
Oracle® Database
Real Application Security Administrator's and
Developer's Guide

23ai
F47009-05
April 2025

Oracle Database Real Application Security Administrator's and Developer's Guide, 23ai

F47009-05

Copyright © 2012, 2025, Oracle and/or its affiliates.

Primary Author: Gunjan Jain

Contributing Authors: Rod Ward, S. Jeloka, M. Chaliha, T. Das, S. Pelski, R. Leyderman

Contributors: J. Greenberg, S. Adhikari, T. Ahmed, R. Bhatti, C. C. Chui, P. Deshmukh, S. Gul, M. Ho, Y. Hu, S.
Jawarikapisha, T. Keefe, P. Knaggs, S. Kwak, H. Li, Y. Li, C. Liang, S. Liu, C. Lei, S. Namuduri, J. Narasinghanallur, G.
Narayanan, P. Needham, E. Paapanen, V. Pesati, R. Ramachandra, P. Ramakrishna, D. Raphaely, Y. Ru, J. Samuel, S.
Tata, A. Wang, W. Wang, S. Watt, M. Wei, A. Williams, M. Xu, H. Zhang, S. Zhao, S. Zhou

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiii

Documentation Accessibility xxiii

Related Documents xxiii

Conventions xxiii

 Changes in This Release for Oracle Database Real Application Security
Administrator's and Developer's Guide

1 Introducing Oracle Database Real Application Security

1.1 What Is Oracle Database Real Application Security? 1-1

1.1.1 Disadvantages of Traditional Security for Managing Application Users 1-2

1.1.2 Advantages of Real Application Security 1-2

1.1.3 Architecture of Real Application Security 1-2

1.2 Data Security Concepts Used in Real Application Security 1-3

1.2.1 About Data Security with Oracle Database Real Application Security 1-4

1.2.2 Principals: Users and Roles 1-5

1.2.2.1 Understanding the Difference Between Database Users and Application
Users 1-6

1.2.2.2 Understanding the Difference Between Database Roles and Application
Roles 1-6

1.2.2.3 Granting Database Privileges to Application Users and Application Roles 1-7

1.2.3 Application Privileges 1-7

1.2.4 Security Classes in Oracle Database Real Application Security 1-8

1.2.5 Access Control Entry (ACE) 1-8

1.2.6 Access Control List (ACL) 1-8

1.2.7 Data Security Policy 1-8

1.3 Application Session Concepts Used in Application Security 1-9

1.4 Flow of Design and Development 1-10

1.4.1 Design Phase 1-10

1.4.2 Development Flow Steps 1-10

1.5 Scenario: Security Human Resources (HR) Demonstration of Employee Information 1-12

iii

1.5.1 Basic Security HR Demo Scenario: Description and Security Requirements 1-12

1.5.2 Basic HR Scenario: Implementation Overview 1-13

1.6 About Auditing in an Oracle Database Real Application Security Environment 1-15

1.7 Support for Pluggable Databases 1-15

2 Configuring Application Users and Application Roles

2.1 About Configuring Application Users 2-1

2.1.1 About Application User Accounts 2-1

2.1.1.1 General Procedures for Creating Application User Accounts 2-1

2.1.2 Creating a Simple Application User Account 2-3

2.1.3 About Creating a Direct Login Application User Account 2-4

2.1.3.1 Creating Direct Login Application User Accounts 2-4

2.1.3.2 Procedure for Creating the Direct Login Application User Account 2-4

2.1.3.3 Setting a Password Verifier for Direct Application User Accounts 2-5

2.1.3.4 Oracle Label Security Context Is Established in Direct Logon Session 2-7

2.1.4 Resetting the Application User's Password with the SQL*Plus PASSWORD
Command 2-7

2.1.5 Configuring an Application User Switch 2-9

2.1.6 Validating an Application User 2-11

2.2 About Configuring Application Roles 2-11

2.2.1 About Application Roles 2-12

2.2.2 Regular and Dynamic Application Roles 2-12

2.2.2.1 Regular Application Roles 2-12

2.2.2.2 Dynamic Application Roles 2-12

2.2.3 About Configuring an Application Role 2-13

2.2.3.1 Creating a Regular Application Role 2-13

2.2.3.2 Creating a Dynamic Application Role 2-14

2.2.3.3 Validating an Application Role 2-14

2.2.4 Predefined Regular Application Roles and Dynamic Application Roles 2-15

2.3 Effective Dates for Application Users and Application Roles 2-15

2.4 About Granting Application Privileges to Principals 2-17

2.4.1 About Granting an Application Role to an Application User 2-17

2.4.1.1 Creating a New Application User and Granting This User an Application
Role 2-17

2.4.1.2 Granting an Application Role to an Existing Application User 2-17

2.4.2 Granting an Application Role to Another Application Role 2-17

2.4.3 Granting a Database Role to an Application Role 2-18

3 Configuring Application Sessions

3.1 About Application Sessions 3-1

3.1.1 About Application Sessions in Real Application Security 3-2

iv

3.1.2 Advantages of Application Sessions 3-3

3.2 About Creating and Maintaining Application Sessions 3-3

3.2.1 Creating an Application Session 3-3

3.2.2 Creating an Anonymous Application Session 3-4

3.2.3 Attaching an Application Session to a Traditional Database Session 3-5

3.2.4 Setting a Cookie for an Application Session 3-6

3.2.5 Assigning an Application User to an Anonymous Application Session 3-7

3.2.6 Switching a Current Application User to Another Application User in the Current
Application Session 3-8

3.2.7 About Creating a Global Callback Event Handler Procedure 3-9

3.2.8 Configuring Global Callback Event Handlers for an Application Session 3-10

3.2.9 Saving an Application Session 3-12

3.2.10 Detaching an Application Session from a Traditional Database Session 3-13

3.2.11 Destroying an Application Session 3-14

3.3 About Manipulating the Application Session State 3-14

3.3.1 About Using Namespace Templates to Create Namespaces 3-15

3.3.1.1 Components of a Namespace Template 3-15

3.3.1.2 About Namespace Views 3-16

3.3.1.3 Creating a Namespace Template for an Application Session 3-16

3.3.2 Initializing a Namespace in an Application Session 3-17

3.3.2.1 Initializing a Namespace When the Session Is Created 3-17

3.3.2.2 Initializing a Namespace When the Session Is Attached 3-18

3.3.2.3 Initializing a Namespace When a Named Application User Is Assigned to
an Anonymous Application Session 3-19

3.3.2.4 Initializing a Namespace When the Application User Is Switched in an
Application Session 3-20

3.3.2.5 Initializing a Namespace Explicitly 3-21

3.3.3 Setting Session Attributes in an Application Session 3-22

3.3.4 Getting Session Attributes in an Application Session 3-23

3.3.5 Creating Custom Attributes in an Application Session 3-23

3.3.6 Deleting a Namespace in an Application Session 3-24

3.3.7 Enabling Application Roles for a Session 3-25

3.3.8 Disabling Application Roles for a Session 3-26

3.4 About Administrative APIs for External Users and Roles 3-26

3.5 About Real Application Security Session Privilege Scoping Through ACL 3-26

3.5.1 Granting Session Privileges on a Principal Using an ACL 3-30

4 Configuring Application Privileges and Access Control Lists

4.1 About Application Privileges 4-1

4.1.1 Aggregate Privilege 4-1

4.1.1.1 ALL Privilege 4-3

4.2 About Configuring Security Classes 4-3

v

4.2.1 About Security Classes 4-3

4.2.2 Security Class Inheritance 4-4

4.2.3 Security Class as Privilege Scope 4-4

4.2.4 DML Security Class 4-5

4.2.5 About Validating Security Classes 4-5

4.2.6 Manipulating Security Classes 4-5

4.3 About Configuring Access Control Lists 4-7

4.3.1 About ACLs and ACEs 4-7

4.3.2 Creating ACLs and ACEs 4-8

4.3.2.1 Denying a Privilege 4-9

4.3.2.2 Inverting an Application Privilege 4-9

4.3.2.3 ACE Start-Date and End-Date 4-9

4.3.3 About Validating Access Control Lists 4-10

4.3.4 Updating Access Control Lists 4-10

4.3.5 About Checking ACLs for a Privilege 4-11

4.3.6 About Using Multilevel Authentication 4-12

4.3.7 Principal Types 4-12

4.3.8 Access Resolution Results 4-12

4.3.9 ACE Evaluation Order 4-13

4.3.10 ACL Inheritance 4-13

4.3.10.1 Extending ACL Inheritance 4-13

4.3.10.2 Constraining ACL Inheritance 4-13

4.3.11 About ACL Catalog Views 4-14

4.3.12 About Security Class Catalog Views 4-14

4.4 Data Security 4-15

4.4.1 Data Realms 4-15

4.4.2 Parameterized ACL 4-15

4.5 ACL Binding 4-15

5 Configuring Data Security

5.1 About Data Security 5-1

5.2 About Validating the Data Security Policy 5-2

5.3 Understanding the Structure of the Data Security Policy 5-2

5.4 About Designing Data Realms 5-4

5.4.1 About Understanding the Structure of a Data Realm 5-4

5.4.2 About Using Static Data Realms 5-6

5.4.3 Using Trace Files to Check for Policy Predicate Errors 5-7

5.5 Applying Additional Application Privileges to a Column 5-8

5.6 About Enabling Data Security Policy for a Database Table or View 5-10

5.6.1 Enabling Real Application Security Using the APPLY_OBJECT_POLICY
Procedure 5-10

vi

5.6.1.1 About Applying Multiple Policies for a Table or View 5-11

5.6.2 About How the APPLY_OBJECT_POLICY Procedure Alters a Database Table 5-11

5.6.3 About How ACLs on Table Data Are Evaluated 5-12

5.7 About Creating Real Application Security Policies on Master-Detail Related Tables 5-12

5.7.1 About Real Application Security Policies on Master-Detail Related Tables 5-12

5.7.2 About Understanding the Structure of Master Detail Data Realms 5-13

5.7.3 Example of Creating a Real Application Security Policy on Master-Detail Related
Tables 5-13

5.8 About Managing Application Privileges for Data Security Policies 5-21

5.8.1 About Bypassing the Security Checks of a Real Application Security Policy 5-21

5.8.2 Using the SQL*Plus SET SECUREDCOL Command 5-21

5.9 Using BEQUEATH CURRENT_USER Views 5-23

5.9.1 Using SQL Functions to Determine the Invoking Application User 5-25

5.10 Real Application Security: Putting It All Together 5-26

5.10.1 Basic HR Scenario: Implementation Tasks 5-26

5.10.1.1 Connecting as User SYS to Create Real Application Security Users and
Roles 5-26

5.10.1.2 Creating Roles and Application Users 5-27

5.10.1.3 Creating the Security Class and ACLS 5-29

5.10.1.4 Creating the Data Security Policy 5-30

5.10.1.5 Validating the Real Application Security Objects 5-31

5.10.1.6 Disabling a Data Security Policy for a Table 5-32

5.10.2 Running the Security HR Demo 5-32

5.11 About Schema Level Real Application Security Policy Administration 5-32

5.11.1 Setting Up and Enabling a Schema Level Data Security Policy 5-34

Disabling the Data Security Policy and Revoking the System Privileges from the
User 5-35

6 Using Real Application Security in Java Applications

6.1 About Initializing the Middle Tier 6-1

6.1.1 About Mid-Tier Configuration Mode 6-1

6.1.2 Using the getSessionManager Method 6-1

6.1.3 About Changing the Middle-Tier Cache Setting 6-3

6.1.3.1 About Setting the Maximum Cache Idle Time 6-3

6.1.3.2 About Setting the Maximum Cache Size 6-3

6.1.3.3 About Getting the Maximum Cache Idle Time 6-3

6.1.3.4 About Getting the Maximum Cache Size 6-3

6.1.3.5 About Removing Entries from the Cache 6-4

6.1.3.6 About Clearing the Cache 6-4

6.2 About Managing Real Application Security Sessions 6-4

6.2.1 Creating a Real Application Security User Session 6-5

6.2.2 Attaching an Application Session 6-5

vii

6.2.3 Assigning or Switching an Application User 6-6

6.2.4 Enabling Real Application Security Application Roles 6-7

6.2.4.1 Enabling a Real Application Security Application Role 6-7

6.2.4.2 Disabling a Real Application Security Application Role 6-7

6.2.4.3 Checking If a Real Application Security Application Role Is Enabled 6-8

6.2.5 About Performing Namespace Operations as Session User 6-8

6.2.5.1 Creating Namespaces 6-8

6.2.5.2 Deleting Namespaces 6-9

6.2.5.3 Implicitly Creating Namespaces 6-9

6.2.5.4 About Using Namespace Attributes 6-9

6.2.6 About Performing Namespace Operations as Session Manager 6-11

6.2.7 About Performing Miscellaneous Session-Related Activities 6-11

6.2.7.1 About Getting the Oracle Connection Associated with the Session 6-11

6.2.7.2 About Getting the Application User ID for the Session 6-12

6.2.7.3 Getting the Session ID for the Session 6-12

6.2.7.4 About Getting a String Representation of the Session 6-12

6.2.7.5 Getting the Session Cookie 6-12

6.2.7.6 Setting Session Inactivity Timeout as Session Manager 6-12

6.2.7.7 Setting the Session Cookie as Session Manager 6-12

6.2.8 Detaching an Application Session 6-13

6.2.9 Destroying A Real Application Security Application Session 6-13

6.3 Authenticating Application Users Using Java APIs 6-13

6.4 About Authorizing Application Users Using ACLs 6-14

6.4.1 Constructing an ACL Identifier 6-14

6.4.2 Using the checkAcl Method 6-15

6.4.3 About Getting Data Privileges Associated with a Specific ACL 6-15

6.5 Human Resources Administration Use Case: Implementation in Java 6-15

Output 6-19

7 Oracle Fusion Middleware Integration with Real Application Security

7.1 About External Users and External Roles 7-1

7.2 Session APIs for External Users and Roles 7-2

7.2.1 Namespace for External Users 7-2

7.2.2 Creating a Session 7-2

7.2.3 Attaching a Session 7-4

7.2.4 Assigning a User to a Session 7-7

7.2.5 Saving a Session and Terminating a Session 7-9

8 Application Session Service in Oracle Fusion Middleware

8.1 About Real Application Security Concepts 8-1

viii

8.2 About Application Session Service in Oracle Fusion Middleware 8-3

8.3 About the Application Session Filter 8-4

8.3.1 About the Application Session Filter Operation 8-4

8.4 About Deployment 8-5

8.5 About Application Configuration of the Application Session Filter 8-6

8.6 Domain Configuration: Setting Up an Application Session Service to Work with OPSS
and Oracle Fusion Middleware 8-7

8.6.1 Prerequisites 8-7

8.6.2 Manual Configuration 8-8

8.6.3 About Automatic Configuration 8-9

8.7 About Application Session APIs 8-9

8.7.1 About Application Session APIs 8-10

8.7.1.1 About Attaching to an Application Session 8-10

8.7.1.2 Detaching from an Application Session 8-10

8.7.1.3 Destroying an Application Session 8-11

8.7.2 About the Privilege Elevation API 8-12

8.7.2.1 Enabling a Dynamic Role in the Application Session 8-13

8.7.3 About Namespace APIs 8-14

8.7.3.1 About Creating a Namespace 8-14

8.7.3.2 About Deleting a Namespace 8-15

8.7.3.3 About Setting the Namespace Attribute 8-15

8.7.3.4 About Deleting a Namespace Attribute 8-16

8.7.3.5 Getting a Namespace Attribute 8-16

8.7.4 About the Check Privilege API 8-18

8.7.4.1 Checking a Privilege on the ACLs 8-18

8.8 Human Resources Demo Use Case: Implementation in Java 8-20

8.8.1 Setting Up the HR Demo Application for External Principals (setup.sql) 8-20

8.8.2 About the Application Session Filter Configuration File (web.xml) 8-24

8.8.3 About the Sample Servlet Application (MyHR.java) 8-27

8.8.4 About the Filter to Set Up the Application Namespace (MyFilter.java) 8-33

8.8.5 About the HR Demo Use Case - User Roles 8-36

8.8.6 About the HR Demo (1) - Logged in as Employee LPOPP 8-37

8.8.7 About the HR Demo (2) - Logged in as HRMGR 8-37

8.8.8 About the HR Demo (3) - Logged in as a Team Manager 8-38

9 Oracle Database Real Application Security Data Dictionary Views

9.1 DBA_XS_OBJECTS 9-4

9.2 DBA_XS_PRINCIPALS 9-4

9.3 DBA_XS_EXTERNAL_PRINCIPALS 9-5

9.4 DBA_XS_USERS 9-5

9.5 USER_XS_USERS 9-6

ix

9.6 USER_XS_PASSWORD_LIMITS 9-7

9.7 DBA_XS_ROLES 9-8

9.8 DBA_XS_DYNAMIC_ROLES 9-8

9.9 DBA_XS_PROXY_ROLES 9-9

9.10 DBA_XS_ROLE_GRANTS 9-9

9.11 DBA_XS_PRIVILEGES 9-10

9.12 USER_XS_PRIVILEGES 9-10

9.13 ALL_XS_PRIVILEGES 9-11

9.14 DBA_XS_IMPLIED_PRIVILEGES 9-11

9.15 USER_XS_IMPLIED_PRIVILEGES 9-12

9.16 ALL_XS_IMPLIED_PRIVILEGES 9-12

9.17 DBA_XS_PRIVILEGE_GRANTS 9-13

9.18 DBA_XS_SECURITY_CLASSES 9-13

9.19 USER_XS_SECURITY_CLASSES 9-14

9.20 ALL_XS_SECURITY_CLASSES 9-14

9.21 DBA_XS_SECURITY_CLASS_DEP 9-14

9.22 USER_XS_SECURITY_CLASS_DEP 9-15

9.23 ALL_XS_SECURITY_CLASS_DEP 9-15

9.24 DBA_XS_ACLS 9-16

9.25 USER_XS_ACLS 9-16

9.26 ALL_XS_ACLS 9-17

9.27 DBA_XS_ACES 9-17

9.28 USER_XS_ACES 9-18

9.29 ALL_XS_ACES 9-19

9.30 DBA_XS_POLICIES 9-19

9.31 USER_XS_POLICIES 9-20

9.32 ALL_XS_POLICIES 9-20

9.33 DBA_XS_REALM_CONSTRAINTS 9-21

9.34 USER_XS_REALM_CONSTRAINTS 9-21

9.35 ALL_XS_REALM_CONSTRAINTS 9-22

9.36 DBA_XS_INHERITED_REALMS 9-23

9.37 USER_XS_INHERITED_REALMS 9-23

9.38 ALL_XS_INHERITED_REALMS 9-24

9.39 DBA_XS_ACL_PARAMETERS 9-24

9.40 USER_XS_ACL_PARAMETERS 9-25

9.41 ALL_XS_ACL_PARAMETERS 9-26

9.42 DBA_XS_COLUMN_CONSTRAINTS 9-26

9.43 USER_XS_COLUMN_CONSTRAINTS 9-27

9.44 ALL_XS_COLUMN_CONSTRAINTS 9-27

9.45 DBA_XS_APPLIED_POLICIES 9-27

9.46 ALL_XS_APPLIED_POLICIES 9-28

9.47 DBA_XS_MODIFIED_POLICIES 9-29

x

9.48 DBA_XS_SESSIONS 9-29

9.49 DBA_XS_ACTIVE_SESSIONS 9-29

9.50 DBA_XS_SESSION_ROLES 9-30

9.51 DBA_XS_SESSION_NS_ATTRIBUTES 9-30

9.52 DBA_XS_NS_TEMPLATES 9-31

9.53 DBA_XS_NS_TEMPLATE_ATTRIBUTES 9-32

9.54 ALL_XDS_ACL_REFRESH 9-32

9.55 ALL_XDS_ACL_REFSTAT 9-33

9.56 ALL_XDS_LATEST_ACL_REFSTAT 9-34

9.57 DBA_XDS_ACL_REFRESH 9-34

9.58 DBA_XDS_ACL_REFSTAT 9-35

9.59 DBA_XDS_LATEST_ACL_REFSTAT 9-36

9.60 USER_XDS_ACL_REFRESH 9-36

9.61 USER_XDS_ACL_REFSTAT 9-37

9.62 USER_XDS_LATEST_ACL_REFSTAT 9-38

9.63 V$XS_SESSION_NS_ATTRIBUTES 9-38

9.64 V$XS_SESSION_ROLES 9-39

10

Oracle Database Real Application Security SQL Functions

10.1 COLUMN_AUTH_INDICATOR Function 10-1

10.2 XS_SYS_CONTEXT Function 10-2

10.3 ORA_CHECK_ACL Function 10-3

10.4 ORA_GET_ACLIDS Function 10-4

10.5 ORA_CHECK_PRIVILEGE Function 10-5

10.6 TO_ACLID Function 10-5

11

Oracle Database Real Application Security PL/SQL Packages

11.1 DBMS_XS_SESSIONS Package 11-1

11.1.1 Security Model 11-2

11.1.2 Constants 11-2

11.1.3 Object Types, Constructor Functions, Synonyms, and Grants 11-2

11.1.4 Summary of DBMS_XS_SESSIONS Subprograms 11-3

11.1.4.1 CREATE_SESSION Procedure 11-4

11.1.4.2 ATTACH_SESSION Procedure 11-5

11.1.4.3 ASSIGN_USER Procedure 11-7

11.1.4.4 SWITCH_USER Procedure 11-8

11.1.4.5 CREATE_NAMESPACE Procedure 11-9

11.1.4.6 CREATE_ATTRIBUTE Procedure 11-10

11.1.4.7 SET_ATTRIBUTE Procedure 11-11

11.1.4.8 GET_ATTRIBUTE Procedure 11-12

xi

11.1.4.9 RESET_ATTRIBUTE Procedure 11-13

11.1.4.10 DELETE_ATTRIBUTE Procedure 11-13

11.1.4.11 DELETE_NAMESPACE Procedure 11-14

11.1.4.12 ENABLE_ROLE Procedure 11-15

11.1.4.13 DISABLE_ROLE Procedure 11-15

11.1.4.14 SET_SESSION_COOKIE Procedure 11-16

11.1.4.15 REAUTH_SESSION Procedure 11-17

11.1.4.16 SET_INACTIVITY_TIMEOUT Procedure 11-17

11.1.4.17 SAVE_SESSION Procedure 11-18

11.1.4.18 DETACH_SESSION Procedure 11-18

11.1.4.19 DESTROY_SESSION Procedure 11-19

11.1.4.20 ADD_GLOBAL_CALLBACK Procedure 11-20

11.1.4.21 ENABLE_GLOBAL_CALLBACK Procedure 11-21

11.1.4.22 DELETE_GLOBAL_CALLBACK Procedure 11-22

11.2 XS_ACL Package 11-22

11.2.1 Security Model for the XS_ACL Package 11-23

11.2.2 Constants 11-23

11.2.3 Object Types, Constructor Functions, Synonyms, and Grants 11-23

11.2.4 Summary of XS_ACL Subprograms 11-24

11.2.4.1 CREATE_ACL Procedure 11-24

11.2.4.2 APPEND_ACES Procedure 11-25

11.2.4.3 REMOVE_ACES Procedure 11-26

11.2.4.4 SET_SECURITY_CLASS Procedure 11-27

11.2.4.5 SET_PARENT_ACL Procedure 11-27

11.2.4.6 ADD_ACL_PARAMETER Procedure 11-28

11.2.4.7 REMOVE_ACL_PARAMETERS Procedure 11-29

11.2.4.8 SET_DESCRIPTION Procedure 11-30

11.2.4.9 DELETE_ACL Procedure 11-30

11.3 XS_ADMIN_UTIL Package 11-31

11.3.1 Security Model 11-31

11.3.2 Constants 11-31

11.3.3 Object Types, Constructor Functions, Synonyms, and Grants 11-32

11.3.4 Summary of XS_ADMIN_UTIL Subprograms 11-32

11.3.4.1 GRANT_SYSTEM_PRIVILEGE Procedure 11-32

11.3.4.2 REVOKE_SYSTEM_PRIVILEGE Procedure 11-33

11.4 XS_DATA_SECURITY Package 11-34

11.4.1 Security Model for the XS_DATA_SECURITY Package 11-34

11.4.2 Object Types, Constructor Functions, Synonyms, and Grants 11-34

11.4.3 Summary of XS_DATA_SECURITY Subprograms 11-36

11.4.3.1 CREATE_POLICY Procedure 11-37

11.4.3.2 APPEND_REALM_CONSTRAINTS Procedure 11-38

11.4.3.3 REMOVE_REALM_CONSTRAINTS Procedure 11-39

xii

11.4.3.4 ADD_COLUMN_CONSTRAINTS Procedure 11-39

11.4.3.5 REMOVE_COLUMN_CONSTRAINTS Procedure 11-40

11.4.3.6 CREATE_ACL_PARAMETER Procedure 11-41

11.4.3.7 DELETE_ACL_PARAMETER Procedure 11-41

11.4.3.8 SET_DESCRIPTION Procedure 11-42

11.4.3.9 DELETE_POLICY Procedure 11-43

11.4.3.10 ENABLE_OBJECT_POLICY Procedure 11-44

11.4.3.11 DISABLE_OBJECT_POLICY Procedure 11-44

11.4.3.12 REMOVE_OBJECT_POLICY Procedure 11-45

11.4.3.13 APPLY_OBJECT_POLICY Procedure 11-46

11.5 XS_DATA_SECURITY_UTIL Package 11-47

11.5.1 Security Model 11-48

11.5.2 Constants 11-48

11.5.3 Summary of XS_DATA_SECURITY_UTIL Subprograms 11-48

11.5.3.1 SCHEDULE_STATIC_ACL_REFRESH Procedure 11-48

11.5.3.2 ALTER_STATIC_ACL_REFRESH Procedure 11-49

11.6 XS_DIAG Package 11-50

11.6.1 Security Model 11-50

11.6.2 Summary of XS_DIAG Subprograms 11-50

11.6.2.1 VALIDATE_PRINCIPAL Function 11-51

11.6.2.2 VALIDATE_SECURITY_CLASS Function 11-51

11.6.2.3 VALIDATE_ACL Function 11-52

11.6.2.4 VALIDATE_DATA_SECURITY Function 11-53

11.6.2.5 VALIDATE_NAMESPACE_TEMPLATE Function 11-54

11.6.2.6 VALIDATE_WORKSPACE Function 11-55

11.7 XS_NAMESPACE Package 11-55

11.7.1 Security Model 11-56

11.7.2 Constants 11-56

11.7.3 Object Types, Constructor Functions, Synonyms, and Grants 11-56

11.7.4 Summary of XS_NAMESPACE Subprograms 11-57

11.7.4.1 CREATE_TEMPLATE Procedure 11-57

11.7.4.2 ADD_ATTRIBUTES Procedure 11-58

11.7.4.3 REMOVE_ATTRIBUTES Procedure 11-59

11.7.4.4 SET_HANDLER Procedure 11-59

11.7.4.5 SET_DESCRIPTION Procedure 11-60

11.7.4.6 DELETE_TEMPLATE Procedure 11-60

11.8 XS_PRINCIPAL Package 11-61

11.8.1 Security Model 11-61

11.8.2 Constants 11-62

11.8.3 Object Types, Constructor Functions, Synonyms, and Grants 11-62

11.8.4 Summary of XS_PRINCIPAL Subprograms 11-63

11.8.4.1 CREATE_USER Procedure 11-64

xiii

11.8.4.2 CREATE_ROLE Procedure 11-65

11.8.4.3 CREATE_DYNAMIC_ROLE Procedure 11-66

11.8.4.4 GRANT_ROLES Procedure 11-67

11.8.4.5 REVOKE_ROLES Procedure 11-69

11.8.4.6 ADD_PROXY_USER Procedure 11-69

11.8.4.7 REMOVE_PROXY_USERS Procedure 11-70

11.8.4.8 ADD_PROXY_TO_DBUSER 11-71

11.8.4.9 REMOVE_PROXY_FROM_DBUSER Procedure 11-72

11.8.4.10 SET_EFFECTIVE_DATES Procedure 11-72

11.8.4.11 SET_DYNAMIC_ROLE_DURATION Procedure 11-73

11.8.4.12 SET_DYNAMIC_ROLE_SCOPE Procedure 11-74

11.8.4.13 ENABLE_BY_DEFAULT Procedure 11-74

11.8.4.14 ENABLE_ROLES_BY_DEFAULT Procedure 11-75

11.8.4.15 SET_USER_SCHEMA Procedure 11-75

11.8.4.16 SET_GUID Procedure 11-76

11.8.4.17 SET_ACL Procedure 11-76

11.8.4.18 SET_PROFILE Procedure 11-77

11.8.4.19 SET_USER_STATUS Procedure 11-78

11.8.4.20 SET_PASSWORD Procedure 11-79

11.8.4.21 SET_VERIFIER Procedure 11-80

11.8.4.22 SET_DESCRIPTION Procedure 11-82

11.8.4.23 DELETE_PRINCIPAL Procedure 11-83

11.9 XS_SECURITY_CLASS Package 11-83

11.9.1 Security Model for the XS_SECURITY_CLASS Package 11-84

11.9.2 Summary of XS_SECURITY_CLASS Subprograms 11-84

11.9.2.1 CREATE_SECURITY_CLASS Procedure 11-84

11.9.2.2 ADD_PARENTS Procedure 11-85

11.9.2.3 REMOVE_PARENTS Procedure 11-86

11.9.2.4 ADD_PRIVILEGES Procedure 11-87

11.9.2.5 REMOVE_PRIVILEGES Procedure 11-87

11.9.2.6 ADD_IMPLIED_PRIVILEGES Procedure 11-88

11.9.2.7 REMOVE_IMPLIED_PRIVILEGES Procedure 11-89

11.9.2.8 SET_DESCRIPTION Procedure 11-90

11.9.2.9 DELETE_SECURITY_CLASS Procedure 11-91

12

Real Application Security HR Demo

12.1 Overview of the Security HR Demo 12-1

12.2 What Each Script Does 12-2

12.3 Setting Up the Security HR Demo Components 12-3

12.3.1 About Creating Roles and Application Users 12-4

12.3.2 About Creating the Security Class and ACLs 12-5

xiv

12.3.3 About Creating the Data Security Policy 12-6

12.3.4 About Validating the Real Application Security Objects 12-7

12.3.5 About Setting Up the Mid-Tier Related Configuration 12-7

12.4 Running the Security HR Demo Using Direct Logon 12-7

12.5 Running the Security HR Demo Attached to a Real Application Security Session 12-9

12.6 Running the Security HR Demo Cleanup Script 12-12

12.7 Running the Security HR Demo in the Java Interface 12-13

A Predefined Objects in Real Application Security

A.1 Users A-1

A.2 Roles A-1

A.2.1 Regular Application Roles A-1

A.2.2 Dynamic Application Roles A-2

A.2.3 Database Roles A-2

A.3 Namespaces A-2

A.4 Security Classes A-3

A.5 ACLs A-4

B Configuring OCI and JDBC Applications for Column Authorization

B.1 About Using OCI to Retrieve Column Authorization Indicators B-1

B.1.1 Example of Obtaining the Return Code B-1

B.1.2 About Using the Return Code and Indicator with Authorization Indicator B-2

B.1.3 About the Warning for Unknown Authorization Indicator B-2

B.1.4 Using OCI Describe for Column Security B-4

B.2 About Using JDBC to Retrieve Column Authorization Indicators B-6

B.2.1 About Checking Security Attributes for a Table Column B-6

B.2.2 About Checking User Authorization for a Table Column B-7

B.2.3 Example of Checking Security Attributes and User Authorization B-8

C Real Application Security HR Demo Files

C.1 How to Run the Security HR Demo C-1

C.2 Scripts for the Security HR Demo C-1

C.2.1 hrdemo_setup.sql C-2

C.2.2 hrdemo.sql C-5

C.2.3 hrdemo_session.sql C-6

C.2.4 hrdemo.java C-8

C.2.5 hrdemo_clean.sql C-11

C.3 Generated Log Files for Each Script C-12

C.3.1 hrdemo_setup.log C-12

xv

C.3.2 hrdemo.log C-18

C.3.3 hrdemo_run_sess.log C-20

C.3.4 hrdemo.log C-23

C.3.5 hrdemo_clean.log C-24

D Troubleshooting Oracle Database Real Application Security

D.1 About Real Application Security Diagnostics D-1

D.1.1 About Using Validation APIs D-1

D.1.2 How to Check Which ACLs Are Associated with a Row for the Current User D-2

D.1.3 How to Find If a Privilege Is Granted in an ACL to a User D-2

D.1.4 About Exception State Dumps D-2

D.1.5 About Event-Based Tracing D-3

D.1.6 About In-Memory Tracing D-3

D.1.7 About Statistics D-3

D.2 About Event-Based Tracing of Real Application Security Components D-3

D.2.1 About Application Sessions (XSSESSION) Event-Based Tracing D-4

D.2.2 About Application Principals (XSPRINCIPAL) Event-Based Tracing D-6

D.2.3 About Security Classes (XSSECCLASS) Event-Based Tracing D-7

D.2.4 About ACL (XSACL) Event-Based Tracing D-7

D.2.5 About Data Security (XSXDS and XSVPD) Event-Based Tracing D-8

D.3 About Exception State Dump Information D-9

D.4 About Session Statistics D-9

D.5 Using Middle-Tier Tracing D-10

Glossary

Index

xvi

List of Examples

2-1 Setting the Password Verifier Using the Hash Algorithm XS_SHA512 2-6

2-2 DBA Resets the Password with a Password Change Operation for User lwuser2 When Not

Explicitly Attached to a Session 2-8

2-3 User lwuser2 Performs a Self Password Change that Fails When Explicitly Attached to a

Session Because the Session Lacks the ALTER USER Privilege 2-8

2-4 A Self Password Change Succeeds When Explicitly Attached to a Session and User

lwuser2's Session Has the ALTER USER Privilege 2-9

2-5 Configuring a Proxy Application User 2-10

2-6 Creating a Session and Switching an Application User 2-11

2-7 Creating a Regular Application Role 2-13

2-8 Creating a Dynamic Application Role 2-14

2-9 Setting Effective Dates for an Application User 2-16

2-10 Setting Effective Dates for Creating an Application Role 2-16

2-11 Setting Effective Dates for Granting the Application Role 2-16

2-12 Creating a New Application User and Granting This User an Application Role 2-17

2-13 Granting an Application Role to an Existing Application User 2-17

2-14 Granting a Regular Application Role to Another Regular Application Role 2-18

2-15 Granting a Database Role to an Application Role 2-18

3-1 Creating an Application Session 3-4

3-2 Creating an Anonymous Application Session 3-4

3-3 Attaching an Application Session 3-6

3-4 Setting a Cookie for an Application Session 3-7

3-5 Assigning an Application User to an Application Session 3-7

3-6 Switching an Application User to Another Application User in the Current Application Session 3-8

3-7 Registering a Global Callback in an Application Session 3-11

3-8 Saving the Current User Application Session 3-12

3-9 Detaching and Committing an Application Session 3-13

3-10 Detaching and Not Committing an Application Session 3-13

3-11 Destroying an Application Session 3-14

3-12 Creating a Namespace Template 3-17

3-13 Initializing Namespaces When Creating an Application Session 3-18

3-14 Initializing Namespaces When Attaching an Application Session 3-19

3-15 Initializing Namespaces When Assigning an Application User to an Application Session 3-19

3-16 Initializing Namespaces When Switching an Application User in an Application Session 3-20

3-17 Initializing a Namespace Explicitly in an Application Session 3-21

3-18 Setting a Namespace Attribute for an Application Session 3-22

xvii

3-19 Getting a Namespace Attribute for an Application Session 3-23

3-20 Creating a Custom Namespace Attribute for an Application Session 3-24

3-21 Deleting a Namespace in an Application Session 3-24

3-22 Enabling a Role in an Application Session 3-25

3-23 Disabling a Role in an Application Session 3-26

4-1 Adding an Aggregate Privilege to a Security Class 4-2

4-2 Adding Implied Privileges to an Aggregate Privilege 4-2

4-3 Using ALL Grant 4-3

4-4 Showing Security Class Inheritance 4-4

4-5 Adding Parent Security Classes for a Specified Security Class 4-6

4-6 Removing One or More Parent Classes for a Specified Security Class 4-6

4-7 Adding One or More Application Privileges to a Security Class 4-6

4-8 Removing One or More Application Privileges from a Specified Security Class 4-6

4-9 Removing all Application Privileges for a Specified Security Class 4-6

4-10 Adding One or More Implied Application Privileges to an Aggregate Privilege 4-6

4-11 Removing a Specified Implied Application Privileges from an Aggregate Privilege 4-6

4-12 Removing all Implied Application Privileges from an Aggregate Privilege 4-6

4-13 Setting a Description String for a Specified Security Class 4-7

4-14 Deleting a Specified Security Class 4-7

4-15 Creating an Access Control List 4-8

4-16 Denying a Privilege 4-9

4-17 Inverting an Application Privilege 4-9

4-18 Setting ACE Start-Date and End-Date 4-10

4-19 Appending an ACE to an Access Control List 4-10

4-20 Removing all ACEs from an ACL 4-11

4-21 Modifying the Security Class for an ACL 4-11

4-22 Setting or Modifying the Parent ACL 4-11

4-23 Removing all ACL Parameters for an ACL 4-11

4-24 Removing the Specified ACL Parameter for an ACL 4-11

4-25 Setting a Description String for an ACL 4-11

4-26 Deleting an ACL 4-11

4-27 Extending ACL Inheritance 4-13

4-28 Constraining ACL Inheritance: Firewall-Specific Authentication Privilege 4-14

4-29 Using a Constraining Application Privilege 4-14

5-1 Structure of a Data Security Policy 5-3

5-2 Components of a Data Realm Constraint 5-6

5-3 Column with an Additional Application Privilege That Has Been Applied 5-10

xviii

5-4 Checking Authorized Data and Masking NULL Values 5-10

5-5 Using XS_DATA_SECURITY.APPLY_OBJECT_POLICY 5-10

5-6 A Master Detail Data Realm 5-13

5-7 How a BEQUEATH CURRENT_USER View Works 5-24

5-8 How a BEQUEATH DEFINER View Works 5-24

5-9 Connecting as User SYS 5-26

5-10 Creating the DB_EMP Role 5-27

5-11 Creating the Application Role EMPLOYEE for Common Employees 5-28

5-12 Creating the Application Role IT_ENGINEER for the IT Department 5-28

5-13 Creating the Application Role HR_REPRESENTATIVE for the HR Department 5-28

5-14 Granting DB_EMP Database Role to Each Application Role 5-28

5-15 Creating Application User DAUSTIN 5-28

5-16 Creating Application User SMAVRIS 5-28

5-17 Granting the HR User the Policy Administration Privilege ADMIN_ANY_SEC_POLICY 5-29

5-18 Creating the HRPRIVS Security Class 5-29

5-19 Creating ACLs: EMP_ACL, IT_ACL, and HR_ACL 5-29

5-20 Creating the EMPLOYEES_DS Data Security Policy 5-30

5-21 Applying the EMPLOYEES_DS Security Policy to the EMPLOYEES Table 5-31

5-22 Validating the Real Application Security Objects 5-31

5-23 Disabling a Data Security Policy for a Table 5-32

6-1 How to Get an Instance of the Session Manager in Java Using a Single Connection 6-2

6-2 How to Create a Real Application Security Session in Java 6-5

6-3 How to Attach a Real Application Security Session in Java 6-5

6-4 How to Attach Using a Cookie 6-6

6-5 How to Assign an Application User to a Session in Java 6-6

6-6 How to Switch an Application User in a Session in Java 6-6

6-7 How to Enable a Real Application Security Application Role in Java 6-7

6-8 How to Disable a Real Application Security Application Role in Java 6-7

6-9 How to Test If a Real Application Security Application Role Is Enabled in Java 6-8

6-10 How to Create a Namespace in Java 6-8

6-11 How to Delete a Namespace in Java 6-9

6-12 How to Implicitly Create the Namespace in Java 6-9

6-13 How to Create a Session Namespace Attribute in Java 6-9

6-14 How to Retrieve a Session Namespace Attribute in Java 6-10

6-15 How to List Attributes in Java 6-10

6-16 How to Reset an Attribute in Java 6-10

6-17 How to Delete an Attribute in Java 6-11

xix

6-18 How to Get the Session ID for the Session in Java 6-12

6-19 How to Get the Secure Session Cookie in Java 6-12

6-20 How to Set the Secure Session Cookie in Java 6-13

6-21 How to Detach a Real Application Security Session in Java 6-13

6-22 How to Destroy a Real Application Security Session in Java 6-13

6-23 How to Authenticate Application Users in Java 6-14

6-24 How to Construct an ACL Identifier 6-14

6-25 How to get an ACL for a Specified Data Privilege 6-15

7-1 Creating a Real Application Security Session for External Users 7-3

7-2 Attaching a Real Application Security Session for External Users 7-6

7-3 How to Assign a Real Application Security Session to External Users 7-8

7-4 How to Save a Real Application Security External User Session 7-9

8-1 Granting the Code-Based Permission CredentialAccessPermission to the xsee.jar File 8-5

8-2 Application Session Filter Sample Configuration 8-7

8-3 Application Session APIs: AttachSession and DetachSession 8-11

8-4 Application Session APIs: DestroySession 8-12

8-5 Privilege Elevation API 8-13

8-6 Namespace APIs 8-17

8-7 CheckPrivilege API 8-19

8-8 Set Up the HR Demo Application for External Principals 8-21

8-9 A Complete Application Session Filter Sample Configuration 8-25

8-10 Sample Servlet Application MyHR.java 8-28

8-11 Filter to Set Up Application Namespace 8-34

8-12 User and Group to Application Roles Mapping 8-36

11-1 Set the ACL Privilege CREATE_SESSION on Application User TEST1 11-77

B-1 Retrieving Return Codes from OCI for a Column Authorization B-2

B-2 Using the OCIDescribeAny Function to Enable an Explicit Describe B-4

B-3 Check Security Attributes and User Authorization B-8

xx

List of Figures

1-1 Oracle Database Real Application Security Components 1-3

1-2 Three Dimensions of Data Security 1-5

3-1 Real Application Security Architecture 3-2

5-1 Real Application Security Data Security Policy Created on the EMPLOYEES Table 5-3

5-2 Real Application Security Data Security Policy Created on Master-Detail Related Tables 5-16

8-1 Application Session Service in Oracle Fusion Middleware 8-3

xxi

List of Tables

3-1 Session Events That Can Use Callback Event Handlers 3-11

3-2 Session Privilege Checking 3-28

3-3 Session Privilege Operations and the Required Privileges to Perform Them 3-28

8-1 Session Service HR Demo(1) Logged in as Employee LPOPP 8-37

8-2 Session Service HR Demo(2) Logged in as HR Manager HRMGR 8-38

8-3 Session Service HR Demo(3) Logged in as Team Manager AHUNOLD 8-38

9-1 Oracle Database Real Application Security Data Dictionary Views 9-1

10-1 Oracle Database Real Application Security SQL Functions and Procedures 10-1

10-2 Predefined Parameters 10-2

11-1 Oracle Database Real Application Security PL/SQL Packages 11-1

11-2 Summary of DBMS_XS_SESSIONS Subprograms 11-3

11-3 Summary of XS_ACL Subprograms 11-24

11-4 Summary of XS_ADMIN_UTIL Subprograms 11-32

11-5 Summary of XS_DATA_SECURITY Subprograms 11-36

11-6 Summary of XS_DATA_SECURITY Subprograms for Managing Data Security Policies on

Tables or Views 11-37

11-7 Summary of XS_DATA_SECURITY_UTIL Subprograms 11-48

11-8 Summary of XS_DIAG Subprograms 11-50

11-9 Summary of XS_NAMESPACE Subprograms 11-57

11-10 Summary of XS_PRINCIPAL Subprograms 11-63

11-11 Summary of XS_SECURITY_CLASS Subprograms 11-84

B-1 Authorization Indicator Behavior (By Default) B-3

B-2 Authorization Indicator Behavior (By Default) - OCI_ATTR_NO_AUTH_WARNING=TRUE B-4

C-1 HR Demo Scripts and Log Files C-1

D-1 Summary of XS_DIAG Subprograms D-2

D-2 Real Application Security Components and Events D-3

D-3 XSSESSION Trace Contents D-4

D-4 XSPRINCIPAL Trace Contents D-6

D-5 XSACL Trace Contents D-7

D-6 XSXDS Trace Contents D-8

D-7 XSVPD Trace Contents D-9

D-8 Real Application Security Components and First-Failure Dump Information D-9

D-9 Real Application Security Components and Performance Statistics D-9

xxii

Preface

Welcome to Oracle Database Real Application Security Administrator's and Developer's Guide.
This guide describes how you may configure Oracle Database Real Application Security.

Audience
This guide is intended for database administrators (DBAs), security administrators, application
developers, and others tasked with configuring Oracle Database Real Application Security in
an Oracle database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database Real Application Security Java API Reference

• Oracle Database Real Application Security Session Service Java API Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

xxiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Changes in This Release for Oracle Database
Real Application Security Administrator's and
Developer's Guide

This preface contains the changes in this book for Oracle Database 23ai.

Deprecated Features

Deprecation of Real Application Security (RAS) mid-tier master session support

Oracle Real Application Security (RAS) mid-tier master session support for Fusion Middleware
application session service is deprecated with Oracle Database 23ai
This filter created the RAS session automatically for the FMW application server. Starting with
Oracle Database 23ai, you now need to write the code to create the RAS session in the future,
just as you would be required to do for any other application server.

Deprecation of Oracle Virtual Directory with Real Application Security

The use of Oracle Virtual Directory with Oracle Real Application Security is deprecated with
Oracle Database 23ai.
Using OVD with Oracle Real Application Security is deprecated, because OVD is no longer
updated as a separate product

Desupported Features

Desupport of RASADM

The Real Application Security GUI administration tool (RASADM) is desupported with Oracle
Database 23ai.
RASADM is no longer supported for use with Oracle Database 23ai. Oracle recommends that
you use the RAS PL/SQL API which includes all the functionality of RASADM.

Changes in This Release for Oracle Database Real Application Security Administrator's and Developer's Guide

xxiv

1
Introducing Oracle Database Real Application
Security

This chapter contains:

• What Is Oracle Database Real Application Security?

• Data Security Concepts Used in Real Application Security

• Application Session Concepts Used in Application Security

• Flow of Design and Development

• Scenario: Security Human Resources (HR) Demonstration of Employee Information

• About Auditing in an Oracle Database Real Application Security Environment

• Support for Pluggable Databases

1.1 What Is Oracle Database Real Application Security?
Oracle Database Real Application Security is a database authorization model that:

• Supports declarative security policies

• Enables end-to-end security for multitier applications

• Provides an integrated solution to secure database and application resources

• Advances the security architecture of Oracle Database to meet existing and emerging
demands of applications developed for the Internet

Traditional security was designed for client/server systems. These systems had a significantly
smaller number of users than newer applications designed for the Internet. When application
developers found traditional security inadequate, they often moved it from the database layer
to the application layer. To accomplish this, developers frequently built their own tables and
defined their own application users. Because security was encoded in the application layer,
rather than in the database, application users and application roles were typically known only
to the application. In other words, database users were not application-level users, hence the
user identity was not known during the access control decision in the database. Furthermore,
database operations were limited to DDLs and DMLs that do not represent application-level
tasks or operations, hence the operation context was also not known during the access control
decision in the database. These practices exposed the database to vulnerability.

Real Application Security is designed to:

• Manage application security for application users rather than database users

• Enable developers to manage security for application level tasks

• Enable application user identity to be known during security enforcement

• Enable developers to return security to the database layer, either incrementally, or all at
once

This section discusses traditional security and Real Application Security, indicating how Real
Application Security improves upon traditional security.

1-1

This section describes these concepts:

• Disadvantages of Traditional Security for Managing Application Users

• Advantages of Real Application Security

• Architecture of Real Application Security

1.1.1 Disadvantages of Traditional Security for Managing Application Users
Using the traditional security model, it was often difficult to manage three-tier applications,
especially when performing these security tasks:

• Extending security policies independent of application code

• Enforcing security policies at the database level, where the application user is unknown

• Enforcing least privilege principle as full access is granted to highly privileged two-tier
components

1.1.2 Advantages of Real Application Security
Real Application Security enables these security tasks, which improve database security and
performance:

• Three-tier and two-tier applications can declaratively define, provide, and enforce access
control requirements at the database layer.

• The database can provide a uniform security model across all tiers and support multiple
application user stores, including the associated roles, authentication credentials, database
attributes, and application-defined attributes. This model enables application users to have
a single unique global identity across an Oracle enterprise.

• An Oracle database can natively support the application security context. The database
supports integrated policy specification and enforcement for both the application and the
database, so the application does not need to do this through application code. Because
the database stores the application security context information, this also reduces network
traffic.

• Developers can use Real Application Security to control application user access to data in
an Oracle database throughout all components of an Oracle enterprise in a common
manner.

See Configuring Data Security for more information about defining data security policies
and access control requirements.

1.1.3 Architecture of Real Application Security
Real Application Security is managed through a collection of PL/SQL and Java APIs. This
architecture that enables you to configure its components—application users, application roles,
sessions, and other security-related components. With Real Application Security, you configure
application counterparts to the traditional user, role, and session, through the use of entities,
which are stored in tables.

Figure 1-1 shows the various components used in Oracle Database Real Application Security.
This includes application users, application roles, access control lists, security classes, and
application sessions. These components are discussed in the following sections. Figure 1-1
also shows Web applications establishing application sessions to the database.

Chapter 1
What Is Oracle Database Real Application Security?

1-2

Figure 1-1 Oracle Database Real Application Security Components

Oracle Database

Real Application Security

Web
Clients

Application Server

Application
Session Cache

ACL
Cache

Connection Pool

DB Session
1

DB Session
2

DB Session
3

Attached

ACLs, Application Privileges, Users, Roles

Real Application Security

Application Sessions

Attached

DB Session
1

DB Session
2

DB Session
3

DB Session
4

SQL*Plus

1.2 Data Security Concepts Used in Real Application Security
This section describes access control terms and concepts that you need to understand before
you can begin to configure Real Application Security. Using the PL/SQL administrative
interfaces, you can create and manage the entities described here: application user,
application role, principal, application privilege, security class, access control list (ACL), access
control entry (ACE), and data realm.

Chapter 1
Data Security Concepts Used in Real Application Security

1-3

Note:

When a term such as application user or application role is used here, it applies to
Real Application Security; when it is important to distinguish the database type, either
no qualifier is used or the qualifier database is used.

See Also:

• Configuring Application Users and Application Roles

• Configuring Application Privileges and Access Control Lists

This section contains:

• About Data Security with Oracle Database Real Application Security

• Principals: Users and Roles

• Application Privileges

• Security Classes in Oracle Database Real Application Security

• Access Control Entry (ACE)

• Access Control List (ACL)

• Data Security Policy

1.2.1 About Data Security with Oracle Database Real Application Security
Effective security requires defining which application users, applications, or functions can have
access to which data, to perform which kinds of operations. Thus, effective security has these
three dimensions:

1. which application users

2. can perform which operations

3. on which data

You define (1) principals, (2) application privileges, and (3) objects in relation to these three
dimensions, respectively. Principals are users and roles. A role can represent attributes of an
application user, system state, or a piece of code.

Principals and application privileges are related in a declarative way by defining ACLs. These
ACLs are then related to the data by defining Data Security policy that protects rows and
columns of table data. For example, you can protect table data by using PL/SQL procedures to
set controlling ACLs.

Figure 1-2 illustrates an example where the user, ProjectManager has the ModifyProject
privilege on a data realm comprised of Team A's projects.

Chapter 1
Data Security Concepts Used in Real Application Security

1-4

Figure 1-2 Three Dimensions of Data Security

1.2.2 Principals: Users and Roles
When discussing fine-grained database access control, a principal is an application user or an
application role or a database user or a database role. An application user can be a person or
an autonomous application process that accesses information in the database. An application
role is a logical grouping of application privileges required to accomplish a real life task. An
application role can contain other application roles, but this recursion cannot be circular. You
use application roles to associate application users, both database users and application users
with privileges.

Oracle Database supports the following as principals:

• Database users and database roles

A database user is also sometimes referred to as a database schema or a user account.
When a person or application logs onto the database, it uses a database user (schema)
and password.

A database role corresponds to a set of database privileges that can be granted to
database users, applications, or other database roles — see "Understanding the Difference
Between Database Roles and Application Roles".

• Application users and Application roles

The term application, as used by Real Application Security, refers to the creation of an
application user, application role, or session that contains only information pertinent to the
application that the application user is logging onto. Application users and application roles
are defined by an application, and they do not need to be tied to any database schema.

Application users can also create heavyweight database sessions by connecting to the
database directly. These are called direct login application users. See "About Creating a
Direct Login Application User Account". When an application user creates a heavyweight
database session, the user's default schema is set to a preconfigured value meant solely
for name resolution purposes, such as HR.

Chapter 1
Data Security Concepts Used in Real Application Security

1-5

An application role can only be granted to an application user or to another application
role. You cannot directly grant database privileges to application users and application
roles. See "Granting Database Privileges to Application Users and Application Roles" for
further details.

See Also:

– "About Configuring Application Users"

– "About Configuring Application Roles"

This section includes the following sections:

• Understanding the Difference Between Database Users and Application Users

• Understanding the Difference Between Database Roles and Application Roles

• Granting Database Privileges to Application Users and Application Roles

1.2.2.1 Understanding the Difference Between Database Users and Application Users
Database users are also referred to as traditional users, and have these characteristics:

• They are associated with schemas and passwords.

• They can create heavyweight sessions to schemas with which they are associated.

Application users are defined by an application, and have these characteristics:

• They do not own database schemas.

• They can create application sessions to the database through the middle tier.

• They can create heavyweight database sessions by connecting to the database directly.
(See "About Creating a Direct Login Application User Account".)

Note:

In a heavyweight session, the user is associated with a default schema.

1.2.2.2 Understanding the Difference Between Database Roles and Application Roles
A database role is traditionally thought of as a named set of database privileges.

Database roles have these characteristics:

• They are granted privileges, just as database users can be granted privileges.

• They serve as intermediaries for mapping database privileges to database users (and
applications) as follows: a role is granted privileges, and the role is then granted to users
(giving them the privileges).

1. Grant privileges to database role

2. Grant database role to database user

The database user now has the privileges of the database role.

Chapter 1
Data Security Concepts Used in Real Application Security

1-6

Note:

In traditional database terminology, a role is considered to be the same thing as the
set of privileges that are granted to it.

An application role can be regarded as the set of application-defined privileges that are
associated with it using the mechanism of a declarative access control list (ACL), discussed in
"Access Control List (ACL)".

Application roles have these characteristics:

• They use an access control list (ACL), rather than a database grant, as the intermediary
that maps application privileges to users or roles.

• They can be only granted to application users or application roles.

• They cannot be granted to a database role. On the other hand, a database role can be
granted to an application role.

Note:

In access control terminology, application roles are classified with application users
as principals.

1.2.2.3 Granting Database Privileges to Application Users and Application Roles
You cannot grant database privileges directly to application users and application roles.
Instead, you grant the database privileges to a database role, and then grant the database role
to the application role in these steps.

1. Grant database privileges to database role.

2. Grant database role to the application role.

The statements in the following code do exactly this, effectively granting the database SELECT
privilege to the application role, HRREP.

CREATE ROLE db_hrrep;
GRANT SELECT ON hr.employees TO db_hrrep;
GRANT db_hrrep TO HRREP;

Application users already created or subsequently created, with that application role, acquire
this application privilege.

1.2.3 Application Privileges
An application privilege is a particular right or permission that can be granted or denied to a
principal. Application developers define application privileges in a security class.

The set of application privileges granted to a principal controls whether or not this principal can
perform a given operation on the data that it protects. For example, if the principal (database
user) HR wants to perform the SELECT operation on a given resource, then SELECT privileges
must be granted to principal HR before the SELECT operation.

Chapter 1
Data Security Concepts Used in Real Application Security

1-7

Application privileges can also be aggregated. An aggregate privilege is an application
privilege that implies other application privileges. These implied privileges can be any
application privileges defined by the current security class or an inherited privilege. When an
aggregate privilege is granted or denied, its implied application privileges are implicitly granted
or denied.

Aggregate privileges simplify usability when the number of application privileges grows. For
example, instead of granting each application privilege separately, you can group related
application privileges into an aggregate privilege. Then, you can use a single grant to enable a
principal to access all the application privileges contained in the aggregate privilege.

1.2.4 Security Classes in Oracle Database Real Application Security
A security class is a scope for a set of application privileges.

A security class includes application privileges that it inherits from other security classes, and it
can include application privileges that it defines.

A security class is typically associated with an access control list (ACL), and the ACL can grant
application privileges in the security class to specific principals. See "Access Control List
(ACL)".

Example 4-4 shows how to create a security class.

1.2.5 Access Control Entry (ACE)
An access control entry (ACE) either grants or denies application privileges to a particular
principal (application user or application role).

An ACE is an element in an array named ace_list. The whole array is called by and becomes
part of the access control list (ACL).

The ACE does not, itself, specify which data to protect; that is done by associating the ACL
with target data, such as a set of rows in an order entry table. You can make this association
by creating a data realm to restrict the user to modifying only those rows, or by using the
PL/SQL procedure XS_DATA_SECURITY.SET_ACLS.

1.2.6 Access Control List (ACL)
An access control list (ACL) is a list of access control entries (ACEs), which permit or deny
application privileges to one or more principals.

If the ACL you create relies on a set of custom application privileges that you define in your
own security class, then you must explicitly associate that security class with the ACL. See
Example 4-15 for an example.

If the only application privileges used in the ACL are defined in the DML security class, then no
security class association is needed as that is the default. See a description in "DML Security
Class".

1.2.7 Data Security Policy
To protect data within a database table, you must create a data security policy. Database
records, both at row and column level, can be protected using the fine-grained access control
described in this section.

The data security policy performs the following functions:

Chapter 1
Data Security Concepts Used in Real Application Security

1-8

• Specifies the data that you want to protect. The data can be indicated by a WHERE clause in
a data realm of one or more rows that you design. It can also be defined using named
notation by using an association operator to associate the parameter to the left of the
arrow (=>) with the actual parameter to the right of the arrow. For example, in
Example 5-20, each realm is defined using association operators.

The data security policy can contain one or more data realms.

• Associates each data realm with one or more access control lists (ACLs) that specify the
application privileges required to access rows and columns of the data realm to form what
is called a data realm constraint. A given ACL protects a given data realm and controls
access to particular application users or application roles (called principals). (See "Access
Control List (ACL)" for more information about ACLs.)

• Optionally applies additional application privileges to protect a particular column to form
what is known as column constraints. This is useful in cases where you need to add an
extra layer of security for sensitive data.

• Associates additional custom application privileges. For example, an administrator could
create an APPROVE_TRANSACTION privilege, which controls whether a user can take a
particular action on the row. Assuming SELECT privilege is granted to all users, all users
could see the row, but only some users can perform the transaction approval action.

In summary, the application user who logs in will only be allowed to perform operations
including DML on records within the data realm, including individual rows of data, based on the
application privileges in its associated ACLs. Thus, the data security policy is composed of
data realm constraints and column constraints that protect the data realm by only allowing
access to application users who have application privileges in the associated ACLs.

For example, suppose you have a sales table that lists all sales representatives, their regions,
the products they are responsible for, product categories, and product prices. When individual
sales representatives log on, each representative would see selected data for all other sales
representatives, such as sales representatives for particular product categories based on data
realm constraints. If you wanted to restrict the display of product prices to sales
representatives by region, you could apply additional application privileges to the column listing
product prices, in this case using column constraints.

Configuring Data Security describes in detail how to protect database objects.

1.3 Application Session Concepts Used in Application Security
Real Application Security introduces the concept of an application session. Within the context
of application sessions, there are three types of user identities:

• Application session user: The user associated with the application session.

Application session access to database objects is checked against the permissions
granted to this user.

• Traditional (heavyweight) session user: The user that established the database session.

This user can be an application user or a database user, as long as database
authentication credentials are available.

• Schema owner: The database schema is the schema associated with the traditional
database session and is only used for object name resolution.

Traditional database user sessions have these characteristics:

• They hold their own database resources, such as transactions and cursors.

• They consume many server resources.

Chapter 1
Application Session Concepts Used in Application Security

1-9

Application sessions have these characteristics:

• They contain information that is pertinent only to the application.

• They can be dedicated to each end application user.

• They can persist until the application user logs out of the application or the application
terminates unexpectedly.

See Configuring Application Sessions for more information about application sessions.

1.4 Flow of Design and Development
You should be familiar with the concepts introduced in this chapter to take full advantage of
Real Application Security.

In general, identify all tasks an application performs that require application privileges to control
data access. Then, add the appropriate application privileges to a security class so that you
can reference them in an ACL and grant them to the application users and application roles.
This process involves these tasks:

• Create a default set of meaningful application roles based on the features the application
provides.

• Identify the tables that require data security protection based on the application table
design and security requirements, and define the data realms, including column protection.

• Define data security policies based on the application requirements and the rules applied
on the tables.

• Ensure that ACLs used in the data security policy and functional security grant the
appropriate application privileges to application roles.

This section contains:

• Design Phase

• Development Flow Steps

1.4.1 Design Phase
In the design phase, you identify all the tasks an application performs that require application
privileges to control data access.

For example, during the design phase, the application policy designer must identify:

1. The set of application-level operations that require access control.

2. The rows and columns of tables and views that can be accessed as part of the application-
level operations.

3. The set of actors or principals (users and roles) that can perform these operations.

4. The runtime application session attributes that identity rows of a table or views. These
attribute names are used within the predicates that selects the rows to be authorized, and
their values are set during the execution of the application.

1.4.2 Development Flow Steps
In the development phase, as the Real Application Security administrator, you use Real
Application Security components to develop your data security policies.

Chapter 1
Flow of Design and Development

1-10

Follow these steps to develop your data security policies:

1. Create the corresponding application users and roles. If using an external directory server,
create the application users and roles or user groups in the directory server. Follow this
procedure to create these principals natively in the database:

a. Create the application roles and grant database roles to these application roles, if
needed. See About Configuring Application Roles.

b. Create the application users and grant application roles to the application users. See
About Configuring Application Users.

2. Create each security class that you plan to use to develop the security policies for your
application. Each security class consists of one or more appropriate privileges that you
define and can reference in an ACL and also grant them to the application users and
application roles. Each security class authorizes by means of ACLs the required
application-level operations of a data security policy. See About Configuring Security
Classes and About Configuring Access Control Lists.

3. Create one or more session namespaces that can be used across different application
sessions. This consists of defining for a session namespace its set of properties
(application attributes) and its associated access control policy or ACL that you can choose
from a list or create. See About Manipulating the Application Session State.

4. Create the data security policy by associating each data realm with an ACL, so as to
create both data realm authorization and column authorization as needed. See About Data
Security.

This process consists of four parts:

a. Policy Information - You choose the object to be protected and the privilege class to
protect it as well as specify the policy name and select the policy owner. See
Understanding the Structure of the Data Security Policy.

b. Column Level Authorization - You choose the name of the column to be protected and
select the privilege to be granted to access the column, which is associated with the
privilege class you selected in Step 4a. See Applying Additional Application Privileges
to a Column.

c. Data Realm Authorization - You create a SQL predicate to represent the data realm to
be protected and add each to a data realm grant list. Then you choose or create the
ACL to protect the data realm. See About Designing Data Realms.

d. Apply Policy - You can apply, remove, enable, or disable the data security policy you
are creating and choose to specify certain apply options, allowing the owner of the
table or view to bypass this data security policy, and whether to enforce statement
types for this policy. See About Enabling Data Security Policy for a Database Table or
View.

See Also:

Scenario: Security Human Resources (HR) Demonstration of Employee Information that
describes in detail how the development flow is implemented for an example policy scenario
for the security human resources (HR) demonstration of employee information using the
concepts and components of Real Application Security.

Chapter 1
Flow of Design and Development

1-11

1.5 Scenario: Security Human Resources (HR) Demonstration of
Employee Information

This section presents an example policy that provides a high-level overview of Real Application
Security. It is a simple scenario aimed at explaining the basic Real Application Security
concepts. You should be familiar with the following concepts, introduced in "Data Security
Concepts Used in Real Application Security":

• Principals – application users and application roles

• Security classes and application privileges

• Access control lists and entries (ACLs and ACEs)

• Data security policy

This same scenario appears throughout the book, to illustrate different components of Real
Application Security. It is also described in detail in Real Application Security HR Demo and
Real Application Security HR Demo Files to demonstrate how to use advanced concepts of
Real Application Security to handle a more complex policy.

This section includes the following topics:

• Basic Security HR Demo Scenario: Description and Security Requirements

• Basic HR Scenario: Implementation Overview

1.5.1 Basic Security HR Demo Scenario: Description and Security
Requirements

Susan Mavris (SMAVRIS) is an employee in the Human Resources department. Her job title is
Human Resources Representative. In this capacity, she is in charge of managing the human
resources information for all employees, including department 60 (IT). She can view and
update all the employee records, including the SALARY column.

David Austin (DAUSTIN) is an employee in the IT department. His job title is Assistant
Department Manager. In this capacity, he can view employee records in the IT department, but
he cannot view the SALARY column, except for his own salary record.

Secure authorization requires defining which application users and application roles can have
access to which data, to perform which kinds of operations. These three security dimensions
must be defined: protected data, principals, and application privileges. (see "About Data
Security with Oracle Database Real Application Security").

In this basic scenario:

• The data to be protected is employee information and it is protected in three ways:

– Access to an employee's own record, including the SALARY column.

– Access to all the records in the IT department, excluding the SALARY column.

– Access to all employee records, including the SALARY column.

• Users are allowed access to employee data in the following ways:

– Each user can view their own record, including the SALARY column.

Chapter 1
Scenario: Security Human Resources (HR) Demonstration of Employee Information

1-12

– Application user DAUSTIN in his role as Assistant Department Manager is allowed to
view all the records in the IT department, excluding the SALARY column.

– Application user SMAVRIS in her role as human-resources representative is allowed to
view and update all employee records, including the SALARY column.

• Database role DB_EMP is created and granted SELECT, INSERT, UPDATE, and DELETE
privileges on HR.EMPLOYEES.

• Application roles are created as follows:

– EMPLOYEE role is granted to both application users DAUSTIN and SMAVRIS. Database role
DB_EMP is granted to EMPLOYEE role.

– IT_ENGINEER role is granted to only application user DAUSTIN. Database role DB_EMP is
granted to IT_ENGINEER role.

– HR_REPRESENTATIVE role is granted to only application user SMAVRIS. Database role
DB_EMP is granted to HR_REPRESENTATIVE role.

• The VIEW_SALARY application privilege is created to control access to the SALARY column.
The HR_PRIVILEGES security class is created in which to scope the VIEW_SALARY application
privilege.

• ACLs are created to define the degree of access to employee records in the following
ways:

– EMP_ACL grants the EMPLOYEE role the SELECT database privilege and VIEW_SALARY
application privilege to view an employee's own record, including the SALARY column.

– IT_ACL grants the IT_ENGINEER role only the SELECT database privilege to view the
employee records in the IT department, but it does not grant the VIEW_SALARY privilege
that is required for access to the SALARY column.

– HR_ACL grants the HR_REPRESENTATIVE role SELECT, INSERT, UPDATE, and DELETE
database privileges to view and update all employee's records, and granting the
VIEW_SALARY application privilege to view the SALARY column.

• The HR demo secures the HR.EMPLOYEE table by creating and applying the data security
policy, EMPLOYEES_DS, that has the following three data realms and column constraint:

– An employee's own record realm. The ACL, EMP_ACL controls this realm, which grants
application role EMPLOYEE privileges to access the realm, including the SALARY column.

– All the records in the IT department realm. The ACL, IT_ACL controls this realm, which
grants application role IT_ENGINEER privileges to access the realm, but excluding the
SALARY column.

– All the employee records realm. The ACL, HR_ACL controls this realm, which grants
application role HR_REPRESENTATIVE privileges to access the realm, including the
SALARY column.

– A column constraint that protects the SALARY column by requiring the VIEW_SALARY
privilege to view its sensitive data.

1.5.2 Basic HR Scenario: Implementation Overview
To implement the basic human-resources security scenario, in addition to identifying the
protected data, the principals, and the application privileges, you must define the following:

• A database user as the Real Application Security Administrator and then connect as the
Real Application Security Administrator to create the components.

Chapter 1
Scenario: Security Human Resources (HR) Demonstration of Employee Information

1-13

• How the principals connect with the database to access the data.

• The access control lists (ACLs) that grant the application privilege and any database
privileges to the principals.

• A data security policy that associates the ACLs with the particular data (rows) that the
principals need to access.

In this basic scenario, application users SMAVRIS and DAUSTIN connect to the database directly
as the principals.

The application user account that is created for application users SMAVRIS and DAUSTIN are
principals in this scenario. Each application user account is granted application roles that,
ultimately, has the SELECT privilege on the database table that contains the employee
information. The application role is a principal in this scenario.

A database role, DB_EMP serves as intermediary between the application role and the database
privilege because database privileges can be granted only to database users and roles. That
is, the necessary database privileges are granted to a database role, and that role is granted to
each application role (the principal).

The database SELECT privilege applies to the entire table. The principal must also be granted
an Real Application Security application privilege such as the DML SELECT privilege, which can
be restricted to certain rows of the database table. This restriction is implemented using an
access control list (ACL) and a data security policy.

The HR scenario requires the following components for the security model:

• Protected data: Employee information is stored in the table EMPLOYEES of the sample
database schema HR (delivered with Oracle Database).

• Application role: Application roles, EMPLOYEE, IT_ENGINEER, and HR_REPRESENTATIVE are
created for performing tasks. The application roles are defined with the
XS_PRINCIPAL.CREATE_ROLE procedure.

• Application user: Application users, SMAVRIS and DAUSTIN, are created and defined.
SMAVRIS is granted the application roles EMPLOYEE and HR_REPRESENTATIVE. DAUSTIN is
granted the application roles EMPLOYEE and IT_ENGINEER.

• Database access: Application users SMAVRIS and DAUSTIN are given a database password
for direct database login. In order to grant SELECT, INSERT, UPDATE, and DELETE privileges
on table EMPLOYEES to application roles EMPLOYEE, IT_ENGINEER, HR_REPRESENTATIVE a
database role, DB_EMP, is created and granted these database privileges. The application
roles are then granted this database role.

• Application Privilege: A single security class, HR_PRIVILEGES, is created which defines a
single custom application privilege, VIEW_SALARY. Through inheritance, the predefined
application privilege SELECT is also available in this security class. These application
privileges will be used in connection with a data security policy to allow read access to
employee information. The security class is created by the
XS.SECURITY_CLASS.CREATE_SECURITY_CLASS procedure.

• ACL: The SELECT and VIEW_SALARY privileges are granted to application role EMPLOYEE by
the access control list (ACL), EMP_ACL that is created by XS_ACL.CREATE_ACL procedure.
The SELECT privilege is granted to application role IT_ENGINEER by the ACL, IT_ACL that is
created by XS_ACL.CREATE_ACL procedure. The SELECT, INSERT, UPDATE, and DELETE
privileges are granted to application role HR_REPRESENTATIVE by the ACL, HR_ACL that is
created by XS_ACL.CREATE_ACL procedure to view and update all employee's records, and
granting the VIEW_SALARY application privilege to view the SALARY column. .

Chapter 1
Scenario: Security Human Resources (HR) Demonstration of Employee Information

1-14

• Data Security Policy: The data security policy is defined and created with the
XS_DATA_SECURITY.CREATE_POLICY procedure. This data security policy defines three data
realms (an employee's own record realm that can view the realm including the SALARY
column, all the records in the IT department realm that can view the IT department
excluding the SALARY column, and all the employee records realm that can view the realm
including the SALARY column) and a column constraint. The data security policy associates
the ACLs EMP_ACL, IT_ACL, and HR_ACL with its respective data realm.

Introducing this example in this chapter provides an overview of the requirements for
implementing a policy using Real Application Security. Actual implementation of these tasks
requires a systematic understanding of all the Real Application Security concepts introduced in
this chapter, and further discussed in subsequent chapters. The complete example, including
implementation details, appears in "Real Application Security: Putting It All Together".

1.6 About Auditing in an Oracle Database Real Application
Security Environment

Another aspect of security is auditing in an Oracle Database Real Application Security
environment. Real Application Security administration and run-time actions can be audited by
configuring and enabling unified audit policies. For information about unified auditing in an
Oracle Database Real Application Security environment, see Oracle Database Security Guide.

The following static data dictionary views are defined for auditing policies specifically for Oracle
Database Real Application Security:

• DBA_XS_AUDIT_POLICY_OPTIONS - describes the auditing options that were defined for Real
Application Security unified audit policies. See Oracle Database Reference for more
information.

• DBA_XS_AUDIT_TRAIL - provides detailed information about actions pertaining to Real
Application Security that were audited. See Oracle Database Reference for more
information.

• DBA_XS_ENB_AUDIT_POLICIES - lists users for whom Real Application Security unified audit
polices are enabled. See Oracle Database Reference for more information.

1.7 Support for Pluggable Databases
The multitenant architecture enables an Oracle database to contain a portable collection of
schemas, schema objects, and nonschema objects that appear to an Oracle Real Application
Security application user as a separate database. A multitenant container database (CDB) is
an Oracle database that includes one or more pluggable databases (PDBs).

Oracle Real Application Security can be used with Oracle Multitenant to provide increased
security for consolidation.

Because Oracle Real Application Security entities are scoped within a PDB, each PDB has its
own Real Application Security metadata, such as users, roles, privileges, ACLs, data security
policies, and so forth. As a result, Real Application Security can prevent privileged user access
inside a PDB between and among applications and between the PDB and the common
privileged user at the container database.

As SYS is the schema owner for Oracle Real Application Security entities, Real Application
Security entities created in root can only be accessed by the SYS user in root. The same is
true for other operating systems in that the SYS user is the schema owner for Oracle Real

Chapter 1
About Auditing in an Oracle Database Real Application Security Environment

1-15

Application Security entities and only the SYS user has access to these entities. Similarly, Real
Application Security entities created within a local PDB, can only be accessed in the local PDB.

Since Oracle Real Application Security direct login users have a password associated with
them, these users can be provisioned within a PDB, using a single sqlnet.ora parameter to
support them.

Oracle Real Application Security administration involves PDB specific administrative privileges
and a schema to qualify the name for Real Application Security entities. The schema name can
be common; however, entities created under the naming scope of a common schema are not
common.

Oracle Real Application Security auditing is PDB specific.

An Oracle Real Application Security application user can connect to a PDB using a service
whose pluggable database property has been set to the relevant PDB.

See Also:

Introduction to the Multitenant Architecture and Overview of the Multitenant
Architecture in Oracle Database Concepts.

Oracle Database Administrator’s Guide for more information about PDBs and for
more details about configuring the services to connect to various PDBs

Chapter 1
Support for Pluggable Databases

1-16

2
Configuring Application Users and Application
Roles

This chapter contains:

• About Configuring Application Users

• About Configuring Application Roles

• Effective Dates for Application Users and Application Roles

• About Granting Application Privileges to Principals

See Also:

"XS_PRINCIPAL Package"

2.1 About Configuring Application Users
This section contains the following topics:

• About Application User Accounts

• Creating a Simple Application User Account

• About Creating a Direct Login Application User Account

• Resetting the Application User's Password with the SQL*Plus PASSWORD Command

• Configuring an Application User Switch

• Validating an Application User

2.1.1 About Application User Accounts
Traditional database users own database schemas and can create traditional heavyweight
database sessions to those schemas.

Application users do not own database schemas, but can create application sessions to the
database through the middle tier provided they are granted the role or roles with the
appropriate object privileges for accessing tables. Application users can also create
heavyweight database sessions by connecting to the database directly through direct login
application user accounts provided these accounts are associated with a schema and the
XSCONNECT application role is granted to these application users. A profile can also be created
and assigned to each of these application users.

This section contains: General Procedures for Creating Application User Accounts.

2.1.1.1 General Procedures for Creating Application User Accounts
The general procedure for creating an application user account is as follows:

2-1

1. Create a security manager user, sec_mgr, as follows and grant this user create session
database privilege and Real Application Security xs_session_admin database role. Next,
execute the xs_admin_util.grant_system_privilege call to grant the Real Application
Security least system privilege PROVISION to sec_mgr as a database user. As the security
manager, you can now create users and roles, set passwords, and so forth, and administer
sessions using the Real Application Security least system privilege.

sqlplus /nolog
SQL> connect sys/password as sysdba
SQL> grant create session, xs_session_admin to sec_mgr identified by
password;
SQL> exec sys.xs_admin_util.grant_system_privilege('provision', 'sec_mgr',
sys.xs_admin_util.ptype_db);

2. Log in to SQL*Plus as a user who has either the Real Application Security PROVISION
system privilege or the database CREATE USER system privilege.

sqlplus sec_mgr
Enter password: password
Connected.

See "XS_PRINCIPAL Package" for more information about the XS_PRINCIPAL package and
specifically the "CREATE_USER Procedure".

You must have the privileges required to create, modify, or drop application users and
roles. These privileges are governed by the same system privileges required to create,
modify, or drop database users and roles. For more information about these and other SQL
statements, see Oracle Database SQL Language Reference.

3. Create the application users with the XS_PRINCIPAL.CREATE_USER procedure.

Select the appropriate type, and follow the instructions in these sections:

• "Creating a Simple Application User Account"

• "About Creating a Direct Login Application User Account"

Other Tasks
After you create the application user account, you can grant the account a role, which provides
privileges for the application users. For more information, see "Granting an Application Role to
an Existing Application User".

Chapter 2
About Configuring Application Users

2-2

2.1.2 Creating a Simple Application User Account

Note:

In SQL*Plus, case sensitivity is an issue for lower case characters and special
characters, so keep these guidelines in mind.

• An application user whose name contains lower case or special characters must
connect to SQL*Plus with the account name in double quotation marks:

For example:

CONNECT "lwuser1"
Enter password: password
Connected.

• The name of an application role that contains lower case or special characters
must be entered in SQL*Plus enclosed in double quotation marks.

For example:

GRANT cust_role TO "app_regular_role";

When you create a simple application user account, the schema argument specifies the
schema name to use to resolve unqualified names. This does not give you any privileges, and
it is just used for name resolution purposes. If the schema name is not specified, XS$NULL, is
used.

To create a simple application user account, do the following:

1. Log in.

For example, if sec_mgr has the CREATE USER privilege, log in as follows:

sqlplus sec_mgr
Enter password: password
Connected.

2. Create the application user account.

For example:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER('lwuser1');
END;
/

As a user with DBA role, you can check the user creation by querying the DBA_XS_USERS
data dictionary view as follows. See "DBA_XS_USERS" for more information.

SELECT NAME FROM DBA_XS_USERS;

NAME

XSGUEST
LWUSER1

This output displays the existing application user accounts. The XSGUEST user account is
an already existing or predefined system created user account.

Chapter 2
About Configuring Application Users

2-3

For detailed information about the XS_PRINCIPAL.CREATE_USER procedure, see
"CREATE_USER Procedure".

You can delete an application user account using the XS_PRINCIPAL.DELETE_PRINCIPAL
procedure, see "DELETE_PRINCIPAL Procedure".

2.1.3 About Creating a Direct Login Application User Account
This section contains:

• Creating Direct Login Application User Accounts

• Procedure for Creating the Direct Login Application User Account

• Setting a Password Verifier for Direct Application User Accounts

• Oracle Label Security Context Is Established in Direct Logon Session

2.1.3.1 Creating Direct Login Application User Accounts
You can use an application user account to directly log into the database. This is useful for
users who need to perform functions such as logging directly into SQL*Plus without logging in
through SSO or a Web interface. The direct login user must have a password.

2.1.3.2 Procedure for Creating the Direct Login Application User Account
To create a direct login application user account:

1. Log in as described in "General Procedures for Creating Application User Accounts".

sqlplus sec_mgr
Enter password: password
Connected.

2. Create the application user account.

For example, to create an application user account, lwuser1, whose default database
schema is HR:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER
 (name => 'lwuser1',
 schema => 'HR');
END;/

Note:

If the schema does not exist, the direct login fails.

When this Real Application user directly connects to the database for name resolution of
unqualified database objects in queries, HR schema is used as the default schema. For
example:

SELECT COUNT(*) FROM EMPLOYEES;
3. Create a password for the application user account.

For example:

Chapter 2
About Configuring Application Users

2-4

BEGIN
 SYS.XS_PRINCIPAL.SET_PASSWORD('lwuser1', 'password');
END;
/

Set the password as described in "SET_PASSWORD Procedure". When you use the
SET_PASSWORD procedure, it creates a verifier for you based on the password and the type
parameter, and then inserts the verifier and the value of the type parameter into the
dictionary table.

Note:

Replace password with a secure password. See Oracle Database Security Guide
for more information about password guidelines.

4. Create a profile named prof and assign this profile to the application user account.

For example:

CREATE PROFILE prof LIMIT PASSWORD_REUSE_TIME 1/1440 PASSWORD_REUSE_MAX 3
PASSWORD_VERIFY_FUNCTION Verify_Pass;

BEGIN
 SYS.XS_PRINCIPAL.SET_PROFILE('lwuser1','prof');
END;

The user assigning the profile must have ALTER_USER privilege. See the "SET_PROFILE
Procedure" for more information.

5. Grant the role XSCONNECT to the user to allow access to the database.

For example:

BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser1', 'XSCONNECT');
END;
/

Next, you are ready to assign privileges to the application user account. Go to "About Granting
Application Privileges to Principals".

Afterward, the user can connect to the database as follows. For example:

CONNECT lwuser1
Password: password

2.1.3.3 Setting a Password Verifier for Direct Application User Accounts
Optionally, you can set a password verifier for this password (a hash transformed password),
enabling administrators to migrate users into Real Application Security with knowledge of the
verifier and not the password. If you do not set a password verifier, the default hashing
algorithm is XS_SHA512. For more information, see the SET_PASSWORD Procedure and the
SET_VERIFIER Procedure.

Example 2-1 shows how to use the XS_PRINCIPAL.SET_VERIFIER procedure to set the
password verifier to the value as determined from a query of the XS$VERIFIERS dictionary table,
using the hashing algorithm XS_SHA512 for the application user account LWUSER1 by following
these steps:

Chapter 2
About Configuring Application Users

2-5

1. Query the view DBA_XS_OBJECTS to obtain the ID value for user LWUSER1.

2. Query the XS$VERIFIERS dictionary table for user LWUSER1 whose ID is 2147493730. The
value of the verifier includes its type as value “T” followed by a colon (:) to denote that it is
a verifier type of XS_SHA512, which is also indicated as being of type# 2.

3. Using the entire verifier value including “T:”, set the verifier for user LWUSER1. The following
example shows each of these steps.

Example 2-1 Setting the Password Verifier Using the Hash Algorithm XS_SHA512

sqlplus sec_mgr
Enter password: password
Connected.

SQL> column name format A10;
SQL> column owner format A6;
SQL> select NAME, OWNER, ID, TYPE, STATUS from DBA_XS_OBJECTS where NAME =
'LWUSER1';

NAME OWNER ID TYPE STATUS
---------- ------ ---------- ------------------ --------
LWUSER1 SYS 2147493730 PRINCIPAL VALID

SQL> column user# format 9999999999;
SQL> column type# format 99;
SQL> column verifier format A62;
SQL> select USER#, VERIFIER, TYPE# from XS$VERIFIERS where USER# =
'2147493730';

 USER# VERIFIER
TYPE#
----------- --

 2147493730
T:9BA95FEF2C2630A2BAACF2E7C5E41B0D50CDC7B0B60C88AD4FE81F8155D0 2
 02F99EEAF9D95477E4749870C67FDE870E154ED17809C359777F979E269010
 823FB981B2A998915EB1439FE3C6C1542A239C

SQL> BEGIN
SYS.XS_PRINCIPAL.SET_VERIFIER('lwuser1','T:9BA95FEF2C2630A2BAACF2E7C5E41B0D50C
DC7B0B6
0C88AD4FE81F8155D002F99EEAF9D95477E4749870C67FDE870E154ED17809C359777F979E2690
10823FB
981B2A998915EB1439FE3C6C1542A239C', XS_PRINCIPAL.XS_SHA512);
END;
/ 2 3 4 5

PL/SQL procedure successfully completed.

For this procedure to complete successfully, both the verifier value and its type must match the
information in the VERIFIER column of the XS$VERIFIERS dictionary table for the user whose
verifier is being set. Note that when you change the password for an application user, it
automatically changes its verifier value with the option of changing its verifier type.

This example set the verifier to its same exact value to show the steps involved. You have the
option to set the verifier for a password to any verifier value that displays for an application

Chapter 2
About Configuring Application Users

2-6

user when you query the XS$VERIFIERS dictionary table as long as the verifier value matches
the verifier type that you set. For example, if you wanted to change the verifier value and the
verifier type to XS_SALTED_SHA1, do the following.

SQL> BEGIN
SYS.XS_PRINCIPAL.SET_VERIFIER('lwuser1','S:14DC0F5ABB72FC869549B1F845C548E0BEF
7B863A116DB24DFAE22F0501E',
XS_PRINCIPAL.XS_SALTED_SHA1);
END;
/ 2 3 4

PL/SQL procedure successfully completed.

Note that this is the same verifier value and verifier type that was set for application user
LWUSER3 as shown in the SET_VERIFIER Procedure.

2.1.3.4 Oracle Label Security Context Is Established in Direct Logon Session
Describes Oracle Label Security support for Real Application Security users.

Beginning with Oracle Database 12c Release 2 (12.2), Oracle Label Security supports Real
Application Security users. This means that when a Real Application Security user attaches
with Real Application Security user session through direct logon, the user can exercise its own
Oracle Label Security authorization. Oracle Label Security context is established during the
attach session.

See Also:

• Attaching an Application Session to a Traditional Database Session for more
Information about how Oracle Label Security supports Real Application Security
users

• Oracle Label Security Administrator’s Guide for more Information about Oracle
Label Security

2.1.4 Resetting the Application User's Password with the SQL*Plus
PASSWORD Command

As the security administrator, sec_mgr, you have the create session database privilege and
Real Application Securityxs_session_admin database role and in addition, sec_mgr is granted
the Real Application Security PROVISION least system privilege as a database user. As the
security manager, you can now create users and roles, set passwords, and so forth, and
administer sessions using the Real Application Security least system privilege.Example 2-2
shows how the security administrator can reset the password for user lwuser2 using the
SQL*Plus PASSWORD command.

However, if you as user lwuser2, perform a self password change using the SQL*Plus
PASSWORD command invoked from an explicitly attached session (a session attached using the
ATTACH_SESSION procedure or the attachSession() method in Java), the session must have
the ALTER USER privilege and the user name must be provided with the PASSWORD command.

Chapter 2
About Configuring Application Users

2-7

Example 2-3 shows how the application user lwuser2 explicitly attached to a session, performs
a self password change that fails because the users session does not have the ALTER USER
privilege.

Example 2-4 shows how an application user lwuser2 explicitly attached to a session having
the ALTER USER privilege can perform a self password change. The user's self password
change is successful.

The SET_PASSWORD procedure does not prompt for old password, but requires either Real
Application Security PROVISION privilege as the least privilege, or database ALTER USER
privilege. (Note that SET_PASSWORD is the Real Application Security PL/SQL procedure, not the
SQL*Plus PASSWORD command.) If the user's session has the PROVISION least privilege or the
ALTER USER privilege, you can reset the password for any application user from any application
user's session (including an explicitly attached and a direct logon session) or the database
user session if that session has the PROVISION least privilege or the ALTER USER privilege. The
SQL*Plus PASSWORD command never prompts for the old password if you are changing another
application user's password.

Example 2-2 DBA Resets the Password with a Password Change Operation for User
lwuser2 When Not Explicitly Attached to a Session

sqlplus sec_mgr
Enter password: password
Connected.
SQL> BEGIN
 2 SYS.XS_PRINCIPAL.CREATE_USER('lwuser2');
 3 END;
 4/

PL/SQL orocedure successfully completed.

SQL> PASSWORD lwuser2
Changing password for lwuser2
New password: password
Retype new password: password
Password changed

Example 2-3 User lwuser2 Performs a Self Password Change that Fails When
Explicitly Attached to a Session Because the Session Lacks the ALTER USER Privilege

sqlplus sec_mgr
Enter password: password
Connected.
SQL> DECLARE
 2 SESSIONID RAW(16);
 3 BEGIN
 4 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser2', sessionid);
 5 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 6 END;
 7 /

PL/SQL procedure successfully completed.

SQL> CONNECT lwuser2
Enter password: password
Connected.
SQL> SELECT SYS.XS_SYS_CONTEXT('XS$SESSION','USERNAME') FROM DUAL;

XS_SYS_CONTEXT('XS$SESSION','USERNAME')
--
LWUSER2

Chapter 2
About Configuring Application Users

2-8

SQL> PASSWORD lwuser2
Changing password for lwuser2

Old password: password
New password: password
Retype new password: password
ERROR:
ORA-01031: insufficient privileges

Password unchanged

Example 2-4 A Self Password Change Succeeds When Explicitly Attached to a
Session and User lwuser2's Session Has the ALTER USER Privilege

sqlplus sec_mgr
Enter password: password
Connected.
SQL> CREATE ROLE pwdchg;

Role created.

SQL> GRANT ALTER USER TO pwdchg;

Grant succeeded.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE(NAME => 'resetpwd_role', ENABLED => TRUE);

PL/SQL procedure successfully completed.

SQL> GRANT pwdchg TO resetpwd_role;

Grant succeeded.

SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser2','resetpwd_role');

PL/SQL procedure successfully completed.

SQL> CONNECT lwuser2
Enter password: password
Connected.

SQL> SELECT SYS.XS_SYS_CONTEXT('XS$SESSION','USERNAME') FROM DUAL;

SYS.XS_SYS_CONTEXT('XS$SESSION','USERNAME')
--
LWUSER2

SQL> PASSWORD lwuser2
Changing password for lwuser2
Old password: password
New password: password
Retype new password: password
Password changed
SQL>

2.1.5 Configuring an Application User Switch
Using the XS_PRINCIPAL.ADD_PROXY_USER procedure, you can add an application user to proxy
another application user and assume the application roles of that application user. You can use

Chapter 2
About Configuring Application Users

2-9

the DBMS_XS_SESSIONS.SWITCH_USER procedure to switch application users in a session if the
user has been added as a proxy.

Assume app_user1 has application roles role1 and role2. Example 2-5 allows you to proxy
the application roles role1 and role2 of app_user1 to app_user2. The call
add_proxy_user('app_user1', 'app_user2', pxy_roles) allows app_user2 to switch to
app_user1 and assume app_user1's roles, role1 and role2. It does not grant the roles to
app_user2.

The query of view DBA_XS_ROLE_GRANTS shows that roles, roles1 and roles2 are still only
granted to app_user1 and not to app_user2, and that app_user2 only assumed these roles as a
proxy user.

The query of view DBA_XS_PROXY_ROLES shows that app_user2 is the proxy user, app_user1 is
the target user, and the target roles are role1 and role2.

The query of view DBA_XS_SESSIONS also shows that app_user2 is the proxy user in this
session.

As the application user with DBA role, you can create a session for app_user2 and switch
application user to app_user1, as shown in Example 2-6.

This example first creates a session with app_user2 and attaches to it. Then app_user2
switches to app_user1 and assumes app_user1's roles, role1 and role2.

