs within a window, therefore, has resources allocated to it
according to the consumer group of its job class and the resource plan of the window.

In a multitenant container database (CDB), there are two levels of windows. At the PDB level,
windows can be used to set resource plans that allocate resources among consumer groups
belonging to that PDB. At the root database level, windows can allocate resources to different
PDBs. Therefore, at any time, there can be a window open in the root database and one in
each PDB.

Figure 27-2 shows a workday that includes two windows. In this configuration, jobs belonging
to the job class that links to Consumer Group 1 get more resources in the morning than in the
afternoon. The opposite is true for jobs in the job class that links to Consumer Group 2.

Chapter 27
Jobs and Supporting Scheduler Objects

27-14

Figure 27-2 Windows help define the resources that are allocated to jobs

0 24

6 am 11 am 2 pm 8pm

Window 1 Window 2

Resource Plan A

Consumer Group 1 - 90%

Consumer Group 2 - 10%

Resource Plan B

Consumer Group 1 - 10%

Consumer Group 2 - 90%

See Managing Resources with Oracle Database Resource Manager for more information on
resource plans and consumer groups.

You can assign a priority to each window. If windows overlap, the window with the highest
priority is chosen over other windows with lower priorities. The Scheduler automatically opens
and closes windows as window start times and end times come and go.

A job can name a window in its schedule_name attribute. The Scheduler then starts the job
when the window opens. If a window is already open, and a new job is created that points to
that window, the new job does not start until the next time the window opens.

Note:

If necessary, you can temporarily block windows from switching the current resource
plan. For more information, see "Enabling Oracle Database Resource Manager and
Switching Plans", or the discussion of the DBMS_RESOURCE_MANAGER.SWITCH_PLAN
package procedure in Oracle Database PL/SQL Packages and Types Reference.

See Also:

"Creating Windows"

27.2.10.2 Overlapping Windows
Although Oracle does not recommend it, windows can overlap.

Because only one window can be active at one time, the following rules are used to
determine which window is active when windows overlap:

• If windows of the same priority overlap, the window that is active will stay open. However, if
the overlap is with a window of higher priority, the lower priority window will close and the
window with the higher priority will open. Jobs currently running that had a schedule
naming the low priority window may be stopped depending on the behavior you assigned
when you created the job.

Chapter 27
Jobs and Supporting Scheduler Objects

27-15

• If, at the end of a window, there are multiple windows defined, the window with the highest
priority opens. If all windows have the same priority, the window that has the highest
percentage of time remaining opens.

• An open window that is dropped automatically closes. At that point, the previous rule
applies.

Whenever two windows overlap, an entry is written in the Scheduler log.

• Examples of Overlapping Windows
Examples illustrate overlapping windows.

27.2.10.2.1 Examples of Overlapping Windows
Examples illustrate overlapping windows.

Figure 27-3 illustrates a typical example of how windows, resource plans, and priorities might
be determined for a 24 hour schedule. In the following two examples, assume that Window1
has been associated with Resource Plan1, Window2 with Resource Plan2, and so on.

Figure 27-3 Windows and Resource Plans (Example 1)

12 am 12 am4 am 11 am9 am6 am

Window 1
(Low Priority)

Window 3
(High Priority)

Resource
Plan

3

Default
Resource

Plan

Resource
Plan

1

Resource
Plan

1

10 pm8 pm2 pm 3 pm

Window 2
(High Priority)

Window 4
(High Priority)

Resource
Plan 2

Resource
Plan

4

Default
Resource

Plan

Default
Resource

Plan

In Figure 27-3, the following occurs:

• From 12AM to 4AM

No windows are open, so a default resource plan is in effect.

• From 4AM to 6AM

Window1 has been assigned a low priority, but it opens because there are no high priority
windows. Therefore, Resource Plan 1 is in effect.

• From 6AM to 9AM

Window3 will open because it has a higher priority than Window1, so Resource Plan 3 is in
effect. The dotted line indicates Window1 is inactive.

• From 9AM to 11AM

Even though Window1 was closed at 6AM because of a higher priority window opening, at
9AM, this higher priority window is closed and Window1 still has two hours remaining on its
original schedule. It will be reopened for these remaining two hours and resource plan will
be in effect.

• From 11AM to 2PM

Chapter 27
Jobs and Supporting Scheduler Objects

27-16

A default resource plan is in effect because no windows are open.

• From 2PM to 3PM

Window2 will open so Resource Plan 2 is in effect.

• From 3PM to 8PM

Window4 is of the same priority as Window2, so it does not interrupt Window2 and
Resource Plan 2 is in effect. The dotted line indicates Window4 is inactive.

• From 8PM to 10PM

Window4 will open so Resource Plan 4 is in effect.

• From 10PM to 12AM

A default resource plan is in effect because no windows are open.

Figure 27-4 illustrates another example of how windows, resource plans, and priorities might
be determined for a 24 hour schedule.

Figure 27-4 Windows and Resource Plans (Example 2)

11 am8 am6 am12 am 4 am 9 am7 am

Window 1

(Low Priority)

Window 3

(High Priority)

Window 5

(Low Priority)

Window 6

(High Priority)

Resource

Plan 5

Resource

Plan 3

Resource

Plan 1

Default Resource

Plan

In Figure 27-4, the following occurs:

• From 12AM to 4AM

A default resource plan is in effect.

• From 4AM to 6AM

Window1 has been assigned a low priority, but it opens because there are no high priority
windows, so Resource Plan 1 is in effect.

• From 6AM to 9AM

Window3 will open because it has a higher priority than Window1. Note that Window6 does
not open because another high priority window is already in effect.

• From 9AM to 11AM

At 9AM, Window5 or Window1 are the two possibilities. They both have low priorities, so
the choice is made based on which has a greater percentage of its duration remaining.
Window5 has a larger percentage of time remaining compared to the total duration than
Window1. Even if Window1 were to extend to, say, 11:30AM, Window5 would have 2/3 *

Chapter 27
Jobs and Supporting Scheduler Objects

27-17

100% of its duration remaining, while Window1 would have only 2.5/7 * 100%, which is
smaller. Thus, Resource Plan 5 will be in effect.

27.2.11 Groups
A group designates a list of Scheduler objects.

• About Groups
Instead of passing a list of objects as an argument to a DBMS_SCHEDULER package
procedure, you create a group that has those objects as its members, and then pass the
group name to the procedure.

• Destination Groups
When you want a job to run at multiple destinations, you create a database destination
group or external destination group and assign it to the destination_name attribute of the
job.

• Window Groups
You can group windows for ease of use in scheduling jobs.

27.2.11.1 About Groups
Instead of passing a list of objects as an argument to a DBMS_SCHEDULER package procedure,
you create a group that has those objects as its members, and then pass the group name to
the procedure.

There are three types of groups:

• Database destination groups: Members are database destinations, for running remote
database jobs.

• External destination groups: Members are external destinations, for running remote
external jobs.

• Window groups: Members are Scheduler windows.

All members of a group must be of the same type and each member must be unique.

You create a group with the DBMS_SCHEDULER.CREATE_GROUP procedure.

27.2.11.2 Destination Groups
When you want a job to run at multiple destinations, you create a database destination group
or external destination group and assign it to the destination_name attribute of the job.

Specifying a destination group as the destination_name attribute of a job is the only valid way
to specify multiple destinations for the job.

27.2.11.3 Window Groups
You can group windows for ease of use in scheduling jobs.

You typically create window groups only when you are in the role of Scheduler administrator.

If a job must run during multiple time periods throughout the day, week, and so on, you can
create a window for each time period, and then add the windows to a window group. You can
then set the schedule_name attribute of the job to the name of this window group, and the job
executes during all the time periods specified by the windows in the window group.

Chapter 27
Jobs and Supporting Scheduler Objects

27-18

For example, if you had a window called "Weekends" and a window called "Weeknights," you
could add these two windows to a window group called "Downtime." The data warehousing
staff could then create a job to run queries according to this Downtime window group—on
weeknights and weekends—when the queries could be assigned a high percentage of
available resources.

If a window in a window group is already open, and a new job is created that points to that
window group, the job is not started until the next window in the window group opens.

See Also:

• "Creating Destination Groups for Multiple-Destination Jobs"

• "Creating Window Groups"

• "Windows"

27.2.12 Incompatibilities
An incompatibility definition (or, incompatibility) specifies incompatible jobs or programs, where
only one of the group can be running at a time.

For example, if jobs A and B are defined as incompatible, the Scheduler ensures that only one
of them can be running at any given time, even if their respective job schedules would
otherwise cause them to run at the same time.

An incompatibility can be defined at the job level (the default) or the program level. For
example, assume the following:

• Jobs J1 and J2 are based on program P1.

• Jobs J3, J4, and J5 and based on program P2.

• Jobs J6 and J7 are based on program P3.

In this scenario:

• If a job-level incompatibility definition specifies J3, J4, and J5, and if job J3 is running, then
J4 and J5 cannot be running until J3 finishes.

• If a program-level incompatibility definition specifies P1, P2, and P3, jobs J1 and J2 can
run simultaneously (unless a job-level constraint prevents J1 and J2 from running
simultaneously); however, no jobs based on programs P2 and P3 can be running until all
jobs based on P1 finish.

See Also:

Using Incompatibility Definitions

27.3 More About Jobs
There are different types of jobs. A job instance represents a specific run of a job. You can
supply job arguments to override the default program argument values.

Chapter 27
More About Jobs

27-19

• Job Categories
Oracle Scheduler supports several types of jobs.

• Job Instances
A job instance represents a specific run of a job. Jobs that are scheduled to run only once
have only one instance. Jobs that have a repeating schedule or that run each time an
event occurs have multiple instances, each run of the job representing an instance.

• Job Arguments
When a job references a program object (program), you can supply job arguments to
override the default program argument values, or provide values for program arguments
that have no default value. You can also provide argument values to an inline action (for
example, a stored procedure) that the job specifies.

• How Programs, Jobs, and Schedules are Related
To define what is executed and when, you assign relationships among programs, jobs, and
schedules.

See Also:

• "Creating Jobs"

• "Viewing the Job Log"

27.3.1 Job Categories
Oracle Scheduler supports several types of jobs.

• Database Jobs
Database jobs run Oracle Database program units. You can run local and remote
database jobs.

• External Jobs
External jobs run executables outside of the database. You can run local and remote
external jobs.

• Multiple-Destination Jobs
A multiple-destination job is a job whose instances run on multiple target databases or
hosts, but can be controlled and monitored from one central database.

• Chain Jobs
The chain is the Scheduler mechanism that enables dependency-based scheduling.

• Detached Jobs
You use a detached job to start a script or application that runs in a separate process,
independently and asynchronously to the Scheduler.

• Lightweight Jobs
Use lightweight jobs when you have many short-duration jobs that run frequently. Under
certain circumstances, using lightweight jobs can deliver a small performance gain.

• In-Memory Jobs
Use in-memory jobs when many jobs should be created and run during a short period of
time. In-memory jobs have a slightly larger memory footprint, but use memory cache to
reduce disk access and the time required for job creation and execution. Performance
gains can be significant.

Chapter 27
More About Jobs

27-20

• Script Jobs
Beginning with Oracle Database 12c, you can use several new script jobs to run custom
user scripts with SQL*Plus, the RMAN interpreter, or a command shell such as cmd.exe for
Windows and the sh shell or another interpreter for UNIX based systems.

27.3.1.1 Database Jobs
Database jobs run Oracle Database program units. You can run local and remote database
jobs.

• About Database Jobs
Database jobs run Oracle Database program units, including PL/SQL anonymous blocks,
PL/SQL stored procedures, and Java stored procedures.

• Local Database Jobs
A local database job runs on the originating database, as the database user who is the job
owner. The job owner is the name of the schema in which the job was created.

• Remote Database Job
The target database for a remote database job can be an Oracle database on a remote
host or another database instance on the same host as the originating database.

27.3.1.1.1 About Database Jobs
Database jobs run Oracle Database program units, including PL/SQL anonymous blocks,
PL/SQL stored procedures, and Java stored procedures.

For a database job where the action is specified inline, job_type is set to 'PLSQL_BLOCK' or
'STORED_PROCEDURE', and job_action contains either the text of a PL/SQL anonymous block
or the name of a stored procedure. (If a program is a named program object rather than
program action specified inline, the corresponding program_type and program_action must be
set accordingly.)

Database jobs that run on the originating database—the database on which they were created
—are known as local database jobs, or just jobs. Database jobs that run on a target database
other than the originating database are known as remote database jobs.

You can view run results for both local database and remote database jobs in the job log views
on the originating database.

27.3.1.1.2 Local Database Jobs
A local database job runs on the originating database, as the database user who is the job
owner. The job owner is the name of the schema in which the job was created.

27.3.1.1.3 Remote Database Job
The target database for a remote database job can be an Oracle database on a remote host or
another database instance on the same host as the originating database.

You identify a remote database job by specifying the name of an existing database destination
object in the destination_name attribute of the job.

Creating a remote database job requires Oracle Database 11g Release 2 (11.2) or later.
However, the target database for the job can be any release of Oracle Database. No patch is
required for the target database; you only need to install a Scheduler agent on the target
database host (even if the target database host is the same as the originating database host)

Chapter 27
More About Jobs

27-21

and register the agent with the originating database. The agent must be installed from Oracle
Client 11g Release 2 (11.2) or later.

Remote database jobs must run as a user that is valid on the target database. You specify the
required user name and password with a credential object that you assign to the remote
database job.

See Also:

• "Credentials"

• "Creating Jobs"

• "Using the Oracle Scheduler Agent to Run Remote Jobs"

• "Viewing the Job Log"

27.3.1.2 External Jobs
External jobs run executables outside of the database. You can run local and remote external
jobs.

• About External Jobs
External jobs run external executables. An external executable is an operating system
executable that runs outside the database, that is, external to the database.

• About Local External Jobs
A local external job runs its external executable on the same computer as the Oracle
database that schedules the job. For such a job, the destination_name job attribute is
NULL.

• About Remote External Jobs
A remote external job runs its external executable on a remote host. The remote host may
or may not have Oracle Database installed.

27.3.1.2.1 About External Jobs
External jobs run external executables. An external executable is an operating system
executable that runs outside the database, that is, external to the database.

For an external job, job_type is specified as 'EXECUTABLE'. (If using named programs, the
corresponding program_type would be 'EXECUTABLE'.) The job_action (or corresponding
program_action) is the full operating system–dependent path of the desired external
executable, excluding any command line arguments. An example might be /usr/local/bin/
perl or C:\perl\bin\perl.

Note that a Windows batch file is not directly executable and must be run a command prompt
(cmd.exe).

Like a database job, you can assign a schema when you create the external job. That schema
then becomes the job owner. Although it is possible to create an external job in the SYS
schema, Oracle recommends against this practice.

Both the CREATE JOB and CREATE EXTERNAL JOB privileges are required to create local or remote
external jobs.

Chapter 27
More About Jobs

27-22

External executables must run as some operating system user. Thus, the Scheduler enables
you to assign operating system credentials to any external job that you create. Like remote
database jobs, you specify these credentials with a credential object (a credential) and assign
the credential to the external job.

There are two types of external jobs: local external jobs and remote external jobs. A local
external job runs its external executable on the same computer as the database that
schedules the job. A remote external job runs its executable on a remote host. The remote
host does not need to have an Oracle database; you need only install and register a Scheduler
agent.

Note:

On Windows, the host user that runs the external executable must be assigned the
Log on as a batch job logon privilege.

See Also:

• "Credentials"

• "Using the Oracle Scheduler Agent to Run Remote Jobs"

27.3.1.2.2 About Local External Jobs
A local external job runs its external executable on the same computer as the Oracle database
that schedules the job. For such a job, the destination_name job attribute is NULL.

Local external jobs write stdout and stderr output to log files in the directory ORACLE_HOME/
scheduler/log. You can retrieve the contents of these files with DBMS_SCHEDULER.GET_FILE.

You do not have to assign a credential to a local external job, although Oracle strongly
recommends that you do so for improved security. If you do not assign a credential, the job
runs with default credentials. Table 27-1 shows the default credentials for different platforms
and different job owners.

Table 27-1 Default Credentials for Local External Jobs

Job in SYS Schema? Platform Default Credentials

Yes All User who installed Oracle Database.

No UNIX and Linux Values of the run-user and run-group attributes
specified in the file ORACLE_HOME/rdbms/admin/
externaljob.ora

No Windows User that the OracleJobSchedulerSID Windows
service runs as (either the Local System account or
a named local or domain user).

Note: You must manually enable and start this
service. For improved security, Oracle recommends
using a named user instead of the Local System
account.

Chapter 27
More About Jobs

27-23

Note:

Default credentials are included for compatibility with previous releases of Oracle
Database, and may be deprecated in a future release. It is, therefore, best to assign
a credential to every local external job.

To disable the running of local external jobs that were not assigned credentials, remove the
run_user attribute from the ORACLE_HOME/rdbms/admin/externaljob.ora file (UNIX and Linux)
or stop the OracleJobScheduler service (Windows). These steps do not disable the running of
local external jobs in the SYS schema.

See Also:

• Your operating system–specific documentation for any post-installation
configuration steps to support local external jobs

• Example 28-6

27.3.1.2.3 About Remote External Jobs
A remote external job runs its external executable on a remote host. The remote host may or
may not have Oracle Database installed.

To enable remote external jobs to run on a specific remote host, you must install a Scheduler
agent on the remote host and register it with the local database. The database communicates
with the agent to start external executables and to retrieve execution results.

When creating a remote external job, you specify the name of an existing external destination
object in the destination_name attribute of the job.

Remote external jobs write stdout and stderr output to log files in the directory AGENT_HOME/
data/log. You can retrieve the contents of these files with DBMS_SCHEDULER.GET_FILE.
Example 28-6 illustrates how to retrieve stdout output. Although this example is for a local
external job, the method is the same for remote external jobs.

See Also:

• "Credentials"

• "Using the Oracle Scheduler Agent to Run Remote Jobs"

27.3.1.3 Multiple-Destination Jobs
A multiple-destination job is a job whose instances run on multiple target databases or hosts,
but can be controlled and monitored from one central database.

Chapter 27
More About Jobs

27-24

For DBAs or system administrators who must manage multiple databases or multiple hosts, a
multiple-destination job can make administration considerably easier. With a multiple-
destination job, you can:

• Specify several databases or hosts on which a job must run.

• Modify a job that is scheduled on multiple targets with a single operation.

• Stop jobs running on one or more remote targets.

• Determine the status (running, completed, failed, and so on) of the job instance at each of
the remote targets.

• Determine the overall status of the collection of job instances.

A multiple-destination job can be viewed as a single entity for certain purposes and as a
collection of independently running jobs for other purposes. When creating or altering the job
metadata, the multiple-destination job looks like a single entity. However, when the job
instances are running, they are better viewed as a collection of jobs that are nearly identical
copies of each other. The job created at the source database is known as the parent job, and
the job instances that run at the various destinations are known as child jobs.

You create a multiple-destination job by assigning a destination group to the destination_name
attribute of the job. The job runs at all destinations in the group at its scheduled time, or upon
the detection of a specified event. The local host can be included as one of the destinations on
which the job runs.

For a job whose action is a database program unit, you must specify a database destination
group in the destination_name attribute. The members of a database destination group
include database destinations and the keyword LOCAL, which indicates the originating (local)
database. For a job whose action is an external executable, you must specify an external
destination group in the destination_name attribute. The members of an external destination
group include external destinations and the keyword LOCAL, which indicates the local host.

Note:

Database destinations do not necessarily have to reference remote databases; they
can reference additional database instances running on the same host as the
database that creates the job.

Multiple-Destination Jobs and Time Zones

Some job destinations might be in time zones that are different from that of the database on
which the parent job is created (the originating database). In this case, the start time of the job
is always based on the time zone of the originating database. So, if you create the parent job in
London, England, specify a start time of 8:00 p.m., and specify destinations at Tokyo, Los
Angeles, and New York, then all child jobs start at 8:00 p.m. London time. Start times at all
destinations may not be exact, due to varying system loads, issues that require retries, and so
on.

Event-Based Multiple-Destination Jobs

In the case of a multiple-destination job that is event-based, when the parent job detects the
event at its host, it starts all the child jobs at all destinations. The child jobs themselves do not
detect events at their respective hosts.

Chapter 27
More About Jobs

27-25

See Also:

• "Creating Multiple-Destination Jobs"

• "Monitoring Multiple Destination Jobs"

• "Destination Groups"

• "Using Events to Start Jobs "

27.3.1.4 Chain Jobs
The chain is the Scheduler mechanism that enables dependency-based scheduling.

In its simplest form, it defines a group of program objects and the dependencies among them.
A job can point to a chain instead of pointing to a single program object. The job then serves to
start the chain. For a chain job, job_type is set to 'CHAIN'.

See Also:

• "Chains"

• "Creating and Managing Job Chains"

27.3.1.5 Detached Jobs
You use a detached job to start a script or application that runs in a separate process,
independently and asynchronously to the Scheduler.

A detached job typically starts another process and then exits. Upon exit (when the job action
is completed) a detached job remains in the running state. The running state indicates that the
asynchronous process that the job started is still active. When the asynchronous process
finishes its work, it must connect to the database and call
DBMS_SCHEDULER.END_DETACHED_JOB_RUN, which ends the job.

Detached jobs cannot be executed using run_job to manually trigger execution, when the
use_current_session parameter set to TRUE.

A job is detached if it points to a program object (program) that has its detached attribute set to
TRUE (a detached program).

You use a detached job under the following two circumstances:

• When it is impractical to wait for the launched asynchronous process to complete because
would hold resources unnecessarily.

An example is sending a request to an asynchronous Web service. It could take hours or
days for the Web service to respond, and you do not want to hold a Scheduler job child
process while waiting for the response. (See Scheduler Architecture for information about
job child processes.)

• When it is impossible to wait for the launched asynchronous process to complete because
the process shuts down the database.

Chapter 27
More About Jobs

27-26

An example would be using a Scheduler job to launch an RMAN script that shuts down the
database, makes a cold backup, and then restarts the database. See Creating Detached
Jobs.

A detached job works as follows:

1. When it is time for the job to start, the job coordinator assigns a job child process to the
job, and the job child process runs the program action defined in the detached program.
The program action can be a PL/SQL block, a stored procedure, or an external executable.

2. The program action performs an immediate-return call of another script or executable,
referred to here as Process A, and then exits. Because the work of the program action is
complete, the job child process exits, but leaves the job in a running state.

3. Process A performs its processing. If it runs any DML against the database, it must commit
its work. When processing is complete, Process A logs in to the database and calls
END_DETACHED_JOB_RUN.

4. The detached job is logged as completed.

You can also call STOP_JOB to end a running detached job.

See Also:

Creating Detached Jobs for an example of performing a cold backup of the database
with a detached job.

27.3.1.6 Lightweight Jobs
Use lightweight jobs when you have many short-duration jobs that run frequently. Under certain
circumstances, using lightweight jobs can deliver a small performance gain.

Lightweight jobs have the following characteristics:

• Unlike regular jobs, they are not schema objects.

• They have significantly better create and drop times over regular jobs because they do not
have the overhead of creating a schema object.

• They have lower average session create time than regular jobs.

• They have a small footprint on disk for job metadata and run-time data.

You designate a lightweight job by setting the job_style job attribute to 'LIGHTWEIGHT'. (The
default job style is 'REGULAR'.)

Like programs and schedules, regular jobs are schema objects. A regular job offers the
maximum flexibility but does entail some overhead when it is created or dropped. The user has
fine-grained control of the privileges on the job, and the job can have as its action a program or
a stored procedure owned by another user.

If a relatively small number of jobs that run infrequently need to be created, then regular jobs
are preferred over lightweight jobs.

A lightweight job must reference a program object (program) to specify a job action. The
program must be already enabled when the lightweight job is created, and the program type
must be either 'PLSQL_BLOCK' or 'STORED_PROCEDURE'. Because lightweight jobs are not schema
objects, you cannot grant privileges on them. A lightweight job inherits privileges from its

Chapter 27
More About Jobs

27-27

specified program. Thus, any user who has a certain set of privileges on the program has
corresponding privileges on the lightweight job.

See Also:

"Creating Jobs Using a Named Program and Job Styles"

27.3.1.7 In-Memory Jobs
Use in-memory jobs when many jobs should be created and run during a short period of time.
In-memory jobs have a slightly larger memory footprint, but use memory cache to reduce disk
access and the time required for job creation and execution. Performance gains can be
significant.

The following types of in-memory jobs are available: runtime (IN_MEMORY_RUNTIME) and full
(IN_MEMORY_FULL).

• In-memory runtime jobs are based on Lightweight Jobs, so they are persistent. They can
have a repeat interval and run multiple times.

By default, in-memory jobs are associated to the job_class
DEFAULT_IN_MEMORY_JOB_CLASS, which has a logging level of NONE. This means that by
default, in-memory jobs produce no logging in the views related to Scheduler jobs, thus
improving performance.

• In-memory full jobs exist only cached in memory, so they are not persistent. They must
have a program associated, and they are meant to be run just once and discarded, so they
cannot have a repeat interval. Because they do not have a backup on disk, they do not
generate redo in creation or at run time, greatly speeding their operation.

In-memory full jobs are only present in the instance where they were created or in one of
the RAC instances. They are not propagated to a logical or physical standby instance, and
therefore can no longer run (and will be discarded) if the primary instance is switched out
for the standby.

See Also:

"Creating Jobs Using a Named Program and Job Styles"

27.3.1.8 Script Jobs
Beginning with Oracle Database 12c, you can use several new script jobs to run custom user
scripts with SQL*Plus, the RMAN interpreter, or a command shell such as cmd.exe for
Windows and the sh shell or another interpreter for UNIX based systems.

These executables all require OS credentials. These script jobs are:

• SQL Script Jobs: Requires a database destination.

SQL script jobs use the SQL*Plus interpreter to run Scheduler jobs. Therefore, you can
now use all SQL*Plus features, including query output formatting.

Chapter 27
More About Jobs

27-28

In order to connect to the database after spawning, SQL script jobs need an authentication
step. Users can authenticate inline, in the job action, or using the connect_credential
functionality provided by the Scheduler. To use the connect_credential functionality, the
user sets the connect_credential_name attribute of a job. Then, the job attempts to
connect to the database using the username, password, and role of that
connect_credential.

• External Script Jobs: requires a normal destination

External script jobs spawn a new shell interpreter, allowing a simple way to run command
line scripts.

• Backup Script Jobs: Requires a database destination.

Backup script jobs provide a more direct way to specify RMAN scripts that create and
execute backup tasks.

In order to connect to the database after spawning, backup script jobs need an
authentication step. Users can authenticate inline, in the job action, or using the
connect_credential functionality provided by the Scheduler. To use the
connect_credential functionality, the user sets the connect_credential_name attribute of
a job. Then, the job attempts to connect to the database using the username, password,
and role of that connect_credential.

Note that job or program actions must point to an appropriate script for each interpreter or have
an appropriate inline script. For further details, see the job_action parameters for the
CREATE_JOB subprogram or the program_action parameters for the CREATE_PROGRAM
subprogram.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for the CREATE_JOB
parameters

• Oracle Database PL/SQL Packages and Types Reference for
CREATE_PROGRAM parameters

27.3.2 Job Instances
A job instance represents a specific run of a job. Jobs that are scheduled to run only once have
only one instance. Jobs that have a repeating schedule or that run each time an event occurs
have multiple instances, each run of the job representing an instance.

For example, a job that is scheduled to run only on Tuesday, Oct. 8th 2009 has one instance, a
job that runs daily at noon for a week has seven instances, and a job that runs when a file
arrives on a remote system has one instance for each file arrival event.

Multiple-destination jobs have one instance for each destination. If a multiple-destination job
has a repeating schedule, then there is one instance for each run of the job at each
destination.

When a job is created, only one entry is added to the Scheduler's job table to represent the job.
Depending on the logging level set, each time the job runs, an entry is added to the job log.
Therefore, if you create a job that has a repeating schedule, there is one entry in the job views
(*_SCHEDULER_JOBS) and multiple entries in the job log. Each job instance log entry provides
information about a particular run, such as the job completion status and the start and end

Chapter 27
More About Jobs

27-29

time. Each run of the job is assigned a unique log id that appears in both the job log and job
run details views (*_SCHEDULER_JOB_LOG and *_SCHEDULER_JOB_RUN_DETAILS).

See Also:

• "Monitoring Jobs"

• "Scheduler Data Dictionary Views"

27.3.3 Job Arguments
When a job references a program object (program), you can supply job arguments to override
the default program argument values, or provide values for program arguments that have no
default value. You can also provide argument values to an inline action (for example, a stored
procedure) that the job specifies.

A job cannot be enabled until all required program argument values are defined, either as
defaults in a referenced program object, or as job arguments.

A common example of a job is one that runs a set of nightly reports. If different departments
require different reports, you can create a program for this task that can be shared among
different users from different departments. The program action runs a reports script, and the
program has one argument: the department number. Each user can then create a job that
points to this program and can specify the department number as a job argument.

See Also:

• "Setting Job Arguments"

• "Defining Program Arguments"

• "Creating Jobs"

27.3.4 How Programs, Jobs, and Schedules are Related
To define what is executed and when, you assign relationships among programs, jobs, and
schedules.

Figure 27-5 illustrates examples of such relationships.

Chapter 27
More About Jobs

27-30

Figure 27-5 Relationships Among Programs, Jobs, and Schedules

P1 P2 P3 P8 P9

S1 S2 S3 S4

P10. . .

J1 J2 J3 J4 J20 J21 J22 J23 J24. . .

To understand Figure 27-5, consider a situation where tables are being analyzed. In this
example, program P1 analyzes a table using the DBMS_STATS package. The program has an
input parameter for the table name. Two jobs, J1 and J2, both point to the same program, but
each supplies a different table name. Additionally, schedule S1 specifies a run time of 2:00 a.m.
every day. The end result is that the two tables named in J1 and J2 are analyzed daily at 2:00
a.m.

Note that J4 points to no other entity, so it is self-contained with all relevant information defined
in the job itself. P2, P9 and S2 illustrate that you can leave a program or schedule unassigned if
you want. You can, for example, create a program that calculates a year-end inventory and
temporarily leave it unassigned to any job.

27.4 Scheduler Architecture
Scheduler components handle jobs.

• Scheduler Components
Scheduler components include the job table, the job coordinator, and job child processes.

• The Job Table
The job table is a container for all the jobs, including those run from pluggable databases,
with one table for each database. The job table stores information for all jobs such as the
owner name or the level of logging. You can find this information in the *_SCHEDULER_JOBS
views.

• The Job Coordinator
The job coordinator starts job child processes.

• How Jobs Execute
Job child processes execute the jobs you submit.

• After Jobs Complete
The child processes perform several operations after a job completes.

• Using the Scheduler in Real Application Clusters Environments
You can use the Scheduler in an Oracle Real Application Clusters environment.

Chapter 27
Scheduler Architecture

27-31

27.4.1 Scheduler Components
Scheduler components include the job table, the job coordinator, and job child processes.

Figure 27-6 illustrates how jobs are handled by the database.

Figure 27-6 Scheduler Components

Job Child Processes

Client

Job Coordinator

JCP JCP JCP

Database

Job Table

Job 1

Job 3

Job 5

Job 2

Job 4

Job 6

27.4.2 The Job Table
The job table is a container for all the jobs, including those run from pluggable databases, with
one table for each database. The job table stores information for all jobs such as the owner
name or the level of logging. You can find this information in the *_SCHEDULER_JOBS views.

Jobs are database objects, and therefore, can accumulate and take up too much space. To
avoid this, job objects are automatically dropped by default after completion. This behavior is
controlled by the auto_drop job attribute.

See "Scheduler Data Dictionary Views" for the available job views and administration.

27.4.3 The Job Coordinator
The job coordinator starts job child processes.

• About The Job Coordinator
The job coordinator, under the control of the database, controls and starts job child
processes, making use of the information in the job table.

• Job Coordinator Actions
The job coordinator performs several actions.

• Maximum Number of Scheduler Job Processes
The coordinator automatically determines how many job child processes to start based on
CPU load and the number of outstanding jobs.

27.4.3.1 About The Job Coordinator
The job coordinator, under the control of the database, controls and starts job child processes,
making use of the information in the job table.

The job coordinator background process (cjqNNN) starts automatically and stops on an as-
needed basis. At database startup, the job coordinator is not started, but the database does

Chapter 27
Scheduler Architecture

27-32

monitor whether there are any jobs to be executed, or windows to be opened in the near
future. If so, it starts the coordinator.

As long as there are jobs or windows running, the coordinator continues to run. After there has
been a certain period of Scheduler inactivity and there are no jobs or windows scheduled in the
near future, the coordinator is automatically stopped.

When the database determines whether to start the job coordinator, it takes the service affinity
of jobs into account. For example, if there is only one job scheduled in the near future and this
job belongs to a job class that has service affinity for only two out of the four Oracle RAC
instances, only the job coordinators for those two instances are started. See "Service Affinity
when Using the Scheduler" for more information.

27.4.3.2 Job Coordinator Actions
The job coordinator performs several actions.

The coordinator looks at the root database and all the PDBs and selects jobs based on the job
priority, the job scheduled start time, and the availability of resources to run the job. The latter
criterion depends on the consumer group of the job and the resource plan currently in effect.
The coordinator makes no attempt to be fair to every PDB. The only way to ensure that jobs
from a PDB are not starved is to allocate enough resources to it.

The job coordinator:

• Controls and spawns the job child processes

• Queries the job table

• Picks up jobs from the job table on a regular basis and places them in a memory cache.
This improves performance by reducing trips to the disk

• Takes jobs from the memory cache and passes them to job child processes for execution

• Cleans up the job child process pool when child processes are no longer needed

• Goes to sleep when no jobs are scheduled

• Wakes up when a new job is about to be executed or a job was created using the
CREATE_JOB procedure

• Upon database, startup after an unusual database shutdown, recovers any jobs that were
running.

You do not need to set the time that the job coordinator checks the job table; the system
chooses the time frame automatically.

One job coordinator is used per instance. This is also the case in Oracle RAC environments.

See Also:

"Scheduler Data Dictionary Views" for job coordinator administration and "Using the
Scheduler in Real Application Clusters Environments" for Oracle RAC information

27.4.3.3 Maximum Number of Scheduler Job Processes
The coordinator automatically determines how many job child processes to start based on
CPU load and the number of outstanding jobs.

Chapter 27
Scheduler Architecture

27-33

The JOB_QUEUE_PROCESSES initialization parameter can be used to limit the number of job child
processes that the Scheduler can start. This parameter specifies the maximum number of job
child processes per instance that can be created for the execution of DBMS_JOB jobs and Oracle
Scheduler (DBMS_SCHEDULER) jobs. The range of values is 0 to 4000. The default value for
JOB_QUEUE_PROCESSES across all containers is automatically derived from the number of
sessions and CPUs configured in the system. The default is adequate for most use cases.

To limit job child processes in a CDB environment, you can set JOB_QUEUE_PROCESSES in the
following locations:

• CDB root

Set JOB_QUEUE_PROCESSES to the maximum number of child processes that Scheduler can
use simultaneously in the entire database instance.

If JOB_QUEUE_PROCESSES is 0 in the CDB root, then DBMS_JOB and Oracle Scheduler jobs
cannot run in the root or any PDB, regardless of the JOB_QUEUE_PROCESSES setting at the
PDB level.

• PDB

Set JOB_QUEUE_PROCESSES to the maximum number of simultaneous jobs for this PDB. The
actual number depends on the resources assigned by Resource Manager and the demand
in other containers. When multiple PDBs request jobs, Oracle Scheduler attempts to give
all PDBs a fair share of the processes

If JOB_QUEUE_PROCESSES is 0 in a PDB, then DBMS_JOB and Oracle Scheduler jobs cannot
run in this PDB, regardless of the JOB_QUEUE_PROCESSES setting in the CDB root.

You must set all global Oracle Scheduler attributes at the PDB level. For example, if you set
the EMAIL_SENDER attribute in the root database using DBMS_SCHEDULER.SET_ATTRIBUTE, then it
applies to the jobs that run in the root, not the jobs running in a specific PDB. If you choose a
new EMAIL_SENDER for a PDB, then you must set the global attribute in this PDB.

See Also:

Oracle Database Reference for more information about the JOB_QUEUE_PROCESSES
initialization parameter

27.4.4 How Jobs Execute
Job child processes execute the jobs you submit.

They are awakened by the job coordinator when it is time for a job to be executed. They gather
metadata to run the job from the job table.

When a job is picked for processing, the job child process does the following:

1. Gathers all the metadata needed to run the job, for example, program arguments and
privilege information.

2. Starts a database session as the owner of the job, starts a transaction, and then starts
executing the job.

For jobs that are run from a pluggable database (PDB), the child process switches to the
PDB that the job belongs to and then executes it.

3. Once the job is complete, the child process commits and ends the transaction.

Chapter 27
Scheduler Architecture

27-34

4. Closes the session.

27.4.5 After Jobs Complete
The child processes perform several operations after a job completes.

When a job is done, the child processes do the following:

• Reschedule the job if required.

• Update the state in the job table to reflect whether the job has completed or is scheduled to
run again.

• Insert an entry into the job log table.

• Update the run count, and if necessary, failure and retry counts.

• Clean up.

• Look for new work (if none, they go to sleep).

The Scheduler dynamically sizes the child process pool as required.

27.4.6 Using the Scheduler in Real Application Clusters Environments
You can use the Scheduler in an Oracle Real Application Clusters environment.

• The Scheduler and Real Application Clusters
In an Oracle Real Application Clusters (Oracle RAC) environment, the Scheduler uses one
job table for each database and one job coordinator for each instance.

• Service Affinity when Using the Scheduler
The Scheduler enables you to specify the database service under which a job should be
run (service affinity).

27.4.6.1 The Scheduler and Real Application Clusters
In an Oracle Real Application Clusters (Oracle RAC) environment, the Scheduler uses one job
table for each database and one job coordinator for each instance.

The job coordinators communicate with each other to keep information current. The Scheduler
attempts to balance the load of the jobs of a job class across all available instances when the
job class has no service affinity, or across the instances assigned to a particular service when
the job class does have service affinity.

Figure 27-7 illustrates a typical Oracle RAC architecture, with the job coordinator for each
instance exchanging information with the others.

Chapter 27
Scheduler Architecture

27-35

Figure 27-7 Oracle RAC Architecture and the Scheduler

Instance 1 Instance 2 Instance 3

Job Child Processes Job Child Processes Job Child Processes

Job Coordinator 1 Job Coordinator 2 Job Coordinator 3

JCP JCP JCPJCP JCP JCPJCP JCP JCP

Database

Job Table

Job 1

Job 3

Job 5

Job 2

Job 4

Job 6

27.4.6.2 Service Affinity when Using the Scheduler
The Scheduler enables you to specify the database service under which a job should be run
(service affinity).

This ensures better availability than instance affinity because it guarantees that other nodes
can be dynamically assigned to the service if an instance goes down. Instance affinity does not
have this capability, so, when an instance goes down, none of the jobs with an affinity to that
instance can run until the instance comes back up. Figure 27-8 illustrates a typical example of
how services and instances could be used.

Figure 27-8 Service Affinity and the Scheduler

Database

Service A Service C Service E
Service D

Service B

Instance

1

Instance

2

Instance

3

Instance

4

Instance

5

Instance

6

Instance

7

Instance

8

In Figure 27-8, you could change the properties of the services and the Scheduler
automatically recognizes the change.

Chapter 27
Scheduler Architecture

27-36

Each job class can specify a database service. If a service is not specified, the job class
belongs to an internal service that is guaranteed to be mapped to every running instance.

27.5 Processes to Close a PDB
If a PDB is closed with the immediate option, then the coordinator terminates jobs running in
the PDB, and the jobs must be recovered before they can run again.

In an Oracle RAC database, the coordinator can, in most cases, recover the jobs on another
instance where that PDB is open. So, if the coordinator on the first instance can find another
instance where the PDB is still open, it moves the jobs there. In certain cases, moving the jobs
to another instance may not be possible. For example, if the PDB in question is not open
anywhere else, the jobs cannot be moved. Also, moving a job to another instance is not
possible when the job has the INSTANCE_ID attribute set. In this case the job cannot run until
the PDB on that instance is open again.

In a non-Oracle RAC case, the question of moving jobs does not arise. Terminated jobs can
only be recovered after the PDB is opened again.

27.6 Scheduler Support for Oracle Data Guard
Beginning with Oracle Database 11g Release 1 (11.1), the Scheduler can run jobs based on
whether a database is a primary database or a logical standby in an Oracle Data Guard
environment.

For a physical standby database, any changes made to Scheduler objects or any database
changes made by Scheduler jobs on the primary database are applied to the physical standby
like any other database changes.

For the primary database and logical standby databases, there is additional functionality that
enables you to specify that a job can run only when the database is in the role of the primary
database or a logical standby. You do this using the DBMS_SCHEDULER.SET_ATTRIBUTE
procedure to set the database_role job attribute to one of two values: 'PRIMARY' or 'LOGICAL
STANDBY'. (To run a job in both roles, you can make a copy of the job and set database_role to
'PRIMARY' for one job and to 'LOGICAL STANDBY' for the other). On switchover or failover, the
Scheduler automatically switches to running jobs specific to the new role. DML is replicated to
the job event log so that on failover, there is an available record of what ran successfully on the
primary database until it failed.

Replication of scheduler jobs from a primary to a logical standby is limited to the upgrade
target in a rolling upgrade done using the DBMS_ROLLING package.

See Also:

• "Examples of Setting Attributes" for an example of setting the database_role
attribute

• "Example of Creating a Job In an Oracle Data Guard Environment"

• Oracle Data Guard Concepts and Administration

Chapter 27
Processes to Close a PDB

27-37

28
Scheduling Jobs with Oracle Scheduler

You can create, run, and manage jobs with Oracle Scheduler.

Note:

This chapter describes how to use the DBMS_SCHEDULER package to work with
Scheduler objects. You can accomplish the same tasks using Oracle Enterprise
Manager Cloud Control and many of these tasks with Oracle SQL Developer.

See Oracle Database PL/SQL Packages and Types Reference for DBMS_SCHEDULER
information and the Cloud Control online help for information on Oracle Scheduler
pages.

• About Scheduler Objects and Their Naming
You operate Oracle Scheduler by creating and managing a set of Scheduler objects. Each
Scheduler object is a complete database schema object of the form [schema.]name.
Scheduler objects follow the naming rules for database objects exactly and share the SQL
namespace with other database objects.

• Creating, Running, and Managing Jobs
A job is the combination of a schedule and a program, along with any additional arguments
required by the program.

• Creating and Managing Programs to Define Jobs
A program is a collection of metadata about a particular task. You optionally use a program
to help define a job.

• Creating and Managing Schedules to Define Jobs
You optionally use a schedule object (a schedule) to define when a job should be run.
Schedules can be shared among users by creating and saving them as objects in the
database.

• Using Events to Start Jobs
Oracle Scheduler can start a job when an event is sent. An event is a message one
application or system process sends to another.

• Creating and Managing Job Chains
A job chain is a named series of tasks that are linked together for a combined objective.

• Using Incompatibility Definitions
An incompatibility definition (or, incompatibility) specifies incompatible jobs or programs,
where only one of the group can be running at a time.

• Managing Job Resources
You can create and alter resources available for use by jobs, and control how many of a
specified resource are available to a job.

• Prioritizing Jobs
You prioritize Oracle Scheduler jobs using three Scheduler objects: job classes, windows,
and window groups. These objects prioritize jobs by associating jobs with database
resource manager consumer groups. This, in turn, controls the amount of resources

28-1

allocated to these jobs. In addition, job classes enable you to set relative priorities among a
group of jobs if all jobs in the group are allocated identical resource levels.

• Monitoring Jobs
You can monitor jobs in several different ways.

28.1 About Scheduler Objects and Their Naming
You operate Oracle Scheduler by creating and managing a set of Scheduler objects. Each
Scheduler object is a complete database schema object of the form [schema.]name. Scheduler
objects follow the naming rules for database objects exactly and share the SQL namespace
with other database objects.

Follow SQL naming rules to name Scheduler objects in the DBMS_SCHEDULER package. By
default, Scheduler object names are uppercase unless they are surrounded by double quotes.
For example, when creating a job, job_name => 'my_job' is the same as job_name =>
'My_Job' and job_name => 'MY_JOB', but different from job_name => '"my_job"'. These
naming rules are also followed in those cases where comma-delimited lists of Scheduler object
names are used within the DBMS_SCHEDULER package.

See Also:

• Oracle Database SQL Language Reference for details regarding naming objects

• "About Jobs and Supporting Scheduler Objects"

28.2 Creating, Running, and Managing Jobs
A job is the combination of a schedule and a program, along with any additional arguments
required by the program.

• Job Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common job tasks.

• Creating Jobs
You create jobs using the DBMS_SCHEDULER package or Cloud Control.

• Altering Jobs
You alter a job by modifying its attributes. You do so using the SET_ATTRIBUTE,
SET_ATTRIBUTE_NULL, or SET_JOB_ATTRIBUTESprocedures in the DBMS_SCHEDULER package
or Cloud Control.

• Running Jobs
A job can be run in several different ways.

• Stopping Jobs
You stop one or more running jobs using the STOP_JOB procedure in the DBMS_SCHEDULER
package or Cloud Control.

• Stopping External Jobs
The Scheduler offers implementors of external jobs a mechanism to gracefully clean up
after their external jobs when STOP_JOB is called with force set to FALSE.

Chapter 28
About Scheduler Objects and Their Naming

28-2

• Stopping a Chain Job
If a job that points to a running chain is stopped, then all steps of the chain that are running
are stopped.

• Dropping Jobs
You drop one or more jobs using the DROP_JOB procedure in the DBMS_SCHEDULER package
or Cloud Control.

• Dropping Running Jobs
If a job is running at the time of the DROP_JOB procedure call, then attempting to drop the
job fails. You can modify this default behavior by setting either the force or defer option.

• Dropping Multiple Jobs
When you specify multiple jobs to drop, the commit_semantics argument of the
DBMS_SCHEDULER.DROP_JOB procedure determines the outcome if an error occurs on one of
the jobs.

• Disabling Jobs
You disable one or more jobs using the DISABLE procedure in the DBMS_SCHEDULER package
or Cloud Control.

• Enabling Jobs
You enable one or more jobs by using the ENABLE procedure in the DBMS_SCHEDULER
package or Cloud Control.

• Copying Jobs
You copy a job using the COPY_JOB procedure in the DBMS_SCHEDULER or Cloud Control.

See Also:

"Jobs" for an overview of jobs.

28.2.1 Job Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common job tasks.

Table 28-1 illustrates common job tasks and their appropriate procedures and privileges:

Table 28-1 Job Tasks and Their Procedures

Task Procedure Privilege Needed

Create a job CREATE_JOB or CREATE_JOBS CREATE JOB or CREATE ANY JOB
Alter a job SET_ATTRIBUTE or

SET_JOB_ATTRIBUTES
ALTER or CREATE ANY JOB or be the owner

Run a job RUN_JOB ALTER or CREATE ANY JOB or be the owner

Copy a job COPY_JOB ALTER or CREATE ANY JOB or be the owner

Drop a job DROP_JOB ALTER or CREATE ANY JOB or be the owner

Stop a job STOP_JOB ALTER or CREATE ANY JOB or be the owner

Disable a job DISABLE ALTER or CREATE ANY JOB or be the owner

Enable a job ENABLE ALTER or CREATE ANY JOB or be the owner

See "Scheduler Privileges" for further information regarding privileges.

Chapter 28
Creating, Running, and Managing Jobs

28-3

28.2.2 Creating Jobs
You create jobs using the DBMS_SCHEDULER package or Cloud Control.

• Overview of Creating Jobs
You create one or more jobs using the DBMS_SCHEDULER.CREATE_JOB or
DBMS_SCHEDULER.CREATE_JOBS procedures or Cloud Control.

• Specifying Job Actions, Schedules, Programs, and Styles
Because the CREATE_JOB procedure is overloaded, there are several different ways of
using it.

• Specifying Scheduler Job Credentials
Oracle Scheduler requires job credentials to authenticate with an Oracle database or the
operating system before running.

• Specifying Destinations
For remote external jobs and remote database jobs, you specify the job destination by
creating a destination object and assigning it to the destination_name job attribute. A job
with a NULL destination_name attribute runs on the host where the job is created.

• Creating Multiple-Destination Jobs
You can create a job that runs on multiple destinations, but that is managed from a single
location.

• Setting Job Arguments
To set job arguments, use the SET_JOB_ARGUMENT_VALUE or SET_JOB_ANYDATA_VALUE
procedures or Cloud Control. SET_JOB_ANYDATA_VALUE is used for complex data types that
cannot be represented as a VARCHAR2 string.

• Setting Additional Job Attributes
After creating a job, you can set additional job attributes or change attribute values by
using the SET_ATTRIBUTE or SET_JOB_ATTRIBUTES procedures.

• Creating Detached Jobs
A detached job must point to a program object (program) that has its detached attribute set
to TRUE.

• Creating Multiple Jobs in a Single Transaction
If you must create many jobs, then you may be able to reduce transaction overhead and
experience a performance gain if you use the CREATE_JOBS procedure.

• Techniques for External Jobs
This section contains the following examples, which demonstrate some practical
techniques for external jobs.

28.2.2.1 Overview of Creating Jobs
You create one or more jobs using the DBMS_SCHEDULER.CREATE_JOB or
DBMS_SCHEDULER.CREATE_JOBS procedures or Cloud Control.

You use the CREATE_JOB procedure to create a single job. This procedure is overloaded to
enable you to create different types of jobs that are based on different objects. You can create
multiple jobs in a single transaction using the CREATE_JOBS procedure.

You must have the CREATE JOB privilege to create a job in your own schema, and the CREATE
ANY JOB privilege to create a job in any schema except SYS.

Chapter 28
Creating, Running, and Managing Jobs

28-4

For each job being created, you specify a job type, an action, and a schedule. You can also
optionally specify a credential name, a destination or destination group name, a job class, and
other attributes. As soon as you enable a job, it is automatically run by the Scheduler at its next
scheduled date and time. By default, jobs are disabled when created and must be enabled with
DBMS_SCHEDULER.ENABLE to run. You can also set the enabled argument of the CREATE_JOB
procedure to TRUE, in which case the job is ready to be automatically run, according to its
schedule, as soon as you create it.

Some job attributes cannot be set with CREATE_JOB, and instead must be set with
DBMS_SCHEDULER.SET_ATTRIBUTE. For example, to set the logging_level attribute for a job,
you must call SET_ATTRIBUTE after calling CREATE_JOB.

You can create a job in another schema by specifying schema.job_name. The creator of a job
is, therefore, not necessarily the job owner. The job owner is the user in whose schema the job
is created. The NLS environment of the job, when it runs, is the existing environment at the
time the job was created.

The following example demonstrates creating a database job called update_sales, which calls
a package procedure in the OPS schema that updates a sales summary table:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'update_sales',
 job_type => 'STORED_PROCEDURE',
 job_action => 'OPS.SALES_PKG.UPDATE_SALES_SUMMARY',
 start_date => '28-APR-08 07.00.00 PM Australia/Sydney',
 repeat_interval => 'FREQ=DAILY;INTERVAL=2', /* every other day */
 end_date => '20-NOV-08 07.00.00 PM Australia/Sydney',
 auto_drop => FALSE,
 job_class => 'batch_update_jobs',
 comments => 'My new job');
END;
/

Because no destination_name attribute is specified, the job runs on the originating (local)
database. The job runs as the user who created the job.

The repeat_interval argument specifies that this job runs every other day until it reaches the
end date and time. Another way to limit the number of times that a repeating job runs is to set
its max_runs attribute to a positive number.

The job is disabled when it is created, by default. You must enable it with
DBMS_SCHEDULER.ENABLE before the Scheduler will automatically run it.

Jobs are set to be automatically dropped by default after they complete. Setting the auto_drop
attribute to FALSE causes the job to persist. Note that repeating jobs are not auto-dropped
unless the job end date passes, the maximum number of runs (max_runs) is reached, or the
maximum number of failures is reached (max_failures).

After a job is created, it can be queried using the *_SCHEDULER_JOBS views.

See Also:

"Specifying Scheduler Job Credentials"

Chapter 28
Creating, Running, and Managing Jobs

28-5

28.2.2.2 Specifying Job Actions, Schedules, Programs, and Styles
Because the CREATE_JOB procedure is overloaded, there are several different ways of using it.

In addition to specifying the job action and job repeat interval as job attributes as shown in the
example in "Overview of Creating Jobs", known as specifying the job action and job schedule
inline, you can create a job that points to a program object (program) to specify the job action,
a schedule object (schedule) to specify the repeat interval, or both a program and schedule.
You can also create jobs by specifying job programs and job styles.

• Creating Jobs Using a Named Program
You can create a job by pointing to a named program instead of inlining its action.

• Creating Jobs Using a Named Program and Job Styles
You can create jobs using named programs and job styles. The following job styles are
available: 'REGULAR', 'LIGHTWEIGHT', 'IN_MEMORY_RUNTIME', 'IN_MEMORY_FULL'.

• Creating Jobs Using a Named Schedule
You can create a job by pointing to a named schedule instead of inlining its schedule.

• Creating Jobs Using Named Programs and Schedules
A job can be created by pointing to both a named program and a named schedule.

See Also:

• "Programs"

• "Schedules"

28.2.2.2.1 Creating Jobs Using a Named Program
You can create a job by pointing to a named program instead of inlining its action.

To create a job using a named program, you specify the value for program_name in the
CREATE_JOB procedure when creating the job and do not specify the values for job_type,
job_action, and number_of_arguments.

To use an existing program when creating a job, the owner of the job must be the owner of the
program or have EXECUTE privileges on it. The following PL/SQL block is an example of a
CREATE_JOB procedure with a named program that creates a regular job called my_new_job1:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'my_new_job1',
 program_name => 'my_saved_program',
 repeat_interval => 'FREQ=DAILY;BYHOUR=12',
 comments => 'Daily at noon');
END;
/

Chapter 28
Creating, Running, and Managing Jobs

28-6

28.2.2.2.2 Creating Jobs Using a Named Program and Job Styles
You can create jobs using named programs and job styles. The following job styles are
available: 'REGULAR', 'LIGHTWEIGHT', 'IN_MEMORY_RUNTIME', 'IN_MEMORY_FULL'.

The default job style is 'REGULAR' which is implied if no job style is provided. Examples of the
other job types follow.

LIGHTWEIGHT Jobs

The following PL/SQL block creates a lightweight job. Lightweight jobs must reference a
program, and the program type must be 'PLSQL_BLOCK' or 'STORED_PROCEDURE'. In addition, the
program must be already enabled when you create the job.

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'my_lightweight_job1',
 program_name => 'polling_prog_n2',
 repeat_interval => 'FREQ=SECONDLY;INTERVAL=10',
 end_date => '30-APR-09 04.00.00 AM Australia/Sydney',
 job_style => 'LIGHTWEIGHT',
 comments => 'Job that polls device n2 every 10 seconds');
END;
/

IN_MEMORY_RUNTIME Jobs

The following PL/SQL block creates an in-memory runtime job. In-memory runtime jobs have
the same requirements and restrictions as lightweight jobs.

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'my_repeat_job',
 program_name => 'repeat_prog',
 start_date => systimestamp,
 repeat_interval => 'freq=secondly;interval=10',
 job_style => 'IN_MEMORY_RUNTIME',
 enabled => true);
END;
/

IN_MEMORY_FULL Jobs

The following PL/SQL creates an in-memory full job. In-memory full jobs require a program and
cannot have a schedule or repeat interval. They run automatically when the job is enabled, and
after running they are discarded.

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'my_immediate_job',
 program_name => 'fast_op',
 job_style => 'IN_MEMORY_FULL',
 enabled => true);
END;
/

Chapter 28
Creating, Running, and Managing Jobs

28-7

See Also:

"In-Memory Jobs"

28.2.2.2.3 Creating Jobs Using a Named Schedule
You can create a job by pointing to a named schedule instead of inlining its schedule.

To create a job using a named schedule, you specify the value for schedule_name in the
CREATE_JOB procedure when creating the job and do not specify the values for start_date,
repeat_interval, and end_date.

You can use any named schedule to create a job because all schedules are created with
access to PUBLIC. The following CREATE_JOB procedure has a named schedule and creates a
regular job called my_new_job2:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'my_new_job2',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN SALES_PKG.UPDATE_SALES_SUMMARY; END;',
 schedule_name => 'my_saved_schedule');
END;
/

28.2.2.2.4 Creating Jobs Using Named Programs and Schedules
A job can be created by pointing to both a named program and a named schedule.

For example, the following CREATE_JOB procedure creates a regular job called my_new_job3,
based on the existing program, my_saved_program1, and the existing schedule,
my_saved_schedule1:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'my_new_job3',
 program_name => 'my_saved_program1',
 schedule_name => 'my_saved_schedule1');
END;
/

See Also:

• "Creating and Managing Programs to Define Jobs"

• "Creating and Managing Schedules to Define Jobs"

• "Using Events to Start Jobs "

Chapter 28
Creating, Running, and Managing Jobs

28-8

28.2.2.3 Specifying Scheduler Job Credentials
Oracle Scheduler requires job credentials to authenticate with an Oracle database or the
operating system before running.

For local external jobs, remote external jobs, and remote database jobs, you must specify the
credentials under which the job runs. You do so by creating a credential object and assigning it
to the credential_name job attribute.

Note:

A local database job always runs as the user is who is the job owner and will ignore
any named credential.

To create a credential, call the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure.

You must have the CREATE CREDENTIAL privilege to create a credential in your own schema,
and the CREATE ANY CREDENTIAL privilege to create a credential in any schema except SYS. A
credential can be used only by a job whose owner has EXECUTE privileges on the credential or
whose owner also owns the credential. Because a credential belongs to a schema like any
other schema object, you use the GRANT SQL statement to grant privileges on a credential.

Example 28-1 Creating a Credential

BEGIN
 DBMS_CREDENTIAL.CREATE_CREDENTIAL('DW_CREDENTIAL', 'dwuser', 'dW001515');
END;
/

GRANT EXECUTE ON DW_CREDENTIAL TO salesuser;

You can query the *_CREDENTIALS views to see a list of credentials in the database. Credential
passwords are stored obfuscated and are not displayed in these views.

Note:

*_SCHEDULER_CREDENTIALS is deprecated in Oracle Database 12c, but remains
available, for reasons of backward compatibility.

See Also:

Oracle Database Security Guide for information about creating a credential using the
DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure

Chapter 28
Creating, Running, and Managing Jobs

28-9

28.2.2.4 Specifying Destinations
For remote external jobs and remote database jobs, you specify the job destination by creating
a destination object and assigning it to the destination_name job attribute. A job with a NULL
destination_name attribute runs on the host where the job is created.

• Destination Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer destination tasks.

• Creating Destinations
A destination is a Scheduler object that defines a location for running a job.

• Creating Destination Groups for Multiple-Destination Jobs
To create a job that runs on multiple destinations, you must create a destination group and
assign that group to the destination_name attribute of the job.

• Example: Creating a Remote Database Job
An example illustrates creating a remote database job.

28.2.2.4.1 Destination Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer destination tasks.

Table 28-2 illustrates destination tasks and their procedures and privileges:

Table 28-2 Destination Tasks and Their Procedures

Task Procedure Privilege Needed

Create an external
destination

(none) See "Creating Destinations"

Drop an external
destination

DROP_AGENT_DESTINATION MANAGE SCHEDULER

Create a database
destination

CREATE_DATABASE_DESTINATIO
N

CREATE JOB or CREATE ANY JOB

Drop a database
destination

DROP_DATABASE_DESTINATION CREATE ANY JOB or be the owner

Create a destination
group

CREATE_GROUP CREATE JOB or CREATE ANY JOB

Drop a destination group DROP_GROUP CREATE ANY JOB or be the owner

Add members to a
destination group

ADD_GROUP_MEMBER ALTER or CREATE ANY JOB or be the
owner

Remove members from a
destination group

REMOVE_GROUP_MEMBER ALTER or CREATE ANY JOB or be the
owner

28.2.2.4.2 Creating Destinations
A destination is a Scheduler object that defines a location for running a job.

You designate the locations where a job runs by specifying either a single destination or a
destination group in the destination_name attribute of the job. If you leave the
destination_name attribute NULL, the job runs on the local host (the host where the job was
created).

Chapter 28
Creating, Running, and Managing Jobs

28-10

Use external destinations to specify locations where remote external jobs run. Use database
destinations to specify locations where remote database jobs run.

You do not need object privileges to use a destination created by another user.

To create an external destination, register a remote Scheduler agent with the database.

See "Installing and Configuring the Scheduler Agent on a Remote Host" for instructions.

Note:

There is no DBMS_SCHEDULER package procedure to create an external destination.
You create an external destination implicitly by registering a remote agent.

You can also register a local Scheduler agent if you have other database instances
on the same host that are targets for remote jobs. This creates an external
destination that references the local host.

The external destination name is automatically set to the agent name. To verify that the
external destination was created, query the views DBA_SCHEDULER_EXTERNAL_DESTS or
ALL_SCHEDULER_EXTERNAL_DESTS.

To create a database destination, call the DBMS_SCHEDULER.CREATE_DATABASE_DESTINATION
procedure.

You must specify the name of an external destination as a procedure argument. This
designates the remote host that the database destination points to. You also specify a net
service name or complete connect descriptor that identifies the database instance being
connected to. If you specify a net service name, it must be resolved by the local tnsnames.ora
file. If you do not specify a database instance, the remote Scheduler agent connects to its
default database, which is specified in the agent configuration file.

To create a database destination, you must have the CREATE JOB system privilege. To create a
database destination in a schema other than your own, you must have the CREATE ANY JOB
privilege.

Example 28-2 Creating a Database Destination

The following example creates a database destination named DBHOST1_ORCLDW. For this
example, assume the following:

• You installed a Scheduler agent on the remote host dbhost1.example.com, and you
registered the agent with the local database.

• You did not modify the agent configuration file to set the agent name. Therefore the agent
name and the external destination name default to DBHOST1.

• You used Net Configuration Assistant on the local host to create a connect descriptor in
tnsnames.ora for the Oracle Database instance named orcldw, which resides on the
remote host dbhost1.example.com. You assigned a net service name (alias) of ORCLDW to
this connect descriptor.

BEGIN
 DBMS_SCHEDULER.CREATE_DATABASE_DESTINATION (
 destination_name => 'DBHOST1_ORCLDW',
 agent => 'DBHOST1',
 tns_name => 'ORCLDW',
 comments => 'Instance named orcldw on host dbhost1.example.com');

Chapter 28
Creating, Running, and Managing Jobs

28-11

END;
/

To verify that the database destination was created, query the views *_SCHEDULER_DB_DESTS.

See Also:

• "Destinations" for more information about destinations

• "Jobs" to learn about remote external jobs and remote database jobs

28.2.2.4.3 Creating Destination Groups for Multiple-Destination Jobs
To create a job that runs on multiple destinations, you must create a destination group and
assign that group to the destination_name attribute of the job.

You can specify group members (destinations) when you create the group, or you can add
group members at a later time.

To create a destination group, call the DBMS_SCHEDULER.CREATE_GROUP procedure.

For remote external jobs you must specify a group of type 'EXTERNAL_DEST', and all group
members must be external destinations. For remote database jobs, you must specify a group
of type 'DB_DEST', and all members must be database destinations.

Members of destination groups have the following format:

[[schema.]credential@][schema.]destination

where:

• credential is the name of an existing credential.

• destination is the name of an existing database destination or external destination

The credential portion of a destination member is optional. If omitted, the job using this
destination member uses its default credential.

You can include another group of the same type as a member of a destination group. Upon
group creation, the Scheduler expands the included group into its members.

If you want the local host to be one of many destinations on which a job runs, you can include
the keyword LOCAL as a group member for either type of destination group. LOCAL can be
preceded by a credential only in an external destination group.

A group is owned by the user who creates it. You must have the CREATE JOB system privilege to
create a group in your own schema, and the CREATE ANY JOB system privilege to create a group
in another schema. You can grant object privileges on a group to other users by granting
SELECT on the group.

See Also:

"Groups" for an overview of groups.

Chapter 28
Creating, Running, and Managing Jobs

28-12

Example 28-3 Creating a Database Destination Group

This example creates a database destination group. Because some members do not include a
credential, a job using this destination group must have default credentials.

BEGIN
 DBMS_SCHEDULER.CREATE_GROUP(
 GROUP_NAME => 'all_dbs',
 GROUP_TYPE => 'DB_DEST',
 MEMBER => 'oltp_admin@orcl, orcldw1, LOCAL',
 COMMENTS => 'All databases managed by me');
END;
/

The following code adds another member to the group.

BEGIN
 DBMS_SCHEDULER.ADD_GROUP_MEMBER(
 GROUP_NAME => 'all_dbs',
 MEMBER => 'dw_admin@orcldw2');
END;
/

28.2.2.4.4 Example: Creating a Remote Database Job
An example illustrates creating a remote database job.

The following example creates a remote database job by specifying a database destination
object in the destination_name object of the job. A credential must also be specified so the job
can authenticate with the remote database. The example uses the credential created in
Example 28-1 and the database destination created in Example 28-2.

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'SALES_SUMMARY1',
 job_type => 'STORED_PROCEDURE',
 job_action => 'SALES.SALES_REPORT1',
 start_date => '15-JUL-09 11.00.00 PM Europe/Warsaw',
 repeat_interval => 'FREQ=DAILY',
 credential_name => 'DW_CREDENTIAL',
 destination_name => 'DBHOST1_ORCLDW');
END;
/

28.2.2.5 Creating Multiple-Destination Jobs
You can create a job that runs on multiple destinations, but that is managed from a single
location.

A typical reason to do this is to run a database maintenance job on all of the databases that
you administer. Rather than create the job on each database, you create the job once and
designate multiple destinations for the job. From the database where you created the job (the
local database), you can monitor the state and results of all instances of the job at all locations.

To create a multiple-destination job:

• Call the DBMS_SCHEDULER.CREATE_JOB procedure and set the destination_name attribute of
the job to the name of database destination group or external destination group.

If not all destination group members include a credential prefix (the schema), assign a
default credential to the job.

Chapter 28
Creating, Running, and Managing Jobs

28-13

To include the local host or local database as one of the destinations on which the job runs,
ensure that the keyword LOCAL is one of the members of the destination group.

To obtain a list of destination groups, submit this query:

SELECT owner, group_name, group_type, number_of_members FROM all_scheduler_groups
 WHERE group_type = 'DB_DEST' or group_type = 'EXTERNAL_DEST';

OWNER GROUP_NAME GROUP_TYPE NUMBER_OF_MEMBERS
--------------- --------------- ------------- -----------------
DBA1 ALL_DBS DB_DEST 4
DBA1 ALL_HOSTS EXTERNAL_DEST 4

The following example creates a multiple-destination database job, using the database
destination group created in Example 28-3. The user specified in the credential should have
sufficient privileges to perform the job action.

BEGIN
 DBMS_CREDENTIAL.CREATE_CREDENTIAL('DBA_CREDENTIAL', 'dba1', 'sYs040533');
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'MAINT_SET1',
 job_type => 'STORED_PROCEDURE',
 job_action => 'MAINT_PROC1',
 start_date => '15-JUL-09 11.00.00 PM Europe/Warsaw',
 repeat_interval => 'FREQ=DAILY',
 credential_name => 'DBA_CREDENTIAL',
 destination_name => 'ALL_DBS');
END;
/

See Also:

• "Multiple-Destination Jobs"

• "Monitoring Multiple Destination Jobs"

• "Groups"

28.2.2.6 Setting Job Arguments
To set job arguments, use the SET_JOB_ARGUMENT_VALUE or SET_JOB_ANYDATA_VALUE
procedures or Cloud Control. SET_JOB_ANYDATA_VALUE is used for complex data types that
cannot be represented as a VARCHAR2 string.

After creating a job, you may need to set job arguments if:

• The inline job action is a stored procedure or other executable that requires arguments

• The job references a named program object and you want to override one or more default
program arguments

• The job references a named program object and one or more of the program arguments
were not assigned a default value

An example of a job that might need arguments is one that starts a reporting program that
requires a start date and end date. The following code example sets the end date job
argument, which is the second argument expected by the reporting program:

Chapter 28
Creating, Running, and Managing Jobs

28-14

BEGIN
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE (
 job_name => 'ops_reports',
 argument_position => 2,
 argument_value => '12-DEC-03');
END;
/

If you use this procedure on an argument whose value has already been set, it will be
overwritten. You can set argument values using either the argument name or the argument
position. To use argument name, the job must reference a named program object, and the
argument must have been assigned a name in the program object. If a program is inlined, only
setting by position is supported. Arguments are not supported for jobs of type 'PLSQL_BLOCK'.

To remove a value that has been set, use the RESET_JOB_ARGUMENT procedure. This procedure
can be used for both regular and ANYDATA arguments.

SET_JOB_ARGUMENT_VALUE only supports arguments of SQL type. Therefore, argument values
that are not of SQL type, such as booleans, are not supported as program or job arguments.

See Also:

"Defining Program Arguments"

28.2.2.7 Setting Additional Job Attributes
After creating a job, you can set additional job attributes or change attribute values by using
the SET_ATTRIBUTE or SET_JOB_ATTRIBUTES procedures.

You can also set job attributes with Cloud Control. Although many job attributes can be set with
the call to CREATE_JOB, some attributes, such as destination and credential_name, can be
set only with SET_ATTRIBUTE or SET_JOB_ATTRIBUTES after the job has been created.

28.2.2.8 Creating Detached Jobs
A detached job must point to a program object (program) that has its detached attribute set to
TRUE.

The following example for Linux and UNIX creates a nightly job that performs a cold backup of
the database. It contains three steps.

Step 1—Create the Script That Invokes RMAN

Create a shell script that calls an RMAN script to perform a cold backup. The shell script is in
ORACLE_HOME/scripts/coldbackup.sh. It must be executable by the user who installed Oracle
Database (typically the user oracle).

#!/bin/sh

export ORACLE_HOME=/u01/app/oracle/product/database_release_number/db_1
export ORACLE_SID=orcl
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

$ORACLE_HOME/bin/rman TARGET / @$ORACLE_HOME/scripts/coldbackup.rman
 trace /u01/app/oracle/backup/coldbackup.out &
exit 0

Chapter 28
Creating, Running, and Managing Jobs

28-15

Step 2—Create the RMAN Script

Create an RMAN script that performs the cold backup and then ends the job. The script is in
ORACLE_HOME/scripts/coldbackup.rman.

run {
Shut down database for backups and put into MOUNT mode
shutdown immediate
startup mount

Perform full database backup
backup full format "/u01/app/oracle/backup/%d_FULL_%U" (database) ;

Open database after backup
alter database open;

Call notification routine to indicate job completed successfully
sql " BEGIN DBMS_SCHEDULER.END_DETACHED_JOB_RUN(''sys.backup_job'', 0,
 null); END; ";
}

Step 3—Create the Job and Use a Detached Program

Submit the following PL/SQL block:

BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM(
 program_name => 'sys.backup_program',
 program_type => 'executable',
 program_action => '?/scripts/coldbackup.sh',
 enabled => TRUE);

 DBMS_SCHEDULER.SET_ATTRIBUTE('sys.backup_program', 'detached', TRUE);

 DBMS_SCHEDULER.CREATE_JOB(
 job_name => 'sys.backup_job',
 program_name => 'sys.backup_program',
 repeat_interval => 'FREQ=DAILY;BYHOUR=1;BYMINUTE=0');

 DBMS_SCHEDULER.ENABLE('sys.backup_job');
END;
/

See Also:

"Detached Jobs"

28.2.2.9 Creating Multiple Jobs in a Single Transaction
If you must create many jobs, then you may be able to reduce transaction overhead and
experience a performance gain if you use the CREATE_JOBS procedure.

Example 28-4 demonstrates how to use this procedure to create multiple jobs in a single
transaction.

Chapter 28
Creating, Running, and Managing Jobs

28-16

Example 28-4 Creating Multiple Jobs in a Single Transaction

DECLARE
 newjob sys.job_definition;
 newjobarr sys.job_definition_array;
BEGIN
 -- Create an array of JOB_DEFINITION object types
 newjobarr := sys.job_definition_array();

 -- Allocate sufficient space in the array
 newjobarr.extend(5);

 -- Add definitions for 5 jobs
 FOR i IN 1..5 LOOP
 -- Create a JOB_DEFINITION object type
 newjob := sys.job_definition(job_name => 'TESTJOB' || to_char(i),
 job_style => 'REGULAR',
 program_name => 'PROG1',
 repeat_interval => 'FREQ=HOURLY',
 start_date => systimestamp + interval '600' second,
 max_runs => 2,
 auto_drop => FALSE,
 enabled => TRUE
);

 -- Add it to the array
 newjobarr(i) := newjob;
 END LOOP;

 -- Call CREATE_JOBS to create jobs in one transaction
 DBMS_SCHEDULER.CREATE_JOBS(newjobarr, 'TRANSACTIONAL');
END;
/

PL/SQL procedure successfully completed.

SELECT JOB_NAME FROM USER_SCHEDULER_JOBS;

JOB_NAME

TESTJOB1
TESTJOB2
TESTJOB3
TESTJOB4
TESTJOB5

5 rows selected.

See Also:

"Lightweight Jobs"

28.2.2.10 Techniques for External Jobs
This section contains the following examples, which demonstrate some practical techniques for
external jobs.

Chapter 28
Creating, Running, and Managing Jobs

28-17

Example 28-5 Creating a Local External Job That Runs a Command Interpreter

This example demonstrates how to create a local external job on Windows that runs an
interpreter command (in this case, mkdir). The job runs cmd.exe with the /c option.

BEGIN
 DBMS_SCHEDULER.CREATE_JOB(
 job_name => 'MKDIR_JOB',
 job_type => 'EXECUTABLE',
 number_of_arguments => 3,
 job_action => '\windows\system32\cmd.exe',
 auto_drop => FALSE,
 credential_name => 'TESTCRED');

 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('mkdir_job',1,'/c');
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('mkdir_job',2,'mkdir');
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('mkdir_job',3,'\temp\extjob_test_dir');
 DBMS_SCHEDULER.ENABLE('MKDIR_JOB');
END;
/

Example 28-6 Creating a Local External Job and Viewing the Job Output

This example for Linux and UNIX shows how to create and run a local external job and then
view the job output. When an external job runs, the Scheduler automatically retrieves the
output from the job and stores it inside the database.

To see the output, query *_SCHEDULER_JOB_RUN_DETAILS views.

-- User scott must have CREATE JOB, CREATE CREDENTIAL, and CREATE EXTERNAL JOB
-- privileges
GRANT CREATE JOB, CREATE EXTERNAL JOB TO scott ;

CONNECT scott/password
SET SERVEROUTPUT ON

-- Create a credential for the job to use
exec DBMS_CREDENTIAL.CREATE_CREDENTIAL('my_cred','host_username','host_passwd')

-- Create a job that lists a directory. After running, the job is dropped.
BEGIN
 DBMS_SCHEDULER.CREATE_JOB(
 job_name => 'lsdir',
 job_type => 'EXECUTABLE',
 job_action => '/bin/ls',
 number_of_arguments => 1,
 enabled => false,
 auto_drop => true,
 credential_name => 'my_cred');
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('lsdir',1,'/tmp');
 DBMS_SCHEDULER.ENABLE('lsdir');
END;
/

-- Wait a bit for the job to run, and then check the job results.
SELECT job_name, status, error#, actual_start_date, additional_info
 FROM user_scheduler_job_run_details WHERE job_name='LSDIR';

-- Now use the external log id from the additional_info column to
-- formulate the log file name and retrieve the output
DECLARE
 my_clob clob;
 log_id varchar2(50);

Chapter 28
Creating, Running, and Managing Jobs

28-18

BEGIN
 SELECT regexp_substr(additional_info,'job[_0-9]*') INTO log_id
 FROM user_scheduler_job_run_details WHERE job_name='LSDIR';
 DBMS_LOB.CREATETEMPORARY(my_clob, false);

SELECT job_name, status, error#, errors, output FROM user_scheduler_job_run_details
WHERE job_name = 'LSDIR';
END;
/

See Also:

• Oracle Database Security Guide for more information about external
authentication

• "External Jobs"

• "Stopping External Jobs"

• "Troubleshooting Remote Jobs"

28.2.3 Altering Jobs
You alter a job by modifying its attributes. You do so using the SET_ATTRIBUTE,
SET_ATTRIBUTE_NULL, or SET_JOB_ATTRIBUTESprocedures in the DBMS_SCHEDULER package or
Cloud Control.

See the CREATE_JOB procedure in Oracle Database PL/SQL Packages and Types Reference
for details on job attributes.

All jobs can be altered, and, except for the job name, all job attributes can be changed. If there
is a running instance of the job when the change is made, it is not affected by the call. The
change is only seen in future runs of the job.

In general, you should not alter a job that was automatically created for you by the database.
Jobs that were created by the database have the column SYSTEM set to TRUE in job views. The
attributes of a job are available in the *_SCHEDULER_JOBS views.

It is valid for running jobs to alter their own job attributes. However, these changes do not take
effect until the next scheduled run of the job.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the SET_ATTRIBUTE, SET_ATTRIBUTE_NULL, and SET_JOB_ATTRIBUTES procedures.

The following example changes the repeat_interval of the job update_sales to once per
week on Wednesday.

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE (
 name => 'update_sales',
 attribute => 'repeat_interval',
 value => 'freq=weekly; byday=wed');
END;
/

Chapter 28
Creating, Running, and Managing Jobs

28-19

28.2.4 Running Jobs
A job can be run in several different ways.

There are three ways in which a job can be run:

• According to the job schedule—In this case, provided that the job is enabled, the job is
automatically picked up by the Scheduler job coordinator and run under the control of a job
child process. The job runs as the user who is the job owner, or in the case of a local
external job with a credential, as the user named in the credential. To find out whether the
job succeeded, you must query the job views (*_SCHEDULER_JOBS) or the job log
(*_SCHEDULER_JOB_LOG and *_SCHEDULER_JOB_RUN_DETAILS). See "How Jobs Execute" for
more information on job child processes and the Scheduler architecture.

• When an event occurs—Enabled event-based jobs start when a specified event is received
on an event queue or when a file watcher raises a file arrival event. (See "Using Events to
Start Jobs ".) Event-based jobs also run under the control of a job child process and run as
the user who owns the job, or in the case of a local external job with a credential, as the
user named in the credential. To find out whether the job succeeded, you must query the
job views or the job log.

• By calling DBMS_SCHEDULER.RUN_JOB—You can use the RUN_JOB procedure to test a job or
to run it outside of its specified schedule. You can run the job asynchronously, which is
similar to the previous two methods of running a job, or synchronously, in which the job
runs in the session that called RUN_JOB, and as the user logged in to that session. The
use_current_session argument of RUN_JOB determines whether a job runs synchronously
or asynchronously.

RUN_JOB accepts a comma-delimited list of job names.

The following example asynchronously runs two jobs:

BEGIN
 DBMS_SCHEDULER.RUN_JOB(
 JOB_NAME => 'DSS.ETLJOB1, DSS.ETLJOB2',
 USE_CURRENT_SESSION => FALSE);
END;
/

Note:

It is not necessary to call RUN_JOB to run a job according to its schedule. Provided
that job is enabled, the Scheduler runs it automatically.

28.2.5 Stopping Jobs
You stop one or more running jobs using the STOP_JOB procedure in the DBMS_SCHEDULER
package or Cloud Control.

STOP_JOB accepts a comma-delimited list of jobs, job classes, and job destination IDs. A job
destination ID is a number, assigned by the Scheduler, that represents a unique combination
of a job, a credential, and a destination. It serves as a convenient method for identifying a
particular child job of a multiple-destination job and for stopping just that child. You obtain the
job destination ID for a child job from the *_SCHEDULER_JOB_DESTS views.

Chapter 28
Creating, Running, and Managing Jobs

28-20

If a job class is supplied, all running jobs in the job class are stopped. For example, the
following statement stops job job1, all jobs in the job class dw_jobs, and two child jobs of a
multiple-destination job:

BEGIN
 DBMS_SCHEDULER.STOP_JOB('job1, sys.dw_jobs, 984, 1223');
END;
/

All instances of the designated jobs are stopped. After stopping a job, the state of a one-time
job is set to STOPPED, and the state of a repeating job is set to SCHEDULED (because the next run
of the job is scheduled). In addition, an entry is made in the job log with OPERATION set to
'STOPPED', and ADDITIONAL_INFO set to 'REASON="Stop job called by user: username"'.

By default, the Scheduler tries to gracefully stop a job using an interrupt mechanism. This
method gives control back to the child process, which can collect statistics of the job run. If the
force option is set to TRUE, the job is abruptly terminated and certain run-time statistics might
not be available for the job run.

Stopping a job that is running a chain automatically stops all running steps (by calling STOP_JOB
with the force option set to TRUE on each step).

You can use the commit_semantics argument of STOP_JOB to control the outcome if multiple
jobs are specified and errors occur when trying to stop one or more jobs. If you set this
argument to ABSORB_ERRORS, the procedure may be able to continue after encountering an
error and attempt to stop the remaining jobs. If the procedure indicates that errors occurred,
you can query the view SCHEDULER_BATCH_ERRORS to determine the nature of the errors. See
"Dropping Jobs" for a more detailed discussion of commit semantics.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the STOP_JOB procedure.

Note:

When a job is stopped, only the current transaction is rolled back. This can cause
data inconsistency.

28.2.6 Stopping External Jobs
The Scheduler offers implementors of external jobs a mechanism to gracefully clean up after
their external jobs when STOP_JOB is called with force set to FALSE.

The mechanism described in this section applies only to remote external jobs on the UNIX and
Linux platforms.

On UNIX and Linux, a SIGTERM signal is sent to the process launched by the Scheduler. The
implementor of the external job is expected to trap the SIGTERM in an interrupt handler, clean up
whatever work the job has done, and exit.

On Windows, STOP_JOB with force set to FALSE is supported. The process launched by the
Scheduler is a console process. To stop it, the Scheduler sends a CTRL+BREAK to the process.
The CTRL+BREAK can be handled by registering a handler with the SetConsoleCtrlHandler()
routine.

Chapter 28
Creating, Running, and Managing Jobs

28-21

28.2.7 Stopping a Chain Job
If a job that points to a running chain is stopped, then all steps of the chain that are running are
stopped.

See "Stopping Individual Chain Steps" for information about stopping individual chain steps.

28.2.8 Dropping Jobs
You drop one or more jobs using the DROP_JOB procedure in the DBMS_SCHEDULER package or
Cloud Control.

DROP_JOB accepts a comma-delimited list of jobs and job classes. If a job class is supplied, all
jobs in the job class are dropped, although the job class itself is not dropped. You cannot use
job destination IDs with DROP_JOB to drop the child of a multiple-destination job.

Use the DROP_JOB_CLASS procedure to drop a job class, as described in "Dropping Job
Classes".

The following statement drops jobs job1 and job3, and all jobs in job classes jobclass1 and
jobclass2:

BEGIN
 DBMS_SCHEDULER.DROP_JOB ('job1, job3, sys.jobclass1, sys.jobclass2');
END;
/

28.2.9 Dropping Running Jobs
If a job is running at the time of the DROP_JOB procedure call, then attempting to drop the job
fails. You can modify this default behavior by setting either the force or defer option.

When you set the force option to TRUE, the Scheduler first attempts to stop the running job by
using an interrupt mechanism, calling STOP_JOB with the force option set to FALSE. If the job
stops successfully, it is then dropped. Alternatively, you can first call STOP_JOB to stop the job
and then call DROP_JOB. If STOP_JOB fails, you can call STOP_JOB with the force option, provided
you have the MANAGE SCHEDULER privilege. You can then drop the job. By default, force is set to
FALSE for both the STOP_JOB and DROP_JOB procedures.

When you set the defer option to TRUE, the running job is allowed to complete and then
dropped. The force and defer options are mutually exclusive; setting both results in an error.

28.2.10 Dropping Multiple Jobs
When you specify multiple jobs to drop, the commit_semantics argument of the
DBMS_SCHEDULER.DROP_JOB procedure determines the outcome if an error occurs on one of the
jobs.

Possible values for this argument are:

• STOP_ON_FIRST_ERROR, the default—The call returns on the first error and commits
previous successful drop operations to disk.

• TRANSACTIONAL—The call returns on the first error and rolls back previous drop operations
before the error. force must be FALSE.

Chapter 28
Creating, Running, and Managing Jobs

28-22

• ABSORB_ERRORS—The call tries to absorb any errors, attempts to drop the rest of the jobs,
and commits all the drops that were successful.

Setting commit_semantics is valid only when no job classes are included in the job_name list.
When you include job classes, default commit semantics (STOP_ON_FIRST_ERROR) are in effect.

The following example drops the jobs myjob1 and myjob2 with the defer option and uses
transactional commit semantics:

BEGIN
 DBMS_SCHEDULER.DROP_JOB(
 job_name => 'myjob1, myjob2',
 defer => TRUE,
 commit_semantics => 'TRANSACTIONAL');
END;
/

This next example illustrates the ABSORB_ERRORS commit semantics. Assume that myjob1 is
running when the procedure is called and that myjob2 is not.

BEGIN
 DBMS_SCHEDULER.DROP_JOB(
 job_name => 'myjob1, myjob2',
 commit_semantics => 'ABSORB_ERRORS');
END;
/
Error report:
ORA-27362: batch API call completed with errors

You can query the view SCHEDULER_BATCH_ERRORS to determine the nature of the errors.

SELECT object_name, error_code, error_message FROM scheduler_batch_errors;

OBJECT_NAME ERROR CODE ERROR_MESSAGE
-------------- ---------- ---
STEVE.MYJOB1 27478 "ORA-27478: job "STEVE.MYJOB1" is running

Checking USER_SCHEDULER_JOBS, you would find that myjob2 was successfully dropped and
that myjob1 is still present.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DROP_JOB procedure.

28.2.11 Disabling Jobs
You disable one or more jobs using the DISABLE procedure in the DBMS_SCHEDULER package or
Cloud Control.

Jobs can also become disabled by other means. For example, dropping a job class disables
the class jobs. Dropping either the program or the schedule that jobs point to, disables the
jobs. However, disabling either the program or the schedule that jobs point to does not disable
the jobs, and therefore, results in errors when the Scheduler tries to run them.

Disabling a job means that, although the metadata of the job is there, it should not run and the
job coordinator does not pick up these jobs for processing. When a job is disabled, its state in
the job table is changed to disabled.

When a currently running job is disabled with the force option set to FALSE, an error returns.
When force is set to TRUE, the job is disabled, but the currently running instance is allowed to
finish.

Chapter 28
Creating, Running, and Managing Jobs

28-23

If commit_semantics is set to STOP_ON_FIRST_ERROR, then the call returns on the first error and
the previous successful disable operations are committed to disk. If commit_semantics is set to
TRANSACTIONAL and force is set to FALSE, then the call returns on the first error and rolls back
the previous disable operations before the error. If commit_semantics is set to ABSORB_ERRORS,
then the call tries to absorb any errors and attempts to disable the rest of the jobs and commits
all the successful disable operations. If the procedure indicates that errors occurred, you can
query the view SCHEDULER_BATCH_ERRORS to determine the nature of the errors.

By default, commit_semantics is set to STOP_ON_FIRST_ERROR.

You can also disable several jobs in one call by providing a comma-delimited list of job names
or job class names to the DISABLE procedure call. For example, the following statement
combines jobs with job classes:

BEGIN
 DBMS_SCHEDULER.DISABLE('job1, job2, job3, sys.jobclass1, sys.jobclass2');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DISABLE procedure.

28.2.12 Enabling Jobs
You enable one or more jobs by using the ENABLE procedure in the DBMS_SCHEDULER package or
Cloud Control.

The effect of this procedure is that the job will be picked up by the job coordinator for
processing. Jobs are created disabled by default, so you must enable them before they can
run. When a job is enabled, a validity check is performed. If the check fails, the job is not
enabled.

If you enable a disabled job, it begins to run immediately according to its schedule. Enabling a
disabled job also resets the job RUN_COUNT, FAILURE_COUNT, and RETRY_COUNT attributes.

If commit_semantics is set to STOP_ON_FIRST_ERROR, then the call returns on the first error and
the previous successful enable operations are committed to disk. If commit_semantics is set to
TRANSACTIONAL, then the call returns on the first error and the previous enable operations
before the error are rolled back. If commit_semantics is set to ABSORB_ERRORS, then the call
tries to absorb any errors and attempts to enable the rest of the jobs and commits all the
successful enable operations. If the procedure indicates that errors occurred, you can query
the view SCHEDULER_BATCH_ERRORS to determine the nature of the errors.

By default, commit_semantics is set to STOP_ON_FIRST_ERROR.

You can enable several jobs in one call by providing a comma-delimited list of job names or job
class names to the ENABLE procedure call. For example, the following statement combines jobs
with job classes:

BEGIN
 DBMS_SCHEDULER.ENABLE ('job1, job2, job3,
 sys.jobclass1, sys.jobclass2, sys.jobclass3');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the ENABLE procedure.

Chapter 28
Creating, Running, and Managing Jobs

28-24

28.2.13 Copying Jobs
You copy a job using the COPY_JOB procedure in the DBMS_SCHEDULER or Cloud Control.

This call copies all the attributes of the old job to the new job (except job name). The new job is
created disabled.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the COPY_JOB procedure.

28.3 Creating and Managing Programs to Define Jobs
A program is a collection of metadata about a particular task. You optionally use a program to
help define a job.

• Program Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common program tasks.

• Creating Programs with Scheduler
A program describes what is to be run by the Scheduler.

• Altering Programs
You alter a program by modifying its attributes. You can use Cloud Control or the
DBMS_SCHEDULER.SET_ATTRIBUTE and DBMS_SCHEDULER.SET_ATTRIBUTE_NULL package
procedures to alter programs.

• Dropping Programs
You drop one or more programs using the DROP_PROGRAM procedure in the DBMS_SCHEDULER
package or Cloud Control.

• Disabling Programs
You disable one or more programs using the DISABLE procedure in the DBMS_SCHEDULER
package or Cloud Control.

• Enabling Programs
You enable one or more programs using the ENABLE procedure in the DBMS_SCHEDULER
package or Cloud Control.

See Also:

"Programs" for an overview of programs.

28.3.1 Program Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common program tasks.

Table 28-3 illustrates common program tasks and their appropriate procedures and privileges:

Table 28-3 Program Tasks and Their Procedures

Task Procedure Privilege Needed

Create a program CREATE_PROGRAM CREATE JOB or CREATE ANY JOB

Chapter 28
Creating and Managing Programs to Define Jobs

28-25

Table 28-3 (Cont.) Program Tasks and Their Procedures

Task Procedure Privilege Needed

Alter a program SET_ATTRIBUTE ALTER or CREATE ANY JOB or be the owner

Drop a program DROP_PROGRAM ALTER or CREATE ANY JOB or be the owner

Disable a program DISABLE ALTER or CREATE ANY JOB or be the owner

Enable a program ENABLE ALTER or CREATE ANY JOB or be the owner

See "Scheduler Privileges" for further information regarding privileges.

28.3.2 Creating Programs with Scheduler
A program describes what is to be run by the Scheduler.

• Creating Programs
You create programs by using the CREATE_PROGRAM procedure or Cloud Control.

• Defining Program Arguments
After creating a program, you can define program arguments.

28.3.2.1 Creating Programs
You create programs by using the CREATE_PROGRAM procedure or Cloud Control.

By default, programs are created in the schema of the creator. To create a program in another
user's schema, you must qualify the program name with the schema name. For other users to
use your programs, they must have EXECUTE privileges on the program, therefore, once a
program has been created, you must grant the EXECUTE privilege on it.

The following example creates a program called my_program1:

BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name => 'my_program1',
 program_action => '/usr/local/bin/date',
 program_type => 'EXECUTABLE',
 comments => 'My comments here');
END;
/

Programs are created in the disabled state by default; you must enable them before you can
enable jobs that point to them.

Do not attempt to enable a program that requires arguments before you define all program
arguments, which you must do in a DEFINE_XXX_ARGUMENT procedure as described in "Defining
Program Arguments".

28.3.2.2 Defining Program Arguments
After creating a program, you can define program arguments.

You can define arguments by position in the calling sequence, with an optional argument name
and optional default value. If no default value is defined for a program argument, the job that
references the program must supply an argument value. (The job can also override a default
value.) All argument values must be defined before the job can be enabled.

Chapter 28
Creating and Managing Programs to Define Jobs

28-26

To set program argument values, use the DEFINE_PROGRAM_ARGUMENT or
DEFINE_ANYDATA_ARGUMENT procedures. Use DEFINE_ANYDATA_ARGUMENT for complex types that
must be encapsulated in an ANYDATA object. An example of a program that might need
arguments is one that starts a reporting program that requires a start date and end date. The
following code example sets the end date argument, which is the second argument expected
by the reporting program. The example also assigns a name to the argument so that you can
refer to the argument by name (instead of position) from other package procedures, including
SET_JOB_ANYDATA_VALUE and SET_JOB_ARGUMENT_VALUE.

BEGIN
 DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT (
 program_name => 'operations_reporting',
 argument_position => 2,
 argument_name => 'end_date',
 argument_type => 'VARCHAR2',
 default_value => '12-DEC-03');
END;
/

Valid values for the argument_type argument must be SQL data types, therefore booleans are
not supported. For external executables, only string types such as CHAR or VARCHAR2 are
permitted.

You can drop a program argument either by name or by position, as in the following:

BEGIN
 DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT (
 program_name => 'operations_reporting',
 argument_position => 2);

 DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT (
 program_name => 'operations_reporting',
 argument_name => 'end_date');
END;
/

In some special cases, program logic depends on the Scheduler environment. The Scheduler
has some predefined metadata arguments that can be passed as an argument to the program
for this purpose. For example, for some jobs whose schedule is a window name, it is useful to
know how much longer the window will be open when the job is started. This is possible by
defining the window end time as a metadata argument to the program.

If a program needs access to specific job metadata, you can define a special metadata
argument using the DEFINE_METADATA_ARGUMENT procedure, so values will be filled in by the
Scheduler when the program is executed.

See Also:

"Setting Job Arguments"

Chapter 28
Creating and Managing Programs to Define Jobs

28-27

28.3.3 Altering Programs
You alter a program by modifying its attributes. You can use Cloud Control or the
DBMS_SCHEDULER.SET_ATTRIBUTE and DBMS_SCHEDULER.SET_ATTRIBUTE_NULL package
procedures to alter programs.

See the DBMS_SCHEDULER.CREATE_PROGRAM procedure in Oracle Database PL/SQL Packages
and Types Reference for details on program attributes.

If any currently running jobs use the program that you altered, they continue to run with the
program as defined before the alter operation.

The following example changes the executable that program my_program1 runs:

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE (
 name => 'my_program1',
 attribute => 'program_action',
 value => '/usr/local/bin/salesreports1');
END;
/

28.3.4 Dropping Programs
You drop one or more programs using the DROP_PROGRAM procedure in the DBMS_SCHEDULER
package or Cloud Control.

When the program is dropped, any arguments that pertain it are also dropped. You can drop
several programs in one call by providing a comma-delimited list of program names. For
example, the following statement drops three programs:

BEGIN
 DBMS_SCHEDULER.DROP_PROGRAM('program1, program2, program3');
END;
/

Running jobs that point to the program are not affected by the DROP_PROGRAM call and are
allowed to continue.

If you set the force argument to TRUE, jobs pointing to this program are disabled and the
program is dropped. If you set the force argument to FALSE, the default, the call fails if there
are any jobs pointing to the program.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DROP_PROGRAM procedure.

28.3.5 Disabling Programs
You disable one or more programs using the DISABLE procedure in the DBMS_SCHEDULER
package or Cloud Control.

When a program is disabled, the status is changed to disabled. A disabled program implies
that, although the metadata is still there, jobs that point to this program cannot run.

The DISABLE call does not affect running jobs that point to the program and they are allowed to
continue. Also, disabling the program does not affect any arguments that pertain to it.

Chapter 28
Creating and Managing Programs to Define Jobs

28-28

A program can also be disabled by other means, for example, if a program argument is
dropped or the number_of_arguments is changed so that no arguments are defined.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DISABLE procedure.

28.3.6 Enabling Programs
You enable one or more programs using the ENABLE procedure in the DBMS_SCHEDULER package
or Cloud Control.

When a program is enabled, the enabled flag is set to TRUE. Programs are created disabled by
default, therefore, you have to enable them before you can enable jobs that point to them.
Before programs are enabled, validity checks are performed to ensure that the action is valid
and that all arguments are defined.

You can enable several programs in one call by providing a comma-delimited list of program
names to the ENABLE procedure call. For example, the following statement enables three
programs:

BEGIN
 DBMS_SCHEDULER.ENABLE('program1, program2, program3');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the ENABLE procedure.

28.4 Creating and Managing Schedules to Define Jobs
You optionally use a schedule object (a schedule) to define when a job should be run.
Schedules can be shared among users by creating and saving them as objects in the
database.

• Schedule Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common schedule
tasks.

• Creating Schedules
You create schedules by using the CREATE_SCHEDULE procedure in the DBMS_SCHEDULER
package or Cloud Control.

• Altering Schedules
You alter a schedule by using the SET_ATTRIBUTE and SET_ATTRIBUTE_NULL procedures in
the DBMS_SCHEDULER package or Cloud Control.

• Dropping Schedules
You drop a schedule using the DROP_SCHEDULE procedure in the DBMS_SCHEDULER package
or Cloud Control.

• Setting the Repeat Interval
You can control when and how often a job repeats.

Chapter 28
Creating and Managing Schedules to Define Jobs

28-29

See Also:

• "Schedules" for an overview of schedules.

• "Managing Job Scheduling and Job Priorities with Windows" and "Managing Job
Scheduling and Job Priorities with Window Groups" to schedule jobs while
managing job resource usage

28.4.1 Schedule Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common schedule tasks.

Table 28-4 illustrates common schedule tasks and the procedures you use to handle them.

Table 28-4 Schedule Tasks and Their Procedures

Task Procedure Privilege Needed

Create a schedule CREATE_SCHEDULE CREATE JOB or CREATE ANY JOB
Alter a schedule SET_ATTRIBUTE ALTER or CREATE ANY JOB or be the owner

Drop a schedule DROP_SCHEDULE ALTER or CREATE ANY JOB or be the owner

See "Scheduler Privileges" for further information.

28.4.2 Creating Schedules
You create schedules by using the CREATE_SCHEDULE procedure in the DBMS_SCHEDULER
package or Cloud Control.

Schedules are created in the schema of the user creating the schedule, and are enabled when
first created. You can create a schedule in another user's schema. Once a schedule has been
created, it can be used by other users. The schedule is created with access to PUBLIC.
Therefore, there is no need to explicitly grant access to the schedule. The following example
create a schedule:

BEGIN
 DBMS_SCHEDULER.CREATE_SCHEDULE (
 schedule_name => 'my_stats_schedule',
 start_date => SYSTIMESTAMP,
 end_date => SYSTIMESTAMP + INTERVAL '30' day,
 repeat_interval => 'FREQ=HOURLY; INTERVAL=4',
 comments => 'Every 4 hours');
END;
/

Chapter 28
Creating and Managing Schedules to Define Jobs

28-30

See Also:

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the CREATE_SCHEDULE procedure.

• "Creating an Event Schedule"

28.4.3 Altering Schedules
You alter a schedule by using the SET_ATTRIBUTE and SET_ATTRIBUTE_NULL procedures in the
DBMS_SCHEDULER package or Cloud Control.

Altering a schedule changes the definition of the schedule. With the exception of schedule
name, all attributes can be changed. The attributes of a schedule are available in the
*_SCHEDULER_SCHEDULES views.

If a schedule is altered, the change does not affect running jobs and open windows that use
this schedule. The change goes into effect the next time the jobs runs or the window opens.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the SET_ATTRIBUTE procedure.

28.4.4 Dropping Schedules
You drop a schedule using the DROP_SCHEDULE procedure in the DBMS_SCHEDULER package or
Cloud Control.

This procedure call deletes the schedule object from the database.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DROP_SCHEDULE procedure.

28.4.5 Setting the Repeat Interval
You can control when and how often a job repeats.

• About Setting the Repeat Interval
You control when and how often a job repeats by setting the repeat_interval attribute of
the job itself or the named schedule that the job references. You can set repeat_interval
with DBMS_SCHEDULER package procedures or with Cloud Control.

• Using the Scheduler Calendaring Syntax
The main way to set how often a job repeats is to set the repeat_interval attribute with a
Scheduler calendaring expression.

• Using a PL/SQL Expression
When you need more complicated capabilities than the calendaring syntax provides, you
can use PL/SQL expressions. You cannot, however, use PL/SQL expressions for windows
or in named schedules. The PL/SQL expression must evaluate to a date or a timestamp.

• Differences Between PL/SQL Expression and Calendaring Syntax Behavior
There are important differences in behavior between a calendaring expression and
PL/SQL repeat interval.

Chapter 28
Creating and Managing Schedules to Define Jobs

28-31

• Repeat Intervals and Daylight Savings
For repeating jobs, the next time a job is scheduled to run is stored in a timestamp with
time zone column.

28.4.5.1 About Setting the Repeat Interval
You control when and how often a job repeats by setting the repeat_interval attribute of the
job itself or the named schedule that the job references. You can set repeat_interval with
DBMS_SCHEDULER package procedures or with Cloud Control.

Evaluating the repeat_interval results in a set of timestamps. The Scheduler runs the job at
each timestamp. Note that the start date from the job or schedule also helps determine the
resulting set of timestamps. If no value for repeat_interval is specified, the job runs only
once at the specified start date.

Immediately after a job starts, the repeat_interval is evaluated to determine the next
scheduled execution time of the job. While this might arrive while the job is still running, a new
instance of the job does not start until the current one completes.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
repeat_interval evaluation

28.4.5.2 Using the Scheduler Calendaring Syntax
The main way to set how often a job repeats is to set the repeat_interval attribute with a
Scheduler calendaring expression.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a detailed description
of the calendaring syntax for repeat_interval as well as the CREATE_SCHEDULE
procedure

Examples of Calendaring Expressions

The following examples illustrate simple repeat intervals. For simplicity, it is assumed that there
is no contribution to the evaluation results by the start date.

Run every Friday. (All three examples are equivalent.)

FREQ=DAILY; BYDAY=FRI;
FREQ=WEEKLY; BYDAY=FRI;
FREQ=YEARLY; BYDAY=FRI;

Run every other Friday.

FREQ=WEEKLY; INTERVAL=2; BYDAY=FRI;

Run on the last day of every month.

Chapter 28
Creating and Managing Schedules to Define Jobs

28-32

FREQ=MONTHLY; BYMONTHDAY=-1;

Run on the next to last day of every month.

FREQ=MONTHLY; BYMONTHDAY=-2;

Run on March 10th. (Both examples are equivalent)

FREQ=YEARLY; BYMONTH=MAR; BYMONTHDAY=10;
FREQ=YEARLY; BYDATE=0310;

Run every 10 days.

FREQ=DAILY; INTERVAL=10;

Run daily at 4, 5, and 6PM.

FREQ=DAILY; BYHOUR=16,17,18;

Run on the 15th day of every other month.

FREQ=MONTHLY; INTERVAL=2; BYMONTHDAY=15;

Run on the 29th day of every month.

FREQ=MONTHLY; BYMONTHDAY=29;

Run on the second Wednesday of each month.

FREQ=MONTHLY; BYDAY=2WED;

Run on the last Friday of the year.

FREQ=YEARLY; BYDAY=-1FRI;

Run every 50 hours.

FREQ=HOURLY; INTERVAL=50;

Run on the last day of every other month.

FREQ=MONTHLY; INTERVAL=2; BYMONTHDAY=-1;

Run hourly for the first three days of every month.

FREQ=HOURLY; BYMONTHDAY=1,2,3;

Here are some more complex repeat intervals:

Run on the last workday of every month (assuming that workdays are Monday through Friday).

FREQ=MONTHLY; BYDAY=MON,TUE,WED,THU,FRI; BYSETPOS=-1

Run on the last workday of every month, excluding company holidays. (This example
references an existing named schedule called Company_Holidays.)

FREQ=MONTHLY; BYDAY=MON,TUE,WED,THU,FRI; EXCLUDE=Company_Holidays; BYSETPOS=-1

Run at noon every Friday and on company holidays.

FREQ=YEARLY;BYDAY=FRI;BYHOUR=12;INCLUDE=Company_Holidays

Chapter 28
Creating and Managing Schedules to Define Jobs

28-33

Run on these three holidays: July 4th, Memorial Day, and Labor Day. (This example references
three existing named schedules, JUL4, MEM, and LAB, where each defines a single date
corresponding to a holiday.)

JUL4,MEM,LAB

Examples of Calendaring Expression Evaluation

A repeat interval of "FREQ=MINUTELY;INTERVAL=2;BYHOUR=17; BYMINUTE=2,4,5,50,51,7;" with
a start date of 28-FEB-2004 23:00:00 will generate the following schedule:

SUN 29-FEB-2004 17:02:00
SUN 29-FEB-2004 17:04:00
SUN 29-FEB-2004 17:50:00
MON 01-MAR-2004 17:02:00
MON 01-MAR-2004 17:04:00
MON 01-MAR-2004 17:50:00
...

A repeat interval of "FREQ=MONTHLY;BYMONTHDAY=15,-1" with a start date of 29-DEC-2003
9:00:00 will generate the following schedule:

WED 31-DEC-2003 09:00:00
THU 15-JAN-2004 09:00:00
SAT 31-JAN-2004 09:00:00
SUN 15-FEB-2004 09:00:00
SUN 29-FEB-2004 09:00:00
MON 15-MAR-2004 09:00:00
WED 31-MAR-2004 09:00:00
...

A repeat interval of "FREQ=MONTHLY;" with a start date of 29-DEC-2003 9:00:00 will generate
the following schedule. (Note that because there is no BYMONTHDAY clause, the day of month is
retrieved from the start date.)

MON 29-DEC-2003 09:00:00
THU 29-JAN-2004 09:00:00
SUN 29-FEB-2004 09:00:00
MON 29-MAR-2004 09:00:00
...

Example of Using a Calendaring Expression

As an example of using the calendaring syntax, consider the following statement:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'scott.my_job1',
 start_date => '15-JUL-04 01.00.00 AM Europe/Warsaw',
 repeat_interval => 'FREQ=MINUTELY; INTERVAL=30;',
 end_date => '15-SEP-04 01.00.00 AM Europe/Warsaw',
 comments => 'My comments here');
END;
/

This creates my_job1 in scott. It will run for the first time on July 15th and then run until
September 15. The job is run every 30 minutes.

Chapter 28
Creating and Managing Schedules to Define Jobs

28-34

28.4.5.3 Using a PL/SQL Expression
When you need more complicated capabilities than the calendaring syntax provides, you can
use PL/SQL expressions. You cannot, however, use PL/SQL expressions for windows or in
named schedules. The PL/SQL expression must evaluate to a date or a timestamp.

Other than this restriction, there are no limitations, so with sufficient programming, you can
create every possible repeat interval. As an example, consider the following statement:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'scott.my_job2',
 start_date => '15-JUL-04 01.00.00 AM Europe/Warsaw',
 repeat_interval => 'SYSTIMESTAMP + INTERVAL '30' MINUTE',
 end_date => '15-SEP-04 01.00.00 AM Europe/Warsaw',
 comments => 'My comments here');
END;
/

This creates my_job1 in scott. It will run for the first time on July 15th and then every 30
minutes until September 15. The job is run every 30 minutes because repeat_interval is set
to SYSTIMESTAMP + INTERVAL '30' MINUTE, which returns a date 30 minutes into the future.

28.4.5.4 Differences Between PL/SQL Expression and Calendaring Syntax Behavior
There are important differences in behavior between a calendaring expression and PL/SQL
repeat interval.

These differences include the following:

• Start date

– Using the calendaring syntax, the start date is a reference date only. Therefore, the
schedule is valid as of this date. It does not mean that the job will start on the start
date.

– Using a PL/SQL expression, the start date represents the actual time that the job will
start executing for the first time.

• Next run time

– Using the calendaring syntax, the next time the job runs is fixed.

– Using the PL/SQL expression, the next time the job runs depends on the actual start
time of the current job run.

As an example of the difference, for a job that is scheduled to start at 2:00 PM and repeat
every 2 hours, but actually starts at 2:10:

– If calendaring syntax specified the repeat interval, then it would repeat at 4, 6 and so
on.

– If a PL/SQL expression is used, then the job would repeat at 4:10, and if the next job
actually started at 4:11, then the subsequent run would be at 6:11.

To illustrate these two points, consider a situation where you have a start date of 15-July-2003
1:45:00 and you want it to repeat every two hours. A calendar expression of "FREQ=HOURLY;
INTERVAL=2; BYMINUTE=0;" will generate the following schedule:

TUE 15-JUL-2003 03:00:00
TUE 15-JUL-2003 05:00:00
TUE 15-JUL-2003 07:00:00

Chapter 28
Creating and Managing Schedules to Define Jobs

28-35

TUE 15-JUL-2003 09:00:00
TUE 15-JUL-2003 11:00:00
...

Note that the calendar expression repeats every two hours on the hour.

A PL/SQL expression of "SYSTIMESTAMP + interval '2' hour", however, might have a run
time of the following:

TUE 15-JUL-2003 01:45:00
TUE 15-JUL-2003 03:45:05
TUE 15-JUL-2003 05:45:09
TUE 15-JUL-2003 07:45:14
TUE 15-JUL-2003 09:45:20
...

28.4.5.5 Repeat Intervals and Daylight Savings
For repeating jobs, the next time a job is scheduled to run is stored in a timestamp with time
zone column.

• Using the calendaring syntax, the time zone is retrieved from start_date. For more
information on what happens when start_date is not specified, see Oracle Database
PL/SQL Packages and Types Reference.

• Using PL/SQL repeat intervals, the time zone is part of the timestamp that the PL/SQL
expression returns.

In both cases, it is important to use region names. For example, use "Europe/Istanbul",
instead of absolute time zone offsets such as "+2:00". The Scheduler follows daylight savings
adjustments that apply to that region only when a time zone is specified as a region name.

28.5 Using Events to Start Jobs
Oracle Scheduler can start a job when an event is sent. An event is a message one application
or system process sends to another.

• About Events
An event is a message one application or system process sends to another to indicate that
some action or occurrence has been detected. An event is raised (sent) by one application
or process, and consumed (received) by one or more applications or processes.

• Starting Jobs with Events Raised by Your Application
Oracle Scheduler can start a job when an event is raised by your application.

• Starting a Job When a File Arrives on a System
You can configure the Scheduler to start a job when a file arrives on the local system or a
remote system. The job is an event-based job, and the file arrival event is raised by a file
watcher, which is a Scheduler object introduced in Oracle Database 11g Release 2 (11.2).

See Also:

• "Examples of Creating Jobs and Schedules Based on Events"

• "Creating and Managing Job Chains" for information about using events with
chains to achieve precise control over process flow

Chapter 28
Using Events to Start Jobs

28-36

28.5.1 About Events
An event is a message one application or system process sends to another to indicate that
some action or occurrence has been detected. An event is raised (sent) by one application or
process, and consumed (received) by one or more applications or processes.

The Scheduler consumes two kinds of events:

• Events that your application raises

An application can raise an event to be consumed by the Scheduler. The Scheduler reacts
to the event by starting a job. For example, when an inventory tracking system notices that
the inventory has gone below a certain threshold, it can raise an event that starts an
inventory replenishment job.

See "Starting Jobs with Events Raised by Your Application".

• File arrival events that a file watcher raises

You can create a file watcher, a Scheduler object introduced in Oracle Database 11g
Release 2 (11.2), to watch for the arrival of a file on a system. You can then configure a job
to start when the file watcher detects the presence of the file. For example, a data
warehouse for a chain of stores loads data from end-of-day revenue reports which are
uploaded from the stores. The data warehouse load job starts each time a new end-of-day
report arrives.

See "Starting a Job When a File Arrives on a System"

See Also:

"Monitoring Job State with Events Raised by the Scheduler" for information about
how your application can consume job state change events raised by the Scheduler

28.5.2 Starting Jobs with Events Raised by Your Application
Oracle Scheduler can start a job when an event is raised by your application.

• About Events Raised by Your Application
Your application can raise an event to notify the Scheduler to start a job. A job started in
this way is referred to as an event-based job.

• Creating an Event-Based Job
You use the CREATE_JOB procedure or Cloud Control to create an event-based job. The job
can include event information inline as job attributes or can specify event information by
pointing to an event schedule. Like jobs based on time schedules, event-based jobs are
not auto-dropped unless the job end date passes, max_runs is reached, or the maximum
number of failures (max_failures) is reached.

• Altering an Event-Based Job
You alter an event-based job by using the SET_ATTRIBUTE procedure in the
DBMS_SCHEDULER package.

• Creating an Event Schedule
You can create a schedule that is based on an event. You can then reuse the schedule for
multiple jobs. To do so, use the CREATE_EVENT_SCHEDULE procedure, or use Cloud Control.

Chapter 28
Using Events to Start Jobs

28-37

• Altering an Event Schedule
You alter the event information in an event schedule in the same way that you alter event
information in a job.

• Passing Event Messages into an Event-Based Job
Through a metadata argument, the Scheduler can pass the message content of the event
to the event-based job that started the job.

28.5.2.1 About Events Raised by Your Application
Your application can raise an event to notify the Scheduler to start a job. A job started in this
way is referred to as an event-based job.

You can create a named schedule that references an event instead of containing date, time,
and recurrence information. If a job is given such a schedule (an event schedule), the job runs
when the event is raised.

To raise an event to notify the Scheduler to start a job, your application enqueues a message
onto an Oracle Database Advanced Queuing queue that was specified when setting up the job.
When the job starts, it can optionally retrieve the message content of the event.

To create an event-based job, you must set these two additional attributes:

• queue_spec
A queue specification that includes the name of the queue where your application
enqueues messages to raise job start events, or in the case of a secure queue, the queue
name followed by a comma and the agent name.

• event_condition
A conditional expression based on message properties that must evaluate to TRUE for the
message to start the job. The expression must have the syntax of an Oracle Database
Advanced Queuing rule. Accordingly, you can include user data properties in the
expression, provided that the message payload is an object type, and that you prefix object
attributes in the expression with tab.user_data.

See Also:

– DBMS_AQADM.ADD_SUBSCRIBER procedure in Oracle Database PL/SQL
Packages and Types Reference for more information on queueing rules

– Oracle Database Advanced Queuing User's Guide for more information on
how to create queues

– Oracle Database Advanced Queuing User's Guide for more information on
how to enqueue messages

The following example sets event_condition to select only low-inventory events that occur
after midnight and before 9:00 a.m. Assume that the message payload is an object with
two attributes called event_type and event_timestamp.

event_condition = 'tab.user_data.event_type = ''LOW_INVENTORY'' and
extract hour from tab.user_data.event_timestamp < 9'

You can specify queue_spec and event_condition as inline job attributes, or you can create an
event schedule with these attributes and point to this schedule from the job.

Chapter 28
Using Events to Start Jobs

28-38

Note:

The Scheduler runs the event-based job for each occurrence of an event that
matches event_condition. However, by default, events that occur while the job is
already running are ignored; the event gets consumed, but does not trigger another
run of the job. Beginning in Oracle Database 11g Release 1 (11.1), you can change
this default behavior by setting the job attribute PARALLEL_INSTANCES to TRUE. In this
case, an instance of the job is started for every instance of the event, and all job
instances are lightweight jobs. See the SET_ATTRIBUTE procedure in Oracle Database
PL/SQL Packages and Types Reference for details.

Table 28-5 describes common administration tasks involving events raised by an application
(and consumed by the Scheduler) and the procedures associated with them.

Table 28-5 Event Tasks and Their Procedures for Events Raised by an Application

Task Procedure Privilege Needed

Creating an Event-Based Job CREATE_JOB CREATE JOB or CREATE ANY JOB
Altering an Event-Based Job SET_ATTRIBUTE CREATE ANY JOB or ownership of the

job being altered or ALTER privileges
on the job

Creating an Event Schedule CREATE_EVENT_SCHEDULE CREATE JOB or CREATE ANY JOB
Altering an Event Schedule SET_ATTRIBUTE CREATE ANY JOB or ownership of the

schedule being altered or ALTER
privileges on the schedule

28.5.2.2 Creating an Event-Based Job
You use the CREATE_JOB procedure or Cloud Control to create an event-based job. The job can
include event information inline as job attributes or can specify event information by pointing to
an event schedule. Like jobs based on time schedules, event-based jobs are not auto-dropped
unless the job end date passes, max_runs is reached, or the maximum number of failures
(max_failures) is reached.

• Specifying Event Information as Job Attributes
To specify event information as job attributes, you use an alternate syntax of CREATE_JOB
that includes the queue_spec and event_condition attributes.

• Specifying Event Information in an Event Schedule
To specify event information with an event schedule, you set the schedule_name attribute
of the job to the name of an event schedule.

28.5.2.2.1 Specifying Event Information as Job Attributes
To specify event information as job attributes, you use an alternate syntax of CREATE_JOB that
includes the queue_spec and event_condition attributes.

The following example creates a job that starts when an application signals to the Scheduler
that inventory levels for an item have fallen to a low threshold level:

BEGIN
DBMS_SCHEDULER.CREATE_JOB (

Chapter 28
Using Events to Start Jobs

28-39

 job_name => 'process_lowinv_j1',
 program_name => 'process_lowinv_p1',
 event_condition => 'tab.user_data.event_type = ''LOW_INVENTORY''',
 queue_spec => 'inv_events_q, inv_agent1',
 enabled => TRUE,
 comments => 'Start an inventory replenishment job');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the CREATE_JOB procedure.

28.5.2.2.2 Specifying Event Information in an Event Schedule
To specify event information with an event schedule, you set the schedule_name attribute of the
job to the name of an event schedule.

The following example specifies event information in an event schedule:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'process_lowinv_j1',
 program_name => 'process_lowinv_p1',
 schedule_name => 'inventory_events_schedule',
 enabled => TRUE,
 comments => 'Start an inventory replenishment job');
END;
/

See "Creating an Event Schedule" for more information.

28.5.2.3 Altering an Event-Based Job
You alter an event-based job by using the SET_ATTRIBUTE procedure in the DBMS_SCHEDULER
package.

For jobs that specify the event inline, you cannot set the queue_spec and event_condition
attributes individually with SET_ATTRIBUTE. Instead, you must set an attribute called
event_spec, and pass an event condition and queue specification as the third and fourth
arguments, respectively, to SET_ATTRIBUTE.

The following example uses the event_spec attribute:

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE ('my_job', 'event_spec',
 'tab.user_data.event_type = ''LOW_INVENTORY''', 'inv_events_q, inv_agent1');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the SET_ATTRIBUTE procedure.

28.5.2.4 Creating an Event Schedule
You can create a schedule that is based on an event. You can then reuse the schedule for
multiple jobs. To do so, use the CREATE_EVENT_SCHEDULE procedure, or use Cloud Control.

The following example creates an event schedule:

Chapter 28
Using Events to Start Jobs

28-40

BEGIN
 DBMS_SCHEDULER.CREATE_EVENT_SCHEDULE (
 schedule_name => 'inventory_events_schedule',
 start_date => SYSTIMESTAMP,
 event_condition => 'tab.user_data.event_type = ''LOW_INVENTORY''',
 queue_spec => 'inv_events_q, inv_agent1');
END;
/

You can drop an event schedule using the DROP_SCHEDULE procedure. See Oracle Database
PL/SQL Packages and Types Reference for more information on CREATE_EVENT_SCHEDULE.

28.5.2.5 Altering an Event Schedule
You alter the event information in an event schedule in the same way that you alter event
information in a job.

For more information, see "Altering an Event-Based Job".

The following example demonstrates how to use the SET_ATTRIBUTE procedure and the
event_spec attribute to alter event information in an event schedule.

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE ('inventory_events_schedule', 'event_spec',
 'tab.user_data.event_type = ''LOW_INVENTORY''', 'inv_events_q, inv_agent1');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the SET_ATTRIBUTE procedure.

28.5.2.6 Passing Event Messages into an Event-Based Job
Through a metadata argument, the Scheduler can pass the message content of the event to
the event-based job that started the job.

The following rules apply:

• The job must use a named program of type STORED_PROCEDURE.

• One of the named program arguments must be a metadata argument with
metadata_attribute set to EVENT_MESSAGE.

• The stored procedure that implements the program must have an argument at the position
corresponding to the metadata argument of the named program. The argument type must
be the data type of the queue where your application queues the job-start event.

If you use the RUN_JOB procedure to manually run a job that has an EVENT_MESSAGE metadata
argument, the value passed to that argument is NULL.

The following example shows how to construct an event-based job that can receive the event
message content:

CREATE OR REPLACE PROCEDURE my_stored_proc (event_msg IN event_queue_type)
AS
BEGIN
 -- retrieve and process message body
END;
/

BEGIN

Chapter 28
Using Events to Start Jobs

28-41

 DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name => 'my_prog',
 program_action=> 'my_stored_proc',
 program_type => 'STORED_PROCEDURE',
 number_of_arguments => 1,
 enabled => FALSE) ;

 DBMS_SCHEDULER.DEFINE_METADATA_ARGUMENT (
 program_name => 'my_prog',
 argument_position => 1 ,
 metadata_attribute => 'EVENT_MESSAGE') ;

 DBMS_SCHEDULER.ENABLE ('my_prog');
EXCEPTION
 WHEN others THEN RAISE ;
END ;
/

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'my_evt_job' ,
 program_name => 'my_prog',
 schedule_name => 'my_evt_sch',
 enabled => true,
 auto_Drop => false) ;
EXCEPTION
 WHEN others THEN RAISE ;
END ;
/

28.5.3 Starting a Job When a File Arrives on a System
You can configure the Scheduler to start a job when a file arrives on the local system or a
remote system. The job is an event-based job, and the file arrival event is raised by a file
watcher, which is a Scheduler object introduced in Oracle Database 11g Release 2 (11.2).

• About File Watchers
A file watcher is a Scheduler object that defines the location, name, and other properties
of a file whose arrival on a system causes the Scheduler to start a job.

• Enabling File Arrival Events from Remote Systems
To receive file arrival events from a remote system, you must install the Scheduler agent
on that system, and you must register the agent with the database.

• Creating File Watchers and File Watcher Jobs
You complete several steps to create a file watcher and a file watch job.

• File Arrival Example
An example illustrates file arrival for a file watcher job.

• Managing File Watchers
The DBMS_SCHEDULER PL/SQL package provides procedures for enabling, disabling,
dropping, and setting attributes for file watchers.

• Viewing File Watcher Information
You can view information about file watchers by querying the views
*_SCHEDULER_FILE_WATCHERS.

Chapter 28
Using Events to Start Jobs

28-42

28.5.3.1 About File Watchers
A file watcher is a Scheduler object that defines the location, name, and other properties of a
file whose arrival on a system causes the Scheduler to start a job.

You create a file watcher and then create any number of event-based jobs or event schedules
that reference the file watcher. When the file watcher detects the arrival of the designated file,
a newly arrived file, it raises a file arrival event.

A newly arrived file is a file that has been changed and therefore has a timestamp that is later
than either the latest execution or the time that the file watcher job began monitoring the target
file directory.

The way the file watcher determines whether a file is a newly arrived one or not is equivalent to
repeatedly executing the Unix command ls -lrt or the Windows DOS command dir /od to
watch for new files in a directory. Both these commands ensure that the recently modified file is
listed at the end, that is the oldest first and the newest last.

Note:

The following behaviors:

The UNIX mv command does not change the file modification time, while the cp
command does.

The Windows move/paste and copy/paste commands do not change the file
modification time. To do this, execute the following DOS command after the move or
copy command: copy /b file_name +,,

The steady_state_duration parameter of the CREATE_FILE_WATCHER procedure, described in
Oracle Database PL/SQL Packages and Types Reference, indicates the minimum time interval
that the file must remain unchanged before the file watcher considers the file found. This
cannot exceed one hour. If the parameter is NULL, an internal value is used.

The job started by the file arrival event can retrieve the event message to learn about the
newly arrived file. The message contains the information required to find the file, open it, and
process it.

A file watcher can watch for a file on the local system (the same host computer running Oracle
Database) or a remote system. Remote systems must be running the Scheduler agent, and the
agent must be registered with the database.

File watchers check for the arrival of files every 10 minutes. You can adjust this interval. See
"Changing the File Arrival Detection Interval" for details.

To use file watchers, the database Java virtual machine (JVM) component must be installed.

You must have the CREATE JOB system privilege to create a file watcher in your own schema.
You require the CREATE ANY JOB system privilege to create a file watcher in a schema different
from your own (except the SYS schema, which is disallowed). You can grant the EXECUTE object
privilege on a file watcher so that jobs in different schemas can reference it. You can also grant
the ALTER object privilege on a file watcher so that another user can modify it.

Chapter 28
Using Events to Start Jobs

28-43

28.5.3.2 Enabling File Arrival Events from Remote Systems
To receive file arrival events from a remote system, you must install the Scheduler agent on
that system, and you must register the agent with the database.

The remote system does not require a running Oracle Database instance to generate file
arrival events.

To enable the raising of file arrival events at remote systems:

1. Set up the local database to run remote external jobs.

See "Enabling and Disabling Databases for Remote Jobs" for instructions.

2. Install, configure, register, and start the Scheduler agent on the first remote system.

See "Installing and Configuring the Scheduler Agent on a Remote Host" for instructions.

This adds the remote host to the list of external destinations maintained on the local
database.

3. Repeat the previous step for each additional remote system.

28.5.3.3 Creating File Watchers and File Watcher Jobs
You complete several steps to create a file watcher and a file watch job.

You perform the following tasks to create a file watcher and create the event-based job that
starts when the designated file arrives.

Task 1 - Create a Credential
The file watcher requires a credential object (a credential) with which to authenticate with the
host operating system for access to the file. See "Credentials" for information on privileges
required to create credentials.
Perform these steps:

1. Create a credential for the operating system user that must have access to the watched-
for file.

BEGIN
 DBMS_CREDENTIAL.CREATE_CREDENTIAL('WATCH_CREDENTIAL', 'salesapps',
 'sa324w1');
END;
/

2. Grant the EXECUTE object privilege on the credential to the schema that owns the event-
based job that the file watcher will start.

GRANT EXECUTE ON WATCH_CREDENTIAL to DSSUSER;

Task 2 - Create a File Watcher
Perform these steps:

1. Create the file watcher, assigning attributes as described in the
DBMS_SCHEDULER.CREATE_FILE_WATCHER procedure documentation in Oracle Database
PL/SQL Packages and Types Reference. You can specify wildcard parameters in the file
name. A '?' prefix in the DIRECTORY_PATH attribute denotes the path to the Oracle home
directory. A NULL destination indicates the local host. To watch for the file on a remote

Chapter 28
Using Events to Start Jobs

28-44

host, provide a valid external destination name, which you can obtain from the view
ALL_SCHEDULER_EXTERNAL_DESTS.

BEGIN
 DBMS_SCHEDULER.CREATE_FILE_WATCHER(
 file_watcher_name => 'EOD_FILE_WATCHER',
 directory_path => '?/eod_reports',
 file_name => 'eod*.txt',
 credential_name => 'watch_credential',
 destination => NULL,
 enabled => FALSE);
END;
/

2. Grant EXECUTE on the file watcher to any schema that owns an event-based job that
references the file watcher.

GRANT EXECUTE ON EOD_FILE_WATCHER to dssuser;

Task 3 - Create a Program Object with a Metadata Argument
So that your application can retrieve the file arrival event message content, which includes file
name, file size, and so on, create a Scheduler program object with a metadata argument that
references the event message.
Perform these steps:

1. Create the program.

BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM(
 program_name => 'dssuser.eod_program',
 program_type => 'stored_procedure',
 program_action => 'eod_processor',
 number_of_arguments => 1,
 enabled => FALSE);
END;
/

2. Define the metadata argument using the event_message attribute.

BEGIN
 DBMS_SCHEDULER.DEFINE_METADATA_ARGUMENT(
 program_name => 'DSSUSER.EOD_PROGRAM',
 metadata_attribute => 'event_message',
 argument_position => 1);
END;
/

3. Create the stored procedure that the program invokes.

The stored procedure that processes the file arrival event must have an argument of type
SYS.SCHEDULER_FILEWATCHER_RESULT, which is the data type of the event message. The
position of that argument must match the position of the defined metadata argument. The
procedure can then access attributes of this abstract data type to learn about the arrived
file.

Chapter 28
Using Events to Start Jobs

28-45

See Also:

• Oracle Database PL/SQL Packages and Types Reference for a description of
the DEFINE_METADATA_ARGUMENT procedure

• Oracle Database PL/SQL Packages and Types Reference for a description of
the SYS.SCHEDULER_FILEWATCHER_RESULT type

Task 4 - Create an Event-Based Job That References the File Watcher
Create the event-based job as described in "Creating an Event-Based Job", with the following
exception: instead of providing a queue specification in the queue_spec attribute, provide the
name of the file watcher. You would typically leave the event_condition job attribute null, but
you can provide a condition if desired.
As an alternative to setting the queue_spec attribute for the job, you can create an event
schedule, reference the file watcher in the queue_spec attribute of the event schedule, and
reference the event schedule in the schedule_name attribute of the job.
Perform these steps to prepare the event-based job:

1. Create the job.

BEGIN
 DBMS_SCHEDULER.CREATE_JOB(
 job_name => 'dssuser.eod_job',
 program_name => 'dssuser.eod_program',
 event_condition => NULL,
 queue_spec => 'eod_file_watcher',
 auto_drop => FALSE,
 enabled => FALSE);
END;
/

2. If you want the job to run for each instance of the file arrival event, even if the job is
already processing a previous event, set the parallel_instances attribute to TRUE. With
this setting, the job runs as a lightweight job so that multiple instances of the job can be
started quickly. To discard file watcher events that occur while the event-based job is
already processing another, leave the parallel_instances attribute FALSE (the default).

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE('dssuser.eod_job','parallel_instances',TRUE);
END;
/

For more information about this attribute, see the SET_ATTRIBUTE description in Oracle
Database PL/SQL Packages and Types Reference.

See Also:

• "Creating an Event Schedule"

• "Creating Jobs Using Named Programs and Schedules"

Task 5 - Enable All Objects
Enable the file watcher, the program, and the job.

Chapter 28
Using Events to Start Jobs

28-46

BEGIN
 DBMS_SCHEDULER.ENABLE('DSSUSER.EOD_PROGRAM,DSSUSER.EOD_JOB,EOD_FILE_WATCHER');
END;
/

28.5.3.4 File Arrival Example
An example illustrates file arrival for a file watcher job.

In this example, an event-based job watches for the arrival of end-of-day sales reports onto the
local host from various locations. As each report file arrives, a stored procedure captures
information about the file and stores the information in a table called eod_reports. A regularly
scheduled report aggregation job can then query this table, process all unprocessed files, and
mark any newly processed files as processed.

It is assumed that the database user running the following code has been granted EXECUTE on
the SYS.SCHEDULER_FILEWATCHER_RESULT data type.

BEGIN
 DBMS_CREDENTIAL.CREATE_CREDENTIAL(
 credential_name => 'watch_credential',
 username => 'pos1',
 password => 'jk4545st');
END;
/

CREATE TABLE eod_reports (WHEN timestamp, file_name varchar2(100),
 file_size number, processed char(1));

CREATE OR REPLACE PROCEDURE q_eod_report
 (payload IN sys.scheduler_filewatcher_result) AS
BEGIN
 INSERT INTO eod_reports VALUES
 (payload.file_timestamp,
 payload.directory_path || '/' || payload.actual_file_name,
 payload.file_size,
 'N');
END;
/

BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM(
 program_name => 'eod_prog',
 program_type => 'stored_procedure',
 program_action => 'q_eod_report',
 number_of_arguments => 1,
 enabled => FALSE);
 DBMS_SCHEDULER.DEFINE_METADATA_ARGUMENT(
 program_name => 'eod_prog',
 metadata_attribute => 'event_message',
 argument_position => 1);
 DBMS_SCHEDULER.ENABLE('eod_prog');
END;
/

BEGIN
 DBMS_SCHEDULER.CREATE_FILE_WATCHER(
 file_watcher_name => 'eod_reports_watcher',
 directory_path => '?/eod_reports',
 file_name => 'eod*.txt',
 credential_name => 'watch_credential',

Chapter 28
Using Events to Start Jobs

28-47

 destination => NULL,
 enabled => FALSE);
END;
/

BEGIN
 DBMS_SCHEDULER.CREATE_JOB(
 job_name => 'eod_job',
 program_name => 'eod_prog',
 event_condition => 'tab.user_data.file_size > 10',
 queue_spec => 'eod_reports_watcher',
 auto_drop => FALSE,
 enabled => FALSE);
 DBMS_SCHEDULER.SET_ATTRIBUTE('EOD_JOB','PARALLEL_INSTANCES',TRUE);
END;
/

EXEC DBMS_SCHEDULER.ENABLE('eod_reports_watcher,eod_job');

28.5.3.5 Managing File Watchers
The DBMS_SCHEDULER PL/SQL package provides procedures for enabling, disabling, dropping,
and setting attributes for file watchers.

• Enabling File Watchers
If a file watcher is disabled, then use DBMS_SCHEDULER.ENABLE to enable it.

• Altering File Watchers
Use the DBMS_SCHEDULER.SET_ATTRIBUTE and DBMS_SCHEDULER.SET_ATTRIBUTE_NULL
package procedures to modify the attributes of a file watcher.

• Disabling and Dropping File Watchers
Use the DBMS_SCHEDULER.DISABLE procedure to disable a file watcher and the
DBMS_SCHEDULER.DROP_FILE_WATCHER procedure to drop a file watcher.

• Changing the File Arrival Detection Interval
File watchers check for the arrival of files every ten minutes by default. You can change
this interval.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the
DBMS_SCHEDULER PL/SQL package

28.5.3.5.1 Enabling File Watchers
If a file watcher is disabled, then use DBMS_SCHEDULER.ENABLE to enable it.

This is shown in Task 5, - Enable All Objects.

You can enable a file watcher only if all of its attributes are set to valid values and the file
watcher owner has EXECUTE privileges on the specified credential.

Chapter 28
Using Events to Start Jobs

28-48

28.5.3.5.2 Altering File Watchers
Use the DBMS_SCHEDULER.SET_ATTRIBUTE and DBMS_SCHEDULER.SET_ATTRIBUTE_NULL package
procedures to modify the attributes of a file watcher.

See the CREATE_FILE_WATCHER procedure description for information about file watcher
attributes.

28.5.3.5.3 Disabling and Dropping File Watchers
Use the DBMS_SCHEDULER.DISABLE procedure to disable a file watcher and the
DBMS_SCHEDULER.DROP_FILE_WATCHER procedure to drop a file watcher.

You cannot disable or drop a file watcher if there are jobs that depend on it. To force a disable
or drop operation in this case, set the FORCE attribute to TRUE. If you force disabling or dropping
a file watcher, jobs that depend on it become disabled.

28.5.3.5.4 Changing the File Arrival Detection Interval
File watchers check for the arrival of files every ten minutes by default. You can change this
interval.

To change the file arrival detection interval:

1. Connect to the database as the SYS user.

2. Change the REPEAT_INTERVAL attribute of the predefined schedule
SYS.FILE_WATCHER_SCHEDULE. Use any valid calendaring syntax.

Oracle does not recommend setting REPEAT_INTERVAL for file watchers to a value lower
than any of the STEADY_STATE_DURATION attribute values.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for File Watcher
attribute values

• Oracle Database PL/SQL Packages and Types Reference for
CREATE_FILE_WATCHER parameters

The following example changes the file arrival detection frequency to every two minutes.

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE('FILE_WATCHER_SCHEDULE', 'REPEAT_INTERVAL',
 'FREQ=MINUTELY;INTERVAL=2');
END;
/

28.5.3.6 Viewing File Watcher Information
You can view information about file watchers by querying the views
*_SCHEDULER_FILE_WATCHERS.

For example, run the following query:

Chapter 28
Using Events to Start Jobs

28-49

SELECT file_watcher_name, destination, directory_path, file_name, credential_name
 FROM dba_scheduler_file_watchers;

FILE_WATCHER_NAME DESTINATION DIRECTORY_PATH FILE_NAME CREDENTIAL_NAME
-------------------- -------------------- -------------------- ---------- ----------------
MYFW dsshost.example.com /tmp abc MYFW_CRED
EOD_FILE_WATCHER ?/eod_reports eod*.txt WATCH_CREDENTIAL

See Also:

Oracle Database Reference for details on the *_SCHEDULER_FILE_WATCHERS views

28.6 Creating and Managing Job Chains
A job chain is a named series of tasks that are linked together for a combined objective.

• About Creating and Managing Job Chains
Using job chains, you can implement dependency-based scheduling, in which jobs start
depending on the outcomes of one or more previous jobs.

• Chain Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common chain tasks.

• Creating Chains
You create a chain by using the CREATE_CHAIN procedure in the DBMS_SCHEDULER package.

• Defining Chain Steps
After creating a chain object, you define one or more chain steps.

• Adding Rules to a Chain
You add a rule to a chain with the DEFINE_CHAIN_RULE procedure in the DBMS_SCHEDULER
package. You call this procedure once for each rule that you want to add to the chain.

• Setting an Evaluation Interval for Chain Rules
The Scheduler evaluates all chain rules at the start of the chain job and at the end of each
chain step.

• Enabling Chains
You enable a chain with the ENABLE procedure in the DBMS_SCHEDULER package. A chain
must be enabled before it can be run by a job. Enabling an already enabled chain does not
return an error.

• Creating Jobs for Chains
To run a chain, you must either use the RUN_CHAIN procedure in the DBMS_SCHEDULER
package or create and schedule a job of type 'CHAIN' (a chain job).

• Dropping Chains
You drop a chain, including its steps and rules, using the DROP_CHAIN procedure in the
DBMS_SCHEDULER package.

• Running Chains
To run a chain immediately, use the RUN_JOB or RUN_CHAIN procedure in the
DBMS_SCHEDULER package.

Chapter 28
Creating and Managing Job Chains

28-50

• Dropping Chain Rules
You drop a rule from a chain by using the DROP_CHAIN_RULE procedure in the
DBMS_SCHEDULER package.

• Disabling Chains
You disable a chain using the DISABLE procedure in the DBMS_SCHEDULER package.

• Dropping Chain Steps
You drop a step from a chain using the DROP_CHAIN_STEP procedure in the DBMS_SCHEDULER
package.

• Stopping Chains
To stop a running chain, you call the DBMS_SCHEDULER.STOP_JOB procedure, passing the
name of the chain job (the job that started the chain).

• Stopping Individual Chain Steps
You can stop individual chain steps by creating a chain rule that stops one or more steps
when the rule condition is met or by calling the STOP_JOB procedure.

• Pausing Chains
You can pause an entire chain or individual branches of a chain. You do so by setting the
PAUSE attribute of one or more steps to TRUE with the DBMS_SCHEDULER.ALTER_CHAIN or
ALTER_RUNNING_CHAIN procedure.

• Skipping Chain Steps
You can skip one or more steps in a chain. You do so by setting the SKIP attribute of one or
more steps to TRUE with the DBMS_SCHEDULER.ALTER_CHAIN or ALTER_RUNNING_CHAIN
procedure.

• Running Part of a Chain
You can run only part of a chain.

• Monitoring Running Chains
You can view the status of running chains with the following two views:
*_SCHEDULER_RUNNING_JOBS and *_SCHEDULER_RUNNING_CHAINS.

• Handling Stalled Chains
At the completion of a step, the chain rules are always evaluated to determine the next
steps to run. If none of the rules cause another step to start, none cause the chain to end,
and the evaluation_interval for the chain is NULL, the chain enters the stalled state.

See Also:

• "Chains" for an overview of chains

• "Examples of Creating Chains"

28.6.1 About Creating and Managing Job Chains
Using job chains, you can implement dependency-based scheduling, in which jobs start
depending on the outcomes of one or more previous jobs.

To create and use a chain, you complete these tasks in order:

Task See...

1. Create a chain object Creating Chains

Chapter 28
Creating and Managing Job Chains

28-51

Task See...

2. Define the steps in the chain Defining Chain Steps

3. Add rules Adding Rules to a Chain

4. Enable the chain Enabling Chains

5. Create a job (the "chain job") that points to the
chain

Creating Jobs for Chains

28.6.2 Chain Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common chain tasks.

Table 28-6 illustrates common tasks involving chains and the procedures associated with them.

Table 28-6 Chain Tasks and Their Procedures

Task Procedure Privilege Needed

Create a chain CREATE_CHAIN CREATE JOB, CREATE EVALUATION CONTEXT, CREATE
RULE, and CREATE RULE SET if the owner. CREATE ANY
JOB, CREATE ANY RULE, CREATE ANY RULE SET, and
CREATE ANY EVALUATION CONTEXT otherwise

Drop a chain DROP_CHAIN Ownership of the chain or ALTER privileges on the chain or
CREATE ANY JOB privileges. If not owner, also requires
DROP ANY EVALUATION CONTEXT and DROP ANY RULE
SET

Alter a chain SET_ATTRIBUTE Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB

Alter a running chain ALTER_RUNNING_CHAIN Ownership of the job, or ALTER privileges on the job or
CREATE ANY JOB

Run a chain RUN_CHAIN CREATE JOB or CREATE ANY JOB. In addition, the owner of
the new job must have EXECUTE privileges on the chain or
EXECUTE ANY PROGRAM

Add rules to a chain DEFINE_CHAIN_RULE Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB privileges. CREATE RULE if the owner of
the chain, CREATE ANY RULE otherwise

Alter rules in a chain DEFINE_CHAIN_RULE Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB privileges. If not owner of the chain,
requires ALTER privileges on the rule or ALTER ANY RULE

Drop rules from a chain DROP_CHAIN_RULE Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB privileges. DROP ANY RULE if not the
owner of the chain

Enable a chain ENABLE Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB

Disable a chain DISABLE Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB

Create steps DEFINE_CHAIN_STEP Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB

Drop steps DROP_CHAIN_STEP Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB

Chapter 28
Creating and Managing Job Chains

28-52

Table 28-6 (Cont.) Chain Tasks and Their Procedures

Task Procedure Privilege Needed

Alter steps (including
assigning additional
attribute values to steps)

ALTER_CHAIN Ownership of the chain, or ALTER privileges on the chain or
CREATE ANY JOB

28.6.3 Creating Chains
You create a chain by using the CREATE_CHAIN procedure in the DBMS_SCHEDULER package.

You must ensure that you have the required privileges first. See "Setting Chain Privileges" for
details.

After creating the chain object with CREATE_CHAIN, you define chain steps and chain rules
separately.

The following example creates a chain:

BEGIN
DBMS_SCHEDULER.CREATE_CHAIN (
 chain_name => 'my_chain1',
 rule_set_name => NULL,
 evaluation_interval => NULL,
 comments => 'My first chain');
END;
/

The rule_set_name and evaluation_interval arguments are typically left NULL.
evaluation_interval can define a repeating interval at which chain rules get evaluated.
rule_set_name refers to a rule set as defined within Oracle Streams.

See Also:

• "Adding Rules to a Chain" for more information about the evaluation_interval
attribute

• See Oracle Database PL/SQL Packages and Types Reference for more
information on CREATE_CHAIN

28.6.4 Defining Chain Steps
After creating a chain object, you define one or more chain steps.

Each step can point to one of the following:

• A Scheduler program object (program)

• Another chain (a nested chain)

• An event schedule, inline event, or file watcher

You define a step that points to a program or nested chain by using the DEFINE_CHAIN_STEP
procedure. The following example adds two steps to my_chain1:

Chapter 28
Creating and Managing Job Chains

28-53

BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP (
 chain_name => 'my_chain1',
 step_name => 'my_step1',
 program_name => 'my_program1');
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP (
 chain_name => 'my_chain1',
 step_name => 'my_step2',
 program_name => 'my_chain2');
END;
/

The named program or chain does not have to exist when you define the step. However, it
must exist and be enabled when the chain runs, otherwise an error is generated.

You define a step that waits for an event to occur by using the DEFINE_CHAIN_EVENT_STEP
procedure. Procedure arguments can point to an event schedule, can include an inline queue
specification and event condition, or can include a file watcher name. This example creates a
third chain step that waits for the event specified in the named event schedule:

BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_EVENT_STEP (
 chain_name => 'my_chain1',
 step_name => 'my_step3',
 event_schedule_name => 'my_event_schedule');
END;
/

An event step does not wait for its event until the step is started.

Steps That Run Local External Executables

After defining a step that runs a local external executable, you must use the ALTER_CHAIN
procedure to assign a credential to the step, as shown in the following example:

BEGIN
 DBMS_SCHEDULER.ALTER_CHAIN('chain1','step1','credential_name','MY_CREDENTIAL');
END;
/

Steps That Run on Remote Destinations

After defining a step that is to run an external executable on a remote host or a database
program unit on a remote database, you must use the ALTER_CHAIN procedure to assign both a
credential and a destination to the step, as shown in the following example:

BEGIN
 DBMS_SCHEDULER.ALTER_CHAIN('chain1','step2','credential_name','DW_CREDENTIAL');
 DBMS_SCHEDULER.ALTER_CHAIN('chain1','step2','destination_name','DBHOST1_ORCLDW');
END;
/

Making Steps Restartable

After a database recovery, by default, steps that were running are marked as STOPPED and the
chain continues. You can specify the chain steps to restart automatically after a database
recovery by using ALTER_CHAIN to set the restart_on_recovery attribute to TRUE for those
steps.

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the DEFINE_CHAIN_STEP, DEFINE_CHAIN_EVENT_STEP, and ALTER_CHAIN procedures.

Chapter 28
Creating and Managing Job Chains

28-54

See Also:

• "About Events"

• "About File Watchers"

• "Credentials"

• "Destinations"

28.6.5 Adding Rules to a Chain
You add a rule to a chain with the DEFINE_CHAIN_RULE procedure in the DBMS_SCHEDULER
package. You call this procedure once for each rule that you want to add to the chain.

Chain rules define when steps run and define dependencies between steps. Each rule has a
condition and an action. Whenever rules are evaluated, if a condition of a rule evaluates to
TRUE, its action is performed. The condition can contain Scheduler chain condition syntax or
any syntax that is valid in a SQL WHERE clause. The syntax can include references to attributes
of any chain step, including step completion status. A typical action is to run a specified step or
to run a list of steps.

All chain rules work together to define the overall action of the chain. All rules are evaluated to
see what action or actions occur next, when the chain job starts and at the end of each step. If
more than one rule has a TRUE condition, multiple actions can occur. You can also cause rules
to be evaluated at regular intervals by setting the evaluation_interval attribute of a chain.

Conditions are usually based on the outcome of one or more previous steps. For example, you
might want one step to run if the two previous steps succeeded, and another to run if either of
the two previous steps failed.

Scheduler chain condition syntax takes one of the following two forms:

stepname [NOT] {SUCCEEDED|FAILED|STOPPED|COMPLETED}
stepname ERROR_CODE {comparision_operator|[NOT] IN} {integer|list_of_integers}

You can combine conditions with boolean operators AND, OR, and NOT() to create conditional
expressions. You can employ parentheses in your expressions to determine order of
evaluation.

ERROR_CODE can be set with the RAISE_APPLICATION_ERROR PL/SQL statement within the
program assigned to the step. Although the error codes that your program sets in this way are
negative numbers, when testing ERROR_CODE in a chain rule, you test for positive numbers. For
example, if your program contains the following statement:

RAISE_APPLICATION_ERROR(-20100, errmsg);

your chain rule condition must be the following:

stepname ERROR_CODE=20100

Step Attributes

The following is a list of step attributes that you can include in conditions when using SQL
WHERE clause syntax:

completed

Chapter 28
Creating and Managing Job Chains

28-55

state
start_date
end_date
error_code
duration

The completed attribute is boolean and is TRUE when the state attribute is either SUCCEEDED,
FAILED, or STOPPED.

Table 28-7 shows the possible values for the state attribute. These values are visible in the
STATE column of the *_SCHEDULER_RUNNING_CHAINS views.

Table 28-7 Values for the State Attribute of a Chain Step

State Attribute Value Meaning

NOT_STARTED The chain of a step is running, but the step has not yet started.

SCHEDULED A rule started the step with an AFTER clause and the designated
wait time has not yet expired.

RUNNING The step is running. For an event step, the step was started and is
waiting for an event.

PAUSED The PAUSE attribute of a step is set to TRUE and the step is
paused. It must be unpaused before steps that depend on it can
start.

SUCCEEDED The step completed successfully. The ERROR_CODE of the step is 0.

FAILED The step completed with a failure. ERROR_CODE is nonzero.

STOPPED The step was stopped with the STOP_JOB procedure.

STALLED The step is a nested chain that has stalled.

See the DEFINE_CHAIN_RULE procedure in Oracle Database PL/SQL Packages and Types
Reference for rules and examples for SQL WHERE clause syntax.

Condition Examples Using Scheduler Chain Condition Syntax

These examples use Scheduler chain condition syntax.

Steps started by rules containing the following condition starts when the step named
form_validation_step completes (SUCCEEDED, FAILED, or STOPPED).

form_validation_step COMPLETED

The following condition is similar, but indicates that the step must succeed for the condition to
be met.

form_validation_step SUCCEEDED

The next condition tests for an error. It is TRUE if the step form_validation_step failed with any
error code other than 20001.

form_validation_step FAILED AND form_validation_step ERROR_CODE != 20001

See the DEFINE_CHAIN_RULE procedure in Oracle Database PL/SQL Packages and Types
Reference for more examples.

Chapter 28
Creating and Managing Job Chains

28-56

Condition Examples Using SQL WHERE Syntax

':step1.state=''SUCCEEDED'''

Starting the Chain

At least one rule must have a condition that always evaluates to TRUE so that the chain can
start when the chain job starts. The easiest way to accomplish this is to set the condition to
'TRUE' if you are using Schedule chain condition syntax, or '1=1' if you are using SQL syntax.

Ending the Chain

At least one chain rule must contain an action of 'END'. A chain job does not complete until one
of the rules containing the END action evaluates to TRUE. Several different rules with different
END actions are common, some with error codes, and some without.

If a chain has no more running steps, and it is not waiting for an event to occur, and no rules
containing the END action evaluate to TRUE (or there are no rules with the END action), the chain
job enters the CHAIN_STALLED state. See "Handling Stalled Chains" for more information.

Example of Defining Rules

The following example defines a rule that starts the chain at step1 and a rule that starts step2
when step1 completes. rule_name and comments are optional and default to NULL. If you do
use rule_name, you can later redefine that rule with another call to DEFINE_CHAIN_RULE. The
new definition overwrites the previous one.

BEGIN
DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 chain_name => 'my_chain1',
 condition => 'TRUE',
 action => 'START step1',
 rule_name => 'my_rule1',
 comments => 'start the chain');
DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 chain_name => 'my_chain1',
 condition => 'step1 completed',
 action => 'START step2',
 rule_name => 'my_rule2');
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information on the
DEFINE_CHAIN_RULE procedure and Scheduler chain condition syntax

• "Examples of Creating Chains"

Chapter 28
Creating and Managing Job Chains

28-57

28.6.6 Setting an Evaluation Interval for Chain Rules
The Scheduler evaluates all chain rules at the start of the chain job and at the end of each
chain step.

You can also configure a chain to have Scheduler evaluate its rules at a repeating time interval,
such as once per hour. This capability is useful to start chain steps based on time of day or
based on occurrences external to the chain. Here are some examples:

• A chain step is resource-intensive and must therefore run at off-peak hours. You could
condition the step on both the completion of another step and on the time of day being
after 6:00 p.m and before midnight. The Scheduler would then have to evaluate rules every
so often to determine when this condition becomes TRUE.

• A step must wait for data to arrive in a table from some other process that is external to the
chain. You could condition this step on both the completion of another step and on a
particular table containing rows. The Scheduler would then have to evaluate rules every so
often to determine when this condition becomes TRUE. The condition would use SQL WHERE
clause syntax, and would be similar to the following:

':step1.state=''SUCCEEDED'' AND select count(*) from oe.sync_table > 0'
To set an evaluation interval for a chain, you set the evaluation_interval attribute when you
create the chain. The data type for this attribute is INTERVAL DAY TO SECOND.

BEGIN
 DBMS_SCHEDULER.CREATE_CHAIN (
 chain_name => 'my_chain1',
 rule_set_name => NULL,
 evaluation_interval => INTERVAL '30' MINUTE,
 comments => 'Chain with 30 minute evaluation interval');
END;
/

28.6.7 Enabling Chains
You enable a chain with the ENABLE procedure in the DBMS_SCHEDULER package. A chain must
be enabled before it can be run by a job. Enabling an already enabled chain does not return an
error.

This example enables chain my_chain1:

BEGIN
 DBMS_SCHEDULER.ENABLE ('my_chain1');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the ENABLE procedure.

Chapter 28
Creating and Managing Job Chains

28-58

Note:

Chains are automatically disabled by the Scheduler when one of the following is
dropped:

• The program that one of the chain steps points to

• The nested chain that one of the chain steps points to

• The event schedule that one of the chain event steps points to

28.6.8 Creating Jobs for Chains
To run a chain, you must either use the RUN_CHAIN procedure in the DBMS_SCHEDULER package
or create and schedule a job of type 'CHAIN' (a chain job).

The job action must refer to a previously created chain name, as shown in the following
example:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'chain_job_1',
 job_type => 'CHAIN',
 job_action => 'my_chain1',
 repeat_interval => 'freq=daily;byhour=13;byminute=0;bysecond=0',
 enabled => TRUE);
END;
/

For every step of a chain job that is running, the Scheduler creates a step job with the same
job name and owner as the chain job. Each step job additionally has a job subname to
uniquely identify it. You can view the job subname as a column in the views
*_SCHEDULER_RUNNING_JOBS, *_SCHEDULER_JOB_LOG, and *_SCHEDULER_JOB_RUN_DETAILS. The
job subname is normally the same as the step name except in the following cases:

• For nested chains, the current step name may have already been used as a job subname.
In this case, the Scheduler appends '_N' to the step name, where N is an integer that
results in a unique job subname.

• If there is a failure when creating a step job, the Scheduler logs a FAILED entry in the job
log views (*_SCHEDULER_JOB_LOG and *_SCHEDULER_JOB_RUN_DETAILS) with the job
subname set to 'step_name_0'.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
on the CREATE_JOB procedure

• "Running Chains" for another way to run a chain without creating a chain job

Chapter 28
Creating and Managing Job Chains

28-59

28.6.9 Dropping Chains
You drop a chain, including its steps and rules, using the DROP_CHAIN procedure in the
DBMS_SCHEDULER package.

The following example drops the chain named my_chain1:

BEGIN
 DBMS_SCHEDULER.DROP_CHAIN (
 chain_name => 'my_chain1',
 force => TRUE);
END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the DROP_CHAIN procedure.

28.6.10 Running Chains
To run a chain immediately, use the RUN_JOB or RUN_CHAIN procedure in the DBMS_SCHEDULER
package.

If you already created a chain job for a chain, you can use the RUN_JOB procedure to run that
job (and thus run the chain), but you must set the use_current_session argument of RUN_JOB
to FALSE.

You can use the RUN_CHAIN procedure to run a chain without having to first create a chain job
for the chain. You can also use RUN_CHAIN to run only part of a chain.

RUN_CHAIN creates a temporary job to run the specified chain. If you supply a job name, the job
is created with that name, otherwise a default job name is assigned.

If you supply a list of start steps, only those steps are started when the chain begins running.
(Steps that would normally have started do not run if they are not in the list.) If no list of start
steps is given, the chain starts normally—that is, an initial evaluation is done to see which
steps to start running. The following example immediately runs my_chain1:

BEGIN
 DBMS_SCHEDULER.RUN_CHAIN (
 chain_name => 'my_chain1',
 job_name => 'partial_chain_job',
 start_steps => 'my_step2, my_step4');
END;
/

See Also:

• "Running Part of a Chain"

• Oracle Database PL/SQL Packages and Types Reference for more information
regarding the RUN_CHAIN procedure

Chapter 28
Creating and Managing Job Chains

28-60

28.6.11 Dropping Chain Rules
You drop a rule from a chain by using the DROP_CHAIN_RULE procedure in the DBMS_SCHEDULER
package.

The following example drops my_rule1:

BEGIN
 DBMS_SCHEDULER.DROP_CHAIN_RULE (
 chain_name => 'my_chain1',
 rule_name => 'my_rule1',
 force => TRUE);
END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the DROP_CHAIN_RULE procedure.

28.6.12 Disabling Chains
You disable a chain using the DISABLE procedure in the DBMS_SCHEDULER package.

The following example disables my_chain1:

BEGIN
 DBMS_SCHEDULER.DISABLE ('my_chain1');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the DISABLE procedure.

Note:

Chains are automatically disabled by the Scheduler when one of the following is
dropped:

• The program that one of the chain steps points to

• The nested chain that one of the chain steps points to

• The event schedule that one of the chain event steps points to

28.6.13 Dropping Chain Steps
You drop a step from a chain using the DROP_CHAIN_STEP procedure in the DBMS_SCHEDULER
package.

The following example drops my_step2 from my_chain2:

BEGIN
 DBMS_SCHEDULER.DROP_CHAIN_STEP (
 chain_name => 'my_chain2',
 step_name => 'my_step2',
 force => TRUE);

Chapter 28
Creating and Managing Job Chains

28-61

END;
/

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the DROP_CHAIN_STEP procedure.

28.6.14 Stopping Chains
To stop a running chain, you call the DBMS_SCHEDULER.STOP_JOB procedure, passing the name
of the chain job (the job that started the chain).

When you stop a chain job, all steps of the chain that are running are stopped and the chain
ends.

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the STOP_JOB procedure.

28.6.15 Stopping Individual Chain Steps
You can stop individual chain steps by creating a chain rule that stops one or more steps when
the rule condition is met or by calling the STOP_JOB procedure.

For each step being stopped, you must specify the schema name, chain job name, and step
job subname.

BEGIN
 DBMS_SCHEDULER.STOP_JOB('oe.chainrunjob.stepa');
END;
/

In this example, chainrunjob is the chain job name and stepa is the step job subname. The
step job subname is typically the same as the step name, but not always. You can obtain the
step job subname from the STEP_JOB_SUBNAME column of the *_SCHEDULER_RUNNING_CHAINS
views.

When you stop a chain step, its state is set to STOPPED, and the chain rules are evaluated to
determine the steps to run next.

See Oracle Database PL/SQL Packages and Types Reference for more information regarding
the STOP_JOB procedure.

28.6.16 Pausing Chains
You can pause an entire chain or individual branches of a chain. You do so by setting the
PAUSE attribute of one or more steps to TRUE with the DBMS_SCHEDULER.ALTER_CHAIN or
ALTER_RUNNING_CHAIN procedure.

Pausing chain steps enables you to suspend the running of the chain after those steps run.

When you pause a step, after the step runs, its state attribute changes to PAUSED, and its
completed attribute remains FALSE. Therefore, steps that depend on the completion of the
paused step are not run. If you reset the PAUSE attribute to FALSE for a paused step, its state
attribute is set to its completion state (SUCCEEDED, FAILED, or STOPPED), and steps that are
awaiting the completion of the paused step can then run.

Chapter 28
Creating and Managing Job Chains

28-62

Figure 28-1 Chain with Step 3 Paused

Step 7

Step 4

Step 3

Step 6

Step 5

Step 2

Step 1

Begin End

In Figure 28-1, Step 3 is paused. Until Step 3 is unpaused, Step 5 will not run. If you were to
pause only Step 2, then Steps 4, 6, and 7 would not run. However Steps 1, 3, and 5 could run.
In either case, you are suspending only one branch of the chain.

To pause an entire chain, you pause all steps of the chain. To unpause a chain, you unpause
one, many, or all of the chain steps. With the chain in Figure 28-1, pausing Step 1 pauses the
entire chain after Step 1 runs.

See Also:

The DBMS_SCHEDULER.ALTER_CHAIN and DBMS_SCHEDULER.ALTER_RUNNING_CHAIN
procedures in Oracle Database PL/SQL Packages and Types Reference

28.6.17 Skipping Chain Steps
You can skip one or more steps in a chain. You do so by setting the SKIP attribute of one or
more steps to TRUE with the DBMS_SCHEDULER.ALTER_CHAIN or ALTER_RUNNING_CHAIN
procedure.

If a SKIP attribute of a step is TRUE, then when a chain condition to run that step is met, instead
of being run, the step is treated as immediately succeeded. Setting SKIP to TRUE has no effect
on a step that is running, is scheduled to run after a delay, or has already run.

Skipping steps is especially useful when testing chains. For example, when testing the chain
shown in Figure 28-1, skipping Step 7 could shorten testing time considerably, because this
step is a nested chain.

Chapter 28
Creating and Managing Job Chains

28-63

See Also:

"Skipping Chain Steps"

28.6.18 Running Part of a Chain
You can run only part of a chain.

There are two ways to run only a part of a chain:

• Use the ALTER_CHAIN procedure to set the PAUSE attribute to TRUE for one or more steps,
and then either start the chain job with RUN_JOB or start the chain with RUN_CHAIN. Any
steps that depend on the paused steps do not run, but the paused steps do run.

The disadvantage of this method is that you must set the PAUSE attribute back to FALSE for
the affected steps for future runs of the chain.

• Use the RUN_CHAIN procedure to start only certain steps of the chain, skipping those steps
that you do not want to run.

This is a more straightforward approach, which also allows you to set the initial state of
steps before starting them.

You may have to use both of these methods to skip steps both at the beginning and end of a
chain.

See the discussion of the RUN_CHAIN procedure in Oracle Database PL/SQL Packages and
Types Reference for more information.

28.6.19 Monitoring Running Chains
You can view the status of running chains with the following two views:
*_SCHEDULER_RUNNING_JOBS and *_SCHEDULER_RUNNING_CHAINS.

The *_SCHEDULER_RUNNING_JOBS views contain one row for the chain job and one row for each
running step. The *_SCHEDULER_RUNNING_CHAINS views contain one row for each chain step,
including any nested chains, and include run status for each step such as NOT_STARTED,
RUNNING, STOPPED, SUCCEEDED, and so on.

See Also:

• Oracle Database Reference for details about the *_SCHEDULER_RUNNING_JOBS
views

• Oracle Database Reference for details about the *_SCHEDULER_RUNNING_CHAINS
views

Chapter 28
Creating and Managing Job Chains

28-64

28.6.20 Handling Stalled Chains
At the completion of a step, the chain rules are always evaluated to determine the next steps to
run. If none of the rules cause another step to start, none cause the chain to end, and the
evaluation_interval for the chain is NULL, the chain enters the stalled state.

When a chain is stalled, no steps are running, no steps are scheduled to run (after waiting a
designated time interval), and no event steps are waiting for an event. The chain can make no
further progress unless you manually intervene. In this case, the state of the job that is running
the chain is set to CHAIN_STALLED. However, the job is still listed in the
*_SCHEDULER_RUNNING_JOBS views.

You can troubleshoot a stalled chain with the views ALL_SCHEDULER_RUNNING_CHAINS, which
shows the state of all steps in the chain (including any nested chains), and
ALL_SCHEDULER_CHAIN_RULES, which contains all the chain rules.

You can enable the chain to continue by altering the state of one of its steps with the
ALTER_RUNNING_CHAIN procedure. For example, if step 11 is waiting for step 9 to succeed
before it can start, and if it makes sense to do so, you can set the state of step 9 to
'SUCCEEDED'.

Alternatively, if one or more rules are incorrect, you can use the DEFINE_CHAIN_RULE procedure
to replace them (using the same rule names), or to create new rules. The new and updated
rules apply to the running chain and all future chain runs. After adding or updating rules, you
must run EVALUATE_RUNNING_CHAIN on the stalled chain job to trigger any required actions.

28.7 Using Incompatibility Definitions
An incompatibility definition (or, incompatibility) specifies incompatible jobs or programs, where
only one of the group can be running at a time.

• Creating a Job or Program Incompatibility
You can specify a job-level or program-level incompatibility by using the
CREATE_INCOMPATIBILITY procedure in the DBMS_SCHEDULER package.

• Adding a Job or Program to an Incompatibility
You can add a job or program to an existing incompatibility definition by using the
ADD_TO_INCOMPATIBILITY procedure in the DBMS_SCHEDULER package.

• Removing a Job or Program from an Incompatibility
You can remove a job or program from an existing incompatibility definition by using the
REMOVE_FROM_INCOMPATIBILITY procedure in the DBMS_SCHEDULER package.

• Dropping an Incompatibility
You can drop an existing incompatibility definition by using the DROP_INCOMPATIBILITY
procedure in the DBMS_SCHEDULER package.

See Also:

• Incompatibilities

• DBMS_SCHEDULER in Oracle Database PL/SQL Packages and Types
Reference

Chapter 28
Using Incompatibility Definitions

28-65

28.7.1 Creating a Job or Program Incompatibility
You can specify a job-level or program-level incompatibility by using the
CREATE_INCOMPATIBILITY procedure in the DBMS_SCHEDULER package.

For example, the following statement creates an incompatibility named incompat1 specifying
that only one of the jobs named job1, job2, or job3 can be running at the same time:

BEGIN
dbms_scheduler.create_incompatibility(
 incompatibility_name => 'icompat1',
 object_name => 'job1,job2,job3',
 enabled => true);
END;
/

object_name contains a comma separated list of either all programs or all jobs that are
incompatible with each other (that is, they cannot be run at the same time). In case of jobs the
list, must consist of two or more jobs and constraint_level must be ‘JOB_LEVEL’ (the default,
and not included in the example). In case of programs, constraint_level can be either
‘JOB_LEVEL’ or ‘PROGRAM_LEVEL’. When set to the default value ‘JOB_LEVEL’, only a single job
that is based on the program (or programs) mentioned in object_name can run at the same
time. When set to ‘PROGRAM_LEVEL’. the programs are incompatible, but the jobs based on the
same program are not incompatible.

For example, if the value of object_name is ‘P1,P2,P3’ and constraint_level is
‘PROGRAM_LEVEL’, manyjobs based on P1 can be running at the same time, but if any P1
based job is running, none based on P2 or P3 can be running. Or similarly, many jobs based
on P3 can be running at the same time, but none based on P1 or P2. If constraint_level is
set to ‘JOB_LEVEL’, then only a single job out of all the jobs based on programs P1, P2, and
P3 can be running at any given time.

See Also:

CREATE INCOMPATIBILITY Procedure in Oracle Database PL/SQL Packages and
Types Reference

28.7.2 Adding a Job or Program to an Incompatibility
You can add a job or program to an existing incompatibility definition by using the
ADD_TO_INCOMPATIBILITY procedure in the DBMS_SCHEDULER package.

For example, the following statement adds job job1 to the incompatibility named icomp1234:

BEGIN
dbms_scheduler.add_to_incompatibility(
 incompatibility_name => 'icomp1234',
 object_name => 'job1');
END;
/

incompatibility_name is the name of an existing incompatibility definition.

Chapter 28
Using Incompatibility Definitions

28-66

object_name contains a comma separated list of jobs or programs.

This procedure does not raise an error if a specified job or program to be added is already
included in the specified incompatibility definition.

See Also:

ADD_TO_INCOMPATIBILITY Procedure in Oracle Database PL/SQL Packages and
Types Reference

28.7.3 Removing a Job or Program from an Incompatibility
You can remove a job or program from an existing incompatibility definition by using the
REMOVE_FROM_INCOMPATIBILITY procedure in the DBMS_SCHEDULER package.

For example, the following statement removes job job1 from the incompatibility named
icomp1234:

BEGIN
dbms_scheduler.remove_from_incompatibility(
 incompatibility_name => 'icomp1234',
 object_name => 'job1');
END;
/

incompatibility_name is the name of an existing incompatibility definition.

object_name contains a comma separated list of jobs or programs.

This procedure does not raise an error if a specified job or program to be removed does not
exist in the specified incompatibility definition.

See Also:

REMOVE_FROM_INCOMPATIBILITY Procedure in Oracle Database PL/SQL
Packages and Types Reference

28.7.4 Dropping an Incompatibility
You can drop an existing incompatibility definition by using the DROP_INCOMPATIBILITY
procedure in the DBMS_SCHEDULER package.

For example, the following statement drops the incompatibility named icomp1234:

BEGIN
dbms_scheduler.drop_incompatibility(
 incompatibility_name => 'icomp1234';
END;
/

incompatibility_name is the name of an existing incompatibility definition.

Chapter 28
Using Incompatibility Definitions

28-67

See Also:

DROP_INCOMPATIBILITY Procedure in Oracle Database PL/SQL Packages and
Types Reference

28.8 Managing Job Resources
You can create and alter resources available for use by jobs, and control how many of a
specified resource are available to a job.

Customers have jobs that need access to resources. A limited number of such resources are
available, so the scheduling system needs to keep track of which jobs use which resources
and not schedule jobs until the resources that they need are available.

• Creating or Dropping a Resource
You can create a resource by using the CREATE_RESOURCE procedure in the
DBMS_SCHEDULER package.

• Altering a Resource
You can alter a resource by using the SET_ATTRIBUTE and SET_ATTRIBUTE_NULL procedures
in the DBMS_SCHEDULER package.

• Setting a Resource Constraint for a Job
You can specify resources for use by jobs or programs by using the
SET_RESOURCE_CONSTRAINT procedure in the DBMS_SCHEDULER package.

See Also:

• DBMS_SCHEDULER in Oracle Database PL/SQL Packages and Types
Reference

28.8.1 Creating or Dropping a Resource
You can create a resource by using the CREATE_RESOURCE procedure in the DBMS_SCHEDULER
package.

Resources are created in the schema of the user creating the resource.

For example, the following statement creates a resource named my_resource specifying that
three units of the resource are to be made available initially, and that the Scheduler is manage
the constraint so that no more than 3 units can be in use simultaneously by jobs.

BEGIN
 DBMS_SCHEDULER.CREATE_RESOURCE(
 resource_name => 'my_resource',
 units => 3,
 state => 'ENFORCE_CONSTRAINTS',
 comments => 'Resource1'
)
END;
/

Chapter 28
Managing Job Resources

28-68

If you no longer need a resource, you can drop it using the DROP_RESOURCE procedure in the
DBMS_SCHEDULER package. For example:

BEGIN
 DBMS_SCHEDULER.DROP_RESOURCE(
 resource_name => 'my_resource',
 force => true
)
END;
/

See Also:

CREATE_RESOURCE Procedure in Oracle Database PL/SQL Packages and Types
Reference

28.8.2 Altering a Resource
You can alter a resource by using the SET_ATTRIBUTE and SET_ATTRIBUTE_NULL procedures in
the DBMS_SCHEDULER package.

If a resource is altered, the change does not affect currently running jobs that use this
resource. The change goes into effect for subsequent jobs that use the resource.

See Also:

SET_ATTRIBUTE Procedure and SET_ATTRIBUTE_NULL Procedure in Oracle
Database PL/SQL Packages and Types Reference

28.8.3 Setting a Resource Constraint for a Job
You can specify resources for use by jobs or programs by using the SET_RESOURCE_CONSTRAINT
procedure in the DBMS_SCHEDULER package.

You can specify the number of units of the resource that a specified job or program can use.

For example, the following statement specifies that the object named job1 can use one unit of
the resource named resource1.

BEGIN
 DBME_SCHEDULER.SET_RESOURCE_CONSTRAINT(
 OBJECT_NAME => 'job1',
 RESOURCE_NAME => 'resource1',
 UNITS =>1);
END;
/

The object_name parameter can be the name of a program or a job, or a comma-separated list
of names.

Chapter 28
Managing Job Resources

28-69

The units parameter specifies how many units of the resource this program or job can use. If
units is set to 0, it means that the program or job does not use this resource anymore, and the
constraint is deleted. If units is set to 0 on a resource for which there was no previous
constraint, an error is generated.

If multiple constraints are defined on the same resource, the object types (job or program)
must match. For example, if one or more constraints for a resource are based of jobs, and if a
new constraint for a program is added for the same resource, an error is generated.

See Also:

SET_RESOURCE_CONSTRAINT Procedure in Oracle Database PL/SQL Packages
and Types Reference

28.9 Prioritizing Jobs
You prioritize Oracle Scheduler jobs using three Scheduler objects: job classes, windows, and
window groups. These objects prioritize jobs by associating jobs with database resource
manager consumer groups. This, in turn, controls the amount of resources allocated to these
jobs. In addition, job classes enable you to set relative priorities among a group of jobs if all
jobs in the group are allocated identical resource levels.

• Managing Job Priorities with Job Classes
Job classes provide a way to group jobs for prioritization. They also provide a way to easily
assign a set of attribute values to member jobs. Job classes influence the priorities of their
member jobs through job class attributes that relate to the database resource manager.

• Setting Relative Job Priorities Within a Job Class
You can change the relative priorities of jobs within the same job class by using the
SET_ATTRIBUTE procedure in the DBMS_SCHEDULER package. Job priorities must be in the
range of 1-5, where 1 is the highest priority.

• Managing Job Scheduling and Job Priorities with Windows
You create windows to automatically start jobs or to change resource allocation among
jobs during various time periods of the day, week, and so on. A window is represented by
an interval of time.

• Managing Job Scheduling and Job Priorities with Window Groups
Window groups provide an easy way to schedule jobs that must run during multiple time
periods throughout the day, week, and so on. If you create a window group, add windows
to it, and then name this window group in a job's schedule_name attribute, the job runs
during all the windows in the window group. Window groups reside in the SYS schema.

• Allocating Resources Among Jobs Using Resource Manager
The Database Resource Manager (Resource Manager) controls how resources are
allocated among database sessions. It not only controls asynchronous sessions like
Scheduler jobs, but also synchronous sessions like user sessions.

• Example of Resource Allocation for Jobs
An example illustrates how resources are allocated for jobs.

Chapter 28
Prioritizing Jobs

28-70

See Also:

Managing Resources with Oracle Database Resource Manager

28.9.1 Managing Job Priorities with Job Classes
Job classes provide a way to group jobs for prioritization. They also provide a way to easily
assign a set of attribute values to member jobs. Job classes influence the priorities of their
member jobs through job class attributes that relate to the database resource manager.

A default job class is created with the database. If you create a job without specifying a job
class, the job is assigned to this default job class (DEFAULT_JOB_CLASS). The default job class
has the EXECUTE privilege granted to PUBLIC so any database user who has the privilege to
create a job can create a job in the default job class.

• Job Class Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common job class
tasks.

• Creating Job Classes
You create a job class using the CREATE_JOB_CLASS procedure in the DBMS_SCHEDULER
package or Cloud Control. Job classes are always created in the SYS schema.

• Altering Job Classes
You alter a job class by using the SET_ATTRIBUTE procedure in the DBMS_SCHEDULER
package or Cloud Control.

• Dropping Job Classes
You drop one or more job classes using the DROP_JOB_CLASS procedure in the
DBMS_SCHEDULER package or Cloud Control.

See Also:

• Oracle Database Reference to view job classes

• "Allocating Resources Among Jobs Using Resource Manager"

• "Job Classes" for an overview of job classes

28.9.1.1 Job Class Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common job class tasks.

Table 28-8 illustrates common job class tasks and their appropriate procedures and privileges:

Table 28-8 Job Class Tasks and Their Procedures

Task Procedure Privilege Needed

Create a job class CREATE_JOB_CLASS MANAGE SCHEDULER
Alter a job class SET_ATTRIBUTE MANAGE SCHEDULER

Chapter 28
Prioritizing Jobs

28-71

Table 28-8 (Cont.) Job Class Tasks and Their Procedures

Task Procedure Privilege Needed

Drop a job class DROP_JOB_CLASS MANAGE SCHEDULER

See "Scheduler Privileges" for further information regarding privileges.

28.9.1.2 Creating Job Classes
You create a job class using the CREATE_JOB_CLASS procedure in the DBMS_SCHEDULER package
or Cloud Control. Job classes are always created in the SYS schema.

The following statement creates a job class for all finance jobs:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB_CLASS (
 job_class_name => 'finance_jobs',
 resource_consumer_group => 'finance_group');
END;
/

All jobs in this job class are assigned to the finance_group resource consumer group.

To query job classes, use the *_SCHEDULER_JOB_CLASSES views.

See Also:

"About Resource Consumer Groups"

28.9.1.3 Altering Job Classes
You alter a job class by using the SET_ATTRIBUTE procedure in the DBMS_SCHEDULER package or
Cloud Control.

Other than the job class name, all the attributes of a job class can be altered. The attributes of
a job class are available in the *_SCHEDULER_JOB_CLASSES views.

When a job class is altered, running jobs that belong to the class are not affected. The change
only takes effect for jobs that have not started running yet.

28.9.1.4 Dropping Job Classes
You drop one or more job classes using the DROP_JOB_CLASS procedure in the DBMS_SCHEDULER
package or Cloud Control.

Dropping a job class means that all the metadata about the job class is removed from the
database.

You can drop several job classes in one call by providing a comma-delimited list of job class
names to the DROP_JOB_CLASS procedure call. For example, the following statement drops
three job classes:

Chapter 28
Prioritizing Jobs

28-72

BEGIN
 DBMS_SCHEDULER.DROP_JOB_CLASS('jobclass1, jobclass2, jobclass3');
END;
/

28.9.2 Setting Relative Job Priorities Within a Job Class
You can change the relative priorities of jobs within the same job class by using the
SET_ATTRIBUTE procedure in the DBMS_SCHEDULER package. Job priorities must be in the range
of 1-5, where 1 is the highest priority.

For example, the following statement changes the job priority for my_job1 to a setting of 1:

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE (
 name => 'my_emp_job1',
 attribute => 'job_priority',
 value => 1);
END;
/

You can verify that the attribute was changed by issuing the following statement:

SELECT JOB_NAME, JOB_PRIORITY FROM DBA_SCHEDULER_JOBS;

JOB_NAME JOB_PRIORITY
------------------------------ ------------
MY_EMP_JOB 3
MY_EMP_JOB1 1
MY_NEW_JOB1 3
MY_NEW_JOB2 3
MY_NEW_JOB3 3

Overall priority of a job within the system is determined first by the combination of the resource
consumer group that the job class of the job is assigned to and the current resource plan, and
then by relative priority within the job class.

See Also:

• "Allocating Resources Among Jobs Using Resource Manager"

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the SET_ATTRIBUTE procedure

28.9.3 Managing Job Scheduling and Job Priorities with Windows
You create windows to automatically start jobs or to change resource allocation among jobs
during various time periods of the day, week, and so on. A window is represented by an
interval of time.

• About Job Scheduling and Job Priorities with Windows
Windows provide a way to automatically activate different resource plans at different times.
Running jobs can then see a change in the resources that are allocated to them when
there is a change in resource plan.

Chapter 28
Prioritizing Jobs

28-73

• Window Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common window tasks.

• Creating Windows
You can use Cloud Control or the DBMS_SCHEDULER.CREATE_WINDOW procedure to create
windows.

• Altering Windows
You alter a window by modifying its attributes. You do so with the SET_ATTRIBUTE and
SET_ATTRIBUTE_NULL procedures in the DBMS_SCHEDULER package or Cloud Control.

• Opening Windows
When a window opens, the Scheduler switches to the resource plan that has been
associated with it during its creation. If there are jobs running when the window opens, the
resources allocated to them might change due to the switch in resource plan.

• Closing Windows
A window can close based on a schedule, or it can be closed manually.

• Dropping Windows
You drop one or more windows using the DROP_WINDOW procedure in the DBMS_SCHEDULER
package or Cloud Control.

• Disabling Windows
You disable one or more windows using the DISABLE procedure in the DBMS_SCHEDULER
package or with Cloud Control.

• Enabling Windows
You enable one or more windows using the ENABLE procedure in the DBMS_SCHEDULER
package or Cloud Control.

28.9.3.1 About Job Scheduling and Job Priorities with Windows
Windows provide a way to automatically activate different resource plans at different times.
Running jobs can then see a change in the resources that are allocated to them when there is
a change in resource plan.

A job can name a window in its schedule_name attribute. The Scheduler then starts the job with
the window opens. A window has a schedule associated with it, so it can open at various times
during your workload cycle.

These are the key attributes of a window:

• Schedule

This controls when the window is in effect.

• Duration

This controls how long the window is open.

• Resource plan

This names the resource plan that activates when the window opens.

Only one window can be in effect at any given time. Windows belong to the SYS schema.

All window activity is logged in the *_SCHEDULER_WINDOW_LOG views, otherwise known as the
window logs. See "Window Log" for examples of window logging.

Chapter 28
Prioritizing Jobs

28-74

See Also:

"Windows" for an overview of windows.

28.9.3.2 Window Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common window tasks.

Table 28-9 illustrates common window tasks and the procedures you use to handle them.

Table 28-9 Window Tasks and Their Procedures

Task Procedure Privilege Needed

Create a window CREATE_WINDOW MANAGE SCHEDULER
Open a window OPEN_WINDOW MANAGE SCHEDULER
Close a window CLOSE_WINDOW MANAGE SCHEDULER
Alter a window SET_ATTRIBUTE MANAGE SCHEDULER
Drop a window DROP_WINDOW MANAGE SCHEDULER
Disable a window DISABLE MANAGE SCHEDULER
Enable a window ENABLE MANAGE SCHEDULER

See "Scheduler Privileges" for further information regarding privileges.

28.9.3.3 Creating Windows
You can use Cloud Control or the DBMS_SCHEDULER.CREATE_WINDOW procedure to create
windows.

Using the procedure, you can leave the resource_plan parameter NULL. In this case, when the
window opens, the current plan remains in effect.

You must have the MANAGE SCHEDULER privilege to create windows.

When you specify a schedule for a window, the Scheduler does not check if there is already a
window defined for that schedule. Therefore, this may result in windows that overlap. Also,
using a named schedule that has a PL/SQL expression as its repeat interval is not supported
for windows

See the CREATE_WINDOW procedure in Oracle Database PL/SQL Packages and Types
Reference for details on window attributes.

The following example creates a window named daytime that enables the
mixed_workload_plan resource plan during office hours:

BEGIN
 DBMS_SCHEDULER.CREATE_WINDOW (
 window_name => 'daytime',
 resource_plan => 'mixed_workload_plan',
 start_date => '28-APR-09 08.00.00 AM',
 repeat_interval => 'freq=daily; byday=mon,tue,wed,thu,fri',
 duration => interval '9' hour,
 window_priority => 'low',

Chapter 28
Prioritizing Jobs

28-75

 comments => 'OLTP transactions have priority');
END;
/

To verify that the window was created properly, query the view DBA_SCHEDULER_WINDOWS. For
example, issue the following statement:

SELECT WINDOW_NAME, RESOURCE_PLAN, DURATION, REPEAT_INTERVAL FROM DBA_SCHEDULER_WINDOWS;

WINDOW_NAME RESOURCE_PLAN DURATION REPEAT_INTERVAL
----------- ------------------- ------------- ---------------
DAYTIME MIXED_WORKLOAD_PLAN +000 09:00:00 freq=daily; byday=mon,tue,wed,thu,fri

28.9.3.4 Altering Windows
You alter a window by modifying its attributes. You do so with the SET_ATTRIBUTE and
SET_ATTRIBUTE_NULL procedures in the DBMS_SCHEDULER package or Cloud Control.

With the exception of WINDOW_NAME, all the attributes of a window can be changed when it is
altered. See the CREATE_WINDOW procedure in Oracle Database PL/SQL Packages and Types
Reference for window attribute details.

When a window is altered, it does not affect an active window. The changes only take effect
the next time the window opens.

All windows can be altered. If you alter a window that is disabled, it will remain disabled after it
is altered. An enabled window will be automatically disabled, altered, and then reenabled, if the
validity checks performed during the enable process are successful.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the SET_ATTRIBUTE and SET_ATTRIBUTE_NULL procedures.

28.9.3.5 Opening Windows
When a window opens, the Scheduler switches to the resource plan that has been associated
with it during its creation. If there are jobs running when the window opens, the resources
allocated to them might change due to the switch in resource plan.

There are two ways a window can open:

• According to the window's schedule

• Manually, using the OPEN_WINDOW procedure

This procedure opens the window independent of its schedule. This window will open and
the resource plan associated with it will take effect immediately. Only an enabled window
can be manually opened.

In the OPEN_WINDOW procedure, you can specify the time interval that the window should be
open for, using the duration attribute. The duration is of type interval day to second. If the
duration is not specified, then the window will be opened for the regular duration as stored
with the window.

Opening a window manually has no impact on regular scheduled runs of the window.

When a window that was manually opened closes, the rules about overlapping windows
are applied to determine which other window should be opened at that time if any at all.

You can force a window to open even if there is one already open by setting the force
option to TRUE in the OPEN_WINDOW call or Cloud Control.

Chapter 28
Prioritizing Jobs

28-76

When the force option is set to TRUE, the Scheduler automatically closes any window that
is open at that time, even if it has a higher priority. For the duration of this manually opened
window, the Scheduler does not open any other scheduled windows even if they have a
higher priority. You can open a window that is already open. In this case, the window stays
open for the duration specified in the call, from the time the OPEN_WINDOW command was
issued.

Consider an example to illustrate this. window1 was created with a duration of four hours. It
has how been open for two hours. If at this point you reopen window1 using the
OPEN_WINDOW call and do not specify a duration, then window1 will be open for another four
hours because it was created with that duration. If you specified a duration of 30 minutes,
the window will close in 30 minutes.

When a window opens, an entry is made in the window log.

A window can fail to switch resource plans if the current resource plan has been manually
switched using the ALTER SYSTEM statement with the FORCE option, or using the
DBMS_RESOURCE_MANAGER.SWITCH_PLAN package procedure with the
allow_scheduler_plan_switches argument set to FALSE. In this case, the failure to switch
resource plans is written to the window log.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_SCHEDULER.OPEN_WINDOW procedure

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_RESOURCE_MANAGER.SWITCH_PLAN procedure

28.9.3.6 Closing Windows
A window can close based on a schedule, or it can be closed manually.

There are two ways a window can close:

• Based on a schedule

A window will close based on the schedule defined at creation time.

• Manually, using the CLOSE_WINDOW procedure

The CLOSE_WINDOW procedure will close an open window prematurely.

A closed window means that it is no longer in effect. When a window is closed, the Scheduler
will switch the resource plan to the one that was in effect outside the window or in the case of
overlapping windows to another window. If you try to close a window that does not exist or is
not open, an error is generated.

A job that is running will not stop when the window it is running in closes unless the attribute
stop_on_window_close was set to TRUE when the job was created. However, the resources
allocated to the job may change because the resource plan may change.

When a running job has a window group as its schedule, the job will not be stopped when its
window is closed if another window that is also a member of the same window group then
becomes active. This is the case even if the job was created with the attribute
stop_on_window_close set to TRUE.

Chapter 28
Prioritizing Jobs

28-77

When a window is closed, an entry will be added to the window log
DBA_SCHEDULER_WINDOW_LOG.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the CLOSE_WINDOW procedure.

28.9.3.7 Dropping Windows
You drop one or more windows using the DROP_WINDOW procedure in the DBMS_SCHEDULER
package or Cloud Control.

When a window is dropped, all metadata about the window is removed from the
*_SCHEDULER_WINDOWS views. All references to the window are removed from window groups.

You can drop several windows in one call by providing a comma-delimited list of window
names or window group names to the DROP_WINDOW procedure. For example, the following
statement drops both windows and window groups:

BEGIN
 DBMS_SCHEDULER.DROP_WINDOW ('window1, window2, window3,
 windowgroup1, windowgroup2');
END;
/

Note that if a window group name is provided, then the windows in the window group are
dropped, but the window group is not dropped. To drop the window group, you must use the
DROP_GROUP procedure.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DROP_GROUP procedure.

28.9.3.8 Disabling Windows
You disable one or more windows using the DISABLE procedure in the DBMS_SCHEDULER
package or with Cloud Control.

Therefore, the window will not open. However, the metadata of the window is still there, so it
can be reenabled. Because the DISABLE procedure is used for several Scheduler objects,
when disabling windows, they must be preceded by SYS.

A window can also become disabled for other reasons. For example, a window will become
disabled when it is at the end of its schedule. Also, if a window points to a schedule that no
longer exists, it becomes disabled.

If there are jobs that have the window as their schedule, you will not be able to disable the
window unless you set force to TRUE in the procedure call. By default, force is set to FALSE.
When the window is disabled, those jobs that have the window as their schedule will not be
disabled.

You can disable several windows in one call by providing a comma-delimited list of window
names or window group names to the DISABLE procedure call. For example, the following
statement disables both windows and window groups:

BEGIN
 DBMS_SCHEDULER.DISABLE ('sys.window1, sys.window2,
 sys.window3, sys.windowgroup1, sys.windowgroup2');
END;
/

Chapter 28
Prioritizing Jobs

28-78

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DISABLE procedure.

28.9.3.9 Enabling Windows
You enable one or more windows using the ENABLE procedure in the DBMS_SCHEDULER package
or Cloud Control.

An enabled window is one that can be opened. Windows are, by default, created enabled.
When a window is enabled using the ENABLE procedure, a validity check is performed and only
if this is successful will the window be enabled. When a window is enabled, it is logged in the
window log table. Because the ENABLE procedure is used for several Scheduler objects, when
enabling windows, they must be preceded by SYS.

You can enable several windows in one call by providing a comma-delimited list of window
names. For example, the following statement enables three windows:

BEGIN
 DBMS_SCHEDULER.ENABLE ('sys.window1, sys.window2, sys.window3');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the ENABLE procedure.

28.9.4 Managing Job Scheduling and Job Priorities with Window Groups
Window groups provide an easy way to schedule jobs that must run during multiple time
periods throughout the day, week, and so on. If you create a window group, add windows to it,
and then name this window group in a job's schedule_name attribute, the job runs during all the
windows in the window group. Window groups reside in the SYS schema.

• Window Group Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common window group
tasks.

• Creating Window Groups
You create a window group by using the DBMS_SCHEDULER.CREATE_GROUP procedure,
specifying a group type of 'WINDOW'.

• Dropping Window Groups
You drop one or more window groups by using the DROP_GROUP procedure in the
DBMS_SCHEDULER package.

• Adding a Member to a Window Group
You add windows to a window group by using the ADD_GROUP_MEMBER procedure in the
DBMS_SCHEDULER package.

• Removing a Member from a Window Group
You can remove one or more windows from a window group by using the
REMOVE_GROUP_MEMBER procedure in the DBMS_SCHEDULER package.

• Enabling a Window Group
You enable one or more window groups using the ENABLE procedure in the
DBMS_SCHEDULER package.

• Disabling a Window Group
You disable a window group using the DISABLE procedure in the DBMS_SCHEDULER package.

Chapter 28
Prioritizing Jobs

28-79

See Also:

"Window Groups" for an overview of window groups.

28.9.4.1 Window Group Tasks and Their Procedures
You use procedures in the DBMS_SCHEDULER package to administer common window group
tasks.

Table 28-10 illustrates common window group tasks and the procedures you use to handle
them.

Table 28-10 Window Group Tasks and Their Procedures

Task Procedure Privilege Needed

Create a window group CREATE_GROUP MANAGE SCHEDULER
Drop a window group DROP_GROUP MANAGE SCHEDULER
Add a member to a
window group

ADD_GROUP_MEMBER MANAGE SCHEDULER

Drop a member from a
window group

REMOVE_GROUP_MEMBER MANAGE SCHEDULER

Enable a window group ENABLE MANAGE SCHEDULER
Disable a window group DISABLE MANAGE SCHEDULER

See "Scheduler Privileges" for further information regarding privileges.

28.9.4.2 Creating Window Groups
You create a window group by using the DBMS_SCHEDULER.CREATE_GROUP procedure, specifying
a group type of 'WINDOW'.

You can specify the member windows of the group when you create the group, or you can add
them later using the ADD_GROUP_MEMBER procedure. A window group cannot be a member of
another window group. You can, however, create a window group that has no members.

If you create a window group and you specify a member window that does not exist, an error is
generated and the window group is not created. If a window is already a member of a window
group, it is not added again.

Window groups are created in the SYS schema. Window groups, like windows, are created with
access to PUBLIC, therefore, no privileges are required to access window groups.

The following statement creates a window group called downtime and adds two windows
(weeknights and weekends) to it:

BEGIN
 DBMS_SCHEDULER.CREATE_GROUP (
 group_name => 'downtime',
 group_type => 'WINDOW',
 member => 'weeknights, weekends');
END;
/

Chapter 28
Prioritizing Jobs

28-80

To verify the window group contents, issue the following queries as a user with the MANAGE
SCHEDULER privilege:

SELECT group_name, enabled, number_of_members FROM dba_scheduler_groups
 WHERE group_type = 'WINDOW';

GROUP_NAME ENABLED NUMBER_OF_MEMBERS
-------------- -------- -----------------
DOWNTIME TRUE 2

SELECT group_name, member_name FROM dba_scheduler_group_members;

GROUP_NAME MEMBER_NAME
--------------- --------------------
DOWNTIME "SYS"."WEEKENDS"
DOWNTIME "SYS"."WEEKNIGHTS"

28.9.4.3 Dropping Window Groups
You drop one or more window groups by using the DROP_GROUP procedure in the
DBMS_SCHEDULER package.

This call will drop the window group but not the windows that are members of this window
group. To drop all the windows that are members of this group but not the window group itself,
you can use the DROP_WINDOW procedure and provide the name of the window group to the call.

You can drop several window groups in one call by providing a comma-delimited list of window
group names to the DROP_GROUP procedure call. You must precede each window group name
with the SYS schema. For example, the following statement drops three window groups:

BEGIN
DBMS_SCHEDULER.DROP_GROUP('sys.windowgroup1, sys.windowgroup2, sys.windowgroup3');
END;
/

28.9.4.4 Adding a Member to a Window Group
You add windows to a window group by using the ADD_GROUP_MEMBER procedure in the
DBMS_SCHEDULER package.

You can add several members to a window group in one call, by specifying a comma-delimited
list of windows. For example, the following statement adds two windows to the window group
window_group1:

BEGIN
 DBMS_SCHEDULER.ADD_GROUP_MEMBER ('sys.windowgroup1','window2, window3');
END;
/

If an already open window is added to a window group, the Scheduler will not start jobs that
point to this window group until the next window in the window group opens.

28.9.4.5 Removing a Member from a Window Group
You can remove one or more windows from a window group by using the
REMOVE_GROUP_MEMBER procedure in the DBMS_SCHEDULER package.

Jobs with the stop_on_window_close flag set will only be stopped when a window closes.
Dropping an open window from a window group has no impact on this.

Chapter 28
Prioritizing Jobs

28-81

You can remove several members from a window group in one call by specifying a comma-
delimited list of windows. For example, the following statement drops two windows:

BEGIN
 DBMS_SCHEDULER.REMOVE_GROUP_MEMBER('sys.window_group1', 'window2, window3');
END;
/

28.9.4.6 Enabling a Window Group
You enable one or more window groups using the ENABLE procedure in the DBMS_SCHEDULER
package.

By default, window groups are created ENABLED. For example:

BEGIN
 DBMS_SCHEDULER.ENABLE('sys.windowgroup1, sys.windowgroup2, sys.windowgroup3');
END;
/

28.9.4.7 Disabling a Window Group
You disable a window group using the DISABLE procedure in the DBMS_SCHEDULER package.

A job with a disabled window group as its schedule does not run when the member windows
open. Disabling a window group does not disable its member windows.

You can also disable several window groups in one call by providing a comma-delimited list of
window group names. For example, the following statement disables three window groups:

BEGIN
 DBMS_SCHEDULER.DISABLE('sys.windowgroup1, sys.windowgroup2, sys.windowgroup3');
END;
/

28.9.5 Allocating Resources Among Jobs Using Resource Manager
The Database Resource Manager (Resource Manager) controls how resources are allocated
among database sessions. It not only controls asynchronous sessions like Scheduler jobs, but
also synchronous sessions like user sessions.

It groups all "units of work" in the database into resource consumer groups and uses a
resource plan to specify how the resources are allocated among the various consumer groups.
The primary system resource that the Resource Manager allocates is CPU.

For Scheduler jobs, resources are allocated by first assigning each job to a job class, and then
associating a job class with a consumer group. Resources are then distributed among the
Scheduler jobs and other sessions within the consumer group. You can also assign relative
priorities to the jobs in a job class, and resources are distributed to those jobs accordingly.

You can manually change the current resource plan at any time. Another way to change the
current resource plan is by creating Scheduler windows. Windows have a resource plan
attribute. When a window opens, the current plan is switched to the window's resource plan.

The Scheduler tries to limit the number of jobs that are running simultaneously so that at least
some jobs can complete, rather than running a lot of jobs concurrently but without enough
resources for any of them to complete.

The Scheduler and the Resource Manager are tightly integrated. The job coordinator obtains
database resource availability from the Resource Manager. Based on that information, the

Chapter 28
Prioritizing Jobs

28-82

coordinator determines how many jobs to start. It will only start jobs from those job classes that
will have enough resources to run. The coordinator will keep starting jobs in a particular job
class that maps to a consumer group until the Resource Manager determines that the
maximum resource allocated for that consumer group has been reached. Therefore, there
might be jobs in the job table that are ready to run but will not be picked up by the job
coordinator because there are no resources to run them. Therefore, there is no guarantee that
a job will run at the exact time that it was scheduled. The coordinator picks up jobs from the job
table on the basis of which consumer groups still have resources available.

The Resource Manager continues to manage the resources that are assigned to each running
job based on the specified resource plan. Keep in mind that the Resource Manager can only
manage database processes. The active management of resources does not apply to external
jobs.

See Also:

Managing Resources with Oracle Database Resource Manager

28.9.6 Example of Resource Allocation for Jobs
An example illustrates how resources are allocated for jobs.

Assume that the active resource plan is called "Night Plan" and that there are three job
classes: JC1, which maps to consumer group DW; JC2, which maps to consumer group OLTP;
and JC3, which maps to the default consumer group. Figure 28-2 offers a simple graphical
illustration of this scenario.

Figure 28-2 Sample Resource Plan

Night

Plan

OLTP

Consumer

Group

Other

Consumer

Group

DW

Consumer

Group

10%30%60%

This resource plan clearly gives priority to jobs that are part of job class JC1. Consumer group
DW gets 60% of the resources, thus jobs that belong to job class JC1 will get 60% of the
resources. Consumer group OLTP has 30% of the resources, which implies that jobs in job
class JC2 will get 30% of the resources. The consumer group Other specifies that all other
consumer groups will be getting 10% of the resources. Therefore, all jobs that belong in job
class JC3 will share 10% of the resources and can get a maximum of 10% of the resources.

Note that resources that remain unused by one consumer group are available from use by the
other consumer groups. So if the jobs in job class JC1 do not fully use the allocated 60%, the
unused portion is available for use by jobs in classes JC2 and JC3. Note also that the
Resource Manager does not begin to restrict resource usage at all until CPU usage reaches
100%. See Managing Resources with Oracle Database Resource Manager for more
information.

Chapter 28
Prioritizing Jobs

28-83

28.10 Monitoring Jobs
You can monitor jobs in several different ways.

• About Monitoring Jobs
There are several ways to monitor Scheduler jobs.

• The Job Log
You can view results for both local and remote jobs in the job log.

• Monitoring Multiple Destination Jobs
For multiple-destination jobs, the overall parent job state depends on the outcome of the
child jobs.

• Monitoring Job State with Events Raised by the Scheduler
Scheduler can raise an event when a job changes state.

• Monitoring Job State with E-mail Notifications
Scheduler an send an e-mail when a job changes state.

28.10.1 About Monitoring Jobs
There are several ways to monitor Scheduler jobs.

You can monitor Scheduler jobs in the following ways:

• Viewing the job log

The job log includes the data dictionary views *_SCHEDULER_JOB_LOG and
*_SCHEDULER_JOB_RUN_DETAILS, where:

* = {DBA|ALL|USER}

See "Viewing the Job Log".

• Querying additional data dictionary views

Query views such as DBA_SCHEDULER_RUNNING_JOBS and DBA_SCHEDULER_RUNNING_CHAINS
to show the status and details of running jobs and chains.

• Writing applications that receive job state events from the Scheduler

See "Monitoring Job State with Events Raised by the Scheduler"

• Configuring jobs to send e-mail notifications upon a state change

See "Monitoring Job State with E-mail Notifications"

28.10.2 The Job Log
You can view results for both local and remote jobs in the job log.

• Viewing the Job Log
You can view information about job runs, job state changes, and job failures in the job log.
The job log shows results for both local and remote jobs.

• Run Details
For every row in *_SCHEDULER_JOB_LOG for which the operation is RUN, RETRY_RUN, or
RECOVERY_RUN, there is a corresponding row in the *_SCHEDULER_JOB_RUN_DETAILS view.

• Precedence of Logging Levels in Jobs and Job Classes
Both jobs and job classes have a logging_level attribute.

Chapter 28
Monitoring Jobs

28-84

28.10.2.1 Viewing the Job Log
You can view information about job runs, job state changes, and job failures in the job log. The
job log shows results for both local and remote jobs.

The job log is implemented as the following two data dictionary views:

• *_SCHEDULER_JOB_LOG
• *_SCHEDULER_JOB_RUN_DETAILS
Depending on the logging level that is in effect, the Scheduler can make job log entries
whenever a job is run and when a job is created, dropped, enabled, and so on. For a job that
has a repeating schedule, the Scheduler makes multiple entries in the job log—one for each
job instance. Each log entry provides information about a particular run, such as the job
completion status.

The following example shows job log entries for a repeating job that has a value of 4 for the
max_runs attribute:

SELECT job_name, job_class, operation, status FROM USER_SCHEDULER_JOB_LOG;

JOB_NAME JOB_CLASS OPERATION STATUS
---------------- -------------------- --------------- ----------
JOB1 CLASS1 RUN SUCCEEDED
JOB1 CLASS1 RUN SUCCEEDED
JOB1 CLASS1 RUN SUCCEEDED
JOB1 CLASS1 RUN SUCCEEDED
JOB1 CLASS1 COMPLETED

You can control how frequently information is written to the job log by setting the
logging_level attribute of either a job or a job class. Table 28-11 shows the possible values
for logging_level.

Table 28-11 Job Logging Levels

Logging Level Description

DBMS_SCHEDULER.LOGGING_OFF No logging is performed.

DBMS_SCHEDULER.LOGGING_FAILED_RUNS A log entry is made only if the job fails.

DBMS_SCHEDULER.LOGGING_RUNS A log entry is made each time the job is run.

DBMS_SCHEDULER.LOGGING_FULL A log entry is made every time the job runs and for
every operation performed on a job, including
create, enable/disable, update (with
SET_ATTRIBUTE), stop, and drop.

Log entries for job runs are not made until after the job run completes successfully, fails, or is
stopped.

The following example shows job log entries for a complete job lifecycle. In this case, the
logging level for the job class is LOGGING_FULL, and the job is a non-repeating job. After the first
successful run, the job is enabled again, so it runs once more. It is then stopped and dropped.

SELECT to_char(log_date, 'DD-MON-YY HH24:MI:SS') TIMESTAMP, job_name,
 job_class, operation, status FROM USER_SCHEDULER_JOB_LOG
 WHERE job_name = 'JOB2' ORDER BY log_date;

TIMESTAMP JOB_NAME JOB_CLASS OPERATION STATUS

Chapter 28
Monitoring Jobs

28-85

-------------------- --------- ---------- ---------- ---------
18-DEC-07 23:10:56 JOB2 CLASS1 CREATE
18-DEC-07 23:12:01 JOB2 CLASS1 UPDATE
18-DEC-07 23:12:31 JOB2 CLASS1 ENABLE
18-DEC-07 23:12:41 JOB2 CLASS1 RUN SUCCEEDED
18-DEC-07 23:13:12 JOB2 CLASS1 ENABLE
18-DEC-07 23:13:18 JOB2 RUN STOPPED
18-DEC-07 23:19:36 JOB2 CLASS1 DROP

28.10.2.2 Run Details
For every row in *_SCHEDULER_JOB_LOG for which the operation is RUN, RETRY_RUN, or
RECOVERY_RUN, there is a corresponding row in the *_SCHEDULER_JOB_RUN_DETAILS view.

Rows from the two different views are correlated with their LOG_ID columns. You can consult
the run details views to determine why a job failed or was stopped.

SELECT to_char(log_date, 'DD-MON-YY HH24:MI:SS') TIMESTAMP, job_name, status,
 SUBSTR(additional_info, 1, 40) ADDITIONAL_INFO
 FROM user_scheduler_job_run_details ORDER BY log_date;

TIMESTAMP JOB_NAME STATUS ADDITIONAL_INFO
-------------------- ---------- --------- --
18-DEC-07 23:12:41 JOB2 SUCCEEDED
18-DEC-07 23:12:18 JOB2 STOPPED REASON="Stop job called by user:'SYSTEM'
19-DEC-07 14:12:20 REMOTE_16 FAILED ORA-29273: HTTP request failed ORA-06512

The run details views also contain actual job start times and durations.

You can also use the attribute STORE_OUTPUT to direct the *_SCHEDULER_JOB_RUN_DETAILS view
to store the output sent to stdout for external jobs or DBMS_OUTPUT for database jobs. When
STORE_OUTPUT is set to TRUE and the LOGGING_LEVEL indicates that the job run should be
logged, then all the output is collected and put inside the BINARY_OUTPUT column of this view. A
char representation can be queried from the OUTPUT column.

28.10.2.3 Precedence of Logging Levels in Jobs and Job Classes
Both jobs and job classes have a logging_level attribute.

The possible values for this attribute are listed in Table 28-11. The default logging level for job
classes is LOGGING_RUNS, and the default level for individual jobs is LOGGING_OFF. If the logging
level of the job class is higher than that of a job in the class, then the logging level of the job
class takes precedence. Thus, by default, all job runs are recorded in the job log.

For job classes that have very short and highly frequent jobs, the overhead of recording every
single run might be too much and you might choose to turn the logging off or set logging to
occur only when jobs fail. However, you might prefer to have complete logging of everything
that happens with jobs in a specific class, in which case you would enable full logging for that
class.

To ensure that there is logging for all jobs, the individual job creator must not be able to turn
logging off. The Scheduler supports this by making the class-specified level the minimum level
at which job information is logged. A job creator can only enable more logging for an individual
job, not less. Thus, leaving all individual job logging levels set to LOGGING_OFF ensures that all
jobs in a class get logged as specified in the class.

This functionality is provided for debugging purposes. For example, if the class-specific level is
set to record job runs and logging is turned off at the job level, the Scheduler still logs job runs.
If, however, the job creator turns on full logging and the class-specific level is set to record runs

Chapter 28
Monitoring Jobs

28-86

only, the higher logging level of the job takes precedence and all operations on this individual
job are logged. This way, an end user can test their job by turning on full logging.

To set the logging level of an individual job, you must use the SET_ATTRIBUTE procedure on that
job. For example, to turn on full logging for a job called mytestjob, issue the following
statement:

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE (
 'mytestjob', 'logging_level', DBMS_SCHEDULER.LOGGING_FULL);
END;
/

Only a user with the MANAGE SCHEDULER privilege can set the logging level of a job class.

See Also:

"Monitoring and Managing Window and Job Logs" for more information about setting
the job class logging level

28.10.3 Monitoring Multiple Destination Jobs
For multiple-destination jobs, the overall parent job state depends on the outcome of the child
jobs.

For example, if all child jobs succeed, the parent job state is set to SUCCEEDED. If all fail, the
parent job state is set to FAILED. If some fail and some succeed, the parent job state is set to
SOME FAILED.

Due to situations that might arise on some destinations that delay the start of child jobs, there
might be a significant delay before the parent job state is finalized. For repeating multiple-
destination jobs, there might even be a situation in which some child jobs are on their next
scheduled run while others are still working on the previous scheduled run. In this case, the
parent job state is set to INCOMPLETE. Eventually, however, lagging child jobs may catch up to
their siblings, in which case the final state of the parent job can be determined.

Table 28-12 lists the contents of the job monitoring views for multiple-destination jobs.

Table 28-12 Scheduler Data Dictionary View Contents for Multiple-Destination Jobs

View Name Contents

*_SCHEDULER_JOBS One entry for the parent job

*_SCHEDULER_RUNNING_JOBS One entry for the parent job when it starts and an
entry for each running child job

*_SCHEDULER_JOB_LOG One entry for the parent job when it starts
(operation = 'MULTIDEST_START'), one entry for
each child job when the child job completes, and
one entry for the parent job when the last child job
completes and thus the parent completes
(operation = 'MULTIDEST_RUN')

Chapter 28
Monitoring Jobs

28-87

Table 28-12 (Cont.) Scheduler Data Dictionary View Contents for Multiple-Destination
Jobs

View Name Contents

*_SCHEDULER_JOB_RUN_DETAILS One entry for each child job when the child job
completes, and one entry for the parent job when
the last child job completes and thus the parent
completes

*_SCHEDULER_JOB_DESTS One entry for each destination of the parent job

In the *_SCHEDULER_JOB_DESTS views, you can determine the unique job destination ID
(job_dest_id) that is assigned to each child job. This ID represents the unique combination of
a job, a credential, and a destination. You can use this ID with the STOP_JOB procedure. You
can also monitor the job state of each child job with the *_SCHEDULER_JOB_DESTS views.

See Also:

• "Multiple-Destination Jobs"

• "Creating Multiple-Destination Jobs"

• "Scheduler Data Dictionary Views"

28.10.4 Monitoring Job State with Events Raised by the Scheduler
Scheduler can raise an event when a job changes state.

• About Job State Events
You can configure a job so that the Scheduler raises an event when the job changes state.

• Altering a Job to Raise Job State Events
To enable job state events to be raised for a job, you use the SET_ATTRIBUTE procedure in
the DBMS_SCHEDULER package to turn on bit flags in the raise_events job attribute.

• Consuming Job State Events with your Application
To consume job state events, your application must subscribe to the Scheduler event
queue SYS.SCHEDULER$_EVENT_QUEUE. This queue is a secure queue and is owned by SYS.

28.10.4.1 About Job State Events
You can configure a job so that the Scheduler raises an event when the job changes state.

The Scheduler can raise an event when a job starts, when a job completes, when a job
exceeds its allotted run time, and so on. The consumer of the event is your application, which
takes some action in response to the event. For example, if due to a high system load, a job is
still not started 30 minutes after its scheduled start time, the Scheduler can raise an event that
causes a handler application to stop lower priority jobs to free up system resources. The
Scheduler can raise job state events for local (regular) jobs, remote database jobs, local
external jobs, and remote external jobs.

Table 28-13 describes the job state event types raised by the Scheduler.

Chapter 28
Monitoring Jobs

28-88

Table 28-13 Job State Event Types Raised by the Scheduler

Event Type Description

job_all_events Not an event, but a constant that provides an easy way
for you to enable all events

job_broken The job has been disabled and has changed to the
BROKEN state because it exceeded the number of
failures defined by the max_failures job attribute

job_chain_stalled A job running a chain was put into the CHAIN_STALLED
state. A running chain becomes stalled if there are no
steps running or scheduled to run and the chain
evaluation_interval is set to NULL. No progress
will be made in the chain unless there is manual
intervention.

job_completed The job completed because it reached its max_runs or
end_date

job_disabled The job was disabled by the Scheduler or by a call to
SET_ATTRIBUTE

job_failed The job failed, either by throwing an error or by
abnormally terminating

job_over_max_dur The job exceeded the maximum run duration specified
by its max_run_duration attribute.

job_run_completed A job run either failed, succeeded, or was stopped

job_sch_lim_reached The job's schedule limit was reached. The job was not
started because the delay in starting the job exceeded
the value of the schedule_limit job attribute.

job_started The job started

job_stopped The job was stopped by a call to STOP_JOB
job_succeeded The job completed successfully

You enable the raising of job state events by setting the raise_events job attribute. By default,
a job does not raise any job state events.

The Scheduler uses Oracle Database Advanced Queuing to raise events. When raising a job
state change event, the Scheduler enqueues a message onto a default event queue. Your
applications subscribe to this queue, dequeue event messages, and take appropriate actions.

After you enable job state change events for a job, the Scheduler raises these events by
enqueuing messages onto the Scheduler event queue SYS.SCHEDULER$_EVENT_QUEUE. This
queue is a secure queue, so depending on your application, you may have to configure the
queue to enable certain users to perform operations on it.

To prevent unlimited growth of the Scheduler event queue, events raised by the Scheduler
expire in 24 hours by default. You can change this expiry time by setting the
event_expiry_time Scheduler attribute with the DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE
procedure. Expired events are deleted from the event queue.

Chapter 28
Monitoring Jobs

28-89

See Also:

• Oracle Database Advanced Queuing User's Guide for information about
configuring secure queues using Oracle Database Advanced Queuing

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE procedure

28.10.4.2 Altering a Job to Raise Job State Events
To enable job state events to be raised for a job, you use the SET_ATTRIBUTE procedure in the
DBMS_SCHEDULER package to turn on bit flags in the raise_events job attribute.

Each bit flag represents a different job state to raise an event for. For example, turning on the
least significant bit enables job started events to be raised. To enable multiple state change
event types in one call, you add the desired bit flag values together and supply the result as an
argument to SET_ATTRIBUTE.

The following example enables multiple state change events for job dw_reports. It enables the
following event types, both of which indicate some kind of error.

• JOB_FAILED
• JOB_SCH_LIM_REACHED
BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE('dw_reports', 'raise_events',
 DBMS_SCHEDULER.JOB_FAILED + DBMS_SCHEDULER.JOB_SCH_LIM_REACHED);
END;
/

Note:

You do not need to enable the JOB_OVER_MAX_DUR event with the raise_events job
attribute; it is always enabled.

See Also:

The discussion of DBMS_SCHEDULER.SET_ATTRIBUTE in Oracle Database PL/SQL
Packages and Types Reference for the names and values of job state bit flags

28.10.4.3 Consuming Job State Events with your Application
To consume job state events, your application must subscribe to the Scheduler event queue
SYS.SCHEDULER$_EVENT_QUEUE. This queue is a secure queue and is owned by SYS.

To create a subscription to this queue for a user, do the following:

1. Log in to the database as the SYS user or as a user with the MANAGE ANY QUEUE privilege.

Chapter 28
Monitoring Jobs

28-90

2. Subscribe to the queue using a new or existing agent.

3. Run the package procedure DBMS_AQADM.ENABLE_DB_ACCESS as follows:

DBMS_AQADM.ENABLE_DB_ACCESS(agent_name, db_username);

where agent_name references the agent that you used to subscribe to the events queue,
and db_username is the user for whom you want to create a subscription.

There is no need to grant dequeue privileges to the user. The dequeue privilege is granted on
the Scheduler event queue to PUBLIC.

As an alternative, the user can subscribe to the Scheduler event queue using the
ADD_EVENT_QUEUE_SUBSCRIBER procedure, as shown in the following example:

DBMS_SCHEDULER.ADD_EVENT_QUEUE_SUBSCRIBER(subscriber_name);

where subscriber_name is the name of the Oracle Database Advanced Queuing (AQ) agent to
be used to subscribe to the Scheduler event queue. (If it is NULL, an agent is created whose
name is the user name of the calling user.) This call both creates a subscription to the
Scheduler event queue and grants the user permission to dequeue using the designated
agent. The subscription is rule-based. The rule permits the user to see only events raised by
jobs that the user owns, and filters out all other messages. After the subscription is in place,
the user can either poll for messages at regular intervals or register with AQ for notification.

See Oracle Database Advanced Queuing User's Guide for more information.

Scheduler Event Queue

The Scheduler event queue SYS.SCHEDULER$_EVENT_QUEUE is of type scheduler$_event_info.
See Oracle Database PL/SQL Packages and Types Reference for details on this type.

28.10.5 Monitoring Job State with E-mail Notifications
Scheduler an send an e-mail when a job changes state.

• About E-mail Notifications
You can configure a job to send e-mail notifications when it changes state.

• Adding E-mail Notifications for a Job
You use the DBMS_SCHEDULER.ADD_JOB_EMAIL_NOTIFICATION package procedure to add e-
mail notifications for a job.

• Removing E-mail Notifications for a Job
You use the DBMS_SCHEDULER.REMOVE_JOB_EMAIL_NOTIFICATION package procedure to
remove e-mail notifications for a job.

• Viewing Information About E-mail Notifications
You can view information about current e-mail notifications by querying the views
*_SCHEDULER_NOTIFICATIONS.

28.10.5.1 About E-mail Notifications
You can configure a job to send e-mail notifications when it changes state.

The job state events for which e-mails can be sent are listed in Table 28-13. E-mail
notifications can be sent to multiple recipients, and can be triggered by any event in a list of job
state events that you specify. You can also provide a filter condition, and only generate
notifications job state events that match the filter condition. You can include variables such as
job owner, job name, event type, error code, and error message in both the subject and body

Chapter 28
Monitoring Jobs

28-91

of the message. The Scheduler automatically sets values for these variables before sending
the e-mail notification.

You can configure many job state e-mail notifications for a single job. The notifications can
differ by job state event list, recipients, and filter conditions.

For example, you can configure a job to send an e-mail to both the principle DBA and one of
the senior DBAs whenever the job fails with error code 600 or 700. You can also configure the
same job to send a notification to only the principle DBA if the job fails to start at its scheduled
time.

Before you can configure jobs to send e-mail notifications, you must set the Scheduler attribute
email_server to the address of the SMTP server to use to send the e-mail. You may also
optionally set the Scheduler attribute email_sender to a default sender e-mail address for
those jobs that do not specify a sender.

The Scheduler includes support for the SSL and TLS protocols when communicating with the
SMTP server. The Scheduler also supports SMTP servers that require authentication.

See Also:

"Setting Scheduler Preferences" for details about setting e-mail notification–related
attributes

28.10.5.2 Adding E-mail Notifications for a Job
You use the DBMS_SCHEDULER.ADD_JOB_EMAIL_NOTIFICATION package procedure to add e-mail
notifications for a job.

For example, the following procedure adds an e-mail notification for the OED_JOB job:

BEGIN
 DBMS_SCHEDULER.ADD_JOB_EMAIL_NOTIFICATION (
 job_name => 'EOD_JOB',
 recipients => 'jsmith@example.com, rjones@example.com',
 sender => 'do_not_reply@example.com',
 subject => 'Scheduler Job Notification-%job_owner%.%job_name%-%event_type%',
 body => '%event_type% occurred at %event_timestamp%. %error_message%',
 events => 'JOB_FAILED, JOB_BROKEN, JOB_DISABLED, JOB_SCH_LIM_REACHED');
END;
/

Note the variables, enclosed in the '%' character, used in the subject and body arguments.
When you specify multiple recipients and multiple events, each recipient is notified when any of
the specified events is raised. You can verify this by querying the view
USER_SCHEDULER_NOTIFICATIONS.

SELECT JOB_NAME, RECIPIENT, EVENT FROM USER_SCHEDULER_NOTIFICATIONS;

JOB_NAME RECIPIENT EVENT
----------- -------------------- -------------------
EOD_JOB jsmith@example.com JOB_FAILED
EOD_JOB jsmith@example.com JOB_BROKEN
EOD_JOB jsmith@example.com JOB_SCH_LIM_REACHED
EOD_JOB jsmith@example.com JOB_DISABLED
EOD_JOB rjones@example.com JOB_FAILED
EOD_JOB rjones@example.com JOB_BROKEN

Chapter 28
Monitoring Jobs

28-92

EOD_JOB rjones@example.com JOB_SCH_LIM_REACHED
EOD_JOB rjones@example.com JOB_DISABLED

You call ADD_JOB_EMAIL_NOTIFICATION once for each different set of notifications that you want
to configure for a job. You must specify job_name and recipients. All other arguments have
defaults. The default sender is defined by a Scheduler attribute, as described in the previous
section. See the ADD_JOB_EMAIL_NOTIFICATION procedure in Oracle Database PL/SQL
Packages and Types Reference for defaults for the subject, body, and events arguments.

The following example configures an additional e-mail notification for the same job for a
different event. This example accepts the defaults for the sender, subject, and body
arguments.

BEGIN
 DBMS_SCHEDULER.ADD_JOB_EMAIL_NOTIFICATION (
 job_name => 'EOD_JOB',
 recipients => 'jsmith@example.com',
 events => 'JOB_OVER_MAX_DUR');
END;
/

This example could have also omitted the events argument to accept event defaults.

The next example is similar to the first, except that it uses a filter condition to specify that an e-
mail notification is to be sent only when the error number that causes the job to fail is 600 or
700.

BEGIN
 DBMS_SCHEDULER.ADD_JOB_EMAIL_NOTIFICATION (
 job_name => 'EOD_JOB',
 recipients => 'jsmith@example.com, rjones@example.com',
 sender => 'do_not_reply@example.com',
 subject => 'Job Notification-%job_owner%.%job_name%-%event_type%',
 body => '%event_type% at %event_timestamp%. %error_message%',
 events => 'JOB_FAILED',
 filter_condition => ':event.error_code=600 or :event.error_code=700');
END;
/

See Also:

The ADD_JOB_EMAIL_NOTIFICATION procedure in Oracle Database PL/SQL Packages
and Types Reference

28.10.5.3 Removing E-mail Notifications for a Job
You use the DBMS_SCHEDULER.REMOVE_JOB_EMAIL_NOTIFICATION package procedure to remove
e-mail notifications for a job.

For example, the following procedure removes an e-mail notification for the OED_JOB job:

BEGIN
 DBMS_SCHEDULER.REMOVE_JOB_EMAIL_NOTIFICATION (
 job_name => 'EOD_JOB',
 recipients => 'jsmith@example.com, rjones@example.com',
 events => 'JOB_DISABLED, JOB_SCH_LIM_REACHED');

Chapter 28
Monitoring Jobs

28-93

END;
/

When you specify multiple recipients and multiple events, the notification for each specified
event is removed for each recipient. Running the same query as that of the previous section,
the results are now the following:

SELECT JOB_NAME, RECIPIENT, EVENT FROM USER_SCHEDULER_NOTIFICATIONS;

JOB_NAME RECIPIENT EVENT
----------- -------------------- -------------------
EOD_JOB jsmith@example.com JOB_FAILED
EOD_JOB jsmith@example.com JOB_BROKEN
EOD_JOB rjones@example.com JOB_FAILED
EOD_JOB rjones@example.com JOB_BROKEN

Additional rules for specifying REMOVE_JOB_EMAIL_NOTIFICATION arguments are as follows:

• If you leave the events argument NULL, notifications for all events for the specified
recipients are removed.

• If you leave recipients NULL, notifications for all recipients for the specified events are
removed.

• If you leave both recipients and events NULL, then all notifications for the job are
removed.

• If you include a recipient and event for which you did not previously create a notification,
no error is generated.

See Also:

The REMOVE_JOB_EMAIL_NOTIFICATION procedure in Oracle Database PL/SQL
Packages and Types Reference

28.10.5.4 Viewing Information About E-mail Notifications
You can view information about current e-mail notifications by querying the views
*_SCHEDULER_NOTIFICATIONS.

See Also:

Oracle Database Reference for details on these views

Chapter 28
Monitoring Jobs

28-94

29
Administering Oracle Scheduler

You can configure, manage, monitor, and troubleshoot Oracle Scheduler.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c and later releases. While the documentation is being revised, legacy
terminology may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB" refers
to a non-CDB from a previous release.

Note:

This chapter describes how to use the DBMS_SCHEDULER package to administer Oracle
Scheduler. You can accomplish many of the same tasks using Oracle Enterprise
Manager Cloud Control.

See Oracle Database PL/SQL Packages and Types Reference for DBMS_SCHEDULER
information and the Cloud Control online help for information on Oracle Scheduler
pages.

See Oracle Multitenant Administrator's Guide for information on using Oracle
Scheduler with CDB.

• Configuring Oracle Scheduler
Configuring Oracle Scheduler includes tasks such as setting privileges and preferences,
and using the Oracle Scheduler agent to run remote jobs.

• Monitoring and Managing the Scheduler
You can view the currently active window and the resource plan associated with it, view
information about currently running jobs, monitor and manage window and job logs, and
manage Scheduler security.

• Import/Export and the Scheduler
You must use the Data Pump utilities (impdp and expdp) to export Scheduler objects.

• Troubleshooting the Scheduler
You can troubleshoot problems with Scheduler.

• Examples of Using the Scheduler
Examples illustrate using Scheduler.

• Scheduler Reference
There are several privileges and data dictionary views related to Scheduler.

29-1

29.1 Configuring Oracle Scheduler
Configuring Oracle Scheduler includes tasks such as setting privileges and preferences, and
using the Oracle Scheduler agent to run remote jobs.

• Setting Oracle Scheduler Privileges
You must have the SCHEDULER_ADMIN role to perform all Oracle Scheduler administration
tasks. Typically, database administrators already have this role with the ADMIN option as
part of the DBA role.

• Setting Scheduler Preferences
There are several system-wide Scheduler preferences that you can set. You set these
preferences by setting Scheduler attributes with the SET_SCHEDULER_ATTRIBUTE procedure
in the DBMS_SCHEDULER package.

• Using the Oracle Scheduler Agent to Run Remote Jobs
The Oracle Scheduler agent can schedule and run remote jobs.

29.1.1 Setting Oracle Scheduler Privileges
You must have the SCHEDULER_ADMIN role to perform all Oracle Scheduler administration tasks.
Typically, database administrators already have this role with the ADMIN option as part of the
DBA role.

For example, users SYS and SYSTEM are granted the DBA role. You can grant this role to another
administrator by issuing the following statement:

GRANT SCHEDULER_ADMIN TO username;

Because the SCHEDULER_ADMIN role is a powerful role allowing a grantee to execute code as
any user, you should consider granting individual Scheduler system privileges instead. Object
and system privileges are granted using regular SQL grant syntax, for example, if the database
administrator issues the following statement:

GRANT CREATE JOB TO scott;

After this statement is executed, scott can create jobs, schedules, programs, and file watchers
in their schema. As another example, the database administrator can issue the following
statement:

GRANT MANAGE SCHEDULER TO adam;

After this statement is executed, adam can create, alter, or drop windows, job classes, or
window groups. adam will also be able to set and retrieve Scheduler attributes and purge
Scheduler logs.

Setting Chain Privileges

Scheduler chains use underlying Oracle Rules Engine objects along with their associated
privileges. To create a chain in their own schema, users must have the CREATE JOB privilege in
addition to the Rules Engine privileges required to create rules, rule sets, and evaluation
contexts in their own schema. These can be granted by issuing the following statement:

GRANT CREATE RULE, CREATE RULE SET, CREATE EVALUATION CONTEXT TO user;

Chapter 29
Configuring Oracle Scheduler

29-2

To create a chain in a different schema, users must have the CREATE ANY JOB privilege in
addition to the privileges required to create rules, rule sets, and evaluation contexts in
schemas other than their own. These can be granted by issuing the following statement:

GRANT CREATE ANY RULE, CREATE ANY RULE SET,
 CREATE ANY EVALUATION CONTEXT TO user;

Altering or dropping chains in schemas other than the users's schema require corresponding
system Rules Engine privileges for rules, rule sets, and evaluation contexts.

See Also:

"Chain Tasks and Their Procedures" for more information regarding chain privileges.

29.1.2 Setting Scheduler Preferences
There are several system-wide Scheduler preferences that you can set. You set these
preferences by setting Scheduler attributes with the SET_SCHEDULER_ATTRIBUTE procedure in
the DBMS_SCHEDULER package.

Setting these attributes requires the MANAGE SCHEDULER privilege. The attributes are:

• default_timezone
It is very important that you set this attribute. Repeating jobs and windows that use the
calendaring syntax need to know which time zone to use for their repeat intervals. See
"Using the Scheduler Calendaring Syntax". They normally retrieve the time zone from
start_date, but if no start_date is provided (which is not uncommon), they retrieve the
time zone from the default_timezone Scheduler attribute.

The Scheduler derives the value of default_timezone from the operating system
environment. If the Scheduler can find no compatible value from the operating system, it
sets default_timezone to NULL.