The query of view DBA_XS_ROLE_GRANTS shows that roles, roles1 and roles2 are still only
granted to app_user1 and not to app_user2, and that app_user2 only assumed these roles as a
proxy user.

The query of view DBA_XS_SESSION_ROLES shows that roles role1 and role2 are associated
with the same session ID in which app_user1 was switched with app_user2.

The query of view DBA_XS_SESSIONS also shows that app_user2 is the proxy user in this
session.

Example 2-5 Configuring a Proxy Application User

sqlplus sec_mgr
Enter password: password
Connected.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE('role1',true);
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE('role2',true);

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user1','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user1', 'password');
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user2','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user2', 'password');

SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_user1', 'role1');
SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_user1', 'role2');

DECLARE
 pxy_roles XS$NAME_LIST;
begin
 pxy_roles := XS$NAME_LIST('role1','role2');
 sys.xs_principal.add_proxy_user(target_user => 'app_user1', proxy_user => 'app_user2',
target_roles => pxy_roles);
end;
/

Chapter 2
About Configuring Application Users

2-10

SQL> SELECT grantee, granted_role FROM DBA_XS_ROLE_GRANTS;

SQL> SELECT proxy_user, target_user, target_role FROM DBA_XS_PROXY_ROLES;

SQL> SELECT user_name, sessionid, proxy_user FROM DBA_XS_SESSIONS;

Example 2-6 Creating a Session and Switching an Application User

sqlplus sec_mgr
Enter password: password
Connected.
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user1','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user1', 'password');
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user2','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user2', 'password');

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE('role1',true);
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE('role2',true);

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user1','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user1', 'password');
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user2','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user2', 'password');

SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_user1', 'role1');
SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_user1', 'role2');

declare
 sessionid raw(16);
begin
 sys.dbms_xs_sessions.create_session('app_user2', sessionid);
 sys.dbms_xs_sessions.attach_session(sessionid);
 sys.dbms_xs_sessions.switch_user('app_user1');
end;
/

SQL> SELECT grantee, granted_role FROM DBA_XS_ROLE_GRANTS;

SQL> SELECT sessionid, role FROM DBA_XS_SESSION_ROLES;

SQL> SELECT user_name, sessionid, proxy_user FROM DBA_XS_SESSIONS;

2.1.6 Validating an Application User
Oracle recommends that you always validate the Real Application Security objects after
administrative configuration changes. The XS_DIAG package provides a set of validation APIs
to help ensure that these changes do not damage the complicated relationships among your
Real Application Security objects. To validate an application user account, use the
XS_DIAG.VALIDATE_PRINCIPAL function. The caller has invoker's rights on this package and
must have ADMIN_ANY_SEC_SECURITY privilege to run the XS_DIAG package.

See the "VALIDATE_PRINCIPAL Function" for more information.

2.2 About Configuring Application Roles
This section contains the following topics:

• About Application Roles

• Regular and Dynamic Application Roles

Chapter 2
About Configuring Application Roles

2-11

• About Configuring an Application Role

• Predefined Regular Application Roles and Dynamic Application Roles

2.2.1 About Application Roles
An application role is a role that can only be granted to an application user or to another
application role. Application roles provide a way to group application users who must have a
common application privilege, identified within an ACL, in order to access an application. The
XS_PRINCIPAL.CREATE_ROLE procedure can create regular application roles. The
XS_PRINCIPAL.CREATE_DYNAMIC_ROLE procedure can create dynamic application roles (one
type of application role).

Application roles are conceptually similar to enterprise roles. An enterprise role can only be
granted to an enterprise user and that grant occurs outside the database. Similarly, an
application role can only be granted to an application user or application role, and that grant
occurs outside of the standard database grant mechanisms. Dynamic roles cannot be granted
to an application user or another application role, but can only be enabled in an application
session as a parameter in an attach session call as described in "Dynamic Application Roles".

See Also:

• Oracle Database SQL Language Reference for more information about SQL

• Oracle Database PL/SQL Language Reference for more information about
PL/SQL APIs

2.2.2 Regular and Dynamic Application Roles
Real Application Security allows regular and dynamic application roles.

This section contains the following topics:

• Regular Application Roles

• Dynamic Application Roles

2.2.2.1 Regular Application Roles
A regular application role is an application role that you can grant to an application user or
another application role (regular or dynamic). You can specify if you want the regular
application role to be enabled by default or not.

2.2.2.2 Dynamic Application Roles
A dynamic application role is an application role that is enabled only under certain situations,
for example, when a user has logged on using SSL, or during a specific period of time, and so
on. Dynamic application roles might be used, for example, if there is some application privilege
granted to all application users connecting during weekdays. If that criterion is met, then the
application enables those application roles.

The application determines the criteria for enabling a dynamic application role, however the
criteria can be evaluated by the application or by the database at the request of the application.

• When the Application Evaluates the Criteria

Chapter 2
About Configuring Application Roles

2-12

If the application evaluates the criteria and the application role meets it, then the
application, if it is attached to an application session, can enable dynamic application roles
for application users. When the application detaches from the application session, the
dynamic application role is automatically disabled.

For security reasons, you cannot disable dynamic application roles during the session.
This is especially important because they may infer negative application privileges.

• When the Database Evaluates the Criteria

If the database evaluates the criteria and the application role meets it, then the database
can enable application roles for the application user. The database can disable dynamic
application roles based on two types of time-outs: one from the last time the session was
accessed, and one from the last time the session was authenticated. Oracle Database
checks these time-outs when the session is first attached.

You do not need to grant the dynamic application role formally to a user beforehand. There is
no way to enable or disable a dynamic application role through the standard enable and
disable APIs. You cannot grant dynamic application roles to other application roles, but you can
grant other application roles to dynamic roles.

See Also:

"Predefined Regular Application Roles and Dynamic Application Roles"

2.2.3 About Configuring an Application Role
This section contains the following topics:

• Creating a Regular Application Role

• Creating a Dynamic Application Role

• Validating an Application Role

2.2.3.1 Creating a Regular Application Role
To create a regular application role, log into SQL*Plus as user sec_mgr with the CREATE ROLE
system privilege, and then use the XS_PRINCIPAL.CREATE_ROLE procedure.

Example 2-7 shows how to create a regular application role called app_regular_role. The
start_date and end_date parameters specify the active start and end times for this application
role. The enable parameter is set to TRUE.

After you create the regular application role, you are ready to grant it to one or more
application users or application roles. See the following section:

"About Granting an Application Role to an Application User"

Example 2-7 Creating a Regular Application Role

sqlplus sec_mgr
Enter password: password
Connected.

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 ed_date TIMESTAMP WITH TIME ZONE;

Chapter 2
About Configuring Application Roles

2-13

BEGIN
 st_date := SYSTIMESTAMP;
 ed_date := TO_TIMESTAMP_TZ('2013-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS');
 SYS.XS_PRINCIPAL.CREATE_ROLE
 (name => 'app_regular_role',
 enabled => TRUE,
 start_date => st_date,
 end_date => ed_date);
END;
/

2.2.3.2 Creating a Dynamic Application Role
To create a dynamic application role, log into SQL*Plus as user sec_mgr with the CREATE ROLE
system privilege and then use the XS_PRINCIPAL.CREATE_DYNAMIC_ROLE procedure.

Example 2-8 shows how to create a dynamic application role called app_dynamic_role. The
optional duration parameter specifies the period of time (in minutes) the application role is
active. The scope parameter specifies the scope for this role, which can be either
SESSION_SCOPE (the default value) or REQUEST_SCOPE. SESSION_SCOPE means the enabled
dynamic role is still enabled when you detach the session and attach to the session again,
unless you explicitly specify that it be disabled in the session reattach. REQUEST_SCOPE means
that the role is disabled after the session is detached.

In this example, the dynamic application role is active for 40 minutes, and the scope is set to
SESSION_SCOPE for the current application session. So the dynamic application role is active
even when you detach the session and attach to the session again as long as the time limit
has not exceeded 40 minutes after having created the dynamic application role.

Example 2-8 Creating a Dynamic Application Role

sqlplus sec_mgr
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_DYNAMIC_ROLE
 (name => 'app_dynamic_role',
 duration => 40,
 scope => XS_PRINCIPAL.SESSION_SCOPE);
END;
/

2.2.3.3 Validating an Application Role
Oracle recommends that you should always validate Real Application Security objects after
administrative configuration changes. The XS_DIAG package provides a set of validation APIs
to help ensure that these changes do not damage the complicated relationships among your
Real Application Security objects. To validate an application role, use the
XS_DIAG.VALIDATE_PRINCIPAL function. See the "VALIDATE_PRINCIPAL Function" for more
information.

See Troubleshooting Oracle Database Real Application Security for troubleshooting advice.

Chapter 2
About Configuring Application Roles

2-14

2.2.4 Predefined Regular Application Roles and Dynamic Application Roles
Using predefined dynamic application roles in a Real Application Security session, application
users can acquire application privileges based on their run-time states. These application roles
cannot be acquired by grants.

As an example, an application role may be enabled for application users connecting from
within the corporate firewall, which grants application users more application privileges than
connecting from outside the firewall.

See "Roles" for a description of Real Application Security predefined regular application roles,
dynamic application roles, and database roles.

Regular application roles can be granted to an application user, but dynamic application roles
cannot. Dynamic application roles are enabled based on user state.

See "Regular and Dynamic Application Roles" for descriptions.

2.3 Effective Dates for Application Users and Application Roles
You can specify effective dates for application users, application roles, and role grants. The
application user or application role is available only within the period defined by the effective
start and end date. Example 2-9 shows how effective dates are specified for an application
user.

Example 2-10 shows how effective dates are specified for creating an application role.

Sometimes the effective date restriction does not need to be an attribute of an application user
or application role. Instead, it is only needed to restrict the effective dates on a per role grant
basis. In this case, you can specify beginning and ending effective dates for an application role
grant. This only constrains that particular application role grant and allows for implementing
fine-grained access control policy. Example 2-11 shows how effective dates are specified for
granting an application role.

These are the most direct consequences of effective date restrictions:

• If an application user is not currently effective (that is, within the period defined by its start
and end date), the session for the particular application user cannot be created.

• If an application role is not currently effective, the application role (and any descendants) is
not be available to the application user in the session.

• For application roles that are shared children of multiple application roles, the child
application roles are available as long as there is at least one parent that is effective.

• If the application role grant of an application role is not currently effective, the application
role (and any descendants) is not available to the application user or application role to
which it is granted.

Note:

The effective dates should be used in the policy after a careful consideration of the
nature of the restrictions that they impose on the use of application users and
application roles.

Chapter 2
Effective Dates for Application Users and Application Roles

2-15

Example 2-9 Setting Effective Dates for an Application User

sqlplus sec_mgr
Enter password: password
Connected.

DECLARE
 startDate TIMESTAMP := TO_TIMESTAMP (
 '2012-01-01 11:00:00','YYYY-MM-DD HH:MI:SS');
 endDate TIMESTAMP := TO_TIMESTAMP (
 '2013-01-01 11:00:00','YYYY-MM-DD HH:MI:SS');

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER
 (name => 'lwuser1',
 start_date => startDate,
 end_date => endDate);
END;
/

Example 2-10 Setting Effective Dates for Creating an Application Role

sqlplus sec_mgr
Enter password: password
Connected.

DECLARE
 startDate TIMESTAMP := TO_TIMESTAMP ('2012-01-01 11:00:00','YYYY-MM-DD
 HH:MI:SS');
 endDate TIMESTAMP := TO_TIMESTAMP ('2013-01-01 11:00:00','YYYY-MM-DD
 HH:MI:SS');
BEGIN
 SYS.XS_PRINCIPAL.CREATE_ROLE
 (
 name => 'app_regular_role',
 enabled=>true,
 start_date => startDate,
 end_date => endDate);
END;
/

Example 2-11 Setting Effective Dates for Granting the Application Role

sqlplus sec_mgr
Enter password: password
Connected.

DECLARE
 startDate TIMESTAMP := TO_TIMESTAMP ('2012-01-01 11:00:00','YYYY-MM-DD
 HH:MI:SS');
 endDate TIMESTAMP := TO_TIMESTAMP ('2013-01-01 11:00:00','YYYY-MM-DD
 HH:MI:SS');
BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES
 (grantee => 'lwuser1',
 role => 'app_regular_role',
 start_date => startDate,
 end_date => endDate);
END;
/

Chapter 2
Effective Dates for Application Users and Application Roles

2-16

2.4 About Granting Application Privileges to Principals
This section contains the following topics:

• About Granting an Application Role to an Application User

• Granting an Application Role to Another Application Role

• Granting a Database Role to an Application Role

2.4.1 About Granting an Application Role to an Application User
This section contains the following topics:

2.4.1.1 Creating a New Application User and Granting This User an Application Role
Example 2-12 shows how to grant an application role, appl1_regular_role, to an application
user, lwuser1, when the application user account is created.

To find a listing of existing application roles, query the DBA_XS_ROLES data dictionary view.

Example 2-12 Creating a New Application User and Granting This User an Application
Role

sqlplus sec_mgr
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER('lwuser1');
 SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser1', 'appl1_regular_role');
END;
/

2.4.1.2 Granting an Application Role to an Existing Application User
Example 2-13 shows how to grant an application role, appl1_regular_role, to an existing
application user, lwuser1. You cannot grant dynamic application roles to an existing application
user.

You can find a listing of existing application user accounts by querying the DBA_XS_USERS view.

Example 2-13 Granting an Application Role to an Existing Application User

sqlplus sec_mgr
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser1', 'appl1_regular_role');
END;
/

2.4.2 Granting an Application Role to Another Application Role
Example 2-14 shows how to grant a regular application role to another regular application role.
You cannot grant dynamic application roles to other regular application roles, but you can grant

Chapter 2
About Granting Application Privileges to Principals

2-17

other regular application roles to dynamic application roles. To find a listing of existing
application roles, query the DBA_XS_ROLES view (see "DBA_XS_ROLES").

Example 2-14 Granting a Regular Application Role to Another Regular Application
Role

sqlplus sec_mgr
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES(grantee => 'app_regular_role', role =>
'appl1_regular_role');
END;
/

2.4.3 Granting a Database Role to an Application Role
To grant a database role to an application role, use the SQL GRANT statement. You can find a
listing of existing database roles by querying the DBA_ROLES data dictionary view.

Example 2-15 shows how to grant the database role, cust_role, to the application role
app_regular_role.

Example 2-15 Granting a Database Role to an Application Role

sqlplus sec_mgr
Enter password: password
Connected.

GRANT cust_role TO app_regular_role;

Chapter 2
About Granting Application Privileges to Principals

2-18

3
Configuring Application Sessions

This chapter contains:

• About Application Sessions

• About Creating and Maintaining Application Sessions

• About Manipulating the Application Session State

• About Administrative APIs for External Users and Roles

• About Real Application Security Session Privilege Scoping Through ACL

3.1 About Application Sessions
An application session contains information relevant to the application and its user. An
application session stores application session state as a collection of attribute-value pairs.
These attribute value pairs are divided into namespaces. Unlike traditional heavyweight
database sessions, an application session does not hold its own database resources, such as
transactions and cursors. Because application sessions consume far fewer server resources
than heavyweight sessions, an application session can be dedicated to each end application
user. An application session can persist in the database and resume later with minimal cost.

To configure an application session, you work in two phases:

1. You create and maintain the application session.

2. You can manipulate the session state during the life of the session.

You can use either PL/SQL APIs or Java APIs to configure application sessions. This chapter
describes the programmatic creation, use, and maintenance of application sessions in PL/SQL,
and includes specific links to comparable Java information.

See Also:

• Oracle Database Real Application Security SQL Functions and Oracle Database
Real Application Security PL/SQL Packages for information about PL/SQL API
syntax

• Oracle Database Real Application Security Java API Reference for information
about Java API syntax (in Javadoc format)

• Using Real Application Security in Java Applications for information about
performing tasks with Java APIs

This section contains:

• About Application Sessions in Real Application Security

• Advantages of Application Sessions

3-1

3.1.1 About Application Sessions in Real Application Security
Figure 3-1 shows a Real Application Security architecture diagram and indicates how
application sessions fit into it. The figure shows applications creating application sessions in
the database. Some of these application sessions are associated with traditional database
(DB) sessions.

Figure 3-1 also shows other components of Real Application Security such as ACLs,
application privileges, application users, and application roles.

Figure 3-1 Real Application Security Architecture

Oracle Database

Real Application Security

Real Application Security
Java APIs

Java Container

Web
Clients

Application Server

Application
Session Cache

ACL
Cache

JEE Applications

Connection Pool

DB Session
1

DB Session
2

DB Session
3

Attached

Server / External
Identity Store

To Access

JDBC

Policy
Synchronization

ACLs, Application Privileges, Users, Roles

Real Application Security

Application Sessions

Attached

DB Session
1

DB Session
2

DB Session
3

DB Session
4

SQL*Plus

Chapter 3
About Application Sessions

3-2

3.1.2 Advantages of Application Sessions
Application sessions have functional advantages over traditional database sessions. For
example, traditional database sessions are typically unaware of the end user identities or the
security policies for those end users. On the contrary:

• Application sessions encapsulate end user's security context. They enable applications to
use database authorization mechanisms for access control based on the end user identity.

• An application session can be associated with multiple database sessions simultaneously.

• They are accessible by all nodes in an Oracle Real Application Clusters (Oracle RAC)
environment.

Application sessions have these performance advantages over traditional database sessions:

• They can be created with less overhead than traditional database sessions.

• They can persist in the database and resume later with minimal cost.

• Real Application Security can collect session attribute changes and session states on the
client, using caches. Then, these changes are appended to the database until the next
database roundtrip, reducing the number of database roundtrips.

3.2 About Creating and Maintaining Application Sessions
This section contains:

• Creating an Application Session

• Creating an Anonymous Application Session

• Attaching an Application Session to a Traditional Database Session

• Setting a Cookie for an Application Session

• Assigning an Application User to an Anonymous Application Session

• Switching a Current Application User to Another Application User in the Current Application
Session

• About Creating a Global Callback Event Handler Procedure

• Configuring Global Callback Event Handlers for an Application Session

• Saving an Application Session

• Detaching an Application Session from a Traditional Database Session

• Destroying an Application Session

3.2.1 Creating an Application Session
You can create an application session using the DBMS_XS_SESSIONS.CREATE_SESSION
procedure in PL/SQL or using the createSession method of the XSSessionManager class in
Java. To create an application session, the invoking user needs CREATE_SESSION application
privilege. This privilege can be obtained through XS_SESSION_ADMIN Database role or by
XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call (see "GRANT_SYSTEM_PRIVILEGE
Procedure" for more information). CREATE_SESSION procedure populates the unique identifier of
the newly created session in sessionid out parameter. This unique identifier can be used to
refer to the session in future calls. The DBA_XS_SESSIONS data dictionary view displays all the
application sessions in the database.

Chapter 3
About Creating and Maintaining Application Sessions

3-3

You can also specify a list of namespaces to be created when the session is created. If you
specify namespaces during creation of the session, the caller must have application privileges
MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the ADMIN_NAMESPACE system
privilege.

Example 3-1 shows how to create an application session with lwuser1.

Example 3-1 Creating an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
END;

See Also:

• CREATE_SESSION Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java createSession method (in Javadoc format)

• Example 6-2 for information about a Java example of this task

3.2.2 Creating an Anonymous Application Session
You can also create an anonymous application session using the
DBMS_XS_SESSIONS.CREATE_SESSION procedure in PL/SQL or using the
createAnonymousSession method of the XSSessionManager class in Java. To create an
anonymous session through the PL/SQL API, you must specify the predefined user name
XSGUEST.

Example 3-2 shows how to create an anonymous session with the predefined user XSGUEST.

After creating an anonymous application session, you can assign a named user to the session.

Example 3-2 Creating an Anonymous Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
END;

See Also:

• CREATE_SESSION Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java createAnonymousSession method (in Javadoc
format)

• Example 6-2 for information about a Java example of this task

Chapter 3
About Creating and Maintaining Application Sessions

3-4

3.2.3 Attaching an Application Session to a Traditional Database Session
To use an application session, it must be associated with a database session. This operation is
called attach. You can attach an application session to a traditional database session using
the DBMS_XS_SESSIONS.ATTACH_SESSION procedure in PL/SQL or the attachSession method of
the XSSessionManager class in Java. A database session can only attach one application
session at a time. The DBA_XS_ACTIVE_SESSIONS dynamic data dictionary view displays all
attached application sessions in the database.

To execute this procedure, the traditional session user must have the ATTACH_SESSION
application privilege. This privilege can be obtained through the XS_SESSION_ADMIN Database
role or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call. If you specify namespaces,
then the user is required to have the application privileges MODIFY_NAMESPACE or
MODIFY_ATTRIBUTE on the namespaces, or ADMIN_NAMESPACE system privilege.

Example 3-3 shows how to attach an application session to a database session.

Beginning with Oracle Database 12c Release 2 (12.2), Oracle Label Security supports Real
Application Security users. This means that Oracle Label Security context is established in the
Real Application Security session during the attach operation, so that Oracle Label Security
authorization can be exercised in the Real Application Security user session. Oracle Label
Security provides the ability to define data labels, assign user labels and protect sensitive
application data within the Oracle database.

For example, using Oracle Label Security data labels allows each row of a table to be labeled
based on its level of confidentiality. Data labels consist of 3 components: levels, compartments,
and groups. So a given data label should have one level, zero or more compartments and zero
or more groups associated with it. Compartments allow defining finer granularity within a level
– all data belonging to a particular project can be labeled with the same compartment. Groups
are hierarchical and a group can thus be associated with a parent group.

In addition, using Oracle Label Security user labels, each user can be assigned labels that
constrain access to labeled data. Each user is assigned a range of levels, compartments, and
groups, and each session can operate within that authorized range to access labeled data
within that range.

Furthermore, using privileges, Oracle Label Security privileges are policy specific and used to
provide users specific rights to perform special operations or to access data beyond their label
authorizations. The list of all policy specific privileges is: FULL, READ, COMPACCESS,
PROFILE_ACCESS, WRITEUP, WRITEDOWN, and WRITEACROSS.

Using Oracle Label Security, trusted stored programs can be used. A trusted stored program
unit is a stored procedure, function, or package that has been granted one or more label
security privileges. Trusted stored program units are used to let users perform privileged
operations in a controlled manner, or update data at several labels. By granting privileges to a
program unit, the privileges required for users can be effectively reduced.

Using Oracle Label Security, a policy is applied to a table or an entire schema after defining
data labels or user labels or both and assigning appropriate privileges to users. When a policy
is applied on a table, label security creates a policy specific NUMBER column on the table to
store numeric equivalent of the data labels defined before for the policy. The column can be
created as a user visible column or as a hidden column. The user can specify various
enforcement options when the policy is applied on the table. The READ_CONTROL enforcement
option for example protects the table from queries and WRITE_CONTROL protects it from DML
operations.

Chapter 3
About Creating and Maintaining Application Sessions

3-5

Establishing Oracle Label Security context in a Real Application Security session therefore lets
SELECT and DML operations return results authorized for the Real Application Security user.

To attach a session with dynamic roles, a list of dynamic roles can be passed in the PL/SQL
ATTACH_SESSION procedure.

Note:

When developing the application, ensure that all application end user actions are
captured within an ATTACH_SESSION ... DETACH_SESSION programming block. (For
more information, see "Detaching an Application Session from a Traditional Database
Session").

Example 3-3 Attaching an Application Session

DECLARE
 sessionid raw(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
END;

See Also:

• ATTACH_SESSION Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java attachSession method (in Javadoc format)

• Example 6-3 for information about a Java example of this task

• Oracle Label Security Administrator’s Guide for information about Oracle Label
Security

3.2.4 Setting a Cookie for an Application Session
You can associate a specific cookie with an application session using the
DBMS_XS_SESSIONS.SET_SESSION_COOKIE procedure in PL/SQL or the setCookie method of the
XSSessionManager class in Java. The cookie can also be associated at the time of creation of
the session through the CREATE_SESSION PL/SQL API. A cookie is a token embedded in a
user’s session by a web site during an application session. So the next time the same user
requests something from that web site, it sends the cookie to the application session, which
allows the server to associate the session with that user.

To execute this procedure, the user must be granted the MODIFY_SESSION application privilege.
This privilege can be obtained through the XS_SESSION_ADMIN Database role or by the
XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call.

Example 3-4 shows how to set a cookie for an application session.

Chapter 3
About Creating and Maintaining Application Sessions

3-6

Example 3-4 Setting a Cookie for an Application Session

DECLARE
 sessionid raw(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.SET_SESSION_COOKIE('Cookie1', sessionid);
END;

See Also:

• SET_SESSION_COOKIE Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java setCookie method (in Javadoc format)

• Example 6-20 for information about a Java example of this task

3.2.5 Assigning an Application User to an Anonymous Application Session
You can assign a named application user to a currently attached anonymous application
session using the DBMS_XS_SESSIONS.ASSIGN_USER procedure in PL/SQL or the assignUser
method of the XSSessionManager class in Java. Assigning a user changes the user session
from anonymous to a named user.

To execute this procedure, the dispatcher or connection user must have the ASSIGN_USER
application privilege. This privilege can be obtained through the XS_SESSION_ADMIN Database
role or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call. If you specify namespaces,
then the user is required to be granted application privileges MODIFY_NAMESPACE or
MODIFY_ATTRIBUTE on the namespaces, or ADMIN_NAMESPACE system privilege. A list of dynamic
roles can also be enabled using the DBMS_XS_SESSIONS.ASSIGN_USER procedure.

Beginning with Oracle Database 12c Release 2 (12.2), Oracle Label Security supports Real
Application Security users. If the Real Application Security user is authorized in any Oracle
Label Security policy then, during an assign_user call, the corresponding label security
authorization is established for the named Real Application Security user session. Establishing
Oracle Label Security context in a Real Application Security session therefore lets SELECT and
DML operations return results authorized for the Real Application Security user.

Example 3-5 shows how to assign the application user lwuser1 to an application session.

Example 3-5 Assigning an Application User to an Application Session

DECLARE
 sessionid raw(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.ASSIGN_USER('lwuser1');
END;

Chapter 3
About Creating and Maintaining Application Sessions

3-7

See Also:

• ASSIGN_USER Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java assignUser method (in Javadoc format)

• Example 6-5 for information about a Java example of this task

• Attaching an Application Session to a Traditional Database Session for
information about how Oracle Label Security supports Real Application Security
users

• Oracle Label Security Administrator’s Guide for information about Oracle Label
Security

3.2.6 Switching a Current Application User to Another Application User in
the Current Application Session

You can switch or proxy the security context of the current application session to a newly
initialized security context for a specified application user using the
DBMS_XS_SESSIONS.SWITCH_USER procedure in PL/SQL or the switchUser method of the
Session interface in Java. To proxy another application user, the current application session
user must be set up as a proxy user for the target user before performing the switch operation.
This is performed through the XS_PRINCIPAL.ADD_PROXY_USER PL/SQL API.

Switching a user changes the user session between two named users.

If the target application user of the proxy operation has a list of filtering roles (proxy roles) set
up for the proxy user, they are enabled in the session.

Beginning with Oracle Database 12c Release 2 (12.2), Oracle Label Security supports Real
Application Security users. This means that Oracle Label Security context of the target_user
will be established on switching from the proxy_user session to the target_user session.

You can either retain or clear the application namespace and attributes after a switch
operation. When the keep_state parameter is set to TRUE, all application namespaces and
attributes are retained; otherwise, all previous state in the session is cleared.

If you specify namespaces, then the user is required to be granted application privileges
MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the ADMIN_NAMESPACE system
privilege.

Example 3-6 shows how to switch the application user lwuser1 to application user lwuser2 in
the current application session. Note that namespace templates ns1 and ns2 should have
already have been created by SYSDBA.

Example 3-6 Switching an Application User to Another Application User in the Current
Application Session

DECLARE
 sessionid RAW(16);
 nsList DBMS_XS_NSATTRLIST;
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);

Chapter 3
About Creating and Maintaining Application Sessions

3-8

 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.SWITCH_USER(username => 'lwuser2',
 keep_state => TRUE,
 namespaces => nsList);
END;

See Also:

• SWITCH_USER Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java assignUser method (in Javadoc format)

• Example 6-6 for information about a Java example of this task

• Attaching an Application Session to a Traditional Database Session for
information about how Oracle Label Security supports Real Application Security
users

• Oracle Label Security Administrator’s Guide for information about Oracle Label
Security

3.2.7 About Creating a Global Callback Event Handler Procedure
The callback event handler procedure must adhere to the prototype, which includes a specified
set of arguments.

For example, the following callback_procedure specifies an existing PL/SQL procedure,
which is the event handler and shows its two possible forms.

PROCEDURE callback_procedure (sessionid in raw, error out pls_integer)

This first form includes two parameters, the sessionid in RAW and the out parameter error,
which is used for the purpose of setting the error. The sessionid contains the session ID of the
session in which the event was triggered. The out error parameter can be used in the event
handler code to display the error.

PROCEDURE callback_procedure (sessionid in raw, user in varchar2, error out
pls_integer)

This second form includes an additional parameter user in VARCHAR2 to specify the user who
triggered this event.

Chapter 3
About Creating and Maintaining Application Sessions

3-9

Note:

The error value must be explicitly set to a value in the PL/SQL body or in the
exception block as follows, error:= 0;.

Otherwise, the following error is raised, ORA-46071: Error occured in event
handler <name-of-event-handler> followed by another error, ORA-1405: fetched
column value is NULL, indicating that the error value is NULL.

The following example shows the explicit setting of the error value using the second form of the
callback procedure.

CREATE OR REPLACE PACKAGE CALLBACK_PACKAGE AS
PROCEDURE CALLBACK_PROCEDURE (sessionid in RAW, user in VARCHAR2, error out
PLS_INTEGER);
END CALLBACK_PACKAGE;
/

CREATE OR REPLACE PACKAGE BODY CALLBACK_PACKAGE AS
PROCEDURE CALLBACK_PROCEDURE (sessionid in RAW, user in VARCHAR2, error out
PLS_INTEGER) IS
BEGIN
 error := 0;
 dbms_output.put_line('Inside callback procedure');
EXCEPTION
WHEN OTHERS THEN
 error:=0;
 dbms_output.put_line('Error');
END CALLBACK_PROCEDURE;
END CALLBACK_PACKAGE;

See Also:

• Configuring Global Callback Event Handlers for an Application Session

3.2.8 Configuring Global Callback Event Handlers for an Application
Session

A global callback event handler is a predefined PL/SQL procedure that can be invoked to
inspect, log, and modify the session state when certain session events of interest occur. You
can add multiple global callback event handlers on a session event. After you create the
PL/SQL procedure, you can register or deregister, or enable or disable it using these
procedures, respectively:

• DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK
Use this procedure to register a callback event handler.

• DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK

Chapter 3
About Creating and Maintaining Application Sessions

3-10

Use this procedure to deregister a global callback.

• DBMS_XS_SESSIONS.ENABLE_GLOBAL_CALLBACK
Use this procedure to enable or disable a global callback procedure by specifying a value
of TRUE for enable or FALSE for disable.

To execute these APIs the user must have the CALLBACK application privilege. This can be
obtained through the XSPROVISIONER application role or by calling the
XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API. You can configure one or more global callback
event handlers for use in an application session. If you configure multiple callback event
handlers, Oracle Database executes the handlers in the order in which they were created.

Optionally, you can follow these steps to change the execution order:

1. Run the DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK procedure to deregister any existing
callback.

2. Run the DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK procedure to register the callback.

Example 3-7 Registering a Global Callback in an Application Session

BEGIN
 SYS.DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK
 (DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,
 'CALLBACK_SCHM','CALLBACK_PKG','CALLBACK_PROC');
END;
/

Table 3-1 lists session events that can use callback event handlers.

Table 3-1 Session Events That Can Use Callback Event Handlers

Session Event When the Callback Will Be Executed

Creating a new application session After the session is created.

Attaching to an existing application session After the session is attached.

Enabling a dynamic application role After a dynamic application role is enabled.

Disabling a dynamic application role After a dynamic application role is disabled.

Direct login of an application session After the session is attached (if the session
attach is called as part of the direct logon of
an application session).

Assigning a named application user to an anonymous
application session

After the named user is assigned to the
anonymous application session.

Proxying from one named application user to another
named application user

After the application user is switched (if the
application user is not proxying back to the
original application user).

Proxying back from a named application user to the
original application user

After the application user is switched (if the
application user is proxying back to the
original application user).

Enabling a regular application role After the application role is enabled.

Disabling a regular application role After the application role is disabled.

Detaching from an existing application session or
database session

Before the session is detached.

Chapter 3
About Creating and Maintaining Application Sessions

3-11

Table 3-1 (Cont.) Session Events That Can Use Callback Event Handlers

Session Event When the Callback Will Be Executed

Terminating an existing application session or database
session

Before the session is destroyed.

Direct logoff of an application session or database
session

Before the session is detached (if the
session detach is called as part of the direct
logoff of an application session).

Suppose you want to initialize certain application-specific states after creating a session.
Example 3-7 shows how to register a global callback that sets up the state CALLBACK_PROC,
which is defined in the package CALLBACK_PKG and owned by the schema CALLBACK_SCHM.

The state CALLBACK_PROC is registered as a global callback for the event
CREATE_SESSION_EVENT.

For more examples, and for details about the syntax of these procedures, see the following:

• "ADD_GLOBAL_CALLBACK Procedure"

• "DELETE_GLOBAL_CALLBACK Procedure"

• "ENABLE_GLOBAL_CALLBACK Procedure"

3.2.9 Saving an Application Session
You can save the current user application session using the DBMS_XS_SESSIONS.SAVE_SESSION
procedure in PL/SQL or the saveSession method of the XSSessionManager class in Java. Use
the save operation when session changes need to be propagated immediately to other
sessions using the same session as this one. If the save operation is not used, then the
session changes would be reflected in other sessions only after this session is detached.

The calling user requires no privileges to perform this operation.

Example 3-8 shows how to save the current user application session.

Example 3-8 Saving the Current User Application Session

BEGIN
 SYS.DBMS_XS_SESSIONS.SAVE_SESSION;
END;

See Also:

• SAVE_SESSION Procedure for information about the syntax of these PL/SQL
procedures

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java detachSession method (in Javadoc format)

• Example 7-4 for information about a Java example of this task

Chapter 3
About Creating and Maintaining Application Sessions

3-12

3.2.10 Detaching an Application Session from a Traditional Database
Session

You can detach an application session from the traditional database session using either of
these procedures:

• DBMS_XS_SESSIONS.DETACH_SESSION(abort => FALSE)
Use this procedure to detach the session and commit any changes that were made since
the last time session changes were saved. When you specify the abort parameter as
FALSE (the default value), all changes performed in the current session are persisted. The
currently attached user can perform this operation without any additional privileges.

DETACH_SESSION is always performed on the currently attached session.

• DBMS_XS_SESSIONS.DETACH_SESSION(abort => TRUE)
Use this procedure to detach the session without saving the changes. When you specify
the abort parameter as TRUE, it rolls back the changes performed in the current session.
The role and namespace changes made to the session since the attach are discarded.

Example 3-9 shows how to detach an application session from a database session and commit
the changes. Note that you can call DETACH_SESSION anywhere to detach the currently attached
session.

You can use the detachSession method of the XSSessionManager class in Java.

Example 3-10 shows how to detach a database session from an application session without
saving any changes.

Note:

When developing the application, ensure that all application end user actions are
captured within an ATTACH_SESSION ... DETACH_SESSION programming block. (For
more information, see "Attaching an Application Session to a Traditional Database
Session")

Example 3-9 Detaching and Committing an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
...
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
...
END;

Example 3-10 Detaching and Not Committing an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);

Chapter 3
About Creating and Maintaining Application Sessions

3-13

...
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION(TRUE);
END;

See Also:

• DETACH_SESSION Procedure for information about the syntax of these PL/SQL
procedures

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java detachSession method (in Javadoc format)

• Example 6-21 for information about a Java example of this task

3.2.11 Destroying an Application Session
You can terminate an application session using the DBMS_XS_SESSIONS.DESTROY_SESSION
procedure in PL/SQL or using the destroySession method of the XSSessionManager class in
Java. This procedure also detaches all traditional sessions from the application session.

To execute this procedure, the invoking user must have the TERMINATE_SESSION application
privilege. This privilege can be obtained through the XS_SESSION_ADMIN Database role or by
the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call.

Example 3-11 shows how to destroy an application session.

Example 3-11 Destroying an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;

See Also:

• DESTROY_SESSION Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java destroySession method (in Javadoc format)

• Example 6-22 for information about a Java example of this task

3.3 About Manipulating the Application Session State
This section contains:

• About Using Namespace Templates to Create Namespaces

• Initializing a Namespace in an Application Session

Chapter 3
About Manipulating the Application Session State

3-14

• Setting Session Attributes in an Application Session

• Getting Session Attributes in an Application Session

• Creating Custom Attributes in an Application Session

• Deleting a Namespace in an Application Session

• Enabling Application Roles for a Session

• Disabling Application Roles for a Session

3.3.1 About Using Namespace Templates to Create Namespaces
An application uses a namespace to store application defined attribute-value pairs. Often, an
application needs to use the same namespace across different application sessions. A
namespace template provides a way to define and initialize a namespace.

A namespace template defines the namespace and its properties. It is used to initialize the
namespace in an application session. The namespace name must be the same as the
template that defines it.

This section contains:

• Components of a Namespace Template

• About Namespace Views

• Creating a Namespace Template for an Application Session

3.3.1.1 Components of a Namespace Template
A namespace template includes the following:

• Name of the namespace

The name of the application namespace uniquely identifies the namespace. This name is
used when creating the namespace in an application session.

• Namespace handler

The namespace handler is called when an attribute value is set or retrieved. Specifying a
handler is optional.

Namespaces can be associated with an event handling function. The server invokes this
function whenever an operation on an attribute registered for event handling is performed.
The event handling function is provided with the attribute name, attribute value, and the
event code as arguments. For example:

FUNCTION event_handling_function_name(
 session_id IN RAW,
 namespace IN VARCHAR2,
 attribute IN VARCHAR2,
 old_value IN VARCHAR2,
 new_value IN VARCHAR2,
 event_code IN PLS_INTEGER)
RETURNS PLS_INTEGER;

• Attribute List

The attribute list includes the attributes defined for the namespace. These attributes are
created in the session when the namespace is created.

You can specify the following optional data for attributes:

– The default value

Chapter 3
About Manipulating the Application Session State

3-15

The attribute is initialized with the default value when the namespace is created in the
application session. The default value and the event types FIRSTREAD_EVENT and
FIRSTREAD_PLUS_UPDATE_EVENT cannot exist at the same time.

– Event types

You can specify the following event types for an attribute:

* FIRSTREAD_EVENT
Specify this event type to call the namespace handler when an attribute whose
value has not been set is read for the first time. You can specify this event type
only if a default value has not been set for the attribute.

* UPDATE_EVENT
Specify this event type to call the namespace handler when the attribute value is
updated.

* FIRSTREAD_PLUS_UPDATE_EVENT
Specify this event type to call the namespace handler when an attribute whose
value has not been set is read for the first time, or when its value is updated. You
can specify this event type only if a default value has not been set for the attribute.

• Namespace ACL

The privilege model for namespace operations. Namespace operations are protected by
the ACL set on the template. By default, NS_UNRESTRICTED_ACL is set on a template, which
allows unrestricted operation on namespaces created from the templates.

3.3.1.2 About Namespace Views
You can find information about namespace templates, namespace template attributes, and
namespace attributes in current and all application sessions by querying these data dictionary
views:

• "DBA_XS_NS_TEMPLATES"

• "DBA_XS_NS_TEMPLATE_ATTRIBUTES"

• "DBA_XS_SESSION_NS_ATTRIBUTES"

• "V$XS_SESSION_NS_ATTRIBUTES"

3.3.1.3 Creating a Namespace Template for an Application Session
You can create a namespace template using the XS_NAMESPACE.CREATE_TEMPLATE procedure in
PL/SQL or the createNamespace method of the Session interface in Java.

Example 3-12 shows how to create the namespace template ns1 for an application session. It
defines the attributes for this namespace using the list of attributes attrs. Because this
namespace template has NS_UNRESTRICTED_ACL set on the template, this allows unrestricted
operation on namespaces created from the template.

The calling user must have the ADMIN_ANY_SEC_POLICY application privilege, which allows it to
administer namespace templates and attributes.

In this example, the function FN1 will be called with event type XS_NAMESPACE.UPDATE_EVENT
whenever the attr1 is updated. Similarly, the function FN1 will be called with event type
XS_NAMESPACE.FIRSTREAD_PLUS_UPDATE_EVENT when the attribute attr2 is read for the first

Chapter 3
About Manipulating the Application Session State

3-16

time or its value is updated. The template does not specify event handling for the attribute
attr3.

Example 3-12 Creating a Namespace Template

DECLARE
 attrs XS$NS_ATTRIBUTE_LIST;
BEGIN
 attrs := XS$NS_ATTRIBUTE_LIST();
 attrs.extend(3);

 attrs(1) := XS$NS_ATTRIBUTE('attr1','value1',
 XS_NAMESPACE.UPDATE_EVENT);
 attrs(2) := XS$NS_ATTRIBUTE('attr2',null,
 XS_NAMESPACE.FIRSTREAD_PLUS_UPDATE_EVENT);
 attrs(3) := XS$NS_ATTRIBUTE('attr3','value3');

 SYS.XS_NAMESPACE.CREATE_TEMPLATE(name=>'ns1',
 description=>'namespace template 1',
 attr_list=>attrs,
 schema=>'SCOTT',
 package=>'PKG1',
 function=>'FN1',
 acl=>'SYS.NS_UNRESTRICTED_ACL');
END;
/

See Also:

• CREATE_TEMPLATE Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java createNamespace method (in Javadoc format)

• Example 6-10 for information about a Java example of this task

3.3.2 Initializing a Namespace in an Application Session
A namespace can be initialized, using a namespace template, during any of the following
events, as described in this section:

This section contains:

• Initializing a Namespace When the Session Is Created

• Initializing a Namespace When the Session Is Attached

• Initializing a Namespace When a Named Application User Is Assigned to an Anonymous
Application Session

• Initializing a Namespace When the Application User Is Switched in an Application Session

• Initializing a Namespace Explicitly

3.3.2.1 Initializing a Namespace When the Session Is Created
When you create an application session using the DBMS_XS_SESSIONS.CREATE_SESSION
procedure in PL/SQL or the createSession method of the XSSessionManager class in Java,
you can specify a list of namespaces to initialize.

Chapter 3
About Manipulating the Application Session State

3-17

Example 3-13 shows how to initialize two namespaces, ns1 and ns2, while creating an
application session.

If you specify namespaces during creation of the session, the caller is required to be granted
application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or be
granted the ADMIN_NAMESPACE system privilege.

Note:

The namespaces used in Example 3-13 must already have corresponding
namespace templates defined.

Example 3-13 Initializing Namespaces When Creating an Application Session

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid, FALSE, FALSE, nsList);
END;
/

See Also:

• CREATE_SESSION Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java createSession method (in Javadoc format)

• Example 6-2 for information about a Java example of this task

3.3.2.2 Initializing a Namespace When the Session Is Attached
When you attach the session using the DBMS_XS_SESSIONS.ATTACH_SESSION procedure in
PL/SQL or using the attachSession method of the XSSessionManager class in Java, you can
specify a list of namespaces to initialize.

Example 3-14 shows how to initialize two namespaces, ns1 and ns2, while attaching an
application session.

If you specify namespaces, then the user is required to be granted application privileges
MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the ADMIN_NAMESPACE system
privilege.

Note:

The namespaces used in Example 3-14 must already have corresponding
namespace templates defined.

Chapter 3
About Manipulating the Application Session State

3-18

Example 3-14 Initializing Namespaces When Attaching an Application Session

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid, NULL, NULL, NULL, NULL, nsList);
END;
/

See Also:

• ATTACH_SESSION Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java attachSession method (in Javadoc format)

• Example 6-3 for information about a Java example of this task

3.3.2.3 Initializing a Namespace When a Named Application User Is Assigned to an
Anonymous Application Session

When you assign an application user to an application session using the
DBMS_XS_SESSIONS.ASSIGN_USER procedure in PL/SQL or the assignUser method of the
XSSessionManager class in Java, you can specify a list of namespaces to initialize.

If you specify namespaces, then the user is required to be granted application privileges
MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or ADMIN_NAMESPACE system
privilege.

Example 3-15 shows how to initialize two namespaces, ns1 and ns2, while assigning an
application user to an application session.

Note:

The namespaces used in Example 3-15 must already have corresponding
namespace templates defined.

Example 3-15 Initializing Namespaces When Assigning an Application User to an
Application Session

DECLARE
 sessionid RAW(30);
 nsList DBMS_XS_NSATTRLIST;
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
 SYS.DBMS_XS_SESSIONS.ASSIGN_USER(username => 'lwuser2',
 sessionid => sessionid,
 namespaces => nsList);

Chapter 3
About Manipulating the Application Session State

3-19

END;
/

See Also:

• ASSIGN_USER Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java assignUser method (in Javadoc format)

• Example 6-5 for information about a Java example of this task

3.3.2.4 Initializing a Namespace When the Application User Is Switched in an
Application Session

When you switch an application user in an application session using the
DBMS_XS_SESSIONS.SWITCH_USER procedure in PL/SQL or using the switchUser method of the
Session interface in Java, you can specify a list of namespaces to initialize.

If you specify namespaces, then the user is required to be granted application privileges
MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the ADMIN_NAMESPACE system
privilege.

Note:

To enable the switch from lwuser1 to lwuser2 after attaching the session, you must
first define lwuser2 as the target user for lwuser1, as follows:

exec XS_PRINCIPAL.ADD_PROXY_USER('lwuser2', 'lwuser1');

Example 3-16 shows how to initialize two namespaces, ns1 and ns2, while switching an
application user in an application session.

Note:

The namespaces used in Example 3-16 must already have corresponding
namespace templates defined.

Example 3-16 Initializing Namespaces When Switching an Application User in an
Application Session

DECLARE
 sessionid RAW(30);
 nsList DBMS_XS_NSATTRLIST;
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS. DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);

Chapter 3
About Manipulating the Application Session State

3-20

 SYS.DBMS_XS_SESSIONS.SWITCH_USER(username => 'lwuser2',
 namespaces => nsList);
END;
/

See Also:

• SWITCH_USER Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java switchUser method (in Javadoc format)

• Example 6-6 for information about a Java example of this task

3.3.2.5 Initializing a Namespace Explicitly
You can explicitly initialize a namespace in an application session using the
DBMS_XS_SESSIONS.CREATE_NAMESPACE procedure in PL/SQL or the createNamespace method
of the Session interface in Java.

To execute the DBMS_XS_SESSIONS.CREATE_NAMESPACE procedure, the calling user must have
the MODIFY_NAMESPACE application privilege on the namespace or the ADMIN_NAMESPACE system
privilege.

Example 3-17 shows how to explicitly initialize a namespace, ns1, in an application session.

Note:

The namespace used in Example 3-17 must already have a corresponding
namespace template defined.

Example 3-17 Initializing a Namespace Explicitly in an Application Session

DECLARE
 sessionid RAW(30);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
END;
/

Chapter 3
About Manipulating the Application Session State

3-21

See Also:

• CREATE_NAMESPACE Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java createNamespace method (in Javadoc format)

• Example 6-10 for information about a Java example of this task

3.3.3 Setting Session Attributes in an Application Session
You can set the value of a specific session attribute using the
DBMS_XS_SESSIONS.SET_ATTRIBUTE procedure in PL/SQL or the setAttribute method of the
SessionNamespace interface method in Java.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege on the
namespace or the ADMIN_NAMESPACE system privilege.

Note:

An attribute can store a string value up to 4000 characters long.

Example 3-18 shows how to set a value, val1, for an attribute, attr1, of the application
session.

Example 3-18 Setting a Namespace Attribute for an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('ns1', 'attr1', 'val1');
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

See Also:

• SET_ATTRIBUTE Procedure for more information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java setAttribute method (in Javadoc format)

• About Setting a Session Namespace Attribute for information about this task in
Java

Chapter 3
About Manipulating the Application Session State

3-22

3.3.4 Getting Session Attributes in an Application Session
You can retrieve the value of a specific session attribute using the
DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure in PL/SQL or using the getAttribute method of
the SessionNamespace interface method in Java.

The calling user is not required to be granted any privileges to get attributes using the
DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

Note:

If an attribute value has not been set, and the FIRSTREAD_EVENT has been specified
for the attribute, then an attempt to read the the attribute value triggers a call to the
namespace event handler. The namespace event handler procedure typically sets a
value for the attribute, and performs other application-specific processing tasks.

Example 3-19 shows how to retrieve an attribute, attr1, of the application session.

Example 3-19 Getting a Namespace Attribute for an Application Session

DECLARE
 sessionid RAW(16);
 attrib_out_val VARCHAR2(4000);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('ns1', 'attr1', 'val1');
 SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('ns1', 'attr1', attrib_out_val);
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

See Also:

• GET_ATTRIBUTE Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java getAttribute method (in Javadoc format)

• Getting a Session Namespace Attribute for information about this task in Java

3.3.5 Creating Custom Attributes in an Application Session
You can create custom attributes in a namespace using the
DBMS_XS_SESSIONS.CREATE_ATTRIBUTE procedure in PL/SQL or the createAttribute method
of the SessionNamespace interface method in Java.

Custom attributes differ from template attributes. Template attributes are part of the namespace
template, and are automatically created in the session when the namespace is created.

Chapter 3
About Manipulating the Application Session State

3-23

Custom attributes are programmatically created in a namespace, using the CREATE_ATTRIBUTE
procedure.

The calling application is required to be granted the MODIFY_ATTRIBUTE application privilege on
the namespace or the ADMIN_NAMESPACE system privilege.

Example 3-20 shows how to create a custom attribute, customattr, in a namespace of the
application session.

Example 3-20 Creating a Custom Namespace Attribute for an Application Session

DECLARE
 sessionid RAW(16);
 attrib_out_val VARCHAR2(4000);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.CREATE_ATTRIBUTE('ns1','customattr','default_value_custom',NULL);
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('ns1','customattr','newvalue');
 SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('ns1', 'customattr', attrib_out_val);
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

See Also:

• CREATE_ATTRIBUTE Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java createAttribute method (in Javadoc format)

• Example 6-13 for information about a Java example of this task

3.3.6 Deleting a Namespace in an Application Session
You can delete a namespace and all attributes identified by it from an application session using
the DBMS_XS_SESSIONS.DELETE_NAMESPACE procedure in PL/SQL or the deleteAttribute
method of the SessionNamespace interface method in Java.

The calling user must have the MODIFY_NAMESPACE application privilege on the namespace or
the ADMIN_NAMESPACE system privilege.

Example 3-21 shows how to delete a namespace ns1 from an application session.

Example 3-21 Deleting a Namespace in an Application Session

DECLARE
 sessionid RAW(16);
 out_value VARCHAR2(4000);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('ns1', 'attr1', 'val1');
 SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('ns1', 'attr1', out_value);

Chapter 3
About Manipulating the Application Session State

3-24

 SYS.DBMS_XS_SESSIONS.DELETE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

See Also:

• DELETE_NAMESPACE Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java deleteNamespace method (in Javadoc format)

• Example 6-11 for information about a Java example of this task

3.3.7 Enabling Application Roles for a Session
You can enable only directly granted regular application roles of an application session user
using the DBMS_XS_SESSIONS.ENABLE_ROLE procedure in PL/SQL or the enableRole method of
the Session interface in Java.

The DBA_XS_SESSION_ROLES dynamic data dictionary view lists application roles enabled in all
application sessions. The V$XS_SESSION_ROLES dynamic data dictionary view lists application
roles enabled in the currently attached application session.

Example 3-22 shows how to enable a role in an application session.

Example 3-22 Enabling a Role in an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.ENABLE_ROLE('auth1_role');
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

See Also:

• ENABLE_ROLE Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java enableRole method (in Javadoc format)

• Example 6-7 for information about a Java example of this task

Chapter 3
About Manipulating the Application Session State

3-25

3.3.8 Disabling Application Roles for a Session
You can disable application roles for a specific session using the
DBMS_XS_SESSIONS.DISABLE_ROLE procedure in PL/SQL or the disableRole method of the
Session interface in Java.

Example 3-23 shows how to disable a role in an application session.

Example 3-23 Disabling a Role in an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.ENABLE_ROLE('auth1_role');
 SYS.DBMS_XS_SESSIONS.DISABLE_ROLE('auth1_role');
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

See Also:

• DISABLE_ROLE Procedure for information about the syntax of this PL/SQL
procedure

• Oracle Database Real Application Security Java API Reference for information
about the syntax of the Java disableRole method (in Javadoc format)

• Example 6-8 for information about a Java example of this task

3.4 About Administrative APIs for External Users and Roles
This section describes the following administrative APIs that are required for external users
and roles:

• CREATE_SESSION Procedure

• ATTACH_SESSION Procedure

• ASSIGN_USER Procedure

• SAVE_SESSION Procedure

3.5 About Real Application Security Session Privilege Scoping
Through ACL

This section describes session privilege scoping through an ACL allowing per principal session
privilege grants through an ACL set on the principal, where the principal can be either an
application user or a dynamic role.

In Oracle Database 12c Release 1 (12.1), Real Application Security session privileges are
granted through GRANT_SYSTEM_PRIVILEGE procedure or revoked through

Chapter 3
About Administrative APIs for External Users and Roles

3-26

REVOKE_SYSTEM_PRIVILEGE procedure in the XS_ADMIN_UTIL package. These grants are
applicable system wide and allow the grantee to exercise the grants for session operations on
any Real Application Security principal. This is implemented using a seeded system ACL –
SESSIONACL. All session privilege checks are done in this ACL. For a database running multiple
applications with multiple user communities this approach becomes cumbersome to administer
Real Application Security session administration appropriately.

Session privilege scoping addresses two issues. The first issue is who can create, attach,
detach, or destroy a user’s session. The second issue is who can enable a dynamic role for a
user session. Because a dynamic role can never be granted and can only be dynamically
enabled, session privilege scoping through an ACL is needed. Because regular roles are
granted to application users, an ACL is not needed on them.

Beginning with Oracle Database 12c Release 2 (12.2), Real Application Security supports
session privilege scoping through an ACL. This feature allows per principal session privilege
grants through an ACL set on the principal. The ACL containing the session privilege grant can
be set on a regular Real Application Security application user or a dynamic role, but it cannot
be set on a regular Real Application Security role or external principal. Because Real
Application Security session scoping can be enforced per the ACL set on the application user
or dynamic role involved in a session operation, you can more finely restrict session operations
to specific user communities. For example, you can set up a session operation for a separate
user community that can be managed by separate session managers (dispatchers), so users
belonging to the same user community will have the same ACL set on them. In addition,
enabling and disabling of a dynamic role can be restricted to appropriate dispatchers with the
addition of a new privilege ENABLE_DYNAMIC_ROLE to restrict enablement and disablement of
dynamic roles. This privilege is enforced even for enabling existing session scope dynamic
roles from previous attach. With these features, the Real Application Security session
administrator can provide a scoping for session privileges that allows a user to create or attach
or modify sessions for one Real Application Security user community or a group of Real
Application Security user communities for which it has been granted privilege.

The ACL can be set on the principal at creation time using the Real Application Security least
system privilege PROVISION, which can create, modify, or drop application users and
application roles. In addition, you can also use the CREATE_USER procedure and
CREATE_DYNAMIC_ROLE procedure and this requires the caller to have ALTER USER or ALTER
ROLE privilege depending on the principal being created; or the ACL can be created after
principal creation using the SET_ACL procedure, which requires the caller to have the same
privilege as previously mentioned depending on whether the principal is an application user or
dynamic role. Both the application user or dynamic role and ACL must already exist before
setting the ACL using the SET_ACL procedure and the ACL must have been created in the SYS
schema.

Session operations require either specific session privileges to be granted to the session
manager depending on the session operation by either a system-wide ACL or an ACL attached
to the affected user or role. The ADMINISTER_SESSION privilege aggregates all specific session
privileges. Like all session privileges, this privilege can be granted to the session manager by
either a system-wide ACL or principal specific ACL. The use of new privileges is audited like
other system privileges. An ACL set on a user or dynamic role overrides the system-wide ACL.

The DBA_XS_USERS and DBA_XS_DYNAMIC_ROLES views are enhanced to show an additional
column for the ACL that is set on the Real Application Security application user or dynamic
role.

System level session privilege grants can coexist with the principal specific ACL, but the
principal specific ACL grants have precedence. This precedence is important as Real
Application Security principal specific ACLs can have negative grants. Note that the negative
grant can only appear in principal specific ACLs not for the system ACL.

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-27

The following table describes the behavior of a session privilege check comparing the principal
specific ACL (column 1) with the System ACL (column 2) and showing the result of the session
privilege check (column 3) as being either True or False. For example, when the checked
privilege is neither granted or denied in a principal specific ACL, then the System ACL is
checked for the privilege.

Table 3-2 Session Privilege Checking

Principal Specific ACL System ACL Session Privilege Check Result

Grant Deny, grant, or not specified True

Deny Deny, grant, or not specified False

Not specified or ACL does not
exist

Grant True

Not specified or ACL does not
exist

Not specified. False

Enforcing Session Privilege According to the ACL Set on the Principal

Session privilege is enforced according to the ACL set on the Real Application Security
application user in the session operation. A privilege to enable a dynamic role is enforced
according to the ACL set on the dynamic role. For example, a create session operation
requires the caller to have the CREATE_SESSION privilege in the ACL set on the Real Application
Security application user. Similarly, the attach operation with dynamic role requires the
ENABLE_DYNAMIC_ROLES privilege in the ACLs set on the dynamic roles. Any existing system
level session privilege grants as mentioned previously can still coexist, but the principal
specific ACL grants gets precedence.

Privilege check is first done in the ACL associated with the principal (if at all there are such
settings). If the ACL check succeeds the operation will go through. If the check finds deny, the
operation fails with insufficient privilege error. If neither grant nor deny is found, the check is
done in system ACL associated with SESSION_SC security class and operation fails or
succeeds based on this privilege check result.

The following table lists Real Application Security session operations and the required session
privileges to perform that operation. This information is useful for creating ACLs on principals
for specific session operations. Note that the ADMINISTER_SESSION privilege aggregates all
session privileges listed in this table.

Table 3-3 Session Privilege Operations and the Required Privileges to Perform Them

Session Operations Required Session Privilege

Create Session CREATE_SESSION privilege in the ACL set on the
Real Application Security application user (that is
used for creating the session) or in the System
ACL. If there is a negative grant in the principal
specific ACL, the operation fails.

Attach Session ATTACH_SESSION privilege in the ACL set on the
Real Application Security application user (that is
used for creating the session) or in the System
ACL. ENABLE_DYNAMIC_ROLE privilege in the ACL
set on the dynamic roles (that is used for creating
the session) or in the System ACL. If there is a
negative grant in the principal specific ACL, the
operation fails.

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-28

Table 3-3 (Cont.) Session Privilege Operations and the Required Privileges to Perform
Them

Session Operations Required Session Privilege

Assign User ASSIGN_SESSION privilege in the ACL set on the
named Real Application Security application user
to be assigned or in the System ACL.
ENABLE_DYNAMIC_ROLE privilege in the ACL set
on the dynamic roles (that is used for creating the
session) or in the System ACL. So if there are
dynamic roles enabled, these privileges are
checked. If there is a negative grant in the principal
specific ACL, the operation fails.

Switch User No session privilege check, as per proxy
configuration.

Enable Role No session privilege check.

Disable Role No session privilege check.

Namespace Operation (Create Namespace, delete
namespace, create attribute, set attribute, reset
attribute, delete attribute)

No session privilege check, only namespace
privilege checks.

Save Session, Detach Session No session privilege check.

Destroy Session TERMINATE_SESSION privilege in the ACL set on
the Real Application Security application user (that
is used for creating the session) or in the System
ACL.

Set Session Cookie MODIFY_SESSION privilege in the ACL set on the
Real Application Security application user (that is
used for creating the session) or in the System
ACL.

Set Inactivity Timeout MODIFY_SESSION privilege in the ACL set on the
Real Application Security application user (that is
used for creating the session) or in the System
ACL.

Reauthorize Session MODIFY_SESSION privilege in the ACL set on the
Real Application Security application user (that is
used for creating the session) or in the System
ACL.

Get SID from Cookie No session privilege check.

Global Callback Configuration (Add global callback,
delete global callback, enable global callback)

No session privilege check, only callback privilege
checks.

See Also:

• GRANT_SYSTEM_PRIVILEGE Procedure and REVOKE_SYSTEM_PRIVILEGE
Procedure

• Security Classes

• CREATE_USER Procedure, CREATE_DYNAMIC_ROLE Procedure, and
SET_ACL Procedure

• DBA_XS_USERS and DBA_XS_DYNAMIC_ROLES

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-29

3.5.1 Granting Session Privileges on a Principal Using an ACL
Describes how to grant session privileges on a principal using an ACL while creating the user
and after the user is already created.

The following examples show how to grant session privileges to principals through an ACL,
USER_ACL while creating the user and after the user is already created.

First, create the ACL USER_ACL and grant the privilege ADMINISTER_SESSION to user lwuser3
and grant the privileges CREATE_SESSION, MODIFY_SESSION, and ATTACH_SESSION to user
lwuser4 and grant the privileges CREATE_SESSION and MODIFY_SESSION to user lwuser5.

sqlplus /nolog
SQL> CONNECT SYS/password as SYSDBA
SQL> GRANT CREATE SESSION, XS_SESSION_ADMIN TO SEC_MGR IDENTIFIED BY password;
SQL> EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('PROVISION', 'sec_mgr',
SYS.XS_ADMIN_UTIL.PTYPE_DB);

CONNECT SEC_MGR
Enter password: password
Connected.

DECLARE
ace_list XS$ACE_LIST;

BEGIN

ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"ADMINISTER_SESSION"'),
 granted=>true,
 principal_name=>'lwuser3'),

XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"CREATE_SESSION"','"MODIFY_SESSION"'
,'"ATTACH_SESSION"'),
 granted=>true,
 principal_name=>'lwuser4'),

XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"CREATE_SESSION"','"MODIFY_SESSION"'
),
 granted=>true,
 principal_name=>'lwuser5'));

sys.xs_acl.create_acl(name=>'USER_ACL',
 ace_list=>ace_list,
 sec_class=>'SESSIONPRIVS',
 description=>'Session management');
END;
/

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-30

Next, create users lwuser3 and lwuser4 and grant these users the ACL, USER_ACL.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER(name=>'lwuser3',
 schema=>'HR',
 acl=>'USER_ACL';
END;
/
EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('lwuser3', 'password');

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER(name=>'lwuser4',
 schema=>'HR',
 acl=>'USER_ACL';
END;
/
EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('lwuser4', 'password');

Next, create user lwuser5 and set the ACL, USER_ACL, for this user using the SET_ACL
procedure.

sqlplus SEC_MGR
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER(name=>'lwuser5',
 schema=>'HR');
END;
/
EXEC SYS.XS_PRINCIPAL.SET_ACL('lwuser5','USER_ACL');

See Also:

• GRANT_SYSTEM_PRIVILEGE Procedure and REVOKE_SYSTEM_PRIVILEGE
Procedure

• Security Classes

• CREATE_USER Procedure, CREATE_DYNAMIC_ROLE Procedure, and
SET_ACL Procedure

• DBA_XS_USERS and DBA_XS_DYNAMIC_ROLES

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-31

4
Configuring Application Privileges and Access
Control Lists

This chapter describes how to configure application privileges and access control lists (ACLs)
in Oracle Database Real Application Security. It includes information on how to create, set, and
modify ACLs, and describes how ACL security interacts with other Oracle Database security
mechanisms.

This chapter contains the following sections:

• About Application Privileges

• About Configuring Security Classes

• About Configuring Access Control Lists

• Data Security

• ACL Binding

4.1 About Application Privileges
The database has predefined system privileges, such as CREATE TABLE, and object privileges,
such as UPDATE. A large number of custom privileges that must be defined for enterprise
applications are often called application-defined privileges. Real Application Security
introduces the definition of these privileges, termed application privileges, in the database. For
application developers, these custom application privileges are used for access control on
application-level operations. These application-level operations allow fine-grained access on
data at a granular level of columns, rows, or cells.

When an application privilege is explicitly bound to a resource, for example, rows and columns
of a table, an application privilege can be used to protect an application-level operation on a
database object. Alternatively, it may be used in the same manner as a system privilege when
binding to a resource is not required.

See Also:

About Checking ACLs for a Privilege

This section contains the following topic: Aggregate Privilege.

4.1.1 Aggregate Privilege
A Real Application Security aggregate privilege implies a set of other application privileges.
The implied application privileges of an aggregate privilege can be any application privilege
defined by the current security class or an inherited application privilege (see "About
Configuring Security Classes" for more information). When an aggregate privilege is granted or
denied, its implied application privileges are implicitly granted or denied.

4-1

When an aggregate privilege AG implies the application privileges p1 and p2, granting the
application privilege, AG, implies that both p1 and p2 are granted. However, granting both the p1
and p2 does not imply that AG is granted.

Aggregate privileges are useful for the following purposes:

• Enabling grouping and granting a set of application privileges as a single grant, simplifying
application privilege administration. A group name or an alias for a set of application
privileges, where the group name itself is not an application privilege, makes checking for
the set simpler as it checks for each application privilege in the group.

• Providing an efficient way to check a set of application privileges based on a single
application privilege check.

Example 4-1 adds an aggregate privilege called UPDATE_INFO to the HRPRIVS security class.
The aggregate privilege contains the implied privileges UPDATE, DELETE, and INSERT.

When the group name itself is a first class privilege, there may be several possible semantics
for the aggregate privilege based on its relationship to its members. When defining a semantic
to represent an aggregate privilege, you must consider various relations between the
aggregate privilege and its members, such as imply and include. For example, consider the
imply relation in Java Security; selecting this semantic when granting an aggregate privilege
implies granting all its member application privileges individually, but not the aggregate
privilege. Therefore, granting all the member application privileges of an aggregate does not
imply granting the aggregate privilege.

Example 4-2 adds a list of implied application privileges for the aggregate privilege
UPDATE_INFO.

An aggregate privilege is not an application role. An application role itself is not an application
privilege that protects a resource. Application roles are used to activate and deactivate
application privileges available to an application user to enforce role-based access control
constraints.

Also, an aggregate privilege is not a security class. A security class is not an application
privilege that can be granted to a user. A security class lists a set of application privileges
including aggregate privileges that may be either granted or denied in an ACL. Within a
security class, many aggregate privileges may be defined based on the application privileges
available in the security class.

An aggregate privilege can have other aggregate privileges as its members. Note that the
member privileges of an aggregate privilege must be defined in the same security class (or in
an ancestor security class) as the aggregate privilege. An aggregate privilege definition cannot
create a cycle.

Example 4-1 Adding an Aggregate Privilege to a Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PRIVILEGES(sec_class=>'HRPRIVS',
 priv=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST('"UPDATE"',
 '"DELETE"', '"INSERT"'));
END;

Example 4-2 Adding Implied Privileges to an Aggregate Privilege

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES(sec_class =>'HRPRIVS',
(priv=>'UPDATE_INFO',
implied_priv_list=>XS$NAME_LIST('"UPDATE"', '"DELETE"', '"INSERT"'));
END;

Chapter 4
About Application Privileges

4-2

This section contains: ALL Privilege.

4.1.1.1 ALL Privilege
The ALL privilege is a predefined aggregate privilege. Every security class has the ALL
privilege, and it contains all the application privileges of that security class. ALL is not explicitly
defined in every security class, but it is internally understood by the system based on the
security class associated with the ACL. The cardinality of an ALL for a security class changes
whenever an application privilege is added or removed from the security class.

Use of the ALL construct enables Real Application Security to express access control policy
such as "grant all the application privileges to the application user u1 defined for an application
except the specific privilege p1". Example 4-3 shows an ACL in the security class,
AppSecurityClass, which has all the application privileges for the application. The ordered
evaluation of ACEs ensures that the ALL except p1 is granted to the application user u1.

Example 4-3 Using ALL Grant

select NAME, SECURITY_CLASS, PARENT_ACL from DBA_XS_ACLS;

NAME SECURITY_CLASS PARENT_ACL
---------- ---------------- ---------------
sampleACL AppSecurityClass

select ACL, ACE_ORDER, GRANT_TYPE, PRINCIPAL, PRIVILEGE from DBA_XS_ACES;

ACL ACE_ORDER GRANT_TYPE PRINCIPAL PRIVILEGE
--------- --------- ---------- ------------ ----------
sampleACL 1 DENY U1 p1
sampleACL 2 GRANT U1 ALL

4.2 About Configuring Security Classes
This section contains the following topics:

• About Security Classes

• Security Class Inheritance

• Security Class as Privilege Scope

• DML Security Class

• About Validating Security Classes

• Manipulating Security Classes

4.2.1 About Security Classes
A security class is a scope for a set of application privileges. The same application privilege
can be defined in multiple security classes. A security class restricts the set of application
privileges that may be granted or denied within an ACL. A security class is both a place to
define a collection of relevant application privileges and a way to associate an ACL with one
security class.

Real Application Security supports a set of predefined application privileges and security
classes and also allows applications to define their own custom application privileges using
security classes. Each class of object being protected is associated with a security class that

Chapter 4
About Configuring Security Classes

4-3

indicates the set of operations that may be performed on its objects. There are predefined
security classes that define built-in application privileges.

Security classes simplify the task of managing a large number of application privileges. Each
ACL is associated with one security class. This security class defines the scope of application
privileges that may be granted within the ACL.

Each object type can support a large number of application privileges, and many different
object types may share a common set of operations. To simplify these types of specifications,
security classes support inheritance.

4.2.2 Security Class Inheritance
A security class can inherit application privileges from parent security classes. A child security
class implicitly contains all the application privileges defined in the parent security classes. The
application privileges available in a security class are the combination of the application
privileges defined in the security class and the application privileges inherited from parent
security classes.

A security class can specify a list of parent security classes. The application privileges
available in these parent classes become available in the child class. When the same
application privilege name is defined in a child and its parent security class, the application
privilege in the child replaces or overrides the application privilege in the parent.

Example 4-4 shows security class inheritance by creating a security class called HRPRIVS. The
HRPRIVS security class defines two application privileges, VIEW_SENSITIVE_INFO and
UPDATE_INFO. UPDATE_INFO, which is an aggregate privilege that implies three other privileges:
UPDATE, DELETE, and INSERT. The security class HRPRIVS inherits application privileges from DML
security class as specified by the parent_list parameter.

Example 4-4 Showing Security Class Inheritance

 DECLARE
 pr_list XS$PRIVILEGE_LIST;
BEGIN
 pr_list :=XS$PRIVILEGE_LIST(
 XS$PRIVILEGE(name=>'VIEW_SENSITIVE_INFO'),
 XS$PRIVILEGE(name=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST
 ('"UPDATE"', '"DELETE"', '"INSERT"')));

 sys.xs_security_class.create_security_class(
 name=>'HRPRIVS',
 parent_list=>XS$NAME_LIST('DML'),
 priv_list=>pr_list);
END;
/

4.2.3 Security Class as Privilege Scope
An ACL has a single security class as its scope. An ACL grants application privileges to
principals to control access to protected data or functionality; it can grant only the application
privileges that are defined in its security class. The security_class parameter is used to
specify the security class in an ACL. When checking an application privilege against an ACL,
the security class of the application privilege is resolved based on the security class of the
ACL, as the ACL always has an associated security class. If no security class is specified, then
the DML Security Class is used as the default security class. Different ACLs can have as their
scope the same security class.

Chapter 4
About Configuring Security Classes

4-4

4.2.4 DML Security Class
The DML security class is predefined or created during installation. The DML security class
contains common application privileges for object manipulation: SELECT, INSERT, UPDATE, and
DELETE. If an ACL does not specify its security class, DML is the default security class for the
ACL.

Real Application Security DML application privileges are the same as database object
privileges and inherently enforced by database object-level operations. However, Real
Application Security DML application privileges are effective only when Real Application
Security Data Security is enabled for database tables.

4.2.5 About Validating Security Classes
Oracle recommends that you always validate the Real Application Security objects after
administrative configuration changes. The XS_DIAG package provides a set of validation APIs
to help ensure that these changes do not damage the complicated relationships among your
Real Application Security objects.

See "VALIDATE_SECURITY_CLASS Function" for more information about validating a
security class.

4.2.6 Manipulating Security Classes
To manipulate security classes, use the procedures in PL/SQL package XS_SECURITY_CLASS; it
includes procedures to create, manage, and delete security classes and their application
privileges. This package also includes procedures for managing security class inheritance; see
"XS_SECURITY_CLASS Package".

Example 4-5 invokes ADD_PARENTS to add the parent security class GENPRIVS to the HRPRIVS
security class.

Example 4-6 invokes REMOVE_PARENTS to remove the parent security class GENPRIVS from the
HRPRIVS security class.

Example 4-7 invokes ADD_PRIVILEGES to add an aggregate privilege called UPDATE_INFO to the
HRPRIVS security class. The aggregate privilege contains the implied privileges UPDATE, DELETE,
and INSERT. Note that ADD_PRIVILEGES may be used to add several application privileges to a
security class. See "Aggregate Privilege" for more information.

Example 4-8 invokes REMOVE_PRIVILEGES to remove the UPDATE_INFO application privilege from
the HRPRIVS security class.

Example 4-9 invokes REMOVE_PRIVILEGES to remove all application privileges from the HRPRIVS
security class.

Example 4-10 invokes ADD_IMPLIED_PRIVILEGES to add a list of implied application privileges
for the aggregate privilege UPDATE_INFO.

Example 4-11 invokes REMOVE_IMPLIED_PRIVILEGES to remove the implicit privilege DELETE
from the aggregate privilege UPDATE_INFO.

Example 4-12 invokes REMOVE_IMPLIED_PRIVILEGES to remove all implicit application privileges
from the aggregate privilege UPDATE_INFO.

Chapter 4
About Configuring Security Classes

4-5

The procedure sets a description string for the specified security class. Example 4-13 invokes
SET_DESCRIPTION to set a description string for the HRPRIVS security class.

Example 4-14 invokes DELETE_SECURITY_CLASS to delete the HRACL ACL using the default
delete option DEFAULT_OPTION. Note that this option is defined in "XS_ADMIN_UTIL Package".

Example 4-5 Adding Parent Security Classes for a Specified Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PARENTS('HRPRIVS','GENPRIVS');
END;

Example 4-6 Removing One or More Parent Classes for a Specified Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PARENTS('HRPRIVS','GENPRIVS');
END;

Example 4-7 Adding One or More Application Privileges to a Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PRIVILEGES(sec_class=>'HRPRIVS',
 priv=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST('"UPDATE"',
 '"DELETE"', '"INSERT"'));
END;

Example 4-8 Removing One or More Application Privileges from a Specified Security
Class

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PRIVILEGES('HRPRIVS','UPDATE_INFO');
END;

Example 4-9 Removing all Application Privileges for a Specified Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PRIVILEGES('HRPRIVS');
END;

Example 4-10 Adding One or More Implied Application Privileges to an Aggregate
Privilege

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES(priv=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST('"UPDATE"',
'"DELETE"', '"INSERT"'));
END;

Example 4-11 Removing a Specified Implied Application Privileges from an Aggregate
Privilege

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES('UPDATE_INFO','"DELETE"');
END;

Example 4-12 Removing all Implied Application Privileges from an Aggregate Privilege

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES('UPDATE_INFO');
END;

Chapter 4
About Configuring Security Classes

4-6

Example 4-13 Setting a Description String for a Specified Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.SET_DESCRIPTION(
 'HRPRIVS','Contains privileges required to manage HR data');
END;

Example 4-14 Deleting a Specified Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.DELETE_SECURITY_CLASS('HRPRIVS',XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

4.3 About Configuring Access Control Lists
This section contains the following topics:

• About ACLs and ACEs

• Creating ACLs and ACEs

• About Validating Access Control Lists

• Updating Access Control Lists

• About Checking ACLs for a Privilege

• About Using Multilevel Authentication

• Principal Types

• Access Resolution Results

• ACE Evaluation Order

• ACL Inheritance

• About ACL Catalog Views

• About Security Class Catalog Views

4.3.1 About ACLs and ACEs
Real Application Security encompasses access control lists (ACLs) and supports grants,
denials, and various conflict resolution methods. ACLs are extended to support application-
defined privileges, enabling applications to control privileges that are meaningful to it.
Authorization queries are of the form: "Is the application user authorized for privilege p in ACL
a?" Application-defined privileges are implemented through APIs supported both in the middle
tier and in the database. These APIs enable the application to protect sensitive operations,
such as approval of purchase orders.

Before performing a sensitive operation, the application must determine the required
application privileges. For example, if the application requires the approvePO application
privilege, it must locate the ACL associated with the desired purchase order, a1, and issue a
query to determine if the Real Application Security session is authorized for application
privilege approvePO in a1. Note that the application must be trusted to properly carry out
authorization. Data security improves this by providing a declarative method of associating
ACLs with rows in a table; a data security policy allows an administrator or developer to identify
a set of rows in a table using an SQL predicate and associates the set with the ACL that is
used to control access to its member rows.

The data security system provides a SQL operator that returns the ACLs associated with a
row. This SQL operator performs an authorization check using the ACL references associated

Chapter 4
About Configuring Access Control Lists

4-7

with the row. By default, a query returns all rows the user is allowed to view; these ACL
references may be used in the middle tier to determine appropriate access for a particular row,
as arguments in a WHERE clause that limits the result set. Thus, the result set may be further
restricted to display only those rows for some specific operations, such as approvePO, based
on the user's authorization.

The Real Application Security system provides native enforcement for SQL operations in the
database, limiting the scope for damage due to security errors in the application. Thus, a SQL
injection attack in one part of the application will not provide access to tables outside of that
component.

An ACL protects a resource by specifying application privileges of the principals on the
resource. An ACL is a list of access control entries (ACEs) where each ACE maintains the
mapping from a principal to a granted or denied application privileges for the resource. A
principal may be a database user or Real Application Security application user or application
role.

Access Control Entry or ACE

An access control entry, or ACE, represents an application privilege grant, and an ACL
represents a set of application privilege grants that are bound to a resource. Here, the
resource can be a database table, a column in a table, or a set of rows in a table selected
using a SQL predicate. Hence when a resource is accessed, only the ACLs associated with
the resource are checked for the access right.

An ACE either grants or denies access to some application function or other database data for
a particular principal. The ACE does not, itself, specify which data to protect; that is done
outside the ACE and the ACL, by associating the ACL with target data.

XS$ACE_TYPE type is provided to construct each ACE entry for the ACL. An XS$ACE_LIST object
consists of a list of privileges and the principal to whom the privileges are granted or denied.
ACEs related information can be accessed through DBA_XS_ACES view.

4.3.2 Creating ACLs and ACEs
Example 4-15 creates an ACL called HRACL. This ACL includes ACEs contained in ace_list.
The application privileges used in ace_list are available in the HRPRIVS security class. The
st_date and en_date parameters specify the active start and end times for this ACL; note that
only the SELECT and VIEW_SENSITIVE_INFO application privileges are temporary.

Example 4-15 Creating an Access Control List

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 en_date TIMESTAMP WITH TIME ZONE;
 ace_list XS$ACE_LIST;
BEGIN
 st_date := SYSTIMESTAMP;
 en_date := TO_TIMESTAMP_TZ('2019-06-18 11:00:00 -5:00',
 'YYYY-MM-DD HH:MI:SS TZH:TZM');
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"','VIEW_SENSITIVE_INFO'),
 granted=>true,
 principal_name=>'HRREP',
 start_date=>st_date,
 end_date=>en_date),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 granted=>true,
 principal_name=>'HRMGR'),

Chapter 4
About Configuring Access Control Lists

4-8

 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'DB_HR', principal_type=>XS_ACL.PTYPE_DB));

 sys.xs_acl.create_acl(name=>'HRACL',
 ace_list=>ace_list,
 sec_class=>'HRPRIVS',
 description=>'HR Representative Access');
END;
/

Each ACE includes a principal that is the target of the grant and a list of application privileges.
The grant is subject to the following attributes described in these topics:

• Denying a Privilege

• Inverting an Application Privilege

• ACE Start-Date and End-Date

4.3.2.1 Denying a Privilege
When a grant is negated, the application privileges are denied. Example 4-16 sets the value of
the attribute granted to FALSE to deny application privileges to the principal. The default value
is TRUE.

Real Application Security ACL supports only the ordered evaluation of ACEs. The first ACE
that grants or denies the requested application privilege contributes toward the final grant or
deny. See section "DBA_XS_ACES".

Example 4-16 Denying a Privilege

XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 granted=>FALSE,
 principal_name=>'HRREP'
);

4.3.2.2 Inverting an Application Privilege
When the specified application privileges are given to all principals except one, that principal is
inverted; the inverted attribute is set to TRUE. The default value of the attribute inverted is
FALSE. In Example 4-17, a grant made to the inverted role HRGUEST provides the application
privileges to any user that does not have the role enabled.

Example 4-17 Inverting an Application Privilege

XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 inverted=>TRUE,
 principal_name=>'HRGUEST'
);

4.3.2.3 ACE Start-Date and End-Date
Each ACE can have a time constraint based on a start-date and an end-date, specifying the
time when the ACE is in effect.

Chapter 4
About Configuring Access Control Lists

4-9

In Example 4-18, the optional attributes start_date and end_date (of datatype TIMESTAMP
WITH TIME ZONE) define the time period over which an ACE is valid. The end_date value must
be greater than the start_date value.

Example 4-18 Setting ACE Start-Date and End-Date

XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"','VIEW_SENSITIVE_INFO'),
 granted=>true,
 principal_name=>'HRREP',
 start_date=>st_date,
 end_date=>en_date))

4.3.3 About Validating Access Control Lists
Oracle recommends that you always validate the Real Application Security objects after
administrative configuration changes. The XS_DIAG package provides a set of validation APIs
to help ensure that these changes do not damage the complicated relationships among your
Real Application Security objects.

See "VALIDATE_ACL Function" for more information about validating an ACL.

4.3.4 Updating Access Control Lists
To manipulate ACLs, use the procedures in PL/SQL package XS_ACL; it contains procedures
that create and manage ACLs. See "XS_ACL Package".

Example 4-19 invokes APPEND_ACES to add an ACE, ace_entry, to the HRACL ACL. The ACE
grants the SELECT privilege to the DB_HR database user.

Example 4-20 invokes REMOVE_ACES to remove all ACEs from the ACL called HRACL.

The procedure sets or modifies the security class for an ACL. Example 4-21 invokes
SET_SECURITY_CLASS procedure to associate the HRPRIVS security class with ACL HRACL.

Example 4-22 invokes SET_PARENT_ACL to set the AllDepACL ACL as the parent ACL for the
HRACL ACL. The inheritance type is set to EXTEND.

Example 4-23 invokes REMOVE_ACL_PARAMETERS to remove all ACL parameters for ACL1.

Example 4-24 invokes REMOVE_ACL_PARAMETERS to remove the REGION parameter for ACL1.

Example 4-25 invokes SET_DESCRIPTION to set a description for ACL HRACL.

Example 4-26 invokes DELETE_ACL to delete ACL HRACL using the default delete option.

Example 4-19 Appending an ACE to an Access Control List

DECLARE
 ace_entry XS$ACE_TYPE;
BEGIN
 ace_entry := XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'DB_HR',
 principal_type=>XS_ACL.PTYPE_DB);
 SYS.XS_ACL.APPEND_ACES('HRACL',ace_entry);
END;

Chapter 4
About Configuring Access Control Lists

4-10

Example 4-20 Removing all ACEs from an ACL

BEGIN
 SYS.XS_ACL.REMOVE_ACES('HRACL');
END;

Example 4-21 Modifying the Security Class for an ACL

BEGIN
 SYS.XS_ACL.SET_SECURITY_CLASS('HRACL','HRPRIVS');
END;

Example 4-22 Setting or Modifying the Parent ACL

BEGIN
 SYS.XS_ACL.SET_PARENT_ACL('HRACL','AllDepACL',XS_ACL.EXTENDED);
END;

Example 4-23 Removing all ACL Parameters for an ACL

BEGIN
 SYS.XS_ACL.REMOVE_ACL_PARAMETERS('ACL1');
END;

Example 4-24 Removing the Specified ACL Parameter for an ACL

BEGIN
 SYS.XS_ACL.REMOVE_ACL_PARAMETERS('ACL1','REGION');
END;

Example 4-25 Setting a Description String for an ACL

BEGIN
 SYS.XS_ACL.SET_DESCRIPTION('HRACL',
 'Grants privileges to HR representatives and managers.');
END;

Example 4-26 Deleting an ACL

BEGIN
 SYS.XS_ACL.DELETE_ACL('HRACL');
END;

4.3.5 About Checking ACLs for a Privilege
There are two forms of enforcement; the system enforces DML privileges on data security
protected objects, and the SQL operator added by the user enforces all other application
privileges.

To check an ACL for an application privilege, call the SQL operator ORA_CHECK_ACL:

ORA_CHECK_ACL (acls, privilege [,privilege] ...)

The ORA_CHECK_ACL SQL operator evaluates the list of application privileges with respect to an
ordered list of ACLs. The evaluation process proceeds until any one of the following three
events occurs:

• A grant is encountered for every application privilege specified before any potential denials
of the same application privilege. The outcome is that the application privileges are
granted.

Chapter 4
About Configuring Access Control Lists

4-11

• One of the application privileges specified is denied before any potential grants. The
outcome is that at least one of the application privileges is denied.

• The list of ACEs is fully traversed. The outcome is that not all of the application privileges
are granted.

To evaluate the application privilege, Oracle checks the ACEs (which are kept in order), and
the evaluation stops when it finds an ACE that grants or denies the requested application
privileges.

To find the ACLs associated with rows of a table or view, call the SQL operator
ORA_GET_ACLIDS: ORA_GET_ACLIDS(table, ...). For example, to enforce an application
privilege, priv, on a table, tab, the user query adds the following check:

ORA_CHECK_ACL(ORA_GET_ACLIDS(tab), priv)

This function answers the question whether application privileges were granted, denied, or
neither. A corresponding Java API is also available.

4.3.6 About Using Multilevel Authentication
Multilevel authentication enables the user to specify, through system-constraining ACLs,
application privileges based on levels of authentication. A system-constraining ACL specifies
a minimum application-wide set of application privileges on objects, based on dynamic roles
that reflect an application user's level of authentication. When attempting to access an object,
an application user may be either strongly or weakly authenticated, either inside or outside the
firewall, with the following four possible levels of authentication:

• Strongly authenticated, inside firewall

• Strongly authenticated, outside firewall

• Weakly authenticated, inside firewall

• Weakly authenticated, outside firewall

A system-constraining ACL can specify application privileges that apply to application users at
each level of authentication in an application. Based on application requirements, the
administrator may grant additional application privileges to specific users based on any
necessary criteria; such additional application privileges are independent of any system-
constraining ACL. Example 4-28 and Example 4-29 implement a system-constraining ACL.

4.3.7 Principal Types
In addition to Real Application Security principals, application users and application roles, Real
Application Security supports grants based on database users and roles. When the system
evaluates an ACL in a context of a Real Application Security session, it ignores grants that are
based on a database schema, but honors grants that are based on database role because
they are part of Real Application Security user's role list. Within an ACL, multiple ACEs can
grant privileges to a principal.

4.3.8 Access Resolution Results
Requests for access can have two possible results: true or false.

• A result of true means that the requested application privilege is granted

• A result of false means that the requested application privilege is either not granted or
denied.

Chapter 4
About Configuring Access Control Lists

4-12

4.3.9 ACE Evaluation Order
ACEs are evaluated in the order they appear in the ACL. The outcome of evaluating a
particular ACE may be one of the following:

• The application privilege is granted.

• The application privilege is denied.

• The application privilege is neither granted nor denied.

Note that if an ACE grants an application privilege that a previous ACE denies, the result is a
deny because the ACEs are evaluated in order.

4.3.10 ACL Inheritance
ACLs can explicitly inherit from a single parent ACL, enabling the application to share policies
across multiple objects. When the request for an application privilege involves two ACLs, the
final result of the access-resolution algorithm may be based on semantics of individual access-
resolution results of the ACLs. Real Application Security supports two types of inheritance
semantics: extending ACL inheritance (OR with ordered evaluation), and constraining ACL
inheritance (AND).

This section contains:

• Extending ACL Inheritance

• Constraining ACL Inheritance

4.3.10.1 Extending ACL Inheritance
Extending ACL inheritance (OR with ordered evaluation) dictates that the ACEs are evaluated
from the bottom of the inheritance tree to its top, from child to parent. In extending ACL
inheritance, an application privilege is granted if either child or parent ACL grants the privilege,
and denied if either the child or parent ACL denies the privilege. In fact, the first ACL that
explicitly grants or denies the requested application privilege determines the final result. After
the first grant or deny, further evaluations of the remaining ACLs are not attempted. Note that
this evaluation rule is the same as the ordered evaluation of ACEs within an ACL.

The following example sets the AllDepACL ACL as the parent ACL for the HRACL ACL. The
inheritance type is set to EXTENDED.

Example 4-27 Extending ACL Inheritance

BEGIN
 SYS.XS_ACL.SET_PARENT_ACL('HRACL','AllDepACL',XS_ACL.EXTENDED);
END;

4.3.10.2 Constraining ACL Inheritance
Constraining ACL inheritance (AND) requires that both the child and the parent ACL grant the
application privilege so that the ACL check evaluates to true.

Application-wide security policies can be enforced if all the ACLs for an application are
constrained by the same parent ACL. For example, imagine a sample policy where users who
are authenticated as being inside the corporate firewall can have application privileges in
addition to the SELECT privilege. Example 4-28 shows the constraining ACL for this policy
(inheritance type is set to CONSTRAINED), where all application users with XSPUBLIC application

Chapter 4
About Configuring Access Control Lists

4-13

role are granted the SELECT privilege. Note that only the application users who are inside the
corporate firewall have the dynamic application role FIREWALL enabled. Therefore, application
users inside the firewall are granted all the application privileges in HRPRIVS security class. As
this ACL constrains all the ACLs, such as guestACL, Example 4-29 shows that the application
privilege grants of these ACLs are constrained by FIREWALL_ACL.

Example 4-28 Constraining ACL Inheritance: Firewall-Specific Authentication Privilege

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'XSPUBLIC'),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('ALL'),
 granted=>true,
 principal_name=>'FIREWALL'));
 sys.xs_acl.create_acl(name=>'FIREWALL_ACL',
 ace_list=>ace_list,
 sec_class=>'HRPRIVS',
 description=>'Only select privilege if not inside firewall');
END;
/

BEGIN
SYS.XS_ACL.SET_PARENT_ACL('GuestACL', 'FIREWALL_ACL',XS_ACL.CONSTRAINED);
END;

Example 4-29 Using a Constraining Application Privilege

SQL> select ACE_ORDER, GRANT_TYPE, PRINCIPAL, PRIVILEGE
 from DBA_XS_ACES
 where ACL='FIREWALL_ACL';

ACE_ORDER GRANT_TYPE PRINCIPAL PRIVILEGE
---------- ---------- --------- ----------
1 GRANT XSPUBLIC SELECT
2 GRANT FIREWALL ALL

4.3.11 About ACL Catalog Views
ACLs have the following catalog views:

• DBA_XS_ACLS catalog view, described in section "DBA_XS_ACLS"

• DBA_XS_ACES catalog view, described in section "DBA_XS_ACES"

4.3.12 About Security Class Catalog Views
Security classes have the following catalog views:

• DBA_XS_SECURITY_CLASSES, described in section "DBA_XS_SECURITY_CLASSES"

• DBA_XS_SECURITY_CLASS_DEP, described in "DBA_XS_SECURITY_CLASS_DEP"

• DBA_XS_PRIVILEGES, described in "DBA_XS_PRIVILEGES"

Chapter 4
About Configuring Access Control Lists

4-14

4.4 Data Security
Data security associates ACLs with a logical group of rows, known as a data realm.

This enables applications to define and enforce application-specific privileges at the database
layer, through policies that define data realms and their access. These data realms include
both a SQL predicate that identifies a set of rows and an ACL that protects the identified rows.
The ACL evaluation is based on the application user, not the schema owner.