It is crucial that you verify that default_timezone is set properly, and if not, that you set it.
To verify it, run this query:

SELECT DBMS_SCHEDULER.STIME FROM DUAL;

STIME

28-FEB-12 09.04.10.308959000 PM UTC

To ensure that daylight savings adjustments are followed, it is recommended that you set
default_timezone to a region name instead of an absolute time zone offset like '-8:00'. For
example, if your database resides in Miami, Florida, USA, issue the following statement:

DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE('default_timezone','US/Eastern');

Similarly, if your database resides in Paris, you would set this attribute to 'Europe/
Warsaw'. To see a list of valid region names, run this query:

SELECT DISTINCT TZNAME FROM V$TIMEZONE_NAMES;

If you do not properly set default_timezone, the default time zone for repeating jobs and
windows will be the absolute offset retrieved from SYSTIMESTAMP (the time zone of the

Chapter 29
Configuring Oracle Scheduler

29-3

operating system environment of the PDB), which means that repeating jobs and windows
that do not have their start_date set will not follow daylight savings adjustments.

• email_server
This attribute specifies an SMTP server address that the Scheduler uses to send e-mail
notifications for job state events. It takes the following format:

host[:port]

where:

– host is the host name or IP address of the SMTP server.

– port is the TCP port on which the SMTP server listens. If not specified, the default port
of 25 is used.

If this attribute is not specified, set to NULL, or set to an invalid SMTP server address, the
Scheduler cannot send job state e-mail notifications.

• email_sender
This attribute specifies the default e-mail address of the sender for job state e-mail
notifications. It must be a valid e-mail address. If this attribute is not set or set to NULL, then
job state e-mail notifications that do not specify a sender address do not have a FROM
address in the e-mail header.

• email_server_credential
This attribute specifies the schema and name of an existing credential object. The default
is NULL.

When an e-mail notification goes out, the Scheduler determines if the
email_server_credential points to a valid credential object that SYS has execute object
privileges on. If the SMTP server specified in the email_server attribute requires
authentication, then the Scheduler uses the user name and password stored in the
specified credential object to authenticate with the e-mail server.

If the email_server_credential is specified, then the email_server attribute must specify
an SMTP server that requires authentication.

If the email_server_credential is not specified, then the Scheduler supports sending
notification e-mails through an SMTP server for which authentication is not configured.

• email_server_encryption
This attribute indicates whether encryption is enabled for this SMTP server connection,
and if so, at what point encryption starts, and with which protocol.

Values for email_server_encryption are:

NONE: The default, indicates no encryption.

SSL_TLS: Indicates that either SSL or TLS are used, from the beginning of the connection.
The two sides determine which protocol is most secure. This is the most common setting
for this parameter.

STARTTLS: Indicates that the connection starts in an unencrypted state, but then the
command STARTTLS directs the e-mail server to start encryption using TLS.

• event_expiry_time
This attribute enables you to set the time in seconds before a job state event generated by
the Scheduler expires (is automatically purged from the Scheduler event queue). If NULL,
job state events expire after 24 hours.

Chapter 29
Configuring Oracle Scheduler

29-4

• log_history
This attribute controls the number of days that log entries for both the job log and the
window log are retained. It helps prevent logs from growing indiscriminately. The range of
valid values is 0 through 1000000. If set to 0, no history is kept. Default value is 30. You
can override this value at the job class level by setting a value for the log_history
attribute of the job class.

See Oracle Database PL/SQL Packages and Types Reference for the syntax for the
SET_SCHEDULER_ATTRIBUTE procedure.

29.1.3 Using the Oracle Scheduler Agent to Run Remote Jobs
The Oracle Scheduler agent can schedule and run remote jobs.

Using the Oracle Scheduler agent, the Scheduler can schedule and run two types of remote
jobs:

• Remote database jobs: Remote database jobs must be run through an Oracle Scheduler
agent. Oracle recommends that an agent be installed on the same host as the remote
database.

If you intend to run remote database jobs, the Scheduler agent must be Oracle Database
11g Release 2 (11.2) or later.

• Remote external jobs: Remote external jobs run on the same host that the Scheduler
agent is installed on.

If you intend to run only remote external jobs, Oracle Database 11g Release 1 (11.1) of the
Scheduler agent is sufficient.

You must install Scheduler agents on all hosts that remote external jobs will run on. You should
install Scheduler agents on all hosts running remote databases that remote database jobs will
be run on.

Each database that runs remote jobs requires an initial setup to enable secure
communications between databases and remote Scheduler agents, as described in "Setting up
Databases for Remote Jobs".

Enabling remote jobs involves the following steps:

1. Enabling and Disabling Databases for Remote Jobs

2. Installing and Configuring the Scheduler Agent on a Remote Host

3. Performing Tasks with the Scheduler Agent

• Enabling and Disabling Databases for Remote Jobs
You can set up databases for remote jobs and disable databases for remote jobs.

• Installing and Configuring the Scheduler Agent on a Remote Host
Before you can run remote jobs on a particular host, you must install and configure the
Scheduler agent.

• Performing Tasks with the Scheduler Agent
The Scheduler agent is a standalone program that enables you to schedule and run
external and database jobs on remote hosts. You start and stop the Scheduler agent using
the schagent utility on UNIX and Linux, and the OracleSchedulerExecutionAgent service
on Windows.

Chapter 29
Configuring Oracle Scheduler

29-5

See Also:

• "About Remote External Jobs"

• "Database Jobs" for more information on remote database jobs

29.1.3.1 Enabling and Disabling Databases for Remote Jobs
You can set up databases for remote jobs and disable databases for remote jobs.

• Setting up Databases for Remote Jobs
Before a database can run jobs using a remote Scheduler agent, the database must be
properly configured, and the agent must be registered with the database.

• Disabling Remote Jobs
You can disable remote jobs on a database by dropping the REMOTE_SCHEDULER_AGENT
user.

29.1.3.1.1 Setting up Databases for Remote Jobs
Before a database can run jobs using a remote Scheduler agent, the database must be
properly configured, and the agent must be registered with the database.

This section describes the configuration, including the required agent registration password in
the database. You will later register the database, as shown in "Registering Scheduler Agents
with Databases".

You can limit the number of Scheduler agents that can register, and you can set the password
to expire after a specified duration.

Complete the following steps once for each database that creates and runs remote jobs.

To set up a database to create and run remote jobs:

1. Ensure that shared server is enabled.

See "Enabling Shared Server".

If several Scheduler agents are being used with the same database, set the value of the
SHARED_SERVERS database initialization parameter high enough to avoid errors when all
those agents try to work in parallel.

Note:

If you are running in multitenant mode, you must unlock the anonymous account
in CDB$ROOT.

Using SQL*Plus, connect to CDB$ROOT as SYS user, and enter the following
command:

 SQL> alter session set container = CDB$ROOT;
 SQL> alter user anonymous account unlock container=current;

2. Using SQL*Plus, connect to the database (specify pluggable database under multitenant
mode) as the SYS user.

Chapter 29
Configuring Oracle Scheduler

29-6

3. Enter the following command to verify that the XML DB option is installed:

SQL> DESC RESOURCE_VIEW

If XML DB is not installed, this command returns an "object does not exist" error.

Note:

If XML DB is not installed, you must install it before continuing.

4. If you are using HTTPS connections, then add a certificate to the database wallet as
follows:

Note:

Check that the database is not using the wallet while adding the certificate, or
else shutdown the database while adding the certificate and then startup the
database.

a. If you do not have an existing database wallet in the ORACLE_HOME/
admin/$ORACLE_SID/xdb_wallet directory, then create one using the orapki command
line utility. For example:

orapki wallet create -wallet $ORACLE_HOME/admin/$ORACLE_SID/xdb_wallet -
pwd wallet_password -auto_login

b. Add a certificate to the wallet using the orapki command line utility. For example:

orapki wallet add -wallet $ORACLE_HOME/admin/$ORACLE_SID/xdb_wallet -dn
CN=fully_qualified_domain_name -self_signed -pwd wallet_password -
validity number_of_days -keysize key_size_for_the_certificate(512|1024|
2048)

Note:

The use of weaker encryption keys is deprecated in Oracle Database 21c.

See Also:

Oracle Database Security Guide for more information about adding certificates to
a database wallet using the orapki utility

5. Enable HTTP(S) connections to the database as follows:

a. Determine whether or not the Oracle XML DBM HTTP(S) Server is enabled:

Run the following command for HTTP connections:

SQL> SELECT DBMS_XDB_CONFIG.GETHTTPPORT() FROM DUAL;

Chapter 29
Configuring Oracle Scheduler

29-7

Run the following command for HTTPS connections:

SQL> SELECT DBMS_XDB_CONFIG.GETHTTPSPORT() FROM DUAL;

If the statement returns 0, then Oracle XML DBM HTTP(S) Server is disabled.

b. Enable Oracle XML DB HTTP(S) Server on a nonzero port by logging in as SYS and
run the following commands:

If you are using HTTP connections:

SQL> EXEC DBMS_XDB_CONFIG.SETHTTPPORT (port);
SQL> COMMIT;

If you are using HTTPS connections:

SQL> EXEC DBMS_XDB_CONFIG.SETHTTPSPORT (port);
SQL> COMMIT;

where port is the TCP port number on which you want the database to listen for
HTTP(S) connections.

port must be an integer between 1 and 65536, and for UNIX and Linux must be
greater than 1023. Choose a port number that is not already in use.

Each pluggable database must use a unique port number so that the scheduler agent
can determine the exact pluggable database later during the agent registration
procedure.

Note:

• This enables HTTP(S) connections on all instances of an Oracle Real
Application Clusters database.

• Oracle Scheduler agent supports HTTPS connections starting with
Oracle Database 18c.

6. Run the script prvtrsch.plb with following command:

SQL> @?/rdbms/admin/prvtrsch.plb
7. Set a registration password for the Scheduler agents using the

SET_AGENT_REGISTRATION_PASS procedure.

The following example sets the agent registration password to mypassword.

BEGIN
 DBMS_SCHEDULER.SET_AGENT_REGISTRATION_PASS('mypassword');
END;
/

Note:

You must have the MANAGE SCHEDULER privilege to set an agent registration
password. See Oracle Database PL/SQL Packages and Types Reference for
more information on the SET_AGENT_REGISTRATION_PASS procedure.

Chapter 29
Configuring Oracle Scheduler

29-8

You will do the actual registration further on, in "Registering Scheduler Agents with
Databases".

29.1.3.1.2 Disabling Remote Jobs
You can disable remote jobs on a database by dropping the REMOTE_SCHEDULER_AGENT user.

To disable remote jobs:

• Submit the following SQL statement:

DROP USER REMOTE_SCHEDULER_AGENT CASCADE;
Registration of new scheduler agents and execution of remote jobs is disabled until you run
prvtrsch.plb again.

29.1.3.2 Installing and Configuring the Scheduler Agent on a Remote Host
Before you can run remote jobs on a particular host, you must install and configure the
Scheduler agent.

After installing and configuring the Scheduler agent, you must register and start the Scheduler
agent on the host, described in "Performing Tasks with the Scheduler Agent". The Scheduler
agent must also be installed in its own Oracle home.

To install and configure the Scheduler agent on a remote host:

1. Download or retrieve the Scheduler agent software, which is available on the Oracle
Database Client media included in the Database Media Pack, and online at:

http://www.oracle.com/technology/software/products/database
2. Ensure that you have first properly set up any database on which you want to register the

agent.

See "Enabling and Disabling Databases for Remote Jobs" for instructions.

3. Log in to the host you want to install the Scheduler agent on. This host runs remote jobs.

• For Windows, log in as an administrator.

• For UNIX and Linux, log in as the user that you want the Scheduler agent to run as.
This user requires no special privileges.

4. Run the Oracle Universal Installer (OUI) from the installation media for Oracle Database
Client.

• For Windows, run setup.exe.

• For UNIX and Linux, use the following command:

/directory_path/runInstaller
where directory_path is the path to the Oracle Database Client installation media.

5. On the Select Installation Type page, select Custom, and then click Next.

6. On the Select Product Languages page, select the desired languages, and click Next.

7. On the Specify Install Location page, enter the path for a new Oracle home for the agent,
and then click Next.

8. On the Available Product Components page, select Oracle Scheduler Agent, and click
Next.

9. On the Oracle Database Scheduler Agent page:

Chapter 29
Configuring Oracle Scheduler

29-9

http://www.oracle.com/technology/software/products/database

a. In the Scheduler Agent Hostname field, enter the host name of the computer that the
Scheduler agent is installed on.

b. In the Scheduler Agent Port Number field, enter the TCP port number that the
Scheduler agent is to listen on for connections, or accept the default, and then click
Next.

Choose an integer between 1 and 65535. On UNIX and Linux, the number must be
greater than 1023. Ensure that the port number is not already in use.

OUI performs a series of prerequisite checks. If any of the prerequisite checks fail,
resolve the problems, and then click Next.

10. On the Summary page, click Finish.

11. (UNIX and Linux only) When OUI prompts you to run the script root.sh, enter the following
command as the root user:

script_path/root.sh

The script is located in the directory that you chose for agent installation.

When the script completes, click OK in the Execute Configuration Scripts dialog box.

12. Click Close to exit OUI when installation is complete.

13. Use a text editor to review the agent configuration parameter file schagent.conf, which is
located in the Scheduler agent home directory, and verify the port number in the PORT=
directive.

14. Ensure that any firewall software on the remote host or any other firewall that protects that
host has an exception to accommodate the Scheduler agent.

29.1.3.3 Performing Tasks with the Scheduler Agent
The Scheduler agent is a standalone program that enables you to schedule and run external
and database jobs on remote hosts. You start and stop the Scheduler agent using the
schagent utility on UNIX and Linux, and the OracleSchedulerExecutionAgent service on
Windows.

• About the schagent Utility
The executable utility schagent performs certain tasks for the agent on Windows, UNIX
and Linux.

• Using the Scheduler Agent on Windows
The Windows Scheduler agent service is automatically created and started during
installation. The name of the service ends with OracleSchedulerExecutionAgent.

• Starting the Scheduler Agent
Starting the Scheduler agent enables the host on which it resides to run remote jobs.

• Stopping the Scheduler Agent
Stopping the Scheduler agent prevents the host on which it resides from running remote
jobs.

• Registering Scheduler Agents with Databases
As soon as you have finished configuring the Scheduler Agent, you can register the Agent
on one or more databases that are to run remote jobs.

Chapter 29
Configuring Oracle Scheduler

29-10

29.1.3.3.1 About the schagent Utility
The executable utility schagent performs certain tasks for the agent on Windows, UNIX and
Linux.

The options for schagent are indicated in Table 29-1.

Use schagent with the appropriate syntax and options as follows:

For example:

UNIX and Linux: AGENT_HOME/bin/schagent -status
Windows: AGENT_HOME/bin/schagent.exe -status

Table 29-1 schagent options

Option Description

-start Starts the Scheduler Agent.

UNIX and Linux only

-stop Prompts the Scheduler agent to stop all the currently running jobs
and then stop execution gracefully.

UNIX and Linux only

-abort Stops the Scheduler agent forcefully, that is, without stopping jobs
first. From Oracle Database 11g Release 2 (11.2).

UNIX and Linux only

-status Returns this information about the Scheduler Agent running locally:
version, uptime, total number of jobs run since the agent started,
number of jobs currently running, and their descriptions.

-registerdatabase Register the Scheduler agent with the base database or additional
databases that are to run remote jobs on the agent's host computer.

-unregisterdatabase Unregister an agent from a database.

29.1.3.3.2 Using the Scheduler Agent on Windows
The Windows Scheduler agent service is automatically created and started during installation.
The name of the service ends with OracleSchedulerExecutionAgent.

Note:

Do not confuse this service with the OracleJobScheduler service, which runs on a
Windows computer on which an Oracle database is installed, and manages the
running of local external jobs without credentials.

29.1.3.3.3 Starting the Scheduler Agent
Starting the Scheduler agent enables the host on which it resides to run remote jobs.

To start the Scheduler agent:

• Do one of the following:

Chapter 29
Configuring Oracle Scheduler

29-11

– On UNIX and Linux, run the following command:

AGENT_HOME/bin/schagent -start
– On Windows, start the service whose name ends with

OracleSchedulerExecutionAgent.

29.1.3.3.4 Stopping the Scheduler Agent
Stopping the Scheduler agent prevents the host on which it resides from running remote jobs.

To stop the Scheduler agent:

• Do one of the following:

– On UNIX and Linux, run the schagent utility with either the -stop or -abort option as
described in Table 29-1:

AGENT_HOME/bin/schagent -stop
– On Windows, stop the service whose name ends with

OracleSchedulerExecutionAgent. This is equivalent to the -abort option.

29.1.3.3.5 Registering Scheduler Agents with Databases
As soon as you have finished configuring the Scheduler Agent, you can register the Agent on
one or more databases that are to run remote jobs.

You can also log in later on and register the agent with additional databases.

1. If you have already logged out, then log in to the host that is running the Scheduler agent,
as follows:

• For Windows, log in as an administrator.

• For UNIX and Linux, log in as the user with which you installed the Scheduler agent.

2. Use the following command for each database that you want to register the Scheduler
agent on:

• On UNIX and Linux, run this command:

AGENT_HOME/bin/schagent -registerdatabase db_host db_http(s)_port
• On Windows, run this command:

AGENT_HOME/bin/schagent.exe -registerdatabase db_host db_http(s)_port
where:

• db_host is the host name or IP address of the host on which the database resides. In
an Oracle Real Application Clusters environment, you can specify any node.

• db_http(s)_port is the port number that the database listens on for HTTP(S)
connections. You set this parameter previously in "Enabling and Disabling Databases
for Remote Jobs". You can check the port number by submitting the following SQL
statement to the database:

For HTTP connections:

SELECT DBMS_XDB_CONFIG.GETHTTPPORT() FROM DUAL;

For HTTPS connections:

SELECT DBMS_XDB_CONFIG.GETHTTPSPORT() FROM DUAL;

Chapter 29
Configuring Oracle Scheduler

29-12

A port number of 0 means that HTTP(S) connections are disabled.

The agent prompts you to enter the agent registration password that you set in "Enabling
and Disabling Databases for Remote Jobs".

Starting with Oracle Database 18c, the agent automatically determines if the port is
configured to use HTTP or HTTPS connections. For HTTPS connections, the agent also
prompts you to select any untrusted certificate that you want to add as a trusted one.

3. Repeat the previous steps for any additional databases to run remote jobs on the agent's
host.

29.2 Monitoring and Managing the Scheduler
You can view the currently active window and the resource plan associated with it, view
information about currently running jobs, monitor and manage window and job logs, and
manage Scheduler security.

• Viewing the Currently Active Window and Resource Plan
You can view the currently active window and the plan associated with it by querying the
DBA_SCHEDULER_WINDOWS view.

• Finding Information About Currently Running Jobs
You can check the state of a job by querying the DBA_SCHEDULER_JOBS view.

• Monitoring and Managing Window and Job Logs
The Scheduler supports two kinds of logs: the job log and the window log.

• DBMS_SCHEDULER In-Memory Trace
The DBMS_SCHEDULER In-Memory tracing feature provides a tool for temporarily storing
the scheduler trace messages generated during process execution.

• Managing Scheduler Security
You should grant the appropriate privileges to users based on the Scheduler operations
they will perform.

29.2.1 Viewing the Currently Active Window and Resource Plan
You can view the currently active window and the plan associated with it by querying the
DBA_SCHEDULER_WINDOWS view.

For example, issue the following statement:

SELECT WINDOW_NAME, RESOURCE_PLAN FROM DBA_SCHEDULER_WINDOWS
WHERE ACTIVE='TRUE';

WINDOW_NAME RESOURCE_PLAN
------------------------------ --------------------------
MY_WINDOW10 MY_RESOURCEPLAN1

If there is no window active, you can view the active resource plan by issuing the following
statement:

SELECT * FROM V$RSRC_PLAN;

29.2.2 Finding Information About Currently Running Jobs
You can check the state of a job by querying the DBA_SCHEDULER_JOBS view.

For example, issue the following statement:

Chapter 29
Monitoring and Managing the Scheduler

29-13

SELECT JOB_NAME, STATE FROM DBA_SCHEDULER_JOBS
WHERE JOB_NAME = 'MY_EMP_JOB1';

JOB_NAME STATE
------------------------------ ---------
MY_EMP_JOB1 DISABLED

In this case, you could enable the job using the ENABLE procedure. Table 29-2 shows the valid
values for job state.

Table 29-2 Job States

Job State Description

disabled The job is disabled.

scheduled The job is scheduled to be executed.

running The job is currently running.

completed The job has completed, and is not scheduled to run again.

stopped The job was scheduled to run once and was stopped while it was running.

broken The job is broken.

failed The job was scheduled to run once and failed.

retry scheduled The job has failed at least once and a retry has been scheduled to be
executed.

succeeded The job was scheduled to run once and completed successfully.

chain_stalled The job is of type chain and has no steps running, no steps scheduled to run,
and no event steps waiting on an event, and the chain
evaluation_interval is set to NULL. No progress will be made in the
chain unless there is manual intervention.

You can check the progress of currently running jobs by issuing the following statement:

SELECT * FROM ALL_SCHEDULER_RUNNING_JOBS;

Note that, for the column CPU_USED to show valid data, the initialization parameter
RESOURCE_LIMIT must be set to true.

You can check the status of all jobs at all remote and local destinations by issuing the following
statement:

SELECT * FROM DBA_SCHEDULER_JOB_DESTS;

You can find out information about a job that is part of a running chain by issuing the following
statement:

SELECT * FROM ALL_SCHEDULER_RUNNING_CHAINS WHERE JOB_NAME='MY_JOB1';

You can check whether the job coordinator is running by searching for a process of the form
cjqNNN.

Chapter 29
Monitoring and Managing the Scheduler

29-14

See Also:

• "Multiple-Destination Jobs"

• Oracle Database Reference for details regarding the *_SCHEDULER_RUNNING_JOBS
view

• Oracle Database Reference for details regarding the *_SCHEDULER_JOBS view

29.2.3 Monitoring and Managing Window and Job Logs
The Scheduler supports two kinds of logs: the job log and the window log.

• Job Log
You can view information about job runs, job state changes, and job failures in the job log.

• Window Log
The window log records operations on windows.

• Purging Logs
To prevent job and window logs from growing indiscriminately, use the
SET_SCHEDULER_ATTRIBUTE procedure to specify how much history (in days) to keep.

29.2.3.1 Job Log
You can view information about job runs, job state changes, and job failures in the job log.

The job log is implemented as the following two data dictionary views:

• *_SCHEDULER_JOB_LOG
• *_SCHEDULER_JOB_RUN_DETAILS
You can control the amount of logging that the Scheduler performs on jobs at both the job class
and individual job level. Normally, you control logging at the class level, as this offers you more
control over logging for the jobs in the class.

See "Viewing the Job Log" for definitions of the various logging levels and for information about
logging level precedence between jobs and their job class. By default, the logging level of job
classes is LOGGING_RUNS, which causes all job runs to be logged.

You can set the logging_level attribute when you create the job class, or you can use the
SET_ATTRIBUTE procedure to change the logging level at a later time. The following example
sets the logging level of jobs in the myclass1 job class to LOGGING_FAILED_RUNS, which means
that only failed runs are logged. Note that all job classes are in the SYS schema.

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE (
 'sys.myclass1', 'logging_level', DBMS_SCHEDULER.LOGGING_FAILED_RUNS);
END;
/

You must be granted the MANAGE SCHEDULER privilege to set the logging level of a job class.

Chapter 29
Monitoring and Managing the Scheduler

29-15

See Also:

• "Viewing the Job Log" for more detailed information about the job log and for
examples of queries against the job log views

• Oracle Database Reference for details on the *_SCHEDULER_JOB_LOG view

• Oracle Database Reference for details on the *_SCHEDULER_JOB_RUN_DETAILS
view

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the CREATE_JOB_CLASS and SET_ATTRIBUTE procedures

• "Setting Scheduler Preferences" for information about setting retention for log
entries

29.2.3.2 Window Log
The window log records operations on windows.

The Scheduler makes an entry in the window log each time that:

• You create or drop a window

• A window opens

• A window closes

• Windows overlap

• You enable or disable a window

There are no logging levels for window activity logging.

To see the contents of the window log, query the DBA_SCHEDULER_WINDOW_LOG view. The
following statement shows sample output from this view:

SELECT log_id, to_char(log_date, 'DD-MON-YY HH24:MI:SS') timestamp,
 window_name, operation FROM DBA_SCHEDULER_WINDOW_LOG;

 LOG_ID TIMESTAMP WINDOW_NAME OPERATION
---------- -------------------- ----------------- --------
 4 10/01/2004 15:29:23 WEEKEND_WINDOW CREATE
 5 10/01/2004 15:33:01 WEEKEND_WINDOW UPDATE
 22 10/06/2004 22:02:48 WEEKNIGHT_WINDOW OPEN
 25 10/07/2004 06:59:37 WEEKNIGHT_WINDOW CLOSE
 26 10/07/2004 22:01:37 WEEKNIGHT_WINDOW OPEN
 29 10/08/2004 06:59:51 WEEKNIGHT_WINDOW CLOSE

The DBA_SCHEDULER_WINDOWS_DETAILS view provides information about every window that was
active and is now closed (completed). The following statement shows sample output from that
view:

SELECT LOG_ID, WINDOW_NAME, ACTUAL_START_DATE, ACTUAL_DURATION
 FROM DBA_SCHEDULER_WINDOW_DETAILS;

 LOG_ID WINDOW_NAME ACTUAL_START_DATE ACTUAL_DURATION
---------- ---------------- ------------------------------------ ---------------
 25 WEEKNIGHT_WINDOW 06-OCT-04 10:02.48.832438 PM PST8PDT +000 01:02:32
 29 WEEKNIGHT_WINDOW 07-OCT-04 10.01.37.025704 PM PST8PDT +000 03:02:00

Chapter 29
Monitoring and Managing the Scheduler

29-16

Notice that log IDs correspond in both of these views, and that in this case the rows in the
DBA_SCHEDULER_WINDOWS_DETAILS view correspond to the CLOSE operations in the
DBA_SCHEDULER_WINDOW_LOG view.

See Also:

• Oracle Database Reference for details on the *_SCHEDULER_WINDOW_LOG view

• Oracle Database Reference for details on the DBA_SCHEDULER_WINDOWS_DETAILS
view

29.2.3.3 Purging Logs
To prevent job and window logs from growing indiscriminately, use the
SET_SCHEDULER_ATTRIBUTE procedure to specify how much history (in days) to keep.

Once per day, the Scheduler automatically purges all log entries that are older than the
specified history period from both the job log and the window log. The default history period is
30 days. For example, to change the history period to 90 days, issue the following statement:

DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE('log_history','90');

Some job classes are more important than others. Because of this, you can override this global
history setting by using a class-specific setting. For example, suppose that there are three job
classes (class1, class2, and class3), and that you want to keep 10 days of history for the
window log, class1, and class3, but 30 days for class2. To achieve this, issue the following
statements:

DBMS_SCHEDULER.SET_SCHEDULER_ATTRIBUTE('log_history','10');
DBMS_SCHEDULER.SET_ATTRIBUTE('class2','log_history','30');

You can also set the class-specific history when creating the job class.

Note that log entries pertaining to steps of a chain run are not purged until the entries for the
main chain job are purged.

Purging Logs Manually

The PURGE_LOG procedure enables you to manually purge logs. As an example, the following
statement purges all entries from both the job and window logs:

DBMS_SCHEDULER.PURGE_LOG();

Another example is the following, which purges all entries from the jog log that are older than
three days. The window log is not affected by this statement.

DBMS_SCHEDULER.PURGE_LOG(log_history => 3, which_log => 'JOB_LOG');

The following statement purges all window log entries older than 10 days and all job log entries
older than 10 days that relate to job1 and to the jobs in class2:

DBMS_SCHEDULER.PURGE_LOG(log_history => 10, job_name => 'job1, sys.class2');

Chapter 29
Monitoring and Managing the Scheduler

29-17

29.2.4 DBMS_SCHEDULER In-Memory Trace
The DBMS_SCHEDULER In-Memory tracing feature provides a tool for temporarily storing the
scheduler trace messages generated during process execution.

Due to the concurrent nature of the scheduler, several processes might be executed at same
time, therefore allocation and usage of memory must be implemented efficiently to minimize
the memory and disk consumption. In-memory tracing follows a circular form, that is the most
recent trace entries overwrite the oldest ones and automatic dumps to disk will happen when
the process hits a severe problem. This minimizes the amount of memory used to store trace
messages while maximizing the amount of information collected. In-memory tracing eases
collection of trace messages generated since the very first failure, reduces user interaction to
collect traces, and avoids multiple requests for problem reproduction.

As memory used to store scheduler traces might be limited, the database administrator can
define the amount of space reserved for tracing or even disable the tracing feature using the
set of parameters shown below.

Table 29-3 Administration of Scheduler In-Memory Trace Features

SQL Statement Example Description

alter system set
"_scheduler_ora_buffer_siz
e"=<SIZE>;

Setting buffer size for Oracle
Server processes to 32KB

alter system set
"_scheduler_ora_buffer_siz
e"=32;

This SQL statement defines the
size of the buffer storing trace
from Oracle Server processes. It
receives an integer value that
defines the number of kilobytes
(KB) of memory allocated by the
process as an input. Typically,
these processes perform top level
calls that are used to create or
alter scheduler objects. As
thousands of server processes
can be active at any time, the
DBA must limit the maximum
amount of buffer size per session
(32KB per session) or limit the
number of concurrent sessions in
memory trace.

Valid values are 0 to 1024. The
default value is 32KB. Setting this
value to 0 disables in-memory
tracing for Oracle Server
processes.

alter system set
"_scheduler_cjq0_buffer_si
ze"=<SIZE>;

Setting buffer size for CJQ
process to 256 KB

alter system set
"_scheduler_cjq0_buffer_si
ze" = 256;

This SQL statement defines the
size of the buffer storing trace
messages from scheduler
coordinator process (CJQ0). It
receives an integer value defining
the number of KB of memory
allocated by the process as an
input.

Valid values are 0 to 131072. The
default value is 1024. Setting this
value to 0 disables in-memory
tracing for CJQ0 process.

Chapter 29
Monitoring and Managing the Scheduler

29-18

Table 29-3 (Cont.) Administration of Scheduler In-Memory Trace Features

SQL Statement Example Description

alter system set
"_scheduler_jnnn_buffer_si
ze"=<SIZE>;

Setting buffer size for Jnnn
process to 0

alter system set
"_scheduler_jnnn_buffer_si
ze" = 0;

This SQL statement defines the
size of the buffer storing trace
from scheduler slave processes.
It receives an integer value
defining the number of KB of
memory allocated by the process
as an input.

Valid values are 0 to 1024. The
default value is 32KB. Setting this
value to 0 disables in-memory
tracing for scheduler job slave
processes.

alter system set
"_dump_scheduler_inmemory_
trace_on_timeout"=<TRUE|
FALSE>;

alter system set
"_dump_scheduler_inmemory_
trace_on_timeout"=false;

This SQL statement enables or
disables the automatic dump of
trace when the completion time of
some internal routines exceeds
the value defined with
_scheduler_inmemory_trace_
timeout. If this parameter is set
to TRUE, then the content of the
memory buffer is dumped to
persistent storage. Setting this
parameter to FALSE will disable
the automatic dumps.

The default value is TRUE.

alter system set
"_dump_scheduler_inmemory_
trace_on_error"=<TRUE|
FALSE>;

alter system set
"_dump_scheduler_inmemory_
trace_on_error"=true;

This SQL statement enables or
disables the automatic dump of
traces to persistent storage when
a critical error is captured during
some internal routines execution.
If the parameter is set to TRUE,
internal errors (for example,
ORA-27352) will dump the
current contents of memory trace
of this process.

Valid values are TRUE|FALSE.
The default value is TRUE.

alter system set
"_scheduler_inmemory_trace
_timeout"=<number_of_secon
ds>;

alter system set
"_scheduler_inmemory_trace
_timeout" = 300;

This SQL statement defines the
threshold to declare a call for an
unexpected behavior. Following
are the examples of an
unexpected behavior:
• A job query refresh taking

more than 10 minutes to
complete.

• The time required to get a
lock on scheduler object, for
instance on a job queue, is
taking more than one minute.

Values are measured in seconds.
Valid values are 60 to 1800. The
default value is 600. Setting this
value too low can generate
excessive dumps.

Chapter 29
Monitoring and Managing the Scheduler

29-19

29.2.5 Managing Scheduler Security
You should grant the appropriate privileges to users based on the Scheduler operations they
will perform.

You should grant the CREATE JOB system privilege to regular users who need to be able to use
the Scheduler to schedule and run jobs. You should grant MANAGE SCHEDULER to any database
administrator who needs to manage system resources. Grant any other Scheduler system
privilege or role with great caution. In particular, the CREATE ANY JOB system privilege and the
SCHEDULER_ADMIN role, which includes it, are very powerful because they allow execution of
code as any user. They should only be granted to very powerful roles or users.

Handling external job is a particularly important issue from a security point of view. Only users
that need to run jobs outside of the database should be granted the CREATE EXTERNAL JOB
system privilege that allows them to do so. Security for the Scheduler has no other special
requirements. See Oracle Database Security Guide for details regarding security.

If users need to create credentials to authenticate their jobs to the operating system or a
remote database, grant them CREATE CREDENTIAL system privilege.

Note:

When upgrading from Oracle Database 10g Release 1 (10.1) to Oracle Database
10g Release 2 (10.2) or later, CREATE EXTERNAL JOB is automatically granted to all
users and roles that have the CREATE JOB privilege. Oracle recommends that you
revoke this privilege from users that do not need it.

29.3 Import/Export and the Scheduler
You must use the Data Pump utilities (impdp and expdp) to export Scheduler objects.

You cannot use the earlier import utility (IMP) with the Scheduler. Also, Scheduler objects
cannot be exported while the database is in read-only mode.

An export generates the DDL that was used to create the Scheduler objects. All attributes are
exported. When an import is done, all the database objects are re-created in the new
database. All schedules are stored with their time zones, which are maintained in the new
database. For example, schedule "Monday at 1 PM PST in a database in San Francisco"
would be the same if it was exported and imported to a database in Germany.

Although Scheduler credentials are exported, for security reasons, the passwords in these
credentials are not exported. After you import Scheduler credentials, you must reset the
passwords using the SET_ATTRIBUTE procedure of the DBMS_SCHEDULER package.

If the schema being exported has any programs with arguments, then the schema must be
granted CREATE TABLE privilege beforehand. Otherwise, you will receive ORA-01031 during the
schema export.

Related Topics

• Oracle Data Pump

Chapter 29
Import/Export and the Scheduler

29-20

29.4 Troubleshooting the Scheduler
You can troubleshoot problems with Scheduler.

• A Job Does Not Run
A job may fail to run for several reasons.

• A Program Becomes Disabled
A program can become disabled if a program argument is dropped or
number_of_arguments is changed so that all arguments are no longer defined.

• A Window Fails to Take Effect
A window can fail to take effect for various reasons.

29.4.1 A Job Does Not Run
A job may fail to run for several reasons.

To begin troubleshooting a job that you suspect did not run, check the job state by issuing the
following statement:

SELECT JOB_NAME, STATE FROM DBA_SCHEDULER_JOBS;

Typical output will resemble the following:

JOB_NAME STATE
------------------------------ ---------
MY_EMP_JOB DISABLED
MY_EMP_JOB1 FAILED
MY_NEW_JOB1 DISABLED
MY_NEW_JOB2 BROKEN
MY_NEW_JOB3 COMPLETED

• About Job States
If a job does not run, then it can be in one of the following states: failed, broken, disabled,
or completed.

• Viewing the Job Log
The job log is an important troubleshooting tool.

• Troubleshooting Remote Jobs
Remote jobs must successfully communicate with a Scheduler agent on the remote host. If
a remote job does not run, then check the DBA_SCHEDULER_JOBS view and the job log first.

• About Job Recovery After a Failure
The Scheduler can attempt to recover jobs that are interrupted.

29.4.1.1 About Job States
If a job does not run, then it can be in one of the following states: failed, broken, disabled, or
completed.

• Failed Jobs
If a job has the status of FAILED in the job table, then it was scheduled to run once but the
execution has failed. If the job was specified as restartable, then all retries have failed.

• Broken Jobs
A broken job is one that has exceeded a certain number of failures. This number is set in
max_failures, and can be altered.

Chapter 29
Troubleshooting the Scheduler

29-21

• Disabled Jobs
A job can become disabled for several reasons.

• Completed Jobs
A job will be completed if end_date or max_runs is reached.

29.4.1.1.1 Failed Jobs
If a job has the status of FAILED in the job table, then it was scheduled to run once but the
execution has failed. If the job was specified as restartable, then all retries have failed.

If a job fails in the middle of execution, only the last transaction of that job is rolled back. If your
job executes multiple transactions, then you must be careful about setting restartable to
TRUE. You can query failed jobs by querying the *_SCHEDULER_JOB_RUN_DETAILS views.

29.4.1.1.2 Broken Jobs
A broken job is one that has exceeded a certain number of failures. This number is set in
max_failures, and can be altered.

In the case of a broken job, the entire job is broken, and it will not be run until it has been fixed.
For debugging and testing, you can use the RUN_JOB procedure.

You can query broken jobs by querying the *_SCHEDULER_JOBS and *_SCHEDULER_JOB_LOG
views.

29.4.1.1.3 Disabled Jobs
A job can become disabled for several reasons.

The reasons include the following:

• The job was manually disabled

• The job class it belongs to was dropped

• The program, chain, or schedule that it points to was dropped

• A window or window group is its schedule and the window or window group is dropped

29.4.1.1.4 Completed Jobs
A job will be completed if end_date or max_runs is reached.

If a job recently completed successfully but is scheduled to run again, then the job state is
SCHEDULED.

29.4.1.2 Viewing the Job Log
The job log is an important troubleshooting tool.

For details and instructions, see "Viewing the Job Log".

29.4.1.3 Troubleshooting Remote Jobs
Remote jobs must successfully communicate with a Scheduler agent on the remote host. If a
remote job does not run, then check the DBA_SCHEDULER_JOBS view and the job log first.

Then perform the following tasks:

Chapter 29
Troubleshooting the Scheduler

29-22

1. Check that the remote system is reachable over the network with tools such as nslookup
and ping.

2. Check the status of the Scheduler agent on the remote host by calling the
GET_AGENT_VERSION package procedure.

DECLARE
 versionnum VARCHAR2(30);
BEGIN
 versionnum := DBMS_SCHEDULER.GET_AGENT_VERSION('remote_host.example.com');
 DBMS_OUTPUT.PUT_LINE(versionnum);
END;
/

If an error is generated, the agent may not be installed or may not be registered with your
local database. See "Using the Oracle Scheduler Agent to Run Remote Jobs" for
instructions for installing, registering, and starting the Scheduler agent.

29.4.1.4 About Job Recovery After a Failure
The Scheduler can attempt to recover jobs that are interrupted.

The Scheduler attempts to recover jobs that are interrupted when:

• The database abnormally shuts down

• A job child process is terminated or otherwise fails

• For an external job, the external job process that starts the executable or script is
terminated or otherwise fails. (The external job process is extjob on UNIX. On Windows, it
is the external job service.)

• For an external job, the process that runs the end-user executable or script is terminated or
otherwise fails.

Job recovery proceeds as follows:

• The Scheduler adds an entry to the job log for the instance of the job that was running
when the failure occurred. In the log entry, the OPERATION is 'RUN', the STATUS is 'STOPPED',
and ADDITIONAL_INFO contains one of the following:

– REASON="Job slave process was terminated"
– REASON="ORA-01014: ORACLE shutdown in progress"

• If restartable is set to TRUE for the job, the job is restarted.

• If restartable is set to FALSE for the job:

– If the job is a run-once job and auto_drop is set to TRUE, the job run is done and the job
is dropped.

– If the job is a run-once job and auto_drop is set to FALSE, the job is disabled and the
job state is set to 'STOPPED'.

– If the job is a repeating job, the Scheduler schedules the next job run and the job
state is set to 'SCHEDULED'.

When a job is restarted as a result of this recovery process, the new run is entered into the job
log with the operation 'RECOVERY_RUN'.

Chapter 29
Troubleshooting the Scheduler

29-23

29.4.2 A Program Becomes Disabled
A program can become disabled if a program argument is dropped or number_of_arguments is
changed so that all arguments are no longer defined.

See "Creating and Managing Programs to Define Jobs" for more information regarding
programs.

29.4.3 A Window Fails to Take Effect
A window can fail to take effect for various reasons.

A window can fail to take effect for the following reasons:

• A window becomes disabled when it is at the end of its schedule

• A window that points to a schedule that no longer exists is disabled

See "Managing Job Scheduling and Job Priorities with Windows" for more information
regarding windows.

29.5 Examples of Using the Scheduler
Examples illustrate using Scheduler.

• Examples of Creating Job Classes
Examples illustrate creating job classes.

• Examples of Setting Attributes
Examples illustrate setting attributes.

• Examples of Creating Chains
Examples illustrate creating chains.

• Examples of Creating Jobs and Schedules Based on Events
Examples illustrate creating event-based jobs and event schedules.

• Example of Creating a Job In an Oracle Data Guard Environment
In an Oracle Data Guard environment, the Scheduler includes additional support for two
database roles: primary and logical standby. You can configure a job to run only when the
database is in the primary role or only when the database is in the logical standby role.

29.5.1 Examples of Creating Job Classes
Examples illustrate creating job classes.

To create a job class, you use the CREATE_JOB_CLASS procedure.

Example 29-1 Creating a Job Class

The following statement creates a job class:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB_CLASS (
 job_class_name => 'my_class1',
 service => 'my_service1',
 comments => 'This is my first job class');
END;
/

Chapter 29
Examples of Using the Scheduler

29-24

This creates my_class1 in SYS. It uses a service called my_service1. To verify that the job class
was created, issue the following statement:

SELECT JOB_CLASS_NAME FROM DBA_SCHEDULER_JOB_CLASSES
WHERE JOB_CLASS_NAME = 'MY_CLASS1';

JOB_CLASS_NAME

MY_CLASS1

Example 29-2 Creating a Job Class

The following statement creates a job class:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB_CLASS (
 job_class_name => 'finance_jobs',
 resource_consumer_group => 'finance_group',
 service => 'accounting',
 comments => 'All finance jobs');
END;
/

This creates finance_jobs in SYS. It assigns a resource consumer group called
finance_group, and designates service affinity for the accounting service. Note that if the
accounting service is mapped to a resource consumer group other than finance_group, jobs
in this class run under the finance_group consumer group, because the
resource_consumer_group attribute takes precedence.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about the CREATE_JOB_CLASS procedure and "Creating Job Classes" for further
information

29.5.2 Examples of Setting Attributes
Examples illustrate setting attributes.

To set attributes, you use SET_ATTRIBUTE and SET_SCHEDULER_ATTRIBUTE procedures.

Example 29-3 Setting the Repeat Interval Attribute

The following example resets the frequency that my_emp_job1 runs daily:

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE (
 name => 'my_emp_job1',
 attribute => 'repeat_interval',
 value => 'FREQ=DAILY');
END;
/

To verify the change, issue the following statement:

SELECT JOB_NAME, REPEAT_INTERVAL FROM DBA_SCHEDULER_JOBS
WHERE JOB_NAME = 'MY_EMP_JOB1';

Chapter 29
Examples of Using the Scheduler

29-25

JOB_NAME REPEAT_INTERVAL
---------------- ---------------
MY_EMP_JOB1 FREQ=DAILY

Example 29-4 Setting Multiple Job Attributes for a Set of Jobs

The following example sets four different attributes for each of five jobs:

DECLARE
 newattr sys.jobattr;
 newattrarr sys.jobattr_array;
 j number;
BEGIN
 -- Create new JOBATTR array
 newattrarr := sys.jobattr_array();

 -- Allocate enough space in the array
 newattrarr.extend(20);
 j := 1;
 FOR i IN 1..5 LOOP
 -- Create and initialize a JOBATTR object type
 newattr := sys.jobattr(job_name => 'TESTJOB' || to_char(i),
 attr_name => 'MAX_FAILURES',
 attr_value => 5);
 -- Add it to the array.
 newattrarr(j) := newattr;
 j := j + 1;
 newattr := sys.jobattr(job_name => 'TESTJOB' || to_char(i),
 attr_name => 'COMMENTS',
 attr_value => 'Test job');
 newattrarr(j) := newattr;
 j := j + 1;
 newattr := sys.jobattr(job_name => 'TESTJOB' || to_char(i),
 attr_name => 'END_DATE',
 attr_value => systimestamp + interval '24' hour);
 newattrarr(j) := newattr;
 j := j + 1;
 newattr := sys.jobattr(job_name => 'TESTJOB' || to_char(i),
 attr_name => 'SCHEDULE_LIMIT',
 attr_value => interval '1' hour);
 newattrarr(j) := newattr;
 j := j + 1;
 END LOOP;

 -- Call SET_JOB_ATTRIBUTES to set all 20 set attributes in one transaction
 DBMS_SCHEDULER.SET_JOB_ATTRIBUTES(newattrarr, 'TRANSACTIONAL');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about the SET_SCHEDULER_ATTRIBUTE procedure and "Setting Scheduler Preferences"

Chapter 29
Examples of Using the Scheduler

29-26

29.5.3 Examples of Creating Chains
Examples illustrate creating chains.

To create chains, you use the CREATE_CHAIN procedure. After creating a chain, you add steps
to the chain with the DEFINE_CHAIN_STEP or DEFINE_CHAIN_EVENT_STEP procedures and define
the rules with the DEFINE_CHAIN_RULE procedure.

Example 29-5 Creating a Chain

The following example creates a chain where my_program1 runs before my_program2 and
my_program3. my_program2 and my_program3 run in parallel after my_program1 has completed.

The user for this example must have the CREATE EVALUATION CONTEXT, CREATE RULE, and
CREATE RULE SET privileges. See "Setting Chain Privileges" for more information.

BEGIN
 DBMS_SCHEDULER.CREATE_CHAIN (
 chain_name => 'my_chain1',
 rule_set_name => NULL,
 evaluation_interval => NULL,
 comments => NULL);
END;
/

--- define three steps for this chain. Referenced programs must be enabled.
BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('my_chain1', 'stepA', 'my_program1');
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('my_chain1', 'stepB', 'my_program2');
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('my_chain1', 'stepC', 'my_program3');
END;
/

--- define corresponding rules for the chain.
BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE('my_chain1', 'TRUE', 'START stepA');
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 'my_chain1', 'stepA COMPLETED', 'Start stepB, stepC');
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 'my_chain1', 'stepB COMPLETED AND stepC COMPLETED', 'END');
END;
/

--- enable the chain
BEGIN
 DBMS_SCHEDULER.ENABLE('my_chain1');
END;
/

--- create a chain job to start the chain daily at 1:00 p.m.
BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'chain_job_1',
 job_type => 'CHAIN',
 job_action => 'my_chain1',
 repeat_interval => 'freq=daily;byhour=13;byminute=0;bysecond=0',
 enabled => TRUE);
END;
/

Chapter 29
Examples of Using the Scheduler

29-27

Example 29-6 Creating a Chain

The following example creates a chain where first my_program1 runs. If it succeeds,
my_program2 runs; otherwise, my_program3 runs.

BEGIN
 DBMS_SCHEDULER.CREATE_CHAIN (
 chain_name => 'my_chain2',
 rule_set_name => NULL,
 evaluation_interval => NULL,
 comments => NULL);
END;
/

--- define three steps for this chain.
BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('my_chain2', 'step1', 'my_program1');
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('my_chain2', 'step2', 'my_program2');
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('my_chain2', 'step3', 'my_program3');
END;
/

--- define corresponding rules for the chain.
BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE ('my_chain2', 'TRUE', 'START step1');
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 'my_chain2', 'step1 SUCCEEDED', 'Start step2');
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 'my_chain2', 'step1 COMPLETED AND step1 NOT SUCCEEDED', 'Start step3');
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE (
 'my_chain2', 'step2 COMPLETED OR step3 COMPLETED', 'END');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about the CREATE_CHAIN, DEFINE_CHAIN_STEP, and DEFINE_CHAIN_RULE procedures
and "Setting Scheduler Preferences"

29.5.4 Examples of Creating Jobs and Schedules Based on Events
Examples illustrate creating event-based jobs and event schedules.

To create event-based jobs, you use the CREATE_JOB procedure. To create event-based
schedules, you use the CREATE_EVENT_SCHEDULE procedure.

These examples assume the existence of an application that, when it detects the arrival of a
file on a system, enqueues an event onto the queue my_events_q.

Example 29-7 Creating an Event-Based Schedule

The following example illustrates creating a schedule that can be used to start a job whenever
the Scheduler receives an event indicating that a file arrived on the system before 9AM:

BEGIN
 DBMS_SCHEDULER.CREATE_EVENT_SCHEDULE (

Chapter 29
Examples of Using the Scheduler

29-28

 schedule_name => 'scott.file_arrival',
 start_date => systimestamp,
 event_condition => 'tab.user_data.object_owner = ''SCOTT''
 and tab.user_data.event_name = ''FILE_ARRIVAL''
 and extract hour from tab.user_data.event_timestamp < 9',
 queue_spec => 'my_events_q');
END;
/

Example 29-8 Creating an Event-Based Job

The following example creates a job that starts when the Scheduler receives an event
indicating that a file arrived on the system:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => my_job,
 program_name => my_program,
 start_date => '15-JUL-04 1.00.00AM US/Pacific',
 event_condition => 'tab.user_data.event_name = ''LOW_INVENTORY''',
 queue_spec => 'my_events_q'
 enabled => TRUE,
 comments => 'my event-based job');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information
about the CREATE_JOB and CREATE_EVENT_SCHEDULE procedures

29.5.5 Example of Creating a Job In an Oracle Data Guard Environment
In an Oracle Data Guard environment, the Scheduler includes additional support for two
database roles: primary and logical standby. You can configure a job to run only when the
database is in the primary role or only when the database is in the logical standby role.

To do so, you set the database_role attribute. This example explains how to enable a job to
run in both database roles. The method used is to create two copies of the job and assign a
different database_role attribute to each.

By default, a job runs when the database is in the role that it was in when the job was created.
You can run the same job in both roles using the following steps:

1. Copy the job

2. Enable the new job

3. Change the database_role attribute of the new job to the required role

The example starts by creating a job called primary_job on the primary database. It then
makes a copy of this job and sets its database_role attribute to 'LOGICAL STANDBY'. If the
primary database then becomes a logical standby, the job continues to run according to its
schedule.

When you copy a job, the new job is disabled, so you must enable the new job.

Chapter 29
Examples of Using the Scheduler

29-29

BEGIN DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'primary_job',
 program_name => 'my_prog',
 schedule_name => 'my_sched');

 DBMS_SCHEDULER.COPY_JOB('primary_job','standby_job');
 DBMS_SCHEDULER.ENABLE(name=>'standby_job', commit_semantics=>'ABSORB_ERRORS');
 DBMS_SCHEDULER.SET_ATTRIBUTE('standby_job','database_role','LOGICAL STANDBY');
END;
/

After you execute this example, the data in the DBA_SCHEDULER_JOB_ROLES view is as follows:

SELECT JOB_NAME, DATABASE_ROLE FROM DBA_SCHEDULER_JOB_ROLES
 WHERE JOB_NAME IN ('PRIMARY_JOB','STANDBY_JOB');

JOB_NAME DATABASE_ROLE
-------- ----------------
PRIMARY_JOB PRIMARY
STABDBY_JOB LOGICAL STANDBY

Note:

For a physical standby database, any changes made to Scheduler objects or any
database changes made by Scheduler jobs on the primary database are applied to
the physical standby like any other database changes.

29.6 Scheduler Reference
There are several privileges and data dictionary views related to Scheduler.

• Scheduler Privileges
Users can be granted various Scheduler privileges.

• Scheduler Data Dictionary Views
You can query a set of views for information about Scheduler.

29.6.1 Scheduler Privileges
Users can be granted various Scheduler privileges.

Table 29-4 and Table 29-5 describe the various Scheduler privileges.

Table 29-4 Scheduler System Privileges

Privilege Name Operations Authorized

CREATE JOB This privilege enables you to create jobs, chains, schedules, programs, file
watchers, destinations, and groups in your own schema. You can always alter
and drop these objects in your own schema, even if you do not have the
CREATE JOB privilege. In this case, the object would have been created in
your schema by another user with the CREATE ANY JOB privilege.

Chapter 29
Scheduler Reference

29-30

Table 29-4 (Cont.) Scheduler System Privileges

Privilege Name Operations Authorized

CREATE ANY JOB This privilege enables you to create, alter, and drop jobs, chains, schedules,
programs, file watchers, destinations, and groups in any schema except SYS.
This privilege is extremely powerful and should be used with care because it
allows the grantee to execute any PL/SQL code as any other database user.

CREATE EXTERNAL JOB This privilege is required to create jobs that run outside of the database.
Owners of jobs of type 'EXECUTABLE' or jobs that point to programs of type
'EXECUTABLE' require this privilege. To run a job of type 'EXECUTABLE', you
must have this privilege and the CREATE JOB privilege. This privilege is also
required to retrieve files from a remote host and to save files to one or more
remote hosts.

EXECUTE ANY PROGRAM This privilege enables your jobs to use programs or chains from any schema.

EXECUTE ANY CLASS This privilege enables your jobs to run under any job class.

MANAGE SCHEDULER This is the most important privilege for administering the Scheduler. It
enables you to create and drop job classes, windows, and window groups,
and to stop jobs with the force option, but not alter them. It also enables you
to set and retrieve Scheduler attributes, purge Scheduler logs, and set the
agent password for a database. Only SYS users can alter these objects.

Table 29-5 Scheduler Object Privileges

Privilege Name Operations Authorized

SELECT You can grant object privileges on a group to other users by granting SELECT on the group.

EXECUTE You can grant this privilege only on programs, chains, file watchers, credentials, and job
classes. The EXECUTE privilege enables you to reference the object in a job. It also enables you
to view the object if the object is was not created in your schema.

ALTER This privilege enables you to alter or drop the object it is granted on. Altering includes such
operations as enabling, disabling, defining or dropping program arguments, setting or resetting
job argument values and running a job. Certain restricted attributes of jobs of job type
EXECUTABLE cannot be altered using the ALTER object privilege. These include job_type,
job_action, number_of_arguments, event_spec, and setting PL/SQL date functions as
schedules.

For programs, jobs, chains, file watchers, and credentials, this privilege also enables schemas
that do not own these objects to view them. This privilege can be granted on jobs, chains,
programs, schedules, file watchers, and credentials. For other types of Scheduler objects, you
must grant the MANAGE SCHEDULER system privilege.

ALL This privilege authorizes operations allowed by all other object privileges possible for a given
object. It can be granted on jobs, programs, chains, schedules, file watchers, credentials, and
job classes.

Note:

No object privileges are required to use a destination object created by another user.

The SCHEDULER_ADMIN role is created with all of the system privileges shown in Table 29-4 (with
the ADMIN option). The SCHEDULER_ADMIN role is granted to DBA (with the ADMIN option).

Chapter 29
Scheduler Reference

29-31

When calling DBMS_SCHEDULER procedures and functions from a definer's rights PL/SQL block,
object privileges must be granted directly to the calling user. As with all PL/SQL stored
procedures, DBMS_SCHEDULER ignores privileges granted through roles on database
objects when called from a definer's rights PL/SQL block.

The following object privileges are granted to PUBLIC: SELECT ALL_SCHEDULER_* views, SELECT
USER_SCHEDULER_* views, SELECT SYS.SCHEDULER$_JOBSUFFIX_S (for generating a job name),
and EXECUTE SYS.DEFAULT_JOB_CLASS.

29.6.2 Scheduler Data Dictionary Views
You can query a set of views for information about Scheduler.

Some views are specific to multitenant container databases (CDBs), whereas others have a
CDB-specific column. The V$ and GV$ views have a CON_ID column that identifies a container
whose data is represented by a CDB_* row. CDB_* views correspond to all Scheduler DBA_*
views. In a PDB, these views only show objects visible through a corresponding DBA_* view,
but all objects are visible in the root. The CDB_* view contains all columns found in a given
DBA_* view and the column (CON_ID).

Table 29-6 contains views associated with the Scheduler. The *_SCHEDULER_JOBS,
*_SCHEDULER_SCHEDULES, *_SCHEDULER_PROGRAMS, *_SCHEDULER_RUNNING_JOBS,
*_SCHEDULER_JOB_LOG, *_SCHEDULER_JOB_RUN_DETAILS views are particularly useful for
managing jobs. See Oracle Database Reference for details regarding Scheduler views.

Note:

In the following table, the asterisk at the beginning of a view name can be replaced
with DBA, ALL, or USER.

Example 29-9 Displaying Details About a Scheduler Job

This example shows information for completed instances of my_job1:

SELECT JOB_NAME, STATUS, ERROR#
FROM DBA_SCHEDULER_JOB_RUN_DETAILS WHERE JOB_NAME = 'MY_JOB1';

JOB_NAME STATUS ERROR#
-------- -------------- ------
MY_JOB1 FAILURE 20000

Table 29-6 Scheduler Views

View Description

*_SCHEDULER_CHAIN_RULES These views show all rules for all chains.

*_SCHEDULER_CHAIN_STEPS These views show all steps for all chains.

*_SCHEDULER_CHAINS These views show all chains.

*_SCHEDULER_CREDENTIALS
*_CREDENTIALS

These views show all credentials.

** *_SCHEDULER_CREDENTIALS is deprecated in Oracle Database 12c, but
remains available, for reasons of backward compatibility.

The recommended view is *_CREDENTIALS.

*_SCHEDULER_DB_DESTS These views show all database destinations.

Chapter 29
Scheduler Reference

29-32

Table 29-6 (Cont.) Scheduler Views

View Description

*_SCHEDULER_DESTS These views show all destinations, both database and external.

*_SCHEDULER_EXTERNAL_DESTS These views show all external destinations.

*_SCHEDULER_FILE_WATCHERS These views show all file watchers.

*_SCHEDULER_GLOBAL_ATTRIBUTE These views show the current values of Scheduler attributes.

*_SCHEDULER_GROUP_MEMBERS These views show all group members in all groups.

*_SCHEDULER_GROUPS These views show all groups.

*_SCHEDULER_INCOMPATIBILITY These views show all programs or jobs that are members of incompatibility
definitions.

*_SCHEDULER_JOB_ARGS These views show all set argument values for all jobs.

*_SCHEDULER_JOB_CLASSES These views show all job classes.

*_SCHEDULER_JOB_DESTS These views show the state of both local jobs and jobs at remote destinations,
including child jobs of multiple-destination jobs. You obtain job destination IDs
(job_dest_id) from these views.

*_SCHEDULER_JOB_LOG These views show job runs and state changes, depending on the logging level set.

*_SCHEDULER_JOB_ROLES These views show all jobs by Oracle Data Guard database role.

*_SCHEDULER_JOB_RUN_DETAILS These views show all completed (failed or successful) job runs.

*_SCHEDULER_JOBS These views show all jobs, enabled as well as disabled.

*_SCHEDULER_NOTIFICATIONS These views show all job state e-mail notifications.

*_SCHEDULER_PROGRAM_ARGS These views show all arguments defined for all programs as well as the default
values if they exist.

*_SCHEDULER_PROGRAMS These views show all programs.

*_SCHEDULER_REMOTE_DATABASES These views show information about the remote databases accessible to the
current user that have been registered as sources and destinations for remote
database jobs.

*_SCHEDULER_REMOTE_JOBSTATE These views displays information about the state of the jobs accessible to the
current user at remote databases.

*_SCHEDULER_RESOURCES These views describe the resource metadata.

*_SCHEDULER_RUNNING_CHAINS These views show all chains that are running.

*_SCHEDULER_RUNNING_JOBS These views show state information on all jobs that are currently being run.

*_SCHEDULER_RSRC_CONSTRAINTS These views show the types of resources used by a job or program and the
number of units of each resource it needs.

*_SCHEDULER_SCHEDULES These views show all schedules.

*_SCHEDULER_WINDOW_DETAILS These views show all completed window runs.

*_SCHEDULER_WINDOW_GROUPS These views show all window groups.

*_SCHEDULER_WINDOW_LOG These views show all state changes made to windows.

*_SCHEDULER_WINDOWS These views show all windows.

*_SCHEDULER_WINGROUP_MEMBERS These views show the members of all window groups, one row for each group
member.

Chapter 29
Scheduler Reference

29-33

30
Managing Transactions

Managing transactions include tasks such as setting transaction priority and automatically
rolling back transactions.

• Priority Transactions
The Oracle database allows transactions to be automatically rolled back and includes
parameters to control this behavior.

• Automatic Transaction Quarantine
Oracle Database quarantines, or isolates, the recovery of transactions that could
potentially cause a system crash. These transactions must be manually resolved by the
DBA so that row locks are released.

30.1 Priority Transactions
The Oracle database allows transactions to be automatically rolled back and includes
parameters to control this behavior.

A row lock is a lock on a single row of a table. A transaction acquires a row lock for each row
modified by one of the following statements: INSERT, UPDATE, DELETE, MERGE, and SELECT ...
FOR UPDATE. The row lock exists until the transaction commits or rolls back. Transactions can
hold row locks for a long duration in certain cases. For example, the application modifies some
rows but doesn't commit or terminate the transaction because of an exception in the
application. Traditionally, when a transaction is blocked on a rowlock by another transaction for
a long time, it required the database administrator to manually terminate the blocking
transaction by using the ALTER SYSTEM KILL SESSION command.

Starting with Oracle Database 23ai, the database provides parameters to control when and
which transactions holding rowlocks can be automatically rolled back. Oracle database rolls
back the transaction but the session stays alive. The application must acknowledge the
automatic rollback of the transaction by issuing a ROLLBACK SQL statement.

Applications can specify the priority of their transactions. If a low priority transaction blocks a
high priority transaction on rowlocks, Oracle database will automatically roll back the low
priority transaction to let the high priority transaction(s) progress.

The database administrator can configure the time after which the low priority transaction is
rolled back.

Note that if a transaction is holding a rowlock and not blocking any transaction, such a
transaction is never rolled back.

• Using Priority Transactions
Setting the parameters to automatically roll back transactions is detailed in this section.

• Monitoring Priority Transactions
Fixed views provide the information to assist in monitoring transaction priority and wait
targets.

• Priority Transaction Behavior
The behavior of priority transactions must be understood for distributed and XA
transactions.

30-1

• Priority Transaction Restrictions
There are restrictions on the use of priority transactions.

Related Topics

• Terminating an Active Session

30.1.1 Using Priority Transactions
Setting the parameters to automatically roll back transactions is detailed in this section.

• Setting Transaction Priority
Oracle Database provides session settings to control the transaction priority.

• Setting System-Level Wait Targets
Oracle Database provides system parameters to control after what time a transaction
holding row lock can be automatically rolled back.

• Acknowledging the Automatic Rollback
The automatic rollback of the transaction must be acknowledged before its session can
continue executing further SQLs. The acknowledgment can be provided by issuing a
transaction rollback.

• Setting Priority Transaction Mode
Priority Transaction supports two modes so that you can try out this feature before
enabling it.

• Using Priority Transaction Mode to Determine System-Level Wait Targets
Priority transaction mode can be used to help determine system-level wait targets.

30.1.1.1 Setting Transaction Priority
Oracle Database provides session settings to control the transaction priority.

Transaction priority is set at session level using ALTER SESSION command. Once the
transaction priority is set, it will remain the same for all the transactions created in that session.

For example, to set the priority of all transactions in the current session to high, use the
following command:

ALTER SESSION SET "txn_priority" = "HIGH";

The valid values for txn_priority are LOW, MEDIUM, and HIGH. All the transactions get a default
priority of HIGH, that is, no transaction will be rolled back by default. If this parameter is
modified after the transaction has started, then current transaction’s priority will not be changed
dynamically. The next transaction created in the session will use the updated priority.

If a HIGH priority transaction is blocked for a row lock, Oracle database can roll back the
transaction that is holding the row lock only if the holder is LOW or MEDIUM priority.

If a MEDIUM priority transaction is blocked for a row lock, Oracle database can roll back the
transaction that is holding the row lock only if the holder is LOW priority.

If a LOW priority transaction is blocked for a row lock, Oracle database will not attempt to roll
back the transaction holding the row lock irrespective of its priority.

Oracle database never rolls back a HIGH priority transaction.

This parameter should be set by the application based on understanding the criticality of the
transaction.

Chapter 30
Priority Transactions

30-2

Related Topics

• TXN_PRIORITY

30.1.1.2 Setting System-Level Wait Targets
Oracle Database provides system parameters to control after what time a transaction holding
row lock can be automatically rolled back.

PRIORITY_TXNS_HIGH_WAIT_TARGET and PRIORITY_TXNS_MEDIUM_WAIT_TARGET set the
maximum time duration, in seconds, a transaction with priority HIGH and MEDIUM will wait before
the database rolls back a lower priority transaction holding a row lock. The blocker transaction
is rolled back but its corresponding session is not killed and stays alive. The application must
acknowledge this automatic rollback by catching ORA-63300 and issuing a ROLLBACK SQL
statement. If ROLLBACK is not issued, then all the SQL statements in the session will keep
receiving ORA-63302. There is no low priority wait target parameter provided since Oracle
database doesn't roll back a blocker transaction if waiter's priority is LOW.

The priority transactions feature is only enabled when both the transaction priority and the wait
target parameters are set. Setting the transaction priority with no wait target time does not
enable the feature.

To set the parameter using the ALTER SYSTEM command, specify the parameters with the wait
time values. In this example, if a HIGH priority transaction is blocked for at least 15 seconds on
a row lock held by a medium or low priority transaction, the database will automatically attempt
to roll back the blocking lower priority transaction.

ALTER SYSTEM SET priority_txns_high_wait_target = 15;

When a higher priority transaction is blocked by a lower priority transaction, the system waits
for at least the specified time before rolling back the blocking transaction. The wait time may be
longer than the target time specified when there are multiple blocked transactions trying to get
the same row lock. For example, assume the default high priority wait target is set to 20
seconds. The following actions take place:

1. At time t1, transaction 1, a low priority transaction, locks a specific row.

2. Ten seconds later at time t2, transaction 2, a low priority transaction, attempts to lock the
same row and waits.

3. Five seconds later at time t3, transaction 3, a high priority transaction, attempts to update
the same row.

Assuming that no transaction performs a commit, the high priority transaction waits at least 20
seconds (from time t3) after which the first transaction is rolled back. After this, transaction 2
gets the row lock, since it has requested the row lock before transaction 3. So transaction 3
would wait for another 20 secs from the time transaction 2 got the row lock, after which
transaction 2 is rolled back. Therefore, the wait target parameter values do not imply the
maximum time a high priority waiter will wait before it gets the row locks.

Related Topics

• PRIORITY_TXNS_HIGH_WAIT_TARGET

• PRIORITY_TXNS_MEDIUM_WAIT_TARGET

Chapter 30
Priority Transactions

30-3

30.1.1.3 Acknowledging the Automatic Rollback
The automatic rollback of the transaction must be acknowledged before its session can
continue executing further SQLs. The acknowledgment can be provided by issuing a
transaction rollback.

When a transaction is automatically rolled back, the currently executing SQL in an active
session or the next SQL statement in an idle session will get ORA-63300. The subsequent SQL
statements will throw ORA-63302 until a rollback is issued. Therefore, the application logic must
be structured to catch both of the two errors ORA-63300 and ORA-63302, and then issue the
rollback.

The following table lists the available methods to acknowledge the rollback:

Table 30-1 Available Rollback Methods for Priority Transactions

Transaction Type/
Client

SQL*Plus and SQLcl OCI JDBC

Local and Distributed
Transactions

Use the ROLLBACK SQL
statement

Use the
OCITransRollback()
function, or
OCIStmtPrepare and
OCIStmtExecute of
ROLLBACK SQL
statement

Use
connection.rollbac
k(), or execute the
rollback statement in
JDBC using
connection.createSt
atement().execute("
rollback")

XA Transactions Execute
DBMS_XA.XA_END()
followed by
DBMS_XA.XA_ROLLBAC
K().

If the XA transaction is
suspended, then execute
DBMS_XA.XA_ROLLBAC
K() only.

Execute xaoend()
followed by
xaorollback().

If the XA transaction is
suspended, then execute
xaorollback() only.

Execute
xa_resource.end()
followed by
xa_resource.rollbac
k(), where xa_resource
is of type XAResource.

If the XA transaction is
suspended, then execute
xa_resource.rollbac
k() only.

30.1.1.4 Setting Priority Transaction Mode
Priority Transaction supports two modes so that you can try out this feature before enabling it.

The default mode for priority transactions is ROLLBACK. In this mode, if
PRIORITY_TXNS_HIGH_WAIT_TARGET and PRIORITY_TXNS_MEDIUM_WAIT_TARGET are appropriately
configured, transactions that are holding row locks and blocking higher priority transactions
would be automatically rolled back and allow higher priority waiting transactions to progress.

The purpose of TRACK mode is for database administrators to try out the priority transactions
feature. In TRACK mode, the database will increment statistics in V$SYSSTAT (discussed in
Setting System-Level Wait Targets), reflecting how many transactions this feature would have
rolled back, instead of actually rolling back any transactions. Applications can use this mode to
tune the right wait target value before switching to ROLLBACK mode.

Chapter 30
Priority Transactions

30-4

To set priority transaction mode to TRACK, use the following command:

ALTER SYSTEM SET "priority_txns_mode"="TRACK";

To set priority transaction mode to ROLLBACK, use the following command:

ALTER SYSTEM SET "priority_txns_mode"="ROLLBACK";

Related Topics

• PRIORITY_TXNS_MODE

30.1.1.5 Using Priority Transaction Mode to Determine System-Level Wait Targets
Priority transaction mode can be used to help determine system-level wait targets.

To aid in setting the appropriate values for PRIORITY_TXNS_HIGH_WAIT_TARGET and
PRIORITY_TXNS_MEDIUM_WAIT_TARGET, you can set PRIORITY_TXNS_MODE to TRACK and monitor
the row lock contention wait event time.

Run your regular workload in TRACK mode for a few hours (or whatever is appropriate) and
monitor the time transactions of a certain priority typically wait for the row lock. For example, if
you observe that your HIGH priority transactions typically wait for a maximum of 10 seconds on
the row lock, then it is recommended to set the value of PRIORITY_TXNS_HIGH_WAIT_TARGET to
a value above 90 seconds so that Oracle Database doesn’t rollback any legitimate transactions
holding the row lock while doing meaningful operations on the database. After determining the
appropriate values for these parameters, you can turn off the TRACK mode and switch to the
ROLLBACK mode, configure the system-level wait target parameters with these values, and start
using priority transactions.

When there is a contention for the row lock, the transactions waiting for the row lock wait on a
common wait event enq: TX - row lock contention. With priority transactions enabled by
setting both the txn_priority parameter for transactions and wait_target parameter for the
system, waiting transactions would wait on the wait events based on the priority of the waiting
transaction.

Table 30-2 Wait Events

Waiting Transaction's Priority Wait Event

HIGH enq:TX - row lock contention (HIGH pri)
MEDIUM enq: TX - row lock contention (MEDIUM pri)
LOW enq: TX - row lock contention (LOW pri)

In the example below, session (sid 204) has a HIGH priority transaction holding the row lock.
You can see other transactions wanting the same row lock waiting on different wait events
based on their priority.

SQL> SELECT TO_CHAR(xidusn) || '.' || TO_CHAR(xidslot) || '.' ||
TO_CHAR(xidsqn) AS transaction_id, sid, event, seconds_in_wait,
blocking_session
 FROM v$session, v$transaction
 WHERE event LIKE '%enq%' AND v$session.saddr = v$transaction.ses_addr;

TRANSACTION_ID SID EVENT SECONDS_IN_WAIT

Chapter 30
Priority Transactions

30-5

BLOCKING_SESSION
--------------- ------ ----------------------------------- ---------------

2.17.1619 187 enq: TX - row lock (HIGH priority)
361 204
5.32.1557 51 enq: TX - row lock (LOW priority)
359 204

Related Topics

• PRIORITY_TXNS_MODE

30.1.2 Monitoring Priority Transactions
Fixed views provide the information to assist in monitoring transaction priority and wait targets.

Two columns are available in V$TRANSACTION to aid in monitoring transactions. TXN_PRIORITY
shows the transaction priority and PRIORITY_TXNS_WAIT_TARGET shows the wait target for the
transaction specified in seconds.

Alerts are shown in the alert log whenever a transaction is terminated. For example:

Transaction (sid: 203, serial: 39661, xid: 7.23.1161, txn_priority: "LOW")
terminated by transaction (sid: 204, serial: 9266, xid: 13.15.3, txn_priority:
"HIGH") because of the parameter "priority_txns_high_wait_target = 10"
TXN_PRIORITY cannot be set for a scheduler job. If it is set for a scheduler job, error ORA-63303
is thrown and reported in the alert log.

• Statistics Incremented in ROLLBACK Mode
Specific statistics are incremented for Priority Transactions when in ROLLBACK mode.

• Statistics Incremented in TRACK Mode
Specific statistics are incremented for Priority Transactions when in TRACK mode.

Related Topics

• V$TRANSACTION

30.1.2.1 Statistics Incremented in ROLLBACK Mode
Specific statistics are incremented for Priority Transactions when in ROLLBACK mode.

The following statistics are incremented only in ROLLBACK mode. These statistics are
incremented each time a transaction is rolled back because of a higher priority waiter
transaction.

SQL> select name
 from V$SYSSTAT
 where name like '%txns rollback%';

NAME

txns rollback priority_txns_high_wait_target
txns rollback priority_txns_medium_wait_target

Chapter 30
Priority Transactions

30-6

For example, if a MEDIUM or LOW priority transaction is rolled back because of a HIGH
priority transaction, then txns rollback priority_txns_high_wait_target will be
incremented.

30.1.2.2 Statistics Incremented in TRACK Mode
Specific statistics are incremented for Priority Transactions when in TRACK mode.

The following statistics are incremented only in TRACK mode. These statistics are incremented
each time a transaction would have rolled back because of a higher priority waiter transaction.

SQL> select name
 from V$SYSSTAT
 where name like '%txns track mode%';

NAME
--
txns track mode priority_txns_high_wait_target
txns track mode priority_txns_medium_wait_target

For example, if a MEDIUM or LOW priority transaction would have rolled back because of a
HIGH priority transaction, then txns track mode priority_txns_high_wait_target will be
incremented.

Related Topics

• V$TRANSACTION

30.1.3 Priority Transaction Behavior
The behavior of priority transactions must be understood for distributed and XA transactions.

• Behavior of Priority Transactions for Distributed Transactions
This section describes the behavior of priority transactions for distributed transactions.

• Behavior for XA Transactions
This section describes the behavior of priority transactions for XA transactions.

30.1.3.1 Behavior of Priority Transactions for Distributed Transactions
This section describes the behavior of priority transactions for distributed transactions.

Participant Priority

For distributed transactions, the priority of the coordinator branch is inherited by all the
participants (remote branches). That is, if a distributed transaction txn1 starts on db1 and has a
participant txn2 on db2, then txn2 inherits txn1’s TXN_PRIORITY parameter value.

Acknowledgment Behavior

The automatic rollback of distributed transactions is acknowledged the same way as local
transactions. However, the automatic rollback acknowledgment behavior of distributed
transactions differs from local transactions in the following ways:

• When a remote branch of a distributed transaction is automatically rolled back, the
coordinator session continues normally until a SQL statement is issued from the

Chapter 30
Priority Transactions

30-7

coordinator to the automatically rolled back remote branch. At that point, the coordinator
will throw ORA-63300 and ORA-63302 until a rollback acknowledgment is received.

• When the coordinator, or local, branch of a distributed transaction is automatically rolled
back, any new SQL statements in the coordinator session will immediately throw
ORA-63300 and ORA-63302. This behavior is the same as a local transaction.

30.1.3.2 Behavior for XA Transactions
This section describes the behavior of priority transactions for XA transactions.

Once an XA transaction is automatically rolled back, then the XA client will receive the
XAER_RMFAIL error for any subsequent XA statement until the rollback acknowledgment is
received. Clients are expected to handle XAER_RMFAIL and then execute the XA_END and
XA_ROLLBACK statements.

If the XA transaction was already in a suspended state due to XA_END with the TMSUSPEND flag
set, then the acknowledgment requires only executing the XA_ROLLBACK statement.

30.1.4 Priority Transaction Restrictions
There are restrictions on the use of priority transactions.

TXN_PRIORITY cannot be set for a scheduler job, otherwise error ORA-63303 is thrown. The
error is reported in the alert log.

30.2 Automatic Transaction Quarantine
Oracle Database quarantines, or isolates, the recovery of transactions that could potentially
cause a system crash. These transactions must be manually resolved by the DBA so that row
locks are released.

About Redo Application

Database buffers in the buffer cache in the SGA are written to disk only when necessary, using
a least-recently-used (LRU) algorithm. Because of the way that the database writer process
uses this algorithm to write database buffers to datafiles, datafiles may contain some data
blocks modified by uncommitted transactions and some data blocks missing changes from
committed transactions.

Crash Recovery and Instance Recovery

Crash recovery is used to recover from a failure either when a single-instance database
crashes or all instances of an Oracle Real Application Clusters database crashes. Instance
recovery refers to the case where a surviving instance recovers a failed instance in an Oracle
Real Application Clusters database.

The goal of crash and instance recovery is to restore the data block changes located in the
cache of the dead instance and to close the redo thread that was left open. Instance and crash
recovery use only online redo log files and current online datafiles.

Two potential problems can result if an instance failure occurs:

• Data blocks modified by a transaction might not be written to the datafiles at commit time
and may only appear in the redo log. Therefore, the redo log contains changes that must
be reapplied to the database during recovery.

Chapter 30
Automatic Transaction Quarantine

30-8

• After the roll forward phase, the datafiles may contain changes that had not been
committed at the time of the failure. These uncommitted changes must be rolled back to
ensure transactional consistency. These changes were either saved to the datafiles before
the failure or introduced during the roll forward phase.

To solve this dilemma, two separate steps are generally used by Oracle for a successful
recovery of a system failure: rolling forward with the redo log (cache recovery) and rolling back
with the rollback or undo segments (transaction recovery).

Cache Recovery

The online redo log is a set of operating system files that record all changes made to any
database buffer, including data, index, and rollback segments, whether the changes are
committed or uncommitted. All changes to Oracle blocks are recorded in the online log.

The first step of recovery from an instance or disk failure is called cache recovery or rolling
forward and involves reapplying all of the changes recorded in the redo log to the datafiles.
Because rollback data is also recorded in the redo log, rolling forward also regenerates the
corresponding undo segments.

Rolling forward proceeds through as many redo log files as necessary to bring the database
forward in time. Rolling forward usually includes online redo log files (instance recovery or
media recovery) and may include archived redo log files (media recovery only).

After rolling forward, the data blocks contain all committed changes. They may also contain
uncommitted changes that were either saved to the datafiles before the failure or were
recorded in the redo log and introduced during cache recovery.

Transaction Recovery

Undo tablespaces (in automatic undo management mode) contain undo segments that record
the before-image of changes to the database. In database recovery, the undo blocks inside the
undo segments roll back the effects of uncommitted transactions previously applied by the
rolling forward phase.

After the roll forward, any changes that were not committed must be undone. Oracle applies
undo blocks to roll back uncommitted changes in data blocks that were either written before
the crash or introduced by redo application during cache recovery. This process of rolling back
uncommitted transactions in the database is called transaction recovery.

The following figure illustrates rolling forward and rolling back, the two steps necessary to
recover from any type of system failure.

Chapter 30
Automatic Transaction Quarantine

30-9

Figure 30-1 Rolling Forward and Rolling Back

Database
Requiring
Instance
Recovery

Database with
Commi!ed and
Uncommi!ed

Changes

Online
Redo Log

Database
with Only

Commi!ed
Transactions

Changes from
Online Redo Log

Applied

Undo
Segments

Uncommi!ed
Changes Rolled

Back

Commi!ed change

Uncommi!ed change

Change not in data file

Legend:

Change in data file

Failure During Transaction Recovery

Transaction recovery can fail due to the following reasons:

• Physical data corruption of database blocks (ORA-01578, ORA-28304)

• Logical data corruption (ORA-00600)

• Memory corruption (ORA-00602, ORA-07445)

• State Corruptions (ORA-00600)

A failure during transaction recovery can be irrecoverable to the entire database instance and
bring down the entire container database (CDB) including its pluggable databases. Inability to
recover all the transactions in the system leads to rowlocks being held by unrecovered
transactions for longer. This severely impacts critical business operations.

Starting with Oracle Database 23ai, transactions that fail to recover are quarantined and left
un-recovered until the DBA can resolve the issue. This increases the availability of the
database. The Database Developer is notified about the quarantined transaction and must take
immediate action so that the row locks held by quarantined transactions can be released.

Transaction quarantines are maintained in a persistent data dictionary table inside the
database. Therefore, you can manage quarantines from any RAC instance in the database.

When a DML operation tries to access rows locked by a quarantined transaction error
ORA-60451 will be raised as the DML operation cannot be executed while the rows are still
locked.

Quarantined Transaction and Replication

Since Oracle Data Guard uses logical replication, quarantine metadata is not replicated to the
standby server when using Oracle Data Guard. Therefore, contents of transaction quarantine
views, such as DBA_QUARANTINED_TRANSACTIONS, on the standby server may be different than
the entries on the primary server.

Chapter 30
Automatic Transaction Quarantine

30-10

When running with Active Data Guard (ADG), the replication is physical which means that for
the transaction quarantine feature, both the dead transaction and the catalog representation of
the quarantine will be replicated to the standby database.

• Monitoring Quarantined Transactions
Alerts and data dictionary views warn the database developer of quarantined transactions.

• Resolving Quarantined Transactions
The database developer will be alerted when a transaction quarantine is generated.
Quarantines should be monitored and resolved quickly to prevent row locks from being
held for a long time.

• Dropping Quarantined Transactions
After the issue related to the quarantine has been fixed, the quarantine must be dropped.

• Transaction Quarantine Escalation
When the transaction quarantine limit is reached (default of 3) for a PDB, it is automatically
shut down on all RAC instances so that the database developer can resolve the issue. The
other PDBs in the CDB are not affected.

30.2.1 Monitoring Quarantined Transactions
Alerts and data dictionary views warn the database developer of quarantined transactions.

Oracle Database warns DBAs of quarantined transactions in several ways, which include:

• ALERT_QUE - the transaction quarantine alert is sent to the persistent alert queue
SYS.ALERT_QUE. This alert is automatically displayed in the data dictionary views
DBA_OUTSTANDING_ALERTS and DBA_ALERT_HISTORY, as well as Enterprise Manager Cloud
Control and the AWR report.

• Attention log - introduced in Oracle 21c, the attention log contains information about
critical and highly visible database events. Starting with Oracle Database 23ai, it includes
the transaction quarantine information as well.

• Alert log - an incident will be generated for the internal error and traced in the alert log.
The DBA can monitor the quarantine incident in V$DIAG_ALERT_EXT.

Views named DBA_QUARANTINED_TRANSACTIONS and CDB_QUARANTINED_TRANSACTIONS monitor
all active quarantined transactions. These views provides all the necessary information to
resolve the quarantine.

Table 30-3 DBA_QUARANTINED_TRANSACTIONS View Columns

Column Datatype Null? Description

USN NUMBER Not Null Undo segment number
of the quarantined
transaction.

SLT NUMBER Not Null Slot number of the
quarantined transaction.

SQN NUMBER Not Null The sequence number of
the quarantined
transaction.

UNDO_TSN NUMBER The undo tablespace
number for the
quarantined transaction.

TXN_START_SCN NUMBER Start SCN of the
quarantined transaction.

Chapter 30
Automatic Transaction Quarantine

30-11

Table 30-3 (Cont.) DBA_QUARANTINED_TRANSACTIONS View Columns

Column Datatype Null? Description

INCIDENT_TIME VARCHAR2(64) Identifies the timestamp
when the incident
happened.

REASON VARCHAR2(256) The reason why this
transaction failed to
recover.

TRACE_FILE_NAME VARCHAR2(4096) The trace file name that
contains the reason and
diagnosability
information for this
transaction's recovery
failure.

UBA_RDBA NUMBER Block number of the
current undo block being
applied for rollback.

UBA_SQN NUMBER Undo block sequence
number.

UBA_RECORD_NUMBER NUMBER Undo record number.

UNDO_RECORD_OBJN NUMBER Dictionary object number
of the object (OBJN).

UNDO_RECORD_OBJD NUMBER Dictionary object number
of the segment that
contains the object
(OBJD).

PREV_UNDO_BLOCK_DBA NUMBER Previous undo block
address which was used
to rollback.

DATA_BLOCK_TSN NUMBER Tablespace ID for the
object.

The view DBA_QUARANTINED_TRANSACTIONS view can be joined with GV$TRANSACTION and
GV$FAST_START_TRANSACTIONS to get the details of the transaction and its recovery progress.
Note that GV$TRANSACTION will lose its information on a database instance restart because fixed
views are not persistent. Since transaction recovery begins after a database instance restart,
GV$TRANSACTION shows the progress of any active transaction recovery even after a database
restart.

30.2.2 Resolving Quarantined Transactions
The database developer will be alerted when a transaction quarantine is generated.
Quarantines should be monitored and resolved quickly to prevent row locks from being held for
a long time.

Quarantines can be monitored using DBA_QUARANTINED_TRANSACTIONS. The REASON column of
the view shows why the transaction was quarantined. For example:

SQL> select usn, slt, sqn, reason, undo_record_objn
 from dba_quarantined_transactions;

 USN SLT SQN REASON UNDO_RECORD_OBJN
------ ------ ------ ---------------------- -------------------

Chapter 30
Automatic Transaction Quarantine

30-12

 6 18 10 ORA-00600[ktubko_1] 73646
 7 20 13 ORA-28304 73650

Once the reason for the transaction quarantines has been identified (ORA-00600[ktubko_1]
and ORA-28304 in the example above), then refer to the Primary MOS note for Automatic
Transaction Quarantine (Doc ID 3005962.1) where detailed instructions are provided for how to
resolve the different causes of transaction quarantines.

30.2.3 Dropping Quarantined Transactions
After the issue related to the quarantine has been fixed, the quarantine must be dropped.

Transaction Recovery cannot be retried until the issue concerning the transaction quarantine is
fixed. Therefore, after fixing the quarantine with the corrective action, the quarantine must be
manually dropped for transaction recovery to restart for the quarantined transaction. The
following DDL syntax can be used to drop the quarantine:

ALTER DATABASE DROP TRANSACTION QUARANTINE
<xid_undo_seg_no> <xid_slot_no> <xid_sequence_no>;

where

• xid_undo_seg_no is the undo segment number of the quarantined transaction (USN column
of view DBA_QUARANTINED_TRANSACTIONS)

• xid_slot_no is the slot number of the quarantined transaction (SLT column of view
DBA_QUARANTINED_TRANSACTIONS)

• xid_sequence_no is the sequence number of the quarantined transaction (SQN column of
view DBA_QUARANTINED_TRANSACTIONS)

For example, to drop the quarantine for xid 8.20.275, use command:

ALTER DATABASE DROP TRANSACTION QUARANTINE 8 20 275;

30.2.4 Transaction Quarantine Escalation
When the transaction quarantine limit is reached (default of 3) for a PDB, it is automatically
shut down on all RAC instances so that the database developer can resolve the issue. The
other PDBs in the CDB are not affected.

Transaction quarantine is designed to help in cases when the failure, such as memory, data, or
state corruption, is confined to a single transaction. That is, the inactive transaction that fails to
recover is quarantined, other inactive transactions can be recovered, and there's no need to
shut down the PDB or the CDB.

When failures happen across multiple transactions or span the entire PDB, such as physical
corruption of multiple blocks, a PDB SGA corruption, or a logical data corruption due to an
internal error, quarantining the failed inactive transaction recovery may or may not help. It
depends on whether the root cause for those failures is the same or not, because recovering
other inactive transactions might run into the same issue. The system keeps on running in an
inconsistent state even after quarantining a few transactions. It can be dangerous when the
failure is due to logical data corruption, because it spreads over time. To prevent this from
happening, there is a transaction quarantine limit of three (3), after which the quarantine is
escalated to the database level and the PDB will be terminated using shutdown abort if
archive logging is enabled for the PDB and it is feasible to shut down the PDB. Transaction

Chapter 30
Automatic Transaction Quarantine

30-13

https://support.oracle.com/rs?type=doc&id=3005962.1

recovery for the PDB is automatically disabled so that the database developer can correct
problems on the next PDB startup.

When an escalation occurs, perform the following steps:

1. Open the PDB.

2. Query the view DBA_QUARANTINED_TRANSACTIONS to get information about the
quarantined transactions.

3. For each quarantined transaction in the database, resolve the cause of the transaction
quarantine (Resolving Quarantined Transactions) and then drop the transaction quarantine
(see Dropping Quarantined Transactions).

4. Enable transaction recovery for the PDB.

To enable transaction recovery, use the command:

ALTER SYSTEM SET TRANSACTION_RECOVERY=ENABLED sid='*';

The SCOPE clause is not necessarily required. The default values for SCOPE are:

• For PDBs, the default value is SCOPE=BOTH.

• For CDB$ROOT, if a server parameter file was used to start the database, then the default
is SCOPE=BOTH. If a parameter file was used to start the database, then the default is
SCOPE=MEMORY.

These default values for SCOPE will re-enable transaction recovery for automatic transaction
quarantine.

To determine if transaction quarantines were escalated to the PDB, alerts are published to all
the alert channels described in Monitoring Quarantined Transactions (SYS.ALERT_QUE,
Attention log, and Alert log).

Chapter 30
Automatic Transaction Quarantine

30-14

Part V
Distributed Database Management

You can manage a distributed database environment.

• Distributed Database Concepts
Concepts related to distributed databases include distributed database architecture,
database links, transaction processing, application development, and character set
support.

• Managing a Distributed Database
Managing a distributed database includes tasks such as managing global names,
managing database links, and creating location and statement transparency.

• Developing Applications for a Distributed Database System
Developing applications for a distributed database system includes tasks such as
managing the distribution of application data, controlling connections established by
database links, maintaining referential integrity, tuning distributed queries, and handling
errors in remote procedures.

• Distributed Transactions Concepts
Distributed transactions update data on two or more distinct nodes of a distributed
database.

• Managing Distributed Transactions
Managing distributed transactions includes tasks such as specifying the comment point
strength of a node, naming transactions, and managing in-doubt transactions.

31
Distributed Database Concepts

Concepts related to distributed databases include distributed database architecture, database
links, transaction processing, application development, and character set support.

• Distributed Database Architecture
A distributed database system allows applications to access data from local and remote
databases. In a homogenous distributed database system, each database is an Oracle
Database. In a heterogeneous distributed database system, at least one of the
databases is not an Oracle Database. Distributed databases use a client/server
architecture to process information requests.

• Database Links
The central concept in distributed database systems is a database link. A database link is
a connection between two physical database servers that allows a client to access them as
one logical database.

• Distributed Database Administration
Distributed database administration includes topics related to site autonomy, security,
auditing database links, and administration tools.

• Transaction Processing in a Distributed System
A transaction is a logical unit of work constituted by one or more SQL statements executed
by a single user. A transaction begins with the user's first executable SQL statement and
ends when it is committed or rolled back by that user. A remote transaction contains only
statements that access a single remote node. A distributed transaction contains
statements that access multiple nodes.

• Distributed Database Application Development
Application development in a distributed system raises issues that are not applicable in a
non-distributed system.

• Character Set Support for Distributed Environments
Different databases and clients can use different character sets in a distributed
environment.

31.1 Distributed Database Architecture
A distributed database system allows applications to access data from local and remote
databases. In a homogenous distributed database system, each database is an Oracle
Database. In a heterogeneous distributed database system, at least one of the databases
is not an Oracle Database. Distributed databases use a client/server architecture to process
information requests.

• Homogenous Distributed Database Systems
A homogenous distributed database system includes only Oracle databases.

• Heterogeneous Distributed Database Systems
A heterogeneous distributed database system includes both Oracle databases and non-
Oracle databases.

• Client/Server Database Architecture
A database server is the Oracle software managing a database, and a client is an
application that requests information from a server. Each computer in a network is a node

31-1

that can host one or more databases. Each node in a distributed database system can act
as a client, a server, or both, depending on the situation.

31.1.1 Homogenous Distributed Database Systems
A homogenous distributed database system includes only Oracle databases.

• About Homogenous Distributed Database Systems
A homogenous distributed database system is a network of two or more Oracle Databases
that reside on one or more systems.

• Distributed Databases Versus Distributed Processing
The terms distributed database and distributed processing are closely related, yet
have distinct meanings.

• Distributed Databases Versus Replicated Databases
The terms distributed database system and database replication are related, yet distinct.

31.1.1.1 About Homogenous Distributed Database Systems
A homogenous distributed database system is a network of two or more Oracle Databases that
reside on one or more systems.

Figure 31-1 illustrates a distributed system that connects three databases: hq, mfg, and sales.
An application can simultaneously access or modify the data in several databases in a single
distributed environment. For example, a single query from a Manufacturing client on local
database mfg can retrieve joined data from the products table on the local database and the
dept table on the remote hq database.

For a client application, the location and platform of the databases are transparent. You can
also create synonyms for remote objects in the distributed system so that users can access
them with the same syntax as local objects. For example, if you are connected to database mfg
but want to access data on database hq, creating a synonym on mfg for the remote dept table
enables you to issue this query:

SELECT * FROM dept;

In this way, a distributed system gives the appearance of native data access. Users on mfg do
not have to know that the data they access resides on remote databases.

Chapter 31
Distributed Database Architecture

31-2

Figure 31-1 Homogeneous Distributed Database

Oracle Oracle

Oracle

Distributed Database Headquarters

MFG.EXAMPLE.COM HQ.EXAMPLE.COM

SALES.EXAMPLE.COM

Manufacturing

.

.

.

.

.

.
Sales

. . .

An Oracle Database distributed database system can incorporate Oracle Databases of
different releases. All supported releases of Oracle Database can participate in a distributed
database system. Nevertheless, the applications that work with the distributed database must
understand the functionality that is available at each node in the system. A distributed
database application cannot expect an Oracle7 database to understand the SQL extensions
that are only available with Oracle Database.

31.1.1.2 Distributed Databases Versus Distributed Processing
The terms distributed database and distributed processing are closely related, yet have
distinct meanings.

There definitions are as follows:

• Distributed database

A set of databases in a distributed system that can appear to applications as a single data
source.

• Distributed processing

The operations that occurs when an application distributes its tasks among different
computers in a network. For example, a database application typically distributes front-end
presentation tasks to client computers and allows a back-end database server to manage
shared access to a database. Consequently, a distributed database application processing
system is more commonly referred to as a client/server database application system.

Chapter 31
Distributed Database Architecture

31-3

Distributed database systems employ a distributed processing architecture. For example, an
Oracle Database server acts as a client when it requests data that another Oracle Database
server manages.

31.1.1.3 Distributed Databases Versus Replicated Databases
The terms distributed database system and database replication are related, yet distinct.

In a pure (that is, not replicated) distributed database, the system manages a single copy of all
data and supporting database objects. Typically, distributed database applications use
distributed transactions to access both local and remote data and modify the global database
in real-time.

Note:

This book discusses only pure distributed databases.

The term replication refers to the operation of copying and maintaining database objects in
multiple databases belonging to a distributed system. While replication relies on distributed
database technology, database replication offers applications benefits that are not possible
within a pure distributed database environment.

Most commonly, replication is used to improve local database performance and protect the
availability of applications because alternate data access options exist. For example, an
application may normally access a local database rather than a remote server to minimize
network traffic and achieve maximum performance. Furthermore, the application can continue
to function if the local server experiences a failure, but other servers with replicated data
remain accessible.

31.1.2 Heterogeneous Distributed Database Systems
A heterogeneous distributed database system includes both Oracle databases and non-Oracle
databases.

• About Heterogeneous Distributed Database Systems
In a heterogeneous distributed database system, at least one of the databases is a non-
Oracle Database system. To the application, the heterogeneous distributed database
system appears as a single, local, Oracle Database. The local Oracle Database server
hides the distribution and heterogeneity of the data.

• Heterogeneous Services
Heterogeneous Services (HS) is an integrated component within the Oracle Database
server and the enabling technology for the current suite of Oracle Transparent Gateway
products.

• Transparent Gateway Agents
For each non-Oracle Database system that you access, Heterogeneous Services can use
a transparent gateway agent to interface with the specified non-Oracle Database system.
The agent is specific to the non-Oracle Database system, so each type of system requires
a different agent.

• Generic Connectivity
Generic connectivity enables you to connect to non-Oracle Database data stores by using
either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE DB
agent.

Chapter 31
Distributed Database Architecture

31-4

31.1.2.1 About Heterogeneous Distributed Database Systems
In a heterogeneous distributed database system, at least one of the databases is a non-Oracle
Database system. To the application, the heterogeneous distributed database system appears
as a single, local, Oracle Database. The local Oracle Database server hides the distribution
and heterogeneity of the data.

The Oracle Database server accesses the non-Oracle Database system using Oracle
Heterogeneous Services with an agent. If you access the non-Oracle Database data store
using an Oracle Transparent Gateway, then the agent is a system-specific application. For
example, if you include a Sybase database in an Oracle Database distributed system, then you
must obtain a Sybase-specific transparent gateway so that the Oracle Database in the system
can communicate with it.

Alternatively, you can use generic connectivity to access non-Oracle Database data stores
so long as the non-Oracle Database system supports the ODBC or OLE DB protocols.

Note:

Other than the introductory material presented in this chapter, this book does not
discuss Oracle Heterogeneous Services. See Oracle Database Heterogeneous
Connectivity User's Guide for more detailed information about Heterogeneous
Services.

31.1.2.2 Heterogeneous Services
Heterogeneous Services (HS) is an integrated component within the Oracle Database server
and the enabling technology for the current suite of Oracle Transparent Gateway products.

HS provides the common architecture and administration mechanisms for Oracle Database
gateway products and other heterogeneous access facilities. Also, it provides upwardly
compatible functionality for users of most of the earlier Oracle Transparent Gateway releases.

31.1.2.3 Transparent Gateway Agents
For each non-Oracle Database system that you access, Heterogeneous Services can use a
transparent gateway agent to interface with the specified non-Oracle Database system. The
agent is specific to the non-Oracle Database system, so each type of system requires a
different agent.

The transparent gateway agent facilitates communication between Oracle Database and non-
Oracle Database systems and uses the Heterogeneous Services component in the Oracle
Database server. The agent executes SQL and transactional requests at the non-Oracle
Database system on behalf of the Oracle Database server.

See Also:

Your Oracle-supplied gateway-specific documentation for information about
transparent gateways

Chapter 31
Distributed Database Architecture

31-5

31.1.2.4 Generic Connectivity
Generic connectivity enables you to connect to non-Oracle Database data stores by using
either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE DB agent.

Both are included with your Oracle product as a standard feature. Any data source compatible
with the ODBC or OLE DB standards can be accessed using a generic connectivity agent.

The advantage to generic connectivity is that it may not be required for you to purchase and
configure a separate system-specific agent. You use an ODBC or OLE DB driver that can
interface with the agent. However, some data access features are only available with
transparent gateway agents.

31.1.3 Client/Server Database Architecture
A database server is the Oracle software managing a database, and a client is an application
that requests information from a server. Each computer in a network is a node that can host
one or more databases. Each node in a distributed database system can act as a client, a
server, or both, depending on the situation.

In Figure 31-2, the host for the hq database is acting as a database server when a statement is
issued against its local data (for example, the second statement in each transaction issues a
statement against the local dept table), but is acting as a client when it issues a statement
against remote data (for example, the first statement in each transaction is issued against the
remote table emp in the sales database).

Figure 31-2 An Oracle Database Distributed Database System

Network

Application

Server Server

DEPT Table EMP Table

TRANSACTION

INSERT INTO EMP@SALES..;

DELETE FROM DEPT..;

SELECT...

 FROM EMP@SALES...;

COMMIT;

.

.

.

HQ

Database

Sales

Database

CONNECT TO...

IDENTIFIED BY ...

Database Link

Oracle

Net

Oracle

Net

Chapter 31
Distributed Database Architecture

31-6

A client can connect directly or indirectly to a database server. A direct connection occurs
when a client connects to a server and accesses information from a database contained on
that server. For example, if you connect to the hq database and access the dept table on this
database as in Figure 31-2, you can issue the following:

SELECT * FROM dept;

This query is direct because you are not accessing an object on a remote database.

In contrast, an indirect connection occurs when a client connects to a server and then
accesses information contained in a database on a different server. For example, if you
connect to the hq database but access the emp table on the remote sales database as in
Figure 31-2, you can issue the following:

SELECT * FROM emp@sales;

This query is indirect because the object you are accessing is not on the database to which
you are directly connected.

31.2 Database Links
The central concept in distributed database systems is a database link. A database link is a
connection between two physical database servers that allows a client to access them as one
logical database.

• What Are Database Links?
A database link is a pointer that defines a one-way communication path from an Oracle
Database server to another database server.

• What Are Shared Database Links?
A shared database link is a link between a local server process and the remote database.
The link is shared because multiple client processes can use the same link simultaneously.

• Why Use Database Links?
The great advantage of database links is that they allow users to access another user's
objects in a remote database so that they are bounded by the privilege set of the object
owner. In other words, a local user can access a link to a remote database without having
to be a user on the remote database.

• Global Database Names in Database Links
To understand how a database link works, you must first understand what a global
database name is. Each database in a distributed database is uniquely identified by its
global database name.

• Global Name as a Loopback Database Link
You can use the global name of a database as a loopback database link without explicitly
creating a database link. When the database link in a SQL statement matches the global
name of the current database, the database link is effectively ignored.

• Names for Database Links
Typically, a database link has the same name as the global database name of the remote
database that it references.

• Types of Database Links
Oracle Database lets you create private, public, and global database links.

• Users of Database Links
Users of database links include connect user, current user, and fixed user.

• Creation of Database Links: Examples
Create database links using the CREATE DATABASE LINK statement.

Chapter 31
Database Links

31-7

• Schema Objects and Database Links
After you have created a database link, you can execute SQL statements that access
objects on the remote database. You must also be authorized in the remote database to
access specific remote objects.

• Database Link Restrictions
Several restrictions apply to database links.

31.2.1 What Are Database Links?
A database link is a pointer that defines a one-way communication path from an Oracle
Database server to another database server.

For public and private database links, the link pointer is actually defined as an entry in a data
dictionary table. To access the link, you must be connected to the local database that contains
the data dictionary entry. For global database links, the link pointer is defined in a directory
service. The different types of database links are described in more detail in "Types of
Database Links".

A database link connection is one-way in the sense that a client connected to local database A
can use a link stored in database A to access information in remote database B, but users
connected to database B cannot use the same link to access data in database A. If local users
on database B want to access data on database A, then they must define a link that is stored
in the data dictionary of database B.

A database link connection allows local users to access data on a remote database. For this
connection to occur, each database in the distributed system must have a unique global
database name in the network domain. The global database name uniquely identifies a
database server in a distributed system.

Figure 31-3 shows an example of user scott accessing the emp table on the remote database
with the global name hq.example.com:

Figure 31-3 Database Link

Local

database

User Scott

Remote

database

Select *

FROM emp

Database

link

(unidirectional)

EMP table

PUBLIC SYNONYM

emp -> emp@HQ.EXAMPLE.COM

Chapter 31
Database Links

31-8

Database links are either private or public. If they are private, then only the user who created
the link has access; if they are public, then all database users have access.

One principal difference among database links is the way that different link definitions
determine how the link connection is authenticated. Users access a remote database through
the following types of links:

Type of Link Description

Connected user link Users connect as themselves, which means that they must have an account
on the remote database with the same user name and password as their
account on the local database.

Fixed user link Users connect using the user name and password referenced in the link. For
example, if Jane uses a fixed user link that connects to the hq database with
the user name and password scott/password, then they connect as scott,
Jane has all the privileges in hq granted to scott directly, and all the default
roles that scott has been granted in the hq database.

Current user link A user connects as a global user. A local user can connect as a global user in
the context of a stored procedure, without storing the global user's password
in a link definition. For example, Jane can access a procedure that Scott
wrote, accessing Scott's account and Scott's schema on the hq database.

Create database links using the CREATE DATABASE LINK statement. After a link is created, you
can use it to specify schema objects in SQL statements.

See Also:

Oracle Database SQL Language Reference for syntax of the CREATE DATABASE
statement

31.2.2 What Are Shared Database Links?
A shared database link is a link between a local server process and the remote database. The
link is shared because multiple client processes can use the same link simultaneously.

When a local database is connected to a remote database through a database link, either
database can run in dedicated or shared server mode. The following table illustrates the
possibilities:

Local Database Mode Remote Database Mode

Dedicated Dedicated

Dedicated Shared server

Shared server Dedicated

Shared server Shared server

A shared database link can exist in any of these four configurations. Shared links differ from
standard database links in the following ways:

• Different users accessing the same schema object through a database link can share a
network connection.

Chapter 31
Database Links

31-9

• When a user must establish a connection to a remote server from a particular server
process, the process can reuse connections already established to the remote server. The
reuse of the connection can occur if the connection was established on the same server
process with the same database link, possibly in a different session. In a non-shared
database link, a connection is not shared across multiple sessions.

• When you use a shared database link in a shared server configuration, a network
connection is established directly out of the shared server process in the local server. For a
non-shared database link on a local shared server, this connection would have been
established through the local dispatcher, requiring context switches for the local dispatcher,
and requiring data to go through the dispatcher.

See Also:

Oracle Database Net Services Administrator's Guide for information about
shared server

31.2.3 Why Use Database Links?
The great advantage of database links is that they allow users to access another user's objects
in a remote database so that they are bounded by the privilege set of the object owner. In other
words, a local user can access a link to a remote database without having to be a user on the
remote database.

For example, assume that employees submit expense reports to Accounts Payable (A/P), and
further suppose that a user using an A/P application must retrieve information about
employees from the hq database. The A/P users should be able to connect to the hq database
and execute a stored procedure in the remote hq database that retrieves the desired
information. The A/P users should not need to be hq database users to do their jobs; they
should only be able to access hq information in a controlled way as limited by the procedure.

See Also:

• "Users of Database Links" for an explanation of database link users

• "Viewing Information About Database Links" for an explanation of how to hide
passwords from non-administrative users

31.2.4 Global Database Names in Database Links
To understand how a database link works, you must first understand what a global database
name is. Each database in a distributed database is uniquely identified by its global database
name.

The database forms a global database name by prefixing the database network domain,
specified by the DB_DOMAIN initialization parameter at database creation, with the individual
database name, specified by the DB_NAME initialization parameter.

For example, Figure 31-4 illustrates a representative hierarchical arrangement of databases
throughout a network.

Chapter 31
Database Links

31-10

Figure 31-4 Hierarchical Arrangement of Networked Databases

Other Non–Commercial
Companies Organizations

COM ORGEDU

Employees (HR)

DIVISION1 DIVISION2 DIVISION3

EXAMPLE_TOOLS

ASIA AMERICAS EUROPE

EXAMPLE_AUTO

JAPAN US MEXICO UK GERMANY

Employees (HR)

Educational
Institutions

SalesSalesSalesSalesHQSales

mfgSalesFinanceHQ

The name of a database is formed by starting at the leaf of the tree and following a path to the
root. For example, the mfg database is in division3 of the example_tools branch of the com
domain. The global database name for mfg is created by concatenating the nodes in the tree
as follows:

• mfg.division3.example_tools.com
While several databases can share an individual name, each database must have a unique
global database name. For example, the network domains us.americas.example_auto.com
and uk.europe.example_auto.com each contain a sales database. The global database
naming system distinguishes the sales database in the americas division from the sales
database in the europe division as follows:

• sales.us.americas.example_auto.com
• sales.uk.europe.example_auto.com

See Also:

"Managing Global Names in a Distributed System" to learn how to specify and
change global database names

Chapter 31
Database Links

31-11

31.2.5 Global Name as a Loopback Database Link
You can use the global name of a database as a loopback database link without explicitly
creating a database link. When the database link in a SQL statement matches the global name
of the current database, the database link is effectively ignored.

For example, assume the global name of a database is db1.example.com. You can run the
following SQL statement on this database:

SELECT * FROM hr.employees@db1.example.com;

In this case, the @db1.example.com portion of the SQL statement is effectively ignored.

31.2.6 Names for Database Links
Typically, a database link has the same name as the global database name of the remote
database that it references.

For example, if the global database name of a database is sales.us.example.com, then the
database link is also called sales.us.example.com.

When you set the initialization parameter GLOBAL_NAMES to TRUE, the database ensures that the
name of the database link is the same as the global database name of the remote database.
For example, if the global database name for hq is hq.example.com, and GLOBAL_NAMES is TRUE,
then the link name must be called hq.example.com. Note that the database checks the domain
part of the global database name as stored in the data dictionary, not the DB_DOMAIN setting in
the initialization parameter file (see "Changing the Domain in a Global Database Name").

If you set the initialization parameter GLOBAL_NAMES to FALSE, then you are not required to use
global naming. You can then name the database link whatever you want. For example, you can
name a database link to hq.example.com as foo.

Note:

Oracle recommends that you use global naming because many useful features
require global naming.

After you have enabled global naming, database links are essentially transparent to users of a
distributed database because the name of a database link is the same as the global name of
the database to which the link points. For example, the following statement creates a database
link in the local database to remote database sales:

CREATE PUBLIC DATABASE LINK sales.division3.example.com USING 'sales1';

See Also:

Oracle Database Reference for more information about specifying the initialization
parameter GLOBAL_NAMES

Chapter 31
Database Links

31-12

31.2.7 Types of Database Links
Oracle Database lets you create private, public, and global database links.

These basic link types differ according to which users are allowed access to the remote
database:

Type Owner Description

Private User who created the link. View
ownership data through:

• DBA_DB_LINKS
• ALL_DB_LINKS
• USER_DB_LINKS

Creates link in a specific schema of the local
database. Only the owner of a private database
link or PL/SQL subprograms in the schema can
use this link to access database objects in the
corresponding remote database.

Public User called PUBLIC. View ownership
data through views shown for private
database links.

Creates a database-wide link. All users and
PL/SQL subprograms in the database can use the
link to access database objects in the
corresponding remote database.

Global No user owns the global database
link. The global database link exists in
a directory service.

Creates a network-wide link. When an Oracle
network uses a directory server and the database
is registered in the directory service, this
information can be used as a database link. Users
and PL/SQL subprograms in any database can
use a global database link to access objects in the
corresponding remote database. Global database
links refer to the use of net service names from
the directory server.

Determining the type of database links to employ in a distributed database depends on the
specific requirements of the applications using the system. Consider these features when
making your choice:

Type of Link Features

Private database link This link is more secure than a public or global link, because only the owner of
the private link, or subprograms within the same schema, can use the link to
access the remote database.

Public database link When many users require an access path to a remote Oracle Database, you can
create a single public database link for all users in a database.

Global database link When an Oracle network uses a directory server, an administrator can
conveniently manage global database links for all databases in the system.
Database link management is centralized and simple.

There is no user data associated with a global database link definition. A global
database link must operate as a connected user database link.

See Also:

• "Specifying Link Types" to learn how to create different types of database links

• "Viewing Information About Database Links" to learn how to access information
about links

Chapter 31
Database Links

31-13

31.2.8 Users of Database Links
Users of database links include connect user, current user, and fixed user.

• Overview of Database Link Users
When creating the link, you determine which user should connect to the remote database
to access the data.

• Connected User Database Links
Connected user links have no connect string associated with them. The advantage of a
connected user link is that a user referencing the link connects to the remote database as
the same user, and credentials do not have to be stored in the link definition in the data
dictionary.

• Fixed User Database Links
A benefit of a fixed user link is that it connects a user in a primary database to a remote
database with the security context of the user specified in the connect string.

• Current User Database Links
Current user database links make use of a global user. A global user must be
authenticated by an X.509 certificate or a password, and be a user on both databases
involved in the link.

31.2.8.1 Overview of Database Link Users
When creating the link, you determine which user should connect to the remote database to
access the data.

The following table explains the differences among the categories of users involved in
database links:

User Type Description Sample Link
Creation Syntax

Connected
user

A local user accessing a database link in which no fixed
username and password have been specified. If SYSTEM
accesses a public link in a query, then the connected user is
SYSTEM, and the database connects to the SYSTEM schema in
the remote database.

Note: A connected user does not have to be the user who
created the link, but is any user who is accessing the link.

CREATE PUBLIC
DATABASE LINK hq
USING 'hq';

Current user A global user in a CURRENT_USER database link. The global user
must be authenticated by an X.509 certificate (an SSL-
authenticated enterprise user) or a password (a password-
authenticated enterprise user), and be a user on both databases
involved in the link.

CREATE PUBLIC
DATABASE LINK hq
CONNECT TO
CURRENT_USER
using 'hq';

Fixed user A user whose username/password is part of the link definition. If
a link includes a fixed user, the fixed user's username and
password are used to connect to the remote database.

CREATE PUBLIC
DATABASE LINK hq
CONNECT TO jane
IDENTIFIED BY
password USING
'hq';

Chapter 31
Database Links

31-14

Note:

The following users cannot be target users of database links: SYS and PUBLIC.

See Also:

Specifying Link Users to learn how to specify users when creating links

31.2.8.2 Connected User Database Links
Connected user links have no connect string associated with them. The advantage of a
connected user link is that a user referencing the link connects to the remote database as the
same user, and credentials do not have to be stored in the link definition in the data dictionary.

Connected user links have some disadvantages. Because these links require users to have
accounts and privileges on the remote databases to which they are attempting to connect, they
require more privilege administration for administrators. Also, giving users more privileges than
they need violates the fundamental security concept of least privilege: users should only be
given the privileges they need to perform their jobs.

The ability to use a connected user database link depends on several factors, chief among
them whether the user is authenticated by the database using a password, or externally
authenticated by the operating system or a network authentication service. If the user is
externally authenticated, then the ability to use a connected user link also depends on whether
the remote database accepts remote authentication of users, which is set by the
REMOTE_OS_AUTHENT initialization parameter.

The REMOTE_OS_AUTHENT parameter operates as follows:

REMOTE_OS_AUTHENT Value Consequences

TRUE for the remote database An externally-authenticated user can connect to the remote
database using a connected user database link.

FALSE for the remote database An externally-authenticated user cannot connect to the remote
database using a connected user database link unless a secure
protocol or a network authentication service option is used.

If the connected user database link is accessed from within a definer's rights function,
procedure, or package, then the definer's authorization ID is used to connect as a remote user.
For example, if user jane calls procedure scott.p (a definer's rights procedure created by
scott), and the link appears inside procedure scott.p, then scott is the connected user. To
run a definer's rights function, procedure, or package that includes a connected user database
link, the user who invokes the function, procedure, or package must be granted the INHERIT
REMOTE PRIVILEGES privilege.

Chapter 31
Database Links

31-15

Note:

The REMOTE_OS_AUTHENT initialization parameter is deprecated. It is retained for
backward compatibility only.

31.2.8.3 Fixed User Database Links
A benefit of a fixed user link is that it connects a user in a primary database to a remote
database with the security context of the user specified in the connect string.

For example, local user joe can create a public database link in joe's schema that specifies
the fixed user scott with password password. If jane uses the fixed user link in a query, then
jane is the user on the local database, but they connect to the remote database as scott/
password.

Fixed user links have a user name and password associated with the connect string. The user
name and password are stored with other link information in data dictionary tables.

31.2.8.4 Current User Database Links
Current user database links make use of a global user. A global user must be authenticated by
an X.509 certificate or a password, and be a user on both databases involved in the link.

The user invoking the CURRENT_USER link does not have to be a global user. For example, if
jane is authenticated (not as a global user) by password to the Accounts Payable database,
they can access a stored procedure to retrieve data from the hq database. The procedure uses
a current user database link, which connects them to hq as global user scott. User scott is a
global user and authenticated through a certificate over SSL, but jane is not.

Note that current user database links have these consequences:

• If the current user database link is not accessed from within a stored object, then the
current user is the same as the connected user accessing the link. For example, if scott
issues a SELECT statement through a current user link, then the current user is scott.

• When executing a stored object such as a procedure, view, or trigger that accesses a
database link, the current user is the user that owns the stored object, and not the user
that calls the object. For example, if jane calls procedure scott.p (created by scott), and
a current user link appears within the called procedure, then scott is the current user of
the link.

• If the stored object is an invoker's rights function, procedure, or package, then the invoker's
authorization ID is used to connect as a remote user. For example, if user jane calls
procedure scott.p (an invoker's rights procedure created by scott), and the link appears
inside procedure scott.p, then jane is the current user.

• You cannot connect to a database as an enterprise user and then use a current user link in
a stored procedure that exists in a shared, global schema. For example, if user jane
accesses a stored procedure in the shared schema guest on database hq, they cannot use
a current user link in this schema to log on to a remote database.

Chapter 31
Database Links

31-16

See Also:

– "Distributed Database Security" for more information about security issues
relating to database links

– Oracle Database PL/SQL Language Reference for more information about
invoker's rights functions, procedures, or packages.

– Oracle Database Security Guide for information about running a definer's
rights function, procedure, or package that includes a current user database
link

31.2.9 Creation of Database Links: Examples
Create database links using the CREATE DATABASE LINK statement.

The table gives examples of SQL statements that create database links in a local database to
the remote sales.us.americas.example_auto.com database:

SQL Statement Connects To Database Connects As Link Type

CREATE DATABASE
LINK
sales.us.americas.e
xample_auto.com
USING 'sales_us';

sales using net service
name sales_us

Connected user Private connected user

CREATE DATABASE
LINK foo CONNECT TO
CURRENT_USER USING
'am_sls';

sales using service
name am_sls

Current global user Private current user

CREATE DATABASE
LINK
sales.us.americas.e
xample_auto.com
CONNECT TO scott
IDENTIFIED BY
password USING
'sales_us';

sales using net service
name sales_us

scott using password
password

Private fixed user

CREATE PUBLIC
DATABASE LINK sales
CONNECT TO scott
IDENTIFIED BY
password USING
'rev';

sales using net service
name rev

scott using password
password

Public fixed user

Chapter 31
Database Links

31-17

SQL Statement Connects To Database Connects As Link Type

CREATE SHARED
PUBLIC DATABASE
LINK
sales.us.americas.e
xample_auto.com
CONNECT TO scott
IDENTIFIED BY
password
AUTHENTICATED BY
anupam IDENTIFIED
BY password1 USING
'sales';

sales using net service
name sales

scott using password
password,
authenticated as anupam
using password
password1

Shared public fixed user

See Also:

• "Creating Database Links" to learn how to create link

• Oracle Database SQL Language Reference for information about the CREATE
DATABASE LINK statement syntax

31.2.10 Schema Objects and Database Links
After you have created a database link, you can execute SQL statements that access objects
on the remote database. You must also be authorized in the remote database to access
specific remote objects.

For example, to access remote object emp using database link foo, you can issue:

SELECT * FROM emp@foo;

Constructing properly formed object names using database links is an essential aspect of data
manipulation in distributed systems.

If you call a procedure using a remote database link, and the procedure contains a ROLLBACK
command, only DML operations performed at the remote site are rolled back. Any DML
changes made at the originating site are not rolled back.

• Naming of Schema Objects Using Database Links
Oracle Database uses the global database name to name the schema objects globally.

• Authorization for Accessing Remote Schema Objects
To access a remote schema object, you must be granted access to the remote object in
the remote database.

• Synonyms for Schema Objects
Oracle Database lets you create synonyms so that you can hide the database link name
from the user.

• Schema Object Name Resolution
To resolve application references to schema objects (a process called name resolution),
the database forms object names hierarchically.

Chapter 31
Database Links

31-18

31.2.10.1 Naming of Schema Objects Using Database Links
Oracle Database uses the global database name to name the schema objects globally.

Global database names are in the following form:

schema.schema_object@global_database_name

where:

• schema is a collection of logical structures of data, or schema objects. A schema is owned
by a database user and has the same name as that user. Each user owns a single
schema.

• schema_object is a logical data structure like a table, index, view, synonym, procedure,
package, or a database link.

• global_database_name is the name that uniquely identifies a remote database. This name
must be the same as the concatenation of the remote database initialization parameters
DB_NAME and DB_DOMAIN, unless the parameter GLOBAL_NAMES is set to FALSE, in which case
any name is acceptable.

For example, using a database link to database sales.division3.example.com, a user or
application can reference remote data as follows:

SELECT * FROM scott.emp@sales.division3.example.com; # emp table in scott's schema
SELECT loc FROM scott.dept@sales.division3.example.com;

If GLOBAL_NAMES is set to FALSE, then you can use any name for the link to
sales.division3.example.com. For example, you can call the link foo. Then, you can access
the remote database as follows:

SELECT name FROM scott.emp@foo; # link name different from global name

31.2.10.2 Authorization for Accessing Remote Schema Objects
To access a remote schema object, you must be granted access to the remote object in the
remote database.

Further, to perform any updates, inserts, or deletes on the remote object, you must be granted
the READ or SELECT privilege on the object, along with the UPDATE, INSERT, or DELETE privilege.
Unlike when accessing a local object, the READ or SELECT privilege is necessary for accessing a
remote object because the database has no remote describe capability. The database must do
a SELECT * on the remote object to determine its structure.

31.2.10.3 Synonyms for Schema Objects
Oracle Database lets you create synonyms so that you can hide the database link name from
the user.

A synonym allows access to a table on a remote database using the same syntax that you
would use to access a table on a local database. For example, assume you issue the following
query against a table in a remote database:

SELECT * FROM emp@hq.example.com;

You can create the synonym emp for emp@hq.example.com so that you can issue the following
query instead to access the same data:

Chapter 31
Database Links

31-19

SELECT * FROM emp;

See Also:

"Using Synonyms to Create Location Transparency" to learn how to create synonyms
for objects specified using database links

31.2.10.4 Schema Object Name Resolution
To resolve application references to schema objects (a process called name resolution), the
database forms object names hierarchically.

For example, the database guarantees that each schema within a database has a unique
name, and that within a schema each object has a unique name. As a result, a schema object
name is always unique within the database. Furthermore, the database resolves application
references to the local name of the object.

In a distributed database, a schema object such as a table is accessible to all applications in
the system. The database extends the hierarchical naming model with global database names
to effectively create global object names and resolve references to the schema objects in a
distributed database system. For example, a query can reference a remote table by specifying
its fully qualified name, including the database in which it resides.

For example, assume that you connect to the local database as user SYSTEM:

CONNECT SYSTEM@sales1

You then issue the following statements using database link hq.example.com to access objects
in the scott and jane schemas on remote database hq:

SELECT * FROM scott.emp@hq.example.com;
INSERT INTO jane.accounts@hq.example.com (acc_no, acc_name, balance)
 VALUES (5001, 'BOWER', 2000);
UPDATE jane.accounts@hq.example.com
 SET balance = balance + 500;
DELETE FROM jane.accounts@hq.example.com
 WHERE acc_name = 'BOWER';

31.2.11 Database Link Restrictions
Several restrictions apply to database links.

You cannot perform the following operations using database links:

• Grant privileges on remote objects

• Execute DESCRIBE operations on some remote objects. The following remote objects,
however, do support DESCRIBE operations:

– Tables

– Views

– Procedures

– Functions

• Analyze remote objects

Chapter 31
Database Links

31-20

• Define or enforce referential integrity

• Grant roles to users in a remote database

• Obtain nondefault roles on a remote database. For example, if jane connects to the local
database and executes a stored procedure that uses a fixed user link connecting as scott,
jane receives scott's default roles on the remote database. Jane cannot issue SET ROLE
to obtain a nondefault role.

• Use a current user link without authentication through SSL, password, or Microsoft
Windows native authentication

See Also:

• Oracle Database Object-Relational Developer's Guide for information about
database link restrictions for user-defined types

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information about database link restrictions for LOBs

31.3 Distributed Database Administration
Distributed database administration includes topics related to site autonomy, security, auditing
database links, and administration tools.

• Site Autonomy
Site autonomy means that each server participating in a distributed database is
administered independently from all other databases.

• Distributed Database Security
The database supports all of the security features that are available with a non-distributed
database environment for distributed database systems, including password authentication
for users and roles, some types of external authentication for users and roles including
Kerberos version 5 for connected user links, and login packet encryption for client-to-
server and server-to-server connections.

• Auditing Database Links
You must always perform auditing operations locally. That is, if a user acts in a local
database and accesses a remote database through a database link, the local actions are
audited in the local database, and the remote actions are audited in the remote database,
provided appropriate audit options are set in the respective databases.

• Administration Tools
The database administrator has several choices for tools to use when managing an Oracle
Database distributed database system.

Chapter 31
Distributed Database Administration

31-21

See Also:

• Managing a Distributed Database to learn how to administer homogenous
systems

• Oracle Database Heterogeneous Connectivity User's Guide to learn about
heterogeneous services concepts

31.3.1 Site Autonomy
Site autonomy means that each server participating in a distributed database is administered
independently from all other databases.

Although several databases can work together, each database is a separate repository of data
that is managed individually. Some of the benefits of site autonomy in an Oracle Database
distributed database include:

• Nodes of the system can mirror the logical organization of companies or groups that need
to maintain independence.

• Local administrators control corresponding local data. Therefore, each database
administrator's domain of responsibility is smaller and more manageable.

• Independent failures are less likely to disrupt other nodes of the distributed database. No
single database failure need halt all distributed operations or be a performance bottleneck.

• Administrators can recover from isolated system failures independently from other nodes in
the system.

• A data dictionary exists for each local database. A global catalog is not necessary to
access local data.

• Nodes can upgrade software independently.

Although Oracle Database permits you to manage each database in a distributed database
system independently, you should not ignore the global requirements of the system. For
example, you may need to:

• Create additional user accounts in each database to support the links that you create to
facilitate server-to-server connections.

• Set additional initialization parameters such as COMMIT_POINT_STRENGTH, and OPEN_LINKS.

31.3.2 Distributed Database Security
The database supports all of the security features that are available with a non-distributed
database environment for distributed database systems, including password authentication for
users and roles, some types of external authentication for users and roles including Kerberos
version 5 for connected user links, and login packet encryption for client-to-server and server-
to-server connections.

• Authentication Through Database Links
Database links are either private or public, authenticated or non-authenticated.

• Authentication Without Passwords
When using a connected user or current user database link, you can use an external
authentication source such as Kerberos to obtain end-to-end security.

Chapter 31
Distributed Database Administration

31-22

• Supporting User Accounts and Roles
In a distributed database system, you must carefully plan the user accounts and roles that
are necessary to support applications using the system.

• Centralized User and Privilege Management
For centralized user and privilege management, you must consider the authentication
method. You can also consider exclusively mapped global users or shared schema users.

• Data Encryption
The Oracle Advanced Security option also enables Oracle Net and related products to use
network data encryption and checksumming so that data cannot be read or altered. It
protects data from unauthorized viewing by using the RSA Data Security RC4 or the Data
Encryption Standard (DES) encryption algorithm.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for more information
about external authentication

31.3.2.1 Authentication Through Database Links
Database links are either private or public, authenticated or non-authenticated.

You create public links by specifying the PUBLIC keyword in the link creation statement. For
example, you can issue:

CREATE PUBLIC DATABASE LINK foo USING 'sales';

You create authenticated links by specifying the CONNECT TO clause, AUTHENTICATED BY clause,
or both clauses together in the database link creation statement. For example, you can issue:

CREATE DATABASE LINK sales CONNECT TO scott IDENTIFIED BY password USING 'sales';

CREATE SHARED PUBLIC DATABASE LINK sales CONNECT TO nick IDENTIFIED BY password1
 AUTHENTICATED BY david IDENTIFIED BY password2 USING 'sales';

This table describes how users access the remote database through the link:

Link Type Authenticated Security Access

Private No When connecting to the remote database, the database uses
security information (userid/password) taken from the local
session. Hence, the link is a connected user database link.
Passwords must be synchronized between the two databases.

Private Yes The userid/password is taken from the link definition rather than
from the local session context. Hence, the link is a fixed user
database link.

This configuration allows passwords to be different on the two
databases, but the local database link password must match the
remote database password.

Public No Works the same as a private nonauthenticated link, except that
all users can reference this pointer to the remote database.

Public Yes All users on the local database can access the remote database,
and all use the same userid/password to make the connection.

Chapter 31
Distributed Database Administration

31-23

Note:

The following initialization parameters can provide enhanced security for database
link connections:

• The OUTBOUND_DBLINK_PROTOCOLS initialization parameter can specify Oracle Net
transport protocols restricting any outbound database link communication to use
only the protocols from the specified list.

• The ALLOW_GLOBAL_DBLINKS initialization parameter can allow or disallow LDAP
lookup for global database links information.

See Also:

• Oracle Database Security Guide

• Oracle Database Reference for more information about the
OUTBOUND_DBLINK_PROTOCOLS initialization parameter

• Oracle Database Reference for more information about the
ALLOW_GLOBAL_DBLINKS initialization parameter

31.3.2.2 Authentication Without Passwords
When using a connected user or current user database link, you can use an external
authentication source such as Kerberos to obtain end-to-end security.

In end-to-end authentication, credentials are passed from server to server and can be
authenticated by a database server belonging to the same domain. For example, if jane is
authenticated externally on a local database, and wants to use a connected user link to
connect as herself to a remote database, the local server passes the security ticket to the
remote database.

31.3.2.3 Supporting User Accounts and Roles
In a distributed database system, you must carefully plan the user accounts and roles that are
necessary to support applications using the system.

Note that:

• The user accounts necessary to establish server-to-server connections must be available
in all databases of the distributed database system.

• The roles necessary to make available application privileges to distributed database
application users must be present in all databases of the distributed database system.

As you create the database links for the nodes in a distributed database system, determine
which user accounts and roles each site must support server-to-server connections that use
the links.

In a distributed environment, users typically require access to many network services. When
you must configure separate authentications for each user to access each network service,
security administration can become unwieldy, especially for large systems.

Chapter 31
Distributed Database Administration

31-24

See Also:

"Creating Database Links" for more information about the user accounts that must be
available to support different types of database links in the system

31.3.2.4 Centralized User and Privilege Management
For centralized user and privilege management, you must consider the authentication method.
You can also consider exclusively mapped global users or shared schema users.

• About Centralized User and Privilege Management
The database provides different ways for you to manage the users and their privileges in a
distributed system.

• Exclusively Mapped Global Users
One option for centralizing user and privilege management is to create a global user in a
centralized directory and a user in every database to which the global user must connect.

• Shared Schema Users
The shared schema users functionality allows a global user to be centrally managed by an
enterprise directory service. Users who are managed in the directory are called enterprise
users.

31.3.2.4.1 About Centralized User and Privilege Management
The database provides different ways for you to manage the users and their privileges in a
distributed system.

For example, you have these options:

• Enterprise user management

You can create global users who are authenticated using passwords, Kerberos, or PKI
certificates. You can then manage these users and their authorizations in a directory using
an independent enterprise directory service.

• Network authentication service

This common technique simplifies security management for distributed environments. You
can use the Oracle Advanced Security option to enhance Oracle Net and the security of an
Oracle Database distributed database system. Microsoft Windows native authentication is
an example of a non-Oracle authentication solution.

See Also:

• Oracle Database Security Guide for more information about Oracle Database
security

• Oracle Database Enterprise User Security Administrator's Guide for more
information about enterprise user security in Oracle Database

• Oracle Database Security Guide for more information about configuring users
with Microsoft Active Directory

Chapter 31
Distributed Database Administration

31-25

31.3.2.4.2 Exclusively Mapped Global Users
One option for centralizing user and privilege management is to create a global user in a
centralized directory and a user in every database to which the global user must connect.

For example, you can create a global user called fred with the following SQL statement:

CREATE USER fred IDENTIFIED GLOBALLY AS 'CN=fred adams,O=Oracle,C=England';

This solution allows a single global database user to be authenticated by a centralized
directory and map the database user exclusively to a directory user.

The exclusively mapped global user solution has the consequence that you must create a user
called fred on every database that this user must access. Because most users need
permission to access an application schema but do not need their own schemas, the creation
of a separate account in each database for every global user creates significant overhead.
Because of this problem, the database also supports shared schema users, which are global
users that can access a single, generic schema in every database.

31.3.2.4.3 Shared Schema Users
The shared schema users functionality allows a global user to be centrally managed by an
enterprise directory service. Users who are managed in the directory are called enterprise
users.

This directory may contain information about:

• Which databases in a distributed system an enterprise user can access

• Which role on each database an enterprise user can use

• Which schema on each database an enterprise user can connect to

The administrator of each database is not required to create a global user account for each
enterprise user on each database to which the enterprise user must connect. Instead, multiple
enterprise users can connect to the same database schema, called a shared schema.

Note:

You cannot access a current user database link in a shared schema.

For example, suppose jane, bill, and scott all use a human resources application. The hq
application objects are all contained in the guest schema on the hq database. In this case, you
can create a local global user account to be used as a shared schema. This global user name,
that is, shared schema name, is guest. jane, bill, and scott are all created as enterprise
users in the directory service. They are also mapped to the guest schema in the directory, and
can be assigned different authorizations in the hq application.

Figure 31-5 illustrates an example of global user security using the enterprise directory service:

Chapter 31
Distributed Database Administration

31-26

Figure 31-5 Global User Security

HQ

SCOTT

LDAP

SALES

SSL
SSL

SSL password

SSL

Assume that the enterprise directory service contains the following information on enterprise
users for hq and sales:

Database Role Schema Enterprise Users

hq clerk1 guest bill
scott

sales clerk2 guest jane
scott

Also, assume that the local administrators for hq and sales have issued statements as follows:

Database CREATE Statements

hq CREATE USER guest IDENTIFIED GLOBALLY AS
'';
CREATE ROLE clerk1 GRANT select ON emp;
CREATE PUBLIC DATABASE LINK sales_link
CONNECT AS CURRENT_USER USING 'sales';

sales CREATE USER guest IDENTIFIED GLOBALLY AS
'';
CREATE ROLE clerk2 GRANT select ON dept;

Assume that enterprise user scott requests a connection to local database hq in order to
execute a distributed transaction involving sales. The following steps occur (not necessarily in
this exact order):

1. Enterprise user scott is authenticated using SSL or a password.

2. User scott issues the following statement:

SELECT e.ename, d.loc
FROM emp e, dept@sales_link d
WHERE e.deptno=d.deptno;

3. Databases hq and sales mutually authenticate one another using SSL.

Chapter 31
Distributed Database Administration

31-27

4. Database hq queries the enterprise directory service to determine whether enterprise user
scott has access to hq, and discovers scott can access local schema guest using role
clerk1.

5. Database sales queries the enterprise directory service to determine whether enterprise
user scott has access to sales, and discovers scott can access local schema guest
using role clerk2.

6. Enterprise user scott logs into sales to schema guest with role clerk2 and issues a
SELECT to obtain the required information and transfer it to hq.

7. Database hq receives the requested data from sales and returns it to the client scott.

Note:

Starting with Oracle Database 18c:

• You can create a global role using the GLOBALLY AS
[domain_name_of_directory_group] clause of the CREATE ROLE or ALTER
ROLE statement to map a directory group to a global role. The global user
must be authorized to use the global role by the enterprise directory service
before the role is enabled.

See Oracle Database SQL Language Reference for the syntax of CREATE
ROLE and ALTER ROLE statements.

• You can authenticate and authorize users directly with Microsoft Active
Directory. Thus, Oracle database users and roles can map directly to Active
Directory users and groups without using Oracle Enterprise User Security
(EUS) or any other intermediate directory service.

See Oracle Database Security Guide for more information about configuring
users with Microsoft Active Directory.

See Also:

• Oracle Database Enterprise User Security Administrator's Guide for more
information about enterprise user security in Oracle Database

• Oracle Database Security Guide for more information about Oracle Database
security

31.3.2.5 Data Encryption
The Oracle Advanced Security option also enables Oracle Net and related products to use
network data encryption and checksumming so that data cannot be read or altered. It protects
data from unauthorized viewing by using the RSA Data Security RC4 or the Data Encryption
Standard (DES) encryption algorithm.

To ensure that data has not been modified, deleted, or replayed during transmission, the
security services of the Oracle Advanced Security option can generate a cryptographically
secure message digest and include it with each packet sent across the network.

Chapter 31
Distributed Database Administration

31-28

Note:

Starting with Oracle Database Release 21c, the RC4 algorithm is deprecated and it
may be desupported in a future release.

See Also:

Oracle Database Transparent Data Encryption Guide for more information about
these and other features of the Oracle Advanced Security option

31.3.3 Auditing Database Links
You must always perform auditing operations locally. That is, if a user acts in a local database
and accesses a remote database through a database link, the local actions are audited in the
local database, and the remote actions are audited in the remote database, provided
appropriate audit options are set in the respective databases.

The remote database cannot determine whether a successful connect request and subsequent
SQL statements come from another server or from a locally connected client. For example,
assume the following:

• Fixed user link hq.example.com connects local user jane to the remote hq database as
remote user scott.

• User scott is audited on the remote database.

Actions performed during the remote database session are audited as if scott were connected
locally to hq and performing the same actions there. You must set audit options in the remote
database to capture the actions of the username--in this case, scott on the hq database--
embedded in the link if the desired effect is to audit what jane is doing in the remote database.

Note:

You can audit the global username for global users.

You cannot set local auditing options on remote objects. Therefore, you cannot audit use of a
database link, although access to remote objects can be audited on the remote database.

Note:

Starting with Oracle Database Release 21c, traditional auditing is deprecated. Oracle
recommends that you use unified auditing, which enables selective and more
effective auditing inside Oracle Database.

Chapter 31
Distributed Database Administration

31-29

31.3.4 Administration Tools
The database administrator has several choices for tools to use when managing an Oracle
Database distributed database system.

• Cloud Control and Distributed Databases
Oracle Enterprise Manager Cloud Control is the Oracle Database administration tool that
provides a graphical user interface (GUI). Cloud Control provides administrative
functionality for distributed databases through an easy-to-use interface.

• Third-Party Administration Tools
Currently more than 60 companies produce more than 150 products that help manage
Oracle Databases and networks, providing a truly open environment.

• SNMP Support
Besides its network administration capabilities, Oracle Simple Network Management
Protocol (SNMP) support allows an Oracle Database server to be located and queried by
any SNMP-based network management system.

31.3.4.1 Cloud Control and Distributed Databases
Oracle Enterprise Manager Cloud Control is the Oracle Database administration tool that
provides a graphical user interface (GUI). Cloud Control provides administrative functionality
for distributed databases through an easy-to-use interface.

You can use Cloud Control to:

• Administer multiple databases. You can use Cloud Control to administer a single database
or to simultaneously administer multiple databases.

• Centralize database administration tasks. You can administer both local and remote
databases running on any Oracle Database platform in any location worldwide. In addition,
these Oracle Database platforms can be connected by any network protocols supported by
Oracle Net.

• Dynamically execute SQL, PL/SQL, and Cloud Control commands. You can use Cloud
Control to enter, edit, and execute statements. Cloud Control also maintains a history of
statements executed.

Thus, you can reexecute statements without retyping them, a particularly useful feature if
you must execute lengthy statements repeatedly in a distributed database system.

• Manage security features such as global users, global roles, and the enterprise directory
service.

31.3.4.2 Third-Party Administration Tools
Currently more than 60 companies produce more than 150 products that help manage Oracle
Databases and networks, providing a truly open environment.

31.3.4.3 SNMP Support
Besides its network administration capabilities, Oracle Simple Network Management
Protocol (SNMP) support allows an Oracle Database server to be located and queried by any
SNMP-based network management system.

SNMP is the accepted standard underlying many popular network management systems such
as:

Chapter 31
Distributed Database Administration

31-30

• HP OpenView

• Digital POLYCENTER Manager on NetView

• IBM NetView/6000

• Novell NetWare Management System

• SunSoft SunNet Manager

Note:

Oracle has deprecated SNMP support in Oracle Net Listener. Oracle recommends
not using SNMP in new implementations. See Oracle Database Upgrade Guide for
more information.

31.4 Transaction Processing in a Distributed System
A transaction is a logical unit of work constituted by one or more SQL statements executed by
a single user. A transaction begins with the user's first executable SQL statement and ends
when it is committed or rolled back by that user. A remote transaction contains only
statements that access a single remote node. A distributed transaction contains statements
that access multiple nodes.

• Remote SQL Statements
A remote SQL statement either queries or modifies one or more remote tables, all of which
reside at the same remote node.

• Distributed SQL Statements
A distributed SQL statement either queries or modifies data on two or more nodes.

• Shared SQL for Remote and Distributed Statements
The mechanics of a remote or distributed statement using shared SQL are essentially the
same as those of a local statement.

• Remote Transactions
A remote transaction contains one or more remote statements, all of which reference a
single remote node.

• Distributed Transactions
A distributed transaction is a transaction that includes one or more statements that,
individually or as a group, update data on two or more distinct nodes of a distributed
database.

• Two-Phase Commit Mechanism
The database two-phase commit mechanism guarantees that all database servers
participating in a distributed transaction either all commit or all roll back the statements in
the transaction.

• Database Link Name Resolution
Whenever a SQL statement includes a reference to a global object name, the database
searches for a database link with a name that matches the database name specified in the
global object name.

• Schema Object Name Resolution
It is important to understand how the remote schema is determined when a local Oracle
Database connects to a remote database.

Chapter 31
Transaction Processing in a Distributed System

31-31

• Global Name Resolution in Views, Synonyms, and Procedures
A global object name can be complete or partial.

31.4.1 Remote SQL Statements
A remote SQL statement either queries or modifies one or more remote tables, all of which
reside at the same remote node.

A remote query statement is a query that selects information from one or more remote tables,
all of which reside at the same remote node. For example, the following query accesses data
from the dept table in the scott schema of the remote sales database:

SELECT * FROM scott.dept@sales.us.americas.example_auto.com;

A remote update statement is an update that modifies data in one or more tables, all of which
are located at the same remote node. For example, the following query updates the dept table
in the scott schema of the remote sales database:

UPDATE scott.dept@mktng.us.americas.example_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;

Note:

A remote update can include a subquery that retrieves data from one or more remote
nodes, but because the update happens at only a single remote node, the statement
is classified as a remote update.

31.4.2 Distributed SQL Statements
A distributed SQL statement either queries or modifies data on two or more nodes.

A distributed query statement retrieves information from two or more nodes. For example, the
following query accesses data from the local database as well as the remote sales database:

SELECT ename, dname
 FROM scott.emp e, scott.dept@sales.us.americas.example_auto.com d
 WHERE e.deptno = d.deptno;

A distributed update statement modifies data on two or more nodes. A distributed update is
possible using a PL/SQL subprogram unit such as a procedure or trigger that includes two or
more remote updates that access data on different nodes. For example, the following PL/SQL
program unit updates tables on the local database and the remote sales database:

BEGIN
 UPDATE scott.dept@sales.us.americas.example_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
 UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
END;
COMMIT;

The database sends statements in the program to the remote nodes, and their execution
succeeds or fails as a unit.

Chapter 31
Transaction Processing in a Distributed System

31-32

31.4.3 Shared SQL for Remote and Distributed Statements
The mechanics of a remote or distributed statement using shared SQL are essentially the
same as those of a local statement.

The SQL text must match, and the referenced objects must match. If available, shared SQL
areas can be used for the local and remote handling of any statement or decomposed query.

See Also:

Oracle Database Concepts for more information about shared SQL

31.4.4 Remote Transactions
A remote transaction contains one or more remote statements, all of which reference a single
remote node.

For example, the following transaction contains two statements, each of which accesses the
remote sales database:

UPDATE scott.dept@sales.us.americas.example_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp@sales.us.americas.example_auto.com
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

31.4.5 Distributed Transactions
A distributed transaction is a transaction that includes one or more statements that, individually
or as a group, update data on two or more distinct nodes of a distributed database.

For example, this transaction updates the local database and the remote sales database:

UPDATE scott.dept@sales.us.americas.example_auto.com
 SET loc = 'NEW YORK'
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
COMMIT;

Note:

If all statements of a transaction reference only a single remote node, the transaction
is remote, not distributed.

Chapter 31
Transaction Processing in a Distributed System

31-33

31.4.6 Two-Phase Commit Mechanism
The database two-phase commit mechanism guarantees that all database servers
participating in a distributed transaction either all commit or all roll back the statements in the
transaction.

A database must guarantee that all statements in a transaction, distributed or non-distributed,
either commit or roll back as a unit. The effects of an ongoing transaction should be invisible to
all other transactions at all nodes; this transparency should be true for transactions that include
any type of operation, including queries, updates, or remote procedure calls.

The general mechanisms of transaction control in a non-distributed database are discussed in
the Oracle Database Concepts. In a distributed database, the database must coordinate
transaction control with the same characteristics over a network and maintain data consistency,
even if a network or system failure occurs.

A two-phase commit mechanism also protects implicit DML operations performed by integrity
constraints, remote procedure calls, and triggers.

See Also:

Distributed Transactions Concepts for more information about the Oracle Database
two-phase commit mechanism

31.4.7 Database Link Name Resolution
Whenever a SQL statement includes a reference to a global object name, the database
searches for a database link with a name that matches the database name specified in the
global object name.

• About Database Link Name Resolution
A global object name is an object specified using a database link.

• Name Resolution When the Global Database Name Is Complete
For SQL statements with a complete global database name, the database searches only
for links that match the specified global database name.

• Name Resolution When the Global Database Name Is Partial
If any part of the domain is specified, then the database assumes that a complete global
database name is specified.

• Name Resolution When No Global Database Name Is Specified
If a global object name references an object in the local database and a database link
name is not specified using the @ symbol, then the database automatically detects that the
object is local and does not search for or use database links to resolve the object
reference.

• Terminating the Search for Name Resolution
The database does not necessarily stop searching for matching database links when it
finds the first match. The database must search for matching private, public, and network
database links until it determines a complete path to the remote database (both a remote
account and service name).

Chapter 31
Transaction Processing in a Distributed System

31-34

31.4.7.1 About Database Link Name Resolution
A global object name is an object specified using a database link.

The essential components of a global object name are:

• Object name

• Database name

• Domain

The following table shows the components of an explicitly specified global database object
name:

Statement Object Database Domain

SELECT * FROM
joan.dept@sales.example.com

dept sales example.com

SELECT * FROM
emp@mktg.us.example.com

emp mktg us.example.com

Whenever a SQL statement includes a reference to a global object name, the database
searches for a database link with a name that matches the database name specified in the
global object name. For example, if you issue the following statement:

SELECT * FROM scott.emp@orders.us.example.com;

The database searches for a database link called orders.us.example.com. The database
performs this operation to determine the path to the specified remote database.

The database always searches for matching database links in the following order:

1. Private database links in the schema of the user who issued the SQL statement.

2. Public database links in the local database.

3. Global database links (only if a directory server is available).

31.4.7.2 Name Resolution When the Global Database Name Is Complete
For SQL statements with a complete global database name, the database searches only for
links that match the specified global database name.

Assume that you issue the following SQL statement, which specifies a complete global
database name:

SELECT * FROM emp@prod1.us.example.com;

In this case, both the database name (prod1) and domain components (us.example.com) are
specified, so the database searches for private, public, and global database links.

31.4.7.3 Name Resolution When the Global Database Name Is Partial
If any part of the domain is specified, then the database assumes that a complete global
database name is specified.

If a SQL statement specifies a partial global database name (that is, only the database
component is specified), the database appends the value in the DB_DOMAIN initialization

Chapter 31
Transaction Processing in a Distributed System

31-35

parameter to the value in the DB_NAME initialization parameter to construct a complete name.
For example, assume you issue the following statements:

CONNECT scott@locdb
SELECT * FROM scott.emp@orders;

If the network domain for locdb is us.example.com, then the database appends this domain to
orders to construct the complete global database name of orders.us.example.com. The
database searches for database links that match only the constructed global name. If a
matching link is not found, the database returns an error and the SQL statement cannot
execute.

31.4.7.4 Name Resolution When No Global Database Name Is Specified
If a global object name references an object in the local database and a database link name is
not specified using the @ symbol, then the database automatically detects that the object is
local and does not search for or use database links to resolve the object reference.

For example, assume that you issue the following statements:

CONNECT scott@locdb
SELECT * from scott.emp;

Because the second statement does not specify a global database name using a database link
connect string, the database does not search for database links.

31.4.7.5 Terminating the Search for Name Resolution
The database does not necessarily stop searching for matching database links when it finds
the first match. The database must search for matching private, public, and network database
links until it determines a complete path to the remote database (both a remote account and
service name).

The first match determines the remote schema as illustrated in the following table:

User Operation Database Response Example

Do not specify the
CONNECT clause

Uses a connected user
database link

CREATE DATABASE LINK k1 USING 'prod'

Do specify the CONNECT
TO ... IDENTIFIED BY
clause

Uses a fixed user database
link

CREATE DATABASE LINK k2 CONNECT TO
scott IDENTIFIED BY password USING
'prod'

Specify the CONNECT TO
CURRENT_USER clause

Uses a current user
database link

CREATE DATABASE LINK k3 CONNECT TO
CURRENT_USER USING 'prod'

Do not specify the USING
clause

Searches until it finds a link
specifying a database
string. If matching
database links are found
and a string is never
identified, the database
returns an error.

CREATE DATABASE LINK k4 CONNECT TO
CURRENT_USER

After the database determines a complete path, it creates a remote session, assuming that an
identical connection is not already open on behalf of the same local session. If a session
already exists, the database reuses it.

Chapter 31
Transaction Processing in a Distributed System

31-36

31.4.8 Schema Object Name Resolution
It is important to understand how the remote schema is determined when a local Oracle
Database connects to a remote database.

• About Schema Object Name Resolution
After the local Oracle Database connects to the specified remote database on behalf of the
local user that issued the SQL statement, object resolution continues as if the remote user
had issued the associated SQL statement.

• Example of Global Object Name Resolution: Complete Object Name
An example illustrates how the database resolves a complete global object name and
determines the appropriate path to the remote database using both a private and public
database link.

• Example of Global Object Name Resolution: Partial Object Name
An example illustrates how the database resolves a partial global object name and
determines the appropriate path to the remote database using both a private and public
database link.

31.4.8.1 About Schema Object Name Resolution
After the local Oracle Database connects to the specified remote database on behalf of the
local user that issued the SQL statement, object resolution continues as if the remote user had
issued the associated SQL statement.

The first match determines the remote schema according to the following rules:

Type of Link Specified Location of Object Resolution

A fixed user database link Schema specified in the link creation statement

A connected user database link Connected user's remote schema

A current user database link Current user's schema

If the database cannot find the object, then it checks public objects of the remote database. If it
cannot resolve the object, then the established remote session remains but the SQL statement
cannot execute and returns an error.

The following are examples of global object name resolution in a distributed database system.
For all the following examples, assume that:

31.4.8.2 Example of Global Object Name Resolution: Complete Object Name
An example illustrates how the database resolves a complete global object name and
determines the appropriate path to the remote database using both a private and public
database link.

For this example, assume the following:

• The remote database is named sales.division3.example.com.

• The local database is named hq.division3.example.com.

• A directory server (and therefore, global database links) is not available.

• A remote table emp is contained in the schema tsmith.

Consider the following statements issued by scott at the local database:

Chapter 31
Transaction Processing in a Distributed System

31-37

CONNECT scott@hq

CREATE PUBLIC DATABASE LINK sales.division3.example.com
CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

Later, JWARD connects and issues the following statements:

CONNECT jward@hq

CREATE DATABASE LINK sales.division3.example.com
 CONNECT TO tsmith IDENTIFIED BY radio;

UPDATE tsmith.emp@sales.division3.example.com
 SET deptno = 40
 WHERE deptno = 10;

The database processes the final statement as follows:

1. The database determines that a complete global object name is referenced in jward's
UPDATE statement. Therefore, the system begins searching in the local database for a
database link with a matching name.

2. The database finds a matching private database link in the schema jward. Nevertheless,
the private database link jward.sales.division3.example.com does not indicate a
complete path to the remote sales database, only a remote account. Therefore, the
database now searches for a matching public database link.

3. The database finds the public database link in scott's schema. From this public database
link, the database takes the service name dbstring.

4. Combined with the remote account taken from the matching private fixed user database
link, the database determines a complete path and proceeds to establish a connection to
the remote sales database as user tsmith/radio.

5. The remote database can now resolve the object reference to the emp table. The database
searches in the tsmith schema and finds the referenced emp table.

6. The remote database completes the execution of the statement and returns the results to
the local database.

31.4.8.3 Example of Global Object Name Resolution: Partial Object Name
An example illustrates how the database resolves a partial global object name and determines
the appropriate path to the remote database using both a private and public database link.

For this example, assume that:

• The remote database is named sales.division3.example.com.

• The local database is named hq.division3.example.com.

• A directory server (and therefore, global database links) is not available.

• A table emp on the remote database sales is contained in the schema tsmith, but not in
schema scott.

• A public synonym named emp resides at remote database sales and points to tsmith.emp
in the remote database sales.

• The public database link in "Example of Global Object Name Resolution: Complete Object
Name " is already created on local database hq:

Chapter 31
Transaction Processing in a Distributed System

31-38

CREATE PUBLIC DATABASE LINK sales.division3.example.com
 CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

Consider the following statements issued at local database hq:

CONNECT scott@hq

CREATE DATABASE LINK sales.division3.example.com;

DELETE FROM emp@sales
 WHERE empno = 4299;

The database processes the final DELETE statement as follows:

1. The database notices that a partial global object name is referenced in scott's DELETE
statement. It expands it to a complete global object name using the domain of the local
database as follows:

DELETE FROM emp@sales.division3.example.com
 WHERE empno = 4299;

2. The database searches the local database for a database link with a matching name.

3. The database finds a matching private connected user link in the schema scott, but the
private database link indicates no path at all. The database uses the connected username/
password as the remote account portion of the path and then searches for and finds a
matching public database link:

CREATE PUBLIC DATABASE LINK sales.division3.example.com
 CONNECT TO guest IDENTIFIED BY network
 USING 'dbstring';

4. The database takes the database net service name dbstring from the public database
link. At this point, the database has determined a complete path.

5. The database connects to the remote database as scott/password and searches for and
does not find an object named emp in the schema scott.

6. The remote database searches for a public synonym named emp and finds it.

7. The remote database executes the statement and returns the results to the local database.

31.4.9 Global Name Resolution in Views, Synonyms, and Procedures
A global object name can be complete or partial.

• About Global Name Resolution in Views, Synonyms, and Procedures
A view, synonym, or PL/SQL program unit (for example, a procedure, function, or trigger)
can reference a remote schema object by its global object name.

• What Happens When Global Names Change
Global name changes can affect views, synonyms, and procedures that reference remote
data using partial global object names.

• Scenarios for Global Name Changes
Scenarios illustrate global name changes.

31.4.9.1 About Global Name Resolution in Views, Synonyms, and Procedures
A view, synonym, or PL/SQL program unit (for example, a procedure, function, or trigger) can
reference a remote schema object by its global object name.

Chapter 31
Transaction Processing in a Distributed System

31-39

If the global object name is complete, then the database stores the definition of the object
without expanding the global object name. If the name is partial, however, then the database
expands the name using the domain of the local database name.

The following table explains when the database completes the expansion of a partial global
object name for views, synonyms, and program units:

User Operation Database Response

Create a view Does not expand partial global names. The data dictionary stores the exact
text of the defining query. Instead, the database expands a partial global
object name each time a statement that uses the view is parsed.

Create a synonym Expands partial global names. The definition of the synonym stored in the
data dictionary includes the expanded global object name.

Compile a program unit Expands partial global names.

31.4.9.2 What Happens When Global Names Change
Global name changes can affect views, synonyms, and procedures that reference remote data
using partial global object names.

If the global name of the referenced database changes, views and procedures may try to
reference a nonexistent or incorrect database. However, synonyms do not expand database
link names at run time, so they do not change.

31.4.9.3 Scenarios for Global Name Changes
Scenarios illustrate global name changes.

For example, consider two databases named sales.uk.example.com and hq.uk.example.com.
Also, assume that the sales database contains the following view and synonym:

CREATE VIEW employee_names AS
 SELECT ename FROM scott.emp@hr;

CREATE SYNONYM employee FOR scott.emp@hr;

The database expands the employee synonym definition and stores it as:

scott.emp@hr.uk.example.com
• Scenario 1: Both Databases Change Names

A scenario illustrates a situation in which both global database names change.

• Scenario 2: One Database Changes Names
A scenario illustrates a situation in which one global database name changes.

31.4.9.3.1 Scenario 1: Both Databases Change Names
A scenario illustrates a situation in which both global database names change.

First, consider the situation where both the Sales and Human Resources departments are
relocated to the United States. Consequently, the corresponding global database names are
both changed as follows:

• sales.uk.example.com becomes sales.us.example.com
• hq.uk.example.com becomes hq.us.example.com

Chapter 31
Transaction Processing in a Distributed System

31-40

The following table describes query expansion before and after the change in global names:

Query on sales Expansion Before Change Expansion After Change

SELECT * FROM
employee_names

SELECT * FROM
scott.emp@hr.uk.example.com

SELECT * FROM
scott.emp@hr.us.example.com

SELECT * FROM
employee

SELECT * FROM
scott.emp@hr.uk.example.com

SELECT * FROM
scott.emp@hr.uk.example.com

31.4.9.3.2 Scenario 2: One Database Changes Names
A scenario illustrates a situation in which one global database name changes.

Now consider that only the Sales department is moved to the United States; Human
Resources remains in the UK. Consequently, the corresponding global database names are
both changed as follows:

• sales.uk.example.com becomes sales.us.example.com
• hq.uk.example.com is not changed

The following table describes query expansion before and after the change in global names:

Query on sales Expansion Before Change Expansion After Change

SELECT * FROM
employee_names

SELECT * FROM
scott.emp@hr.uk.example.com

SELECT * FROM
scott.emp@hr.us.example.com

SELECT * FROM
employee

SELECT * FROM
scott.emp@hr.uk.example.com

SELECT * FROM
scott.emp@hr.uk.example.com

In this case, the defining query of the employee_names view expands to a nonexistent global
database name. However, the employee synonym continues to reference the correct database,
hq.uk.example.com.

31.5 Distributed Database Application Development
Application development in a distributed system raises issues that are not applicable in a non-
distributed system.

• Transparency in a Distributed Database System
With minimal effort, you can develop applications that make an Oracle Database
distributed database system transparent to users that work with the system. The goal of
transparency is to make a distributed database system appear as though it is a single
Oracle Database. Consequently, the system does not burden developers and users of the
system with complexities that would otherwise make distributed database application
development challenging and detract from user productivity.

• PL/SQL and Remote Procedure Calls (RPCs)
Developers can code PL/SQL packages and procedures to support applications that work
with a distributed database. Applications can make local procedure calls to perform work at
the local database and remote procedure calls (RPCs) to perform work at a remote
database.

Chapter 31
Distributed Database Application Development

31-41

• Distributed Query Optimization
Distributed query optimization is an Oracle Database feature that reduces the amount of
data transfer required between sites when a transaction retrieves data from remote tables
referenced in a distributed SQL statement.

See Also:

Developing Applications for a Distributed Database System to learn how to develop
applications for distributed systems

31.5.1 Transparency in a Distributed Database System
With minimal effort, you can develop applications that make an Oracle Database distributed
database system transparent to users that work with the system. The goal of transparency is to
make a distributed database system appear as though it is a single Oracle Database.
Consequently, the system does not burden developers and users of the system with
complexities that would otherwise make distributed database application development
challenging and detract from user productivity.

• Location Transparency
An Oracle Database distributed database system has features that allow application
developers and administrators to hide the physical location of database objects from
applications and users.

• SQL and COMMIT Transparency
The Oracle Database distributed database architecture provides query, update, and
transaction transparency.

31.5.1.1 Location Transparency
An Oracle Database distributed database system has features that allow application
developers and administrators to hide the physical location of database objects from
applications and users.

Location transparency exists when a user can universally refer to a database object such as
a table, regardless of the node to which an application connects. Location transparency has
several benefits, including:

• Access to remote data is simple, because database users do not need to know the
physical location of database objects.

• Administrators can move database objects with no impact on end-users or existing
database applications.

Typically, administrators and developers use synonyms to establish location transparency for
the tables and supporting objects in an application schema. For example, the following
statements create synonyms in a database for tables in another, remote database.

CREATE PUBLIC SYNONYM emp
 FOR scott.emp@sales.us.americas.example_auto.com;
CREATE PUBLIC SYNONYM dept
 FOR scott.dept@sales.us.americas.example_auto.com;

Now, rather than access the remote tables with a query such as:

SELECT ename, dname
 FROM scott.emp@sales.us.americas.example_auto.com e,

Chapter 31
Distributed Database Application Development

31-42

 scott.dept@sales.us.americas.example_auto.com d
 WHERE e.deptno = d.deptno;

An application can issue a much simpler query that does not have to account for the location of
the remote tables.

SELECT ename, dname
 FROM emp e, dept d
 WHERE e.deptno = d.deptno;

In addition to synonyms, developers can also use views and stored procedures to establish
location transparency for applications that work in a distributed database system.

31.5.1.2 SQL and COMMIT Transparency
The Oracle Database distributed database architecture provides query, update, and
transaction transparency.

For example, standard SQL statements such as SELECT, INSERT, UPDATE, and DELETE work just
as they do in a non-distributed database environment. Additionally, applications control
transactions using the standard SQL statements COMMIT, SAVEPOINT, and ROLLBACK. There is
no requirement for complex programming or other special operations to provide distributed
transaction control.

• The statements in a single transaction can reference any number of local or remote tables.

• The database guarantees that all nodes involved in a distributed transaction take the same
action: they either all commit or all roll back the transaction.

• If a network or system failure occurs during the commit of a distributed transaction, the
transaction is automatically and transparently resolved globally. Specifically, when the
network or system is restored, the nodes either all commit or all roll back the transaction.

Internal to the database, each committed transaction has an associated system change
number (SCN) to uniquely identify the changes made by the statements within that
transaction. In a distributed database, the SCNs of communicating nodes are coordinated
when:

• A connection is established using the path described by one or more database links.

• A distributed SQL statement is executed.

• A distributed transaction is committed.

Among other benefits, the coordination of SCNs among the nodes of a distributed database
system allows global distributed read-consistency at both the statement and transaction level.
If necessary, global distributed time-based recovery can also be completed.

31.5.2 PL/SQL and Remote Procedure Calls (RPCs)
Developers can code PL/SQL packages and procedures to support applications that work with
a distributed database. Applications can make local procedure calls to perform work at the
local database and remote procedure calls (RPCs) to perform work at a remote database.

When a program calls a remote procedure, the local server passes all procedure parameters to
the remote server in the call. For example, the following PL/SQL program unit calls the
packaged procedure del_emp located at the remote sales database and passes it the
parameter 1257:

Chapter 31
Distributed Database Application Development

31-43

BEGIN
 emp_mgmt.del_emp@sales.us.americas.example_auto.com(1257);
END;

In order for the RPC to succeed, the called procedure must exist at the remote site, and the
user being connected to must have the proper privileges to execute the procedure.

When developing packages and procedures for distributed database systems, developers
must code with an understanding of what program units should do at remote locations, and
how to return the results to a calling application.

31.5.3 Distributed Query Optimization
Distributed query optimization is an Oracle Database feature that reduces the amount of
data transfer required between sites when a transaction retrieves data from remote tables
referenced in a distributed SQL statement.

Distributed query optimization uses cost-based optimization to find or generate SQL
expressions that extract only the necessary data from remote tables, process that data at a
remote site or sometimes at the local site, and send the results to the local site for final
processing. This operation reduces the amount of required data transfer when compared to the
time it takes to transfer all the table data to the local site for processing.

Using various cost-based optimizer hints such as DRIVING_SITE, NO_MERGE, and INDEX, you can
control where Oracle Database processes the data and how it accesses the data.

See Also:

"Using Cost-Based Optimization" for more information about cost-based optimization

31.6 Character Set Support for Distributed Environments
Different databases and clients can use different character sets in a distributed environment.

• About Character Set Support for Distributed Environments
Oracle Database supports environments in which clients, Oracle Database servers, and
non-Oracle Database servers use different character sets. NCHAR support is provided for
heterogeneous environments.

• Client/Server Environment
In a client/server environment, set the client character set to be the same as or a subset of
the Oracle Database server character set.

• Homogeneous Distributed Environment
In a non-heterogeneous environment, the client and server character sets should be either
the same as or subsets of the main server character set.

• Heterogeneous Distributed Environment
In a heterogeneous environment, the globalization support parameter settings of the client,
the transparent gateway, and the non-Oracle Database data source should be either the
same or a subset of the database server character set.

Chapter 31
Character Set Support for Distributed Environments

31-44

31.6.1 About Character Set Support for Distributed Environments
Oracle Database supports environments in which clients, Oracle Database servers, and non-
Oracle Database servers use different character sets. NCHAR support is provided for
heterogeneous environments.

You can set a variety of National Language Support (NLS) and Heterogeneous Services (HS)
environment variables and initialization parameters to control data conversion between
different character sets.

Character settings are defined by the following NLS and HS parameters:

Parameters Environment Defined For

NLS_LANG (environment
variable)

Client/Server Client

NLS_LANGUAGE
NLS_CHARACTERSET
NLS_TERRITORY

Client/Server

Not Heterogeneous Distributed

Heterogeneous Distributed

Oracle Database server

HS_LANGUAGE Heterogeneous Distributed Non-Oracle Database server

Transparent gateway

NLS_NCHAR (environment
variable)

HS_NLS_NCHAR

Heterogeneous Distributed Oracle Database server

Transparent gateway

See Also:

• Oracle Database Globalization Support Guide for information about NLS
parameters

• Oracle Database Heterogeneous Connectivity User's Guide for information about
HS parameters

31.6.2 Client/Server Environment
In a client/server environment, set the client character set to be the same as or a subset of the
Oracle Database server character set.

Figure 31-6 illustrates a client/server environment.

Chapter 31
Character Set Support for Distributed Environments

31-45

Figure 31-6 NLS Parameter Settings in a Client/Server Environment

Oracle

NLS_LANG =

NLS settings of

Oracle server or

subset of it

31.6.3 Homogeneous Distributed Environment
In a non-heterogeneous environment, the client and server character sets should be either the
same as or subsets of the main server character set.

Figure 31-7 illustrates a homogeneous distributed environment:

Figure 31-7 NLS Parameter Settings in a Homogeneous Environment

Oracle Oracle

NLS_LANG =

NLS settings of Oracle

server(s) or subset(s)

of it

NLS setting similar or

subset of the other

Oracle server

31.6.4 Heterogeneous Distributed Environment
In a heterogeneous environment, the globalization support parameter settings of the client, the
transparent gateway, and the non-Oracle Database data source should be either the same or a
subset of the database server character set.

Figure 31-8 illustrates a heterogeneous distributed environment. Transparent gateways have
full globalization support.

Chapter 31
Character Set Support for Distributed Environments

31-46

Figure 31-8 NLS Parameter Settings in a Heterogeneous Environment

Oracle

Non-Oracle

Gateway

Agent

NLS settings to be the

same or the subset

of Oracle server

NLS setting

NLS_LANG =

NLS settings of Oracle

server or subset of it

In a heterogeneous environment, only transparent gateways built with HS technology support
complete NCHAR capabilities. Whether a specific transparent gateway supports NCHAR depends
on the non-Oracle Database data source it is targeting. For information on how a particular
transparent gateway handles NCHAR support, consult the system-specific transparent gateway
documentation.

See Also:

Oracle Database Heterogeneous Connectivity User's Guide for more detailed
information about Heterogeneous Services

Chapter 31
Character Set Support for Distributed Environments

31-47

32
Managing a Distributed Database

Managing a distributed database includes tasks such as managing global names, managing
database links, and creating location and statement transparency.

• Managing Global Names in a Distributed System
In a distributed database system, each database should have a unique global database
name. Global database names uniquely identify a database in the system. A primary
administration task in a distributed system is managing the creation and alteration of global
database names.

• Creating Database Links
To support application access to the data and schema objects throughout a distributed
database system, you must create all necessary database links.

• Using Shared Database Links
Every application that references a remote server using a standard database link
establishes a connection between the local database and the remote database. Many
users running applications simultaneously can cause a high number of connections
between the local and remote databases. Shared database links enable you to limit the
number of network connections required between the local server and the remote server.

• Managing Database Links
Managing database links includes tasks such as closing them, dropping them, and limiting
the number of active connections to them.

• Viewing Information About Database Links
The data dictionary of each database stores the definitions of all the database links in the
database. You can use data dictionary tables and views to gain information about the links.

• Creating Location Transparency
After you have configured the necessary database links, you can use various tools to hide
the distributed nature of the database system from users. In other words, users can access
remote objects as if they were local objects.

• Managing Statement Transparency
In a distributed database, some SQL statements can reference remote tables.

• Managing a Distributed Database: Examples
Examples illustrate managing database links.

32.1 Managing Global Names in a Distributed System
In a distributed database system, each database should have a unique global database
name. Global database names uniquely identify a database in the system. A primary
administration task in a distributed system is managing the creation and alteration of global
database names.

• Understanding How Global Database Names Are Formed
A global database name is formed from two components: a database name and a domain.

• Determining Whether Global Naming Is Enforced
The name that you give to a link on the local database depends on whether the local
database enforces global naming.

32-1

• Viewing a Global Database Name
Use the data dictionary view GLOBAL_NAME to view the database global name.

• Changing the Domain in a Global Database Name
Use the ALTER DATABASE statement to change the domain in a database global name.

• Changing a Global Database Name: Scenario
A scenario illustrates changing a global database name.

32.1.1 Understanding How Global Database Names Are Formed
A global database name is formed from two components: a database name and a domain.

The database name and the domain name are determined by the following initialization
parameters at database creation:

Component Parameter Requirements Example

Database name DB_NAME Must be 30 characters or
less.

sales

Domain containing the
database

DB_DOMAIN Must follow standard
Internet conventions.
Levels in domain names
must be separated by
dots and the order of
domain names is from
leaf to root, left to right.

us.example.com

These are examples of valid global database names:

DB_NAME DB_DOMAIN Global Database Name

sales example.com sales.example.com
sales us.example.com sales.us.example.com
mktg us.example.com mktg.us.example.com
payroll example.org payroll.example.org

The DB_DOMAIN initialization parameter is only important at database creation time when it is
used, together with the DB_NAME parameter, to form the database global name. At this point, the
database global name is stored in the data dictionary. You must change the global name using
an ALTER DATABASE statement, not by altering the DB_DOMAIN parameter in the initialization
parameter file. It is good practice, however, to change the DB_DOMAIN parameter to reflect the
change in the domain name before the next database startup.

32.1.2 Determining Whether Global Naming Is Enforced
The name that you give to a link on the local database depends on whether the local database
enforces global naming.

If the local database enforces global naming, then you must use the remote database global
database name as the name of the link. For example, if you are connected to the local hq
server and want to create a link to the remote mfg database, and the local database enforces
global naming, then you must use the mfg global database name as the link name.

Chapter 32
Managing Global Names in a Distributed System

32-2

You can also use service names as part of the database link name. For example, if you use the
service names sn1 and sn2 to connect to database hq.example.com, and global naming is
enforced, then you can create the following link names to hq:

• HQ.EXAMPLE.COM@SN1
• HQ.EXAMPLE.COM@SN2

See Also:

"Using Connection Qualifiers to Specify Service Names Within Link Names" for
more information about using services names in link names

To determine whether global naming is enforced on a database, either examine the database
initialization parameter file or query the V$PARAMETER view. For example, to see whether global
naming is enforced on mfg, you could start a session on mfg and then create and execute the
following globalnames.sql script (sample output included):

COL NAME FORMAT A12
COL VALUE FORMAT A6
SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'global_names'
/

SQL> @globalnames

NAME VALUE
------------ ------
global_names FALSE

32.1.3 Viewing a Global Database Name
Use the data dictionary view GLOBAL_NAME to view the database global name.

For example, issue the following:

SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME

SALES.EXAMPLE.COM

32.1.4 Changing the Domain in a Global Database Name
Use the ALTER DATABASE statement to change the domain in a database global name.

After the database is created, changing the initialization parameter DB_DOMAIN has no effect on
the global database name or on the resolution of database link names.

The following example shows the syntax for the renaming statement, where database is a
database name and domain is the network domain:

ALTER DATABASE RENAME GLOBAL_NAME TO database.domain;

Use the following procedure to change the domain in a global database name:

1. Determine the current global database name. For example, issue:

Chapter 32
Managing Global Names in a Distributed System

32-3

SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.EXAMPLE.COM

2. Rename the global database name using an ALTER DATABASE statement. For example,
enter:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.us.example.com;
3. Query the GLOBAL_NAME table to check the new name. For example, enter:

SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.US.EXAMPLE.COM

32.1.5 Changing a Global Database Name: Scenario
A scenario illustrates changing a global database name.

In this scenario, you change the domain part of the global database name of the local
database. You also create database links using partially specified global names to test how
Oracle Database resolves the names. You discover that the database resolves the partial
names using the domain part of the current global database name of the local database, not
the value for the initialization parameter DB_DOMAIN.

1. You connect to SALES.US.EXAMPLE.COM and query the GLOBAL_NAME data dictionary view to
determine the current database global name:

CONNECT SYSTEM@sales.us.example.com
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.US.EXAMPLE.COM

2. You query the V$PARAMETER view to determine the current setting for the DB_DOMAIN
initialization parameter:

SELECT NAME, VALUE FROM V$PARAMETER WHERE NAME = 'db_domain';

NAME VALUE
--------- -----------
db_domain US.EXAMPLE.COM

3. You then create a database link to a database called hq, using only a partially-specified
global name:

CREATE DATABASE LINK hq USING 'sales';

The database expands the global database name for this link by appending the domain
part of the global database name of the local database to the name of the database
specified in the link.

4. You query USER_DB_LINKS to determine which domain name the database uses to resolve
the partially specified global database name:

SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

Chapter 32
Managing Global Names in a Distributed System

32-4

HQ.US.EXAMPLE.COM

This result indicates that the domain part of the global database name of the local
database is us.example.com. The database uses this domain in resolving partial database
link names when the database link is created.

5. Because you have received word that the sales database will move to Japan, you rename
the sales database to sales.jp.example.com:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.jp.example.com;
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.JP.EXAMPLE.COM

6. You query V$PARAMETER again and discover that the value of DB_DOMAIN is not changed,
although you renamed the domain part of the global database name:

SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'db_domain';

NAME VALUE
--------- -----------
db_domain US.EXAMPLE.COM

This result indicates that the value of the DB_DOMAIN initialization parameter is independent
of the ALTER DATABASE RENAME GLOBAL_NAME statement. The ALTER DATABASE statement
determines the domain of the global database name, not the DB_DOMAIN initialization
parameter (although it is good practice to alter DB_DOMAIN to reflect the new domain name).

7. You create another database link to database supply, and then query USER_DB_LINKS to
see how the database resolves the domain part of the global database name of supply:

CREATE DATABASE LINK supply USING 'supply';
SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

HQ.US.EXAMPLE.COM
SUPPLY.JP.EXAMPLE.COM

This result indicates that the database resolves the partially specified link name by using
the domain jp.example.com. This domain is used when the link is created because it is
the domain part of the global database name of the local database. The database does not
use the DB_DOMAIN initialization parameter setting when resolving the partial link name.

8. You then receive word that your previous information was faulty: sales will be in the
ASIA.JP.EXAMPLE.COM domain, not the JP.EXAMPLE.COM domain. Consequently, you
rename the global database name as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.asia.jp.example.com;
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.ASIA.JP.EXAMPLE.COM

9. You query V$PARAMETER to again check the setting for the parameter DB_DOMAIN:

SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'db_domain';

Chapter 32
Managing Global Names in a Distributed System

32-5

NAME VALUE
---------- -----------
db_domain US.EXAMPLE.COM

The result indicates that the domain setting in the parameter file is the same as it was
before you issued either of the ALTER DATABASE RENAME statements.

10. Finally, you create a link to the warehouse database and again query USER_DB_LINKS to
determine how the database resolves the partially-specified global name:

CREATE DATABASE LINK warehouse USING 'warehouse';
SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

HQ.US.EXAMPLE.COM
SUPPLY.JP.EXAMPLE.COM
WAREHOUSE.ASIA.JP.EXAMPLE.COM

Again, you see that the database uses the domain part of the global database name of the
local database to expand the partial link name during link creation.

Note:

In order to correct the supply database link, it must be dropped and re-created.

See Also:

• Oracle Database Reference for more information about specifying the
DB_NAME initialization parameter

• Oracle Database Reference for more information about specifying the
DB_DOMAIN initialization parameter

32.2 Creating Database Links
To support application access to the data and schema objects throughout a distributed
database system, you must create all necessary database links.

• Obtaining Privileges Necessary for Creating Database Links
A database link is a pointer in the local database that lets you access objects on a remote
database. To create a private database link, you must have been granted the proper
privileges.

• Specifying Link Types
When you create a database link, you must decide who will have access to it.

• Specifying Link Users
A database link defines a communication path from one database to another. When an
application uses a database link to access a remote database, Oracle Database
establishes a database session in the remote database on behalf of the local application
request. When you create a private or public database link, you can determine which

Chapter 32
Creating Database Links

32-6

schema on the remote database the link will establish connections to by creating fixed
user, current user, and connected user database links.

• Using Connection Qualifiers to Specify Service Names Within Link Names
In some situations, you may want to have several database links of the same type (for
example, public) that point to the same remote database, yet establish connections to the
remote database using different communication pathways.

32.2.1 Obtaining Privileges Necessary for Creating Database Links
A database link is a pointer in the local database that lets you access objects on a remote
database. To create a private database link, you must have been granted the proper privileges.

The following table illustrates which privileges are required on which database for which type of
link:

Privilege Database Required For

CREATE DATABASE LINK Local Creation of a private database link.

CREATE PUBLIC DATABASE
LINK

Local Creation of a public database link.

CREATE SESSION Remote Creation of any type of database link.

To see which privileges you currently have available, query ROLE_SYS_PRIVS. For example, you
could create and execute the following privs.sql script (sample output included):

SELECT DISTINCT PRIVILEGE AS "Database Link Privileges"
FROM ROLE_SYS_PRIVS
WHERE PRIVILEGE IN ('CREATE SESSION','CREATE DATABASE LINK',
 'CREATE PUBLIC DATABASE LINK')
/

SQL> @privs

Database Link Privileges
--
CREATE DATABASE LINK
CREATE PUBLIC DATABASE LINK
CREATE SESSION

32.2.2 Specifying Link Types
When you create a database link, you must decide who will have access to it.

• Creating Private Database Links
Use the CREATE DATABASE LINK statement to create private database links.

• Creating Public Database Links
Use the CREATE PUBLIC DATABASE LINK statement to create public database links.

• Creating Global Database Links
You can use a directory server in which databases are identified by net service names. In
this document, these are what are referred to as global database links.

Chapter 32
Creating Database Links

32-7

32.2.2.1 Creating Private Database Links
Use the CREATE DATABASE LINK statement to create private database links.

To create a private database link, specify the following (where link_name is the global
database name or an arbitrary link name):

CREATE DATABASE LINK link_name ...;

Following are examples of private database links:

SQL Statement Result

CREATE DATABASE LINK
supply.us.example.com;

A private link using the global database name to the remote
supply database.

The link uses the userid/password of the connected user.
So if scott (identified by password) uses the link in a
query, the link establishes a connection to the remote
database as scott/password.

CREATE DATABASE LINK link_2
CONNECT TO jane IDENTIFIED BY
password USING 'us_supply';

A private fixed user link called link_2 to the database with
service name us_supply. The link connects to the remote
database with the userid/password of jane/password
regardless of the connected user.

CREATE DATABASE LINK link_1
CONNECT TO CURRENT_USER USING
'us_supply';

A private link called link_1 to the database with service
name us_supply. The link uses the userid/password of the
current user to log onto the remote database.

Note: The current user may not be the same as the
connected user, and must be a global user on both
databases involved in the link (see "Users of Database
Links"). Current user links are part of the Oracle Advanced
Security option.

See Also:

Oracle Database SQL Language Reference for CREATE DATABASE LINK syntax

32.2.2.2 Creating Public Database Links
Use the CREATE PUBLIC DATABASE LINK statement to create public database links.

To create a public database link, use the keyword PUBLIC (where link_name is the global
database name or an arbitrary link name):

CREATE PUBLIC DATABASE LINK link_name ...;

Following are examples of public database links:

Chapter 32
Creating Database Links

32-8

SQL Statement Result

CREATE PUBLIC DATABASE LINK
supply.us.example.com;

A public link to the remote supply database. The link
uses the userid/password of the connected user. So if
scott (identified by password) uses the link in a
query, the link establishes a connection to the remote
database as scott/password.

CREATE PUBLIC DATABASE LINK pu_link
CONNECT TO CURRENT_USER USING
'supply';

A public link called pu_link to the database with
service name supply. The link uses the userid/
password of the current user to log onto the remote
database.

Note: The current user may not be the same as the
connected user, and must be a global user on both
databases involved in the link (see "Users of Database
Links").

CREATE PUBLIC DATABASE LINK
sales.us.example.com CONNECT TO jane
IDENTIFIED BY password;

A public fixed user link to the remote sales database.
The link connects to the remote database with the
userid/password of jane/password.

See Also:

Oracle Database SQL Language Reference for CREATE PUBLIC DATABASE LINK
syntax

32.2.2.3 Creating Global Database Links
You can use a directory server in which databases are identified by net service names. In this
document, these are what are referred to as global database links.

See the Oracle Database Net Services Administrator's Guide to learn how to create directory
entries that act as global database links.

32.2.3 Specifying Link Users
A database link defines a communication path from one database to another. When an
application uses a database link to access a remote database, Oracle Database establishes a
database session in the remote database on behalf of the local application request. When you
create a private or public database link, you can determine which schema on the remote
database the link will establish connections to by creating fixed user, current user, and
connected user database links.

• Creating Fixed User Database Links
When an application uses a fixed user database link, the local server always establishes a
connection to a fixed remote schema in the remote database. The local server also sends
the fixed user's credentials across the network when an application uses the link to access
the remote database.

• Creating Connected User and Current User Database Links
Connected user and current user database links do not include credentials in the definition
of the link. The credentials used to connect to the remote database can change depending
on the user that references the database link and the operation performed by the
application.

Chapter 32
Creating Database Links

32-9

32.2.3.1 Creating Fixed User Database Links
When an application uses a fixed user database link, the local server always establishes a
connection to a fixed remote schema in the remote database. The local server also sends the
fixed user's credentials across the network when an application uses the link to access the
remote database.

To create a fixed user database link, you embed the credentials (in this case, a username
and password) required to access the remote database in the definition of the link:

CREATE DATABASE LINK ... CONNECT TO username IDENTIFIED BY password ...;

Following are examples of fixed user database links:

SQL Statement Result

CREATE PUBLIC DATABASE LINK
supply.us.example.com CONNECT TO
scott IDENTIFIED BY password;

A public link using the global database name to the remote
supply database. The link connects to the remote
database with the userid/password scott/password.

CREATE DATABASE LINK foo CONNECT
TO jane IDENTIFIED BY password
USING 'finance';

A private fixed user link called foo to the database with
service name finance. The link connects to the remote
database with the userid/password jane/password.

32.2.3.2 Creating Connected User and Current User Database Links
Connected user and current user database links do not include credentials in the definition of
the link. The credentials used to connect to the remote database can change depending on the
user that references the database link and the operation performed by the application.

Note:

For many distributed applications, you do not want a user to have privileges in a
remote database. One simple way to achieve this result is to create a procedure that
contains a fixed user or current user database link within it. In this way, the user
accessing the procedure temporarily assumes someone else's privileges.

• Creating a Connected User Database Link
To create a connected user database link, omit the CONNECT TO clause in the CREATE
DATABASE LINK statement.

• Creating a Current User Database Link
To create a current user database link, use the CONNECT TO CURRENT_USER clause in the
CREATE DATABASE LINK statement.

Related Topics

• Users of Database Links
Users of database links include connect user, current user, and fixed user.

Chapter 32
Creating Database Links

32-10

32.2.3.2.1 Creating a Connected User Database Link
To create a connected user database link, omit the CONNECT TO clause in the CREATE DATABASE
LINK statement.

The following syntax creates a connected user database link, where dblink is the name of the
link and net_service_name is an optional connect string:

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink ... [USING 'net_service_name'];

For example, to create a connected user database link, use the following syntax:

CREATE DATABASE LINK sales.division3.example.com USING 'sales';

32.2.3.2.2 Creating a Current User Database Link
To create a current user database link, use the CONNECT TO CURRENT_USER clause in the CREATE
DATABASE LINK statement.

Current user links are only available through the Oracle Advanced Security option.

The following syntax creates a current user database link, where dblink is the name of the link
and net_service_name is an optional connect string:

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink CONNECT TO CURRENT_USER
[USING 'net_service_name'];

For example, to create a connected user database link to the sales database, you might use
the following syntax:

CREATE DATABASE LINK sales CONNECT TO CURRENT_USER USING 'sales';

Note:

To use a current user database link, the current user must be a global user on both
databases involved in the link.

See Also:

Oracle Database SQL Language Reference for more syntax information about
creating database links

32.2.4 Using Connection Qualifiers to Specify Service Names Within Link
Names

In some situations, you may want to have several database links of the same type (for
example, public) that point to the same remote database, yet establish connections to the
remote database using different communication pathways.

Some cases in which this strategy is useful are:

Chapter 32
Creating Database Links

32-11

• A remote database is part of an Oracle Real Application Clusters configuration, so you
define several public database links at your local node so that connections can be
established to specific instances of the remote database.

• Some clients connect to the Oracle Database server using TCP/IP while others use
DECNET.

To facilitate such functionality, the database lets you create a database link with an optional
service name in the database link name. When creating a database link, a service name is
specified as the trailing portion of the database link name, separated by an @ sign, as in
@sales. This string is called a connection qualifier.

For example, assume that remote database hq.example.com is managed in an Oracle Real
Application Clusters environment. The hq database has two instances named hq_1 and hq_2.
The local database can contain the following public database links to define pathways to the
remote instances of the hq database:

CREATE PUBLIC DATABASE LINK hq.example.com@hq_1
 USING 'string_to_hq_1';
CREATE PUBLIC DATABASE LINK hq.example.com@hq_2
 USING 'string_to_hq_2';
CREATE PUBLIC DATABASE LINK hq.example.com
 USING 'string_to_hq';

Notice in the first two examples that a service name is simply a part of the database link name.
The text of the service name does not necessarily indicate how a connection is to be
established; this information is specified in the service name of the USING clause. Also notice
that in the third example, a service name is not specified as part of the link name. In this case,
just as when a service name is specified as part of the link name, the instance is determined
by the USING string.

To use a service name to specify a particular instance, include the service name at the end of
the global object name:

SELECT * FROM scott.emp@hq.example.com@hq_1

Note that in this example, there are two @ symbols.

32.3 Using Shared Database Links
Every application that references a remote server using a standard database link establishes a
connection between the local database and the remote database. Many users running
applications simultaneously can cause a high number of connections between the local and
remote databases. Shared database links enable you to limit the number of network
connections required between the local server and the remote server.

• Determining Whether to Use Shared Database Links
Look carefully at your application and shared server configuration to determine whether to
use shared links. A simple guideline is to use shared database links when the number of
users accessing a database link is expected to be much larger than the number of server
processes in the local database.

• Creating Shared Database Links
To create a shared database link, use the keyword SHARED in the CREATE DATABASE LINK
statement.

• Configuring Shared Database Links
You can configure shared database links in different ways.

Chapter 32
Using Shared Database Links

32-12

See Also:

"What Are Shared Database Links?" for a conceptual overview of shared database
links

32.3.1 Determining Whether to Use Shared Database Links
Look carefully at your application and shared server configuration to determine whether to use
shared links. A simple guideline is to use shared database links when the number of users
accessing a database link is expected to be much larger than the number of server processes
in the local database.

The following table illustrates three possible configurations involving database links:

Link Type Server Mode Consequences

Nonshared Dedicated/shared
server

If your application uses a standard public database link,
and 100 users simultaneously require a connection, then
100 direct network connections to the remote database are
required.

Shared Shared server If 10 shared server processes exist in the local shared
server mode database, then 100 users that use the same
database link require 10 or fewer network connections to
the remote server. Each local shared server process may
only need one connection to the remote server.

Shared Dedicated If 10 clients connect to a local dedicated server, and each
client has 10 sessions on the same connection (thus
establishing 100 sessions overall), and each session
references the same remote database, then only 10
connections are needed. With a nonshared database link,
100 connections are needed.

Shared database links are not useful in all situations. Assume that only one user accesses the
remote server. If this user defines a shared database link and 10 shared server processes exist
in the local database, then this user can require up to 10 network connections to the remote
server. Because the user can use each shared server process, each process can establish a
connection to the remote server.

Clearly, a nonshared database link is preferable in this situation because it requires only one
network connection. Shared database links lead to more network connections in single-user
scenarios, so use shared links only when many users need to use the same link. Typically,
shared links are used for public database links, but can also be used for private database links
when many clients access the same local schema (and therefore the same private database
link).

Note:

In a multitiered environment, there is a restriction that if you use a shared database
link to connect to a remote database, then that remote database cannot link to
another database with a database link that cannot be migrated. That link must use a
shared server, or it must be another shared database link.

Chapter 32
Using Shared Database Links

32-13

32.3.2 Creating Shared Database Links
To create a shared database link, use the keyword SHARED in the CREATE DATABASE LINK
statement.

Use the following syntax to create a shared database link:

CREATE SHARED DATABASE LINK dblink_name
[CONNECT TO username IDENTIFIED BY password]|[CONNECT TO CURRENT_USER]
AUTHENTICATED BY schema_name IDENTIFIED BY password
[USING 'service_name'];

Whenever you use the keyword SHARED, the clause AUTHENTICATED BY is required. The schema
specified in the AUTHENTICATED BY clause must exist in the remote database and must be
granted at least the CREATE SESSION privilege. The credentials of this schema can be
considered the authentication method between the local database and the remote database.
These credentials are required to protect the remote shared server processes from clients that
masquerade as a database link user and attempt to gain unauthorized access to information.

After a connection is made with a shared database link, operations on the remote database
proceed with the privileges of the CONNECT TO user or CURRENT_USER, not the AUTHENTICATED BY
schema.

The following example creates a fixed user, shared link to database sales, connecting as
scott and authenticated as linkuser:

CREATE SHARED DATABASE LINK link2sales
CONNECT TO scott IDENTIFIED BY password
AUTHENTICATED BY linkuser IDENTIFIED BY ostrich
USING 'sales';

See Also:

Oracle Database SQL Language Reference for information about the CREATE
DATABASE LINK statement

32.3.3 Configuring Shared Database Links
You can configure shared database links in different ways.

• Creating Shared Links to Dedicated Servers
A shared server process in the local server can own a dedicated remote server process.

• Creating Shared Links to Shared Servers
You can create shared links using shared server processes on the remote server.

32.3.3.1 Creating Shared Links to Dedicated Servers
A shared server process in the local server can own a dedicated remote server process.

The advantage is that a direct network transport exists between the local shared server and
the remote dedicated server. A disadvantage is that extra back-end server processes are
needed.

Chapter 32
Using Shared Database Links

32-14

Note:

The remote server can either be a shared server or dedicated server. There is a
dedicated connection between the local and remote servers. When the remote server
is a shared server, you can force a dedicated server connection by using the
(SERVER=DEDICATED) clause in the definition of the service name.

Figure 32-1 A Shared Database Link to Dedicated Server Processes

Oracle
Server Code

System Global Area

Oracle
Server Code

Dedicated

Server

Process

Oracle
Server Code

System Global Area

Database Server

Client Workstation

Shared

Server

Processes

Dispatcher Processes

User

Process

32.3.3.2 Creating Shared Links to Shared Servers
You can create shared links using shared server processes on the remote server.

This configuration eliminates the need for more dedicated servers, but requires the connection
to go through the dispatcher on the remote server. Note that both the local and the remote
server must be configured as shared servers.

Chapter 32
Using Shared Database Links

32-15

Figure 32-2 Shared Database Link to Shared Server

System Global Area

User

Process

Database Server

Client Workstation

Shared
Server
ProcessesDispatcher Processes

System Global Area

User

Process

Shared
Server
ProcessesDispatcher Processes

Oracle
Server Code

Oracle
Server Code

See Also:

"Shared Server Processes" for information about the shared server option

32.4 Managing Database Links
Managing database links includes tasks such as closing them, dropping them, and limiting the
number of active connections to them.

• Closing Database Links
If you access a database link in a session, then the link remains open until you close the
session. To close a database link manually, use the ALTER SESSION CLOSE DATABASE LINK
statement.

• Dropping Database Links
You can drop a database link just as you can drop a table or view. If the link is private, then
it must be in your schema. If the link is public, then you must have the DROP PUBLIC
DATABASE LINK system privilege.

Chapter 32
Managing Database Links

32-16

• Limiting the Number of Active Database Link Connections
You can limit the number of connections from a user process to remote databases using
the static initialization parameter OPEN_LINKS.

32.4.1 Closing Database Links
If you access a database link in a session, then the link remains open until you close the
session. To close a database link manually, use the ALTER SESSION CLOSE DATABASE LINK
statement.

A link is open in the sense that a process is active on each of the remote databases accessed
through the link. This situation has the following consequences:

• If 20 users open sessions and access the same public link in a local database, then 20
database link connections are open.

• If 20 users open sessions and each user accesses a private link, then 20 database link
connections are open.

• If one user starts a session and accesses 20 different links, then 20 database link
connections are open.

After you close a session, the links that were active in the session are automatically closed.
You may have occasion to close the link manually. For example, close links when:

• The network connection established by a link is used infrequently in an application.

• The user session must be terminated.

To close a link, issue the following statement, where linkname refers to the name of the link:

ALTER SESSION CLOSE DATABASE LINK linkname;

Note that this statement only closes the links that are active in your current session.

32.4.2 Dropping Database Links
You can drop a database link just as you can drop a table or view. If the link is private, then it
must be in your schema. If the link is public, then you must have the DROP PUBLIC DATABASE
LINK system privilege.

The statement syntax is as follows, where dblink is the name of the link:

DROP [PUBLIC] DATABASE LINK dblink;

• Dropping a Private Database Link
Use the DROP DATABASE LINK statement to drop a private database link.

• Dropping a Public Database Link
Use the DROP PUBLIC DATABASE LINK statement to drop a public database link.

32.4.2.1 Dropping a Private Database Link
Use the DROP DATABASE LINK statement to drop a private database link.

1. Connect to the local database using SQL*Plus. For example, enter:

CONNECT scott@local_db
2. Query USER_DB_LINKS to view the links that you own. For example, enter:

Chapter 32
Managing Database Links

32-17

SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

SALES.US.EXAMPLE.COM
MKTG.US.EXAMPLE.COM
2 rows selected.

3. Drop the desired link using the DROP DATABASE LINK statement. For example, enter:

DROP DATABASE LINK sales.us.example.com;

32.4.2.2 Dropping a Public Database Link
Use the DROP PUBLIC DATABASE LINK statement to drop a public database link.

1. Connect to the local database as a user with the DROP PUBLIC DATABASE LINK privilege.
For example, enter:

CONNECT SYSTEM@local_db AS SYSDBA
2. Query DBA_DB_LINKS to view the public links. For example, enter:

SELECT DB_LINK FROM DBA_DB_LINKS
 WHERE OWNER = 'PUBLIC';

DB_LINK

DBL1.US.EXAMPLE.COM
SALES.US.EXAMPLE.COM
INST2.US.EXAMPLE.COM
RMAN2.US.EXAMPLE.COM
4 rows selected.

3. Drop the desired link using the DROP PUBLIC DATABASE LINK statement. For example,
enter:

DROP PUBLIC DATABASE LINK sales.us.example.com;

32.4.3 Limiting the Number of Active Database Link Connections
You can limit the number of connections from a user process to remote databases using the
static initialization parameter OPEN_LINKS.

This parameter controls the number of remote connections that a single user session can use
concurrently in distributed transactions.

Note the following considerations for setting this parameter:

• The value should be greater than or equal to the number of databases referred to in a
single SQL statement that references multiple databases.

• Increase the value if several distributed databases are accessed over time. Thus, if you
regularly access three databases, set OPEN_LINKS to 3 or greater.

• The default value for OPEN_LINKS is 4. If OPEN_LINKS is set to 0, then no distributed
transactions are allowed.

Chapter 32
Managing Database Links

32-18

See Also:

Oracle Database Reference for more information about the OPEN_LINKS
initialization parameter

32.5 Viewing Information About Database Links
The data dictionary of each database stores the definitions of all the database links in the
database. You can use data dictionary tables and views to gain information about the links.

• Determining Which Links Are in the Database
A set of views shows the database links that have been defined at the local database and
stored in the data dictionary.

• Determining Which Link Connections Are Open
You may find it useful to determine which database link connections are currently open in
your session.

• Determining the Host of Outgoing Database Links
You can use the RESOLVE_TNSNAME function in the DBMS_TNS package to determine the host
name of an outgoing database link.

• Determining Information About Incoming Database Links
You can use the DBA_DB_LINK_SOURCES view to determine information about incoming
database links.

• Determining the Source of High SCN Activity for Incoming Database Links
You can use the following views to determine the source of high system change number
(SCN) activity for incoming database links: DBA_EXTERNAL_SCN_ACTIVITY,
DBA_DB_LINK_SOURCES, and DBA_DB_LINK.

32.5.1 Determining Which Links Are in the Database
A set of views shows the database links that have been defined at the local database and
stored in the data dictionary.

:

View Purpose

DBA_DB_LINKS Lists all database links in the database.

ALL_DB_LINKS Lists all database links accessible to the connected user.

USER_DB_LINKS Lists all database links owned by the connected user.

These data dictionary views contain the same basic information about database links, with
some exceptions:

Column Which Views? Description

OWNER All except USER_* The user who created the database link. If the link is
public, then the user is listed as PUBLIC.

DB_LINK All The name of the database link.

Chapter 32
Viewing Information About Database Links

32-19

Column Which Views? Description

USERNAME All If the link definition includes a fixed user, then this
column displays the username of the fixed user. If
there is no fixed user, the column is NULL.

PASSWORD Only USER_* Not used. Maintained for backward compatibility
only.

HOST All The net service name used to connect to the remote
database.

CREATED All Creation time of the database link.

Any user can query USER_DB_LINKS to determine which database links are available to that
user. Only those with additional privileges can use the ALL_DB_LINKS or DBA_DB_LINKS view.

The following script queries the DBA_DB_LINKS view to access link information:

COL OWNER FORMAT a10
COL USERNAME FORMAT A8 HEADING "USER"
COL DB_LINK FORMAT A30
COL HOST FORMAT A7 HEADING "SERVICE"
SELECT * FROM DBA_DB_LINKS
/

Here, the script is invoked and the resulting output is shown:

SQL>@link_script

OWNER DB_LINK USER SERVICE CREATED
---------- ------------------------------ -------- ------- ----------
SYS TARGET.US.EXAMPLE.COM SYS inst1 23-JUN-99
PUBLIC DBL1.UK.EXAMPLE.COM BLAKE ora51 23-JUN-99
PUBLIC RMAN2.US.EXAMPLE.COM inst2 23-JUN-99
PUBLIC DEPT.US.EXAMPLE.COM inst2 23-JUN-99
JANE DBL.UK.EXAMPLE.COM BLAKE ora51 23-JUN-99
SCOTT EMP.US.EXAMPLE.COM SCOTT inst2 23-JUN-99
6 rows selected.

32.5.2 Determining Which Link Connections Are Open
You may find it useful to determine which database link connections are currently open in your
session.

Note that if you connect as SYSDBA, you cannot query a view to determine all the links open for
all sessions; you can only access the link information in the session within which you are
working.

The following views show the database link connections that are currently open in your current
session:

View Purpose

V$DBLINK Lists all open database links in your session, that is, all database
links with the IN_TRANSACTION column set to YES.

GV$DBLINK Lists all open database links in your session along with their
corresponding instances. This view is useful in an Oracle Real
Application Clusters configuration.

Chapter 32
Viewing Information About Database Links

32-20

These data dictionary views contain the same basic information about database links, with one
exception:

Column Which Views? Description

DB_LINK All The name of the database link.

OWNER_ID All The owner of the database link.

LOGGED_ON All Whether the database link is currently logged on.

HETEROGENEOUS All Whether the database link is homogeneous (NO) or
heterogeneous (YES).

PROTOCOL All The communication protocol for the database link.

OPEN_CURSORS All Whether cursors are open for the database link.

IN_TRANSACTION All Whether the database link is accessed in a
transaction that has not yet been committed or rolled
back.

UPDATE_SENT All Whether there was an update on the database link.

COMMIT_POINT_STRENG
TH

All The commit point strength of the transactions using
the database link.

INST_ID GV$DBLINK only The instance from which the view information was
obtained.

For example, you can create and execute the script below to determine which links are open
(sample output included):

COL DB_LINK FORMAT A25
COL OWNER_ID FORMAT 99999 HEADING "OWNID"
COL LOGGED_ON FORMAT A5 HEADING "LOGON"
COL HETEROGENEOUS FORMAT A5 HEADING "HETER"
COL PROTOCOL FORMAT A8
COL OPEN_CURSORS FORMAT 999 HEADING "OPN_CUR"
COL IN_TRANSACTION FORMAT A3 HEADING "TXN"
COL UPDATE_SENT FORMAT A6 HEADING "UPDATE"
COL COMMIT_POINT_STRENGTH FORMAT 99999 HEADING "C_P_S"

SELECT * FROM V$DBLINK
/

SQL> @dblink

DB_LINK OWNID LOGON HETER PROTOCOL OPN_CUR TXN UPDATE C_P_S
------------------------- ------ ----- ----- -------- ------- --- ------ ------
INST2.EXAMPLE.COM 0 YES YES UNKN 0 YES YES 255

32.5.3 Determining the Host of Outgoing Database Links
You can use the RESOLVE_TNSNAME function in the DBMS_TNS package to determine the host
name of an outgoing database link.

For outgoing database links, the HOST column value in the DBA_DB_LINKS view does not resolve
the connect data when the database link is created with a connect identifier, such as the
network service name. As a result, a tool that requires any part of the connect data, such as
the host name, must check the tnsnames.ora file to find the information. However, the
tnsnames.ora file might not be accessible to the tool.

Chapter 32
Viewing Information About Database Links

32-21

1. Connect to the database that contains the outgoing database link as a user who can run
subprograms in the DBMS_TNS package.

2. Query the DBA_DB_LINKS view.

Example 32-1 Determining the Host of Outgoing Database Links

This query results show the connect data, including the host name, for each outgoing database
link.

SELECT DB_LINK, DBMS_TNS.RESOLVE_TNSNAME(HOST) FROM DBA_DB_LINKS;

See Also:

• Oracle Database Reference

• Oracle Database PL/SQL Packages and Types Reference for more information
about the RESOLVE_TNSNAME function

32.5.4 Determining Information About Incoming Database Links
You can use the DBA_DB_LINK_SOURCES view to determine information about incoming database
links.

The database records details about unique connections for incoming database links in a
persistent table and the DBA_DB_LINK_SOURCES view. You can query this view for information
about the incoming connections on database links.

1. Connect to the database as a user who can query the DBA_DB_LINK_SOURCES view.

2. Query the DBA_DB_LINK_SOURCES view.

Example 32-2 Querying the DBA_DB_LINK_SOURCES View

This example returns the database name and host name of each incoming database link. It
also returns the time of the first login and last login to the current database with the database
link.

SELECT DB_NAME, HOST_NAME, FIRST_LOGON_TIME, LAST_LOGON_TIME
 FROM DBA_DB_LINK_SOURCES;

See Also:

Oracle Database Reference

Chapter 32
Viewing Information About Database Links

32-22

32.5.5 Determining the Source of High SCN Activity for Incoming Database
Links

You can use the following views to determine the source of high system change number (SCN)
activity for incoming database links: DBA_EXTERNAL_SCN_ACTIVITY, DBA_DB_LINK_SOURCES, and
DBA_DB_LINK.

To implement distributed transactions and distributed read consistency in a distributed
database environment, databases synchronize SCNs when calls are made over database
links. A high SCN increase rate can cause a database to return errors.

It is often hard to determine the source of unusual increases of SCNs that result from
distributed database operations. The DBA_EXTERNAL_SCN_ACTIVITY view enables you to
determine which databases or clients are causing excessive SCN increases. You join this view
in a query with the DBA_DB_LINK_SOURCES and DBA_DB_LINK views to return the information.

1. Connect to the database as a user who can query the DBA_EXTERNAL_SCN_ACTIVITY,
DBA_DB_LINK_SOURCES, and DBA_DB_LINK views.

2. Run the following query to show the recent history of SCN increments and their sources:

(SELECT RESULT, OPERATION_TIMESTAMP, EXTERNAL_SCN, SCN_ADJUSTMENT,
HOST_NAME, DB_NAME, SESSION_ID, SESSION_SERIAL#
 FROM DBA_EXTERNAL_SCN_ACTIVITY a, DBA_DB_LINK_SOURCES s
 WHERE a.INBOUND_DB_LINK_SOURCE_ID = s.SOURCE_ID)
UNION
(SELECT RESULT, OPERATION_TIMESTAMP, EXTERNAL_SCN, SCN_ADJUSTMENT,
dbms_tns.resolve_tnsname(HOST) HOST_NAME, NULL DB_NAME, SESSION_ID,
SESSION_SERIAL#
 FROM DBA_EXTERNAL_SCN_ACTIVITY a, DBA_DB_LINKS o
 WHERE a.OUTBOUND_DB_LINK_NAME = o.DB_LINK AND
 a.OUTBOUND_DB_LINK_OWNER = o.OWNER)
UNION
(SELECT RESULT, OPERATION_TIMESTAMP, EXTERNAL_SCN, SCN_ADJUSTMENT,
s.MACHINE HOST_NAME, NULL DB_NAME, SESSION_ID, SESSION_SERIAL#
 FROM DBA_EXTERNAL_SCN_ACTIVITY a, V$SESSION s
 WHERE a.SESSION_ID = s.SID AND
 a.SESSION_SERIAL#=s.SERIAL# AND
 INBOUND_DB_LINK_SOURCE_ID IS NULL AND
 OUTBOUND_DB_LINK_NAME IS NULL AND
 OUTBOUND_DB_LINK_OWNER IS NULL);

Note:

If no high SCN activity is recorded in the DBA_EXTERNAL_SCN_ACTIVITY view, then this
query returns no results.

Chapter 32
Viewing Information About Database Links

32-23

See Also:

Oracle Database Reference

32.6 Creating Location Transparency
After you have configured the necessary database links, you can use various tools to hide the
distributed nature of the database system from users. In other words, users can access remote
objects as if they were local objects.

• Using Views to Create Location Transparency
Local views can provide location transparency for local and remote tables in a distributed
database system.

• Using Synonyms to Create Location Transparency
Synonyms are useful in both distributed and non-distributed environments because they
hide the identity of the underlying object, including its location in a distributed database
system. If you must rename or move the underlying object, you only need to redefine the
synonym; applications based on the synonym continue to function normally. Synonyms
also simplify SQL statements for users in a distributed database system.

• Using Procedures to Create Location Transparency
PL/SQL program units called procedures can provide location transparency.

32.6.1 Using Views to Create Location Transparency
Local views can provide location transparency for local and remote tables in a distributed
database system.

For example, assume that table emp is stored in a local database and table dept is stored in a
remote database. To make these tables transparent to users of the system, you can create a
view in the local database that joins local and remote data:

CREATE VIEW company AS
 SELECT a.empno, a.ename, b.dname
 FROM scott.emp a, jward.dept@hq.example.com b
 WHERE a.deptno = b.deptno;

Chapter 32
Creating Location Transparency

32-24

Figure 32-3 Views and Location Transparency

JWARD.DEPT

DEPTNO DNAME

MARKETING
SALES

20
30

Database �

Server

Database �

Server

HQ

Sales

Database

Database

SCOTT.EMP Table

EMPNO ENAME JOB

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

CLERK
SALESMAN
SALESMAN
MANAGER

MGR

7902
7698
7698
7839

HIREDATE

17–DEC–88
20–FEB–89
22–JUN–92
02–APR–93

SAL

 800.00
1600.00
1250.00
2975.00

COMM

300.00
300.00
500.00

DEPTNO

20
30
30
20

COMPANY View

EMPNO ENAME DNAME

SMITH
ALLEN
WARD
JONES

7329
7499
7521
7566

MARKETING
SALES
SALES
MARKETING

When users access this view, they do not need to know where the data is physically stored, or
if data from more than one table is being accessed. Thus, it is easier for them to get required
information. For example, the following query provides data from both the local and remote
database table:

SELECT * FROM company;

The owner of the local view can grant only those object privileges on the local view that have
been granted by the remote user. (The remote user is implied by the type of database link).
This is similar to privilege management for views that reference local data.

32.6.2 Using Synonyms to Create Location Transparency
Synonyms are useful in both distributed and non-distributed environments because they hide
the identity of the underlying object, including its location in a distributed database system. If
you must rename or move the underlying object, you only need to redefine the synonym;
applications based on the synonym continue to function normally. Synonyms also simplify SQL
statements for users in a distributed database system.

• Creating Synonyms
All synonyms are schema objects that are stored in the data dictionary of the database in
which they are created. To simplify remote table access through database links, a synonym

Chapter 32
Creating Location Transparency

32-25

can allow single-word access to remote data, hiding the specific object name and the
location from users of the synonym.

• Managing Privileges and Synonyms
A synonym is a reference to an actual object. A user who has access to a synonym for a
particular schema object must also have privileges on the underlying schema object itself.

32.6.2.1 Creating Synonyms
All synonyms are schema objects that are stored in the data dictionary of the database in
which they are created. To simplify remote table access through database links, a synonym
can allow single-word access to remote data, hiding the specific object name and the location
from users of the synonym.

You can create synonyms for the following:

• Tables

• Types

• Views

• Materialized views

• Sequences

• Procedures

• Functions

• Packages

The syntax to create a synonym is:

CREATE [PUBLIC] SYNONYM synonym_name
FOR [schema.]object_name[@database_link_name];

where:

• PUBLIC is a keyword specifying that this synonym is available to all users. Omitting this
parameter makes a synonym private, and usable only by the creator. Public synonyms can
be created only by a user with CREATE PUBLIC SYNONYM system privilege.

• synonym_name specifies the alternate object name to be referenced by users and
applications.

• schema specifies the schema of the object specified in object_name. Omitting this
parameter uses the schema of the creator as the schema of the object.

• object_name specifies either a table, view, sequence, materialized view, type, procedure,
function or package as appropriate.

• database_link_name specifies the database link identifying the remote database and
schema in which the object specified in object_name is located.

A synonym must be a uniquely named object for its schema. If a schema contains a schema
object and a public synonym exists with the same name, then the database always finds the
schema object when the user that owns the schema references that name.

Example: Creating a Public Synonym

Assume that in every database in a distributed database system, a public synonym is defined
for the scott.emp table stored in the hq database:

CREATE PUBLIC SYNONYM emp FOR scott.emp@hq.example.com;

Chapter 32
Creating Location Transparency

32-26

You can design an employee management application without regard to where the application
is used because the location of the table scott.emp@hq.example.com is hidden by the public
synonyms. SQL statements in the application access the table by referencing the public
synonym emp.

Furthermore, if you move the emp table from the hq database to the hr database, then you only
need to change the public synonyms on the nodes of the system. The employee management
application continues to function properly on all nodes.

32.6.2.2 Managing Privileges and Synonyms
A synonym is a reference to an actual object. A user who has access to a synonym for a
particular schema object must also have privileges on the underlying schema object itself.

For example, if the user attempts to access a synonym but does not have privileges on the
table it identifies, an error occurs indicating that the table or view does not exist.

Assume scott creates local synonym emp as an alias for remote object
scott.emp@sales.example.com. scott cannot grant object privileges on the synonym to
another local user. scott cannot grant local privileges for the synonym because this operation
amounts to granting privileges for the remote emp table on the sales database, which is not
allowed. This behavior is different from privilege management for synonyms that are aliases for
local tables or views.

Therefore, you cannot manage local privileges when synonyms are used for location
transparency. Security for the base object is controlled entirely at the remote node. For
example, user admin cannot grant object privileges for the emp_syn synonym.

Unlike a database link referenced in a view or procedure definition, a database link referenced
in a synonym is resolved by first looking for a private link owned by the schema in effect at the
time the reference to the synonym is parsed. Therefore, to ensure the desired object
resolution, it is especially important to specify the schema of the underlying object in the
definition of a synonym.

32.6.3 Using Procedures to Create Location Transparency
PL/SQL program units called procedures can provide location transparency.

• Using Local Procedures to Reference Remote Data
Procedures or functions (either standalone or in packages) can contain SQL statements
that reference remote data.

• Using Local Procedures to Call Remote Procedures
You can use a local procedure to call a remote procedure. The remote procedure can then
execute the required DML.

• Using Local Synonyms to Reference Remote Procedures
You can use a local synonym to reference a remote procedure.

• Managing Procedures and Privileges
Assume a local procedure includes a statement that references a remote table or view.
The owner of the local procedure can grant the execute privilege to any user, thereby
giving that user the ability to execute the procedure and, indirectly, access remote data.

Chapter 32
Creating Location Transparency

32-27

32.6.3.1 Using Local Procedures to Reference Remote Data
Procedures or functions (either standalone or in packages) can contain SQL statements that
reference remote data.

For example, consider the procedure created by the following statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
 DELETE FROM emp@hq.example.com
 WHERE empno = enum;
END;

When a user or application calls the fire_emp procedure, it is not apparent that a remote table
is being modified.

A second layer of location transparency is possible when the statements in a procedure
indirectly reference remote data using local procedures, views, or synonyms. For example, the
following statement defines a local synonym:

CREATE SYNONYM emp FOR emp@hq.example.com;

Given this synonym, you can create the fire_emp procedure using the following statement:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
 DELETE FROM emp WHERE empno = enum;
END;

If you rename or move the table emp@hq, then you only need to modify the local synonym that
references the table. None of the procedures and applications that call the procedure require
modification.

32.6.3.2 Using Local Procedures to Call Remote Procedures
You can use a local procedure to call a remote procedure. The remote procedure can then
execute the required DML.

For example, assume that scott connects to local_db and creates the following procedure:

CONNECT scott@local_db

CREATE PROCEDURE fire_emp (enum NUMBER)
AS
BEGIN
 EXECUTE term_emp@hq.example.com;
END;

Now, assume that scott connects to the remote database and creates the remote procedure:

CONNECT scott@hq.example.com

CREATE PROCEDURE term_emp (enum NUMBER)
AS
BEGIN
 DELETE FROM emp WHERE empno = enum;
END;

When a user or application connected to local_db calls the fire_emp procedure, this
procedure in turn calls the remote term_emp procedure on hq.example.com.

Chapter 32
Creating Location Transparency

32-28

32.6.3.3 Using Local Synonyms to Reference Remote Procedures
You can use a local synonym to reference a remote procedure.

For example, scott connects to the local sales.example.com database and creates the
following procedure:

CREATE PROCEDURE fire_emp (enum NUMBER) AS
BEGIN
DELETE FROM emp@hq.example.com
WHERE empno = enum;
END;

User peggy then connects to the supply.example.com database and creates the following
synonym for the procedure that scott created on the remote sales database:

SQL> CONNECT peggy@supply
SQL> CREATE PUBLIC SYNONYM emp FOR scott.fire_emp@sales.example.com;

A local user on supply can use this synonym to execute the procedure on sales.

32.6.3.4 Managing Procedures and Privileges
Assume a local procedure includes a statement that references a remote table or view. The
owner of the local procedure can grant the execute privilege to any user, thereby giving that
user the ability to execute the procedure and, indirectly, access remote data.

In general, procedures aid in security. Privileges for objects referenced within a procedure do
not need to be explicitly granted to the calling users.

32.7 Managing Statement Transparency
In a distributed database, some SQL statements can reference remote tables.

The database allows the following standard DML statements to reference remote tables:

• SELECT (queries)

• INSERT
• UPDATE
• DELETE
• SELECT...FOR UPDATE (not always supported in Heterogeneous Systems)

• LOCK TABLE
Queries including joins, aggregates, subqueries, and SELECT...FOR UPDATE can reference any
number of local and remote tables and views. For example, the following query joins
information from two remote tables:

SELECT e.empno, e.ename, d.dname
 FROM scott.emp@sales.division3.example.com e, jward.dept@hq.example.com d
 WHERE e.deptno = d.deptno;

In a homogeneous environment, UPDATE, INSERT, DELETE, and LOCK TABLE statements can
reference both local and remote tables. No programming is necessary to update remote data.
For example, the following statement inserts new rows into the remote table emp in the

Chapter 32
Managing Statement Transparency

32-29

scott.sales schema by selecting rows from the emp table in the jward schema in the local
database:

INSERT INTO scott.emp@sales.division3.example.com
 SELECT * FROM jward.emp;

Restrictions for Statement Transparency:

Several restrictions apply to statement transparency.

• Data manipulation language statements that update objects on a remote non-Oracle
Database system cannot reference any objects on the local Oracle Database. For
example, a statement such as the following will cause an error to be raised:

INSERT INTO remote_table@link as SELECT * FROM local_table;
• Within a single SQL statement, all referenced LONG and LONG RAW columns, sequences,

updated tables, and locked tables must be located at the same node.

• The database does not allow remote DDL statements (for example, CREATE, ALTER, and
DROP) in homogeneous systems except through remote execution of procedures of the
DBMS_SQL package, as in this example:

DBMS_SQL.PARSE@link_name(crs, 'drop table emp', v7);

Note that in Heterogeneous Systems, a pass-through facility lets you execute DDL.

• The LIST CHAINED ROWS clause of an ANALYZE statement cannot reference remote tables.

• In a distributed database system, the database always evaluates environmentally-
dependent SQL functions such as SYSDATE, USER, UID, and USERENV with respect to the
local server, no matter where the statement (or portion of a statement) executes.

Note:

Oracle Database supports the USERENV function for queries only.

• Several performance restrictions relate to access of remote objects:

– Remote views do not have statistical data.

– Queries on partitioned tables may not be optimized.

– No more than 20 indexes are considered for a remote table.

– No more than 20 columns are used for a composite index.

• There is a restriction in the Oracle Database implementation of distributed read
consistency that can cause one node to be in the past with respect to another node. In
accordance with read consistency, a query may end up retrieving consistent, but out-of-
date data. See "Managing Read Consistency" to learn how to manage this problem.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SQL package

Chapter 32
Managing Statement Transparency

32-30

32.8 Managing a Distributed Database: Examples
Examples illustrate managing database links.

• Example 1: Creating a Public Fixed User Database Link
An example illustrates creating a public fixed user database link.

• Example 2: Creating a Public Fixed User Shared Database Link
An example illustrates creating a public fixed user shared database link.

• Example 3: Creating a Public Connected User Database Link
An example illustrates creating a public connected user database link.

• Example 4: Creating a Public Connected User Shared Database Link
An example illustrates creating a public connected user shared database link.

• Example 5: Creating a Public Current User Database Link
An example illustrates creating a public current user database link.

32.8.1 Example 1: Creating a Public Fixed User Database Link
An example illustrates creating a public fixed user database link.

The following statements connect to the local database as jane and create a public fixed user
database link to database sales for scott. The database is accessed through its net service
name sldb:

CONNECT jane@local

CREATE PUBLIC DATABASE LINK sales.division3.example.com
 CONNECT TO scott IDENTIFIED BY password
 USING 'sldb';

After executing these statements, any user connected to the local database can use the
sales.division3.example.com database link to connect to the remote database. Each user
connects to the schema scott in the remote database.

To access the table emp table in scott's remote schema, a user can issue the following SQL
query:

SELECT * FROM emp@sales.division3.example.com;

Note that each application or user session creates a separate connection to the common
account on the server. The connection to the remote database remains open for the duration of
the application or user session.

32.8.2 Example 2: Creating a Public Fixed User Shared Database Link
An example illustrates creating a public fixed user shared database link.

The following example connects to the local database as dana and creates a public link to the
sales database (using its net service name sldb). The link allows a connection to the remote
database as scott and authenticates this user as scott:

CONNECT dana@local

CREATE SHARED PUBLIC DATABASE LINK sales.division3.example.com
 CONNECT TO scott IDENTIFIED BY password

Chapter 32
Managing a Distributed Database: Examples

32-31

 AUTHENTICATED BY scott IDENTIFIED BY password
 USING 'sldb';

Now, any user connected to the local shared server can use this database link to connect to
the remote sales database through a shared server process. The user can then query tables
in the scott schema.

In the preceding example, each local shared server can establish one connection to the remote
server. Whenever a local shared server process must access the remote server through the
sales.division3.example.com database link, the local shared server process reuses
established network connections.

32.8.3 Example 3: Creating a Public Connected User Database Link
An example illustrates creating a public connected user database link.

The following example connects to the local database as larry and creates a public link to the
database with the net service name sldb:

CONNECT larry@local

CREATE PUBLIC DATABASE LINK redwood
 USING 'sldb';

Any user connected to the local database can use the redwood database link. The connected
user in the local database who uses the database link determines the remote schema.

If scott is the connected user and uses the database link, then the database link connects to
the remote schema scott. If fox is the connected user and uses the database link, then the
database link connects to remote schema fox.

The following statement fails for local user fox in the local database when the remote schema
fox cannot resolve the emp schema object. That is, if the fox schema in the
sales.division3.example.com does not have emp as a table, view, or (public) synonym, an
error will be returned.

CONNECT fox@local

SELECT * FROM emp@redwood;

32.8.4 Example 4: Creating a Public Connected User Shared Database Link
An example illustrates creating a public connected user shared database link.

The following example connects to the local database as neil and creates a shared, public link
to the sales database (using its net service name sldb). The user is authenticated by the
userid/password of crazy/horse. The following statement creates a public, connected user,
shared database link:

CONNECT neil@local

CREATE SHARED PUBLIC DATABASE LINK sales.division3.example.com
 AUTHENTICATED BY crazy IDENTIFIED BY horse
 USING 'sldb';

Each user connected to the local server can use this shared database link to connect to the
remote database and query the tables in the corresponding remote schema.

Chapter 32
Managing a Distributed Database: Examples

32-32

Each local, shared server process establishes one connection to the remote server. Whenever
a local server process must access the remote server through the
sales.division3.example.com database link, the local process reuses established network
connections, even if the connected user is a different user.

If this database link is used frequently, eventually every shared server in the local database will
have a remote connection. At this point, no more physical connections are needed to the
remote server, even if new users use this shared database link.

32.8.5 Example 5: Creating a Public Current User Database Link
An example illustrates creating a public current user database link.

The following example connects to the local database as the connected user and creates a
public link to the sales database (using its net service name sldb). The following statement
creates a public current user database link:

CONNECT bart@local

CREATE PUBLIC DATABASE LINK sales.division3.example.com
 CONNECT TO CURRENT_USER
 USING 'sldb';

Note:

To use this link, the current user must be a global user.

The consequences of this database link are as follows:

Assume scott creates local procedure fire_emp that deletes a row from the remote emp table,
and grants execute privilege on fire_emp to ford.

CONNECT scott@local_db

CREATE PROCEDURE fire_emp (enum NUMBER)
AS
BEGIN
 DELETE FROM emp@sales.division3.example.com
 WHERE empno=enum;
END;

GRANT EXECUTE ON fire_emp TO ford;

Now, assume that ford connects to the local database and runs scott's procedure:

CONNECT ford@local_db

EXECUTE PROCEDURE scott.fire_emp (enum 10345);

When ford executes the procedure scott.fire_emp, the procedure runs under scott's
privileges. Because a current user database link is used, the connection is established to
scott's remote schema, not ford's remote schema. Note that scott must be a global user
while ford does not have to be a global user.

Chapter 32
Managing a Distributed Database: Examples

32-33

Note:

If a connected user database link were used instead, the connection would be to
ford's remote schema. For more information about invoker rights and privileges, see
the Oracle Database PL/SQL Language Reference.

You can accomplish the same result by using a fixed user database link to scott's remote
schema.

Chapter 32
Managing a Distributed Database: Examples

32-34

33
Developing Applications for a Distributed
Database System

Developing applications for a distributed database system includes tasks such as managing
the distribution of application data, controlling connections established by database links,
maintaining referential integrity, tuning distributed queries, and handling errors in remote
procedures.

• Managing the Distribution of Application Data
In a distributed database environment, coordinate with the database administrator to
determine the best location for the data.

• Controlling Connections Established by Database Links
When a global object name is referenced in a SQL statement or remote procedure call,
database links establish a connection to a session in the remote database on behalf of the
local user.

• Maintaining Referential Integrity in a Distributed System
Design your application to check for any returned error messages that indicate that a
portion of the distributed update has failed. If you detect a failure, then you should roll back
the entire transaction before allowing the application to proceed.

• Tuning Distributed Queries
The local Oracle Database server breaks the distributed query into a corresponding
number of remote queries, which it then sends to the remote nodes for execution. The
remote nodes execute the queries and send the results back to the local node. The local
node then performs any necessary post-processing and returns the results to the user or
application.

• Handling Errors in Remote Procedures
Errors can occur when a database executes a procedure.

See Also:

Oracle Database Development Guide for more information about application
development in an Oracle Database environment

33.1 Managing the Distribution of Application Data
In a distributed database environment, coordinate with the database administrator to determine
the best location for the data.

Some issues to consider are:

• Number of transactions posted from each location

• Amount of data (portion of table) used by each node

• Performance characteristics and reliability of the network

33-1

• Speed of various nodes, capacities of disks

• Importance of a node or link when it is unavailable

• Need for referential integrity among tables

33.2 Controlling Connections Established by Database Links
When a global object name is referenced in a SQL statement or remote procedure call,
database links establish a connection to a session in the remote database on behalf of the
local user.

The remote connection and session are only created if the connection has not already been
established previously for the local user session.

The connections and sessions established to remote databases persist for the duration of the
local user's session, unless the application or user explicitly terminates them. Note that when
you issue a SELECT statement across a database link, a transaction lock is placed on the undo
segments. To rerelease the segment, you must issue a COMMIT or ROLLBACK statement.

Terminating remote connections established using database links is useful for disconnecting
high cost connections that are no longer required by the application. You can terminate a
remote connection and session using the ALTER SESSION statement with the CLOSE DATABASE
LINK clause. For example, assume you issue the following transactions:

SELECT * FROM emp@sales;
COMMIT;

The following statement terminates the session in the remote database pointed to by the sales
database link:

ALTER SESSION CLOSE DATABASE LINK sales;

To close a database link connection in your user session, you must have the ALTER SESSION
system privilege.

Note:

Before closing a database link, first close all cursors that use the link and then end
your current transaction if it uses the link.

See Also:

Oracle Database SQL Language Reference for more information about the ALTER
SESSION statement

33.3 Maintaining Referential Integrity in a Distributed System
Design your application to check for any returned error messages that indicate that a portion of
the distributed update has failed. If you detect a failure, then you should roll back the entire
transaction before allowing the application to proceed.

Chapter 33
Controlling Connections Established by Database Links

33-2

If a part of a distributed statement fails, for example, due to an integrity constraint violation, the
database returns error number ORA-02055. Subsequent statements or procedure calls return
error number ORA-02067 until a ROLLBACK or ROLLBACK TO SAVEPOINT is issued.

The database does not permit declarative referential integrity constraints to be defined across
nodes of a distributed system. In other words, a declarative referential integrity constraint on
one table cannot specify a foreign key that references a primary or unique key of a remote
table. Nevertheless, you can maintain parent/child table relationships across nodes using
triggers.

If you decide to define referential integrity across the nodes of a distributed database using
triggers, be aware that network failures can limit the accessibility of not only the parent table,
but also the child table. For example, assume that the child table is in the sales database and
the parent table is in the hq database. If the network connection between the two databases
fails, some DML statements against the child table (those that insert rows into the child table or
update a foreign key value in the child table) cannot proceed because the referential integrity
triggers must have access to the parent table in the hq database.