This section includes the following topics:

• Data Realms

• Parameterized ACL

4.4.1 Data Realms
Real Application Security's Data Security policy data realms associate ACLs with rows in a
table. A data realm has two parts:

1. A rule expressed as a SQL predicate, which selects a set of rows.

2. A set of ACLs, which specify access policies on the rows.

Data Security manages DML Real Application Security application privileges granted by the
associated ACLs. The DataSecurity module does not inherently enforce other (non-DML)
Real Application Security application privileges. Such application privilege may be enforced
programmatically as part of a DML operation, when invoking the CHECK_PRIVILEGE operator
inside either the SQL operator or data realm predicate.

4.4.2 Parameterized ACL
Because each data realm defines a rule that uses a set of parameters, different values for
these parameters select different rows. These sets of rows may require different ACLs.
Therefore, association between an ACL and a set of rows depends on the data realm rule and
its parameter names and values.

4.5 ACL Binding
In the database, a privilege may be bound to a resource in the following manner:

• It can be explicitly bound as part of a privilege grant. For example, database object
privileges are bound to a resource as part of a privilege grant, such as GRANT user_N
update ON table_M.

• It may also be globally bound as part of the privilege definition, such as a system privileges
ALTER SYSTEM or CREATE ANY TABLE, which do not require the resource name as part of
their grant statement.

Similarly, a Real Application Security application privilege can be one of these types:

• Explicitly bound through an ACL and data realms as part of Data Security policies; see
Configuring Data Security

• Globally bound to a resource as part of its definition

Chapter 4
Data Security

4-15

5
Configuring Data Security

This chapter contains:

• About Data Security

• About Validating the Data Security Policy

• Understanding the Structure of the Data Security Policy

• About Designing Data Realms

• Applying Additional Application Privileges to a Column

• About Enabling Data Security Policy for a Database Table or View

• About Creating Real Application Security Policies on Master-Detail Related Tables

• About Managing Application Privileges for Data Security Policies

• Using BEQUEATH CURRENT_USER Views

• Real Application Security: Putting It All Together

• About Schema Level Real Application Security Policy Administration

5.1 About Data Security
Data security refers to the ability to control application user access to data in an Oracle
database throughout all components of an Oracle Enterprise, using a uniform methodology. In
Oracle Database Real Application Security, to secure a database table or view, you must
specify the rows that you want to secure by creating a data realm (see also, data realm).

To restrict access to the data realm, you associate one or more access control lists (ACLs) that
list the application users or application roles and their application privileges for each data
realm. A data realm together with its associated ACL is known as a data realm constraint.

You can further restrict access to specific columns by applying one or more application
privileges to each column. This is useful in situations where you want only privileged
application users to see the data in that column.

Data security is an extension of Oracle Virtual Private Database (VPD). VPD adds a WHERE
predicate to restrict data access each time an application user selects or modifies a database
table. For more information about VPD, see Oracle Database Security Guide. Oracle Database
Real Application Security extends VPD concepts further by implementing an authorization
model that can further restrict access at both the row and column by means of associating
ACLs to these objects. In addition, the application session and session context (through user
roles and session namespace) are made more secure. Furthermore Real Application Security
provides its own data dictionaries.

To configure data security in Oracle Database Real Application Security, you must follow these
steps:

1. Create a data security policy. The data security policy defines one or more data realms
and associates ACLs for each data realm to create data realm constraints. The data
security policy can also contain column-specific attributes to further control data access.

5-1

Multiple tables or views can share the same data security policy. This lets you create a
uniform security strategy that can be used across a set of tables and views.

Example 5-1Example 5-1 shows the structure a data security policy.

2. Associate the data security policy with the table or view you want to secure.

You can run the XS_DATA_SECURITY.APPLY_OBJECT_POLICY PL/SQL procedure to enable
the data security policy for the table or view that contains the data realms and columns that
you want to secure.

Note that if your application security requires that you update table rows and also restrict
read access to certain columns in the same table, you must use two APPLY_OBJECT_POLICY
procedures to enforce both data security policies. For example, one APPLY_OBJECT_POLICY
procedure would enforce the DML statement_types required for updating table rows (for
example, INSERT, UPDATE, DELETE), while the other APPLY_OBJECT_POLICY procedure would
enforce only the statement_types of SELECT for the column constraint.

Example 5-5Example 5-5 shows how to use the APPLY_OBJECT_POLICY procedure.
See "APPLY_OBJECT_POLICY Procedure" for more information.

3. Validate the data security policy. See "About Validating the Data Security Policy" for
more information.

5.2 About Validating the Data Security Policy
Oracle recommends that you should always validate the Real Application Security objects after
administrative configuration changes. The XS_DIAG package provides a set of validation APIs
to help ensure that the complicated relationships among your Real Application Security objects
are not damaged unintentionally by these changes.

See "VALIDATE_DATA_SECURITY Function" for more information about validating a data
security policy.

5.3 Understanding the Structure of the Data Security Policy
You can create a data security policy using the XS_DATA_SECURITY.CREATE_POLICY PL/SQL
procedure.

Figure 5-1 shows the structure of a Real Application Security data security policy named
HR.EMPLOYEES_DS that is created from a data realm constraint and a column constraint, both of
which are to be applied to the EMPLOYEES table. The data realm constraint defines the rows
(DEPARTMENT_ID with a value of 60 or 100) on which the data security policy applies and the
ACL (HRACL) that is associated with these rows. The column constraint defines a constraint for
the sensitive column data in the SALARY column of the EMPLOYEES table by using the
VIEW_SENSITIVE_INFO privilege that is required to view this sensitive data.

Chapter 5
About Validating the Data Security Policy

5-2

Figure 5-1 Real Application Security Data Security Policy Created on the EMPLOYEES Table

HR.EMPLOYEES_SC

SELECT

VIEW_SENSITIVE_INFO

HR.EMPLOYEES_DS

Data Realm Constraints

Security Classes

Privileges

HR.HRACL

ACLs

Data Security Policies

Realm Constraints

EMPLOYEES

Column Constraints

Grant SELECT to

Employee_Role

Grant SELECT,

VIEW_SENSITIVE_INFO

to Manager_Role

‘DEPARTMENT_ID in (60, 100)’

‘SALARY’

DEPARTMENT_ID

SALARY

Example 5-1 creates the data security policy shown in Figure 5-1.

See Also:

"CREATE_POLICY Procedure"

You should validate the data security policy after you create it. See
"VALIDATE_DATA_SECURITY Function" for more information.

The main parameters of a data security policy are as follows:

• Policy Name: This defines the name of the data security policy.

Example 5-1 uses the name EMPLOYEES_DS for the data security policy that it creates.

• Data Realm Constraints: The data realm constraints define the data realms, or the rows,
on which the data security policy applies, together with the ACLs to be associated with
these data realms.

Example 5-1 uses the realm_cons list to define the data realm constraint for the
EMPLOYEES_DS policy. realm_cons comprises of rows that have a DEPARTMENT_ID value of
60 or 100. These rows are associated with the HRACL access control list.

• Column Constraint: Column constraint defines additional constraint for sensitive column
data in the data realm constraint.

Example 5-1 associates the column_cons column constraint with the EMPLOYEES_DS policy.
column_cons protects the SALARY column with the VIEW_SENSITIVE_INFO privilege.

Example 5-1 Structure of a Data Security Policy

-- Create the ACL HRACL.
DECLARE
ace_list XS$ACE_LIST;

Chapter 5
Understanding the Structure of the Data Security Policy

5-3

BEGIN
ace_list := XS$ACE_LIST(
XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
granted => true,principal_name => 'Employee_Role'),
XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'), granted =>
true, principal_name => 'Manager_Role'));

sys.xs_acl.create_acl(name => 'HRACL',ace_list => ace_list, sec_class =>
'HR.EMPOLYEES_SC');
END;

-- Create variables to store the data realm constraints and the column constraint.
DECLARE
 realm_cons XS$REALM_CONSTRAINT_LIST;
BEGIN

-- Create a data realm constraint comprising of a data realm (rule) and
-- an associated ACL.
 realm_cons :=
 XS$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL')));

-- Create the column constraint.
 column_cons :=
 XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('SALARY'),
 privilege=> 'VIEW_SENSITIVE_INFO'));

 -- Create the data security policy.
 SYS.XS_DATA_SECURITY.CREATE_POLICY(
 name=>'HR.EMPLOYEES_DS',
 realm_constraint_list=>realm_cons,
 column_constraint_list=>column_cons);

-- Enforce the data security policy to protect READ access of the EMPLOYEES table
-- and restrict access to the SALARY column using the VIEW_SENSITIVE_INFO
-- privilege.
 sys.xs_data_security.apply_object_policy(
 policy => 'HR.EMPLOYEES_DS',
 schema => 'HR',
 object => 'EMPLOYEES',
 statement_types => 'SELECT',
 owner_bypass => true);

END;

5.4 About Designing Data Realms
This section includes the following topics:

• About Understanding the Structure of a Data Realm

• About Using Static Data Realms

• Using Trace Files to Check for Policy Predicate Errors

5.4.1 About Understanding the Structure of a Data Realm
A data realm is a collection of one or more object instances. An object instance is associated
with a single row in a table or view. A table can have both static and dynamic data realms

Chapter 5
About Designing Data Realms

5-4

defined for it at the same time. As described earlier, an ACL defines the application privilege
grants for the data realm.

A data realm constraint is used to associate a data realm with an ACL. Example 5-2 creates a
data realm constraint called realm_cons. The data realm constraint includes a membership
rule to create a data realm. The data realm includes rows where DEPARTMENT_ID is 60 or 100.
realm_cons also declares an ACL, called HRACL, to associate with the data realm.

The membership of the object instances within a data realm is determined by a rule in the form
of a SQL predicate, which must be applicable to the WHERE clause of a single-table query
against the storage table of the object. The SQL predicate in Example 5-2 is DEPARTMENT_ID
in (60, 100).

If the SQL you write causes errors, such as ORA-28113: policy predicate has error, then
you can use trace files to find cause of the error. See "Using Trace Files to Check for Policy
Predicate Errors" for more information.

Example 5-2 uses a single ACL called HRACL. A data realm can be associated with multiple
ACLs, and the same ACL can be used across multiple data realms.

Consider the following columns from the ORDERS purchase order table in the OE sample
schema:

ORDER_ID CUSTOMER_ID ORDER_STATUS SALES_REP_ID ORDER_TOTAL

2354 104 0 155 46257

2355 104 8 NULL 94513.5

2356 105 5 NULL 29473.8

2357 108 5 158 59872.4

2358 105 2 155 7826

Each row in the ORDERS table is an object instance in the purchase order object. The number
listed in the ORDER_ID column is the primary key used to uniquely identify a particular purchase
order object instance. For example:

• A data realm comprised of one object instance, that is, one row. For example, you could
use the WHERE predicate of ORDER_ID=2354.

• A data realm comprised of multiple object instances. For example, you could have multiple
rows using the WHERE predicate of CUSTOMER_ID=104.

• A data realm comprised of the entire contents of the table, defined by the WHERE predicate
of 1=1.

Examples of ways to define data realms are as follows:

• Use valid SQL attributes such as columns in a table.

In this case, you are using WHERE predicates such as the following:

CUSTOMER_ID=104

Changes made to the data in the rows and columns are automatically reflected in the data
collected by the data realm.

• Use parameters in the WHERE predicate.

You can parameterize an data realm, for example:

Chapter 5
About Designing Data Realms

5-5

CUSTOMER_ID=&PARAM

This example assumes that the parameter PARAM has been associated with different
customer IDs. When you grant permissions in this situation, you need to grant the
permission to the specific parameter value. You must specify the values of the parameters
in the ACL associated with the data realm that contains this type of WHERE predicate. This
enables you to create the grant based on customer IDs without having to create many
customer ID-specific data realms.

• Use a membership rule based on runtime application session variables or
subqueries.

An example of this type of membership rule is:

CUSTOMER_ID=XS_SYS_CONTEXT('order', 'cust_id')

However, be careful about creating membership rules that are based on session variables
or subqueries. For example, suppose you wanted to use the session variable USER, which
reflects the current application user, in the membership rule col=USER. Oracle Database
cannot pre-compute the resultant row set because the result is not deterministic.
Application user SCOTT and application user JSMITH may have a different result for the
same row. However, the membership rule col='SCOTT' works because the rule is always
evaluated to the same result for any given row.

See "About Using Static Data Realms" for more information about creating data realms.
See also "XS_SYS_CONTEXT Function" for more information about XS_SYS_CONTEXT.

Example 5-2 Components of a Data Realm Constraint

realm_cons := XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL'));

5.4.2 About Using Static Data Realms
In a static data realm, Oracle Database evaluates changes to data affected by a data realm
when the data is updated. You can use static data realms with tables, but not with views.

To set an data realm to be static, set its is_static attribute to true. The following example
creates a static data realm:

realm_cons := XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL'),
 is_static=> TRUE);

Materialized Views (MVs) will be used to maintain the binding between rows in the protected
table and the ACLs that protect them. They will be generated automatically whenever static
data realms are included in the data security policy. These MVs will support complete refresh
only and will allow up to 125 ACLs to be associated with any single row.

The MV that is generated will be of the form mv(TABLEROWID, ACLIDLIST) where TABLEROWID
refers to a row in the table being protected and ACLIDLIST is a list of ACLID values stored in a
RAW type column. The individual 16-byte values will be concatenated to form the list.

Oracle Database evaluates dynamic data realms each time the application user performs a
query on the data realm data. You can use dynamic data realms to protect rows for both tables
and views. A dynamic data realm has the most flexibility, because it is not bound by the
requirements needed for static data realms. Be aware that an overly complex rule within the
dynamic data realm definition may affect performance.

Chapter 5
About Designing Data Realms

5-6

If the base table update is infrequent or the data realm member evaluation rule is complex,
then you should consider using static data realms to protect the base table. A frequently
updated base table may be constantly out of sync with the ACLIDS storage MV, unless the MV
is refreshed accordingly. The administrator should make the decision based on the base table
statistics and performance requirements of the system.

To set a data realm constraint to be dynamic, set its is_static attribute to FALSE, or omit the
is_static attribute. The following example creates a dynamic data realm:

realm_cons := XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL'),
 is_static=> FALSE);

5.4.3 Using Trace Files to Check for Policy Predicate Errors
If the SQL defined in the realm element causes an ORA-28113: policy predicate has error
or similar message, then you can use trace files to find the cause of the error. The trace file
shows the actual error, along with the VPD view showing the reason for the problem. Often, the
syntax of the view has a trivial error, which you can solve by analyzing the SQL text of the
view.

To enable tracing, log into SQL*Plus as a user who has the ALTER SESSION privilege.

If you want to dump all the data realm constraint rules (with their parameter values resolved)
into the trace file, enter the following statement:

ALTER SESSION SET EVENTS 'TRACE[XSXDS] disk=high';

If you want to dump the VPD views of the XDS-enabled table during the initial (hard) parse of a
query, enter the following statement:

ALTER SESSION SET EVENTS 'TRACE[XSVPD] disk=high';

Alternatively, you can enable tracing by adding the following lines to the initialization file for the
database instance:

event="TRACE[XSXDS] disk=high"
event="TRACE[XSVPD] disk=high"

You can find the location of this trace file by issuing the following SQL command:

SHOW PARAMETER USER_DUMP_DEST;

If you need to disable tracing, issue the following statements:

ALTER SESSION SET EVENTS 'TRACE[XSVPD] off';
ALTER SESSION SET EVENTS 'TRACE[XSXDS] off';

See Also:

• "About Data Security (XSXDS and XSVPD) Event-Based Tracing"

• Oracle Database Administrator’s Guide for more information about using trace
files

Chapter 5
About Designing Data Realms

5-7

5.5 Applying Additional Application Privileges to a Column
By default, access to rows is protected by the ACL associated with the data realm. In addition,
you can protect a particular column with custom application privileges.

To protect a column for table T, add a list of column constraints to the data security policy that
will be applied to table T.

Note:

Starting from Oracle Database 23ai, the absolute maximum number of columns in a
table is 1000 or 4096, depending on the value of the MAX_COLUMNS initialization
parameter.

• When this parameter is set to STANDARD, the maximum number of columns
allowed in a database table or view is 1000.

• When this parameter is set to EXTENDED, the maximum number of columns
allowed in a database table or view is 4096.

For tables approaching 4096 columns (1000 in case of STANDARD), there is a
limitation on the number of columns that can be protected as Real Application
Security uses an internal virtual column to compute and store the authorization
indicator. The sum of the number of columns and the number of protected columns
should not exceed 4096 (1000 in case of STANDARD). Number of table columns +
Number of protected table columns <=4096. For example, if a table has 4094
columns, up to and including two protected columns are allowed; If the number of
columns to be protected exceeds the number allowed, an ORA-28113: policy
predicate has error is returned.

For example, the PRODUCT_INFORMATION table in the OE schema contains the LIST_PRICE
column. If you want to restrict the display of product prices to specific categories, you can
apply an additional application privilege to the LIST_COLUMN table, so that only the sales
representative who has logged in can see the product list prices for the categories they
manage.

Example 5-3 shows a column constraint that protects the LIST_PRICE column with the
ACCESS_PRICE application privilege.

Before you add the column constraint, a SELECT statement on the following columns from the
OE.PRODUCT_INFORMATION table for products in categories 13 and 14 shows the following
output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 123

1755 32MB Cache /NM 14 121

...

Chapter 5
Applying Additional Application Privileges to a Column

5-8

After the column constraint is applied, the sales representatives who are responsible for
category 13 products see the following output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 NULL

1755 32MB Cache /NM 14 NULL

...

Conversely, sales representatives responsible for category 14 products see this output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 NULL

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 123

1755 32MB Cache /NM 14 121

...

In these examples, the list price for product 3355 is NULL. To enable a mid-tier application to
distinguish between the true value of authorized data, which could include NULL, and an
unauthorized value that is always NULL, use the COLUMN_AUTH_INDICATOR SQL function to
check if the column value in a row is authorized. You can mask the unauthorized data with a
value different from NULL by modifying the SELECT statement to include a DECODE or CASE
function that contains the COLUMN_AUTH_INDICATOR SQL function.

Example 5-4 shows a SELECT statement that uses the COLUMN_AUTH_INDICATOR function to
check authorized data and the DECODE function to replace NULL with the value restricted.

Afterward, the masked value appears in place of NULL. For example, if our category 13 sales
representative logs on and searches for product list prices, they see the following output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 restricted

1755 32MB Cache /NM 14 restricted

...

Chapter 5
Applying Additional Application Privileges to a Column

5-9

See Also:

• Oracle Database Real Application Security Data Dictionary Views for information
about the column constraints data dictionary views, which list existing tables that
use column level security

• "COLUMN_AUTH_INDICATOR Function"

• Example 5-1 for an example of a column constraint element within a data
security policy.

• Configuring OCI and JDBC Applications for Column Authorization if your
applications use either Oracle Call Interface (OCI) or JDBC

Example 5-3 Column with an Additional Application Privilege That Has Been Applied

column_cons :=
 XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('LIST_PRICE'),
 privilege=> 'ACCESS_PRICE'));

Example 5-4 Checking Authorized Data and Masking NULL Values

SELECT PRODUCT_ID, PRODUCT_NAME, CATEGORY_ID
DECODE(COLUMN_AUTH_INDICATOR(LIST_PRICE), 0, 'restricted', 1, LIST_PRICE) LIST_PRICE
FROM PRODUCT_INFORMATION
WHERE CATEGORY_ID = 13;

5.6 About Enabling Data Security Policy for a Database Table or
View

The XS_DATA_SECURITY.APPLY_OBJECT_POLICY procedure applies a data security policy on a
table or view.

This section includes the following topics:

• Enabling Real Application Security Using the APPLY_OBJECT_POLICY Procedure

• About How the APPLY_OBJECT_POLICY Procedure Alters a Database Table

• About How ACLs on Table Data Are Evaluated

5.6.1 Enabling Real Application Security Using the
APPLY_OBJECT_POLICY Procedure

Use the XS_DATA_SECURITY.APPLY_OBJECT_POLICY procedure to enable Real Application
Security for a database table or view. Example 5-5 enables the ORDERS_DS data security policy
for the OE.ORDERS table. See "APPLY_OBJECT_POLICY Procedure" for more information.

Example 5-5 Using XS_DATA_SECURITY.APPLY_OBJECT_POLICY

BEGIN SYS.XS_DATA_SECURITY.APPLY_OBJECT_POLICY(policy=>'ORDERS_DS',
 schema=>'OE',
 object=>'ORDERS');
END;

Chapter 5
About Enabling Data Security Policy for a Database Table or View

5-10

This section includes the following topic: About Applying Multiple Policies for a Table or View.

5.6.1.1 About Applying Multiple Policies for a Table or View
You can apply multiple data security policies for a table or view. When a table or view is
protected by multiple data security policies, an application user has access to only those rows
that are allowed by all the policies. So, for example, if the data realm for Policy 1 includes a
row, but the data realm for Policy 2 does not include the same row, the application user would
be unable to access the row.

Column security works similarly. Consider the case where column Col1 is protected by multiple
policies: Policy1 protects it with Priv1, Policy2 protects it with Priv2, and so forth. Then an
application user must have been granted all application privileges (Priv1, Priv2, and so forth) to
access Col1.Thus, for columns protected by column policies, an application user must have
been granted access by all policies protecting the column.

5.6.2 About How the APPLY_OBJECT_POLICY Procedure Alters a
Database Table

The following table, OE.ORDERS, shown earlier under "About Understanding the Structure of a
Data Realm", has been enabled with XS_DATA_SECURITY.APPLY_OBJECT_POLICY. It shows the
addition of the hidden SYS_ACLOID column. This column, whose data type is NUMBER, lists
application user-managed ACL identifiers. The following table contains the application user-
managed ACL identifier 500, which is a direct grant on the object instance identified by the
order ID 2356.

Note:

The SYS_ACLOID hidden column can be enabled by passing the value
XS_DATA_SECURITY.APPLY_ACLOID_COLUMN for the apply_option parameter when
invoking the XS_DATA_SECURITY procedure. Real Application Security allows only one
ACLID to be added to the SYS_ACLOID column.

ORDER_ID CUSTOMER_ID ORDER_STATUS SALES_REP_ID ORDER_TOTAL SYS_ALCOID

2354 104 0 155 46257
2355 104 8 NULL 94513.5
2356 105 5 NULL 29473.8 500
2357 108 5 158 59872.4
2358 105 2 155 7826

The system-managed static ACL identifiers, are stored in a Materialized View (MV).

TABLEROWID ACLIDLIST

AAAO/8AABAAANrCABJ 60FB8AAA40D46C9EE040449864653987
AAAO/8AABAAANrCABL 60FB8AAA40D46C9EE040449864653987

Chapter 5
About Enabling Data Security Policy for a Database Table or View

5-11

To find detailed information on the data realms or data realm constraints associated with a
table, query the DBA_XS_REALM_CONSTRAINTS data dictionary view. See
"DBA_XS_REALM_CONSTRAINTS" for more information.

5.6.3 About How ACLs on Table Data Are Evaluated
When Oracle Database evaluates a set of ACLs, it stops the evaluation when it finds the first
grant or deny. For this reason, it is important to plan the order of ACLs carefully. The ACLs
associated with each row in a table are evaluated in the following order:

1. The ACLs from grants directly on object instances (that is, application user-
managed ACL identifiers) are evaluated first. See "About Configuring Access Control
Lists" for more information about creating an ACL and adding it to the object instance.

2. The ACLs from static data realm constraint grants are evaluated next, after
application user-managed ACLs. If you have multiple static data realms, they are
evaluated in the order of their physical appearance in the data security policy. See "About
Using Static Data Realms" for more information about static data realms.

3. The ACLs from dynamic data realm constraint grants are evaluated last. If you have
multiple dynamic data realms, they are evaluated in the order of their physical appearance
in the policy. See "About Using Static Data Realms" for more information about dynamic
data realms.

5.7 About Creating Real Application Security Policies on Master-
Detail Related Tables

This section includes the following topics:

• About Real Application Security Policies on Master-Detail Related Tables

• About Understanding the Structure of Master Detail Data Realms

• Example of Creating a Real Application Security Policy on Master-Detail Related Tables

For more information about master-detail tables, see the chapter about creating a master-detail
application using JPA and Oracle ADF in Oracle Database Get Started with Java Development.

5.7.1 About Real Application Security Policies on Master-Detail Related
Tables

You can create a data security policy that can be used for master-detail related tables.
Typically, you may want the same policy that protects the master table to protect its detail
tables. Creating a Real Application Security policy for master-detail tables enables anyone
accessing these tables to do so under a uniform policy that can be inherited from master table
to detail table.

The possible inheritance paths for policies and master-detail tables are as follows:

• Multiple detail tables can inherit policies from one master table.

• Detail tables can inherit policies from other detail tables.

• One detail table can inherit policies from multiple master tables.

If any one of the policies in the master table is satisfied, then application users can access the
corresponding rows in the detail table.

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-12

5.7.2 About Understanding the Structure of Master Detail Data Realms
To create a Real Application Security policy for master-detail related tables, you must create a
data security policy for each table. In each data security policy for the detail tables, you
indicate the master table from which the detail table inherits by including master detail data
realms. Steps 4, 6 and 7 in the procedure under "Example of Creating a Real Application
Security Policy on Master-Detail Related Tables" shows examples of creating and using
master-detail data realms and creating and applying master-detail data security policies to
master-detail tables.

Example 5-6 shows a sample master detail data realm.

In this specification:

• when_condition specifies a predicate for the detail table, similar to a WHERE clause, to filter
data. If when_condition evaluates to true, then Oracle Database applies the master policy.
This element is optional.

• parent_schema specifies the name of the schema that contains the master table.

• parent_object specifies the name of the master table.

• primary_key specifies the primary key from the master table.

• foreign_key specifies the foreign key of the detail table.

Example 5-6 A Master Detail Data Realm

 realm_cons := XS$REALM_CONSTRAINT_TYPE
 (parent_schema=> 'OE',
 parent_object=> 'CUSTOMERS',
 key_list=> XS$KEY_LIST(XS$KEY_TYPE(primary_key=> 'CUSTOMER_ID',
 foreign_key=> 'CUSTOMER_ID',
 foreign_key_type=> 1)),
 when_condition=> 'ORDER_STATUS IS NOT NULL')

5.7.3 Example of Creating a Real Application Security Policy on Master-
Detail Related Tables

This example uses the SH sample schema. The SH schema has a table called CUSTOMERS, which
is the master table. The master table CUSTOMERS has a detail table called SALES, and another
detail table called COUNTRIES. The following example demonstrates how to enforce a Real
Application Security policy that virtually partitions the customer and sales data along their
regional boundary defined in the COUNTRIES table for read access of the CUSTOMERS and SALES
tables. In addition, there is a requirement to mask out data on the columns CUST_INCOME_LEVEL
and CUST_CREDIT_LIMIT to users, except for those users who need full table access for
business analysis, such as the business analyst.

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-13

Note:

All administrative commands in this example can be performed by a database user,
such as the SYSTEM account who has the DBA roles in the database, because the DBA
role has been granted appropriate privilege for Real Application Security
administrative tasks. In addition, because security classes, ACLs, and data security
policies are schema qualified objects, you must explicitly use the intended schema
name when these objects are specified in the APIs, so they will not be resolved to
objects under the database session default schema of SYSTEM.

The descriptions for the three tables, which are all in the same schema (SH), are as follows:

-- SH.CUSTOMERS in the master table.
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_FIRST_NAME NOT NULL VARCHAR2(20)
 CUST_LAST_NAME NOT NULL VARCHAR2(40)
 CUST_GENDER CHAR(1)
 CUST_YEAR_OF_BIRTH NUMBER(4)
 CUST_MARITAL_STATUS VARCHAR2(20)
 CUST_STREET_ADDRESS NOT NULL VARCHAR2(40)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CITY NOT NULL VARCHAR2(30)
 CUST_STATE_PROVINCE VARCHAR2(40)
 COUNTRY_ID NOT NULL CHAR(2)
 CUST_MAIN_PHONE_NUMBER VARCHAR2(25)
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_CREDIT_LIMIT NUMBER
 CUST_EMAIL VARCHAR2(30)

-- SH.SALES is a detail table.
 Name Null? Type
 --- -------- ----------------------------
 PROD_ID NOT NULL NUMBER(6)
 CUST_ID NOT NULL NUMBER
 TIME_ID NOT NULL DATE
 CHANNEL_ID NOT NULL CHAR(1)
 PROMO_ID NOT NULL NUMBER(6)
 QUANTITY_SOLD NOT NULL NUMBER(3)
 AMOUNT_SOLD NOT NULL NUMBER(10,2)

-- SH.COUNTRIES is a detail table.
 Name Null? Type
 --- -------- ----------------------------
 COUNTRY_ID NOT NULL CHAR(2)
 COUNTRY_NAME NOT NULL VARCHAR2(40)
 COUNTRY_SUBREGION VARCHAR2(30)
 COUNTRY_REGION VARCHAR2(20)

Figure 5-2 shows an overview of the completed Real Application Security data security policies
created and applied to the master-detail related tables (CUSTOMERS - SALES - COUNTRIES) that
are described as an overview in the following steps and in more detail in the steps that follow
this figure.

1. Create the principals, an application role and an application user, for each of four
geographic regions: Europe, Americas, Asia, and Africa, in addition to a business analyst
role and an associated application user.

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-14

2. Create the VIEW_SENSITIVE_INFO privilege and create the SH.CUST_SEC_CLASS in which to
scope the privilege.

3. Grant the VIEW_SENSITIVE_INFO privilege to the business analyst role.

4. Define a data realm constraint with a rule that parameterizes regions in order for the
system to recognize the string ®ION, which will later be used in a policy.

5. Create a column constraint to secure the two columns, CUST_INCOME_LEVEL and
CUST_CREDIT_LEVEL using the VIEW_SENSITIVE_INFO privilege.

6. Create the data security policy SH.CUSTOMER_DS specifying the data realm constraint and
the column constraint that was previously created.

7. Register the name and data type of the parameter in the rule for the SH.CUSTOMER_DS data
security policy.

8. Create the ACLs for each region to authorize read access to the respective roles needing
read access. For example for the Europe region, you grant SELECT privilege to the
Europe_sales role and grant SELECT and VIEW_SENSITIVE_INFO privileges to the
Business_Analyst role.

9. Associate each ACL in each region with the rows that satisfy the rule where the value of
the parameter REGION is equal to region name, for example, Europe. You do this for each
of the four regions, and then add this ACL to the SH.CUSTOMER_DS data security policy.

10. Create the data realm constraint for the master-detail tables, so users can access a record
in the SALES detail table only if a user is authorized to access its parent row in the
CUSTOMERS master table.

11. Create the SH.SALES_DS data security policy to enforce this data realm constraint.

In Figure 5-2, the master-detail tables also show the primary key (PK) fields and foreign key
(FK) fields and a number of additional fields that are used in creating the data realm
constraints and column constraints. Using these PK and FK relationships, the same data
security policies that apply to the master table also apply to the detail tables. In this particular
case, for example, all ACLs granting SELECT privilege to the CUSTOMERS master table and
enforced by the SH.CUSTOMER_DS data security policy, also applies to the SALES detail table.

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-15

Figure 5-2 Real Application Security Data Security Policy Created on Master-Detail Related Tables

Roles

Principals

Objects (Tables) Master

SH.CUST_SEC_CLASS

SELECT

VIEW_SENSITIVE_INFO

‘View_Europe_sales’

‘REGION’ ‘Europe’

‘View_Americas_sales’

‘REGION’ ‘Americas’

‘View_Asias_sales’

‘REGION’ ‘Asia’

‘View_Africa_sales’

‘REGION’ ‘Africa’

Users
(grantee)

SH.CUSTOMER_DS

SH.SALES_DS

Data Realm Constraints

‘COUNTRY_ID in
(SELECT COUNTRY_ID
from SH.COUNTRIES’ II
‘where
COUNTRY_REGION =
&’ II ‘REGION)’

Column Constraints

‘CUST_INCOME_LEVEL’

‘CUST_CREDIT_LIMIT’

parent object

 primary_key

 foreign_key

‘CUSTOMERS’

‘CUST_ID’

‘CUST_ID’

CUST_INCOME_LEVEL

CUST_ID_PK

CUST_CREDIT_LIMIT

CUST_FIRST_NAME

Detail

PROD_ID

CUST_ID FK

QUANTITY_SOLD

Detail

COUNTRY_REGION

COUNTRY_NAME

COUNTRY_ID PK

Security Classes

ACLs

Privileges

Data Security Policies

Realm Constraints

CUSTOMERS

SALES

COUNTRIES

Europe_sales

Americas_sales

Asia_sales

Africa_sales

Business_Analyst

Smith

James

Miller

Martin

Turner

To create a Real Application Security policy for these master-detail tables, follow these steps:

1. Create the roles and users needed for each country, (role Europe_sales, user SMITH), (role
Americas_sales, user JAMES), (role Asia_sales, user MILLER), (role Africa_sales, user
MARTIN), and (role Business_Analyst, user TURNER), who is the only user who will have full
table access.

BEGIN
 sys.xs_principal.create_role(name => 'Europe_sales', enabled => TRUE);
 sys.xs_principal.create_role(name => 'Americas_sales', enabled => TRUE);
 sys.xs_principal.create_role(name => 'Asia_sales', enabled => TRUE);
 sys.xs_principal.create_role(name => 'Africa_sales', enabled => TRUE);
 sys.xs_principal.create_role(name => 'Business_Analyst', enabled => TRUE);

 sys.xs_principal.create_user(name => 'SMITH', schema => 'SH');
 sys.dbms_xs_principals.set_password(username => 'SMITH',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-16

 sys.xs_principal.grant_roles(grantee => 'SMITH', role => 'Europe_sales');

 sys.xs_principal.create_user(name =>' JAMES', schema => 'SH');
 sys.dbms_xs_principals.set_password(username => 'JAMES',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'JAMES', role => 'Americas_sales');

 sys.xs_principal.create_user(name => 'MILLER', schema => 'SH');
 sys.dbms_xs_principals.set_password(username => 'MILLER',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'MILLER', role => 'Asia_sales');

 sys.xs_principal.create_user(name => 'MARTIN', schema => 'SH');
 sys.dbms_xs_principals.set_password(username => 'MARTIN',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'MARTIN', role => 'Africa_sales');

 sys.xs_principal.create_user(name => 'TURNER', schema=> 'SH');
 sys.dbms_xs_principals.set_password(username => 'TURNER',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'TURNER', role => 'Business_Analyst');
END;

2. Define the SH.CUST_SEC_CLASS security class for the privilege, VIEW_SENSITIVE_INFO to
protect the sensitive columns.

The row level privileges to access data security protected objects for query and DML are
predefined in the Security Class DML under the SYS schema.

DECLARE
 pr_list XS$PRIVILEGE_LIST;
BEGIN
-- Let's call the new privilege VIEW_SENSIATIVE_INFO
 pr_list := XS$PRIVILEGE_LIST(XS$PRIVILEGE(name => 'VIEW_SENSITIVE_INFO'));

 sys.xs_security_class.create_security_class(
 name => 'SH.CUST_SEC_CLASS',
 description => 'Security Class to protect CUSTOMERS and SALES data',
 parent_list => XS$NAME_LIST('SYS.DML'),
 priv_list => pr_list);
END;

3. Define the data realm constraint with a rule that parameterizes regions, then define the
column constraint and specify the name of the two columns, CUST_INCOME_LEVEL and
CUST_CREDIT_LIMIT, to be secured by the VIEW_SENSITIVE_INFO privilege. Then, create a
SH.CUSTOMER_DS data security policy and register the name and data type of the parameter
in the rule.

The security policy requires that regional customers and sales data be partitioned with
different ACLs. One way to achieve this is to define as many data realms as regions and
do this for both tables. However, in this example, another way is shown. That is, to
parameterize the region in a data realm with a single rule and use the master-detail
relationship to simplify the administrative tasks.

So, instead of creating many constraints for the policy, it is more efficient to create only one
constraint with the following rule that parameterizes the region:

COUNTRY_ID in
 (select COUNTRY_ID from SH.COUNTRIES where COUNTRY_REGION = ®ION)

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-17

In order for the system to recognize that the string ®ION in the rule is indeed a
parameter, you must invoke the xs_data_security.create_acl_parameter procedure to
register the parameter name after the policy is created. In addition, you must specify the
data type of the parameter value. Since regions are stored as character string data, the
XS_ACL.TYPE_VARCHAR macro is used for this example. Another supported data type is
XS_ACL.TYPE_NUMBER for numbers.

DECLARE
 rows_secs XS$REALM_CONSTRAINT_LIST;
 cols_secs XS$COLUMN_CONSTRAINT_LIST;
BEGIN
-- Define the realm constraint with a rule that parameterizes regions.
 rows_secs := xs$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(
 realm => 'COUNTRY_ID in (select COUNTRY_ID from SH.COUNTRIES ' ||
 'where COUNTRY_REGION = &' || 'REGION)'));

-- Define the column constraint to secure CUST_INCOME_LEVEL and
-- CUST_CREDIT_LIMIT columns by using the VIEW_SENSITIVE_INFO privilege.
 cols_secs := XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(
 column_list => XS$LIST('CUST_INCOME_LEVEL', 'CUST_CREDIT_LIMIT'),
 privilege => 'VIEW_SENSITIVE_INFO'));

-- Create the data security policy.
 sys.xs_data_security.create_policy(
 name => 'SH.CUSTOMER_DS',
 realm_constraint_list => rows_secs,
 column_constraint_list => cols_secs,
 description => 'Policy to protect sh.customers table');

-- Register the name and data type of the parameter in the rule.
 sys.xs_data_security.create_acl_parameter(
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 param_type => XS_ACL.TYPE_VARCHAR);
END;

4. Create ACLs to authorize read access for each region. For the Europe region, grant
SELECT to the Europe_sales role. In addition, SELECT and VIEW_SENSITIVE_INFO privileges
are granted to the Business_Analyst role so that the grantee of the role has full table
access and is able to see data in the columns of CUST_INCOME_LEVEL and
CUST_CREDIT_LIMIT as well.

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
 granted => true,
 principal_name => 'Europe_sales'),
 XS$ACE_TYPE(privilege_list =>
 XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
 granted => true,
 principal_name => 'Business_Analyst'));

 sys.xs_acl.create_acl(name => 'View_Europe_sales',
 ace_list => ace_list,
 sec_class => 'SH.CUST_SEC_CLASS',
 description => 'Authorize read access for the Europe region');

-- The ACL must be associated with rows that satisfy the rule where the value

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-18

-- of the parameter REGION is equal to Europe. For example the constraint
-- rule becomes the COUNTRY_ID in
-- (select COUNTRY_ID from SH.COUNTRIES where COUNTRY_REGION = 'Europe').

 sys.xs_acl.add_acl_parameter(acl => 'View_Europe_sales',
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 value => 'Europe');
END;

5. Create ACLs to authorize read access for the other three regions, Americas, Asia, and
Africa.

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
 granted => true,
 principal_name => 'Americas_sales'),
 XS$ACE_TYPE(privilege_list =>
 XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
 granted => true,
 principal_name => 'Business_Analyst'));

 sys.xs_acl.create_acl(name => 'View_Americas_sales',
 ace_list => ace_list,
 sec_class => 'SH.CUST_SEC_CLASS',
 description => 'Authorize read access for the Americas region');

 sys.xs_acl.add_acl_parameter(acl => 'View_Americas_sales',
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 value => 'Americas');
END;

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
 granted => true,
 principal_name => 'Asia_sales'),
 XS$ACE_TYPE(privilege_list =>
 XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
 granted => true,
 principal_name => 'Business_Analyst'));

 sys.xs_acl.create_acl(name => 'View_Asia_sales',
 ace_list => ace_list,
 sec_class => 'SH.CUST_SEC_CLASS',
 description => 'Authorize read access for the Asia region');

 sys.xs_acl.add_acl_parameter(acl => 'View_Asia_sales',
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 value => 'Asia');
END;

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-19

 XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
 granted => true,
 principal_name => 'Africa_sales'),
 XS$ACE_TYPE(privilege_list =>
 XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
 granted => true,
 principal_name => 'Business_Analyst'));

 sys.xs_acl.create_acl(name => 'View_Africa_sales',
 ace_list => ace_list,
 sec_class => 'SH.CUST_SEC_CLASS',
 description => 'Authorize read access for the Africa region');

 sys.xs_acl.add_acl_parameter(acl => 'View_Africa_sales',
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 value => 'Africa');
END;

6. Apply the SH.CUSTOMER_DS policy created in Step 3 to protect read access to the CUSTOMERS
table.

BEGIN
 sys.xs_data_security.apply_object_policy(
 policy => 'SH.CUSTOMER_DS',
 schema => 'SH',
 object => 'CUSTOMERS',
 statement_types => 'SELECT',
 owner_bypass => true);
END;

7. Create the data realm master-detail constraint to protect the SALES table. This master-
detail constraint utilizes the same regional partitioning policy as previously described in
Steps 3 through 6. This means that a user can access a record in the SALES detail table
only if that user is authorized to access its parent row in the CUSTOMERS master table.

DECLARE
 rows_secs XS$REALM_CONSTRAINT_LIST;
BEGIN
-- Define the master-detail constraint.
 rows_secs := xs$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(
 parent_schema => 'SH',
 parent_object => 'CUSTOMERS',
 key_list => xs$key_list(xs$key_type(primary_key => 'CUST_ID',
 foreign_key => 'CUST_ID',
 foreign_key_type => 1))));

-- Create a policy to enforce the constraint.
 sys.xs_data_security.create_policy(
 name => 'SH.SALES_DS',
 realm_constraint_list => rows_secs,
 column_constraint_list => null);

-- Apply the policy to protect read access of the SALES table.
 sys.xs_data_security.apply_object_policy(
 policy => 'SH.SALES_DS',
 schema => 'SH',
 object => 'SALES',
 statement_types => 'SELECT',
 owner_bypass => true);
END;

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-20

8. Grant object level SELECT privilege to PUBLIC for users to perform a query.

GRANT SELECT ON sh.customers TO PUBLIC;
GRANT SELECT ON sh.countries TO PUBLIC;
GRANT SELECT ON sh.sales TO PUBLIC;

9. Connect as user MARTIN and perform a query to display user MARTIN's sales data for the
Africa region and to show the masking of the sensitive sales information for the
CUST_INCOME_LEVEL and CUST_CREDIT_LIMIT columns.

CONNECT MARTIN/welcome

SELECT c.COUNTRY_NAME, c.COUNTRY_ID, ct.CUST_FIRST_NAME, PROD_ID, QUANTITY_SOLD
 FROM sh.customers ct, sh.sales s, sh.countries c
 WHERE ct.CUST_ID = s.CUST_ID AND
 ct.COUNTRY_ID = c.COUNTRY_ID;

COUNTRY_NAME CO CUST_FIRST_NAME PROD_ID QUANTITY_SOLD
-------------------- -- -------------------- ---------- -------------
South Africa ZA Forrest 8050 2
South Africa ZA Mitch 17505 11
South Africa ZA Murry 32785 7
South Africa ZA Heath 3585 12

5.8 About Managing Application Privileges for Data Security
Policies

This section includes the following topics:

• About Bypassing the Security Checks of a Real Application Security Policy

• Using the SQL*Plus SET SECUREDCOL Command

5.8.1 About Bypassing the Security Checks of a Real Application Security
Policy

The following database users can bypass the security checks of a Real Application Security
Policy:

• User SYS
• Database users who have the EXEMPT ACCESS POLICY system privilege

• The owner of the object to which the policy is applied.

If the data security policy is applied to an object with the owner bypass specification, the
owner of the object may bypass such policy. By default, owner bypass is not allowed.

The object owner also can create another view on the same table and assign this view a
different Real Application Security policy.

5.8.2 Using the SQL*Plus SET SECUREDCOL Command
The SQL*Plus SET SECUREDCOL command enables you to customize how secure column
values are displayed in SQL*Plus output for users without permission to view a column and for
columns with unknown security. You can choose either the default text or specify the text that is
displayed. The default is OFF.

Chapter 5
About Managing Application Privileges for Data Security Policies

5-21

When column level security is enabled, and SET SECUREDCOL is set ON, output from SQL*Plus
for secured columns or columns of unknown security level is replaced with either your
customized text or the default indicators. This only applies to scalar data types. Complex object
data output is not affected.

Syntax

SET SECUREDCOL {OFF¦ON} [UNAUTH[ORIZED] text][UNK[NOWN] text]

Parameters

Parameter Description

ON Displays the default indicator asterisks (****) in place of column values for users without
authorization to view the column, and displays question marks (?????) in place of column
values where the security level is unknown for the column (when the specific privileges applied
to the column are not known). The indicators "*" and "?" are filled to the defined column length
or the column length defined by a current COLUMN command.

By default this command will be OFF.

OFF Displays null values in place of column values for application users without authorization to view
the column, and in place of column values where the security level is unknown for the column.

UNAUTH[ORIZED] Text enables you to specify the text to be displayed in a secured column for application users
without authorization to view the column. This text appears instead of the default *****.

You can specify any alphanumeric text up to the column length or a maximum of 30 characters.
Longer text is truncated. Text containing spaces must be quoted.

UNK[NOWN] Text enables you to specify the text to be displayed in a column of unknown security level (when
the specific privileges applied to the column are not known). This text appears instead of the
default ??????.

You can specify any alphanumeric text up to the column length or a maximum of 30 characters.
Longer text is truncated. Text containing spaces must be quoted.

Example 1

SET SECUREDCOL ON
SELECT empno, ename, sal FROM emp ORDER BY deptno;

The output of the example will be as follows:

EMPNO ENAME DEPTNO SAL
----- ------ ------ --------
7539 KING 10 ********
7369 SMITH 20 800
7566 JONES 20 2975
7788 SCOTT 20 3000
7521 WARD 30 ********
7499 ALLEN 30 ********

6 rows selected.

Example 2

SET SECUREDCOL ON UNAUTH notallowed
SELECT empno, ename, sal FROM emp ORDER BY deptno;

The output of the example will be as follows:

EMPNO ENAME DEPTNO SAL
----- ------ ------ -------
7539 KING 10 notallowed

Chapter 5
About Managing Application Privileges for Data Security Policies

5-22

7369 SMITH 20 800
7566 JONES 20 2975
7788 SCOTT 20 3000
7521 WARD 30 notallowed
7499 ALLEN 30 notallowed

6 rows selected.

5.9 Using BEQUEATH CURRENT_USER Views
Traditionally, views in Oracle Database use definer's rights. This means that if you invoke an
identity or privilege-sensitive SQL function or an invoker's rights PL/SQL or Java function, then
current schema, and current user, are set to the view owner and currently enabled roles is set
to the view owner plus PUBLIC within the functions's execution.

If you need background information on invoker's rights and definer's rights, see Oracle
Database PL/SQL Language Reference.

Note:

Certain built-in SQL functions, such as SYS_CONTEXT() and USERENV() are exceptions
to the preceding rule. These functions always use the current application user's
environment, even when called from definer's rights views.

Oracle Database 12c Release 1 (12.1) and later enables you to create views with the BEQUEATH
clause, which lets you configure this behavior. The BEQUEATH clause determines whether
identity or privilege-sensitive SQL functions, invoker's rights PL/SQL program units, and Java
functions referenced in the view inherit the current schema, current user, and currently enabled
roles from the querying user's environment. This is especially useful for Real Application
Security applications, which often need to run code in the invoking application user's
environment.

Using BEQUEATH CURRENT_USER in the view definition creates a view that allows privilege-
sensitive, and invoker's rights functions referenced in the view to inherit current schema,
current user, and currently enabled roles from the querying user's environment. See Oracle
Database SQL Language Reference for the syntax of the CREATE OR REPLACE VIEW statement.

Example 5-7 illustrates how a BEQUEATH CURRENT_USER view enables invoker right's program
units to run in the invoking application user's environment. When USER2 selects from USER1's
view, the invoker's rights function is invoked in USER2's environment.

Using BEQUEATH DEFINER in the view definition creates a view that causes privilege-sensitive,
and invoker's rights functions referenced in the view to inherit current schema, current user,
and currently enabled roles from the view definer's environment. If no BEQUEATH clause is
specified, then BEQUEATH DEFINER is assumed.

If a BEQUEATH_DEFINER view contains a reference to a BEQUEATH CURRENT_USER view, then
invoker's rights functions in the referenced view would use the parent view owner's rights.

Example 5-8 illustrates how a BEQUEATH DEFINER view defines a boundary for nested invoker
right's program units to run in the view owner's environment. When USER2 selects from USER1's
view, the view's invoker's rights function is invoked in USER1's environment.

Chapter 5
Using BEQUEATH CURRENT_USER Views

5-23

See Also:

Oracle Database Security Guide for the use of invoker's rights and definer's rights in
VPD and FGA policies

Example 5-7 How a BEQUEATH CURRENT_USER View Works

SQL> CONNECT USER1/USER1
Connected.
SQL>
SQL> -- You first create an invoker's rights function to determine who the current SQL>
-- user really is.
SQL> CREATE OR REPLACE FUNCTION CALLED_AS_USER RETURN VARCHAR2 AUTHID CURRENT_USER IS
2 BEGIN
3 RETURN SYS_CONTEXT('USERENV', 'CURRENT_USER');
4 END;
5 /
Function created.

SQL> -- Note that you do not need to grant EXECUTE to called_as_user, because even
SQL> -- BEQUEATH CURRENT_USER views do name resolution and privilege checking on
SQL> -- the references present in the view body using definer's rights.

SQL> CREATE OR REPLACE VIEW BEQUEATH_INVOKER_VIEW BEQUEATH CURRENT_USER AS
2 SELECT CALLED_AS_USER FROM DUAL;
View created.

SQL> GRANT SELECT ON BEQUEATH_INVOKER_VIEW TO PUBLIC;
Grant succeeded.

SQL> CONNECT USER2/USER2
Connected.

SQL> SELECT * FROM USER1.BEQUEATH_INVOKER_VIEW;
CALLED_AS_USER
--
USER2

Example 5-8 How a BEQUEATH DEFINER View Works

SQL> CONNECT USER1/USER1
Connected.
SQL>
SQL> -- You first create an invoker's rights function to determine who the current SQL>
-- user really is.
SQL> CREATE OR REPLACE FUNCTION CALLED_AS_USER RETURN VARCHAR2 AUTHID CURRENT_USER IS
2 BEGIN
3 RETURN SYS_CONTEXT('USERENV', 'CURRENT_USER');
4 END;
5 /
Function created.

SQL> -- Note that you do not need to grant EXECUTE to called_as_user, because even
SQL> -- BEQUEATH CURRENT_USER views do name resolution and privilege checking on
SQL> -- the references present in the view body using definer's rights.

SQL> CREATE OR REPLACE VIEW BEQUEATH_DEFINER_VIEW BEQUEATH DEFINER AS
2 SELECT CALLED_AS_USER FROM DUAL;
View created.

Chapter 5
Using BEQUEATH CURRENT_USER Views

5-24

SQL> GRANT SELECT ON BEQUEATH_DEFINER_VIEW TO PUBLIC;
Grant succeeded.

SQL> CONNECT USER2/USER2
Connected.

SQL> SELECT * FROM USER1.BEQUEATH_DEFINER_VIEW;
CALLED_AS_USER
--
USER1

This section includes the following topic: Using SQL Functions to Determine the Invoking
Application User.

5.9.1 Using SQL Functions to Determine the Invoking Application User
SQL functions, such as SYS_CONTEXT() and USERENV(), and XS_SYS_CONTEXT(), always return
the current application user's environment, even when called from definer's rights views.
Sometimes, applications need to determine the invoking application user based on the security
context (BEQUEATH property) of views referenced in the statement.

The following new functions introduced in Oracle Database 12c Release 1 (12.1) enable you to
figure out the invoking application user taking into account the BEQUEATH property of views
referenced in the statement:

• ORA_INVOKING_USER: Use this function to return the name of the database user whose
context is currently used. If the function is invoked from within a definer's rights boundary,
then the name of the database object owner is returned. If the invoking user is a Real
Application Security application user, then the constant XS$USER is returned.

• ORA_INVOKING_USERID: Use this function to return the identifier (ID) of the database user
whose context is currently used. If the function is invoked from within a definer's rights
boundary, then the ID of the database object owner is returned.

If the invoking user is a Real Application Security application user, then the function returns
an identifier common to all Real Application Security application users, but distinct from the
identifier for any database user.

• ORA_INVOKING_XS_USER: Use this function to return the name of the Real Application
Security application user whose context is currently used.

If the invoking user is a database user, then the value NULL is returned.

• ORA_INVOKING_XS_USER_GUID: Use this function to return the identifier (ID) of the Real
Application Security application user whose context is currently used.

If the invoking user is a database user, then the value NULL is returned.

The following example shows a database user USER1 querying ORA_INVOKING_USER and
ORA_INVOKING_XS_USER. ORA_INVOKING_XS_USER returns NULL, as the user is not a Real
Application security application user.

SQL> CONNECT USER1
Enter password:
Connected.
SQL> SELECT ORA_INVOKING_USER FROM DUAL;

ORA_INVOKING_USER
--
USER1

Chapter 5
Using BEQUEATH CURRENT_USER Views

5-25

SQL> SELECT ORA_INVOKING_XS_USER FROM DUAL;

ORA_INVOKING_XS_USER
--

See Also:

• Oracle Database SQL Language Reference for detailed information on the
preceding SQL functions and other functions like SYS_CONTEXT

• "XS_SYS_CONTEXT Function"

5.10 Real Application Security: Putting It All Together
This section puts all the Real Application Security concepts together in order to define a basic
data security policy. It builds upon the HR scenario example introduced in "Scenario: Security
Human Resources (HR) Demonstration of Employee Information".

The section includes the following topic that discusses each implementation task described in
the scenario with the help of an example.

This section includes the following topics:

• Basic HR Scenario: Implementation Tasks

• Running the Security HR Demo

5.10.1 Basic HR Scenario: Implementation Tasks
The following implementation tasks are discussed:

• Connecting as User SYS to Create Real Application Security Users and Roles

• Creating Roles and Application Users

• Creating the Security Class and ACLS

• Creating the Data Security Policy

• Validating the Real Application Security Objects

• Disabling a Data Security Policy for a Table

5.10.1.1 Connecting as User SYS to Create Real Application Security Users and
Roles

To create Real Application Security users and roles, you need only to connect as user SYS.

Example 5-9 Connecting as User SYS

SQL> connect sys/&passwd as sysdba
Connected.

Chapter 5
Real Application Security: Putting It All Together

5-26

5.10.1.2 Creating Roles and Application Users

Creating the Database Role

Create the database role DB_EMP and grant this role the necessary table privileges. This role is
used to grant the required object privileges to application users.

Creating the Application Roles

Grant the DB_EMP Database Role to the Application Roles

Grant the DB_EMP database role to the three application roles, so they each have the required
object privilege to access the table.

Create the Application Users

Create application user DAUSTIN (in the IT department) and grant this user application roles
EMPPLOYEE and IT_ENGINEER.

In this example:

Note:

To make logins easier, you can create the name in upper case. That way, the user
can omit the quotation marks when logging in or connecting to SQL*Plus. For
example:

sqlplus DAUSTIN

See Also:

"Creating a Simple Application User Account" for information about how case
sensitivity affects database logins for application users

Create application user SMAVRIS (in the HR department) and grant this user application roles
EMPLOYEE and HR_REPRESENTATIVE.

Grant the HR User the Policy Administration Privilege ADMIN_ANY_SEC_POLICY

Grant the HR user the ADMIN_ANY_SEC_POLICY privilege.

Example 5-10 Creating the DB_EMP Role

SQL> create role db_emp;

Role created.

SQL> grant select, insert, update, delete on hr.employees to db_emp;

Grant succeeded.

Chapter 5
Real Application Security: Putting It All Together

5-27

Example 5-11 Creating the Application Role EMPLOYEE for Common Employees

SQL> exec sys.xs_principal.create_role(name => 'employee', enabled => true);

PL/SQL procedure successfully completed.

Example 5-12 Creating the Application Role IT_ENGINEER for the IT Department

SQL> exec sys.xs_principal.create_role(name => 'it_engineer', enabled => true);

PL/SQL procedure successfully completed.

Example 5-13 Creating the Application Role HR_REPRESENTATIVE for the HR
Department

SQL> exec sys.xs_principal.create_role(name => 'hr_representative', enabled => true);

PL/SQL procedure successfully completed.

Example 5-14 Granting DB_EMP Database Role to Each Application Role

SQL> grant db_emp to employee;

Grant succeeded.

SQL> grant db_emp to it_engineer;

Grant succeeded.

SQL> grant db_emp to hr_representative;

Grant succeeded.

Example 5-15 Creating Application User DAUSTIN

SQL> exec sys.xs_principal.create_user(name => 'daustin', schema => 'hr');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.set_password('daustin', 'password');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'employee');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'it_engineer');

PL/SQL procedure successfully completed.

Example 5-16 Creating Application User SMAVRIS

SQL> exec sys.xs_principal.create_user(name => 'smavris', schema => 'hr');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.set_password('smavris', 'password');

Chapter 5
Real Application Security: Putting It All Together

5-28

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('smavris', 'employee');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('smavris', 'hr_representative');

PL/SQL procedure successfully completed.

Example 5-17 Granting the HR User the Policy Administration Privilege
ADMIN_ANY_SEC_POLICY

SQL> exec sys.xs_admin_util.grant_system_privilege('ADMIN_ANY_SEC_POLICY','HR');

PL/SQL procedure successfully completed.

5.10.1.3 Creating the Security Class and ACLS

Creating the Security Class

Create a security class HR_PRIVILEGES based on the predefined DML security class.
HR_PRIVILEGES has a new privilege VIEW_SALARY, which controls access to the SALARY column.

Creating the ACls

Create three ACLs, EMP_ACL, IT_ACL, and HR_ACL to grant privileges for the data security policy
to be defined later.

In this example:

• Lines 11 through 13: Creates the EMP_ACL and grants EMPLOYEE the SELECT and
VIEW_SALARY privileges.

• Lines 21 through 23: Creates the IT_ACL and grants IT_ENGINEER the SELECT privileges.

• Lines 30 through 33: Creates the HR_ACL and grants HR_REPRESENTATIVE the SELECT,
INSERT, UPDATE, and DELETE database privileges to view and update all employee's
records, and granting the VIEW_SALARY application privilege to view the SALARY column.

Example 5-18 Creating the HRPRIVS Security Class

SQL> declare
 2 begin
 3 xs_security_class.create_security_class(
 4 name => 'hr_privileges',
 5 parent_list => xs$name_list('sys.dml'),
 6 priv_list => xs$privilege_list(xs$privilege('view_salary')));
 7 end;
 8 /

PL/SQL procedure successfully completed.

Example 5-19 Creating ACLs: EMP_ACL, IT_ACL, and HR_ACL

SQL> declare
 2 aces xs$ace_list := xs$ace_list();
 3 begin

Chapter 5
Real Application Security: Putting It All Together

5-29

 4 aces.extend(1);
 5
 6 -- EMP_ACL: This ACL grants EMPLOYEE role the privileges to view an employee's
 7 -- own record including SALARY column.
 8 aces(1) := xs$ace_type(privilege_list => xs$name_list('select','view_salary'),
 9 principal_name => 'employee');
 10
 11 sys.xs_acl.create_acl(name => 'emp_acl',
 12 ace_list => aces,
 13 sec_class => 'hr_privileges');
 14
 15 -- IT_ACL: This ACL grants IT_ENGINEER the privilege to view the employee
 16 -- records in IT department, but it does not grant the VIEW_SALARY
 17 -- privilege that is required for access to SALARY column.
 18 aces(1) := xs$ace_type(privilege_list => xs$name_list('select'),
 19 principal_name => 'it_engineer');
 20
 21 sys.xs_acl.create_acl(name => 'it_acl',
 22 ace_list => aces,
 23 sec_class => 'hr_privileges');
 24
 25 -- HR_ACL: This ACL grants HR_REPRESENTATIVE the privileges to view and update
all
 26 -- employees' records including SALARY column.
 27 aces(1):= xs$ace_type(privilege_list => xs$name_list('select', 'insert',
 28 'update', 'delete', 'view_salary'),
 29 principal_name => 'hr_representative');
 30
 31 sys.xs_acl.create_acl(name => 'hr_acl',
 32 ace_list => aces,
 33 sec_class => 'hr_privileges');
 34 end;
 35 /

PL/SQL procedure successfully completed.

5.10.1.4 Creating the Data Security Policy
Create the data security policy for the EMPLOYEES table. The policy defines three data realm
constraints and a column constraint that protects the SALARY column.

In this example:

• Lines 7 through 23: Defines the three data realm constraints.

• Lines 27 through 30: Defines the column constraint requiring the VIEW_SALARY application
privilege to view the SALARY column.

• Lines 32 through 35: Creates the EMPLOYEES_DS data security policy encompassing
the three data realm constraints and the column constraint.

Applying the Data Security Policy to the Table

Apply the data security policy to the EMPLOYEES table.

Example 5-20 Creating the EMPLOYEES_DS Data Security Policy

SQL> declare
 2 realms xs$realm_constraint_list := xs$realm_constraint_list();
 3 cols xs$column_constraint_list := xs$column_constraint_list();
 4 begin
 5 realms.extend(3);

Chapter 5
Real Application Security: Putting It All Together

5-30

 6
 7 -- Realm #1: Only the employee's own record.
 8 -- EMPLOYEE role can view the realm including SALARY column.
 9 realms(1) := xs$realm_constraint_type(
 10 realm => 'email = xs_sys_context(''xs$session'',''username'')',
 11 acl_list => xs$name_list('emp_acl'));
 12
 13 -- Realm #2: The records in the IT department.
 14 -- IT_ENGINEER role can view the realm excluding SALARY column.
 15 realms(2) := xs$realm_constraint_type(
 16 realm => 'department_id = 60',
 17 acl_list => xs$name_list('it_acl'));
 18
 19 -- Realm #3: All the records.
 20 -- HR_REPRESENTATIVE role can view and update the realm including
SALARY column.
 21 realms(3) := xs$realm_constraint_type(
 22 realm => '1 = 1',
 23 acl_list => xs$name_list('hr_acl'));
 24
 25 -- Column constraint protects SALARY column by requiring VIEW_SALARY
 26 -- privilege.
 27 cols.extend(1);
 28 cols(1) := xs$column_constraint_type(
 29 column_list => xs$list('salary'),
 30 privilege => 'view_salary');
 31
 32 sys.xs_data_security.create_policy(
 33 name => 'employees_ds',
 34 realm_constraint_list => realms,
 35 column_constraint_list => cols);
 36 end;
 37 /

PL/SQL procedure successfully completed.

Example 5-21 Applying the EMPLOYEES_DS Security Policy to the EMPLOYEES Table

SQL> begin
 2 sys.xs_data_security.apply_object_policy(
 3 policy => 'employees_ds',
 4 schema => 'hr',
 5 object =>'employees');
 6 end;
 7 /

PL/SQL procedure successfully completed.

5.10.1.5 Validating the Real Application Security Objects
After you create these Real Application Security objects, validate them to ensure they are all
properly configured.

Example 5-22 Validating the Real Application Security Objects

SQL> set serveroutput on;
SQL> begin
 2 if (xs_diag.validate_workspace()) then
 3 dbms_output.put_line('All configurations are correct.');
 4 else
 5 dbms_output.put_line('Some configurations are incorrect.');
 6 end if;

Chapter 5
Real Application Security: Putting It All Together

5-31

 7 end;
 8 /
All configurations are correct.

PL/SQL procedure successfully completed.

SQL> -- XS$VALIDATION_TABLE contains validation errors if any.
SQL> -- Expect no rows selected.
SQL> select * from xs$validation_table order by 1, 2, 3, 4;

no rows selected

5.10.1.6 Disabling a Data Security Policy for a Table
Example 5-23 shows the complementary operation of disabling data security for table
HR.EMPLOYEES.

Example 5-23 Disabling a Data Security Policy for a Table

BEGIN
 SYS.XS_DATA_SECURITY.DISABLE_OBJECT_POLICY(policy => 'EMPLOYEES_DS', schema => 'HR',
object => 'EMPLOYEES');
END;
/

5.10.2 Running the Security HR Demo
The Security HR Demo is run in two ways:

• Using direct logon first as application user DAUSTIN and later as application user SMAVRIS.

In each case, each user performs queries on the HR.EMPLOYEES table to demonstrate what
each can access or cannot access to view employee records and the SALARY column. See
"Running the Security HR Demo Using Direct Logon" for a description of this
demonstration.

• Attached to a Real Application Security session

In this demonstration, the Real Application Security Administrator creates a Real
Application Security session for an application user to attach to. See "Running the Security
HR Demo Attached to a Real Application Security Session" for a description of this
demonstration.

5.11 About Schema Level Real Application Security Policy
Administration

Describes introduction of schema level privileges for Real Application Security policy
administration across different applications within the same schema.

Beginning with Oracle Database 12c Release 2 (12.2), Real Application Security introduces
schema level privileges, which allows a policy administrator to create, update, and apply a
policy in only the granted schema and administer policy enforcement within one application,
thereby achieving separate management and enforcement of a policy across different
applications within the same schema. This level of policy administration is essential in a Cloud
computing scenario where each application may be running under one or more schemas. It
then becomes highly desirable for a policy administrator to have the ability to manage and
apply data security policies for each individual application in that environment.

Chapter 5
About Schema Level Real Application Security Policy Administration

5-32

Achieving Schema Level Data Security Policy Administration

To achieve schema level data security policy administration, the following new and changed
features were introduced:

• The GRANT_SYSTEM_PRIVILEGE and REVOKE_SYSTEM_PRIVILEGE procedures were extended
with the addition of the schema parameter to allow granting and revoking Real Application
Security privileges on a particular schema to a database or application user as shown in
the following syntax descriptions:

XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE (
 priv_name IN VARCHAR2,
 user_name IN VARCHAR2,
 user_type IN PLS_INTEGER := XS_ADMIN_UTIL.PTYPE_DB,
 schema IN VARCHAR2);

XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE (
 priv_name IN VARCHAR2,
 user_name IN VARCHAR2,
 user_type IN PLS_INTEGER := XS_ADMIN_UTIL.PTYPE_DB,
 schema IN VARCHAR2);

Where the schema parameter is the schema on which the privilege is granted. The value is
NULL if the privilege is a system privilege.

• The system security class ADMIN_SEC_POLICY privilege is extended to schemas for policy
management (Create, Read, Update, and Delete) operations. So a policy administrator can
grant ADMIN_SEC_POLICY privilege on a particular schema to a user to manage policy
artifacts within granted schemas and apply policy management for individual applications.
The APIs that are affected by this enhancement include the Real Application Security
administrator packages: XS_ACL, XS_DATA_SECURITY, and XS_SECURITY_CLASS

• A new system security class APPLY_SEC_POLICY privilege is added for policy enforcement
to allow a policy administrator to enforce a policy within granted schemas within one
application. The following data security APIs are checked before enforcing data security
policies:

– XS_DATA_SECURITY.APPLY_OBJECT_POLICY
– XS_DATA_SECURITY.REMOVE_OBJECT_POLICY
– XS_DATA_SECURITY.ENABLE_OBJECT_POLICY
– XS_DATA_SECURITY.DISABLE_OBJECT_POLICY

• Auditing of GRANT_SYSTEM_PRIVILEGE procedure is provided with the audit action
AUDIT_GRANT_PRIVILEGE.

• Auditing of REVOKE_SYSTEM_PRIVILEGE procedure is provided with the audit action
AUDIT_REVOKE_PRIVILEGE.

• A new data dictionary view DBA_XS_PRIVILEGE_GRANTS is added to show all the Real
Applicaton Security system or schema level privilege grants in the database.

• In addition, the following views are added: ALL_XS_SECURITY_CLASSES,
ALL_XS_SECURITY_CLASS_DEP, ALL_XS_PRIVILEGES,
ALL_XS_IMPLIED_PRIVILEGES, ALL_XS_ACLS, ALL_XS_ACES, ALL_XS_POLICIES,
ALL_XS_REALM_CONSTRAINTS, ALL_XS_INHERITED_REALMS,

Chapter 5
About Schema Level Real Application Security Policy Administration

5-33

ALL_XS_ACL_PARAMETERS, ALL_XS_COLUMN_CONSTRAINTS,
ALL_XS_APPLIED_POLICIES, and DBA_XS_PRIVILEGE_GRANTS

This section includes the following topic: Setting Up and Enabling a Schema Level Data
Security Policy.

5.11.1 Setting Up and Enabling a Schema Level Data Security Policy
Describes how to set up and enable a schema level data security policy for two application
administrators.

The following set of examples describe how to set up and enable a schema level data security
policy for two application administrators to administer two different schemas. Later, it will show
how to disable the data security policy and revoke system privileges from these two application
administrator users.

Create the application administrator users, then grant them the roles they need.

EXEC SYS.XS_PRINCIPAL.CREATE_USER(NAME => 'app_admin_user1', SCHEMA => 'HR');
EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_admin_user1', 'PASSWORD');
EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_admin_user1', 'XSCONNECT');

EXEC SYS.XS_PRINCIPAL.CREATE_USER(NAME => 'app_admin_user2', SCHEMA => 'SH');
EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_admin_user2', 'PASSWORD');
EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_admin_user2', 'XSCONNECT');

The Real Application Security Administrator with either SYS or a user granted GRANT ANY
PRIVILEGE grants the system privileges ADMIN_SEC_POLICY and APPLY_SEC_POLICY to each
application administrator user on the respective HR and SH schemas to the Real Application
Security user, PTYPE_XS.

EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMIN_SEC_POLICY',
'app_admin_user1', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'HR');

EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('APPLY_SEC_POLICY',
'app_admin_user1', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'HR');

EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMIN_SEC_POLICY',
'app_admin_user2', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'SH');

EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('APPLY_SEC_POLICY',
'app_admin_user2', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'SH');

Next, the policy administrator applies the desired object policy to a particular table in an
application and enables it. Once created, then the policy administrator applies the data security
policy EMPLOYEES_DS to the EMPLOYEES table in the HR schema.

BEGIN
 SYS.XS_DATA_SECURITY.ENABLE_OBJECT_POLICY(policy =>'EMPLOYEES_DS',
 schema=>'hr',
 object=>'employees');

Chapter 5
About Schema Level Real Application Security Policy Administration

5-34

END;
/

BEGIN
 SYS.XS_DATA_SECURITY.ENABLE_OBJECT_POLICY(policy =>'CUSTOMERS_DS',
 schema=>'sh',
 object=>'customers');
END;
/

Disabling the Data Security Policy and Revoking the System Privileges from the User
Describes how to disable data security policy and revoke the system privileges from the user.

How to Disable the Data Security Policy and Revoke the System Privileges from the
User

To disable the EMPLOYEES_DS data security policy for the EMPLOYEES table in the HR schema, the
policy administrator does the following:

BEGIN
 SYS.XS_DATA_SECURITY.DISABLE_OBJECT_POLICY(policy =>'EMPLOYEES_DS',
 schema=>'hr',
 object=>'employees');
END;
/

To disable the CUSTOMERS_DS data security policy for the CUSTOMERS table in the SH schema, the
policy administrator does the following:

BEGIN
 SYS.XS_DATA_SECURITY.DISABLE_OBJECT_POLICY(policy =>'CUSTOMERS_DS',
 schema=>'sh',
 object=>'customers');
END;
/

To revoke the system privileges from application administrator users app_admin_user1 and
app_admin_user2 not from the role policy_admin_role because there may be other policy
administrators with this same role enabled, the Real Application Security Administrator with
either SYS privilege or a user granted GRANT ANY PRIVILEGE privilege revokes the system
privileges ADMIN_SEC_POLICY and APPLY_SEC_POLICY from application users
app_admin_user1and app_admin_user2 as follows:

EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('APPLY_SEC_POLICY',
'app_admin_user1', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'HR');
EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('ADMIN_SEC_POLICY',
'app_admin_user1', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'HR');

EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('APPLY_SEC_POLICY',
'app_admin_user2', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'SH');

Chapter 5
About Schema Level Real Application Security Policy Administration

5-35

EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('ADMIN_SEC_POLICY',
'app_admin_user2', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'SH');

Chapter 5
About Schema Level Real Application Security Policy Administration

5-36

6
Using Real Application Security in Java
Applications

This chapter describes how to use Real Application Security in Java applications. This chapter
contains the following sections:

• About Initializing the Middle Tier

• About Managing Real Application Security Sessions

• Authenticating Application Users Using Java APIs

• About Authorizing Application Users Using ACLs

• Human Resources Administration Use Case: Implementation in Java

6.1 About Initializing the Middle Tier
The XSSessionManager class manages the life cycle of the session. It provides methods to
create, attach, assign, detach, and destroy sessions. It also provides methods to perform
cache activities.

This section describes the following topics:

• About Mid-Tier Configuration Mode

• Using the getSessionManager Method

• About Changing the Middle-Tier Cache Setting

6.1.1 About Mid-Tier Configuration Mode
You can use one mid-tier configuration mode:

• Dispatcher mode - get a session manager with dispatcher connections

In dispatcher mode, the dispatcher user must have session administration and cache access
privileges. The application user does not need any session or cache privilege. The two
predefined database roles, xs_session_admin and xs_cache_admin, can be granted to the
dispatcher.

For best security practices, the application user should be given the least amount of privilege,
therefore dispatcher mode is the recommended mid-tier configuration.

6.1.2 Using the getSessionManager Method
There is one way to get a session manager following the mid-tier configuration mode described
in "About Mid-Tier Configuration Mode":

• Pass a connection or a pool of connections of the dispatcher user. In this way, the needed
privileges are granted to the dispatcher. The two predefined roles, xs_session_admin and
xs_cache_admin, should be granted to the dispatcher user. The dispatcher user is a direct
logon Real Application Security user.

6-1

Using the dispatcher mode, you can initiate the Real Application Security middle tier by getting
an instance of the session manager (see Example 6-1). Use the getSessionManager method
(in bold typeface) of the XSSessionManager class to get an instance of the session manager.
This method initializes a Real Application Security session manager by using either a single
connection or a pool of connections. The caller of the getSessionManager method should have
the Java Authentication and Authorization Service (JAAS) permission
XSSecurityPermission("initSecurityManager").

Privileges for the Session Manager

Real Application Security session manager is initialized with a connection of a privileged user,
who authorizes the session operations on behalf of the regular Real Application Security
application users. If the session manager has the session operation privileges, then, each
application user under the session manager does not need to have session operation
privileges, and the application user's session operations can be performed as a trusted party.
The session manager authorizes session operations for a connection, so you do not need to
grant the createSession and attachToSession privileges directly to the regular Real
Application Security application user. This session manager must have the following privileges:

• Real Application Security database object privileges to manage cached data in the middle
tier.

• Session life cycle management privileges for the session manager to create or attach
sessions on behalf of Real Application Security application user and external users.

Roles for the Session Manager

The session manager needs the following two roles to have the privileges mentioned in
"Privileges for the Session Manager":

• A database role xs_cache_admin with the following privileges:

– Privilege to query Real Application Security entities and to synchronize metadata

– Privilege to execute code for the key exchange

• A Real Application Security role, xs_session_admin, with ADMIN_SESSION privilege

These roles are predefined in the system.

Example 6-1 How to Get an Instance of the Session Manager in Java Using a Single
Connection

static XSSessionManager manager;
static Connection dispatcherConn = null;
int cacheMaxIdleTime=30;
int cacheMaxsize=2048000;
String host;
String port;
String sid;
...
dispatcherConn = DriverManager.getConnection("jdbc:oracle:thin:@" + host + ":" + port +
":" + sid, dispatcherUser, dispatcherPassword);
...
manager = XSSessionManager.getSessionManager(dispatcherConn, cacheMaxIdleTime,
cacheMaxsize);

Chapter 6
About Initializing the Middle Tier

6-2

6.1.3 About Changing the Middle-Tier Cache Setting
Once the session manager is initialized, it starts to add some data like the ACL and Security
class information to the cache. This cache data can be reused. The cache is initialized with its
default settings that can be changed later.

This section describes the following topics:

• About Setting the Maximum Cache Idle Time

• About Setting the Maximum Cache Size

• About Getting the Maximum Cache Idle Time

• About Getting the Maximum Cache Size

• About Removing Entries from the Cache

• About Clearing the Cache

6.1.3.1 About Setting the Maximum Cache Idle Time
To set the maximum cache idle time, use the setCacheMaxIdleTime method of the
XSSessionManager class. The setCacheMaxIdleTime method sets the maximum number of
minutes that the cache can go without updating.

If an attempt is made to fetch objects from the cache and the XSSessionManager has not called
the updateCache method for a period of time equal to the value set by the
setCacheMaxIdleTime method, then, before returning any objects, the updateCache method is
invoked forcefully to check that all the cached objects are still valid. The caller of the
setCacheMaxIdleTime method must have the JAAS permission
XSSecurityPermission("setCacheMaxIdleTime").

6.1.3.2 About Setting the Maximum Cache Size
To set the maximum cache size, use the setCacheMaxSize method of the XSSessionManager
class. This method sets the size of the cache on the middle tier.

The default size of the cache is 10MB. The minimum cache size is 1MB. The caller of the
setCacheMaxSize method must have the JAAS permission
XSSecurityPermission("setCacheMaxSize").

6.1.3.3 About Getting the Maximum Cache Idle Time
To get the maximum cache idle time, use the getCacheMaxIdleTime method of the
XSSessionManager class. This method returns the maximum number of minutes for which the
cache does not have an updateCache call to update the cache. The caller of the
getCachemaxIdleTime method must have the JAAS permission
XSSecurityPermission("getCacheMaxIdleTime").

6.1.3.4 About Getting the Maximum Cache Size
To get the maximum cache size, use the getCacheMaxSize method of the XSSessionManager
class. This method returns the maximum size of the cache in bytes. The caller of the
getCacheMaxSize method must have the JAAS permission
XSSecurityPermission("getCacheMaxSize").

Chapter 6
About Initializing the Middle Tier

6-3

6.1.3.5 About Removing Entries from the Cache
To remove entries from the cache, a cache eviction algorithm is used, along with watermark
levels. A watermark level determines how long data should stay in memory cache before being
removed. When the cache size reaches the high watermark, then the cache eviction algorithm
removes entries until the cache size reaches the low watermark.

This section describes the following activities for removing entries from the cache:

• About Setting the WaterMark

• About Getting the High WaterMark

• About Getting the Low WaterMark

6.1.3.5.1 About Setting the WaterMark
To set the watermark, use the setWaterMark method from the XSSessionManager class. The
caller of the setWaterMark method must have the JAAS permission
XSSecurityPermission("setWaterMark").

6.1.3.5.2 About Getting the High WaterMark
To get the high watermark for cache, use the getHighWaterMark method from the
XSSessionManager class.

6.1.3.5.3 About Getting the Low WaterMark
To get the low watermark for cache, use the getLowWaterMark method from the
XSSessionManager class.

6.1.3.6 About Clearing the Cache
To clear the cache explicitly from the middle tier, use the clearCache method of the
XSSessionManager class. This method explicitly clears the shared cache from the middle tier.
The caller of the clearCache method must have the JAAS permission
XSSecurityPermission("clearCache").

6.2 About Managing Real Application Security Sessions
This section describes the following topics:

• Creating a Real Application Security User Session

• Attaching an Application Session

• Assigning or Switching an Application User

• Enabling Real Application Security Application Roles

• About Performing Namespace Operations as Session User

• About Performing Miscellaneous Session-Related Activities

• Detaching an Application Session

• Destroying A Real Application Security Application Session

Chapter 6
About Managing Real Application Security Sessions

6-4

6.2.1 Creating a Real Application Security User Session
To create a Real Application Security user session, for example, lws, for the application user
lwuser, use the createSession method of the XSSessionManager class (see Example 6-2).
The createSession method (in bold typeface). creates a session on the server with the
specified parameters passed. A database round-trip is required to perform this operation.

To create an anonymous Real Application Security application session, use the
createAnonymousSession method of the XSSessionManager class. The application user for this
session is a predefined anonymous user, so no user parameter is passed in this method.

Both methods support using a cookie and a namespace.

The cookie, passed as the parameter, can be used to identify the newly created Real
Application Security application session in future calls, until the cookie value is changed or the
session is destroyed.

The namespace, passed as the parameter, can be used to create a namespace in the session.
For details, see "About Performing Namespace Operations as Session User".

It is possible to reassign a specific application user to take over this session. In this case, some
of the state of the session for the anonymous user is still preserved. For details, see "Assigning
or Switching an Application User".

Example 6-2 How to Create a Real Application Security Session in Java

Session lws = null;
static XSSessionManager manager;
static Connection lwsConn = null;
static String user = "lwuser";
String cookie="nst";
...
lws = manager.createSession(lwsConn, user, cookie, null);
...

6.2.2 Attaching an Application Session
To attach an application session, use the attachSession method of the XSSessionManager
class (see Example 6-3). The attachSession method (in bold typeface) attaches the JDBC
connection to the specified Real Application Security application session object. It also enables
or disables the dynamic application roles, creates namespaces of the session, and sets the
authentication time.

You can also attach to a session by using either ID or cookie as shown in Example 6-4. See
Example 7-2 for another example of attaching to a session by using a cookie.

Example 6-3 How to Attach a Real Application Security Session in Java

Session lws = null;
static Connection lwsConn = null;
static XSSessionManager manager;
static String user = "lwuser";
String cookie = "lwscookie";
List <String> edynamicRoles = new ArrayList <String>();
edynamicRoles.add("EDYNROLE001");
edynamicRoles.add("EDYNROLE002");
List <String> ddynamicRoles = new ArrayList <String>();
ddynamicRoles.add("DDYNROLE001");
ddynamicRoles.add("DDYNROLE002");

Chapter 6
About Managing Real Application Security Sessions

6-5

...
lws = manager.createSession(lwsConn, user, cookie, null);
manager.attachSession(lwsConn, lws, edynamicRoles, ddynamicRoles, null, new
Timestamp(System.currentTimeMillis()));

Example 6-4 How to Attach Using a Cookie

Session lws = null;
static Connection lwsConn = null;
static XSSessionManager manager;
...
lws = manager.attachSessionByCookie(lwsConn, "myCookie", null, null, null, null, null);

6.2.3 Assigning or Switching an Application User
If you have an anonymous session, you can reassign it to another application user later.
Otherwise, if your session is assigned to an application user already, you can switch the
session to another application user. In either case, the session must be attached first, before
assigning or switching an application user.

To assign a name to a previously anonymous application user, use the assignUser method of
the XSSessionManager class (see Example 6-5). The assignUser method (in bold typeface)
changes the session context (user and roles) to the given user, for example, lwuser, but keeps
the existing namespace. It can also change the session at the same time, by any given
dynamic roles and namespace parameters, in the same way as the attachSession method.
The associated session attributes remain in effect unless they are removed through another
call.

To change a session user from a named user (non-anonymous) to another named user, use
the switchUser method of the Session object.

Any request for retaining the dynamic application roles, which were assigned while attaching
the session, is disabled. The dynamic application roles are retained for the new application
user only when they are also included in the dynamic application roles list for the new
application user. The associated session attributes remain in effect unless the session
attributes list is reset.

This method changes the session context (user and roles) to the target user (see "Switching a
Current Application User to Another Application User in the Current Application Session" for
details about roles change), but not keeping the existing namespace by default. If you want to
retain the existing namespace, you can use the switchUserKeepState method of the Session
object. It can also change the session at the same time, by any given dynamic roles and
namespace parameters, in the same way as the attachSession method.

Example 6-6 demonstrates how to switch the application user from lwuser to lwuser1. The
switchUser method is in bold typeface.

Example 6-5 How to Assign an Application User to a Session in Java

Session lws = null;
static XSSessionManager manager;
static String user = "lwuser";
...
manager.assignUser(lws, user, null, null, null, new
Timestamp(System.currentTimeMillis()));

Example 6-6 How to Switch an Application User in a Session in Java

Session lws = null;
Vector<String> listOfNamespaces;

Chapter 6
About Managing Real Application Security Sessions

6-6

static String user = "lwuser";
List<String> nslist1 = new ArrayList<String>();
...
manager.assignUser(lws, user, nslist1, nslist2, nslist3, new
Timestamp(System.currentTimeMillis()));
...
lws.switchUser("lwuser1",listOfNamespaces);

6.2.4 Enabling Real Application Security Application Roles
A Real Application Security application role is a role that can be granted only to a Real
Application Security application user or to another Real Application Security application role.
Real Application Security application roles are granted database privileges through database
roles. The database privileges are granted to a database role, which in turn is granted to a
Real Application Security application role. For more information about Real Application
Security application users and application roles, refer to "Principals: Users and Roles".

This section describes the following operation associated with application roles:

• Enabling a Real Application Security Application Role

• Disabling a Real Application Security Application Role

• Checking If a Real Application Security Application Role Is Enabled

6.2.4.1 Enabling a Real Application Security Application Role
To enable a Real Application Security application role granted to the current application user
for the session, use the enableRole method of the Session interface (see Example 6-7).

The enableRole method (in bold typeface) has no effect if the particular application role is
currently disabled. This operation requires a database round-trip.

Example 6-7 How to Enable a Real Application Security Application Role in Java

static Session lws;
static Roles r1;
...
r1=new Role("HROLE1",null,0);
lws.enableRole(r1);

6.2.4.2 Disabling a Real Application Security Application Role
To disable a Real Application Security application role granted to the current user for the
session, use the disableRole method of the Session interface (see Example 6-8). This
operation requires a database round-trip. The disableRole method is in bold typeface.

Example 6-8 How to Disable a Real Application Security Application Role in Java

static Session lws;
static Roles r1;
...
r1=new Role("HROLE1",null,0);
lws.enableRole(r1);
...
lws.disableRole(r1);

Chapter 6
About Managing Real Application Security Sessions

6-7

6.2.4.3 Checking If a Real Application Security Application Role Is Enabled
To test if the specified application role is enabled in the Real Application Security application
session, use the isRoleEnabled method of the Session interface (see Example 6-9). The
isRoleEnabled method is in bold typeface.

This method does not have an associated database operation. You must have the
administerSession Real Application Security application privilege to call this method.

Example 6-9 How to Test If a Real Application Security Application Role Is Enabled in
Java

static Session lws;
...
lws.enableRole("HROLE1");
...
boolean b = lws.isRoleEnabled("HROLE1");

6.2.5 About Performing Namespace Operations as Session User
A namespace is a group of additional attributes of the session context. An application uses a
namespace to store application defined attribute-value pairs. The current session user should
have MODIFY_NAMESPACE (for namespace) and MODIFY_ATTRIBUTE (for attribute) application
privileges. For more information about namespaces, refer to "About Using Namespace
Templates to Create Namespaces".

This section describes how to perform the following activities:

• Creating Namespaces

• Deleting Namespaces

• Implicitly Creating Namespaces

• About Using Namespace Attributes

6.2.5.1 Creating Namespaces
To create a namespace in Java, use the createNamespace method of the Session interface
(see Example 6-10). The createNamespace method (in bold typeface) creates a new session
namespace using the namespace template document, whose name matches with the specified
name. If an event handler is specified in the template document, then the specified event
handler applies to all the namespaces created using that template.

Note:

You can also create a namespace by passing a namespace name as a parameter
with the createSession and attachSession methods discussed in the previous
sections.

Example 6-10 How to Create a Namespace in Java

Session lws = null;
...
SessionNamespace ns = lws.createNamespace("TESTNS1");

Chapter 6
About Managing Real Application Security Sessions

6-8

6.2.5.2 Deleting Namespaces
To delete a namespace in Java, use the deleteNamespace method of the Session interface
(see Example 6-11). The deleteNamespace method (in bold typeface) removes a namespace
from a session.

Example 6-11 How to Delete a Namespace in Java

Session lws = null;
...
SessionNamespace ns = lws.createNamespace("TESTNS1");
...
lws.deleteNamespace("TESTNS1");

6.2.5.3 Implicitly Creating Namespaces
To implicitly create the namespace object to represents the session namespace, use the
getNamespace method of the Session interface (see Example 6-12). The getNamespace method
is in bold typeface. If the namespace specified already exists, an error is thrown.

To retrieve a String representation of the namespace, use the toString method of the
SessionNamespace interface.

Example 6-12 How to Implicitly Create the Namespace in Java

Session lws = null;
...
SessionNamespace ns2 = lws.getNamespace("TESTNS1");

6.2.5.4 About Using Namespace Attributes
A session namespace manages the attributes that a single application module stores for the
duration of the session. The session namespace stores the attributes in a single namespace, a
single set of access control restrictions, or a single event handler procedure that dispatches
the attribute change events for that namespace.

This section describes how to perform the following activities:

• Creating a Session Namespace Attribute

• About Setting a Session Namespace Attribute

• Getting a Session Namespace Attribute

• Listing Attributes

• Resetting Attributes

• Deleting Attributes

6.2.5.4.1 Creating a Session Namespace Attribute
To create a session namespace attribute in Java, use the createAttribute method of the
SessionNamespace interface (see Example 6-13). The createAttribute method (in bold
typeface) creates a new attribute in the namespace.

Example 6-13 How to Create a Session Namespace Attribute in Java

String name1="empid';
String value1="JB007";
SessionNamespace ns;

Chapter 6
About Managing Real Application Security Sessions

6-9

...
SessionNamespaceAttribute sa1=ns.createAttribute(name1,value1);
...

6.2.5.4.2 About Setting a Session Namespace Attribute
To set a session namespace attribute in Java, use the setAttribute method of the
SessionNamespace interface.

6.2.5.4.3 Getting a Session Namespace Attribute
To retrieve a session namespace attribute in Java, use the getAttribute method of the
SessionNamespace interface (see Example 6-14). The getAttribute method (in bold typeface)
returns the attribute whose name is specified as the parameter.

Example 6-14 How to Retrieve a Session Namespace Attribute in Java

String name="empid';
String value="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa=ns.createAttribute(name,value);
...
String attrvalue = ns.getAttribute("empid").getValue();
ns.getAttribute("empid").setValue("newValue");
...

6.2.5.4.4 Listing Attributes
To list the attributes in the namespace, use the listAttributes method of the
SessionNamespace interface (see Example 6-15). The listAttributes method (in bold
typeface) returns a collection of the attribute names in the namespace

Example 6-15 How to List Attributes in Java

String name1="empid';
String value1="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa1=ns.createAttribute(name1,value1);
...
for (Enumeration e = ns.listAttributes() ; e.hasMoreElements() ;) {
 System.out.println(" -- " + e.nextElement());
}
...

6.2.5.4.5 Resetting Attributes
To reset an attribute in Java, use the resetAttribute method of the SessionNamespace
interface (see Example 6-16). The resetAttribute method (in bold typeface) resets the
attribute in the namespace to its default value.

Example 6-16 How to Reset an Attribute in Java

String name1="empid';
String value1="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa1=ns.createAttribute(name1,value1);
...

Chapter 6
About Managing Real Application Security Sessions

6-10

ns.resetAttribute("empid");
...

6.2.5.4.6 Deleting Attributes
To delete an attribute in Java, use the deleteAttribute method of the SessionNamespace
interface (see Example 6-17). The deleteAttribute method (in bold typeface) deletes the
particular attribute in the namespace.

Example 6-17 How to Delete an Attribute in Java

String name1="empid';
String value1="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa1=ns.createAttribute(name1,value1);
...
ns.deleteAttribute("empid");
...

6.2.6 About Performing Namespace Operations as Session Manager
Each namespace has an associated ACL to determine who can manipulate the namespace
and its attributes. If an application does not want the current session user to manipulate the
namespace, but allows a session manager to do it, this can be done as session manager
XSSessionManager.

XSSessionManager has a set of overloaded methods as Session, to manage the namespace.
The usage is similar to that described for session user in "About Performing Namespace
Operations as Session User".

Note that the session manager instance XSSessionManager may not be available to the
application code; only the trusted infrastructure layer can use the session manager to
manipulate such a secured namespace.

6.2.7 About Performing Miscellaneous Session-Related Activities
This section describes the following topics:

• About Getting the Oracle Connection Associated with the Session

• About Getting the Application User ID for the Session

• Getting the Session ID for the Session

• About Getting a String Representation of the Session

• Getting the Session Cookie

• Setting Session Inactivity Timeout as Session Manager

• Setting the Session Cookie as Session Manager

6.2.7.1 About Getting the Oracle Connection Associated with the Session
To get the Oracle connection associated with the session, if it is currently bound to one, use
the getConnection method of the Session interface.

Chapter 6
About Managing Real Application Security Sessions

6-11

6.2.7.2 About Getting the Application User ID for the Session
To get the application user identifier (ID) for a particular session, use the getUserId method of
the Session interface.

To check if the application user for the session is anonymous, use the isAnonymous method of
the Session interface.

6.2.7.3 Getting the Session ID for the Session
To get the session identifier (ID) for a particular session, use the getId method of the Session
interface (see Example 6-18). The getId method is in bold typeface.

Example 6-18 How to Get the Session ID for the Session in Java

Session lws=null;
...
System.out.println("The Session ID is" + lws.getId());

6.2.7.4 About Getting a String Representation of the Session
To get a String representation of the session, use the toString method of the Session
interface.

6.2.7.5 Getting the Session Cookie
To get the secure session cookie used for the session, use the getSessionCookie method of
the Session interface (see Example 6-19). The getSessionCookie method is in bold typeface.

Example 6-19 How to Get the Secure Session Cookie in Java

static Session lws;
...
System.out.println(lws.getSessionCookie());

6.2.7.6 Setting Session Inactivity Timeout as Session Manager
To set the timeout on the session, use the setInactivityTimeout method of the
SessionManager interface. This method sets the session timeout in minutes.

The setInactivityTimeout method overrides the normal session timeout configuration. The
method is:

sessionManager.setInactivityTimeout(Session session, int minutes);

6.2.7.7 Setting the Session Cookie as Session Manager
To set the secure session cookie used for the session, use the setCookie method of the
SessionManager interface (see Example 6-20). The setCookie method (in bold typeface)
returns the secure session cookie used for this session. The method is:

sessionManager.setCookie(lws,"newCookieValue");

Chapter 6
About Managing Real Application Security Sessions

6-12

Example 6-20 How to Set the Secure Session Cookie in Java

static XSSessionManager manager;
...
manager.sessionManager.setCookie(lws,"chocolate chip");

6.2.8 Detaching an Application Session
To detach a Real Application Security application session in Java, use the detachSession
method of the XSSessionManager class (see Example 6-21). The detachSession method (in
bold typeface) detaches the session whose object it accepts as a parameter. The
detachSession method call commits all changes in the request at the database level. A
database round-trip is required to perform this operation.

Example 6-21 How to Detach a Real Application Security Session in Java

Session lws = null;
static XSSessionManager manager;
static Connection lwsConn = null;
static String user = "lwuser";
String cookie;
...
lws = manager.createSession(lwsConn, user, cookie, null);
manager.attachSession(lwsConn, lws, null, null, null, new
Timestamp(System.currentTimeMillis()));
...
manager.detachSession(lws);
...

6.2.9 Destroying A Real Application Security Application Session
To destroy a Real Application Security application session in Java, use the destroySession
method of the XSSessionManager class (see Example 6-22). The destroySession method (in
bold typeface) accepts the database connection object and a session object as parameters.
After you call this method, the destroyed session can no longer be accessed from any JVM. A
database round-trip is required to perform this operation and for create session as well.

Example 6-22 How to Destroy a Real Application Security Session in Java

Session lws = null;
static Connection lwsConn = null;
static XSSessionManager manager;
static String user = "lwuser";
String cookie;
...
lws = manager.createSession(lwsConn, user, cookie, null);
manager.attachSession(lwsConn, lws, null, null, null, new
Timestamp(System.currentTimeMillis()));
...
manager.detachSession(lws);
manager.destroySession(lwsConn, lws);
...

6.3 Authenticating Application Users Using Java APIs
Authenticating application users is a main security function needed by applications. The
XSAuthenticationModule class is used for authenticating application users. The authenticate

Chapter 6
Authenticating Application Users Using Java APIs

6-13

method of the XSAuthenticationModule class is used to verify the application user credentials
(see Example 6-23). The authenticate method is in bold typeface.

Example 6-23 How to Authenticate Application Users in Java

boolean authOk = false;
String dbUser;
String passwd;
String host;
String port;
String sid;
...
authOk = XSAuthenticationModule.authenticate(host + ":" + port + ":" + sid, dbUser,
passwd);
...

6.4 About Authorizing Application Users Using ACLs
Authorization is another main security feature needed by applications. In Real Application
Security, the authorization policy comprises of the Access Control Lists (ACLs) and the
application privileges. They are defined in the Real Application Security database and
managed in a cache in the middle tier. The application privileges are data privileges. Data
privileges are used to define the access of a function or operation to data. Once a function
attaches a connection to the session, any query passed through the connection is
automatically enforced by the database server.

The AclId class provides various methods to perform the following:

• Constructing an ACL Identifier

• Using the checkAcl Method

• About Getting Data Privileges Associated with a Specific ACL

6.4.1 Constructing an ACL Identifier
To construct an Access Control List (ACL) identifier, use one of the overloaded parameterized
constructors of the AclId class (see Example 6-24). If you want to construct an ACL identifier
from raw binary data, then use the following constructor:

public AclId(byte[] raw)

When you invoke this constructor, an ACL identifier, using raw binary returned from the
ora_get_aclids operator of a query, is created.

If you want to construct an ACL identifier from internal ACL identifiers, then use the following
constructor:

public AclId(java.util.List<java.lang.Long> ids)

When you invoke this constructor, it creates an ACL identifier using internal ACL identifiers.

Example 6-24 How to Construct an ACL Identifier

Session lws = null;
static byte[] aclRaw;
...
AclId id = new AclId(aclRaw);
boolean ret = lws.checkAcl(aclRaw, "UPDATE_INFO");
...

Chapter 6
About Authorizing Application Users Using ACLs

6-14

6.4.2 Using the checkAcl Method
To check one or more ACLs for specified data privileges, use the checkAcl method of the
XSAccessController class. The data privileges are checked against one or more ACLs defined
in the AclId object. The checkAcl method returns true only when all the data privileges are
granted in the ACLs. It is important to note that all privileges need not be granted in a single
ACL. A session is needed for using the checkAcl method as Example 6-25 indicates.

Example 6-25 demonstrates how to get the ACL associated with data privilege privileges22.

Example 6-25 How to get an ACL for a Specified Data Privilege

boolean ret;
Session lws = null;
AclId id2 = new AclId(ids);
List <String> privileges22 = new ArrayList<String>();
...
ret = XSAccessController.checkAcl(lws, id2, privileges22);

6.4.3 About Getting Data Privileges Associated with a Specific ACL
To get a collection of data privileges that are granted in the given ACL, for the given session,
use the getPrivileges method of the Session class.

Note:

You use the checkAcl method for data security and the checkPrivilege method for
function security.

6.5 Human Resources Administration Use Case: Implementation
in Java

This section describes how to verify data security related application privileges at the middle
tier. This Java example is based on the Security Human Resources (HR) scenario described in
"Real Application Security: Putting It All Together". It uses the EMPLOYEES table in the sample HR
schema. The example uses two Real Application Security application users DAUSTIN and
SMAVRIS to illustrate Real Application Security concepts. The example can be divided into the
following modules:

• Setting Up the Mid-Tier Related Configuration

• Setting up the Connection and Initializing the Middle Tier

• Setting up the Session and Authorizing with Middle-Tier API

• Running a Query on the Database

• Performing Cleanup Operations

• The main Method

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-15

Setting Up the Mid-Tier Related Configuration

To set up the mid-tier configuration involves creating a DISPATCHER user and password and
granting this user the xscacfeadmin and xsessionadmin Real Application Security
administrator privileges.

exec xs_principal.create_user(name=>'dispatcher', schema=>'HR');
exec sys.xs_principal.set_password('dispatcher', 'password');

exec xs_principal.grant_roles('dispatcher', 'xscacheadmin');
exec xs_principal.grant_roles('dispatcher', 'xssessionadmin');

Setting up the Connection and Initializing the Middle Tier

This example uses the setupConnection method to create the connection to the database. The
setupConnection method accepts a String array as argument, where:

args[0]=Database user

args[1]=Password

args[2]=Host

This method also initializes the middle tier by calling the getSessionManager method of the
oracle.security.xs.XSSecurityManager class.

 public static void setupConnection(String[] args) throws Exception {
 mgrConnection =
 DriverManager.getConnection(args[2], "dispatcher", "password");

 mgr = XSSessionManager.getSessionManager(mgrConnection, 30, 2048000);

 appConnection = DriverManager.getConnection(args[2], args[0], args[1]);
 }

Setting up the Session and Authorizing with Middle-Tier API

This example uses queryAsUser method to set up the session and authorize with the middle-
tier checkAcl method. This example creates a session and attaches the session, and then calls
the queryEmployees method. The queryEmployees method in "Running a Query on the
Database" checks the ACL for the UPDATE privilege, and if TRUE, it allows the update; it checks
the ACL again for the VIEW_SALARY application privilege, and if TRUE, it allows access to the
SALARY column and displays all the employees records including the sensitive data in the
SALARY column. Then after displaying the employees records, it detaches the session, and
destroys the session.

 private static void queryAsUser(String user) throws SQLException {

 System.out.println("\nQuery HR.EMPLOYEES table as user \"" + user + "\"");

 try {
 Session lws = mgr.createSession(appConnection, user, null,null);
 mgr.attachSession(appConnection, lws, null, null, null, null, null);

 queryEmployees(lws);

 mgr.detachSession(lws);
 mgr.destroySession(appConnection, lws);
 } catch (Exception e) {
 e.printStackTrace();

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-16

 }
 }

Running a Query on the Database

This example uses the queryEmployees method to run a query on the HR database.

 public static void queryEmployees(Session lws) throws SQLException {

 Connection conn = lws.getConnection();
 String query =
 " select email, first_name, last_name, department_id, salary, ora_get_aclids(emp)
from hr.employees emp where department_id in (40, 60, 100) order by email";

 Statement stmt = null;
 ResultSet rs = null;

 System.out.printf(" EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE |
VIEW_SALARY\n");

 try {

 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);

 while (rs.next()) {

 String email = rs.getString("EMAIL");
 String first_name = rs.getString("FIRST_NAME");
 String last_name = rs.getString("LAST_NAME");
 String department_id = rs.getString("DEPARTMENT_ID");
 String salary;

 if (((OracleResultSet)rs).getAuthorizationIndicator("SALARY") ==
AuthorizationIndicator.NONE) {
 salary = rs.getString("SALARY");
 }
 else {
 salary = "*****";
 }

 byte[] aclRaw = rs.getBytes(6);
 String update, viewSalary;
 if (XSAccessController.checkAcl(lws, aclRaw, "UPDATE")) {
 update = "true";
 }
 else {
 update = "false";
 }

 if (XSAccessController.checkAcl(lws, aclRaw, "VIEW_SALARY")) {
 viewSalary = "true";
 }
 else {
 viewSalary = "false";
 }

 System.out.printf("%9s|%12s|%12s|%6s|%8s|%8s|%8s\n", email,
 first_name, last_name, department_id,
 salary, update, viewSalary);
 }
 } catch (Exception e) {

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-17

 e.printStackTrace();
 } finally {
 try { if (rs != null) rs.close(); } catch (Exception e) {};
 try { if (stmt != null) stmt.close(); } catch (Exception e) {};
 }
 }
}

The queryEmployees method is run for both application users DAUSTIN and SMAVRIS.

Performing Cleanup Operations

This examples uses the cleanup method for system cleanup operations.

 public static void cleanupConnection() throws Exception {
 mgrConnection.close();
 appConnection.close();

 }

The main Method

This section contains the main method for the Java example discussed. This section also
contains the different packages that you must import to run the program.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.ArrayList;
import java.util.List;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.OracleResultSet;
import oracle.jdbc.OracleResultSet.AuthorizationIndicator;

import oracle.security.xs.Role;
import oracle.security.xs.Session;
import oracle.security.xs.XSAccessController;
import oracle.security.xs.XSSessionManager;

/**
 * HR demo java version, check data security related privilege at mid-tier
 */
public class HRDemo {

 static Connection mgrConnection = null;
 static Connection appConnection = null;
 static XSSessionManager mgr = null;
 static String user = null;

 public static void main(String[] args) {

 try {
 DriverManager.registerDriver(new OracleDriver());

 if (args.length >=3) {
 user = args[0];
 } else {

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-18

 System.out.println("Usage HRDemo user pwd dbURL");
 System.exit(1);
 }

 setupConnection(args);

 queryAsUser("DAUSTIN");
 queryAsUser("SMAVRIS");

 cleanupConnection();

 } catch (Exception e1) {
 e1.printStackTrace();
 }
 }

1. Running the Security HR demo in Java assumes that the set up script described in "Setting
Up the Security HR Demo Components" has been run to set up the Real Application
Security components.

2. Compile the Java code.

$ORACLE_HOME/jdk6/bin/javac -classpath $ORACLE_HOME/rdbms_ho/jlib/
xs.jar:$ORACLE_HOME/dbjava/lib/ojdbc6.jar HRdemo.java

Note:

You must use JDK 6 with xs.jar and ojdbc6.jar, which are located in the
Oracle home directory. Different jars and JDK may not work.

3. Run the Java code.

$ORACLE_HOME/jdk6/bin/java -classpath $ORACLE_HOME/rdbms_ho/jlib/xs.jar:$ORACLE_HOME/
dbjava/lib/ojdbc6.jar

HRdemo db_hr db_hr jdbc:oracle:thin:@myserver:myport:mysid

Output
Running the Security HR demo in Java assumes that the set up script described in "Setting Up
the Security HR Demo Components" has been run to set up the Real Application Security
components. When you run the Security HR demo, results of two queries are returned.

The first query runs with application user DAUSTIN, who has application roles EMP_ROLE and
IT_ROLE, so he can view employee records in the IT department, but he cannot view the
SALARY column except for his own salary record. The results of the query are as follows:

Query HR.EMPLOYEES table as user "DAUSTIN"
 EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY
 AHUNOLD| Alexander| Hunold| 60| *****| false| false
 BERNST| Bruce| Ernst| 60| *****| false| false
 DAUSTIN| David| Austin| 60| 4800| false| true
 DLORENTZ| Diana| Lorentz| 60| *****| false| false
 VPATABAL| Valli| Pataballa| 60| *****| false| false

Note that application user DAUSTIN can only view the SALARY column data for his own record,
and no others.

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-19

The second query runs with application user SMAVRIS, who has application roles EMP_ROLE
and HR_ROLE, so she can view and update all the employee records. The results of the query
are as follows:

Query HR.EMPLOYEES table as user "SMAVRIS"
 EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY
 AHUNOLD| Alexander| Hunold| 60| 9000| true| true
 BERNST| Bruce| Ernst| 60| 6000| true| true
 DAUSTIN| David| Austin| 60| 4800| true| true
 DFAVIET| Daniel| Faviet| 100| 9000| true| true
 DLORENTZ| Diana| Lorentz| 60| 4200| true| true
 ISCIARRA| Ismael| Sciarra| 100| 7700| true| true
 JCHEN| John| Chen| 100| 8200| true| true
 JMURMAN| Jose Manuel| Urman| 100| 7800| true| true
 LPOPP| Luis| Popp| 100| 6900| true| true
 NGREENBE| Nancy| Greenberg| 100| 12008| true| true
 SMAVRIS| Susan| Mavris| 40| 6500| true| true
 VPATABAL| Valli| Pataballa| 60| 4800| true| true

Note that application user SMAVRIS can view all the employee records, including all data in the
SALARY column.

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-20

7
Oracle Fusion Middleware Integration with
Real Application Security

Real Application Security adds external user and role support for application integration, that
can be used, for example, with Oracle Fusion Middleware. For Oracle Fusion Middleware, the
users and roles are also externalized to a common, single repository with centralized
management and single authentication of the user interface using the Authorization Policy
Manager. From a Real Application Security perspective, the integrated users and roles
(including application roles) are externalized principals because Oracle Fusion Middleware
manages them externally. The mid-tier initialization and authorization operations are the same
as those described in Using Real Application Security in Java Applications .

This chapter describes the following topics:

• About External Users and External Roles

• Session APIs for External Users and Roles

7.1 About External Users and External Roles
An external user is an end-user accessing a service. User information is stored in the identity
store, typically instantiated by the WebLogic Authenticator. This user is neither a database user
nor a Real Application Security application user. An external user does not have any footprint
in the database. But, an external user needs to access the database for application data.
Therefore, a Real Application Security context (session) is established for such a user to
control the user's access to the required data.

An anonymous user is an unauthenticated user, or a user whose credentials have not been
validated. An anonymous user is permitted to access only unprotected resources such as
public data from a database. An application can enable or disable the use of anonymous
users.

An external role or group is a collection of users and other groups, which can be hierarchical.
For example, a group can include arbitrarily nested groups.

An external application role is a collection of users, groups, and application roles, which can be
hierarchical. This role is specific to the application, defined by the application policy, and may
not be known to the J2EE container. Application roles are scoped because they are visible only
when the application runs. They can be mapped to other application roles defined in the same
application scope and also to enterprise users or groups. Application roles are used in
authorization decisions.

Similar to external users, external roles and application roles have no footprint in the Real
Application Security system. They are used to control the way the Real Application Security
ACLs grant data access to an application.

External roles and application roles also enforce the details of data access. External users
need some basic database privileges, typically the object privilege to run SELECT on an
application table. These privileges can be granted through a Real Application Security dynamic
application role, which is enabled when a user session is attached. For example, to grant
privileges to an external user or role, specify the principal type as XS_ACL.PTYPE_EXTERNAL in
an ACE list when creating an ACL. See the "CREATE_ACL Procedure" for more information.

7-1

Session Modes for External Users

Real Application Security supports the following two modes of operation for sessions:

• Secure Mode

In secure mode, data security is enforced at the database server. By default, a session is
created in a secure mode for all users.

• Trusted mode

A trusted mode is a mode in which data security is enforced at the middle tier and not at
the database server. In such a mode, the data security implemented by Real Application
Security is bypassed. So, creating a session in trusted mode is a privileged operation.

Trusted mode is allowed only for external users, and only when the dispatcher has
CREATE_TRUSTED_SESSION privilege. This privilege can be granted to the dispatcher user as
follows:

XS_ADMIN_UTIL.grant_system_privilege('CREATE_TRUSTED_SESSION','dispatcher',
XS_ADMIN_UTIL.PTYPE_XS);

7.2 Session APIs for External Users and Roles
This section describes the following topics for external users and roles:

• Namespace for External Users

• Creating a Session

• Attaching a Session

• Assigning a User to a Session

• Saving a Session and Terminating a Session

7.2.1 Namespace for External Users
The namespaces for external users are enhanced with attribute manipulation features during
creating, attaching, and assigning a session. External users are able to perform the following
activities:

• Creating namespace with attributes while creating a session

• Setting namespace attributes while attaching a session and assigning a user

• Saving a session and leaving it as attached

7.2.2 Creating a Session
To create a Real Application Security application session, use the createSession method of
the XSSessionManager class.

For external users, this method creates a Session object on the server as well as its
corresponding middle-tier representation with namespaces and attributes. This method also
creates the Namespaces and sets corresponding attributes given in the Namespace/
AttributeValue. The cookie can be used to identify the newly created Real Application Security
application session in future calls, until the cookie value is changed or the session is
destroyed.

Chapter 7
Session APIs for External Users and Roles

7-2

Syntax

public abstract Session createSession(java.sql.Connection conn,
 ExternalUser eUser,
 java.lang.String cookie,
 java.util.Collection<NamespaceValue> nav)
 throws InvalidXSUserException,
 AccessDeniedException,
 java.sql.SQLException,
 XSSessionException,
 InvalidXSNamespaceException

public abstract Session createSessionTrusted(java.sql.Connection conn,
 ExternalUser externalUser,
 java.lang.String cookie,
 java.util.Collection<NamespaceValue> nameSpaceValues)
 throws InvalidXSUserException,
 AccessDeniedException,
 java.sql.SQLException,
 SQLException,
 XSException,
 InvalidXSNamespaceException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

eUser or externalUser The external user associated with the session

cookie The session cookie used to identify the external user

nav or
nameSpaceValues

A list of namespaces with corresponding attributes to be created for the
namespaces

Example

Example 7-1 demonstrates how to create a Real Application Security session for external
users. The createSession method is in bold typeface.

Example 7-1 Creating a Real Application Security Session for External Users

.

.

.
static Connection lws_conn =null;
static XSSessionManager sm = null;
lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager(privConn,20,29999999);
.
.
.
String trituser = "TUSER01";
String cookie = "some_cookie";
String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;

List<AttributeValue> nsavList = new ArrayList<AttributeValue>();

Chapter 7
Session APIs for External Users and Roles

7-3

AttributeValue nsav1 = new AttributeValue("ATTR01","value1");
nsavList.add(nsav1);
AttributeValue nsav2 = new AttributeValue("ATTR02","value2");
nsavList.add(nsav2);
NamespaceValue nav = new NamespaceValue("NST01",nsavList);
List<NamespaceValue> nsList = new ArrayList();
nsList.add(nav);

/* create session with external user name in secure mode with namespace attr-vals and
cookie */
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), cookie, nsList);
sm.destroySession(lws_conn, lws);

/*Create external user session in secure mode*/
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), null, null);
sm.destroySession(lws_conn, lws);

/*Create external user session in secure mode with namespace attribute values */
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), null, nsList);
sm.destroySession(lws_conn, lws);

/* create session with external user name in secure mode with cookie */
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), cookie, null);
sm.destroySession(lws_conn, lws);

/* create trusted session with only external user name */
lws = sm.createSessionTrusted(lws_conn, new ExternalUser(extuser, extuuid), null, null);
sm.destroySession(lws_conn, lws);

/* create session with RAS user name in secure mode with namespace and cookie */
lws = sm.createSession(lws_conn, trituser, cookie, nsList);
sm.destroySession(lws_conn, lws);

7.2.3 Attaching a Session
To attach an application session, use the attachSession method of the XSSessionManager
class.

For external users, this method attaches the JDBC connection to the specified session object.
This method also sets the dynamic application roles, external roles, authentication time, and
creates namespaces for the session. It also gives a list of a namespace and its corresponding
namespace attributes to be created and set. If the namespace does not exist, then this method
creates the namespace, and then sets the corresponding attributes.

Syntax

public abstract void attachSession(
 java.sql.Connection conn,
 Session session,
 java.util.Collection<java.lang.String> enabledDynamicRoles,
 java.util.Collection<java.lang.String> disabledDynamicRoles,
 java.util.Collection<ExternalRole> externalRoles,
 java.util.Collection<NamespaceValue> nav,
 java.sql.Timestamp authenticationTime)
 throws java.sql.SQLException,
 AccessDeniedException,
 InvalidSessionException,
 XSSessionException,
 InvalidXSNamespaceException

public abstract Session attachSessionByCookie(

Chapter 7
Session APIs for External Users and Roles

7-4

 java.sql.Connection conn,
 java.lang.String cookie,
 java.util.Collection<java.lang.String> enabledDynamicRoles,
 java.util.Collection<java.lang.String> disabledDynamicRoles,
 java.util.Collection<oracle.security.xs.ExternalRole> externalRoles,
 java.util.Collection<oracle.security.xs.NamespaceValue> namespaceValues,
 java.sql.Timestamp authenticationTime)
 throws java.sql.SQLException,
 AccessDeniedException,
 InvalidSessionException,
 XSException,
 InvalidXSNamespaceException

public abstract Session attachSessionByID(
 java.sql.Connection conn,
 java.lang.String id,
 java.util.Collection<java.lang.String> enabledDynamicRoles,
 java.util.Collection<java.lang.String> disabledDynamicRoles,
 java.util.Collection<oracle.security.xs.ExternalRole> externalRoles,
 java.util.Collection<oracle.security.xs.NamespaceValue> namespaceValues,
 java.sql.Timestamp authenticationTime)
 throws java.sql.SQLException,
 AccessDeniedException,
 InvalidSessionException,
 XSException,
 InvalidXSNamespaceException

Parameters

Parameter Description

conn The database connection to be attached to the application session

session The Session object to be attached

cookie The session cookie

id The session identifier

enabledDynamicRoles A collection of dynamic application role names to be enabled

disabledDynamicRoles A collection of dynamic application role names to be disabled

externalRoles A collection of external roles to be enabled

nav or namespaceValues A list of namespaces with corresponding attributes to be set

authenticationTime The authentication time to be sent to the database server

Example

Example 7-2 demonstrates how to attach a Real Application Security session for external
users. The attachSession method is in bold typeface.

External Role Behavior while Attaching a Session

• After an external role is enabled for a session, it is stored as part of the session context as
an ID. This role ID is used in access control, when you call the checkAcl method on both
middle tier and database server. This is same as regular Real Application Security
application role or dynamic application role.

• A Real Application Security ID is assigned for every external role passed while attaching a
session, whether the role is referred by ACL or not.

Chapter 7
Session APIs for External Users and Roles

7-5

• The scope of the external role is within the boundary of attaching or detaching a session.
An external role cannot be enabled for attaching multiple sessions, and it does not need to
be explicitly disabled. So, the roles assigned for attaching the first session will not be
automatically enabled while attaching the next session, unless the roles are assigned
again.

This behavior is completely different from the behavior of regular Real Application Security
application roles or dynamic application roles, where the application roles assigned for
attaching the first session are automatically enabled while attaching the next session.

• After a session is attached, the external role remains consistent till detaching and reattach
the session. The role may even be revoked for the user.

Example 7-2 Attaching a Real Application Security Session for External Users

.

.

.
static Connection lws_conn =null;
static XSSessionManager sm = null;
.
.
.
lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager(privConn,20,29999999);
.
.
.
String cookie = "some_cookie";
String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;
Session lws2 = null

List<AttributeValue> nsavList = new ArrayList<AttributeValue>();

AttributeValue nsav1 = new AttributeValue("ATTR01","value1");
nsavList.add(nsav1);
AttributeValue nsav2 = new AttributeValue("ATTR02","value2");
nsavList.add(nsav2);

NamespaceValue nav = new NamespaceValue("NST01",nsavList);

List<NamespaceValue> nsList = new ArrayList();
nsList.add(nav);

List <String> dynamicRoles = new ArrayList <String>();
dynamicRoles.add("DYNROLE001");
dynamicRoles.add("DYNROLE002");

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();
extRoles.add(new ExternalRole("EXTPRIN01"));
extRoles.add(new ExternalRole("MYEXTPRIN02"));

lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), cookie + "secure",
nsList, false);
sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles, extRoles,
null, null);
sm.detachSession(lws);
sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles, extRoles,
null, new Timestamp(System.currentTimeMillis()));
sm.detachSession(lws);

Chapter 7
Session APIs for External Users and Roles

7-6

sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles, extRoles,
nsList, null);
sm.detachSession(lws);
sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles, extRoles,
nsList, new Timestamp(System.currentTimeMillis()));
sm.detachSession(lws);

lws2 = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), cookie +
"trusted", nsList, true);
lws2 = sm.attachSessionByCookie(lws_conn, lws.getSessionCookie(), null,
enabledDynamicRoles, disabledDynamicRoles, extRoles, null, null);
sm.detachSession(lws2);
lws2 = sm.attachSessionByCookie(lws_conn, lws.getSessionCookie(), null,
enabledDynamicRoles, disabledDynamicRoles, extRoles, nsList, new
Timestamp(System.currentTimeMillis()));
sm.detachSession(lws2);

7.2.4 Assigning a User to a Session
To assign a name to a previously anonymous user, use the assignUser method of the
XSSessionManager class.

For external users, this method assigns a named user to a previously anonymous user, sets
the dynamic application roles, external role, and authentication time. If a list of Namespace/
Attribute values is given, this method creates each namespace that does not exist, and sets
the corresponding attributes.

Syntax

public abstract void assignUser(
 Session session,
 ExternalUser targetUser,
 java.util.Collection<java.lang.String> enabledDynamicRoles,
 java.util.Collection<java.lang.String> disabledDynamicRoles,
 java.util.Collection<ExternalRole> externalRoles,
 java.util.Collection<NamespaceValue> naValues,
 java.sql.Timestamp authenticationTime)
 throws java.sql.SQLException,
 AccessDeniedException,
 InvalidSessionException,
 XSSessionException,
 InvalidXSNamespaceException

Parameters

Parameters Description

session The session object to assign the user to

targetUser An ExternalUser object initialized based on authentication

enabledDynamicRoles A list of dynamic application role names to be enabled

disabledDynamicRoles A list of dynamic application role names to be disabled

externalRoles A collection of external roles to be enabled

namespaceValues A list of namespaces with corresponding attributes to be set

authenticationTime The a timestamp indicated when the user authenticated

Chapter 7
Session APIs for External Users and Roles

7-7

Example

Example 7-3 demonstrates how to assign a Real Application Security session to external
users. The assignUser method is in bold typeface.

Example 7-3 How to Assign a Real Application Security Session to External Users

.

.

.
static Connection lws_conn =null;
static XSSessionManager sm = null;
.
.
.
lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager(privConn,20,29999999);
.
.
.
String cookie = "some_cookie";
String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;

List<AttributeValue> nsavList = new ArrayList<AttributeValue>();

AttributeValue nsav1 = new AttributeValue("ATTR01","value1");
nsavList.add(nsav1);
AttributeValue nsav2 = new AttributeValue("ATTR02","value2");
nsavList.add(nsav2);

NamespaceValue nav = new NamespaceValue("NST01",nsavList);

List<NamespaceValue> nsList = new ArrayList();
nsList.add(nav);

List <String> dynamicRoles = new ArrayList <String>();
dynamicRoles.add("DYNROLE001");
dynamicRoles.add("DYNROLE002");

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();
extRoles.add(new ExternalRole("EXTPRIN01"));
extRoles.add(new ExternalRole("MYEXTPRIN02"));

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, extRoles, null, null);
sm.detachSession(lws);

lws = sm.createAnonymousSession(lws_conn, cookie + "secure", nsList, false);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, extRoles, null, new
Timestamp(System.currentTimeMillis()));
sm.detachSession(lws);

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, null, nsList, null);
sm.detachSession(lws);

Chapter 7
Session APIs for External Users and Roles

7-8

7.2.5 Saving a Session and Terminating a Session
To save the changes of a session at the database server and keep the session still attached,
use the saveSession method of the XSSessionManager class.

For external users, this method saves the current session. Similar to the detachSession
method, this method commits all session changes to the back end and a database roundtrip is
required to perform this operation. But, unlike the detachSession method, this method keeps
the session attached. This method is mainly used to save an application context (namespace).

To terminate the changes of a session at the database server and detach from the session,
use the abortSession method of the XSSessionManager class.

Syntax

public abstract void saveSession(Session session)
 throws java.sql.SQLException,
 NotAttachedException,
 XSSessionException

public abstract void abortSession(Session session)
 throws java.sql.SQLException,
 NotAttachedException,
 XSException

Example

Example 7-4 demonstrates how to save a Real Application Security external user session. The
saveSession method is in bold typeface.

Example 7-4 How to Save a Real Application Security External User Session

.

.

.
static Connection lws_conn =null;
static XSSessionManager sm = null;
.
.
.
lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager(privConn,20,29999999);
.
.
.
String cookie = "some_cookie";
String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;

List<AttributeValue> nsavList = new ArrayList<AttributeValue>();

AttributeValue nsav1 = new AttributeValue("ATTR01","value1");
nsavList.add(nsav1);
AttributeValue nsav2 = new AttributeValue("ATTR02","value2");
nsavList.add(nsav2);

NamespaceValue nav = new NamespaceValue("NST01",nsavList);

Chapter 7
Session APIs for External Users and Roles

7-9

List<NamespaceValue> nsList = new ArrayList();
nsList.add(nav);

List <String> dynamicRoles = new ArrayList <String>();
dynamicRoles.add("DYNROLE001");
dynamicRoles.add("DYNROLE002");

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();
extRoles.add(new ExternalRole("EXTPRIN01"));
extRoles.add(new ExternalRole("MYEXTPRIN02"));

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, extRoles, null, null);
lws.deleteNamespace("NST01");
sm.saveSession(lws);

Chapter 7
Session APIs for External Users and Roles

7-10

8
Application Session Service in Oracle Fusion
Middleware

Real Application Security provides an application session service in Oracle Fusion Middleware
to set up an application session transparently and securely that supports existing application
users, roles, and security context. This application session service is a servlet filter that is
responsible for application session setup and a set of APIs that the application can use with
the application session. This application session service supports user and roles managed
externally by Oracle Fusion Middleware.

Beginning with Oracle Database 12c Release 1 (12.1.0.2), this application session service
supports a Java EE Web application using Oracle Platform Security Service (OPSS) as the
application security provider. This application session service can be deployed to the Java EE
container that OPSS can support, together with the application.

This chapter describes the following topics:

• About Real Application Security Concepts

• About Application Session Service in Oracle Fusion Middleware

• About the Application Session Filter

• About Deployment

• About Application Configuration of the Application Session Filter

• Domain Configuration: Setting Up an Application Session Service to Work with OPSS and
Oracle Fusion Middleware

• About Application Session APIs

• Human Resources Demo Use Case: Implementation in Java

8.1 About Real Application Security Concepts
As an Oracle Database authorization system, Real Application Security supports application
security by enforcing who (application user) can do what application-level operations
(ApprovePurchaseOrder, ViewSSN) on which database resource (purchase order records of
employees under my report, my SSN). An application session is used to enforce application
security. Typically, the users and roles are provisioned externally, that is, enterprise users are
provisioned in an identity store and application roles are managed in a policy store, such as,
Oracle Identity Management and Oracle Entitlement Server (OES).

Application Users and Roles Managed Externally

Real Application Security supports users and roles that are provisioned by an external party,
such as Oracle Entitlement Server for managing application users and roles provisioning, while
OPSS provides a runtime security framework for enforcing security for application roles.
Theses are referred to as external application users and application roles (see Oracle Fusion
Middleware Integration with Real Application Security for more information.)

Real Application Security also has users and roles for the application natively managed in the
database, and these are referred to as Real Application Security application users and

8-1

application roles (see Configuring Application Users and Application Roles for more
information).

For external application users and application roles, Real Application Security does not
manage user provisioning including users' role assignment. However, for native application
users and application roles in the database, grants of application roles to application users,
database roles to application roles, and application roles to application roles are managed in
the database. Both Real Application Security application users and application roles, and
external application users and application roles are supported in an application session, and
can be used in a data security policy. An application privilege can be granted to users
managed both in the identity store externally or in the database natively.

Application Session in Oracle Fusion Middleware

An application session represents an application user's runtime security context, which
includes the user identity, database and application roles, and namespace attribute values.
The application session here in Oracle Fusion Middleware is using externally managed user
and roles. See Configuring Application Sessions for more information about configuring an
application session.

Session Manager in Oracle Fusion Middleware

In Real Application Security, the session manager authorizes the application session operation
and has the necessary privileges to create or modify the application session. The application
code or application database connection should not have these privileges. To the database,
the session manager is a Real Application Security direct logon user (see "About Creating a
Direct Login Application User Account"). It communicates with the database at the beginning of
application session service initialization to build a trust relation with the database server based
on authorization credentials. This mechanism is used subsequently to further authorize the
application session operations on behalf of the application.

Dynamic Roles in Oracle Fusion Middleware

Other than the application roles, an application session supports a dynamic role. This is a type
of Real Application Security role that must be defined natively in the database (see "Dynamic
Application Roles"). This role is not granted to the user or other roles. It must be enabled
programmatically in the application session at run time. This can be done by the Real
Application Security filter automatically or by the trusted application code explicitly.

The dynamic role can be defined as request scope or session scope. Session scope means
the enabled dynamic role is still enabled in the next attach, unless you explicitly specify that it
is disabled in the next attach. Request scope means that the role is disabled after the
application session is detached from the connection.

Dynamic role serves two general purposes:

• Object privilege

An application user is not a database user. These object privileges can be granted to a
Real Application Security dynamic role when application users and roles are provisioned in
external identity stores. When the Real Application Security filter sets up the application
session for the application user, it enables the dynamic role in every application session
accessing the current application. The dynamic role is specific to the current application
only.

• Application Session privilege elevation

Certain trusted application code must temporarily have higher privileges in order to do
some database operations. This is supported by enabling a Real Application Security

Chapter 8
About Real Application Security Concepts

8-2

dynamic role during application session attach from the trusted code declared using a Java
code based policy. The role should be disabled upon detach.

One use case is application namespace setup where session namespace attributes are
secured in Real Application Security in a fine grained manner. The namespace must be
predefined at the database as a namespace template. Upon definition, in the associated
ACL of the namespace authorization policy can be specified, that is, who (user/role) can do
what (modify_namespace, modify_attribute) on the namespace. To ensure that only trusted
application code can modify the namespace attributes, the privileges are granted to a
dynamic role. Also, the dynamic role can only be programmatically enabled by certain
trusted application code identified by Java code permission. This supports the use case
that only the trusted code can set up certain namespaces.

8.2 About Application Session Service in Oracle Fusion
Middleware

Figure 8-1 shows application session service as it is implemented in Oracle Fusion
Middleware.

Figure 8-1 Application Session Service in Oracle Fusion Middleware

Security Store

ApplicationSessionService.attachSession(conn);

stmt = conn.createStatement();

rs = stmt.executeQuery(query);

ApplicationSessionService.detachSession(conn);

Connection Pool

Database

Application
Session

Authentication Server

Single Sign-On

WebLogic Server

Application Session

Human Resources

Conn1 Conn2 Conn3

JDBC

Identity Store

WebLog

App

Hum

Client

Authenticator

OPSS Filter

Real Application
Security Filter

Connection Pool

Subject

Code

Real Application
Security API

HumHum

Con

Chapter 8
About Application Session Service in Oracle Fusion Middleware

8-3

An application session service is an integrated solution with Oracle Fusion Middleware, to
leverage Oracle Fusion Middleware to provide an application session at the database. In
Oracle Fusion Middleware:

• The application user is authenticated by the container. In WLS, typically the authenticator
works with the SSO server to authenticate the user.

• The application user and group are managed by the Identity Store.

• OPSS is an application security framework to set up the application security context based
on the container's security context. See Oracle Application Server Containers for J2EE
Security Guide for more information about application security with OPSS.

The Real Application Security servlet filter sets up the application session transparently and
synchronizes the application session with the OPSS subject. The server filter code consists of
a set of APIs that function in the application session to:

• Attach, detach, and destroy the session (see "About Application Session APIs")

• Provide privilege elevation (see "About the Privilege Elevation API")

• Provide namespace operations (see "About Namespace APIs")

• Provide authorization (see "About the Check Privilege API")

Real Application Security provides:

• APIs that support external users and roles in the application session

• Authorizes the session operation through the session manager

• Support for fine-grained access control on namespace

8.3 About the Application Session Filter
The Real Application Security application session filter is a standard Java EE servlet filter that
implements the javax.servlet.Filter interface. The basic function of this filter is to set up an
application session transparently according to the authenticated user's security context (OPSS
Subject).

This application session filter allows the application session to be continuously shared among
applications. It cannot be created for every request, but must be tied to a stateful context and
reused for the same user until logout. For web applications, the http session is such a context.
It is maintained by the container for the same user's continuous access from logon until logout,
across multiple single sign-on applications or containers.

The http session object is always accessible from the ServletFilter, but may not be
accessible from the generic application code.

This section includes the following topic: About the Application Session Filter Operation.

8.3.1 About the Application Session Filter Operation
The application session filter sets up the application session in the following manner:

• It creates an application session at the user's first access.

If the user has been logged in, it creates the application session as the user in the
authentication context (OPSS Subject).

If the user has not been logged in, it creates the application session as an anonymous
user.

Chapter 8
About the Application Session Filter

8-4

• It reuses the existing application session instance for the user's subsequent access to the
same application.

• It shares the same application session among multiple applications when multiple
applications access the same Real Application Security database.

• It synchronizes the application session at the beginning of each http request to make sure
the user and roles in the current application session are always synchronized with the
authentication context (OPSS Subject), and only the configured dynamic roles are enabled
for every application session.

The synchronization is done by pushing the OPSS Subject values to the server and getting
back the server computed values for the current application session.

User and roles in the application session are fixed once the filter is fired before application
code execution. The filter is responsible for synchronizing the user and roles, not application
code.

Application code is responsible for the namespace setup. The filter can only help to bring back
the previous namespace. See "About Namespace APIs" for more information about
namespace setup.

The application session is cached locally based on the http session ID. The http session is
managed by the container. Real Application Security has an application session listener to
listen for the container's application session event. When the http session is invalidated by the
container, the application session is removed from the local cache by the Real Application
Security listener.

8.4 About Deployment
Real Application Security application session service is delivered in one jar file, xsee.jar.
Oracle recommends that you deploy the xsee.jar jar file to a common directory, not together
with the web application (WAR file inside web-inf/lib). In this way, you can separate the jar
from application code, and grant some special code based permissions to only the xsee.jar
jar file, and not to the application code.

For the xsee.jar jar file to get the session manager's credential from the CSF store, you must
grant code based permission CredentialAccessPermission to the xsee.jar jar file. The filter
internally uses Real Application Security session manager to authorize the session operation.

In Example 8-1, the xsee.jar jar file is deployed to WLS's domain /lib directory. The java
policy file (system-jazn-data.xml) has the CredentialAccessPermission grant, assuming that
the session manager's key/map is using the default value.

For deployment instructions, see the section about standard Java EE deployment in
Understanding Oracle WebLogic Server.

For a simple and quick method of deploying an application for testing or evaluation, use Auto-
Deployment. This is an easier way to deploy the application session service by packaging
everything (class, web.xml) in to one WAR file, and copying it to the Weblogic autodeploy
directory. See the section about auto-deploying applications in development domains in
Deploying Applications to Oracle WebLogic Server.

To create the session manager's credential, see Step 2 in "Manual Configuration" for more
information.

Example 8-1 Granting the Code-Based Permission CredentialAccessPermission to the xsee.jar File

<grant>
 <grantee>

Chapter 8
About Deployment

8-5

 <codesource>
 <url>file:${domain.home}/lib/xsee.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.rdbms.ras, keyName=default</name>
 <actions>read</actions>
 </permission>
 </permissions>
 </grant>

8.5 About Application Configuration of the Application Session
Filter

The filter is configured in the application's web.xml configuration file in a standard way. It can
be configured to apply to only specific URLs. This avoids unnecessary application session
setup for certain pages for which it does not need database access.The filter assumes that
user authentication has been done and an authentication context has been established. In
OPSS, the user's application context is computed at the OPSS filter, so the OPSS filter must
be deployed ahead of the application session filter in the filter chain.The application session
filter uses the following web.xml parameters:

• application.datasource
The application uses this application.datasource parameter. The application session
filter requires this parameter for initialization, application session setup and namespace
operations.

• dynamic.roles
A list of Real Application Security dynamic roles to be used are separated by a comma(,).
The dynamic roles must already be created at the database as session scope; otherwise,
the following exception is thrown: ORA-46055: invalid role specified.

The roles are enabled for every application session in the current application, and
automatically disabled in other applications. Note that these dynamic roles are enabled for
the anonymous session. You should not over grant any privileges to dynamic roles if they
are not needed for every application session. Normally, only object privileges should be
granted to the dynamic roles.

For any tables not protected by Real Application Security, the application still has the
flexibility to use the database connection pool user for access, not the application user. In
that case, no attach application session API call is needed and no object privilege is
granted to the dynamic roles.

• session.manager.pwd.key and session.manager.pwd.map
The session.manager.pwd.key parameter and the session.manager.pwd.map parameter
(fixed as oracle.rdbms.ras) point to a credential (user ID and password) in the credential
store. The session.manager.pwd.key parameter is used to retrieve the session manager's
credential. Currently, the OPSS CSF credential store is used to store the credential, and
the CSF API is used to retrieve the credential at run time. In addition, both the session
manager's user ID and password can be retrieved from the store.

The default value is default for the session.manager.pwd.key parameter. If the
application is using the default credential, then this parameter can be omitted.

Chapter 8
About Application Configuration of the Application Session Filter

8-6

If an application wants to use a specific session manager, not the default credential, the
application's administrator must create the credential with a different key name, and
configure it using this parameter. See configuring the OPSS security store in Oracle
Application Server Containers for J2EE Security Guide for more information.

• session.manager.pool.min and session.manager.pool.max
The session manager's connection is also used to query the data security policy (ACL) at
the mid-tier. This connection is managed as a pool. The session.manager.pool.min
parameter determines the minimum size of the pool. This parameter is optional. The
default value is 1.

The session.manager.pool.max parameter determines the maximum size of the pool. This
parameter is optional. The default value is 3.

If the privilege check is not needed, the pool size should be set to 1 for both
session.manager.pool.min and session.manager.pool.max values.

Example 8-2 shows an application session filter sample configuration that includes the servlet
filter, its parameters, and the listener. Any parameters, which have default values, are omitted
from this example.

Example 8-2 Application Session Filter Sample Configuration

<filter>
 <filter-name>ApplicationSessionFilter</filter-name>
 <filter-class>oracle.security.xs.ee.session.ApplicationSessionFilter</filter-class>
 <init-param>
 <param-name>application.datasource</param-name>
 <param-value>jdbc/myDBDS</param-value>
 </init-param>
 <init-param>
 <param-name>dynamic.roles</param-name>
 <param-value>my_drole</param-value>
 </init-param>
</filter>
<listener>
 <description>RAS Session Listener</description>
 <listener-class>oracle.security.xs.ee.session.ApplicationSessionListener</listener-class>
</listener>

8.6 Domain Configuration: Setting Up an Application Session
Service to Work with OPSS and Oracle Fusion Middleware

This section describes the prerequisites and configuration required for an application to use an
application session service.

This section includes the following topics:

• Prerequisites

• Manual Configuration

• About Automatic Configuration

8.6.1 Prerequisites
To use Real Application Security, both the application session service and OPSS must be
deployed and configured in a Oracle Fusion Middleware's Java EE container.

Chapter 8
Domain Configuration: Setting Up an Application Session Service to Work with OPSS and Oracle Fusion Middleware

8-7

For WebLogic server, the prerequisites include:

• A JRF based WLS domain (OPSS is built-in) certified with the Oracle database 12c JDBC
driver. The required JDBC jars could be many, not just one driver jar depending on the
features you need (UCP, I18N, SQLXML and so forth).

• Oracle Database 12c Release 1 (12.1) and later

For WebLogic server 10.3.6 and 12.1.2 JRF release (part of Oracle Fusion Middleware), the
JDBC driver shipped is not Oracle Database 12c compatible. You must obtain the Oracle
Database 12c JDBC jars (ojdbc6.jar or ojdbc7.jar and other matched jars depending on the
features you need), and add these jars to the front of your WebLogic Server's classpath. For
detailed instruction, see Administering JDBC Data Sources for Oracle WebLogic Server,
Section B.

If there is version mismatch between the JDBC driver and the database, the Real Application
Security filter initialization fails with an error message. For example,

• If the Oracle Database 11g JDBC driver is being used with Oracle Database 12c, the
following error message appears in the server log: Fail to initialize RAS session
manager due to method missing.

• If the Oracle Database 12c JDBC driver is being used with Oracle Database 11g, the
following error message appears in the server log: ORA-00439: feature not enabled:
Fusion Security.

8.6.2 Manual Configuration
Follow these manual configuration steps for an application to use an application session
service. These steps should work for both WebLogic 10.3.6 and 12.1.2, JRF release.

1. Install the Real Application Security jars.

Copy the xsee.jar and xs.jar (ORACLE_HOME/jlib/) to a common directory that
applications can consume. For WebLogic, a good location is DOMAIN_HOME/lib. This allows
Real Application Security jars to be shared by many applications deployed in the same
domain.

2. Create a Real Application Security session manager credential.

As discussed in "About Application Configuration of the Application Session Filter", a
session manager's credential must be created in OPSS's credential store. This can be
done using an OPSS script. For details about how to use OPSS script, see the section
about the OPSS script in Oracle Application Server Containers for J2EE Security Guide.

createCred(map='oracle.rdbms.ras', key='default', user='myUsr',
password='myPassword')

The session manager's credential is stored in the default credential store, which is
configured for the domain. The map name must be oracle.rdbms.ras, which is predefined
for the Real Application Security application session service. This is fixed and cannot be
changed.

3. Grant code permission to the Real Application Security jar files.

As discussed in "About Deployment", the CSF permission must be granted to the xsee.jar
file. This is also done using OPSS script.

grantPermission(codeBaseURL='file:${domain.home}/lib/xsee.jar',
permClass='oracle.security.jps.service.credstore.CredentialAccessPermission',
permTarget='context=SYSTEM,mapName=oracle.rdbms.ras,keyName=*', permActions='read')

Chapter 8
Domain Configuration: Setting Up an Application Session Service to Work with OPSS and Oracle Fusion Middleware

8-8

Note that the above keyName (*) is for all keys. No further grants are needed for a non-
default key, if it is created for a specific application.

4. Configure web.xml, invoke Real Application Security APIs (attach/detach), and build/deploy
the application. See Example 8-2 to see how web.xml is configured.

These are standard Java EE development procedures.

If the attachSessionPrivileged API is invoked in the application code,
SessionCodePermission must be granted to the application code as discussed in "About
the Privilege Elevation API". That is similar to step 3. Here is an example:

grantPermission(codeBaseURL='file:${domain.home}/servers/DefaultServer/tmp/_WL_user/
MyWar/pi47ig/war/WEB-INF/lib/trusted.jar', permClass='
oracle.security.xs.ee.session.SessionCodePermission', permTarget=' MY_NS_DROLE,
permActions='attach')
grantPermission(codeBaseURL='file:${domain.home}/lib/xsee.jar', permClass='
oracle.security.xs.ee.session.SessionCodePermission', permTarget=' MY_NS_DROLE,
permActions='attach')

OPSS scripts require that the WLS administrative server is running. This manual approach
only supports online configuration. Step 4 is always the responsibility of the application
administrator, while Steps 1 through 3 can be automated as discussed in "About Automatic
Configuration".

8.6.3 About Automatic Configuration
With Oracle Fusion Middleware, you can use a configuration utility to configure common
settings for a group of applications. For WebLogic, this is the domain configuration wizard. In a
future WLS release (release 12.1.3), the Steps 1 through 3 (in "Manual Configuration") could
be automated by this configuration wizard. This automatic approach also has the advantage of
supporting offline configuration (when the administrative server is not running).

When the configuration wizard is started (<ORACLE_HOME>/oracle_common/common/bin/
config.sh), the following user interfaces (UIs) will be shown to prompt for Real Application
Security configuration information.

• In the first UI, the application session service is shown as one of the Oracle Fusion
Middleware features for selection. Once selected, its dependency (OPSS, part of JRF) is
automatically selected.

• In the second UI, you are prompted to enter the default session manager's credential.

There is no UI for granting code permission. This is automatically done by merging a
predefined xml file to the domain's system-jazn-data.xml file. The predefined xml file contains
all the Real Application Security code permission grants that are needed.

If the administrator decides to use a different session manager for an application, then the
administrator must complete manual Step 2 or add a special key name from the UI. The same
key name must be passed to the application's web.xml. In this case, the map name (store
name) is still fixed as oracle.rdbms.ras, and you do not need to grant code permission
because all keys have already been granted internally.

8.7 About Application Session APIs
All application session APIs are exposed through class ApplicationSessionService as static
methods. The APIs operate on the current application session, which is set up based on the
current Subject. Inside each API, an identity assertion is performed internally, to make sure the
current application session matches the subject. If a mismatch is found, an

Chapter 8
About Application Session APIs

8-9

ApplicationSesseionException exception is thrown. The caller code of the application
session API should always be executed inside Subject.doAs, to be invoked as the subject.
See the JDK's Subject.doAs for more information.

This section describes the following topics:

• About Application Session APIs

• About the Privilege Elevation API

• About Namespace APIs

• About the Check Privilege API

8.7.1 About Application Session APIs
This section describes the following topics:

• About Attaching to an Application Session

• Detaching from an Application Session

• Destroying an Application Session

8.7.1.1 About Attaching to an Application Session
Attach the current user's application session to the given database connection.

For application code to attach to the current user's application session, no code based
permission is needed. The application session works as is, no extra privilege is elevated
through the attach.

Syntax

public static void attachSession(java.sql.Connection conn)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

Example

See Example 8-3 and Example 8-6.

8.7.1.2 Detaching from an Application Session
Detach the current user's application session from the given database connection.

It is always a good practice to detach the application session at the application code's final
block. Not doing so may give an attached connection to some code that is not running under
the correct user. It is caller's responsibility to properly detach the application session once
used.

If detach is not called, but attach is called again on the same connection, the server forces the
detach from the previous attached application session, and attaches to the current application
session.

Chapter 8
About Application Session APIs

8-10

http://docs.oracle.com/javase/7/docs/api/javax/security/auth/Subject.html

Syntax

public static void detachSession(java.sql.Connection conn)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

Example

Example 8-3 shows sample code that uses the attach and detach API with a database query.
The caller must decide the boundary of the attach and detach calls, based on the needs of the
query.

Example 8-3 Application Session APIs: AttachSession and DetachSession

/**
 * Typical application code calling attach/detach for database query
 */
public void queryHR(Connection conn) {
 String query = " select emp.employee_id, emp.salary from hr.employees emp";
 Statement stmt = null;
 ResultSet rs = null;
 String id, salary;
 try {
 // attach connection to the current application session
 ApplicationSessionService.attachSession(conn);
 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);
 while (rs.next()) {
 id = rs.getString("employee_id");
 salary = rs.getString("salary");
 }
 } catch (ApplicationSessionException e) {
 } catch (SQLException e) {
 } finally {
 // detach the current application session from the connection
 try { ApplicationSessionService.detachSession(conn); } catch (Exception e) {}
 if (stmt != null) try {stmt.close();} catch (SQLException e) {};
 if (rs != null) try { rs.close();} catch (SQLException e{};
 }
 }

8.7.1.3 Destroying an Application Session
Destroys the current application session at the database, and removes it from current thread's
execution context. This should be invoked by the application at logout. It destroys the current
application session originally set up by the filter.

Syntax

public static void destroySession(java.sql.Connection conn)
 throws ApplicationSessionException

Chapter 8
About Application Session APIs

8-11

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

Example

Example 8-4 shows sample code that destroys the application session service.

Example 8-4 Application Session APIs: DestroySession

 void doLogout(HttpServletRequest request) {

 DataSource dataSource = null;
 Connection conn = null;

 try {
 InitialContext ic;
 try {
 ic = new InitialContext();

 dataSource = (DataSource)ic.lookup("jdbc/myDBDS");

 if (dataSource != null)
 try {
 conn = dataSource.getConnection();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 } catch (NamingException e) {
 e.printStackTrace();
 }
 // invalidate Http session
 request.getSession().invalidate();
 // destroy XS session at DB
 ApplicationSessionService.destroySession(conn);

 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 } finally {

 if (conn != null)
 try {
 conn.close();
 } catch (SQLException e) {
 }
 }

 }

8.7.2 About the Privilege Elevation API
This section describes the following topic: Enabling a Dynamic Role in the Application Session.

Chapter 8
About Application Session APIs

8-12

8.7.2.1 Enabling a Dynamic Role in the Application Session
Attaches the current application session to a given database connection, and enables the Real
Application Security dynamic role in the attached application session. This allows trusted
application code to have higher privileges temporarily in order to perform some database
operations, such as setting up application namespace.

This is for certain trusted application code to elevate the application session privilege. A Real
Application Security dynamic role is enabled during attach. The trusted code is identified by
java code permission.

Syntax

public static void attachSessionPrivileged(java.sql.Connection conn,
 java.lang.String role)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

role The given dynamic role; must be request scope

Example

Each given dynamic role is associated with a code base permission as shown in Example 8-5
(permission grant in jazn-data.xml)

See Example 8-6.

Usage Notes

The permission is always checked internally in the API, whether the java security manager is
on or off. If the caller has the permission (that implies that the given role also matches the role
defined in the policy file), the given dynamic role is enabled during attach; otherwise, the API
fails with an AccessControlException.

The caller code (caller.jar file) and application session service code (xsee.jar) should both
have the SessioncodePermission permission. This is sufficient when the caller.jar is
invoked directly by the container. When caller.jar is invoked by another application code, it
is up to the caller to decide whether the application code needs to have this permission. If the
caller does not need the application to have this permission, the caller can invoke
attachSessionPrivileged under AccessController.doPrivileged with a null
AccessControllerContext. See the Java API for details. By doing this, the caller.jar fully
trusts the application code.

Note that the dynamic role is only enabled on the attached application session, not the current
application session. It is enabled within the window of attach and detach. The dynamic role
must be defined as request scope at the database; otherwise, the following exception
ORA-46055: invalid role specified is thrown.

Example 8-5 Privilege Elevation API

<grant>
 <grantee>
 <codesource>

Chapter 8
About Application Session APIs

8-13

 <url>file:${domain.home}/servers/DefaultServer/tmp/_WL_user/MyWar/pi47ig/war/WEB-
INF/lib/trusted.jar' </url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.xs.ee.session.SessionCodePermission</class>
 <name> MY_NS_DROLE</name>
 <actions>attach </actions>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/lib/xsee.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.xs.ee.session.SessionCodePermission</class>
 <name>MY_NS_DROLE</name>
 <actions>attac </actions>
 </permission>
 </permissions>
 </grant>

8.7.3 About Namespace APIs
This section describes the following topics:

• About Creating a Namespace

• About Deleting a Namespace

• About Setting the Namespace Attribute

• About Deleting a Namespace Attribute

• Getting a Namespace Attribute

8.7.3.1 About Creating a Namespace
Creates a namespace in the current application session. The namespace given must be
predefined at the database, and the namespace ACL must allow the attached application
session to perform a MODIFY_NAMESPACE operation, unless the ADMIN_ANY_NAMESPACE privilege
is enabled in the application session.

Syntax

public static void createNamespace(java.sql.Connection conn,
 java.lang.String name)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

name The given namespace name

Chapter 8
About Application Session APIs

8-14

Example

See Example 8-6.

8.7.3.2 About Deleting a Namespace
Deletes a namespace from the current application session. The namespace given must be
predefined at the database, and the namespace ACL must allow the attached application
session to perform a MODIFY_NAMESPACE operation, unless the ADMIN_ANY_NAMESPACE privilege
is enabled in the application session.

Syntax

public static void deleteNamespace(java.sql.Connection conn,
 java.lang.String name)
 throws NamespaceNotFoundException,
 ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

name The given namespace name.

Example

See Example 8-6.

8.7.3.3 About Setting the Namespace Attribute
Sets the attribute value to the namespace in the current application session. The namespace
given must be predefined at the database, and the namespace ACL must allow the attached
application session to perform a MODIFY_ATTRIBUTE operation, unless the
ADMIN_ANY_NAMESPACE privilege is enabled in the application session.

If the attribute does not exist on the namespace, the API creates the attribute with the given
value; otherwise, it simply sets the existing value to the given value.

Syntax

public static void setNamespaceAttribute(java.sql.Connection conn,
 java.lang.String name,
 java.lang.String attribute,
 java.lang.String value)
 throws NamespaceNotFoundException,
 ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

name The given namespace name

attribute The given namespace attribute name

Chapter 8
About Application Session APIs

8-15

Parameter Description

value The given namespace attribute value

Example

See Example 8-6.

8.7.3.4 About Deleting a Namespace Attribute
Deletes the attribute from the namespace in the current application session. The namespace
given must be predefined at the database, and the namespace ACL must allow the attached
application session to perform a MODIFY_ATTRIBUTE operation, unless the
ADMIN_ANY_NAMESPACE privilege is enabled in the application session.

Syntax

public static void deleteNamespaceAttribute(java.sql.Connection conn,
 java.lang.String name,
 java.lang.String attribute)
 throws NamespaceNotFoundException,
 ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

name The given namespace name

attribute The given namespace attribute name

Example

See Example 8-6.

8.7.3.5 Getting a Namespace Attribute
Gets the attribute from the namespace in the current application session. The given
namespace must be created. No database connection is needed and no privilege is checked
for this operation.

The APIs that change namespace (other than getNamespaceAttribute) have a database
connection as an input parameter. Those APIs update the namespace in the current
application session in the JVM, as well as serialize the change to the database table. The
connection must be attached. It uses the attached application session to determine whether
the server can authorize the namespace change.

To allow only certain trusted application code to set up namespace. The connection can be
attached with a dynamic role, which has elevated privileges (MODIFY_NAMESPACE,
MODIFY_ATTRIBUTE) on the namespace. This is achieved using the attachSessionPrivileged
API, and only granting the namespace privileges to the dynamic role.

Syntax

public static java.lang.String getNamespaceAttribute(java.lang.String name,
 java.lang.String attribute)

Chapter 8
About Application Session APIs

8-16

 throws NamespaceNotFoundException,
 ApplicationSessionException

Parameter

Parameter Description

name The given namespace name

attribute The given namespace attribute name

Example

Example 8-6 shows a sample servlet filter that sets up namespace using namespace APIs and
uses the application session privilege elevation API.

Important Points to Know About Using Application Namespace

The following usage information summarizes important points about using application
namespace.

• The Real Application Security filter caches all the application namespace to the current
application session.

– For first time access, a new application session must be created in the database. No
application namespace has been set up yet at this time.

– For the user's subsequent access, the filter always brings all the namespaces created
for the application session, and caches them in the current application session in JVM.

• Application code always accesses namespace from the current application session. Each
update operation is a round trip to the server to change the values in the table and current
application session (JVM). That is why each update API has a database connection
parameter. However, the read attribute is a local operation to read from the current
application session in JVM without accessing the database.

• Whenever a namespace change is successfully done, the change is propagated to the
already attached application sessions, as well as newly attached application sessions
because all these attached application sessions refer to the single source - the current
application session.

• The namespace in the current application session is consistent within an http request
scope for the web application. Even the namespace can be changed at any time by other
applications. The change is only picked up once at the beginning of the current http
request by the Real Application Security filter. All attaches that happen within the same
http request refer to the same namespace in the current application session.

• Application code has complete control for changing the namespace value. It can read the
current application session's namespace at any time and decide whether to update the
namespace by calling the namespace APIs.

Example 8-6 Namespace APIs

/**
 * Trusted application code (servlet filter) sets up namespace
 * Using privilege elevation and namespace APIs
 */
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws
IOException, ServletException {
 Connection conn = null;
 try {
 conn = myDatasource.getConnection();

Chapter 8
About Application Session APIs

8-17

 // Attach an application session with a dynamic role.
 ApplicationSessionService.attachSessionPrivileged(conn, "myNSRole");
 try {
 // Get the current value.
 String currentValue = ApplicationSessionService.getNamespaceAttribute("mySecuredNS",
"myAttribute");
 // If the current value is not desired, set it.
 if ("myValue".compareToIgnoreCase(currentValue) != 0)
 ApplicationSessionService.setNamespaceAttribute(conn, "mySecuredNS", "myAttribute",
"myValue");
 } catch (NamespaceNotFoundException e) {
 // Namespace is not found, create it.
 ApplicationSessionService.createNamespace(conn, "mySecuredNS");
 // Set the attribute.
 ApplicationSessionService.setNamespaceAttribute(conn, "mySecuredNS", "myAttribute",
"myValue");
 }
 } catch (SQLException e) {
 } catch (ApplicationSessionException e) {
 } finally {
 // Detach an application session.
 try { ApplicationSessionService.detachSession(conn); } catch (Exception e) {}
 if (conn != null) try { conn.close();} catch (Exception e) {}
 }
 // Execution of application code.
 chain.doFilter(request, response);

8.7.4 About the Check Privilege API
This section describes the following topic: Checking a Privilege on the ACLs.

8.7.4.1 Checking a Privilege on the ACLs
Checks the privilege on the ACLs using the attached application session of the given
connection and includes these usage notes:

• An attached connection must be given. The privilege check is based on the attached
application session. Note that an attached application session can have extra privileges
compared to the current application session through the attachSessionPrivileged call.

• The API takes the input parameter of ACL IDs, which can be queried from the table using
the ORA_GET_ACLID operator. The operator returns a set of ACL IDs associated with the
current row.

• This API takes the input parameter of privilege name. This input parameter can be DML
privileges, such as SELECT or UPDATE, or it can be any user defined privilege.

Syntax

public static boolean checkPrivilege(java.sql.Connection conn,
 byte[] acls,
 java.lang.String privilege)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

Chapter 8
About Application Session APIs

8-18

Parameter Description

acls The given ACL IDs in row format

privilege The given privilege name

Example

Example 8-7 shows getting the ACL associated with the row and checking the UPDATE privilege
on the ACL.

Example 8-7 CheckPrivilege API

 public Collection<Employee> queryHR(Connection conn) {

 Statement stmt = null;
 ResultSet rs = null;

 Collection<Employee> result = new ArrayList<Employee>();

 try {
 // attach session
 ApplicationSessionService.attachSession(conn);

 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);

 while (rs.next()) {
 Employee emp = new Employee();

 emp.setId(rs.getString("EMPLOYEE_ID"));

 AuthorizationIndicator ai =
 ((OracleResultSet)rs).getAuthorizationIndicator("salary");

 if (ai == AuthorizationIndicator.NONE) {
 emp.setSalary(rs.getString("salary"));
 } else {
 emp.setSalary("******") ;
 }

 // get ACL associated with the row
 emp.setAcl(rs.getBytes("acl_id"));
 // check "update" privilege
 boolean canUpdate = ApplicationSessionService.checkPrivilege(conn, emp.getAcl(), "UPDATE");

 emp.setUpdate(canUpdate);
 result.add(emp);

 emp.setFname(rs.getString("first_name"));
 emp.setLname(rs.getString("last_name"));
 emp.setEmail(rs.getString("email"));
 emp.setPhone(rs.getString("phone_number"));
 emp.setManagerId(rs.getString("manager_id"));
 emp.setDepId(rs.getString("department_id"));

Chapter 8
About Application Session APIs

8-19

 }
 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 // process me
 } catch (SQLException e) {
 // process me
 e.printStackTrace();
 } finally {
 if (stmt != null) try {stmt.close();} catch (SQLException e) {};
 if (rs != null) try { rs.close();} catch (SQLException e) {};
 try {ApplicationSessionService.detachSession(conn);} catch (ApplicationSessionException e) {};

 }

 return result;
 }

8.8 Human Resources Demo Use Case: Implementation in Java
This section describes how an application session service supports user and roles managed
externally by Oracle Fusion Middleware. This Java example is based on the Security Human
Resources (HR) scenario. It uses the EMPLOYEES table in the sample HR schema.

See Also:

For information about user and group to application roles mapping, see About the HR
Demo Use Case - User Roles.

This example includes the following files and employee records that the three types of users
can access:

• Setting Up the HR Demo Application for External Principals (setup.sql)

• About the Application Session Filter Configuration File (web.xml)

• About the Sample Servlet Application (MyHR.java)

• About the Filter to Set Up the Application Namespace (MyFilter.java)

• About the HR Demo (1) - Logged in as Employee LPOPP

• About the HR Demo (2) - Logged in as HRMGR

• About the HR Demo (3) - Logged in as a Team Manager

8.8.1 Setting Up the HR Demo Application for External Principals (setup.sql)
Example 8-8 shows a set up script (setup.sql) for setting up the HR Demo application for
external principals.

This setup script performs the following operations:

• Creates a dynamic role, HROBJ, for object privileges for the external user

• Creates a security class, HRPRIVS, with privilege view_sensitive_info, and aggregate
privilege update_info that implies data privileges, update, delete, insert, which come from
pre-defined security class DML.

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-20

• Creates an EMP ACL, EMP_ACL, to grant EMP, HRMGR and HRREP privileges to access
employee record in the restricted departments. Note that each external principal,
(application role: HRREP, HRMGR, and EMP) must match the OPSS policy store GUID values.

• Creates an self ACL, SELF_ACL, to grant EMP privileges for an employee to see and update
their own record.

• Creates a Manager ACL, MGR_ACL, to allow a manager to see their employee's salary
information.

• Creates a data security policy, EMPLOYEE_DS, for the EMPLOYEES table. The policy defines an
instance set to control access to the employees in department 60 and 100 to EMP_ACL. It
also defines an attribute constraint to control access to the sensitive SALARY column.

• Defines two additional instance sets to SELF_ACL and MGR_ACL that are appended to the
data security policy, EMPLOYEE_DS.

• Grants to the dispatcher some additional privileges.

Example 8-8 Set Up the HR Demo Application for External Principals

Rem Copyright (c) 2009, 2014, Oracle and/or its affiliates.
Rem All rights reserved.

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100

-- A PL/SQL function to determine manager-report relationship
conn hr/hr;

create or replace package hrutil as
 function ismyreport(id IN PLS_INTEGER)
 return PLS_INTEGER ;
end hrutil;
/

create or replace package body hrutil as
 function ismyreport(id IN PLS_INTEGER)
 return PLS_INTEGER is
 mycount PLS_INTEGER ;
 myid PLS_INTEGER ;
 begin
 select employee_id into myid from hr.employees
 where UPPER(email) = XS_SYS_CONTEXT('PROFILE_NS','EMAIL');

 select count(employee_id) into mycount from hr.employees
 where employee_id = id start with manager_id = myid
 connect by prior employee_id = manager_id ;
 return mycount ;
 end ismyreport ;
end hrutil ;
/

-- Create a dynamic role for object privileges for external users.
connect sys/password as sysdba
show con_name;

-- Create a dynamic role for HR object privileges.

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-21

exec xs_principal.delete_principal('HROBJ',XS_ADMIN_UTIL.CASCADE_OPTION);
exec xs_principal.create_dynamic_role('HROBJ');

-- Create a db role to have HR object privileges.
drop role hr_db_obj;
create role hr_db_obj;
-- Grant object privilege to the db role.
grant select, insert, update, delete on hr.employees to hr_db_obj;

-- Grant db role to dynamic role.
grant hr_db_obj to HROBJ;

-- Create a security class with privilege view_sensitive_info, and
-- aggregate privilege update_info that implies data privileges,
-- update, delete, insert, which come from pre-defined security class
-- DML.
DECLARE
 priv_list XS$PRIVILEGE_LIST;
BEGIN
 priv_list :=XS$PRIVILEGE_LIST(
 XS$PRIVILEGE(name=>'VIEW_SENSITIVE_INFO'),
 XS$PRIVILEGE(name=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST
 ('"UPDATE"', '"DELETE"', '"INSERT"')));

 xs_security_class.create_security_class(
 name=>'HRPRIVS',
 parent_list=>XS$NAME_LIST('DML'),
 priv_list=>priv_list);
END;
/

-- External Principal (app role) Used for data security:
-- Such a principal must match the OPSS policy store.
-- roleName="HRREP" guid="37ED0D108C2F11E2BF802D569259982"
-- roleName="HRMGR" guid="4077A2B08C2F11E2BF802D569259982"
-- roleName="EMP" guid="F917C3608CF011E2BF802D569259982"

-- Create an EMP Acl to grant EMP, HRMGR and HRREP privileges to access an employee record in the
restricted departments.
DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"','VIEW_SENSITIVE_INFO'),
 granted=>true,
 principal_name=>'"37ED0D108C2F11E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 granted=>true,
 principal_name=>'"4077A2B08C2F11E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'"F917C3608CF011E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL));

 xs_acl.create_acl(name=> 'EMP_ACL',
 ace_list=> ace_list,
 sec_class=>'HRPRIVS',
 description=> 'Employee access to his/her data');

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-22

END;
/

-- Create a self Acl to grant EMP privileges to for an employee to see and update their own record.
-- Grant UPDATE, VIEW_SENSITIVE_INFO privileges to the EMP role.
DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=> XS$NAME_LIST('"UPDATE"', 'VIEW_SENSITIVE_INFO'),
 principal_name=>'"F917C3608CF011E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL));

 xs_acl.create_acl(name=> 'SELF_ACL',
 ace_list=> ace_list,
 sec_class=>'HRPRIVS',
 description=> 'Employee access to his/her data');
END;
/

-- Create Manager ACL, to allow a manager to see their employee's salary.
-- Grant VIEW_SENSITIVE_INFO privileges to EMP role on the Manager's employees.
--
DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=> XS$NAME_LIST('VIEW_SENSITIVE_INFO'),
 principal_name=>'"F917C3608CF011E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL));

 xs_acl.create_acl(name=> 'MGR_ACL',
 ace_list=> ace_list,
 sec_class=>'HRPRIVS',
 description=> 'Manager can see his reports salaray');
END;
/

-- Create data security policy for the EMPLOYEE table. The policy defines
-- an instant set to control the access to the employees in department
-- 60 and 100. It also defines an attribute constraint to control
-- the access to sensitive column SALARY.
DECLARE
 inst_sets XS$REALM_CONSTRAINT_LIST;
 attr_secs XS$COLUMN_CONSTRAINT_LIST;
BEGIN
 inst_sets :=
 XS$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('EMP_ACL')));

 attr_secs :=
 XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('SALARY'),
 privilege=> 'VIEW_SENSITIVE_INFO'));

 xs_data_security.create_policy(
 name=>'EMPLOYEES_DS',
 realm_constraint_list=>inst_sets,
 column_constraint_list=>attr_secs);
END;
/

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-23

-- Add more instance sets to the above data security.
declare
 inst1 xs$REALM_CONSTRAINT_TYPE;
 inst2 xs$REALM_CONSTRAINT_TYPE;
begin

 inst1 := xs$REALM_CONSTRAINT_TYPE(realm=> 'UPPER(email) = XS_SYS_CONTEXT(''PROFILE_NS'',''EMAIL'')',
 acl_list=> XS$NAME_LIST('SELF_ACL'));

 xs_data_security.append_realm_constraints('EMPLOYEES_DS', inst1);

 inst2 := xs$REALM_CONSTRAINT_TYPE(realm=> 'hr.hrutil.ismyreport(employee_id) = 1',
 acl_list=> XS$NAME_LIST('MGR_ACL'));

 xs_data_security.append_realm_constraints('EMPLOYEES_DS', inst2);
end;
/

-- Apply the data security policy on the table.

begin
 XS_DATA_SECURITY.apply_object_policy(schema=>'HR', object=>'EMPLOYEES',
 policy=>'EMPLOYEES_DS');
end;
/

-- Grant more privileges for the dispatcher.
exec XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMIN_ANY_NAMESPACE','ts',XS_ADMIN_UTIL.PTYPE_XS);
grant select on sys.dba_xs_session_roles to ts_role;

EXIT;

8.8.2 About the Application Session Filter Configuration File (web.xml)
Example 8-9 shows a complete application session filter sample configuration file (web.xml)
that includes the filter, its parameters, and the listener. It references a filter for setting up the
namespace (MyFilter.java) shown in Example 8-11, and the sample servlet applications
named MyHR.java shown in Example 8-10, in addition to: MySession.java, MyUpdate.java,
and LogoutServlet.java, which are not shown.

MySession queries the V$XS_SESSION_ROLES view to show the roles in the application session,
queries the users in XS$SESSION namespace to show the user in the application session, and
queries the V$XS_SESSION_NS_ATTRIBUTES view to show the namespace in the application
session, and then attaches to an application session.

MyUpdate performs an update on the HR.EMPLOYEES table to update the phone number for an
employee.

LogoutServlet performs a logout operation, and then destroys the application session at the
database.

In the ApplicationSessionFilter filter configuration, the filter section references the class
ApllicationSessionFilter, describes a parameter application.datasource with a
parameter value jdbc/myDBDS, and describes a parameter dynamic roles with a value of
HROBJ that was created in the set up script in Example 8-8.

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-24

Example 8-9 A Complete Application Session Filter Sample Configuration

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-
app_2_5.xsd"
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>enable.anonymous</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>remove.anonymous.role</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>application.name</param-name>
 <param-value>MyHRApp</param-value>
 </init-param>
 <!-- Following needed for Menu Security -->
 <!--init-param>
 <param-name>oracle.security.jps.jaas.mode</param-name>
 <param-value>subjectOnly</param-value>
 </init-param-->
 </filter>
 <filter>
 <filter-name>ApplicationSessionFilter</filter-name>
 <filter-class>oracle.security.xs.ee.session.ApplicationSessionFilter</filter-class>

 <init-param>
 <param-name>application.datasource</param-name>
 <param-value>jdbc/myDBDS</param-value>
 </init-param>
 <init-param>
 <param-name>dynamic.roles</param-name>
 <param-value>HROBJ</param-value>
 </init-param>
 <!--
 <init-param>
 <param-name>dispatcher.pool.max</param-name>
 <param-value>90</param-value>
 </init-param>
 -->
 <!-- init-param>
 <param-name>application.id</param-name>
 <param-value>MyHRApp</param-value>
 </init-param>
 <init-param>
 <param-name>session.provider</param-name>
 <param-value>XS</param-value>
 </init-param>
 <init-param>
 <param-name>db.url</param-name>
 <param-value>jdbc:oracle:thin:@myhost:1521:orcl</param-value>
 </init-param>

 <init-param>
 <param-name>dispatcher.id</param-name>
 <param-value>ts</param-value>

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-25

 </init-param>

 <init-param>
 <param-name>dispatcher.pwd.map</param-name>
 <param-value>XS_MAP</param-value>
 </init-param>
 <init-param>
 <param-name>dispatcher.pwd.key</param-name>
 <param-value>XS_KEY</param-value>
 </init-param>
 <init-param>
 <param-name>dispatcher.pool.min</param-name>
 <param-value>3</param-value>
 </init-param>
 <init-param>
 <param-name>dispatcher.pool.max</param-name>
 <param-value>10</param-value>
 </init-param -->

 <!--init-param>
 <param-name>namespaces</param-name>
 <param-value>sec_ns</param-value>
 </init-param-->
 </filter>
 <filter>
 <filter-name>MyFilter</filter-name>
 <filter-class>trusted.MyFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>ApplicationSessionFilter</filter-name>
 <url-pattern>/myhr</url-pattern>
 <url-pattern>/mysession</url-pattern>
 <url-pattern>/myupdate</url-pattern>
 <url-pattern>/logout</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>MyFilter</filter-name>
 <url-pattern>/myhr</url-pattern>
 <url-pattern>/mysession</url-pattern>
 <url-pattern>/myupdate</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 </filter-mapping>
 <listener>
 <listener-class>oracle.security.xs.ee.session.ApplicationSessionListener</listener-class>
 </listener>
 <servlet>
 <servlet-name>MySession</servlet-name>
 <servlet-class>app.MySession</servlet-class>
 </servlet>
 <servlet>

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-26

 <servlet-name>LogoutServlet</servlet-name>
 <servlet-class>app.MyLogout</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>MyHR</servlet-name>
 <servlet-class>app.MyHR</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>MyUpdate</servlet-name>
 <servlet-class>app.MyUpdate</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>MySession</servlet-name>
 <url-pattern>/mysession</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>LogoutServlet</servlet-name>
 <url-pattern>/logout</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>MyHR</servlet-name>
 <url-pattern>/myhr</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>MyUpdate</servlet-name>
 <url-pattern>/myupdate</url-pattern>
 </servlet-mapping>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>my servlet</web-resource-name>
 <url-pattern>/myhr</url-pattern>
 <url-pattern>/mysession</url-pattern>
 <url-pattern>/myupdate</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>CLIENT-CERT,FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <role-name>valid-users</role-name>
 </security-role>
</web-app>

8.8.3 About the Sample Servlet Application (MyHR.java)
Example 8-10 shows the sample servlet application named MyHR.java, which is referenced in
the application session filter sample configuration (web.xml file) shown in Example 8-9.

The MyHR application performs a query on the EMPLOYEES table and returns the results. If you
have authorization, depending on your login credentials, you can perform certain tasks as
described in:

• About the HR Demo (1) - Logged in as Employee LPOPP

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-27

As an employee, you can see your own salary information, but no one elses, and you can
update only your own contact information.

• About the HR Demo (2) - Logged in as HRMGR

If you are logged in as a HR Manager, you can see the salary records of all employees and
you can update their contact information.

• About the HR Demo (3) - Logged in as a Team Manager

If you are logged in as a Team Manager, you can see only your teams's employees salary
information, but you cannot update their contact information, only your own contact
information.

From a check of the privilege on the ACLs (checkPrivilege), if you have UPDATE privilege, then
you are authorized to perform an update of that employee's record and the EMPLOYEE_ID will
show a link that allows you access to that employee's record.

Example 8-10 Sample Servlet Application MyHR.java

/* Copyright (c) 2009, 2014, Oracle and/or its affiliates.
All rights reserved.*/

package app;

import java.io.IOException;
import java.io.PrintWriter;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.ArrayList;
import java.util.Collection;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.servlet.ServletConfig;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import javax.sql.DataSource;

import oracle.jdbc.OracleResultSet;
import oracle.jdbc.OracleResultSet.AuthorizationIndicator;
import oracle.security.xs.ee.session.ApplicationSessionException;
import oracle.security.xs.ee.session.ApplicationSessionService;

public class MyHR extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html; charset=UTF-8";

 String query = " select emp.EMPLOYEE_ID, emp.first_name, emp.last_name, " +
 " emp.email, emp.phone_number, salary, emp.manager_id, " +
 " emp.department_id,ora_get_aclids(emp) as acl_id" +
 " from hr.employees emp";

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-28

 public void queryHR(PrintWriter out) throws ApplicationSessionException {

 DataSource dataSource = null;
 Connection conn = null;

 try {
 InitialContext ic;
 try {
 ic = new InitialContext();

 dataSource = (DataSource)ic.lookup("jdbc/myDBDS");

 if (dataSource != null)
 try {
 conn = dataSource.getConnection();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 } catch (NamingException e) {
 e.printStackTrace();
 }

 try {
 queryHR(conn, out);
 } catch (Exception e) {
 e.printStackTrace();
 }

 } finally {

 if (conn != null)
 try {
 conn.close();
 } catch (SQLException e) {
 }
 }

 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 response.setContentType(CONTENT_TYPE);
 PrintWriter pw = response.getWriter();

 pw.println(HEADER);

 pw.println("<h1>RAS Session Service Demo</h1>");
 pw.println("");
 pw.println("You are logged in as " + request.getRemoteUser() + "");

 try {
 queryHR(pw);
 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 }

 pw.println(FOOTER);
 pw.close();
 }

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-29

 public Collection<Employee> queryHR(Connection conn) {

 Statement stmt = null;
 ResultSet rs = null;

 Collection<Employee> result = new ArrayList<Employee>();

 try {
 // attach session
 ApplicationSessionService.attachSession(conn);

 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);

 while (rs.next()) {
 Employee emp = new Employee();

 emp.setId(rs.getString("EMPLOYEE_ID"));

 AuthorizationIndicator ai =
 ((OracleResultSet)rs).getAuthorizationIndicator("salary");

 if (ai == AuthorizationIndicator.NONE) {
 emp.setSalary(rs.getString("salary"));
 } else {
 emp.setSalary("******") ;
 }

 // get ACL associated with the row
 emp.setAcl(rs.getBytes("acl_id"));
 // check "update" privilege
 boolean canUpdate = ApplicationSessionService.checkPrivilege(conn, emp.getAcl(), "UPDATE");

 emp.setUpdate(canUpdate);
 result.add(emp);

 emp.setFname(rs.getString("first_name"));
 emp.setLname(rs.getString("last_name"));
 emp.setEmail(rs.getString("email"));
 emp.setPhone(rs.getString("phone_number"));
 emp.setManagerId(rs.getString("manager_id"));
 emp.setDepId(rs.getString("department_id"));

 }
 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 // process me
 } catch (SQLException e) {
 // process me
 e.printStackTrace();
 } finally {
 if (stmt != null) try {stmt.close();} catch (SQLException e) {};
 if (rs != null) try { rs.close();} catch (SQLException e) {};
 try {ApplicationSessionService.detachSession(conn);} catch (ApplicationSessionException e) {};

 }

 return result;
 }

 public void queryHR(Connection conn, PrintWriter out) {

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-30

 Collection<Employee> list = queryHR(conn);

 PrintWriter pw = out;

 pw.println("
Displaying employee record(s) that you can access.
");
 pw.println("");
 pw.println("<i>NOTE: Salary is only shown if you are authorized to view,
 and ID is shown as a link if you are authorized to perform an update.</i>
");

 out.println("<table border=\"1\">");

 String tmp;

 if (list.size() > 0) {
 out.println("<tr>");
 out.println("<th>ID</th>");
 out.println("<th>First Name</th>");
 out.println("<th>Last Name</th>");
 out.println("<th>Email</th>");
 out.println("<th>Phone</th>");
 out.println("<th>Salary</th>");

 out.println("<th>Department ID</th>");
 out.println("<th>Manager ID</th>");
 out.println("</tr>");
 }

 for (Employee e: list) {

 if (e.canUpdate()) {
 tmp = "" + e.getId() + "";
 } else {
 tmp = e.getId();
 }

 out.println("<tr><td>" + tmp + "</td>");
 out.println("<td>" + e.getFname() + "</td>");
 out.println("<td>" + e.getLname() + "</td>");
 out.println("<td>" + e.getEmail() + "</td>");
 out.println("<td>" + e.getPhone() + "</td>");
 out.println("<td>" + e.getSalary() + "</td>");
 out.println("<td>" + e.getDepId() + "</td>");
 out.println("<td>" + e.getManagerId() + "</td></tr>");

 }

 out.println("</TABLE>");

 };

 class Employee {

 String id;
 String salary;
 boolean update;
 String fname;
 String lname;
 String email;
 String phone;
 String managerId;
 String depId;

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-31

 byte[] acl;

 public void setId(String id) {
 this.id = id;
 }

 public String getId() {
 return id;
 }

 public void setSalary(String salary) {
 this.salary = salary;
 }

 public String getSalary() {
 return salary;
 }

 public void setUpdate(boolean canUpdate) {
 this.update = canUpdate;
 }

 public boolean canUpdate() {
 return update;
 }

 public void setFname(String fname) {
 this.fname = fname;
 }

 public String getFname() {
 return fname;
 }

 public void setLname(String lname) {
 this.lname = lname;
 }

 public String getLname() {
 return lname;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }

 public String getPhone() {
 return phone;
 }

 public void setManagerId(String managerId) {
 this.managerId = managerId;
 }

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-32

 public String getManagerId() {
 return managerId;
 }

 public void setDepId(String depId) {
 this.depId = depId;
 }

 public String getDepId() {
 return depId;
 }

 public void setAcl(byte[] acl) {
 this.acl = acl;
 }

 public byte[] getAcl() {
 return acl;
 }
 }

 private static String HEADER = "<html xmlns=\"http://www.w3.org/1999/xhtml\"><head>"
 + "<meta content=\"text/html; charset=UTF-8\" http-equiv=\"content-type\"/>"
 + "<title>Oracle</title>"
 + "<link href=\"css/general.css\" type=\"text/css\" rel=\"stylesheet\"/>"
 + "<link href=\"css/window.css\" type=\"text/css\" rel=\"stylesheet\"/>"
 + "<link href=\"css/login.css\" type=\"text/css\" rel=\"stylesheet\"/>"
 + "<script type=\"text/javascript\">"
 + " if (top != self) top.location.href = location.href;"
 + "</script>"
 + "<style type=\"text/css\">"
 + "html { background-color: #001C34;}"
 + "</style>"
 + "</head>"
 + "<body onload=\"document.loginData.j_username.focus();\">"
 + " <div id=\"top\">"
 + " <div id=\"login-header\">"
 + " <div id=\"login-logo\">"
 + " "
 + "</div>"
 + " </div>"
 + " <div id=\"content\">"
 + "<div id=\"app_data\"><div id=\"title\"></div>";

 private static String FOOTER = "Logout"
 + "</div></div><div id=\"info\"></div></div></body></html>";
}

8.8.4 About the Filter to Set Up the Application Namespace (MyFilter.java)
Example 8-11 shows a filter to set up the application namespace. This filter is named
MyFilter.java, which is referenced in the application session filter sample configuration
(web.xml file) shown in Example 8-9.

This filter should be deployed as a separate jar, and SessionCodePermission should be
granted to the jar file.

This filter first queries the V$XS_SESSION_ROLES view to show the roles in the Real Security
Application session. Next, this filter demonstrates how trusted application code (a filter) firsts
checks to see if a namespace exists (getNamespaceAttribute); then if not, it can set up a
security critical namespace using session privilege elevation (attachSessionPrivileged) and

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-33

namespace APIs (createNamespace, and setNamespaceAttribute) to create the namespace
and set some namespace attributes.

Example 8-11 Filter to Set Up Application Namespace

/* Copyright (c) 2009, 2014, Oracle and/or its affiliates.
All rights reserved.*/

package trusted;

import java.io.IOException;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.sql.DataSource;
import oracle.security.xs.ee.session.ApplicationSessionException;
import oracle.security.xs.ee.session.ApplicationSessionService;
import oracle.security.xs.ee.session.NamespaceNotFoundException;

/**
 * Demonstrate how trusted application code (a filter) can set up
 * security critical namespace using session privilege elevation and
 * namespace APIs.
 *
 * The filter should be deployed as a separate jar, and SessionCodePermission
 * should be granted to the jar.
 */

public class MyFilter implements Filter {
 private FilterConfig _filterConfig = null;
 DataSource myDatasource = null;

 public void init(FilterConfig filterConfig) throws ServletException {
 _filterConfig = filterConfig;

 }

 public void destroy() {
 _filterConfig = null;
 }

 public void querySessionRoles(Connection conn) throws SQLException {

 String query =
 "select role_name from v$xs_session_roles order by role_name";
 String roles = null;

 try {

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-34

 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(query);

 System.out.println("<p> roles in RAS session (from myfilter):</p>");

 System.out.println("<TABLE>");

 while (rs.next()) {

 roles = rs.getString(1);
 System.out.println("<tr><td>" + roles + "</td></tr>");
 }
 System.out.println("</TABLE>");
 } finally {

 }

 return;
 }

 private boolean namespaceExists(String ns, String attribute, String value) throws
ApplicationSessionException {

 try {
 return value.equalsIgnoreCase(ApplicationSessionService.getNamespaceAttribute(ns,
attribute));
 } catch (NamespaceNotFoundException e) {
 return false;
 }
 }

 private Connection getConnection() {

 DataSource dataSource = null;
 InitialContext ic;
 try {
 ic = new InitialContext(); //TODO cache context

 dataSource = (DataSource)ic.lookup("jdbc/myDBDS");

 if (dataSource != null)
 try {
 return dataSource.getConnection();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 } catch (NamingException e) {
 e.printStackTrace();
 }
 return null;
 }

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) {

 Connection conn = null;

 try {

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-35

 String email = ((HttpServletRequest)request).getRemoteUser();
 if (email != null && !namespaceExists("PROFILE_NS", "EMAIL", email)) {

 conn = getConnection();

 //AccessController.doPrivileged(new AttachAction(conn), null);
 ApplicationSessionService.attachSessionPrivileged(conn, "SESSION_NS_DROLE");

 ApplicationSessionService.createNamespace(conn, "PROFILE_NS");
 ApplicationSessionService.setNamespaceAttribute(conn, "PROFILE_NS", "EMAIL", email);

 ApplicationSessionService.detachSession(conn);
 }

 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 } finally {

 if (conn != null)
 try {
 conn.close();
 } catch (SQLException e) {
 }
 }

 try {
 chain.doFilter(request, response);
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ServletException e) {
 e.printStackTrace();
 }
 }
}

8.8.5 About the HR Demo Use Case - User Roles
In the HR Demo Use Case, the Identity Management store contains the user name, user
name's password, and group name, while the OPSS security store contains the application
roles and the user and group to application roles mapping. Example 8-12 shows a code
snippet for the user and group to application roles mapping for one user LPOPP.