See Also:

Oracle Database PL/SQL Language Reference for more information about using
triggers to enforce referential integrity

33.4 Tuning Distributed Queries
The local Oracle Database server breaks the distributed query into a corresponding number of
remote queries, which it then sends to the remote nodes for execution. The remote nodes
execute the queries and send the results back to the local node. The local node then performs
any necessary post-processing and returns the results to the user or application.

Note:

SQL management objects, such as SQL profiles, SQL plan baselines, and SQL
patches, and stored outlines might not always work as expected if your query
references remote tables with database links. For example, for SQL plan
management, when Oracle uses a SQL plan baseline for the query, the parts of the
query that are remotely executed might use a different plan than when the SQL plan
baseline was created.

• Using Collocated Inline Views
The most effective way of optimizing distributed queries is to access the remote databases
as little as possible and to retrieve only the required data.

• Using Cost-Based Optimization
Using cost-based optimization includes completing tasks such as rewriting queries and
setting up cost-based optimization.

• Using Hints
Hints can extend the capability of cost-based optimization.

• Analyzing the Execution Plan
An important aspect to tuning distributed queries is analyzing the execution plan.

Chapter 33
Tuning Distributed Queries

33-3

33.4.1 Using Collocated Inline Views
The most effective way of optimizing distributed queries is to access the remote databases as
little as possible and to retrieve only the required data.

For example, assume you reference five remote tables from two different remote databases in
a distributed query and have a complex filter (for example, WHERE r1.salary + r2.salary >
50000). You can improve the performance of the query by rewriting the query to access the
remote databases once and to apply the filter at the remote site. This rewrite causes less data
to be transferred to the query execution site.

Rewriting your query to access the remote database once is achieved by using collocated
inline views. The following terms need to be defined:

• Collocated

Two or more tables located in the same database.

• Inline view

A SELECT statement that is substituted for a table in a parent SELECT statement. The
embedded SELECT statement, shown within the parentheses is an example of an inline
view:

SELECT e.empno,e.ename,d.deptno,d.dname
 FROM (SELECT empno, ename from
 emp@orc1.world) e, dept d;

• Collocated inline view

An inline view that selects data from multiple tables from a single database only. It reduces
the amount of times that the remote database is accessed, improving the performance of a
distributed query.

Oracle recommends that you form your distributed query using collocated inline views to
increase the performance of your distributed query. Oracle Database cost-based optimization
can transparently rewrite many of your distributed queries to take advantage of the
performance gains offered by collocated inline views.

33.4.2 Using Cost-Based Optimization
Using cost-based optimization includes completing tasks such as rewriting queries and setting
up cost-based optimization.

• How Does Cost-Based Optimization Work?
The main task of optimization is to rewrite a distributed query to use collocated inline
views.

• Rewriting Queries for Cost-Based Optimization
In addition to rewriting your queries with collocated inline views, the cost-based
optimization method optimizes distributed queries according to the gathered statistics of
the referenced tables and the computations performed by the optimizer.

• Setting Up Cost-Based Optimization
After you have set up your system to use cost-based optimization to improve the
performance of distributed queries, the operation is transparent to the user. In other words,
the optimization occurs automatically when the query is issued.

Chapter 33
Tuning Distributed Queries

33-4

33.4.2.1 How Does Cost-Based Optimization Work?
The main task of optimization is to rewrite a distributed query to use collocated inline views.

This optimization is performed in three steps:

1. All mergeable views are merged.

2. Optimizer performs collocated query block test.

3. Optimizer rewrites query using collocated inline views.

After the query is rewritten, it is executed and the data set is returned to the user.

While cost-based optimization is performed transparently to the user, it cannot improve the
performance of several distributed query scenarios. Specifically, if your distributed query
contains any of the following, cost-based optimization is not effective:

• Aggregates

• Subqueries

• Complex SQL

If your distributed query contains one of these elements, see "Using Hints" to learn how you
can modify your query and use hints to improve the performance of your distributed query.

33.4.2.2 Rewriting Queries for Cost-Based Optimization
In addition to rewriting your queries with collocated inline views, the cost-based optimization
method optimizes distributed queries according to the gathered statistics of the referenced
tables and the computations performed by the optimizer.

For example, cost-based optimization analyzes the following query. The example assumes that
table statistics are available. Note that it analyzes the query inside a CREATE TABLE statement:

CREATE TABLE AS (
 SELECT l.a, l.b, r1.c, r1.d, r1.e, r2.b, r2.c
 FROM local l, remote1 r1, remote2 r2
 WHERE l.c = r.c
 AND r1.c = r2.c
 AND r.e > 300
);

and rewrites it as:

CREATE TABLE AS (
 SELECT l.a, l.b, v.c, v.d, v.e
 FROM (
 SELECT r1.c, r1.d, r1.e, r2.b, r2.c
 FROM remote1 r1, remote2 r2
 WHERE r1.c = r2.c
 AND r1.e > 300
) v, local l
 WHERE l.c = r1.c
);

The alias v is assigned to the inline view, which can then be referenced as a table in the
preceding SELECT statement. Creating a collocated inline view reduces the amount of queries
performed at a remote site, thereby reducing costly network traffic.

Chapter 33
Tuning Distributed Queries

33-5

33.4.2.3 Setting Up Cost-Based Optimization
After you have set up your system to use cost-based optimization to improve the performance
of distributed queries, the operation is transparent to the user. In other words, the optimization
occurs automatically when the query is issued.

• Setting Up the Environment
Set the OPTIMIZER_MODE initialization parameter to establish the default behavior for
choosing an optimization approach for the instance.

• Analyzing Tables
For cost-based optimization to select the most efficient path for a distributed query, you
must provide accurate statistics for the tables involved. You do this using the DBMS_STATS
package.

33.4.2.3.1 Setting Up the Environment
Set the OPTIMIZER_MODE initialization parameter to establish the default behavior for choosing
an optimization approach for the instance.

You can set this parameter by:

• Modifying the OPTIMIZER_MODE parameter in the initialization parameter file

• Setting it at session level by issuing an ALTER SESSION statement

See Also:

Oracle Database SQL Tuning Guide for information on setting the OPTIMIZER_MODE
initialization parameter in the parameter file and for configuring your system to use a
cost-based optimization method

33.4.2.3.2 Analyzing Tables
For cost-based optimization to select the most efficient path for a distributed query, you must
provide accurate statistics for the tables involved. You do this using the DBMS_STATS package.

Note:

You must connect locally with respect to the tables when executing the DBMS_STATS
procedure.

You must first connect to the remote site and then execute a DBMS_STATS procedure.

The following DBMS_STATS procedures enable the gathering of certain classes of optimizer
statistics:

• GATHER_INDEX_STATS
• GATHER_TABLE_STATS
• GATHER_SCHEMA_STATS

Chapter 33
Tuning Distributed Queries

33-6

• GATHER_DATABASE_STATS
For example, assume that distributed transactions routinely access the scott.dept table. To
ensure that the cost-based optimizer is still picking the best plan, execute the following:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS ('scott', 'dept');
END;

See Also:

• Oracle Database SQL Tuning Guide for information about generating statistics

• Oracle Database PL/SQL Packages and Types Reference for additional
information on using the DBMS_STATS package

33.4.3 Using Hints
Hints can extend the capability of cost-based optimization.

• About Using Hints
If a statement is not sufficiently optimized, then you can use hints to extend the capability
of cost-based optimization. Specifically, if you write your own query to use collocated inline
views, instruct the cost-based optimizer not to rewrite your distributed query.

• Using the NO_MERGE Hint
The NO_MERGE hint prevents the database from merging an inline view into a potentially
non-collocated SQL statement.

• Using the DRIVING_SITE Hint
The DRIVING_SITE hint lets you specify the site where the query execution is performed.

33.4.3.1 About Using Hints
If a statement is not sufficiently optimized, then you can use hints to extend the capability of
cost-based optimization. Specifically, if you write your own query to use collocated inline views,
instruct the cost-based optimizer not to rewrite your distributed query.

Additionally, if you have special knowledge about the database environment (such as statistics,
load, network and CPU limitations, distributed queries, and so forth), you can specify a hint to
guide cost-based optimization. For example, if you have written your own optimized query
using collocated inline views that are based on your knowledge of the database environment,
specify the NO_MERGE hint to prevent the optimizer from rewriting your query.

This technique is especially helpful if your distributed query contains an aggregate, subquery,
or complex SQL. Because this type of distributed query cannot be rewritten by the optimizer,
specifying NO_MERGE causes the optimizer to skip the steps described in "How Does Cost-
Based Optimization Work?".

The DRIVING_SITE hint lets you define a remote site to act as the query execution site. In this
way, the query executes on the remote site, which then returns the data to the local site. This
hint is especially helpful when the remote site contains the majority of the data.

Chapter 33
Tuning Distributed Queries

33-7

See Also:

Oracle Database SQL Tuning Guide for more information about using hints

33.4.3.2 Using the NO_MERGE Hint
The NO_MERGE hint prevents the database from merging an inline view into a potentially non-
collocated SQL statement.

This hint is embedded in the SELECT statement and can appear either at the beginning of the
SELECT statement with the inline view as an argument or in the query block that defines the
inline view.

/* with argument */

SELECT /*+NO_MERGE(v)*/ t1.x, v.avg_y
 FROM t1, (SELECT x, AVG(y) AS avg_y FROM t2 GROUP BY x) v,
 WHERE t1.x = v.x AND t1.y = 1;

/* in query block */

SELECT t1.x, v.avg_y
 FROM t1, (SELECT /*+NO_MERGE*/ x, AVG(y) AS avg_y FROM t2 GROUP BY x) v,
 WHERE t1.x = v.x AND t1.y = 1;

Typically, you use this hint when you have developed an optimized query based on your
knowledge of your database environment.

Related Topics

• Using Hints
Hints can extend the capability of cost-based optimization.

33.4.3.3 Using the DRIVING_SITE Hint
The DRIVING_SITE hint lets you specify the site where the query execution is performed.

It is best to let cost-based optimization determine where the execution should be performed,
but if you prefer to override the optimizer, you can specify the execution site manually.

Following is an example of a SELECT statement with a DRIVING_SITE hint:

SELECT /*+DRIVING_SITE(dept)*/ * FROM emp, dept@remote.com
 WHERE emp.deptno = dept.deptno;

Related Topics

• Using Hints
Hints can extend the capability of cost-based optimization.

33.4.4 Analyzing the Execution Plan
An important aspect to tuning distributed queries is analyzing the execution plan.

The feedback that you receive from your analysis is an important element to testing and
verifying your database. Verification becomes especially important when you want to compare
plans. For example, comparing the execution plan for a distributed query optimized by cost-

Chapter 33
Tuning Distributed Queries

33-8

based optimization to a plan for a query manually optimized using hints, collocated inline
views, and other techniques.

• Generating the Execution Plan
After you have prepared the database to store the execution plan, you are ready to view
the plan for a specified query. Instead of directly executing a SQL statement, append the
statement to the EXPLAIN PLAN FOR clause.

• Viewing the Execution Plan
After you have executed the preceding SQL statement, the execution plan is stored
temporarily in the PLAN_TABLE.

See Also:

Oracle Database SQL Tuning Guide for detailed information about execution plans,
the EXPLAIN PLAN statement, and how to interpret the results

33.4.4.1 Generating the Execution Plan
After you have prepared the database to store the execution plan, you are ready to view the
plan for a specified query. Instead of directly executing a SQL statement, append the
statement to the EXPLAIN PLAN FOR clause.

For example, you can execute the following:

EXPLAIN PLAN FOR
 SELECT d.dname
 FROM dept d
 WHERE d.deptno
 IN (SELECT deptno
 FROM emp@orc2.world
 GROUP BY deptno
 HAVING COUNT (deptno) >3
)
/

33.4.4.2 Viewing the Execution Plan
After you have executed the preceding SQL statement, the execution plan is stored temporarily
in the PLAN_TABLE.

To view the results of the execution plan, execute the following script:

@utlxpls.sql

Note:

The utlxpls.sql can be found in the $ORACLE_HOME/rdbms/admin directory.

Executing the utlxpls.sql script displays the execution plan for the SELECT statement that you
specified. The results are formatted as follows:

Chapter 33
Tuning Distributed Queries

33-9

Plan Table

| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |

SELECT STATEMENT						
NESTED LOOPS						
VIEW						
REMOTE						
TABLE ACCESS BY INDEX RO	DEPT					
INDEX UNIQUE SCAN	PK_DEPT					

If you are manually optimizing distributed queries by writing your own collocated inline views or
using hints, it is best to generate an execution plan before and after your manual optimization.
With both execution plans, you can compare the effectiveness of your manual optimization and
make changes as necessary to improve the performance of the distributed query.

To view the SQL statement that will be executed at the remote site, execute the following
select statement:

SELECT OTHER
FROM PLAN_TABLE
 WHERE operation = 'REMOTE';

Following is sample output:

SELECT DISTINCT "A1"."DEPTNO" FROM "EMP" "A1"
 GROUP BY "A1"."DEPTNO" HAVING COUNT("A1"."DEPTNO")>3

Note:

If you are having difficulty viewing the entire contents of the OTHER column, execute
the following SQL*Plus command:

SET LONG 9999999

33.5 Handling Errors in Remote Procedures
Errors can occur when a database executes a procedure.

When the database executes a procedure locally or at a remote location, four types of
exceptions can occur:

• PL/SQL user-defined exceptions, which must be declared using the keyword EXCEPTION
• PL/SQL predefined exceptions such as the NO_DATA_FOUND keyword

• SQL errors such as ORA-00900 and ORA-02015
• Application exceptions generated using the RAISE_APPLICATION_ERROR() procedure

When using local procedures, you can trap these messages by writing an exception handler
such as the following

BEGIN
 ...
EXCEPTION
 WHEN ZERO_DIVIDE THEN

Chapter 33
Handling Errors in Remote Procedures

33-10

 /* ... handle the exception */
END;

Notice that the WHEN clause requires an exception name. If the exception does not have a
name, for example, exceptions generated with RAISE_APPLICATION_ERROR, you can assign one
using PRAGMA_EXCEPTION_INIT. For example:

DECLARE
 null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(null_salary, -20101);
BEGIN
 ...
 RAISE_APPLICATION_ERROR(-20101, 'salary is missing');
...
EXCEPTION
 WHEN null_salary THEN
 ...
END;

When calling a remote procedure, exceptions can be handled by an exception handler in the
local procedure. The remote procedure must return an error number to the local, calling
procedure, which then handles the exception as shown in the previous example. Note that
PL/SQL user-defined exceptions always return ORA-06510 to the local procedure.

Therefore, it is not possible to distinguish between two different user-defined exceptions based
on the error number. All other remote exceptions can be handled in the same manner as local
exceptions.

See Also:

Oracle Database PL/SQL Language Reference for more information about PL/SQL
procedures

Chapter 33
Handling Errors in Remote Procedures

33-11

34
Distributed Transactions Concepts

Distributed transactions update data on two or more distinct nodes of a distributed database.

• What Are Distributed Transactions?
A distributed transaction includes one or more statements that, individually or as a
group, update data on two or more distinct nodes of a distributed database.

• Session Trees for Distributed Transactions
A session tree is a hierarchical model that describes the relationships among sessions and
their roles.

• Two-Phase Commit Mechanism
In a distributed database environment, the database must coordinate the committing or
rolling back of the changes in a distributed transaction as a self-contained unit.

• In-Doubt Transactions
A transaction becomes in-doubt if the two-phase commit mechanism fails.

• Distributed Transaction Processing: Case Study
A case study illustrates distributed transaction processing.

34.1 What Are Distributed Transactions?
A distributed transaction includes one or more statements that, individually or as a group,
update data on two or more distinct nodes of a distributed database.

For example, assume the database configuration depicted in Figure 34-1:

Figure 34-1 Distributed System

SALES

HQ

MAINT

Oracle Net

database link

Oracle Net

database link

SCOTT

dept table

bldg table

emp table

34-1

The following distributed transaction executed by scott updates the local sales database, the
remote hq database, and the remote maint database:

UPDATE scott.dept@hq.us.example.com
 SET loc = 'REDWOOD SHORES'
 WHERE deptno = 10;
UPDATE scott.emp
 SET deptno = 11
 WHERE deptno = 10;
UPDATE scott.bldg@maint.us.example.com
 SET room = 1225
 WHERE room = 1163;
COMMIT;

Note:

If all statements of a transaction reference only a single remote node, then the
transaction is remote, not distributed.

There are two types of permissible operations in distributed transactions: DML and DDL
transactions, and transaction control statement.

• DML and DDL Transactions
Some DML and DDL operations are supported in a distributed transaction.

• Transaction Control Statements
Some transaction control statements are supported in distributed transactions.

34.1.1 DML and DDL Transactions
Some DML and DDL operations are supported in a distributed transaction.

The following are the DML and DDL operations supported in a distributed transaction:

• CREATE TABLE AS SELECT
• DELETE
• INSERT (default and direct load)

• UPDATE
• LOCK TABLE
• SELECT
• SELECT FOR UPDATE
You can execute DML and DDL statements in parallel, and INSERT direct load statements
serially, but note the following restrictions:

• All remote operations must be SELECT statements.

• These statements must not be clauses in another distributed transaction.

• If the table referenced in the table_expression_clause of an INSERT, UPDATE, or DELETE
statement is remote, then execution is serial rather than parallel.

• You cannot perform remote operations after issuing parallel DML/DDL or direct load
INSERT.

Chapter 34
What Are Distributed Transactions?

34-2

• If the transaction begins using XA or OCI, it executes serially.

• No loopback operations can be performed on the transaction originating the parallel
operation. For example, you cannot reference a remote object that is actually a synonym
for a local object.

• If you perform a distributed operation other than a SELECT in the transaction, no DML is
parallelized.

34.1.2 Transaction Control Statements
Some transaction control statements are supported in distributed transactions.

The following are the supported transaction control statements:

• COMMIT
• ROLLBACK
• SAVEPOINT

See Also:

Oracle Database SQL Language Reference for more information about these
SQL statements

34.2 Session Trees for Distributed Transactions
A session tree is a hierarchical model that describes the relationships among sessions and
their roles.

• About Session Trees for Distributed Transactions
As the statements in a distributed transaction are issued, the database defines a session
tree of all nodes participating in the transaction.

• Clients
A node acts as a client when it references information from a database on another node.

• Database Servers
A database server is a node that hosts a database from which a client requests data.

• Local Coordinators
A node that must reference data on other nodes to complete its part in the distributed
transaction is called a local coordinator.

• Global Coordinator
The node where the distributed transaction originates is called the global coordinator.

• Commit Point Site
The system administrator always designates one node to be the commit point site.

34.2.1 About Session Trees for Distributed Transactions
As the statements in a distributed transaction are issued, the database defines a session tree
of all nodes participating in the transaction.

A session tree is a hierarchical model that describes the relationships among sessions and
their roles. Figure 34-2 illustrates a session tree:

Chapter 34
Session Trees for Distributed Transactions

34-3

Figure 34-2 Example of a Session Tree

WAREHOUSE.EXAMPLE.COM FINANCE.EXAMPLE.COM

INSERT INTO orders...;
UPDATE inventory @ warehouse...;
UPDATE accts_rec @ finance...;
.
COMMIT;

SALES.EXAMPLE.COM

Global Coordinator

Commit Point Site

Database Server

Client

All nodes participating in the session tree of a distributed transaction assume one or more of
the following roles:

Role Description

Client A node that references information in a database belonging to a different
node.

Database server A node that receives a request for information from another node.

Global coordinator The node that originates the distributed transaction.

Local coordinator A node that is forced to reference data on other nodes to complete its part
of the transaction.

Commit point site The node that commits or rolls back the transaction as instructed by the
global coordinator.

The role a node plays in a distributed transaction is determined by:

• Whether the transaction is local or remote

• The commit point strength of the node ("Commit Point Site ")

• Whether all requested data is available at a node, or whether other nodes need to be
referenced to complete the transaction

• Whether the node is read-only

34.2.2 Clients
A node acts as a client when it references information from a database on another node.

The referenced node is a database server. In Figure 34-2, the node sales is a client of the
nodes that host the warehouse and finance databases.

Chapter 34
Session Trees for Distributed Transactions

34-4

34.2.3 Database Servers
A database server is a node that hosts a database from which a client requests data.

In Figure 34-2, an application at the sales node initiates a distributed transaction that accesses
data from the warehouse and finance nodes. Therefore, sales.example.com has the role of
client node, and warehouse and finance are both database servers. In this example, sales is a
database server and a client because the application also modifies data in the sales database.

34.2.4 Local Coordinators
A node that must reference data on other nodes to complete its part in the distributed
transaction is called a local coordinator.

In Figure 34-2, sales is a local coordinator because it coordinates the nodes it directly
references: warehouse and finance. The node sales also happens to be the global
coordinator because it coordinates all the nodes involved in the transaction.

A local coordinator is responsible for coordinating the transaction among the nodes it
communicates directly with by:

• Receiving and relaying transaction status information to and from those nodes

• Passing queries to those nodes

• Receiving queries from those nodes and passing them on to other nodes

• Returning the results of queries to the nodes that initiated them

34.2.5 Global Coordinator
The node where the distributed transaction originates is called the global coordinator.

The database application issuing the distributed transaction is directly connected to the node
acting as the global coordinator. For example, in Figure 34-2, the transaction issued at the
node sales references information from the database servers warehouse and finance.
Therefore, sales.example.com is the global coordinator of this distributed transaction.

The global coordinator becomes the parent or root of the session tree. The global coordinator
performs the following operations during a distributed transaction:

• Sends all of the distributed transaction SQL statements, remote procedure calls, and so
forth to the directly referenced nodes, thus forming the session tree

• Instructs all directly referenced nodes other than the commit point site to prepare the
transaction

• Instructs the commit point site to initiate the global commit of the transaction if all nodes
prepare successfully

• Instructs all nodes to initiate a global rollback of the transaction if there is a terminate
response

34.2.6 Commit Point Site
The system administrator always designates one node to be the commit point site.

Chapter 34
Session Trees for Distributed Transactions

34-5

• About the Commit Point Site
The job of the commit point site is to initiate a commit or roll back operation as instructed
by the global coordinator.

• How a Distributed Transaction Commits
A distributed transaction is considered committed after all non-commit-point sites are
prepared, and the transaction has been actually committed at the commit point site.

• Commit Point Strength
Every database server must be assigned a commit point strength. If a database server is
referenced in a distributed transaction, the value of its commit point strength determines
which role it plays in the two-phase commit.

34.2.6.1 About the Commit Point Site
The job of the commit point site is to initiate a commit or roll back operation as instructed by
the global coordinator.

The system administrator always designates one node to be the commit point site in the
session tree by assigning all nodes a commit point strength. The node selected as commit
point site should be the node that stores the most critical data.

Figure 34-3 illustrates an example of distributed system, with sales serving as the commit
point site:

Figure 34-3 Commit Point Site

SALES

WAREHOUSE

COMMIT_POINT_STRENGTH = 100

COMMIT_POINT_STRENGTH = 75

FINANCE

COMMIT_POINT_STRENGTH = 50

The commit point site is distinct from all other nodes involved in a distributed transaction in
these ways:

• The commit point site never enters the prepared state. Consequently, if the commit point
site stores the most critical data, this data never remains in-doubt, even if a failure occurs.
In failure situations, failed nodes remain in a prepared state, holding necessary locks on
data until in-doubt transactions are resolved.

• The commit point site commits before the other nodes involved in the transaction. In effect,
the outcome of a distributed transaction at the commit point site determines whether the
transaction at all nodes is committed or rolled back: the other nodes follow the lead of the

Chapter 34
Session Trees for Distributed Transactions

34-6

commit point site. The global coordinator ensures that all nodes complete the transaction
in the same manner as the commit point site.

34.2.6.2 How a Distributed Transaction Commits
A distributed transaction is considered committed after all non-commit-point sites are prepared,
and the transaction has been actually committed at the commit point site.

The redo log at the commit point site is updated as soon as the distributed transaction is
committed at this node.

Because the commit point log contains a record of the commit, the transaction is considered
committed even though some participating nodes may still be only in the prepared state and
the transaction not yet actually committed at these nodes. In the same way, a distributed
transaction is considered not committed if the commit has not been logged at the commit point
site.

34.2.6.3 Commit Point Strength
Every database server must be assigned a commit point strength. If a database server is
referenced in a distributed transaction, the value of its commit point strength determines which
role it plays in the two-phase commit.

Specifically, the commit point strength determines whether a given node is the commit point
site in the distributed transaction and thus commits before all of the other nodes. This value is
specified using the initialization parameter COMMIT_POINT_STRENGTH. This section explains how
the database determines the commit point site.

The commit point site, which is determined at the beginning of the prepare phase, is selected
only from the nodes participating in the transaction. The following sequence of events occurs:

1. Of the nodes directly referenced by the global coordinator, the database selects the node
with the highest commit point strength as the commit point site.

2. The initially-selected node determines if any of the nodes from which it has to obtain
information for this transaction has a higher commit point strength.

3. Either the node with the highest commit point strength directly referenced in the transaction
or one of its servers with a higher commit point strength becomes the commit point site.

4. After the final commit point site has been determined, the global coordinator sends prepare
responses to all nodes participating in the transaction.

Figure 34-4 shows in a sample session tree the commit point strengths of each node (in
parentheses) and shows the node chosen as the commit point site:

Chapter 34
Session Trees for Distributed Transactions

34-7

Figure 34-4 Commit Point Strengths and Determination of the Commit Point Site

Global Coordinator

Commit Point Site

Database Server

Client

SALES.EXAMPLE.COM

(45)

HQ.EXAMPLE.COM

(165)

HR.EXAMPLE.COM

(45)

FINANCE.EXAMPLE.COM

(45)

WAREHOUSE.EXAMPLE.COM

(140)

The following conditions apply when determining the commit point site:

• A read-only node cannot be the commit point site.

• If multiple nodes directly referenced by the global coordinator have the same commit point
strength, then the database designates one of these as the commit point site.

• If a distributed transaction ends with a rollback, then the prepare and commit phases are
not needed. Consequently, the database never determines a commit point site. Instead,
the global coordinator sends a ROLLBACK statement to all nodes and ends the processing of
the distributed transaction.

As Figure 34-4 illustrates, the commit point site and the global coordinator can be different
nodes of the session tree. The commit point strength of each node is communicated to the
coordinators when the initial connections are made. The coordinators retain the commit point
strengths of each node they are in direct communication with so that commit point sites can be
efficiently selected during two-phase commits. Therefore, it is not necessary for the commit
point strength to be exchanged between a coordinator and a node each time a commit occurs.

See Also:

• "Specifying the Commit Point Strength of a Node" to learn how to set the commit
point strength of a node

• Oracle Database Reference for more information about the initialization
parameter COMMIT_POINT_STRENGTH

Chapter 34
Session Trees for Distributed Transactions

34-8

34.3 Two-Phase Commit Mechanism
In a distributed database environment, the database must coordinate the committing or rolling
back of the changes in a distributed transaction as a self-contained unit.

• About the Two-Phase Commit Mechanism
Unlike a transaction on a local database, a distributed transaction involves altering data on
multiple databases. Consequently, distributed transaction processing is more complicated,
because the database must coordinate the committing or rolling back of the changes in a
transaction as a self-contained unit. In other words, the entire transaction commits, or the
entire transaction rolls back.

• Prepare Phase
Prepare phase is the first phase in committing a distributed transaction.

• Commit Phase
The second phase in committing a distributed transaction is the commit phase. Before this
phase occurs, all nodes other than the commit point site referenced in the distributed
transaction have guaranteed that they are prepared, that is, they have the necessary
resources to commit the transaction.

• Forget Phase
After the participating nodes notify the commit point site that they have committed, the
commit point site can forget about the transaction.

34.3.1 About the Two-Phase Commit Mechanism
Unlike a transaction on a local database, a distributed transaction involves altering data on
multiple databases. Consequently, distributed transaction processing is more complicated,
because the database must coordinate the committing or rolling back of the changes in a
transaction as a self-contained unit. In other words, the entire transaction commits, or the
entire transaction rolls back.

The database ensures the integrity of data in a distributed transaction using the two-phase
commit mechanism. In the prepare phase, the initiating node in the transaction asks the
other participating nodes to promise to commit or roll back the transaction. During the commit
phase, the initiating node asks all participating nodes to commit the transaction. If this
outcome is not possible, then all nodes are asked to roll back.

All participating nodes in a distributed transaction should perform the same action: they should
either all commit or all perform a rollback of the transaction. The database automatically
controls and monitors the commit or rollback of a distributed transaction and maintains the
integrity of the global database (the collection of databases participating in the transaction)
using the two-phase commit mechanism. This mechanism is completely transparent, requiring
no programming on the part of the user or application developer.

The commit mechanism has the following distinct phases, which the database performs
automatically whenever a user commits a distributed transaction:

Phase Description

Prepare phase The initiating node, called the global coordinator, asks participating
nodes other than the commit point site to promise to commit or roll back
the transaction, even if there is a failure. If any node cannot prepare, the
transaction is rolled back.

Chapter 34
Two-Phase Commit Mechanism

34-9

Phase Description

Commit phase If all participants respond to the coordinator that they are prepared, then
the coordinator asks the commit point site to commit. After it commits, the
coordinator asks all other nodes to commit the transaction.

Forget phase The global coordinator forgets about the transaction.

34.3.2 Prepare Phase
Prepare phase is the first phase in committing a distributed transaction.

• About Prepare Phase
The first phase in committing a distributed transaction is the prepare phase.

• Types of Responses in the Prepare Phase
When a node is told to prepare, it can respond in the different ways.

• Steps in the Prepare Phase
The prepare phase in the two-phase commit process includes specific steps.

34.3.2.1 About Prepare Phase
The first phase in committing a distributed transaction is the prepare phase.

In this phase, the database does not actually commit or roll back the transaction. Instead, all
nodes referenced in a distributed transaction (except the commit point site, described in the
"Commit Point Site ") are told to prepare to commit. By preparing, a node:

• Records information in the redo logs so that it can subsequently either commit or roll back
the transaction, regardless of intervening failures

• Places a distributed lock on modified tables, which prevents reads

When a node responds to the global coordinator that it is prepared to commit, the prepared
node promises to either commit or roll back the transaction later, but does not make a
unilateral decision on whether to commit or roll back the transaction. The promise means that if
an instance failure occurs at this point, the node can use the redo records in the online log to
recover the database back to the prepare phase.

Note:

Queries that start after a node has prepared cannot access the associated locked
data until all phases complete. The time is insignificant unless a failure occurs (see
"Deciding How to Handle In-Doubt Transactions").

34.3.2.2 Types of Responses in the Prepare Phase
When a node is told to prepare, it can respond in the different ways.

Response Meaning

Prepared Data on the node has been modified by a statement in the distributed
transaction, and the node has successfully prepared.

Chapter 34
Two-Phase Commit Mechanism

34-10

Response Meaning

Read-only No data on the node has been, or can be, modified (only queried), so no
preparation is necessary.

Abort The node cannot successfully prepare.

• Prepared Response
When a node has successfully prepared, it issues a prepared message.

• Read-Only Response
When a node is asked to prepare, and the SQL statements affecting the database do not
change any data on the node, the node responds with a read-only message.

• Abort Response
The abort message results in specific actions.

34.3.2.2.1 Prepared Response
When a node has successfully prepared, it issues a prepared message.

The message indicates that the node has records of the changes in the online log, so it is
prepared either to commit or perform a rollback. The message also guarantees that locks held
for the transaction can survive a failure.

34.3.2.2.2 Read-Only Response
When a node is asked to prepare, and the SQL statements affecting the database do not
change any data on the node, the node responds with a read-only message.

The message indicates that the node will not participate in the commit phase.

There are three cases in which all or part of a distributed transaction is read-only:

Case Conditions Consequence

Partially read-only Any of the following occurs:

• Only queries are issued at
one or more nodes.

• No data is changed.
• Changes rolled back due to

triggers firing or constraint
violations.

The read-only nodes recognize their
status when asked to prepare. They give
their local coordinators a read-only
response. Thus, the commit phase
completes faster because the database
eliminates read-only nodes from
subsequent processing.

Completely read-only
with prepare phase

All of following occur:

• No data changes.
• Transaction is not started with

SET TRANSACTION READ
ONLY statement.

All nodes recognize that they are read-
only during prepare phase, so no commit
phase is required. The global coordinator,
not knowing whether all nodes are read-
only, must still perform the prepare
phase.

Completely read-only
without two-phase
commit

All of following occur:

• No data changes.
• Transaction is started with

SET TRANSACTION READ
ONLY statement.

Only queries are allowed in the
transaction, so global coordinator does
not have to perform two-phase commit.
Changes by other transactions do not
degrade global transaction-level read
consistency because of global SCN
coordination among nodes. The
transaction does not use undo segments.

Chapter 34
Two-Phase Commit Mechanism

34-11

Note that if a distributed transaction is set to read-only, then it does not use undo segments. If
many users connect to the database and their transactions are not set to READ ONLY, then they
allocate undo space even if they are only performing queries.

34.3.2.2.3 Abort Response
The abort message results in specific actions.

When a node cannot successfully prepare, it performs the following actions:

1. Releases resources currently held by the transaction and rolls back the local portion of the
transaction.

2. Responds to the node that referenced it in the distributed transaction with an abort
message.

These actions then propagate to the other nodes involved in the distributed transaction so that
they can roll back the transaction and guarantee the integrity of the data in the global
database. This response enforces the primary rule of a distributed transaction: all nodes
involved in the transaction either all commit or all roll back the transaction at the same logical
time.

34.3.2.3 Steps in the Prepare Phase
The prepare phase in the two-phase commit process includes specific steps.

To complete the prepare phase, each node excluding the commit point site performs the
following steps:

1. The node requests that its descendants, that is, the nodes subsequently referenced,
prepare to commit.

2. The node checks to see whether the transaction changes data on itself or its descendants.
If there is no change to the data, then the node skips the remaining steps and returns a
read-only response (see "Read-Only Response").

3. The node allocates the resources it must commit the transaction if data is changed.

4. The node saves redo records corresponding to changes made by the transaction to its
redo log.

5. The node guarantees that locks held for the transaction are able to survive a failure.

6. The node responds to the initiating node with a prepared response (see "Prepared
Response") or, if its attempt or the attempt of one of its descendents to prepare was
unsuccessful, with an abort response (see "Abort Response").

These actions guarantee that the node can subsequently commit or roll back the transaction
on the node. The prepared nodes then wait until a COMMIT or ROLLBACK request is received from
the global coordinator.

After the nodes are prepared, the distributed transaction is said to be in-doubt (see "In-Doubt
Transactions"). It retains in-doubt status until all changes are either committed or rolled back.

34.3.3 Commit Phase
The second phase in committing a distributed transaction is the commit phase. Before this
phase occurs, all nodes other than the commit point site referenced in the distributed
transaction have guaranteed that they are prepared, that is, they have the necessary
resources to commit the transaction.

Chapter 34
Two-Phase Commit Mechanism

34-12

• Steps in the Commit Phase
The commit phase in the two-phase commit process includes specific steps.

• Guaranteeing Global Database Consistency
Each committed transaction has an associated system change number (SCN) to uniquely
identify the changes made by the SQL statements within that transaction.

34.3.3.1 Steps in the Commit Phase
The commit phase in the two-phase commit process includes specific steps.

The commit phase consists of the following steps:

1. The global coordinator instructs the commit point site to commit.

2. The commit point site commits.

3. The commit point site informs the global coordinator that it has committed.

4. The global and local coordinators send a message to all nodes instructing them to commit
the transaction.

5. At each node, the database commits the local portion of the distributed transaction and
releases locks.

6. At each node, the database records an additional redo entry in the local redo log,
indicating that the transaction has committed.

7. The participating nodes notify the global coordinator that they have committed.

When the commit phase is complete, the data on all nodes of the distributed system is
consistent.

34.3.3.2 Guaranteeing Global Database Consistency
Each committed transaction has an associated system change number (SCN) to uniquely
identify the changes made by the SQL statements within that transaction.

The SCN functions as an internal timestamp that uniquely identifies a committed version of the
database.

In a distributed system, the SCNs of communicating nodes are coordinated when all of the
following actions occur:

• A connection occurs using the path described by one or more database links

• A distributed SQL statement executes

• A distributed transaction commits

Among other benefits, the coordination of SCNs among the nodes of a distributed system
ensures global read-consistency at both the statement and transaction level. If necessary,
global time-based recovery can also be completed.

During the prepare phase, the database determines the highest SCN at all nodes involved in
the transaction. The transaction then commits with the high SCN at the commit point site. The
commit SCN is then sent to all prepared nodes with the commit decision.

Chapter 34
Two-Phase Commit Mechanism

34-13

See Also:

"Managing Read Consistency" for information about managing time lag issues in
read consistency

34.3.4 Forget Phase
After the participating nodes notify the commit point site that they have committed, the commit
point site can forget about the transaction.

The following steps occur:

1. After receiving notice from the global coordinator that all nodes have committed, the
commit point site erases status information about this transaction.

2. The commit point site informs the global coordinator that it has erased the status
information.

3. The global coordinator erases its own information about the transaction.

34.4 In-Doubt Transactions
A transaction becomes in-doubt if the two-phase commit mechanism fails.

• About In-Doubt Transactions
The two-phase commit mechanism ensures that all nodes either commit or perform a
rollback together. What happens if any of the three phases fails because of a system or
network error? The transaction becomes in-doubt.

• Automatic Resolution of In-Doubt Transactions
In the majority of cases, the database resolves the in-doubt transaction automatically.
Assume that there are two nodes, local and remote, in the following scenarios. The local
node is the commit point site. User scott connects to local and executes and commits a
distributed transaction that updates local and remote.

• Manual Resolution of In-Doubt Transactions
In some cases, you must resolve an in-doubt transaction manually.

• Relevance of System Change Numbers for In-Doubt Transactions
A system change number (SCN) is an internal timestamp for a committed version of the
database. The Oracle Database server uses the SCN clock value to guarantee transaction
consistency.

34.4.1 About In-Doubt Transactions
The two-phase commit mechanism ensures that all nodes either commit or perform a rollback
together. What happens if any of the three phases fails because of a system or network error?
The transaction becomes in-doubt.

Distributed transactions can become in-doubt in the following ways:

• A server system running Oracle Database software crashes

• A network connection between two or more Oracle Databases involved in distributed
processing is disconnected

Chapter 34
In-Doubt Transactions

34-14

• An unhandled software error occurs

The RECO process automatically resolves in-doubt transactions when the system, network, or
software problem is resolved. Until RECO can resolve the transaction, the data is locked for
both reads and writes. The database blocks reads because it cannot determine which version
of the data to display for a query.

34.4.2 Automatic Resolution of In-Doubt Transactions
In the majority of cases, the database resolves the in-doubt transaction automatically. Assume
that there are two nodes, local and remote, in the following scenarios. The local node is the
commit point site. User scott connects to local and executes and commits a distributed
transaction that updates local and remote.

• Failure During the Prepare Phase
An example illustrates the steps that are followed when there is a failure during the prepare
phase of a two-phase transaction.

• Failure During the Commit Phase
An example illustrates the steps that are followed when there is a failure during the commit
phase of a two-phase transaction.

34.4.2.1 Failure During the Prepare Phase
An example illustrates the steps that are followed when there is a failure during the prepare
phase of a two-phase transaction.

Figure 34-5 illustrates the sequence of events when there is a failure during the prepare phase
of a distributed transaction:

Figure 34-5 Failure During Prepare Phase

Local

SCOTT

Remote

COMMIT_POINT_STRENGTH = 200 COMMIT_POINT_STRENGTH = 100

1

3 Crashes before giving

prepare response

Issues distributed

transaction

2 Asks REMOTE to prepare

4 All databases perform

rollback

The following steps occur:

1. User SCOTT connects to Local and executes a distributed transaction.

Chapter 34
In-Doubt Transactions

34-15

2. The global coordinator, which in this example is also the commit point site, requests all
databases other than the commit point site to promise to commit or roll back when told to
do so.

3. The remote database crashes before issuing the prepare response back to local.

4. The transaction is ultimately rolled back on each database by the RECO process when the
remote site is restored.

34.4.2.2 Failure During the Commit Phase
An example illustrates the steps that are followed when there is a failure during the commit
phase of a two-phase transaction.

Figure 34-6 illustrates the sequence of events when there is a failure during the commit phase
of a distributed transaction:

Figure 34-6 Failure During Commit Phase

Local

SCOTT

Remote

COMMIT_POINT_STRENGTH = 200 COMMIT_POINT_STRENGTH = 100

1

5 Receives commit message,

but cannot respond

Issues distributed

transaction

2 Asks REMOTE to prepare

3 Receives prepare message from REMOTE

4 Asks REMOTE to commit

6 All databases commit after

network restored

The following steps occur:

1. User Scott connects to local and executes a distributed transaction.

2. The global coordinator, which in this case is also the commit point site, requests all
databases other than the commit point site to promise to commit or roll back when told to
do so.

3. The commit point site receives a prepared message from remote saying that it will commit.

4. The commit point site commits the transaction locally, then sends a commit message to
remote asking it to commit.

5. The remote database receives the commit message, but cannot respond because of a
network failure.

6. The transaction is ultimately committed on the remote database by the RECO process
after the network is restored.

Chapter 34
In-Doubt Transactions

34-16

See Also:

"Deciding How to Handle In-Doubt Transactions" for a description of failure
situations and how the database resolves intervening failures during two-phase
commit

34.4.3 Manual Resolution of In-Doubt Transactions
In some cases, you must resolve an in-doubt transaction manually.

You should only need to resolve an in-doubt transaction manually in the following cases:

• The in-doubt transaction has locks on critical data or undo segments.

• The cause of the system, network, or software failure cannot be repaired quickly.

Resolution of in-doubt transactions can be complicated. The procedure requires that you do
the following:

• Identify the transaction identification number for the in-doubt transaction.

• Query the DBA_2PC_PENDING and DBA_2PC_NEIGHBORS views to determine whether the
databases involved in the transaction have committed.

• If necessary, force a commit using the COMMIT FORCE statement or a rollback using the
ROLLBACK FORCE statement.

See Also:

The following sections explain how to resolve in-doubt transactions:

– "Deciding How to Handle In-Doubt Transactions"

– "Manually Overriding In-Doubt Transactions"

34.4.4 Relevance of System Change Numbers for In-Doubt Transactions
A system change number (SCN) is an internal timestamp for a committed version of the
database. The Oracle Database server uses the SCN clock value to guarantee transaction
consistency.

For example, when a user commits a transaction, the database records an SCN for this
commit in the redo log.

The database uses SCNs to coordinate distributed transactions among different databases.
For example, the database uses SCNs in the following way:

1. An application establishes a connection using a database link.

2. The distributed transaction commits with the highest global SCN among all the databases
involved.

3. The commit global SCN is sent to all databases involved in the transaction.

SCNs are important for distributed transactions because they function as a synchronized
commit timestamp of a transaction, even if the transaction fails. If a transaction becomes in-
doubt, an administrator can use this SCN to coordinate changes made to the global database.

Chapter 34
In-Doubt Transactions

34-17

The global SCN for the transaction commit can also be used to identify the transaction later, for
example, in distributed recovery.

34.5 Distributed Transaction Processing: Case Study
A case study illustrates distributed transaction processing.

• About the Distributed Transaction Processing Case Study
In this scenario, a company has separate Oracle Database servers, sales.example.com
and warehouse.example.com. As users insert sales records into the sales database,
associated records are being updated at the warehouse database.

• Stage 1: Client Application Issues DML Statements
An example illustrates the first stage in distributed transaction processing.

• Stage 2: Oracle Database Determines Commit Point Site
An example illustrates the second stage in distributed transaction processing.

• Stage 3: Global Coordinator Sends Prepare Response
An example illustrates the third stage in distributed transaction processing.

• Stage 4: Commit Point Site Commits
An example illustrates the fourth stage in distributed transaction processing.

• Stage 5: Commit Point Site Informs Global Coordinator of Commit
An example illustrates the fifth stage in distributed transaction processing.

• Stage 6: Global and Local Coordinators Tell All Nodes to Commit
An example illustrates the sixth stage in distributed transaction processing.

• Stage 7: Global Coordinator and Commit Point Site Complete the Commit
An example illustrates the seventh stage in distributed transaction processing.

34.5.1 About the Distributed Transaction Processing Case Study
In this scenario, a company has separate Oracle Database servers, sales.example.com and
warehouse.example.com. As users insert sales records into the sales database, associated
records are being updated at the warehouse database.

This case study of distributed processing illustrates:

• The definition of a session tree

• How a commit point site is determined

• When prepare messages are sent

• When a transaction actually commits

• What information is stored locally about the transaction

34.5.2 Stage 1: Client Application Issues DML Statements
An example illustrates the first stage in distributed transaction processing.

At the Sales department, a salesperson uses SQL*Plus to enter a sales order and then commit
it. The application issues several SQL statements to enter the order into the sales database
and update the inventory in the warehouse database:

CONNECT scott@sales.example.com ...;
INSERT INTO orders ...;

Chapter 34
Distributed Transaction Processing: Case Study

34-18

UPDATE inventory@warehouse.example.com ...;
INSERT INTO orders ...;
UPDATE inventory@warehouse.example.com ...;
COMMIT;

These SQL statements are part of a single distributed transaction, guaranteeing that all issued
SQL statements succeed or fail as a unit. Treating the statements as a unit prevents the
possibility of an order being placed and then inventory not being updated to reflect the order. In
effect, the transaction guarantees the consistency of data in the global database.

As each of the SQL statements in the transaction executes, the session tree is defined, as
shown in Figure 34-7.

Figure 34-7 Defining the Session Tree

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.EXAMPLE.COM

SALES.EXAMPLE.COM

SQL

INSERT INTO orders...;
UPDATE inventory @ warehouse...;
INSERT INTO orders...;
UPDATE inventory @ warehouse...;
COMMIT;

Note the following aspects of the transaction:

• An order entry application running on the sales database initiates the transaction.
Therefore, sales.example.com is the global coordinator for the distributed transaction.

• The order entry application inserts a new sales record into the sales database and
updates the inventory at the warehouse. Therefore, the nodes sales.example.com and
warehouse.example.com are both database servers.

• Because sales.example.com updates the inventory, it is a client of
warehouse.example.com.

This stage completes the definition of the session tree for this distributed transaction. Each
node in the tree has acquired the necessary data locks to execute the SQL statements that
reference local data. These locks remain even after the SQL statements have been executed
until the two-phase commit is completed.

34.5.3 Stage 2: Oracle Database Determines Commit Point Site
An example illustrates the second stage in distributed transaction processing.

Chapter 34
Distributed Transaction Processing: Case Study

34-19

The database determines the commit point site immediately following the COMMIT statement.
sales.example.com, the global coordinator, is determined to be the commit point site, as
shown in Figure 34-8.

See Also:

"Commit Point Strength" for more information about how the commit point site is
determined

Figure 34-8 Determining the Commit Point Site

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.EXAMPLE.COM

SALES.EXAMPLE.COM

Commit

34.5.4 Stage 3: Global Coordinator Sends Prepare Response
An example illustrates the third stage in distributed transaction processing.

The prepare stage involves the following steps:

1. After the database determines the commit point site, the global coordinator sends the
prepare message to all directly referenced nodes of the session tree, excluding the commit
point site. In this example, warehouse.example.com is the only node asked to prepare.

2. Node warehouse.example.com tries to prepare. If a node can guarantee that it can commit
the locally dependent part of the transaction and can record the commit information in its
local redo log, then the node can successfully prepare. In this example, only
warehouse.example.com receives a prepare message because sales.example.com is the
commit point site.

3. Node warehouse.example.com responds to sales.example.com with a prepared message.

As each node prepares, it sends a message back to the node that asked it to prepare.
Depending on the responses, one of the following can happen:

• If any of the nodes asked to prepare responds with an abort message to the global
coordinator, then the global coordinator tells all nodes to roll back the transaction, and the
operation is completed.

• If all nodes asked to prepare respond with a prepared or a read-only message to the global
coordinator, that is, they have successfully prepared, then the global coordinator asks the
commit point site to commit the transaction.

Chapter 34
Distributed Transaction Processing: Case Study

34-20

Figure 34-9 Sending and Acknowledging the Prepare Message

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.EXAMPLE.COM

SALES.EXAMPLE.COM

Sales to Warehouse

”Please prepare”
Warehouse to Sales

”Prepared”

1.

2.

34.5.5 Stage 4: Commit Point Site Commits
An example illustrates the fourth stage in distributed transaction processing.

The committing of the transaction by the commit point site involves the following steps:

1. Node sales.example.com, receiving acknowledgment that warehouse.example.com is
prepared, instructs the commit point site to commit the transaction.

2. The commit point site now commits the transaction locally and records this fact in its local
redo log.

Even if warehouse.example.com has not yet committed, the outcome of this transaction is
predetermined. In other words, the transaction will be committed at all nodes even if the ability
of a given node to commit is delayed.

34.5.6 Stage 5: Commit Point Site Informs Global Coordinator of Commit
An example illustrates the fifth stage in distributed transaction processing.

This stage involves the following steps:

1. The commit point site tells the global coordinator that the transaction has committed.
Because the commit point site and global coordinator are the same node in this example,
no operation is required. The commit point site knows that the transaction is committed
because it recorded this fact in its online log.

2. The global coordinator confirms that the transaction has been committed on all other
nodes involved in the distributed transaction.

34.5.7 Stage 6: Global and Local Coordinators Tell All Nodes to Commit
An example illustrates the sixth stage in distributed transaction processing.

The committing of the transaction by all the nodes in the transaction involves the following
steps:

1. After the global coordinator has been informed of the commit at the commit point site, it
tells all other directly referenced nodes to commit.

Chapter 34
Distributed Transaction Processing: Case Study

34-21

2. In turn, any local coordinators instruct their servers to commit, and so on.

3. Each node, including the global coordinator, commits the transaction and records
appropriate redo log entries locally. As each node commits, the resource locks that were
being held locally for that transaction are released.

In Figure 34-10, sales.example.com, which is both the commit point site and the global
coordinator, has already committed the transaction locally. sales now instructs
warehouse.example.com to commit the transaction.

Figure 34-10 Instructing Nodes to Commit

Global Coordinator

Commit Point Site

Database Server

ClientWAREHOUSE.EXAMPLE.COM

SALES.EXAMPLE.COM

Sales to Warehouse:

”Commit”

34.5.8 Stage 7: Global Coordinator and Commit Point Site Complete the
Commit

An example illustrates the seventh stage in distributed transaction processing.

The completion of the commit of the transaction occurs in the following steps:

1. After all referenced nodes and the global coordinator have committed the transaction, the
global coordinator informs the commit point site of this fact.

2. The commit point site, which has been waiting for this message, erases the status
information about this distributed transaction.

3. The commit point site informs the global coordinator that it is finished. In other words, the
commit point site forgets about committing the distributed transaction. This action is
permissible because all nodes involved in the two-phase commit have committed the
transaction successfully, so they will never have to determine its status in the future.

4. The global coordinator finalizes the transaction by forgetting about the transaction itself.

After the completion of the COMMIT phase, the distributed transaction is itself complete. The
steps described are accomplished automatically and in a fraction of a second.

Chapter 34
Distributed Transaction Processing: Case Study

34-22

35
Managing Distributed Transactions

Managing distributed transactions includes tasks such as specifying the comment point
strength of a node, naming transactions, and managing in-doubt transactions.

• Specifying the Commit Point Strength of a Node
The database with the highest commit point strength determines which node commits first
in a distributed transaction.

• Naming Transactions
You can name a transaction. This is useful for identifying a specific distributed transaction
and replaces the use of the COMMIT COMMENT statement for this purpose.

• Viewing Information About Distributed Transactions
The data dictionary of each database stores information about all open distributed
transactions. You can use data dictionary tables and views to gain information about the
transactions.

• Deciding How to Handle In-Doubt Transactions
A transaction is in-doubt when there is a failure during any aspect of the two-phase
commit. Distributed transactions become in-doubt in the following ways: a server system
running Oracle Database software crashes, a network connection between two or more
Oracle Databases involved in distributed processing is disconnected, or an unhandled
software error occurs.

• Manually Overriding In-Doubt Transactions
Use the COMMIT or ROLLBACK statement with the FORCE option and a text string that indicates
either the local or global transaction ID of the in-doubt transaction to commit.

• Purging Pending Rows from the Data Dictionary
You can purge pending rows from the data dictionary for in-doubt transactions.

• Manually Committing an In-Doubt Transaction: Example
An example illustrates manually committing an in-doubt transaction.

• Data Access Failures Due to Locks
When you issue a SQL statement, the database attempts to lock the resources needed to
successfully execute the statement. If the requested data is currently held by statements of
other uncommitted transactions, however, and remains locked for a long time, a timeout
occurs.

• Simulating Distributed Transaction Failure
You can force the failure of a distributed transaction to observe RECO automatically
resolving the local portion of the transaction or to practice manually resolving in-doubt
distributed transactions and observing the results.

• Managing Read Consistency
An important restriction exists in the Oracle Database implementation of distributed read
consistency.

• Enhancing Distributed Transaction Security
Distributed transaction security can be enhanced by modifying the
ALLOW_LEGACY_RECO_PROTOCOL parameter to FALSE.

35-1

35.1 Specifying the Commit Point Strength of a Node
The database with the highest commit point strength determines which node commits first in a
distributed transaction.

When specifying a commit point strength for each node, ensure that the most critical server will
be non-blocking if a failure occurs during a prepare or commit phase. The
COMMIT_POINT_STRENGTH initialization parameter determines the commit point strength of a
node.

The default value is operating system-dependent. The range of values is any integer from 0 to
255. For example, to set the commit point strength of a database to 200, include the following
line in the database initialization parameter file:

COMMIT_POINT_STRENGTH = 200

The commit point strength is only used to determine the commit point site in a distributed
transaction.

When setting the commit point strength for a database, note the following considerations:

• Because the commit point site stores information about the status of the transaction, the
commit point site should not be a node that is frequently unreliable or unavailable in case
other nodes need information about transaction status.

• Set the commit point strength for a database relative to the amount of critical shared data
in the database. For example, a database on a mainframe computer usually shares more
data among users than a database on a PC. Therefore, set the commit point strength of
the mainframe to a higher value than the PC.

See Also:

"Commit Point Site " for a conceptual overview of commit points

35.2 Naming Transactions
You can name a transaction. This is useful for identifying a specific distributed transaction and
replaces the use of the COMMIT COMMENT statement for this purpose.

To name a transaction, use the SET TRANSACTION...NAME statement. For example:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
 NAME 'update inventory checkpoint 0';

This example shows that the user started a new transaction with isolation level equal to
SERIALIZABLE and named it 'update inventory checkpoint 0'.

For distributed transactions, the name is sent to participating sites when a transaction is
committed. If a COMMIT COMMENT exists, it is ignored when a transaction name exists.

The transaction name is displayed in the NAME column of the V$TRANSACTION view, and in the
TRAN_COMMENT field of the DBA_2PC_PENDING view when the transaction is committed.

Chapter 35
Specifying the Commit Point Strength of a Node

35-2

35.3 Viewing Information About Distributed Transactions
The data dictionary of each database stores information about all open distributed
transactions. You can use data dictionary tables and views to gain information about the
transactions.

• Determining the ID Number and Status of Prepared Transactions
Use the DBA_2PC_PENDING view to determine the global commit number for a particular
transaction ID. You can use this global commit number when manually resolving an in-
doubt transaction.

• Tracing the Session Tree of In-Doubt Transactions
The DBA_2PC_NEIGHBORS view shows which in-doubt transactions are incoming from a
remote client and which are outgoing to a remote server.

35.3.1 Determining the ID Number and Status of Prepared Transactions
Use the DBA_2PC_PENDING view to determine the global commit number for a particular
transaction ID. You can use this global commit number when manually resolving an in-doubt
transaction.

The following view shows the database links that have been defined at the local database and
stored in the data dictionary:

View Purpose

DBA_2PC_PENDING Lists all in-doubt distributed transactions. The view is empty
until populated by an in-doubt transaction. After the
transaction is resolved, the view is purged.

The following table shows the most relevant columns (for a description of all the columns in the
view, see Oracle Database Reference):

Table 35-1 DBA_2PC_PENDING

Column Description

LOCAL_TRAN_ID Local transaction identifier in the format integer.integer.integer.

Note: When the LOCAL_TRAN_ID and the GLOBAL_TRAN_ID for a
connection are the same, the node is the global coordinator of the
transaction.

GLOBAL_TRAN_ID Global database identifier in the format
global_db_name.db_hex_id.local_tran_id, where db_hex_id is an eight-
character hexadecimal value used to uniquely identify the database. This
common transaction ID is the same on every node for a distributed
transaction.

Note: When the LOCAL_TRAN_ID and the GLOBAL_TRAN_ID for a
connection are the same, the node is the global coordinator of the
transaction.

Chapter 35
Viewing Information About Distributed Transactions

35-3

Table 35-1 (Cont.) DBA_2PC_PENDING

Column Description

STATE STATE can have the following values:

• Collecting

This category normally applies only to the global coordinator or local
coordinators. The node is currently collecting information from other
database servers before it can decide whether it can prepare.

• Prepared

The node has prepared and may or may not have acknowledged this
to its local coordinator with a prepared message. However, no
commit request has been received. The node remains prepared,
holding any local resource locks necessary for the transaction to
commit.

• Committed

The node (any type) has committed the transaction, but other nodes
involved in the transaction may not have done the same. That is, the
transaction is still pending at one or more nodes.

• Forced Commit

A pending transaction can be forced to commit at the discretion of a
database administrator. This entry occurs if a transaction is manually
committed at a local node.

• Forced termination (rollback)

A pending transaction can be forced to roll back at the discretion of a
database administrator. This entry occurs if this transaction is
manually rolled back at a local node.

MIXED YES means that part of the transaction was committed on one node and
rolled back on another node.

TRAN_COMMENT Transaction comment or, if using transaction naming, the transaction
name is placed here when the transaction is committed.

HOST Name of the host system.

COMMIT# Global commit number for committed transactions.

Execute the following script, named pending_txn_script, to query pertinent information in
DBA_2PC_PENDING (sample output included):

COL LOCAL_TRAN_ID FORMAT A13
COL GLOBAL_TRAN_ID FORMAT A30
COL STATE FORMAT A8
COL MIXED FORMAT A3
COL HOST FORMAT A10
COL COMMIT# FORMAT A10

SELECT LOCAL_TRAN_ID, GLOBAL_TRAN_ID, STATE, MIXED, HOST, COMMIT#
 FROM DBA_2PC_PENDING
/

SQL> @pending_txn_script

LOCAL_TRAN_ID GLOBAL_TRAN_ID STATE MIX HOST COMMIT#
------------- ------------------------------ -------- --- ---------- ----------
1.15.870 HQ.EXAMPLE.COM.ef192da4.1.15.870 commit no dlsun183 115499

Chapter 35
Viewing Information About Distributed Transactions

35-4

This output indicates that local transaction 1.15.870 has been committed on this node, but it
may be pending on one or more other nodes. Because LOCAL_TRAN_ID and the local part of
GLOBAL_TRAN_ID are the same, the node is the global coordinator of the transaction.

35.3.2 Tracing the Session Tree of In-Doubt Transactions
The DBA_2PC_NEIGHBORS view shows which in-doubt transactions are incoming from a remote
client and which are outgoing to a remote server.

View Purpose

DBA_2PC_NEIGHBORS Lists all incoming (from remote client) and outgoing (to remote
server) in-doubt distributed transactions. It also indicates whether the
local node is the commit point site in the transaction.

The view is empty until populated by an in-doubt transaction. After
the transaction is resolved, the view is purged.

When a transaction is in-doubt, you may need to determine which nodes performed which
roles in the session tree. Use to this view to determine:

• All the incoming and outgoing connections for a given transaction

• Whether the node is the commit point site in a given transaction

• Whether the node is a global coordinator in a given transaction (because its local
transaction ID and global transaction ID are the same)

The following table shows the most relevant columns (for an account of all the columns in the
view, see Oracle Database Reference):

Table 35-2 DBA_2PC_NEIGHBORS

Column Description

LOCAL_TRAN_ID Local transaction identifier with the format integer.integer.integer.

Note: When LOCAL_TRAN_ID and GLOBAL_TRAN_ID.DBA_2PC_PENDING
for a connection are the same, the node is the global coordinator of the
transaction.

IN_OUT IN for incoming transactions; OUT for outgoing transactions.

DATABASE For incoming transactions, the name of the client database that requested
information from this local node; for outgoing transactions, the name of
the database link used to access information on a remote server.

DBUSER_OWNER For incoming transactions, the local account used to connect by the
remote database link; for outgoing transactions, the owner of the
database link.

INTERFACE C is a commit message; N is either a message indicating a prepared state
or a request for a read-only commit.

When IN_OUT is OUT, C means that the child at the remote end of the
connection is the commit point site and knows whether to commit or
terminate. N means that the local node is informing the remote node that
it is prepared.

When IN_OUT is IN, C means that the local node or a database at the
remote end of an outgoing connection is the commit point site. N means
that the remote node is informing the local node that it is prepared.

Chapter 35
Viewing Information About Distributed Transactions

35-5

Execute the following script, named neighbors_script, to query pertinent information in
DBA_2PC_PENDING (sample output included):

COL LOCAL_TRAN_ID FORMAT A13
COL IN_OUT FORMAT A6
COL DATABASE FORMAT A25
COL DBUSER_OWNER FORMAT A15
COL INTERFACE FORMAT A3
SELECT LOCAL_TRAN_ID, IN_OUT, DATABASE, DBUSER_OWNER, INTERFACE
 FROM DBA_2PC_NEIGHBORS
/

SQL> CONNECT SYS@hq.example.com AS SYSDBA
SQL> @neighbors_script

LOCAL_TRAN_ID IN_OUT DATABASE DBUSER_OWNER INT
------------- ------ ------------------------- --------------- ---
1.15.870 out SALES.EXAMPLE.COM SYS C

This output indicates that the local node sent an outgoing request to remote server sales to
commit transaction 1.15.870. If sales committed the transaction but no other node did, then
you know that sales is the commit point site, because the commit point site always commits
first.

35.4 Deciding How to Handle In-Doubt Transactions
A transaction is in-doubt when there is a failure during any aspect of the two-phase commit.
Distributed transactions become in-doubt in the following ways: a server system running
Oracle Database software crashes, a network connection between two or more Oracle
Databases involved in distributed processing is disconnected, or an unhandled software error
occurs.

You can manually force the commit or rollback of a local, in-doubt distributed transaction.
Because this operation can generate consistency problems, perform it only when specific
conditions exist.

• Discovering Problems with a Two-Phase Commit
Error messages inform applications when there are problems with distributed transactions.

• Determining Whether to Perform a Manual Override
You should override an in-doubt transaction only under certain conditions.

• Analyzing the Transaction Data
If you decide to force the transaction to complete, then analyze the available information.

See Also:

In-Doubt Transactions

35.4.1 Discovering Problems with a Two-Phase Commit
Error messages inform applications when there are problems with distributed transactions.

The user application that commits a distributed transaction is informed of a problem by one of
the following error messages:

Chapter 35
Deciding How to Handle In-Doubt Transactions

35-6

ORA-02050: transaction ID rolled back,
 some remote dbs may be in-doubt
ORA-02053: transaction ID committed,
 some remote dbs may be in-doubt
ORA-02054: transaction ID in-doubt

A robust application should save information about a transaction if it receives any of the
preceding errors. This information can be used later if manual distributed transaction recovery
is desired.

No action is required by the administrator of any node that has one or more in-doubt distributed
transactions due to a network or system failure. The automatic recovery features of the
database transparently complete any in-doubt transaction so that the same outcome occurs on
all nodes of a session tree (that is, all commit or all roll back) after the network or system
failure is resolved.

In extended outages, however, you can force the commit or rollback of a transaction to release
any locked data. Applications must account for such possibilities.

35.4.2 Determining Whether to Perform a Manual Override
You should override an in-doubt transaction only under certain conditions.

Override a specific in-doubt transaction manually only when one of the following conditions
exists:

• The in-doubt transaction locks data that is required by other transactions. This situation
occurs when the ORA-01591 error message interferes with user transactions.

• An in-doubt transaction prevents the extents of an undo segment from being used by other
transactions. The first portion of the local transaction ID of an in-doubt distributed
transaction corresponds to the ID of the undo segment, as listed by the data dictionary
view DBA_2PC_PENDING.

• The failure preventing the two-phase commit phases to complete cannot be corrected in an
acceptable time period. Examples of such cases include a telecommunication network that
has been damaged or a damaged database that requires a long recovery time.

Normally, you should decide to locally force an in-doubt distributed transaction in consultation
with administrators at other locations. A wrong decision can lead to database inconsistencies
that can be difficult to trace and that you must manually correct.

If none of these conditions apply, always allow the automatic recovery features of the database
to complete the transaction. If any of these conditions are met, however, consider a local
override of the in-doubt transaction.

35.4.3 Analyzing the Transaction Data
If you decide to force the transaction to complete, then analyze the available information.

• Find a Node that Committed or Rolled Back
Use the DBA_2PC_PENDING view to find a node that has either committed or rolled back the
transaction.

• Look for Transaction Comments
See if any information is given in the TRAN_COMMENT column of DBA_2PC_PENDING for the
distributed transaction.

Chapter 35
Deciding How to Handle In-Doubt Transactions

35-7

• Look for Transaction Advice
See if any information is given in the ADVICE column of DBA_2PC_PENDING for the distributed
transaction.

35.4.3.1 Find a Node that Committed or Rolled Back
Use the DBA_2PC_PENDING view to find a node that has either committed or rolled back the
transaction.

If you can find a node that has already resolved the transaction, then you can follow the action
taken at that node.

35.4.3.2 Look for Transaction Comments
See if any information is given in the TRAN_COMMENT column of DBA_2PC_PENDING for the
distributed transaction.

Comments are included in the COMMENT clause of the COMMIT statement, or if transaction
naming is used, the transaction name is placed in the TRAN_COMMENT field when the transaction
is committed.

For example, the comment of an in-doubt distributed transaction can indicate the origin of the
transaction and what type of transaction it is:

COMMIT COMMENT 'Finance/Accts_pay/Trans_type 10B';

The SET TRANSACTION...NAME statement could also have been used (and is preferable) to
provide this information in a transaction name.

See Also:

"Naming Transactions"

35.4.3.3 Look for Transaction Advice
See if any information is given in the ADVICE column of DBA_2PC_PENDING for the distributed
transaction.

An application can prescribe advice about whether to force the commit or force the rollback of
separate parts of a distributed transaction with the ADVISE clause of the ALTER SESSION
statement.

The advice sent during the prepare phase to each node is the advice in effect at the time the
most recent DML statement executed at that database in the current transaction.

For example, consider a distributed transaction that moves an employee record from the emp
table at one node to the emp table at another node. The transaction can protect the record--
even when administrators independently force the in-doubt transaction at each node--by
including the following sequence of SQL statements:

ALTER SESSION ADVISE COMMIT;
INSERT INTO emp@hq ... ; /*advice to commit at HQ */
ALTER SESSION ADVISE ROLLBACK;
DELETE FROM emp@sales ... ; /*advice to roll back at SALES*/

Chapter 35
Deciding How to Handle In-Doubt Transactions

35-8

ALTER SESSION ADVISE NOTHING;

If you manually force the in-doubt transaction following the given advice, the worst that can
happen is that each node has a copy of the employee record; the record cannot disappear.

35.5 Manually Overriding In-Doubt Transactions
Use the COMMIT or ROLLBACK statement with the FORCE option and a text string that indicates
either the local or global transaction ID of the in-doubt transaction to commit.

Note:

In all examples, the transaction is committed or rolled back on the local node, and the
local pending transaction table records a value of forced commit or forced termination
for the STATE column the row for this transaction.

• Manually Committing an In-Doubt Transaction
You can manually commit an in-doubt transaction using a transaction ID or an SCN.

• Manually Rolling Back an In-Doubt Transaction
You can roll back an in-doubt transaction using the transaction ID.

35.5.1 Manually Committing an In-Doubt Transaction
You can manually commit an in-doubt transaction using a transaction ID or an SCN.

• Privileges Required to Commit an In-Doubt Transaction
Before attempting to commit the transaction, ensure that you have the proper privileges.

• Committing Using Only the Transaction ID
You can commit an in-doubt transaction using the transaction ID.

• Committing Using an SCN
You can commit an in-doubt transaction using an SCN.

35.5.1.1 Privileges Required to Commit an In-Doubt Transaction
Before attempting to commit the transaction, ensure that you have the proper privileges.

Note the following requirements:

User Committing the Transaction Privilege Required

You FORCE TRANSACTION
Another user FORCE ANY TRANSACTION

35.5.1.2 Committing Using Only the Transaction ID
You can commit an in-doubt transaction using the transaction ID.

The following SQL statement commits an in-doubt transaction:

COMMIT FORCE 'transaction_id';

Chapter 35
Manually Overriding In-Doubt Transactions

35-9

The variable transaction_id is the identifier of the transaction as specified in either the
LOCAL_TRAN_ID or GLOBAL_TRAN_ID columns of the DBA_2PC_PENDING data dictionary view.

For example, assume that you query DBA_2PC_PENDING and determine that LOCAL_TRAN_ID for
a distributed transaction is 1:45.13.

You then issue the following SQL statement to force the commit of this in-doubt transaction:

COMMIT FORCE '1.45.13';

35.5.1.3 Committing Using an SCN
You can commit an in-doubt transaction using an SCN.

Optionally, you can specify the SCN for the transaction when forcing a transaction to commit.
This feature lets you commit an in-doubt transaction with the SCN assigned when it was
committed at other nodes.

Consequently, you maintain the synchronized commit time of the distributed transaction even if
there is a failure. Specify an SCN only when you can determine the SCN of the same
transaction already committed at another node.

For example, assume you want to manually commit a transaction with the following global
transaction ID:

SALES.EXAMPLE.COM.55d1c563.1.93.29

First, query the DBA_2PC_PENDING view of a remote database also involved with the transaction
in question. Note the SCN used for the commit of the transaction at that node. Specify the SCN
when committing the transaction at the local node. For example, if the SCN is 829381993,
issue:

COMMIT FORCE 'SALES.EXAMPLE.COM.55d1c563.1.93.29', 829381993;

See Also:

Oracle Database SQL Language Reference for more information about using the
COMMIT statement

35.5.2 Manually Rolling Back an In-Doubt Transaction
You can roll back an in-doubt transaction using the transaction ID.

Before attempting to roll back the in-doubt distributed transaction, ensure that you have the
proper privileges. Note the following requirements:

User Committing the Transaction Privilege Required

You FORCE TRANSACTION
Another user FORCE ANY TRANSACTION

The following SQL statement rolls back an in-doubt transaction:

ROLLBACK FORCE 'transaction_id';

Chapter 35
Manually Overriding In-Doubt Transactions

35-10

The variable transaction_id is the identifier of the transaction as specified in either the
LOCAL_TRAN_ID or GLOBAL_TRAN_ID columns of the DBA_2PC_PENDING data dictionary view.

For example, to roll back the in-doubt transaction with the local transaction ID of 2.9.4, use the
following statement:

ROLLBACK FORCE '2.9.4';

Note:

You cannot roll back an in-doubt transaction to a savepoint.

See Also:

Oracle Database SQL Language Reference for more information about using the
ROLLBACK statement

35.6 Purging Pending Rows from the Data Dictionary
You can purge pending rows from the data dictionary for in-doubt transactions.

• About Purging Pending Rows from the Data Dictionary
You can purge pending rows from the data dictionary for in-doubt transactions using the
DBMS_TRANSACTION.PURGE_MIXED procedure or the
DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY procedure.

• Executing the PURGE_LOST_DB_ENTRY Procedure
Use the DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY procedure to clean up entries for in-
doubt transactions in the data dictionary.

• Determining When to Use DBMS_TRANSACTION
You typically should perform a specific action based on the state of a distributed
transaction.

35.6.1 About Purging Pending Rows from the Data Dictionary
You can purge pending rows from the data dictionary for in-doubt transactions using the
DBMS_TRANSACTION.PURGE_MIXED procedure or the DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY
procedure.

Before RECO recovers an in-doubt transaction, the transaction appears in
DBA_2PC_PENDING.STATE as COLLECTING, COMMITTED, or PREPARED. If you force an in-doubt
transaction using COMMIT FORCE or ROLLBACK FORCE, then the states FORCED COMMIT or FORCED
ROLLBACK may appear.

Automatic recovery normally deletes entries in these states. The only exception is when
recovery discovers a forced transaction that is in a state inconsistent with other sites in the
transaction. In this case, the entry can be left in the table, and the MIXED column in
DBA_2PC_PENDING has a value of YES. These entries can be cleaned up with the
DBMS_TRANSACTION.PURGE_MIXED procedure.

Chapter 35
Purging Pending Rows from the Data Dictionary

35-11

If automatic recovery is not possible because a remote database has been permanently lost,
then recovery cannot identify the re-created database because it receives a new database ID
when it is re-created. In this case, you must use the PURGE_LOST_DB_ENTRY procedure in the
DBMS_TRANSACTION package to clean up the entries. The entries do not hold up database
resources, so there is no urgency in cleaning them up.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about
the DBMS_TRANSACTION package

35.6.2 Executing the PURGE_LOST_DB_ENTRY Procedure
Use the DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY procedure to clean up entries for in-doubt
transactions in the data dictionary.

To manually remove an entry from the data dictionary, use the following syntax (where trans_id
is the identifier for the transaction):

DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('trans_id');

For example, to purge pending distributed transaction 1.44.99, enter the following statement in
SQL*Plus:

EXECUTE DBMS_TRANSACTION.PURGE_LOST_DB_ENTRY('1.44.99');

Execute this procedure only if significant reconfiguration has occurred so that automatic
recovery cannot resolve the transaction. Examples include:

• Total loss of the remote database

• Reconfiguration in software resulting in loss of two-phase commit capability

• Loss of information from an external transaction coordinator such as a TPMonitor

35.6.3 Determining When to Use DBMS_TRANSACTION
You typically should perform a specific action based on the state of a distributed transaction.

The following tables indicates what the various states indicate about the distributed transaction
and what the administrator's action should be:

STATE Column State of Global
Transaction

State of Local
Transaction

Normal Action Alternative Action

Collecting Rolled back Rolled back None PURGE_LOST_DB_ENTRY
(only if autorecovery
cannot resolve
transaction)

Committed Committed Committed None PURGE_LOST_DB_ENTRY
(only if autorecovery
cannot resolve
transaction)

Prepared Unknown Prepared None Force commit or rollback

Chapter 35
Purging Pending Rows from the Data Dictionary

35-12

STATE Column State of Global
Transaction

State of Local
Transaction

Normal Action Alternative Action

Forced commit Unknown Committed None PURGE_LOST_DB_ENTRY
(only if autorecovery
cannot resolve
transaction)

Forced rollback Unknown Rolled back None PURGE_LOST_DB_ENTRY
(only if autorecovery
cannot resolve
transaction)

Forced commit Mixed Committed Manually remove
inconsistencies
then use
PURGE_MIXED

-

Forced rollback Mixed Rolled back Manually remove
inconsistencies
then use
PURGE_MIXED

-

35.7 Manually Committing an In-Doubt Transaction: Example
An example illustrates manually committing an in-doubt transaction.

Figure 35-1, illustrates a failure during the commit of a distributed transaction. In this failure
case, the prepare phase completes. During the commit phase, however, the commit
confirmation of the commit point site never reaches the global coordinator, even though the
commit point site committed the transaction. Inventory data is locked and cannot be accessed
because the in-doubt transaction is critical to other transactions. Further, the locks must be
held until the in-doubt transaction either commits or rolls back.

Figure 35-1 Example of an In-Doubt Distributed Transaction

Global Coordinator

Commit Point Site

Database Server

Client

Communication break

commitprepared

prepared

WAREHOUSE.EXAMPLE.COM HQ.EXAMPLE.COM

SALES.EXAMPLE.COM

You can manually force the local portion of the in-doubt transaction.

• Step 1: Record User Feedback
An example illustrates recording user feedback for an in-doubt transaction.

• Step 2: Query DBA_2PC_PENDING
An example illustrates querying the DBA_2PC_PENDING data dictionary view for information
about in-doubt transactions.

Chapter 35
Manually Committing an In-Doubt Transaction: Example

35-13

• Step 3: Query DBA_2PC_NEIGHBORS on Local Node
The purpose of this step is to climb the session tree so that you find coordinators,
eventually reaching the global coordinator.

• Step 4: Querying Data Dictionary Views on All Nodes
At this point, you can contact the administrator at the located nodes and ask each person
to repeat Steps 2 and 3 using the global transaction ID.

• Step 5: Commit the In-Doubt Transaction
Use the global ID to commit the in-doubt transaction.

• Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING
After you manually force a transaction to commit or roll back, the corresponding row in the
pending transaction table remains. The state of the transaction is changed depending on
how you forced the transaction.

35.7.1 Step 1: Record User Feedback
An example illustrates recording user feedback for an in-doubt transaction.

The users of the local database system that conflict with the locks of the in-doubt transaction
receive the following error message:

ORA-01591: lock held by in-doubt distributed transaction 1.21.17

In this case, 1.21.17 is the local transaction ID of the in-doubt distributed transaction. You
should request and record this ID number from users that report problems to identify which in-
doubt transactions should be forced.

35.7.2 Step 2: Query DBA_2PC_PENDING
An example illustrates querying the DBA_2PC_PENDING data dictionary view for information
about in-doubt transactions.

After connecting with SQL*Plus to warehouse, query the local DBA_2PC_PENDING data dictionary
view to gain information about the in-doubt transaction:

CONNECT SYS@warehouse.example.com AS SYSDBA
SELECT * FROM DBA_2PC_PENDING WHERE LOCAL_TRAN_ID = '1.21.17';

The database returns the following information:

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.21.17
GLOBAL_TRAN_ID SALES.EXAMPLE.COM.55d1c563.1.93.29
STATE prepared
MIXED no
ADVICE
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST system1
DB_USER SWILLIAMS
COMMIT#

Chapter 35
Manually Committing an In-Doubt Transaction: Example

35-14

• Determining the Global Transaction ID
The global transaction ID is the common transaction ID that is the same on every node for
a distributed transaction.

• Determining the State of the Transaction
The STATE column of the DBA_2PC_PENDING data dictionary view shows the state of the
transaction.

• Looking for Comments or Advice
The TRANS_COMMENT column of the DBA_2PC_PENDING data dictionary view shows the
comment included for the transaction, while the ADVICE column provides advice.

35.7.2.1 Determining the Global Transaction ID
The global transaction ID is the common transaction ID that is the same on every node for a
distributed transaction.

It is of the form:

global_database_name.hhhhhhhh.local_transaction_id

where:

• global_database_name is the database name of the global coordinator.

• hhhhhhhh is the internal database identifier of the global coordinator (in hexadecimal).

• local_transaction_id is the corresponding local transaction ID assigned on the global
coordinator.

Note that the last portion of the global transaction ID and the local transaction ID match at the
global coordinator. In the example, you can tell that warehouse is not the global coordinator
because these numbers do not match:

LOCAL_TRAN_ID 1.21.17
GLOBAL_TRAN_ID ... 1.93.29

35.7.2.2 Determining the State of the Transaction
The STATE column of the DBA_2PC_PENDING data dictionary view shows the state of the
transaction.

The transaction on this node is in a prepared state:

STATE prepared

Therefore, warehouse waits for its coordinator to send either a commit or a rollback request.

35.7.2.3 Looking for Comments or Advice
The TRANS_COMMENT column of the DBA_2PC_PENDING data dictionary view shows the comment
included for the transaction, while the ADVICE column provides advice.

The transaction comment or advice can include information about this transaction. If so, use
this comment to your advantage. In this example, the origin and transaction type is in the
transaction comment:

TRAN_COMMENT Sales/New Order/Trans_type 10B

It could also be provided as a transaction name with a SET TRANSACTION...NAME statement.

Chapter 35
Manually Committing an In-Doubt Transaction: Example

35-15

This information can reveal something that helps you decide whether to commit or rollback the
local portion of the transaction. If useful comments do not accompany an in-doubt transaction,
you must complete some extra administrative work to trace the session tree and find a node
that has resolved the transaction.

35.7.3 Step 3: Query DBA_2PC_NEIGHBORS on Local Node
The purpose of this step is to climb the session tree so that you find coordinators, eventually
reaching the global coordinator.

Along the way, you may find a coordinator that has resolved the transaction. If not, you can
eventually work your way to the commit point site, which will always have resolved the in-doubt
transaction. To trace the session tree, query the DBA_2PC_NEIGHBORS view on each node.

In this case, you query this view on the warehouse database:

CONNECT SYS@warehouse.example.com AS SYSDBA
SELECT * FROM DBA_2PC_NEIGHBORS
 WHERE LOCAL_TRAN_ID = '1.21.17'
 ORDER BY SESS#, IN_OUT;

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.21.17
IN_OUT in
DATABASE SALES.EXAMPLE.COM
DBUSER_OWNER SWILLIAMS
INTERFACE N
DBID 000003F4
SESS# 1
BRANCH 0100

• Obtaining Database Role and Database Link Information
The DBA_2PC_NEIGHBORS view provides information about connections associated with an
in-doubt transaction.

• Determining the Commit Point Site
The INTERFACE column tells whether the local node or a subordinate node is the commit
point site.

35.7.3.1 Obtaining Database Role and Database Link Information
The DBA_2PC_NEIGHBORS view provides information about connections associated with an in-
doubt transaction.

Information for each connection is different, based on whether the connection is inbound
(IN_OUT = in) or outbound (IN_OUT = out):

IN_OUT Meaning DATABASE DBUSER_OWNER

in Your node is a
server of another
node.

Lists the name of the
client database that
connected to your node.

Lists the local account for the database
link connection that corresponds to the in-
doubt transaction.

out Your node is a
client of other
servers.

Lists the name of the
database link that
connects to the remote
node.

Lists the owner of the database link for the
in-doubt transaction.

Chapter 35
Manually Committing an In-Doubt Transaction: Example

35-16

In this example, the IN_OUT column reveals that the warehouse database is a server for the
sales client, as specified in the DATABASE column:

IN_OUT in
DATABASE SALES.EXAMPLE.COM

The connection to warehouse was established through a database link from the swilliams
account, as shown by the DBUSER_OWNER column:

DBUSER_OWNER SWILLIAMS

35.7.3.2 Determining the Commit Point Site
The INTERFACE column tells whether the local node or a subordinate node is the commit point
site.

INTERFACE N

Neither warehouse nor any of its descendants is the commit point site, as shown by the
INTERFACE column.

35.7.4 Step 4: Querying Data Dictionary Views on All Nodes
At this point, you can contact the administrator at the located nodes and ask each person to
repeat Steps 2 and 3 using the global transaction ID.

Note:

If you can directly connect to these nodes with another network, you can repeat
Steps 2 and 3 yourself.

For example, the following results are returned when Steps 2 and 3 are performed at sales
and hq.

• Checking the Status of Pending Transactions at sales
At this stage, the sales administrator queries the DBA_2PC_PENDING data dictionary view.

• Determining the Coordinators and Commit Point Site at sales
Next, the sales administrator queries DBA_2PC_NEIGHBORS to determine the global and local
coordinators as well as the commit point site.

• Checking the Status of Pending Transactions at HQ
At this stage, the hq administrator queries the DBA_2PC_PENDING data dictionary view.

35.7.4.1 Checking the Status of Pending Transactions at sales
At this stage, the sales administrator queries the DBA_2PC_PENDING data dictionary view.

SQL> CONNECT SYS@sales.example.com AS SYSDBA
SQL> SELECT * FROM DBA_2PC_PENDING
 > WHERE GLOBAL_TRAN_ID = 'SALES.EXAMPLE.COM.55d1c563.1.93.29';

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29

Chapter 35
Manually Committing an In-Doubt Transaction: Example

35-17

GLOBAL_TRAN_ID SALES.EXAMPLE.COM.55d1c563.1.93.29
STATE prepared
MIXED no
ADVICE
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST system1
DB_USER SWILLIAMS
COMMIT#

35.7.4.2 Determining the Coordinators and Commit Point Site at sales
Next, the sales administrator queries DBA_2PC_NEIGHBORS to determine the global and local
coordinators as well as the commit point site.

SELECT * FROM DBA_2PC_NEIGHBORS
 WHERE GLOBAL_TRAN_ID = 'SALES.EXAMPLE.COM.55d1c563.1.93.29'
 ORDER BY SESS#, IN_OUT;

This query returns three rows:

• The connection to warehouse
• The connection to hq
• The connection established by the user

Reformatted information corresponding to the rows for the warehouse connection appears
below:

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
IN_OUT OUT
DATABASE WAREHOUSE.EXAMPLE.COM
DBUSER_OWNER SWILLIAMS
INTERFACE N
DBID 55d1c563
SESS# 1
BRANCH 1

Reformatted information corresponding to the rows for the hq connection appears below:

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.93.29
IN_OUT OUT
DATABASE HQ.EXAMPLE.COM
DBUSER_OWNER ALLEN
INTERFACE C
DBID 00000390
SESS# 1
BRANCH 1

The information from the previous queries reveal the following:

• sales is the global coordinator because the local transaction ID and global transaction ID
match.

Chapter 35
Manually Committing an In-Doubt Transaction: Example

35-18

• Two outbound connections are established from this node, but no inbound connections.
sales is not the server of another node.

• hq or one of its servers is the commit point site.

35.7.4.3 Checking the Status of Pending Transactions at HQ
At this stage, the hq administrator queries the DBA_2PC_PENDING data dictionary view.

SELECT * FROM DBA_2PC_PENDING@hq.example.com
 WHERE GLOBAL_TRAN_ID = 'SALES.EXAMPLE.COM.55d1c563.1.93.29';

Column Name Value
---------------------- --------------------------------------
LOCAL_TRAN_ID 1.45.13
GLOBAL_TRAN_ID SALES.EXAMPLE.COM.55d1c563.1.93.29
STATE COMMIT
MIXED NO
ACTION
TRAN_COMMENT Sales/New Order/Trans_type 10B
FAIL_TIME 31-MAY-91
FORCE_TIME
RETRY_TIME 31-MAY-91
OS_USER SWILLIAMS
OS_TERMINAL TWA139:
HOST SYSTEM1
DB_USER SWILLIAMS
COMMIT# 129314

At this point, you have found a node that resolved the transaction. As the view reveals, it has
been committed and assigned a commit ID number:

STATE COMMIT
COMMIT# 129314

Therefore, you can force the in-doubt transaction to commit at your local database. It is a good
idea to contact any other administrators you know that could also benefit from your
investigation.

35.7.5 Step 5: Commit the In-Doubt Transaction
Use the global ID to commit the in-doubt transaction.

You contact the administrator of the sales database, who manually commits the in-doubt
transaction using the global ID:

SQL> CONNECT SYS@sales.example.com AS SYSDBA
SQL> COMMIT FORCE 'SALES.EXAMPLE.COM.55d1c563.1.93.29';

As administrator of the warehouse database, you manually commit the in-doubt transaction
using the global ID:

SQL> CONNECT SYS@warehouse.example.com AS SYSDBA
SQL> COMMIT FORCE 'SALES.EXAMPLE.COM.55d1c563.1.93.29';

Chapter 35
Manually Committing an In-Doubt Transaction: Example

35-19

35.7.6 Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING
After you manually force a transaction to commit or roll back, the corresponding row in the
pending transaction table remains. The state of the transaction is changed depending on how
you forced the transaction.

Every Oracle Database has a pending transaction table. This is a special table that stores
information about distributed transactions as they proceed through the two-phase commit
phases. You can query the pending transaction table of a database through the
DBA_2PC_PENDING data dictionary view (see "Determining the ID Number and Status of
Prepared Transactions").

Also of particular interest in the pending transaction table is the mixed outcome flag as
indicated in DBA_2PC_PENDING.MIXED. You can make the wrong choice if a pending transaction
is forced to commit or roll back. For example, the local administrator rolls back the transaction,
but the other nodes commit it. Incorrect decisions are detected automatically, and the damage
flag for the corresponding pending transaction record is set (MIXED=yes).

The RECO (Recoverer) background process uses the information in the pending transaction
table to finalize the status of in-doubt transactions. You can also use the information in the
pending transaction table to manually override the automatic recovery procedures for pending
distributed transactions.

All transactions automatically resolved by RECO are removed from the pending transaction
table. Additionally, all information about in-doubt transactions correctly resolved by an
administrator (as checked when RECO reestablishes communication) are automatically
removed from the pending transaction table. However, all rows resolved by an administrator
that result in a mixed outcome across nodes remain in the pending transaction table of all
involved nodes until they are manually deleted using DBMS_TRANSACTIONS.PURGE_MIXED.

35.8 Data Access Failures Due to Locks
When you issue a SQL statement, the database attempts to lock the resources needed to
successfully execute the statement. If the requested data is currently held by statements of
other uncommitted transactions, however, and remains locked for a long time, a timeout
occurs.

• Transaction Timeouts
A DML statement that requires locks on a remote database can be blocked if another
transaction own locks on the requested data.

• Locks from In-Doubt Transactions
A query or DML statement that requires locks on a local database can be blocked
indefinitely due to the locked resources of an in-doubt distributed transaction.

35.8.1 Transaction Timeouts
A DML statement that requires locks on a remote database can be blocked if another
transaction own locks on the requested data.

If these locks continue to block the requesting SQL statement, then the following sequence of
events occurs:

1. A timeout occurs.

2. The database rolls back the statement.

Chapter 35
Data Access Failures Due to Locks

35-20

3. The database returns this error message to the user:

ORA-02049: time-out: distributed transaction waiting for lock
Because the transaction did not modify data, no actions are necessary as a result of the
timeout. Applications should proceed as if a deadlock has been encountered. The user who
executed the statement can try to reexecute the statement later. If the lock persists, then the
user should contact an administrator to report the problem.

35.8.2 Locks from In-Doubt Transactions
A query or DML statement that requires locks on a local database can be blocked indefinitely
due to the locked resources of an in-doubt distributed transaction.

In this case, the database issues the following error message:

ORA-01591: lock held by in-doubt distributed transaction identifier

In this case, the database rolls back the SQL statement immediately. The user who executed
the statement can try to reexecute the statement later. If the lock persists, the user should
contact an administrator to report the problem, including the ID of the in-doubt distributed
transaction.

The chances of these situations occurring are rare considering the low probability of failures
during the critical portions of the two-phase commit. Even if such a failure occurs, and
assuming quick recovery from a network or system failure, problems are automatically
resolved without manual intervention. Thus, problems usually resolve before they can be
detected by users or database administrators.

35.9 Simulating Distributed Transaction Failure
You can force the failure of a distributed transaction to observe RECO automatically resolving
the local portion of the transaction or to practice manually resolving in-doubt distributed
transactions and observing the results.

• Forcing a Distributed Transaction to Fail
You can include comments in the COMMENT parameter of the COMMIT statement.

• Disabling and Enabling RECO
The RECO background process of an Oracle Database instance automatically resolves
failures involving distributed transactions. At exponentially growing time intervals, the
RECO background process of a node attempts to recover the local portion of an in-doubt
distributed transaction.

35.9.1 Forcing a Distributed Transaction to Fail
You can include comments in the COMMENT parameter of the COMMIT statement.

To intentionally induce a failure during the two-phase commit phases of a distributed
transaction, include the following comment in the COMMENT parameter:

COMMIT COMMENT 'ORA-2PC-CRASH-TEST-n';

where n is one of the following integers:

n Effect

1 Crash commit point after collect

Chapter 35
Simulating Distributed Transaction Failure

35-21

n Effect

2 Crash non-commit-point site after collect

3 Crash before prepare (non-commit-point site)

4 Crash after prepare (non-commit-point site)

5 Crash commit point site before commit

6 Crash commit point site after commit

7 Crash non-commit-point site before commit

8 Crash non-commit-point site after commit

9 Crash commit point site before forget

10 Crash non-commit-point site before forget

For example, the following statement returns the following messages if the local commit point
strength is greater than the remote commit point strength and both nodes are updated:

COMMIT COMMENT 'ORA-2PC-CRASH-TEST-7';

ORA-02054: transaction 1.93.29 in-doubt
ORA-02059: ORA_CRASH_TEST_7 in commit comment

At this point, the in-doubt distributed transaction appears in the DBA_2PC_PENDING view. If
enabled, RECO automatically resolves the transaction.

35.9.2 Disabling and Enabling RECO
The RECO background process of an Oracle Database instance automatically resolves
failures involving distributed transactions. At exponentially growing time intervals, the RECO
background process of a node attempts to recover the local portion of an in-doubt distributed
transaction.

RECO can use an existing connection or establish a new connection to other nodes involved in
the failed transaction. When a connection is established, RECO automatically resolves all in-
doubt transactions. Rows corresponding to any resolved in-doubt transactions are
automatically removed from the pending transaction table of each database.

You can enable and disable RECO using the ALTER SYSTEM statement with the ENABLE/DISABLE
DISTRIBUTED RECOVERY options. For example, you can temporarily disable RECO to force the
failure of a two-phase commit and manually resolve the in-doubt transaction.

The following statement disables RECO:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

Alternatively, the following statement enables RECO so that in-doubt transactions are
automatically resolved:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

Chapter 35
Simulating Distributed Transaction Failure

35-22

35.10 Managing Read Consistency
An important restriction exists in the Oracle Database implementation of distributed read
consistency.

The problem arises because each system has its own SCN, which you can view as the
database internal timestamp. The Oracle Database server uses the SCN to decide which
version of data is returned from a query.

The SCNs in a distributed transaction are synchronized at the end of each remote SQL
statement and at the start and end of each transaction. Between two nodes that have heavy
traffic and especially distributed updates, the synchronization is frequent. Nevertheless, no
practical way exists to keep SCNs in a distributed system absolutely synchronized: a window
always exists in which one node may have an SCN that is somewhat in the past with respect to
the SCN of another node.

Because of the SCN gap, you can execute a query that uses a slightly old snapshot, so that
the most recent changes to the remote database are not seen. In accordance with read
consistency, a query can therefore retrieve consistent, but out-of-date data. Note that all data
retrieved by the query will be from the old SCN, so that if a locally executed update transaction
updates two tables at a remote node, then data selected from both tables in the next remote
access contain data before the update.

One consequence of the SCN gap is that two consecutive SELECT statements can retrieve
different data even though no DML has been executed between the two statements. For
example, you can issue an update statement and then commit the update on the remote
database. When you issue a SELECT statement on a view based on this remote table, the view
does not show the update to the row. The next time that you issue the SELECT statement, the
update is present.

You can use the following techniques to ensure that the SCNs of the two systems are
synchronized just before a query:

• Because SCNs are synchronized at the end of a remote query, precede each remote query
with a dummy remote query to the same site, for example, SELECT * FROM DUAL@REMOTE.

• Because SCNs are synchronized at the start of every remote transaction, commit or roll
back the current transaction before issuing the remote query.

35.11 Enhancing Distributed Transaction Security
Distributed transaction security can be enhanced by modifying the
ALLOW_LEGACY_RECO_PROTOCOL parameter to FALSE.

The distributed transaction recovery process RECO uses a legacy recovery protocol by
default. Setting ALLOW_LEGACY_RECO_PROTOCOL parameter to FALSE allows RECO to operate in
an upgraded recovery mode.

To enhance the security of distributed transactions, you are strongly encouraged to upgrade to
the latest version of Oracle Database and set the parameter ALLOW_LEGACY_RECO_PROTOCOL to
FALSE. The default value for the ALLOW_LEGACY_RECO_PROTOCOL parameter is TRUE.

When the parameter is set to FALSE, all databases involved in a distributed transaction must be
release 23ai or later. If you set the parameter to FALSE and a pre-23ai database is involved in a
distributed transaction, the transaction recovery will fail. To ensure that distributed transaction

Chapter 35
Managing Read Consistency

35-23

recovery will complete successfully, the ALLOW_LEGACY_RECO_PROTOCOL must remain set to TRUE
until all databases are upgraded to at least release 23ai.

As a best security practice, you should encrypt sensitive credential information, such as
passwords that are stored in the data dictionary.

Related Topics

• Encryption of Sensitive Credential Data in the Data Dictionary

• ALLOW_LEGACY_RECO_PROTOCOL Parameter

Chapter 35
Enhancing Distributed Transaction Security

35-24

Part VI
Managing Read-Only Materialized Views

Read-only materialized views can provide read-only access to the master table's data. You can
create and manage read-only materialized views.

• Read-Only Materialized View Concepts
Understand the concepts related to read-only materialized views.

• Read-Only Materialized View Architecture
Several objects are used in materialized view replication. Some of these objects are
optional and are used only as needed to support the created materialized view
environment. For example, if you have a complex materialized view that cannot be fast
refreshed, then you might not have a materialized view log at the master database.

• Planning for Read-Only Materialized Views
Before you begin to plan your read-only materialized view environment, it is important to
understand the concepts and architecture related to materialized views. After you
understand concepts and architecture of read-only materialized views, there are important
considerations for planning a read-only materialized view environment.

• Creating and Managing Read-Only Materialized Views
You can create and manage read-only materialized views and refresh groups. You can
also refresh materialized views.

• Troubleshooting Problems with Read-Only Materialized Views
You can diagnose and solve problems with database links, materialized view creation, and
materialized view refresh.

36
Read-Only Materialized View Concepts

Understand the concepts related to read-only materialized views.

• Replication Databases
Replication is the process of copying and maintaining database objects, such as tables, in
multiple databases that comprise a distributed database system. One method that
supports replication is read-only materialized views.

• Read-Only Materialized Views
A read-only materialized view contains a complete or partial copy of a target master table
from a single point in time. A partial copy can include a subset of rows, a subset of
columns, or both.

• The Uses of Materialized Views
You can use materialized views to achieve goals such as easing network loads, enabling
data subsetting, and enabling disconnected computing.

• Available Materialized Views
Available materialized views include primary key materialized views, object materialized
views, ROWID materialized views, and complex materialized views.

• Users and Privileges Related to Materialized Views
The users related to materialized views include the creator, the refresher, and the owner.
The privileges required to perform operations on materialized views depend on the type of
user performing the operation.

• Data Subsetting with Materialized Views
You can use row subsetting and column subsetting to configure materialized views reflect
a subset of the data in the master table.

• Materialized View Refresh
To ensure that a materialized view is consistent with its master table, you must refresh the
materialized view periodically.

• Refresh Groups
When it is important for materialized views to be transactionally consistent with each other,
you can organize them into refresh groups.

• Materialized View Log
A materialized view log is a table at the database that contains materialized view's
master table. It records all of the DML changes to the master table.

• Materialized Views and User-Defined Data Types
There are special considerations for materialized views with user-defined data types.

• Materialized View Registration at a Master Database
At the master database, an Oracle Database automatically registers information about a
materialized view based on its master table(s).

36.1 Replication Databases
Replication is the process of copying and maintaining database objects, such as tables, in
multiple databases that comprise a distributed database system. One method that supports
replication is read-only materialized views.

36-1

Replication environments support two basic types of databases: master databases and
materialized view databases. Materialized view databases contain an image, or materialized
view, of the table data from a certain point in time. The table on which a materialized view is
defined is the master table for the materialized view. Typically, a materialized view is refreshed
periodically to synchronize it with its master table.

You can organize materialized views into refresh groups. Materialized views in a refresh
group are refreshed at the same time to ensure that the data in all materialized views in the
refresh group correspond to the same transactionally consistent point in time.

Note:

Oracle GoldenGate is Oracle’s full-featured solution for replication. See the Oracle
GoldenGate documentation for more information.

36.2 Read-Only Materialized Views
A read-only materialized view contains a complete or partial copy of a target master table
from a single point in time. A partial copy can include a subset of rows, a subset of columns, or
both.

Read-only materialized views can provide read-only access to the master table's data.
Applications can query data from read-only materialized views to avoid network access to the
master database, regardless of network availability. However, applications throughout the
system must access data at the master database to perform data manipulation language
changes (DML). Figure 36-1 illustrates basic, read-only replication.

Figure 36-1 Read-Only Materialized View

Replicate table data

Network

Refresh

Materialized View

(read-only)

Master

database

Master Table

(updatable)

Client applications

Remote update

Local

query

Materialized

View

database

Materialized views provide the following benefits:

Chapter 36
Read-Only Materialized Views

36-2

• Enable local access, which improves response times and availability

• When the materialized view is in a different database than its source, offload queries from
the master database, because users can query the local materialized view instead

• Increase data security by enabling you to replicate only a selected subset of the target
master's data set

Users can synchronize (refresh) read-only materialized views on demand. When users refresh
read-only materialized views, they receive any changes that happened on the master table
since the last refresh.

36.3 The Uses of Materialized Views
You can use materialized views to achieve goals such as easing network loads, enabling data
subsetting, and enabling disconnected computing.

• Ease Network Loads
If one of your goals is to reduce network loads, then you can use materialized views to
distribute your corporate database to regional databases.

• Enable Data Subsetting
Materialized views enable you to replicate data based on column- and row-level
subsetting.

• Enable Disconnected Computing
Materialized views do not require a dedicated network connection.

36.3.1 Ease Network Loads
If one of your goals is to reduce network loads, then you can use materialized views to
distribute your corporate database to regional databases.

Instead of the entire company accessing a single database server, user load is distributed
across multiple database servers. To decrease the amount of data that is replicated, a
materialized view can be a subset of a master table.

36.3.2 Enable Data Subsetting
Materialized views enable you to replicate data based on column- and row-level subsetting.

Data subsetting enables you to replicate information that pertains only to a particular database.
For example, if you have a regional sales office, then you might replicate only the data that is
needed in that region, thereby cutting down on unnecessary network traffic.

Both row and column subsetting enable you to create materialized views that contain a partial
copy of the data at a master table. Row subsetting enables you to include only the rows that
are needed from the masters in the materialized views by using a WHERE clause. Column
subsetting enables you to include only the columns that are needed from the masters in the
materialized views. You do this by specifying particular columns in the SELECT statement during
materialized view creation.

36.3.3 Enable Disconnected Computing
Materialized views do not require a dedicated network connection.

Chapter 36
The Uses of Materialized Views

36-3

Though you have the option of automating the refresh process by scheduling a job, you can
manually refresh your materialized view on-demand, which is an ideal solution for queries
running on a laptop computer.

36.4 Available Materialized Views
Available materialized views include primary key materialized views, object materialized views,
ROWID materialized views, and complex materialized views.

• About the Available Materialized Views
Oracle offers several types of read-only materialized views to meet the needs of many
different replication (and nonreplication) situations.

• Primary Key Materialized Views
Primary key materialized views are the default type of materialized view.

• Object Materialized Views
If a materialized view is based on an object table and is created using the OF type clause,
then the materialized view is called an object materialized view.

• ROWID Materialized Views
A ROWID materialized view is based on the physical row identifiers (rowids) of the rows in a
master table.

• Complex Materialized Views
Complex materialized views cannot be fast refreshed.

36.4.1 About the Available Materialized Views
Oracle offers several types of read-only materialized views to meet the needs of many different
replication (and nonreplication) situations.

Whenever you create a materialized view, regardless of its type, always specify the schema
name of the table owner in the query for the materialized view. For example, consider the
following CREATE MATERIALIZED VIEW statement:

CREATE MATERIALIZED VIEW hr.employees
 AS SELECT * FROM hr.employees@orc1.example.com;

Here, the schema hr is specified in the query.

36.4.2 Primary Key Materialized Views
Primary key materialized views are the default type of materialized view.

The following is an example of a SQL statement for creating a primary key materialized view:

CREATE MATERIALIZED VIEW oe.customers WITH PRIMARY KEY
 AS SELECT * FROM oe.customers@orc1.example.com;

Because primary key materialized views are the default, the following statement also results in
a primary key materialized view:

CREATE MATERIALIZED VIEW oe.customers
 AS SELECT * FROM oe.customers@orc1.example.com;

Primary key materialized views can contain a subquery so that you can create a subset of rows
at the remote materialized view database. A subquery is a query imbedded within the primary
query, so that you have multiple SELECT statements in the CREATE MATERIALIZED VIEW

Chapter 36
Available Materialized Views

36-4

statement. This subquery can be as simple as a basic WHERE clause or as complex as a
multilevel WHERE EXISTS clause. Primary key materialized views that contain a selected class of
subqueries can still be incrementally (or fast) refreshed, if each master referenced has a
materialized view log. A fast refresh uses materialized view logs to update only the rows that
have changed since the last refresh.

The following materialized view is created with a WHERE clause containing a subquery:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 10000);

This type of materialized view is called a subquery materialized view.

Note:

To create this oe.orders materialized view, credit_limit must be logged in the
master table's materialized view log. See "Logging Columns in a Materialized View
Log" for more information.

See Also:

• "Materialized Views with Subqueries" for more information about materialized
views with subqueries

• "Refresh Types" for more information about fast refresh

• "Materialized View Log" for more information about materialized view logs

• Oracle Database SQL Language Reference for more information about
subqueries

36.4.3 Object Materialized Views
If a materialized view is based on an object table and is created using the OF type clause, then
the materialized view is called an object materialized view.

An object materialized view is structured in the same way as an object table. That is, an object
materialized view is composed of row objects, and each row object is identified by an object
identifier (OID) column.

Chapter 36
Available Materialized Views

36-5

See Also:

• "Materialized Views Based on Object Tables"

• "Creating Read-Only Materialized Views" for an example that creates an object
materialized view

36.4.4 ROWID Materialized Views
A ROWID materialized view is based on the physical row identifiers (rowids) of the rows in a
master table.

ROWID materialized views can be used for materialized views based on master tables that do
not have a primary key, or for materialized views that do not include all primary key columns of
the master tables.

The following is an example of a CREATE MATERIALIZED VIEW statement that creates a ROWID
materialized view:

CREATE MATERIALIZED VIEW oe.orders REFRESH WITH ROWID AS
 SELECT * FROM oe.orders@orc1.example.com;

See Also:

• "Materialized View Log" for more information about the differences between a
ROWID and primary key materialized view

• Oracle Database SQL Language Reference for more information about the WITH
ROWID clause in the CREATE MATERIALIZED VIEW statement

36.4.5 Complex Materialized Views
Complex materialized views cannot be fast refreshed.

• About Complex Materialized Views
To be fast refreshed, the defining query for a materialized view must observe certain
restrictions.

• A Comparison of Simple and Complex Materialized Views
For certain applications, you might want to consider using a complex materialized view.

36.4.5.1 About Complex Materialized Views
To be fast refreshed, the defining query for a materialized view must observe certain
restrictions.

If you require a materialized view whose defining query is more general and cannot observe
the restrictions, then the materialized view is complex and cannot be fast refreshed.

Specifically, a materialized view is considered complex when the defining query of the
materialized view contains any of the following:

Chapter 36
Available Materialized Views

36-6

• A CONNECT BY clause

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.emp_hierarchy AS
 SELECT LPAD(' ', 4*(LEVEL-1))||email USERNAME
 FROM hr.employees@orc1.example.com START WITH manager_id IS NULL
 CONNECT BY PRIOR employee_id = manager_id;

• An INTERSECT, MINUS, or UNION ALL set operation

For example, the following statement creates a complex materialized view because it has a
UNION ALL set operation:

CREATE MATERIALIZED VIEW hr.mview_employees AS
 SELECT employees.employee_id, employees.email
 FROM hr.employees@orc1.example.com
UNION ALL
 SELECT new_employees.employee_id, new_employees.email
 FROM hr.new_employees@orc1.example.com;

• The DISTINCT or UNIQUE keyword

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.employee_depts AS
 SELECT DISTINCT department_id FROM hr.employees@orc1.example.com
 ORDER BY department_id;

• In some cases, an aggregate function, although it is possible to have an aggregate
function in the defining query and still have a simple materialized view

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.average_sal AS
 SELECT AVG(salary) "Average" FROM hr.employees@orc1.example.com;

• In some cases, joins other than those in a subquery, although it is possible to have joins in
the defining query and still have a simple materialized view

For example, the following statement creates a complex materialized view:

CREATE MATERIALIZED VIEW hr.emp_join_dep AS
 SELECT last_name
 FROM hr.employees@orc1.example.com e, hr.departments@orc1.example.com d
 WHERE e.department_id = d.department_id;

• In some cases, a UNION operation

Specifically, a materialized view with a UNION operation is complex if any one of these
conditions is true:

– Any query within the UNION is complex. The previous bullet items specify when a query
makes a materialized view complex.

– The outermost SELECT list columns do not match for the queries in the UNION. In the
following example, the first query only has order_total in the outermost SELECT list
while the second query has customer_id in the outermost SELECT list. Therefore, the
materialized view is complex.

CREATE MATERIALIZED VIEW oe.orders AS
 SELECT order_total
 FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT cust_first_name, cust_last_name
 FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id

Chapter 36
Available Materialized Views

36-7

 AND c.credit_limit > 50)
UNION
 SELECT customer_id
 FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT cust_first_name, cust_last_name
 FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

The innermost SELECT list has no bearing on whether a materialized view is complex.
In the previous example, the innermost SELECT list is cust_first_name and
cust_last_name for both queries in the UNION.

• Clauses that do not follow the requirements detailed in "Restrictions for Materialized Views
with Subqueries"

Note:

If possible, you should avoid using complex materialized views because they cannot
be fast refreshed, which might degrade performance.

See Also:

• "Refresh Process"

• Oracle Database Data Warehousing Guide for information about materialized
views with aggregate functions and joins

• Oracle Database SQL Language Reference for more information about the
CONNECT BY clause, set operations, the DISTINCT keyword, and aggregate
functions

36.4.5.2 A Comparison of Simple and Complex Materialized Views
For certain applications, you might want to consider using a complex materialized view.

Figure 36-2 and the following text discuss some issues that you should consider.

Chapter 36
Available Materialized Views

36-8

Figure 36-2 Comparison of Simple and Complex Materialized Views

employees

Table

departments

Table

employees

Table

departments

Table

MLOG$_

employees

MLOG$_

departments

M
e
th

o
d

 B

M
e
th

o
d

 A

employees

Materialized

View
emp_dept View

SELECT ...

FROM employees e, departments d

WHERE	e.department_id =

		 d.department_id

emp_dept Materialized View

SELECT ...
FROM emp_dept

Faster query

performance

Acceptable query

performance

Database I Database II

departments

Materialized

View

Slower

complete

refreshes

Quicker

fast

refreshes

Quicker

fast

refreshes

SELECT ...

FROM hr.employees@ny e, hr.department@ny d

WHERE e.department_id = d.department_id

• Complex Materialized View: Method A in Figure 36-2 shows a complex materialized view.
The materialized view in Database II exhibits efficient query performance because the join
operation was completed during the materialized view's refresh. However, complete
refreshes must be performed because the materialized view is complex, and these
refreshes will probably be slower than fast refreshes.

• Simple Materialized Views with a Joined View: Method B in Figure 36-2 shows two
simple materialized views in Database II, as well as a view that performs the join in the
materialized view's database. Query performance against the view would not be as good
as the query performance against the complex materialized view in Method A. However,
the simple materialized views can be refreshed more efficiently using fast refresh and
materialized view logs.

In summary, to decide which method to use:

• If you refresh rarely and want faster query performance, then use Method A (complex
materialized view).

• If you refresh regularly and can sacrifice query performance, then use Method B (simple
materialized view).

36.5 Users and Privileges Related to Materialized Views
The users related to materialized views include the creator, the refresher, and the owner. The
privileges required to perform operations on materialized views depend on the type of user
performing the operation.

• Required Privileges for Materialized View Operations
Three distinct types of users perform operations on materialized views.

Chapter 36
Users and Privileges Related to Materialized Views

36-9

• Creator Is Owner
If the creator of a materialized view also owns the materialized view, then this user must
have the required privileges to create a materialized view.

• Creator Is Not Owner
If the creator of a materialized view is not the owner, then certain privileges must be
granted to the creator and to the owner to create a materialized view.

• Refresher Is Owner
If the refresher of a materialized view also owns the materialized view, then this user must
have the required privileges to create the materialized view.

• Refresher Is Not Owner
If the refresher of a materialized view is not the owner, certain privileges must be granted
to the refresher and to the owner.

36.5.1 Required Privileges for Materialized View Operations
Three distinct types of users perform operations on materialized views.

These users are:

• Creator: The user who creates the materialized view.

• Refresher: The user who refreshes the materialized view.

• Owner: The user who owns the materialized view. The materialized view resides in this
user's schema.

One user can perform all of these operations on a particular materialized view. However, in
some replication environments, different users perform these operations on a particular
materialized view. The privileges required to perform these operations depend on whether the
same user performs them or different users perform them.

If the owner of a materialized view at the materialized view database has a private database
link to the master database, then the database link connects to the owner of the master table
at the master database. Otherwise, the normal rules for connections through database links
apply.

Note:

The following sections do not cover the requirements necessary to create
materialized views with query rewrite enabled. See the Oracle Database SQL
Language Reference for information.

See Also:

The following sections discuss database links. See Distributed Database Concepts
for more information about using database links.

Chapter 36
Users and Privileges Related to Materialized Views

36-10

36.5.2 Creator Is Owner
If the creator of a materialized view also owns the materialized view, then this user must have
the required privileges to create a materialized view.

The following privileges must be granted explicitly rather than through a role:

• CREATE MATERIALIZED VIEW or CREATE ANY MATERIALIZED VIEW
• CREATE TABLE or CREATE ANY TABLE
• READ or SELECT object privilege on the master table and the master table's materialized

view log or either READ ANY TABLE or SELECT ANY TABLE system privilege

If the master database is remote, then the READ or SELECT object privilege must be granted
to the user at the master database to which the user at the materialized view database
connects through a database link.

36.5.3 Creator Is Not Owner
If the creator of a materialized view is not the owner, then certain privileges must be granted to
the creator and to the owner to create a materialized view.

Both the creator's privileges and the owner's privileges must be granted explicitly rather than
through a role.

Table 36-1 shows the required privileges when the creator of the materialized view is not the
owner.

Table 36-1 Required Privileges for Creating Materialized Views (Creator != Owner)

Creator Owner

CREATE ANY MATERIALIZED VIEW CREATE TABLE or CREATE ANY TABLE
READ or SELECT object privilege on the master table and the
master table's materialized view log or either READ ANY
TABLE or SELECT ANY TABLE system privilege

If the master database is remote, then the READ or SELECT
object privilege must be granted to the user at the master
database to which the user at the materialized view database
connects through a database link.

36.5.4 Refresher Is Owner
If the refresher of a materialized view also owns the materialized view, then this user must
have the required privileges to create the materialized view.

Specifically, this user must have READ or SELECT object privilege on the master table and the
master table's materialized view log or either READ ANY TABLE or SELECT ANY TABLE system
privilege. If the master database is remote, then the READ or SELECT object privilege must be
granted to the user at the master database to which the user at the materialized view database
connects through a database link. This privilege can be granted either explicitly or through a
role.

Chapter 36
Users and Privileges Related to Materialized Views

36-11

36.5.5 Refresher Is Not Owner
If the refresher of a materialized view is not the owner, certain privileges must be granted to the
refresher and to the owner.

These privileges can be granted either explicitly or through a role.

Table 36-2 shows the required privileges when the refresher of the materialized view is not the
owner.

Table 36-2 Required Privileges for Refreshing Materialized Views (Refresher != Owner)

Refresher Owner

ALTER ANY MATERIALIZED VIEW If the master database is local, then READ or SELECT object
privilege must be granted on the master table and master
table's materialized view log or either READ ANY TABLE or
SELECT ANY TABLE system privilege.

If the master database is remote, then the READ or SELECT
object privilege must be granted to the user at the master
database to which the user at the materialized view database
connects through a database link.

36.6 Data Subsetting with Materialized Views
You can use row subsetting and column subsetting to configure materialized views reflect a
subset of the data in the master table.

• About Data Subsetting with Materialized Views
In certain situations, you might want your materialized view to reflect a subset of the data
in the master table.

• Materialized Views with Subqueries
If you want to replicate data based on the information in multiple tables, then maintaining
and defining these materialized views can be difficult.

• Restrictions for Materialized Views with Subqueries
The defining query of a materialized view with a subquery is subject to several restrictions
to preserve the materialized view's fast refresh capability.

• Restrictions for Materialized Views with Unions Containing Subqueries
There are restrictions for fast refresh materialized views with unions containing subqueries.

36.6.1 About Data Subsetting with Materialized Views
In certain situations, you might want your materialized view to reflect a subset of the data in the
master table.

Row subsetting enables you to include only the rows that are needed from the master table in
the materialized views by using a WHERE clause. Column subsetting enables you to include only
the columns that are needed from the master table in the materialized views. You do this by
specifying certain select columns in the SELECT statement during materialized view creation.

Some reasons to use data subsetting are to:

• Reduce Network Traffic: In a column-subsetted materialized view, only changes that
satisfy the WHERE clause of the materialized view's defining query are applied to the

Chapter 36
Data Subsetting with Materialized Views

36-12

materialized view database, thereby reducing the amount of data transferred and reducing
network traffic.

• Secure Sensitive Data: Users can only view data that satisfies the defining query for the
materialized view.

• Reduce Resource Requirements: If the materialized view is located on a laptop, then
hard disks are generally significantly smaller than the hard disks on a corporate server.
Subsetted materialized views might require significantly less storage space.

• Improve Refresh Times: Because less data is applied to the materialized view database,
the refresh process is faster, which might be essential for those who need to refresh
materialized views using a network connection from a laptop.

For example, the following statement creates a materialized view based on the
oe.orders@orc1.example.com master table and includes only the rows for the sales
representative with a sales_rep_id number of 173:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.example.com
 WHERE sales_rep_id = 173;

Rows of the orders table with a sales_rep_id number other than 173 are excluded from this
materialized view.

36.6.2 Materialized Views with Subqueries
If you want to replicate data based on the information in multiple tables, then maintaining and
defining these materialized views can be difficult.

• Many to One Subqueries
You can create a materialized view with a subquery with a many to one relationship.

• One to Many Subqueries
You can create a materialized view with a subquery with a one to many relationship.

• Many to Many Subqueries
You can create a materialized view with a subquery with a many to many relationship.

• Materialized Views with Subqueries and Unions
You can create a materialized view with subqueries and unions.

36.6.2.1 Many to One Subqueries
You can create a materialized view with a subquery with a many to one relationship.

Consider a scenario where you have the customers table and orders table in the oe schema,
and you want to create a materialized view of the orders table based on data in both the
orders table and the customers table. For example, suppose a salesperson wants to see all of
the orders for the customers with a credit limit greater than $10,000. In this case, the CREATE
MATERIALIZED VIEW statement that creates the orders materialized view has a subquery with a
many to one relationship, because there can be many orders for each customer.

Look at the relationships in Figure 36-3, and notice that the customers and orders tables are
related through the customer_id column. The following statement satisfies the original goal of
the salesperson. That is, the following statement creates a materialized view that contains
orders for customers whose credit limit is greater than $10,000:

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS

Chapter 36
Data Subsetting with Materialized Views

36-13

 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 10000);

Note:

To create this oe.orders materialized view, credit_limit must be logged in the
master table's materialized view log. See "Logging Columns in a Materialized View
Log" for more information.

Figure 36-3 Row Subsetting with Many to One Subqueries

orders Master Table

order_id customer_id . . .

.

.

.

.

.

.

4865

4886

4865

5420

5420

.

900

901

902

903

904

.

Primary Key

customers Master Table

customer_id credit_limit . . .

.

.

.

.

.

50000

7500

12000

35000

.

4865

4872

4886

5420

.

Primary Key

customer_id

As you can see, the materialized view created by this statement is fast refreshable. If new
customers are identified that have a credit limit greater than $10,000, then the new data will be
propagated to the materialized view database during the subsequent refresh process. Similarly,
if a customer's credit limit drops to less than $10,000, then the customer's data will be removed
from the materialized view during the subsequent refresh process.

36.6.2.2 One to Many Subqueries
You can create a materialized view with a subquery with a one to many relationship.

Consider a scenario where you have the customers table and orders table in the oe schema,
and you want to create a materialized view of the customers table based on data in both the
customers table and the orders table. For example, suppose a salesperson wants to see all of
the customers who have an order with an order total greater than $20,000. In this case, the
most efficient method is to create a materialized view with a one to many subquery in the
defining query of a materialized view.

Here, the defining query in the CREATE MATERIALIZED VIEW statement on the customers table
has a subquery with a one to many relationship. That is, one customer can have many orders.

Look at the relationships in Figure 36-4, and notice that the orders table and customers table
are related through the customer_id column. The following statement satisfies the original goal
of the salesperson. That is, this statement creates a materialized view that contains customers
who have an order with an order total greater than $20,000:

CREATE MATERIALIZED VIEW oe.customers REFRESH FAST AS
 SELECT * FROM oe.customers@orc1.example.com c
 WHERE EXISTS
 (SELECT * FROM oe.orders@orc1.example.com o
 WHERE c.customer_id = o.customer_id AND o.order_total > 20000);

Chapter 36
Data Subsetting with Materialized Views

36-14

Note:

To create this oe.customers materialized view, customer_id and order_total must
be logged in the materialized view log for the orders master table. See "Logging
Columns in a Materialized View Log" for more information.

Figure 36-4 Row Subsetting with One to Many Subqueries

customers Master Table

customer_id . . .

.

.

.

.

.

4225

4226

4227

4228

.

Primary Key

orders Master Table

order_id customer_id order_total

12229

25650

48239

32155

16000

.

. . .

.

.

.

.

.

4227

4228

4225

4227

4226

.

800

801

802

803

804

.

Primary Key

customer_id

The materialized view created by this statement is fast refreshable. If new customers are
identified that have an order total greater than $20,000, then the new data will be propagated
to the materialized view database during the subsequent refresh process. Similarly, if a
customer cancels an order with an order total greater than $20,000 and has no other order
totals greater than $20,000, then the customer's data will be removed from the materialized
view during the subsequent refresh process.

36.6.2.3 Many to Many Subqueries
You can create a materialized view with a subquery with a many to many relationship.

Consider a scenario where you have the order_items table and inventories table in the oe
schema, and you want to create a materialized view of the inventories table based on data in
both the inventories table and the order_items table. For example, suppose a salesperson
wants to see all of the inventories with a quantity on hand greater than 0 (zero) for each
product whose product_id is in the order_items table. In other words, the salesperson wants
to see the inventories that are greater than zero for all of the products that customers have
ordered. Here, an inventory is a certain quantity of a product at a particular warehouse. So, a
certain product can be in many order items and in many inventories.

To accomplish the salesperson's goal, you can create a materialized view with a subquery on
the many to many relationship between the order_items table and the inventories table.

When you create the inventories materialized view, you want to retrieve the inventories with
the quantity on hand greater than zero for the products that appear in the order_items table.
Look at the relationships in Figure 36-5, and note that the inventories table and order_items
table are related through the product_id column. The following statement creates the
materialized view:

CREATE MATERIALIZED VIEW oe.inventories REFRESH FAST AS
 SELECT * FROM oe.inventories@orc1.example.com i
 WHERE i.quantity_on_hand > 0 AND EXISTS

Chapter 36
Data Subsetting with Materialized Views

36-15

 (SELECT * FROM oe.order_items@orc1.example.com o
 WHERE i.product_id = o.product_id);

Note:

To create this oe.inventories materialized view, the product_id column in the
order_items master table must be logged in the master table's materialized view log.
See "Logging Columns in a Materialized View Log" for more information.

Figure 36-5 Row Subsetting with Many to Many Subqueries

inventories Master Table

product_id warehouse_id quantity_on_hand

0

500

250

79

122

0

.

7

9

5

7

8

2

.

3391

3345

3391

3402

3402

3345

.

order_items Master Table

order_id line_item_id product_id

3402

3391

3345

.

. . .

.

.

.

.

100

1005

1252

.

700

701

702

.

Primary Key

product_id

Primary Key

The materialized view created by this statement is fast refreshable. If new inventories that are
greater than zero are identified for products in the order_items table, then the new data will be
propagated to the materialized view database during the subsequent refresh process. Similarly,
if a customer cancels an order for a product and there are no other orders for the product in the
order_items table, then the inventories for the product will be removed from the materialized
view during the subsequent refresh process.

36.6.2.4 Materialized Views with Subqueries and Unions
You can create a materialized view with subqueries and unions.

In situations where you want a single materialized view to contain data that matches the
complete results of two or more different queries, you can use the UNION operator. When you
use the UNION operator to create a materialized view, you have two SELECT statements around
each UNION operator; one is above it and one is below it. The resulting materialized view
contains rows selected by either query.

You can use the UNION operator as a way to create fast refreshable materialized views that
satisfy "or" conditions without using the OR expression in the WHERE clause of a subquery. Under
some conditions, using an OR expression in the WHERE clause of a subquery causes the
resulting materialized view to be complex, and therefore not fast refreshable.

Chapter 36
Data Subsetting with Materialized Views

36-16

See Also:

"Restrictions for Materialized Views with Subqueries" for more information about the
OR expressions in subqueries

For example, suppose a salesperson wants the product information for the products in a
particular category_id that are either in a warehouse in California or contain the word "Rouge"
in their translated product descriptions (for the French translation). The following statement
uses the UNION operator and subqueries to capture this data in a materialized view for products
in category_id 29:

CREATE MATERIALIZED VIEW oe.product_information REFRESH FAST AS
 SELECT * FROM oe.product_information@orc1.example.com pi
 WHERE pi.category_id = 29 AND EXISTS
 (SELECT * FROM oe.product_descriptions@orc1.example.com pd
 WHERE pi.product_id = pd.product_id AND
 pd.translated_description LIKE '%Rouge%')
UNION
 SELECT * FROM oe.product_information@orc1.example.com pi
 WHERE pi.category_id = 29 AND EXISTS
 (SELECT * FROM oe.inventories@orc1.example.com i
 WHERE pi.product_id = i.product_id AND EXISTS
 (SELECT * FROM oe.warehouses@orc1.example.com w
 WHERE i.warehouse_id = w.warehouse_id AND EXISTS
 (SELECT * FROM hr.locations@orc1.example.com l
 WHERE w.location_id = l.location_id
 AND l.state_province = 'California')));

Note:

To create the oe.product_information materialized view, translated_description
in the oe.product_descriptions master table, the state_province in the
hr.locations master table, and the location_id column in the oe.warehouses
master table must be logged in each master's materialized view log. See "Logging
Columns in a Materialized View Log" for more information.

Figure 36-6 shows the relationships of the master tables involved in this statement.

Chapter 36
Data Subsetting with Materialized Views

36-17

Figure 36-6 Row Subsetting with Subqueries and Unions

product_id

product_information Master Table

product_id category_id . . .

.

.

.

.

.

28

28

29

29

.

3159

3161

3163

3165

.

Primary Key

union

inventories Master Table

product_id warehouse_id . . .

.

.

.

.

.

4

5

7

1

.

3161

3161

3163

3163

.

product_descriptions Master Table

product_id translated_description . . .

.

.

.

.

.

language_id

F

F

F

F

.

.

.

.

.

.

3159

3161

3163

3165

.

Primary Key Primary Key
warehouse_id

warehouses Master Table

warehouse_id location_id . . .

.

.

.

1500

2900

.

1

2

.

Primary Key

locations Master Table

location_id state_province . . .

.

.

.

California

New Jersey

.

1500

1600

.

Primary Key

product_id

product_information Master Table

product_id category_id . . .

.

.

.

.

.

28

28

29

29

.

3159

3161

3163

3165

.

Primary Key

location_id

In addition to the UNION operation, this statement contains the following subqueries:

• A subquery referencing the product_information table and the product_descriptions
table. This subquery is one to many because one product can have multiple product
descriptions (for different languages).

• A subquery referencing the product_information table and the inventories table. This
subquery is one to many because a product can be in many inventories.

• A subquery referencing the inventories table and the warehouses table. This subquery is
many to one because many inventories can be stored in one warehouse.

• A subquery referencing the warehouses table and the locations table. This subquery is
many to one because many warehouses can be in one location.

The materialized view created by this statement is fast refreshable. If a new product is added
that is stored in a warehouse in California or that has the string "Rouge" in the translated
product description, then the new data will be propagated to the product_information
materialized view during the subsequent refresh process.

Chapter 36
Data Subsetting with Materialized Views

36-18

36.6.3 Restrictions for Materialized Views with Subqueries
The defining query of a materialized view with a subquery is subject to several restrictions to
preserve the materialized view's fast refresh capability.

The following are restrictions for fast refresh materialized views with subqueries:

• Materialized views must be primary key materialized views.

• The master table's materialized view log must include certain columns referenced in the
subquery. For information about which columns must be included, see "Logging Columns
in a Materialized View Log".

• If the subquery is many to many or one to many, then join columns that are not part of a
primary key must be included in the materialized view log of the master table. This
restriction does not apply to many to one subqueries.

• The subquery must be a positive subquery. For example, you can use the EXISTS
condition, but not the NOT EXISTS condition.

• The subquery must use EXISTS to connect each nested level (IN is not allowed).

• Each table can be in only one EXISTS expression.

• The join expression must use exact match or equality comparisons (that is, equi-joins).

• Each table can be joined only once within the subquery.

• A primary key must exist for each table at each nested level.

• Each nested level can only reference the table in the level above it.

• Subqueries can include AND conditions, but each OR condition can only reference columns
contained within one row. Multiple OR conditions within a subquery can be connected with
an AND condition.

• All tables referenced in a subquery must reside in the same master database.

Note:

If the CREATE MATERIALIZED VIEW statement includes an ON PREBUILT TABLE clause
and a subquery, then the subquery is treated as many to many. Therefore, in this
case, the join columns must be recorded in the materialized view log. See the Oracle
Database SQL Language Reference for more information about the ON PREBUILT
TABLE clause in the CREATE MATERIALIZED VIEW statement.

See Also:

• "Primary Key Materialized Views" for more information about primary key
materialized views

• "Determining the Fast Refresh Capabilities of a Materialized View"

Chapter 36
Data Subsetting with Materialized Views

36-19

36.6.4 Restrictions for Materialized Views with Unions Containing
Subqueries

There are restrictions for fast refresh materialized views with unions containing subqueries.

The following are restrictions for fast refresh materialized views with unions containing
subqueries:

• All of the restrictions described in "Restrictions for Materialized Views with Subqueries"
apply to the subqueries in each union block.

• All join columns must be included in the materialized view log of the master table, even if
the subquery is many to one.

• All of the restrictions described in "Complex Materialized Views" apply for clauses with
UNIONS.

• Examples of Materialized Views with Unions Containing Subqueries
Examples illustrate creating materialized views with unions containing subqueries.

36.6.4.1 Examples of Materialized Views with Unions Containing Subqueries
Examples illustrate creating materialized views with unions containing subqueries.

The following statement creates the oe.orders materialized view. This materialized view is fast
refreshable because the subquery in each union block satisfies the restrictions for subqueries
described in "Restrictions for Materialized Views with Subqueries".

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.credit_limit > 50)
UNION
 SELECT *
 FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

Notice that one of the restrictions for subqueries states that each table can be in only one
EXISTS expression. Here, the customers table appears in two EXISTS expressions, but the
EXISTS expressions are in separate UNION blocks. Because the restrictions described in
"Restrictions for Materialized Views with Subqueries" only apply to each UNION block, not to the
entire CREATE MATERIALIZED VIEW statement, the materialized view is fast refreshable.

In contrast, the materialized view created with the following statement cannot be fast refreshed
because the orders table is referenced in two different EXISTS expressions within the same
UNION block:

CREATE MATERIALIZED VIEW oe.orders AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id -- first reference to orders table
 AND c.credit_limit > 50
 AND EXISTS

Chapter 36
Data Subsetting with Materialized Views

36-20

 (SELECT * FROM oe.orders@orc1.example.com o
 WHERE order_total > 5000
 AND o.customer_id = c.customer_id)) -- second reference to orders table
UNION
 SELECT *
 FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id
 AND c.account_mgr_id = 30);

See Also:

"Determining the Fast Refresh Capabilities of a Materialized View"

36.7 Materialized View Refresh
To ensure that a materialized view is consistent with its master table, you must refresh the
materialized view periodically.

Oracle provides the following three methods to refresh materialized views:

• Fast refresh uses materialized view logs to update only the rows that have changed since
the last refresh.

• Complete refresh updates the entire materialized view.

• Force refresh performs a fast refresh when possible. When a fast refresh is not possible,
force refresh performs a complete refresh.

36.8 Refresh Groups
When it is important for materialized views to be transactionally consistent with each other, you
can organize them into refresh groups.

By refreshing the refresh group, you can ensure that the data in all of the materialized views in
the refresh group correspond to the same transactionally consistent point in time. A
materialized view in a refresh group still can be refreshed individually, but doing so nullifies the
benefits of the refresh group because refreshing the materialized view individually does not
refresh the other materialized views in the refresh group.

36.9 Materialized View Log
A materialized view log is a table at the database that contains materialized view's master
table. It records all of the DML changes to the master table.

A materialized view log is associated with a single master table, and each of those has only
one materialized view log, regardless of how many materialized views refresh from the master
table. A fast refresh of a materialized view is possible only if the materialized view's master
table has a materialized view log. When a materialized view is fast refreshed, entries in the
materialized view's associated materialized view log that have appeared since the materialized
view was last refreshed are applied to the materialized view.

Chapter 36
Materialized View Refresh

36-21

36.10 Materialized Views and User-Defined Data Types
There are special considerations for materialized views with user-defined data types.

• How Materialized Views Work with Object Types and Collections
You can replicate object types and objects between master databases and materialized
view databases in a replication environment.

• Type Agreement at Replication Databases
User-defined types include all types created using the CREATE TYPE statement, including
object, nested table, VARRAY, and indextype. To replicate schema objects based on user-
defined types, the user-defined types themselves must exist, and must be the same, at the
master database and the materialized view database.

• Column Subsetting of Masters with Column Objects
A read-only materialized view can replicate specific attributes of a column object without
replicating other attributes.

• Materialized Views Based on Object Tables
You can create a materialized view based on an object table.

• Materialized Views with Collection Columns
Collection columns are columns based on varray and nested table data types. Oracle
supports the creation of materialized views with collection columns.

• Materialized Views with REF Columns
Materialized views can contain REF columns.

36.10.1 How Materialized Views Work with Object Types and Collections
You can replicate object types and objects between master databases and materialized view
databases in a replication environment.

Oracle object types are user-defined data types that make it possible to model complex real-
world entities such as customers and orders as single entities, called objects, in the database.
You create object types using the CREATE TYPE ... AS OBJECT statement.

An Oracle object that occupies a single column in a table is called a column object. Typically,
tables that contain column objects also contain other columns, which can be built-in data types,
such as VARCHAR2 and NUMBER. An object table is a special kind of table in which each row
represents an object. Each row in an object table is a row object.

You can also replicate collections. Collections are user-defined data types that are based on
VARRAY and nested table data types. You create varrays with the CREATE TYPE ... AS VARRAY
statement, and you create nested tables with the CREATE TYPE ... AS TABLE statement.

Note:

• You cannot create refresh-on-commit materialized views based on a master table
with user-defined types or Oracle-supplied types. Refresh-on-commit
materialized views are those created using the ON COMMIT REFRESH clause in the
CREATE MATERIALIZED VIEW statement.

• Type inheritance and types created with the NOT FINAL clause are not supported.

Chapter 36
Materialized Views and User-Defined Data Types

36-22

See Also:

• Oracle Database Object-Relational Developer's Guide for detailed information
about user-defined types, Oracle objects, and collections. This section assumes
a basic understanding of those concepts.

• Oracle Database SQL Language Reference for more information about user-
defined types and Oracle-supplied types

36.10.2 Type Agreement at Replication Databases
User-defined types include all types created using the CREATE TYPE statement, including object,
nested table, VARRAY, and indextype. To replicate schema objects based on user-defined types,
the user-defined types themselves must exist, and must be the same, at the master database
and the materialized view database.

When replicating user-defined types and the schema objects on which they are based, the
following conditions apply:

• The user-defined types replicated at the master database and materialized view database
must be created at the materialized view database before you create any materialized
views that depend on these types.

• All of the master tables on which a materialized view is based must be at the same master
database to create a materialized view with user-defined types.

• A user-defined type must be the same at all databases:

– All replication databases must have the same object identifier (OID), schema owner,
and type name for each replicated user-defined type.

– If the user-defined type is an object type, then all databases must agree on the order
and data type of the attributes in the object type. You establish the order and data
types of the attributes when you create the object type. For example, consider the
following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all databases, street_address must be the first attribute for this type and must be
VARCHAR2(40), postal_code must be the second attribute and must be VARCHAR2(10),
city must be the third attribute and must be VARCHAR2(30), and so on.

– All databases must agree on the hashcode of the user-defined type. Oracle examines
a user-defined type and assigns the hashcode. This examination includes the type
attributes, order of attributes, and type name. When all of these items are the same for
two or more types, the types have the same hashcode. You can view the hashcode for
a type by querying the DBA_TYPE_VERSIONS data dictionary view.

You can use a CREATE TYPE statement at the materialized view database to create the type. It
might be necessary to do this to create a read-only materialized view that uses the type.

Chapter 36
Materialized Views and User-Defined Data Types

36-23

If you choose this option, then you must ensure the following:

• The type is in the same schema at both the materialized view database and the master
database.

• The type has the same attributes in the same order at both the materialized view database
and the master database.

• The type has the same data type for each attribute at both the materialized view database
and the master database.

• The type has the same object identifier at both the materialized view database and the
master database.

You can find the object identifier for a type by querying the DBA_TYPES data dictionary view. For
example, to find the object identifier (OID) for the cust_address_typ, enter the following query:

SELECT TYPE_OID FROM DBA_TYPES WHERE TYPE_NAME = 'CUST_ADDRESS_TYP';

TYPE_OID

6F9BC33653681B7CE03400400B40A607

For example, now that you know the OID for the type at the master database, you can
complete the following steps to create the type at the materialized view database:

1. Log in to the materialized view database as the user who owns the type at the master
database. If this user does not exist at the materialized view database, then create the
user.

2. Issue the CREATE TYPE statement and specify the OID:

CREATE TYPE oe.cust_address_typ OID '6F9BC33653681B7CE03400400B40A607'
 AS OBJECT (
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

The type is now ready for use at the materialized view database.

36.10.3 Column Subsetting of Masters with Column Objects
A read-only materialized view can replicate specific attributes of a column object without
replicating other attributes.

For example, using the cust_address_typ user-defined data type described in the previous
section, suppose a customers_sub master table is created at master database
orc1.example.com:

CREATE TABLE oe.customers_sub (
 customer_id NUMBER(6) PRIMARY KEY,
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address oe.cust_address_typ);

You can create the following read-only materialized view at a remote materialized view
database:

Chapter 36
Materialized Views and User-Defined Data Types

36-24

CREATE MATERIALIZED VIEW oe.customers_mv1 AS
 SELECT customer_id, cust_last_name, c.cust_address.postal_code
 FROM oe.customers_sub@orc1.example.com c;

Notice that the postal_code attribute is specified in the cust_address column object.

36.10.4 Materialized Views Based on Object Tables
You can create a materialized view based on an object table.

• About Materialized Views Based on Object Tables
If a materialized view is based on an object table and is created using the OF type clause,
then the materialized view is called an object materialized view.

• Materialized Views Based on Object Tables Created Without Using the OF type Clause
If you create a materialized view based on an object table without using the OF type clause,
then the materialized view loses the object properties of the object table on which it is
based.

• OID Preservation in Object Materialized Views
An object materialized view inherits the object identifier (OID) specifications of its master.

36.10.4.1 About Materialized Views Based on Object Tables
If a materialized view is based on an object table and is created using the OF type clause, then
the materialized view is called an object materialized view.

An object materialized view is structured in the same way as an object table. That is, an object
materialized view is composed of row objects.

If a materialized view that is based on an object table is created without using the OF type
clause, then the materialized view is not an object materialized view. That is, such a
materialized view has regular rows, not row objects.

To create a materialized view based on an object table, the types on which the materialized
view depends must exist at the materialized view database, and each type must have the
same object identifier as it does at the master database.

See Also:

"Creating Read-Only Materialized Views" for an example that creates an object
materialized view

36.10.4.2 Materialized Views Based on Object Tables Created Without Using the OF
type Clause

If you create a materialized view based on an object table without using the OF type clause,
then the materialized view loses the object properties of the object table on which it is based.

That is, the resulting read-only materialized view contains one or more of the columns of the
master table, but each row functions as a row in a relational table. The rows are not row
objects.

Chapter 36
Materialized Views and User-Defined Data Types

36-25

For example, you can create a materialized view based on the categories_tab master by
using the following SQL statement:

CREATE MATERIALIZED VIEW oe.categories_relmv
 AS SELECT * FROM oe.categories_tab@orc1.example.com;

In this case, the rows in this materialized view function in the same way as rows in a relational
table.

36.10.4.3 OID Preservation in Object Materialized Views
An object materialized view inherits the object identifier (OID) specifications of its master.

If the master table has a primary key-based OID, then the OIDs of row objects in the
materialized view are primary key-based. If the master table has a system generated OID, then
the OIDs of row objects in the materialized view are system generated. Also, the OID of each
row in the object materialized view matches the OID of the same row in the master table, and
the OIDs are preserved during refresh of the materialized view. Consequently, REFs to the rows
in the object table remain valid at the materialized view database.

36.10.5 Materialized Views with Collection Columns
Collection columns are columns based on varray and nested table data types. Oracle supports
the creation of materialized views with collection columns.

If the collection column is a nested table, then you can optionally specify the
nested_table_storage_clause during materialized view creation. The
nested_table_storage_clause lets you specify the name of the storage table for the nested
table in the materialized view.

For example, suppose you create the master table people_reltab at the master database
orc1.example.com that contains the nested table phones_ntab:

CREATE TYPE oe.phone_typ AS OBJECT (
 location VARCHAR2(15),
 num VARCHAR2(14));
/

CREATE TYPE oe.phone_ntabtyp AS TABLE OF oe.phone_typ;
/

CREATE TABLE oe.people_reltab (
 id NUMBER(4) CONSTRAINT pk_people_reltab PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(20),
 phones_ntab oe.phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab
 ((PRIMARY KEY (NESTED_TABLE_ID, location)));

Notice the PRIMARY KEY specification in the last line of the preceding SQL statement. You must
specify a primary key for the storage table if you plan to create materialized views based on its
parent table. In this case, the storage table is phone_store_ntab and the parent table is
people_reltab.

To create materialized views that can be fast refreshed, create a materialized view log on both
the parent table and the storage table, specifying the nested table column as a filter column for
the parent table's materialized view log:

Chapter 36
Materialized Views and User-Defined Data Types

36-26

CREATE MATERIALIZED VIEW LOG ON oe.people_reltab;

ALTER MATERIALIZED VIEW LOG ON oe.people_reltab ADD(phones_ntab);

CREATE MATERIALIZED VIEW LOG ON oe.phone_store_ntab WITH PRIMARY KEY;

At the materialized view database, create the required types, ensuring that the object identifier
for each type is the same as the object identifier at the master database. Then, you can create
a materialized view based on people_reltab and specify its storage table using the following
statement:

CREATE MATERIALIZED VIEW oe.people_reltab_mv
 NESTED TABLE phones_ntab STORE AS phone_store_ntab_mv
 REFRESH FAST AS SELECT * FROM oe.people_reltab@orc1.example.com;

In this case, the nested_table_storage_clause is the line that begins with "NESTED TABLE" in the
previous example, and it specifies that the storage table's name is phone_store_ntab_mv. The
nested_table_storage_clause is optional. If you do not specify this clause, then Oracle
Database automatically names the storage table. To view the name of a storage table, query
the DBA_NESTED_TABLES data dictionary table.

The storage table:

• Is a separate, secondary materialized view

• Is refreshed automatically when you refresh the materialized view containing the nested
table

• Is dropped automatically when you drop the materialized view containing the nested table

• Inherits the primary key constraint of the master's storage table

Because the storage table inherits the primary key constraint of the master table's storage
table, do not specify PRIMARY KEY in the STORE AS clause.

The following actions are not allowed directly on the storage table of a nested table in a
materialized view:

• Refreshing the storage table

• Altering the storage table

• Dropping the storage table

• Generating replication support on the storage table

These actions can occur indirectly when they are performed on the materialized view that
contains the nested table. In addition, you cannot replicate a subset of the columns in a
storage table.

• Restrictions for Materialized Views with Collection Columns
Restrictions apply to materialized views with collection columns.

See Also:

Oracle Database SQL Language Reference for more information about the
nested_table_col_properties, which is fully documented in the CREATE TABLE
statement

Chapter 36
Materialized Views and User-Defined Data Types

36-27

36.10.5.1 Restrictions for Materialized Views with Collection Columns
Restrictions apply to materialized views with collection columns.

The following restrictions apply:

• Row subsetting of collection columns is not allowed. However, you can use row subsetting
on the parent table of a nested table and doing so can result in a subset of the nested
tables in the materialized view.

• Column subsetting of collection columns is not allowed.

• A nested table's storage table must have a primary key.

• For the parent table of a nested table to be fast refreshed, both the parent table and the
nested table's storage table must have a materialized view log.

36.10.6 Materialized Views with REF Columns
Materialized views can contain REF columns.

• About Materialized Views with REF Columns
You can create materialized views with REF columns. A REF is an Oracle built-in data type
that is a logical "pointer" to a row object in an object table.

• Scoped REF Columns
If you are creating a materialized view based on a master table that has a scoped REF
column, then you can rescope the REF to a different object table or object materialized view
at the materialized view database.

• Unscoped REF Columns
If you create a materialized view based on a remote master table with an unscoped REF
column, then the REF column is created in the materialized view, but the REFs are
considered dangling because they point to a remote database.

• Logging REF Columns in the Materialized View Log
If necessary, you can log REF columns in the materialized view log.

• REFs Created Using the WITH ROWID Clause
If the WITH ROWID clause is specified for a REF column, then Oracle Database maintains the
rowid of the object referenced in the REF.

36.10.6.1 About Materialized Views with REF Columns
You can create materialized views with REF columns. A REF is an Oracle built-in data type that
is a logical "pointer" to a row object in an object table.

A scoped REF is a REF that can contain references only to a specified object table, while an
unscoped REF can contain references to any object table in the database that is based on the
corresponding object type. A scoped REF requires less storage space and provides more
efficient access than an unscoped REF.

You can rescope a REF column to a local materialized view or table at the materialized view
database during creation of the materialized view. If you do not rescope the REF column, then it
continues to point to the remote master table. Unscoped REF columns always continue to point
to the master table. When a REF column at a materialized view database points to a remote
master table, the REFs are considered dangling. In SQL, dereferencing a dangling REF returns a

Chapter 36
Materialized Views and User-Defined Data Types

36-28

NULL. Also, PL/SQL only supports dereferencing REFs by using the UTL_OBJECT package and
raises an exception for dangling REFs.

36.10.6.2 Scoped REF Columns
If you are creating a materialized view based on a master table that has a scoped REF column,
then you can rescope the REF to a different object table or object materialized view at the
materialized view database.

Typically, you would rescope the REF column to the local object materialized view instead of the
original remote object table. To rescope a materialized view, you can either use the SCOPE FOR
clause in the CREATE MATERIALIZED VIEW statement, or you can use the ALTER MATERIALIZED
VIEW statement after creating the materialized view. If you do not rescope the REF column, then
the materialized view retains the REF scope of the master table.

For example, suppose you create the customers_with_ref master table at the
orc1.example.com master database using the following statements:

-- Create the user-defined data type cust_address_typ.
CREATE TYPE oe.cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

-- Create the object table cust_address_objtab.
CREATE TABLE oe.cust_address_objtab OF oe.cust_address_typ;

-- Create table with REF to cust_address_typ.
CREATE TABLE oe.customers_with_ref (
 customer_id NUMBER(6) PRIMARY KEY,
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address REF oe.cust_address_typ
 SCOPE IS oe.cust_address_objtab);

Assuming the cust_address_typ exists at the materialized view database with the same object
identifier as the type at the master database, you can create a cust_address_objtab_mv object
materialized view using the following statement:

CREATE MATERIALIZED VIEW oe.cust_address_objtab_mv OF oe.cust_address_typ AS
 SELECT * FROM oe.cust_address_objtab@orc1.example.com;

Now, you can create a materialized view of the customers_with_ref master table and rescope
the REF to the cust_address_objtab_mv materialized view using the following statement:

CREATE MATERIALIZED VIEW oe.customers_with_ref_mv
 (SCOPE FOR (cust_address) IS oe.cust_address_objtab_mv)
 AS SELECT * FROM oe.customers_with_ref@orc1.example.com;

To use the SCOPE FOR clause when you create a materialized view, remember to create the
materialized view or table specified in the SCOPE FOR clause first. Otherwise, you cannot specify
the SCOPE FOR clause during materialized view creation. For example, if you had created the
customers_with_ref_mv materialized view before you created the cust_address_objtab_mv
materialized view, then you could not use the SCOPE FOR clause when you created the
customers_with_ref_mv materialized view. In this case, the REFs are considered dangling
because they point back to the object table at the remote master database.

Chapter 36
Materialized Views and User-Defined Data Types

36-29

However, even if you do not use the SCOPE FOR clause when you are creating a materialized
view, you can alter the materialized view to specify a SCOPE FOR clause. For example, you can
alter the customers_with_ref_mv materialized view with the following statement:

ALTER MATERIALIZED VIEW oe.customers_with_ref_mv
 MODIFY SCOPE FOR (cust_address) IS oe.cust_address_objtab_mv;

36.10.6.3 Unscoped REF Columns
If you create a materialized view based on a remote master table with an unscoped REF
column, then the REF column is created in the materialized view, but the REFs are considered
dangling because they point to a remote database.

36.10.6.4 Logging REF Columns in the Materialized View Log
If necessary, you can log REF columns in the materialized view log.

See Also:

"Logging Columns in a Materialized View Log"

36.10.6.5 REFs Created Using the WITH ROWID Clause
If the WITH ROWID clause is specified for a REF column, then Oracle Database maintains the
rowid of the object referenced in the REF.

Oracle Database can find the object referenced directly using the rowid contained in the REF,
without the need to fetch the rowid from the OID index. Therefore, you use the WITH ROWID
clause to specify a rowid hint. The WITH ROWID clause is not supported for scoped REFs.

Replicating a REF created using the WITH ROWID clause results in an incorrect rowid hint at each
replication database except the database where the REF was first created or modified. The
ROWID information in the REF is meaningless at the other databases, and Oracle Database does
not correct the rowid hint automatically. Invalid rowid hints can cause performance problems. In
this case, you can use the VALIDATE STRUCTURE option of the ANALYZE TABLE statement to
determine which rowid hints at each replication database are incorrect.

See Also:

Oracle Database SQL Language Reference for more information about the ANALYZE
TABLE statement

36.11 Materialized View Registration at a Master Database
At the master database, an Oracle Database automatically registers information about a
materialized view based on its master table(s).

Chapter 36
Materialized View Registration at a Master Database

36-30

• Viewing Information about Registered Materialized Views
A materialized view is registered at its master database.

• Internal Mechanisms
Oracle Database automatically registers a materialized view at its master database when
you create the materialized view, and unregisters the materialized view when you drop it.

• Manual Materialized View Registration
If necessary, you can maintain registration manually.

36.11.1 Viewing Information about Registered Materialized Views
A materialized view is registered at its master database.

You can query the DBA_REGISTERED_MVIEWS data dictionary view at a master database to list
the following information about a remote materialized view:

• The owner, name, and database that contains the materialized view

• The materialized view's defining query

• Other materialized view characteristics, such as its refresh method

You can also query the DBA_MVIEW_REFRESH_TIMES view at a master database to obtain the last
refresh times for each materialized view. Administrators can use this information to monitor
materialized view activity and coordinate changes to materialized view databases if a master
table must be dropped, altered, or relocated.

36.11.2 Internal Mechanisms
Oracle Database automatically registers a materialized view at its master database when you
create the materialized view, and unregisters the materialized view when you drop it.

Note:

Oracle Database cannot guarantee the registration or unregistration of a materialized
view at its master database during the creation or drop of the materialized view,
respectively. If Oracle Database cannot successfully register a materialized view
during creation, then you must complete the registration manually using the
REGISTER_MVIEW procedure in the DBMS_MVIEW package. If Oracle Database cannot
successfully unregister a materialized view when you drop the materialized view, then
the registration information for the materialized view persists in the master database
until it is manually unregistered. It is possible that complex materialized views might
not be registered.

36.11.3 Manual Materialized View Registration
If necessary, you can maintain registration manually.

Use the REGISTER_MVIEW and UNREGISTER_MVIEW procedures of the DBMS_MVIEW package at the
master database to add, modify, or remove materialized view registration information.

Chapter 36
Materialized View Registration at a Master Database

36-31

See Also:

The REGISTER_MVIEW and UNREGISTER_MVIEW procedures are described in the Oracle
Database PL/SQL Packages and Types Reference

Chapter 36
Materialized View Registration at a Master Database

36-32

37
Read-Only Materialized View Architecture

Several objects are used in materialized view replication. Some of these objects are optional
and are used only as needed to support the created materialized view environment. For
example, if you have a complex materialized view that cannot be fast refreshed, then you
might not have a materialized view log at the master database.

• Master Database Mechanisms
There are mechanisms that support materialized views at the master database.

• Materialized View Database Mechanisms
When a materialized view is created, additional mechanisms are created at the
materialized view database to support the materialized view. Specifically, at least one index
is created.

• Organizational Mechanisms
Several mechanisms organize the materialized views at the materialized view database.
These mechanisms maintain organizational consistency between the materialized view
database and its master database.

• Refresh Process
To ensure that a materialized view is consistent with its master table, you must refresh the
materialized view periodically.

37.1 Master Database Mechanisms
There are mechanisms that support materialized views at the master database.

• Master Database Objects
Specific database objects are required at a master database to support fast refreshing of
materialized views.

• Master Table
The master table is the basis for the materialized view.

• Internal Trigger for the Materialized View Log
When changes are made to the master table using DML, an internal trigger records
information about the affected rows in the materialized view log.

• Materialized View Logs
Materialized view logs enable fast refreshes of materialized views.

37.1.1 Master Database Objects
Specific database objects are required at a master database to support fast refreshing of
materialized views.

The three database objects displayed in Figure 37-1 are required at a master database to
support fast refreshing of materialized views.

37-1

Figure 37-1 Master Database Objects

10

20

30

.

Administration

Marketing

Purchasing

.

1500

1500

1500

.

department_id (PK) department_name location_id

30

10

20

.

department_id (PK)

Master Table Materialized View Log

Internal trigger
adds rows to
Materialized View
Log

37.1.2 Master Table
The master table is the basis for the materialized view.

A master table is located at the target master database. Remember that a materialized view
points to only one master database. Data manipulation language (DML) changes made to the
master table, as recorded by the materialized view log, are propagated to the materialized view
during the refresh process.

Note:

Fast refreshable materialized views must be based on master tables or synonyms of
master tables. Complete refresh must be used for a materialized view based on a
view.

37.1.3 Internal Trigger for the Materialized View Log
When changes are made to the master table using DML, an internal trigger records information
about the affected rows in the materialized view log.

This information includes the values of the primary key, rowid, or object id, or both, as well as
the values of the other columns logged in the materialized view log. This is an internal AFTER
ROW trigger that is automatically activated when you create a materialized view log for the target
master table. It inserts a row into the materialized view log whenever an INSERT, UPDATE, or
DELETE statement modifies the table's data. This trigger is always the last trigger to fire.

Note:

When the materialized view contains a subquery, you might need to log columns
referenced in a subquery. See "Data Subsetting with Materialized Views" for
information about subquery materialized views and "Logging Columns in a
Materialized View Log" for more information about the columns that must be logged.

37.1.4 Materialized View Logs
Materialized view logs enable fast refreshes of materialized views.

Chapter 37
Master Database Mechanisms

37-2

• About Materialized View Logs
A materialized view log is required on a master table to perform a fast refresh on
materialized views based on the master table.

• Columns Logged in the Materialized View Log
When you create a materialized view log, you can add columns to the log when necessary.

• Restriction on Import of Materialized View Logs to a Different Schema
Materialized view logs are exported with the schema name explicitly given in the DDL
statements. Therefore, materialized view logs cannot be imported into a schema that is
different than the schema from which they were exported.

37.1.4.1 About Materialized View Logs
A materialized view log is required on a master table to perform a fast refresh on materialized
views based on the master table.

When you create a materialized view log for a master table, Oracle Database creates an
underlying table as the materialized view log. A materialized view log can hold the primary
keys, rowids, or object identifiers of rows that have been updated in the master table. A
materialized view log can also contain other columns to support fast refreshes of materialized
views with subqueries.

The name of a materialized view log's table is MLOG$_master_table_name. The materialized
view log is created in the same schema as the target master table. One materialized view log
can support multiple materialized views on its master table. As described in the previous
section, the internal trigger adds change information to the materialized view log whenever a
DML transaction has taken place on the target master table.

Following are the types of materialized view logs:

• Primary Key: The materialized view records changes to the master table based on the
primary key of the affected rows.

• Row ID: The materialized view records changes to the master table based on the rowid of
the affected rows.

• Object ID: The materialized view records changes to the master object table based on the
object identifier of the affected row objects.

• Combination: The materialized view records changes to the master table based any
combination of the three options. It is possible to record changes based on the primary
key, the ROWID, and the object identifier of the affected rows. Such a materialized view log
supports primary key, ROWID, and object materialized views, which is helpful for
environments that have all three types of materialized views based on a master table.

A combination materialized view log works in the same manner as a materialized view log that
tracks only one type of value, except that more than one type of value is recorded. For
example, a combination materialized view log can track both the primary key and the rowid of
the affected row.

Though the difference between materialized view logs based on primary keys and rowids is
small (one records affected rows using the primary key, while the other records affected rows
using the physical rowid), the practical impact is large. Using rowid materialized views and
materialized view logs makes reorganizing and truncating your master tables difficult because
it prevents your ROWID materialized views from being fast refreshed. If you reorganize or
truncate your master table, then your rowid materialized view must be COMPLETE refreshed
because the rowids of the master table have changed.

Chapter 37
Master Database Mechanisms

37-3

Note:

• You use the BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION
procedures in the DBMS_MVIEW package to reorganize a master table. See the
Oracle Database PL/SQL Packages and Types Reference for more information.

• Online redefinition of tables is another possible way to reorganize master tables,
but online redefinition is not allowed on master tables with materialized view logs
and materialized views. Online redefinition is allowed on master tables that do
not have materialized view logs. See "Redefining Tables Online".

See Also:

"Creating Materialized View Logs"

37.1.4.2 Columns Logged in the Materialized View Log
When you create a materialized view log, you can add columns to the log when necessary.

To perform a fast refresh on a materialized view, the following types of columns must be added
to the materialized view log:

• A column referenced in the WHERE clause of a subquery that is not part of an equi-join and
is not a primary key column. These columns are called filter columns.

• A column in an equi-join that is not a primary key column, if the subquery is either many to
many or one to many. If the subquery is many to one, then you do not need to add the join
column to the materialized view log.

A collection column cannot be added to a materialized view log. Also, materialized view logs
are not required for materialized views that use complete refresh.

For example, consider the following DDL:

1) CREATE MATERIALIZED VIEW oe.customers REFRESH FAST AS
2) SELECT * FROM oe.customers@orc1.example.com c
3) WHERE EXISTS
4) (SELECT * FROM oe.orders@orc1.example.com o
5) WHERE c.customer_id = o.customer_id AND o.order_total > 20000);

Notice in line 5 of the preceding DDL that three columns are referenced in the WHERE clause.
Columns orders.customer_id and customers.customer_id are referenced as part of the equi-
join clause. Because customers.customer_id is a primary key column, it is logged by default,
but orders.customer_id is not a primary key column and so must be added to the materialized
view log. Also, the column orders.order_total is an additional filter column and so must be
logged.

Therefore, add orders.customer_id and orders.order_total the materialized view log for the
oe.orders table.

You are encouraged to analyze the defining queries of your planned materialized views and
identify which columns must be added to your materialized view logs. If you try to create or

Chapter 37
Master Database Mechanisms

37-4

refresh a materialized view that requires an added column without adding the column to the
materialized view log, then your materialized view creation or refresh might fail.

Note:

To perform a fast refresh on a materialized view, you must add join columns in
subqueries to the materialized view log if the join column is not a primary key and the
subquery is either many to many or one to many. If the subquery is many to one, then
you do not need to add the join column to the materialized view log.

See Also:

• "Creating Materialized View Logs" for information about creating a materialized
view log

• "Logging Columns in a Materialized View Log"

• "Data Subsetting with Materialized Views" for information about materialized
views with subqueries

• "Restrictions for Materialized Views with Subqueries" for additional information
about materialized views with subqueries

37.1.4.3 Restriction on Import of Materialized View Logs to a Different Schema
Materialized view logs are exported with the schema name explicitly given in the DDL
statements. Therefore, materialized view logs cannot be imported into a schema that is
different than the schema from which they were exported.

An error is written to the import log file and the items are not imported if you attempt an import
using the Data Pump Import utility that specifies the REMAP_SCHEMA import parameter to import
an export dump file that contains materialized view logs in the specified schema.

37.2 Materialized View Database Mechanisms
When a materialized view is created, additional mechanisms are created at the materialized
view database to support the materialized view. Specifically, at least one index is created.

Note:

The size limit for a materialized view name is 30 bytes. If you try to create a
materialized view with a name larger than 30 bytes, Oracle Database returns an
error.

• Indexes for Materialized Views
At least one index is created at the remote materialized view database for each primary
key and ROWID materialized view.

Chapter 37
Materialized View Database Mechanisms

37-5

37.2.1 Indexes for Materialized Views
At least one index is created at the remote materialized view database for each primary key
and ROWID materialized view.

For a primary key materialized view, the index corresponds to the primary key of the target
master table and includes _PK in its name. A number is appended if an index with the same
name already exists at the materialized view database. For a ROWID materialized view, the
index is on the ROWID column and includes I_SNAP$_ in its name. Additional indexes can be
created by Oracle Database at the remote materialized view database to support fast
refreshing of materialized views with subqueries.

37.3 Organizational Mechanisms
Several mechanisms organize the materialized views at the materialized view database. These
mechanisms maintain organizational consistency between the materialized view database and
its master database.

• Refresh Groups
To preserve referential integrity and transactional (read) consistency among multiple
materialized views, Oracle Database can refresh individual materialized views as part of a
refresh group.

• Refresh Group Size
There are a few trade-offs to consider when you are deciding on the size of your refresh
groups.

37.3.1 Refresh Groups
To preserve referential integrity and transactional (read) consistency among multiple
materialized views, Oracle Database can refresh individual materialized views as part of a
refresh group.

After refreshing all of the materialized views in a refresh group, the data of all materialized
views in the group correspond to the same transactionally consistent point in time.

37.3.2 Refresh Group Size
There are a few trade-offs to consider when you are deciding on the size of your refresh
groups.

Oracle Database is optimized for large refresh groups. So, large refresh groups refresh faster
than an equal number of materialized views in small refresh groups, if the materialized views in
the groups are similar. For example, refreshing a refresh group with 100 materialized views is
faster than refreshing five refresh groups with 20 materialized views each. Also, large refresh
groups enable you to refresh a greater number of materialized views with only one call to a
PL/SQL subprogram.

Network connectivity must be maintained while performing a refresh. If the connectivity is lost
or interrupted during the refresh, then all changes are rolled back so that the database remains
consistent. Therefore, in cases where the network connectivity is difficult to maintain, consider
using smaller refresh groups.

Chapter 37
Organizational Mechanisms

37-6

There is also an optimization for null refresh. That is, if there were no changes to the master
tables since the last refresh for a particular materialized view, then almost no extra time is
required for the materialized view during refresh.

37.4 Refresh Process
To ensure that a materialized view is consistent with its master table, you must refresh the
materialized view periodically.

• About the Refresh Process
A materialized view refresh is an efficient batch operation that makes a materialized view
reflect a more current state of its master table.

• Refresh Types
Oracle Database can refresh a materialized view using either a fast, complete, or force
refresh.

• Initiating a Refresh
When creating a refresh group, you can configure the group so that Oracle Database
automatically refreshes the group's materialized views at scheduled intervals. Conversely,
you can omit scheduling information so that the refresh group must be refreshed manually
or "on-demand." Manual refresh is an ideal solution when the refresh is performed on a
system that does not always have a network connection.

• Constraints and Refresh
To avoid any integrity constraint violations during refresh of materialized views, make non
primary key integrity constraints on each materialized view deferrable.

37.4.1 About the Refresh Process
A materialized view refresh is an efficient batch operation that makes a materialized view
reflect a more current state of its master table.

A materialized view's data does not necessarily match the current data of its master table at all
times. A materialized view is a transactionally (read) consistent reflection of its master table as
the data existed at a specific point in time (that is, at creation or when a refresh occurs). To
keep a materialized view's data relatively current with the data of its master table, the
materialized view must be refreshed periodically.

A row in a master table can be updated many times between refreshes of a materialized view,
but the refresh updates the row in the materialized view only once with the current data. For
example, a row in a master table might be updated 10 times since the last refresh of a
materialized view, but the result is still only one update of the corresponding row in the
materialized view during the next refresh.

Decide how and when to refresh each materialized view to make it more current. For example,
materialized views based on master tables that applications update often might require
frequent refreshes. In contrast, materialized views based on relatively static master tables
usually require infrequent refreshes. In summary, analyze application characteristics and
requirements to determine appropriate materialized view refresh intervals.

To refresh materialized views, Oracle Database supports several refresh types and methods of
initiating a refresh.

37.4.2 Refresh Types
Oracle Database can refresh a materialized view using either a fast, complete, or force refresh.

Chapter 37
Refresh Process

37-7

• Complete Refresh
To perform a complete refresh of a materialized view, the server that manages the
materialized view executes the materialized view's defining query, which essentially re-
creates the materialized view.

• Fast Refresh
To perform a fast refresh, the master table that manages the materialized view first
identifies the changes that occurred in the master table since the most recent refresh of the
materialized view and then applies these changes to the materialized view.

• Force Refresh
To perform a force refresh of a materialized view, the server that manages the
materialized view attempts to perform a fast refresh. If a fast refresh is not possible, then
Oracle Database performs a complete refresh.

37.4.2.1 Complete Refresh
To perform a complete refresh of a materialized view, the server that manages the
materialized view executes the materialized view's defining query, which essentially re-creates
the materialized view.

To refresh the materialized view, the result set of the query replaces the existing materialized
view data. Oracle Database can perform a complete refresh for any materialized view.
Depending on the amount of data that satisfies the defining query, a complete refresh can take
a substantially longer amount of time to perform than a fast refresh.

Note:

If complete refresh is used for a materialized view, then set its PCTFREE to 0 and
PCTUSED to 99 for maximum efficiency.

37.4.2.2 Fast Refresh
To perform a fast refresh, the master table that manages the materialized view first identifies
the changes that occurred in the master table since the most recent refresh of the materialized
view and then applies these changes to the materialized view.

Fast refreshes are more efficient than complete refreshes when there are few changes to the
master table because the participating server and network replicate a smaller amount of data.
You can perform fast refreshes of materialized views only when the master table has a
materialized view log. Also, for fast refreshes to be faster than complete refreshes, each join
column in the CREATE MATERIALIZED VIEW statement must have an index on it.

After a direct path load on a master table using SQL*Loader, a fast refresh does not apply the
changes that occurred during the direct path load. Also, fast refresh does not apply changes
that result from other types of bulk load operations on master tables. Examples of these
operations include INSERT statements with an APPEND hint and INSERT ... SELECT * FROM
statements.

If you have materialized views based on partitioned master tables, then you might be able to
use Partition Change Tracking (PCT) to identify which materialized view rows correspond to a
particular partition. PCT is also used to support fast refresh after partition maintenance
operations on a materialized view's master table. PCT-based refresh on a materialized view is
possible only if several conditions are satisfied.

Chapter 37
Refresh Process

37-8

Logical Partition Change Tracking (LPCT) outperforms log-based refresh when modified rows
are relatively large. An LPCT refresh can be combined with log-based refresh to improve the
efficiency even more by targeting at more precise rows. With LPCT, materialized view
staleness can be tracked at the granularity of the logical partitions, and consequently the
Query Rewrite engine can use the data in fresh logical partitions of the materialized view, even
if some parts of the materialized may be stale. As a result, the materialized views becomes
more usable. In many real-world applications, this results in significant improvement to query
performance due to the fine-grained query rewrite. LPCT can perform refresh operations
targeted at stale logical partitions only, which avoids complete re-loading the data.

See Also:

About Partition Change Tracking

About Logical Partition Change Tracking (LPCT) Refresh for Materialized Views

37.4.2.3 Force Refresh
To perform a force refresh of a materialized view, the server that manages the materialized
view attempts to perform a fast refresh. If a fast refresh is not possible, then Oracle Database
performs a complete refresh.

Use the force setting when you want a materialized view to refresh if a fast refresh is not
possible.

37.4.3 Initiating a Refresh
When creating a refresh group, you can configure the group so that Oracle Database
automatically refreshes the group's materialized views at scheduled intervals. Conversely, you
can omit scheduling information so that the refresh group must be refreshed manually or "on-
demand." Manual refresh is an ideal solution when the refresh is performed on a system that
does not always have a network connection.

• Scheduled Refresh
When you create a refresh group for automatic refreshing, you must specify a scheduled
refresh interval for the group during the creation process.

• On-Demand Refresh
On-demand refresh means that the materialized view is refreshed with an explicit
procedure call.

37.4.3.1 Scheduled Refresh
When you create a refresh group for automatic refreshing, you must specify a scheduled
refresh interval for the group during the creation process.

When setting a group's refresh interval, consider the following characteristics:

• The dates or date expressions specifying the refresh interval must evaluate to a future
point in time.

• The refresh interval must be greater than the length of time necessary to perform a refresh.

Chapter 37
Refresh Process

37-9

• Relative date expressions evaluate to a point in time relative to the most recent refresh
date. If a network or system failure interferes with a scheduled group refresh, then the
evaluation of a relative date expression could change accordingly.

• Explicit date expressions evaluate to specific points in time, regardless of the most recent
refresh date.

• Consider your environment's tolerance for stale data: if there is a low tolerance, then
refresh often; whereas if there is a high tolerance, then refresh less often.

The following are examples of simple date expressions that you can use to specify an interval:

• An interval of one hour is specifies as:

SYSDATE + 1/24
• An interval of seven days is specifies as:

SYSDATE + 7

See Also:

Oracle Database SQL Language Reference for more information about date
arithmetic

37.4.3.2 On-Demand Refresh
On-demand refresh means that the materialized view is refreshed with an explicit procedure
call.

Scheduled materialized view refreshes might not always be the appropriate solution for your
environment. For example, immediately following a bulk data load into a master table,
dependent materialized views no longer represent the master table's data.

You might also want to refresh your materialized views on-demand when your materialized
views are integrated with a sales force automation system located on a disconnected laptop.
Developers designing the sales force automation software can create an application control,
such as a button, that a salesperson can use to refresh the materialized views when they are
ready to transfer the day's orders to the server after establishing a network connection.

The following example illustrates an on-demand refresh of the hr_refg refresh group:

EXECUTE DBMS_REFRESH.REFRESH('hr_refg');

Note:

Do not use the DBMS_MVIEW.REFRESH_ALL_MVIEWS or the
DBMS_MVIEW.REFRESH_DEPENDENT procedure to refresh materialized views used in a
replication environment. Instead, use the DBMS_REFRESH.REFRESH or the
DBMS_MVIEW.REFRESH procedure to refresh materialized views in a replication
environment.

Chapter 37
Refresh Process

37-10

37.4.4 Constraints and Refresh
To avoid any integrity constraint violations during refresh of materialized views, make non
primary key integrity constraints on each materialized view deferrable.

This requirement includes LOB columns with NOT NULL constraints. In addition, all materialized
views that are related by foreign key constraints should be refreshed together or in the same
refresh group.

Note:

Primary key constraints on materialized views might or might not be deferrable.

See Also:

Oracle Database SQL Language Reference for information about making constraints
deferrable

Chapter 37
Refresh Process

37-11

38
Planning for Read-Only Materialized Views

Before you begin to plan your read-only materialized view environment, it is important to
understand the concepts and architecture related to materialized views. After you understand
concepts and architecture of read-only materialized views, there are important considerations
for planning a read-only materialized view environment.

• Considerations for Master Tables
For master tables, you must consider primary keys, foreign keys, and data types.

• Planning for Master Databases and Materialized View Databases
Planning databases in a read-only materialized view environment includes preparing for
materialized views and configuring materialized view logs.

38.1 Considerations for Master Tables
For master tables, you must consider primary keys, foreign keys, and data types.

• Primary Keys and Master Tables
If possible, each master table should have a primary key.

• Foreign Keys and Master Tables
When replicating tables with foreign key referential constraints, Oracle recommends that
you always index foreign key columns and replicate these indexes, unless no updates and
deletes are allowed in the parent table. Indexes are not replicated automatically.

• Data Type Considerations for Master Tables
There are several considerations for data types and master tables.

• Unsupported Table Types
Materialized views cannot be based on certain types of tables.

38.1.1 Primary Keys and Master Tables
If possible, each master table should have a primary key.

Where a primary key is not possible, each master table must have a set of columns that can be
used as a unique identifier for each row of the table. If the tables that you plan to use in your
replication environment do not have a primary key or a set of unique columns, then alter these
tables accordingly. In addition, if you plan to create any primary key materialized views based
on a master table, then that master must have a primary key.

38.1.2 Foreign Keys and Master Tables
When replicating tables with foreign key referential constraints, Oracle recommends that you
always index foreign key columns and replicate these indexes, unless no updates and deletes
are allowed in the parent table. Indexes are not replicated automatically.

38.1.3 Data Type Considerations for Master Tables
There are several considerations for data types and master tables.

38-1

You can create read-only materialized views based on master tables with columns that use the
following data types:

• VARCHAR2
• NVARCHAR2
• NUMBER
• DATE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP LOCAL TIME ZONE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND
• RAW
• ROWID
• CHAR
• NCHAR
• CLOB with BASICFILE storage

• NCLOB with BASICFILE storage

• BLOB with BASICFILE storage

• XMLType stored as CLOB
• User-defined types that do not use type inheritance or type evolution

• Oracle-supplied types that do not use type inheritance or type evolution

Note:

XMLType stored as a CLOB is deprecated.

You cannot reference LOB columns in a WHERE clause of a materialized view's defining query.

You can create materialized views that use user-defined types, including column objects,
object tables, REFs, varrays, and nested tables.

You cannot create materialized views based on master tables with columns that use the
following data types:

• FLOAT
• BINARY_FLOAT
• BINARY_DOUBLE
• LONG
• LONG RAW
• CLOB with SECUREFILE storage

Chapter 38
Considerations for Master Tables

38-2

• NCLOB with SECUREFILE storage

• BLOB with SECUREFILE storage

• BFILE
• XMLType stored object relationally or as binary XML

• Expression type

• User-defined types that use type inheritance or type evolution

• Oracle-supplied types that use type inheritance or type evolution

You should convert LONG data types to LOBs with BASICFILE storage.

See Also:

Oracle Database SQL Language Reference for information about data types

38.1.4 Unsupported Table Types
Materialized views cannot be based on certain types of tables.

You cannot create materialized views based on these types of tables:

• Tables that have been compressed with the table compression feature

• Tables with virtual columns

• Temporary tables

• Tables in a flashback data archive

38.2 Planning for Master Databases and Materialized View
Databases

Planning databases in a read-only materialized view environment includes preparing for
materialized views and configuring materialized view logs.

• Characteristics of Master Databases and Materialized View Databases
When you are planning your replication environment, you must decide whether the
databases participating in the replication environment will be master databases or
materialized view databases.

• Advantages of Master Databases
Master databases have several advantages.

• Advantages of Materialized View Databases
Materialized view databases have certain advantages.

• Preparing for Materialized Views
Most problems encountered with materialized view replication result from not preparing the
environment properly.

• Creating Materialized View Logs
Create a materialized view log on a master table so that materialized views based on the
master table can be fast refreshed.

Chapter 38
Planning for Master Databases and Materialized View Databases

38-3

• Logging Columns in a Materialized View Log
When you create a materialized view log, you can add columns to the log to enable fast
refreshes of materialized views.

38.2.1 Characteristics of Master Databases and Materialized View
Databases

When you are planning your replication environment, you must decide whether the databases
participating in the replication environment will be master databases or materialized view
databases.

Consider the characteristics and advantages of both types of databases when you are deciding
whether a particular database in your environment should be a master database or a
materialized view database. One replication environment can support both master databases
and materialized view databases.

Table 38-1 Characteristics of Master Databases and Materialized View Databases

Master Databases Materialized View Databases

Might communicate with a large number of
materialized view databases

Communicate with one master database

Contain large amounts of data Contain small amounts of data that can be subsets
of the master database's data

38.2.2 Advantages of Master Databases
Master databases have several advantages.

Master databases have the following advantages:

• Support for highly available data access by remote databases

• Provide support data manipulation language (DML) changes

• Can provide failover protection

38.2.3 Advantages of Materialized View Databases
Materialized view databases have certain advantages.

Materialized view databases have the following advantages:

• Support disconnected computing

• Can contain a subset of its master database's data

38.2.4 Preparing for Materialized Views
Most problems encountered with materialized view replication result from not preparing the
environment properly.

Ensure that the following prerequisites are met before creating your materialized view
environment:

• Ensure that the required schemas exist.

Chapter 38
Planning for Master Databases and Materialized View Databases

38-4

• Ensure that the required database links exist.

• Ensure that the required privileges are granted.

• Ensure that the sufficient job processes exit.

• Required Schemas at Materialized View Database
A schema containing a materialized view in a remote database must correspond to the
schema that contains the master table in the master database.

• Required Database Links for Materialized Views
The defining query of a materialized view can use one or more database links to reference
remote table data.

• Required Privileges
Both the creator and the owner of the materialized view must be able to issue the defining
SELECT statement of the materialized view.

• Sufficient Job Processes
It is important that you have allocated sufficient job processes to handle the automation of
your replication environment. The job processes automatically refresh materialized views.

38.2.4.1 Required Schemas at Materialized View Database
A schema containing a materialized view in a remote database must correspond to the schema
that contains the master table in the master database.

Therefore, identify the schemas that contain the master tables that you want to replicate with
materialized views. After you have identified the target schemas at the master database,
create the corresponding accounts with the same names at the remote database. For example,
if all master tables are in the sales schema of the ny.example.com database, then create a
corresponding sales schema in the materialized view database sf.example.com.

See Also:

"Required Privileges for Materialized View Operations"

38.2.4.2 Required Database Links for Materialized Views
The defining query of a materialized view can use one or more database links to reference
remote table data.

Before creating materialized views, the database links you plan to use must be available.
Furthermore, the account that a database link uses to access a remote database defines the
security context under which Oracle Database creates and subsequently refreshes a
materialized view.

To ensure proper behavior, a materialized view's defining query must use a database link that
includes an embedded user name and password in its definition; you cannot use a public
database link when creating a materialized view. A database link with an embedded name and
password always establishes connections to the remote database using the specified account.
Additionally, the remote account that the link uses must have the SELECT privileges necessary
to access the data referenced in the materialized view's defining query.

Before creating your materialized views, you must create several administrative database links.
Specifically, you should create a PUBLIC database link from the materialized view database to

Chapter 38
Planning for Master Databases and Materialized View Databases

38-5

the master database. Doing so makes defining your private database links easier because you
do not need to include the USING clause in each link.

For example, the following statement creates a public database link from a materialized view
database to a master database:

CREATE PUBLIC DATABASE LINK orc1.example.com USING 'orc1.example.com';

After the administrative database links have been created, a private database link must be
created connecting each replicated materialized view schema at the materialized view
database to the corresponding schema at the master database. Be sure to embed the
associated master database account information in each private database link at the
materialized view database. For example, the hr schema at a materialized view database
should have a private database link to the master database that connects using the hr user
name and password.

For example, the following statement creates a private database link from a materialized view
database to a master database:

CREATE DATABASE LINK orc1.example.com
 CONNECT TO myuser IDENTIFIED BY password;

Figure 38-1 Recommended Schema and Database Link Configuration

Materialized

View

Database

Master

Database

Database Link

Snapshots

Materialized

Views

Snapshots
Master

Tables

SnapshotsSnapshots
Master

Tables

CONNECT TO hr

INDENTIFIED BY . . .

CONNECT TO oe

IDENTIFIED BY . . .

Database Link

Snapshots
Snapshots

Materialized

Views

hr Schema hr Schema

oe Schemaoe Schema

The defining query for the materialized view cannot be modified by Virtual Private Database
(VPD). VPD must return a NULL policy for the schema that performs both the create and refresh
of the materialized view. Creating a materialized view with a non-NULL VPD policy is allowed
when the USING TRUSTED CONSTRAINTS clause is specified. In this case, ensure that the
materialized view behaves correctly. Materialized view results are computed based on the rows
and columns filtered by VPD policy. Therefore, you must coordinate the materialized view
definition with the VPD policy to ensure the correct results.

Chapter 38
Planning for Master Databases and Materialized View Databases

38-6

See Also:

• Distributed Database Concepts for more information about database links

• Oracle Database Security Guide for more information about VPD

• Oracle Label Security Administrator's Guide for information about Oracle Label
Security

38.2.4.3 Required Privileges
Both the creator and the owner of the materialized view must be able to issue the defining
SELECT statement of the materialized view.

The owner is the schema that contains the materialized view.

See Also:

"Required Privileges for Materialized View Operations"

38.2.4.4 Sufficient Job Processes
It is important that you have allocated sufficient job processes to handle the automation of your
replication environment. The job processes automatically refresh materialized views.

By the nature of materialized view replication, each materialized view database typically has
one scheduled link to the master database and requires at least one job process. Materialized
view databases typically require between one and three job processes, depending on user-
defined jobs and the scheduled link. Also, you need at least one job process for each degree of
parallelism.

Alternatively, if your users are responsible for manually refreshing the materialized view
through an application interface, then you do not need to create a scheduled link and your
materialized view database requires one less job process.

The job processes are defined using the JOB_QUEUE_PROCESSES initialization parameter. This
initialization parameter is modifiable. Therefore, you can modify it while an instance is running.
Oracle Database automatically determines the interval for job processes. That is, Oracle
Database determines when the job processes should "wake up" to execute jobs.

See Also:

Oracle Database Reference

Chapter 38
Planning for Master Databases and Materialized View Databases

38-7

38.2.5 Creating Materialized View Logs
Create a materialized view log on a master table so that materialized views based on the
master table can be fast refreshed.

Before creating materialized views for a remote materialized view database, ensure that you
create the necessary materialized view logs at the master database. A materialized view log is
necessary for every master table that supports at least one materialized view with fast
refreshes.

To create a materialized view log, you need the following privileges:

• CREATE ANY TABLE
• CREATE ANY TRIGGER
• SELECT (on the materialized view log's master table)

• COMMENT ANY TABLE
To create a materialized view log:

1. Connect to the master database as a user with the required privileges to create a
materialized view log on the intended table.

2. Run the CREATE MATERIALIZED VIEW LOG statement.

When you create a materialized view log on an object table, you must log the object
identifier by specifying the WITH OBJECT ID clause, but you can also specify that the primary
key is logged if the object identifier is primary key-based.

Example 38-1 Creating a Materialized View Log

CREATE MATERIALIZED VIEW LOG ON hr.employees;

Example 38-2 Creating a Materialized View Log on an Object Table

The following SQL statement creates the categories_typ user-defined type:

CREATE TYPE oe.category_typ AS OBJECT
 (category_name VARCHAR2(50),
 category_description VARCHAR2(1000),
 category_id NUMBER(2));
/

When you create an object table based on this type, you can either specify that the object
identifier should be system-generated or primary key-based:

CREATE TABLE oe.categories_tab_sys OF oe.category_typ
 (category_id PRIMARY KEY)
 OBJECT ID SYSTEM GENERATED;

CREATE TABLE oe.categories_tab_pkbased OF oe.category_typ
 (category_id PRIMARY KEY)
 OBJECT ID PRIMARY KEY;

For example, the following statement creates a materialized view log for the
categories_tab_sys object table and specifies that the object identifier column be logged:

CREATE MATERIALIZED VIEW LOG ON oe.categories_tab_sys
 WITH OBJECT ID;

Chapter 38
Planning for Master Databases and Materialized View Databases

38-8

The following statement creates a materialized view log for the categories_tab_pkbased
object table and specifies that the primary key column be logged along with the object identifier
column:

CREATE MATERIALIZED VIEW LOG ON oe.categories_tab_pkbased
 WITH OBJECT ID, PRIMARY KEY;

See Also:

• "Materialized View Log"

• Oracle Database SQL Language Reference

38.2.6 Logging Columns in a Materialized View Log
When you create a materialized view log, you can add columns to the log to enable fast
refreshes of materialized views.

1. Connect to the master database as a user with the required privileges to create or alter a
materialized view log on the intended table.

2. Do one of the following:

• Run the CREATE MATERIALIZED VIEW LOG statement and specify the columns to log.

• Run the ALTER MATERIALIZED VIEW LOG statement and specify the columns to log.

Example 38-3 Logging Columns When Creating a Materialized View

To create the materialized view log on the oe.orders table with the orders.customer_id and
orders.order_total columns added, issue the following statement:

CREATE MATERIALIZED VIEW LOG ON oe.orders
 WITH PRIMARY KEY (customer_id,order_total);

Example 38-4 Logging Columns of an Existing Materialized View

You can add the orders.customer_id and orders.order_total columns to the materialized
view log on the oe.orders table by issuing the following statement:

ALTER MATERIALIZED VIEW LOG ON oe.orders ADD (customer_id,order_total);

Example 38-5 Logging the Attributes of Column Objects

If you are using user-defined data types, then the attributes of column objects can be logged in
the materialized view log. For example, the oe.customers table has the
cust_address.postal_code attribute, which can be logged in the materialized view log by
issuing the following statement:

ALTER MATERIALIZED VIEW LOG ON oe.customers ADD (cust_address.postal_code);

Chapter 38
Planning for Master Databases and Materialized View Databases

38-9

See Also:

• "Columns Logged in the Materialized View Log"

• Oracle Database SQL Language Reference

Chapter 38
Planning for Master Databases and Materialized View Databases

38-10

39
Creating and Managing Read-Only
Materialized Views

You can create and manage read-only materialized views and refresh groups. You can also
refresh materialized views.

• Creating Read-Only Materialized Views
Create a read-only materialized view to replicate a master table's data in a materialized
view database.

• Creating Refresh Groups
Add materialized views to a refresh group to ensure transactional consistency between the
related materialized views in the refresh group.

• Refreshing Materialized Views
Refreshing a materialized view synchronizes the data in the materialized view's master(s)
and the data in the materialized view.

• Determining the Fast Refresh Capabilities of a Materialized View
You can determine whether a materialized view is fast refreshable by attempting to create
the materialized view with the REFRESH FAST clause or by using the
DBMS_MVIEW.EXPLAIN_MVIEW procedure.

• Adding a New Materialized View Database
After you have created a materialized view environment with one or more materialized
view databases, you might need to add new materialized view databases.

• Monitoring Materialized View Logs
You can run queries to display information about the materialized view logs at a master
database.

• Monitoring Materialized Views
You can run queries to display information about the materialized views and refresh
groups.

39.1 Creating Read-Only Materialized Views
Create a read-only materialized view to replicate a master table's data in a materialized view
database.

Before creating a materialized view to replicate data between a master database and a
materialized view database, the database links you plan to use must be available.

1. Connect to the database as a user with the required privileges to create a materialized
view.

2. Run the CREATE MATERIALIZED VIEW statement.

Example 39-1 Creating a Primary Key Materialized View

CREATE MATERIALIZED VIEW hr.employees_mv1 WITH PRIMARY KEY
 AS SELECT * FROM hr.employees@orc1.example.com;

39-1

Example 39-2 Creating a ROWID Materialized View

CREATE MATERIALIZED VIEW oe.orders REFRESH WITH ROWID AS
 SELECT * FROM oe.orders@orc1.example.com;

Example 39-3 Creating an Object Materialized View

After the required types are created at the materialized view database, you can create an
object materialized view by specifying the OF type clause.

For example, suppose the following SQL statements create the oe.categories_tab object
table at the orc1.example.com master database:

CREATE TYPE oe.category_typ AS OBJECT
 (category_name VARCHAR2(50),
 category_description VARCHAR2(1000),
 category_id NUMBER(2));
/

CREATE TABLE oe.categories_tab OF oe.category_typ
 (category_id PRIMARY KEY);

To create materialized views that can be fast refreshed based on the oe.categories_tab
master table, create a materialized view log for this table:

CREATE MATERIALIZED VIEW LOG ON oe.categories_tab WITH OBJECT ID;

The WITH OBJECT ID clause is required when you create a materialized view log on an object
table.

After you create the oe.category_typ type at the materialized view database with the same
object identifier as the same type at the master database, you can create an object
materialized view based on the oe.categories_tab object table using the OF type clause, as in
the following SQL statement:

CREATE MATERIALIZED VIEW oe.categories_objmv OF oe.category_typ
 REFRESH FAST
 AS SELECT * FROM oe.categories_tab@orc1.example.com;

Here, type is oe.category_typ.

Note:

The types must be the same at the materialized view database and master database.
See "Type Agreement at Replication Databases" for more information.

Chapter 39
Creating Read-Only Materialized Views

39-2

See Also:

• Read-Only Materialized View Concepts for several examples that create
materialized views

• "Required Privileges for Materialized View Operations" for information about the
privileges required to create materialized views

• "Required Database Links for Materialized Views"

• "Materialized Views Based on Object Tables"

• Oracle Database SQL Language Reference

39.2 Creating Refresh Groups
Add materialized views to a refresh group to ensure transactional consistency between the
related materialized views in the refresh group.

When a refresh group is refreshed, all materialized views that are added to a particular refresh
group are refreshed at the same time.

1. Connect to the materialized view database as an administrative user with the required
privileges to create a refresh group and add materialized views to it.

2. Run the DBMS_REFRESH.MAKE procedure to create the refresh group.

3. Run the DBMS_REFRESH.ADD procedure one or more times to add materialized views to the
refresh group.

Example 39-4 Creating a Refresh Group

This example creates a refresh group and adds two materialized views to it.

BEGIN
 DBMS_REFRESH.MAKE (
 name => 'mviewadmin.hr_refg',
 list => '',
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 implicit_destroy => FALSE,
 rollback_seg => '',
 push_deferred_rpc => TRUE,
 refresh_after_errors => FALSE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.countries_mv1',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.departments_mv1',
 lax => TRUE);

Chapter 39
Creating Refresh Groups

39-3

END;
/

See Also:

"Refresh Groups"

39.3 Refreshing Materialized Views
Refreshing a materialized view synchronizes the data in the materialized view's master(s) and
the data in the materialized view.

You can either refresh all of the materialized views in a refresh group at once, or you can
refresh materialized views individually. If you have applications that depend on multiple
materialized views at a materialized view database, then Oracle recommends using refresh
groups so that the data is transactionally consistent in all of the materialized views used by the
application.

1. Connect to the materialized view database as a user with the required privileges to refresh
a refresh group or an individual materialized view.

2. Do one of the following:

• Run the DBMS_REFRESH.REFRESH procedure to refresh a refresh group.

• Run the DBMS_MVIEW.REFRESH procedure to refresh an individual materialized view.

Example 39-5 Refreshing a Refresh Group

The following example refreshes the hr_refg refresh group:

EXECUTE DBMS_REFRESH.REFRESH ('hr_refg');

Example 39-6 Refreshing an Individual Materialized View

The following example refreshes the hr.departments_mv materialized view:

BEGIN
 DBMS_MVIEW.REFRESH (
 list => 'hr.departments_mv',
 method => '?');
END;
/

Note:

Do not use the DBMS_MVIEW.REFRESH_ALL_MVIEWS or the
DBMS_MVIEW.REFRESH_DEPENDENT procedure to refresh materialized views. Instead,
use the DBMS_REFRESH.REFRESH or the DBMS_MVIEW.REFRESH procedure to refresh
materialized views in a replication environment.

Chapter 39
Refreshing Materialized Views

39-4

See Also:

• "Required Privileges for Materialized View Operations" for information about the
privileges required to create materialized views

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_MVIEW package

39.4 Determining the Fast Refresh Capabilities of a Materialized
View

You can determine whether a materialized view is fast refreshable by attempting to create the
materialized view with the REFRESH FAST clause or by using the DBMS_MVIEW.EXPLAIN_MVIEW
procedure.

A fast refresh uses materialized view logs to update only the rows that have changed since the
last refresh. To determine whether a materialized view is fast refreshable, create the
materialized view with the REFRESH FAST clause. Oracle Database returns errors if the
materialized view violates any restrictions for subquery materialized views. If you specify force
refresh, then you might not receive any errors because, when a force refresh is requested,
Oracle Database automatically performs a complete refresh if it cannot perform a fast refresh.

You can also use the EXPLAIN_MVIEW procedure in the DBMS_MVIEW package to determine the
following information about an existing materialized view or a proposed materialized view that
does not yet exist:

• The capabilities of a materialized view

• Whether each capability is possible

• If a capability is not possible, then why it is not possible

This information can be stored in a varray or in the MV_CAPABILITIES_TABLE. To store the
information in the table, before you run the EXPLAIN_MVIEW procedure, you must build this table
by running the utlxmv.sql script in the Oracle_home/rdbms/admin directory.

To determine the fast refresh capabilities of a materialized view:

1. Connect to the materialized view database as an administrative user.

2. Do one of the following:

• Create the materialized view with the REFRESH FAST clause.

• Run the DBMS_MVIEW.EXPLAIN_MVIEW procedure.

Example 39-7 Creating a Materialized View with the FAST REFRESH Clause

CREATE MATERIALIZED VIEW oe.orders REFRESH FAST AS
 SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS
 (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 10000);

Example 39-8 Determining the Refresh Capabilities of an Existing Materialized View

For example, to determine the capabilities of the oe.orders materialized view, enter:

Chapter 39
Determining the Fast Refresh Capabilities of a Materialized View

39-5

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('oe.orders');

Example 39-9 Determining the Refresh Capabilities of a Materialized View That Does
Not Yet Exist

Or, if the materialized view does not yet exist, then you can supply the query that you want to
use to create it:

BEGIN
 DBMS_MVIEW.EXPLAIN_MVIEW ('SELECT * FROM oe.orders@orc1.example.com o
 WHERE EXISTS (SELECT * FROM oe.customers@orc1.example.com c
 WHERE o.customer_id = c.customer_id AND c.credit_limit > 500)');
END;
/

Query the MV_CAPABILITIES_TABLE to see the results.

Query the MV_CAPABILITIES_TABLE to see the results.

Note:

The MV_CAPABILITIES_TABLE does not show materialized view refresh capabilities
that depend on prebuilt container tables. For example, complete refresh is required
after a partition maintenance operation on a prebuilt container table, but the
MV_CAPABILITIES_TABLE does not show this limitation.

See Also:

• "Restrictions for Materialized Views with Subqueries"

• "Materialized View Log"

• Oracle Database Data Warehousing Guide for more information about the
EXPLAIN_MVIEW procedure

39.5 Adding a New Materialized View Database
After you have created a materialized view environment with one or more materialized view
databases, you might need to add new materialized view databases.

You might encounter problems when you try to perform a fast refresh on the materialized views
you create at a new materialized view database if both of the following conditions are true:

• Materialized views at the new materialized view database and existing materialized views
at other materialized view databases are based on the same master table.

• Existing materialized views can be refreshed while you create the new materialized views
at the new materialized view database.

The problem arises when the materialized view logs for the master tables are purged before a
new materialized view can perform its first fast refresh. If this happens and you try to perform a
fast refresh on the materialized views at the new materialized view database, then you might
encounter the following errors:

Chapter 39
Adding a New Materialized View Database

39-6

ORA-12004 REFRESH FAST cannot be used for materialized view materialized_view_name
ORA-12034 materialized view log on materialized_view_name younger than last refresh

If you receive these errors, then the only solution is to perform a complete refresh of the new
materialized view. To avoid this problem, create a dummy materialized view at the new
materialized view database before you create your production materialized views. The dummy
materialized view ensures that the materialized view log will not be purged while your
production materialized views are being created.

If you choose to create a dummy materialized view at the materialized view database,
complete the following steps:

1. Create a dummy materialized view called dummy_mview based on the master table. For
example, to create a dummy materialized view based on a master table named sales,
issue the following statement at the new materialized view database:

CREATE MATERIALIZED VIEW dummy_mview REFRESH FAST AS
 SELECT * FROM pr.sales@orc1.example.com WHERE 1=0;

2. Create your production materialized views at the new materialized view database.

3. Perform fast refresh of your production materialized views at the new materialized view
database.

4. Drop the dummy materialized view.

39.6 Monitoring Materialized View Logs
You can run queries to display information about the materialized view logs at a master
database.

• Listing Information About the Materialized View Logs at a Master Database
A materialized view log enables you to perform a fast refresh on materialized views based
on a master. A master can be a master table or a master materialized view.

• Listing the Materialized Views that Use a Materialized View Log
More than one materialized view can use a materialized view log.

39.6.1 Listing Information About the Materialized View Logs at a Master
Database

A materialized view log enables you to perform a fast refresh on materialized views based on a
master. A master can be a master table or a master materialized view.

If you have materialized view logs based at a master, then you can use the query in this
section to list the following information about them:

• The name of each log table that stores the materialized view log data

• The owner of each materialized view log

• The master on which each materialized view log is based

• Whether a materialized view log is a row id materialized view log

• Whether a materialized view log is a primary key materialized view log

• Whether the materialized view log is an object id materialized view log

• Whether a materialized view log has filter columns

To view this information, complete the following steps:

Chapter 39
Monitoring Materialized View Logs

39-7

1. Connect to the master database as an administrative user.

2. Run the following query:

COLUMN LOG_TABLE HEADING 'Log Table' FORMAT A20
COLUMN LOG_OWNER HEADING 'Log|Owner' FORMAT A5
COLUMN MASTER HEADING 'Master' FORMAT A15
COLUMN ROWIDS HEADING 'Row|ID?' FORMAT A3
COLUMN PRIMARY_KEY HEADING 'Primary|Key?' FORMAT A7
COLUMN OBJECT_ID HEADING 'Object|ID?' FORMAT A6
COLUMN FILTER_COLUMNS HEADING 'Filter|Columns?' FORMAT A8

SELECT DISTINCT LOG_TABLE,
 LOG_OWNER,
 MASTER,
 ROWIDS,
 PRIMARY_KEY,
 OBJECT_ID,
 FILTER_COLUMNS
 FROM DBA_MVIEW_LOGS
 ORDER BY 1;

Your output looks similar to the following:

 Log Row Primary Object Filter
Log Table Owner Master ID? Key? ID? Columns?
-------------------- ----- --------------- --- ------- ------ --------
MLOG$_COUNTRIES HR COUNTRIES NO YES NO NO
MLOG$_DEPARTMENTS HR DEPARTMENTS NO YES NO NO
MLOG$_EMPLOYEES HR EMPLOYEES NO YES NO NO
MLOG$_JOBS HR JOBS NO YES NO NO
MLOG$_JOB_HISTORY HR JOB_HISTORY NO YES NO NO
MLOG$_LOCATIONS HR LOCATIONS NO YES NO NO
MLOG$_REGIONS HR REGIONS NO YES NO NO

39.6.2 Listing the Materialized Views that Use a Materialized View Log
More than one materialized view can use a materialized view log.

If you have materialized view logs based at a master, then you can use the query in this
section to list the following the materialized views that use each log:

• The name of each log table that stores the materialized view log data

• The owner of each materialized view log

• The master on which each materialized view log is based

• The materialized view identification number of each materialized view that uses the
materialized view log

• The name of each materialized view that uses the materialized view log

To view this information, complete the following steps:

1. Connect to the master database as an administrative user.

2. Run the following query:

COLUMN LOG_TABLE HEADING 'Mview|Log Table' FORMAT A20
COLUMN LOG_OWNER HEADING 'Mview|Log Owner' FORMAT A10
COLUMN MASTER HEADING 'Master' FORMAT A20
COLUMN MVIEW_ID HEADING 'Mview|ID' FORMAT 9999
COLUMN NAME HEADING 'Mview Name' FORMAT A20

Chapter 39
Monitoring Materialized View Logs

39-8

SELECT L.LOG_TABLE, L.LOG_OWNER, B.MASTER, B.MVIEW_ID, R.NAME
FROM ALL_MVIEW_LOGS L, ALL_BASE_TABLE_MVIEWS B, ALL_REGISTERED_MVIEWS R
WHERE B.MVIEW_ID = R.MVIEW_ID
AND B.OWNER = L.LOG_OWNER
AND B.MASTER = L.MASTER;

Your output looks similar to the following:

Mview Mview Mview
Log Table Log Owner Master ID Mview Name
-------------------- ---------- -------------------- ----- --------------------
MLOG$_COUNTRIES HR COUNTRIES 21 COUNTRIES_MV1
MLOG$_DEPARTMENTS HR DEPARTMENTS 22 DEPARTMENTS_MV1
MLOG$_EMPLOYEES HR EMPLOYEES 23 EMPLOYEES_MV1
MLOG$_JOBS HR JOBS 24 JOBS_MV1
MLOG$_JOB_HISTORY HR JOB_HISTORY 25 JOB_HISTORY_MV1
MLOG$_LOCATIONS HR LOCATIONS 26 LOCATIONS_MV1
MLOG$_REGIONS HR REGIONS 27 REGIONS_MV1

39.7 Monitoring Materialized Views
You can run queries to display information about the materialized views and refresh groups.

• Listing Information About Materialized Views
You can run queries to display information about the materialized views.

• Listing Information About the Refresh Groups at a Materialized View Database
Each refresh group at a materialized view database is associated with a refresh job that
refreshes the materialized views in the refresh group at a set interval.

• Determining the Job ID for Each Refresh Job at a Materialized View Database
Query the DBA_REFRESH and DBA_JOBS views to determine the job identification number for
each refresh job at a materialized view database.

• Determining Which Materialized Views Are Currently Refreshing
Query the V$MVREFRESH view to determine which materialized views are currently
refreshing.

39.7.1 Listing Information About Materialized Views
You can run queries to display information about the materialized views.

• Listing Master Database Information For Materialized Views
Query the DBA_MVIEWS view to list the master database information for materialized views.

• Listing the Properties of Materialized Views
Query the DBA_MVIEWS view to list the properties of materialized views.

39.7.1.1 Listing Master Database Information For Materialized Views
Query the DBA_MVIEWS view to list the master database information for materialized views.

Complete the following steps to show the master database for each materialized view at a
replication database and whether the materialized view can be fast refreshed:

1. Connect to the materialized view database as an administrative user.

2. Run the following query:

COLUMN MVIEW_NAME HEADING 'Materialized|View Name' FORMAT A15
COLUMN OWNER HEADING 'Owner' FORMAT A10

Chapter 39
Monitoring Materialized Views

39-9

COLUMN MASTER_LINK HEADING 'Master Link' FORMAT A30
COLUMN Fast_Refresh HEADING 'Fast|Refreshable?' FORMAT A16

SELECT MVIEW_NAME,
 OWNER,
 MASTER_LINK,
 DECODE(FAST_REFRESHABLE,
 'NO', 'NO',
 'DML', 'YES',
 'DIRLOAD', 'DIRECT LOAD ONLY',
 'DIRLOAD_DML', 'YES',
 'DIRLOAD_LIMITEDDML', 'LIMITED') Fast_Refresh
 FROM DBA_MVIEWS;

Your output looks similar to the following:

Materialized Fast
View Name Owner Master Link Refreshable?
--------------- ---------- ------------------------------ ----------------
COUNTRIES_MV1 HR @ORC1.EXAMPLE.COM YES
DEPARTMENTS_MV1 HR @ORC1.EXAMPLE.COM YES
EMPLOYEES_MV1 HR @ORC1.EXAMPLE.COM YES
JOBS_MV1 HR @ORC1.EXAMPLE.COM YES
JOB_HISTORY_MV1 HR @ORC1.EXAMPLE.COM YES
LOCATIONS_MV1 HR @ORC1.EXAMPLE.COM YES
REGIONS_MV1 HR @ORC1.EXAMPLE.COM YES

39.7.1.2 Listing the Properties of Materialized Views
Query the DBA_MVIEWS view to list the properties of materialized views.

You can use the query in this section to list the following information about the materialized
views at the current replication database:

• The name of each materialized view

• The owner of each materialized view

• The refresh method used by each materialized view: COMPLETE, FORCE, FAST, or NEVER
• The last date on which each materialized view was refreshed

To view this information, complete the following steps:

1. Connect to the materialized view database as an administrative user.

2. Run the following query to list this information:

To view this information, complete the following steps:

1. Connect to the materialized view database as an administrative user.

2. Run the following query:

COLUMN MVIEW_NAME HEADING 'Materialized|View Name' FORMAT A15
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN REFRESH_METHOD HEADING 'Refresh|Method' FORMAT A10
COLUMN LAST_REFRESH_DATE HEADING 'Last|Refresh|Date'
COLUMN LAST_REFRESH_TYPE HEADING 'Last|Refresh|Type' FORMAT A15

SELECT MVIEW_NAME,
 OWNER,
 REFRESH_METHOD,
 LAST_REFRESH_DATE,

Chapter 39
Monitoring Materialized Views

39-10

 LAST_REFRESH_TYPE
 FROM DBA_MVIEWS;

Your output looks similar to the following:

 Last Last
Materialized Refresh Refresh Refresh
View Name Owner Method Date Type
--------------- ---------- ---------- --------- ---------------
COUNTRIES_MV1 HR FAST 21-OCT-03 FAST
DEPARTMENTS_MV1 HR FAST 21-OCT-03 FAST
EMPLOYEES_MV1 HR FAST 21-OCT-03 FAST
JOBS_MV1 HR FAST 21-OCT-03 FAST
JOB_HISTORY_MV1 HR FAST 21-OCT-03 FAST
LOCATIONS_MV1 HR FAST 21-OCT-03 FAST
REGIONS_MV1 HR FAST 21-OCT-03 FAST

39.7.2 Listing Information About the Refresh Groups at a Materialized View
Database

Each refresh group at a materialized view database is associated with a refresh job that
refreshes the materialized views in the refresh group at a set interval.

You can query the DBA_REFRESH data dictionary view to list the following information about the
refresh jobs at a materialized view database:

• The name of the refresh group.

• The owner of the refresh group.

• Whether the refresh job is broken.

• The next date and time when the refresh job will run.

• The current interval setting for the refresh job. The interval setting specifies the amount of
time between the start of a job and the next start of the same job.

To view this information, complete the following steps:

1. Connect to the materialized view database as an administrative user.

2. Run the following query:

COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_refresh HEADING 'Next Refresh'
COLUMN INTERVAL HEADING 'Interval' FORMAT A20

SELECT RNAME,
 ROWNER,
 BROKEN,
 TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_refresh,
 INTERVAL
 FROM DBA_REFRESH
 ORDER BY 1;

Your output looks similar to the following:

Refresh Refresh
Group Group
Name Owner Broken? Next Refresh Interval
---------- ---------- ------- ----------------------- --------------------
HR_REFG MVIEWADMIN N 24-OCT-2003 07:18:44 AM SYSDATE + 1/24

Chapter 39
Monitoring Materialized Views

39-11

The N in the Broken? column means that the job is not broken. Therefore, the refresh job will
run at the next start time. A Y in this column means that the job is broken.

39.7.3 Determining the Job ID for Each Refresh Job at a Materialized View
Database

Query the DBA_REFRESH and DBA_JOBS views to determine the job identification number for each
refresh job at a materialized view database.

You can run a query to list the following information about the refresh jobs at a materialized
view database:

• The job identification number of each refresh job. Each job created by Oracle Scheduler is
assigned a unique identification number.

• The privilege schema, which is the schema whose default privileges apply to the job.

• The schema that owns each refresh job.

• The name of the refresh group that the job refreshes.

• The status of the refresh job, either normal or broken.

To view this information, complete the following steps:

1. Connect to the materialized view database as an administrative user.

2. Run the following query:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7

SELECT J.JOB,
 J.PRIV_USER,
 R.ROWNER,
 R.RNAME,
 J.BROKEN
 FROM DBA_REFRESH R, DBA_JOBS J
 WHERE R.JOB = J.JOB
 ORDER BY 1;

Your output looks similar to the following:

 Refresh Refresh
 Privilege Group Group
 Job ID Schema Owner Name Broken?
------- ---------- ---------- ---------- -------
 21 MVIEWADMIN MVIEWADMIN HR_REFG N

The N in the Broken? column means that the job is not broken. Therefore, the job will run at the
next start time. A Y in this column means that the job is broken.

39.7.4 Determining Which Materialized Views Are Currently Refreshing
Query the V$MVREFRESH view to determine which materialized views are currently refreshing.

Complete the following steps to show the materialized views that are currently refreshing:

1. Connect to the materialized view database as an administrative user.

Chapter 39
Monitoring Materialized Views

39-12

2. Run the following query:

COLUMN SID HEADING 'Session|Identifier' FORMAT 9999
COLUMN SERIAL# HEADING 'Serial|Number' FORMAT 999999
COLUMN CURRMVOWNER HEADING 'Owner' FORMAT A15
COLUMN CURRMVNAME HEADING 'Materialized|View' FORMAT A25

SELECT * FROM V$MVREFRESH;
Your output looks similar to the following:

 Session Serial Materialized
Identifier Number Owner View
---------- ------- --------------- -------------------------
 19 233 HR COUNTRIES_MV
 5 647 HR EMPLOYEES_MV

Chapter 39
Monitoring Materialized Views

39-13

40
Troubleshooting Problems with Read-Only
Materialized Views

You can diagnose and solve problems with database links, materialized view creation, and
materialized view refresh.

• Diagnosing Problems with Database Links
If you think a database link is not functioning properly, then you can drop and re-create it
using Oracle Enterprise Manager Cloud Control, SQL*Plus, or another tool.

• Problems Creating Materialized Views
There are items to check if you have problems creating a materialized view.

• Refresh Problems
You can diagnose and solve common refresh problems.

• Advanced Troubleshooting of Refresh Problems
There are several items you can check if you have problems with refreshing a materialized
view.

40.1 Diagnosing Problems with Database Links
If you think a database link is not functioning properly, then you can drop and re-create it using
Oracle Enterprise Manager Cloud Control, SQL*Plus, or another tool.

• Ensure that the database link name is the same as the global name of the target database.

• Ensure that the scheduled interval is what you want.

• Ensure that the scheduled interval is not shorter than the required execution time.

If you used a connection qualifier in a database link to a given database, then the other
databases that link to that database must have the same connection qualifier. For example,
suppose you create a database link as follows:

CREATE DATABASE LINK dbs1.example.com@myethernet CONNECT TO myadmin
 IDENTIFIED BY password USING 'connect_string_myethernet';

All the databases, whether master databases or materialized view databases, associated with
dbs1.example.com@myethernet must include myethernet as the connection qualifier.

See Also:

• "Using Connection Qualifiers to Specify Service Names Within Link Names" for
more information database links and connection qualifiers

• "Required Database Links for Materialized Views"

40-1

40.2 Problems Creating Materialized Views
There are items to check if you have problems creating a materialized view.

If you unsuccessfully attempt to create a materialized view, then try the following:

• Ensure that you have the necessary privileges to create the materialized view. You need
SELECT privilege on the master table and its materialized view log. See "Required
Privileges" for more information.

• If you are trying to create a fast refresh primary key or subquery materialized view, then
ensure that the materialized view log on the master table logs primary keys.

• If you are trying to create a fast refresh rowid materialized view, then ensure that the
materialized view log on the master table logs rowids.

• Check if the materialized view log has the required columns added for subquery
materialized views. See "Logging Columns in a Materialized View Log" for information.

• Check if the materialized view log exists for all tables that are involved in a fast refresh
materialized view. If the materialized view contains a subquery, then each table referenced
in the subquery should have a materialized view log.

40.3 Refresh Problems
You can diagnose and solve common refresh problems.

• Common Refresh Problems
Several common factors can prevent the automatic refresh of a group of materialized
views.

• Automatic Refresh Retries
When Oracle Database fails to refresh a refresh group automatically, the refresh group
remains due for its refresh to complete.

• Fast Refresh Errors at New Materialized View Databases
In some cases, a materialized view log for a master table might be purged during the
creation of a materialized view at a new materialized view database.

• Materialized Views Continually Refreshing
If you encounter a situation where Oracle Database continually refreshes a group of
materialized views, then check the group's refresh interval.

• Materialized View Logs Growing Too Large
If a materialized view log at a master database is growing too large, then check to see
whether a network or database failure has prevented the master database from becoming
aware that a materialized view has been dropped.

40.3.1 Common Refresh Problems
Several common factors can prevent the automatic refresh of a group of materialized views.

These factors include the following:

• The lack of a job chld process at the materialized view database

• An intervening network or server failure

• An intervening server shutdown

Chapter 40
Problems Creating Materialized Views

40-2

When a refresh group is experiencing problems, ensure that none of the preceding situations is
preventing Oracle Database from completing group refreshes.

40.3.2 Automatic Refresh Retries
When Oracle Database fails to refresh a refresh group automatically, the refresh group remains
due for its refresh to complete.

Oracle Database will retry an automatic refresh of a group with the following behavior:

• Oracle Database retries the refresh group refresh first one minute later, then two minutes
later, four minutes later, and so on, with the retry interval doubling with each failed attempt
to refresh the group.

• Oracle Database does not allow the retry interval to exceed the refresh interval itself.

• Oracle Database retries the automatic refresh up to sixteen times.

If after 16 attempts to refresh a refresh group Oracle Database continues to encounter errors,
then Oracle Database considers the group broken. You can query the BROKEN column of the
USER_REFRESH and USER_REFRESH_CHILDREN data dictionary views to see the current status of a
refresh group.

The errors causing Oracle Database to consider a refresh group broken are recorded in a trace
file. After you correct the problems preventing a refresh group from refreshing successfully, you
must refresh the refresh group manually. Oracle Database then resets the broken flag so that
automatic refreshes can happen again.

See Also:

The name of the materialized view trace file is of the form jn, where n is operating
system specific. See the Oracle documentation for your operating system for the
name on your system.

40.3.3 Fast Refresh Errors at New Materialized View Databases
In some cases, a materialized view log for a master table might be purged during the creation
of a materialized view at a new materialized view database.

When this happens, you might encounter the following errors:

ORA-12004 REFRESH FAST cannot be used for materialized view materialized_view_name
ORA-12034 materialized view log on materialized_view_name younger than last refresh

See Also:

"Adding a New Materialized View Database" for a complete description of how to
avoid this problem.

Chapter 40
Refresh Problems

40-3

40.3.4 Materialized Views Continually Refreshing
If you encounter a situation where Oracle Database continually refreshes a group of
materialized views, then check the group's refresh interval.

Oracle Database evaluates a refresh group's automatic refresh interval before starting the
refresh. If a refresh group's refresh interval is less than the amount of time it takes to refresh all
materialized views in the group, then Oracle Database continually starts a refresh group
refresh each time the job child process checks the queue of outstanding jobs.

40.3.5 Materialized View Logs Growing Too Large
If a materialized view log at a master database is growing too large, then check to see whether
a network or database failure has prevented the master database from becoming aware that a
materialized view has been dropped.

You might need to purge part of the materialized view log or unregister the unused materialized
view database.

40.4 Advanced Troubleshooting of Refresh Problems
There are several items you can check if you have problems with refreshing a materialized
view.

If you have a problem refreshing a materialized view, then try the following:

• Check the NEXT_DATE value in the DBA_REFRESH_CHILDREN view to determine if the refresh
has been scheduled.

• If the refresh interval has passed, then check the DBA_REFRESH view for the associated job
number for the materialized view refresh and then diagnose the problem with job queues.

• Check if there are job child processes running. Check the JOB_QUEUE_PROCESSES
initialization parameter, query the DBA_JOBS_RUNNING view, and use your operating system
to check if the job child processes are still running.

• You also might encounter an error if you attempt to define a master detail relationship
between two materialized views. You should define master detail relationships only on the
master tables by using declarative referential integrity constraints. The related materialized
views should then be placed in the same refresh group to preserve this relationship.
However, you can define deferred (or deferrable) constraints on materialized views.

• Materialized views in the same refresh groups have their rows updated in a single
transaction. Such a transaction can be very large, requiring either a large rollback segment
at the materialized view database, with the rollback segment specified to be used during
refresh, or more frequent refreshes to reduce the transaction size.

• If Oracle error ORA-12004 occurs, then the master database might have run out of rollback
segments when trying to maintain the materialized view log, or the materialized view log
might be out of date. For example, the materialized view log might have been purged or re-
created.

• Complete refreshes of a single materialized view internally use the TRUNCATE feature to
increase speed and reduce rollback segment requirements. However, until the materialized
view refresh is complete, users might temporarily see no data in the materialized view.
Refreshes of multiple materialized views (for example, refresh groups) do not use the
TRUNCATE feature.

Chapter 40
Advanced Troubleshooting of Refresh Problems

40-4

• Reorganization of the master table (for example, to reclaim system resources) should
TRUNCATE the master table to force rowid materialized views to do complete refreshes.
Otherwise, the materialized views have incorrect references to master table rowids. You
use the BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION procedures in the
DBMS_MVIEW package to reorganize a master table.

• If while refreshing you see an ORA-00942 (table or view does not exist), then check your
database links and ensure that you still have the required privileges on the master table
and the materialized view log.

• If a fast refresh was succeeding but then fails, then check whether:

– The materialized view log was truncated, purged, or dropped.

– You still have the required privileges on the materialized view log.

• If a force refresh takes an inordinately long time, then check if the materialized view log
used by the refresh has been dropped.

• If the materialized view was created with BUILD DEFERRED, and its first fast refresh fails,
then ensure that a previous complete refresh was done successfully before checking for
other problems.

Chapter 40
Advanced Troubleshooting of Refresh Problems

40-5

Part VII
Appendixes

Appendixes contain supplemental material for this document.

• Support for DBMS_JOB
Oracle continues to support the DBMS_JOB package. However, you must grant the CREATE
JOB privilege to the database schemas that submit DBMS_JOB jobs.

• Blockchain Tables Reference
You can independently verify the hash value and signature of a row by using its row
content.

A
Support for DBMS_JOB

Oracle continues to support the DBMS_JOB package. However, you must grant the CREATE JOB
privilege to the database schemas that submit DBMS_JOB jobs.

Oracle Scheduler replaces the DBMS_JOB package. Although DBMS_JOB is still supported for
backward compatibility, Oracle strongly recommends that you switch from DBMS_JOB to Oracle
Scheduler.

In upgrades of Oracle Database 19c and later releases, if the upgrade can recreate existing
DBMS_JOB jobs using DBMS_SCHEDULER, then for backward compatibility, after the upgrade,
DBMS_JOB continues to act as a legacy interface to the DBMS_SCHEDULER job. If existing jobs
cannot be recreated using DBMS_SCHEDULER because of issues with the metadata, then you
receive a JOB_TABLE_INTEGRITY warning when you run upgrade prechecks. In that case, you
have three options:

• Fix the metadata. After the upgrade continue to run after the upgrade using DBMS_JOBS as
an interface, and run as DBMS_SCHEDULER jobs.

• Drop the jobs, if no longer required.

• Drop DBMS_JOBS jobs, and recreate the jobs manually using DBMS_SCHEDULER.

For existing jobs created with DBMS_JOB that are recreated during the upgrade, the legacy
DBMS_JOB job is still present as an interface, but using it always creates a DBMS_SCHEDULER
entry. Apart from the interface, the job is run as a DBMS_SCHEDULER job. If you subsequently
disable the DBMS_JOB job created before the upgrade, then the DBMS_SCHEDULER job is also
disabled. To avoid this behavior,drop the legacy job, and replace it with a DBMS_SCHEDULER job.

For all new jobs, use DBMS_SCHEDULER.

• Oracle Scheduler Replaces DBMS_JOB
Starting with Oracle Database 11g Release 2 (11.2), Oracle Scheduler replaces DBMS_JOB.
Oracle Scheduler is more powerful and flexible than DBMS_JOB, which is a package used to
schedule jobs. Although DBMS_JOB is still supported for backward compatibility, Oracle
strongly recommends that you switch from DBMS_JOB to Oracle Scheduler.

• Moving from DBMS_JOB to Oracle Scheduler
This section illustrates some examples of how you can take jobs created with the DBMS_JOB
package and rewrite them using Oracle Scheduler, which you configure and control with
the DBMS_SCHEDULER package.

A.1 Oracle Scheduler Replaces DBMS_JOB
Starting with Oracle Database 11g Release 2 (11.2), Oracle Scheduler replaces DBMS_JOB.
Oracle Scheduler is more powerful and flexible than DBMS_JOB, which is a package used to
schedule jobs. Although DBMS_JOB is still supported for backward compatibility, Oracle strongly
recommends that you switch from DBMS_JOB to Oracle Scheduler.

• Configuring DBMS_JOB
The JOB_QUEUE_PROCESSES initialization parameter specifies the maximum number of
processes that can be created for the execution of jobs.

A-1

• Using Both DBMS_JOB and Oracle Scheduler
DBMS_JOB and Oracle Scheduler (the Scheduler) use the same job coordinator to start job
child processes.

A.1.1 Configuring DBMS_JOB
The JOB_QUEUE_PROCESSES initialization parameter specifies the maximum number of
processes that can be created for the execution of jobs.

Starting with Oracle Database Release 21c, the default value for JOB_QUEUE_PROCESSES across
all containers is automatically derived from the number of sessions and CPUs configured in the
system. The job coordinator process starts only as many job queue processes as are required,
based on the number of jobs to run and available resources. You can set
JOB_QUEUE_PROCESSES to a lower number to limit the number of job queue processes.

Setting JOB_QUEUE_PROCESSES to 0 disables DBMS_JOB jobs and DBMS_SCHEDULER jobs.

See Also:

Oracle Database Reference for more information about the JOB_QUEUE_PROCESSES
initialization parameter

A.1.2 Using Both DBMS_JOB and Oracle Scheduler
DBMS_JOB and Oracle Scheduler (the Scheduler) use the same job coordinator to start job child
processes.

You can use the JOB_QUEUE_PROCESSES initialization parameter to limit the number job child
processes for both DBMS_JOB and the Scheduler.

If JOB_QUEUE_PROCESSES is 0, both DBMS_JOB and Oracle Scheduler jobs are disabled.

See Also:

• Scheduling Jobs with Oracle Scheduler

• "Setting Scheduler Preferences"

• Oracle Database Reference for more information about the
JOB_QUEUE_PROCESSES initialization parameter

A.2 Moving from DBMS_JOB to Oracle Scheduler
This section illustrates some examples of how you can take jobs created with the DBMS_JOB
package and rewrite them using Oracle Scheduler, which you configure and control with the
DBMS_SCHEDULER package.

Appendix A
Moving from DBMS_JOB to Oracle Scheduler

A-2

• Creating a Job
An example illustrates creating a job using the DBMS_JOB package and the DBMS_SCHEDULER
package.

• Altering a Job
An example illustrates altering a job using the DBMS_JOB package and the DBMS_SCHEDULER
package.

• Removing a Job from the Job Queue
An example illustrates removing a job using the DBMS_JOB package and the
DBMS_SCHEDULER package.

A.2.1 Creating a Job
An example illustrates creating a job using the DBMS_JOB package and the DBMS_SCHEDULER
package.

The following example creates a job using DBMS_JOB:

VARIABLE jobno NUMBER;
BEGIN
 DBMS_JOB.SUBMIT(:jobno, 'INSERT INTO employees VALUES (7935, ''SALLY'',
 ''DOGAN'', ''sally.dogan@examplecorp.com'', NULL, SYSDATE, ''AD_PRES'', NULL,
 NULL, NULL, NULL);', SYSDATE, 'SYSDATE+1');
 COMMIT;
END;
/

The following is an equivalent statement using DBMS_SCHEDULER:

BEGIN
 DBMS_SCHEDULER.CREATE_JOB(
 job_name => 'job1',
 job_type => 'PLSQL_BLOCK',
 job_action => 'INSERT INTO employees VALUES (7935, ''SALLY'',
 ''DOGAN'', ''sally.dogan@examplecorp.com'', NULL, SYSDATE,''AD_PRES'', NULL,
 NULL, NULL, NULL);',
 start_date => SYSDATE,
 repeat_interval => 'FREQ = DAILY; INTERVAL = 1');
END;
/

A.2.2 Altering a Job
An example illustrates altering a job using the DBMS_JOB package and the DBMS_SCHEDULER
package.

The following example alters a job using DBMS_JOB:

BEGIN
 DBMS_JOB.WHAT(31, 'INSERT INTO employees VALUES (7935, ''TOM'', ''DOGAN'',
 ''tom.dogan@examplecorp.com'', NULL, SYSDATE,''AD_PRES'', NULL,
 NULL, NULL, NULL);');
 COMMIT;
END;
/

This changes the action for JOB1 to insert a different value.

The following is an equivalent statement using DBMS_SCHEDULER:

Appendix A
Moving from DBMS_JOB to Oracle Scheduler

A-3

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE(
 name => 'JOB1',
 attribute => 'job_action',
 value => 'INSERT INTO employees VALUES (7935, ''TOM'', ''DOGAN'',
 ''tom.dogan@examplecorp.com'', NULL, SYSDATE, ''AD_PRES'', NULL,
 NULL, NULL, NULL);');
END;
/

A.2.3 Removing a Job from the Job Queue
An example illustrates removing a job using the DBMS_JOB package and the DBMS_SCHEDULER
package.

The following example removes a job using DBMS_JOB, where 14144 is the number of the job
being run:

BEGIN
 DBMS_JOB.REMOVE(14144);
COMMIT;
END;
/

Using DBMS_SCHEDULER, you would issue the following statement instead:

BEGIN
 DBMS_SCHEDULER.DROP_JOB('myjob1');
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_SCHEDULER package

• Scheduling Jobs with Oracle Scheduler

Appendix A
Moving from DBMS_JOB to Oracle Scheduler

A-4

B
Blockchain Tables Reference

You can independently verify the hash value and signature of a row by using its row content.

You can use the data format for the row content and column content to create procedures or
functions that verify the hash value and user signature for a row.

• Blockchain Tables Column Content
The column content of a row consists of the column metadata and the column data.

• Blockchain Tables Row Content
A predefined format is used to compute the row content of rows in the blockchain table.

• Format of the Signed Digest in Blockchain Tables
The signed digest consists of metadata and data about the last row in each chain of a
blockchain table.

B.1 Blockchain Tables Column Content
The column content of a row consists of the column metadata and the column data.

The data format for column content is a platform-neutral sequence of bytes, in a predefined
format, that is based on the column metadata and the column data. To understand how the
data format for column content is computed, consider a row in the bctab table. The table
contains two columns bank and amount. A row in this table contains the values 'Chase' and
1000 respectively.

Data Format for Column Data

Data format is computed for both user-defined and hidden columns. The column data is
platform-neutral and can be obtained by using the SQL DUMP function.

The following example, assuming that the database character set is ANSI ASCII, gets the data
format for column data as:

SELECT REGEXP_REPLACE(REGEXP_SUBSTR(DUMP(bank_name, 16), '[^]+',1, 3), ',',
'') "Data Value"
 FROM examples.bank_ledger WHERE bank_name = 'MyBank';

Data Value
--
--
4368617365

Data Format for Column Metadata

The column metadata is a 20-byte structure in the following format:

typedef struct col_meta_data
{
 ub2 version; /* VALUE IS ALWAYS 1/
 ub2 col_position;

B-1

 ub2 col_type;
 ub1 is_col_null;
 ub1 reserved1; /*VALUE IS ALWAYS 0*/
 ub8 col_len;
 ub4 spare;
} col_meta_data;

where:

• ub1 is an unsigned single byte value

• ub2 is an unsigned short, 2 bytes value

• ub4 is an unsigned long, 4 bytes value

• ub8 is unsigned long long, 8 bytes value

ub2, ub4, and ub8 use the little-endian format.