Example 8-12 User and Group to Application Roles Mapping

<app-role>
<name>EMP</name>
<display-name>Employee for dept #60 and dept #100</display-name>
<description>HR manager for dept #60 and representative for dept #100</description>
<guid>F917C3608CF011E2BF802D569259982</guid>
<class>oracle.security.jps.service.policystore.ApplicationRole</class>
<members>
 <member>
 <class>weblogic.security.principal.WLSUserImpl</class>

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-36

 <name>LPOPP</name>
 </member>
</members>
</app-role>

8.8.6 About the HR Demo (1) - Logged in as Employee LPOPP
Table 8-1 displays employee records that you can access logged in as an employee, LPOPP.
You can see everyone's record except their salary information, you can see your own salary
information, and you can update your own contact information.

This access is set by:

• Realm and grant (1): DEPARTMENT_ID in (60, 100) and SELECT to EMP
• Realm and grant (2): UPPER(email) = XS_SYS_CONTEXT("PROFILE_NS","EMAIL") and

UPDATE, VIEW_SENSITIVE_INFO to EMP
• Column Constraints: SALARY requires VIEW_SENSITIVE_INFO privilege

Salary is only shown if you are authorized to view, and ID is shown as a link (Italic format in the
table) if you are authorized to update.

Table 8-1 Session Service HR Demo(1) Logged in as Employee LPOPP

ID First Name Last Name Email Phone Salary Department ID Manager ID

103 Alexander Hunold AHUNOLD 510.222.3388 ****** 60 102

104 Bruce Ernst BERNST 590.423.4568 ****** 60 103

105 David Austin DAUSTIN 590.423.4569 ****** 60 103

106 Valli Pataballa VPATABAL 590.423.4560 ****** 60 103

107 Diana Lorentz DLORENTZ 590.423.4567 ****** 60 103

108 Nancy Greenberg NGREENBE 515.124.4569 ****** 100 101

109 Daniel Faviet DFAVIET 515.124.4169 ****** 100 108

110 John Chen JCHEN 515.124.4269 ****** 100 108

111 Ismael Sciarra ISCIARRA 515.124.4369 ****** 100 108

112 Jose Manuel Urman JMURMAN 515.124.4469 ****** 100 108

113 Luis Popp LPOOP 133.444.5555 6900 100 108

8.8.7 About the HR Demo (2) - Logged in as HRMGR
Table 8-2 displays employee records that you can access logged in as an HR Manager, HRMGR.
You can see every employee's salary information, and you can update every employee's
contact information.

This access is set by the realm and grant: DEPARTMENT_ID in (60, 100), SELECT, UPDATE, and
VIEW_SENSITIVE_INFO to HRMGR.

Salary is only shown if you are authorized to view, and ID is shown as a link (Italic format in the
table) if you are authorized to update.

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-37

Table 8-2 Session Service HR Demo(2) Logged in as HR Manager HRMGR

ID First Name Last Name Email Phone Salary Department ID Manager ID

103 Alexander Hunold AHUNOLD 510.222.3388 9000 60 102

104 Bruce Ernst BERNST 590.423.4568 6000 60 103

105 David Austin DAUSTIN 590.423.4569 4800 60 103

106 Valli Pataballa VPATABAL 590.423.4560 4800 60 103

107 Diana Lorentz DLORENTZ 590.423.4567 4200 60 103

108 Nancy Greenberg NGREENBE 515.124.4569 12008 100 101

109 Daniel Faviet DFAVIET 515.124.4169 9000 100 108

110 John Chen JCHEN 515.124.4269 8200 100 108

111 Ismael Sciarra ISCIARRA 515.124.4369 7700 100 108

112 Jose Manuel Urman JMURMAN 515.124.4469 7800 100 108

113 Luis Popp LPOOP 133.444.5555 6900 100 108

8.8.8 About the HR Demo (3) - Logged in as a Team Manager
Table 8-3 displays employee records that you can access logged in as a Team Manager,
AHUNOLD. You can see your team member's salary information; however, you cannot update
their contact information, only your own contact information.

This access is set by the realm and grant: is my member(employee_id) =1 and
VIEW_SENSITIVE_INFO to EMP.

Salary is only shown if you are authorized to view, and ID is shown as a link (Italic format in the
table) if you are authorized to update.

Table 8-3 Session Service HR Demo(3) Logged in as Team Manager AHUNOLD

ID First Name Last Name Email Phone Salary Department ID Manager ID

103 Alexander Hunold AHUNOLD 510.222.3388 9000 60 102

104 Bruce Ernst BERNST 590.423.4568 6000 60 103

105 David Austin DAUSTIN 590.423.4569 4800 60 103

106 Valli Pataballa VPATABAL 590.423.4560 4800 60 103

107 Diana Lorentz DLORENTZ 590.423.4567 4200 60 103

108 Nancy Greenberg NGREENBE 515.124.4569 ****** 100 101

109 Daniel Faviet DFAVIET 515.124.4169 ****** 100 108

110 John Chen JCHEN 515.124.4269 ****** 100 108

111 Ismael Sciarra ISCIARRA 515.124.4369 ****** 100 108

112 Jose Manuel Urman JMURMAN 515.124.4469 ****** 100 108

113 Luis Popp LPOOP 133.444.5555 ****** 100 108

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-38

9
Oracle Database Real Application Security
Data Dictionary Views

This chapter describes the data dictionary views provided with Oracle Database Real
Application Security.

Table 9-1 summarizes these views. For additional data dictionary views related to Oracle Real
Application Security, see Oracle Database Reference.

Table 9-1 Oracle Database Real Application Security Data Dictionary Views

Data Dictionary View Summary Description

DBA_XS_OBJECTS Displays all Real Application Security objects

DBA_XS_PRINCIPALS Displays all application users and application
roles

DBA_XS_EXTERNAL_PRINCIPALS Displays all external application users and
application roles

DBA_XS_USERS Displays all application users

USER_XS_USERS Displays the application users own account
information

USER_XS_PASSWORD_LIMITS Displays password limits for the currently
logged on application user

DBA_XS_ROLES Displays all application roles

DBA_XS_DYNAMIC_ROLES Displays all dynamic application roles

DBA_XS_PROXY_ROLES Displays all proxy application roles

DBA_XS_ROLE_GRANTS Displays all Real Application Security
application role grants

DBA_XS_PRIVILEGES Lists all Real Application Security application
privileges defined in the database.

USER_XS_PRIVILEGES Lists application privileges contained in
security classes owned by the current user

DBA_XS_IMPLIED_PRIVILEGES Lists all the Real Application Security implied
application privileges defined in the database

USER_XS_IMPLIED_PRIVILEGES Lists all the implied application privileges
contained in security classes owned by the
current user

DBA_XS_SECURITY_CLASSES Lists all security classes defined in the
database

USER_XS_SECURITY_CLASSES Lists all security classes owned by the
current application user

DBA_XS_SECURITY_CLASS_DEP Lists the dependencies between security
classes.

USER_XS_SECURITY_CLASS_DEP Lists the parent security classes for the
dependent security classes owned by the
current user.

9-1

Table 9-1 (Cont.) Oracle Database Real Application Security Data Dictionary Views

Data Dictionary View Summary Description

DBA_XS_ACLS Lists all existing ACLs

USER_XS_ACLS lists all ACLs owned by the current user

DBA_XS_ACES Lists all the Access Control Entries (ACEs)

USER_XS_ACES Lists all the ACEs from the ACLs owned by
the current user

DBA_XS_POLICIES Lists all the data security policies

USER_XS_POLICIES Lists all the data security policies owned by
the current application user

DBA_XS_REALM_CONSTRAINTS Lists all Real Application Security realms

USER_XS_REALM_CONSTRAINTS Lists all Real Application Security realms
owned by the current user

DBA_XS_INHERITED_REALMS Lists all Real Application Security inherited
realms

USER_XS_INHERITED_REALMS Lists all Real Application Security inherited
realms owned by the current user

DBA_XS_ACL_PARAMETERS Lists all Real Application Security ACL
parameters

USER_XS_ACL_PARAMETERS Lists all Real Application Security ACL
parameters defined in data security policies
owned by the current user

DBA_XS_COLUMN_CONSTRAINTS Lists all Real Application Security column
constraints

USER_XS_COLUMN_CONSTRAINTS Lists all Real Application Security column
constraints owned by the current user

DBA_XS_APPLIED_POLICIES Displays all database objects on which Real
Application Security data security policies
are enabled

DBA_XS_MODIFIED_POLICIES Displays all database objects on which Real
Application Security data security policies
are modified

DBA_XS_SESSIONS Lists all application sessions in the database

DBA_XS_ACTIVE_SESSIONS Lists all attached application sessions in the
database

DBA_XS_SESSION_ROLES Lists application roles enabled in application
sessions

DBA_XS_SESSION_NS_ATTRIBUTES Displays namespace attributes across
application sessions as of last saved state

DBA_XS_NS_TEMPLATES Describes all Real Application Security
namespace templates

DBA_XS_NS_TEMPLATE_ATTRIBUTES Describes all namespace templates together
with their attribute details

ALL_XDS_ACL_REFRESH Displays all static ACL refresh settings for
tables that are accessible to the application
user.

Chapter 9

9-2

Table 9-1 (Cont.) Oracle Database Real Application Security Data Dictionary Views

Data Dictionary View Summary Description

ALL_XDS_ACL_REFSTAT Displays all static ACL refresh job status
history that has been done for tables
accessible to the application user.

ALL_XDS_LATEST_ACL_REFSTAT Displays the ACL refreshjob status for the
most recent refreshment job for each table
accessible to the application user.

DBA_XDS_ACL_REFRESH Displays all static ACL refresh settings in the
database.

DBA_XDS_ACL_REFSTAT Displays all static ACL refresh job status
history that has been done in the database

DBA_XDS_LATEST_ACL_REFSTAT Displays the ACL refresh job status for the
most recent refreshment job for each table in
the database

USER_XDS_ACL_REFRESH Displays all static ACL refresh settings for
tables that are owned by the user.

USER_XDS_ACL_REFSTAT Displays all static ACL refresh job status
history that has been done for tables owned
by the user.

USER_XDS_LATEST_ACL_REFSTAT Displays the ACL refresh job status for the
most recent refreshment job for each table
owned by the user.

V$XS_SESSION_NS_ATTRIBUTES Displays information about the namespaces
and attributes in the current application
session.

V$XS_SESSION_ROLES Displays all enabled application roles in the
current application session.

DBA_XS_AUDIT_POLICY_OPTIONS Describes the auditing options that were
defined for Real Application Security unified
audit policies. See Oracle Database
Reference for more information. For
information about unified auditing in an
Oracle Database Real Application Security
environment, see Oracle Database Security
Guide.

DBA_XS_AUDIT_TRAIL Provides detailed information about Real
Application Security that were audited. See
Oracle Database Reference for more
information. For information about unified
auditing in an Oracle Database Real
Application Security environment, see Oracle
Database Security Guide.

DBA_XS_ENB_AUDIT_POLICIES Lists users for whom Real Application
Security unified audit polices are enabled.
See Oracle Database Reference for more
information. For information about unified
auditing in an Oracle Database Real
Application Security environment, see Oracle
Database Security Guide.

This section describes the following Oracle Database Real Application Security data dictionary
views:

Chapter 9

9-3

9.1 DBA_XS_OBJECTS
The DBA_XS_OBJECTS data dictionary view lists all the existing Real Application Security objects
in the database.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_SECURITY_CLASSES

• DBA_XS_ACLS

• DBA_XS_POLICIES

• DBA_XS_NS_TEMPLATES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the object

OWNER VARCHAR2(128) Owner of the object

ID NUMBER NOT
NULL

Identifier number for the object

TYPE VARCHAR2(18) Type of the object. Possible values are:

• PRINCIPAL (Application User/
Application Role)

• SECURITY CLASS
• ACL
• PRIVILEGE
• DATA SECURITY (Policy)

• NAMESPACE TEMPLATE
STATUS VARCHAR2(8) Status of the object. Possible values are:

• INVALID
• VALID
• EXTERNAL

9.2 DBA_XS_PRINCIPALS
The DBA_XS_PRINCIPALS data dictionary view describes all the existing application users and
application roles in the database.

Related Views

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

• DBA_XS_EXTERNAL_PRINCIPALS

Chapter 9
DBA_XS_OBJECTS

9-4

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the principal (application user
or application role)

GUID RAW(16) Globally unique identifier for the
principal

TYPE VARCHAR2(12) Type of the principal. Possible values
are:

• USER
• ROLE
• DYNAMIC ROLE

EXTERNAL_SOURCE VARCHAR2(128) External source of the principal

DESCRIPTION VARCHAR2(4000) Description of the principal

9.3 DBA_XS_EXTERNAL_PRINCIPALS
The DBA_XS_EXTERNAL_PRINCIPALS data dictionary view lists all the external application users
and application roles.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the external principal

9.4 DBA_XS_USERS
The DBA_XS_USERS data dictionary view describes all existing application users defined in the
database.

Related Views

• DBA_XS_PRINCIPALS

• USER_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application user

Chapter 9
DBA_XS_EXTERNAL_PRINCIPALS

9-5

Column Datatype NULL Description

GUID RAW(16) Globally unique identifier for the
application user

EXTERNAL_SOURCE VARCHAR2(128) External Source of application
users, such as LDAP

ROLES_DEFAULT_ENABLED VARCHAR2(3) Indicates whether all the
application roles granted to the
application user are enabled by
default. Valid values are YES and
NO.

STATUS VARCHAR2(8) Status of the application user.
Valid values are ACTIVE and
INACTIVE.

ACCOUNT_STATUS VARCHAR2(32) NOT
NULL

Direct login password policy
account status of the user.
Indicates whether the account is
locked, expired, or unlocked.

LOCK_DATE DATE The date the account became
locked for the direct login user

EXPIRY_DATE DATE The date the passward became
expired for the direct login user

PROFILE VARCHAR2(128) The name of the database profile
associated with the application
user

SCHEMA VARCHAR2(128) Application user schema

START_DATE TIMESTAMP(6) WITH
TIME ZONE

Effective start date for the user

END_DATE TIMESTAMP(6) WITH
TIME ZONE

Effective end date for the user

DIRECT_LOGON_USER VARCHAR2(3) Indicates whether this user has
direct logon capability

VERIFIER_TYPE VARCHAR2(11) Type of the verifier assigned to
the direct logon user. Only
XS_SHA512 and
XS_SALTED_SHA1 are allowed.)

ACL VARCHAR2(128) The Real Application Security
session privilege.

DESCRIPTION VARCHAR2(4000) Description of the application
user

MANDATORY_PROFILE_VIOLATIO
N

varchar2(3) Denotes whether the user's
account password violates the
mandatory profile's password
complexity requirements.

9.5 USER_XS_USERS
The USER_XS_USERS data dictionary view describes the current application users own account
information.

Chapter 9
USER_XS_USERS

9-6

Related Views

• DBA_XS_USERS

• DBA_XS_PRINCIPALS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the current application
user

STATUS VARCHAR2(8) Status of the current application
user. Valid values are ACTIVE and
INACTIVE only.

ACCOUNT_STATUS VARCHAR2(32) NOT NULL Direct login password policy
account status of the current user.
Valid values are UNLOCK, LOCKED,
and EXPIRED. UNLOCK means the
current user's account is open.

LOCK_DATE DATE The date the account became
locked for the direct login session
for the current user

EXPIRY_DATE DATE The date the passward became
expired or the direct login session
for the current user

DIRECT_LOGON_USER VARCHAR2(3) Indicates whether this user has
direct logon capability

DESCRIPTION VARCHAR2(4000) Description of the application user

MANDATORY_PROFILE_VIOLAT
ION

varchar2(3) Denotes whether the user's
account password violates the
mandatory profile's password
complexity requirements.

9.6 USER_XS_PASSWORD_LIMITS
The USER_XS_PASSWORD_LIMITS data dictionary view describes the password limits for the
currently logged on application user. The DBA can query this view to check the limits for any
direct login user.

Related Views

Column Datatype NULL Description

RESOURCE_NAME VARCHAR2(32) NOT
NULL

Name of the password resource

LIMIT VARCHAR2(128) The limit placed on this resource

Chapter 9
USER_XS_PASSWORD_LIMITS

9-7

9.7 DBA_XS_ROLES
The DBA_XS_ROLES data dictionary view describes all existing application roles in the database.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

• DBA_XS_ROLE_GRANTS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application role

GUID RAW(16) Globally unique identifier for the
application role

EXTERNAL_SOURCE VARCHAR2(128) External Source of the application role,
such as LDAP

DEFAULT_ENABLED VARCHAR(3) Whether or not the application role is
enabled by default. Values can be YES
or NO.

START_DATE TIMESTAMP(6) WITH
TIME ZONE

Start date from which the application
role is valid

END_DATE TIMESTAMP(6) WITH
TIME ZONE

End date until which the application
role is valid

DESCRIPTION VARCHAR2(4000) Description of the application role

9.8 DBA_XS_DYNAMIC_ROLES
The DBA_XS_DYNAMIC_ROLES data dictionary view describes all existing dynamic application
roles in the database.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_ROLE_GRANTS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the dynamic application role

GUID RAW(16) Globally unique identifier for the dynamic
application role

DURATION NUMBER Duration (in minutes) for which the role
has been active

Chapter 9
DBA_XS_ROLES

9-8

Column Datatype NULL Description

SYSTEM_DEFINED VARCHAR2(3) Indicates whether the application role is
a system-defined role. Possible values
are YES and NO.

SCOPE VARCHAR2(7) Scope of the application role. Possible
values are SESSION and REQUEST.

ACL VARCHAR2(128) The Real Application Security session
privilege.

DESCRIPTION VARCHAR2(4000) Description of the dynamic application
role.

9.9 DBA_XS_PROXY_ROLES
The DBA_XS_PROXY_ROLES data dictionary view describes all Real Application Security proxy
application role grants.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_ROLE_GRANTS

Column Datatype NULL Description

PROXY_USER VARCHAR2(128) Name of the proxy application user

TARGET_USER VARCHAR2(128) Name of the target application user

TARGET_ROLE VARCHAR2(128) Name of the target application role

9.10 DBA_XS_ROLE_GRANTS
The DBA_XS_ROLE_GRANTS data dictionary view describes all Real Application Security
application role grants.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

Column Datatype NULL Description

GRANTEE VARCHAR2(128) Name of the principal to which the
application role is granted

Chapter 9
DBA_XS_PROXY_ROLES

9-9

Column Datatype NULL Description

GRANTED_ROLE VARCHAR2(128) Name of the granted application role

GRANTED_ROLE_TYPE VARCHAR2(11) Name of the granted role

START_DATE TIMESTAMP(6) WITH
TIME ZONE

Start date from which the application
role grant is valid

END_DATE TIMESTAMP(6) WITH
TIME ZONE

End date until which the application
role grant is valid

9.11 DBA_XS_PRIVILEGES
The DBA_XS_PRIVILEGES data dictionary view lists all the Real Application Security application
privileges defined in the database.

Related Views

• USER_XS_PRIVILEGES

• DBA_XS_IMPLIED_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• DBA_XS_SECURITY_CLASSES

• ALL_XS_PRIVILEGES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
contains the application privilege

DESCRIPTION VARCHAR2(4000) Description of the application
privilege.

9.12 USER_XS_PRIVILEGES
The USER_XS_PRIVILEGES data dictionary view lists the application privileges contained in
security classes owned by the current user.

Related Views

• DBA_XS_PRIVILEGES

• DBA_XS_IMPLIED_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• USER_XS_SECURITY_CLASSES

• ALL_XS_PRIVILEGES

• ALL_XS_IMPLIED_PRIVILEGES

Chapter 9
DBA_XS_PRIVILEGES

9-10

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

DESCRIPTION VARCHAR2(4000) Description of the application
privilege.

9.13 ALL_XS_PRIVILEGES
The ALL_XS_PRIVILEGES data dictionary view lists all the Real Application Security application
privileges scoped by the security classes accessible to the current user.

Related Views

• USER_XS_PRIVILEGES

• DBA_XS_IMPLIED_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• DBA_XS_SECURITY_CLASSES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
contains the application privilege

DESCRIPTION VARCHAR2(4000) Description of the application
privilege.

9.14 DBA_XS_IMPLIED_PRIVILEGES
The DBA_XS_IMPLIED_PRIVILEGES data dictionary view lists all the Real Application Security
implied application privileges defined in the database.

Related Views

• DBA_XS_PRIVILEGES

• USER_XS_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• DBA_XS_SECURITY_CLASSES

• ALL_XS_PRIVILEGES

• ALL_XS_IMPLIED_PRIVILEGES

• ALL_XS_SECURITY_CLASSES

Chapter 9
ALL_XS_PRIVILEGES

9-11

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege
containing the implied application
privilege

IMPLIED_PRIVILEGE VARCHAR2(128) Name of the implied application
privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
contains the application privilege

9.15 USER_XS_IMPLIED_PRIVILEGES
The USER_XS_IMPLIED_PRIVILEGES data dictionary view lists the implied application privileges
contained in security classes owned by the current user.

Related Views

• DBA_XS_PRIVILEGES

• USER_XS_PRIVILEGES

• DBA_XS_IMPLIED_PRIVILEGES

• USER_XS_SECURITY_CLASSES

• ALL_XS_PRIVILEGES

• ALL_XS_IMPLIED_PRIVILEGES

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege
containing the implied application
privilege

IMPLIED_PRIVILEGE VARCHAR2(128) Name of the implied application
privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

9.16 ALL_XS_IMPLIED_PRIVILEGES
The ALL_XS_IMPLIED_PRIVILEGES data dictionary view lists all the Real Application Security
implied application privileges scoped by the security classes accessible to the current user.

Related Views

• DBA_XS_PRIVILEGES

• USER_XS_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• DBA_XS_SECURITY_CLASSES

Chapter 9
USER_XS_IMPLIED_PRIVILEGES

9-12

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege
containing the implied application
privilege

IMPLIED_PRIVILEGE VARCHAR2(128) Name of the implied application
privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
contains the application privilege

9.17 DBA_XS_PRIVILEGE_GRANTS
The DBA_XS_PRIVILEGE_GRANTS data dictionary view lists all the Real Application Security
system or schema level privilege grants defined in the database.

Related Views

• USER_XS_PRIVILEGES

• DBA_XS_PRIVILEGES

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege

GRANTEE VARCHAR2(128) Name of the user to whom access
was granted

GRANTEE_TYPE VARCHAR2(5) Type of the grantee: Database or
Real Application Security user or
role

SCHEMA VARCHAR2(128) Schema of the privilege

9.18 DBA_XS_SECURITY_CLASSES
The DBA_XS_SECURITY_CLASSES data dictionary view lists all Real Application Security security
classes defined in the database.

Related Views

• USER_XS_SECURITY_CLASSES

• DBA_XS_SECURITY_CLASS_DEP

• USER_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASSES

• ALL_XS_SECURITY_CLASS_DEP

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the security class.

OWNER VARCHAR2(128) Owner of the security class.

Chapter 9
DBA_XS_PRIVILEGE_GRANTS

9-13

Column Datatype NULL Description

DESCRIPTION VARCHAR2(4000) Description of the security class.

9.19 USER_XS_SECURITY_CLASSES
The USER_XS_SECURITY_CLASSES data dictionary view lists all Real Application Security security
classes owned by the current user.

Related Views

• DBA_XS_SECURITY_CLASSES

• DBA_XS_SECURITY_CLASS_DEP

• USER_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the security class.

DESCRIPTION VARCHAR2(4000) Description of the security class.

9.20 ALL_XS_SECURITY_CLASSES
The ALL_XS_SECURITY_CLASSES data dictionary view lists all Real Application Security security
classes accessible to the current user.

Related Views

• USER_XS_SECURITY_CLASSES

• DBA_XS_SECURITY_CLASS_DEP

• USER_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASS_DEP

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the security class.

OWNER VARCHAR2(128) Owner of the security class.

DESCRIPTION VARCHAR2(4000) Description of the security class.

9.21 DBA_XS_SECURITY_CLASS_DEP
The DBA_XS_SECURITY_CLASS_DEP data dictionary view lists the dependencies between all
security classes defined in the database.

Related Views

• USER_XS_SECURITY_CLASS_DEP

Chapter 9
USER_XS_SECURITY_CLASSES

9-14

• DBA_XS_SECURITY_CLASSES

• USER_XS_SECURITY_CLASSES

• ALL_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

SECURITY_CLASS VARCHAR2(128) Name of the security class

OWNER VARCHAR2(128) Owner of the security class

PARENT VARCHAR2(128) Name of the parent security class

PARENT_OWNER VARCHAR2(128) Owner of the parent security class

9.22 USER_XS_SECURITY_CLASS_DEP
The USER_XS_SECURITY_CLASS_DEP data dictionary view lists the parent security classes for the
dependent security classes owned by the current user.

Related Views

• DBA_XS_SECURITY_CLASS_DEP

• DBA_XS_SECURITY_CLASSES

• USER_XS_SECURITY_CLASSES

• ALL_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

SECURITY_CLASS VARCHAR2(128) Name of the security class

PARENT VARCHAR2(128) Name of the parent security class

PARENT_OWNER VARCHAR2(128) Owner of the parent security class

9.23 ALL_XS_SECURITY_CLASS_DEP
The ALL_XS_SECURITY_CLASS_DEP data dictionary view lists all the RAS security classes that
the security classes accessible to the current user are dependent on.

Related Views

• USER_XS_SECURITY_CLASS_DEP

• DBA_XS_SECURITY_CLASSES

• USER_XS_SECURITY_CLASSES

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

SECURITY_CLASS VARCHAR2(128) Name of the security class

OWNER VARCHAR2(128) Owner of the security class

Chapter 9
USER_XS_SECURITY_CLASS_DEP

9-15

Column Datatype NULL Description

PARENT VARCHAR2(128) Name of the parent security class

PARENT_OWNER VARCHAR2(128) Owner of the parent security class

9.24 DBA_XS_ACLS
The DBA_XS_ACLS data dictionary view lists all the existing Real Application Security ACLs
defined in the database.

Related Views

• USER_XS_ACLS

• DBA_XS_ACES

• ALL_XS_ACLS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the ACL.

OWNER VARCHAR2(128) Owner of the ACL.

SECURITY_CLASS VARCHAR2(128) Name of the security class
associated with the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class
associated with the ACL.

PARENT_ACL VARCHAR2(128) Name of the parent ACL.

PARENT_ACL_OWNER VARCHAR2(128) Owner of the parent ACL

INHERITANCE_TYPE VARCHAR2(11) Inheritance type of the ACL
(EXTENDED or CONSTRAINED)

DESCRIPTION VARCHAR2(4000) Description of the ACL

9.25 USER_XS_ACLS
The USER_XS_ACLS data dictionary view lists all the ACLs owned by the current user.

Related Views

• DBA_XS_ACLS

• USER_XS_ACES

• ALL_XS_ACLS

• ALL_XS_ACES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the ACL.

SECURITY_CLASS VARCHAR2(128) Name of the security class
associated with the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class
associated with the ACL.

Chapter 9
DBA_XS_ACLS

9-16

Column Datatype NULL Description

PARENT_ACL VARCHAR2(128) Name of the parent ACL.

PARENT_ACL_OWNER VARCHAR2(128) Owner of the parent ACL

INHERITANCE_TYPE VARCHAR2(11) Inheritance type of the ACL
(EXTENDED or CONSTRAINED)

DESCRIPTION VARCHAR2(4000) Description of the ACL

9.26 ALL_XS_ACLS
The ALL_XS_ACLS data dictionary view lists all the existing Real Application Security ACLs
accessible to the current user.

Related Views

• USER_XS_ACLS

• DBA_XS_ACES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the ACL.

OWNER VARCHAR2(128) Owner of the ACL.

SECURITY_CLASS VARCHAR2(128) Name of the security class
associated with the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class
associated with the ACL.

PARENT_ACL VARCHAR2(128) Name of the parent ACL.

PARENT_ACL_OWNER VARCHAR2(128) Owner of the parent ACL

INHERITANCE_TYPE VARCHAR2(11) Inheritance type of the ACL
(EXTENDED or CONSTRAINED)

DESCRIPTION VARCHAR2(4000) Description of the ACL

9.27 DBA_XS_ACES
The DBA_XS_ACES data dictionary view lists all the Access Control Entries (ACEs) defined in the
database.

Related Views

• USER_XS_ACES

• DBA_XS_ACLS

• ALL_XS_ACES

• ALL_XS_ACLS

Column Datatype NULL Description

ACL VARCHAR2(128) Name of the ACL

OWNER VARCHAR2(128) Owner of the ACL

Chapter 9
ALL_XS_ACLS

9-17

Column Datatype NULL Description

ACE_ORDER NUMBER NOT NULL Order number of the ACE in the
ACL

START_DATE TIMESTAMP(6) Effective start date of the ACE

END_DATE TIMESTAMP(6) Effective end date of the ACE

GRANT_TYPE VARCHAR2(5) Specifies whether the ACE is a
GRANT or DENY

INVERTED_PRINCIPAL VARCHAR2(3) YES if the principal is inverted, else
NO

PRINCIPAL VARCHAR2(128) Name of the principal to whom the
ACE applies

PRINCIPAL_TYPE VARCHAR2(16) Type of the principal, such as
application user or application role

PRIVILEGE VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
scopes the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
scopes the ACL

9.28 USER_XS_ACES
The USER_XS_ACES data dictionary view lists all the Access Control Entries (ACEs) from the
ACLs owned by the current user.

Related Views

• DBA_XS_ACES

• USER_XS_ACLS

• ALL_XS_ACES

• ALL_XS_ACLS

Column Datatype NULL Description

ACL VARCHAR2(128) Name of the ACL

ACE_ORDER NUMBER NOT
NULL

Order number of the ACE in the
ACL

START_DATE TIMESTAMP(6) Effective start date of the ACE

END_DATE TIMESTAMP(6) Effective end date of the ACE

GRANT_TYPE VARCHAR2(5) Specifies whether the ACE is a
GRANT or DENY

INVERTED_PRINCIPAL VARCHAR2(3) YES if the principal is inverted, else
NO

PRINCIPAL VARCHAR2(128) Name of the principal to whom the
ACE applies

PRINCIPAL_TYPE VARCHAR2(16) Type of the principal, such as
application user or application role

Chapter 9
USER_XS_ACES

9-18

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
scopes the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
scopes the ACL

9.29 ALL_XS_ACES
The ALL_XS_ACES data dictionary view lists all the Access Control Entries (ACEs) accessible to
the current user.

Related Views

• USER_XS_ACES

• DBA_XS_ACLS

Column Datatype NULL Description

ACL VARCHAR2(128) Name of the ACL

OWNER VARCHAR2(128) Owner of the ACL

ACE_ORDER NUMBER NOT NULL Order number of the ACE in the
ACL

START_DATE TIMESTAMP(6) Effective start date of the ACE

END_DATE TIMESTAMP(6) Effective end date of the ACE

GRANT_TYPE VARCHAR2(5) Specifies whether the ACE is a
GRANT or DENY

INVERTED_PRINCIPAL VARCHAR2(3) YES if the principal is inverted, else
NO

PRINCIPAL VARCHAR2(128) Name of the principal to whom the
ACE applies

PRINCIPAL_TYPE VARCHAR2(16) Type of the principal, such as
application user or application role

PRIVILEGE VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
scopes the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
scopes the ACL

9.30 DBA_XS_POLICIES
The DBA_XS_POLICIES data dictionary view lists all the existing Real Application Security data
security policies defined in the database.

Related Views

• USER_XS_POLICIES

• DBA_XS_REALM_CONSTRAINTS

Chapter 9
ALL_XS_ACES

9-19

• DBA_XS_COLUMN_CONSTRAINTS

• ALL_XS_POLICIES

• ALL_XS_COLUMN_CONSTRAINTS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the data security policy

OWNER VARCHAR2(128) Owner of the data security policy

CREATE_TIME TIMESTAMP(6) When was the policy created

MODIFY_TIME TIMESTAMP(6) When was the policy last modified

DESCRIPTION VARCHAR2(4000) Description of the data security
policy

9.31 USER_XS_POLICIES
The USER_XS_POLICIES data dictionary view lists all the existing Real Application Security data
security policies owned by the current user.

Related Views

• DBA_XS_POLICIES

• USER_XS_REALM_CONSTRAINTS

• USER_XS_COLUMN_CONSTRAINTS

• ALL_XS_POLICIES

• ALL_XS_COLUMN_CONSTRAINTS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the data security policy

CREATE_TIME TIMESTAMP(6) When was the policy created

MODIFY_TIME TIMESTAMP(6) When was the policy last modified

DESCRIPTION VARCHAR2(4000) Description of the data security policy

9.32 ALL_XS_POLICIES
The ALL_XS_POLICIES data dictionary view lists all the existing Real Application Security data
security policies accessible to the current user.

Related Views

• USER_XS_POLICIES

• DBA_XS_REALM_CONSTRAINTS

• DBA_XS_COLUMN_CONSTRAINTS

Chapter 9
USER_XS_POLICIES

9-20

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the data security policy

OWNER VARCHAR2(128) Owner of the data security policy

CREATE_TIME TIMESTAMP(6) When was the policy created

MODIFY_TIME TIMESTAMP(6) When was the policy last modified

DESCRIPTION VARCHAR2(4000) Description of the data security
policy

9.33 DBA_XS_REALM_CONSTRAINTS
The DBA_XS_REALM_CONSTRAINTS data dictionary view displays all existing Real Application
Security realms in the database.

Related Views

• USER_XS_REALM_CONSTRAINTS

• DBA_XS_COLUMN_CONSTRAINTS

• ALL_XS_REALM_CONSTRAINTS

• ALL_XS_COLUMN_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

POLICY_OWNER VARCHAR2(128) Owner of the data security policy

REALM_ORDER NUMBER NOT NULL The order of the realm within the data
security policy

REALM_TYPE VARCHAR2(13) The type of the realm. Valid values are
REGULAR, PARAMETERIZED, and
INHERITED.

REALM_DESCRIPTION VARCHAR2(4000)
STATIC VARCHAR2(7) Indicates whether the realm is STATIC

or DYNAMIC
REALM VARCHAR2(4000) The data realm.

ACL VARCHAR2(128) ACL associated with the realm if the
realm type is REGULAR

ACL_OWNER VARCHAR2(128) Owner of the ACL associated with the
REGULAR realm

PARENT_OBJECT VARCHAR2(128) Name of the parent object if the realm
type is INHERITED

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object if the realm
type is INHERITED

9.34 USER_XS_REALM_CONSTRAINTS
The USER_XS_REALM_CONSTRAINTS data dictionary view displays all existing Real Application
Security realms owned by the current user.

Chapter 9
DBA_XS_REALM_CONSTRAINTS

9-21

Related Views

• DBA_XS_REALM_CONSTRAINTS

• USER_XS_COLUMN_CONSTRAINTS

• ALL_XS_REALM_CONSTRAINTS

• ALL_XS_COLUMN_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

REALM_ORDER NUMBER NOT NULL The order of the realm within the data
security policy

REALM_TYPE VARCHAR2(13) The type of the realm. Valid values are
REGULAR, PARAMETERIZED, and
INHERITED.

REALM_DESCRIPTION VARCHAR2(4000)
STATIC VARCHAR2(7) Indicates whether the realm is STATIC

or DYNAMIC
REALM VARCHAR2(4000) The data realm.

ACL VARCHAR2(128) ACL associated with the realm if the
realm type is REGULAR

ACL_OWNER VARCHAR2(128) Owner of the ACL associated with the
REGULAR realm

PARENT_OBJECT VARCHAR2(128) Name of the parent object if the realm
type is INHERITED

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object if the
realm type is INHERITED

9.35 ALL_XS_REALM_CONSTRAINTS
The ALL_XS_REALM_CONSTRAINTS data dictionary view displays all existing Real Application
Security realms accessible to the current user.

Related Views

• USER_XS_REALM_CONSTRAINTS

• DBA_XS_COLUMN_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

POLICY_OWNER VARCHAR2(128) Owner of the data security policy

REALM_ORDER NUMBER NOT NULL The order of the realm within the data
security policy

REALM_TYPE VARCHAR2(13) The type of the realm. Valid values are
REGULAR, PARAMETERIZED, and
INHERITED.

REALM_DESCRIPTION VARCHAR2(4000)

Chapter 9
ALL_XS_REALM_CONSTRAINTS

9-22

Column Datatype NULL Description

STATIC VARCHAR2(7) Indicates whether the realm is STATIC
or DYNAMIC

REALM VARCHAR2(4000) The data realm.

ACL VARCHAR2(128) ACL associated with the realm if the
realm type is REGULAR

ACL_OWNER VARCHAR2(128) Owner of the ACL associated with the
REGULAR realm

PARENT_OBJECT VARCHAR2(128) Name of the parent object if the realm
type is INHERITED

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object if the realm
type is INHERITED

9.36 DBA_XS_INHERITED_REALMS
The DBA_XS_INHERITED_REALMS data dictionary view displays all the inherited Real Application
Security realms in the database.

Related Views

• USER_XS_INHERITED_REALMS

• DBA_XS_REALM_CONSTRAINTS

• ALL_XS_INHERITED_REALMS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

POLICY_OWNER VARCHAR2(128) Owner of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the data
security policy

PARENT_OBJECT VARCHAR2(128) Name of the parent object

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object

PRIMARY_KEY VARCHAR2(128) The column name in the master table

FOREIGN_KEY VARCHAR2(4000) The column name or value in the
detail table

FOREIGN_KEY_TYPE VARCHAR2(5) Type of the foreign key. Possible
values are NAME and VALUE.

9.37 USER_XS_INHERITED_REALMS
The USER_XS_INHERITED_REALMS data dictionary view displays all the inherited Real Application
Security realms owned by the current user.

Related Views

• DBA_XS_INHERITED_REALMS

Chapter 9
DBA_XS_INHERITED_REALMS

9-23

• USER_XS_REALM_CONSTRAINTS

• ALL_XS_INHERITED_REALMS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the
data security policy

PARENT_OBJECT VARCHAR2(128) Name of the parent object

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object

PRIMARY_KEY VARCHAR2(128) The column name in the master table

FOREIGN_KEY VARCHAR2(4000) The column name or value in the
detail table

FOREIGN_KEY_TYPE VARCHAR2(5) Type of the foreign key. Possible
values are NAME and VALUE.

9.38 ALL_XS_INHERITED_REALMS
The ALL_XS_INHERITED_REALMS data dictionary view displays all the inherited Real Application
Security realms accessible to the current user.

Related Views

• USER_XS_INHERITED_REALMS

• DBA_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

POLICY_OWNER VARCHAR2(128) Owner of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the data
security policy

PARENT_OBJECT VARCHAR2(128) Name of the parent object

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object

PRIMARY_KEY VARCHAR2(128) The column name in the master table

FOREIGN_KEY VARCHAR2(4000) The column name or value in the
detail table

FOREIGN_KEY_TYPE VARCHAR2(5) Type of the foreign key. Possible
values are NAME and VALUE.

9.39 DBA_XS_ACL_PARAMETERS
The DBA_XS_ACL_PARAMETERS data dictionary view displays all existing Real Application
Security ACL parameters.

Related Views

• USER_XS_ACL_PARAMETERS

Chapter 9
ALL_XS_INHERITED_REALMS

9-24

• DBA_XS_REALM_CONSTRAINTS

• ALL_XS_ACL_PARAMETERS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy where
the ACL parameter is defined

POLICY_OWNER VARCHAR2(128) Owner of the data security policy where
the ACL parameter is defined

ACL VARCHAR2(128) Name of the ACL

ACL_OWNER VARCHAR2(128) Owner of the ACL

PARAMETER VARCHAR2(128) Name of the ACL parameter

DATATYPE VARCHAR2(9) Data type of the ACL parameter

VALUE VARCHAR2(4000) Value of the ACL parameter

REALM_ORDER NUMBER The order of the realm within the data
security policy

REALM VARCHAR2(4000) The realm that contains the ACL
parameter

9.40 USER_XS_ACL_PARAMETERS
The USER_XS_ACL_PARAMETERS data dictionary view displays all ACL parameters defined in the
data security policies owned by the current user.

Related Views

• DBA_XS_ACL_PARAMETERS

• USER_XS_REALM_CONSTRAINTS

• ALL_XS_ACL_PARAMETERS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy where
the ACL parameter is defined

ACL VARCHAR2(128) Name of the ACL

ACL_OWNER VARCHAR2(128) Owner of the ACL

PARAMETER VARCHAR2(128) Name of the ACL parameter

DATATYPE VARCHAR2(9) Data type of the ACL parameter

VALUE VARCHAR2(4000) Value of the ACL parameter

REALM_ORDER NUMBER The order of the realm within the data
security policy

REALM VARCHAR2(4000) The realm that contains the ACL
parameter

Chapter 9
USER_XS_ACL_PARAMETERS

9-25

9.41 ALL_XS_ACL_PARAMETERS
The ALL_XS_ACL_PARAMETERS data dictionary view displays all existing Real Application
Security ACL parameters defined in the data security policies accessible to the current user.

Related Views

• USER_XS_ACL_PARAMETERS

• DBA_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy where
the ACL parameter is defined

POLICY_OWNER VARCHAR2(128) Owner of the data security policy where
the ACL parameter is defined

ACL VARCHAR2(128) Name of the ACL

ACL_OWNER VARCHAR2(128) Owner of the ACL

PARAMETER VARCHAR2(128) Name of the ACL parameter

DATATYPE VARCHAR2(9) Data type of the ACL parameter

VALUE VARCHAR2(4000) Value of the ACL parameter

REALM_ORDER NUMBER The order of the realm within the data
security policy

REALM VARCHAR2(4000) The realm that contains the ACL
parameter

9.42 DBA_XS_COLUMN_CONSTRAINTS
The DBA_XS_COLUMN_CONSTRAINTS data dictionary view lists all Real Application Security
column constraints defined in the database.

Related Views

• USER_XS_COLUMN_CONSTRAINTS

• DBA_XS_POLICIES

• ALL_XS_COLUMN_CONSTRAINTS

• ALL_XS_POLICIES

Column Datatype NULL Description

POLICY VARCHAR2(128) NA Name of the data security policy containing
the column constraint

OWNER VARCHAR2(128) NA Owner of the data security policy containing
the column constraint

COLUMN_NAME VARCHAR2(128) NA Name of the column that has the column
constraint applied to it

PRIVILEGE VARCHAR2(128) NA Name of the application privilege required to
access the column

Chapter 9
ALL_XS_ACL_PARAMETERS

9-26

9.43 USER_XS_COLUMN_CONSTRAINTS
The USER_XS_COLUMN_CONSTRAINTS data dictionary view lists all Real Application Security
column constraints owned by the current user.

Related Views

• DBA_XS_COLUMN_CONSTRAINTS

• USER_XS_POLICIES

• ALL_XS_COLUMN_CONSTRAINTS

• ALL_XS_POLICIES

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy containing
the column constraint

COLUMN_NAME VARCHAR2(128) Name of the column that has the column
constraint applied to it

PRIVILEGE VARCHAR2(128) Name of the application privilege required to
access the column

9.44 ALL_XS_COLUMN_CONSTRAINTS
The ALL_XS_COLUMN_CONSTRAINTS data dictionary view lists all Real Application Security
column constraints accessible to the current user.

Related Views

• USER_XS_COLUMN_CONSTRAINTS

• DBA_XS_POLICIES

Column Datatype NULL Description

POLICY VARCHAR2(128) NA Name of the data security policy containing
the column constraint

OWNER VARCHAR2(128) NA Owner of the data security policy containing
the column constraint

COLUMN_NAME VARCHAR2(128) NA Name of the column that has the column
constraint applied to it

PRIVILEGE VARCHAR2(128) NA Name of the application privilege required to
access the column

9.45 DBA_XS_APPLIED_POLICIES
The DBA_XS_APPLIED_POLICIES data dictionary view displays all database objects on which
Real Application Security data security policies are enabled.

Related Views

• DBA_XS_POLICIES

Chapter 9
USER_XS_COLUMN_CONSTRAINTS

9-27

• ALL_XS_POLICIES

Column Datatype NULL Description

SCHEMA VARCHAR2(128) NOT NULL Schema containing the object

OBJECT VARCHAR2(128) NOT NULL Name of the data security enabled object
in the database

POLICY VARCHAR2(128) Name of the data security policy
associated with the object

POLICY_OWNER VARCHAR2(128) NOT NULL Owner of the data security policy
associated with the object

SEL VARCHAR2(3) Policy enabled for SELECT statements

INS VARCHAR2(3) Policy enabled for INSERT statements

UPD VARCHAR2(3) Policy enabled for UPDATE statements

DEL VARCHAR2(3) Policy enabled for DELETE statements

IDX VARCHAR2(3) Policy enabled for INDEX statements

STATUS VARCHAR2(8) ENABLED if the data security policy is
enabled for the object, else DISABLED

ROW_ACL VARCHAR2(3) Object has the row ACL column

OWNER_BYPASS VARCHAR2(3) Policy bypassed by object owner

9.46 ALL_XS_APPLIED_POLICIES
The ALL_XS_APPLIED_POLICIES data dictionary view displays all database objects on which
Real Application Security data security policies are accessible to the current user are enabled.

Related Views

• DBA_XS_POLICIES

Column Datatype NULL Description

SCHEMA VARCHAR2(128) NOT NULL Schema containing the object

OBJECT VARCHAR2(128) NOT NULL Name of the data security enabled object
in the database

POLICY VARCHAR2(128) Name of the data security policy
associated with the object

POLICY_OWNER VARCHAR2(128) NOT NULL Owner of the data security policy
associated with the object

SEL VARCHAR2(3) Policy enabled for SELECT statements

INS VARCHAR2(3) Policy enabled for INSERT statements

UPD VARCHAR2(3) Policy enabled for UPDATE statements

DEL VARCHAR2(3) Policy enabled for DELETE statements

IDX VARCHAR2(3) Policy enabled for INDEX statements

STATUS VARCHAR2(8) ENABLED if the data security policy is
enabled for the object, else DISABLED

ROW_ACL VARCHAR2(3) Object has the ROW_ACL column

OWNER_BYPASS VARCHAR2(3) Policy bypassed by object owner

Chapter 9
ALL_XS_APPLIED_POLICIES

9-28

9.47 DBA_XS_MODIFIED_POLICIES
The DBA_XS_MODIFIED_POLICIES data dictionary view displays all database objects on which
Real Application Security data security policies are modified.

Related Views

• DBA_XS_POLICIES

• DBA_XS_APPLIED_POLICIES

Column Datatype NULL Description

POLICY VARCHAR2(128) NOT
NULL

Name of the data security policy
associated with the object

OBJECT VARCHAR2(128) NOT NULL Name of the data security modified object
in the database

9.48 DBA_XS_SESSIONS
The DBA_XS_SESSIONS dynamic data dictionary view displays all the application sessions in the
database. Only database administrators can select from this view.

Related Views

• DBA_XS_ACTIVE_SESSIONS

• DBA_XS_SESSION_ROLES

• DBA_XS_SESSION_NS_ATTRIBUTES

Column Datatype NULL Description

USER_NAME VARCHAR2(128) NOT NULL Application user name of the application session

SESSIONID RAW(16) NOT NULL Application Session identifier

PROXY_USER VARCHAR2(128) Name of the proxy application user

COOKIE VARCHAR2(1024) The server-unique cookie value associated with the
session

CREATE_TIME TIMESTAMP(6) NOT NULL Creation time for the application session

AUTH_TIME TIMESTAMP(6) NOT NULL Last time the application user was authenticated.

ACCESS_TIME TIMESTAMP(6) NOT NULL Last time that the application session was accessed

INACTIVE_TIMEOUT NUMBER(6) The amount of time (in minutes) before the
application session is considered timed out

9.49 DBA_XS_ACTIVE_SESSIONS
The DBA_XS_ACTIVE_SESSIONS dynamic data dictionary view displays all attached application
sessions in the database. Only database administrators can select from this view.

Related Views

• DBA_XS_SESSIONS

Chapter 9
DBA_XS_MODIFIED_POLICIES

9-29

• DBA_XS_SESSION_ROLES

• DBA_XS_SESSION_NS_ATTRIBUTES

Column Datatype NULL Description

USER_NAME VARCHAR2(128) NOT NULL Application user name of the application session

SESSIONID RAW(16) NOT NULL Application Session identifier

DATABASE_SESSIONID NUMBER The database session ID to which the application
session is associated.

PROXY_USER VARCHAR2(128) Name of the proxy application user

COOKIE VARCHAR2(1024) The server-unique cookie value associated with the
session

CREATE_TIME TIMESTAMP(6) NOT NULL Creation time for the application session

AUTH_TIME TIMESTAMP(6) NOT NULL Last time the application user was authenticated.

ACCESS_TIME TIMESTAMP(6) NOT NULL Last time that the application session was accessed

INACTIVE_TIMEOUT NUMBER(6) The amount of time (in minutes) before the
application session is considered timed out

9.50 DBA_XS_SESSION_ROLES
The DBA_XS_SESSION_ROLES dynamic data dictionary view lists application roles enabled in
application sessions.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_ACTIVE_SESSIONS

• DBA_XS_SESSION_NS_ATTRIBUTES

Column Datatype NULL Description

SESSIONID RAW(16) NOT NULL Application session ID

ROLE VARCHAR2(128) NOT NULL Name of the application role

9.51 DBA_XS_SESSION_NS_ATTRIBUTES
The DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view displays namespace attributes
across application sessions as of last saved state.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_ACTIVE_SESSIONS

• DBA_XS_SESSION_ROLES

Column Datatype NULL Description

SESSIONID RAW(16) NOT NULL Session ID of the
application session

Chapter 9
DBA_XS_SESSION_ROLES

9-30

Column Datatype NULL Description

ATTRIBUTE VARCHAR2(4000) Name of the attribute

NAMESPACE VARCHAR2(128) NOT NULL Name of the namespace

VALUE VARCHAR2(4000) Value of the attribute

DEFAULT_VALUE VARCHAR2(4000) Default value of the
attribute

FIRSTREAD_EVENT VARCHAR2(2) Indicates whether the
handler function is invoked
when the attribute is first
read. Possible values are
YES and NO.

MODIFY_EVENT VARCHAR2(2) Indicates whether the
handler function is invoked
when the attribute is
modified. Possible values
are YES and NO.

9.52 DBA_XS_NS_TEMPLATES
The DBA_XS_NS_TEMPLATES data dictionary view describes all Real Application Security
namespace templates.

Related Views

• DBA_XS_NS_TEMPLATE_ATTRIBUTES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the
namespace template

HANDLER_SCHEMA VARCHAR2(128) Schema of the
namespace handler
function

HANDLER_PACKAGE VARCHAR2(128) Package containing the
namespace handler
function

HANDLER_FUNCTION VARCHAR2(128) The namespace
handler function

HANDLER_STATUS VARCHAR2(7) Indicates whether the
namespace handler
function is VALID or
INVALID.

ACL VARCHAR2(128) Name of ACL for the
namespace template.

DESCRIPTION VARCHAR2(4000) Description of the
namespace template.

Chapter 9
DBA_XS_NS_TEMPLATES

9-31

9.53 DBA_XS_NS_TEMPLATE_ATTRIBUTES
The DBA_XS_NS_TEMPLATE_ATTRIBUTES data dictionary view describes all namespace attributes
defined in namespace template documents.

Related Views

• DBA_XS_NS_TEMPLATES

Column Datatype NULL Description

ATTRIBUTE VARCHAR2(4000) Name of the attribute
defined in the namespace
template

NAMESPACE VARCHAR2(128) Name of the namespace
instantiated by the
namespace template

DEFAULT_VALUE VARCHAR2(4000) Default value of the
attribute defined in the
namespace template

FIRSTREAD_EVENT VARCHAR2(3) Indicates whether the
namespace handler
function is invoked when
the attribute is first read.
Valid values are YES and
NO.

MODIFY_EVENT VARCHAR2(3) Indicates whether the
namespace handler
function is invoked when
the attribute value is
modified. Valid values are
YES and NO.

9.54 ALL_XDS_ACL_REFRESH
The ALL_XDS_ACL_REFRESH data dictionary view displays all static ACL refresh settings for
tables that are accessible to the application user.

Related Views

• DBA_XDS_ACL_REFRESH

• USER_XDS_ACL_REFRESH

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

ACL_MVIEW_NAME VARCHAR2(128) NOT
NULL

Name of ACL MV for this table

Chapter 9
DBA_XS_NS_TEMPLATE_ATTRIBUTES

9-32

Column Datatype NULL Description

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
ACL_STATUS VARCHAR2(5) STALE or FRESH
USER_SUPPLIED_MV VARCHAR2(1) Y or N
START_DATE TIMESTAMP(6) WITH

TIME ZONE
The refreshment job scheduled to run
after the timestamp, if scheduled

REPEAT_INTERVAL VARCHAR2(4000) The repeat_interval to run the
refreshment job, if scheduled

REFRESH_COUNT NUMBER Number of times this ACL MV has been
refreshed so far

COMMENTS VARCHAR2(240) Comments for the refreshment

9.55 ALL_XDS_ACL_REFSTAT
The ALL_XDS_ACL_REFSTAT data dictionary view displays all static ACL refresh job status history
that has been done for tables that are accessible to the application user.

Related Views

• DBA_XDS_ACL_REFSTAT

• USER_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON DEMAND
REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
JOB_START_TIME TIMESTAMP(6) WITH

TIME ZONE
The refreshment job starting time

JOB_END_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated for
static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if there
is any.

Chapter 9
ALL_XDS_ACL_REFSTAT

9-33

9.56 ALL_XDS_LATEST_ACL_REFSTAT
The ALL_XDS_LATEST_ACL_REFSTAT data dictionary view displays all latest static ACL refresh
job status history that has been done for tables that are accessible to the application user. It
has the same schema as ALL_XDS_ACL_REFSTAT dictionary view, but a subset of its rows.

Related Views

• DBA_XDS_LATEST_ACL_REFSTAT

• USER_XDS_LATEST_ACL_REFSTAT

• ALL_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
JOB_START_TIME TIMESTAMP(6) WITH

TIME ZONE
The refreshment job starting time

JOB_END_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated for
static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if there
is any.

9.57 DBA_XDS_ACL_REFRESH
The DBA_XDS_ACL_REFRESH data dictionary view displays all static ACL refresh settings in the
database.

Related Views

• ALL_XDS_ACL_REFRESH

• USER_XDS_ACL_REFRESH

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

Chapter 9
ALL_XDS_LATEST_ACL_REFSTAT

9-34

Column Datatype NULL Description

ACL_MVIEW_NAME VARCHAR2(128) NOT
NULL

Name of ACL MV for this table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON DEMAND
REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
ACL_STATUS VARCHAR2(5) STALE or FRESH
USER_SUPPLIED_MV VARCHAR2(1) Y or N
START_DATE TIMESTAMP(6) WITH

TIME ZONE
The refreshment job scheduled to run
after the timestamp, if scheduled

REPEAT_INTERVAL VARCHAR2(4000) The repeat_interval to run the
refreshment job, if scheduled.

REFRESH_COUNT NUMBER Number of refreshment has been done
so far

COMMENTS VARCHAR2(240) Comments for the refreshment

9.58 DBA_XDS_ACL_REFSTAT
The DBA_XDS_ACL_REFSTAT data dictionary view displays all static ACL refresh job status history
that has been done in the database.

Related Views

• ALL_XDS_ACL_REFSTAT

• USER_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON DEMAND
REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
JOB_START_TIME TIMESTAMP(6) WITH

TIME ZONE
The refreshment job starting time

JOB_END_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated for
static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if there
is any.

Chapter 9
DBA_XDS_ACL_REFSTAT

9-35

9.59 DBA_XDS_LATEST_ACL_REFSTAT
The DBA_XDS_LATEST_ACL_REFSTAT data dictionary view displays all latest static ACL refresh
job status history that has been done in the database. It has the same schema as
DBA_XDS_ACL_REFSTAT dictionary view, but a subset of its rows.

Related Views

• ALL_XDS_LATEST_ACL_REFSTAT

• USER_XDS_LATEST_ACL_REFSTAT

• DBA_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON DEMAND
REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
JOB_START_TIME TIMESTAMP(6) WITH

TIME ZONE
The refreshment job starting time

JOB_END_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated for
static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if there
is any.

9.60 USER_XDS_ACL_REFRESH
The USER_XDS_ACL_REFRESH data dictionary view displays all static ACL refresh settings for
tables that are owned by the user.

Related Views

• ALL_XDS_ACL_REFRESH

• DBA_XDS_ACL_REFRESH

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

Chapter 9
DBA_XDS_LATEST_ACL_REFSTAT

9-36

Column Datatype NULL Description

ACL_MVIEW_NAME VARCHAR2(128) NOT
NULL

Name of ACL MV for this table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON DEMAND
REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
ACL_STATUS VARCHAR2(5) STALE or FRESH
USER_SUPPLIED_MV VARCHAR2(1) Y or N
START_DATE TIMESTAMP(6) WITH

TIME ZONE
The refreshment job scheduled to run
after the timestamp, if scheduled

REPEAT_INTERVAL VARCHAR2(4000) The repeat_interval to run the
refreshment job, if scheduled.

REFRESH_COUNT NUMBER Number of refreshment has been done
so far

COMMENTS VARCHAR2(240) Comments for the refreshment

9.61 USER_XDS_ACL_REFSTAT
The USER_XDS_ACL_REFSTAT data dictionary view displays all static ACL refresh job status
history that has been done for tables that are owned by the user.

Related Views

• ALL_XDS_ACL_REFSTAT

• DBA_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON DEMAND
REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
JOB_START_TIME TIMESTAMP(6) WITH

TIME ZONE
The refreshment job starting time

JOB_END_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated for
static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if there
is any.

Chapter 9
USER_XDS_ACL_REFSTAT

9-37

9.62 USER_XDS_LATEST_ACL_REFSTAT
The USER_XDS_LATEST_ACL_REFSTAT data dictionary view displays all latest static ACL refresh
job status history that has been done for tables that are owned by the user. It has the same
schema as USER_XDS_ACL_REFSTAT dictionary view, but a subset of its rows.

Related Views

• ALL_XDS_LATEST_ACL_REFSTAT

• DBA_XDS_LATEST_ACL_REFSTAT

• USER_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON DEMAND
REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL
JOB_START_TIME TIMESTAMP(6) WITH

TIME ZONE
The refreshment job starting time

JOB_END_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated for
static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if there
is any.

9.63 V$XS_SESSION_NS_ATTRIBUTES
The V$XS_SESSION_NS_ATTRIBUTES dynamic data dictionary view displays information about the
namespaces and attributes in all application sessions in the database as of the end of the last
request. The state of any active request is not reflected in this view. Only database
administrators can select from this view.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_SESSION_NS_ATTRIBUTES

• V$XS_SESSION_ROLES

Column Datatype NULL Description

NAMESPACE_NAME VARCHAR2(4000) Name of the namespace

Chapter 9
USER_XDS_LATEST_ACL_REFSTAT

9-38

Column Datatype NULL Description

WORKSPACE_NAME VARCHAR2(129) Name of the workspace space for
the namespace

ATTRIBUTE_NAME VARCHAR2(4000) Name of the attribute

ATTRIBUTE_VALUE VARCHAR2(4000) Value of the attribute

ATTRIBUTE_EVENTS VARCHAR2(4000) Events associated with this attribute

ATTRIBUTE_DEFAULT_VALUE VARCHAR2(4000) Default value for the attribute

ATTRIBUTE_TYPE VARCHAR2(4000) Type of attribute, either TEMPLATE or
CUSTOM

CON_ID NUMBER Container ID

9.64 V$XS_SESSION_ROLES
The V$XS_SESSION_ROLES static data dictionary view displays all enabled application roles in
application session in the current request.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_SESSION_ROLES

• V$XS_SESSION_NS_ATTRIBUTES

Column Datatype NULL Description

ROLE_WSPACE VARCHAR2(129) The workspace of the application role.

ROLE_NAME VARCHAR2(4000) Name of enabled application role

FLAGS NUMBER Status flag

CON_ID NUMBER Container ID

Chapter 9
V$XS_SESSION_ROLES

9-39

10
Oracle Database Real Application Security
SQL Functions

This chapter describes the SQL functions and procedures that are available with Oracle
Database Real Application Security.

Table 10-1 summarizes these functions and procedures. Detailed information on each function
and procedure follows this table.

Table 10-1 Oracle Database Real Application Security SQL Functions and Procedures

SQL Function or Procedure Brief Description

COLUMN_AUTH_INDICATOR Function Checks whether the specified table column is authorized on a particular
table row.

XS_SYS_CONTEXT Function Retrieves the session attributes and the XS$GLOBAL_VAR namespace
attribute for the current application session.

ORA_CHECK_ACL Function Checks whether an application user has the queried application privileges
according to a list of ACLs.

ORA_GET_ACLIDS Function Returns a list of ACL identifiers associated with an object instance of the
XDS-enabled tables for the current application user.

ORA_CHECK_PRIVILEGE Function Checks whether the specified system privileges have been granted to an
application user

TO_ACLID Function Returns the ACL IDs of the supplied ACL names

10.1 COLUMN_AUTH_INDICATOR Function
The COLUMN_AUTH_INDICATOR function checks whether the specified table column is authorized
on a particular table row. If the current application user is authorized by data security policies to
access the column value of the current row, or if the column is not protected by any data
security policies, then it returns 1. If the application user is not authorized, it returns 0.

Syntax

COLUMN_AUTH_INDICATOR(col)
RETURN BOOLEAN;

Parameters

Parameter Description

col A column in a table or view.

This parameter does not accept object type columns or expressions.

Example

SELECT po_number, project_id, region,
 DECODE(COLUMN_AUTH_INDICATOR(price), 0, 'xxxxxx', 1, price) price

10-1

 FROM purchaseorder
 WHERE po_number
 BETWEEN 10000 and 10003;

See Also:

• "Applying Additional Application Privileges to a Column" for more detailed
example of using the COLUMN_AUTH_INDICATOR function

• Oracle Database Real Application Security Data Dictionary Views for information
about the ALL_ATTRIBUTE_SECS, DBA_ATTRIBUTE_SECS, and USER_ATTRIBUTE_SECS
data dictionary views, which list existing tables that use column level security

10.2 XS_SYS_CONTEXT Function
The XS_SYS_CONTEXT function provides quick access to session attributes in the current
application session without incurring the overhead that results from using the PL/SQL APIs.
The SYS_XS_CONTEXT function definition mirrors that of the SYS_CONTEXT function and can be
described as application session counterpart to SYS_CONTEXT. XS_SYS_CONTEXT and returns the
requested namespace and attribute. If they do not exist, then it returns NULL.

Table 10-2 lists the attributes in predefined namespace XS$SESSION.

Table 10-2 Predefined Parameters

Parameter Return Value

CREATED_BY The owner who created the current application session.

CREATE_TIME The time in which the current application session was
created.

COOKIE The secure session cookie, passed as the parameter, that
can be used to identify the newly created Real Application
Security application session in future calls, until the cookie
value is changed or the session is destroyed.

CURRENT_XS_USER The name of the Real Application Security session
application user whose privileges are currently active.

CURRENT_XS_USER_GUID The identifier of the Real Application Security session
application user whose privileges are currently active.

INACTIVITY_TIMEOUT The specified inactivity timeout value in minutes for the
current application session.

LAST_ACCESS_TIME The last time the session was accessed by a session
application user.

LAST_AUTHENTICATION_TIME The last time the session application user was
authenticated.

LAST_UPDATED_BY The last time the application session was updated.

PROXY_GUID Identifier of the Real Application Security session
application user who opened the current session on behalf
of SESSION_XS_USER.

SESSION_ID The session identifier for the application session.

Chapter 10
XS_SYS_CONTEXT Function

10-2

Table 10-2 (Cont.) Predefined Parameters

Parameter Return Value

SESSION_XS_USER The name of the Real Application Security session
application user at logon.

SESSION_XS_USER_GUID The identifier of the Real Application Security session
application user at logon.

USERNAME The session application user name.

USER_ID The identifier of the session application user.

To retrieve the name of the currently attached Real Application Security session application
user, you can use the following form of the XS_SYS_CONTEXT function:

XS_SYS_CONTEXT('XS$SESSION', 'SESSION_XS_USER')

The function returns NULL if no Real Application Security session is currently attached to the
database session. The function returns the currently attached Real Application Security
session application user even if it is called from within the body of a definer's rights unit, like a
definer's rights view.

To retrieve the identifier (ID) for the currently attached Real Application Security session
application user, you can use the following form of the XS_SYS_CONTEXT function:

XS_SYS_CONTEXT('XS$SESSION', 'SESSION_XS_USER_GUID')

The function returns NULL if no Real Application Security session is currently attached to the
database session. The function returns the currently attached Real Application Security
session application user ID even if it is called from within the body of a definer's rights unit, like
a definer's rights view.

Syntax

XS_SYS_CONTEXT(
 namespace IN VARCHAR2
 attribute IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Parameter Description

namespace The name of the application context. You can specify either a string or an expression.

To find information about the namespaces and attributes for the current application
session, query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

attribute A parameter within the namespace application context.

Example

SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM DUAL;

10.3 ORA_CHECK_ACL Function
The ORA_CHECK_ACL function checks whether an application user has the queried application
privileges according to a list of ACLs. Oracle Database uses this function automatically when

Chapter 10
ORA_CHECK_ACL Function

10-3

the application user runs a query on a table that has data security policy enabled. If the
specified application privileges have been granted to the application user, ORA_CHECK_ACL
returns 1. If they are not granted to the application user, then it returns 0.

Syntax

ORA_CHECK_ACL(
 acls IN RAW,
 (privileges IN VARCHAR(128))+)
return NUMBER;

Parameters

Parameter Description

acls RAW list of ACL ids of 8 byte. The maximum number of acls allowed is
250.

privileges The application privilege names being checked. The maximum number of
application privileges allowed is 100.

Examples

The following example uses ORA_CHECK_ACL to check whether the application user has been
granted the P1 and P2 application privileges in the ACL1 ACL.

SELECT ORA_CHECK_ACL(TO_ACLID('ACL1'),'P1', 'P2') INTO ACLRESULT FROM DUAL;

10.4 ORA_GET_ACLIDS Function
The ORA_GET_ACLIDS function returns a list of ACL IDS associated with an object instance of
data security policy enabled tables for the current application user. Oracle Database evaluates
every dynamic data realm constraint rule, because ORA_GET_ACLIDS captures all ACL identifiers
that are associated with the matching data realm constraints, if access to the current row has
been granted. If the data realm constraints are from detail tables in a master-detail relationship,
ORA_GET_ACLIDS retrieves the ACL identifiers from the master table as well as the detail table.
If multiple data security policies have been applied to a table, ORA_GET_ACLIDS returns the
ACLs associated with each policy.

Syntax

ORA_GET_ACLIDS (
 table_alias IN VARCHAR2,
 (privileges IN VARCHAR(128))+)
RETURN RAW;

Parameters

Parameter Description

table_alias Table or view object alias in the query from a clause.

Ensure that the table is XDS-enabled. To do so, query the
DBA_XS_APPLIED_POLICIES data dictionary view.

If you specify a view that is resolved to XDS-enabled tables, and if there are more
than one XDS-enabled tables in the view, then Oracle Database only returns one
of the tables.

Chapter 10
ORA_GET_ACLIDS Function

10-4

Parameter Description

privileges The application privilege names that are associated with the returned ACL
identifiers. The maximum number of application privileges allowed is 100.

Example

SELECT ORA_GET_ACLIDS(t, 'SELECT', 'VIEW_LOC') from SCOTT.DEPT t;

10.5 ORA_CHECK_PRIVILEGE Function
The ORA_CHECK_PRIVILEGE function checks whether the specified privileges have been granted
to an application user. If the specified privileges have been granted to the application user,
ORA_CHECK_PRIVILEGE returns 1. This function only works for system privileges, such as
CREATE_SESSION. If the system privileges are not granted to the application user, then it returns
0.

Syntax

ORA_CHECK_PRIVILEGE(
 (privs IN VARCHAR(128))+)
return NUMBER;

Parameters

Parameter Description

privs The privilege names being checked. The maximum number of privileges
allowed is 100.

Examples

The following example uses ORA_CHECK_PRIVILEGE to check whether the application user has
been granted the CREATE_SESSION system privilege.

SELECT ORA_CHECK_PRIVILEGE('CREATE_SESSION') FROM DUAL;

10.6 TO_ACLID Function
The TO_ACLID function returns the ACL IDs of the ACL names supplied to it.

Syntax

TO_ACLID(
 (acls IN VARCHAR(128))+)
return NUMBER;

Parameters

Parameter Description

acls The ACL names whose ACL IDs are returned.

Examples

The following example uses the TO_ACLID function to return the ACL ID for ACL1.

Chapter 10
ORA_CHECK_PRIVILEGE Function

10-5

SELECT ORA_CHECK_ACL(TO_ACLID('ACL1'),'P1', 'P2') INTO ACLRESULT FROM DUAL;

Chapter 10
TO_ACLID Function

10-6

11
Oracle Database Real Application Security PL/
SQL Packages

This chapter describes the PL/SQL packages that are available with Oracle Database Real
Application Security.

Table 11-1 lists these packages. Detailed information on each package follows this table.

Table 11-1 Oracle Database Real Application Security PL/SQL Packages

PL/SQL Package Description

DBMS_XS_SESSIONS Package Includes subprograms to manage an application session.

XS_ACL Package Includes subprograms to create, manage, and delete Access
Control Lists (ACLs) and to add and remove parameter values.

XS_ADMIN_UTIL Package Includes helper subprograms.

XS_DATA_SECURITY Package Includes subprograms to create, manage, and delete data
security policies, associated data realm constraints, column
constraints, and ACL parameters.

XS_DATA_SECURITY_UTIL Package Includes subprograms to schedule automatic refreshment for
static ACL to a user table and change the ACL refreshment
mode to on-commit or on-demand refresh.

XS_DIAG Package Includes subprograms to diagnose potential problems in Real
Application Security objects and report identified
inconsistencies.

XS_NAMESPACE Package Includes subprograms to create, manage, and delete
namespace templates and attributes.

XS_PRINCIPAL Package Includes subprograms to create, manage, and delete
application users and roles.

XS_SECURITY_CLASS Package Includes subprograms to create, manage, and delete security
classes and their privileges. Also includes subprograms for
managing security class inheritance.

This section describes the following Oracle Database Real Application Security PL/
SQL packages:

11.1 DBMS_XS_SESSIONS Package
The DBMS_XS_SESSIONS package manages an application session.

This section includes the following topics:

• Security Model

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of DBMS_XS_SESSIONS Subprograms

11-1

11.1.1 Security Model
The DBMS_XS_SESSIONS package is created in the SYS schema. The privilege to execute the
package is granted to PUBLIC. The executing user must have the appropriate privilege for the
particular operation.

11.1.2 Constants
The following constants define operation codes passed into namespace event handling
functions:

attribute_first_read_operation CONSTANT PLS_INTEGER := 1;
modify_attribute_operation CONSTANT PLS_INTEGER := 2;

The following constants represent bit values that identify events of interest for a particular
attribute in a namespace that has an event handling function:

attribute_first_read_event CONSTANT PLS_INTEGER := 1;
modify_attribute_event CONSTANT PLS_INTEGER := 2;

The following constants define return codes that can be returned by a namespace event
handling function:

event_handling_succeeded CONSTANT PLS_INTEGER := 0;
event_handling_failed CONSTANT PLS_INTEGER := 1;

The following constants are used as input into the ADD_GLOBAL_CALLBACK,
DELETE_GLOBAL_CALLBACK, and ENABLE_GLOBAL_CALLBACK procedures:

create_session_event CONSTANT PLS_INTEGER := 1;
attach_session_event CONSTANT PLS_INTEGER := 2;
guest_to_user_event CONSTANT PLS_INTEGER := 3;
proxy_to_user_event CONSTANT PLS_INTEGER := 4;
revert_to_user_event CONSTANT PLS_INTEGER := 5;
enable_role_event CONSTANT PLS_INTEGER := 6;
disable_role_event CONSTANT PLS_INTEGER := 7;
enable_dynamic_role_event CONSTANT PLS_INTEGER := 8;
disable_dynamic_role_event CONSTANT PLS_INTEGER := 9;
detach_session_event CONSTANT PLS_INTEGER := 10;
terminate_session_event CONSTANT PLS_INTEGER := 11;
direct_login_event CONSTANT PLS_INTEGER := 12;
direct_logoff_event CONSTANT PLS_INTEGER := 13;

11.1.3 Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are defined
for this package.

CREATE OR REPLACE TYPE DBMS_XS_NSATTR AS OBJECT (
 --- Member variables
 namespace varchar2(130),
 attribute varchar2(4000),
 attribute_value varchar2(4000),

 --- Constructor for DBMS_XS_NSATTR type
 --- Only namespace name is mandatory
 CONSTRUCTOR FUNCTION DBMS_XS_NSATTR(
 namespace IN VARCHAR2,

Chapter 11
DBMS_XS_SESSIONS Package

11-2

 attribute IN VARCHAR2 DEFAULT NULL,
 attribute_value IN VARCHAR2 DEFAULT NULL)
 RETURN SELF AS RESULT);

CREATE OR REPLACE PUBLIC SYNONYM DBMS_XS_NSATTR FOR SYS.DBMS_XS_NSATTR;
CREATE OR REPLACE TYPE DBMS_XS_NSATTRLIST AS VARRAY(1000) OF DBMS_XS_NSATTR;
CREATE OR REPLACE PUBLIC SYNONYM DBMS_XS_NSATTRLIST FOR SYS.DBMS_XS_NSATTRLIST;
GRANT EXECUTE ON DBMS_XS_NSATTR TO PUBLIC;
GRANT EXECUTE ON DBMS_XS_NSATTRLIST TO PUBLIC;
CREATE OR REPLACE PUBLIC SYNONYM DBMS_XS_SESSIONS FOR SYS.DBMS_XS_SESSIONS;
GRANT EXECUTE ON DBMS_XS_SESSIONS TO PUBLIC;

11.1.4 Summary of DBMS_XS_SESSIONS Subprograms

Table 11-2 Summary of DBMS_XS_SESSIONS Subprograms

Subprogram Description

CREATE_SESSION Procedure Creates a new application session for the specified application user
name.

ATTACH_SESSION Procedure Attaches the current traditional database session to the application
session identified by the session ID.

ASSIGN_USER Procedure Assigns a named user to the currently attached anonymous Real
Application Security session.

SWITCH_USER Procedure Switches the application user in the currently attached session.

CREATE_NAMESPACE Procedure Creates a new application namespace in the currently attached
application session.

CREATE_ATTRIBUTE Procedure Creates a new custom attribute for the specified application
namespace in the currently attached application session.

SET_ATTRIBUTE Procedure Sets a new value for the specified attribute in the namespace in the
currently attached application session.

GET_ATTRIBUTE Procedure Gets the value of an attribute in the namespace in the currently
attached application session.

RESET_ATTRIBUTE Procedure Resets an application namespace attribute to its original value in the
specified namespace in the currently attached application session.

DELETE_ATTRIBUTE Procedure Deletes the specified attribute from the specified namespace in the
currently attached application session.

DELETE_NAMESPACE Procedure Deletes the specified namespace and its attributes from the
currently attached application session.

ENABLE_ROLE Procedure Enables a real application role in the currently attached application
session.

DISABLE_ROLE Procedure Disables a real application role from the currently attached
application session.

SET_SESSION_COOKIE Procedure Sets a new cookie value with the specified session ID.

REAUTH_SESSION Procedure Updates the last authentication time for the session identified by
specified session ID.

SET_INACTIVITY_TIMEOUT Procedure Sets an inactivity timeout value, in minutes, for the specified
session.

SAVE_SESSION Procedure Saves or persists the changes performed in the currently attached
session.

DETACH_SESSION Procedure Detaches the current traditional database session from the
application session to which it is attached.

Chapter 11
DBMS_XS_SESSIONS Package

11-3

Table 11-2 (Cont.) Summary of DBMS_XS_SESSIONS Subprograms

Subprogram Description

DESTROY_SESSION Procedure Destroys or terminates the session specified by the session ID.

ADD_GLOBAL_CALLBACK Procedure Registers an existing event handler with the database.

ENABLE_GLOBAL_CALLBACK Procedure Enables or disables the global callback for the session event
specified by the event_type parameter.

DELETE_GLOBAL_CALLBACK Procedure Deletes an existing global callback association.

This section describes the following DBMS_XS_SESSIONS subprograms:

11.1.4.1 CREATE_SESSION Procedure
The CREATE_SESSION procedure creates a new application session for the specified user name.
It returns a session identifier that you can use to reference the session in future calls.

The session can be created with a regular application user or an external application user. The
session can be created in trusted mode or secure mode. In trusted mode, data security checks
are bypassed; in secure mode, they are enforced.

The combination of regular session in trusted mode is not supported. Other combinations,
regular session in secure mode, external session in trusted mode, or external session in
secure mode are supported.

The namespaces parameter is a list of triplet namespaces to be created, the attribute to be
created, and the attribute value to be set. This is an optional parameter. The default value is
NULL. The XS$GLOBAL_VAR and XS$SESSION namespaces and their attributes are always
available to the session.

This function does not attach the current traditional session to the newly created application
session. Use the ATTACH_SESSION Procedure to perform this task.

The user executing the procedure must have the CREATE_SESSION application privilege for the
application user specified by the username parameter. You can also specify a list of
namespaces to be created when the session is created. If you specify namespaces during
creation of the session, the caller is required to be granted application privileges
MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or be granted the
ADMIN_NAMESPACE system privilege.

Syntax

CREATE_SESSION (
 username IN VARCHAR2,
 sessionid OUT NOCOPY RAW,
 is_external IN BOOLEAN DEFAULT FALSE,
 is_trusted IN BOOLEAN DEFAULT FALSE,
 namespaces IN DBMS_XS_NSATTRLIST DEFAULT NULL,
 cookie IN VARCHAR2 DEFAULT NULL);

Chapter 11
DBMS_XS_SESSIONS Package

11-4

Parameters

Parameter Description

username The name of a regular application user or an external application user for
which to create the application session.

To find a listing of the user names and application roles for the current session,
query the DBA_XS_USERS data dictionary view. To find all application users
and roles, query the DBA_XS_PRINCIPALS data dictionary view as follows:

Users:

SELECT NAME FROM DBA_XS_USERS;

Roles:

SELECT NAME FROM DBA_XS_ROLES;

SELECT NAME FROM DBA_XS_DYNAMIC_ROLES;

sessionid Session ID of the newly created application session. You can get the session
ID by using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM
DUAL;

• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

is_external Specifies whether the session is to be created as an external principal session.
This is an optional parameter. The default value is FALSE, indicating that a
regular session is to be created. A NULL value is taken to mean FALSE.

is_trusted Specifies if the session is to be created in trusted mode or secure mode. In
trusted mode, data security checks are bypassed; in secure mode, they are
enforced. This is an optional parameter. The default value is FALSE, indicating
secure mode. A NULL value is taken to mean FALSE.

namespaces The list of name, attribute, and attribute value triplet. If the namespace is not
accessible to the session or no such namespace template exists, an error is
thrown.

cookie Specifies the server cookie to be set for the session. This is an optional
parameter. The default value is NULL. The maximum allowed length of the
cookie is 1024 bytes.

Examples

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid, FALSE, FALSE, nsList);
END;

11.1.4.2 ATTACH_SESSION Procedure
The ATTACH_SESSION procedure attaches the current traditional database session to the
application session identified by the session ID (session_id). The attached session enables
the roles granted (directly or indirectly) to the application user with which the session was
created and the session scope dynamic application roles that were enabled until the last
detach of this session. If you execute ATTACH_SESSION with a list of dynamic application roles
using the optional parameter enable_dynamic_roles, the provided dynamic application roles

Chapter 11
DBMS_XS_SESSIONS Package

11-5

are enabled for the session. To disable a list of dynamic roles, specify the list using the optional
parameter disable_dynamic_roles.

You can specify a list of triplet values (namespace, attribute, attribute value) during the attach
operation. The namespaces and attributes are then created and attribute values set. This is in
addition to any namespaces and attributes that were present in the session.

To execute this procedure, the traditional session user must have the ATTACH_SESSION
application privilege. If you specify namespaces, then the user is required to be granted
application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or
ADMIN_NAMESPACE system privilege.

A self password change is allowed using the SQL*Plus PASSWORD command if invoked from an
explicitly attached session (a session attached using the ATTACH_SESSION procedure or the
attachSession() method in Java), provided that session has the ALTER_USER privilege and the
user name is provided with the PASSWORD command.

Syntax

ATTACH_SESSION (
 sessionid IN RAW,
 enable_dynamic_roles IN XS$NAME_LIST DEFAULT NULL,
 disable_dynamic_roles IN XS$NAME_LIST DEFAULT NULL,
 external_roles IN XS$NAME_LIST DEFAULT NULL,
 authentication_time IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 namespaces IN DBMS_XS_NSATTRLIST DEFAULT NULL);

Parameters

Parameter Description

sessionid Session ID of the application session. You can get the session ID by
using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION',
'SESSION_ID') FROM DUAL;

• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

enable_dynamic_roles A list of dynamic roles to be granted to be enabled in the application
session. This is an optional parameter. If any of the dynamic roles
specified does not exist, the attach session fails. If the session is an
external principal session, a list of external roles can be specified
for enabling. These roles will remain enabled until detach and will
not be enabled in the next attach by default.

To find a listing of the application roles for the current session,
query the DBA_XS_SESSION_ROLES data dictionary view. To find
a listing of all dynamic application roles, query the
DBA_XS_PRINCIPALS data dictionary view as follows:

SELECT NAME, TYPE FROM DBA_XS_PRINCIPALS;

disable_dynamic_roles A list of dynamic roles to be disabled from the session. This is an
optional parameter.

external_roles A list of external roles if the session is an external principal session.
This is an optional parameter. These external roles remain enabled
until a detach operation and are not enabled again in the next
attach by default.

authentication_time The updated authentication time for the session. This is an optional
parameter. The time must be specified in the following format:

YYYY-MM-DD HH:MI:SS.FF TZR

Chapter 11
DBMS_XS_SESSIONS Package

11-6

Parameter Description

namespaces The list of name, attribute, and attribute value triplet. If the
namespace is not accessible to the session or no such namespace
template exists, an error is thrown.

Examples

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid, NULL, NULL, NULL, NULL, nsList);
END;

11.1.4.3 ASSIGN_USER Procedure
The ASSIGN_USER procedure assigns a named application user to the currently attached
anonymous application session.

Roles enabled in the current session are retained after this operation. The optional parameters
enable_dynamic_roles and disable_dynamic_roles specify the additional lists of dynamic
roles to be enabled or disabled. If the assigned user is external, you can specify a list of
external roles to be enabled.

You can specify a list of triplet values (namespace, attribute, attribute value) during the assign
operation. The namespaces and attributes are then created in the session and attribute values
set. This is in addition to any namespaces and attributes that were already present in the
session.

To execute this procedure, the dispatcher or connection user must have the ASSIGN_USER
application privilege. If you specify namespaces, then the user is required to be granted
application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or
ADMIN_NAMESPACE system privilege.

Syntax

DBMS_XS_SESSIONS.ASSIGN_USER (
 username IN VARCHAR2,
 is_external IN BOOLEAN DEFAULT FALSE,
 enable_dynamic_roles IN XS$NAME_LIST DEFAULT NULL,
 disable_dynamic_roles IN XS$NAME_LIST DEFAULT NULL,
 external_roles IN XS$NAME_LIST DEFAULT NULL,
 authentication_time IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 namespaces IN DBMS_XS_NSATTRLIST DEFAULT NULL);

Parameters

Parameter Description

username The name of the real application user.

To find a listing of existing application users, query the
DBA_XS_PRINCIPALS data dictionary view as follows:

SELECT NAME FROM DBA_XS_PRINCIPALS;

Chapter 11
DBMS_XS_SESSIONS Package

11-7

Parameter Description

is_external Specifies whether the named application user is an external user.
This is an optional parameter. The default value is FALSE, indicating
that a regular application user is assigned. A NULL value is taken to
mean FALSE.

enable_dynamic_roles A list of dynamic roles to be enabled in an application session. This
is an optional parameter.

To find a listing of the application roles for the current session, query
the V$XS_SESSION_ROLES data dictionary view. To find a listing
of all dynamic application roles, query the
DBA_XS_DYNAMIC_ROLES data dictionary view as follows:

SELECT NAME FROM DBA_XS_DYNAMIC_ROLES;

disable_dynamic_roles A list of dynamic roles to be disabled from the session. This is an
optional parameter.

external_roles A list of external roles if the application user is an external
application user. This is an optional parameter.

authentication_time The updated authentication time for the session. This is an optional
parameter. The time must be specified in the following format:

YYYY-MM-DD HH:MI:SS.FF TZR
namespaces The list of name, attribute, and attribute value triplet. If the

namespace is not accessible to the session or no such namespace
template exists, an error is thrown.

Examples

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DB);
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.ASSIGN_USER(username => 'lwuser2',
 namespaces => nsList);
END;

11.1.4.4 SWITCH_USER Procedure
The SWITCH_USER procedure switches the application user in the currently attached session.
The current application user must be a proxy user for the target application user before
performing the switch operation by using the XS_PRINCIPAL.ADD_PROXY_USER PL/SQL API to
acquire the proxy of another application user privilege. The list of filtering application roles of
the target user gets enabled in the session.

You can retain current application namespaces of the session or discard them. You can also
specify a list of namespaces to be created and attribute values to be set after the switch. If you
specify namespaces, then the user is required to be granted application privileges
MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or ADMIN_NAMESPACE system
privilege.

Syntax

SWITCH_USER (
 username IN VARCHAR2,

Chapter 11
DBMS_XS_SESSIONS Package

11-8

 keep_state IN BOOLEAN DEFAULT FALSE,
 namespaces IN DBMS_XS_NSATTRLIST DEFAULT NULL);

Parameters

Parameter Description

username User name of the user whose security context you want to switch to.

To find a listing of existing application users, query the DBA_XS_USERS
data dictionary view as follows:

SELECT NAME FROM DBA_XS_USERS;

keep_state Controls whether application namespaces are retained.

Possible values are:

• TRUE: Sets all other session states to remain unchanged.

• FALSE: Clears the previous state in the session. The default value.

namespaces The list of name, attribute, and attribute value triplet. If the namespace is not
accessible to the session or no such namespace template exists, an error is
thrown.

Examples

DECLARE
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.SWITCH_USER(username => 'lwuser2',
 keep_state => TRUE,
 namespaces => nsList);
END;

11.1.4.5 CREATE_NAMESPACE Procedure
The CREATE_NAMESPACE procedure creates a new namespace in the currently attached
application session. The namespace template corresponding to the namespace must exist in
the system, else this operation throws an error. After this operation, the namespace along with
its attributes as they are created in the template are available to the session.

The calling user must have the MODIFY_NAMESPACE application privilege.

Syntax

CREATE_NAMESPACE(
 namespace IN VARCHAR2);

Chapter 11
DBMS_XS_SESSIONS Package

11-9

Parameters

Parameter Description

namespace The name of the namespace to create. There must be an existing namespace
template document with this name. The maximum size of the case sensitive character
string is 128 characters.

To find a listing of existing namespaces for the current session, once attached, query
the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can query the
DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out all the
namespaces in all application sessions.

You can query the DBA_XS_NS_TEMPLATES and
DBA_XS_NS_TEMPLATE_ATTRIBUTES data dictionary views for a list of namespace
templates and attributes.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('J_NS1');
END;

11.1.4.6 CREATE_ATTRIBUTE Procedure
The CREATE_ATTRIBUTE procedure creates a new custom attribute in the specified namespace
in the currently attached application session. If the namespace is not already available in the
session or no such namespace templates exist, an error is thrown.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege.

Syntax

PROCEDURE create_attribute(
namespace IN VARCHAR2,
attribute IN VARCHAR2,
value IN VARCHAR2 DEFAULT NULL,
eventreg IN PLS_INTEGER DEFAULT NULL);

Parameters

Parameter Description

namespace The namespace in which the attribute gets created. If the namespace does not exist
in the session, an error is thrown. The maximum size of the case sensitive character
string is 128 characters.

attribute The name of the attribute to be created. The maximum size of the case sensitive
character string is 4000 characters.

value The default value for the attribute. The maximum size of the case sensitive character
string is 4000 characters.

Chapter 11
DBMS_XS_SESSIONS Package

11-10

Parameter Description

eventreg The event for which the handler is executed for the attribute. This is an optional
parameter. This parameter can take the following values:

• DBMS_XS_SESSIONS.attribute_first_read_event
The handler function is called whenever an attribute get request is received and
the value for the attribute has not been set. This event can be registered only if
the default value is set to NULL. This value corresponds with the
FIRSTREAD_EVENT constant in the XS_NAMESPACE package or Admin API.

• DBMS_XS_SESSIONS.modify_attribute_event:

The handler function is called whenever an attribute set request is received. This
value corresponds with the UPDATE_EVENT constant in the in the XS_NAMESPACE
package or Admin API.

If the attribute is registered for first read event, then the handler is executed if the
attribute is uninitialized, before returning the value. If the update event is registered,
the handler gets called whenever the attribute is modified. Events can be registered
only if the namespace has an event handler, else an error is thrown.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_ATTRIBUTE('NS1','NS1CUSTOM','NS1CUSTOMDEFAULT');
END;

-- Example with firstRead event set
BEGIN
SYS.DBMS_XS_SESSIONS.create_Attribute('ns1','attr4',NULL,
 DBMS_XS_SESSIONS.attribute_first_read_event);
END;

11.1.4.7 SET_ATTRIBUTE Procedure
The SET_ATTRIBUTE procedure sets a new value for the specified attribute in the namespace
associated with the currently attached session. The handler function is called if the update
event is set for the attribute. If the namespace does not exist or is deleted, an error is thrown. If
there is no template corresponding to the namespace that exists, an error is thrown.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege.

Syntax

SET_ATTRIBUTE (
 namespace IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN VARCHAR2);

Chapter 11
DBMS_XS_SESSIONS Package

11-11

Parameters

Parameter Description

namespace Name of the namespace associated with the attribute. The maximum size of the
case sensitive character string is 128 characters.

To find a listing of existing namespaces for the current session, once attached,
query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can query the
DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out all the
namespaces in all application sessions.

You can query the DBA_XS_NS_TEMPLATES and
DBA_XS_NS_TEMPLATE_ATTRIBUTES data dictionary views for a list of namespace
templates and attributes.

attribute Name of an existing attribute in an existing namespace.

To find a listing of existing namespace attributes, query the
V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

value New value for the attribute. The maximum size of the case sensitive character string
is 4000 characters.

To find an listing of existing values associated with the attribute, query the
V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('J_NS','JohnNSAttr1','John bio');
END;

11.1.4.8 GET_ATTRIBUTE Procedure
The GET_ATTRIBUTE procedure gets the value of the specified attribute in the namespace in the
currently attached session. If no template corresponding to the namespace exists, an error is
thrown. If the specified attribute does not exist, it returns empty string.

If the attribute value is NULL, the firstRead event is set, and it is the first time that the attribute
value is being fetched, then the handler function for the attribute is called.

The calling user is not required to be granted any privileges.

Syntax

GET_ATTRIBUTE (
 namespace IN VARCHAR2,
 attribute IN VARCHAR2,
 value OUT NOCOPY VARCHAR2);

Parameters

Parameter Description

namespace The namespace of the attribute to retrieve. The maximum size of the case sensitive
character string is 128 characters.

To find a listing of existing namespaces for the current session, once attached, query
the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can query the
DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out all the
namespaces in all application sessions.

Chapter 11
DBMS_XS_SESSIONS Package

11-12

Parameter Description

attribute The name of the attribute to retrieve. The maximum size of the case sensitive
character string is 4000 characters. To find a listing of available attributes, query the
V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

value The value of the attribute to retrieve.

To find a listing of available attribute values, query the
V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

Examples

DECLARE
attrVal VARCHAR2(4000);

BEGIN
 SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('J_NS1','JohnNS1Attr1',attrVal);
END;

11.1.4.9 RESET_ATTRIBUTE Procedure
The RESET_ATTRIBUTE procedure resets the value of an attribute to its default value (if present)
or to NULL in the namespace in the current attached session. If the attribute has a default value
specified, then the value is reset to the default value. If the attribute was created without a
default value and marked for the attribute_first_read_event, then the value is set to NULL
and the attribute is marked as uninitialized. If the attribute was created without a default value
and not marked for the attribute_first_read_event, then the value is set to NULL.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege.

Syntax

PROCEDURE reset_attribute(
namespace IN VARCHAR2,
attribute IN VARCHAR2);

Parameters

Parameter Description

namespace The name of the namespace containing the attribute. The maximum size of the
case sensitive character string is 128 characters.

attribute The name of the attribute to be reset. The maximum size of the case sensitive
character string is 4000 characters.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.RESET_ATTRIBUTE('ns2','attr1');
END;

11.1.4.10 DELETE_ATTRIBUTE Procedure
The DELETE_ATTRIBUTE procedure deletes the specified attribute and its associated value from
the specified namespace in the currently attached session. Only custom attributes can be
deleted. Template attributes cannot be deleted. If the specified attribute does not exist, an error
is thrown.

Chapter 11
DBMS_XS_SESSIONS Package

11-13

The calling application is required to be granted the MODIFY_ATTRIBUTE application privilege.

Syntax

DELETE_ATTRIBUTE (
 namespace IN VARCHAR2,
 attribute IN VARCHAR2);

Parameters

Parameter Description

namespace The namespace associated with the attribute to delete. The maximum size of the case
sensitive character string is 128 characters.

To find a listing of existing namespaces for the current session, once attached, query
the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can query the
DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out all the
namespaces in all application sessions.

You can query the DBA_XS_NS_TEMPLATES and DBA_XS_NS_TEMPLATE_ATTRIBUTES
data dictionary views for a list of namespace templates and attributes.

attribute The attribute to delete.

To find a listing of existing namespaces for the current session, once attached, query
the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can query the
DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out all the
namespaces in all application sessions.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DELETE_ATTRIBUTE('JohnNS1','JohnNS1Attr1');
END;

11.1.4.11 DELETE_NAMESPACE Procedure
The DELETE_NAMESPACE procedure deletes a namespace and its attributes from the currently
attached application session.

The calling user must have the MODIFY_NAMESPACE application privilege.

Syntax

DELETE_NAMESPACE (
 namespace IN VARCHAR2);

Parameters

Parameter Description

namespace The name of the namespace to delete. The maximum size of the case sensitive
character string is 128 characters.

To find a listing of existing namespaces for the current session, once attached, query
the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can query the
DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out all the
namespaces in all application sessions.

You can query the DBA_XS_NS_TEMPLATES and DBA_XS_NS_TEMPLATE_ATTRIBUTES
data dictionary views for a list of namespace templates and attributes.

Chapter 11
DBMS_XS_SESSIONS Package

11-14

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DELETE_NAMESPACE('JohnNS1');
END;

11.1.4.12 ENABLE_ROLE Procedure
The ENABLE_ROLE procedure enables a real application role in the currently attached application
session. If the role is already enabled, then ENABLE_ROLE procedure performs no action. This
procedure can only enable a regular application role directly granted to the current application
user. You cannot enable dynamic application roles.

This operation does not require the calling user to have any additional privilege.

Syntax

ENABLE_ROLE (
 role IN VARCHAR2);

Parameters

Parameter Description

role The name of the role to enable. The maximum size of the case sensitive character
string is 128 characters.

To find a listing of the application roles for the current session, query the
V$XS_SESSION_ROLES data dictionary view. To find all application roles, query the
DBA_XS_SESSION_ROLES data dictionary view as follows:

SELECT ROLE_NAME FROM V$XS_SESSION_ROLES;

SELECT SESSIONID, ROLE FROM DBA_XS_SESSION_ROLES;

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.ENABLE_ROLE('auth2_role');
END;

11.1.4.13 DISABLE_ROLE Procedure
The DISABLE_ROLE procedure disables a real application role from the specified application
session. If the role is already disabled or not enabled in the currently attached application
session, then DISABLE_ROLE performs no action. You cannot disable dynamic application roles.
You can only disable a regular application role, which is directly granted to the application user
with which the session is created.

This operation does not require the calling user to have any additional privilege.

Syntax

DISABLE_ROLE (
 role IN VARCHAR2);

Chapter 11
DBMS_XS_SESSIONS Package

11-15

Parameters

Parameter Description

role The name of the role to disable. The maximum size of the case sensitive character
string is 128 characters.

To find a listing of the application roles for the current session, query the
V$XS_SESSION_ROLES data dictionary view. To find all application roles, query the
DBA_XS_SESSION_ROLES data dictionary view as follows:

SELECT ROLE_NAME FROM V$XS_SESSION_ROLES;

SELECT SESSIONID, ROLE FROM DBA_XS_SESSION_ROLES;

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DISABLE_ROLE('auth1_role');
END;

11.1.4.14 SET_SESSION_COOKIE Procedure
The SET_SESSION_COOKIE procedure sets a new cookie value with the specified session ID. If
the specified session does not exist or the cookie name is not unique among all the user
application sessions, then an error is thrown.

To execute this procedure, the user is required to be granted the MODIFY_SESSION application
privilege.

Syntax

SET_SESSION_COOKIE (
 cookie IN VARCHAR2,
 sessionid IN RAW DEFAULT NULL);

Parameters

Parameter Description

cookie A name for the new cookie. The maximum allowed length for the cookie is 1024
characters. Cookie names must be unique.

To find a listing of existing cookies for the current session, query
XS_SYS_CONTEXT(XS$SESSION','COOKIE').

sessionid Session ID of the application session. The default value is NULL. You can get the
session ID by using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM DUAL;
• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

If you do not specify a session ID or enter NULL, then SET_SESSION_COOKIE uses
the session ID of the current application session.

Examples

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);

Chapter 11
DBMS_XS_SESSIONS Package

11-16

 SYS.DBMS_XS_SESSIONS.SET_SESSION_COOKIE('cookie1', sessionid);
END;

11.1.4.15 REAUTH_SESSION Procedure
The REAUTH_SESSION procedure updates the last authentication time for the specified session
ID as the current time. Applications must call this procedure when it has reauthenticated an
application user.

Use the REAUTH_SESSION procedure to enable a role that has timed out because of a lack of
recent authentication in the application or middle-tier server. You can also call the
reauthSession Java method.

To execute this function, the user is required to be granted the MODIFY_SESSION application
privilege.

Syntax

REAUTH_SESSION (
 sessionid IN RAW DEFAULT NULL);

Parameters

Parameter Description

sessionid Session ID of the application session. This parameter is optional. The default value is
NULL. You can get the session ID by using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM DUAL;
• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

If you do not specify a session ID or enter NULL, then REAUTH_SESSION uses the
session ID of the current application session.

Examples

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.REAUTH_SESSION(sessionid);
END;

11.1.4.16 SET_INACTIVITY_TIMEOUT Procedure
The SET_INACTIVITY_TIMEOUT procedure sets an inactivity time-out value, in minutes, for the
current attached session. The inactivity time-out value represents the maximum period of
inactivity allowed before Oracle Database terminates the application session and the resource
is reclaimed. Trying to set a negative value for the time parameter throws an error. If an invalid
session ID is specified or the session does not exist, an error is thrown.

Another way to set the time-out value is to use the setInactivityTimeout Java method. You
can set a default global time-out value in the xmlconfig.xml configuration file. Oracle
recommends 240 (4 hours).

An application session cannot time-out due to inactivity while a traditional session is attached.
The last access time is updated each time a traditional session attaches to the application
session.

To execute this procedure, the calling user is required to be granted the MODIFY_SESSION
application privilege.

Chapter 11
DBMS_XS_SESSIONS Package

11-17

Syntax

SET_INACTIVITY_TIMEOUT (
 time IN NUMBER,
 sessionid IN RAW DEFAULT NULL);

Parameters

Parameter Description

time Inactivity time-out value in minutes. Oracle recommends setting the time parameter
to 240 (4 hours). A zero (0) value means the value is infinite and that the session
never expires due to inactivity.

sessionid Session ID of the application session. The default value is NULL. You can get the
session ID by using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM DUAL;
• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

If you do not specify a session ID or enter NULL, then SET_INACTIVITY_TIMEOUT
uses the session ID of the current application session.

Examples

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.SET_INACTIVITY_TIMEOUT (300, sessionid);
END;
/

11.1.4.17 SAVE_SESSION Procedure
The SAVE_SESSION procedure saves all changes performed in the currently attached session
and remains attached to the session as it was before saving changes.

The calling user requires no privileges to perform this operation.

Syntax

SAVE_SESSION;

Parameters

None.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.SAVE_SESSION;
END;

11.1.4.18 DETACH_SESSION Procedure
The DETACH_SESSION procedure detaches the current traditional database session from the
application session to which it is attached. The database sessions goes back to the context it
was in prior to attaching to the application session. Any user can execute this procedure as the
operation does not require any privileges to execute.

Chapter 11
DBMS_XS_SESSIONS Package

11-18

Syntax

DETACH_SESSION (abort IN BOOLEAN DEFAULT FALSE);

Parameters

Parameter Description

abort If specified as TRUE, it rolls back the changes performed in the current session. If
specified as FALSE, the default value, all changes performed in the session are
persisted. If a NULL value is specified for this parameter, it is treated as FALSE.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
END;

11.1.4.19 DESTROY_SESSION Procedure
The DESTROY_SESSION procedure destroys the specified session. This procedure also implicitly
detaches all traditional sessions from the application session. After the session is destroyed no
further attaches can be made to the session. This operation cannot destroy sessions created
through direct logon of the application user.

To execute this procedure, the user must have the TERMINATE_SESSION application privilege.

Syntax

DESTROY_SESSION (
 sessionid IN RAW,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Parameter Description

sessionid Session ID of the application session. You can get the session ID by using one of the
following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM DUAL;
• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

If you do not specify a session ID or enter NULL, then DESTROY_SESSION uses the
session ID of the current application session.

force If set to FALSE, this operation throws an error, in case the specified session is
currently attached. If set to TRUE, the currently attached application session can be
destroyed. This is an optional parameter.

Examples

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwtSession1', sessionid);
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION (sessionid);
END;

Chapter 11
DBMS_XS_SESSIONS Package

11-19

11.1.4.20 ADD_GLOBAL_CALLBACK Procedure
The ADD_GLOBAL_CALLBACK procedure registers an existing PL/SQL procedure as the event
handler with the session operation specified by the event_type parameter. You can add more
than one event handler for the same session operation for execution when the associated
event occurs. Adding the global callback procedure automatically enables the callback
procedure for execution. If more than one callback is added for the same session event, they
are executed in according to their registration sequence, that is, the callback procedure that
was registered first, is executed first. This procedure throws an error if an invalid event type is
specified or the callback procedure does not exist.

Successful execution of this procedure requires the CALLBACK application privilege. This role
can be obtained through PROVISIONER database role.

Syntax

ADD_GLOBAL_CALLBACK(
 event_type IN PLS_INTEGER,
 callback_schema IN VARCHAR2,
 callback_package IN VARCHAR2,
 callback_procedure IN VARCHAR2);

Parameters

Parameter Description

event_type Select from the following event types:

• CREATE_SESSION_EVENT
• ATTACH_SESSION_EVENT
• CREATE_NAMESPACE_EVENT
• GUEST_TO_USER_EVENT
• PROXY_TO_USER_EVENT
• REVERT_TO_USER_EVENT
• ENABLE_ROLE_EVENT
• DISABLE_ROLE_EVENT
• ENABLE_DYNAMIC_ROLE_EVENT
• DISABLE_DYNAMIC_ROLE_EVENT
• DETACH_SESSION_EVENT
• TERMINATE_SESSION_EVENT
• DIRECT_LOGIN_EVENT

callback_schema Enter the name of the schema in which the callback procedure was
created.

callback_package Enter the name of the package in which the callback procedure was
created. If callback procedure is standalone, NULL should be
passed as callback_package parameter. This parameter is
optional only if the callback procedure is in a package.

callback_procedure Enter the name of the procedure that defines the global callback.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK (
 DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,

Chapter 11
DBMS_XS_SESSIONS Package

11-20

 'APPS1_SCHEMA','APPS2_PKG','CREATE_SESSION_CB');
END;

11.1.4.21 ENABLE_GLOBAL_CALLBACK Procedure
The ENABLE_GLOBAL_CALLBACK procedure enables or disables the global callback procedure for
execution. If a callback procedure associated with this event is not specified, all callback
procedures associated with this global callback are enabled or disabled. If an invalid event type
is specified or invalid callback procedure is specified, an error is thrown.

Syntax

ENABLE_GLOBAL_CALLBACK(
 event_type IN PLS_INTEGER,
 enable IN BOOLEAN DEFAULT TRUE,
 callback_schema IN VARCHAR2 DEFAULT NULL,
 callback_package IN VARCHAR2 DEFAULT NULL,
 callback_procedure IN VARCHAR2 DEFAULT NULL);

Parameters

Parameter Description

event_type Select from the following event types:

• CREATE_SESSION_EVENT
• ATTACH_SESSION_EVENT
• CREATE_NAMESPACE_EVENT
• GUEST_TO_USER_EVENT
• PROXY_TO_USER_EVENT
• REVERT_TO_USER_EVENT
• ENABLE_ROLE_EVENT
• DISABLE_ROLE_EVENT
• ENABLE_DYNAMIC_ROLE_EVENT
• DISABLE_DYNAMIC_ROLE_EVENT
• DETACH_SESSION_EVENT
• TERMINATE_SESSION_EVENT
• DIRECT_LOGIN_EVENT

enable Specifies whether the global callback is to be enabled or disabled.
The default value is TRUE, meaning enable.

callback_schema Enter the name of the schema in which the global callback was
created.

callback_package Enter the name of the package in which the global callback was
created.

callback_procedure Enter the name of the procedure that defines the global callback.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.ENABLE_GLOBAL_CALLBACK (
 DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,
 TRUE, 'APPS1_SCHEMA','APPS2_PKG','CREATE_SESSION_CB');
END;

Chapter 11
DBMS_XS_SESSIONS Package

11-21

11.1.4.22 DELETE_GLOBAL_CALLBACK Procedure
The DELETE_GLOBAL_CALLBACK procedure removes the global callback from registration. (It
does not delete the global callback itself.) If a callback procedure is not specified, all callback
procedures associated with this global callback are deleted. If an invalid event type is
specified, an error is thrown.

Syntax

DELETE_GLOBAL_CALLBACK(
 event_type IN PLS_INTEGER,
 callback_schema IN VARCHAR2 DEFAULT NULL,
 callback_package IN VARCHAR2 DEFAULT NULL,
 callback_procedure IN VARCHAR2 DEFAULT NULL);

Parameters

Parameter Description

event_type Select from the following event types:

• CREATE_SESSION_EVENT
• ATTACH_SESSION_EVENT
• CREATE_NAMESPACE_EVENT
• GUEST_TO_USER_EVENT
• PROXY_TO_USER_EVENT
• REVERT_TO_USER_EVENT
• ENABLE_ROLE_EVENT
• DISABLE_ROLE_EVENT
• ENABLE_DYNAMIC_ROLE_EVENT
• DISABLE_DYNAMIC_ROLE_EVENT
• DETACH_SESSION_EVENT
• TERMINATE_SESSION_EVENT
• DIRECT_LOGIN_EVENT

callback_schema Enter the name of the schema in which the global callback was
created.

callback_package Enter the name of the package in which the global callback was
created.

callback_procedure Enter the name of the procedure that defines the global callback.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK (
 DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,
 'APPS1_SCHEMA','APPS2_PKG','CREATE_SESSION_CB');
END;

11.2 XS_ACL Package
The XS_ACL package creates procedures to create and manage Access Control Lists (ACLs).

This section includes the following topics:

• Security Model for the XS_ACL Package

Chapter 11
XS_ACL Package

11-22

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_ACL Subprograms

11.2.1 Security Model for the XS_ACL Package
The XS_ACL package is created under the SYS schema.

The DBA role is granted the ADMIN_ANY_SEC_POLICY privilege, which allows it to administer
schema objects like ACLs, security classes, and security policies across all schemas.

Users can administer schema objects in their own schema if they have been granted the
RESOURCE role for the schema. The RESOURCE role and the XS_RESOURCE application role include
the ADMIN_SEC_POLICY privilege, required to administer schema objects in the schema as well
as administering the policy artifacts within the granted schema to achieve policy management
within an application.

Users can administer policy enforcement on the schema if they have been granted the
APPLY_SEC_POLICY privilege. With this privilege, the user can administer policy enforcement
within granted schemas to achieve policy management within an application.

11.2.2 Constants
The following constants define the parent ACL type:

EXTENDED CONSTANT PLS_INTEGER := 1;
CONSTRAINED CONSTANT PLS_INTEGER := 2;

The following constants define the principal's type:

PTYPE_XS CONSTANT PLS_INTEGER := 1;
PTYPE_DB CONSTANT PLS_INTEGER := 2;
PTYPE_DN CONSTANT PLS_INTEGER := 3;
PTYPE_EXTERNAL CONSTANT PLS_INTEGER := 4;

The following constants define the parameter's value type:

TYPE_NUMBER CONSTANT PLS_INTEGER := 1;
TYPE_VARCHAR CONSTANT PLS_INTEGER := 2;

11.2.3 Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are defined
for this package.

-- Type definition for ACE
CREATE OR REPLACE TYPE XS$ACE_TYPE AS OBJECT (

-- Member Variables
 privilege_list XS$NAME_LIST,
 is_grant_ace NUMBER,
 is_invert_principal NUMBER,
 principal_name VARCHAR2(130),
 principal_type NUMBER,
 start_date TIMESTAMP WITH TIME ZONE,
 end_date TIMESTAMP WITH TIME ZONE,

 CONSTRUCTOR FUNCTION XS$ACE_TYPE (

Chapter 11
XS_ACL Package

11-23

 privilege_list IN XS$NAME_LIST,
 granted IN BOOLEAN := TRUE,
 inverted IN BOOLEAN := FALSE,
 principal_name IN VARCHAR2,
 principal_type IN PLS_INTEGER := 1,
 start_date IN TIMESTAMP WITH TIME ZONE := NULL,
 end_date IN TIMESTAMP WITH TIME ZONE := NULL)
 RETURN SELF AS RESULT,

 MEMBER PROCEDURE set_privileges(privilege_list IN XS$NAME_LIST),
 MEMBER FUNCTION get_privileges RETURN XS$NAME_LIST,
 MEMBER PROCEDURE set_grant(granted IN BOOLEAN),
 MEMBER FUNCTION is_granted RETURN BOOLEAN,
 MEMBER PROCEDURE set_inverted_principal(inverted IN BOOLEAN),
 MEMBER FUNCTION is_inverted_principal RETURN BOOLEAN,
 MEMBER PROCEDURE set_principal(principal_name IN VARCHAR2),
 MEMBER FUNCTION get_principal RETURN VARCHAR2,
 MEMBER PROCEDURE set_principal_type (principal_type IN PLS_INTEGER),
 MEMBER FUNCTION get_principal_type RETURN PLS_INTEGER,
 MEMBER PROCEDURE set_start_date(start_date IN TIMESTAMP WITH TIME ZONE),
 MEMBER FUNCTION get_start_date RETURN TIMESTAMP WITH TIME ZONE,
 MEMBER PROCEDURE set_end_date(end_date IN TIMESTAMP WITH TIME ZONE),
 MEMBER FUNCTION get_end_date RETURN TIMESTAMP WITH TIME ZONE
);
CREATE OR REPLACE TYPE XS$ACE_LIST AS VARRAY(1000) OF XS$ACE_TYPE;

11.2.4 Summary of XS_ACL Subprograms

Table 11-3 Summary of XS_ACL Subprograms

Subprogram Description

CREATE_ACL Procedure Creates an Access Control List (ACL).

APPEND_ACES Procedure Adds one or more Access Control Entries (ACEs) to an
existing ACL.

REMOVE_ACES Procedure Removes all ACEs from an ACL.

SET_SECURITY_CLASS Procedure Sets or modifies the security class for an ACL.

SET_PARENT_ACL Procedure Sets or modifies the parent ACL for an ACL.

ADD_ACL_PARAMETER Procedure Adds an ACL parameter value for a data security policy.

REMOVE_ACL_PARAMETERS
Procedure

Removes ACL parameters and values for an ACL.

SET_DESCRIPTION Procedure Sets a description string for an ACL.

DELETE_ACL Procedure Deletes the specified ACL.

This section describes the following XS_ACL subprograms:

11.2.4.1 CREATE_ACL Procedure
The CREATE_ACL procedure creates a new Access Control List (ACL).

Syntax

XS_ACL.CREATE_ACL (name IN VARCHAR2,
 ace_list IN XS$ACE_LIST,
 sec_class IN VARCHAR2 := NULL,

Chapter 11
XS_ACL Package

11-24

 parent IN VARCHAR2 := NULL,
 inherit_mode IN PLS_INTEGER := NULL,
 description IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the ACL to be created.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the current
schema is SCOTT, it would resolve to SCOTT.ACL1.

ace_list The list of Access Control Entries (ACEs) in the ACL.

sec_class The name of the security class that specifies the scope or type of the ACL. If no
security class is specified, then the DML class is used as the default security
class.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the current
schema is SCOTT, it would resolve to SCOTT.ACL1.

parent The parent ACL name, if any.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the current
schema is SCOTT, it would resolve to SCOTT.ACL1.

inherit_mode The inheritance mode if a parent ACL is specified. The allowed values are:
EXTENDED or CONSTRAINED.

description An optional description for the ACL.

Examples

The following example creates an ACL called HRACL. This ACL includes ACEs contained in
ace_list. The privileges used in ace_list are part of the HRPRIVS security class.

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"','VIEW_SENSITIVE_INFO'),
 granted=>true,
 principal_name=>'HRREP'),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 granted=>true,
 principal_name=>'HRMGR'));
 SYS.XS_ACL.CREATE_ACL(name=>'HRACL',
 ace_list=>ace_list,
 sec_class=>'HRPRIVS',
 description=>'HR Representative Access');
END;

11.2.4.2 APPEND_ACES Procedure
The APPEND_ACES procedure adds one or more ACE to an existing ACL.

Chapter 11
XS_ACL Package

11-25

Syntax

XS_ACL.APPEND_ACES (
 acl IN VARCHAR2,
 ace IN XS$ACE_TYPE);

XS.ACL.APPEND_ACES (
 acl IN VARCHAR2,
 ace_list IN XS$ACE_LIST);

Parameters

Parameter Description

acl The name of the ACL to which the ACE is to be added.

The name is schema qualified, for example, SCOTT.ACL1. When the schema part of
the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as ACL1, and the current schema is SCOTT, it
would resolve to SCOTT.ACL1.

ace The ACE to be added to the ACL.

ace_list The list of ACEs to be added to the ACL.

Examples

The following example adds an ACE to the HRACL ACL. The ACE grants the SELECT privilege to
the DB_HR database user.

DECLARE
 ace_entry XS$ACE_TYPE;
BEGIN
 ace_entry := XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'DB_HR',
 principal_type=>XS_ACL.PTYPE_DB);
 SYS.XS_ACL.APPEND_ACES('HRACL',ace_entry);
END;

11.2.4.3 REMOVE_ACES Procedure
The REMOVE_ACES procedure removes all ACEs from an ACL.

Syntax

XS_ACL.REMOVE_ACES (
 acl IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL from which the ACEs are to be removed.

The name is schema qualified, for example, SCOTT.ACL1. When the schema part of
the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as ACL1, and the current schema is SCOTT, it
would resolve to SCOTT.ACL1.

Chapter 11
XS_ACL Package

11-26

Examples

The following example removes all ACEs from the ACL called HRACL:

BEGIN
 SYS.XS_ACL.REMOVE_ACES('HRACL');
END;

11.2.4.4 SET_SECURITY_CLASS Procedure
The SET_SECURITY_CLASS procedure sets or modifies the security class for an ACL.

Syntax

XS_ACL.SET_SECURITY_CLASS (
 acl IN VARCHAR2,
 sec_class IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL for which the security class is to be set.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the
current schema is SCOTT, it would resolve to SCOTT.ACL1.

sec_class The name of the security class that defines the ACL scope or type.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the
current schema is SCOTT, it would resolve to SCOTT.ACL1.

Examples

The following example associates the HRPRIVS security class with the HRACL ACL:

BEGIN
 SYS.XS_ACL.SET_SECURITY_CLASS('HRACL','HRPRIVS');
END;

11.2.4.5 SET_PARENT_ACL Procedure
The SET_PARENT_ACL sets or modifies the parent ACL for an ACL.

Syntax

XS_ACL.SET_PARENT_ACL(
 acl IN VARCHAR2,
 parent IN VARCHAR2,
 inherit_mode IN PLS_INTEGER);

Chapter 11
XS_ACL Package

11-27

Parameters

Parameter Description

acl The name of the ACL whose parent needs to be set.

The name is schema qualified, for example, SCOTT.ACL1. When the schema part
of the name is missing, the current session schema is assumed. For example, in
this same example, if the name is specified as ACL1, and the current schema is
SCOTT, it would resolve to SCOTT.ACL1.

parent The name of the parent ACL.

The name is schema qualified, for example, SCOTT.ACL1. When the schema part
of the name is missing, the current session schema is assumed. For example, in
this same example, if the name is specified as ACL1, and the current schema is
SCOTT, it would resolve to SCOTT.ACL1.

inherit_mode The inheritance mode. This can be one of the following values:

EXTENDED (extends from), CONSTRAINED (constrained with)

Examples

The following example sets the AllDepACL ACL as the parent ACL for the HRACL ACL. The
inheritance type is set to EXTENDED.

BEGIN
 SYS.XS_ACL.SET_PARENT_ACL('HRACL','AllDepACL',XS_ACL.EXTENDED);
END;

11.2.4.6 ADD_ACL_PARAMETER Procedure
The ADD_ACL_PARAMETER adds an ACL parameter value for a data security policy.

Syntax

XS_ACL.ADD_ACL_PARAMETER (
 acl IN VARCHAR2,
 policy IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN NUMBER);

XS_ACL.ADD_ACL_PARAMETER (
 acl IN VARCHAR2,
 policy IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL to which the parameter is to be added.

The name is schema qualified, for example, SCOTT.ACL1. When the schema part of
the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as ACL1, and the current schema is SCOTT, it
would resolve to SCOTT.ACL1.

Chapter 11
XS_ACL Package

11-28

Parameter Description

policy The name of the data security policy for which the ACL parameter has been created.

The name is schema qualified, for example, SCOTT.ACL1. When the schema part of
the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as ACL1, and the current schema is SCOTT, it
would resolve to SCOTT.ACL1.

parameter The name of the ACL parameter as defined by the data security policy.

value The value of the ACL parameter to be used.

Examples

The following example adds the REGION parameter for ACL1. The name of the data security
policy for which the ACL parameter is created is TEST_DS. The value of the REGION parameter is
WEST.

BEGIN
 SYS.XS_ACL.ADD_ACL_PARAMETER('ACL1','TEST_DS','REGION', 'WEST');
END;

11.2.4.7 REMOVE_ACL_PARAMETERS Procedure
The REMOVE_ACL_PARAMETERS removes the specified ACL parameter for an ACL. If no
parameter name is specified, then all ACL parameters for the ACL are removed.

Syntax

XS_ACL.REMOVE_ACL_PARAMETERS (
 acl IN VARCHAR2,
 parameter IN VARCHAR2);

XS_ACL.REMOVE_ACL_PARAMETERS (
 acl IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL from which the parameter(s) are to be removed.

The name is schema qualified, for example, SCOTT.ACL1. When the schema part of
the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as ACL1, and the current schema is SCOTT, it
would resolve to SCOTT.ACL1.

parameter The name of the parameter that needs to be removed from the ACL.

Examples

The following example removes the REGION parameter from the ACL1 ACL:

BEGIN
 XS_ACL.REMOVE_ACL_PARAMETERS('ACL1', 'REGION');
END;

The following example removes all ACL parameters for ACL1.

Chapter 11
XS_ACL Package

11-29

BEGIN
 SYS.XS_ACL.REMOVE_ACL_PARAMETERS('ACL1');
END;

11.2.4.8 SET_DESCRIPTION Procedure
The SET_DESCRIPTION procedure sets a description string for an ACL.

Syntax

XS_ACL.SET_DESCRIPTION (
 acl IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL for which the description is to be set.

The name is schema qualified, for example, SCOTT.ACL1. When the schema part
of the name is missing, the current session schema is assumed. For example, in
this same example, if the name is specified as ACL1, and the current schema is
SCOTT, it would resolve to SCOTT.ACL1.

description A string description for the ACL.

Examples

The following example sets a description for the HRACL ACL:

BEGIN
 SYS.XS_ACL.SET_DESCRIPTION('HRACL','Grants privileges to HR representatives and
 managers.');
END;

11.2.4.9 DELETE_ACL Procedure
The DELETE_ACL procedure deletes the specified ACL.

Syntax

XS_ACL.DELETE_ACL (
 acl IN VARCHAR2,
 delete_option IN PLS_INTEGER := XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

acl The name of the ACL to be deleted.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the
current schema is SCOTT, it would resolve to SCOTT.ACL1.

Chapter 11
XS_ACL Package

11-30

Parameter Description

delete_option The delete option to use. To the data security policy, the behavior of the
following options is the same:

• DEFAULT_OPTION:
The default option allows deleting an ACL only if it is not referenced
elsewhere. If the ACL is referenced elsewhere, then the ACL cannot be
deleted.

For example, the delete operation fails if you try to delete an ACL that is
part of a data security policy.

• CASCADE_OPTION:

The cascade option deletes the ACL and also removes the ACL reference
in a data realm constraint of a data security policy.

• ALLOW_INCONSISTENCIES_OPTION:
The allow inconsistencies option lets you delete the ACL even if other
entities have late binding references to it. In this mode, the ACL will be
removed but the references are not removed.

Examples

The following example deletes the HRACL ACL using the default delete option:

BEGIN
 SYS.XS_ACL.DELETE_ACL('HRACL');
END;

11.3 XS_ADMIN_UTIL Package
The XS_ADMIN_UTIL package contains helper subprograms to be used by other packages.

This section includes the following topics:

• Security Model

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_ADMIN_UTIL Subprograms

11.3.1 Security Model
The XS_ADMIN_UTIL package is created in the SYS schema. The caller has invoker's rights on
this package. The SYS privilege is required to grant or revoke a Real Application Security
system privilege to or from a user or role.

11.3.2 Constants
The following constants define the delete options:

DEFAULT_OPTION CONSTANT PLS_INTEGER := 1;
CASCADE_OPTION CONSTANT PLS_INTEGER := 2;
ALLOW_INCONSISTENCIES_OPTION CONSTANT PLS_INTEGER := 3;

The following constants define the principal's type:

Chapter 11
XS_ADMIN_UTIL Package

11-31

PTYPE_XS CONSTANT PLS_INTEGER := 1;
PTYPE_DB CONSTANT PLS_INTEGER := 2;
PTYPE_DN CONSTANT PLS_INTEGER := 3;
PTYPE_EXTERNAL CONSTANT PLS_INTEGER := 4;

11.3.3 Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are defined
for this package.

CREATE OR REPLACE TYPE XS$LIST IS VARRAY(1000) OF VARCHAR2(4000);
CREATE OR REPLACE TYPE XS$NAME_LIST IS VARRAY(1000) OF VARCHAR2(261);

11.3.4 Summary of XS_ADMIN_UTIL Subprograms

Table 11-4 Summary of XS_ADMIN_UTIL Subprograms

Subprogram Brief Description

GRANT_SYSTEM_PRIVILEGE
Procedure

Grant a Real Application Security system privilege to a user or
role.

REVOKE_SYSTEM_PRIVILEGE
Procedure

Revoke a Real Application Security system privilege from a
user or role.

This section describes the following XS_ADMIN_UTIL subprograms:

11.3.4.1 GRANT_SYSTEM_PRIVILEGE Procedure
The GRANT_SYSTEM_PRIVILEGE procedure is used to grant a Real Application Security system
privilege or schema privilege to a user or role. Only SYS or a user who has GRANT ANY
PRIVILEGE privilege can perform this operation.

The audit action AUDIT_GRANT_PRIVILEGE, audits all GRANT_SYSTEM_PRIVILEGE calls for granting
system privileges or schema privileges.

Syntax

XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE (
 priv_name IN VARCHAR2,
 user_name IN VARCHAR2,
 user_type IN PLS_INTEGER := XS_ADMIN_UTIL.PTYPE_DB,
 schema IN VARCHAR2);

Parameters

Parameter Description

priv_name Specifies the name of the Real Application Security system privilege or
schema privilege to be granted.

user_name Specifies the name of the user or role to which the Real Application Security
system privilege or schema privilege is to be granted.

user_type The type of user. By default the database user.

schema The schema on which the privilege is granted. The value is NULL if the
privilege is a system privilege.

Chapter 11
XS_ADMIN_UTIL Package

11-32

Examples

The following example creates a database user, dbuser1, and grants Real Application Security
privilege ADMINISTER_SESSION to this database user and specifies the user_type as
XS_ADMIN_UTIL.PTYPE_DB, though by default, this is the default value and need not be
specified.

SQL> CREATE USER dbuser1 identified by password;

SQL> EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMINISTER_SESSION', 'dbuser1',
XS_ADMIN_UTIL.PTYPE_DB, 'HR1');

The following example creates an application user, user1, and grants Real Application Security
privilege ADMINISTER_SESSION to this application user, specifies the user_type as
XS_ADMIN_UTIL.PTYPE_XS, and specifies the schema as HR1.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('user1','HR1');

SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('user1', 'password');

SQL> EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMINISTER_SESSION', 'user1',
XS_ADMIN_UTIL.PTYPE_XS, 'HR1');

11.3.4.2 REVOKE_SYSTEM_PRIVILEGE Procedure
The REVOKE_SYSTEM_PRIVILEGE is used to revoke a Real Application Security ststem privilege
or schema privilege from a user or role. Only SYS privilege or a user with GRANT ANY PRIVILEGE
privilege can perform this operation.

The audit action AUDIT_REVOKE_PRIVILEGE, audits all REVOKE_SYSTEM_PRIVILEGE calls for
revoking system privileges or schema privileges.

Syntax

XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE (
 priv_name IN VARCHAR2,
 user_name IN VARCHAR2,
 user_type IN PLS_INTEGER := XS_ADMIN_UTIL.PTYPE_DB,
 schema IN VARCHAR2);

Parameters

Parameter Description

priv_name Specifies the name of the Real Application Security system privilege or
schema privilege to be revoked.

user_name Specifies the name of the user or role from which the Real Application Security
system privilege or schema privilege is to be revoked.

user_type The type of user. By default the database user.

schema The schema on which the privilege is revoked. The value is NULL if the
privilege is a system privilege.

Examples

The following example creates a database user, dbuser1, and revokes Real Application
Security privilege ADMINISTER_SESSION from this database user and specifies the user_type as

Chapter 11
XS_ADMIN_UTIL Package

11-33

XS_ADMIN_UTIL.PTYPE_DB, though by default, this is the default value and need not be
specified.

CREATE USER dbuser1 identified by password;

SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('ADMINISTER_SESSION','dbuser1',
XS_ADMIN_UTIL.PTYPE_DB, 'HR1');

The following example creates an application user, user1, and revokes Real Application
Security privilege ADMINISTER_SESSION from this application user and specifies the user_type
as XS_ADMIN_UTIL.PTYPE_XS.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('user1','HR1');

SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('user1', 'password');

SQL> EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('ADMINISTER_SESSION','user1',
XS_ADMIN_UTIL.PTYPE_XS, 'HR1');

11.4 XS_DATA_SECURITY Package
The XS_DATA_SECURITY package includes procedures to create, manage, and delete data
security policies, associated data realm constraints, column constraints, and ACL parameters.

This section includes the following topics:

• Security Model

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_DATA_SECURITY Subprograms

11.4.1 Security Model for the XS_DATA_SECURITY Package
The XS_DATA_SECURITY package is created under the SYS schema. The DBA role is granted the
ADMIN_ANY_SEC_POLICY, which allows it to administer schema objects like ACLs, security
classes, and security policies across all schemas. In addition, users granted the
ADMIN_ANY_SEC_POLICY can call the following procedures: ENABLE_OBJECT_POLICY,
DISABLE_OBJECT_POLICY, APPLY_OBJECT_POLICY, and REMOVE_OBJECT_POLICY.

Users can administer schema objects in their own schema if they have been granted the
RESOURCE role for the schema. The RESOURCE role and the XS_RESOURCE application role include
the ADMIN_SEC_POLICY privilege, required to administer schema objects in the schema as well
as administering the policy artifacts within the granted schema to achieve policy management
within an application.

Users can administer policy enforcement on the schema if they have been granted the
APPLY_SEC_POLICY privilege. With this privilege, the user can administer policy enforcement
within granted schemas to achieve policy management within an application.

11.4.2 Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are defined
for this package.

-- Create a type for key
CREATE OR REPLACE TYPE XS$KEY_TYPE AS OBJECT (
primary_key VARCHAR2(130),
foreign_key VARCHAR2(4000),

Chapter 11
XS_DATA_SECURITY Package

11-34

-- Foreign key type; 1 = col name, 2 = col value
foreign_key_type NUMBER,
-- Constructor function
CONSTRUCTOR FUNCTION XS$KEY_TYPE
 (primary_key IN VARCHAR2,
 foreign_key IN VARCHAR2,
 foreign_key_type IN NUMBER)
 RETURN SELF AS RESULT,

MEMBER FUNCTION GET_PRIMARY_KEY RETURN VARCHAR2,
MEMBER FUNCTION GET_FOREIGN_KEY RETURN VARCHAR2,
MEMBER FUNCTION GET_FOREIGN_KEY_TYPE RETURN NUMBER,
);
CREATE OR REPLACE TYPE XS$KEY_LIST AS VARRAY(1000) OF XS$KEY_TYPE;
CREATE OR REPLACE TYPE XS$REALM_CONSTRAINT_TYPE AS OBJECT (
-- Member variables
realm_type NUMBER,
-- Member evaluation rule
realm VARCHAR2(4000),
-- acl list of instance set
acl_list XS$NAME_LIST,
-- isStatic variable for instance set. Stored as INTEGER. No boolean datatype
-- for objects. False is stored as 0 and TRUE is stored as 1
is_static INTEGER,
-- Indicate if the realm is parameterized.
parameterized INTEGER,
-- parent schema name for inherited from
parent_schema VARCHAR2(130),
-- parent object name for inherited from
parent_object VARCHAR2(130),
-- keys for inherited from
key_list XS$KEY_LIST,
-- when condition for inherited from
when_condition VARCHAR2(4000),

-- Constructor function - row_level realm
CONSTRUCTOR FUNCTION XS$REALM_CONSTRAINT_TYPE
 (realm IN VARCHAR2,
 acl_list IN XS$NAME_LIST,
 is_static IN BOOLEAN := FALSE)
 RETURN SELF AS RESULT,

-- Constructor function - parameterized row_level realm
CONSTRUCTOR FUNCTION XS$REALM_CONSTRAINT_TYPE
 (realm IN VARCHAR2,
 is_static IN BOOLEAN := FALSE)
 RETURN SELF AS RESULT,

-- Constructor function - master realm
CONSTRUCTOR FUNCTION XS$REALM_CONSTRAINT_TYPE
 (parent_schema IN VARCHAR2,
 parent_object IN VARCHAR2,
 key_list IN XS$KEY_LIST,
 when_condition IN VARCHAR2:= NULL)
 RETURN SELF AS RESULT,

-- Accessor functions
MEMBER FUNCTION GET_TYPE RETURN NUMBER,
MEMBER FUNCTION GET_REALM RETURN VARCHAR2,
MEMBER FUNCTION GET_ACLS RETURN XS$NAME_LIST,
MEMBER FUNCTION IS_DYNAMIC_REALM RETURN BOOLEAN,
MEMBER FUNCTION IS_STATIC_REALM RETURN BOOLEAN,

Chapter 11
XS_DATA_SECURITY Package

11-35

MEMBER FUNCTION IS_PARAMETERIZED_REALM RETURN BOOLEAN,
MEMBER FUNCTION GET_KEYS RETURN XS$KEY_LIST,
MEMBER FUNCTION GET_PARENT_SCHEMA RETURN VARCHAR2,
MEMBER FUNCTION GET_PARENT_OBJECT RETURN VARCHAR2,
MEMBER FUNCTION GET_WHEN_CONDITION RETURN VARCHAR2,
MEMBER PROCEDURE SET_REALM(realm IN VARCHAR2),
MEMBER PROCEDURE ADD_ACLS(acl IN VARCHAR2),
MEMBER PROCEDURE ADD_ACLS(acl_list IN XS$NAME_LIST),
MEMBER PROCEDURE SET_ACLS(acl_list IN XS$NAME_LIST),
MEMBER PROCEDURE SET_DYNAMIC,
MEMBER PROCEDURE SET_STATIC,
MEMBER PROCEDURE ADD_KEYS(key IN XS$KEY_TYPE),
MEMBER PROCEDURE ADD_KEYS(key_list IN XS$KEY_LIST),
MEMBER PROCEDURE SET_KEYS(key_list IN XS$KEY_LIST),
MEMBER PROCEDURE SET_PARENT_SCHEMA(parent_schema IN VARCHAR2),
MEMBER PROCEDURE SET_PARENT_OBJECT(parent_object IN VARCHAR2),
MEMBER PROCEDURE SET_WHEN_CONDITION(when_condition IN VARCHAR2)
);
-- Create a list of realm constraint type
CREATE OR REPLACE TYPE XS$REALM_CONSTRAINT_LIST AS VARRAY(1000)
 OF XS$REALM_CONSTRAINT_TYPE;
-- Create a type for column(attribute) security
CREATE OR REPLACE TYPE XS$COLUMN_CONSTRAINT_TYPE AS OBJECT (
-- column list
column_list XS$LIST,
-- privilege for column security
privilege VARCHAR2(261),
-- Constructor function
CONSTRUCTOR FUNCTION XS$COLUMN_CONSTRAINT_TYPE
 (column_list IN XS$LIST,
 privilege IN VARCHAR2)
 return SELF AS RESULT,
MEMBER FUNCTION GET_COLUMNS RETURN XS$LIST,
MEMBER FUNCTION GET_PRIVILEGE RETURN VARCHAR2,
MEMBER PROCEDURE ADD_COLUMNS(column IN VARCHAR2),
MEMBER PROCEDURE ADD_COLUMNS(column_list IN XS$LIST),
MEMBER PROCEDURE SET_COLUMNS(column_list IN XS$LIST),
MEMBER PROCEDURE SET_PRIVILEGE(privilege IN VARCHAR2)
);
-- Create a list of column constraint for column security
CREATE OR REPLACE TYPE XS$COLUMN_CONSTRAINT_LIST
 IS VARRAY(1000) of XS$COLUMN_CONSTRAINT_TYPE;

11.4.3 Summary of XS_DATA_SECURITY Subprograms

Table 11-5 Summary of XS_DATA_SECURITY Subprograms

Subprogram Brief Description

CREATE_POLICY Procedure Creates a new data security policy.

APPEND_REALM_CONSTRAINTS Procedure Adds one or more data realm constraints to an existing data security
policy.

REMOVE_REALM_CONSTRAINTS Procedure Removes all data realm constraints for the specified data security policy.

ADD_COLUMN_CONSTRAINTS Procedure Adds one or more column constraint to the specified data security policy.

REMOVE_COLUMN_CONSTRAINTS
Procedure

Removes all column constraints from a data security policy.

CREATE_ACL_PARAMETER Procedure Creates an ACL parameter for the specified data security policy.

DELETE_ACL_PARAMETER Procedure Deletes an ACL parameter from the specified data security policy.

Chapter 11
XS_DATA_SECURITY Package

11-36

Table 11-5 (Cont.) Summary of XS_DATA_SECURITY Subprograms

Subprogram Brief Description

SET_DESCRIPTION Procedure Sets a description string for the specified data security policy.

DELETE_POLICY Procedure Deletes a data security policy.

Table 11-6 Summary of XS_DATA_SECURITY Subprograms for Managing Data Security Policies on
Tables or Views

Subprogram Brief Description

ENABLE_OBJECT_POLICY Procedure Enables the data security policy for the specified table or view.

DISABLE_OBJECT_POLICY Procedure Disables the data security policy for the specified table or view.

REMOVE_OBJECT_POLICY Procedure Removes or drops the data security from the specified table or view
without deleting it.

APPLY_OBJECT_POLICY Procedure Enables or reenables the data security policy for the specified table or
view.

This section describes the following XS_DATA_SECURITY subprograms:

11.4.3.1 CREATE_POLICY Procedure
The CREATE_POLICY procedure creates a new data security policy.

Syntax

XS_DATA_SECURITY.CREATE_POLICY (
 name IN VARCHAR2,
 realm_constraint_list IN XS$REALM_CONSTRAINT_LIST,
 column_constraint_list IN XS$COLUMN_CONSTRAINT_LIST := NULL,
 description IN VARCHAR2 :=NULL) ;

Parameters

Parameter Description

name The name for the data security policy to be created.

The name is schema qualified, for example, SCOTT.POLICY1.
When the schema part of the name is missing, the current session
schema is assumed. For example, in this same example, if the
name is specified as POLICY1, and the current schema is SCOTT,
it would resolve to SCOTT.POLICY1.

realm_constraint_list The list of data realm constraints, which determine the rows to be
protected by the data security policy.

column_constraint_list This is optional. The list of attributes and the privileges protecting
them.

description An optional description for the data security policy.

Chapter 11
XS_DATA_SECURITY Package

11-37

Examples

The following example creates a data security policy called USER1.EMPLOYEES_DS. It uses a
data realm constraint to protect data related to department numbers 60 and 100. In addition,
access to the SALARY column (attribute) is restricted using an column constraint.

DECLARE
 realm_cons XS$REALM_CONSTRAINT_LIST;
 column_cons XS$COLUMN_CONSTRAINT_LIST;
BEGIN
 realm_cons :=
 XS$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL')));

 column_cons :=
 XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('SALARY'),
 privilege=> 'VIEW_SENSITIVE_INFO'));

 SYS.XS_DATA_SECURITY.CREATE_POLICY(
 name=>'USER1.EMPLOYEES_DS',
 realm_constraint_list=>realm_cons,
 column_constraint_list=>column_cons);
END;

11.4.3.2 APPEND_REALM_CONSTRAINTS Procedure
The APPEND_REALM_CONSTRAINTS procedure adds one or more data realm constraints to an
existing data security policy.

Syntax

XS_DATA_SECURITY.APPEND_REALM_CONSTRAINTS (
 policy IN VARCHAR2,
 realm_constraint IN XS$REALM_CONSTRAINT_TYPE);

XS_DATA_SECURITY.APPEND_REALM_CONSTRAINTS (
 policy IN VARCHAR2,
 realm_constraint_list IN XS$REALM_CONSTRAINT_LIST);

Parameters

Parameter Description

policy The name of the data security policy to which the data realm
constraints are to be added.

The name is schema qualified, for example, SCOTT.POLICY1.
When the schema part of the name is missing, the current session
schema is assumed. For example, in this same example, if the
name is specified as POLICY1, and the current schema is SCOTT, it
would resolve to SCOTT.POLICY1.

realm_constraint The data realm constraint to be added to the data security policy.

realm_constraint_list The list of data realm constraints to be added to the data security
policy.

Chapter 11
XS_DATA_SECURITY Package

11-38

Examples

The following example appends a new data realm constraint to the EMPLOYEES_DS data security
policy.

DECLARE
 realm_cons XS$REALM_CONSTRAINT_TYPE;
BEGIN
 realm_cons :=
 XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (40, 50)',
 acl_list=> XS$NAME_LIST('HRACL'));

 SYS.XS_DATA_SECURITY.APPEND_REALM_CONSTRAINTS(
 policy=>'EMPLOYEES_DS',
 realm_constraint=>realm_cons);
END;

11.4.3.3 REMOVE_REALM_CONSTRAINTS Procedure
The REMOVE_REALM_CONSTRAINTS procedure removes all data realm constraints from a data
security policy.

Syntax

XS_DATA_SECURITY.REMOVE_REALM_CONSTRAINTS (
 policy IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy from which the data realm constraints are to be
removed.

The name is schema qualified, for example, SCOTT.POLICY1. When the schema part
of the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as POLICY1, and the current schema is
SCOTT, it would resolve to SCOTT.POLICY1.

Examples

The following example removes all data realm constraints from the EMPLOYEES_DS data security
policy.

BEGIN
 SYS.XS_DATA_SECURITY.REMOVE_REALM_CONSTRAINTS('EMPLOYEES_DS');
END;

11.4.3.4 ADD_COLUMN_CONSTRAINTS Procedure
The ADD_COLUMN_CONSTRAINTS procedure adds one or more column constraint to a data
security policy.

Syntax

XS_DATA_SECURITY.ADD_COLUMN_CONSTRAINTS (
 policy IN VARCHAR2,
 column_constraint IN XS$COLUMN_CONSTRAINT_TYPE);

Chapter 11
XS_DATA_SECURITY Package

11-39

XS_DATA_SECURITY.ADD_COLUMN_CONSTRAINTS (
 policy IN VARCHAR2,
 column_constraint_list IN XS$COLUMN_CONSTRAINT_LIST);

Parameters

Parameter Description

policy The name of the data security policy to which the attribute
constraints are to be added.

The name is schema qualified, for example, SCOTT.POLICY1.
When the schema part of the name is missing, the current
session schema is assumed. For example, in this same example,
if the name is specified as POLICY1, and the current schema is
SCOTT, it would resolve to SCOTT.POLICY1.

column_constraint The column constraint to be added.

column_constraint_list The list of column constraints to be added.

Examples

The following example adds a column constraint on the COMMISSION_PCT column in the
EMPLOYEES_DS data security policy:

DECLARE
 column_cons XS$COLUMN_CONSTRAINT_TYPE;
BEGIN
 column_cons :=
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('COMMISSION_PCT'),
 privilege=> 'VIEW_SENSITIVE_INFO');

 SYS.XS_DATA_SECURITY.ADD_COLUMN_CONSTRAINTS(
 policy=>'EMPLOYEES_DS',
 column_constraint=>column_cons);
END;

11.4.3.5 REMOVE_COLUMN_CONSTRAINTS Procedure
The REMOVE_COLUMN_CONSTRAINTS procedure removes all column constraints from a data
security policy.

Syntax

XS_DATA_SECURITY.REMOVE_COLUMN_CONSTRAINTS (
 policy IN VARCHAR2,);

Parameters

Parameter Description

policy The name of the data security policy for which the column constraints are to be
removed.

The name is schema qualified, for example, SCOTT.POLICY1. When the schema part
of the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as POLICY1, and the current schema is
SCOTT, it would resolve to SCOTT.POLICY1.

Chapter 11
XS_DATA_SECURITY Package

11-40

Examples

The following example removes all column constraints from the EMPLOYEES_DS data security
policy:

BEGIN
 SYS.XS_DATA_SECURITY.REMOVE_COLUMN_CONSTRAINTS('EMPLOYEES_DS');
END;

11.4.3.6 CREATE_ACL_PARAMETER Procedure
The CREATE_ACL_PARAMETER procedure creates an ACL parameter for a data security policy.

Syntax

XS_DATA_SECURITY.CREATE_ACL_PARAMETER (
 policy IN VARCHAR2,
 parameter IN VARCHAR2,
 param_type IN NUMBER);

Parameters

Parameter Description

policy The name of the data security policy for which the ACL parameter needs to be
created.

The name is schema qualified, for example, SCOTT.POLICY1. When the schema
part of the name is missing, the current session schema is assumed. For example,
in this same example, if the name is specified as POLICY1, and the current
schema is SCOTT, it would resolve to SCOTT.POLICY1.

parameter The name of the ACL parameter to be created.

param_type The data type of the parameter. This can be 1 (NUMBER) or 2 (VARCHAR).

Examples

The following examples creates an ACL parameter, called DEPT_POLICY, for the EMPLOYEES_DS
data security policy:

BEGIN
 SYS.XS_DATA_SECURITY.CREATE_ACL_PARAMETER('EMPLOYEES_DS','DEPT_POLICY',1);
END;

11.4.3.7 DELETE_ACL_PARAMETER Procedure
The DELETE_ACL_PARAMETER procedure deletes an ACL parameter for a data security policy.

Syntax

XS_DATA_SECURITY.DELETE_ACL_PARAMETER (
 policy IN VARCHAR2,
 parameter IN VARCHAR2,
 delete_option IN PLS_INTEGER := XS_ADMIN_UTIL.DEFAULT_OPTION);

Chapter 11
XS_DATA_SECURITY Package

11-41

Parameters

Parameter Description

policy The name of the data security policy for which the ACL parameter is to be
deleted.

The name is schema qualified, for example, SCOTT.POLICY1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as POLICY1, and the
current schema is SCOTT, it would resolve to SCOTT.POLICY1.

parameter The name of the ACL parameter to be deleted.

delete_option The delete option to use. The following options are available:

• DEFAULT_OPTION (default):

The default option allows deleting an ACL parameter only if it is not
referenced elsewhere. If there are other entities that reference the ACL
parameter, then the ACL parameter cannot be deleted.

• CASCADE_OPTION:

The cascade option deletes the ACL parameter together with any
references to it.The user deleting the security class must have privileges to
delete these references as well.

• ALLOW_INCONSISTENCIES_OPTION:
The allow inconsistencies option lets you delete the entity even if other
entities have late binding references to it. If the entity is part of an early
dependency, then the delete fails and an error is raised.

Examples

The following example deletes the DEPT_POLICY ACL parameter from the EMPLOYEES_DS data
security policy, using the default option.

BEGIN
 SYS.XS_DATA_SECURITY.DELETE_ACL_PARAMETER('EMPLOYEES_DS','DEPT_POLICY',
 XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

11.4.3.8 SET_DESCRIPTION Procedure
The SET_DESCRPTION procedure sets a description string for the specified data security policy.

Syntax

XS_DATA_SECURITY.SET_DESCRIPTION (
 policy IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy for which the description is to be set.

The name is schema qualified, for example, SCOTT.POLICY1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as POLICY1, and the
current schema is SCOTT, it would resolve to SCOTT.POLICY1.

description A description string for the specified data security policy.

Chapter 11
XS_DATA_SECURITY Package

11-42

Examples

The following example sets a description string for the EMPLOYEES_DS data security policy:

BEGIN
 SYS.XS_DATA_SECURITY.SET_DESCRIPTION('EMPLOYEES_DS',
 'Data Security Policy for HR.EMPLOYEES');
END;

11.4.3.9 DELETE_POLICY Procedure
The DELETE_POLICY procedure deletes a data security policy.

Syntax

XS_DATA_SECURITY.DELETE_POLICY(
 policy IN VARCHAR2,
 delete_option IN PLS_INTEGER := XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

policy The name of the data security policy to be deleted.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is assumed.
For example, in this same example, if the name is specified as POLICY1, and
the current schema is SCOTT, it would resolve to SCOTT.POLICY1.

delete_option The delete option to use. To the security policy, the behavior of the following
options is the same:

• DEFAULT_OPTION:
The default option allows deleting a data security policy only if it is not
referenced elsewhere. If there are other entities that reference the data
security policy, then the data security policy cannot be deleted.

• CASCADE_OPTION:

The cascade option deletes the data security policy together with any
references to it.The user deleting the data security policy deletes these
references as well.

• ALLOW_INCONSISTENCIES_OPTION:
The allow inconsistencies option lets you delete the entity even if other
entities have late binding references to it. If the entity is part of an early
dependency, then the delete fails and an error is raised.

Examples

The following example deletes the EMPLOYEES_DS data security policy using the default option.

BEGIN
 SYS.XS_DATA_SECURITY.DELETE_POLICY('EMPLOYEES_DS',
 XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

Chapter 11
XS_DATA_SECURITY Package

11-43

11.4.3.10 ENABLE_OBJECT_POLICY Procedure
The ENABLE_OBJECT_POLICY procedure enables the data security policy for the specified table
or view. ENABLE_OBJECT_POLICY enables the ACL-based row level security policy for the table
or view.

You may want to enable data security policies after you perform an import or export on the
tables that it affects, or for debugging purposes.

To find the status of the data security policies for tables or views available for the current user,
query the DBA_XS_APPLIED_POLICIES data dictionary view.

Before enforcing policies, a check is made for the APPLY_SEC_POLICY privilege.

Syntax

XS_DATA_SECURITY.ENABLE_OBJECT_POLICY (
 policy IN VARCHAR2,
 schema IN VARCHAR2,
 object IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy to be enabled.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is assumed.
For example, in this same example, if the name is specified as POLICY1, and
the current schema is SCOTT, it would resolve to SCOTT.POLICY1.

schema The name of the schema that contains the table or view to enable.

object The name of the table or view to enable the data security policy.

Examples

The following example enables XDS for the products table in the sales schema.

BEGIN
 SYS.XS_DATA_SECURITY.ENABLE_OBJECT_POLICY(policy =>'CUST_DS', schema=>'sales',
object=>'products');
END;

11.4.3.11 DISABLE_OBJECT_POLICY Procedure
The DISABLE_OBJECT_POLICY procedure disables the data security policy for the specified table
or view. DISABLE_OBJECT_POLICY disables the ACL-based row level security policy for the table
or view.

You may want to disable Real Application Security if you are performing an import or export on
the tables that it affects, or for debugging purposes.

To find the status of the data security policies for tables or views available for the current user,
query the DBA_XS_APPLIED_POLICIES data dictionary view.

Before enforcing policies, a check is made for the APPLY_SEC_POLICY privilege.

Chapter 11
XS_DATA_SECURITY Package

11-44

Syntax

XS_DATA_SECURITY.DISABLE_OBJECT_POLICY (
 policy IN VARCHAR2,
 schema IN VARCHAR2,
 object IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy to be disabled.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is assumed.
For example, in this same example, if the name is specified as POLICY1, and
the current schema is SCOTT, it would resolve to SCOTT.POLICY1.

schema The name of the schema that contains the table or view to disable.

object The name of the table or view to disable a data security policy.

Examples

The following example disables XDS for the products table in the sales schema.

BEGIN
 SYS.XS_DATA_SECURITY.DISABLE_OBJECT_POLICY(policy =>'CUST_DS', schema=>'sales',
object=>'products');
END;

11.4.3.12 REMOVE_OBJECT_POLICY Procedure
The REMOVE_OBJECT_POLICY procedure drops the data security policy from the specified table
or view without deleting it. REMOVE_OBJECT_POLICY drops the ACL Materialized View built by
ENABLE_XDS on a static data realm constraint.

To find the status of the data security policies for tables or views available for the current user,
query the DBA_XS_APPLIED_POLICIES data dictionary view.

Before enforcing policies, a check is made for the APPLY_SEC_POLICY privilege.

Syntax

XS_DATA_SECURITY.REMOVE_OBJECT_POLICY (
 policy IN VARCHAR2,
 schema IN VARCHAR2,
 object IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy to be dropped.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is assumed.
For example, in this same example, if the name is specified as POLICY1, and
the current schema is SCOTT, it would resolve to SCOTT.POLICY1.

Chapter 11
XS_DATA_SECURITY Package

11-45

Parameter Description

schema The name of the schema that contains the table or view from which to remove
the data security policy.

object The name of the table or view from which to remove the data security. policy

Examples

The following example drops the CUST_DS data security policy from the products table in the
sales schema.

BEGIN
 SYS.XS_DATA_SECURITY.REMOVE_OBJECT_POLICY(policy=>'CUST_DS', schema=>'sales',
object=>'products');
END;

11.4.3.13 APPLY_OBJECT_POLICY Procedure
The APPLY_OBJECT_POLICY procedure enables or reenables the data security policy for the
specified database table or view.

To find the status of the data security policies for tables or views available for the current user,
query the DBA_XS_APPLIED_POLICIES data dictionary view.

Before enforcing policies, a check is made for the APPLY_SEC_POLICY privilege.

Syntax

XS_DATA_SECURITY.APPLY_OBJECT_POLICY (
 policy IN VARCHAR2,
 schema IN VARCHAR2,
 object IN VARCHAR2,
 row_acl IN BOOLEAN DEFAULT FALSE,
 owner_bypass IN BOOLEAN DEFAULT FALSE,
 statement_types IN VARCHAR2 DEFAULT NULL,
 aclmv IN VARCHAR2 DEFAULT NULL);

Parameters

Parameter Description

policy Name of the data security policy to be enabled.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
POLICY1, and the current schema is SCOTT, it would resolve to
SCOTT.POLICY1.

schema The name of the schema that contains the relational table or view to enable
or re-enable.

object The name of the relational table or view to enable or re-enable for the data
security policy.

row_acl The default is FALSE. When set to TRUE, creates the hidden column
SYS_ACLOD.

Chapter 11
XS_DATA_SECURITY Package

11-46

Parameter Description

owner_bypass The owner of the object can bypass the data security policy. The default is
FALSE.

Note:

The security policy will be bypassed if the
user who owns the table or the view queries it.
For any other user querying the table or the
view, the security policy will be applied.

statement_types The types can be: SELECT, INSERT, UPDATE, DELETE, and INDEX.

Note that if your application security requires that you must update table
rows and also restrict read access to certain columns in the same table,
you must use two APPLY_OBJECT_POLICY procedures to enforce each
data security policy to ensure precise enforcement of each policy. For
example, one APPLY_OBJECT_POLICY procedure would enforce the DML
statement_types required for updating table rows (for example, INSERT,
UPDATE, DELETE), while the other APPLY_OBJECT_POLICY procedure
would enforce only the statement_types of SELECT for the column
constraint.

aclmv Specifies a user-provided MV name that maintains static ACL information.
The MV has two columns: TABLEROWID and ACLIDLIST. The default value
for aclmv is NULL.

Examples

The following example enables the DEPT_POLICY data security policy for the EMP table in the HR
schema.

BEGIN
 sys.xs_data_security.apply_object_policy(
 policy => 'HR.EMPLOYEES_DS',
 schema => 'HR',
 object => 'EMPLOYEES',
 statement_types => 'SELECT',
 owner_bypass => true);
END;

11.5 XS_DATA_SECURITY_UTIL Package
The XS_DATA_SECURITY_UTIL package is a utility package that schedules automatic
refreshment for static ACL to a user table and changes the ACL refreshment mode to on-
commit or on-demand refresh.

This section includes the following topics:

• Security Model

• Constants

• Summary of XS_DATA_SECURITY_UTIL Subprograms

Chapter 11
XS_DATA_SECURITY_UTIL Package

11-47

11.5.1 Security Model
The XS_DATA_SECURITY_UTIL package is created in the SYS schema. You need EXECUTE
privileges on the package to be able to run the programs contained in this package.

11.5.2 Constants
The following are valid values for ACLMV refresh modes:

ACLMV_ON_DEMAND CONSTANT VARCHAR2(9) := 'ON DEMAND';
ACLMV_ON_COMMIT CONSTANT VARCHAR2(9) := 'ON COMMIT';

The following are types of refresh on static ACLMV:

XS_ON_COMMIT_MV CONSTANT BINARY_INTEGER := 0;
XS_ON_DEMAND_MV CONSTANT BINARY_INTEGER := 1;
XS_SCHEDULED_MV CONSTANT BINARY_INTEGER := 2;

The following are types of static ACLMV:

XS_SYSTEM_GENERATED_MV CONSTANT BINARY_INTEGER := 0;
XS_USER_SPECIFIED_MV CONSTANT BINARY_INTEGER := 1;

11.5.3 Summary of XS_DATA_SECURITY_UTIL Subprograms

Table 11-7 Summary of XS_DATA_SECURITY_UTIL Subprograms

Subprogram Brief Description

SCHEDULE_STATIC_ACL_REFRESH
Procedure

Schedules automatic refreshment for static ACL to a user table

ALTER_STATIC_ACL_REFRESH
Procedure

Changes the ACL refreshment mode to on-commit or on-
demand refresh.

This section describes the following XS_DATA_SECURITY_UTIL subprograms:

11.5.3.1 SCHEDULE_STATIC_ACL_REFRESH Procedure
The SCHEDULE_STATIC_ACL_REFRESH procedure is used to invoke or schedule automatic refresh
for static ACL to a user table. It can start the refresh immediately if NULL value is passed into
the start_date and repeat_interval parameters.

To find the status of all latest static ACL refresh jobs done for tables or views available for the
current user, query the ALL_XDS_LATEST_ACL_REFSTAT,
DBA_XDS_LATEST_ACL_REFSTAT, and USER_XDS_LATEST_ACL_REFSTAT data
dictionary views. All static ACL refresh job status history can be found in
ALL_XDS_ACL_REFSTAT, DBA_XDS_ACL_REFSTAT, and USER_XDS_ACL_REFSTAT
data dictionary views.

Syntax

XS_DATA_SECURITY_UTIL.SCHEDULE_STATIC_ACL_REFRESH (
 schema_name IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,

Chapter 11
XS_DATA_SECURITY_UTIL Package

11-48

 repeat_interval IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Parameter Description

schema_name Specifies the name for the schema to which the table belongs.

table_name The table name which is used with above schema name to uniquely
identify a table for the static ACL refreshment.

start_date This attribute specifies the first date on which this refresh is scheduled to
run. If the function is called repeatedly, then the latest given start_date
and repeat_interval is used to schedule the job. Each execution result
of ACL refresh done by immediate call, on-commit, or refresh job is added
into XDS_ACL_REFSTAT.

If start_date and repeat_interval are left NULL, then the refresh is
launched immediately and any existing refresh schedule is erased. For
immediate refresh, no row will be added into XDS_ACL_REFRESH, as it
does not change refresh mode.

repeat_interval This attribute specifies how often the refresh should repeat. You can
specify the repeat interval by using DBMS_SCHEDULER package
calendaring syntax or using PL/SQL expressions. See Oracle Database
PL/SQL Packages and Types Reference for more information about using
calendering syntax.

The expression specified is evaluated to determine the next time the
refresh should run. If repeat_interval is not specified, the job runs only
once at the specified start date.

The start_date and repeat_interval are used to create a refresh job
by using DBMS_SCHEDULER package with end_date default as NULL.

Comments This attribute specifies a comment about the job. By default, this attribute
is NULL

Examples

SYS.XS_DATA_SECURITY_UTIL.SCHEDULE_STATIC_ACL_REFRESH('aclmvuser', 'sales',
SYSTIMESTAMP, 'freq=hourly; interval=2');

11.5.3.2 ALTER_STATIC_ACL_REFRESH Procedure
The ALTER_STATIC_ACL_REFRESH procedure is used to change the ACL refresh mode to on-
commit or on-demand refresh.

Syntax

XS_DATA_SECURITY_UTIL.ALTER_STATIC_ACL_REFRESH (
 schema_name IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2,
 refresh_mode IN VARCHAR2);

Parameters

Parameter Description

schema_name Specifies the name for the schema that the table belongs to.

table_name The table name, which is used with the schema name to uniquely identify a
table for altering the static ACL refreshment mode.

Chapter 11
XS_DATA_SECURITY_UTIL Package

11-49

Parameter Description

refresh_mode ON COMMIT or ON DEMAND

Examples

SYS.XS_DATA_SECURITY_UTIL.ALTER_STATIC_ACL_REFRESH('aclmvuser','sales',
refresh_mode=>'ON COMMIT');

11.6 XS_DIAG Package
The XS_DIAG package includes subprograms to diagnose potential problems in data security
for principals, security classes, acls, data security policies, namespaces, and all objects in the
work space. All subprograms return TRUE if the object is valid; otherwise, each returns FALSE.
For each identified inconsistency, a row is inserted into the XS$VALIDATION_TABLE validation
table until the maximum number of inconsistencies you specify with the error_limit
parameter is reached. Users can query this validation table to determine the identified
inconsistencies for information that includes the message code, the description about the error,
the path leading to the invalid object, and any other helpful information that might assist you in
identifying the nature of the inconsistency.

This section includes the following topics:

• Security Model

• Summary of XS_DIAG Subprograms

11.6.1 Security Model
The XS_DIAG package is created in the SYS schema. The caller has invoker's rights on this
package and needs to have ADMIN_ANY_SEC_POLICY system privilege to run the XS_DIAG
package. EXECUTE permission on the XS_DIAG package is granted to PUBLIC. SELECT permission
on the XS$VALIDATION_TABLE validation table is granted to PUBLIC.

11.6.2 Summary of XS_DIAG Subprograms

Table 11-8 Summary of XS_DIAG Subprograms

Subprogram Description

VALIDATE_PRINCIPAL Function Validates the principal.

VALIDATE_SECURITY_CLASS Function Validates the security class.

VALIDATE_ACL Function Validates the ACL.

VALIDATE_DATA_SECURITY Function Validates the data security policy or validates the data
security policy against a specific table.

VALIDATE_NAMESPACE_TEMPLATE Function Validates the namespace template.

VALIDATE_WORKSPACE Function Validates an entire workspace.

This section describes the following XS_DIAG subprograms:

Chapter 11
XS_DIAG Package

11-50

11.6.2.1 VALIDATE_PRINCIPAL Function
The VALIDATE_PRINCIPAL function validates the principal. This function returns TRUE if the
object is valid; otherwise, it returns FALSE. For each identified inconsistency, a row is inserted
into the XS$VALIDATION_TABLE validation table until the maximum number of inconsistencies
that can be stored is reached. Users must query this validation table to find out what caused
the validation failure.

Syntax

validate_principal(name IN VARCHAR2,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

name The name of the object to be validated.

error_limit The maximum number of inconsistencies that may be stored in the
validation table.

Examples

Validate the principal, user user1, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_principal('user1', 100) then
 dbms_output.put_line('The user is valid.');
 else
 dbms_output.put_line('The user is invalid.');
 end if;
end;
/
select * from xs$validation_table;

Validate the principal, role role1, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_principal('role1', 100) then
 dbms_output.put_line('The role is valid.');
 else
 dbms_output.put_line('The role is invalid.');
 end if;
end;
/
select * from xs$validation_table;

11.6.2.2 VALIDATE_SECURITY_CLASS Function
The VALIDATE_SECURITY_CLASS function validates the security class. This function returns TRUE
if the object is valid; otherwise, it returns FALSE. For each identified inconsistency, a row is
inserted into the XS$VALIDATION_TABLE validation table until the maximum number of
inconsistencies that can be stored is reached. Users must query this validation table to find out
what caused the validation failure.

Chapter 11
XS_DIAG Package

11-51

Syntax

validate_security_class(name IN VARCHAR2,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

name The name of the object to be validated.

error_limit The maximum number of inconsistencies that may be stored in the
validation table.

Examples

Validate the security class, sec1, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_security_class('sec1', 100) then
 dbms_output.put_line('The security class is valid.');
 else
 dbms_output.put_line('The security class is invalid.');
 end if;
end;
/
select * from xs$validation_table;

11.6.2.3 VALIDATE_ACL Function
The VALIDATE_ACL function validates the ACL. This function returns TRUE if the object is valid;
otherwise, it returns FALSE. For each identified inconsistency, a row is inserted into the
XS$VALIDATION_TABLE validation table until the maximum number of inconsistencies that can
be stored is reached. Users must query this validation table to find out what caused the
validation failure.

Syntax

validate_acl(name IN VARCHAR2,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

name The name of the object to be validated.

error_limit The maximum number of inconsistencies that may be stored in the
validation table.

Examples

Validate the ACL, acl1, then query the validation table in case there are inconsistencies.

begin
 if sys.xs_diag.validate_acl('acl1', 100) then

Chapter 11
XS_DIAG Package

11-52

 dbms_output.put_line('The ACL is valid.');
 else
 dbms_output.put_line('The ACL is invalid.');
 end if;
end;
/
select * from xs$validation_table;

11.6.2.4 VALIDATE_DATA_SECURITY Function
The VALIDATE_DATA_SECURITY function validates the data security. This function returns TRUE if
the object is valid; otherwise, it returns FALSE. For each identified inconsistency, a row is
inserted into the XS$VALIDATION_TABLE validation table until the maximum number of
inconsistencies that can be stored is reached. Users must query this validation table to find out
what caused the validation failure.

This function has three styles of policy validation.

• When policy is not NULL and table_name is NULL, the function validates the policy against
all the tables to which the policy is applied. Note that when table_name is NULL,
table_owner is ignored even if it is not NULL.

• When both policy and table_name are not NULL, the function validates the policy against
the specific table. If table_owner is not provided, the current schema is used.

• When policy is NULL and table_name is not NULL, the function validates all policies
applied to the table against the table. If table_owner is not provided, the current schema is
used.

Syntax

validate_data_security(policy IN VARCHAR2 :=NULL,
 table_owner IN VARCHAR2 :=NULL,
 table_name IN VARCHAR2 :=NULL,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

policy The name of the object to be validated.

table_owner The name of the schema of the table or view.

table_name The name of the table or view.

error_limit The maximum number of inconsistencies that may be stored in the
validation table.

Examples

Validate a policy, policy1 on all the applied tables, then query the validation table in case there
are inconsistencies.

begin
 if sys.xs_diag.validate_data_security(policy => 'policy1',
 error_limit => 100) then
 dbms_output.put_line('The policy is valid on all the applied tables.');
 else
 dbms_output.put_line('The policy is invalid on some of the applied tables.');
 end if;

Chapter 11
XS_DIAG Package

11-53

end;
/
select * from xs$validation_table;

Validate a policy, policy1 on a given table, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_data_security(policy => 'policy1',
 table_owner => 'HR',
 table_name => 'EMPLOYEES',
 error_limit => 100) then
 dbms_output.put_line('The policy is valid on the table.');
 else
 dbms_output.put_line('The policy is invalid on the table.');
 end if;
end;
/
select * from xs$validation_table;

Validate all the policies applied to a given table, then query the validation table in case there
are inconsistencies.

begin
 if sys.xs_diag.validate_data_security(table_owner => 'HR',
 table_name => 'EMPLOYEES',
 error_limit => 100) then
 dbms_output.put_line('All the applied policies on the table are valid.');
 else
 dbms_output.put_line('Some applied policies on the table are invalid');
 end if;
end;
/
select * from xs$validation_table;

11.6.2.5 VALIDATE_NAMESPACE_TEMPLATE Function
The VALIDATE_NAMESPACE_TEMPLATE function validates the namespace. This function returns
TRUE if the object is valid; otherwise, it returns FALSE. For each identified inconsistency, a row is
inserted into the XS$VALIDATION_TABLE validation table until the maximum number of
inconsistencies that can be stored is reached. Users must query this validation table to find out
what caused the validation failure.

Syntax

validate_namespace_template(name IN VARCHAR2,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

name The name of the object to be validated.

error_limit The maximum number of inconsistencies that may be stored in the
validation table.

Examples

Validate the namespace, ns1, then query the validation table in case there are inconsistencies.

Chapter 11
XS_DIAG Package

11-54

begin
 if sys.xs_diag.validate_namespace_template('ns1', 100) then
 dbms_output.put_line('The namespace template is valid.');
 else
 dbms_output.put_line('The namespace template is invalid.');
 end if;
end;
/
select * from xs$validation_table;

11.6.2.6 VALIDATE_WORKSPACE Function
The VALIDATE_WORKSPACE function validates all the artifacts, in other words, it validates all
objects that exist in the work space by using this one function. This function returns TRUE if all
the objects are valid; otherwise, it returns FALSE. For each identified inconsistency, a row is
inserted into the XS$VALIDATION_TABLE validation table until the maximum number of
inconsistencies that can be stored is reached. Users must query this validation table to find out
what caused the validation failure.

Syntax

validate_workspace(error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

error_limit The maximum number of inconsistencies that may be stored in the
validation table.

Examples

Validate all the objects in the workspace, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_workspace(100) then
 dbms_output.put_line('The objects are valid.');
 else
 dbms_output.put_line('The objects are invalid.');
 end if;
end;
/
select * from xs$validation_table;

11.7 XS_NAMESPACE Package
The XS_NAMESPACE package includes subprograms to create, manage, and delete namespace
templates and attributes.

This section includes the following topics:

• Security Model

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_NAMESPACE Subprograms

Chapter 11
XS_NAMESPACE Package

11-55

11.7.1 Security Model
The XS_NAMESPACE package is created under the SYS schema. The DBA role is granted the
ADMIN_ANY_SEC_POLICY, which allows it to administer namespace templates and attributes.

11.7.2 Constants
The following are attribute event constants:

NO_EVENT CONSTANT PLS_INTEGER := 0;
FIRSTREAD_EVENT CONSTANT PLS_INTEGER := 1;
UPDATE_EVENT CONSTANT PLS_INTEGER := 2;
FIRSTREAD_PLUS_UPDATE_EVENT CONSTANT PLS_INTEGER := 3;

11.7.3 Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are defined
for this package.

-- Type definition for namespace template attribute
CREATE OR REPLACE TYPE XS$NS_ATTRIBUTE AS OBJECT (
-- Member Variables
-- Name of the namespace template attribute
-- Must be unique within a namespace template
-- Cannot be null
name VARCHAR2(4000),
-- Default value assigned to the attribute
default_value VARCHAR2(4000),
-- Trigger events associated with the attribute
-- Allowed values are :
-- 0 : NO_EVENT
-- 1 : FIRST_READ_EVENT
-- 2 : UPDATE_EVENT
-- 3 : FIRST_READ_PLUS_UPDATE_EVENT
attribute_events NUMBER,

-- Constructor function
CONSTRUCTOR FUNCTION XS$NS_ATTRIBUTE
 (name IN VARCHAR2,
 default_value IN VARCHAR2 := NULL,
 attribute_events IN NUMBER := 0)
 RETURN SELF AS RESULT,

-- Return the name of the attribute
MEMBER FUNCTION GET_NAME RETURN VARCHAR2,
-- Return the default value of the attribute
MEMBER FUNCTION GET_DEFAULT_VALUE RETURN VARCHAR2,
-- Return the trigger events associated with attribute
MEMBER FUNCTION GET_ATTRIBUTE_EVENTS RETURN NUMBER,
-- Mutator procedures
-- Set the default value for the attribute
MEMBER PROCEDURE SET_DEFAULT_VALUE(default_value IN VARCHAR2),
-- Associate trigger events to the attribute
MEMBER PROCEDURE SET_ATTRIBUTE_EVENTS(attribute_events IN NUMBER)
);
CREATE OR REPLACE TYPE XS$NS_ATTRIBUTE_LIST AS VARRAY(1000) OF XS$NS_ATTRIBUTE;

Chapter 11
XS_NAMESPACE Package

11-56

11.7.4 Summary of XS_NAMESPACE Subprograms

Table 11-9 Summary of XS_NAMESPACE Subprograms

Subprogram Description

CREATE_TEMPLATE Procedure Creates a new namespace template.

ADD_ATTRIBUTES Procedure Adds one or more attributes to an existing namespace template.

REMOVE_ATTRIBUTES Procedure Removes one or more attributes from a namespace template.

SET_HANDLER Procedure Assigns a handler function for the specified namespace template.

SET_DESCRIPTION Procedure Sets a description string for the specified namespace template.

DELETE_TEMPLATE Procedure Deletes the specified namespace template.

This section describes the following XS_NAMESPACE subprograms:

11.7.4.1 CREATE_TEMPLATE Procedure
The CREATE_TEMPLATE procedure creates a new namespace template.

Syntax

XS_NAMESPACE.CREATE_TEMPLATE (
 name IN VARCHAR2,
 attr_list IN XS$NS_ATTRIBUTE_LIST := NULL,
 schema IN VARCHAR2 := NULL,
 package IN VARCHAR2 := NULL,
 function IN VARCHAR2 := NULL,
 acl IN VARCHAR2 := 'SYS.NS_UNRESTRICTED_ACL'
 description IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the namespace template to be created.

attr_list The attributes contained in the namespace template together with their default
values and associated attribute events, such as UPDATE_EVENT.

schema The schema that contains the handler function for the namespace template.

package The package that contains the handler function for the namespace template.

function The handler function for the namespace template. The handler function is
called when an attribute event occurs.

acl The name of the ACL for this namespace template. If no ACL is provided, the
default is the predefined ACL SYS.NS_UNRESTRICTED_ACL, which allows
unrestricted attribute operations by the application user.

description An optional description string for the namespace template.

Examples

The following example creates a namespace template called POAttrs. The namespace
template contains a list of attributes defined by attrlist. The handler function for the
namespace template is called Populate_Order_Func. This handler function is part of the

Chapter 11
XS_NAMESPACE Package

11-57

Orders_Pckg package, which is contained in the SCOTT schema. The namespace template has
NS_UNRESTRICTED_ACL set on the template, which allows unrestricted operation on namespaces
created from the template.

DECLARE
 attrlist XS$NS_ATTRIBUTE_LIST;
BEGIN
 attrlist := XS$NS_ATTRIBUTE_LIST();
 attrlist.extend(2);
 attrlist(1) := XS$NS_ATTRIBUTE('desc', 'general');
 attrlist(2) := XS$NS_ATTRIBUTE(name=>'item_no',
 attribute_events=>XS_NAMESPACE.FIRSTREAD_EVENT);
 SYS.XS_NAMESPACE.CREATE_TEMPLATE('POAttrs', attrlist, 'SCOTT',
 'Orders_Pckg','Populate_Order_Func',
 'SYS.NS_UNRESTRICTED_ACL',
 'Purchase Order Attributes');
END;

11.7.4.2 ADD_ATTRIBUTES Procedure
The ADD_ATTRIBUTES procedure adds one or more attributes to an existing namespace
template.

Syntax

XS_NAMESPACE.ADD_ATTRIBUTES (
 template IN VARCHAR2,
 attribute IN VARCHAR2,
 default_value IN VARCHAR2 := NULL,
 attribute_events IN PLS_INTEGER := XS_NAMESPACE.NO_EVENT);

XS_NAMESPACE.ADD_ATTRIBUTES (
 template IN VARCHAR2,
 attr_list IN XS$NS_ATTRIBUTE_LIST);

Parameters

Parameter Description

template The name of the namespace templates to which the attribute(s) is/are to be
added.

attribute The name of the attribute to be added.

attr_list The list of attributes to be added.

default_value The default value of the attribute.

attribute_events The attribute event associated with the attribute, such as update event.

Examples

The following example adds an attribute called item_type to the POAttrs namespace. It also
specifies a default value and attribute event for the new attribute that is added.

BEGIN
 SYS.XS_NAMESPACE.ADD_ATTRIBUTES(template=>'POAttrs',attribute=>'item_type',
 default_value=>'generic',
 attribute_events=>XS_NAMESPACE.update_event);
END;

Chapter 11
XS_NAMESPACE Package

11-58

11.7.4.3 REMOVE_ATTRIBUTES Procedure
The REMOVE_ATTRIBUTES procedure removes one or more attributes from a namespace
template. If no attribute names are specified, then all attributes are removed from the
namespace template.

Syntax

XS_NAMESPACE.REMOVE_ATTRIBUTES (
 template IN VARCHAR2,
 attribute IN VARCHAR2);

XS_NAMESPACE.REMOVE_ATTRIBUTES (
 template IN VARCHAR2,
 attr_list IN XS$LIST);

XS_NAMESPACE.REMOVE_ATTRIBUTES (
 template IN VARCHAR2);

Parameters

Parameter Description

template The name of the namespace template from which the attribute(s) is/are to be
removed.

attribute The name of the attribute to be removed.

attr_list The list of attribute names to be removed.

Examples

The following example removes the item_type attribute from the POAttrs namespace.

BEGIN
 SYS.XS_NAMESPACE.REMOVE_ATTRIBUTES('POAttrs','item_type');
END;

The following example removes all attributes from the POAttrs namespace template.

BEGIN
 SYS.XS_NAMESPACE.REMOVE_ATTRIBUTES('POAttrs');
END;

11.7.4.4 SET_HANDLER Procedure
The SET_HANDLER procedure assigns a handler function for the specified namespace template.

Syntax

XS_NAMESPACE.SET_HANDLER (
 template IN VARCHAR2,
 schema IN VARCHAR2,
 package IN VARCHAR2,
 function IN VARCHAR2);

Chapter 11
XS_NAMESPACE Package

11-59

Parameters

Parameter Description

template The name of the namespace template for which the handler function is to be
set.

schema The schema containing the handler package and function.

package The name of the package that contains the handler function.

function The name of the handler function for the namespace template.

Examples

The following example sets a handler function, called Populate_Order_Func, for the POAttrs
namespace template.

BEGIN
 SYS.XS_NAMESPACE.SET_HANDLER('POAttrs','SCOTT',
 'Orders_Pckg','Populate_Order_Func');
END;

11.7.4.5 SET_DESCRIPTION Procedure
The SET_DESCRIPTION procedure sets a description string for the specified namespace
template.

Syntax

XS_NAMESPACE.SET_DESCRIPTION (
 template IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Parameter Description

template The name of the namespace template whose description is to be set.

description A description string for the specified namespace template.

Examples

The following example sets a description string for the POAttrs namespace template.

BEGIN
 SYS.XS_NAMESPACE.SET_DESCRIPTION('POAttrs','Purchase Order Attributes');
END;

11.7.4.6 DELETE_TEMPLATE Procedure
The DELETE_TEMPLATE procedure deletes the specified namespace template.

Syntax

XS_NAMESPACE.DELETE_TEMPLATE(
 template IN VARCHAR2,
 delete_option IN PLS_INTEGER := XS_ADMIN_UTIL.DEFAULT_OPTION);

Chapter 11
XS_NAMESPACE Package

11-60

Parameters

Parameter Description

template The name of the namespace template to be deleted.

delete_option The delete option to use. To the namespace template, the behavior of the
following options is the same:

• DEFAULT_OPTION:
The default option allows deleting a namespace template only if it is not
referenced elsewhere. If there are other entities that reference the
namespace template, then the namespace template cannot be deleted.

• CASCADE_OPTION:

The cascade option deletes the namespace template together with any
references to it. The user deleting the namespace template deletes these
references as well.

• ALLOW_INCONSISTENCIES_OPTION:
The allow inconsistencies option lets you delete the entity even if other
entities have late binding references to it. If the entity is part of an early
dependency, then the delete fails and an error is raised.

Examples

The following example deletes the POAttrs namespace template using the default delete
option.

BEGIN
 SYS.XS_NAMESPACE.DELETE_TEMPLATE('POAttrs',XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

11.8 XS_PRINCIPAL Package
The XS_PRINCIPAL package contains procedures used to create, manage, and delete
application principals. These application principals include application users, regular
application roles, and dynamic application roles.

This section includes the following topics:

• Security Model

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_PRINCIPAL Subprograms

11.8.1 Security Model
The XS_PRINCIPAL package is created under the SYS schema.

Users with Real Application Security PROVISION privilege can create, modify, or drop
application users and roles. The privileges required to create, modify, or drop application users
and roles are no longer governed by the same system privileges required to create, modify, or
drop database users and roles.

Chapter 11
XS_PRINCIPAL Package

11-61

11.8.2 Constants
The following constants define the user's status:

ACTIVE CONSTANT PLS_INTEGER := 1;
INACTIVE CONSTANT PLS_INTEGER := 2;
UNLOCKED CONSTANT PLS_INTEGER := 3;
EXPIRED CONSTANT PLS_INTEGER := 4;
LOCKED CONSTANT PLS_INTEGER := 5;

The following constants define dynamic role scope:

SESSION_SCOPE CONSTANT PLS_INTEGER := 0;
REQUEST_SCOPE CONSTANT PLS_INTEGER := 1;

The following constants define the verifier type:

XS_SHA512 CONSTANT PLS_INTEGER := 2 ;
XS_SALTED_SHA1 CONSTANT PLS_INTEGER := 1 ;

11.8.3 Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are defined
for this package.

-- Type definition for roles granted to the principals
CREATE OR REPLACE TYPE XS$ROLE_GRANT_TYPE AS OBJECT (
-- Member Variables
-- Constants defined in other packages cannot be recognized in a type.
-- e.g. XS_ADMIN_UTIL.XSNAME_MAXLEN
-- name VARCHAR2(XS_ADMIN_UTIL.XSNAME_MAXLEN),
 name VARCHAR2(130),
-- Start date of the effective date
 start_date TIMESTAMP WITH TIME ZONE,
-- End date of the effective date
 end_date TIMESTAMP WITH TIME ZONE,

 CONSTRUCTOR FUNCTION XS$ROLE_GRANT_TYPE (
 name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE:= NULL,
 end_date IN TIMESTAMP WITH TIME ZONE:= NULL)
 RETURN SELF AS RESULT,

 MEMBER FUNCTION get_role_name RETURN VARCHAR2,
 MEMBER PROCEDURE set_start_date(start_date IN TIMESTAMP WITH TIME ZONE),
 MEMBER FUNCTION get_start_date RETURN TIMESTAMP WITH TIME ZONE,
 MEMBER PROCEDURE set_end_date(end_date IN TIMESTAMP WITH TIME ZONE),
 MEMBER FUNCTION get_end_date RETURN TIMESTAMP WITH TIME ZONE
);

CREATE OR REPLACE TYPE XS$ROLE_GRANT_LIST AS VARRAY(1000) OF XS$ROLE_GRANT_TYPE;

Chapter 11
XS_PRINCIPAL Package

11-62

11.8.4 Summary of XS_PRINCIPAL Subprograms

Table 11-10 Summary of XS_PRINCIPAL Subprograms

Subprogram Description

CREATE_USER Procedure Creates an application user.

CREATE_ROLE Procedure Creates an application role.

CREATE_DYNAMIC_ROLE Procedure Creates a dynamic application role.