The attributes of the col_meta_data structure describe information about the column, such as
its position in the table, data type, whether the column value is NULL or not, and the length of
the column data (in bytes).

In the example, the column metadata for the value 'Chase' in ASCII and using the structure
defined above is:

01 00
01 00
01 00
00
00
05 00 00 00 00 00 00 00
00 00 00 00

The first line, 01 00, is a 2-byte representation of the data format version, which is 1 in this
release. The second line, 01 00, is a 2-byte representation of the column position of
BANK_NAME, which is 1. The third line, 01 00, is a 2-byte representation of the internal code for
the data type of the BANK_NAME column. The data type is VARCHAR2, which has an internal code
of 1. The fourth line, 00, has a byte that specifies whether the column value is NULL (01) or not
NULL (00). The column value is "Chase" and is hence not NULL. The fifth line, 00, is a
reserved byte and must be zero in this release. The sixth line, 05 00 00 00 00 00 00 00, is an
8-byte length. The value "Chase" is 5 bytes in the database character set. The seventh line, 00
00 00 00, is four reserved bytes, each of which must be zero in this release.

The data format for column content for the column value 'Chase' is the concatenation of bytes
from its column metadata and its column data. Therefore, the data format for the column
content is the following value:

01 00
01 00
01 00
00
00
05 00 00 00 00 00 00 00
00 00 00 00
43 68 61 73 65

Appendix B
Blockchain Tables Column Content

B-2

Example B-1 Creating a User-Defined Function to Construct a Column Metadata Value

The procedure little_endian_ubx is a useful utility procedure. It converts a number to a ub2,
ub4, or a ub8 value in little-endian format. The parameter x represents the data type of the
column. Use the value 2 for ub2 input, 4 for ub4 input, and 8 for ub8 input.

CREATE OR REPLACE FUNCTION little_endian_ubx(value IN NUMBER, x IN NUMBER)
RETURN RAW IS
 format VARCHAR2(16);
 string VARCHAR2(16);
 result RAW(8);
BEGIN
 format := RPAD('0', 2*x-1, '0') || 'X'; -- conversion format is all
zeroes and a final X
 string := SUBSTR(TO_CHAR(value, format), 2); -- use SUBSTR to strip
leading space
 dbms_output.put_line('string is ' || string);
 result := utl_raw.reverse(HEXTORAW(string));
 dbms_output.put_line('result is ' || RAWTOHEX(result));
 RETURN result;
END little_endian_ubx;

B.2 Blockchain Tables Row Content
A predefined format is used to compute the row content of rows in the blockchain table.

The row content of a row is a contiguous sequence of bytes that is based on the row data and
the hash value of the previous row in the chain. The data format for the row content defines
the order and sequence of bytes.

The data format for row content is different when computing the hash value and when
computing the row signature.

Data Format for Row Content When Computing Hash Value

The data format for row content of a hash value is computed based on the user columns, some
hidden columns, and the hash value of the previous row in the chain.

To understand the data format for row content when computing a hash value, consider a
blockchain table bctab that contains two columns bank and amount. The second row in this
table contains the values 'Chase' and 1000 respectively. The data format for the row content,
when computing the row hash value, is obtained by concatenating the byte values of the
following, in the order listed:

• Data format for bank column, containing value 'Chase'

• Data format for amount column, containing the value 1000

• Data format for hidden column ORABCTAB_INST_ID$
• Data format for hidden column ORABCTAB_CHAIN_ID$
• Data format for hidden column ORABCTAB_SEQ_NUM$
• Data format for hidden column ORABCTAB_CREATION_TIME$
• Data format for hidden column ORABCTAB_USER_NUMBER$
• Data format for hash value of the first row in the table (assuming both rows are in the same

chain)

Appendix B
Blockchain Tables Row Content

B-3

The order of columns is dictated by the INTERNAL_COLUMN_ID column in the view ALL_TAB_COLS.

Data Format for Row Content When Computing Row Signature

The data format for row content of a row signature is computed based on the hash value of the
row.

B.3 Format of the Signed Digest in Blockchain Tables
The signed digest consists of metadata and data about the last row in each chain of a
blockchain table.

The data format for the signed digest contains a header and an array of row information.

The structure of the header is as follows:

{
 ub1 version;
 /* 1 in 19.x */
 ub1 reserved_1;
 ub1 reserved_2;
 ub1 reserved_3;
 ub4 reserved_4;
 ub8 total_length;
 /* total length of signature content buffer, except version,
reserved_% and total_length fields */
 ub1 pdb_guid[16];
 /* 16 bytes long PDB GUID */
 ub4 owner_schema_objn;
 ub4 blockchain_table_objn;
 ub4 signature_algorithm;
 ub4 number_of_rows;
 }

The structure of the row information is as follows:

{
 ub4 instance_id ;
 ub4 chain_id
 ub8 sequence_number;
 ub4 user_number;
 ub1 row_creation_time[16];
 /* UTC format that Oracle uses has 13 bytes; padded 3 bytes */
 ub4 crypto_hash_len;
 ub1 *crypto_hash;
 /* padded to 4 byte boundary */
 ub4 user_columns_count;
 /* always 0 in 19.x
 * padded to 8 byte boundary */
 ub8 user_columns_data_len;
 /* always 0 in 19.x */
}

where:

Appendix B
Format of the Signed Digest in Blockchain Tables

B-4

• ub1 is an unsigned single byte value

• ub4 is an unsigned long, 4 bytes value

• ub8 is an unsigned long, 8 bytes value

ub4 and ub8 use the little-endian format.

Padding is done by appending binary zeros.

Appendix B
Format of the Signed Digest in Blockchain Tables

B-5

Index

Symbols
.trm files, 7-8

A
abort response, 34-12

two-phase commit, 34-12
accounts

creating for materialized views, 38-5
DBA operating system account, 1-21

adaptive query optimization
adaptive plans, 7-42

adaptive query plans, 7-42
ADD LOGFILE clause

ALTER DATABASE statement, 9-13
ADD LOGFILE MEMBER clause

ALTER DATABASE statement, 9-13
adding

columns, 19-62
columns in compressed tables, 19-62

ADMIN_TABLES procedure
DBMS_REPAIR package, 24-2
example, 24-9

ADMINISTER_RESOURCE_MANAGER system
privilege, 26-31

administering
the Scheduler, 29-1

administration
distributed databases, 32-1

administrative user accounts, 1-22
SYS, 1-21
SYSBACKUP, 1-21
SYSDG, 1-21
SYSKM, 1-21

administrator passwords, synchronizing password
file and data dictionary, 1-45

ADR
See automatic diagnostic repository

ADR base, 7-11
ADR home, 7-11
ADRCI utility, 7-11
advanced index compression, 20-20
advanced row compression, 19-8
Advisor

Data Repair, 7-3

Advisor (continued)
Undo, 14-8

AFTER SUSPEND trigger
example of registering, 18-15

agent
Heterogeneous Services, definition of, 31-5

aggregate functions
statement transparency in distributed

databases, 32-29
alert log, 7-7

about, 6-2
size of, 6-3
using, 6-2
viewing, 7-40
when written, 6-5

alert thresholds
setting for locally managed tablespaces, 18-3

alerts
server-generated, 6-6
tablespace space usage, 18-3
threshold-based, 6-6
viewing, 18-5

ALL_DB_LINKS view, 32-19
allocation

extents, 19-61
ALTER CLUSTER statement

ALLOCATE EXTENT clause, 21-7
using for hash clusters, 22-11
using for index clusters, 21-7

ALTER DATABASE statement
ADD LOGFILE clause, 9-13
ADD LOGFILE MEMBER clause, 9-13
ARCHIVELOG clause, 10-5
CLEAR LOGFILE clause, 9-18
DATAFILE...OFFLINE DROP clause, 12-9
DROP LOGFILE clause, 9-16
DROP LOGFILE MEMBER clause, 9-16
NOARCHIVELOG clause, 10-5
RENAME FILE clause, 12-16
UNRECOVERABLE DATAFILE clause, 9-18

ALTER INDEX statement
COALESCE clause, 20-10

ALTER SEQUENCE statement, 23-17
ALTER SESSION statement

ADVISE clause, 35-8
CLOSE DATABASE LINK clause, 33-2

Index-1

ALTER SESSION statement (continued)
Enabling resumable space allocation, 18-11

ALTER SYSTEM FLUSH FLASH_CACHE, 4-31
ALTER SYSTEM statement

ARCHIVE LOG ALL clause, 10-6
DISABLE DISTRIBUTED RECOVERY

clause, 35-22
ENABLE DISTRIBUTED RECOVERY clause,

35-22
enabling Database Resource Manager, 26-39
SET RESOURCE_MANAGER_PLAN, 26-39
SET SHARED_SERVERS initialization

parameter, 3-12
SWITCH LOGFILE clause, 9-17

ALTER TABLE statement
ALLOCATE EXTENT clause, 19-61
DEALLOCATE UNUSED clause, 19-61
DISABLE ALL TRIGGERS clause, 17-12
DISABLE integrity constraint clause, 17-18
DROP COLUMN clause, 19-64
DROP integrity constraint clause, 17-19
DROP UNUSED COLUMNS clause, 19-65
ENABLE ALL TRIGGERS clause, 17-12
ENABLE integrity constraint clause, 17-18
external tables, 19-146
modifying index-organized table attributes,

19-134
MOVE clause, 19-58–19-60, 19-134
reasons for use, 19-57
SET UNUSED clause, 19-65

ALTER TABLESPACE statement
adding an Oracle managed data file, example,

15-18
adding an Oracle managed temp file,

example, 15-19
ONLINE clause, example, 11-24
READ ONLY clause, 11-25
RENAME DATAFILE clause, 12-14

ALTER TRIGGER statement
DISABLE clause, 17-12
ENABLE clause, 17-12

altering
(Scheduler) windows, 28-76
event schedule, 28-41
event-based job, 28-40
indexes, 20-24
job classes, 28-72
jobs, 28-19
programs, 28-28
schedules, 28-31

ANALYZE statement
CASCADE clause, 17-5
CASCADE clause, FAST option, 17-5
corruption reporting, 24-5
listing chained rows, 17-6
remote tables, 33-6

ANALYZE statement (continued)
validating structure, 17-5, 24-4

analyzing schema objects, 17-4
analyzing tables

distributed processing, 33-6
AND condition

for simple subquery materialized views, 36-19
APPEND hint, 19-11
application development

distributed databases, 31-41, 33-1, 33-10
application development for distributed

databases, 33-1
analyzing execution plan, 33-8
database links, controlling connections, 33-2
handling errors, 33-2, 33-10
handling remote procedure errors, 33-10
managing distribution of data, 33-1
managing referential integrity constraints,

33-2
terminating remote connections, 33-2
tuning distributed queries, 33-3
tuning using collocated inline views, 33-4
using cost-based optimization, 33-5
using hints to tune queries, 33-7

archived redo log files
alternate destinations, 10-14
archiving modes, 10-5
data dictionary views, 10-20
destination availability state, controlling, 10-14
destination status, 10-13
destinations, groups, 10-11
destinations, specifying, 10-7
failed destinations and, 10-15
mandatory destinations, 10-16
multiplexing, 10-7
normal transmission of, 10-14
re-archiving to failed destination, 10-18
sample destination scenarios, 10-17
standby transmission of, 10-14
status information, 10-20
transmitting, 10-14

ARCHIVELOG mode, 10-3
advantages, 10-3
archiving, 10-2
automatic archiving in, 10-3
definition of, 10-3
distributed databases, 10-3
enabling, 10-5
manual archiving in, 10-3
running in, 10-3
switching to, 10-5
taking data files offline and online in, 12-9

archiver process (ARCn), 3-29
trace output (controlling), 10-19

archiving
alternate destinations, 10-14

Index

Index-2

archiving (continued)
changing archiving mode, 10-5
controlling number of processes, 10-7
destination availability state, controlling, 10-14
destination failure, 10-15
destination status, 10-13
manual, 10-6
NOARCHIVELOG vs. ARCHIVELOG mode,

10-2
setting initial mode, 10-5
to failed destinations, 10-18
trace output, controlling, 10-19
viewing information on, 10-20

attribute-clustered tables, 19-23
auditing

database links, 31-29
authentication

database administrators, 1-29
database links, 31-23
operating system, 1-33
password files, 1-34
selecting a method, 1-29
using password file, 1-34

auto indexes, 20-32
AUTO_TASK_CONSUMER_GROUP

of Resource Manager, 25-7
AUTOEXTEND clause, 12-6
automatic big table cache, 4-4
automatic diagnostic repository, 7-2, 7-6

in Oracle Client, 7-11
in Oracle Clusterware, 7-11
in Oracle Real Application Clusters, 7-11
structure, contents and location of, 7-11

automatic error mitigation, 7-66
automatic file extension, 12-6
automatic indexes, 20-31

views, 20-40
automatic indexing

about, 20-32
configuring, 20-34
generating reports, 20-38
how automatic indexing works, 20-33

automatic maintenance tasks, 25-1
assigning to maintenance windows, 25-5
definition, 25-2
enabling and disabling, 25-4
predefined, 25-2
resource allocation, 25-8
Scheduler job names, 25-3

automatic segment space management, 11-7
automatic undo management, 14-2

migrating to, 14-15

B
background processes, 3-29

FMON, 12-24
BACKGROUND_DUMP_DEST initialization

parameter, 7-6
backups

effects of archiving on, 10-3
big table cache, 4-4
bigfile tablespaces

altering, 11-37
creating, 11-9
creating temporary, 11-18
description, 11-8

BLOB data type, 19-34
block size, redo log files, 9-9
blockchain tables

about, 19-168
adding user columns, 19-179
altering, 19-181
benefits, 19-168
countersigning rows, 19-186
creating, 19-177
creating certificates, 19-181
creating row versions, 19-179
creating user chains, 19-180
data dictionary views, 19-197
delegate signing rows, 19-185
deleting rows, 19-191
dropping, 19-192
dropping user columns, 19-179
getting byte values, 19-195
getting bytes for hash, 19-193
getting bytes for signature, 19-195
hidden columns, 19-171
restrictions, 19-176
retention period, 19-174
retention period for rows, 19-175
signing rows, 19-183
using for log history, 19-197
validating data, 19-187

BLOCKSIZE clause
of CREATE TABLESPACE, 11-21

C
caches

sequence numbers, 23-21
calendaring expressions, 28-32
calls

remote procedure, 31-43
cancelling SQL statements, 3-40
capacity planning

space management
capacity planning, 18-38

Index

Index-3

CASCADE clause
when dropping unique or primary keys, 17-18

CATBLOCK.SQL script, 6-10
CDB resource plans, 26-21

PDB performance profiles, 26-60, 26-69
CDBs

CDB resource plans
viewing information about, 26-77

Database Resource Manager, 26-56
resource management, 26-3

centralized user management
distributed systems, 31-25

certificates
creating, 19-181

chain condition syntax, 28-55
chain rules, 28-55
chain steps

defining, 28-53
chained rows

eliminating from table, procedure, 17-7
chains

creating, 28-53
creating and managing job, 28-50
creating jobs for, 28-59
disabling, 28-61
dropping, 28-60
dropping rules from, 28-61
enabling, 28-58
handling stalled, 28-65
monitoring running, 28-64
overview, 27-11
pausing, 28-62
running, 28-60
setting privileges, 29-2
steps

pausing, 28-62
skipping, 28-63

stopping, 28-62
stopping individual steps, 28-62

change vectors, 9-2
CHAR data type

increasing column length, 19-61
CHECK_OBJECT procedure

DBMS_REPAIR package, 24-2
example, 24-10
finding extent of corruption, 24-6

checkpoint process (CKPT), 3-29
checksums

for data blocks, 12-18
redo log blocks, 9-17

CLEAR LOGFILE clause
ALTER DATABASE statement, 9-18

clearing redo log files, 9-18
client/server architectures

distributed databases, 31-6
globalization support, 31-45

cloning
a database, 1-9
an Oracle home, 1-9

CLOSE DATABASE LINK clause
ALTER SESSION statement, 33-2

closing database links, 32-17
closing windows, 28-77
clusters, 21-5

about, 21-1
allocating extents, 21-7
altering, 21-7
analyzing, 17-4
cluster indexes, 21-9
cluster keys, 21-1, 21-4
clustered tables, 21-1, 21-3, 21-6, 21-8, 21-10
columns for cluster key, 21-4
creating, 21-5
data dictionary views reference, 21-11
deallocating extents, 21-7
dropping, 21-9
estimating space, 21-4, 21-5
guidelines for managing, 21-3
location, 21-4
privileges, 21-5, 21-7, 21-10
selecting tables, 21-3
single-table hash clusters, 22-7
truncating, 17-8
validating structure, 17-5

coalescing indexes
costs, 20-10

cold backup
performing with a detached Oracle Scheduler

job, 28-15
collections

materialized views, 36-26
restrictions, 36-28

replication, 36-26
collocated inline views

tuning distributed queries, 33-4
column objects

materialized views
column subsetting, 36-24

replication, 36-22
column subsetting

materialized views
column objects, 36-24

columns
adding, 19-62
adding to compressed table, 19-62
displaying information about, 19-200
dropping, 19-63, 19-65
dropping in compressed tables, 19-66
encrypted, 19-28
increasing length, 19-61
invisible, 19-25
modifying definition, 19-61

Index

Index-4

columns (continued)
renaming, 19-63
virtual, 19-2
virtual, indexing, 20-5

commands
submitting, 1-10

COMMENT statement, 19-198
comments

adding to problem activity log, 7-21
commit phase, 34-10, 34-21

in two-phase commit, 34-12, 34-13
commit point site, 34-6

commit point strength, 34-7, 35-2
determining, 34-7
distributed transactions, 34-6, 34-7
how the database determines, 34-7

commit point strength
definition, 34-7
specifying, 35-2

COMMIT statement
FORCE clause, 35-9, 35-10
forcing, 35-7
two-phase commit and, 31-34

COMMIT_POINT_STRENGTH initialization
parameter, 34-7

committing transactions
commit point site for distributed transactions,

34-6
complete refresh, 36-21, 37-8
complex materialized views, 36-6, 36-8

value for PCTUSED, 37-8
components

srvctl component names and abbreviations,
2-34

compression, 38-3
indexes, 20-18

advanced compression, 20-20
prefix compression, 20-19

levels, 19-8
tables, 19-8

adding a column, 19-62
dropping columns in, 19-66

tablespaces, 11-10
configuring

Oracle Scheduler, 29-2
CONNECT command, SQL*Plus, 1-13, 1-15
connected user database links, 32-10

advantages and disadvantages, 31-15
definition, 31-14
REMOTE_OS_AUTHENT initialization

parameter, 31-15
connecting

with SQL*Plus, 1-12
connection qualifiers

database links and, 32-11
diagnosing problems with, 40-1

connections
terminating remote, 33-2

constraints, 17-13
deferrable, 37-11
disabling at table creation, 17-17
distributed system application development

issues, 33-2
dropping integrity constraints, 17-19
enable novalidate state, 17-15
enabling example, 17-17
enabling when violations exist, 17-15
exceptions, 17-15, 17-20
exceptions to integrity constraints, 17-20
integrity constraint states, 17-14
keeping index when disabling, 17-18
keeping index when dropping, 17-18
ORA-02055 constraint violation, 33-2
renaming, 17-19
setting at table creation, 17-16
when to disable, 17-14

See also integrity constraints
control files

adding, 8-5
changing size, 8-4
conflicts with data dictionary, 8-8
creating, 8-1, 8-4, 8-6
creating as Oracle Managed Files, 15-20
data dictionary views reference, 8-11
default name, 8-4
dropping, 8-10
errors during creation, 8-9
importance of multiplexed, 8-3
initial creation, 8-4
location of, 8-3
log sequence numbers, 9-4
mirroring, 8-3
moving, 8-5
multiplexed, 8-3
names, 8-2
number of, 8-3
relocating, 8-5
renaming, 8-5
requirement of one, 8-1
size of, 8-3
troubleshooting, 8-8

CONTROL_FILES initialization parameter
specifying file names, 8-2
when creating a database, 8-4

copying jobs, 28-25
core files, 7-8
corruption

repairing data block, 24-1
cost-based optimization, 33-5

distributed databases, 31-44
hints, 33-7
using for distributed queries, 33-5

Index

Index-5

cpu resource management
CPU scope, 26-131

CPU_COUNT initialization parameter, 26-33
CREATE BIGFILE TABLESPACE statement, 11-9
CREATE BIGFILE TEMPORARY TABLESPACE

statement, 11-18
CREATE CLUSTER statement

creating clusters, 21-5
example, 21-5
for hash clusters, 22-4
HASH IS clause, 22-4, 22-8
HASHKEYS clause, 22-4, 22-9

CREATE CONTROLFILE statement
about, 8-6
checking for inconsistencies, 8-8
NORESETLOGS clause, 8-7
Oracle Managed Files, using, 15-20
RESETLOGS clause, 8-7

CREATE DATABASE LINK statement, 32-8
CREATE DATABASE statement

CONTROLFILE REUSE clause, 8-4
MAXLOGFILES parameter, 9-10
MAXLOGMEMBERS parameter, 9-10
used to create an undo tablespace, 14-11
using Oracle Managed Files, 15-9
using Oracle Managed Files, examples,

15-25, 15-29
CREATE INDEX statement

NOLOGGING, 20-7
ON CLUSTER clause, 21-7
with a constraint, 20-15

CREATE SCHEMA statement
multiple tables and views, 17-2

CREATE SEQUENCE statement, 23-17
CACHE option, 23-22

CREATE SYNONYM statement, 23-26
CREATE TABLE statement

CLUSTER clause, 21-6
creating a private temporary table, 19-38
creating global temporary table, 19-36
example of, 19-34
INCLUDING clause, 19-131
MONITORING clause, 19-55
NOLOGGING clause, 19-7
ORGANIZATION EXTERNAL clause, 19-142
PCTTHRESHOLD clause, 19-131

CREATE TABLESPACE statement
BLOCKSIZE CLAUSE, using, 11-21
FORCE LOGGING clause, using, 11-21
LOST WRITE PROTECTION clause, 11-47
using Oracle Managed Files, 15-15
using Oracle Managed Files, examples, 15-16

CREATE TEMPORARY TABLESPACE statement,
11-17

using Oracle Managed Files, 15-18
using Oracle managed files, example, 15-19

CREATE UNDO TABLESPACE statement
using Oracle Managed Files, 15-15
using Oracle Managed Files, example, 15-17
using to create an undo tablespace, 14-12

CREATE VIEW statement
about, 23-3
OR REPLACE clause, 23-5
WITH CHECK OPTION, 23-3, 23-6

CREATE_CREDENTIAL procedure, 3-36, 28-9
CREATE_SIMPLE_PLAN procedure

Database Resource Manager, 26-79, 26-82
creating

chains, 28-53
control files, 8-4
event schedule, 28-40
event-based job, 28-39
indexes, 20-12

after inserting table data, 20-3
associated with integrity constraints,

20-15
NOLOGGING, 20-7
online, 20-17
prerequisites, 20-13
USING INDEX clause, 20-15

job classes, 28-72
jobs, 28-4
programs, 28-26
Scheduler windows, 28-75
schedules, 28-30
sequences, 23-22
window groups, 28-80

creating data files, 12-5
creating database links, 32-6

connected user, 32-11
connected user scenarios, 32-32
current user, 32-11
current user scenario, 32-33
examples, 31-17
fixed user, 32-10
fixed user scenario, 32-31
obtaining necessary privileges, 32-7
private, 32-8
public, 32-8
service names within link names, 32-11
shared, 32-12
shared connected user scenario, 32-32
specifying types, 32-7

creating databases
using Oracle Managed Files, 15-9

creating sequences, 23-17
creating synonyms, 23-26
creating views, 23-3
credentials, Oracle Scheduler

about, 27-10
granting privileges on, 27-10

Index

Index-6

critical errors
diagnosing, 7-2

CRSCTL utility
Oracle Restart, 2-4

current user database links
advantages and disadvantages, 31-16
cannot access in shared schema, 31-26
definition, 31-14
shared schema, 31-26

CURRVAL pseudo-column, 23-19
restrictions, 23-20

cursors
and closing database links, 33-2

customize package page, accessing, 7-60
customizing an incident package, 7-59, 7-60

D
data

loading using external tables, 19-142
data block corruption

repairing, 24-1
data blocks

shadow lost write protection, 11-44
shared in clusters, 21-1
verifying, 12-18

data dictionary
conflicts with control files, 8-8
purging pending rows from, 35-11, 35-12

data encryption
distributed systems, 31-28

data file headers
when renaming tablespaces, 11-42

data files
adding to a tablespace, 12-5
bringing online and offline, 12-8
checking associated tablespaces, 11-60
copying using database, 12-19
creating, 12-5
creating Oracle Managed Files, 15-7, 15-23
data dictionary views reference, 12-33
database administrators access, 1-21
default directory, 12-5
definition, 12-2
deleting, 11-43
dropping, 12-9, 12-17
dropping Oracle managed, 15-24
file numbers, 12-2
fully specifying file names, 12-5
guidelines for managing, 12-2
headers when renaming tablespaces, 11-42
identifying OS file names, 12-15
location, 12-5
mapping files to physical devices, 12-22
minimum number of, 12-3
MISSING, 8-8

data files (continued)
offline

relocating, 12-13
renaming, 12-13

online, 12-9
relocating, 12-11
renaming, 12-11

relocating, 12-10
renaming, 12-10
reusing, 12-5
shadow lost write protection, 11-44
size of, 12-5
statements to create, 12-5
storing separately from redo log files, 12-5
verifying data blocks, 12-18

data manipulation language, 31-1
statements allowed in distributed transactions,

31-32
Data Recovery Advisor, repairing data corruptions

with, 7-77
Data Repair Advisor, 7-3
database

cloning, 1-9
database administrators, 1-3

authentication, 1-29
DBA role, 1-24
operating system account, 1-21
password files for, 1-30
responsibilities of, 1-3
security and privileges of, 1-21
security officer versus, 5-1
task definitions, 1-5
utilities for, 1-49

Database Configuration Assistant
shared server configuration, 3-14

database destinations, Oracle Scheduler
about, 27-8
creating, 28-10

Database In-Memory
See Oracle Database In-Memory

database jobs, Oracle Scheduler, 27-21
database links, 32-6

advantages, 31-10
auditing, 31-29
authentication, 31-23
authentication without passwords, 31-24
closing, 32-17, 33-2
connected user, 31-14, 31-15, 32-10, 32-32
connections, determining open, 32-20
controlling connections, 33-2
creating, 32-6, 32-31–32-33
creating shared, 32-14
creating, examples, 31-17
creating, scenarios, 32-31
current user, 31-14, 31-16, 32-10
data dictionary USER views, 32-19

Index

Index-7

database links (continued)
definition, 31-8
diagnosing problems with, 40-1
distributed queries, 31-32
distributed transactions, 31-33
dropping, 32-17
enforcing global naming, 32-2
enterprise users and, 31-26
fixed user, 31-14, 31-16, 32-31
global, 31-13
global names, 31-10

loopback, 31-12
global object names, 31-35
handling errors, 33-2
host name, 32-21
incoming database links, 32-22
limiting number of connections, 32-18
listing, 32-19, 35-3, 35-5
loopback, 31-12
managing, 32-16
materialized view sites, 38-5
minimizing network connections, 32-12
name resolution, 31-35
names for, 31-12
private, 31-13
public, 31-13
referential integrity in, 33-2
remote transactions, 31-32, 31-33
resolution, 31-35
restrictions, 31-20
roles on remote database, 31-20
schema objects and, 31-18
SCN activity, 32-23
service names used within link names, 32-11
shared, 31-9, 32-13–32-15
shared SQL, 31-33
synonyms for schema objects, 31-19
tuning distributed queries, 33-3
tuning queries with hints, 33-7
tuning using collocated inline views, 33-4
types of links, 31-13
types of users, 31-14
users, specifying, 32-9
using cost-based optimization, 33-5
viewing, 32-19

database objects
obtaining growth trends for, 18-40

database program unit, definition, 27-1
database resident connection pooling, 3-5

advantages, 3-5
configuration parameters, 3-24
configuring the connection pool, 3-23
data dictionary views reference, 3-27
determining the state of, 3-28
disabling, 3-22
enabling, 3-22

database resident connection pooling (continued)
multi-pool, using, 3-26
triggers, 3-5

Database Resource Manager
active session pool with queuing, 26-19
administering system privilege, 26-31
and operating system control, 26-126
automatic consumer group switching, 26-18
CDB resource plans, 26-21
CDBs, 26-3, 26-56
CREATE_SIMPLE_PLAN procedure, 26-79,

26-82
data dictionary views reference, 26-130
description, 26-2
enabling, 26-39
execution time limit, 26-19
monitoring PDBs, 26-121
PDB resource plans, 26-26
PDBs, 26-56
resource allocation methods, 26-88
resource consumer groups, 26-7, 26-42,

26-86
resource plan directives, 26-7, 26-89, 26-94
resource plans, 26-7, 26-11, 26-30, 26-39,

26-82, 26-96, 26-107
STATISTICS_LEVEL parameter, 26-4
undo pool, 26-19
validating plan schema changes, 26-94

Database Smart Flash Cache, 4-30
flushing, 4-31
tuning, 4-31

database writer process
calculating checksums for data blocks, 12-18

database writer process (DBWn), 3-29
databases

administering, 1-1
administration of distributed, 32-1
planning, 1-7
renaming, 8-6, 8-7

date expressions, 37-9
DB_BLOCK_CHECKING initialization parameter,

24-4, 24-5
DB_BLOCK_CHECKSUM initialization parameter,

12-18
enabling redo block checking with, 9-17

DB_BLOCK_SIZE initialization parameter
and nonstandard block sizes, 11-21

DB_CACHE_SIZE initialization parameter
specifying multiple block sizes, 11-21

DB_CACHE_SIZE parameter, 26-34
DB_CREATE_FILE_DEST initialization parameter

setting, 15-6
DB_CREATE_ONLINE_LOG_DEST_n

initialization parameter
setting, 15-6

Index

Index-8

DB_FILES initialization parameter
determining value for, 12-4

DB_nK_CACHE_SIZE initialization parameter
specifying multiple block sizes, 11-21

DB_PERFORMANCE_PROFILE parameter,
26-61

DB_RECOVERY_FILE_DEST initialization
parameter

setting, 15-6
DB_UNRECOVERABLE_SCN_TRACKING

initialization parameter, 19-47
DBA

See database administrators
DBA role, 1-24
DBA_2PC_NEIGHBORS view, 35-5

using to trace session tree, 35-5
DBA_2PC_PENDING view, 35-3, 35-11, 35-20

using to list in-doubt transactions, 35-3
DBA_DB_LINK view, 32-23
DBA_DB_LINK_SOURCES view, 32-22, 32-23
DBA_DB_LINKS view, 32-19
DBA_EXTERNAL_SCN_ACTIVITY view, 32-23
DBA_REGISTERED_MVIEWS view, 36-31
DBA_TYPE_VERSIONS

replication, 36-23
DBMS_CREDENTIAL package, 3-36
DBMS_FILE_TRANSFER package

copying data files, 12-18
DBMS_JOB

about, A-1
moving jobs to Oracle Scheduler, A-2

DBMS_METADATA package
GET_DDL function, 17-33
using for object definition, 17-33

DBMS_MVIEW package, 36-31
EXPLAIN_MVIEW procedure, 39-5
REFRESH procedure, 39-4
REGISTER_MVIEW procedure, 36-31

DBMS_PROCESS package, 3-31
DBMS_REDEFINITION package

performing online redefinition with, 19-74
DBMS_REFRESH package

MAKE procedure, 39-3
REFRESH procedure, 39-4

DBMS_REPAIR
logical corruptions, 24-6

DBMS_REPAIR package
examples, 24-8
procedures, 24-2
using, 24-3, 24-12

DBMS_RESOURCE_MANAGER package, 26-7,
26-31, 26-48

procedures (table of), 26-31
DBMS_RESOURCE_MANAGER_PRIVS

package, 26-31
procedures (table of), 26-31

DBMS_RESUMABLE package, 18-14
DBMS_SCHEDULER

in-memory trace, 29-18
DBMS_SCHEDULER.GET_FILE, retrieving

external job stdout with, 28-17
DBMS_SERVER_ALERT package

setting alert thresholds, 18-2
DBMS_SPACE package, 18-33

example for unused space, 18-35
FREE_BLOCK procedure, 18-35
SPACE_USAGE procedure, 18-35
UNUSED_SPACE procedure, 18-35

DBMS_SPACE_ADMIN
DROP_EMPTY_SEGMENTS procedure,

18-34
MATERIALIZE_DEFERRED_SEGMENTS

procedure, 19-32
DBMS_SQLDIAG package, 7-47
DBMS_TNS package, 32-21
DBMS_TRANSACTION package

PURGE_LOST_DB_ENTRY procedure,
35-12

DBVERIFY utility, 24-4
DDL log, 7-9
DEALLOCATE UNUSED clause, 18-33
deallocating unused space, 18-16

DBMS_SPACE package, 18-33
DEALLOCATE UNUSED clause, 18-33

debug log, 7-10
declarative referential integrity constraints, 33-2
dedicated server processes, 3-2

trace files for, 6-2
default temporary tablespace

renaming, 11-42
DEFAULT_CONSUMER_GROUP for Database

Resource Manager, 26-54, 26-110
deferred segment creation

in tables, 19-29
indexes, 20-6

deferred segments
materializing, 19-32

defining
chain steps, 28-53

deleting
certificates, 19-183

dependencies
between schema objects, 17-23
displaying, 17-35

destinations, Oracle Scheduler
about, 27-8
creating, 28-10

detached jobs, 27-26
creating, 28-15

DIAGNOSTIC_DEST initialization parameter, 6-2,
7-6, 7-11

Index

Index-9

dictionary-managed tablespaces
migrating SYSTEM to locally managed, 11-58

Digital POLYCENTER Manager on NetView,
31-30

direct path load
fast refresh, 37-8

direct-path INSERT
benefits, 19-43
how it works, 19-44
index maintenance, 19-48
locking considerations, 19-49
logging mode, 19-46
parallel INSERT, 19-45
parallel load compared with parallel INSERT,

19-43
space considerations, 19-48

directory objects
external procedures, 3-36

disabling
chains, 28-61
jobs, 28-23
programs, 28-28
window groups, 28-82
windows, 28-78

disabling recoverer process, 35-22
dispatcher process (Dnnn), 3-29
dispatcher processes, 3-16, 3-19
DISPATCHERS initialization parameter

setting initially, 3-16
distributed applications

distributing data, 33-1
distributed databases

administration overview, 31-21
application development, 31-41, 33-1, 33-10
client/server architectures, 31-6
commit point strength, 34-7
cost-based optimization, 31-44
direct and indirect connections, 31-6
distributed processing, 31-3
distributed queries, 31-32
distributed updates, 31-32
enhancing security, 35-23
exclusively mapped global users, 31-26
forming global database names, 32-2
global object names, 31-20, 32-1
globalization support, 31-45
location transparency, 31-42, 32-24
management tools, 31-30
managing read consistency, 35-23
nodes of, 31-6
overview, 31-2
remote object security, 32-25
remote queries and updates, 31-32
replicated databases and, 31-4
resumable space allocation, 18-9
running in ARCHIVELOG mode, 10-3

distributed databases (continued)
running in NOARCHIVELOG mode, 10-3
scenarios, 32-31
schema object name resolution, 31-37
security, 31-22
shared schema users, 31-26
site autonomy of, 31-22
SQL transparency, 31-43
transaction processing, 31-31
transparency, 31-42

distributed processing
distributed databases, 31-3

distributed queries, 31-32
analyzing tables, 33-6
application development issues, 33-3
cost-based optimization, 33-5
optimizing, 31-44

distributed systems
data encryption, 31-28

distributed transactions, 31-33
case study, 34-18
commit point site, 34-6
commit point strength, 34-7, 35-2
committing, 34-7
database server role, 34-5
defined, 34-1
DML and DDL, 34-2
enhancing security, 35-23
failure during, 35-20
global coordinator, 34-5
lock timeout interval, 35-20
locked resources, 35-20
locks for in-doubt, 35-21
manually overriding in-doubt, 35-7
naming, 35-2, 35-8
session trees, 34-3, 34-5, 34-6, 35-5
setting advice, 35-8
transaction control statements, 34-3
transaction timeouts, 35-20
two-phase commit, 34-18, 35-6
viewing database links, 35-3

distributed updates, 31-32
DML

See data manipulation language
DML error logging, inserting data with, 19-50
DRCP

initialization parameters, 3-21
DRIVING_SITE hint, 33-8
DROP ALL STORAGE clause, 17-9
DROP CLUSTER statement

CASCADE CONSTRAINTS clause, 21-9
dropping cluster, 21-9
dropping cluster index, 21-9
dropping hash cluster, 22-11
INCLUDING TABLES clause, 21-9

Index

Index-10

DROP LOGFILE clause
ALTER DATABASE statement, 9-16

DROP LOGFILE MEMBER clause
ALTER DATABASE statement, 9-16

DROP SYNONYM statement, 23-27
DROP TABLE statement

about, 19-120
CASCADE CONSTRAINTS clause, 19-120
for clustered tables, 21-10

DROP TABLESPACE statement, 11-43
dropping

chain steps, 28-61
chains, 28-60
columns

marking unused, 19-65
remove unused columns, 19-65

columns in compressed tables, 19-66
data files, 12-17
data files, Oracle managed, 15-24
database links, 32-17
job classes, 28-72
jobs, 28-22
programs, 28-28
rules from chains, 28-61
schedules, 28-31
tables

consequences of, 19-120
temp files, 12-17

Oracle managed, 15-24
window groups, 28-81
windows, 28-78

dropping multiple jobs, 28-22
DUMP_ORPHAN_KEYS procedure

DBMS_REPAIR package, 24-2
example, 24-11
recovering data, 24-7

dumps, 7-8
dynamic statistics, 7-42

E
e-mail notifications, Scheduler, 28-91
ECID, 7-5
editions

in CONNECT command, 1-13
managing, 17-28

EMPHASIS resource allocation method, 26-88
empty tables

dropping segments, 18-34
enabling

chains, 28-58
jobs, 28-24
programs, 28-29
window groups, 28-82
windows, 28-79

enabling recoverer process
distributed transactions, 35-22

encryption
column, 19-28
tablespace, 11-11

enterprise users
definition, 31-26

error logging, DML
inserting data with, 19-50

errors
alert log and, 6-2
assigning names with

PRAGMA_EXCEPTION_INIT, 33-10
critical, 7-2
exception handler, 33-10
integrity constrain violation, 33-2
ORA-00028, 3-38
ORA-01173, 8-9
ORA-01176, 8-9
ORA-01177, 8-9
ORA-01215, 8-9
ORA-01216, 8-9
ORA-01591, 35-21
ORA-02049, 35-20
ORA-02050, 35-6
ORA-02051, 35-6
ORA-02054, 35-6
RAISE_APPLICATION_ERROR() procedure,

33-10
remote procedure, 33-10
rollback required, 33-2
trace files and, 6-2
when creating control file, 8-9

event message
passing to event-based job, 28-41

event schedule
altering, 28-41
creating, 28-40

event-based job
altering, 28-40
creating, 28-39
passing event messages to, 28-41

events
using to start Scheduler jobs, 28-36

events (Scheduler)
overview, 28-37

example
setting maximum utilization limit for plans and

subplans, 26-102
examples

managing parallel statement execution using
Resource Manager, 26-104

exception handler, 33-10
exceptions

assigning names with
PRAGMA_EXCEPTION_INIT, 33-10

Index

Index-11

exceptions (continued)
integrity constraints, 17-20
user-defined, 33-10

executing
remote external jobs, 29-5

execution context identifier, 7-5
execution plans

analyzing for distributed queries, 33-8
EXISTS condition

materialized views with subqueries, 36-19
EXPLAIN_MVIEW procedure, 39-5
expressions, calendaring, 28-32
extents

allocating cluster extents, 21-7
allocating for tables, 19-61
data dictionary views for, 18-36
deallocating cluster extents, 21-7
displaying free extents, 18-38

external destinations, Oracle Scheduler
about, 27-8
creating, 28-10

external jobs
retrieving stdout and stderr, 27-23, 27-24,

28-17
external jobs, Oracle Scheduler, 27-22
external procedures

credentials, 3-36
directory objects, 3-36
managing processes for, 3-35

external tables
altering, 19-146
creating, 19-142
defined, 19-140
dropping, 19-157
Hadoop, 19-140
inline, 19-140, 19-149
partition values in file paths, 19-158
partitioned, 19-150

altering, 19-157
creating, 19-153
restrictions, 19-152

privileges required, 19-157
querying, 19-149
uploading data example, 19-142

F
fast recovery area

as archive log destination, 10-8
with Oracle managed files, 15-5

fast refresh, 36-5, 36-21, 37-8
avoiding problems, 39-6
determining possibility of, 39-5
direct path load, 37-8

fault diagnosability infrastructure, 7-2, 7-5

file mapping
examples, 12-31
how it works, 12-23
how to use, 12-27
overview, 12-23
structures, 12-25
views, 12-29

file names
Oracle Managed Files, 15-8

file system
used for Oracle managed files, 15-3

file watchers
about, 28-43
changing detection interval, 28-48
creating, 28-44
managing, 28-48

files
creating Oracle Managed Files, 15-7, 15-23

filter columns, 37-4
finalizing

an incident package, definition, 7-53
FINISH_REDEF_TABLE procedure

dml_lock_timeout parameter, 19-76
FIX_CORRUPT_BLOCKS procedure

DBMS_REPAIR, 24-2
example, 24-11
marking blocks corrupt, 24-7

fixed user database links
advantages and disadvantages, 31-16
creating, 32-10
definition, 31-14

flashback data archive, 38-3
Flashback Drop

about, 19-121
purging recycle bin, 19-124
querying recycle bin, 19-124
recycle bin, 19-122
restoring objects, 19-125

Flashback Table
overview, 19-119

flood-controlled incidents
defined, 7-4
viewing, 7-23

FMON background process, 12-24
FORCE clause

COMMIT statement, 35-9
ROLLBACK statement, 35-9

force full database caching mode, 4-27
disabling, 4-30
enabling, 4-29
prerequisites, 4-29

FORCE LOGGING
precedence of settings, 9-19

FORCE LOGGING clause
CREATE TABLESPACE, 11-21

force refresh, 36-21, 37-9

Index

Index-12

forcing
COMMIT or ROLLBACK, 35-3, 35-7

forcing a log switch, 9-17
using ARCHIVE_LAG_TARGET, 9-11
with the ALTER SYSTEM statement, 9-17

foreign keys
replicated tables, 38-1

forget phase
in two-phase commit, 34-14

free space
listing free extents, 18-38
tablespaces and, 11-61

full transportable export/import, 13-13
function-based indexes, 20-17

G
generic connectivity

definition, 31-6
global coordinators, 34-5

distributed transactions, 34-5
global database consistency

distributed databases and, 34-13
global database links, 31-13

creating, 32-9
global database names

changing the domain, 32-3
database links, 31-10

loopback, 31-12
enforcing for database links, 31-12
enforcing global naming, 32-2
forming distributed database names, 32-2
impact of changing, 31-40
querying, 32-3

global object names
database links, 31-35
distributed databases, 32-1

global temporary tables
assigning to a tablespace, 19-38
creating, 19-36

global users, 32-33
exclusively mapped in distributed systems,

31-26
shared schema in distributed systems, 31-26

GLOBAL_NAME view
using to determine global database name,

32-3
GLOBAL_NAMES initialization parameter

database links, 31-12
globalization support

client/server architectures, 31-45
distributed databases, 31-45

GRANT statement
SYSOPER/SYSDBA privileges, 1-47

granting privileges and roles
SYSOPER/SYSDBA privileges, 1-47

groups, Oracle Scheduler, 27-18
growth trends

of database objects, 18-40
GV$DBLINK view, 32-20

H
Hadoop

external tables, 19-140
hash clusters

advantages and disadvantages, 22-1
altering, 22-11
choosing key, 22-8
contrasted with index clusters, 22-1
controlling space use of, 22-7
creating, 22-4
data dictionary views reference, 22-11
dropping, 22-11
estimating storage, 22-10
examples, 22-9
hash function, 22-1, 22-3, 22-4, 22-8
HASH IS clause, 22-4, 22-8
HASHKEYS clause, 22-4, 22-9
single-table, 22-7
sorted, 22-4

hash functions
for hash cluster, 22-1

health checks, 7-2
Health Monitor, 7-31

checks, 7-32
generating reports, 7-35
viewing reports, 7-35
viewing reports using ADRCI, 7-37

heterogeneous distributed systems
definition, 31-5

Heterogeneous Services
overview, 31-5

hints, 33-7
DRIVING_SITE, 33-8
NO_MERGE, 33-8
using to tune distributed queries, 33-7

horizontal partitioning
See row subsetting

HP OpenView, 31-30
Hybrid Columnar Compression, 19-8

I
IBM NetView/6000, 31-30
IM column store

See In-Memory Column Store
immutable table

retention period, 19-160
immutable tables

about, 19-159
adding user columns, 19-163

Index

Index-13

immutable tables (continued)
altering, 19-163
creating, 19-162
creating row versions, 19-164
deleting rows, 19-164
dropping, 19-165
dropping user columns, 19-163
restrictions, 19-161
row retention period, 19-161

Import
materialized view logs, 37-5

import operations
PDBs, 13-15, 13-26

in-doubt transactions, 34-14
after a system failure, 35-6
automatic resolution, 34-15
deciding how to handle, 35-6
deciding whether to perform manual override,

35-7
defined, 34-12
manual resolution, 34-17
manually committing, 35-9
manually committing, example, 35-13
manually overriding, 35-7, 35-9
manually overriding, scenario, 35-13
manually rolling back, 35-10
overview, 34-14
pending transactions table, 35-20
purging rows from data dictionary, 35-11,

35-12
recoverer process and, 35-22
rolling back, 35-9, 35-10
SCNs and, 34-17
simulating, 35-21
tracing session tree, 35-5
viewing database links, 35-3

In-Memory Column Store, 4-37
in-memory full jobs

example of creating, 28-7
in-memory jobs, 27-28
in-memory runtime, jobs

example of creating, 28-7
Incident Manager, accessing, 7-46
incident package

correlated, 7-55
correlated, creating, editing, and uploading,

7-63
correlated, deleting, 7-64
customizing, 7-59, 7-60
defined, 7-2
viewing, 7-60

incident packages, 7-52
incident packaging service, 7-2
incidents

about, 7-3

incidents (continued)
flood-controlled, 7-4

viewing, 7-23
incidents, SQL, 7-42
incompatibilities

adding job or program, 28-66
dropping, 28-67
job or program, 28-66
removing job or program, 28-67
using, 28-65

index clusters
See clusters

index-organized tables, 19-126
analyzing, 19-137
AS subquery, 19-132
converting to heap, 19-139
creating, 19-128
described, 19-127
INCLUDING clause, 19-131
maintaining, 19-134
ORDER BY clause, using, 19-138
parallel creation, 19-132
prefix compression, 19-133
rebuilding with MOVE clause, 19-134
storing nested tables, 19-130
storing object types, 19-130
threshold value, 19-131

indexes
advanced index compression, 20-20
altering, 20-24
analyzing, 17-4
automatic indexes, 20-31
choosing columns to index, 20-4
cluster indexes, 21-7–21-9
coalescing, 20-10, 20-26
column order for performance, 20-5
creating, 20-12

prerequisites, 20-13
data dictionary views reference, 20-41
deferred segment creation, 20-6
determining unusable status of, 20-26, 20-27
disabling and dropping constraints cost, 20-11
dropping, 20-5, 20-31
estimating size, 20-6
estimating space use, 18-40
function-based, 20-17
guidelines for managing, 20-1
invisible, 20-8, 20-9, 20-22, 20-28
keeping when disabling constraint, 17-18
keeping when dropping constraint, 17-18
limiting for a table, 20-5
materialized view sites, 37-6
monitoring space use of, 20-30
monitoring usage, 20-29
multiple on a set of columns, 20-9
on foreign keys, 38-1

Index

Index-14

indexes (continued)
parallelizing index creation, 20-7
rebuilding, 20-10, 20-26
rebuilt after direct-path INSERT, 19-48
renaming, 20-29
setting storage parameters for, 20-6
shrinking, 18-31
space used by, 20-30
tablespace for, 20-7
temporary segments and, 20-3
unusable, 20-8, 20-21, 20-26
validating structure, 17-5
when to create, 20-4

INITIAL parameter
cannot alter, 19-58

initialization parameters
COMMIT_POINT_STRENGTH, 34-7
CONTROL_FILES, 8-2, 8-4
DB_BLOCK_CHECKING, 24-5
DB_BLOCK_CHECKSUM, 9-17, 12-18
DB_BLOCK_SIZE, 11-21
DB_CACHE_SIZE, 11-21
DB_FILES, 12-4
DB_nK_CACHE_SIZE, 11-21
DISPATCHERS, 3-16
editing, 38-7
GLOBAL_NAMES, 31-12
LOG_ARCHIVE_DEST, 10-7
LOG_ARCHIVE_DEST_n, 10-7, 10-18
LOG_ARCHIVE_DEST_STATE_n, 10-14
LOG_ARCHIVE_MAX_PROCESSES, 10-7
LOG_ARCHIVE_MIN_SUCCEED_DEST,

10-16
LOG_ARCHIVE_TRACE, 10-19
OPEN_LINKS, 32-18
REMOTE_LOGIN_PASSWORDFILE, 1-45
REMOTE_OS_AUTHENT, 31-15
RESOURCE_MANAGER_PLAN, 26-39
shared server and, 3-10
SHARED_SERVERS, 3-12
SORT_AREA_SIZE, 20-3
SQL_TRACE, 6-2

INITRANS parameter
altering, 19-58

inline external tables, 19-140, 19-149
INSERT statement

with DML error logging, 19-50
installing

Release Update Revisions (Revisions), 1-9
Release Updates (Updates), 1-9

instance caging, 26-108
with maximum utilization limit, 26-109

instances
managing CPU for multiple, 26-108

integrity constraints, 17-13
cost of disabling, 20-11

integrity constraints (continued)
cost of dropping, 20-11
creating indexes associated with, 20-15
dropping tablespaces and, 11-43
ORA-02055 constraint violation, 33-2

See also constraints
invisible columns, 19-25
invisible indexes, 20-8, 20-9, 20-28

creating, 20-22
IOT

See index-organized tables
IPS, 7-2

J
job child processes

replication, 38-7
job classes

altering, 28-72
creating, 28-72
dropping, 28-72
managing Scheduler job attributes, resources,

and priorities with, 28-71
overview, 27-12
viewing, 27-12

job coordinator, 27-32
job credentials, 28-9
job destination ID, defined, 28-20, 28-88
job log, Scheduler

viewing, 28-85
job recovery (Scheduler), 29-23
job resources

managing, 28-68
job scheduling

dependency, 27-1
event-based, 27-1
time-based, 27-1

JOB_QUEUE_PROCESSES initialization
parameter, 27-33, 38-7, A-2

jobs, 28-7
adding to an incompatibility, 28-66
altering, 28-19
copying, 28-25
creating, 28-4
creating and managing Scheduler, 28-2
creating for chains, 28-59
credentials, 27-10
database, 27-21
detached, 27-26
disabling, 28-23
dropping, 28-22
dropping an incompatibility, 28-67
e-mail notifications, 28-91
enabling, 28-24
event-based, 28-39
external, 27-22

Index

Index-15

jobs (continued)
in-memory, 27-28
in-memory full, example of creating, 28-7
in-memory runtime, example of creating, 28-7
incompatibilities, 28-66
lightweight, 27-27
lightweight, example of creating, 28-7
monitoring, 28-84
monitoring with events raised by the

Scheduler, 28-88
multiple-destination, 27-29

status of child jobs, 29-14
overview, 27-6
priorities, 28-73
remote database, 27-21
remote external

about, 27-24
removing from an incompatibility, 28-67
resources, 28-68, 28-69
running, 28-20
script jobs, 27-28
starting when a file arrives on a system, 28-42
starting with events raised by your application,

28-38
status, 28-84, 29-32
stopping, 28-20
trace messages, 29-18
troubleshooting remote, 29-22
viewing information on running, 29-13

join views
definition, 23-4
DELETE statements, 23-11
key-preserved tables in, 23-9
modifying, 23-7
rules for modifying, 23-10
updating, 23-7

joins
statement transparency in distributed

databases, 32-29

K
key-preserved tables

in join views, 23-9
in outer joins, 23-13

keys
cluster, 21-1

keystore, 11-11, 19-28

L
large objects, 19-34
lightweight jobs, 27-27

example of creating, 28-7
links

See database links

LIST CHAINED ROWS clause
of ANALYZE statement, 17-7

listeners
removing with srvctl, 2-68

listing database links, 32-19, 35-3, 35-5
loading data

using external tables, 19-142
LOBs, 19-34
local coordinators

distributed transactions, 34-5
local temporary tablespaces, 11-15
locally managed tablespaces, 11-5

automatic segment space management in,
11-7

DBMS_SPACE_ADMIN package, 11-55
detecting and repairing defects, 11-55
migrating SYSTEM from dictionary-managed,

11-58
shrinking, temporary, 11-42
temp files, 11-17
temporary, creating, 11-17

location transparency in distributed databases
creating using synonyms, 32-25
creating using views, 32-24
restrictions, 32-29
using procedures, 32-29

lock timeout interval
distributed transactions, 35-20

locks
in-doubt distributed transactions, 35-20, 35-21
monitoring, 6-10

log
window (Scheduler), 28-74

log archive destination groups, 10-11
log sequence number

control files, 9-4
log switches

description, 9-4
forcing, 9-17
log sequence numbers, 9-4
multiplexed redo log files and, 9-7
privileges, 9-17
using ARCHIVE_LAG_TARGET, 9-11
waiting for archiving to complete, 9-7

log writer process (LGWR), 3-29
multiplexed redo log files and, 9-7
online redo logs available for use, 9-3
trace files and, 9-7
writing to online redo log files, 9-3

LOG_ARCHIVE_DEST initialization parameter
specifying destinations using, 10-7

LOG_ARCHIVE_DEST_n initialization parameter,
10-7

GROUP attribute, 10-11, 10-12
PRIORITY attribute, 10-11, 10-12
REOPEN attribute, 10-18

Index

Index-16

LOG_ARCHIVE_DEST_STATE_n initialization
parameter, 10-14

LOG_ARCHIVE_DUPLEX_DEST initialization
parameter

specifying destinations using, 10-7
LOG_ARCHIVE_MAX_PROCESSES initialization

parameter, 10-7
LOG_ARCHIVE_MIN_SUCCEED_DEST

initialization parameter, 10-16
LOG_ARCHIVE_TRACE initialization parameter,

10-19
LOGGING clause

CREATE TABLESPACE, 11-21
logging mode

direct-path INSERT, 19-46
NOARCHIVELOG mode and, 19-47

logical corruptions from DBMS_REPAIR, 24-6
logical standby, 27-37
logical volume managers

mapping files to physical devices, 12-22,
12-32

used for Oracle Managed Files, 15-3
LOGON trigger

setting resumable mode, 18-12
logs

job, 29-15
window (Scheduler), 28-74, 29-15

LONG columns, 32-29
LONG RAW columns, 32-29
lost write protection

shadow lost write protection, 11-44
LOST WRITE PROTECTION clause, 11-47

M
maintenance tasks, automatic

See automatic maintenance tasks
maintenance window

creating, 25-6
definition, 25-2
MAINTENANCE_WINDOW_GROUP, 25-3
modifying, 25-5
predefined, 25-9
removing, 25-7
Scheduler, 25-3

MAKE procedure, 39-3
managing

indexes automatically, 20-31
sequences, 23-16
space threshold alerts for the undo

tablespace, 14-14
synonyms, 23-26
tables, 19-1
transactions, 30-1
views, 23-1

manual archiving
in ARCHIVELOG mode, 10-6

manual overrides
in-doubt transactions, 35-9

many to many subqueries
materialized views, 36-15

many to one subqueries
materialized views, 36-13

master materialized view sites, 37-1
master materialized views, 37-2

materialized view logs, 37-3
master sites, 36-1

advantages of, 38-4
compared with materialized view sites, 38-3
internal triggers, 37-2
materialized view registration, 36-30
materialized views, 37-1

master tables
materialized view logs, 37-3
materialized views, 37-2
redefining online, 37-3
reorganizing, 37-3

materialized view logs, 36-21, 37-3
column logging, 36-19

many to many subqueries, 36-19
many to one subqueries, 36-19
ON PREBUILT TABLE clause, 36-19
one to many subqueries, 36-19

combination, 37-3
creating, 38-8
filter columns, 37-4
Import, 37-5
join columns, 37-4
logging columns, 37-4
object ID, 37-3
object tables, 38-8
primary key, 37-3
privileges required to create, 38-8
REFs, 36-30
ROWID, 37-3
trigger, 37-2
troubleshooting, 40-4
underlying table for, 37-3

materialized view sites, 36-2
adding

avoiding problems, 39-6
advantages of, 38-4
compared with master sites, 38-3
database links, 38-5

materialized views
BUILD DEFERRED

troubleshooting, 40-4
capabilities, 39-5
collection columns

restrictions, 36-28

Index

Index-17

materialized views (continued)
column objects

column subsetting, 36-24
column subsetting

column objects, 36-24
complex, 36-6, 36-8

value for PCTUSED, 37-8
constraints

deferrable, 37-11
creating schemas for, 38-5
creator, 36-10
data subsetting, 36-3, 36-12
disconnected computing, 36-3
index, 37-6
Logical Partition Change Tracking (LPCT),

37-8
master materialized view sites, 37-1
master materialized views, 37-2
master sites, 37-1
master tables, 37-2
materialized view logs, 36-21, 37-3
monitoring, 39-9
nested tables

restrictions, 36-28
network loads, 36-3
object materialized views, 39-1

OID preservation, 36-26
object tables, 36-25
owner, 36-10
Partition Change Tracking (PCT), 37-8
preparing for, 38-4
primary key, 36-4
privileges, 36-10, 38-7
read-only, 1, 36-2

registration, 36-31
unregistering, 36-31

refresh groups, 36-21, 37-6
size, 37-6

refresher, 36-10
refreshing, 36-21, 37-7

complete, 37-8
failures, 40-3
fast, 36-5, 37-8, 39-5
force, 37-9
initiating, 37-9
interval, 37-9
on-demand, 37-10
retries, 40-3
troubleshooting, 40-2, 40-4

REFs, 36-28
logging, 36-30
scoped, 36-29
unscoped, 36-30
WITH ROWID clause, 36-30

registration, 36-30
reorganizing, 37-3

materialized views (continued)
row subsetting, 36-12
rowid, 36-6
simple, 36-8
simple subquery

AND condition, 36-19
subqueries, 36-13

column logging, 36-19
EXISTS condition, 36-19
joins, 36-19
many to many, 36-15
many to one, 36-13
one to many, 36-14
OR condition, 36-19
restrictions, 36-19

trace file, 40-3
types of, 36-4
unions with subqueries, 36-16

restrictions, 36-20
user-define, 36-22
user-defined data types

ON COMMIT REFRESH clause, 36-22
uses for, 36-3
varrays

r, 36-28
materializing deferred segments, 19-32
MAX_DUMP_FILE_SIZE initialization parameter,

6-4, 7-6
MAX_IOPS parameter, 26-38
MAX_MBPS parameter, 26-38
MAXDATAFILES parameter

changing, 8-6
MAXINSTANCES, 8-6
MAXLOGFILES parameter

changing, 8-6
CREATE DATABASE statement, 9-10

MAXLOGHISTORY parameter
changing, 8-6

MAXLOGMEMBERS parameter
changing, 8-6
CREATE DATABASE statement, 9-10

MAXTRANS parameter
altering, 19-58

media recovery
effects of archiving on, 10-3

MEMOPTIMIZE_POOL_SIZE initialization
parameter, 4-38

Memoptimized Rowstore
about, 4-38
fast ingest, 4-38
fast lookup, 4-38
MEMOPTIMIZE_POOL_SIZE initialization

parameter, 4-38
memory

automatic memory management, 4-5
automatic shared memory management, 4-11

Index

Index-18

memory (continued)
Database Smart Flash Cache, 4-30
managing, 4-2
manual memory management, 4-10
manual shared memory management, 4-19
unified memory management, 4-5

migrated rows
eliminating from table, procedure, 17-7

MINEXTENTS parameter
cannot alter, 19-58

mirrored files
control files, 8-3
online redo log, 9-7
online redo log location, 9-8
online redo log size, 9-9

MISSING data files, 8-8
monitoring

performance, 6-10
running chains, 28-64

MONITORING clause
CREATE TABLE, 19-55

MONITORING USAGE clause
of ALTER INDEX statement, 20-29

Monthly Recommended Patches (MRP), 1-18
moving control files, 8-5
multiple instances, managing CPU for, 26-108
multiple jobs

dropping, 28-22
multiple temporary tablespaces, 11-18, 11-20
multiple-destination jobs, Oracle Scheduler, 27-29

status of child jobs, 29-14
multiplexed control files

importance of, 8-3
multiplexing

archived redo log files, 10-7
control files, 8-3
redo log file groups, 9-6
redo log files, 9-6

N
name resolution in distributed databases

database links, 31-35
impact of global name changes, 31-40
procedures, 31-39
schema objects, 31-20, 31-37
synonyms, 31-39
views, 31-39
when global database name is complete,

31-35
when global database name is partial, 31-35
when no global database name is specified,

31-36
nested tables

materialized views, 36-26
restrictions, 36-28

nested tables (continued)
replication, 36-26

networks
connections, minimizing, 32-12
distributed databases use of, 31-2

NEXTVAL pseudo-column, 23-19
restrictions, 23-20

NO_DATA_FOUND keyword, 33-10
NO_MERGE hint, 33-8
NOARCHIVELOG mode

archiving, 10-2
definition, 10-3
dropping data files, 12-9
LOGGING mode and, 19-47
media failure, 10-3
no hot backups, 10-3
running in, 10-3
switching to, 10-5
taking data files offline in, 12-9

NOLOGGING clause
CREATE TABLESPACE, 11-21

NOLOGGING mode
direct-path INSERT, 19-46

normal transmission mode
definition, 10-15

Novell NetWare Management System, 31-30

O
object identifiers

agreement for replication, 36-23
object materialized views, 39-1

OID preservation, 36-26
object privileges

for external tables, 19-157
object quarantine, 6-12
object tables

materialized view logs, 38-8
materialized views, 36-25

object-relational model
replication, 36-22

objects
See schema objects

OF object_type clause
object materialized views, 39-1

offline tablespaces
priorities, 11-22
taking offline, 11-22

ON COMMIT REFRESH clause
of CREATE MATERIALIZED VIEW, 36-22

ON PREBUILT TABLE clause, 36-19
one to many subqueries

materialized views, 36-14
online redefinition of tables, 19-68, 37-3

examples, 19-98
features of, 19-69

Index

Index-19

online redefinition of tables (continued)
intermediate synchronization, 19-81
monitoring, 19-85
redefining a single partition

rules for, 19-97
redefining partitions, 19-96
refreshing dependent materialized views,

19-81
restarting after failure, 19-88
restrictions, 19-71
rolling back, 19-92
terminate and cleanup, 19-95
Virtual Private Database policies, 19-78
with DBMS_REDEFINITION, 19-74

online redo log files
See online redo logs

online redo logs, 9-1, 9-2
creating groups, 9-12
creating members, 9-13
data dictionary views reference, 9-20
dropping groups, 9-15
dropping members, 9-15
forcing a log switch, 9-17
guidelines for configuring, 9-5
INVALID members, 9-16
location of, 9-8
managing, 9-1
moving files, 9-14
number of files in the, 9-10
optimum configuration for the, 9-10
renaming files, 9-14
renaming members, 9-14
specifying ARCHIVE_LAG_TARGET, 9-11
STALE members, 9-16

See also redo log files]
online segment shrink, 18-31
OPEN_LINKS initialization parameter, 32-18
opening windows, 28-76
operating system authentication, 1-31, 1-33
operating systems

database administrators requirements for,
1-21

renaming and relocating files, 12-13
optimizer statistics

dynamic, 7-42
OR condition

materialized views with subqueries, 36-19
ORA-02055 error

integrity constraint violation, 33-2
ORA-02067 error

rollback required, 33-2
ORA-12838 error, direct path insert, 19-45
Oracle Call Interface

See OCI
Oracle Data Guard

support by the Scheduler, 27-37, 29-29

Oracle Database In-Memory, 4-37
Oracle Database users

types of, 1-3
Oracle home

cloning, 1-9
Oracle managed files, 15-1

naming, 15-8
scenarios for using, 15-25

Oracle Managed Files
adding to an existing database, 15-30
behavior, 15-23
benefits, 15-3
CREATE DATABASE statement, 15-9
creating, 15-7
creating control files, 15-20
creating data files, 15-15
creating online redo log files, 15-22
creating temp files, 15-18
described, 15-2
dropping data file, 15-24
dropping online redo log files, 15-24
dropping temp file, 15-24
initialization parameters, 15-5
renaming, 15-24

Oracle Managed Files feature
See Oracle managed files

Oracle release numbers, 1-18
Oracle Restart

about, 2-2
configuration

adding components to, 2-15
modifying, 2-19
removing components from, 2-16
viewing for a component, 2-18

configuring, 2-11
CRSCTL utility, 2-4
disabling and enabling management for a

component, 2-17
environment variables in, 2-20
patches

installing, 2-29
registering a component with, 2-15
starting, 2-4
starting and stopping components managed

by, 2-29
Oracle home, 2-29

status of components, 2-18
stopping, 2-4

Oracle Scheduler
creating credentials, 28-9

Oracle Scheduler agent
on Windows, 29-11
OracleSchedulerExecutionAgent, 29-11
tasks, 29-10
Windows Service, 29-11

Oracle Scheduler Agent, 29-5

Index

Index-20

Oracle Scheduler agents
registering with databases, 29-12

OracleSchedulerExecutionAgent, 29-11
ORAPWD utility, 1-43
ORGANIZATION EXTERNAL clause

of CREATE TABLE, 19-142
orphan key table

example of building, 24-9
OSBACKUPDBA group, 1-31
OSDBA group, 1-31
OSDGDBA group, 1-31
OSKMDBA group, 1-31
OSOPER group, 1-31
OTHER_GROUPS

for Database Resource Manager, 26-8
OTHER_GROUPS for Database Resource

Manager, 26-89, 26-94, 26-107
outer joins, 23-13

key-preserved tables in, 23-13
overlapping windows, 27-15

P
packages

DBMS_FILE_TRANSFER, 12-18
DBMS_METADATA, 17-33
DBMS_REPAIR, 24-2
DBMS_RESOURCE_MANAGER, 26-7,

26-31, 26-48
DBMS_RESOURCE_MANAGER_PRIVS,

26-31
DBMS_RESUMABLE, 18-14
DBMS_SPACE, 18-33, 18-35
DBMS_STORAGE_MAP, 12-29

packaging and uploading problems, 7-55
parallel execution

managing, 3-32
parallel hints, 3-33
parallelizing index creation, 20-7
resumable space allocation, 18-9

parallel hints, 3-33
parallel statement execution

directive attributes for managing, 26-104
managing using Resource Manager, 26-16

parallelizing table creation, 19-6, 19-40
partitioned tables

moving a partition online, 19-60
redefining partitions online, 19-96

rules for, 19-97
password file

adding users, 1-47
creating, 1-43
ORAPWD utility, 1-43
removing, 1-49
setting REMOTE_LOGIN_PASSWORD, 1-45

password file (continued)
synchronizing administrator passwords with

the data dictionary, 1-45
viewing members, 1-48

password file authentication, 1-34
passwords

case sensitivity of, 1-29, 1-35, 1-36
password file, 1-47
setting REMOTE_LOGIN_PASSWORD

parameter, 1-45
patch sets, 1-18
patches

installing
Oracle Restart, 2-29

pausing chains and chain steps, 28-62
PCTINCREASE parameter, 19-58
PCTUSED parameter

value for complex materialized views, 37-8
PDB performance profiles, 26-60

managing, 26-69
PDB resource plans, 26-26
PDBs

buffer pool size, 26-34
CDB resource plans, 26-21

creating, 26-57, 26-60
directives, 26-24
disabling, 26-76
enabling, 26-64
managing, 26-64
shares, 26-21
utilization limits, 26-22
viewing information about, 26-77

CPU limits, 26-33
Database Resource Manager, 26-56
I/O limits, 26-38
import operations, 13-15, 13-26
PDB resource plans, 26-26

creating, 26-79
disabling, 26-82
enabling, 26-80
modifying, 26-81

PGA size, 26-34
resource management, 26-3
SGA size, 26-34
shared pool size, 26-34

pending area for Database Resource Manager
plans, 26-96

validating plan schema changes, 26-94
pending transaction tables, 35-20
performance

index column order, 20-5
location of data files and, 12-5
monitoring, 6-10

PGA_AGGREGATE_LIMIT parameter, 26-34
PGA_AGGREGATE_TARGET parameter, 26-34

Index

Index-21

PL/SQL
replaced views and program units, 23-5

plan schemas for Database Resource Manager,
26-11, 26-39, 26-111

validating plan changes, 26-94
plans for Database Resource Manager

examples, 26-96
PRAGMA_EXCEPTION_INIT procedure

assigning exception names, 33-10
prefix compression, 19-133, 20-19
prepare phase

abort response, 34-12
in two-phase commit, 34-10
prepared response, 34-11
read-only response, 34-11
recognizing read-only nodes, 34-11
steps, 34-12

prepare/commit phases
effects of failure, 35-20
failures during, 35-6
locked resources, 35-20
pending transaction table, 35-20

prepared response
two-phase commit, 34-11

prespawned processes, 3-30
PRIMARY KEY constraints

associated indexes, 20-15
dropping associated indexes, 20-31
enabling on creation, 20-15
foreign key references when dropped, 17-18
indexes associated with, 20-15
materialized views, 36-4
replicated tables, 38-1

priorities
job, 28-73

priority transactions
acknowledging rollback, 30-4
behavior, 30-7, 30-8
determining system-level wait targets, 30-5
distributed transaction behavior, 30-7
monitoring, 30-6
restrictions, 30-8
setting mode, 30-4
setting system-level wait targets, 30-3
setting transaction priority, 30-2
statistics incremented in ROLLBACK mode,

30-6
statistics incremented in TRACK mode, 30-7
using, 30-2

private database links, 31-13
private synonyms, 23-26
private temporary tables

creating, 19-38
privileges

adding redo log groups, 9-12
altering index, 20-24

privileges (continued)
altering tables, 19-56
closing a database link, 33-2
creating database links, 32-7
creating tables, 19-33
creating tablespaces, 11-4
database administrator, 1-21
drop table, 19-120
dropping indexes, 20-31
dropping online redo log members, 9-16
dropping redo log groups, 9-16
enabling and disabling triggers, 17-11
for external tables, 19-157
forcing a log switch, 9-17
managing with procedures, 32-29
managing with synonyms, 32-27
managing with views, 32-25
manually archiving, 10-6
materialized views, 36-10, 38-7
renaming objects, 17-22
renaming redo log members, 9-14
Scheduler, 29-30
sequences, 23-17, 23-25
setting chain (Scheduler), 29-2
synonyms, 23-26, 23-27
taking tablespaces offline, 11-22
truncating, 17-9
using a view, 23-6
using sequences, 23-18
views, 23-3, 23-5, 23-15

problem activity log
adding comments to, 7-21

problems
about, 7-3
adding comments to activity log, 7-21

problems (critical errors)
packaging and uploading, 7-55

procedures
external, 3-35
location transparency in distributed

databases, 32-27
name resolution in distributed databases,

31-39
remote calls, 31-43

process manager (PMAN), 3-29
process monitor (PMON), 3-29
processes, 3-2

prespawned, 3-30
See also server processes

PRODUCT_COMPONENT_VERSION view, 1-20
programs

altering, 28-28
creating, 28-26
creating and managing, to define Scheduler

jobs, 28-25
disabling, 28-28

Index

Index-22

programs (continued)
dropping, 28-28
enabling, 28-29
overview, 27-4

proxy resident connection pooling, 3-8
per-PDB, 3-8
per-service, 3-8

public database links, 31-13
connected user, 32-32
fixed user, 32-31

public fixed user database links, 32-31
public synonyms, 23-26
PURGE_LOST_DB_ENTRY procedure

DBMS_TRANSACTION package, 35-12

Q
quarantine

objects, 6-12
SQL statements, 7-78

queries
distributed, 31-32
distributed application development issues,

33-3
location transparency and, 31-43
remote, 31-32

quotas
tablespace, 11-3

R
RAISE_APPLICATION_ERROR() procedure,

33-10
read consistency

managing in distributed databases, 35-23
read-o, 36-31
read-only materialized views, 1, 36-2

registration
manual, 36-31

read-only response
two-phase commit, 34-11

read-only tables, 19-66
read-only tablespaces

data file headers when rename, 11-42
delaying opening of data files, 11-28
enabling database for object storage, 11-29
making read-only, 11-25
making writable, 11-27
on object storage

accessing, 11-32
creating default credential, 11-33
deleting, 11-35
moving, 11-33
querying, 11-35
setting ACE, 11-30
setting HTTP proxy, 11-29

read-only tablespaces (continued)
on object storage (continued)
using, 11-29

WORM devices, 11-28
Real Application Clusters

allocating extents for cluster, 21-7
sequence numbers and, 23-17
threads of online redo log, 9-2

rebuilding indexes, 20-26
costs, 20-10
online, 20-26

reclaiming unused space, 18-16
recoverer process, 3-29

disabling, 35-22
distributed transaction recovery, 35-22
enabling, 35-22
pending transaction table, 35-22

recovering
Scheduler jobs, 29-23

recovery
creating new control files, 8-6

recycle bin
about, 19-122
purging, 19-124
renamed objects, 19-122
restoring objects from, 19-125
viewing, 19-124

REDEF_TABLE procedure, 19-73
example, 19-98

redefining tables
online

replication, 37-3
redefining tables online

See online redefinition of tables, 19-68
redo log files, 9-1, 9-2

active (current), 9-4
archiving, 10-2
available for use, 9-3
block size, setting, 9-9
circular use of, 9-3
clearing, 9-18
contents of, 9-2
creating as Oracle Managed Files, 15-22
creating as Oracle Managed Files, example,

15-25
creating groups, 9-12
creating members, 9-12, 9-13
distributed transaction information in, 9-3
dropping groups, 9-15
dropping members, 9-15
group members, 9-6
groups, defined, 9-6
how many in redo log, 9-10
inactive, 9-4
instance recovery use of, 9-2
LGWR and the, 9-3

Index

Index-23

redo log files (continued)
log switches, 9-4
maximum number of members, 9-10
members, 9-6
mirrored, log switches and, 9-7
multiplexed, 9-6, 9-7
online, defined, 9-2
planning the, 9-5
redo entries, 9-2
requirements, 9-8
specifying at database creation, 15-11
storing separately from data files, 12-5
threads, 9-2
valid and invalid configurations, 9-8
verifying blocks, 9-17

See also online redo logs
redo logs

See online redo log
redo records, 9-2

LOGGING and NOLOGGING, 11-21
referential integrity

distributed database application development,
33-2

refresh
automatic, 37-9
complete, 37-8
failures, 40-3
fast, 37-8

determining possibility of, 39-5
force, 37-9
group, 37-9
initiating, 37-9
interval, 37-9
manual, 37-10
materialized views, 36-21, 37-7
monitoring, 39-12
on-demand, 37-10
retries, 40-3
rollback segments

troubleshooting, 40-4
scheduling, 37-9

troubleshooting, 40-4
troubleshooting

ORA-12004 error, 40-4
ORA-942 error, 40-4

truncating materialized views
troubleshooting, 40-4

refresh groups, 36-2, 36-21, 37-6
monitoring, 39-11
size considerations, 37-6
troubleshooting, 40-2

REFRESH procedure, 37-10, 39-4
REFRESH_ALL_MVIEWS procedure, 37-10, 39-4
REFRESH_DEPENDENT procedure, 37-10, 39-4
REFs

materialized views, 36-28

REFs (continued)
replication, 36-28

REGISTER_MVIEW procedure, 36-31
release numbers, 1-18
release update (Update, RU), 1-18
Release Update Revisions (Revisions)

installing, 1-9
Release Updates (Updates)

installing, 1-9
releases, 1-18

checking the Oracle Database release
number, 1-20

definition, 1-18
relocating control files, 8-5
remote data

querying, 32-29
updating, 32-29

remote database jobs, 27-21
Scheduler agent setup, 29-9

remote external jobs
about, 27-24
executing, 29-5
Scheduler agent setup, 29-9

remote procedure calls, 31-43
distributed databases and, 31-43

remote queries
distributed databases and, 31-32

remote transactions, 31-33
defined, 31-33

REMOTE_LOGIN_PASSWORDFILE initialization
parameter, 1-45

REMOTE_OS_AUTHENT initialization parameter
connected user database links, 31-15

RENAME statement, 17-22
renaming control files, 8-5
renaming files

Oracle Managed Files, 15-24
renaming indexes, 20-29
REOPEN attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 10-18

repair table
example of building, 24-9

repairing data block corruption
DBMS_REPAIR, 24-1

repeat interval, schedule, 28-32
replication

filter columns, 37-4
job child processes, 38-7
master sites

advantages, 38-4
materialized view logs, 36-21
materialized view sites

advantages, 38-4
monitoring

materialized view environments, 39-9

Index

Index-24

replication (continued)
read-only materialized views, 36-2
refresh, 36-21
refresh groups, 36-2, 36-21
sites, 36-1

choosing, 38-3
tables, 38-1
unsupported data types

BFILE, 38-1
LONG, 38-1

unsupported table types, 38-3
user-defined data types, 36-22
virtual private database (VPD), 38-6

replication catalog
DBA_REGISTERED_MVIEWS, 36-31
USER_REFRESH, 40-3
USER_REFRESH_CHILDREN, 40-3

replication objects
at materialized view sites

problems creating, 40-2
indexes

on foreign keys, 38-1
tables, 38-1

foreign keys, 38-1
primary keys, 38-1

reporting problems to Oracle Support, 7-51
RESOLVE_TNSNAME function, 32-21
resource allocation methods

active session pool, 26-88
ACTIVE_SESS_POOL_MTH, 26-88
CPU, 26-10
CPU resource, 26-88
EMPHASIS, 26-88
limit on degree of parallelism, 26-88
MAX_UTILIZATION_METHOD, 26-12
PARALLEL_DEGREE_LIMIT_MTH, 26-88
PARALLEL_DEGREE_LIMIT_P1, 26-13
PARALLEL_QUEUE_TIMEOUT, 26-16
PARALLEL_STMT_CRITICAL, 26-14
PGA, 26-17
QUEUEING_MTH, 26-88
queuing resource allocation method, 26-88

resource consumer groups, 26-7
changing, 26-48
creating, 26-86
DEFAULT_CONSUMER_GROUP, 26-54,

26-110
deleting, 26-110
granting the switch privilege, 26-54
managing, 26-42, 26-49
OTHER_GROUPS, 26-8, 26-89, 26-94,

26-107
parameters, 26-86
revoking the switch privilege, 26-55
setting initial, 26-43
switching a session, 26-48

resource consumer groups (continued)
switching sessions for a user, 26-49
SYS_GROUP, 26-107
updating, 26-110

Resource Manager
AUTO_TASK_CONSUMER_GROUP

consumer group, 25-7
canceling long-running SQL statements,

26-18
managing parallel statement execution, 26-16
quarantine SQL statements, 26-18

resource plan directives, 26-7, 26-94
deleting, 26-113
for managing parallel statement execution,

26-104
specifying, 26-89
updating, 26-112

resource plans, 26-7, 26-30
CDB, 26-21
creating, 26-82
DEFAULT_MAINTENANCE_PLAN, 25-8
DELETE_PLAN_CASCADE, 26-111
deleting, 26-111
examples, 26-96
parameters, 26-88
PDB, 26-26
plan schemas, 26-11, 26-39, 26-111
SYSTEM_PLAN, 26-107
top plan, 26-39, 26-94
updating, 26-111
validating, 26-94

RESOURCE_MANAGER_CPU_SCOPE
initialization parameter, 26-131

RESOURCE_MANAGER_PLAN initialization
parameter, 26-39

resources (job)
altering, 28-69
creating, 28-68
managing, 28-68
specifying for jobs, 28-69

result sets, SQL, 19-35
resumable space allocation

correctable errors, 18-8
detecting suspended statements, 18-12
disabling, 18-10
distributed databases, 18-9
enabling, 18-10
example, 18-15
how resumable statements work, 18-7
naming statements, 18-12
parallel execution and, 18-9
resumable operations, 18-8
setting as default for session, 18-12
timeout interval, 18-11, 18-13

RESUMABLE_TIMEOUT initialization parameter
setting, 18-10

Index

Index-25

retention guarantee (for undo), 14-6
reversing table changes, 19-119
roles

DBA role, 1-24
obtained through database links, 31-20

ROLLBACK statement
FORCE clause, 35-9, 35-10
forcing, 35-7

rollbacks
ORA-02, 33-2

rolling upgrade, 27-37
row subsetting, 36-12

materialized views, 36-12
rowids

rowid materialized views, 36-6
rows

listing chained or migrated, 17-6
rsmgr:io rate limit, 26-38
rules

adding to a chain, 28-55
dropping from chains, 28-61

running
chains, 28-60
jobs, 28-20

S
savepoints

in-doubt transactions, 35-9, 35-10
scalable sequences, 23-23
schagent utility, 29-11
Scheduler

administering, 29-1
architecture, 27-32
closing a PDB, 27-37
configuring, 29-2
credentials for jobs, 27-10
data dictionary views reference, 29-32
e-mail notifications, 28-91
examples of using, 29-24
import and export, 29-20
maintenance window, 25-3
monitoring and managing, 29-13
monitoring jobs, 28-84
objects, 27-3
overview, 27-1
security, 29-20
support for Oracle Data Guard, 27-37, 29-29
troubleshooting, 29-21

job does not run, 29-21
using in RAC, 27-35

Scheduler agent, 29-5
configuration, 29-9
installation, 29-9
setup, 29-9

Scheduler chain condition syntax, 28-55

Scheduler job credentials
specifying, 28-9

Scheduler objects, naming, 28-2
Scheduler privileges reference, 29-30
SCHEDULER_BATCH_ERRORS view, 28-22
schedules

altering, 28-31
creating, 28-30
creating and managing, to define Scheduler

jobs, 28-29
dropping, 28-31
overview, 27-5

schema objects, 17-26
analyzing, 17-4
creating multiple objects, 17-2
data dictionary views reference, 17-34
defining using DBMS_METADATA package,

17-33
dependencies between, 17-23
distributed database naming conventions for,

31-20
global names, 31-20
listing by type, 17-34
name resolution in distributed databases,

31-20, 31-37
name resolution in SQL statements, 17-26
privileges to rename, 17-22
referencing with synonyms, 32-26
renaming, 17-22
validating structure, 17-5
viewing information, 17-33, 18-35

schema objects space usage
data dictionary views reference, 18-36

schemas
creating for materialized views, 38-5

SCN
See system change number

script jobs, 27-28
security

accessing a database, 5-1
administrator of, 5-1
centralized user management in distributed

databases, 31-25
database security, 5-1
distributed databases, 31-22
establishing policies, 5-1
privileges, 5-1
remote objects, 32-25
Scheduler, 29-20
using synonyms, 32-27

Segment Advisor, 18-18
configuring Scheduler job, 18-29
invoking with Oracle Enterprise Manager

Cloud Control, 18-20
invoking with PL/SQL, 18-21
running manually, 18-19

Index

Index-26

Segment Advisor (continued)
using, 18-18
viewing results, 18-24
views, 18-30

SEGMENT_FIX_STATUS procedure
DBMS_REPAIR, 24-2

segments
available space, 18-35
data dictionary views for, 18-36
deallocating unused space, 18-16
displaying information on, 18-37
dropping for empty tables, 18-34
shrinking, 18-31

SELECT statement
FOR UPDATE clause and location

transparency, 32-29
SEQUENCE_CACHE_ENTRIES parameter,

23-22
sequences

accessing, 23-18
altering, 23-17
caching sequence numbers, 23-21
creating, 23-17, 23-22
CURRVAL, 23-20
data dictionary views reference, 23-28
dropping, 23-25
managing, 23-16
NEXTVAL, 23-19
Oracle Real Applications Clusters and, 23-17
scalable, 23-23

SERVER parameter
net service name, 32-14

server processes, 3-2
archiver (ARCn), 3-29
background, 3-29
checkpoint (CKPT), 3-29
database writer (DBWn), 3-29
dedicated, 3-2
dispatcher (Dnnn), 3-29
dispatchers, 3-16
log writer (LGWR), 3-29
monitoring locks, 6-10
process monitor (PMON), 3-29
recoverer (RECO), 3-29
shared server, 3-3
system monitor (SMON), 3-29
trace files for, 6-2

server-generated alerts, 6-6
servers

role in two-phase commit, 34-5
service names

database links and, 32-11
services

creating with SRVCTL and Oracle Restart,
2-22

session trees for distributed transactions
clients, 34-4
commit point site, 34-6, 34-7
database servers, 34-5
definition, 34-3
global coordinators, 34-5
local coordinators, 34-5
tracing transactions, 35-5

sessions
acknowledge priority transactions rollback,

30-4
active, 3-38
inactive, 3-39
priority transactions, 30-1
setting advice for transactions, 35-8
setting priority transaction mode, 30-4
setting system-level wait targets, 30-3
setting transaction priority, 30-2
terminating, 3-37

SGA
See system global area

SGA_MIN_SIZE parameter, 26-34
SGA_TARGET parameter, 26-34
shadow lost write protection, 11-44

creating tablespaces for, 11-47
disabling, 11-50
dropping a shadow tablespace, 11-52
enabling for a data file, 11-49
enabling for a database, 11-47
enabling for a PDB, 11-47
enabling for a tablespace, 11-49
removing, 11-51
suspending, 11-51

shared database links
configuring, 32-14
creating, 32-14
dedicated servers, creating links to, 32-14
determining whether to use, 32-13
example, 31-18
shared servers, creating links to, 32-15

shared server, 3-3
configuring dispatchers, 3-14
data dictionary views reference, 3-19
disabling, 3-12, 3-19
initialization parameters, 3-10
interpreting trace output, 6-6
setting minimum number of servers, 3-12
trace files for processes, 6-2

shared SQL
for remote and distributed statements, 31-33

shared temporary tablespaces, 11-15
SHARED_POOL_SIZE parameter, 26-34
shrinking segments online, 18-31
simple materialized views, 36-8

Index

Index-27

Simple Network Management Protocol (SNMP)
support

database management, 31-30
single-file tablespaces

description, 11-8
single-table hash clusters, 22-7
site autonomy

distributed databases, 31-22
SKIP_CORRUPT_BLOCKS procedure, 24-7

DBMS_REPAIR, 24-2
example, 24-12

skipping chain steps, 28-63
SORT_AREA_SIZE initialization parameter

index creation and, 20-3
space

deallocating unused, 18-33
reclaiming unused, 18-16

space allocation
resumable, 18-6

space management
data types, space requirements, 18-35
deallocating unused space, 18-16
Segment Advisor, 18-16
shrink segment, 18-16

space usage alerts for tablespaces, 18-3
SQL

result sets, 19-35
submitting, 1-10
test cases, 7-41

SQL failure
repairing with SQL Repair Advisor, 7-70

SQL incidents, 7-42
SQL patch

disabling using Cloud Control, 7-74
disabling using DBMS_SQLDIAG package

subprogram, 7-75
removing using Cloud Control, 7-74
removing using DBMS_SQLDIAG package

subprogram, 7-75
viewing using Cloud Control, 7-74

SQL Repair Advisor
about, 7-71
exporting and importing a patch using the

DBMS_SQLDIAG package
subprograms, 7-76

repairing SQL failure with, 7-70
running using Cloud Control, 7-71
running using the DBMS_SQLDIAG package

subprograms, 7-72
SQL statements

about quarantine, 7-79
cancelling, 3-40
distributed databases and, 31-32
quarantine, 7-78

SQL test case builder, 7-3

SQL Test Case Builder, 7-42
accessing the Incident Manager, 7-46
accessing the Support Workbench, 7-47
command-line interface, 7-47
gathering diagnostic data, 7-41
graphical interface, 7-46
key concepts, 7-42
output, 7-44
running, 7-48
SQL incidents, 7-42
user interfaces, 7-46
what it captures, 7-42

SQL_TRACE initialization parameter
trace files and, 6-2

SQL*Loader
about, 1-49, 19-41

SQL*Plus, 1-10
about, 1-11
connecting with, 1-12

SRVCTL
add asm command, 2-36
add command, usage description, 2-35
add database command, 2-38
add listener command, 2-40
add ons command, 2-40
adding a disk group with, 2-36
case sensitivity, 2-33, 2-92
case sensitivity of commands, 2-34, 2-92
command reference, 2-33
commands

downgrade database, 2-52
upgrade database, 2-91

commands, case sensitivity, 2-33, 2-92
component names, 2-34
config asm command, 2-45
config command, usage description, 2-45
config database command, 2-46
config listener command, 2-47
config ons command, 2-47
config service command, 2-48
creating and deleting databases services with,

2-22
disable asm command, 2-49
disable command, usage description, 2-48
disable database command, 2-49
disable diskgroup command, 2-50
disable listener command, 2-50
disable ons command, 2-51
disable service command, 2-51
enable asm command, 2-54
enable command, usage description, 2-53
enable database command, 2-54
enable diskgroup command, 2-54
enable listener command, 2-55
enable ons command, 2-55
enable service command, 2-56

Index

Index-28

SRVCTL (continued)
getenv asm command, 2-57
getenv command, usage description, 2-56
getenv database command, 2-57
getenv listener command, 2-58
help for, 2-14
modify asm command, 2-59
modify command, usage description, 2-58
modify database command, 2-60
modify listener command, 2-61
modify ons command, 2-61
modify service command, 2-62
preparing to run, 2-13
reference, 2-33
remove asm command, 2-66
remove command, usage description, 2-66
remove database command, 2-67
remove diskgroup command, 2-68
remove listener command, 2-68
remove ons command, 2-69
remove service command, 2-69
setenv asm command, 2-71
setenv command, usage description, 2-70
setenv database command, 2-72
setenv listener command, 2-73
start asm command, 2-73
start command, usage description, 2-73
start database command, 2-74
start diskgroup command, 2-75
start home command, 2-75
start listener command, 2-76
start ons command, 2-76
start service command, 2-77
status asm command, 2-78
status command, usage description, 2-78
status database command, 2-79
status diskgroup command, 2-79
status home command, 2-80
status listener command, 2-80
status ons command, 2-81
status service command, 2-81
stop asm command, 2-83
stop command, usage description, 2-82
stop database command, 2-84
stop diskgroup command, 2-84
stop home command, 2-85
stop listener command, 2-86
stop ons command, 2-86
stop service command, 2-87
unsetenv asm command, 2-89
unsetenv command, usage description, 2-88
unsetenv database command, 2-90
unsetenv listener command, 2-90

STALE status
of redo log members, 9-16

stalled chain (Scheduler), 28-65

standby transmission mode
definition of, 10-15

statement transparency in distributed database
managing, 32-29

statistics
automatically collecting for tables, 19-55

STATISTICS_LEVEL initialization parameter
Database Resource Manager, 26-4

statistics, optimizer
dynamic, 7-42

stderr
for local external jobs, 27-23, 27-24

retrieving, 27-23, 27-24
stdout

for local external jobs, 27-23, 27-24
retrieving, 27-23, 27-24, 28-17

steps, chain
dropping, 28-61

stopping
chain steps, 28-62
chains, 28-62
jobs, 28-20

storage parameters
INITIAL, 19-58
INITRANS, altering, 19-58
MAXTRANS, altering, 19-58
MINEXTENTS, 19-58
PCTINCREASE, 19-58

storage subsystems
mapping files to physical devices, 12-22,

12-32
stored procedures

managing privileges, 32-29
remote object security, 32-29

submitting SQL and commands to the database,
1-10

subqueries
in remote updates, 31-32
in unions

materialized views, 36-16
materialized views, 36-13, 36-19

AND condition, 36-19
column logging, 36-19
EXISTS condition, 36-19
joins, 36-19
many to many, 36-15
many to one, 36-13
one to many, 36-14
restrictions, 36-19

statement transparency in distributed
databases, 32-29

subsetting
materialized views, 36-12

column objects, 36-24
SunSoft SunNet Manager, 31-30

Index

Index-29

Support Workbench, 7-10
for Oracle ASM instance, 7-24
viewing problems with, 7-23

Support Workbench, accessing, 7-47
SWITCH LOGFILE clause

ALTER SYSTEM statement, 9-17
synonyms

creating, 23-26, 32-26
data dictionary views reference, 23-28
definition and creation, 32-26
displaying dependencies of, 17-35
dropping, 23-27
examples, 32-26
location transparency in distributed

databases, 32-25
managing, 23-26, 23-27
managing privileges in remote database,

32-27
name resolution in distributed databases,

31-39
private, 23-26
public, 23-26
remote object security, 32-27

SYS account, 1-21
objects owned, 1-23

SYS_GROUP for Database Resource Manager,
26-107

SYSAUX tablespace, 11-4
cannot rename, 11-42
monitoring occupants, 11-53
moving occupants, 11-53

SYSBACKUP account, 1-21, 1-23
connecting as, 1-25

SYSDBA account
connecting as, 1-25

SYSDBA administrative privilege
adding users to the password file, 1-47
determining who has privileges, 1-48
granting and revoking, 1-47

SYSDG account, 1-21, 1-23
connecting as, 1-25

SYSKM account, 1-21, 1-23
connecting as, 1-25

SYSOPER account
connecting as, 1-25

SYSOPER administrative privilege
adding users to the password file, 1-47
determining who has privileges, 1-48
granting and revoking, 1-47

SYSRAC account, 1-23
connecting as, 1-25

SYSTEM account, 1-21
objects owned, 1-23

system change numbers
coordination in a distributed database system,

34-13

system change numbers (continued)
in-doubt transactions, 35-10
using V$DATAFILE to view information about,

12-34
when assigned, 9-2

system global area, 23-21
holds sequence number cache, 23-21

system monitor process (SMON), 3-29
system privileges

ADMINISTER_RESOURCE_MANAGER,
26-31

for external tables, 19-157
SYSTEM tablespace

cannot rename, 11-42
restrictions on taking offline, 12-8
when created, 11-4

SYSTEM_PLAN for Database Resource
Manager, 26-107

T
table compression, 38-3
table size

estimating, 18-39
tables

about, 19-2
adding columns, 19-62
allocating extents, 19-61
altering, 19-57
altering physical attributes, 19-58
analyzing, 17-4
attribute-clustered, 19-23
bulk updates, 19-54
compressed, 19-8
creating, 19-33
data dictionary views reference, 19-198
deferred segment creation, 19-29
designing before creating, 19-5
dropping, 19-120
dropping columns, 19-63
estimating size, 19-32
estimating space use, 18-39
external, 19-139
Flashback Drop, 19-121
Flashback Table, 19-119
global temporary, 19-36
guidelines for managing, 19-3
hash clustered

See hash clusters, 22-4
hybrid partitioned, 19-158
increasing column length, 19-61
index-organized, 19-126
invisible columns, 19-25
key-preserved, 23-9
limiting indexes on, 20-5
managing, 19-1

Index

Index-30

tables (continued)
modifying column definition, 19-61
moving, 19-58
parallelizing creation, 19-6, 19-40
partitioned, 19-139
partitions

moving online, 19-60
private temporary, 19-38
read-only, 19-66
redefining online, 19-68

replication, 37-3
renaming columns, 19-63
replicating, 38-1
researching and reversing erroneous changes

to, 19-119
restrictions when creating, 19-32
setting storage parameters, 19-32
shrinking, 18-31
specifying location, 19-6
statistics collection, automatic, 19-55
temporary, 19-35
truncating, 17-8
types, 19-5
unrecoverable (NOLOGGING), 19-7
validating structure, 17-5
zone maps, 19-24

tablespace set, 13-30
tablespaces

adding data files, 12-5
assigning user quotas, 11-3
autoextending, 11-36
automatic segment space management, 11-7
bigfile, 11-8
checking default storage parameters, 11-60
compressed, 11-10
containing XMLTypes, 13-10
data dictionary views reference, 11-59
DBMS_SPACE_ADMIN package, 11-55
detecting and repairing defects, 11-55
diagnosing and repairing problems in locally

managed, 11-55
dictionary managed, 11-10
dropping, 11-43
encrypted, 11-11

creating, 11-13
guidelines for managing, 11-2
increasing size, 11-36
listing files of, 11-60
listing free space in, 11-61
locally managed, 11-5
locally managed temporary, 11-17
location, 12-5
migrating SYSTEM to locally managed, 11-58
on a WORM device, 11-28
Oracle Managed Files, managing, 15-25,

15-29

tablespaces (continued)
quotas, assigning, 11-3
read-only, 11-25

mounting, 13-7
renaming, 11-35, 11-42
shrinking, 11-37
single-file, 11-8, 11-37
space usage alerts, 18-3
specifying nonstandard block sizes, 11-21
SYSAUX, 11-4, 11-42
SYSAUX, managing, 11-52
SYSTEM, 11-4, 11-5
taking offline normal, 11-22
taking offline temporarily, 11-22
temp files in locally managed, 11-17
temporary, 11-15, 11-20
temporary bigfile, 11-18
temporary for creating large indexes, 20-16
undo, 14-2
using multiple, 11-2
using Oracle Managed Files, 15-15

temp files, 11-17
creating as Oracle managed, 15-18
dropping, 12-17
dropping Oracle managed, 15-24

TEMP_UNDO_ENABLED parameter, 14-15
temporary segments

index creation and, 20-3
temporary tables, 38-3

global, 19-35
private, 19-35

temporary tablespace, default
specifying at database creation, 15-13

temporary tablespaces
altering, 11-41
bigfile, 11-18
creating, 11-17
groups, 11-18
renaming default, 11-42
shrinking, locally managed, 11-42

temporary undo, 14-15
terminating user sessions

active sessions, 3-38
identifying sessions, 3-38
inactive session, example, 3-39
inactive sessions, 3-39

test case
builder, SQL, 7-3

threads
online redo log, 9-2

threshold based alerts
managing with Oracle Enterprise Manager

Cloud Control, 6-7
threshold-based alerts

server-generated, 6-6

Index

Index-31

thresholds
setting alert, 18-3

trace file segmentation, 6-4
trace files, 7-8

location of, 6-2
log writer process and, 9-7
materialized views, 40-3
using, 6-2
when written, 6-5

trace files, finding, 7-40
traces, 7-8
tracing

archivelog process, 10-19
transaction control statements

distributed transactions and, 34-3
transaction failures

simulating, 35-21
transaction management

overview, 34-9
transaction processing

distributed systems, 31-31
transactions

closing database links, 33-2
distributed and two-phase commit, 31-34
in-doubt, 34-12, 34-14, 34-17, 35-6
managing, 30-1
naming distributed, 35-2, 35-8
remote, 31-33

transmitting archived redo log files, 10-14
Transparent Data Encryption

columns, 19-28
keystore, 11-11, 19-28
tablespaces, 11-11

transporting data
across platforms, 13-8
character sets, 13-10
compatibility considerations, 13-12
full transportable export/import, 13-13

limitations, 13-14
when to use, 13-2

limitations, 13-10
national character sets, 13-10
PDBs, 13-15, 13-26
transferring data files, 13-53
transportable tables, 13-36

limitations, 13-37
transportable tablespaces, 13-26

from backup, 13-13, 13-27
limitations, 13-27
tablespace set, 13-30
transportable set, 13-28
when to use, 13-2
wizard in Oracle Enterprise Manager

Cloud Control, 13-27
XMLTypes in, 13-10

triggers
disabling, 17-12
enabling, 17-12
for materialized view log, 37-2

True Cache
configuring and using, 4-40

TRUNCATE statement
DROP ALL STORAGE, 17-9
DROP STORAGE, 17-9
DROP STORAGE clause, 17-9
REUSE STORAGE, 17-9
REUSE STORAGE clause, 17-9

tuning
analyzing tables, 33-6
cost-based optimization, 33-5

two-phase commit
case study, 34-18
commit phase, 34-12, 34-21
described, 31-34
discovering problems with, 35-6
distributed transactions, 34-9
example, 34-18
forget phase, 34-14
in-doubt transactions, 34-14, 34-17
phases, 34-9
prepare phase, 34-10, 34-12
recognizing read-only nodes, 34-11
specifying commit point strength, 35-2
steps in commit phase, 34-13
tracing session tree in distributed

transactions, 35-5
viewing database links, 35-3

U
Undo Advisor, 14-8
undo management

automatic, 14-2
described, 14-2
initialization parameters for, 14-3
temporary undo, 14-15

undo retention
automatic tuning of, 14-5
explained, 14-4
guaranteeing, 14-6
setting, 14-8

undo segments
in-doubt distributed transactions, 35-7

undo space
data dictionary views reference, 14-17

undo space management
automatic undo management mode, 14-2

Undo tablespace
specifying at database creation, 15-12

undo tablespaces
altering, 14-12

Index

Index-32

undo tablespaces (continued)
creating, 14-11
data dictionary views reference, 14-17
dropping, 14-13
managing, 14-10
managing space threshold alerts, 14-14
monitoring, 14-17
PENDING OFFLINE status, 14-14
renaming, 11-42
sizing a fixed-size, 14-8
switching, 14-13
user quotas, 14-14

unions
with subqueries

materialized views, 36-16
restrictions for materialized views, 36-20

UNIQUE key constraints
associated indexes, 20-15
dropping associated indexes, 20-31
enabling on creation, 20-15
foreign key references when dropped, 17-18
indexes associated with, 20-15

UNRECOVERABLE DATAFILE clause
ALTER DATABASE statement, 9-18

UNREGISTER_MVIEW procedure, 36-31
unusable indexes, 20-8
updates

bulk, 19-54
location transparency and, 31-43

us, 36-24
user accounts

predefined, 5-3
USER_DB_LINKS view, 32-19
USER_DUMP_DEST initialization parameter, 7-6
USER_REFRESH view, 40-3
USER_REFRESH_CHILDREN view, 40-3
user-defined data types

materialized views, 36-22
collections, 36-26
object tables, 36-25
ON COMMIT REFRESH clause, 36-22
REFs, 36-28
type agreement, 36-23

replication, 36-22
collections, 36-26
column objects, 36-22
REFs, 36-28
type agreement, 36-23

users
assigning tablespace quotas, 11-3
session, terminating, 3-39
SYS, 1-21
SYSBACKUP, 1-21
SYSDG, 1-21
SYSKM, 1-21
SYSTEM, 1-21

utilities
for the database administrator, 1-49
SQL*Loader, 1-49, 19-41

utilization limits for PDBs, 26-22
UTLCHAIN.SQL script

listing chained rows, 17-7
UTLCHN1.SQL script

listing chained rows, 17-7
UTLLOCKT.SQL script, 6-10

V
V$ARCHIVE view, 10-19
V$DATABASE view, 10-20
V$DBLINK view, 32-20
V$DIAG_CRITICAL_ERROR view, 7-14
V$DIAG_INFO view, 7-14
V$DISPATCHER view

monitoring shared server dispatchers, 3-17
V$DISPATCHER_RATE view

monitoring shared server dispatchers, 3-17
V$ENCRYPTED_TABLESPACES view, 11-14,

11-59
V$LOG view, 9-20, 10-19

displaying archiving status, 10-19
V$LOG_HISTORY view, 9-20
V$LOGFILE view, 9-20

log file status, 9-16
V$PWFILE_USERS view, 1-48
V$QUARANTINE view, 6-13
V$QUEUE view

monitoring shared server dispatchers, 3-17
V$RSRCPDBMETRIC view, 26-121

CPU usage, 26-123
I/O generated, 26-125
memory usage, 26-126
parallel execution, 26-124

V$RSRCPDBMETRIC_HISTORY view, 26-121
V$SESSION view, 3-39
V$THREAD view, 9-20
V$VERSION view, 1-20
VALIDATE STRUCTURE clause

of ANALYZE statement, 17-5
VALIDATE STRUCTURE ONLINE clause

of ANALYZE statement, 17-5
varrays

materialized, 36-26
materialized views

restrictions, 36-28
replication, 36-26

verifying blocks
redo log files, 9-17

viewing
alerts, 18-5
incident package details, 7-60

Index

Index-33

views
creating, 23-3
creating with errors, 23-5
data dictionary

for archived redo log files, 10-20
for clusters, 21-11
for control files, 8-11
for data files, 12-33
for database resident connection pooling,

3-27
for Database Resource Manager, 26-130
for hash clusters, 22-11
for indexes, 20-41
for Oracle Scheduler, 29-32
for redo log, 9-20
for schema objects, 17-34
for sequences, 23-28
for shared server, 3-19
for space usage in schema objects, 18-36
for synonyms, 23-28
for tables, 19-198
for tablespaces, 11-59
for undo space, 14-17
for views, 23-28

data dictionary views for, 23-28
DBA_2PC_NEIGHBORS, 35-5
DBA_2PC_PENDING, 35-3
DBA_DB_LINKS, 32-19
displaying dependencies of, 17-35
dropping, 23-15
file mapping views, 12-29
FOR UPDATE clause and, 23-3
invalid, 23-6
join

See join views, 23-4
location transparency in distributed

databases, 32-24
managing, 23-1, 23-5
managing privileges with, 32-25
name resolution in distributed databases,

31-39
ORDER BY clause and, 23-3
remote object security, 32-25
restrictions, 23-6
using, 23-6
V$ARCHIVE, 10-19
V$DATABASE, 10-20
V$LOG, 10-19
V$LOGFILE, 9-16

views (continued)
wildcards in, 23-4
WITH CHECK OPTION, 23-3

virtual columns, 19-2, 38-3
indexing, 20-5

Virtual Private Database
redefining tables online, 19-78

virtual private database (VPD), 38-6

W
wildcards

in views, 23-4
window groups

creating, 28-80
disabling, 28-82
dropping, 28-81
dropping a member from, 28-81
enabling, 28-82
managing job scheduling and job priorities

with, 28-79
overview, 27-18

window logs, 28-74
windows (Scheduler)

altering, 28-76
closing, 28-77
creating, 28-75
disabling, 28-78
dropping, 28-78
enabling, 28-79
opening, 28-76
overlapping, 27-15
overview, 27-14

windows, managing job scheduling and resource
allocation with, 28-74

WITH ROWID clause
REFs, 36-30

WORM devices
and read-only tablespaces, 11-28

WRH$_UNDOSTAT view, 14-17

X
XMLTypes

transporting data, 13-10

Z
zone maps, 19-24

Index

Index-34

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Basic Database Administration
	1 Getting Started with Database Administration
	1.1 Changes on Oracle Database Release 23ai for Oracle Database Administrator's Guide
	1.1.1 New Features in 23ai
	1.1.2 Deprecated Features
	1.1.3 Desupported Features

	1.2 Types of Oracle Database Users
	1.2.1 Database Administrators
	1.2.2 Security Officers
	1.2.3 Network Administrators
	1.2.4 Application Developers
	1.2.5 Application Administrators
	1.2.6 Database Users

	1.3 Tasks of a Database Administrator
	1.3.1 Task 1: Evaluate the Database Server Hardware
	1.3.2 Task 2: Install the Oracle Database Software
	1.3.3 Task 3: Plan the Database
	1.3.4 Task 4: Create and Open the Database
	1.3.5 Task 5: Back Up the Database
	1.3.6 Task 6: Enroll System Users
	1.3.7 Task 7: Implement the Database Design
	1.3.8 Task 8: Back Up the Fully Functional Database
	1.3.9 Task 9: Tune Database Performance
	1.3.10 Task 10: Download and Install Release Updates and Release Update Revisions
	1.3.11 Task 11: Roll Out to Additional Hosts

	1.4 SQL Statements
	1.4.1 Submitting Commands and SQL to the Database
	1.4.2 About SQL*Plus
	1.4.3 Connecting to the Database with SQL*Plus
	1.4.3.1 About Connecting to the Database with SQL*Plus
	1.4.3.2 Step 1: Open a Command Window
	1.4.3.3 Step 2: Set Operating System Environment Variables
	1.4.3.4 Step 3: Start SQL*Plus
	1.4.3.5 Step 4: Submit the SQL*Plus CONNECT Command
	1.4.3.5.1 Syntax of the SQL*Plus CONNECT Command

	1.5 Identifying Your Oracle Database Software Release
	1.5.1 About Oracle Database Release Numbers
	1.5.2 Checking Your Current Release Number

	1.6 About Database Administrator Security and Privileges
	1.6.1 The Database Administrator's Operating System Account
	1.6.2 Administrative User Accounts
	1.6.2.1 About Administrative User Accounts
	1.6.2.2 SYS
	1.6.2.3 SYSTEM
	1.6.2.4 SYSBACKUP, SYSDG, SYSKM, and SYSRAC
	1.6.2.5 The DBA Role

	1.7 Database Administrator Authentication
	1.7.1 Administrative Privileges
	1.7.2 Operations Authorized by Administrative Privileges
	1.7.3 Authentication Methods for Database Administrators
	1.7.3.1 About Authentication Methods for Database Administrators
	1.7.3.2 Nonsecure Remote Connections
	1.7.3.3 Local Connections and Secure Remote Connections

	1.7.4 Using Operating System Authentication
	1.7.4.1 Operating System Groups
	1.7.4.2 Preparing to Use Operating System Authentication
	1.7.4.3 Connecting Using Operating System Authentication

	1.7.5 Using Password File Authentication
	1.7.5.1 Preparing to Use Password File Authentication
	1.7.5.2 Connecting Using Password File Authentication

	1.8 Creating and Maintaining a Database Password File
	1.8.1 ORAPWD Syntax and Command Line Argument Descriptions
	1.8.2 Creating a Database Password File with ORAPWD
	1.8.3 Sharing and Disabling the Database Password File
	1.8.4 Keeping Administrator Passwords Synchronized with the Data Dictionary
	1.8.5 Adding Users to a Database Password File
	1.8.6 Granting and Revoking Administrative Privileges
	1.8.7 Viewing Database Password File Members
	1.8.8 Removing a Database Password File

	1.9 Data Utilities

	2 Configuring Automatic Restart of an Oracle Database
	2.1 About Oracle Restart
	2.1.1 Oracle Restart Overview
	2.1.2 About Startup Dependencies
	2.1.3 About Starting and Stopping Components with Oracle Restart
	2.1.4 About Starting and Stopping Oracle Restart
	2.1.5 Oracle Restart Configuration
	2.1.6 Oracle Restart Integration with Oracle Data Guard
	2.1.7 Fast Application Notification with Oracle Restart
	2.1.7.1 Overview of Fast Application Notification
	2.1.7.2 Application High Availability with Services and FAN
	2.1.7.2.1 Managing Unplanned Outages
	2.1.7.2.2 Managing Planned Outages
	2.1.7.2.3 Fast Application Notification High Availability Events
	2.1.7.2.4 Using Fast Application Notification Callouts
	2.1.7.2.5 Oracle Clients That Are Integrated with Fast Application Notification

	2.2 Configuring Oracle Restart
	2.2.1 About Configuring Oracle Restart
	2.2.2 Preparing to Run SRVCTL
	2.2.3 Obtaining Help for SRVCTL
	2.2.4 Adding Components to the Oracle Restart Configuration
	2.2.5 Removing Components from the Oracle Restart Configuration
	2.2.6 Disabling and Enabling Oracle Restart Management for a Component
	2.2.7 Viewing Component Status
	2.2.8 Viewing the Oracle Restart Configuration for a Component
	2.2.9 Modifying the Oracle Restart Configuration for a Component
	2.2.10 Managing Environment Variables in the Oracle Restart Configuration
	2.2.10.1 About Environment Variables in the Oracle Restart Configuration
	2.2.10.2 Setting and Unsetting Environment Variables
	2.2.10.3 Viewing Environment Variables

	2.2.11 Creating and Deleting Database Services with SRVCTL
	2.2.12 Enabling FAN Events in an Oracle Restart Environment
	2.2.13 Automating the Failover of Connections Between Primary and Standby Databases
	2.2.14 Enabling Clients for Fast Connection Failover
	2.2.14.1 About Enabling Clients for Fast Connection Failover
	2.2.14.2 Enabling Fast Connection Failover for JDBC Clients
	2.2.14.3 Enabling Fast Connection Failover for Oracle Call Interface Clients
	2.2.14.4 Enabling Fast Connection Failover for ODP.NET Clients

	2.3 Starting and Stopping Components Managed by Oracle Restart
	2.4 Stopping and Restarting Oracle Restart for Maintenance Operations
	2.5 SRVCTL Command Reference for Oracle Restart
	2.5.1 add
	2.5.1.1 srvctl add asm
	2.5.1.1.1 Syntax and Options
	2.5.1.1.2 Example

	2.5.1.2 srvctl add database
	2.5.1.2.1 Syntax and Options
	2.5.1.2.2 Examples

	2.5.1.3 srvctl add listener
	2.5.1.3.1 Syntax and Options
	2.5.1.3.2 Example

	2.5.1.4 srvctl add ons
	2.5.1.4.1 Syntax and Options

	2.5.1.5 srvctl add service
	2.5.1.5.1 Syntax and Options
	2.5.1.5.2 Example

	2.5.2 config
	2.5.2.1 srvctl config asm
	2.5.2.1.1 Syntax and Options
	2.5.2.1.2 Example

	2.5.2.2 srvctl config database
	2.5.2.2.1 Syntax and Options
	2.5.2.2.2 Example

	2.5.2.3 srvctl config listener
	2.5.2.3.1 Syntax and Options
	2.5.2.3.2 Example

	2.5.2.4 srvctl config ons
	2.5.2.4.1 Syntax and Options

	2.5.2.5 srvctl config service
	2.5.2.5.1 Syntax and Options
	2.5.2.5.2 Example

	2.5.3 disable
	2.5.3.1 srvctl disable asm
	2.5.3.1.1 Syntax and Options

	2.5.3.2 srvctl disable database
	2.5.3.2.1 Syntax and Options
	2.5.3.2.2 Example

	2.5.3.3 srvctl disable diskgroup
	2.5.3.3.1 Syntax and Options
	2.5.3.3.2 Example