GRANT_ROLES Procedure Grants one or more application roles to an application
principal.

REVOKE_ROLES Procedure Revokes one or more roles from an application principal.

ADD_PROXY_USER Procedure Adds a proxy user for a target application user.

REMOVE_PROXY_USERS Procedure Removes specified proxy user or all proxy users for a
target application user.

ADD_PROXY_TO_DBUSER Add a proxy application user to a database user.

REMOVE_PROXY_FROM_DBUSER
Procedure

Remove a proxy application user from a database user.

SET_EFFECTIVE_DATES Procedure Sets or modifies the effective dates for an application
user or role.

SET_DYNAMIC_ROLE_DURATION
Procedure

Sets or modifies the duration, in minutes, for a dynamic
application role.

SET_DYNAMIC_ROLE_SCOPE Procedure Sets or modifies the scope of a dynamic application role,
such as REQUEST_SCOPE or SESSION_SCOPE.

ENABLE_BY_DEFAULT Procedure Enables or disables an application role.

ENABLE_ROLES_BY_DEFAULT Procedure Enables or disables all directly granted roles for the
specified user.

SET_USER_SCHEMA Procedure Sets the database schema for an application user.

SET_GUID Procedure Sets the GUID for an external user or role.

SET_ACL Procedure Sets the Real Application Security session privilege for
an application user or a dynamic role.

SET_PROFILE Procedure Sets the application user's profile. This is a set of
resource limits and password parameters that restrict
database usage and database instance resources for a
Real Application Security application user.

SET_USER_STATUS Procedure Sets or modifies the status of an application user
account, such as ACTIVE, INACTIVE, UNLOCK, LOCKED,
or EXPIRED.

SET_PASSWORD Procedure Sets or modifies the password for an application user
account.

SET_VERIFIER Procedure Sets or modifies the verifier for an application user
account.

SET_DESCRIPTION Procedure Sets the description string for an application user or role.

DELETE_PRINCIPAL Procedure Drops an application user or role.

This section describes the following XS_PRINCIPAL subprograms:

Chapter 11
XS_PRINCIPAL Package

11-63

11.8.4.1 CREATE_USER Procedure
The CREATE_USER procedure creates a new application user. You need the CREATE USER system
privilege to create an application user.

You can use the DBA_XS_USERS data dictionary view to get a list of all application users.

Syntax

CREATE_USER (
 name IN VARCHAR2,
 schema IN VARCHAR2 := NULL,
 status IN PLS_INTEGER := ACTIVE,
 start_date IN TIMESTAMP WITH TIME ZONE := NULL,
 end_date IN TIMESTAMP WITH TIME ZONE := NULL,
 guid IN RAW := NULL,
 external_source IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 acl IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the application user to be created.

status The status of the user on creation. This can be one of the following values:

ACTIVE, INACTIVE.

The default value is ACTIVE.

The values PASSWORDEXPIRED and LOCKED are deprecated beginning with
Oracle Database Release 12.1 (12.1.0.2).

schema The database schema to be associated with the user. This is optional.

start_date The date from which the user account becomes effective. This is optional.

end_date The date on which the user account becomes ineffective. This is optional.

If an end_date is specified, then the start_date must also be specified.

guid GUID of the user. This is valid for external users only.

external_source Name of the system that is the source for this user. This is optional.

description A description for the user account. This is optional.

Chapter 11
XS_PRINCIPAL Package

11-64

Parameter Description

acl The Real Application Security session privilege. The default value is NULL
meaning no ACL is set on the principal. The ACL must reside in the SYS
schema, or else an error is thrown.

The Real Application Security session privilege to be set on the principal
must follow the naming convention for Real Application Security objects and
must exist before this procedure is called.

The session privilege is enforced as per the ACL set on the Real
Application Security application user involved in the session operation. For
example, a create session operation requires the caller to have the CREATE
SESSION privilege in the ACL set on the Real Application Security
application user.

Principal-specific ACL grants take precedence over existing system-level
session privilege grants. A privilege check is first done in the ACL
associated with the principal and if it succeeds, the operation proceeds. If
the privilege check finds deny, the operation fails with an insufficient
privilege error. If neither grant nor deny is found, the check is done in the
system ACL associated with the SESSION_SC security class and the
operation succeeds or fails based on this privilege check result.

Examples

The following example creates a user:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER('TEST1');
END;

The following example creates a user, and also specifies a schema and start date for the user:

DECLARE
st_date TIMESTAMP WITH TIME ZONE;
BEGIN
 st_date := TO_TIMESTAMP_TZ('2010-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 SYS.XS_PRINCIPAL.CREATE_USER(name=>'u2',
 schema=>'scott',
 start_date=>st_date);
END;

11.8.4.2 CREATE_ROLE Procedure
The CREATE_ROLE procedure creates a new application role. You need the CREATE ROLE system
privilege to create a regular application role.

You can use the DBA_XS_ROLES data dictionary view to get the list of application roles
together with their attributes, like start date and end date

Syntax

CREATE_ROLE (name IN VARCHAR2,
 enabled IN BOOLEAN := FALSE,
 start_date IN TIMESTAMP WITH TIME ZONE := NULL,
 end_date IN TIMESTAMP WITH TIME ZONE := NULL,
 guid IN RAW := NULL,
 external_source IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL);

Chapter 11
XS_PRINCIPAL Package

11-65

Parameters

Parameter Description

name The name of the application role to be created.

enabled Specifies whether the role is enabled on creation. The default value is
FALSE, which means that the role is disabled on creation.

start_date The date from which the role becomes effective. This is optional.

end_date The date on which the role becomes ineffective. This is optional.

If an end_date is specified, then the start_date must also be specified.

guid GUID of the role. This is applicable for external roles only.

external_source The name of the system that is the source for this role. This is optional.

description An optional description for the role.

Examples

The following example creates an application role, called hrmgr:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_ROLE('hrmgr');
END;

The following example creates an application role called hrrep. It also enables the role, and
assigns the current date as start date for the role.

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
BEGIN
 st_date := SYSTIMESTAMP;
 SYS.XS_PRINCIPAL.CREATE_ROLE(name=>'hrrep',
 enabled=>true,
 start_date=>st_date);
END;

11.8.4.3 CREATE_DYNAMIC_ROLE Procedure
The CREATE_DYNAMIC_ROLE procedure creates a new dynamic application role. Dynamic
application roles can be dynamically enabled or disabled by an application, based on the
criteria defined by the application. You need the CREATE ROLE system privilege to create an
dynamic application role.

You can use the DBA_XS_DYNAMIC_ROLES data dictionary view to get a list of all dynamic
application roles together with their attributes, like duration.

Syntax

CREATE_DYNAMIC_ROLE (
 name IN VARCHAR2,
 duration IN PLS_INTEGER := NULL,
 scope IN PLS_INTEGER := XS_PRINCIPAL.SESSION_SCOPE,
 description IN VARCHAR2 := NULL,
 acl IN VARCHAR2 := NULL);

Chapter 11
XS_PRINCIPAL Package

11-66

Parameters

Parameter Description

name The name of the dynamic application role to be created.

duration The duration (in minutes) of the dynamic application role. This is an optional
attribute.

scope The scope attribute of the dynamic application role. The possible values are
SESSION_SCOPE and REQUEST_SCOPE. The default value is
XS_PRINCIPAL.SESSION_SCOPE.

description An optional description for the dynamic application role.

acl The Real Application Security session privilege. The default value is NULL
meaning no ACL is set on the principal. The ACL must reside in the SYS
schema, or else an error is thrown.

The Real Application Security session privilege to be set on the principal must
follow the naming convention for Real Application Security objects and must
exist before this procedure is called.

The session privilege is enforced as per the ACL set on the Real Application
Security dynamic role involved in the session operation. For example, the
attach operation with dynamic role requires the ENABLE_DYNAMIC_ROLE
privilege in the ACLs to be set on the dynamic roles.

Principal-specific ACL grants take precedence over existing system-level
session privilege grants. A privilege check is first done in the ACL associated
with the principal and if it succeeds, the operation proceeds. If the privilege
check finds deny, the operation fails with an insufficient privilege error. If
neither grant nor deny is found, the check is done in the system ACL
associated with the SESSION_SC security class and the operation succeeds or
fails based on this privilege check result.

Examples

The following example creates a dynamic application role, called sslrole:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_DYNAMIC_ROLE('sslrole');
END;

The following example creates a dynamic application role called reprole. It also specifies a
duration of 100 minutes for the role, and chooses the request scope for the role.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_DYNAMIC_ROLE(name=>'reprole',
 duration=>100,
 scope=>XS_PRINCIPAL.REQUEST_SCOPE);
END;

11.8.4.4 GRANT_ROLES Procedure
The GRANT_ROLES procedure grants one or more application roles to an application principal.
You need the GRANT ANY ROLE system privilege to grant application roles.

You can use the DBA_XS_ROLE_GRANTS data dictionary view to get the list of all role grants
together with their details, like start date and end date.

Chapter 11
XS_PRINCIPAL Package

11-67

Syntax

GRANT_ROLES (
grantee IN VARCHAR2,
role IN VARCHAR2,
start_date IN TIMESTAMP WITH TIME ZONE:= NULL,
end_date IN TIMESTAMP WITH TIME ZONE:= NULL,);

GRANT_ROLES (
grantee IN VARCHAR2,
role_list IN XS$ROLE_GRANT_LIST);

Parameters

Parameter Description

grantee The name of the principal to which the role is granted.

role The name of the role to be granted.

role_list The list of roles to be granted.

start_date The date on which the grant takes effect. This is an optional parameter.

end_date The date until which the grant is in effect. This is an optional parameter.

Examples

The following example grants the HRREP role to user SMAVRIS with a start date and an end date
specified:

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 end_date TIMESTAMP WITH TIME ZONE;
BEGIN
 st_date := TO_TIMESTAMP_TZ('2010-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 end_date := TO_TIMESTAMP_Tz('2011-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 SYS.XS_PRINCIPAL.GRANT_ROLES('SMAVRIS', 'HRREP', st_date, end_date);
END;

The following example grants the HRREP and HRMGR roles to user SMAVRIS:

DECLARE
 rg_list XS$ROLE_GRANT_LIST;
BEGIN
 rg_list := XS$ROLE_GRANT_LIST(XS$ROLE_GRANT_TYPE('HRREP'),
 XS$ROLE_GRANT_TYPE('HRMGR'));

 SYS.XS_PRINCIPAL.GRANT_ROLES('SMAVRIS', rg_list);
END;

The following example shows how to grant the role XSCONNECT to user XSUSER. This grant will
allow user XSUSER using its password to connect to a database.

EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('XSUSER', 'XSCONNECT');

Chapter 11
XS_PRINCIPAL Package

11-68

11.8.4.5 REVOKE_ROLES Procedure
The REVOKE_ROLES procedure revokes the specified role(s) from the specified grantee. If no
roles are specified, then all application roles are revoked from the grantee.You need the GRANT
ANY ROLE system privilege to grant or revoke roles.

You can use the DBA_XS_ROLE_GRANTS data dictionary view to get the list of all role grants
together with their details, like start date and end date.

Syntax

REVOKE_ROLES (
 grantee IN VARCHAR2,
 role IN VARCHAR2);

REVOKE_ROLES (
 grantee IN VARCHAR2,
 role_list IN XS$NAME_LIST);

REVOKE_ROLES (
 grantee IN VARCHAR2);

Parameters

Parameter Description

grantee The application principal from whom the role(s) are to be revoked.

role The name of the application role that is to be revoked.

role_list The list of role names that are to be revoked.

Examples

The following example revokes the HRREP role from user SMAVRIS:

BEGIN
 XS_PRINCIPAL.REVOKE_ROLES('SMAVRIS','HRREP');
END;

The following example revokes the HRREP and HRMGR roles from user SMAVRIS:

DECLARE
 role_list XS$NAME_LIST;
BEGIN
 role_list := XS$NAME_LIST('HRREP','HRMGR');
 SYS.XS_PRINCIPAL.REVOKE_ROLES('SMAVRIS', role_list);
END;

The following example revokes all granted roles from user SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.REVOKE_ROLES('SMAVRIS');
END;

11.8.4.6 ADD_PROXY_USER Procedure
The ADD_PROXY_USER adds a target user for the specified application user. This allows the
application user to proxy as the target user. There are two signatures for this procedure. The
first signature allows you to specify a subset of roles of the target user using the target_roles

Chapter 11
XS_PRINCIPAL Package

11-69

parameter that are to be assigned to the proxy user. For the second signature there is no
target_roles parameter, so all roles of the target user are assigned to the proxy user.

You need the ALTER USER system privilege to add or remove a proxy user.

Syntax

ADD_PROXY_USER (
 target_user IN VARCHAR2,
 proxy_user IN VARCHAR2,
 target_roles IN XS$NAME_LIST);

ADD_PROXY_USER (
 target_user IN VARCHAR2,
 proxy_user IN VARCHAR2);

Parameters

Parameter Description

target_user The name of the target application user that can be proxied to.

proxy_user The name of the proxy application user.

target_roles A list of target user roles that can be proxied by the proxy user. This parameter
is mandatory. If you pass an explicit NULL value, then this would be a case of
configuring the proxy user without any role of the target user; otherwise, the
proxy_user parameter uses the value you specify for the target_roles
parameter.

Examples

The following example enables user DJONES to proxy as target user SMAVRIS. The target roles
granted to DJONES are HRREP and HRMGR.

DECLARE
 pxy_roles XS$NAME_LIST;
BEGIN
 pxy_roles := XS$NAME_LIST('HRREP','HRMGR');
 SYS.XS_PRINCIPAL.ADD_PROXY_USER('SMAVRIS','DJONES', pxy_roles);
END;

The following example passes an explicit NULL value for the target role; in other words, it
assigns no roles of the target user 'SMAVRIS' to the proxy user 'DJONES'.

BEGIN
 SYS.XS_PRINCIPAL.ADD_PROXY_USER('SMAVRIS','DJONES', NULL);
END;

The following example assigns all roles of target user 'SMAVRIS' to proxy user 'DJONES'.

BEGIN
 SYS.XS_PRINCIPAL.ADD_PROXY_USER('SMAVRIS','DJONES');
END;

11.8.4.7 REMOVE_PROXY_USERS Procedure
The REMOVE_PROXY_USERS procedure disassociates one or all proxy users for a target
application user. The associated proxy roles are automatically removed for the proxy users.

You need the ALTER USER system privilege to add or remove a proxy user.

Chapter 11
XS_PRINCIPAL Package

11-70

Syntax

REMOVE_PROXY_USERS (
 target_user IN VARCHAR2);

REMOVE_PROXY_USERS (
 target_user IN VARCHAR2,
 proxy_user IN VARCHAR2);

Parameters

Parameter Description

target_user The target application user whose proxies are to be disassociated.

proxy_user The proxy application user that needs to be disassociated from the target user.

Examples

The following example removes all proxy users for target user SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.REMOVE_PROXY_USERS('SMAVRIS');
END;

The following example disassociates the proxy user DJONES from the target user SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.REMOVE_PROXY_USERS('SMAVRIS','DJONES');
END;

11.8.4.8 ADD_PROXY_TO_DBUSER
The ADD_PROXY_TO_DBUSER adds the specified target proxy application user to the specified
database user. The application user must be a direct logon user. This allows the application
user to proxy as the target database user. By default, all roles assigned to the target user can
be used by the proxy user. Similar to Oracle Database, the default roles of the target database
users would be enabled after connection. Other roles assigned to the target database user can
be set by using the SET ROLE statement.

You need the ALTER USER system privilege to add a proxy user to a database user.

Syntax

ADD_PROXY_TO_DBUSER (
 database_user IN VARCHAR2,
 proxy_user IN VARCHAR2,
 is_external IN BOOLEAN := FALSE);

Parameters

Parameter Description

database_user The name of the target database user that can be proxied to.

proxy_user The name of the proxy application user.

is_external The parameter to indicate whether the user is an external user or a regular
Real Application Security application user.

Chapter 11
XS_PRINCIPAL Package

11-71

Examples

The following example enables application user DJONES to proxy as target database user
SMAVRIS.

BEGIN
 SYS.XS_PRINCIPAL.ADD_PROXY_TO_DBUSER('SMAVRIS','DJONES', TRUE);
END;

11.8.4.9 REMOVE_PROXY_FROM_DBUSER Procedure
The REMOVE_PROXY_FROM_DBUSER procedure disassociates a proxy application user from a
database user. The associated proxy roles are automatically removed from the application
user.

You need the ALTER USER system privilege to remove a proxy user from a database user.

Syntax

REMOVE_PROXY_FROM_DBUSER (
 database_user IN VARCHAR2,
 proxy_user IN VARCHAR2);

Parameters

Parameter Description

database_user The target database user whose proxies are to be disassociated.

proxy_user The proxy application user that needs to be disassociated from the target
database user.

Examples

The following example disassociates the proxy user DJONES from the target database user
SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.REMOVE_PROXY_FROM_DBUSER('SMAVRIS','DJONES');
END;

11.8.4.10 SET_EFFECTIVE_DATES Procedure
The SET_EFFECTIVE_DATES procedure sets or modifies the effective dates for an application
user or role. If the start_date and end_date values are specified as NULL by default, then the
application user is not currently effective, so the session for the particular application user
cannot be created.

You need the ALTER USER system privilege to run this procedure for an application user. You
need the ALTER ANY ROLE system privilege to run this procedure for an application role.

Syntax

SET_EFFECTIVE_DATES (
 principal IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE:= NULL,
 end_date IN TIMESTAMP WITH TIME ZONE:= NULL);

Chapter 11
XS_PRINCIPAL Package

11-72

Parameters

Parameter Description

principal The name of the application user or role for which effective dates are to be set.

start_date The start date of the effective dates period.

end_date The end date of the effective dates period.

Examples

The following example sets the effective dates for user DJONES.

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 end_date TIMESTAMP WITH TIME ZONE;
BEGIN
 st_date := TO_TIMESTAMP_TZ('2010-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 end_date := TO_TIMESTAMP_Tz('2011-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 SYS.XS_PRINCIPAL.SET_EFFECTIVE_DATES(principal=>'DJONES',
 start_date=>st_date,end_date=>end_date);
END;

11.8.4.11 SET_DYNAMIC_ROLE_DURATION Procedure
The SET_DYNAMIC_ROLE_DURATION procedure sets or modifies the duration for a dynamic
application role. The duration is specified in minutes.

You need the ALTER ANY ROLE system privilege to modify a role.

Syntax

SET_DYNAMIC_ROLE_DURATION (
 role IN VARCHAR2,
 duration IN PLS_INTEGER);

Parameters

Parameter Description

role The name of the dynamic application role.

duration The duration of the dynamic application role in minutes. This cannot be a
negative value.

Examples

The following example sets the duration of the reprole dynamic application role to 60 minutes.

BEGIN
 SYS.XS_PRINCIPAL.SET_DYNAMIC_ROLE_DURATION('reprole',60);
END;

Chapter 11
XS_PRINCIPAL Package

11-73

11.8.4.12 SET_DYNAMIC_ROLE_SCOPE Procedure
The SET_DYNAMIC_ROLE_SCOPE procedure sets or modifies the scope of a dynamic application
role. The session (SESSION_SCOPE) or request (REQUEST_SCOPE) scopes can be chosen.

You need the ALTER ANY ROLE system privilege to modify a role.

Syntax

SET_DYNAMIC_ROLE_SCOPE (
 role IN VARCHAR2,
 scope IN PLS_INTEGER);

Parameters

Parameter Description

role The name of the dynamic application role.

scope The scope of the dynamic application role to be set. The allowed values are
XS_PRINCIPAL.REQUEST_SCOPE and XS_PRINCIPAL.SESSION_SCOPE.

Examples

The following example sets the scope of the reprole dynamic application role to request
scope:

begin
 SYS.XS_PRINCIPAL.SET_DYNAMIC_ROLE_SCOPE('reprole',XS_PRINCIPAL.REQUEST_SCOPE);
end;

11.8.4.13 ENABLE_BY_DEFAULT Procedure
The ENABLE_BY_DEFAULT procedure enables or disables a regular application role.

If enabled, then the application role is automatically enabled for the principal to which it is
granted. If disabled, then the privileges associated with the application role are not enabled
even if the application role is granted to a principal.

You need the ALTER ANY ROLE system privilege to modify an application role.

Syntax

ENABLE_BY_DEFAULT (
 role IN VARCHAR2,
 enabled IN BOOLEAN := TRUE);

Parameters

Parameter Description

role The name of the regular application role.

enabled The enabled attribute of the application role. Setting this to TRUE marks the
application role as being enabled by default. The default value is TRUE.

Examples

The following example sets the enabled attribute for the HRREP application role to TRUE:

Chapter 11
XS_PRINCIPAL Package

11-74

BEGIN
 SYS.XS_PRINCIPAL.ENABLE_BY_DEFAULT('HRREP',TRUE);
END;

11.8.4.14 ENABLE_ROLES_BY_DEFAULT Procedure
The ENABLE_ROLES_BY_DEFAULT procedure enables or disables all application roles that have
been directly granted to an application user.

You need the ALTER USER system privilege to run this procedure for an application user.

Syntax

ENABLE_ROLES_BY_DEFAULT (
 user IN VARCHAR2,
 enabled IN BOOLEAN := TRUE);

Parameters

Parameter Description

user The name of the application user.

enabled The enabled attribute for all application roles that have been directly granted
to the application user.

Setting the enabled attribute to TRUE enables all directly granted application
roles for the application user. The default value is TRUE.

Setting the enabled attribute to FALSE disables all directly granted application
roles for the application user.

Examples

The following example enables all directly granted roles for application user SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.ENABLE_ROLES_BY_DEFAULT('SMAVRIS',TRUE);
END;

11.8.4.15 SET_USER_SCHEMA Procedure
The SET_USER_SCHEMA procedure sets the database schema for an application user.

You need the ALTER USER system privilege to run this procedure for an application user.

Syntax

SET_USER_SCHEMA (
 user IN VARCHAR2,
 schema IN VARCHAR2);

Parameters

Parameter Description

user The name of the application user.

schema The name of the database schema to be associated with the user. Setting this
to NULL removes any schema association.

Chapter 11
XS_PRINCIPAL Package

11-75

Examples

The following example associates the HR schema with user DJONES.

BEGIN
 SYS.XS_PRINCIPAL.SET_USER_SCHEMA('DJONES','HR');
END;

11.8.4.16 SET_GUID Procedure
The SET_GUID procedure sets the GUID for a principal. The principal must be an external user
or role, and the current GUID must be NULL.

You need the ALTER USER system privilege to run this procedure for an application user. You
need the ALTER ANY ROLE system privilege to run this procedure for an application role.

Note:

The external_source attribute for the user must have been set for SET_GUID to
work.

Syntax

SET_GUID (
 principal IN VARCHAR2,
 guid IN RAW);

Parameters

Parameter Description

principal The name of the external user or role.

guid The GUID for the external user or role.

Examples

The following example sets a GUID for user Alex:

BEGIN
 SYS.XS_PRINCIPAL.SET_GUID('ALEX','7b6cb3a98f8a4e20ac31a37419cc7fa3');
END;

11.8.4.17 SET_ACL Procedure

Purpose

The SET_ACL procedure sets an ACL on the specified application user or dynamic role.

This procedure requires the caller to have the Real Application Security PROVISION privilege as
the least privilege. Users with database ALTER USER privilege can also call the procedure if the
principal is an application user. Users with the database role ALTER ROLE privilege can also call
this procedure if the principal is a dynamic role.

Chapter 11
XS_PRINCIPAL Package

11-76

Syntax

SET_ACL(principal IN VARCHAR2,
 acl IN VARCHAR2);

Parameters

Parameter Description

principal The application user or dynamic role to which the
ACL is to be set.

acl The Real Application Security session privilege.

Usage Notes

The ACLs must be created in the SYS schema.

An ACL set on an application user or dynamic role overrides a system-wide ACL.

The session privilege will be enforced as per the ACL set on Real Application Security
application user or dynamic role involved in the session operation. For example, a create
session operation requires the caller to have the CREATE_SESSION privilege in the ACL set on
the Real Application Security application user or the attach operation with dynamic role
requires the ENABLE_DYNAMIC_ROLE privilege in the ACLs to be set on the dynamic roles.

Principal-specific ACL grants take precedence over existing system-level session privilege
grants. A privilege check is first done in the ACL associated with the principal and if it
succeeds, the operation proceeds. If the privilege check finds deny, the operation fails with an
insufficient privilege error. If neither grant nor deny is found, the check is done in the system
ACL associated with the SESSION_SC security class and the operation succeeds or fails based
on this privilege check result.

Examples

Example 11-1 Set the ACL Privilege CREATE_SESSION on Application User TEST1

The following example sets the ACL privilege CREATE_SESSION on the specified application user
test1.

BEGIN
 SYS.XS_PRINCIPAL.SET_ACL('test1','CREATE_SESSION');
END;

11.8.4.18 SET_PROFILE Procedure
The SET_PROFILE procedure sets the application user's profile. The profile is a set of resource
limits and password parameters that restrict database usage and database instance resources
for a Real Application Security application user. Both the application user and the profile must
be existing entities.

The user executing this procedure must have the ALTER_USER privilege.

If a profile that is assigned to an application user is dropped using the cascade option, then the
default profile would automatically become activated for that user.

Chapter 11
XS_PRINCIPAL Package

11-77

Syntax

SET_PROFILE (
 user IN VARCHAR2,
 profile IN VARCHAR2);

Parameters

Parameter Description

user The name of the Real Application Security application user. This must be an
existing application user.

profile The name of the profile.

Examples

The following example creates a profile named prof and then sets the profile named prof to
an application user named xsuser.

CREATE PROFILE prof LIMIT PASSWORD_REUSE_TIME 1/1440 PASSWORD_REUSE_MAX 3
PASSWORD_VERIFY_FUNCTION Verify_Pass;

BEGIN
 SYS.XS_PRINCIPAL.SET_PROFILE('xsuser','prof');
END;

11.8.4.19 SET_USER_STATUS Procedure
The SET_USER_STATUS procedure sets or modifies the status of an application user account.

You need the ALTER_USER privilege to run this procedure for an application user.

Syntax

SET_USER_STATUS (
 user IN VARCHAR2,
 status IN PLS_INTEGER);

Parameters

Parameter Description

user The name of the user account whose status needs to be set or updated.

Chapter 11
XS_PRINCIPAL Package

11-78

Parameter Description

status The new status of the Real Application Security user account. The status
values can be divided into several classes:

• ACTIVE and INACTIVE - These two account status values will affect the
user account's ability to create and attach to an application session.

When set to ACTIVE, it allows the application user to use a direct login
account to log into the database with a valid password. The application
user is allowed to create and attach to an application session if the
account has the required application privileges.

When set to INACTIVE, the application user cannot use a direct login
account to log into the database even with a valid password and can not
create and attach to an application session.

• UNLOCK, LOCKED, or EXPIRED - These status values will be checked only
for the direct login Real Application Security application user.

When set to UNLOCK, it opens the application user account when the
account is LOCKED and allows the application user to use a direct login
account to log into the database with a valid password.

When set to LOCKED, it locks the account of the application user. This
means user connections using a direct login account will not be allowed
even with a valid password. Provided that the user account is ACTIVE, a
direct login will not succeed when the account is locked, but the user can
create and attach to an application session.

When set to EXPIRED, it expires the account of the application user. This
means user connections using a direct login account will be allowed for
valid passwords; however, the password must be changed at the time of
logon.

• PASSWORDEXPIRED (Deprecated) - This status value is deprecated
beginning with Release 1 (12.1.0.2).

If you try to pass any other value for the parameter status, an ORA-46152:
XS Security - invalid user status specified error is returned.

Examples

The following example sets the user status to LOCKED for user DJONES.

BEGIN
 SYS.XS_PRINCIPAL.SET_USER_STATUS('DJONES',XS_PRINCIPAL.LOCKED);
END;

11.8.4.20 SET_PASSWORD Procedure
The SET_PASSWORD procedure sets or modifies the password for an application user account.
When you use the SET_PASSWORD procedure, it creates a verifier for you based on the password
and the type parameter and then inserts the verifier and the value of the type parameter into
the dictionary table.

A direct login Real Application Security user can change their own password by providing its
value using the oldpass parameter. If value of the old password is incorrect, then the failed
login count is incremented with each attempt, returning an ORA-28008: invalid old password
error. The new password is not set until the old supplied password is correct.

You need the ALTER_USER privilege to run this procedure for an application user or if you are
changing the password of other Real Application Security users.

Chapter 11
XS_PRINCIPAL Package

11-79

Native Real Application Security users synchronized from external ID stores are not allowed to
change their own password. These users must change their password in the originating ID
store. For example, if the Oracle Internet Directory 11g Release 1 (11.1.1) is the external store,
for end-user self-service use the Oracle Identity Self Service interface provided by Oracle
Identity Manager to manage your passwords. See Fusion Middleware Performing Self Service
Tasks with Oracle Identity Manager for more information. You should contact your security
administrator to determine if native Real Application Security users are synchronized from an
external ID store, and if so, whether password management is provided in your directory server
environment for end-user self-service.

The SET_PASSWORD operation and the SQL*Plus PASSWORD command are both blocked on the
logical standby database.

Syntax

SET_PASSWORD (
 user IN VARCHAR2,
 password IN VARCHAR2,
 type IN PLS_INTEGER := XS_SHA512,
 opassword IN VARCHAR2 :=NULL);

Parameters

Parameter Description

user The name of the application user account for which the password is to be set.

password The password to be set.

type The verifier type to be used for the password. The default value is XS_SHA512.
The verifier type must be one of the following types:

XS_SHA512, XS_SALTED_SHA1
opassword The old password. This parameter is required if the Real Application Security

user is changing their own password. If not provided, then the user must have
the required privilege to change their own password.

Examples

The following example sets a password for application user SMAVRIS. It also specifies the
XS_SHA512 verifier type for the password.

BEGIN
 SYS.XS_PRINCIPAL.SET_PASSWORD('SMAVRIS','2Hrd2Guess',XS_PRINCIPAL.XS_SHA512);
END;

11.8.4.21 SET_VERIFIER Procedure
The SET_VERIFIER procedure sets or modifies the verifier for an application user account.
When you use the SET_VERIFIER procedure, the procedure directly inserts the verifier and the
value of the type parameter into the dictionary table, XS$VERIFIERS. This enables
administrators to migrate users into Real Application Security with knowledge of the verifier
and not the password.

You need the ALTER_USER privilege to run this procedure for an application user.

The SET_VERIFIER operation and the SQL*Plus PASSWORD command are both blocked on the
logical standby database.

Chapter 11
XS_PRINCIPAL Package

11-80

Syntax

set_verifier (
 user IN VARCHAR2,
 verifier IN VARCHAR2,
 type IN PLS_INTEGER := XS_SHA512);

Parameters

Parameter Description

user The name of the application user for whom the verifier is set.

verifier A character string to be used as the verifier.

type The verifier type to be used. This can be one of the following:

XS_SHA512, XS_SALTED_SHA1

Examples

Assume that a user by the name LWUSER3 is created and the password is set with a verifier type
of XS_SALTED_SHA1.

Next, query the view DBA_XS_OBJECTS to obtain the ID value for user LWUSER3.

SQL> column name format A10;
SQL> column owner format A6;
SQL> select NAME, OWNER, ID, TYPE, STATUS from DBA_XS_OBJECTS where NAME =
'LWUSER3';

NAME OWNER ID TYPE STATUS
---------- ------ ---------- ------------------ --------
LWUSER3 SYS 2147493770 PRINCIPAL VALID

Next, query the XS$VERIFIERS dictionary table for user LWUSER3 whose ID is 2147493770.

SQL> column user# format 9999999999;
SQL> column type# format 99;
SQL> column verifier format A62;
SQL> select USER#, VERIFIER, TYPE# from XS$VERIFIERS where USER# =
'2147493770';

 USER# VERIFIER
TYPE#
----------- --

 2147493770
S:14DC0F5ABB72FC869549B1F845C548E0BEF7B863A116DB24DFAE22F0501E 1

The value of the verifier includes its type as value “S” followed by a colon (:) to denote that it is
a verifier type of XS_SALTED_SHA1, which is also indicated as being of type# 1.

Using the entire verifier value including “S:”, set the verifier for user LWUSER3.

BEGIN
SYS.XS_PRINCIPAL.SET_VERIFIER('lwuser3','S:14DC0F5ABB72FC869549B1F845C548E0BEF7B863A116DB
24DFAE22F0501E',

Chapter 11
XS_PRINCIPAL Package

11-81

XS_PRINCIPAL.XS_SALTED_SHA1);
END;
/ 2 3 4 5

PL/SQL procedure successfully completed.

For this procedure to complete successfully, both the verifier value and its type must match the
information in the VERIFIER column of the XS$VERIFIERS dictionary table for the user whose
verifier is being set. Note that when you change the password for an application user, it
automatically changes its verifier value with the option of changing its verifier type.

The previous example set the verifier to its same exact value to show the steps involved. You
have the option to set the verifier for a password to any verifier value that displays for an
application user when you query the XS$VERIFIERS dictionary table as long as the verifier value
matches the verifier type that you set. For example, if you wanted to change the verifier value
and the verifier type to XS_SHA512, do the following.

SQL> BEGIN
SYS.XS_PRINCIPAL.SET_VERIFIER('lwuser3','T:9BA95FEF2C2630A2BAACF2E7C5E41B0D50C
DC7B0B6
0C88AD4FE81F8155D002F99EEAF9D95477E4749870C67FDE870E154ED17809C359777F979E2690
10823FB
981B2A998915EB1439FE3C6C1542A239C',
XS_PRINCIPAL.XS_SHA512);
END;
/ 2 3 4

PL/SQL procedure successfully completed.

Note that this is the same verifier value and verifier type that was set for application user
LWUSER1 as shown in Setting a Password Verifier for Direct Application User Accounts.

11.8.4.22 SET_DESCRIPTION Procedure
The SET_DESCRIPTION procedure is used to set the description for an application principal.

You need the ALTER USER system privilege to run this procedure for an application user. You
need the ALTER ANY ROLE system privilege to run this procedure for an application role.

Syntax

SET_DESCRIPTION (principal IN VARCHAR2, description IN VARCHAR2);

Parameters

Parameter Description

principal The name of the principal for which the description is set.

description A descriptive string about the principal.

Examples

The following example sets a description for the application role HRREP:

BEGIN
 SYS.XS_PRINCIPAL.SET_DESCRIPTION('HRREP','HR Representative role');
END;

Chapter 11
XS_PRINCIPAL Package

11-82

11.8.4.23 DELETE_PRINCIPAL Procedure
The DELETE_PRINCIPAL procedure drops an application user or application role.

You need the DROP USER system privilege to run this procedure for an application user. You
need the DROP ANY ROLE system privilege to run this procedure for an application role.

Syntax

delete_principal (
 principal IN VARCHAR2,
 delete_option IN PLS_INTEGER:=XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

principal The name of the application user or application role that is to be deleted.

delete_option The delete option to use. The following options are available:

• DEFAULT_OPTION:
The default option allows deleting a principal only if it is not referenced
elsewhere. If there are other entities that reference the principal, then the
principal cannot be deleted.

For example, the delete operation fails if you try to delete an application
role that is granted to a principal.

• CASCADE_OPTION:

The cascade option deletes the application user or application role
together with any references to it.The user deleting the application user or
application role must have privileges to delete these references as well.

• ALLOW_INCONSISTENCIES_OPTION:
The allow inconsistencies option lets you delete the entity even if other
entities have late binding references to it. If the entity is part of an early
dependency, then the delete fails and an error is raised.

Examples

The following example deletes the user SMAVRIS using the DEFAULT_OPTION:

BEGIN
 SYS.XS_PRINCIPAL.DELETE_PRINCIPAL('SMAVRIS');
END;

11.9 XS_SECURITY_CLASS Package
The XS_SECURITY_CLASS package includes procedures to create, manage, and delete security
classes and their privileges. The package also includes procedures for managing security
class inheritance.

This section includes the following topics:

• Security Model for the XS_SECURITY_CLASS Package

• Summary of XS_SECURITY_CLASS Subprograms

Chapter 11
XS_SECURITY_CLASS Package

11-83

11.9.1 Security Model for the XS_SECURITY_CLASS Package
The XS_SECURITY_CLASS package is created under the SYS schema. The DBA role is granted the
ADMIN_ANY_SEC_POLICY, which allows it to administer schema objects like ACLs, security
classes, and security policies across all schemas.

Users can administer schema objects in their own schema if they have been granted the
RESOURCE role for the schema. The RESOURCE role and the XS_RESOURCE application role include
the ADMIN_SEC_POLICY privilege, required to administer schema objects in the schema as well
as administering the policy artifacts within the granted schema to achieve policy management
within an application.

Users can administer policy enforcement on the schema if they have been granted the
APPLY_SEC_POLICY privilege. With this privilege, the user can administer policy enforcement
within granted schemas to achieve policy management within an application.

11.9.2 Summary of XS_SECURITY_CLASS Subprograms

Table 11-11 Summary of XS_SECURITY_CLASS Subprograms

Subprogram Description

CREATE_SECURITY_CLASS Procedure Creates a new security class.

ADD_PARENTS Procedure Adds one or more parent security classes for the specified security
class.

REMOVE_PARENTS Procedure Removes one or more parent security classes for the specified
security class.

ADD_PRIVILEGES Procedure Adds one or more privileges to the specified security class.

REMOVE_PRIVILEGES Procedure Removes one or more privileges for the specified security class.

ADD_IMPLIED_PRIVILEGES Procedure Adds one or more implied privileges for the specified aggregate
privilege.

REMOVE_IMPLIED_PRIVILEGES Procedure Removes one or more implied privileges from an aggregate
privilege.

SET_DESCRIPTION Procedure Sets a description string for the specified security class.

DELETE_SECURITY_CLASS Procedure Deletes the specified security class.

This section describes the following XS_SECURITY_CLASS subprograms:

11.9.2.1 CREATE_SECURITY_CLASS Procedure
The CREATE_SECURITY_CLASS creates a new security class.

Syntax

XS_SECURITY_CLASS.CREATE_SECURITY_CLASS (
 name IN VARCHAR2,
 priv_list IN XS$PRIVILEGE_LIST,
 parent_list IN XS$NAME_LIST := NULL,
 description IN VARCHAR2 := NULL);

Chapter 11
XS_SECURITY_CLASS Package

11-84

Parameters

Parameter Description

name The name of the security class to be created.

The name is schema qualified, for example, SCOTT.SC1. When the schema part of
the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as SC1, and the current schema is SCOTT,
it would resolve to SCOTT.SC1.

priv_list The list of privileges to include in the security class.

parent_list The list of parent security classes from which the security class is inherited. This is
optional.

description An optional description for the security class.

Examples

The following example creates a security class called HRPRIVS. The security class includes a
set of privileges defined in priv_list. The security class uses the DML class as its parent
security class.

DECLARE
 pr_list XS$PRIVILEGE_LIST;
BEGIN
 pr_list :=XS$PRIVILEGE_LIST(
 XS$PRIVILEGE(name=>'VIEW_SENSITIVE_INFO'),
 XS$PRIVILEGE(name=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST
 ('"UPDATE"', '"DELETE"', '"INSERT"')));

 SYS.XS_SECURITY_CLASS.CREATE_SECURITY_CLASS(
 name=>'HRPRIVS',
 priv_list=>pr_list,
 parent_list=>XS$NAME_LIST('DML'));
END;

11.9.2.2 ADD_PARENTS Procedure
The ADD_PARENTS procedure adds one or more parent security classes for the specified
security class.

Syntax

XS_SECURITY_CLASS.ADD_PARENTS (
 sec_class IN VARCHAR2,
 parent IN VARCHAR2);

XS_SECURITY_CLASS.ADD_PARENTS (
 sec_class IN VARCHAR2,
 parent_list IN XS$NAME_LIST);

Chapter 11
XS_SECURITY_CLASS Package

11-85

Parameters

Parameter Description

sec_class The name of the security class for which parent classes are to be added.

The name is schema qualified, for example, SCOTT.SC1. When the schema part of
the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as SC1, and the current schema is SCOTT,
it would resolve to SCOTT.SC1.

parent The name of the parent security class to be added.

parent_list The list of parent classes to be added.

Examples

The following example adds the parent security class GENPRIVS to the HRPRIVS security class.

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PARENTS('HRPRIVS','GENPRIVS');
END;

11.9.2.3 REMOVE_PARENTS Procedure
The REMOVE_PARENTS procedure removes one or more parent classes for the specified security
class.

Syntax

XS_SECURITY_CLASS.REMOVE_PARENTS (
 sec_class IN VARCHAR2);

XS_SECURITY_CLASS.REMOVE_PARENTS (
 sec_class IN VARCHAR2,
 parent IN VARCHAR2);

XS_SECURITY_CLASS.REMOVE_PARENTS (
 sec_class IN VARCHAR2,
 parent_list IN XS$NAME_LIST);

Parameters

Parameter Description

sec_class The name of the security class whose parent classes are to be removed.

The name is schema qualified, for example, SCOTT.SC1. When the schema part of
the name is missing, the current session schema is assumed. For example, in this
same example, if the name is specified as SC1, and the current schema is SCOTT,
it would resolve to SCOTT.SC1.

parent The parent security class that is to be removed.

parent_list The list of parent security classes that are to be removed.

Examples

The following example removes the parent security class GENPRIVS from the HRPRIVS security
class.

Chapter 11
XS_SECURITY_CLASS Package

11-86

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PARENTS('HRPRIVS','GENPRIVS');
END;

11.9.2.4 ADD_PRIVILEGES Procedure
The ADD_PRIVILEGES procedure adds one or more privileges to a security class.

Syntax

XS_SECURITY_CLASS.ADD_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv_list IN XS$NAME_LIST := NULL,
 description IN VARCHAR2 := NULL);

XS_SECURITY_CLASS.ADD_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv_list IN XS$PRIVILEGE_LIST);

Parameters

Parameter Description

sec_class The name of the security class to which the privileges are to be added.

The name is schema qualified, for example, SCOTT.SC1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
SC1, and the current schema is SCOTT, it would resolve to SCOTT.SC1.

priv The name of the privilege to be added.

priv_list The list of privileges to be added.

implied_priv_list An optional list of implied privileges to be added.

description An optional description of the privilege being added.

Examples

The following example adds an aggregate privilege called UPDATE_INFO to the HRPRIVS security
class. The aggregate privilege contains the implied privileges, UPDATE, DELETE, and INSERT.

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PRIVILEGES(sec_class=>'HRPRIVS',priv=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST('"UPDATE"',
 '"DELETE"', '"INSERT"'));
END;

11.9.2.5 REMOVE_PRIVILEGES Procedure
The REMOVE_PRIVILEGES procedure removes one or more privileges from the specified security
class. If no privilege name or list is specified, then all privileges are removed from the specified
security class.

Syntax

XS_SECURITY_CLASS.REMOVE_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2);

Chapter 11
XS_SECURITY_CLASS Package

11-87

XS_SECURITY_CLASS.REMOVE_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv_list IN XS$NAME_LIST);

XS_SECURITY_CLASS.REMOVE_PRIVILEGES (
 sec_class IN VARCHAR2);

Parameters

Parameter Description

sec_class The name of the security class for which the privileges are to be removed.

The name is schema qualified, for example, SCOTT.SC1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as SC1, and the current
schema is SCOTT, it would resolve to SCOTT.SC1.

priv The name of the privilege to be removed.

priv_list The list of privileges to be removed.

Examples

The following example removes the UPDATE_INFO privilege from the HRPRIVS security class.

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PRIVILEGES('HRPRIVS','UPDATE_INFO');
END;

The following example removes all privileges from the HRPRIVS security class.

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PRIVILEGES('HRPRIVS');
END;

11.9.2.6 ADD_IMPLIED_PRIVILEGES Procedure
The ADD_IMPLIED_PRIVILEGES procedure adds one or more implied privileges to an aggregate
privilege.

Syntax

XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv IN VARCHAR2);

XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv_list IN XS$NAME_LIST);

Chapter 11
XS_SECURITY_CLASS Package

11-88

Parameters

Parameter Description

sec_class The name of the security class to which the privileges are to be added.

The name is schema qualified, for example, SCOTT.SC1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
SC1, and the current schema is SCOTT, it would resolve to SCOTT.SC1.

priv Name of the aggregate privilege for which the implied privileges are to
be added.

implied_priv The implied privilege to be added.

implied_priv_list A list of implied privileges to be added for the aggregate privilege.

Examples

The following example adds a list of implied privileges for the aggregate privilege UPDATE_INFO
to the HRPRIVS security class:

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES(sec_class=>'HRPRIVS',
priv=>'UPDATE_INFO', implied_priv_list=>XS$NAME_LIST('"UPDATE"', '"DELETE"',
'"INSERT"'));
END;

11.9.2.7 REMOVE_IMPLIED_PRIVILEGES Procedure
The REMOVE_IMPLIED_PRIVILEGES procedure removes the specified implied privileges from an
aggregate privilege. If no implied privileges are specified, then all implied privileges are
removed from the aggregate privilege.

Syntax

XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv IN VARCHAR2);

XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv_list IN XS$NAME_LIST);

XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2);

Chapter 11
XS_SECURITY_CLASS Package

11-89

Parameters

Parameter Description

sec_class The name of the security class for which the privileges are to be
removed.

The name is schema qualified, for example, SCOTT.SC1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified
as SC1, and the current schema is SCOTT, it would resolve to
SCOTT.SC1.

priv The name of the aggregate privilege from which the implied privileges
are to be removed.

implied_priv The implied privilege to be removed from the aggregate privilege.

implied_priv_list The list of implied privileges to be removed from the aggregate
privilege.

Examples

The following example removes the implicit privilege DELETE from the aggregate privilege
UPDATE_INFO from the HRPRIVS security class:

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES('HRPRIVS','UPDATE_INFO','"DELETE"');
END;

The following example removes all implicit privileges from the aggregate privilege UPDATE_INFO
from the HRPRIVS security class.

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES('HRPRIVS','UPDATE_INFO');
END;

11.9.2.8 SET_DESCRIPTION Procedure
The SET_DESCRIPTION procedure sets a description string for the specified security class.

Syntax

XS_SECURITY_CLASS.SET_DESCRIPTION (
 sec_class IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Parameter Description

sec_class The name of the security class for which the description is to be set.

The name is schema qualified, for example, SCOTT.SC1. When the schema part
of the name is missing, the current session schema is assumed. For example, in
this same example, if the name is specified as SC1, and the current schema is
SCOTT, it would resolve to SCOTT.SC1.

description A description string for the specified security class.

Chapter 11
XS_SECURITY_CLASS Package

11-90

Examples

The following example sets a description string for the HRPRIVS security class:

BEGIN
 SYS.XS_SECURITY_CLASS.SET_DESCRIPTION(
 'HRPRIVS','Contains privileges required to manage HR data');
END;

11.9.2.9 DELETE_SECURITY_CLASS Procedure
The DELETE_SECURITY_CLASS procedure deletes the specified security class.

Syntax

XS_SECURITY_CLASS.DELETE_SECURITY_CLASS (
 sec_class IN VARCHAR2,
 delete_option IN NUMBER:=XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

sec_class The name of the security class to be deleted.

The name is schema qualified, for example, SCOTT.SC1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as SC1, and the current
schema is SCOTT, it would resolve to SCOTT.SC1.

delete_option The delete option to use. The following options are available:

• DEFAULT_OPTION:
The default option allows deleting a security class only if it is not referenced
elsewhere. If there are other entities that reference the security class, then
the security class cannot be deleted.

• CASCADE_OPTION:

The cascade option deletes the security class together with any references
to it.The user deleting the security class must have privileges to delete
these references as well.

• ALLOW_INCONSISTENCIES_OPTION:
The allow inconsistencies option lets you delete the entity even if other
entities have late binding references to it.

Examples

The following example deletes the HRPRIVS security class using the default option:

BEGIN
 SYS.XS_SECURITY_CLASS.DELETE_SECURITY_CLASS('HRPRIVS',XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

Chapter 11
XS_SECURITY_CLASS Package

11-91

12
Real Application Security HR Demo

This chapter describes the following topics:

• Overview of the Security HR Demo

• What Each Script Does

• Setting Up the Security HR Demo Components

• Running the Security HR Demo Using Direct Logon

• Running the Security HR Demo Attached to a Real Application Security Session

• Running the Security HR Demo Cleanup Script

• Running the Security HR Demo in the Java Interface

12.1 Overview of the Security HR Demo
This Human Resources (HR) Demonstration shows how to use basic Real Application Security
(RAS) features. This tutorial is an end-to-end use case scenario. PL/SQL scripts, a Java
program source file, and log files can be found in Real Application Security HR Demo Files.

The HR demo secures the HR.EMPLOYEE table by applying a data security policy that has three
realms:

1. An employee's own record realm. The ACL, EMP_ACL controls this realm, which grants
application role employee privileges to access the realm, including the SALARY column.

2. All the records in the IT department realm. The ACL, IT_ACL controls this realm, which
grants application role it_engineer privileges to access the realm, but excluding the
SALARY column.

3. All the employee records realm. The ACL, HR_ACL controls this realm, which grants
application role hr_representative privileges to access the realm, including the SALARY
column.

The HR Demo defines two application users to demonstrate the effects of the policy:

• DAUSTIN, an application user in the IT department. He has application roles employee and
it_engineer. So, he can access realm #1 and realm #2 mentioned previously; that is, he
can view employee records in the IT department, but he cannot view the SALARY column,
except for his own salary record.

• SMAVRIS, an application user in HR department. She has application roles employee and
hr_representative. So, she can access realm #1 and realm #3 mentioned previously; that
is, she can view and update all the employee records.

The HR Demo scripts show:

• How to create Real Application Security objects: application user, application role, ACL,
security class, and data security policy.

• How to use the data security policy to secure rows (using realm constraints) and columns
(using a column constraint) of a table.

12-1

• How to directly logon to a database with application users (requiring a password), and how
to create, attach, detach, and destroy a Real Application Security session.

• How to enable and disable an application role in a Real Application Security session.

12.2 What Each Script Does
The Security HR demo use case runs the following set of PL/SQL scripts to set up components
and run the demo:

• hrdemo_setup.sql: sets up the demo components by:

– Creating a database user as the Real Application Security Administrator and then
connecting as the Real Application Security Administrator to create the components.

– Creating a database role, DB_EMP.

– Creating an IT application user, DAUSTIN.

– Creating an HR application user, SMAVRIS.

– Creating application roles: employee, it_engineer, and hr_representative, and then
granting the database role DB_EMP to each of these application roles.

– Granting application roles employee and it_engineer to application user DAUSTIN.

– Granting application roles employee and hr_representative to application user
SMAVRIS.

– Creating the VIEW_SALARY privilege and creating the hr_privileges security class in
which to scope the privilege.

– Creating three ACLs: EMP_ACL, IT_ACL, and HR_ACL, in which:

* EMP_ACL grants the employee role the SELECT database privilege and VIEW_SALARY
application privilege to view an employee's own record, including the SALARY
column.

* IT_ACL grants the it_engineer role only the SELECT database privilege to view the
employee records in the IT department, but it does not grant the VIEW_SALARY
privilege that is required for access to the SALARY column.

* HR_ACL grants the hr_representative role SELECT, INSERT, UPDATE, and DELETE
database privileges to view and update all employee's records, and granting the
VIEW_SALARY application privilege to view the SALARY column.

– The HR demo secures the HR.EMPLOYEE table by creating and applying the data
security policy, EMPLOYEES_DS, that has the following three realms and column
constraint:

* An employee's own record realm. The ACL, EMP_ACL controls this realm, which
grants application role employee privileges to access the realm, including the
SALARY column.

* All the records in the IT department realm. The ACL, IT_ACL controls this realm,
which grants application role it_engineer privileges to access the realm, but
excluding the SALARY column.

* All the employee records realm. The ACL, HR_ACL controls this realm, which grants
application role hr_representative privileges to access the realm, including the
SALARY column.

Chapter 12
What Each Script Does

12-2

* A column constraint that protects the SALARY column by requiring the VIEW_SALARY
privilege to view its sensitive data.

– Validating all the objects that have been created to ensure that all configurations are
correct.

– Setting up the mid-tier related configuration by creating a DISPATCHER user, setting the
password for this user, and granting the roles, XSCONNECT and xsdispatcher to this
DISPATCHER user.

• hrdemo.sql: runs the demo with direct logon, demonstrating:

– That the IT application user, DAUSTIN, can view the records in the IT department, but
can only view his own salary record, and cannot update his own record.

– That the HR application user, SMAVRIS, can view all the records, including all salary
rows in the SALARY column, and can update any record.

• hrdemo_session.sql: runs the demo creating and attaching to a Real Application Security
session, demonstrating:

– Connecting as the Real Application Security Administrator and creating an application
session for application user SMAVRIS and attaching to it.

– Displaying the current user as SMAVRIS.

– Displaying the enabled database roles as DB_EMP and application roles as employee,
hr_representative, and XSPUBLIC for the current user SMAVRIS.

– That SMAVRIS application user can view all records including all salary rows in the
SALARY column.

– Disabling the hr_representative and thus limiting application user SMAVRIS to
viewing only her own employee record.

– Enabling the hr_representative, thus allowing SMAVRIS application user to view all
records, including all salary rows in the SALARY column again.

– Detaching from the application session.

– Destroying the application session.

• hrdemo_clean.sql: performs a cleanup operation that removes: application roles,
application users, ACLs, the data security policy, the database role, the Real Application
Security administrative user, and the mid-tier dispatcher user.

• hrdemo.java: runs the HR Demo using the Java interface.

"Setting Up the Security HR Demo Components" describes in more detail how each of the
Real Application Security components is created along with performing some other important
tasks.

12.3 Setting Up the Security HR Demo Components
Before you can create Real Application Security components, you must first connect as SYS/
user as SYSDBA.

define passwd=&1
connect sys/&passwd as sysdba

This sections includes the following topics:

• About Creating Roles and Application Users

Chapter 12
Setting Up the Security HR Demo Components

12-3

• About Creating the Security Class and ACLs

• About Creating the Data Security Policy

• About Validating the Real Application Security Objects

• About Setting Up the Mid-Tier Related Configuration

12.3.1 About Creating Roles and Application Users
Create the application roles EMPLOYEE, IT_ENGINEER, and HR_REPRESENTATIVE, and the
database role DB_EMP. The DB_EMP role is used to grant the required object privileges to the two
application users that are created, DAUSTIN and SMAVRIS. Finally, grant the HR user the policy
administration privilege, ADMIN_ANY_SEC_POLICY.

Connect as SYS/ user as SYSDBA.

define passwd=&1
connect sys/&passwd as sysdba

Create the application role EMPLOYEE for common employees.

exec sys.xs_principal.create_role(name => 'employee', enabled => true);

Create an application role IT_ENGINEER for the IT department.

exec sys.xs_principal.create_role(name => 'it_engineer', enabled => true);

Create an application role HR_REPRESENTATIVE for the HR department.

exec sys.xs_principal.create_role(name => 'hr_representative', enabled => true);

Create the database role, DB_EMP, for object privilege grants.

create role db_emp;

Grant the DB_EMP database role to the three application roles, so they each have the required
object privilege to access the table.

grant db_emp to employee;
grant db_emp to it_engineer;
grant db_emp to hr_representative;

Create the application users.

Create application user DAUSTIN (in the IT department) and grant this user application roles
EMPLOYEE and IT_ENGINEER.

exec sys.xs_principal.create_user(name => 'daustin', schema => 'hr');
exec sys.xs_principal.set_password('daustin', 'welcome1');
exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');
exec sys.xs_principal.grant_roles('daustin', 'employee');
exec sys.xs_principal.grant_roles('daustin', 'it_engineer');

Create application user SMAVRIS (in the HR department) and grant this user application roles
EMPLOYEE and HR_REPRESENTATIVE.

exec sys.xs_principal.create_user(name => 'smavris', schema => 'hr');
exec sys.xs_principal.set_password('smavris', 'welcome1');
exec sys.xs_principal.grant_roles('smavris', 'XSCONNECT');
exec sys.xs_principal.grant_roles('smavris', 'employee');
exec sys.xs_principal.grant_roles('smavris', 'hr_representative');

Chapter 12
Setting Up the Security HR Demo Components

12-4

Grant the HR user the policy administration privilege, ADMIN_ANY_SEC_POLICY.

exec sys.xs_admin_util.grant_system_privilege('ADMIN_ANY_SEC_POLICY','HR');

12.3.2 About Creating the Security Class and ACLs
First, grant the necessary table privileges to the DB_EMP role.

Next, create a security class HR_PRIVILEGES based on the predefined DML security class.
HR_PRIVILEGES has a new privilege VIEW_SALARY, which controls access to the SALARY column.
Finally, create the three ACLs, EMP_ACL, IT_ACL, and HR_ACL.

Connect as the HR user.

connect hr/hr;

Grant the necessary object privileges to the DB_EMP role. This role is used to grant the required
object privileges to application users.

grant select, insert, update, delete on hr.employees to db_emp;

declare
begin
 sys.xs_security_class.create_security_class(
 name => 'hr_privileges',
 parent_list => xs$name_list('sys.dml'),
 priv_list => xs$privilege_list(xs$privilege('view_salary')));
end;
/

Create three ACLs, EMP_ACL, IT_ACL, and HR_ACL to grant privileges for the data security policy
to be defined later.

declare
 aces xs$ace_list := xs$ace_list();
begin
 aces.extend(1);

 -- EMP_ACL: This ACL grants EMPLOYEE role the privileges to view an employee's
 -- own record including SALARY column.
 aces(1) := xs$ace_type(privilege_list => xs$name_list('select','view_salary'),
 principal_name => 'employee');

 sys.xs_acl.create_acl(name => 'emp_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');

 -- IT_ACL: This ACL grants IT_ENGINEER role the privilege to view the employee
 -- records in IT department, but it does not grant the VIEW_SALARY
 -- privilege that is required for access to SALARY column.
 aces(1) := xs$ace_type(privilege_list => xs$name_list('select'),
 principal_name => 'it_engineer');

 sys.xs_acl.create_acl(name => 'it_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');

 -- HR_ACL: This ACL grants HR_REPRESENTITIVE role the privileges to view and update
all
 -- employees' records including SALARY column.
 aces(1):= xs$ace_type(privilege_list => xs$name_list('select', 'insert',

Chapter 12
Setting Up the Security HR Demo Components

12-5

 'update', 'delete', 'view_salary'),
 principal_name => 'hr_representative');

 sys.xs_acl.create_acl(name => 'hr_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');
end;
/

12.3.3 About Creating the Data Security Policy
Create the data security policy for the EMPLOYEE table. The policy defines three realm
constraints and a column constraint that protects the SALARY column.

declare
 realms xs$realm_constraint_list := xs$realm_constraint_list();
 cols xs$column_constraint_list := xs$column_constraint_list();
begin
 realms.extend(3);

 -- Realm #1: Only the employee's own record.
 -- The EMPLOYEE role can view the realm including SALARY column.
 realms(1) := xs$realm_constraint_type(
 realm => 'email = xs_sys_context(''xs$session'',''username'')',
 acl_list => xs$name_list('emp_acl'));

 -- Realm #2: The records in the IT department.
 -- The IT_ENGINEER role can view the realm excluding SALARY column.
 realms(2) := xs$realm_constraint_type(
 realm => 'department_id = 60',
 acl_list => xs$name_list('it_acl'));

 -- Realm #3: All the records.
 -- The HR_REPRESENTATIVE role can view and update the realm including SALARY
column.
 realms(3) := xs$realm_constraint_type(
 realm => '1 = 1',
 acl_list => xs$name_list('hr_acl'));

 -- Column constraint protects SALARY column by requiring VIEW_SALARY
 -- privilege.
 cols.extend(1);
 cols(1) := xs$column_constraint_type(
 column_list => xs$list('salary'),
 privilege => 'view_salary');

 sys.xs_data_security.create_policy(
 name => 'employees_ds',
 realm_constraint_list => realms,
 column_constraint_list => cols);
end;
/

Apply the data security policy to the EMPLOYEES table.

begin
 sys.xs_data_security.apply_object_policy(
 policy => 'employees_ds',
 schema => 'hr',
 object =>'employees');

Chapter 12
Setting Up the Security HR Demo Components

12-6

end;
/

12.3.4 About Validating the Real Application Security Objects
After you create these Real Application Security objects, validate them to ensure they are all
properly configured.

begin
 if (sys.xs_diag.validate_workspace()) then
 dbms_output.put_line('All configurations are correct.');
 else
 dbms_output.put_line('Some configurations are incorrect.');
 end if;
end;
/
-- XS$VALIDATION_TABLE contains validation errors if any.
-- Expect no rows selected.
select * from xs$validation_table order by 1, 2, 3, 4;

12.3.5 About Setting Up the Mid-Tier Related Configuration
Set up the mid-tier configuration to be used later. This involves creating a session
administrator, hr_session, who only has Real Application Security administrative privileges
(XS_SESSION_ADMIN and CREATE SESSION), but no data privileges. The session administrator is
responsible for managing the Real Application Security session for each application user. In
addition, it involves creating a DISPATCHER user and password and granting this user the
XSCONNECT and XSDISPATCHER Real Application Security administrator privileges.

grant xs_session_admin, create session to hr_session identified by hr_session;
grant create session to hr_common identified by hr_common;

Create a dispatcher user for the Java demo to set up a session for the application user.

exec sys.xs_principal.create_user(name=>'dispatcher', schema=>'HR');
exec sys.xs_principal.set_password('dispatcher', 'welcome1');
exec sys.xs_principal.grant_roles('dispatcher', 'XSCONNECT');
exec sys.xs_principal.grant_roles('dispatcher', 'xsdispatcher');

12.4 Running the Security HR Demo Using Direct Logon
To run the HR Demo, first connect as application user DAUSTIN, who has only the EMPLOYEE and
IT_ENGINEER application roles.

conn daustin/welcome1;

Customize how secured column values are to be displayed in SQL*Plus using the default
indicator asterisks (*******) in place of column values.

SET SECUREDCOL ON UNAUTH *******

Perform a query to show that application user DAUSTIN can view the records in the IT
department, but can only view his own SALARY column.

select email, first_name, last_name, department_id, manager_id, salary
from employees order by email;

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees order by email;

Chapter 12
Running the Security HR Demo Using Direct Logon

12-7

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
AHUNOLD Alexander Hunold 60 102 *******
BERNST Bruce Ernst 60 103 *******
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 *******
VPATABAL Valli Pataballa 60 103 *******

5 rows selected.

Set to the default display for how secured column values are to be displayed in SQL*Plus by
displaying null values in place of column values for application users without authorization, and
in place of column values where the security level is unknown.

SET SECUREDCOL OFF

Perform an update operation to show that application user is not authorized to update the
record.

update employees set manager_id = 102 where email = 'DAUSTIN';

SQL> update employees set manager_id = 102 where email = 'DAUSTIN';

0 rows updated.

Perform a query to show that the record is unchanged.

select email, first_name, last_name, department_id, manager_id, salary
from employees where email = 'DAUSTIN';

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where email = 'DAUSTIN';

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
DAUSTIN David Austin 60 103 4800

1 row selected.

Connect as application user SMAVRIS, who has both EMPLOYEE and HR_REPRESENTATIVE
application roles.

conn smavris/welcome1;

Perform a query to show that application user SMAVRIS can view all the records including
SALARY column.

select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800

Chapter 12
Running the Security HR Demo Using Direct Logon

12-8

DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

Perform a query to show that application user SMAVRIS can access all the records.

select count(*) from employees;

SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

Perform an update of the record to show that application user SMAVRIS can update the record.

update employees set manager_id = 102 where email = 'DAUSTIN';

SQL> update employees set manager_id = 102 where email = 'DAUSTIN';

1 row updated.

Perform a query to show that the record is changed.

select email, first_name, last_name, department_id, manager_id, salary
from employees where email = 'DAUSTIN';

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where email = 'DAUSTIN';

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
DAUSTIN David Austin 60 102 4800

1 row selected.

Update the record to change it back to its original state.

update employees set manager_id = 103 where email = 'DAUSTIN';

SQL> update employees set manager_id = 103 where email = 'DAUSTIN';

1 row updated.

12.5 Running the Security HR Demo Attached to a Real
Application Security Session

To run the demo attached to a Real Application Security session, the Real Application Security
administrator must first create the session for an application user and attach to it. In the
process, create a variable to remember the session ID.

connect hr_session/hr_session;

var gsessionid varchar2(32);

declare
 sessionid raw(16);

Chapter 12
Running the Security HR Demo Attached to a Real Application Security Session

12-9

begin
 sys.dbms_xs_sessions.create_session('SMAVRIS', sessionid);
 :gsessionid := rawtohex(sessionid);
 sys.dbms_xs_sessions.attach_session(sessionid, null);
end ;
/

Display the current user.

select xs_sys_context('xs$session','username') from dual;

SQL> select xs_sys_context('xs$session','username') from dual;

XS_SYS_CONTEXT('XS$SESSION','USERNAME')
--
SMAVRIS

1 row selected.

Display the enabled database and application roles for the current application user.

select role_name from v$xs_session_roles union
select role from session_roles order by 1;

SQL> select role_name from v$xs_session_roles union
 2 select role from session_roles order by 1;

ROLE_NAME
--
DB_EMP
EMPLOYEE
HR_REPRESENTATIVE
XSPUBLIC

4 rows selected.

Perform a query to show that application user SMAVRIS can view all the records including
SALARY column.

select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

Perform a query to show that application user SMAVRIS can access all the records.

select count(*) from employees;

SQL> select count(*) from employees;

Chapter 12
Running the Security HR Demo Attached to a Real Application Security Session

12-10

 COUNT(*)

 107

1 row selected.

Disable the HR_REPRESENTATIVE role. This will limit application user SMAVRIS to only be able to
see her own record.

exec dbms_xs_sessions.disable_role('hr_representative');

Perform a query

select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500

1 row selected.

Enable the HR_REPRESENTATIVE role so the application user can view all the records including
SALARY column.

exec dbms_xs_sessions.enable_role('hr_representative');

Perform a query to show that application user can view all the records including SALARY
column.

select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

SQL> -- SMAVRIS can view all the records again.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

Perform a query to show that application user SMAVRIS can access all the records.

select count(*) from employees;

SQL> select count(*) from employees;

Chapter 12
Running the Security HR Demo Attached to a Real Application Security Session

12-11

 COUNT(*)

 107

1 row selected.

Detach and destroy the application session.

declare
 sessionid raw(16);
begin
 sessionid := hextoraw(:gsessionid);
 sys.dbms_xs_sessions.detach_session;
 sys.dbms_xs_sessions.destroy_session(sessionid);
end;
/

12.6 Running the Security HR Demo Cleanup Script
After running the HR demo, you can run the clean up script to remove all of the Real
Application Security components.

To start, connect as the Real Application Security Administrator and then begin removing
components.

define passwd=&1
connect hr/hr;

Remove the data security policy from the EMPLOYEES table.

begin
 xs_data_security.remove_object_policy(policy=>'employees_ds',
 schema=>'hr', object=>'employees');
end;
/

Delete the security class and the ACLs.

exec sys.xs_security_class.delete_security_class('hrprivs',
xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('emp_acl', xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('it_acl', xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('hr_acl', xs_admin_util.cascade_option);

Delete the data security policy.

exec sys.xs_data_security.delete_policy('employees_ds', xs_admin_util.cascade_option);

Connect as SYS/ user as SYSDBA.

connect sys/&passwd as sysdba

Delete the application roles and application users.

exec sys.xs_principal.delete_principal('employee', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('hr_representative',
xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('it_engineer', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('smavris', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('daustin', xs_admin_util.cascade_option);

Delete the database role.

Chapter 12
Running the Security HR Demo Cleanup Script

12-12

drop role db_emp;

Delete the Real Application Security session administrator.

drop user hr_session;

Delete the common user used to connect to the database.

drop user hr_common;

Delete the DISPATCHER user used by the mid-tier.

exec sys.xs_principal.delete_principal('dispatcher', xs_admin_util.cascade_option);

12.7 Running the Security HR Demo in the Java Interface
See the Output section in "Human Resources Administration Use Case: Implementation in
Java" for a description of the two queries that are returned from running the Security HR Demo
in the Java interface.

Chapter 12
Running the Security HR Demo in the Java Interface

12-13

A
Predefined Objects in Real Application
Security

This appendix describes the following predefined objects in Real Application Security:

• Users

• Roles

• Namespaces

• Security Classes

• ACLs

A.1 Users
XSGUEST - A system-defined Real Application Security user typically reserved for anonymous
access.

A.2 Roles
Real Application Security provides predefined application roles for regular application roles,
dynamic application roles, and database roles.

This section includes the following topics:

• Regular Application Roles

• Dynamic Application Roles

• Database Roles

A.2.1 Regular Application Roles
Real Application Security provides the following predefined regular application roles:

• XSPUBLIC - This application role is similar to the PUBLIC role in the database. It is granted to
all Real Application Security application users.

• XSBYPASS - A role used to bypass the restrictions imposed by a system constraining ACL.

• XSPROVISIONER - A role used to grant PROVISION and CALLBACK privileges.

• XSSESSIONADMIN - A role used for session administration.

• XSNAMESPACEADMIN - A role used for namespace attribute administration.

• XSCACHEADMIN - A role used for middle tier cache administration.

• XSDISPATCHER - A role used for session administration, namespace administration, and
middle tier cache administration by a dispatcher.

• XSCONNECT — A role used to control whether a Real Application Security application user
with a password can connect to the database or not.

A-1

A.2.2 Dynamic Application Roles
Real Application Security provides the following predefined dynamic application roles:

• DBMS_AUTH
This application role depends on the authentication state of the application user. It is
enabled whenever the application user is authenticated in the Real Application Security
system as a direct-logon application user using any of the database authentication
methods.

• EXTERNAL_DBMS_AUTH
This application role depends on the authentication state of the external application user. It
is enabled whenever the external application user is authenticated in the Real Application
Security system as an external direct-logon application user using any of the database
authentication methods.

• DBMS_PASSWD
This application role depends on the authentication state of the application user. It is
enabled whenever the application user is authenticated in the Real Application Security
system as a direct-logon application user using a password authentication method.

• MIDTIER_AUTH
This application role depends on the authentication state of the application user. It is
enabled whenever the application user is authenticated in the Real Application Security
system through the middle tier. The middle tier explicitly passes this application role to the
database indicating that the application user has been authenticated by the middle tier.

• XSAUTHENTICATED
This application role depends on the authentication state of the application user. It is
enabled whenever the application user is authenticated in the Real Application Security
system (either directly or through the middle tier).

• XSSWITCH
This application role depends on the session state of the application user. It is enabled
whenever the Real Application Security session for an application user is created as a
result of a switch_user operation, that is, if the proxy user in the original Real Application
Security session is switched to an application user.

A.2.3 Database Roles
Real Application Security provides the following database roles.

• PROVISIONER - A database role that has the PROVISION and CALLBACK privileges.

• XS_SESSION_ADMIN - A database role that has the ADMINISTER_SESSION privilege.

• XS_NAMESPACE_ADMIN - A database role that has the ADMIN_ANY_NAMESPACE privilege.

• XS_CACHE_ADMIN - A database role that can be used for middle tier cache administration.

A.3 Namespaces
Real Application Security provides the following predefined namespaces:

Appendix A
Namespaces

A-2

• XS$GLOBAL_VAR - Contains the following NLS Attributes: NLS_LANGUAGE, NLS_TERRITORY,
NLS_SORT, NLS_DATE_LANGUAGE, NLS_DATE_FORMAT, NLS_CURRENCY,
NLS_NUMERIC_CHARACTERS, NLS_ISO_CURRENCY, NLS_CALENDAR, NLS_TIME_FORMAT,
NLS_TIMESTAMP_FORMAT, NLS_TIME_TZ_FORMAT, NLS_TIMESTAMP_TZ_FORMAT,
NLS_DUAL_CURRENCY, NLS_COMP, NLS_LENGTH_SEMANTICS, and NLS_NCHAR_CONV_EXCP.

The XS$GLOBAL_VAR namespace can be loaded in to a Real Application Security session
without requiring any privileges.

• XS$SESSION - Contains the following attributes: CREATED_BY, CREATE_TIME, COOKIE,
CURRENT_XS_USER, CURRENT_XS_USER_GUID, INACTIVITY_TIMEOUT, LAST_ACCESS_TIME,
LAST_AUTHENTICATION_TIME, LAST_UPDATED_BY, PROXY_GUID, SESSION_ID, SESSION_SIZE,
SESSION_XS_USER, SESSION_XS_USER_GUID, USERNAME, and USER_ID.

A.4 Security Classes
Real Application Security provides the following predefined security classes and application
privileges:

• DML - DML Privileges security class. If an ACL does not specify its security class, DML is the
default security class for the ACL. See "DML Security Class" for more information.
Contains the following common application privileges for object manipulation.

– SELECT - Privilege to read an object.

– INSERT - Privilege to insert an object.

– UPDATE - Privilege to update an object.

– DELETE - Privilege to delete an object.

• SYSTEM - System security class. Contains the following application privileges:

– PROVISION - Privilege for updating principal documents from FIDM. The PROVISION
privilege is also extended for creating, deleting, and modifying Real Application
Security principals (users or roles) beginning in Release 12.2. This Real Application
Security system privilege is intended to replace the traditional use of database create
user, alter user privileges, and so forth to create and alter Real Application Security
application users and roles.

– CALLBACK - Privilege to register and update global callbacks.

– ADMIN_ANY_SEC_POLICY - Privilege for any administrative operation.

– ADMIN_SEC_POLICY - Privilege for administering objects in its own schema.

– ADMIN_NAMESPACE - Privilege for administering any namespace.

• SESSION_SC - Session security class. Contains the following application privileges:

– CREATE_SESSION - Privilege to create a Real Application Security user session.

– TERMINATE_SESSION - Privilege to terminate a Real Application Security user session.

– ATTACH_SESSION - Privilege to attach to a Real Application Security user session.

– MODIFY_SESSION - Privilege to modify contents of a Real Application Security user
session.

– ASSIGN_USER - Privilege to assign user to an anonymous Real Application Security
user session.

Appendix A
Security Classes

A-3

– ADMINISTER_SESSION - Privilege for Real Application Security user session
administration, aggregate of CREATE_SESSION, TERMINATE_SESSION, ATTACH_SESSION,
MODIFY_SESSION, and SET_DYNAMIC_ROLES.

– SET_DYNAMIC_ROLES - Privilege to protect Real Application Security enablement and
disablement of a dynamic role as part of the attach session and assign user
operations.

• NSTEMPLATE_SC - Namespace template security class. Contains the following application
privileges:

– MODIFY_NAMESPACE - Privilege to modify session namespace.

– MODIFY_ATTRIBUTE - Privilege to modify session namespace attribute.

– ADMIN_NAMESPACE - Privilege for namespace administration, aggregate of
MODIFY_NAMESPACE and MODIFY_ATTRIBUTE.

A.5 ACLs
Real Application Security provides the following predefined ACLs:

• SYSTEMACL - ACL for granting SYSTEM security class privileges.

Grants PROVISION and CALLBACK privileges to PROVISIONER database role and
XSPROVISIONER Real Application Security role.

Grants ADMIN_ANY_SEC_POLICY privilege to DBA database role.

Grants ADMIN_SEC_POLICY privilege to RESOURCE and XS_RESOURCE database roles.

Grants ADMIN_ANY_NAMESPACE privilege to DBA and XS_NAMESPACE_ADMIN database roles
and XSNAMESPACEADMIN and MIDTIER_AUTH Real Application Security roles.

• SESSIONACL - ACL for granting SESSION_SC security class privileges.

Grants ADMINISTER_SESSION privilege to XS_SESSION_ADMIN database role and
XSSESSIONADMIN Real Application Security role.

• NS_UNRESTRICTED_ACL - ACL to grant ADMIN_NAMESPACE privilege to PUBLIC database role
and XSPUBLIC Real Application Security role.

Appendix A
ACLs

A-4

B
Configuring OCI and JDBC Applications for
Column Authorization

This appendix contains:

• About Using OCI to Retrieve Column Authorization Indicators

• About Using JDBC to Retrieve Column Authorization Indicators

B.1 About Using OCI to Retrieve Column Authorization Indicators
Oracle Call Interface (OCI) applications can access database tables that have data security
policies enabled and then test columns for authorization indicators.

• If the column is determined to be unauthorized to the user, a null column value is returned
to the user with indicator "unauthorized".

• If the column authorization cannot be determined, the evaluated column (or column
expression) value will be returned to the user along with the indicator "unknown." If any of
the underlying table columns involved in the top column expression evaluation is
unauthorized, the authorization indicator can be "unknown" and a null value will be used as
the underlying column value for expression valuation.

• If the column is determined as authorized to the user, the evaluated column value and
indicator will be returned to the user without authorization indicator.

The OCI return code is to communicate column authorization information to the user. To obtain
the authorization information for a column, you must provide a return-code buffer when the
column buffer is bound or defined. After the column data is returned to the user buffer, you can
check the return code associated with the column for authorization information. The column
authorization indicator is applicable to define variables or out-bind variables defined by the
application. The return code buffer does not have to be provided if the application is not
retrieving the column authorization indicator.

This section describes the following topics:

• Example of Obtaining the Return Code

• About Using the Return Code and Indicator with Authorization Indicator

• About the Warning for Unknown Authorization Indicator

• Using OCI Describe for Column Security

B.1.1 Example of Obtaining the Return Code
The following return codes are used to find the column authorizations:

• ORA-24530: column value is unauthorized to the user

• ORA-24531: column value authorization is unknown

• ORA-24536: column authorization unknown

B-1

If the unknown value authorization indicator (ORA-24531) is returned for any column, the OCI
function status will be OCI_SUCCESS_WITHINFO and the error ORA-24536 will be returned in the
error handle as warning. To suppress the warning, the application can set attribute,
OCI_ATTR_NO_COLUMN_AUTH_WARNING to TRUE in the statement handle before fetching:

 no_warning = TRUE;
 OCIAttrSet(stmthp, OCI_HTYPE_STMT, (void *)&no_warning, 0,
 OCI_ATTR_NO_COLUMN_AUTH_WARNING, errhp);

The default boolean value of OCI_ATTR_NO_COLUMN_AUTH_WARNING is FALSE.

Example B-1 shows OCI code that retrieves the return codes.

Example B-1 Retrieving Return Codes from OCI for a Column Authorization

OCIDefineByPos(stmthp, &dfnhp, errhp, 1, (void *)data_bufp, (sb4)data_bufl,
 data_typ, (void *)&data_ind, (ub2 *)&data_rlen,
 (ub2 *)&data_rcode, (ub4)OCI_DEFAULT);
status = OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);
if (data_rcode == 24530)
 printf("column value not authorized, indicator=%d\n", data_ind);
else if (data_rcode == 24531)
 printf("column value authorization unknown, indicator=%d\n", data_ind);
else {
 printf("column value authorized, indicator=%d\n", data_ind);
 /* process column data */
 ...
};

B.1.2 About Using the Return Code and Indicator with Authorization
Indicator

To access tables with column security, you should access the return code at least when the
column is bound or defined. If the return code is not accessed, the application needs to know if
the column value is authorized with other means so that it can correctly interpret the indicator
and the value.

You should also provide the indicator for the bind or define if column security is enabled. If the
indicator is not provided and the column value is not authorized or unknown, Oracle Database
returns error ORA-1405.

If column value authorization is unknown, the authorization indicator (for ORA-24531) will take
precedence over the regular return codes that may otherwise be returned to the user. For
example, column null fetch (ORA-1405) and column truncation (ORA-1406) may occur at the
same time when a non-null column value is returned along with unknown authorization
indicator. In that case, the application gets ORA-24531 as the return code for this column,
instead of getting ORA-1405 or ORA-1406. Hence the application should not rely on column
return code ORA-1405 or ORA-1406 to find the exact column that is null fetched or truncated.

Table B-1 and Table B-2 summarizes the behavior of the authorization indicator, return code,
indicator, and return status.

B.1.3 About the Warning for Unknown Authorization Indicator
If the unknown authorization indicator (ORA-24531) is returned for any column, an OCI
warning is returned to the application, that is, the OCI function status will be
OCI_SUCCESS_WITH_INFO, instead of OCI_SUCCESS. At the same time, ORA-24536 will be set in
the error handle returned to the application.You must check this warning, examine the SQL

Appendix B
About Using OCI to Retrieve Column Authorization Indicators

B-2

being executed, and take appropriate action. The error ORA-24536 takes precedence over the
error that is returned when the column is authorized or column security is not enabled.

If a column value is unauthorized or authorized, the OCI function status code will not be
changed.

By default the column authorization warning is turned on for unknown authorizations. The
application should be designed to handle the error. If the application is prepared for column
security and wants to ignore any unknown authorization indicator, the OCI warning can be
turned off by setting the OCI attribute, OCI_ATTR_NO_COLUMN_AUTH_WARNING to TRUE in the OCI
statement handle before the column value is fetched.

Table B-1 describes the default authorization behavior for OCI return indicators.

Table B-1 Authorization Indicator Behavior (By Default)

Column
Authorization

Column
Value

IND Provided
RC Provided

IND Not Provided
RC Provided

IND Provided
RC Not Provided

IND Not Provided
RC Not Provided

Unauthorized Any OCI_SUCCESS

Error = 0

IND = -1

RC = 24530

OCI_SUCCESS

Error = 1405

IND = N/A

RC = 24530

OCI_SUCCESS

Error = 0

IND = -1

RC = N/A

OCI_SUCCESS

Error = 1405

IND =-N/A

RC = N/A

Unknown Null SUCCESS_WITH_I
NFO

Error = 24536 (0)

IND = -1

RC = 24531 (0)

SUCCESS_WITH_IN
FO

Error = 24536 (1405)

IND = N/A

RC = 24531 (1405)

SUCCESS_WITH_I
NFO

Error = 24536 (0)

IND = -1

RC = N/A

SUCCESS_WITH_I
NFO

Error = 24536
(1405)

IND = N/A

RC = N/A

Unknown Not Null and
Not
Truncated

SUCCESS_WITH_I
NFO

Error = 24536 (0)

IND = 0

RC = 24531 (0)

SUCCESS_WITH_IN
FO

Error = 24536 (0)

IND = N/A

RC = 24531 (0)

SUCCESS_WITH_I
NFO

Error = 24536 (0)

IND = 0

RC = N/A

SUCCESS_WITH_I
NFO

Error = 24536 (0)

IND = N/A

RC = N/A

Unknown Not Null and
Truncated

SUCCESS_WITH_I
NFO

Error = 24536
(24345)

IND = data_len

RC = 24531 (1406)

SUCCESS_WITH_IN
FO

Error = 24536
(24345)

IND = N/A

RC = 24531 (1406)

SUCCESS_WITH_I
NFO

Error = 24536 (1406)

IND = data_len

RC = N/A

SUCCESS_WITH_I
NFO

Error = 24536
(1406)

IND = N/A

RC = N/A

See Also:

Oracle Call Interface Programmer's Guide Table 2-4 shows the default fetch behavior
without column security

Table B-2 describes the default behavior when the OCI_ATTR_NO_AUTH_WARNING parameter is
set to TRUE.

Appendix B
About Using OCI to Retrieve Column Authorization Indicators

B-3

Table B-2 Authorization Indicator Behavior (By Default) - OCI_ATTR_NO_AUTH_WARNING=TRUE

Column
Authorization

Column
Value

IND Provided
RC Provided

IND Not Provided
RC Provided

IND Provided
RC Not
Provided

IND Not
Provided
RC Not
Provided

Unknown Null Error = 0

IND = -1

RC = 24531 (0)

Error = 1405

IND = N/A

RC = 24531 (1405)

Error = 0

IND = -1

RC = N/A)

Error = 1405

IND = N/A

RC = N/A

Unknown Not Null and Not
Truncated

Error = 0

IND = 0

RC = 24531 (0)

Error = 0

IND = N/A

RC = 24531 (0)

Error = 0

IND = 0

RC = N/A

Error = 0

IND = N/A

RC = N/A

Unknown Not Null and
Truncated

SUCCESS_WITH_IN
FO

Error = 24345

IND = data_len

RC = 24531 (1406)

SUCCESS_WITH_INF
O

Error = 24345

IND = N/A

RC = 24531 (1406)

Error = 1406

IND =
data_len

RC = N/A)

Error = 1406

IND = N/A

RC = N/A

B.1.4 Using OCI Describe for Column Security
The OCIDescribeAny() function enables an explicit describe of schema objects. Applications
sometimes need to know if a column is protected by a column constraint before fetching data.
You can use this information to guide the application to process the data and indicators. This is
especially useful to applications that handle dynamic SQL. The attribute
OCI_ATTR_XDS_POLICY_STATUS for the OCI parameter handle is of data type ub4 and has the
following possible values:

• OCI_XDS_POLICY_NONE: No XDS policy for the column or the policy is not enabled

• OCI_XDS_POLICY_ENABLED: policy is enabled for the column

• OCI_XDS_POLICY_UNKNOWN: policy unknown

If the column status is OCI_XDS_POLICY_NONE, then the column values will always be
"authorized." If the column status is OCI_XDS_POLICY_ENABLED, then the column values will be
either "authorized" or "unauthorized." If the column status is OCI_XDS_POLICY_UNKNOWN, the
column value authorization will always be "unknown."

Example B-2 shows how to use the OCIDescribeAny() function to perform an explicit describe
on a set of schema objects.

See Also:

Oracle Call Interface Programmer's Guide

Example B-2 Using the OCIDescribeAny Function to Enable an Explicit Describe

void desc_explicit()
{
 const char *table = "col_sec_tab";
 ub4 pos;
 ub2 numcol;

Appendix B
About Using OCI to Retrieve Column Authorization Indicators

B-4

 OCIParam *paramh;
 OCIParam *collst;
 OCIParam *col;
 ub4 colnamelen, colseclen;
 ub1 colname[20];
 ub1 *colnm;
 ub4 colsec;
 ub4 tablen = strlen((char *)table);

 checkerr(errhp, OCIDescribeAny(svchp, errhp, (dvoid *)table, tablen,
 OCI_OTYPE_NAME, 0, OCI_PTYPE_TABLE, deschp));

 checkerr(errhp, OCIAttrGet(deschp, OCI_HTYPE_DESCRIBE, ¶mh, 0,
 OCI_ATTR_PARAM, errhp));

 checkerr(errhp, OCIAttrGet(paramh, OCI_DTYPE_PARAM, &numcol, 0,
 OCI_ATTR_NUM_COLS, errhp));

 checkerr(errhp, OCIAttrGet(paramh, OCI_DTYPE_PARAM, &collst, 0,
 OCI_ATTR_LIST_COLUMNS, errhp));

 printf("Number of columns = %d\n\n", numcol);

 printf(" Column No Column Name Column Security\n");
 printf(" --------- ----------- ---------------\n\n");

 for (pos = 1; (ub4) pos <= numcol; pos++)
 {
 checkerr(errhp, OCIParamGet (collst, OCI_DTYPE_PARAM, errhp,
 (dvoid **)&col, pos));

 checkerr(errhp, OCIAttrGet ((dvoid *)col, (ub4) OCI_DTYPE_PARAM,
 (dvoid **)&colnm, (ub4 *) &colnamelen,
 (ub4) OCI_ATTR_NAME, errhp));

 memset (colname, ' ', 20);
 strncpy((char *)colname, (char *)colnm, colnamelen);
 colname[10] = '\0';

 checkerr(errhp, OCIAttrGet ((dvoid *)col, (ub4) OCI_DTYPE_PARAM,
 (dvoid **)&colsec, (ub4 *) &colseclen,
 (ub4) OCI_ATTR_XDS_POLICY_STATUS, errhp));

 printf(" %d %s %s\n", pos, colname,
 ((colsec == OCI_XDS_POLICY_ENABLED) ? "ENABLED" :
 ((colsec == OCI_XDS_POLICY_NONE) ? "NONE" :
 ((colsec == OCI_XDS_POLICY_UNKNOWN) ? "UNKNOWN" :
 "ERROR"))));
 }

 return;
}

Appendix B
About Using OCI to Retrieve Column Authorization Indicators

B-5

B.2 About Using JDBC to Retrieve Column Authorization
Indicators

JDBC applications can access database tables that have data security policies enabled, and
test columns for authorization indicators. You can use the JDBC APIs described in this section
to check the security attributes and user authorization for a table column.

This section contains:

• About Checking Security Attributes for a Table Column

• About Checking User Authorization for a Table Column

• Example of Checking Security Attributes and User Authorization

B.2.1 About Checking Security Attributes for a Table Column
The getSecurityAttribute method of the oracle.jdbc.OracleResultSetMetaData interface
enables you to check the data security policy attribute for a column. The security attribute has
the following definition:

public static enum SecurityAttribute
 {
 NONE,
 ENABLED,
 UNKNOWN;
 }

SecurityAttribute can have the following values:

• NONE implies that no column data security policy is enabled for the column. This means that
the column either does not have a policy applied to it, or the policy is not enabled.

• ENABLED implies that column data security policy is enabled for the column.

• UNKNOWN implies that the column data security policy for the column is unknown. This could
happen, for example, if the column is a union of two columns but only one of the columns
has data security attributes.

The getSecurityAttribute method has the following signature:

public SecurityAttribute getSecurityAttribute(int indexOfColumnInResultSet) throws
SQLException;

The getSecurityAttribute method returns the SecurityAttribute value for the column.

See Also:

Example B-3 for an example of using the getSecurityAttribute method

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-6

B.2.2 About Checking User Authorization for a Table Column
The getAuthorizationIndicator method of the oracle.jdbc.OracleResultSet interface
enables you to check the AuthorizationIndicator attribute for a column. The
AuthorizationIndicator attribute has the following definition:

public static enum AuthorizationIndicator
 {
 NONE,
 UNAUTHORIZED,
 UNKNOWN;
 }

AuthorizationIndicator can have the following values:

• NONE implies that access to column data is authorized. The user might have explicit
authorization or the column could be lacking security attributes.

• UNAUTHORIZED implies that access to column data is not authorized.

When the column value is retrieved, the authorization indicator is evaluated based on the
enabled column constraint policy for the column. If the user is not authorized to access the
column value, a NULL value is returned to the application along with the authentication
indicator, AuthorizationIndicator.UNAUTHORIZED.

If there is a column expression involving the unauthorized base column, the evaluated
value is returned to the application along with the AuthorizationIndicator.UNAUTHORIZED
indicator. The application should examine the authorization indicator before interpreting the
returned data.

• UNKNOWN implies that the authorization indicator cannot be determined.

Sometimes, the server fails to determine the authorization indicator for a SELECT item due
to functionality limitations or performance constrains. This can happen if the query involves
a column expression, for example, and the server is unable to compute whether the top
operator is supposed to be authorized. In such a scenario, the server returns the
authorization indicator, AuthorizationIndicator.UNKNOWN to the application. The returned
value can be NULL or not NULL depending on how the column expression operates on the
underlying column value.

If the application sees an UNKNOWN authorization indictor, it should determine whether or not
the returned value should be accessed. If the query and its column expressions are
designed to handle unauthorized NULL values from the underlying columns, then the
application can use the returned value. Otherwise the application may have to take
appropriate actions for the returned value.

The getAuthorizationIndicator method has the following forms:

/**
 * Accepts the column index number as an argument and retrieves the corresponding column
security AuthorizationIndicator value
 */
public AuthorizationIndicator getAuthorizationIndicator(int columnIndex) throws
SQLException;

/**
 * Accepts the column name as a string and retrieves the column security
AuthorizationIndicator value
 */

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-7

public AuthorizationIndicator getAuthorizationIndicator(String columnName)throws
SQLException;

Note:

• The preceding methods throw a SQLException if the index specified in the
argument is invalid.