	2.5.3.4 srvctl disable listener
	2.5.3.4.1 Syntax and Options
	2.5.3.4.2 Example

	2.5.3.5 srvctl disable ons
	2.5.3.5.1 Syntax and Options

	2.5.3.6 srvctl disable service
	2.5.3.6.1 Syntax and Options
	2.5.3.6.2 Example

	2.5.4 downgrade
	2.5.4.1 srvctl downgrade database
	2.5.4.1.1 Syntax and Options

	2.5.5 enable
	2.5.5.1 srvctl enable asm
	2.5.5.1.1 Syntax and Options

	2.5.5.2 srvctl enable database
	2.5.5.2.1 Syntax and Options
	2.5.5.2.2 Example

	2.5.5.3 srvctl enable diskgroup
	2.5.5.3.1 Syntax and Options
	2.5.5.3.2 Example

	2.5.5.4 srvctl enable listener
	2.5.5.4.1 Syntax and Options
	2.5.5.4.2 Example

	2.5.5.5 srvctl enable ons
	2.5.5.5.1 Syntax and Options

	2.5.5.6 srvctl enable service
	2.5.5.6.1 Syntax and Options
	2.5.5.6.2 Example

	2.5.6 getenv
	2.5.6.1 srvctl getenv asm
	2.5.6.1.1 Syntax and Options
	2.5.6.1.2 Example

	2.5.6.2 srvctl getenv database
	2.5.6.2.1 Syntax and Options
	2.5.6.2.2 Example

	2.5.6.3 srvctl getenv listener
	2.5.6.3.1 Syntax and Options
	2.5.6.3.2 Example

	2.5.7 modify
	2.5.7.1 srvctl modify asm
	2.5.7.1.1 Syntax and Options
	2.5.7.1.2 Example

	2.5.7.2 srvctl modify database
	2.5.7.2.1 Syntax and Options
	2.5.7.2.2 Example

	2.5.7.3 srvctl modify listener
	2.5.7.3.1 Syntax and Options
	2.5.7.3.2 Example

	2.5.7.4 srvctl modify ons
	2.5.7.4.1 Syntax and Options

	2.5.7.5 srvctl modify service
	2.5.7.5.1 Syntax and Options
	2.5.7.5.2 Example

	2.5.8 remove
	2.5.8.1 srvctl remove asm
	2.5.8.1.1 Syntax and Options
	2.5.8.1.2 Example

	2.5.8.2 srvctl remove database
	2.5.8.2.1 Syntax and Options
	2.5.8.2.2 Example

	2.5.8.3 srvctl remove diskgroup
	2.5.8.3.1 Syntax and Options
	2.5.8.3.2 Example

	2.5.8.4 srvctl remove listener
	2.5.8.4.1 Syntax and Options
	2.5.8.4.2 Example

	2.5.8.5 srvctl remove ons
	2.5.8.5.1 Syntax and Options

	2.5.8.6 srvctl remove service
	2.5.8.6.1 Syntax and Options
	2.5.8.6.2 Example

	2.5.9 setenv
	2.5.9.1 srvctl setenv asm
	2.5.9.1.1 Syntax and Options
	2.5.9.1.2 Example

	2.5.9.2 srvctl setenv database
	2.5.9.2.1 Syntax and Options
	2.5.9.2.2 Example

	2.5.9.3 srvctl setenv listener
	2.5.9.3.1 Syntax and Options
	2.5.9.3.2 Example

	2.5.10 start
	2.5.10.1 srvctl start asm
	2.5.10.1.1 Syntax and Options
	2.5.10.1.2 Example

	2.5.10.2 srvctl start database
	2.5.10.2.1 Syntax and Options
	2.5.10.2.2 Example

	2.5.10.3 srvctl start diskgroup
	2.5.10.3.1 Syntax and Options
	2.5.10.3.2 Example

	2.5.10.4 srvctl start home
	2.5.10.4.1 Syntax and Options

	2.5.10.5 srvctl start listener
	2.5.10.5.1 Syntax and Options
	2.5.10.5.2 Example

	2.5.10.6 srvctl start ons
	2.5.10.6.1 Syntax and Options

	2.5.10.7 srvctl start service
	2.5.10.7.1 Syntax and Options
	2.5.10.7.2 Example

	2.5.11 status
	2.5.11.1 srvctl status asm
	2.5.11.1.1 Syntax and Options
	2.5.11.1.2 Example

	2.5.11.2 srvctl status database
	2.5.11.2.1 Syntax and Options
	2.5.11.2.2 Example

	2.5.11.3 srvctl status diskgroup
	2.5.11.3.1 Syntax and Options
	2.5.11.3.2 Example

	2.5.11.4 srvctl status home
	2.5.11.4.1 Syntax and Options

	2.5.11.5 srvctl status listener
	2.5.11.5.1 Syntax and Options
	2.5.11.5.2 Example

	2.5.11.6 srvctl status ons
	2.5.11.6.1 Syntax and Options

	2.5.11.7 srvctl status service
	2.5.11.7.1 Syntax and Options
	2.5.11.7.2 Example

	2.5.12 stop
	2.5.12.1 srvctl stop asm
	2.5.12.1.1 Syntax and Options
	2.5.12.1.2 Example

	2.5.12.2 srvctl stop database
	2.5.12.2.1 Syntax and Options
	2.5.12.2.2 Example

	2.5.12.3 srvctl stop diskgroup
	2.5.12.3.1 Syntax and Options
	2.5.12.3.2 Example

	2.5.12.4 srvctl stop home
	2.5.12.4.1 Syntax and Options

	2.5.12.5 srvctl stop listener
	2.5.12.5.1 Syntax and Options
	2.5.12.5.2 Example

	2.5.12.6 srvctl stop ons
	2.5.12.6.1 Syntax and Options

	2.5.12.7 srvctl stop service
	2.5.12.7.1 Syntax and Options
	2.5.12.7.2 Example

	2.5.13 unsetenv
	2.5.13.1 srvctl unsetenv asm
	2.5.13.1.1 Syntax and Options
	2.5.13.1.2 Example

	2.5.13.2 srvctl unsetenv database
	2.5.13.2.1 Syntax and Options
	2.5.13.2.2 Example

	2.5.13.3 srvctl unsetenv listener
	2.5.13.3.1 Syntax and Options
	2.5.13.3.2 Example

	2.5.14 update
	2.5.14.1 srvctl update database
	2.5.14.1.1 Syntax and Options

	2.5.15 upgrade
	2.5.15.1 srvctl upgrade database
	2.5.15.1.1 Syntax and Options

	2.6 CRSCTL Command Reference
	2.6.1 check
	2.6.2 config
	2.6.3 disable
	2.6.4 enable
	2.6.5 start
	2.6.6 stop

	3 Managing Processes
	3.1 About Dedicated and Shared Server Processes
	3.1.1 Dedicated Server Processes
	3.1.2 Shared Server Processes

	3.2 About Database Resident Connection Pooling
	3.2.1 Comparing DRCP to Dedicated Server and Shared Server

	3.3 About Proxy Resident Connection Pooling
	3.4 Configuring Oracle Database for Shared Server
	3.4.1 Initialization Parameters for Shared Server
	3.4.2 Memory Management for Shared Server
	3.4.3 Enabling Shared Server
	3.4.3.1 About Determining a Value for SHARED_SERVERS
	3.4.3.2 Decreasing the Number of Shared Server Processes
	3.4.3.3 Limiting the Number of Shared Server Processes
	3.4.3.4 Limiting the Number of Shared Server Sessions
	3.4.3.5 Protecting Shared Memory

	3.4.4 Configuring Dispatchers
	3.4.4.1 DISPATCHERS Initialization Parameter Attributes
	3.4.4.2 Determining the Number of Dispatchers
	3.4.4.3 Setting the Initial Number of Dispatchers
	3.4.4.4 Altering the Number of Dispatchers
	3.4.4.4.1 Notes on Altering Dispatchers

	3.4.4.5 Shutting Down Specific Dispatcher Processes

	3.4.5 Disabling Shared Server
	3.4.6 Shared Server Data Dictionary Views

	3.5 Configuring Database Resident Connection Pooling
	3.5.1 Database Resident Connection Pooling Initialization Parameters
	3.5.2 Enabling Database Resident Connection Pooling
	3.5.3 Configuring the Connection Pool for Database Resident Connection Pooling
	3.5.3.1 Configuration Parameters for Database Resident Connection Pooling

	3.5.4 Using Multi-Pool Database Resident Connection Pooling
	3.5.5 Data Dictionary Views for Database Resident Connection Pooling
	3.5.6 Determining the States of Connections in the Connection Pool

	3.6 About Oracle Database Background Processes
	3.7 Managing Prespawned Processes
	3.7.1 About Managing Prespawned Processes
	3.7.2 Managing Pools for Prespawned Processes

	3.8 Managing Processes for Parallel SQL Execution
	3.8.1 About Parallel Execution Servers
	3.8.2 Altering Parallel Execution for a Session
	3.8.2.1 Disabling Parallel SQL Execution
	3.8.2.2 Enabling Parallel SQL Execution
	3.8.2.3 Forcing Parallel SQL Execution

	3.9 Managing Processes for External Procedures
	3.9.1 About External Procedures
	3.9.2 DBA Tasks to Enable External Procedure Calls

	3.10 Terminating Sessions
	3.10.1 About Terminating Sessions
	3.10.2 Identifying Which Session to Terminate
	3.10.3 Terminating an Active Session
	3.10.4 Terminating an Inactive Session
	3.10.5 Cancelling a SQL Statement in a Session

	3.11 Process and Session Data Dictionary Views

	4 Managing Memory
	4.1 About Memory Management
	4.2 Memory Architecture Overview
	4.3 Using Unified Memory Management
	4.4 Using Automatic Memory Management
	4.4.1 About Automatic Memory Management
	4.4.2 Enabling Automatic Memory Management
	4.4.3 Monitoring and Tuning Automatic Memory Management

	4.5 Configuring Memory Manually
	4.5.1 About Manual Memory Management
	4.5.2 Using Automatic Shared Memory Management
	4.5.2.1 About Automatic Shared Memory Management
	4.5.2.2 Components and Granules in the SGA
	4.5.2.3 Setting Maximum SGA Size
	4.5.2.4 Setting SGA Target Size
	4.5.2.4.1 The SGA Target and Automatically Sized SGA Components
	4.5.2.4.2 SGA and Virtual Memory
	4.5.2.4.3 Monitoring and Tuning SGA Target Size

	4.5.2.5 Enabling Automatic Shared Memory Management
	4.5.2.6 Setting Minimums for Automatically Sized SGA Components
	4.5.2.7 Dynamic Modification of SGA_TARGET
	4.5.2.8 Modifying Parameters for Automatically Sized Components
	4.5.2.9 Modifying Parameters for Manually Sized Components

	4.5.3 Using Manual Shared Memory Management
	4.5.3.1 About Manual Shared Memory Management
	4.5.3.2 Enabling Manual Shared Memory Management
	4.5.3.3 Setting the Buffer Cache Initialization Parameters
	4.5.3.3.1 Example of Setting Block and Cache Sizes
	4.5.3.3.2 Multiple Buffer Pools

	4.5.3.4 Specifying the Shared Pool Size
	4.5.3.4.1 The Result Cache and Shared Pool Size

	4.5.3.5 Specifying the Large Pool Size
	4.5.3.6 Specifying the Java Pool Size
	4.5.3.7 Specifying the Streams Pool Size
	4.5.3.8 Specifying the Vector Pool Size
	4.5.3.9 Specifying Miscellaneous SGA Initialization Parameters
	4.5.3.9.1 Physical Memory
	4.5.3.9.2 SGA Starting Address

	4.5.4 Using Automatic PGA Memory Management
	4.5.5 Using Manual PGA Memory Management

	4.6 Using Force Full Database Caching Mode
	4.6.1 About Force Full Database Caching Mode
	4.6.2 Before Enabling Force Full Database Caching Mode
	4.6.3 Enabling Force Full Database Caching Mode
	4.6.4 Disabling Force Full Database Caching Mode

	4.7 Configuring Database Smart Flash Cache
	4.7.1 When to Configure Database Smart Flash Cache
	4.7.2 Sizing Database Smart Flash Cache
	4.7.3 Tuning Memory for Database Smart Flash Cache
	4.7.4 Database Smart Flash Cache Initialization Parameters
	4.7.5 Database Smart Flash Cache in an Oracle Real Applications Clusters Environment

	4.8 Improving Query Response Time with the Server Result Cache
	4.8.1 About the Server Result Cache
	4.8.2 Using the Server Result Cache
	4.8.3 Specifying the Result Cache Maximum Size
	4.8.4 Specifying the Use of Temporary Segments for Query Results

	4.9 Improving Query Performance with Oracle Database In-Memory
	4.10 Enabling High Performance Data Streaming with the Memoptimized Rowstore
	4.11 Memory Management Reference
	4.11.1 Platforms That Support Automatic Memory Management
	4.11.2 Memory Management Data Dictionary Views

	4.12 Configuring and Using True Cache

	5 Managing Users and Securing the Database
	5.1 The Importance of Establishing a Security Policy for Your Database
	5.2 Managing Users and Resources
	5.3 User Privileges and Roles
	5.4 Auditing Database Activity
	5.5 Predefined User Accounts

	6 Monitoring the Database
	6.1 Monitoring Errors and Alerts
	6.1.1 Monitoring Errors with Trace Files and the Alert Log
	6.1.1.1 About Monitoring Errors with Trace Files and the Alert Log
	6.1.1.2 Controlling the Size of an Alert Log
	6.1.1.3 Controlling the Size of Trace Files
	6.1.1.3.1 Trace File Segmentation and MAX_DUMP_FILE_SIZE

	6.1.1.4 Controlling When Oracle Database Writes to Trace Files
	6.1.1.5 Reading the Trace File for Shared Server Sessions

	6.1.2 Monitoring a Database with Server-Generated Alerts
	6.1.2.1 About Monitoring a Database with Server-Generated Alerts
	6.1.2.2 Setting and Retrieving Thresholds for Server-Generated Alerts
	6.1.2.2.1 Setting Threshold Levels
	6.1.2.2.2 Retrieving Threshold Information

	6.1.2.3 Viewing Server-Generated Alerts
	6.1.2.4 Server-Generated Alerts Data Dictionary Views

	6.2 Monitoring Performance
	6.2.1 Monitoring Locks
	6.2.2 About Monitoring Wait Events
	6.2.3 Performance Monitoring Data Dictionary Views

	6.3 Monitoring Quarantined Objects
	6.3.1 About Object Quarantine
	6.3.2 Viewing Quarantined Objects

	6.4 Automatically Monitoring Schema Objects

	7 Diagnosing and Resolving Problems
	7.1 About the Oracle Database Fault Diagnosability Infrastructure
	7.1.1 Fault Diagnosability Infrastructure Overview
	7.1.2 Incidents and Problems
	7.1.2.1 About Incidents and Problems
	7.1.2.2 Incident Flood Control
	7.1.2.3 Related Problems Across the Topology

	7.1.3 Fault Diagnosability Infrastructure Components
	7.1.3.1 Automatic Diagnostic Repository (ADR)
	7.1.3.2 Alert Log
	7.1.3.3 Attention Log
	7.1.3.4 Trace Files, Dumps, and Core Files
	7.1.3.4.1 Trace Files
	7.1.3.4.2 Dumps
	7.1.3.4.3 Core Files

	7.1.3.5 DDL Log
	7.1.3.6 Debug Log
	7.1.3.7 Other ADR Contents
	7.1.3.8 Enterprise Manager Support Workbench
	7.1.3.9 ADRCI Command-Line Utility

	7.1.4 Structure, Contents, and Location of the Automatic Diagnostic Repository

	7.2 About Investigating, Reporting, and Resolving a Problem
	7.2.1 Roadmap — Investigating, Reporting, and Resolving a Problem
	7.2.2 Task 1: View Critical Error Alerts in Cloud Control
	7.2.3 Task 2: View Problem Details
	7.2.4 Task 3: (Optional) Gather Additional Diagnostic Information
	7.2.5 Task 4: (Optional) Create a Service Request
	7.2.6 Task 5: Package and Upload Diagnostic Data to Oracle Support
	7.2.7 Task 6: Track the Service Request and Implement Any Repairs

	7.3 Diagnosing Problems
	7.3.1 Identifying Problems Reactively
	7.3.1.1 Viewing Problems with the Support Workbench
	7.3.1.2 Adding Problems Manually to the Automatic Diagnostic Repository
	7.3.1.3 Creating Incidents Manually
	7.3.1.4 Using DBMS_HCHECK to Identify Data Dictionary Inconsistencies

	7.3.2 Identifying Problems Proactively with Health Monitor
	7.3.2.1 About Health Monitor
	7.3.2.1.1 About Health Monitor Checks
	7.3.2.1.2 Types of Health Checks

	7.3.2.2 Running Health Checks Manually
	7.3.2.2.1 Running Health Checks Using the DBMS_HM PL/SQL Package
	7.3.2.2.2 Running Health Checks Using Cloud Control

	7.3.2.3 Viewing Checker Reports
	7.3.2.3.1 About Viewing Checker Reports
	7.3.2.3.2 Viewing Reports Using Cloud Control
	7.3.2.3.3 Viewing Reports Using DBMS_HM
	7.3.2.3.4 Viewing Reports Using the ADRCI Utility

	7.3.2.4 Health Monitor Views
	7.3.2.5 Health Check Parameters Reference

	7.3.3 Gathering Additional Diagnostic Data
	7.3.3.1 Viewing the Alert Log
	7.3.3.2 Finding Trace Files

	7.3.4 Creating Test Cases with SQL Test Case Builder
	7.3.4.1 Purpose of SQL Test Case Builder
	7.3.4.2 Concepts for SQL Test Case Builder
	7.3.4.2.1 SQL Incidents
	7.3.4.2.2 What SQL Test Case Builder Captures
	7.3.4.2.3 Output of SQL Test Case Builder

	7.3.4.3 User Interfaces for SQL Test Case Builder
	7.3.4.3.1 Graphical Interface for SQL Test Case Builder
	7.3.4.3.1.1 Accessing the Incident Manager
	7.3.4.3.1.2 Accessing the Support Workbench

	7.3.4.3.2 Command-Line Interface for SQL Test Case Builder

	7.3.4.4 Running SQL Test Case Builder

	7.4 Reporting Problems
	7.4.1 Incident Packages
	7.4.1.1 About Incident Packages
	7.4.1.2 About Correlated Diagnostic Data in Incident Packages
	7.4.1.3 About Quick Packaging and Custom Packaging
	7.4.1.4 About Correlated Packages

	7.4.2 Packaging and Uploading Problems with Custom Packaging
	7.4.3 Viewing and Modifying Incident Packages
	7.4.3.1 Viewing Package Details
	7.4.3.2 Accessing the Customize Package Page
	7.4.3.3 Editing Incident Package Files (Copying Out and In)
	7.4.3.4 Adding an External File to an Incident Package
	7.4.3.5 Removing Incident Package Files
	7.4.3.6 Viewing and Updating the Incident Package Activity Log

	7.4.4 Creating, Editing, and Uploading Correlated Packages
	7.4.5 Deleting Correlated Packages
	7.4.6 Setting Incident Packaging Preferences

	7.5 Resolving Problems
	7.5.1 About Automatic Error Mitigation
	7.5.2 Repairing SQL Failures with the SQL Repair Advisor
	7.5.2.1 About the SQL Repair Advisor
	7.5.2.2 Running the SQL Repair Advisor Using Cloud Control
	7.5.2.3 Running the SQL Repair Advisor Using the DBMS_SQLDIAG Package Subprograms
	7.5.2.4 Viewing, Disabling, or Removing a SQL Patch Using Cloud Control
	7.5.2.5 Disabling or Removing a SQL Patch Using DBMS_SQLDIAG Package Subprograms
	7.5.2.6 Exporting and Importing a Patch Using DBMS_SQLDIAG Package Subprograms

	7.5.3 Repairing Data Corruptions with the Data Recovery Advisor
	7.5.4 Quarantine for Execution Plans for SQL Statements Consuming Excessive System Resources
	7.5.4.1 About Quarantine for Execution Plans for SQL Statements
	7.5.4.2 Creating a Quarantine Configuration for an Execution Plan of a SQL Statement
	7.5.4.3 Specifying Quarantine Thresholds in a Quarantine Configuration
	7.5.4.4 Enabling and Disabling a Quarantine Configuration
	7.5.4.5 Viewing the Details of a Quarantine Configuration
	7.5.4.6 Deleting a Quarantine Configuration
	7.5.4.7 Viewing the Details of Quarantined Execution Plans of SQL Statements
	7.5.4.8 Transferring Quarantine Configurations from One Database to Another Database
	7.5.4.9 Example: Quarantine for an Execution Plan of a SQL Statement Consuming Excessive System Resources

	7.5.5 Viewing Attention Log Information

	7.6 Diagnosis and Tracing in a PDB Using Package DBMS_USERDIAG
	7.6.1 About DBMS_USERDIAG
	7.6.2 Examples of Using DBMS_USERDIAG

	Part II Oracle Database Structure and Storage
	8 Managing Control Files
	8.1 What Is a Control File?
	8.2 Guidelines for Control Files
	8.2.1 Provide File Names for the Control Files
	8.2.2 Multiplex Control Files on Different Disks
	8.2.3 Back Up Control Files
	8.2.4 Manage the Size of Control Files

	8.3 Creating Control Files
	8.3.1 Creating Initial Control Files
	8.3.2 Creating Additional Copies, Renaming, and Relocating Control Files
	8.3.3 Creating New Control Files
	8.3.3.1 When to Create New Control Files
	8.3.3.2 The CREATE CONTROLFILE Statement
	8.3.3.3 Creating New Control Files

	8.4 Troubleshooting After Creating Control Files
	8.4.1 Checking for Missing or Extra Files
	8.4.2 Handling Errors During CREATE CONTROLFILE

	8.5 Backing Up Control Files
	8.6 Recovering a Control File Using a Current Copy
	8.6.1 Recovering from Control File Corruption Using a Control File Copy
	8.6.2 Recovering from Permanent Media Failure Using a Control File Copy

	8.7 Dropping Control Files
	8.8 Control Files Data Dictionary Views

	9 Managing the Redo Log
	9.1 What Is the Redo Log?
	9.1.1 Redo Threads
	9.1.2 Redo Log Contents
	9.1.3 How Oracle Database Writes to the Redo Log
	9.1.3.1 Active (Current) and Inactive Redo Log Files
	9.1.3.2 Log Switches and Log Sequence Numbers

	9.2 Planning the Redo Log
	9.2.1 Multiplexing Redo Log Files
	9.2.1.1 Responding to Redo Log Failure
	9.2.1.2 Valid and Invalid Configurations

	9.2.2 Placing Redo Log Members on Different Disks
	9.2.3 Planning the Size of Redo Log Files
	9.2.4 Planning the Block Size of Redo Log Files
	9.2.5 Choosing the Number of Redo Log Files
	9.2.6 Controlling Archive Lag
	9.2.6.1 Setting the ARCHIVE_LAG_TARGET Initialization Parameter
	9.2.6.2 Factors Affecting the Setting of ARCHIVE_LAG_TARGET

	9.3 Creating Redo Log Groups and Members
	9.3.1 Creating Redo Log Groups
	9.3.2 Creating Redo Log Members

	9.4 Relocating and Renaming Redo Log Members
	9.5 Dropping Redo Log Groups and Members
	9.5.1 Dropping Log Groups
	9.5.2 Dropping Redo Log Members

	9.6 Forcing Log Switches
	9.7 Verifying Blocks in Redo Log Files
	9.8 Clearing a Redo Log File
	9.9 Reduction of Redo Generation for Direct Path Operations
	9.10 Redo Log Data Dictionary Views

	10 Managing Archived Redo Log Files
	10.1 What Is the Archived Redo Log?
	10.2 Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
	10.2.1 Running a Database in NOARCHIVELOG Mode
	10.2.2 Running a Database in ARCHIVELOG Mode

	10.3 Controlling Archiving
	10.3.1 Setting the Initial Database Archiving Mode
	10.3.2 Changing the Database Archiving Mode
	10.3.3 Performing Manual Archiving
	10.3.4 Adjusting the Number of Archiver Processes

	10.4 Specifying Archive Destinations
	10.4.1 Setting Initialization Parameters for Archive Destinations
	10.4.1.1 Method 1: Using the LOG_ARCHIVE_DEST_n Parameter
	10.4.1.2 Method 2: Using LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST

	10.4.2 Expanding Alternate Destinations with Log Archive Destination Groups
	10.4.2.1 About Log Archive Destination Groups
	10.4.2.2 Specifying Log Archive Destination Groups

	10.4.3 Understanding Archive Destination Status
	10.4.4 Specifying Alternate Destinations

	10.5 About Log Transmission Modes
	10.5.1 Normal Transmission Mode
	10.5.2 Standby Transmission Mode

	10.6 Managing Archive Destination Failure
	10.6.1 Specifying the Minimum Number of Successful Destinations
	10.6.1.1 Specifying Mandatory and Optional Destinations
	10.6.1.2 Specifying the Number of Successful Destinations: Scenarios
	10.6.1.2.1 Scenario for Archiving to Optional Local Destinations
	10.6.1.2.2 Scenario for Archiving to Both Mandatory and Optional Destinations

	10.6.2 Rearchiving to a Failed Destination

	10.7 Controlling Trace Output Generated by the Archivelog Process
	10.8 Viewing Information About the Archived Redo Log
	10.8.1 Archived Redo Log Files Views
	10.8.2 Using the ARCHIVE LOG LIST Command

	11 Managing Tablespaces
	11.1 Guidelines for Managing Tablespaces
	11.1.1 Use Multiple Tablespaces
	11.1.2 Assign Tablespace Quotas to Users

	11.2 Creating Tablespaces
	11.2.1 About Creating Tablespaces
	11.2.2 Locally Managed Tablespaces
	11.2.2.1 About Locally Managed Tablespaces
	11.2.2.2 Creating a Locally Managed Tablespace
	11.2.2.3 Specifying Segment Space Management in Locally Managed Tablespaces

	11.2.3 Bigfile Tablespaces
	11.2.3.1 About Bigfile Tablespaces
	11.2.3.2 Creating a Bigfile Tablespace
	11.2.3.3 Identifying a Bigfile Tablespace

	11.2.4 Tablespaces with Default Compression Attributes
	11.2.4.1 About Tablespaces with Default Compression Attributes
	11.2.4.2 Creating Tablespaces with Default Compression Attributes

	11.2.5 Encrypted Tablespaces
	11.2.5.1 About Encrypted Tablespaces
	11.2.5.2 Creating Encrypted Tablespaces
	11.2.5.3 Viewing Information About Encrypted Tablespaces

	11.2.6 Temporary Tablespaces
	11.2.6.1 About Temporary Tablespaces
	11.2.6.2 Creating a Locally Managed Temporary Tablespace
	11.2.6.3 Creating a Bigfile Temporary Tablespace
	11.2.6.4 Viewing Space Usage for Temporary Tablespaces

	11.2.7 Temporary Tablespace Groups
	11.2.7.1 Multiple Temporary Tablespaces: Using Tablespace Groups
	11.2.7.2 Creating a Tablespace Group
	11.2.7.3 Changing Members of a Tablespace Group
	11.2.7.4 Assigning a Tablespace Group as the Default Temporary Tablespace

	11.3 Consider Storing Tablespaces in the In-Memory Column Store
	11.4 Specifying Nonstandard Block Sizes for Tablespaces
	11.5 Controlling the Writing of Redo Records
	11.6 Altering Tablespace Availability
	11.6.1 Taking Tablespaces Offline
	11.6.2 Bringing Tablespaces Online

	11.7 Using Read-Only Tablespaces
	11.7.1 About Read-Only Tablespaces
	11.7.2 Making a Tablespace Read-Only
	11.7.3 Making a Read-Only Tablespace Writable
	11.7.4 Creating a Read-Only Tablespace on a WORM Device
	11.7.5 Delaying the Opening of Data Files in Read-Only Tablespaces
	11.7.6 Using Read-Only Tablespaces on Object Storage
	11.7.6.1 Enabling a Database for Using Object Storage
	11.7.6.1.1 Setting HTTP Proxy, If Needed
	11.7.6.1.2 Setting ACEs for the Users Accessing the Tablespace in Object Storage

	11.7.6.2 Accessing Data in Object Storage
	11.7.6.2.1 Creating a Default Credential For Your Pluggable Database
	11.7.6.2.2 Moving Read-Only Tablespaces to Object Storage
	11.7.6.2.3 Querying Data in Object Storage

	11.7.6.3 Dropping a Read-Only Tablespace and It's Data Files in Object Storage

	11.8 Altering and Maintaining Tablespaces
	11.8.1 Increasing the Size of a Tablespace
	11.8.2 Altering a Locally Managed Tablespace
	11.8.3 Altering a Bigfile Tablespace
	11.8.4 Shrinking a Tablespace
	11.8.5 Altering a Locally Managed Temporary Tablespace
	11.8.6 Shrinking a Locally Managed Temporary Tablespace

	11.9 Renaming Tablespaces
	11.10 Dropping Tablespaces
	11.11 Managing Lost Write Protection with Shadow Tablespaces
	11.11.1 About Shadow Lost Write Protection
	11.11.2 Creating Shadow Tablespaces for Shadow Lost Write Protection
	11.11.3 Enabling Shadow Lost Write Protection for a Database
	11.11.4 Enabling Shadow Lost Write Protection for Tablespaces and Data Files
	11.11.5 Disabling Shadow Lost Write Protection for a Database
	11.11.6 Removing or Suspending Shadow Lost Write Protection
	11.11.7 Dropping a Shadow Tablespace

	11.12 Managing the SYSAUX Tablespace
	11.12.1 Monitoring Occupants of the SYSAUX Tablespace
	11.12.2 Moving Occupants Out Of or Into the SYSAUX Tablespace
	11.12.3 Controlling the Size of the SYSAUX Tablespace

	11.13 Correcting Problems with Locally Managed Tablespaces
	11.13.1 Diagnosing and Repairing Locally Managed Tablespace Problems
	11.13.2 Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No Overlap)
	11.13.3 Scenario 2: Dropping a Corrupted Segment
	11.13.4 Scenario 3: Fixing Bitmap Where Overlap is Reported
	11.13.5 Scenario 4: Correcting Media Corruption of Bitmap Blocks
	11.13.6 Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed Tablespace

	11.14 Migrating the SYSTEM Tablespace to a Locally Managed Tablespace
	11.15 Viewing Information About Tablespaces
	11.15.1 Tablespace Data Dictionary Views
	11.15.2 Example 1: Listing Tablespaces and Default Storage Parameters
	11.15.3 Example 2: Listing the Data Files and Associated Tablespaces of a Database
	11.15.4 Example 3: Displaying Statistics for Free Space (Extents) of Each Tablespace

	12 Managing Data Files and Temp Files
	12.1 Guidelines for Managing Data Files
	12.1.1 About Data Files
	12.1.2 Determine the Number of Data Files
	12.1.2.1 About Determining the Number of Data Files
	12.1.2.2 Determine a Value for the DB_FILES Initialization Parameter
	12.1.2.3 Consider Possible Limitations When Adding Data Files to a Tablespace
	12.1.2.4 Consider the Performance Impact of the Number of Data Files

	12.1.3 Determine the Size of Data Files
	12.1.4 Place Data Files Appropriately
	12.1.5 Store Data Files Separate from Redo Log Files

	12.2 Creating Data Files and Adding Data Files to a Tablespace
	12.3 Changing Data File Size
	12.3.1 Enabling and Disabling Automatic Extension for a Data File
	12.3.2 Manually Resizing a Data File

	12.4 Altering Data File Availability
	12.4.1 About Altering Data File Availability
	12.4.2 Bringing Data Files Online or Taking Offline in ARCHIVELOG Mode
	12.4.3 Taking Data Files Offline in NOARCHIVELOG Mode
	12.4.4 Altering the Availability of All Data Files or Temp Files in a Tablespace

	12.5 Renaming and Relocating Data Files
	12.5.1 Renaming and Relocating Online Data Files
	12.5.2 Renaming and Relocating Offline Data Files
	12.5.2.1 Procedures for Renaming and Relocating Offline Data Files in a Single Tablespace
	12.5.2.1.1 Renaming Offline Data Files in a Single Tablespace
	12.5.2.1.2 Relocating Offline Data Files in a Single Tablespace

	12.5.2.2 Renaming and Relocating Offline Data Files in Multiple Tablespaces

	12.6 Dropping Data Files
	12.7 Verifying Data Blocks in Data Files
	12.8 Copying Files Using the Database Server
	12.8.1 About Copying Files Using the Database Server
	12.8.2 Copying a File on a Local File System
	12.8.3 Third-Party File Transfer
	12.8.4 Advanced File Transfer Mechanisms
	12.8.5 File Transfer and the DBMS_SCHEDULER Package

	12.9 Mapping Files to Physical Devices
	12.9.1 Overview of Oracle Database File Mapping Interface
	12.9.2 How the Oracle Database File Mapping Interface Works
	12.9.2.1 Components of File Mapping
	12.9.2.1.1 FMON
	12.9.2.1.2 External Process (FMPUTL)
	12.9.2.1.3 Mapping Libraries

	12.9.2.2 Mapping Structures
	12.9.2.3 Example of Mapping Structures
	12.9.2.4 Configuration ID

	12.9.3 Using the Oracle Database File Mapping Interface
	12.9.3.1 Enabling File Mapping
	12.9.3.2 Using the DBMS_STORAGE_MAP Package
	12.9.3.3 Obtaining Information from the File Mapping Views

	12.9.4 File Mapping Examples
	12.9.4.1 Example 1: Map All Database Files that Span a Device
	12.9.4.2 Example 2: Map a File Into Its Corresponding Devices
	12.9.4.3 Example 3: Map a Database Object

	12.10 Data Files Data Dictionary Views

	13 Transporting Data
	13.1 About Transporting Data
	13.1.1 Purpose of Transporting Data
	13.1.2 Transporting Data: Scenarios
	13.1.2.1 Scenarios for Full Transportable Export/import
	13.1.2.1.1 Moving a Non-CDB Into a CDB
	13.1.2.1.2 Moving a Database to a New Computer System
	13.1.2.1.3 Upgrading to a New Release of Oracle Database

	13.1.2.2 Scenarios for Transportable Tablespaces or Transportable Tables
	13.1.2.2.1 Scenarios That Apply to Transportable Tablespaces or Transportable Tables
	13.1.2.2.2 Transporting and Attaching Partitions for Data Warehousing
	13.1.2.2.3 Publishing Structured Data on CDs
	13.1.2.2.4 Mounting the Same Tablespace Read-Only on Multiple Databases
	13.1.2.2.5 Archiving Historical Data
	13.1.2.2.6 Using Transportable Tablespaces to Perform TSPITR
	13.1.2.2.7 Copying or Moving Individual Tables

	13.1.3 Transporting Data Across Platforms
	13.1.4 General Limitations on Transporting Data
	13.1.5 Compatibility Considerations for Transporting Data

	13.2 Transporting Databases
	13.2.1 Introduction to Full Transportable Export/Import
	13.2.2 Limitations on Full Transportable Export/import
	13.2.3 Transporting a Database Using an Export Dump File
	13.2.4 Transporting a Database Over the Network

	13.3 Transporting Tablespaces Between Databases
	13.3.1 Introduction to Transportable Tablespaces
	13.3.2 Limitations on Transportable Tablespaces
	13.3.3 Transporting Tablespaces Between Databases
	13.3.3.1 Task 1: Pick a Self-Contained Set of Tablespaces
	13.3.3.2 Task 2: Generate a Transportable Tablespace Set
	13.3.3.3 Task 3: Transport the Export Dump File
	13.3.3.4 Task 4: Transport the Tablespace Set
	13.3.3.5 Task 5: (Optional) Restore Tablespaces to Read/Write Mode
	13.3.3.6 Task 6: Import the Tablespace Set

	13.4 Transporting Tables, Partitions, or Subpartitions Between Databases
	13.4.1 Introduction to Transportable Tables
	13.4.2 Limitations on Transportable Tables
	13.4.3 Transporting Tables, Partitions, or Subpartitions Using an Export Dump File
	13.4.4 Transporting Tables, Partitions, or Subpartitions Over the Network

	13.5 Converting Data Between Platforms
	13.5.1 Converting Data Between Platforms Using the DBMS_FILE_TRANSFER Package
	13.5.2 Converting Data Between Platforms Using RMAN
	13.5.2.1 Converting Tablespaces on the Source System After Export
	13.5.2.2 Converting Data Files on the Target System Before Import

	13.6 Guidelines for Transferring Data Files

	14 Managing Undo
	14.1 What Is Undo?
	14.2 Introduction to Automatic Undo Management
	14.2.1 Overview of Automatic Undo Management
	14.2.2 The Undo Retention Period
	14.2.2.1 About the Undo Retention Period
	14.2.2.2 Automatic Tuning of Undo Retention
	14.2.2.3 Retention Guarantee
	14.2.2.4 Undo Retention Tuning and Alert Thresholds
	14.2.2.5 Tracking the Tuned Undo Retention Period

	14.3 Setting the Minimum Undo Retention Period
	14.4 Sizing a Fixed-Size Undo Tablespace
	14.4.1 Activating the Undo Advisor PL/SQL Interface

	14.5 Managing Undo Tablespaces
	14.5.1 Creating an Undo Tablespace
	14.5.1.1 About Creating an Undo Tablespace
	14.5.1.2 Using CREATE DATABASE to Create an Undo Tablespace
	14.5.1.3 Using the CREATE UNDO TABLESPACE Statement

	14.5.2 Altering an Undo Tablespace
	14.5.3 Dropping an Undo Tablespace
	14.5.4 Switching Undo Tablespaces
	14.5.5 Establishing User Quotas for Undo Space
	14.5.6 Managing Space Threshold Alerts for the Undo Tablespace

	14.6 Migrating to Automatic Undo Management
	14.7 Managing Temporary Undo
	14.7.1 About Managing Temporary Undo
	14.7.2 Enabling and Disabling Temporary Undo

	14.8 Undo Space Data Dictionary Views

	15 Using Oracle Managed Files
	15.1 About Oracle Managed Files
	15.1.1 What Is Oracle Managed Files?
	15.1.2 Who Can Use Oracle Managed Files?
	15.1.3 What Is a Logical Volume Manager?
	15.1.4 What Is a File System?
	15.1.5 Benefits of Using Oracle Managed Files
	15.1.6 Oracle Managed Files and Existing Functionality

	15.2 Enabling the Creation and Use of Oracle Managed Files
	15.2.1 Initialization Parameters That Enable Oracle Managed Files
	15.2.2 Setting the DB_CREATE_FILE_DEST Initialization Parameter
	15.2.3 Setting the DB_RECOVERY_FILE_DEST Parameter
	15.2.4 Setting the DB_CREATE_ONLINE_LOG_DEST_n Initialization Parameters

	15.3 Creating Oracle Managed Files
	15.3.1 When Oracle Database Creates Oracle Managed Files
	15.3.2 How Oracle Managed Files Are Named
	15.3.3 Creating Oracle Managed Files at Database Creation
	15.3.3.1 Specifying Control Files at Database Creation
	15.3.3.2 Specifying Redo Log Files at Database Creation
	15.3.3.3 Specifying the SYSTEM and SYSAUX Tablespace Data Files at Database Creation
	15.3.3.4 Specifying the Undo Tablespace Data File at Database Creation
	15.3.3.5 Specifying the Default Temporary Tablespace Temp File at Database Creation
	15.3.3.6 CREATE DATABASE Statement Using Oracle Managed Files: Examples

	15.3.4 Creating Data Files for Tablespaces Using Oracle Managed Files
	15.3.4.1 About Creating Data Files for Tablespaces Using Oracle Managed Files
	15.3.4.2 CREATE TABLESPACE: Examples
	15.3.4.3 CREATE UNDO TABLESPACE: Example
	15.3.4.4 ALTER TABLESPACE: Example

	15.3.5 Creating Temp Files for Temporary Tablespaces Using Oracle Managed Files
	15.3.5.1 About Creating Temp Files for Temporary Tablespaces Using Oracle Managed Files
	15.3.5.2 CREATE TEMPORARY TABLESPACE: Example
	15.3.5.3 ALTER TABLESPACE... ADD TEMPFILE: Example

	15.3.6 Creating Control Files Using Oracle Managed Files
	15.3.6.1 About Creating Control Files Using Oracle Managed Files
	15.3.6.2 CREATE CONTROLFILE Using NORESETLOGS Keyword: Example
	15.3.6.3 CREATE CONTROLFILE Using RESETLOGS Keyword: Example

	15.3.7 Creating Redo Log Files Using Oracle Managed Files
	15.3.7.1 Using the ALTER DATABASE ADD LOGFILE Statement
	15.3.7.2 Using the ALTER DATABASE OPEN RESETLOGS Statement

	15.3.8 Creating Archived Logs Using Oracle Managed Files

	15.4 Operation of Oracle Managed Files
	15.4.1 Dropping Data Files and Temp Files
	15.4.2 Dropping Redo Log Files
	15.4.3 Renaming Files
	15.4.4 Managing Standby Databases

	15.5 Scenarios for Using Oracle Managed Files
	15.5.1 Scenario 1: Create and Manage a Database with Multiplexed Redo Logs
	15.5.2 Scenario 2: Create and Manage a Database with Database and Fast Recovery Areas
	15.5.3 Scenario 3: Adding Oracle Managed Files to an Existing Database

	16 Using Persistent Memory Database
	16.1 About Persistent Memory Database
	16.1.1 What Is Persistent Memory Database?
	16.1.2 What Is Oracle Persistent Memory Filestore?
	16.1.3 What Is Directly Mapped Buffer Cache?
	16.1.4 Benefits of Using Persistent Memory Database

	16.2 Setting Initialization Parameters for Persistent Memory Database
	16.2.1 Persistent Memory Database Initialization Parameters

	16.3 Creating a PMEM Filestore for an Oracle Database
	16.3.1 Creating a PMEM Filestore Before Creating the Database
	16.3.2 Creating a Database on PMEM Storage Using Oracle DBCA
	16.3.3 Creating an Oracle Database in the PMEM Filestore
	16.3.4 Migrating an Oracle Database to a PMEM Filestore

	16.4 Managing a PMEM Filestore
	16.4.1 Viewing Information About a PMEM Filestore
	16.4.2 Mounting a PMEM Filestore
	16.4.3 Dismounting a PMEM Filestore
	16.4.4 Changing the Attributes of a PMEM Filestore
	16.4.5 Dropping a PMEM Filestore

	Part III Schema Objects
	17 Managing Schema Objects
	17.1 About Common and Local Objects
	17.2 About the Container for Schema Objects
	17.3 Creating Multiple Tables and Views in a Single Operation
	17.4 Analyzing Tables, Indexes, and Clusters
	17.4.1 About Analyzing Tables, Indexes, and Clusters
	17.4.2 Using DBMS_STATS to Collect Table and Index Statistics
	17.4.3 Validating Tables, Indexes, Clusters, and Materialized Views
	17.4.4 Cross Validation of a Table and an Index with a Query
	17.4.5 Listing Chained Rows of Tables and Clusters
	17.4.5.1 Creating a CHAINED_ROWS Table
	17.4.5.2 Eliminating Migrated or Chained Rows in a Table

	17.5 Truncating Tables and Clusters
	17.5.1 Using DELETE to Truncate a Table
	17.5.2 Using DROP and CREATE to Truncate a Table
	17.5.3 Using TRUNCATE

	17.6 Enabling and Disabling Triggers
	17.6.1 About Enabling and Disabling Triggers
	17.6.2 Enabling Triggers
	17.6.3 Disabling Triggers

	17.7 Managing Integrity Constraints
	17.7.1 Integrity Constraint States
	17.7.1.1 About Integrity Constraint States
	17.7.1.2 About Disabling Constraints
	17.7.1.3 About Enabling Constraints
	17.7.1.4 About the Enable Novalidate Constraint State
	17.7.1.5 Efficient Use of Integrity Constraints: A Procedure

	17.7.2 Setting Integrity Constraints Upon Definition
	17.7.2.1 Disabling Constraints Upon Definition
	17.7.2.2 Enabling Constraints Upon Definition

	17.7.3 Modifying, Renaming, or Dropping Existing Integrity Constraints
	17.7.3.1 Disabling and Enabling Constraints
	17.7.3.2 Renaming Constraints
	17.7.3.3 Dropping Constraints

	17.7.4 Deferring Constraint Checks
	17.7.4.1 Set All Constraints Deferred
	17.7.4.2 Check the Commit (Optional)

	17.7.5 Reporting Constraint Exceptions
	17.7.6 Viewing Constraint Information

	17.8 Renaming Schema Objects
	17.9 Managing Object Dependencies
	17.9.1 About Object Dependencies and Object Invalidation
	17.9.2 Manually Recompiling Invalid Objects with DDL
	17.9.3 Manually Recompiling Invalid Objects with PL/SQL Package Procedures

	17.10 Managing Object Name Resolution
	17.11 Switching to a Different Schema
	17.12 Managing Editions
	17.12.1 About Editions and Edition-Based Redefinition
	17.12.2 DBA Tasks for Edition-Based Redefinition
	17.12.3 Setting the Database Default Edition
	17.12.4 Querying the Database Default Edition
	17.12.5 Setting the Edition Attribute of a Database Service
	17.12.5.1 About Setting the Edition Attribute of a Database Service
	17.12.5.2 Setting the Edition Attribute During Database Service Creation
	17.12.5.3 Setting the Edition Attribute of an Existing Database Service

	17.12.6 Using an Edition
	17.12.7 Editions Data Dictionary Views

	17.13 Displaying Information About Schema Objects
	17.13.1 Using a PL/SQL Package to Display Information About Schema Objects
	17.13.2 Schema Objects Data Dictionary Views
	17.13.2.1 Example 1: Displaying Schema Objects By Type
	17.13.2.2 Example 2: Displaying Dependencies of Views and Synonyms

	18 Managing Space for Schema Objects
	18.1 Managing Tablespace Alerts
	18.1.1 About Managing Tablespace Alerts
	18.1.2 Setting Alert Thresholds
	18.1.3 Viewing Alerts
	18.1.4 Limitations

	18.2 Managing Resumable Space Allocation
	18.2.1 Resumable Space Allocation Overview
	18.2.1.1 How Resumable Space Allocation Works
	18.2.1.2 What Operations are Resumable?
	18.2.1.3 What Errors are Correctable?
	18.2.1.4 Resumable Space Allocation and Distributed Operations
	18.2.1.5 Parallel Execution and Resumable Space Allocation

	18.2.2 Enabling and Disabling Resumable Space Allocation
	18.2.2.1 About Enabling and Disabling Resumable Space Allocation
	18.2.2.2 Setting the RESUMABLE_TIMEOUT Initialization Parameter
	18.2.2.3 Using ALTER SESSION to Enable and Disable Resumable Space Allocation
	18.2.2.3.1 Specifying a Timeout Interval
	18.2.2.3.2 Naming Resumable Statements

	18.2.3 Using a LOGON Trigger to Set Default Resumable Mode
	18.2.4 Detecting Suspended Statements
	18.2.4.1 Notifying Users: The AFTER SUSPEND System Event and Trigger
	18.2.4.2 Using Views to Obtain Information About Suspended Statements
	18.2.4.3 Using the DBMS_RESUMABLE Package

	18.2.5 Operation-Suspended Alert
	18.2.6 Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger

	18.3 Reclaiming Unused Space
	18.3.1 About Reclaimable Unused Space
	18.3.2 The Segment Advisor
	18.3.2.1 About the Segment Advisor
	18.3.2.2 Using the Segment Advisor
	18.3.2.3 Automatic Segment Advisor
	18.3.2.4 Running the Segment Advisor Manually
	18.3.2.4.1 Running the Segment Advisor Manually with Cloud Control
	18.3.2.4.2 Running the Segment Advisor Manually with PL/SQL

	18.3.2.5 Viewing Segment Advisor Results
	18.3.2.5.1 Viewing Segment Advisor Results with Cloud Control
	18.3.2.5.2 Viewing Segment Advisor Results by Querying the DBA_ADVISOR_* Views
	18.3.2.5.3 Viewing Segment Advisor Results with DBMS_SPACE.ASA_RECOMMENDATIONS

	18.3.2.6 Configuring the Automatic Segment Advisor
	18.3.2.7 Viewing Automatic Segment Advisor Information

	18.3.3 Shrinking Database Segments Online
	18.3.4 Deallocating Unused Space

	18.4 Dropping Unused Object Storage
	18.5 Understanding Space Usage of Data Types
	18.6 Displaying Information About Space Usage for Schema Objects
	18.6.1 Using PL/SQL Packages to Display Information About Schema Object Space Usage
	18.6.2 Schema Objects Space Usage Data Dictionary Views
	18.6.2.1 Example 1: Displaying Segment Information
	18.6.2.2 Example 2: Displaying Extent Information
	18.6.2.3 Example 3: Displaying the Free Space (Extents) in a Tablespace

	18.7 Capacity Planning for Database Objects
	18.7.1 Estimating the Space Use of a Table
	18.7.2 Estimating the Space Use of an Index
	18.7.3 Obtaining Object Growth Trends

	19 Managing Tables
	19.1 About Tables
	19.2 Guidelines for Managing Tables
	19.2.1 Design Tables Before Creating Them
	19.2.2 Specify the Type of Table to Create
	19.2.3 Specify the Location of Each Table
	19.2.4 Consider Parallelizing Table Creation
	19.2.5 Consider Using NOLOGGING When Creating Tables
	19.2.6 Consider Using Table Compression
	19.2.6.1 About Table Compression
	19.2.6.2 Examples Related to Table Compression
	19.2.6.3 Compression and Partitioned Tables
	19.2.6.4 Determining If a Table Is Compressed
	19.2.6.5 Determining Which Rows Are Compressed
	19.2.6.6 Changing the Compression Level
	19.2.6.7 Adding and Dropping Columns in Compressed Tables
	19.2.6.8 Exporting and Importing Hybrid Columnar Compression Tables
	19.2.6.9 Restoring a Hybrid Columnar Compression Table
	19.2.6.10 Notes and Restrictions for Compressed Tables
	19.2.6.11 Packing Compressed Tables

	19.2.7 Managing Table Compression Using Enterprise Manager Cloud Control
	19.2.7.1 Table Compression and Enterprise Manager Cloud Control
	19.2.7.2 Viewing the Compression Summary at the Database Level
	19.2.7.3 Viewing the Compression Summary at the Tablespace Level
	19.2.7.4 Estimating the Compression Ratio
	19.2.7.5 Compressing an Object
	19.2.7.6 Viewing Compression Advice
	19.2.7.7 Initiating Automatic Data Optimization on an Object

	19.2.8 Consider Using Segment-Level and Row-Level Compression Tiering
	19.2.9 Consider Using Attribute-Clustered Tables
	19.2.10 Consider Using Zone Maps
	19.2.11 Consider Storing Tables in the In-Memory Column Store
	19.2.12 Consider Using Invisible Columns
	19.2.12.1 Understand Invisible Columns
	19.2.12.2 Invisible Columns and Column Ordering

	19.2.13 Consider Encrypting Columns That Contain Sensitive Data
	19.2.14 Understand Deferred Segment Creation
	19.2.15 Materializing Segments
	19.2.16 Estimate Table Size and Plan Accordingly
	19.2.17 Restrictions to Consider When Creating Tables

	19.3 Creating Tables
	19.3.1 Example: Creating a Table
	19.3.2 Creating a Temporary Table
	19.3.2.1 Overview of Temporary Tables
	19.3.2.2 Considerations When Creating Temporary Tables
	19.3.2.3 Creating Global Temporary Tables
	19.3.2.3.1 About Creating Global Temporary Tables
	19.3.2.3.2 Examples: Creating a Global Temporary Table

	19.3.2.4 Creating Private Temporary Tables
	19.3.2.4.1 About Creating Private Temporary Tables
	19.3.2.4.2 Examples: Creating a Private Temporary Table

	19.3.3 Parallelizing Table Creation

	19.4 Loading Tables
	19.4.1 Methods for Loading Tables
	19.4.2 Improving INSERT Performance with Direct-Path INSERT
	19.4.2.1 About Direct-Path INSERT
	19.4.2.2 How Direct-Path INSERT Works
	19.4.2.2.1 Serial Direct-Path INSERT into Partitioned or Nonpartitioned Tables
	19.4.2.2.2 Parallel Direct-Path INSERT into Partitioned Tables
	19.4.2.2.3 Parallel Direct-Path INSERT into Nonpartitioned Tables

	19.4.2.3 Loading Data with Direct-Path INSERT
	19.4.2.3.1 Serial Mode Inserts with SQL Statements
	19.4.2.3.2 Parallel Mode Inserts with SQL Statements

	19.4.2.4 Logging Modes for Direct-Path INSERT
	19.4.2.4.1 Direct-Path INSERT with Logging
	19.4.2.4.2 Direct-Path INSERT without Logging

	19.4.2.5 Additional Considerations for Direct-Path INSERT
	19.4.2.5.1 Compressed Tables and Direct-Path INSERT
	19.4.2.5.2 Index Maintenance with Direct-Path INSERT
	19.4.2.5.3 Space Considerations with Direct-Path INSERT
	19.4.2.5.4 Locking Considerations with Direct-Path INSERT

	19.4.3 Using Conventional Inserts to Load Tables
	19.4.4 Avoiding Bulk INSERT Failures with DML Error Logging
	19.4.4.1 Inserting Data with DML Error Logging
	19.4.4.2 Error Logging Table Format
	19.4.4.3 Creating an Error Logging Table
	19.4.4.3.1 Creating an Error Logging Table Automatically
	19.4.4.3.2 Creating an Error Logging Table Manually

	19.4.4.4 Error Logging Restrictions and Caveats
	19.4.4.4.1 Space Considerations
	19.4.4.4.2 Security

	19.5 Optimizing the Performance of Bulk Updates
	19.6 Automatically Collecting Statistics on Tables
	19.7 Altering Tables
	19.7.1 Reasons for Using the ALTER TABLE Statement
	19.7.2 Altering Physical Attributes of a Table
	19.7.3 Moving a Table to a New Segment or Tablespace
	19.7.3.1 About Moving a Table to a New Segment or Tablespace
	19.7.3.2 Moving a Table
	19.7.3.3 Moving a Table Partition or Subpartition Online

	19.7.4 Manually Allocating Storage for a Table
	19.7.5 Modifying an Existing Column Definition
	19.7.6 Adding Table Columns
	19.7.7 Renaming Table Columns
	19.7.8 Dropping Table Columns
	19.7.8.1 Removing Columns from Tables
	19.7.8.2 Marking Columns Unused
	19.7.8.3 Removing Unused Columns
	19.7.8.4 Dropping Columns in Compressed Tables

	19.7.9 Placing a Table in Read-Only Mode

	19.8 Redefining Tables Online
	19.8.1 About Redefining Tables Online
	19.8.2 Features of Online Table Redefinition
	19.8.3 Privileges Required for the DBMS_REDEFINITION Package
	19.8.4 Restrictions for Online Redefinition of Tables
	19.8.5 Performing Online Redefinition with the REDEF_TABLE Procedure
	19.8.6 Redefining Tables Online with Multiple Procedures in DBMS_REDEFINITION
	19.8.6.1 Performing Online Redefinition with Multiple Procedures in DBMS_REDEFINITION
	19.8.6.2 Constructing a Column Mapping String
	19.8.6.3 Handling Virtual Private Database (VPD) Policies During Online Redefinition
	19.8.6.4 Creating Dependent Objects Automatically
	19.8.6.5 Creating Dependent Objects Manually

	19.8.7 Results of the Redefinition Process
	19.8.8 Performing Intermediate Synchronization
	19.8.9 Refreshing Dependent Materialized Views During Online Table Redefinition
	19.8.10 Monitoring Online Table Redefinition Progress
	19.8.11 Restarting Online Table Redefinition After a Failure
	19.8.12 Rolling Back Online Table Redefinition
	19.8.12.1 About Online Table Redefinition Rollback
	19.8.12.2 Performing Online Table Redefinition Rollback

	19.8.13 Terminating Online Table Redefinition and Cleaning Up After Errors
	19.8.14 Online Redefinition of One or More Partitions
	19.8.14.1 Rules for Online Redefinition of a Single Partition

	19.8.15 Online Table Redefinition Examples

	19.9 Researching and Reversing Erroneous Table Changes
	19.10 Recovering Tables Using Oracle Flashback Table
	19.11 Dropping Tables
	19.12 Using Flashback Drop and Managing the Recycle Bin
	19.12.1 What Is the Recycle Bin?
	19.12.2 Enabling and Disabling the Recycle Bin
	19.12.3 Viewing and Querying Objects in the Recycle Bin
	19.12.4 Purging Objects in the Recycle Bin
	19.12.5 Restoring Tables from the Recycle Bin

	19.13 Managing Index-Organized Tables
	19.13.1 What Are Index-Organized Tables?
	19.13.2 Creating Index-Organized Tables
	19.13.2.1 About Creating Index-Organized Tables
	19.13.2.2 Example: Creating an Index-Organized Table
	19.13.2.3 Restrictions for Index-Organized Tables
	19.13.2.4 Creating Index-Organized Tables That Contain Object Types
	19.13.2.5 Choosing and Monitoring a Threshold Value
	19.13.2.6 Using the INCLUDING Clause
	19.13.2.7 Parallelizing Index-Organized Table Creation
	19.13.2.8 Using Prefix Compression

	19.13.3 Maintaining Index-Organized Tables
	19.13.3.1 Altering Index-Organized Tables
	19.13.3.2 Moving (Rebuilding) Index-Organized Tables

	19.13.4 Creating Secondary Indexes on Index-Organized Tables
	19.13.4.1 About Secondary Indexes on Index-Organized Tables
	19.13.4.2 Creating a Secondary Index on an Index-Organized Table
	19.13.4.3 Maintaining Physical Guesses in Logical Rowids
	19.13.4.4 Specifying Bitmap Indexes on Index-Organized Tables

	19.13.5 Analyzing Index-Organized Tables
	19.13.5.1 Collecting Optimizer Statistics for Index-Organized Tables
	19.13.5.2 Validating the Structure of Index-Organized Tables

	19.13.6 Using the ORDER BY Clause with Index-Organized Tables
	19.13.7 Converting Index-Organized Tables to Regular Tables

	19.14 Managing Partitioned Tables
	19.15 Managing External Tables
	19.15.1 About External Tables
	19.15.2 Creating External Tables
	19.15.3 Altering External Tables
	19.15.4 Preprocessing External Tables
	19.15.5 Overriding Parameters for External Tables in a Query
	19.15.6 Using Inline External Tables
	19.15.7 Partitioning External Tables
	19.15.7.1 About Partitioning External Tables
	19.15.7.2 Restrictions for Partitioned External Tables
	19.15.7.3 Creating a Partitioned External Table
	19.15.7.4 Altering a Partitioned External Table

	19.15.8 Dropping External Tables
	19.15.9 System and Object Privileges for External Tables
	19.15.10 Using SQL*Loader for External Tables with Partition Values in File Paths

	19.16 Managing Hybrid Partitioned Tables
	19.17 Managing Immutable Tables
	19.17.1 About Immutable Tables
	19.17.2 Guidelines for Managing Immutable Tables
	19.17.2.1 Specify the Retention Period for the Immutable Table
	19.17.2.2 Specify the Retention Period for Rows in the Immutable Table
	19.17.2.3 Restrictions for Immutable Tables

	19.17.3 Creating Immutable Tables
	19.17.4 Altering Immutable Tables
	19.17.5 Adding and Dropping User Columns in Immutable Tables
	19.17.6 Creating Row Versions in Immutable Tables
	19.17.7 Deleting Rows from Immutable Tables
	19.17.8 Dropping Immutable Tables
	19.17.9 Immutable Tables Data Dictionary Views

	19.18 Managing Blockchain Tables
	19.18.1 About Blockchain Tables
	19.18.1.1 Benefits of Using Blockchain Tables
	19.18.1.2 Chaining Rows in Blockchain Tables
	19.18.1.3 Hidden Columns in Blockchain Tables

	19.18.2 Guidelines for Managing Blockchain Tables
	19.18.2.1 Specify the Retention Period for the Blockchain Table
	19.18.2.2 Specify the Retention Period for Rows in the Blockchain Table
	19.18.2.3 Exporting and Importing Blockchain Tables with Oracle Data Pump
	19.18.2.4 Restrictions for Blockchain Tables

	19.18.3 Creating Blockchain Tables
	19.18.4 Adding and Dropping User Columns in Blockchain Tables
	19.18.5 Creating Row Versions in Blockchain Tables
	19.18.6 Creating User Chains in Blockchain Tables
	19.18.7 Altering Blockchain Tables
	19.18.8 Adding Certificates Used to Sign Blockchain Table Rows
	19.18.9 Adding the Certificate of a Certificate Authority to the Database
	19.18.10 Deleting Certificates in Blockchain Tables
	19.18.11 Adding a User Signature to Blockchain Table Rows
	19.18.12 Allowing a Delegate to Sign Blockchain Table Rows
	19.18.13 Countersigning Blockchain Table Rows
	19.18.14 Validating Data in Blockchain Tables
	19.18.15 Verifying the Integrity of Blockchain Tables
	19.18.15.1 Generating a Signed Digest for Blockchain Tables
	19.18.15.2 Verifying Blockchain Table Rows Created in a Specified Time Period

	19.18.16 Deleting Rows from Blockchain Tables
	19.18.17 Dropping Blockchain Tables
	19.18.18 Setting the Table Retention Threshold
	19.18.19 Determining the Data Format for Row Content to Compute Row Hash
	19.18.20 Determining the Data Format to Compute Row Signature
	19.18.21 Displaying the Byte Values of Data in Blockchain Tables
	19.18.22 Creating a Regular Table with Blockchain History Log
	19.18.23 Blockchain Tables Data Dictionary Views

	19.19 Tables Data Dictionary Views

	20 Managing Indexes
	20.1 About Indexes
	20.2 Guidelines for Managing Indexes
	20.2.1 Create Indexes After Inserting Table Data
	20.2.2 Index the Correct Tables and Columns
	20.2.3 Order Index Columns for Performance
	20.2.4 Limit the Number of Indexes for Each Table
	20.2.5 Drop Indexes That Are No Longer Required
	20.2.6 Indexes and Deferred Segment Creation
	20.2.7 Estimate Index Size and Set Storage Parameters
	20.2.8 Specify the Tablespace for Each Index
	20.2.9 Consider Parallelizing Index Creation
	20.2.10 Consider Creating Indexes with NOLOGGING
	20.2.11 Understand When to Use Unusable or Invisible Indexes
	20.2.12 Understand When to Create Multiple Indexes on the Same Set of Columns
	20.2.13 Consider Costs and Benefits of Coalescing or Rebuilding Indexes
	20.2.14 Consider Cost Before Disabling or Dropping Constraints
	20.2.15 Consider Using the In-Memory Column Store to Reduce the Number of Indexes

	20.3 Creating Indexes
	20.3.1 Prerequisites for Creating Indexes
	20.3.2 Creating an Index Explicitly
	20.3.3 Creating a Unique Index Explicitly
	20.3.4 Creating an Index Associated with a Constraint
	20.3.4.1 About Creating an Index Associated with a Constraint
	20.3.4.2 Specifying Storage Options for an Index Associated with a Constraint
	20.3.4.3 Specifying the Index Associated with a Constraint

	20.3.5 Creating a Large Index
	20.3.6 Creating an Index Online
	20.3.7 Creating a Function-Based Index
	20.3.8 Creating a Compressed Index
	20.3.8.1 Creating an Index Using Prefix Compression
	20.3.8.2 Creating an Index Using Advanced Index Compression

	20.3.9 Creating an Unusable Index
	20.3.10 Creating an Invisible Index
	20.3.11 Creating Multiple Indexes on the Same Set of Columns
	20.3.12 Creating a Vector Index

	20.4 Altering Indexes
	20.4.1 About Altering Indexes
	20.4.2 Altering Storage Characteristics of an Index
	20.4.3 Rebuilding an Existing Index
	20.4.4 Making an Index Unusable
	20.4.5 Making an Index Invisible or Visible
	20.4.6 Renaming an Index
	20.4.7 Monitoring Index Usage

	20.5 Monitoring Space Use of Indexes
	20.6 Dropping Indexes
	20.7 Managing Automatic Indexes
	20.7.1 About Automatic Indexing
	20.7.2 How Automatic Indexing Works
	20.7.3 Configuring Automatic Indexing in an Oracle Database
	20.7.4 Generating Automatic Indexing Reports
	20.7.5 Views Containing the Automatic Indexing Information

	20.8 Indexes Data Dictionary Views

	21 Managing Clusters
	21.1 About Clusters
	21.2 Guidelines for Managing Clusters
	21.2.1 Choose Appropriate Tables for the Cluster
	21.2.2 Choose Appropriate Columns for the Cluster Key
	21.2.3 Specify the Space Required by an Average Cluster Key and Its Associated Rows
	21.2.4 Specify the Location of Each Cluster and Cluster Index Rows
	21.2.5 Estimate Cluster Size and Set Storage Parameters

	21.3 Creating Clusters and Objects That Use Them
	21.3.1 Creating Clusters
	21.3.2 Creating Clustered Tables
	21.3.3 Creating Cluster Indexes

	21.4 Altering Clusters and Objects That Use Them
	21.4.1 Altering Clusters
	21.4.2 Altering Clustered Tables
	21.4.3 Altering Cluster Indexes

	21.5 Dropping Clusters and Objects That Use Them
	21.5.1 Dropping Clusters
	21.5.2 Dropping Clustered Tables
	21.5.3 Dropping Cluster Indexes

	21.6 Clusters Data Dictionary Views

	22 Managing Hash Clusters
	22.1 About Hash Clusters
	22.2 When to Use Hash Clusters
	22.2.1 Situations Where Hashing Is Useful
	22.2.2 Situations Where Hashing Is Not Advantageous

	22.3 Creating Different Types of Hash Clusters
	22.3.1 Creating Hash Clusters
	22.3.2 Creating a Sorted Hash Cluster
	22.3.3 Creating Single-Table Hash Clusters
	22.3.4 Controlling Space Use Within a Hash Cluster
	22.3.4.1 Choosing the Key
	22.3.4.2 Setting HASH IS
	22.3.4.3 Setting SIZE
	22.3.4.4 Setting HASHKEYS
	22.3.4.5 Controlling Space in Hash Clusters
	22.3.4.5.1 Controlling Space in Hash Clusters: Example 1
	22.3.4.5.2 Controlling Space in Hash Clusters: Example 2

	22.3.5 Estimating Size Required by Hash Clusters

	22.4 Altering Hash Clusters
	22.5 Dropping Hash Clusters
	22.6 Hash Clusters Data Dictionary Views

	23 Managing Views, Sequences, and Synonyms
	23.1 Managing Views
	23.1.1 About Views
	23.1.2 Creating Views and Join Views
	23.1.2.1 Creating Views
	23.1.2.2 Creating Join Views
	23.1.2.3 Expansion of Defining Queries at View Creation Time
	23.1.2.4 Creating Views with Errors

	23.1.3 Replacing Views
	23.1.4 Using Views in Queries
	23.1.5 DML Statements and Join Views
	23.1.5.1 Updating a Join View
	23.1.5.2 Key-Preserved Tables
	23.1.5.3 Rules for DML Statements and Join Views
	23.1.5.3.1 UPDATE Statements and Join Views
	23.1.5.3.2 DELETE Statements and Join Views
	23.1.5.3.3 INSERT Statements and Join Views

	23.1.5.4 Updating Views That Involve Outer Joins
	23.1.5.5 Using the UPDATABLE_ COLUMNS Views

	23.1.6 Altering Views
	23.1.7 Dropping Views

	23.2 Managing Sequences
	23.2.1 About Sequences
	23.2.2 Creating Sequences
	23.2.3 Altering Sequences
	23.2.4 Using Sequences
	23.2.4.1 Referencing a Sequence
	23.2.4.1.1 Generating Sequence Numbers with NEXTVAL
	23.2.4.1.2 Using Sequence Numbers with CURRVAL
	23.2.4.1.3 Uses and Restrictions of NEXTVAL and CURRVAL

	23.2.4.2 Caching Sequence Numbers
	23.2.4.2.1 About Caching Sequence Numbers
	23.2.4.2.2 About Automatic Sizing of the Sequence Cache
	23.2.4.2.3 The Number of Entries in the Sequence Cache
	23.2.4.2.4 The Number of Values in Each Sequence Cache Entry

	23.2.4.3 Making a Sequence Scalable

	23.2.5 Dropping Sequences

	23.3 Managing Synonyms
	23.3.1 About Synonyms
	23.3.2 Creating Synonyms
	23.3.3 Using Synonyms in DML Statements
	23.3.4 Dropping Synonyms

	23.4 Views, Synonyms, and Sequences Data Dictionary Views

	24 Repairing Corrupted Data
	24.1 Options for Repairing Data Block Corruption
	24.2 About the DBMS_REPAIR Package
	24.2.1 DBMS_REPAIR Procedures
	24.2.2 Limitations and Restrictions for DBMS_REPAIR Procedures

	24.3 Using the DBMS_REPAIR Package
	24.3.1 Task 1: Detect and Report Corruptions
	24.3.1.1 About Detecting and Reporting Corruptions
	24.3.1.2 DBMS_REPAIR: Using the CHECK_OBJECT and ADMIN_TABLES Procedures
	24.3.1.3 DB_VERIFY: Performing an Offline Database Check
	24.3.1.4 ANALYZE: Reporting Corruption
	24.3.1.5 DB_BLOCK_CHECKING Initialization Parameter

	24.3.2 Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
	24.3.3 Task 3: Make Objects Usable
	24.3.3.1 Corruption Repair: Using the FIX_CORRUPT_BLOCKS and SKIP_CORRUPT_BLOCKS Procedures
	24.3.3.2 Implications When Skipping Corrupt Blocks

	24.3.4 Task 4: Repair Corruptions and Rebuild Lost Data
	24.3.4.1 Recover Data Using the DUMP_ORPHAN_KEYS Procedures
	24.3.4.2 Fix Segment Bitmaps Using the SEGMENT_FIX_STATUS Procedure

	24.4 DBMS_REPAIR Examples
	24.4.1 Examples: Building a Repair Table or Orphan Key Table
	24.4.1.1 About Repair Tables or Orphan Key Tables
	24.4.1.2 Example: Creating a Repair Table
	24.4.1.3 Example: Creating an Orphan Key Table

	24.4.2 Example: Detecting Corruption
	24.4.3 Example: Fixing Corrupt Blocks
	24.4.4 Example: Finding Index Entries Pointing to Corrupt Data Blocks
	24.4.5 Example: Skipping Corrupt Blocks

	Part IV Database Resource Management and Task Scheduling
	25 Managing Automated Database Maintenance Tasks
	25.1 About Automated Maintenance Tasks
	25.2 About Maintenance Windows
	25.3 Configuring Automated Maintenance Tasks
	25.3.1 Enabling and Disabling Maintenance Tasks for all Maintenance Windows
	25.3.2 Enabling and Disabling Maintenance Tasks for Specific Maintenance Windows

	25.4 Configuring Maintenance Windows
	25.4.1 Modifying a Maintenance Window
	25.4.2 Creating a New Maintenance Window
	25.4.3 Removing a Maintenance Window

	25.5 Configuring Resource Allocations for Automated Maintenance Tasks
	25.5.1 About Resource Allocations for Automated Maintenance Tasks
	25.5.2 Changing Resource Allocations for Automated Maintenance Tasks

	25.6 Automated Maintenance Tasks Reference
	25.6.1 Predefined Maintenance Windows
	25.6.2 Automated Maintenance Tasks Database Dictionary Views

	26 Managing Resources with Oracle Database Resource Manager
	26.1 About Oracle Database Resource Manager
	26.1.1 CDB and PDB Resource Management
	26.1.2 Purpose of Resource Management
	26.1.2.1 Purpose of Resource Management for a CDB
	26.1.2.2 Purpose of Resource Management for PDBs

	26.1.3 Consumer Groups, Plans, and Plan Directives
	26.1.3.1 About the Elements of Resource Manager
	26.1.3.2 About Resource Consumer Groups
	26.1.3.2.1 Consumer Groups for PDBs

	26.1.3.3 About Resource Plan Directives
	26.1.3.3.1 Resources Managed by the Resource Manager
	26.1.3.3.1.1 CPU
	26.1.3.3.1.1.1 Management Attributes
	26.1.3.3.1.1.2 Utilization Limit

	26.1.3.3.1.2 Exadata I/O
	26.1.3.3.1.3 Parallel Execution Servers
	26.1.3.3.1.3.1 Degree of Parallelism Limit
	26.1.3.3.1.3.2 Parallel Server Limit
	26.1.3.3.1.3.2.1 Managing Parallel Statement Queuing Using Parallel Server Limit

	26.1.3.3.1.3.3 Parallel Queue Timeout

	26.1.3.3.1.4 Program Global Area (PGA)
	26.1.3.3.1.5 Runaway Queries
	26.1.3.3.1.5.1 Automatic Consumer Group Switching
	26.1.3.3.1.5.2 Canceling SQL and Terminating Sessions
	26.1.3.3.1.5.3 Execution Time Limit

	26.1.3.3.1.6 Active Session Pool with Queuing
	26.1.3.3.1.7 Undo Pool
	26.1.3.3.1.8 Idle Time Limit

	26.1.3.3.2 Resource Plan Directives for PDBs
	26.1.3.3.3 Performance Profiles for PDBs

	26.1.3.4 About Resource Plans
	26.1.3.4.1 About CDB Resource Plans
	26.1.3.4.1.1 Shares for Allocating Resources to PDBs
	26.1.3.4.1.2 Utilization Limits for PDBs
	26.1.3.4.1.3 The Default Directive for PDBs

	26.1.3.4.2 About PDB Resource Plans
	26.1.3.4.2.1 CDB Resource Plan Requirements When Creating PDB Resource Plans
	26.1.3.4.2.2 PDB Resource Plan: Example

	26.1.3.4.3 Example: A Simple Resource Plan

	26.1.3.5 About Subplans
	26.1.3.5.1 Example: A Resource Plan with Subplans

	26.1.4 User Interface for PDB Resource Management
	26.1.4.1 About Resource Manager Administration Privileges
	26.1.4.2 DBMS_RESOURCE_MANAGER for CDBs and PDBs
	26.1.4.3 Initialization Parameters for PDB-Level Resources
	26.1.4.3.1 CPU-Related Initialization Parameters for PDBs
	26.1.4.3.2 Memory-Related Initialization Parameters for PDBs
	26.1.4.3.3 Session-Related Initialization Parameters for PDBs
	26.1.4.3.4 I/O-Related Initialization Parameters for PDBs

	26.2 Enabling Oracle Database Resource Manager and Switching Plans
	26.3 Assigning Sessions to Resource Consumer Groups
	26.3.1 Overview of Assigning Sessions to Resource Consumer Groups
	26.3.2 Assigning an Initial Resource Consumer Group
	26.3.3 Specifying Session-to-Consumer Group Mapping Rules
	26.3.3.1 About Session-to-Consumer Group Mapping Rules
	26.3.3.2 Creating Consumer Group Mapping Rules
	26.3.3.3 Modifying and Deleting Consumer Group Mapping Rules
	26.3.3.4 Creating Mapping Rule Priorities

	26.3.4 Switching Resource Consumer Groups
	26.3.4.1 Manually Switching Resource Consumer Groups
	26.3.4.1.1 About Manually Switching Resource Consumer Groups
	26.3.4.1.2 Switching a Single Session
	26.3.4.1.3 Switching All Sessions for a User

	26.3.4.2 Enabling Users or Applications to Manually Switch Consumer Groups

	26.3.5 Specifying Automatic Consumer Group Switching
	26.3.5.1 Specifying Automatic Switching with Mapping Rules
	26.3.5.2 Specifying Automatic Switching by Setting Resource Limits

	26.3.6 Granting and Revoking the Switch Privilege
	26.3.6.1 About Granting and Revoking the Switch Privilege
	26.3.6.2 Granting the Switch Privilege
	26.3.6.3 Revoking Switch Privileges

	26.4 Managing Resource Plans
	26.4.1 Managing CDB Resource Plans
	26.4.1.1 Creating a CDB Resource Plan for Managing PDBs
	26.4.1.2 Creating a CDB Resource Plan for Managing PDBs: Scenario
	26.4.1.3 Creating a CDB Resource Plan with PDB Performance Profiles
	26.4.1.4 Creating a CDB Resource Plan for PDB Performance Profiles: Scenario
	26.4.1.5 Enabling a CDB Resource Plan
	26.4.1.6 Modifying a CDB Resource Plan
	26.4.1.6.1 Updating a CDB Resource Plan
	26.4.1.6.2 Managing CDB Resource Plan Directives for a PDB
	26.4.1.6.2.1 Creating New CDB Resource Plan Directives for a PDB
	26.4.1.6.2.2 Updating CDB Resource Plan Directives for a PDB
	26.4.1.6.2.3 Deleting CDB Resource Plan Directives for a PDB

	26.4.1.6.3 Managing CDB Resource Plan Directives for a PDB Performance Profile
	26.4.1.6.3.1 Creating New CDB Resource Plan Directives for a PDB Performance Profile
	26.4.1.6.3.2 Updating CDB Resource Plan Directives for a PDB Performance Profile
	26.4.1.6.3.3 Deleting CDB Resource Plan Directives for a PDB Performance Profile

	26.4.1.6.4 Updating the Default Directive for PDBs in a CDB Resource Plan
	26.4.1.6.5 Updating the Default Directive for Maintenance Tasks in a CDB Resource Plan
	26.4.1.6.6 Deleting a CDB Resource Plan

	26.4.1.7 Disabling a CDB Resource Plan
	26.4.1.8 Viewing Information About Plans and Directives in a CDB
	26.4.1.8.1 Viewing CDB Resource Plans
	26.4.1.8.2 Viewing CDB Resource Plan Directives

	26.4.2 Managing PDB Resource Plans
	26.4.2.1 Creating a PDB Resource Plan
	26.4.2.2 Enabling a PDB Resource Plan
	26.4.2.3 Modifying a PDB Resource Plan
	26.4.2.4 Disabling a PDB Resource Plan

	26.4.3 Creating a Simple Resource Plan
	26.4.4 Creating a Complex Resource Plan
	26.4.4.1 About the Pending Area
	26.4.4.2 Creating a Pending Area
	26.4.4.3 Creating Resource Consumer Groups
	26.4.4.4 Mapping Sessions to Consumer Groups
	26.4.4.5 Creating a Resource Plan
	26.4.4.5.1 About the RATIO CPU Allocation Method

	26.4.4.6 Creating Resource Plan Directives
	26.4.4.6.1 Conflicting Resource Plan Directives

	26.4.4.7 Validating the Pending Area
	26.4.4.8 Submitting the Pending Area
	26.4.4.9 Clearing the Pending Area

	26.5 Putting It All Together: Oracle Database Resource Manager Examples
	26.5.1 Multilevel Plan Example
	26.5.2 Examples of Using the Utilization Limit Attribute
	26.5.3 Example of Using Several Resource Allocation Methods
	26.5.4 Example of Managing Parallel Statements Using Directive Attributes
	26.5.5 An Oracle-Supplied Mixed Workload Plan

	26.6 Managing Multiple Database Instances on a Single Server
	26.6.1 About Instance Caging
	26.6.2 Enabling Instance Caging

	26.7 Maintaining Consumer Groups, Plans, and Directives
	26.7.1 Updating a Consumer Group
	26.7.2 Deleting a Consumer Group
	26.7.3 Updating a Plan
	26.7.4 Deleting a Plan
	26.7.5 Updating a Resource Plan Directive
	26.7.6 Deleting a Resource Plan Directive

	26.8 Viewing Database Resource Manager Configuration and Status
	26.8.1 About Resource Manager Views
	26.8.2 Viewing Consumer Groups Granted to Users or Roles
	26.8.3 Viewing Plan Information
	26.8.4 Viewing Current Consumer Groups for Sessions
	26.8.5 Viewing the Currently Active Plans
	26.8.6 Monitoring PDBs Managed by Oracle Database Resource Manager
	26.8.6.1 About Resource Manager Views for PDBs
	26.8.6.2 Monitoring CPU Usage for PDBs
	26.8.6.3 Monitoring Parallel Execution for PDBs
	26.8.6.4 Monitoring the I/O Generated by PDBs
	26.8.6.5 Monitoring Memory Usage for PDBs

	26.9 Interacting with Operating-System Resource Control
	26.9.1 Guidelines for Using Operating-System Resource Control

	26.10 Oracle Database Resource Manager Reference
	26.10.1 Predefined Resource Plans and Consumer Groups
	26.10.2 Predefined Consumer Group Mapping Rules
	26.10.3 Resource Manager Data Dictionary Views

	26.11 Operating System CPU Resource Management

	27 Oracle Scheduler Concepts
	27.1 Overview of Oracle Scheduler
	27.2 Jobs and Supporting Scheduler Objects
	27.2.1 About Jobs and Supporting Scheduler Objects
	27.2.2 Programs
	27.2.3 Schedules
	27.2.4 Jobs
	27.2.4.1 About Jobs
	27.2.4.2 Specifying a Job Action
	27.2.4.3 Specifying a Job Schedule
	27.2.4.4 Specifying a Job Destination
	27.2.4.5 Specifying a Job Credential

	27.2.5 Destinations
	27.2.5.1 About Destinations
	27.2.5.2 About Destinations and Scheduler Agents
	27.2.5.2.1 External Destinations
	27.2.5.2.2 Database Destinations

	27.2.6 File Watchers
	27.2.7 Credentials
	27.2.8 Chains
	27.2.9 Job Classes
	27.2.10 Windows
	27.2.10.1 About Windows
	27.2.10.2 Overlapping Windows
	27.2.10.2.1 Examples of Overlapping Windows

	27.2.11 Groups
	27.2.11.1 About Groups
	27.2.11.2 Destination Groups
	27.2.11.3 Window Groups

	27.2.12 Incompatibilities

	27.3 More About Jobs
	27.3.1 Job Categories
	27.3.1.1 Database Jobs
	27.3.1.1.1 About Database Jobs
	27.3.1.1.2 Local Database Jobs
	27.3.1.1.3 Remote Database Job

	27.3.1.2 External Jobs
	27.3.1.2.1 About External Jobs
	27.3.1.2.2 About Local External Jobs
	27.3.1.2.3 About Remote External Jobs

	27.3.1.3 Multiple-Destination Jobs
	27.3.1.4 Chain Jobs
	27.3.1.5 Detached Jobs
	27.3.1.6 Lightweight Jobs
	27.3.1.7 In-Memory Jobs
	27.3.1.8 Script Jobs

	27.3.2 Job Instances
	27.3.3 Job Arguments
	27.3.4 How Programs, Jobs, and Schedules are Related

	27.4 Scheduler Architecture
	27.4.1 Scheduler Components
	27.4.2 The Job Table
	27.4.3 The Job Coordinator
	27.4.3.1 About The Job Coordinator
	27.4.3.2 Job Coordinator Actions
	27.4.3.3 Maximum Number of Scheduler Job Processes

	27.4.4 How Jobs Execute
	27.4.5 After Jobs Complete
	27.4.6 Using the Scheduler in Real Application Clusters Environments
	27.4.6.1 The Scheduler and Real Application Clusters
	27.4.6.2 Service Affinity when Using the Scheduler

	27.5 Processes to Close a PDB
	27.6 Scheduler Support for Oracle Data Guard

	28 Scheduling Jobs with Oracle Scheduler
	28.1 About Scheduler Objects and Their Naming
	28.2 Creating, Running, and Managing Jobs
	28.2.1 Job Tasks and Their Procedures
	28.2.2 Creating Jobs
	28.2.2.1 Overview of Creating Jobs
	28.2.2.2 Specifying Job Actions, Schedules, Programs, and Styles
	28.2.2.2.1 Creating Jobs Using a Named Program
	28.2.2.2.2 Creating Jobs Using a Named Program and Job Styles
	28.2.2.2.3 Creating Jobs Using a Named Schedule
	28.2.2.2.4 Creating Jobs Using Named Programs and Schedules

	28.2.2.3 Specifying Scheduler Job Credentials
	28.2.2.4 Specifying Destinations
	28.2.2.4.1 Destination Tasks and Their Procedures
	28.2.2.4.2 Creating Destinations
	28.2.2.4.3 Creating Destination Groups for Multiple-Destination Jobs
	28.2.2.4.4 Example: Creating a Remote Database Job

	28.2.2.5 Creating Multiple-Destination Jobs
	28.2.2.6 Setting Job Arguments
	28.2.2.7 Setting Additional Job Attributes
	28.2.2.8 Creating Detached Jobs
	28.2.2.9 Creating Multiple Jobs in a Single Transaction
	28.2.2.10 Techniques for External Jobs

	28.2.3 Altering Jobs
	28.2.4 Running Jobs
	28.2.5 Stopping Jobs
	28.2.6 Stopping External Jobs
	28.2.7 Stopping a Chain Job
	28.2.8 Dropping Jobs
	28.2.9 Dropping Running Jobs
	28.2.10 Dropping Multiple Jobs
	28.2.11 Disabling Jobs
	28.2.12 Enabling Jobs
	28.2.13 Copying Jobs

	28.3 Creating and Managing Programs to Define Jobs
	28.3.1 Program Tasks and Their Procedures
	28.3.2 Creating Programs with Scheduler
	28.3.2.1 Creating Programs
	28.3.2.2 Defining Program Arguments

	28.3.3 Altering Programs
	28.3.4 Dropping Programs
	28.3.5 Disabling Programs
	28.3.6 Enabling Programs

	28.4 Creating and Managing Schedules to Define Jobs
	28.4.1 Schedule Tasks and Their Procedures
	28.4.2 Creating Schedules
	28.4.3 Altering Schedules
	28.4.4 Dropping Schedules
	28.4.5 Setting the Repeat Interval
	28.4.5.1 About Setting the Repeat Interval
	28.4.5.2 Using the Scheduler Calendaring Syntax
	28.4.5.3 Using a PL/SQL Expression
	28.4.5.4 Differences Between PL/SQL Expression and Calendaring Syntax Behavior
	28.4.5.5 Repeat Intervals and Daylight Savings

	28.5 Using Events to Start Jobs
	28.5.1 About Events
	28.5.2 Starting Jobs with Events Raised by Your Application
	28.5.2.1 About Events Raised by Your Application
	28.5.2.2 Creating an Event-Based Job
	28.5.2.2.1 Specifying Event Information as Job Attributes
	28.5.2.2.2 Specifying Event Information in an Event Schedule

	28.5.2.3 Altering an Event-Based Job
	28.5.2.4 Creating an Event Schedule
	28.5.2.5 Altering an Event Schedule
	28.5.2.6 Passing Event Messages into an Event-Based Job

	28.5.3 Starting a Job When a File Arrives on a System
	28.5.3.1 About File Watchers
	28.5.3.2 Enabling File Arrival Events from Remote Systems
	28.5.3.3 Creating File Watchers and File Watcher Jobs
	28.5.3.4 File Arrival Example
	28.5.3.5 Managing File Watchers
	28.5.3.5.1 Enabling File Watchers
	28.5.3.5.2 Altering File Watchers
	28.5.3.5.3 Disabling and Dropping File Watchers
	28.5.3.5.4 Changing the File Arrival Detection Interval

	28.5.3.6 Viewing File Watcher Information

	28.6 Creating and Managing Job Chains
	28.6.1 About Creating and Managing Job Chains
	28.6.2 Chain Tasks and Their Procedures
	28.6.3 Creating Chains
	28.6.4 Defining Chain Steps
	28.6.5 Adding Rules to a Chain
	28.6.6 Setting an Evaluation Interval for Chain Rules
	28.6.7 Enabling Chains
	28.6.8 Creating Jobs for Chains
	28.6.9 Dropping Chains
	28.6.10 Running Chains
	28.6.11 Dropping Chain Rules
	28.6.12 Disabling Chains
	28.6.13 Dropping Chain Steps
	28.6.14 Stopping Chains
	28.6.15 Stopping Individual Chain Steps
	28.6.16 Pausing Chains
	28.6.17 Skipping Chain Steps
	28.6.18 Running Part of a Chain
	28.6.19 Monitoring Running Chains
	28.6.20 Handling Stalled Chains

	28.7 Using Incompatibility Definitions
	28.7.1 Creating a Job or Program Incompatibility
	28.7.2 Adding a Job or Program to an Incompatibility
	28.7.3 Removing a Job or Program from an Incompatibility
	28.7.4 Dropping an Incompatibility

	28.8 Managing Job Resources
	28.8.1 Creating or Dropping a Resource
	28.8.2 Altering a Resource
	28.8.3 Setting a Resource Constraint for a Job

	28.9 Prioritizing Jobs
	28.9.1 Managing Job Priorities with Job Classes
	28.9.1.1 Job Class Tasks and Their Procedures
	28.9.1.2 Creating Job Classes
	28.9.1.3 Altering Job Classes
	28.9.1.4 Dropping Job Classes

	28.9.2 Setting Relative Job Priorities Within a Job Class
	28.9.3 Managing Job Scheduling and Job Priorities with Windows
	28.9.3.1 About Job Scheduling and Job Priorities with Windows
	28.9.3.2 Window Tasks and Their Procedures
	28.9.3.3 Creating Windows
	28.9.3.4 Altering Windows
	28.9.3.5 Opening Windows
	28.9.3.6 Closing Windows
	28.9.3.7 Dropping Windows
	28.9.3.8 Disabling Windows
	28.9.3.9 Enabling Windows

	28.9.4 Managing Job Scheduling and Job Priorities with Window Groups
	28.9.4.1 Window Group Tasks and Their Procedures
	28.9.4.2 Creating Window Groups
	28.9.4.3 Dropping Window Groups
	28.9.4.4 Adding a Member to a Window Group
	28.9.4.5 Removing a Member from a Window Group
	28.9.4.6 Enabling a Window Group
	28.9.4.7 Disabling a Window Group

	28.9.5 Allocating Resources Among Jobs Using Resource Manager
	28.9.6 Example of Resource Allocation for Jobs

	28.10 Monitoring Jobs
	28.10.1 About Monitoring Jobs
	28.10.2 The Job Log
	28.10.2.1 Viewing the Job Log
	28.10.2.2 Run Details
	28.10.2.3 Precedence of Logging Levels in Jobs and Job Classes

	28.10.3 Monitoring Multiple Destination Jobs
	28.10.4 Monitoring Job State with Events Raised by the Scheduler
	28.10.4.1 About Job State Events
	28.10.4.2 Altering a Job to Raise Job State Events
	28.10.4.3 Consuming Job State Events with your Application
	Scheduler Event Queue

	28.10.5 Monitoring Job State with E-mail Notifications
	28.10.5.1 About E-mail Notifications
	28.10.5.2 Adding E-mail Notifications for a Job
	28.10.5.3 Removing E-mail Notifications for a Job
	28.10.5.4 Viewing Information About E-mail Notifications

	29 Administering Oracle Scheduler
	29.1 Configuring Oracle Scheduler
	29.1.1 Setting Oracle Scheduler Privileges
	29.1.2 Setting Scheduler Preferences
	29.1.3 Using the Oracle Scheduler Agent to Run Remote Jobs
	29.1.3.1 Enabling and Disabling Databases for Remote Jobs
	29.1.3.1.1 Setting up Databases for Remote Jobs
	29.1.3.1.2 Disabling Remote Jobs

	29.1.3.2 Installing and Configuring the Scheduler Agent on a Remote Host
	29.1.3.3 Performing Tasks with the Scheduler Agent
	29.1.3.3.1 About the schagent Utility
	29.1.3.3.2 Using the Scheduler Agent on Windows
	29.1.3.3.3 Starting the Scheduler Agent
	29.1.3.3.4 Stopping the Scheduler Agent
	29.1.3.3.5 Registering Scheduler Agents with Databases

	29.2 Monitoring and Managing the Scheduler
	29.2.1 Viewing the Currently Active Window and Resource Plan
	29.2.2 Finding Information About Currently Running Jobs
	29.2.3 Monitoring and Managing Window and Job Logs
	29.2.3.1 Job Log
	29.2.3.2 Window Log
	29.2.3.3 Purging Logs

	29.2.4 DBMS_SCHEDULER In-Memory Trace
	29.2.5 Managing Scheduler Security

	29.3 Import/Export and the Scheduler
	29.4 Troubleshooting the Scheduler
	29.4.1 A Job Does Not Run
	29.4.1.1 About Job States
	29.4.1.1.1 Failed Jobs
	29.4.1.1.2 Broken Jobs
	29.4.1.1.3 Disabled Jobs
	29.4.1.1.4 Completed Jobs

	29.4.1.2 Viewing the Job Log
	29.4.1.3 Troubleshooting Remote Jobs
	29.4.1.4 About Job Recovery After a Failure

	29.4.2 A Program Becomes Disabled
	29.4.3 A Window Fails to Take Effect

	29.5 Examples of Using the Scheduler
	29.5.1 Examples of Creating Job Classes
	29.5.2 Examples of Setting Attributes
	29.5.3 Examples of Creating Chains
	29.5.4 Examples of Creating Jobs and Schedules Based on Events
	29.5.5 Example of Creating a Job In an Oracle Data Guard Environment

	29.6 Scheduler Reference
	29.6.1 Scheduler Privileges
	29.6.2 Scheduler Data Dictionary Views

	30 Managing Transactions
	30.1 Priority Transactions
	30.1.1 Using Priority Transactions
	30.1.1.1 Setting Transaction Priority
	30.1.1.2 Setting System-Level Wait Targets
	30.1.1.3 Acknowledging the Automatic Rollback
	30.1.1.4 Setting Priority Transaction Mode
	30.1.1.5 Using Priority Transaction Mode to Determine System-Level Wait Targets

	30.1.2 Monitoring Priority Transactions
	30.1.2.1 Statistics Incremented in ROLLBACK Mode
	30.1.2.2 Statistics Incremented in TRACK Mode

	30.1.3 Priority Transaction Behavior
	30.1.3.1 Behavior of Priority Transactions for Distributed Transactions
	30.1.3.2 Behavior for XA Transactions

	30.1.4 Priority Transaction Restrictions

	30.2 Automatic Transaction Quarantine
	30.2.1 Monitoring Quarantined Transactions
	30.2.2 Resolving Quarantined Transactions
	30.2.3 Dropping Quarantined Transactions
	30.2.4 Transaction Quarantine Escalation

	Part V Distributed Database Management
	31 Distributed Database Concepts
	31.1 Distributed Database Architecture
	31.1.1 Homogenous Distributed Database Systems
	31.1.1.1 About Homogenous Distributed Database Systems
	31.1.1.2 Distributed Databases Versus Distributed Processing
	31.1.1.3 Distributed Databases Versus Replicated Databases

	31.1.2 Heterogeneous Distributed Database Systems
	31.1.2.1 About Heterogeneous Distributed Database Systems
	31.1.2.2 Heterogeneous Services
	31.1.2.3 Transparent Gateway Agents
	31.1.2.4 Generic Connectivity

	31.1.3 Client/Server Database Architecture

	31.2 Database Links
	31.2.1 What Are Database Links?
	31.2.2 What Are Shared Database Links?
	31.2.3 Why Use Database Links?
	31.2.4 Global Database Names in Database Links
	31.2.5 Global Name as a Loopback Database Link
	31.2.6 Names for Database Links
	31.2.7 Types of Database Links
	31.2.8 Users of Database Links
	31.2.8.1 Overview of Database Link Users
	31.2.8.2 Connected User Database Links
	31.2.8.3 Fixed User Database Links
	31.2.8.4 Current User Database Links

	31.2.9 Creation of Database Links: Examples
	31.2.10 Schema Objects and Database Links
	31.2.10.1 Naming of Schema Objects Using Database Links
	31.2.10.2 Authorization for Accessing Remote Schema Objects
	31.2.10.3 Synonyms for Schema Objects
	31.2.10.4 Schema Object Name Resolution

	31.2.11 Database Link Restrictions

	31.3 Distributed Database Administration
	31.3.1 Site Autonomy
	31.3.2 Distributed Database Security
	31.3.2.1 Authentication Through Database Links
	31.3.2.2 Authentication Without Passwords
	31.3.2.3 Supporting User Accounts and Roles
	31.3.2.4 Centralized User and Privilege Management
	31.3.2.4.1 About Centralized User and Privilege Management
	31.3.2.4.2 Exclusively Mapped Global Users
	31.3.2.4.3 Shared Schema Users

	31.3.2.5 Data Encryption

	31.3.3 Auditing Database Links
	31.3.4 Administration Tools
	31.3.4.1 Cloud Control and Distributed Databases
	31.3.4.2 Third-Party Administration Tools
	31.3.4.3 SNMP Support

	31.4 Transaction Processing in a Distributed System
	31.4.1 Remote SQL Statements
	31.4.2 Distributed SQL Statements
	31.4.3 Shared SQL for Remote and Distributed Statements
	31.4.4 Remote Transactions
	31.4.5 Distributed Transactions
	31.4.6 Two-Phase Commit Mechanism
	31.4.7 Database Link Name Resolution
	31.4.7.1 About Database Link Name Resolution
	31.4.7.2 Name Resolution When the Global Database Name Is Complete
	31.4.7.3 Name Resolution When the Global Database Name Is Partial
	31.4.7.4 Name Resolution When No Global Database Name Is Specified
	31.4.7.5 Terminating the Search for Name Resolution

	31.4.8 Schema Object Name Resolution
	31.4.8.1 About Schema Object Name Resolution
	31.4.8.2 Example of Global Object Name Resolution: Complete Object Name
	31.4.8.3 Example of Global Object Name Resolution: Partial Object Name

	31.4.9 Global Name Resolution in Views, Synonyms, and Procedures
	31.4.9.1 About Global Name Resolution in Views, Synonyms, and Procedures
	31.4.9.2 What Happens When Global Names Change
	31.4.9.3 Scenarios for Global Name Changes
	31.4.9.3.1 Scenario 1: Both Databases Change Names
	31.4.9.3.2 Scenario 2: One Database Changes Names

	31.5 Distributed Database Application Development
	31.5.1 Transparency in a Distributed Database System
	31.5.1.1 Location Transparency
	31.5.1.2 SQL and COMMIT Transparency

	31.5.2 PL/SQL and Remote Procedure Calls (RPCs)
	31.5.3 Distributed Query Optimization

	31.6 Character Set Support for Distributed Environments
	31.6.1 About Character Set Support for Distributed Environments
	31.6.2 Client/Server Environment
	31.6.3 Homogeneous Distributed Environment
	31.6.4 Heterogeneous Distributed Environment

	32 Managing a Distributed Database
	32.1 Managing Global Names in a Distributed System
	32.1.1 Understanding How Global Database Names Are Formed
	32.1.2 Determining Whether Global Naming Is Enforced
	32.1.3 Viewing a Global Database Name
	32.1.4 Changing the Domain in a Global Database Name
	32.1.5 Changing a Global Database Name: Scenario

	32.2 Creating Database Links
	32.2.1 Obtaining Privileges Necessary for Creating Database Links
	32.2.2 Specifying Link Types
	32.2.2.1 Creating Private Database Links
	32.2.2.2 Creating Public Database Links
	32.2.2.3 Creating Global Database Links

	32.2.3 Specifying Link Users
	32.2.3.1 Creating Fixed User Database Links
	32.2.3.2 Creating Connected User and Current User Database Links
	32.2.3.2.1 Creating a Connected User Database Link
	32.2.3.2.2 Creating a Current User Database Link

	32.2.4 Using Connection Qualifiers to Specify Service Names Within Link Names

	32.3 Using Shared Database Links
	32.3.1 Determining Whether to Use Shared Database Links
	32.3.2 Creating Shared Database Links
	32.3.3 Configuring Shared Database Links
	32.3.3.1 Creating Shared Links to Dedicated Servers
	32.3.3.2 Creating Shared Links to Shared Servers

	32.4 Managing Database Links
	32.4.1 Closing Database Links
	32.4.2 Dropping Database Links
	32.4.2.1 Dropping a Private Database Link
	32.4.2.2 Dropping a Public Database Link

	32.4.3 Limiting the Number of Active Database Link Connections

	32.5 Viewing Information About Database Links
	32.5.1 Determining Which Links Are in the Database
	32.5.2 Determining Which Link Connections Are Open
	32.5.3 Determining the Host of Outgoing Database Links
	32.5.4 Determining Information About Incoming Database Links
	32.5.5 Determining the Source of High SCN Activity for Incoming Database Links

	32.6 Creating Location Transparency
	32.6.1 Using Views to Create Location Transparency
	32.6.2 Using Synonyms to Create Location Transparency
	32.6.2.1 Creating Synonyms
	32.6.2.2 Managing Privileges and Synonyms

	32.6.3 Using Procedures to Create Location Transparency
	32.6.3.1 Using Local Procedures to Reference Remote Data
	32.6.3.2 Using Local Procedures to Call Remote Procedures
	32.6.3.3 Using Local Synonyms to Reference Remote Procedures
	32.6.3.4 Managing Procedures and Privileges

	32.7 Managing Statement Transparency
	32.8 Managing a Distributed Database: Examples
	32.8.1 Example 1: Creating a Public Fixed User Database Link
	32.8.2 Example 2: Creating a Public Fixed User Shared Database Link
	32.8.3 Example 3: Creating a Public Connected User Database Link
	32.8.4 Example 4: Creating a Public Connected User Shared Database Link
	32.8.5 Example 5: Creating a Public Current User Database Link

	33 Developing Applications for a Distributed Database System
	33.1 Managing the Distribution of Application Data
	33.2 Controlling Connections Established by Database Links
	33.3 Maintaining Referential Integrity in a Distributed System
	33.4 Tuning Distributed Queries
	33.4.1 Using Collocated Inline Views
	33.4.2 Using Cost-Based Optimization
	33.4.2.1 How Does Cost-Based Optimization Work?
	33.4.2.2 Rewriting Queries for Cost-Based Optimization
	33.4.2.3 Setting Up Cost-Based Optimization
	33.4.2.3.1 Setting Up the Environment
	33.4.2.3.2 Analyzing Tables

	33.4.3 Using Hints
	33.4.3.1 About Using Hints
	33.4.3.2 Using the NO_MERGE Hint
	33.4.3.3 Using the DRIVING_SITE Hint

	33.4.4 Analyzing the Execution Plan
	33.4.4.1 Generating the Execution Plan
	33.4.4.2 Viewing the Execution Plan

	33.5 Handling Errors in Remote Procedures

	34 Distributed Transactions Concepts
	34.1 What Are Distributed Transactions?
	34.1.1 DML and DDL Transactions
	34.1.2 Transaction Control Statements

	34.2 Session Trees for Distributed Transactions
	34.2.1 About Session Trees for Distributed Transactions
	34.2.2 Clients
	34.2.3 Database Servers
	34.2.4 Local Coordinators
	34.2.5 Global Coordinator
	34.2.6 Commit Point Site
	34.2.6.1 About the Commit Point Site
	34.2.6.2 How a Distributed Transaction Commits
	34.2.6.3 Commit Point Strength

	34.3 Two-Phase Commit Mechanism
	34.3.1 About the Two-Phase Commit Mechanism
	34.3.2 Prepare Phase
	34.3.2.1 About Prepare Phase
	34.3.2.2 Types of Responses in the Prepare Phase
	34.3.2.2.1 Prepared Response
	34.3.2.2.2 Read-Only Response
	34.3.2.2.3 Abort Response

	34.3.2.3 Steps in the Prepare Phase

	34.3.3 Commit Phase
	34.3.3.1 Steps in the Commit Phase
	34.3.3.2 Guaranteeing Global Database Consistency

	34.3.4 Forget Phase

	34.4 In-Doubt Transactions
	34.4.1 About In-Doubt Transactions
	34.4.2 Automatic Resolution of In-Doubt Transactions
	34.4.2.1 Failure During the Prepare Phase
	34.4.2.2 Failure During the Commit Phase

	34.4.3 Manual Resolution of In-Doubt Transactions
	34.4.4 Relevance of System Change Numbers for In-Doubt Transactions

	34.5 Distributed Transaction Processing: Case Study
	34.5.1 About the Distributed Transaction Processing Case Study
	34.5.2 Stage 1: Client Application Issues DML Statements
	34.5.3 Stage 2: Oracle Database Determines Commit Point Site
	34.5.4 Stage 3: Global Coordinator Sends Prepare Response
	34.5.5 Stage 4: Commit Point Site Commits
	34.5.6 Stage 5: Commit Point Site Informs Global Coordinator of Commit
	34.5.7 Stage 6: Global and Local Coordinators Tell All Nodes to Commit
	34.5.8 Stage 7: Global Coordinator and Commit Point Site Complete the Commit

	35 Managing Distributed Transactions
	35.1 Specifying the Commit Point Strength of a Node
	35.2 Naming Transactions
	35.3 Viewing Information About Distributed Transactions
	35.3.1 Determining the ID Number and Status of Prepared Transactions
	35.3.2 Tracing the Session Tree of In-Doubt Transactions

	35.4 Deciding How to Handle In-Doubt Transactions
	35.4.1 Discovering Problems with a Two-Phase Commit
	35.4.2 Determining Whether to Perform a Manual Override
	35.4.3 Analyzing the Transaction Data
	35.4.3.1 Find a Node that Committed or Rolled Back
	35.4.3.2 Look for Transaction Comments
	35.4.3.3 Look for Transaction Advice

	35.5 Manually Overriding In-Doubt Transactions
	35.5.1 Manually Committing an In-Doubt Transaction
	35.5.1.1 Privileges Required to Commit an In-Doubt Transaction
	35.5.1.2 Committing Using Only the Transaction ID
	35.5.1.3 Committing Using an SCN

	35.5.2 Manually Rolling Back an In-Doubt Transaction

	35.6 Purging Pending Rows from the Data Dictionary
	35.6.1 About Purging Pending Rows from the Data Dictionary
	35.6.2 Executing the PURGE_LOST_DB_ENTRY Procedure
	35.6.3 Determining When to Use DBMS_TRANSACTION

	35.7 Manually Committing an In-Doubt Transaction: Example
	35.7.1 Step 1: Record User Feedback
	35.7.2 Step 2: Query DBA_2PC_PENDING
	35.7.2.1 Determining the Global Transaction ID
	35.7.2.2 Determining the State of the Transaction
	35.7.2.3 Looking for Comments or Advice

	35.7.3 Step 3: Query DBA_2PC_NEIGHBORS on Local Node
	35.7.3.1 Obtaining Database Role and Database Link Information
	35.7.3.2 Determining the Commit Point Site

	35.7.4 Step 4: Querying Data Dictionary Views on All Nodes
	35.7.4.1 Checking the Status of Pending Transactions at sales
	35.7.4.2 Determining the Coordinators and Commit Point Site at sales
	35.7.4.3 Checking the Status of Pending Transactions at HQ

	35.7.5 Step 5: Commit the In-Doubt Transaction
	35.7.6 Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING

	35.8 Data Access Failures Due to Locks
	35.8.1 Transaction Timeouts
	35.8.2 Locks from In-Doubt Transactions

	35.9 Simulating Distributed Transaction Failure
	35.9.1 Forcing a Distributed Transaction to Fail
	35.9.2 Disabling and Enabling RECO

	35.10 Managing Read Consistency
	35.11 Enhancing Distributed Transaction Security

	Part VI Managing Read-Only Materialized Views
	36 Read-Only Materialized View Concepts
	36.1 Replication Databases
	36.2 Read-Only Materialized Views
	36.3 The Uses of Materialized Views
	36.3.1 Ease Network Loads
	36.3.2 Enable Data Subsetting
	36.3.3 Enable Disconnected Computing

	36.4 Available Materialized Views
	36.4.1 About the Available Materialized Views
	36.4.2 Primary Key Materialized Views
	36.4.3 Object Materialized Views
	36.4.4 ROWID Materialized Views
	36.4.5 Complex Materialized Views
	36.4.5.1 About Complex Materialized Views
	36.4.5.2 A Comparison of Simple and Complex Materialized Views

	36.5 Users and Privileges Related to Materialized Views
	36.5.1 Required Privileges for Materialized View Operations
	36.5.2 Creator Is Owner
	36.5.3 Creator Is Not Owner
	36.5.4 Refresher Is Owner
	36.5.5 Refresher Is Not Owner

	36.6 Data Subsetting with Materialized Views
	36.6.1 About Data Subsetting with Materialized Views
	36.6.2 Materialized Views with Subqueries
	36.6.2.1 Many to One Subqueries
	36.6.2.2 One to Many Subqueries
	36.6.2.3 Many to Many Subqueries
	36.6.2.4 Materialized Views with Subqueries and Unions

	36.6.3 Restrictions for Materialized Views with Subqueries
	36.6.4 Restrictions for Materialized Views with Unions Containing Subqueries
	36.6.4.1 Examples of Materialized Views with Unions Containing Subqueries

	36.7 Materialized View Refresh
	36.8 Refresh Groups
	36.9 Materialized View Log
	36.10 Materialized Views and User-Defined Data Types
	36.10.1 How Materialized Views Work with Object Types and Collections
	36.10.2 Type Agreement at Replication Databases
	36.10.3 Column Subsetting of Masters with Column Objects
	36.10.4 Materialized Views Based on Object Tables
	36.10.4.1 About Materialized Views Based on Object Tables
	36.10.4.2 Materialized Views Based on Object Tables Created Without Using the OF type Clause
	36.10.4.3 OID Preservation in Object Materialized Views

	36.10.5 Materialized Views with Collection Columns
	36.10.5.1 Restrictions for Materialized Views with Collection Columns

	36.10.6 Materialized Views with REF Columns
	36.10.6.1 About Materialized Views with REF Columns
	36.10.6.2 Scoped REF Columns
	36.10.6.3 Unscoped REF Columns
	36.10.6.4 Logging REF Columns in the Materialized View Log
	36.10.6.5 REFs Created Using the WITH ROWID Clause

	36.11 Materialized View Registration at a Master Database
	36.11.1 Viewing Information about Registered Materialized Views
	36.11.2 Internal Mechanisms
	36.11.3 Manual Materialized View Registration

	37 Read-Only Materialized View Architecture
	37.1 Master Database Mechanisms
	37.1.1 Master Database Objects
	37.1.2 Master Table
	37.1.3 Internal Trigger for the Materialized View Log
	37.1.4 Materialized View Logs
	37.1.4.1 About Materialized View Logs
	37.1.4.2 Columns Logged in the Materialized View Log
	37.1.4.3 Restriction on Import of Materialized View Logs to a Different Schema

	37.2 Materialized View Database Mechanisms
	37.2.1 Indexes for Materialized Views

	37.3 Organizational Mechanisms
	37.3.1 Refresh Groups
	37.3.2 Refresh Group Size

	37.4 Refresh Process
	37.4.1 About the Refresh Process
	37.4.2 Refresh Types
	37.4.2.1 Complete Refresh
	37.4.2.2 Fast Refresh
	37.4.2.3 Force Refresh

	37.4.3 Initiating a Refresh
	37.4.3.1 Scheduled Refresh
	37.4.3.2 On-Demand Refresh

	37.4.4 Constraints and Refresh

	38 Planning for Read-Only Materialized Views
	38.1 Considerations for Master Tables
	38.1.1 Primary Keys and Master Tables
	38.1.2 Foreign Keys and Master Tables
	38.1.3 Data Type Considerations for Master Tables
	38.1.4 Unsupported Table Types

	38.2 Planning for Master Databases and Materialized View Databases
	38.2.1 Characteristics of Master Databases and Materialized View Databases
	38.2.2 Advantages of Master Databases
	38.2.3 Advantages of Materialized View Databases
	38.2.4 Preparing for Materialized Views
	38.2.4.1 Required Schemas at Materialized View Database
	38.2.4.2 Required Database Links for Materialized Views
	38.2.4.3 Required Privileges
	38.2.4.4 Sufficient Job Processes

	38.2.5 Creating Materialized View Logs
	38.2.6 Logging Columns in a Materialized View Log

	39 Creating and Managing Read-Only Materialized Views
	39.1 Creating Read-Only Materialized Views
	39.2 Creating Refresh Groups
	39.3 Refreshing Materialized Views
	39.4 Determining the Fast Refresh Capabilities of a Materialized View
	39.5 Adding a New Materialized View Database
	39.6 Monitoring Materialized View Logs
	39.6.1 Listing Information About the Materialized View Logs at a Master Database
	39.6.2 Listing the Materialized Views that Use a Materialized View Log

	39.7 Monitoring Materialized Views
	39.7.1 Listing Information About Materialized Views
	39.7.1.1 Listing Master Database Information For Materialized Views
	39.7.1.2 Listing the Properties of Materialized Views

	39.7.2 Listing Information About the Refresh Groups at a Materialized View Database
	39.7.3 Determining the Job ID for Each Refresh Job at a Materialized View Database
	39.7.4 Determining Which Materialized Views Are Currently Refreshing

	40 Troubleshooting Problems with Read-Only Materialized Views
	40.1 Diagnosing Problems with Database Links
	40.2 Problems Creating Materialized Views
	40.3 Refresh Problems
	40.3.1 Common Refresh Problems
	40.3.2 Automatic Refresh Retries
	40.3.3 Fast Refresh Errors at New Materialized View Databases
	40.3.4 Materialized Views Continually Refreshing
	40.3.5 Materialized View Logs Growing Too Large

	40.4 Advanced Troubleshooting of Refresh Problems

	Part VII Appendixes
	A Support for DBMS_JOB
	A.1 Oracle Scheduler Replaces DBMS_JOB
	A.1.1 Configuring DBMS_JOB
	A.1.2 Using Both DBMS_JOB and Oracle Scheduler

	A.2 Moving from DBMS_JOB to Oracle Scheduler
	A.2.1 Creating a Job
	A.2.2 Altering a Job
	A.2.3 Removing a Job from the Job Queue

	B Blockchain Tables Reference
	B.1 Blockchain Tables Column Content
	B.2 Blockchain Tables Row Content
	B.3 Format of the Signed Digest in Blockchain Tables

	Index