• If a column is masked, the JDBC user sees it as a NULL value. An exception is
not thrown for this.

See Also:

Example B-3 for an example of using the getAuthorizationIndicator method

B.2.3 Example of Checking Security Attributes and User Authorization
Example B-3 illustrates the use of the getSecurityAttribute and getAuthorization methods
to check security attributes and user authorization. The program uses the sample EMP table to
illustrate the procedure.

The EMP table is configured as follows:

Column No. Column Title Security Attribute

1 EMPNO No security attribute

2 ENAME Active security

3 JOB No security attribute

4 MGR Active security

5 HIREDATE Unknown security attribute

6 SAL Active security

7 COMM No security attribute

6 DEPTNO Active security

The program performs the following actions:

1. Selects rows from the EMP table

2. Uses the getSecurityAttribute method to extract the security setting for each column in
the result set. It prints these as column headings

3. Uses the getAuthorizationIndicator method to check the user authorization for returned
column values. The program prints these values and formats them as follows:

An unauthorized value that is returned as NULL is represented by four asterisk characters
(****).

Example B-3 Check Security Attributes and User Authorization

PreparedStatement pstmt = conn.prepareStatement("SELECT * FROM EMP");
 ResultSet rs = pstmt.executeQuery();

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-8

 OracleResultSetMetaData metaData =
 (OracleResultSetMetaData)rs.getMetaData();
 int nbOfColumns = metaData.getColumnCount();
 OracleResultSetMetaData.SecurityAttribute[] columnSecurity
 = new OracleResultSetMetaData.SecurityAttribute[nbOfColumns];
 // display which columns are protected:
 for(int i=0;i<nbOfColumns;i++)
 {
 columnSecurity[i] = metaData.getSecurityAttribute(i+1);
 System.out.print(columnSecurity[i]);
 System.out.print("\t");
 }
 System.out.println();
 System.out.println("---");
 while(rs.next())
 {
 for(int colIndex=0;colIndex<nbOfColumns;colIndex++)
 {
 OracleResultSet.AuthorizationIndicator visibility
 = ((OracleResultSet)rs).getAuthorizationIndicator(colIndex+1);
 if(visibility == OracleResultSet.AuthorizationIndicator.UNAUTHORIZED)
 System.out.print("****");
 else
 System.out.print(rs.getString(colIndex+1));
 System.out.print("\t");
 }
 System.out.println("");
 }
 rs.close();
 pstmt.close();

The program generates the following output:

NONE ENABLED NONE ENABLED UNKNOWN ENABLED NONE ENABLED
--
7369 SMITH CLERK 7902 1980-12-17 **** null 20
7499 ALLEN SALESMAN 7698 1981-02-20 **** 300 30
7521 WARD SALESMAN 7698 1981-02-22 **** 500 30
7566 JONES MANAGER 7839 1981-04-02 **** null 20
7654 MARTIN SALESMAN 7698 1981-09-28 **** 1400 30
7698 BLAKE MANAGER 7839 1981-05-01 **** null 30
7782 CLARK MANAGER 7839 1981-06-09 **** null 10
7788 SCOTT ANALYST 7566 1987-04-19 **** null 20
7839 KING PRESIDENT null 1981-11-17 **** null 10
7844 TURNER SALESMAN 7698 1981-09-08 **** 0 30
7876 ADAMS CLERK 7788 1987-05-23 **** null 20
7900 JAMES CLERK 7698 1981-12-03 **** null 30
7902 FORD ANALYST 7566 1981-12-03 **** null 20
7934 MILLER CLERK 7782 1982-01-23 **** null 10

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-9

C
Real Application Security HR Demo Files

This appendix contains both the source files and log files. A detailed description of the HR
Demo can be found in Real Application Security HR Demo .

Note:

The Real Application Security HR demo uses the HR Sample Schema provided by
Oracle. To install the HR Sample schema, refer Installing the HR Schema.

This appendix describes the following topics:

• How to Run the Security HR Demo

• Scripts for the Security HR Demo

• Generated Log Files for Each Script

C.1 How to Run the Security HR Demo
To run the Security HR demo, run the following scripts in the order shown:

1. Run the setup script hrdemo_setup.sql, which creates the log file: hrdemo_setup.log.

2. Run the demo script hrdemo.sql with direct logon, which creates the log file: hrdemo.log.

3. Run the demo script to explicitly create and attach to the Real Application Security session
hrdemo_session.sql, which creates the log file: hrdemo_session.log.

4. Run the Java demo hrdemo.java file, which creates the log file: hrdemo.log.

5. Run the clean up script hrdemo_clean.sql, which creates the log file: hrdemo_clean.log.

C.2 Scripts for the Security HR Demo
Table C-1 lists the scripts and generated log files with links to the content of each file.

Table C-1 HR Demo Scripts and Log Files

Scripts Log Files

hrdemo_setup.sql hrdemo_setup.log

hrdemo.sql hrdemo.log

hrdemo_session.sql hrdemo_session.log

hrdemo.java hrdemo.log

hrdemo_clean.sql hrdemo_clean.log

This section includes the following script files:

C-1

https://docs.oracle.com/en/database/oracle/oracle-database/21/comsc/installing-sample-schemas.html#GUID-CB945E4C-D08A-4B26-A12D-3D6D688467EA

C.2.1 hrdemo_setup.sql
The source file for the set up script hrdemo_setup.sql.

SET ECHO OFF
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET ECHO ON

define passwd=&1

--
-- Introduction
--
-- The HR Demo shows how to use basic Real Application Security features.
-- The demo secures HR.EMPLOYEES table by creating a data security
-- policy that grants the table access to:
-- Data Security Policy
--
--(1) An employee can view their own record including SALARY column.
--(2) An IT engineer can view all employee records in IT department,
-- but cannot view employee's salaries.
--(3) An HR representative can view and update all employee records.
--
--
--Sample Users and Their Role Grants:
-- 1) DAUSTIN, an application user in IT department. He has role employee
-- and it_engineer. He can view employee records in IT department, but he
-- cannot view the salary column except for his own.
-- 2) SMAVRIS, an application user in HR department. She has role employee
-- and hr_representative. She can view and update all the employee records.

--
-- 1. SETUP - User and Roles
--

connect sys/&passwd as sysdba
-- Create an application role employee for common employees.
exec sys.xs_principal.create_role(name => 'employee', enabled => true);

-- Create an application role it_engineer for IT department.
exec sys.xs_principal.create_role(name => 'it_engineer', enabled => true);

-- Create an application role hr_representative for HR department.
exec sys.xs_principal.create_role(name => 'hr_representative', enabled => true);

-- create a database role for object privilege grants
create role db_emp;

-- Grant DB_EMP to the three application roles, so they have the required
-- object privileges to access the table.
grant db_emp to employee;
grant db_emp to it_engineer;
grant db_emp to hr_representative;

-- Create two application users:
-- DAUSTIN (in IT department), granted employee and it_engineer.

Appendix C
Scripts for the Security HR Demo

C-2

exec sys.xs_principal.create_user(name => 'daustin', schema => 'hr');
exec sys.xs_principal.set_password('daustin', 'welcome1');
exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');
exec sys.xs_principal.grant_roles('daustin', 'employee');
exec sys.xs_principal.grant_roles('daustin', 'it_engineer');

-- SMAVRIS (in HR department), granted employee and hr_representative.
exec sys.xs_principal.create_user(name => 'smavris', schema => 'hr');
exec sys.xs_principal.set_password('smavris', 'welcome1');
exec sys.xs_principal.grant_roles('smavris', 'XSCONNECT');
exec sys.xs_principal.grant_roles('smavris', 'employee');
exec sys.xs_principal.grant_roles('smavris', 'hr_representative');

-- Grant HR user policy adminisration privilege
exec sys.xs_admin_util.grant_system_privilege('ADMIN_ANY_SEC_POLICY','HR');

--
-- 2. SETUP - Security class and ACL
--

-- Connect as HR
connect hr/hr;

-- Grant necessary object privileges to db_emp role
-- This role will be used to grant the required object privileges to
-- application users.

grant select, insert, update, delete on hr.employees to db_emp;

-- Create a security class hr_privileges and include privileges from the predefined DML
security class.
-- hr_privileges has a new privilege VIEW_SALARY, which is used to control the
-- access to SALARY column.
declare
begin
 sys.xs_security_class.create_security_class(
 name => 'hr_privileges',
 parent_list => xs$name_list('sys.dml'),
 priv_list => xs$privilege_list(xs$privilege('view_salary')));
end;
/

-- Create three ACLs to grant privileges for the policy defined later.
declare
 aces xs$ace_list := xs$ace_list();
begin
 aces.extend(1);

 -- EMP_ACL: This ACL grants employee the privileges to view an employee's
 -- own record including SALARY column.
 aces(1) := xs$ace_type(privilege_list => xs$name_list('select','view_salary'),
 principal_name => 'employee');

 sys.xs_acl.create_acl(name => 'emp_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');

 -- IT_ACL: This ACL grants it_engineer the privilege to view the employee
 -- records in IT department, but it does not grant the VIEW_SALARY
 -- privilege that is required for access to SALARY column.
 aces(1) := xs$ace_type(privilege_list => xs$name_list('select'),
 principal_name => 'it_engineer');

Appendix C
Scripts for the Security HR Demo

C-3

 sys.xs_acl.create_acl(name => 'it_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');

 -- HR_ACL: This ACL grants hr_representative the privileges to view and update all
 -- employees' records including SALARY column.
 aces(1):= xs$ace_type(privilege_list => xs$name_list('select', 'insert',
 'update', 'delete', 'view_salary'),
 principal_name => 'hr_representative');

 sys.xs_acl.create_acl(name => 'hr_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');
end;
/

--
-- 3. SETUP - Data security policy
--
-- Create data security policy for EMPLOYEE table. The policy defines three
-- realm constraints and a column constraint that protects SALARY column.
declare
 realms xs$realm_constraint_list := xs$realm_constraint_list();
 cols xs$column_constraint_list := xs$column_constraint_list();
begin
 realms.extend(3);

 -- Realm #1: Only the employee's own record.
 -- employee can view the realm including SALARY column.
 realms(1) := xs$realm_constraint_type(
 realm => 'email = xs_sys_context(''xs$session'',''username'')',
 acl_list => xs$name_list('emp_acl'));

 -- Realm #2: The records in the IT department.
 -- it_engineer can view the realm excluding SALARY column.
 realms(2) := xs$realm_constraint_type(
 realm => 'department_id = 60',
 acl_list => xs$name_list('it_acl'));

 -- Realm #3: All the records.
 -- hr_representative can view and update the realm including SALARY column.
 realms(3) := xs$realm_constraint_type(
 realm => '1 = 1',
 acl_list => xs$name_list('hr_acl'));

 -- Column constraint protects SALARY column by requiring VIEW_SALARY
 -- privilege.
 cols.extend(1);
 cols(1) := xs$column_constraint_type(
 column_list => xs$list('salary'),
 privilege => 'view_salary');

 sys.xs_data_security.create_policy(
 name => 'employees_ds',
 realm_constraint_list => realms,
 column_constraint_list => cols);
end;
/

-- Apply the data security policy to the table.
begin

Appendix C
Scripts for the Security HR Demo

C-4

 sys.xs_data_security.apply_object_policy(
 policy => 'employees_ds',
 schema => 'hr',
 object =>'employees');
end;
/

--
-- 4. SETUP - Validate the objects we have set up.
--
set serveroutput on;
begin
 if (sys.xs_diag.validate_workspace()) then
 dbms_output.put_line('All configurations are correct.');
 else
 dbms_output.put_line('Some configurations are incorrect.');
 end if;
end;
/
-- XS$VALIDATION_TABLE contains validation errors if any.
-- Expect no rows selected.
select * from xs$validation_table order by 1, 2, 3, 4;

--
-- 5. SETUP - Mid-Tier related configuration.
--

connect sys/&passwd as sysdba

-- create a session administrator who has only
-- RAS session administration privilege (no data privilege),
-- and is responsible to manage RAS session for each application user.
grant xs_session_admin, create session to hr_session identified by hr_session;
grant create session to hr_common identified by hr_common;

-- craete a dispatcher user for java demo, to set up session for application user
exec sys.xs_principal.create_user(name=>'dispatcher', schema=>'HR');
exec sys.xs_principal.set_password('dispatcher', 'welcome1');
exec sys.xs_principal.grant_roles('dispatcher', 'XSCONNECT');
exec sys.xs_principal.grant_roles('dispatcher', 'xsdispatcher');

exit

C.2.2 hrdemo.sql
The source file for the hrdemo.sql script. This script runs the demo with direct logon.

SET ECHO OFF
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
COLUMN EMAIL FORMAT A10
COLUMN FIRST_NAME FORMAT A15
COLUMN LAST_NAME FORMAT A15
COLUMN DEPARTMENT_ID FORMAT 9999
COLUMN MANAGER_ID FORMAT 9999
COLUMN SALARY FORMAT 999999
SET ECHO ON

Appendix C
Scripts for the Security HR Demo

C-5

--
-- HR Demo - PL/SQL with RAS direct logon user
--
-- This demo shows RAS runtime, using RAS direct logon user.
-- Each user directly connects to database and accesses employee table.
-- RAS policy is automatically enforced.

-- Connect as DAUSTIN, who has only employee and it_engineer role
conn daustin/welcome1;

SET SECUREDCOL ON UNAUTH *******

-- DAUSTIN can view the records in IT department, but can only view his own
-- SALARY column.
select email, first_name, last_name, department_id, manager_id, salary
from employees order by email;

SET SECUREDCOL OFF

-- DAUSTIN cannot update the record.
update employees set manager_id = 102 where email = 'DAUSTIN';

-- Record is not changed.
select email, first_name, last_name, department_id, manager_id, salary
from employees where email = 'DAUSTIN';

-- Connect as SMAVRIS, who has both employee and hr_representative role.
conn smavris/welcome1;

-- SMAVRIS can view all the records including SALARY column.
select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

-- EMPLOYEES table has 107 rows, we expect to see all of them.
select count(*) from employees;

-- SMAVRIS can update the record.
update employees set manager_id = 102 where email = 'DAUSTIN';

-- Record is changed.
select email, first_name, last_name, department_id, manager_id, salary
from employees where email = 'DAUSTIN';

-- change the record back to the original.
update employees set manager_id = 103 where email = 'DAUSTIN';

exit

C.2.3 hrdemo_session.sql
The source file for the hrdemo_session.sql script. This script explicitly creates and attaches a
Real Application Security session.

SET ECHO OFF
SET FEEDBACK 1
SET NUMWIDTH 10

Appendix C
Scripts for the Security HR Demo

C-6

SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
COLUMN EMAIL FORMAT A10
COLUMN FIRST_NAME FORMAT A15
COLUMN LAST_NAME FORMAT A15
COLUMN DEPARTMENT_ID FORMAT 9999
COLUMN MANAGER_ID FORMAT 9999
COLUMN SALARY FORMAT 999999
SET ECHO ON

--
-- HR Demo - PL/SQL with Session API
--
-- This demo shows RAS runtime, using RAS user as application user.
-- The user does not logon to database, but a RAS session is created
-- and attached for each user before accessing employee table.

-- Connect as RAS session administrator.
connect hr_session/hr_session;

-- Variable used to remember the session ID.
var gsessionid varchar2(32);

-- Create an application session for SMARVIS and attach to it.
declare
 sessionid raw(16);
begin
 sys.dbms_xs_sessions.create_session('SMAVRIS', sessionid);
 :gsessionid := rawtohex(sessionid);
 sys.dbms_xs_sessions.attach_session(sessionid, null);
end ;
/

-- Display the current user, it should be SMAVRIS now.
select xs_sys_context('xs$session','username') from dual;

-- Display the enabled application roles and database roles.
select role_name from v$xs_session_roles union
select role from session_roles order by 1;

-- SMAVRIS can view all the records including SALARY column.
select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

-- EMPLOYEES table has 107 rows, we expect to see all of them.
select count(*) from employees;

-- Disable hr_representative role.
exec dbms_xs_sessions.disable_role('hr_representative');

-- SMAVRIS should only be able to see her own record.
select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

-- Enable hr_representative role.
exec sys.dbms_xs_sessions.enable_role('hr_representative');

Appendix C
Scripts for the Security HR Demo

C-7

-- SMAVRIS can view all the records again.
select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

-- EMPLOYEES table has 107 rows, we expect to see all of them.
select count(*) from employees;

-- Detach and destroy the application session.
declare
 sessionid raw(16);
begin
 sessionid := hextoraw(:gsessionid);
 sys.dbms_xs_sessions.detach_session;
 sys.dbms_xs_sessions.destroy_session(sessionid);
end;
/

exit

C.2.4 hrdemo.java
The source file for the Java demo is hrdemo.java.

import java.security.GeneralSecurityException;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.spec.InvalidKeySpecException;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.ArrayList;
import java.util.List;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.OracleResultSet;
import oracle.jdbc.OracleResultSet.AuthorizationIndicator;

import oracle.security.xs.AccessDeniedException;
import oracle.security.xs.InvalidXSNamespaceException;
import oracle.security.xs.InvalidXSUserException;
import oracle.security.xs.Role;
import oracle.security.xs.Session;
import oracle.security.xs.XSAccessController;
import oracle.security.xs.XSException;
import oracle.security.xs.XSSessionManager;

/**
 * A simple java application implemented using RAS.
 * It shows:
 * - How to setup RAS session manager
 * - How to manage RAS sessions
 * - How to use Column authorization indicator
 * - How to check privileges using "checkAcl" function
*/
public class hrdemo {

 // application connection, should be created with unprivileged user

Appendix C
Scripts for the Security HR Demo

C-8

 // in RAS case, the user only needs DB connection privilege
 private Connection appConnection = null;

 // RAS dispatcher's connection, should be create with a RAS dispatcher user
 private Connection mgrConnection = null;
 // RAS session manager, to manage session for application user
 // Must be instanciated with disptcher's connection
 private XSSessionManager manager = null;

 public static void main(String[] args) {

 try {
 DriverManager.registerDriver(new OracleDriver());

 if (args.length != 1) {
 System.out.println("Usage hrdemo dbURL");
 System.exit(1);
 }
 hrdemo demo = new hrdemo();
 demo.setupConnection(args[0]);

 demo.queryAsUser("DAUSTIN");
 demo.queryAsUser("SMAVRIS");

 demo.cleanupConnection();

 } catch (Exception e) {
 // we don't handle exception for now
 e.printStackTrace();
 }
 }

 private void queryAsUser(String user) throws SQLException, XSException {

 System.out.println("\nQuery HR.EMPLOYEES table as user \"" + user + "\"");

 Session lws = manager.createSession(appConnection, user, null,null);
 manager.attachSession(appConnection, lws, null, null, null, null, null);

 queryEmployees(lws);

 manager.detachSession(lws);
 manager.destroySession(appConnection, lws);

 }

 public void setupConnection(String url) throws SQLException, XSException,
GeneralSecurityException {
 // dispatcher's connection
 mgrConnection =
 DriverManager.getConnection(url, "dispatcher", "welcome1");

 // RAS session manager
 manager = XSSessionManager.getSessionManager(mgrConnection, 30, 2048000);

 // connection used for application query
 appConnection = DriverManager.getConnection(url, "hr_common", "hr_common");
 }

 public void cleanupConnection() throws SQLException {
 mgrConnection.close();

Appendix C
Scripts for the Security HR Demo

C-9

 appConnection.close();

 }

 public void queryEmployees(Session lws) throws SQLException, XSException {
 // using DB connection that has been attached to a RAS session
 Connection conn = lws.getConnection();
 String query = " select email, first_name, last_name, department_id, salary,
ora_get_aclids(emp) from hr.employees emp where department_id in (40, 60, 100) order by
email";

 Statement stmt = null;
 ResultSet rs = null;

 System.out.printf(" EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE |
VIEW_SALARY\n");

 try {

 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);

 while (rs.next()) {

 String email = rs.getString("EMAIL");
 String first_name = rs.getString("FIRST_NAME");
 String last_name = rs.getString("LAST_NAME");
 String department_id = rs.getString("DEPARTMENT_ID");
 String salary;

 if (((OracleResultSet)rs).getAuthorizationIndicator("SALARY") ==
AuthorizationIndicator.NONE) {
 salary = rs.getString("SALARY");
 }
 else {
 salary = "*****";
 }

 byte[] aclRaw = rs.getBytes(6);
 String update, viewSalary;

 // call checkAcl to determine whether can update the database record
 if (XSAccessController.checkAcl(lws, aclRaw, "UPDATE")) {
 update = "true";
 }
 else {
 update = "false";
 }

 if (XSAccessController.checkAcl(lws, aclRaw, "VIEW_SALARY")) {
 viewSalary = "true";
 }
 else {
 viewSalary = "false";
 }

 System.out.printf("%9s|%12s|%12s|%6s|%8s|%8s|%8s\n", email,
 first_name, last_name, department_id,
 salary, update, viewSalary);
 }
 } finally {

Appendix C
Scripts for the Security HR Demo

C-10

 try { if (rs != null) rs.close(); } catch (Exception e) {};
 try { if (stmt != null) stmt.close(); } catch (Exception e) {};
 }
 }
}

C.2.5 hrdemo_clean.sql
The source file for the cleanup script is hrdemo_clean.sql.

SET ECHO OFF
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET ECHO ON

define passwd=&1

connect hr/hr;

-- Remove policy from the table.
begin
 sys.xs_data_security.remove_object_policy(policy=>'employees_ds',
 schema=>'hr', object=>'employees');
end;
/
-- Delete security class and ACLs
exec sys.xs_security_class.delete_security_class('hr_privileges',
xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('emp_acl', xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('it_acl', xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('hr_acl', xs_admin_util.cascade_option);

-- Delete data security policy
exec sys.xs_data_security.delete_policy('employees_ds', xs_admin_util.cascade_option);

connect sys/&passwd as sysdba
-- Delete application users and roles
exec sys.xs_principal.delete_principal('employee', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('hr_representative',
xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('it_engineer', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('smavris', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('daustin', xs_admin_util.cascade_option);

-- Delete database role
drop role db_emp;

-- Delete session administrator
drop user hr_session;
-- Delete the common user used to connect to DB
drop user hr_common;

-- Delete dispatcher user used by mid-tier
exec sys.xs_principal.delete_principal('dispatcher', xs_admin_util.cascade_option);

exit

Appendix C
Scripts for the Security HR Demo

C-11

C.3 Generated Log Files for Each Script
This section includes the following log files that are generated from running the scripts listed in
Table C-1:

• hrdemo_setup.log

• hrdemo.log

• hrdemo_run_sess.log

• hrdemo.log

• hrdemo_clean.log

C.3.1 hrdemo_setup.log
The hrdemo_setup.log file.

SQL> @hrdemo_setup
SQL>
SQL> define passwd=&1
Enter value for 1: sample
SQL>
SQL> --
SQL> -- Introduction
SQL> --
SQL> -- The HR Demo shows how to use basic Real Application Security features.
SQL> -- The demo secures HR.EMPLOYEE table by creating a data security
SQL> -- policy that grants the table access to.
SQL> -- Data Security Policy
SQL> --
SQL> --(1) An employee can view their own record including SALARY column.
SQL> --(2) An IT engineer can view all employee records in IT department,
SQL> -- but cannot view employee's salaries.
SQL> --(3) An HR representative can view and update all employee records.
SQL> --
SQL> --
SQL> --Sample Users and Their Role Grants:
SQL> --1) DAUSTIN, an application user in IT department. He has role employee
SQL> -- and it_engineer. He can view employee records in IT department, but
he
SQL> -- cannot view the salary column except for his own.
SQL> --2) SMAVRIS, an application user in HR department. She has role employee
SQL> -- and hr_representative. She can view and update all the employee
records
SQL> --
SQL> --
SQL> -- 1. SETUP - User and Roles
SQL> --
SQL>
SQL> connect sys/&passwd as sysdba
Connected.
SQL> -- Create an application role employee for common employees.
SQL> exec xs_principal.create_role(name => 'employee', enabled => true);

Appendix C
Generated Log Files for Each Script

C-12

PL/SQL procedure successfully completed.

SQL>
SQL> -- Create an application role it_engineer for IT department.
SQL> exec xs_principal.create_role(name => 'it_engineer', enabled => true);

PL/SQL procedure successfully completed.

SQL>
SQL> -- Create an application role hr_representative for HR department.
SQL> exec xs_principal.create_role(name => 'hr_representative', enabled =>
true);

PL/SQL procedure successfully completed.

SQL>
SQL> -- create a database role for object privilege grants
SQL> create role db_emp;

Role created.

SQL>
SQL> -- Grant DB_EMP to the three application roles, so they have the required
SQL> -- object privileges to access the table.
SQL> grant db_emp to employee;

Grant succeeded.

SQL> grant db_emp to it_engineer;

Grant succeeded.

SQL> grant db_emp to hr_representative;

Grant succeeded.

SQL>
SQL> -- Create two application users:
SQL> -- DAUSTIN (in IT department), granted employee and it_engineer.
SQL> exec xs_principal.create_user(name => 'daustin', schema => 'hr');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.set_password('daustin', 'welcome1');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('daustin', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('daustin', 'employee');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('daustin', 'it_engineer');

Appendix C
Generated Log Files for Each Script

C-13

PL/SQL procedure successfully completed.

SQL>
SQL> -- SMAVRIS (in HR department), granted employee and hr_representative.
SQL> exec xs_principal.create_user(name => 'smavris', schema => 'hr');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.set_password('smavris', 'welcome1');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('smavris', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('smavris', 'employee');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('smavris', 'hr_representative');

PL/SQL procedure successfully completed.

SQL>
SQL> -- Grant HR user policy adminisration privilege
SQL> exec xs_admin_util.grant_system_privilege('ADMIN_ANY_SEC_POLICY','HR');

PL/SQL procedure successfully completed.

SQL>
SQL> --
SQL> -- 2. SETUP - Security class and ACL
SQL> --
SQL>
SQL>
SQL> -- Connect as HR
SQL> connect hr/hr;
Connected.
SQL>
SQL> -- Grant necessary object privileges to db_emp role
SQL> -- This role will be used to grant the required object privileges to
SQL> -- application users.
SQL>
SQL> grant select, insert, update, delete on hr.employees to db_emp;

Grant succeeded.

SQL>
SQL>
SQL> -- Create a security class hr_privileges and include privileges from the
predefined DML security class.
SQL> -- hr_privileges has a new privilege VIEW_SALARY, which is used to
control the
SQL> -- access to SALARY column.

Appendix C
Generated Log Files for Each Script

C-14

SQL> declare
 2 begin
 3 xs_security_class.create_security_class(
 4 name => 'hr_privileges',
 5 parent_list => xs$name_list('sys.dml'),
 6 priv_list => xs$privilege_list(xs$privilege('view_salary')));
 7 end;
 8 /

PL/SQL procedure successfully completed.

SQL>
SQL>
SQL>
SQL> -- Create three ACLs to grant privileges for the policy defined later.
SQL> declare
 2 aces xs$ace_list := xs$ace_list();
 3 begin
 4 aces.extend(1);
 5
 6 -- EMP_ACL: This ACL grants employee the privileges to view an
employee's
 7 -- own record including SALARY column.
 8 aces(1) := xs$ace_type(privilege_list =>
xs$name_list('select','view_salary'),
 9 principal_name => 'employee');
 10
 11 xs_acl.create_acl(name => 'emp_acl',
 12 ace_list => aces,
 13 sec_class => 'hr_privileges');
 14
 15 -- IT_ACL: This ACL grants it_engineer the privilege to view the
employee
 16 -- records in IT department, but it does not grant the
VIEW_SALARY
 17 -- privilege that is required for access to SALARY column.
 18 aces(1) := xs$ace_type(privilege_list => xs$name_list('select'),
 19 principal_name => 'it_engineer');
 20
 21 xs_acl.create_acl(name => 'it_acl',
 22 ace_list => aces,
 23 sec_class => 'hr_privileges');
 24
 25 -- HR_ACL: This ACL grants hr_representative the privileges to view
and update all
 26 -- employees' records including SALARY column.
 27 aces(1):= xs$ace_type(privilege_list => xs$name_list('select',
'insert',
 28 'update', 'delete',
'view_salary'),
 29 principal_name => 'hr_representative');
 30
 31 xs_acl.create_acl(name => 'hr_acl',
 32 ace_list => aces,
 33 sec_class => 'hr_privileges');
 34 end;

Appendix C
Generated Log Files for Each Script

C-15

 35 /

PL/SQL procedure successfully completed.

SQL>
SQL>
SQL>
SQL> --
SQL> -- 3. SETUP - Data security policy
SQL> --
SQL> -- Create data security policy for EMPLOYEE table. The policy defines
three
SQL> -- realm constraints and a column constraint that protects SALARY column.
SQL> declare
 2 realms xs$realm_constraint_list := xs$realm_constraint_list();
 3 cols xs$column_constraint_list := xs$column_constraint_list();
 4 begin
 5 realms.extend(3);
 6
 7 -- Realm #1: Only the employee's own record.
 8 -- employee can view the realm including SALARY column.
 9 realms(1) := xs$realm_constraint_type(
 10 realm => 'email = xs_sys_context(''xs$session'',''username'')',
 11 acl_list => xs$name_list('emp_acl'));
 12
 13 -- Realm #2: The records in the IT department.
 14 -- it_engineer can view the realm excluding SALARY column.
 15 realms(2) := xs$realm_constraint_type(
 16 realm => 'department_id = 60',
 17 acl_list => xs$name_list('it_acl'));
 18
 19 -- Realm #3: All the records.
 20 -- hr_representative can view and update the realm including
SALARY column.
 21 realms(3) := xs$realm_constraint_type(
 22 realm => '1 = 1',
 23 acl_list => xs$name_list('hr_acl'));
 24
 25 -- Column constraint protects SALARY column by requiring VIEW_SALARY
 26 -- privilege.
 27 cols.extend(1);
 28 cols(1) := xs$column_constraint_type(
 29 column_list => xs$list('salary'),
 30 privilege => 'view_salary');
 31
 32 xs_data_security.create_policy(
 33 name => 'employees_ds',
 34 realm_constraint_list => realms,
 35 column_constraint_list => cols);
 36 end;
 37 /

PL/SQL procedure successfully completed.

SQL>
SQL>

Appendix C
Generated Log Files for Each Script

C-16

SQL>
SQL> -- Apply the data security policy to the table.
SQL> begin
 2 xs_data_security.apply_object_policy(
 3 policy => 'employees_ds',
 4 schema => 'hr',
 5 object =>'employees');
 6 end;
 7 /

PL/SQL procedure successfully completed.

SQL>
SQL>
SQL>
SQL> --
SQL> -- 4. SETUP - Validate the objects we have set up.
SQL> --
SQL> set serveroutput on;
SQL> begin
 2 if (xs_diag.validate_workspace()) then
 3 dbms_output.put_line('All configurations are correct.');
 4 else
 5 dbms_output.put_line('Some configurations are incorrect.');
 6 end if;
 7 end;
 8 /
Some configurations are incorrect.

PL/SQL procedure successfully completed.

SQL> -- XS$VALIDATION_TABLE contains validation errors if any.
SQL> -- Expect no rows selected.
SQL> select * from xs$validation_table order by 1, 2, 3, 4;

 CODE

DESCRIPTION
--
--
OBJECT
--
--
NOTE
--
--
 -1020
No ACE in the ACL
[ACL "SYS"."NETWORK_ACL_30D45882EF095A86E053B0AAE80AF5F8"]

1 row selected.

SQL>
SQL>

Appendix C
Generated Log Files for Each Script

C-17

SQL> --
SQL> -- 5. SETUP - additional configuration for Java demo.
SQL> --
SQL>
SQL> connect sys/&passwd as sysdba
Connected.
SQL>
SQL> -- create a session administrator who has only
SQL> -- RAS session administration privilege (no data privilege),
SQL> -- and is responsible to manage RAS session for each application user.
SQL> grant xs_session_admin, create session to hr_session identified by
hr_session;

Grant succeeded.

SQL> grant create session to hr_common identified by hr_common;

Grant succeeded.

SQL>
SQL> -- craete a dispatcher user for java demo, to set up session for
application user
SQL> exec xs_principal.create_user(name=>'dispatcher', schema=>'HR');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.set_password('dispatcher', 'welcome1');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('dispatcher', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('dispatcher', 'xsdispatcher');

PL/SQL procedure successfully completed.

SQL>
SQL> exit

C.3.2 hrdemo.log
The hrdemo.log file.

SQL> @hrdemo
SQL>
SQL>
SQL> --
SQL> -- HR Demo - PL/SQL with RAS direct logon user
SQL> --
SQL> -- This demo shows RAS runtime, using RAS direct logon user.
SQL> -- Each user directly connects to database and accesses employee table.
SQL> -- RAS policy is automaticlly enforced.
SQL> ---

Appendix C
Generated Log Files for Each Script

C-18

SQL>
SQL> -- Connect as DAUSTIN, who has only employee and it_engineer role
SQL> conn daustin/welcome1;
Connected.
SQL>
SQL> SET SECUREDCOL ON UNAUTH *******
SQL>
SQL> -- DAUSTIN can view the records in IT department, but can only view his
own
SQL> -- SALARY column.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees order by email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
AHUNOLD Alexander Hunold 60 102 *******
BERNST Bruce Ernst 60 103 *******
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 *******
VPATABAL Valli Pataballa 60 103 *******

5 rows selected.

SQL>
SQL>
SQL> SET SECUREDCOL OFF
SQL>
SQL>
SQL> -- DAUSTIN cannot update the record.
SQL> update employees set manager_id = 102 where email = 'DAUSTIN';

0 rows updated.

SQL>
SQL> -- Record is not changed.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where email = 'DAUSTIN';

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
DAUSTIN David Austin 60 103 4800

1 row selected.

SQL>
SQL>
SQL>
SQL> -- Connect as SMAVRIS, who has both employee and hr_representative role.
SQL> conn smavris/welcome1;
Connected.
SQL>
SQL> -- SMAVRIS can view all the records including SALARY column.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

Appendix C
Generated Log Files for Each Script

C-19

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

SQL>
SQL> -- EMPLOYEES table has 107 rows, we expect to see all of them.
SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

SQL>
SQL>
SQL>
SQL> -- SMAVRIS can update the record.
SQL> update employees set manager_id = 102 where email = 'DAUSTIN';

1 row updated.

SQL>
SQL> -- Record is changed.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where email = 'DAUSTIN';

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
DAUSTIN David Austin 60 102 4800

1 row selected.

SQL>
SQL> -- change the record back to the original.
SQL> update employees set manager_id = 103 where email = 'DAUSTIN';

1 row updated.

SQL>
SQL> exit

C.3.3 hrdemo_run_sess.log
The hrdemo_run_sess.log file.

SQL> @hrdemo_session
SQL>

Appendix C
Generated Log Files for Each Script

C-20

SQL>
SQL> --
SQL> -- HR Demo - PL/SQL with Session API
SQL> --
SQL> -- This demo shows RAS runtime, using RAS user as application user.
SQL> -- The user does not logon to database, but a RAS session is created
SQL> -- and attached for each user before accessing employee table.
SQL> ---
SQL>
SQL> -- Connect as RAS session administrator
SQL> connect hr_session/hr_session;
Connected.
SQL>
SQL> -- Variable used to remember the session ID;
SQL> var gsessionid varchar2(32);
SQL>
SQL> -- Create an application session for SMARVIS and attach to it.
SQL> declare
 2 sessionid raw(16);
 3 begin
 4 dbms_xs_sessions.create_session('SMAVRIS', sessionid);
 5 :gsessionid := rawtohex(sessionid);
 6 dbms_xs_sessions.attach_session(sessionid, null);
 7 end ;
 8 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- Display the current user, it should be SMAVRIS now.
SQL> select xs_sys_context('xs$session','username') from dual;

XS_SYS_CONTEXT('XS$SESSION','USERNAME')
--
--
SMAVRIS

1 row selected.

SQL>
SQL> -- Display the enabled application roles and database roles.
SQL> select role_name from v$xs_session_roles union
 2 select role from session_roles order by 1;

ROLE_NAME
--
--
DB_EMP
EMPLOYEE
HR_REPRESENTATIVE
XSCONNECT
XSPUBLIC
XS_CONNECT

6 rows selected.

Appendix C
Generated Log Files for Each Script

C-21

SQL>
SQL> -- SMAVRIS can view all the records including SALARY column.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

SQL>
SQL> -- EMPLOYEES table has 107 rows, we expect to see all of them.
SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

SQL>
SQL> -- Disable hr_representative role
SQL> exec dbms_xs_sessions.disable_role('hr_representative');

PL/SQL procedure successfully completed.

SQL>
SQL> -- SMAVRIS should only be able to see her own record.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500

1 row selected.

SQL>
SQL>
SQL> -- Enable HR_ROLE
SQL> exec dbms_xs_sessions.enable_role('hr_representative');

PL/SQL procedure successfully completed.

SQL>
SQL> -- SMAVRIS can view all the records again.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40

Appendix C
Generated Log Files for Each Script

C-22

 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

SQL>
SQL> -- EMPLOYEES table has 107 rows, we expect to see all of them.
SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

SQL>
SQL> -- Detach and destroy the application session.
SQL> declare
 2 sessionid raw(16);
 3 begin
 4 sessionid := hextoraw(:gsessionid);
 5 dbms_xs_sessions.detach_session;
 6 dbms_xs_sessions.destroy_session(sessionid);
 7 end;
 8 /

PL/SQL procedure successfully completed.

SQL>
SQL> exit

C.3.4 hrdemo.log
The Java hrdemo.log file.

Query HR.EMPLOYEES table as user "DAUSTIN"
 EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY
 AHUNOLD| Alexander| Hunold| 60| *****| false| false
 BERNST| Bruce| Ernst| 60| *****| false| false
 DAUSTIN| David| Austin| 60| 4800| false| true
 DLORENTZ| Diana| Lorentz| 60| *****| false| false
 VPATABAL| Valli| Pataballa| 60| *****| false| false

Query HR.EMPLOYEES table as user "SMAVRIS"
 EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY
 AHUNOLD| Alexander| Hunold| 60| 9000| true| true
 BERNST| Bruce| Ernst| 60| 6000| true| true
 DAUSTIN| David| Austin| 60| 4800| true| true
 DFAVIET| Daniel| Faviet| 100| 9000| true| true

Appendix C
Generated Log Files for Each Script

C-23

 DLORENTZ| Diana| Lorentz| 60| 4200| true| true
 ISCIARRA| Ismael| Sciarra| 100| 7700| true| true
 JCHEN| John| Chen| 100| 8200| true| true
 JMURMAN| Jose Manuel| Urman| 100| 7800| true| true
 LPOPP| Luis| Popp| 100| 6900| true| true
 NGREENBE| Nancy| Greenberg| 100| 12008| true| true
 SMAVRIS| Susan| Mavris| 40| 6500| true| true
 VPATABAL| Valli| Pataballa| 60| 4800| true| true

C.3.5 hrdemo_clean.log
The hrdemo_clean.log file.

SQL> @hrdemo_clean
SQL>
SQL> define passwd=&1
Enter value for 1: test
SQL>
SQL> connect hr/hr;
Connected.
SQL>
SQL> -- Remove policy from the table.
SQL> begin
 2 xs_data_security.remove_object_policy(policy=>'employees_ds',
 3 schema=>'hr',
object=>'employees');
 4 end;
 5 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- Delete security class and ACLs
SQL> exec xs_security_class.delete_security_class('hr_privileges',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_acl.delete_acl('emp_acl', xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_acl.delete_acl('it_acl', xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_acl.delete_acl('hr_acl', xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL>
SQL> -- Delete data security policy
SQL> exec xs_data_security.delete_policy('employees_ds',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

Appendix C
Generated Log Files for Each Script

C-24

SQL>
SQL> connect sys/&passwd as sysdba
Connected.
SQL> -- Delete application users and roles
SQL> exec xs_principal.delete_principal('employee',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_principal.delete_principal('hr_representative',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_principal.delete_principal('it_engineer',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_principal.delete_principal('smavris',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_principal.delete_principal('daustin',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL>
SQL> -- Delete database role
SQL> drop role db_emp;

Role dropped.

SQL>
SQL> -- Delete session administrator
SQL> drop user hr_session;

User dropped.

SQL> -- Delete the common user used to connect to DB
SQL> drop user hr_common;

User dropped.

SQL>
SQL> -- Delete dispatcher
SQL> exec xs_principal.delete_principal('dispatcher',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL>
SQL> exit

Appendix C
Generated Log Files for Each Script

C-25

D
Troubleshooting Oracle Database Real
Application Security

This appendix contains:

• About Real Application Security Diagnostics

• About Event-Based Tracing of Real Application Security Components

• About Exception State Dump Information

• About Session Statistics

• Using Middle-Tier Tracing

D.1 About Real Application Security Diagnostics
Real Application Security uses an integrated infrastructure that spans across back-end
databases, application servers, and application instances. Real Application Security
components include diagnostic capabilities that enable you to locate, diagnose, and resolve
problems in a Real Application Security system.

Real Application Security diagnostics make use of the database Diagnostic Framework (DFW)
available in Oracle Database 12c Release 1 (12.1) and later. Functionality diagnostics allow
you to track, investigate, and resolve functionality failures. You can use exception state dumps,
event-based tracing, or default tracing to study and resolve functionality issues. Performance
diagnostics enable you to identify and resolve performance issues.

The following sections discuss functionality and performance diagnostic techniques used in
Real Application Security systems:

• About Using Validation APIs

• How to Check Which ACLs Are Associated with a Row for the Current User

• How to Find If a Privilege Is Granted in an ACL to a User

• About Exception State Dumps

• About Event-Based Tracing

• About In-Memory Tracing

• About Statistics

D.1.1 About Using Validation APIs
You should always validate objects after they are created. This includes objects, such as
principals, security classes, ACLs, data security policies, and namespaces. You can also
validate all these objects that exist in a workspace in a single operation. The XS_DIAG package
includes subprograms that you can use to diagnose potential problems in any of these created
objects. See "XS_DIAG Package" for more information. These packages are briefly described
in the following table with links to each validation subprogram where examples of their usage
are shown.

D-1

Table D-1 Summary of XS_DIAG Subprograms

Subprogram Description

VALIDATE_PRINCIPAL Function Validates the principal.

VALIDATE_SECURITY_CLASS Function Validates the security class.

VALIDATE_ACL Function Validates the ACL.

VALIDATE_DATA_SECURITY Function Validates the data security policy or validates the data
security policy against a specific table.

VALIDATE_NAMESPACE_TEMPLATE Function Validates the namespace template.

VALIDATE_WORKSPACE Function Validates an entire workspace.

D.1.2 How to Check Which ACLs Are Associated with a Row for the Current
User

To find which ACLs are associated with a particular row for the current user, use the
ORA_GET_ACLIDS function. The ORA_GET_ACLIDS function returns a list of ACL IDS associated
with a row instance of data security policy enabled tables for the current application user. If
access to the current row has been granted, this function captures all ACL identifiers that are
associated with the matching data realm constraints. See "ORA_GET_ACLIDS Function" for
reference information and "About Checking ACLs for a Privilege" for tutorial information.

D.1.3 How to Find If a Privilege Is Granted in an ACL to a User
To find if a privilege is granted in an ACL, use the ORA_CHECK_ACL function. The ORA_CHECKACL
function checks whether an application user has the queried application privileges according to
a list of ACLs. If the specified application privileges have been granted to the application user,
ORA_CHECKACL returns 1. If they are not granted to the application user, then it returns 0. See
"ORA_CHECK_ACL Function" for reference information and "About Checking ACLs for a
Privilege" for tutorial information.

To list the ACLIDs associated with each row of a table, for example, the EMPLOYEE table, the
user can use the following query:

select ORA_GET_ACLIDS(emp) from EMPLOYEE emp;

To list the result if a privilege, for example SELECT, is granted for each row of the EMPLOYEE
table, the user can perform the following query:

select ORA_CHECK_ACL(ORA_GET_ACLIDS(emp), 'SELECT') from EMPLOYEE emp;

D.1.4 About Exception State Dumps
When an exception occurs, the state information for Real Application Security components is
dumped into trace files. Exception state dumps are analogous to crash site evidence for a
plane crash.

A failure, like an internal error or server crash, causes a Diagnostic Data Extraction (DDE)
routine to be invoked for each component. This dumps the current system, session, and
process state information into trace files. You can later analyze the cause of failure using the
state information dumped into trace files.

Appendix D
About Real Application Security Diagnostics

D-2

D.1.5 About Event-Based Tracing
Event-based tracing can be used to track events related to specific Real Application Security
components. Event-based tracing helps in tracing the events that led up to a failure. For
example, event number 46148 is used to trace application session events, such as
createSession and attachSession.

D.1.6 About In-Memory Tracing
In-memory tracing is a proactive tracing mechanism that is used do diagnose intermittent and
hard to replicate errors. The in-memory tracing mechanism records component state changes
and events in memory buffers. This is dumped to a trace file when a failure occurs. In-memory
tracing is analogous to black box data that is used for plane crash investigation.

D.1.7 About Statistics
Real Application Security component statistics help identify performance issues in a Real
Application Security system. Statistics include key data like the number of session create
operations, principal invalidations, role-enabling operations, and so on.

D.2 About Event-Based Tracing of Real Application Security
Components

Event-based tracing can be used to track events related to specific Real Application Security
components. Table D-2 lists the events assigned to Real Application Security components.

Table D-2 Real Application Security Components and Events

Real Application Security
Components

Event (Oracle Error #)

Application Sessions

(XSSESSION)
46148

Application Principals

(XSPRINCIPAL)

46150

Security Classes

(XSSECCLASS)

46149

ACLs

(XSACL)
46110

Data Security

(XSXDS)

46049

Mid-Tier Caches

(XS_MIDTIER)

46151

Data Security VPD Rewrite

(XSVPD)

10730

The following sections describe event-based tracing for individual Real Application Security
components:

Appendix D
About Event-Based Tracing of Real Application Security Components

D-3

• About Application Sessions (XSSESSION) Event-Based Tracing

• About Application Principals (XSPRINCIPAL) Event-Based Tracing

• About Security Classes (XSSECCLASS) Event-Based Tracing

• About ACL (XSACL) Event-Based Tracing

• About Data Security (XSXDS and XSVPD) Event-Based Tracing

D.2.1 About Application Sessions (XSSESSION) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSSESSION component:

ALTER SESSION SET EVENTS '46148 trace name context forever, level="1", level="2",
level="3"';

Here, 46148 is the Oracle Database error number associated with XSSESSION events. You can
set a trace level of 1 (low), 2 (medium), or 3 (high). Table D-3 describes the trace levels.

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSSESSION] disk=[low, medium, high]'

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

Table D-3 shows the XSSESSION trace contents for each trace level.

Table D-3 XSSESSION Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

createSession Includes the following:

• User name
• Session Id for the

session

Includes the
following in addition
to trace level 1
items:

• User GUID
• Session

attributes such
as create time,
last
authentication
time, global
variable
namespace,
and cookie
information

Same as level 2

attachSession Includes the following:

• User name
• Session Id for the

session

Includes the
following in addition
to trace level 1
items:

• Roles

Includes the following in
addition to trace level 1
and 2 items:

• Application
namespace with
attribute values

Appendix D
About Event-Based Tracing of Real Application Security Components

D-4

Table D-3 (Cont.) XSSESSION Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

detachSession Includes the following:

• User name
• Session Id for the

session before
detaching

Same as level 1 Same as levels 1 and 2

createNamespace Includes the following:

• User name
• Session Id
• Application namespace

with attribute values

Includes the
following in addition
to trace level 1
items:

• Session
attributes such
as create time,
last
authentication
time, global
variable
namespace,
and cookie
information

Includes the following in
addition to trace level 1
and 2 items:

• Namespace
handler

switchUser Includes the following:

• User name
• Session Id for the

session

Includes the
following in addition
to trace level 1
items:

• Roles

Includes the following in
addition to trace level 1
and 2 items:

• Application
namespace with
attribute values

assignUser Includes the following:

• User name
• Session Id for the

session

Includes the
following in addition
to trace level 1
items:

• Roles

Includes the following in
addition to trace level 1
and 2 items:

• Application
namespace with
attribute values

setAttribute Includes the following:

• Namespace name
• Name and value of the

given attribute before
and after the
setAttribute
operation

Same as level 1 Same as levels 1 and 2

deleteAttribute Includes the following:

• Namespace name and
• Name and value of the

given attribute before
and after the
deleteAttribute
operation

Same as level 1 Same as levels 1 and 2

In addition to the preceding event, you can use the named event, xs_session_state to dump
the current state of application sessions. Use the following SQL statement to enable tracing for
the xs_session_state event:

ALTER SESSION SET EVENTS 'immediate eventdump(xs_session_state)';

Appendix D
About Event-Based Tracing of Real Application Security Components

D-5

The event dump contains information on all session attributes in the User Global Area (UGA)
memory, such as session Id, user name, create time, last authentication time, global variable
namespace, and so on. The dump does not contain information on secure items such as
passwords.

D.2.2 About Application Principals (XSPRINCIPAL) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSPRINCIPAL
component:

ALTER SESSION SET EVENTS '46150 trace name context forever, level="1", level="2",
level="3"';

Here, 46150 is the Oracle Database error number associated with XSPRINCIPAL events. You
can set a trace level of 1 (low), 2 (medium), or 3 (high). Table D-4 describes the trace levels.

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSPRINCIPAL] disk=[low, medium, high]';

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

Table D-4 shows the XSPRINCIPAL trace contents for each trace level.

Table D-4 XSPRINCIPAL Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

Enable Role Includes the following:

• User name
• Session Id for the

session

Includes the following
in addition to trace
level 1 items:

• If the Enable
Role operation
fails, then the
cause is logged.
For example, the
operation may
fail if the role
does not exist or
the user has not
been granted the
role

Same as levels 1 and 2

Disable Role Includes the following:

• All user enabled roles in
the session after the
role is disabled

Includes the following
in addition to trace
level 1 items:

• If the Disable
Role operation
fails, then the
cause is logged.

Same as levels 1 and 2

Role Graph Traverse Includes the following:

• User name
• Session Id for the

session

Same as level 1 Same as levels 1 and 2

Appendix D
About Event-Based Tracing of Real Application Security Components

D-6

D.2.3 About Security Classes (XSSECCLASS) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSSECCLASS component:

ALTER SESSION SET EVENTS '46149 trace name context forever, level="1", level="2",
level="3"';

Here, 46149 is the Oracle Database error number associated with XSSECCLASS events. You can
set a trace level of 1 (low), 2 (medium), or 3 (high).

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSSECCLASS] disk=[low, medium, high]';

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

The trace information includes the following:

• Content from the Security Class document, such as parent classes, child classes,
privileges, and aggregate privileges

• For security class deletions, it includes information on parent classes that require
invalidation from the cache

• Exception related information, such as security class validation errors

D.2.4 About ACL (XSACL) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSACL component:

ALTER SESSION SET EVENTS '46110 trace name context forever, level="1", level="2",
level="3"';

Here, 46110 is the Oracle Database error number associated with XSACL events. You can set a
trace level of 1 (low), 2 (medium), or 3 (high).

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSACL] disk=[low, medium, high]';

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

Table D-5 shows the XSACL trace contents for each trace level.

Table D-5 XSACL Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

Check privilege against
ACLs

Includes the following:

• ACL results during
cursor sharing

Includes the following
in addition to trace
level 1 items:

• ACL evaluation
including ACL
loading

Same as levels 1 and 2

Appendix D
About Event-Based Tracing of Real Application Security Components

D-7

D.2.5 About Data Security (XSXDS and XSVPD) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSXDS component:

ALTER SESSION SET EVENTS '46049 trace name context forever, level="1", level="2",
level="3"';

Here, 46049 is the Oracle Database error number associated with XSXDS events. You can set a
trace level of 1 (low), 2 (medium), or 3 (high). Table D-6 describes the trace levels.

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSXDS] disk=[low, medium, high]';

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

Table D-6 shows the XSXDS trace contents for each trace level.

Table D-6 XSXDS Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

Data Security
Document (DSD)
loaded into System
Global Area (SGA)

Includes the following:

• Security data realm
constraint rules with
resolved parameter
values

Includes the following
in addition to trace
level 1 items:

• Access Control
List (ACL)
identifiers

Same as levels 1 and 2

Use the following SQL statement to enable event-based tracing for the XSVPD component:

ALTER SESSION SET EVENTS '10730 trace name context forever level [1, 2, 3]';

Here, 10730 is the Oracle Database error number associated with XSVPD events. You can set a
trace level of 1 (low), 2 (medium), or 3 (high). Table D-6 describes the trace levels.

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSVPD] disk=[low, medium, high]';

Table D-6 shows the XSVPD trace contents for each trace level.

Appendix D
About Event-Based Tracing of Real Application Security Components

D-8

Table D-7 XSVPD Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

• Data Security
Document (DSD)
loaded into System
Global Area (SGA)

• All subsequent
SQL statements
issued in the
current database
session

Includes the following:

• VPD view of XDS
enabled objects during
hard-parse, soft-parse,
or SQL statement
parsing

• Data realm constraint
rules with resolved
parameter values, their
corresponding ACL
paths and ACL
identifiers

Includes the following
in addition to trace
level 1 items:

• Current
application
session user
name and
enabled roles
when the SQL
statement is
parsed or run

Includes the following in
addition to trace level 1
items:

• Contents of all ACLs
associated with data
realm constraints,
which are
associated with the
XDS enabled
objects in the query

D.3 About Exception State Dump Information
When an exception occurs, the state information for Real Application Security components is
dumped into trace files. Table D-8 describes the information dumped for individual Real
Application Security components:

Table D-8 Real Application Security Components and First-Failure Dump Information

Real Application Security
Component

Exception Related Information

XSSESSION • Application session state information

XSPRINCIPAL • Application session role lists (all roles, enabled roles, disabled roles,
and database roles of the application session)

• Role Graph hash table of the system
• User hash table with direct roles granted to the users in the system
• Principal row cache state

D.4 About Session Statistics
Real Application Security component statistics help identify performance issues in a Real
Application Security system. Table D-9 describes the statistics collected for individual Real
Application Security components.

Table D-9 Real Application Security Components and Performance Statistics

Real Application Security
Component

Performance Statistics Collected

XSSESSION • Number of application sessions created
• Number of application sessions attached and detached
• Number of namespaces created
• Number of user callbacks executed

Appendix D
About Exception State Dump Information

D-9

Table D-9 (Cont.) Real Application Security Components and Performance Statistics

Real Application Security
Component

Performance Statistics Collected

XSPRINCIPAL • Number of roles enabled/disabled
• Number of principal cache misses
• Number of principal invalidations

Mid-tier caches • Number of session cache synchronizations
• Number of principal cache synchronizations
• Number of security class cache synchronizations

D.5 Using Middle-Tier Tracing
Middle-tier tracing uses the package oracle.security.xs. It can be done as follows:

1. Specify logging options in a property file. For example,

handlers= java.util.logging.ConsoleHandler
.level= SEVERE
java.util.logging.ConsoleHandler.level = FINEST
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter
oracle.security.xs.level = FINEST

2. Apply the preceding configuration during JVM start up.

java -Djava.util.logging.config.file=logging.properties

The log output will be generated to the handlers (file, console) specified in the
configuration.

Real Application Security user can use mid-tier java API for authentication, authorization,
session management, and so forth. In case the user needs to debug on interfacing with mid-
tier API, trace can be turned on. The trace can show basic call stacks, function involved, time
used, parameters passed, returning value, and so forth.

Appendix D
Using Middle-Tier Tracing

D-10

Glossary

access control entry (ACE)
An entry in the access control list that grants or denies access to a given principal. One or
more ACEs are listed within an access control list (ACL), in which the ordering of the ACEs is
relevant.

access control list (ACL)
A list of access control entries that determines which principals have access to a given
resource or resources. In Oracle Database Real Application Security, you use ACLs to define
user privileges.

ACE
See access control entry (ACE).

ACL
See access control list (ACL).

aggregate privilege
A privilege that contains other privileges. When an aggregate privilege has been granted or
denied, then all of its child privileges are granted or denied as well.

application role
A role that can only be granted to a application user or to another application role.

application session
A user session that contains information pertinent only to the application. Unlike traditional
"heavyweight" database sessions, an application session does not hold its own database
resources such as transactions and cursors.

Glossary-1

application user
A user account that does not own a schema and can create a application session through the
middle tier to the database.

column level security
The ability to apply specific privileges to a table column.

custom privilege
A privilege not predefined by Oracle Database. See also system privilege.

data realm
A set of rows within a database table whose access you control by associating it with an
access control list (ACL). It is comprised of one or more object instances. See also dynamic
data realm constraint and static data realm constraint.

database role
A role that can only be granted to a database user. It is also called a heavyweight role. See
also application role.

database user
A user account that is created within the database and has a schema. It is also called a
heavyweight user. See also application user.

dynamic ACL
An access control list that has been associated with a dynamic data realm constraint.

dynamic application role
A role that is enabled only under certain conditions, for example, when a user has logged on
using SSL, or during a specified period.

dynamic data realm constraint
An data realm whose WHERE predicate is rerun each time the user performs a query on the data
realm constraint data. See also static data realm constraint.

function security
The mechanism by which user access to an applications functionality is controlled. For
example, for Oracle Database Real Application Security, use the checkPrivilege() method to
check the privilege on the ACL for a row to determine if a specific privilege on one or more

Glossary

Glossary-2

given ACLs is associated with that row. See About the Check Privilege API for more
information.

globally unique identifier (GUID)
The external ID that applications can use to manage the user's session information. This
identifier is not guaranteed to be unique across all tiers, but the number of unique keys that
comprises it is so large that the chances of it being duplicated are small. See also unique
identifier (UID).

GUID
See globally unique identifier (GUID).

heavyweight role
A traditional database role.

heavyweight user
A traditional database user account that owns a schema.

namespace
A container consisting of attribute-value pairs that reflects the state of the application session.

object instance
A single relational table row that is part of an data realm. It is identified by its primary key
value.

password verifier
A hashed version of a clear text password, which is then encoded as a BASE64 encoded
string.

principal
A user or collection of users alternately called a group or a role. See also application user and
application role.

privilege
A right or permission that can be granted or denied to a principal. See also aggregate privilege,
custom privilege, and system privilege.

Glossary

Glossary-3

security class
A named collection of privileges that can be associated with an ACL.

static ACL
An access control list that has been associated with a static data realm constraint.

static data realm constraint
An data realm whose WHERE predicate is stored in cache, so that it is not rerun each time the
user performs a query on the data realm constraint data. See also dynamic data realm
constraint.

system privilege
Predefined privilege supplied by Oracle Database. See also custom privilege.

unique identifier (UID)
A unique internal identifier that Oracle Database uses to track the user or role. It is used to
manage the user's session information across the database enterprise. See also globally
unique identifier (GUID).

UID
See unique identifier (UID).

user switch
The ability of an application user to proxy as another user. The application state (that is,
namespaces and attributes) is maintained from the previous user, but the security context
reflects that of the new user.

Glossary

Glossary-4

Index

A
access control entry (ACE)

about, 1-8
definition, 4-8

access control lists (ACL)
about, 1-8
directories

trace files, using to resolve predicate
errors, 5-7

dynamic data realm constraints
about, 5-6
ACL evaluation order, 5-12

evaluation order, 5-12
static data realm constraints

ACL evaluation order, 5-12
static data realms

about, 5-6
user-managed

example, 5-11
ACE

definition, 4-7
evaluation order, 4-13

acl
troubleshooting, D-7

ACL
adding ACE, 4-10
binding, 4-15
changing security class, 4-10
constraining inheritance, 4-13
create, 4-8
extending inheritance, 4-13
identifiers

master-detail tables, retrieving ACL
identifiers for, 10-4

inheritance, 4-13
constraining, 4-13
extending, 4-13

inheritance|ACL
changing parent ACL, 4-10

multilevel authentication, 4-12
removing ACL, 4-10
scope

definition, 4-4
ACLS

See access control lists

ACLs and ACEs
about, 4-7
creating, 4-8

aggregate privilege
about, 1-7
benefits, 1-8
definition, 4-1

ALL grant, 4-3
ALL privilege, 4-3
ALL_XDS_ACL_REFRESH view, 9-32
ALL_XDS_ACL_REFSTAT view, 9-33
ALL_XDS_LATEST_ACL_REFSTAT view, 9-34
ALL_XS_ACES view, 9-19
ALL_XS_ACL_PARAMETERS view, 9-26
ALL_XS_ACLS view, 9-17
ALL_XS_APPLIED_POLICIES view, 9-28
ALL_XS_COLUMN_CONSTRAINTS view, 9-27
ALL_XS_IMPLIED_PRIVILEGES view, 9-12
ALL_XS_INHERITED_REALMS view, 9-24
ALL_XS_POLICIES view, 9-20
ALL_XS_PRIVILEGES view, 9-11
ALL_XS_REALM_CONSTRAINTS view, 9-22
ALL_XS_SECURITY_CLASS_DEP view, 9-15
ALL_XS_SECURITY_CLASSES view, 9-14
anonymous user, 7-1
application integration

support for external users and roles, 7-1
application privileges

about, 1-7
granting to principles, 2-17

application roles, 1-5, 2-12
about, 1-5, 2-12
creating dynamic role, 2-12, 2-14
creating regular role, 2-12, 2-13
granting database role to an application role,

2-18
granting to another application role, 2-17
granting to existing application user, 2-17
granting to new application user, 2-17
using effective dates, 2-15
validating, 2-14

application sessions, 3-1
about, 3-1
advantages, 3-3
attaching, 3-5
cookies, setting for, 3-6

Index-1

application sessions (continued)
creating, 3-2, 3-3, 11-4
creating anonymous application session, 3-4
database session

attaching to, 11-5
detaching from, 11-18

destroying, 11-19
event handling, 3-10
global callback events, using, 3-10
namespace

creating, 11-9
deleting, 11-14

namespaces
attribute values, getting, 11-12
attribute values, setting, 11-11
attributes, getting, 3-23
attributes, setting, 3-22
deleting, 3-24

roles
disabling for specified session, 11-15
enabling for specified session, 11-15

roles, disabling from session, 3-26
roles, enabling for session, 3-25
saving, 11-18
security context, setting, 11-8
session cookie

setting, 11-16
session state manipulating, 3-14
switch user, 11-8
troubleshooting, D-4
users, assigning to, 3-7
users, creating namespace templates, 3-16
users, custom attributes, 3-23
users, destroying, 3-14
users, detaching from, 3-13
users, initializing namespaces, 3-17–3-20
users, initializing namespaces explicitly, 3-21
users, switching to, 3-8

application sessions in the database
architecture figure, 3-2

application user roles
application sessions, disabling from, 3-26
application sessions, enabling for, 3-25
disabling for specified session, 11-15
enabling for specified session, 11-15

application users, 2-1
about, 1-5, 2-1
application sessions, assigning to, 3-7
application sessions, creating namespace

templates, 3-16
application sessions, custom attributes, 3-23
application sessions, destroying, 3-14
application sessions, detaching from, 3-13
application sessions, initializing namespaces,

3-17–3-20

application users (continued)
application sessions, initializing namespaces

explicitly, 3-21
application sessions, switching to, 3-8
compared with database user, 1-6
creating, 2-1

direct login users, 2-4
creating direct login user, 2-4
definition, 1-5
general procedure, 2-1
modifying, 2-1
validating, 2-11

application users and roles
troubleshooting, D-6

applying
additional application privileges

to a column, 5-8
assigning

an application user to an anonymous
application session, 3-7

attaching
an application session, 3-5

auditing
DBA_XS_AUDIT_POLICY_OPTIONS view,

1-15
DBA_XS_AUDIT_TRAIL view, 1-15
DBA_XS_ENB_AUDIT_POLICIES view, 1-15
in an Oracle Database Real Application

Security environment, 1-15
unified auditing, 1-15, 9-3

authentication
multilevel, 4-12
strong, 4-12
weak, 4-12

C
callback event handler procedure

creating, 3-9
checking

ACLs for a privilege, 4-11
checking security attribute

using getSecurityAttribute method
SecurityAttribute returns value ENABLED,

B-6
SecurityAttribute returns value NONE,

B-6
SecurityAttribute returns value

UNKNOWN, B-6
checking user authorization indicator

using getAuthorizationIndicator method
AuthorizationIndicator returns value

NONE, B-7
AuthorizationIndicator returns value

UNAUTHORIZED, B-7

Index

Index-2

checking user authorization indicator (continued)
using getAuthorizationIndicator method (continued)
AuthorizationIndicator returns value

UNKNOWN, B-7
column authorization

JDBCI interface, B-6
OCI interface, B-1

COLUMN_AUTH_INDICATOR function, 10-1
column-level security, 5-8
configuring

an application role, 2-13
application roles, 2-11
application user switch

proxying an application user, 2-9
application users, 2-1
global callback event handlers

for an application session, 3-10
constraining ACL inheritance

definition, 4-13
cookies

application sessions, setting for, 3-6
create views

using BEQUEATH clause, 5-23
creating

ACLs and ACEs, 4-8
anonymous application session, 3-4
application sessions, 3-3
application user accounts, 2-1
application users, 2-1
custom attributes

in application session, 3-23
direct login user, 2-4
dynamic application role, 2-12, 2-14
namespace templates, 3-16
namespaces

using namespace templates, 3-15
regular application role, 2-12, 2-13
security class, 4-4
simple application user account, 2-3

D
data realm constraints

affect on database tables, 5-11
membership methods, 5-4
membership rule (WHERE predicate)

about, 5-4
membership rules

session variables, guideline for, 5-4
parameterized

about, 5-4
types defined by WHERE predicates, 5-4

data realms, 5-6
about, 5-1
definition, 4-15
structure, 5-4

data realms (continued)
See also dynamic data realms, static data
realms

data security
about, 5-1
ACLs, 4-15
automatic refreshment for static ACL, 11-48
troubleshooting, D-8
with Oracle Database Real Application

Security, 1-4
data security documents

example, 5-2
privileges

security checks, how handled, 5-21
privileges, column-level security, 5-8

data security policy
tables

enabling, 11-46
removing from, 11-45

data security privileges
alter refreshment for static ACL, 11-33, 11-49
automatic refreshment for static ACL, 11-32

database role
about, 1-5

database user
about, 1-5
compared with application user, 1-6

DataSecurity module, 4-15
DBA_XDS_ACL_REFRESH view, 9-34
DBA_XDS_ACL_REFSTAT view, 9-35
DBA_XDS_LATEST_ACL_REFSTAT view, 9-36
DBA_XS_ACES view, 4-8, 4-14, 9-17
DBA_XS_ACL_PARAMETERS view, 9-24
DBA_XS_ACLS view, 4-14, 9-16
DBA_XS_ACTIVE_SESSIONS view, 9-29
DBA_XS_APPLIED_POLICIES view, 9-27
DBA_XS_AUDIT_POLICY_OPTIONS view, 1-15,

9-1
DBA_XS_AUDIT_TRAIL view, 1-15, 9-1
DBA_XS_COLUMN_CONSTRAINTS view, 9-26
DBA_XS_DYNAMIC_ROLES view, 9-8
DBA_XS_ENB_AUDIT_POLICIES view, 1-15, 9-1
DBA_XS_EXTERNAL_PRINICIPALS view, 9-5
DBA_XS_IMPLIED_PRIVILEGES view, 9-11
DBA_XS_INHERITED_REALMS view, 9-23
DBA_XS_MODIFIED_POLICIES view, 9-29
DBA_XS_NS_TEMPLATE_ATTRIBUTES view,

9-32
DBA_XS_NS_TEMPLATES view, 9-31
DBA_XS_OBJECTS view, 9-4
DBA_XS_POLICIES view, 9-19
DBA_XS_PRINICIPALS view, 9-4
DBA_XS_PRIVILEGE_GRANTS view, 9-13
DBA_XS_PRIVILEGES view, 4-14, 9-10
DBA_XS_PROXY_ROLES view, 9-9
DBA_XS_REALM_CONSTRAINTS view, 9-21

Index

Index-3

DBA_XS_ROLE_GRANTS view, 9-9
DBA_XS_ROLES view, 9-8
DBA_XS_SECURITY_CLASS_DEP view, 4-14,

9-14
DBA_XS_SECURITY_CLASSES view, 4-14, 9-13
DBA_XS_SESSION_NS_ATTRIBUTES view,

9-30
DBA_XS_SESSION_ROLES view, 9-30
DBA_XS_SESSIONS view, 9-29
DBA_XS_USERS view, 9-5
DBMS_XS_SESSIONS PL/SQL package

about, 11-1
ADD_GLOBAL_CALLBACK, 11-20
ASSIGN_USER, 3-19
ATTACH_SESSION, 3-18
constants, 11-2
CREATE_ATTRIBUTE, 3-23
CREATE_NAMESPACE, 3-21
CREATE_SESSION, 3-17
DELETE_GLOBAL_CALLBACK, 3-10, 11-22
DELETE_NAMESPACE, 3-24
DESTROY_SESSION, 3-14
DETACH_SESSION, 3-13
DISABLE_ROLE, 3-26
ENABLE_GLOBAL_CALLBACK, 11-21
ENABLE_ROLE, 3-25
GET_ATTRIBUTE, 3-23
object types, constructor functions, 11-2
SAVE_SESSION, 3-12
security model, 11-2
SET_ATTRIBUTE, 3-22
SWITCH_USER, 2-10, 3-20

default security class
definition, 4-4

defining a basic data security policy
implementation tasks, 5-26

disable a data security policy for a table,
5-32

use case, 5-26
deleting

namespaces
in application session, 3-24

destroying
application session, 3-14

detaching
application session

from a traditional database session, 3-13
determining

invoker’s rights use for nested program units
using BEQUEATH clause when creating

views, 5-23
the invoking application user

using SQL functions, 5-25
direct application user accounts

setting password verifiers, 2-5

disabling
application roles

for an application session, 3-26
displaying secure column values

using SQL*Plus SET SECUREDCOL
command, 5-21

dynamic application role, 2-12
dynamic application roles

predefined, 2-15
dynamic data realm constraints

about, 5-6
ACL evaluation order, 5-12

E
enabling

application roles
for application session, 3-25

event handlers, 11-20
See also global callback events

event-based tracing
about, D-3
components, D-3

examples
JDBC

security attributes, checking, B-8
user authorization, checking, B-8

OCI return codes, B-1
Real Application Security policy on master-

detail related tables, 5-13
exception dumps, D-9
exception state dumps, D-2
extending ACL inheritance

definition, 4-13
external roles, 7-1
external users, 7-1

namespaces for, 7-2
session modes, 7-1

secure mode, 7-1
trusted mode, 7-1

external users and external roles
createSession method, 7-2
for application integration, 7-1
session APIs for, 7-2

F
firewall, 4-12

authentication, 4-13
foreign_key

specifies foreign key of detail table, 5-13

Index

Index-4

G
getting

session attributes
in application session, 3-23

global callback events, 11-20
about, 3-10
adding, 11-20
deleting, 11-22
enable or disable, 11-21

granting
application privileges to principles, 2-17
application role

to existing application user, 2-17
to new application role, 2-17
to new application user, 2-17

database role
to an application role, 2-18

I
in-memory tracing, D-3
inheritance

master-detail related tables, 5-12
inheritedFrom element, components, 5-13
initializing

namaspace
when session is attached, 3-18

namespace, 3-19
application user is switched in application

session, 3-20
when session is created, 3-17

namespaces
explicitly, 3-21

J
Java environment

aborting a session, 7-9
assigning a user to a session, 7-7
assigning or switching an application user, 6-6
attaching an application session, 7-4

external role behavior, 7-5
attachng an application session, 6-5
authenticating users using Java APIs, 6-13
authorizing application users using ACLs,

6-14
changing the middle-tier cache size, 6-3

clearing the cache, 6-4
getting the maximum cache idle time, 6-3
getting the maximum cache size, 6-3
removing entries from the cache, 6-4
removing entries from the cache, getting

the high watermark for cache, 6-4
removing entries from the cache, getting

the low watermark for cache, 6-4

Java environment (continued)
changing the middle-tier cache size (continued)
removing entries from the cache, setting

the watermark, 6-4
setting the maximum cache size, 6-3
setting the middle-tier cache idle time, 6-3

checking if application role is enabled, 6-8
constructing an ACL identifier, 6-14
creating a session namespace attribute, 6-9
creating a user session, 6-5
creating an application session, 7-2
creating namespaces, 6-8
deleting namespaces, 6-9
deleting session namespace attributes, 6-11
destroying an application session, 6-13
detaching an application session, 6-13
disabling application roles, 6-7
enabling and disabling application roles, 6-7
enabling application roles, 6-7
getting a session namespace attribute, 6-10
getting data privileges associated with a

specific ACL, 6-15
getting the application user ID for the session,

6-12
getting the Oracle connection associated with

the session, 6-11
getting the session cookie, 6-12
getting the session ID for the session, 6-12
getting the string representation of the

session, 6-12
implicitly creating namespaces, 6-9
initializing the middle tier, 6-1

mid-tier configuration mode, 6-1
privileges for the session manager, 6-1
roles for the session manager, 6-1
using getSessionManager method, 6-1

listing session namespace attributes, 6-10
performing namespace operations as session

manager, 6-11
performing namespace operations as session

user, 6-8
resetting session namespace attributes, 6-10
saving a session, 7-9
setting a session namespace attribute, 6-10
setting session cookie as session manager,

6-12
setting session inactivity timeout as session

manager, 6-12
using namespace attributes, 6-9
using the checkAcl method, 6-15

JDBC
column authorization, interface for, B-6

Index

Index-5

M
master detail data realm

foreign_key
specifies foreign key of detail table, 5-13

parentObjectName element
specifies name of master table, 5-13

parentSchemaName element
specifies name of schema containing

master table, 5-13
primary_key

specifies primary key from master table,
5-13

when element
specifies a predicate for detail table, 5-13

master-detail tables
ACL

identifiers, retrieving, 10-4
inheritedFrom element, components, 5-13
Real Application Security policies

about, 5-12
creating for, 5-13

Materialized View, 5-6
membership rules (WHERE predicate) in data

realm constraints
about, 5-4

membership rules in data realm constraints
session variables, guideline for, 5-4

modifying
application users, 2-1

multilevel authentication, 4-12
definition, 4-12
using, 4-12

N
namespaces

application sessions
attributes, getting, 3-23
attributes, setting, 3-22
creating, 11-9
deleting, 3-24, 11-14

attribute values
getting, 11-12
setting, 11-11

attributes
creating, 11-10
deleting, 11-13
resetting, 11-13

O
OCI parameter handle attribute

OCI_ATTR_XDS_POLICY_STATUS, B-4
OCI_XDS_POLICY_ENABLED value, B-4
OCI_XDS_POLICY_NONE value, B-4

OCI parameter handle attribute (continued)
OCI_ATTR_XDS_POLICY_STATUS (continued)
OCI_XDS_POLICY_UNKNOWN value,

B-4
OCI return codes

ORA-24530
column value is unauthorized to the user,

B-1
ORA-24531

column value authorization is unknown,
B-1

ORA-24536
column authorization unknown, B-1

ORA_CHECK_ACL function, 10-3, D-2
ORA_CHECK_PRIVILEGE function, 10-5
ORA_GET_ACLIDS function

See ORA_GET_ACLIDS function
ORA_INVOKING_USER function

returns name of current database user, 5-25
ORA_INVOKING_USERID function

returns ID of current database user, 5-25
ORA_INVOKING_XS_USER function

returns name of current Real Application
Security application user, 5-25

ORA_INVOKING_XS_USER_GUID function
returns ID of current Real Application Security

application user, 5-25
ORA-24530

column value is unauthorized to the user
OCI return code, B-1

ORA-24531
column value authorization is unknown

OCI return code, B-1
ORA-24536

column authorization unknown
OCI return code, B-1

ORA-28113((colon)) policy predicate has error
message, 5-7

Oracle Call Interface (OCI)
column authorization, interface for, B-1

Oracle Database Real Application Security
about data security, 1-4
access control entry (ACE), 1-8
access control list (ACL), 1-8
advantages of, 1-2
aggregate privilege, 1-8
application privileges, 1-7
application session concepts, 1-9
architecture, 1-2
data security concepts, 1-3
data security policy, 1-8
flow of design and development, 1-10
principals

users and roles, 1-5
security classes, 1-8
security components of, 1-2

Index

Index-6

Oracle Database Real Application Security (continued)
use case scenario example policy, 1-12

component requirements, 1-13
description and security requirements,

1-12
implementation overview, 1-13

what is, 1-1
Oracle Label Security

context established during attach session, 2-7
context established in application session, 3-5
context established in named user’s

application session, 3-7
context switches to target_user session, 3-8

Oracle Virtual Private Database (VPD)
extended for Real Application Security, 5-1

oracle.jdbc.OracleResultSetMetaData interface
getAuthorizationIndicator method

about, B-7
example, B-8

getSecurityAttribute method
about, B-6
example, B-8

P
parameterized ACL, 4-15
parameterized data realm constraints

about, 5-4
parentObjectName element

specifies name of master table, 5-13
parentSchemaName element

specifies name of schema containing master
table, 5-13

password verifiers
direct application user accounts, 2-5

PL/SQL functions
COLUMN_AUTH_INDICATOR, 10-1
XS_SYS_CONTEXT, 10-2

pluggable databases
Oracle Real Application Security support for,

1-16
predefined objects

ACLs
NS_UNRESTRICTED_ACL, A-4
SESSIONACL, A-4
SYSTEMACL, A-4

database roles
PROVISIONER, A-2
XS_CACHE_ADMIN, A-2
XS_NAMESPACE_ADMIN, A-2
XS_SESSION_ADMIN, A-2

dynamic application roles, 2-15
DBMS_AUTH, A-2
DBMS_PASSWD, A-2
EXTERNAL_DBMS_AUTH, A-2
MIDTIER_AUTH, A-2

predefined objects (continued)
dynamic application roles (continued)
XSAUTHENTICATED, A-2
XSSWITCH, A-2

namespaces
XS$GLOBAL_VAR, A-3
XS$SESSION, A-3

regular application roles
XSBYPASS, A-1
XSCACHEADMIN, A-1
XSCONNECT, A-1
XSDISPATCHER, A-1
XSNAMESPACEADMIN, A-1
XSPROVISIONER, A-1
XSPUBLIC, A-1
XSSESSIONADMIN, A-1

security classes
DML, A-3
NSTEMPLATE_SC, A-3
SESSION, A-3
SYSTEM, A-3

users
XSGUEST, A-1

primary_key
specifies primary key from master table, 5-13

principals
about, 1-5

privileges
about application, 1-7
check, 4-11
constrain, 4-13
data security documents

columns, applying additional to, 5-8
security checks, how handled, 5-21

R
regular application role, 2-12
roles, 1-5, 2-12

dynamic
assigning to user, 11-7
removing from user, 11-7
See also application roles

S
scope, ACL

definition, 4-4
security class

about, 1-8
adding parent|security class

inheritance, 4-5
configuration, 4-3
create, 4-4
definition, 4-3
inheritance, 4-4

Index

Index-7

security class (continued)
inheritance|security class

adding privileges, 4-5
deleting, 4-5
description string, 4-5
removing implied privileges, 4-5
removing parent, 4-5
removing privileges, 4-5

manipulating, 4-5
troubleshooting, D-7

session, 3-1
application, 3-1
IDs

authentication time, updating, 11-17
time-out values, setting, 11-17

statistics, D-9
See also application sessions

Session
isRoleEnabled, 6-8
setCookie, 6-12
setInactivityTimeout, 6-12

session cookie
application sessions

setting, 11-16
session privilege scoping through ACL, 3-26
session service

application configuration of the session filter,
8-6

authorization (checkACL), 8-4
check privilege API, 8-18
deployment, 8-5
domain configuration, 8-7

automatic, 8-9
manual, 8-8
prerequisites, 8-7

namespace APIs, 8-14
namespace operations, 8-4
Oracle Platform Security Service (OPSS), 8-1
privilege elevation, 8-4
privilege elevation API, 8-12
Real Application Security servlet filter, 8-4
session APIs, 8-4, 8-10
session filter, 8-4
session filter operation, 8-4
supports JavaEE web application

using OPSS as application security
provider, 8-1

SessionNamespace
deleteAttribute, 6-11
toString, 6-9

SET SECUREDCOL command
SQL*Plus

displaying secure column values, 5-21
setting

a cookie for an application session, 3-6
password verifiers, 2-5

setting (continued)
session attributes

in application session, 3-22
SQL functions

ORA_CHECK_ACL, 10-3, D-2
ORA_CHECK_PRIVILEGE, 10-5
ORA_INVOKING_USER

returns name of current datanase user,
5-25

ORA_INVOKING_USERID
returns ID of current database user, 5-25

ORA_INVOKING_XS_USER
returns name of current Real Application

Security application user, 5-25
ORA_INVOKING_XS_USER_GUID

returns ID of current Real Application
Security application user, 5-25

TO_ACLID, 10-5
SQL operators

ORA_CHECK_ACL
checking ACLs for a privilege, 4-11

static data realms
about, 5-6
constraints

ACL evaluation order, 5-12
statistics in troubleshooting, D-3
switching

application users
in current application session, 3-8

SYS_GET_ACLIDS function
See ORA_GET_ACLIDS function

system-constraining ACL
about, 4-12
definition, 4-12

T
tables

data security policy
enabling, 11-46
removing from, 11-45

master-detail tables, Real Application Security
policies

about, 5-12
creating for, 5-13

time-out values
session

IDs, setting for, 11-17
TO_ACLID function, 10-5
trace files

acl, D-7
application roles, D-6
application sessions, D-4
application users, D-6
data security, D-8
policy predicate errors, 5-7

Index

Index-8

trace files (continued)
Real Application Security components, D-3
security classes, D-7

tracing
event and in-memory, D-3

traditional security model
manging application users

disadvantages of, 1-2
troubleshooting

acl, D-7
application principals, D-6
application sessions, D-4
data security, D-8
event-based tracing

about, D-3
components, D-3

exception dumps, D-9
exception state dumps, D-2
in-memory tracing, D-3
Real Application Security diagnostics, D-1
security classes, D-7
session statistics, D-9
statistics, D-3
using the ORA_CHECK_ACL function, D-2
using the ORA_GET_ACLIDS function, D-2
using validation APIs, D-1

U
use case scenario example policy

human resources administration of employee
information, 1-12

component requirements, 1-13
description and security requirements,

1-12
implementation overview, 1-13

Java implementation, 6-15
authorizing with middle-tier API, 6-16
main method, 6-18
performing cleanup operations, 6-18
running a query on the database, 6-17
setting up connection, 6-16
setting up session, 6-16

user sessions, 3-1
See also application sessions

USER_XDS_ACL_REFRESH view, 9-36
USER_XDS_ACL_REFSTAT view, 9-37
USER_XDS_LATEST_ACL_REFSTAT view, 9-38
USER_XS_ACES view, 9-18
USER_XS_ACL_PARAMETERS view, 9-25
USER_XS_ACLS view, 9-16
USER_XS_COLUMN_CONSTRAINTS view, 9-27
USER_XS_IMPLIED_PRIVILEGES view, 9-12
USER_XS_INHERITED_REALMS view, 9-23
USER_XS_PASSWORD_LIMITS view, 9-7
USER_XS_POLICIES view, 9-20

USER_XS_PRIVILEGES view, 9-10
USER_XS_REALM_CONSTRAINTS view, 9-21
USER_XS_SECURITY_CLASS_DEP view, 9-15
USER_XS_SECURITY_CLASSES view, 9-14
USER_XS_USERS view, 9-6
users, 2-1

See also application users
using

constraining application privilege, 4-13
effective dates with application roles, 2-15
multilevel authentication, 4-12
ORA_CHECK_ACL SQL operator, 4-11
SQL functions

to determine the invoking application
user, 5-25

XS_DIAG.VALIDATE_PRINCIPAL function,
2-11, 2-14

V
V$XS_SESSION_NS_ATTRIBUTES view, 9-38
V$XS_SESSION_ROLES view, 9-39
validating

ACLs, 4-10, 11-52
application roles, 2-14
application users, 2-11
data security policy, 5-2, 11-53
namespaces, 11-54
principals, 11-51
security classes, 4-5, 11-51
workspace objects, 11-55

views, 9-1
ALL_XDS_ACL_REFRESH, 9-32
ALL_XDS_ACL_REFSTAT, 9-33
ALL_XDS_LATEST_ACL_REFSTAT, 9-34
ALL_XS_ACES, 9-19
ALL_XS_ACL_PARAMETERS, 9-26
ALL_XS_ACLS, 9-17
ALL_XS_APPLIED_POLICIES, 9-28
ALL_XS_COLUMN_CONSTRAINTS, 9-27
ALL_XS_IMPLIED_PRIVILEGES, 9-12
ALL_XS_INHERITED_REALMS, 9-24
ALL_XS_POLICIES, 9-20
ALL_XS_PRIVILEGES, 9-11
ALL_XS_REALM_CONSTRAINTS, 9-22
ALL_XS_SECURITY_CLASS_DEP, 9-15
ALL_XS_SECURITY_CLASSES, 9-14
DBA_XDS_ACL_REFRESH, 9-34
DBA_XDS_ACL_REFSTAT, 9-35
DBA_XDS_LATEST_ACL_REFSTAT, 9-36
DBA_XS_ACES, 9-17
DBA_XS_ACL_PARAMETERS, 9-24
DBA_XS_ACLS, 9-16
DBA_XS_ACTIVE_SESSIONS, 9-29
DBA_XS_APPLIED_POLICIES, 9-27
DBA_XS_COLUMN_CONSTRAINTS, 9-26

Index

Index-9

views (continued)
DBA_XS_DYNAMIC_ROLES, 9-8
DBA_XS_EXTERNAL_PRINCIPALS, 9-5
DBA_XS_IMPLIED_PRIVILEGES, 9-11
DBA_XS_INHERITED_REALMS, 9-23
DBA_XS_MODIFIED_POLICIES, 9-29
DBA_XS_NS_TEMPLATE_ATTRIBUTES,

9-32
DBA_XS_NS_TEMPLATES, 9-31
DBA_XS_OBJECTS, 9-4
DBA_XS_POLICIES, 9-19
DBA_XS_PRINCIPALS, 9-4
DBA_XS_PRIVILEGE_GRANTS, 9-13
DBA_XS_PRIVILEGES, 9-10
DBA_XS_PROXY_ROLES, 9-9
DBA_XS_REALM_CONSTRAINTS, 9-21
DBA_XS_ROLE_GRANTS, 9-9
DBA_XS_ROLES, 9-8
DBA_XS_SECURITY_CLASS_DEP, 9-14
DBA_XS_SECURITY_CLASSES, 9-13
DBA_XS_SESSION_NS_ATTRIBUTES, 9-30
DBA_XS_SESSION_ROLES, 9-30
DBA_XS_SESSIONS, 9-29
DBA_XS_USERS, 9-5
privileges in data security documents, 5-21
USER_XDS_ACL_REFRESH, 9-36
USER_XDS_ACL_REFSTAT, 9-37
USER_XDS_LATEST_ACL_REFSTAT, 9-38
USER_XS_ACES, 9-18
USER_XS_ACL_PARAMETERS, 9-25
USER_XS_ACLS, 9-16
USER_XS_COLUMN_CONSTRAINTS, 9-27
USER_XS_IMPLIED_PRIVILEGES, 9-12
USER_XS_INHERITED_REALMS, 9-23
USER_XS_PASSWORD_LIMITS, 9-7
USER_XS_POLICIES, 9-20
USER_XS_PRIVILEGES, 9-10
USER_XS_REALM_CONSTRAINTS, 9-21
USER_XS_SECURITY_CLASS_DEP, 9-15
USER_XS_SECURITY_CLASSES, 9-14
USER_XS_USERS, 9-6
V$XS_SESSION_NS_ATTRIBUTES, 9-38
V$XS_SESSION_ROLES, 9-39

W
when element

specifies a predicate for detail table, 5-13

X
XS_ACL PL/SQL package

about, 11-22
ADD_ACL_PARAMETER, 11-28
APPEND_ACES, 4-10, 11-25
constants, 11-23

XS_ACL PL/SQL package (continued)
CREATE_ACL, 11-24
DELETE_ACL, 11-30
object types, constructor functions, 11-23
REMOVE_ACES, 4-10, 11-26
REMOVE_ACL_PARAMETERS, 11-29
security model, 11-23
SET_DESCRIPTION, 11-30
SET_PARENT_ACL, 4-10, 4-13, 11-27
SET_SECURITY_CLASS, 4-10, 11-27

XS_ADMIN_UTIL PL/SQL package
about, 11-31
constants, 11-31
GRANT_SYSTEM_PRIVILEGE, 11-32
object types, 11-32
REVOKE_SYSTEM_PRIVILEGE, 11-33
security model, 11-31

XS_DATA_SECURITY PL/SQL package
about, 11-34
ADD_COLUMN_CONSTRAINTS Procedure,

11-39
APPEND_REALM_CONSTRAINTS

Procedure, 11-38
APPLY_OBJECT_POLICY, 5-11
APPLY_OBJECT_POLICY Procedure, 11-46
CREATE_ACL_PARAMETER Procedure,

11-41
CREATE_POLICY Procedure, 11-37
DELETE_ACL_PARAMETER Procedure,

11-41
DELETE_POLICY Procedure, 11-43
DISABLE_OBJECT_POLICY Procedure,

11-44
ENABLE_OBJECT_POLICY

affect on database tables, 5-11
ENABLE_OBJECT_POLICY Procedure,

11-44
object types, constructor functions, 11-34
REMOVE_COLUMN_CONSTRAINTS

Procedure, 11-40
REMOVE_OBJECT_POLICY Procedure,

11-45
REMOVE_REALM_CONSTRAINTS

Procedure, 11-39
security model, 11-34
SET_DESCRIPTION Procedure, 11-42

XS_DATA_SECURITY_UTIL PL/SQL package
about, 11-47
ALTER_STATIC_ACL_REFRESH Procedure,

11-49
constants, 11-48
SCHEDULE_STATIC_ACL_REFRESH

Procedure, 11-48
security model, 11-48

XS_DIAG PL/SQL package
about, 11-50

Index

Index-10

XS_DIAG PL/SQL package (continued)
security model, 11-50
VALIDATE_ACL, 4-10
VALIDATE_ACL Function, 11-52
VALIDATE_DATA_SECURITY, 5-2
VALIDATE_DATA_SECURITY Function,

11-53
VALIDATE_PRINCIPAL, 2-11, 2-14
VALIDATE_PRINCIPAL Function, 11-51
VALIDATE_SECURITY_CLASS, 4-5
VALIDATE_SECURITY_CLASS Function,

11-51
VALIDATE_WORKSPACE Function, 11-55

XS_DIAG PL/SQL PL/SQL package
VALIDATE_NAMESPACE_TEMPLATE

Function, 11-54
XS_NAMESPACE PL/SQL package

about, 11-55
ADD_ATTRIBUTES Procedure, 11-58
constants, 11-56
CREATE_TEMPLATE, 3-16
CREATE_TEMPLATE Procedure, 11-57
DELETE_TEMPLATE, 11-60
object types, constructor functions, 11-56
REMOVE_ATTRIBUTES Procedure, 11-59
security model, 11-56
SET_DESCRIPTION Procedure, 11-60
SET_HANDLER Procedure, 11-59

XS_PRINCIPAL PL/SQL package
about, 11-61
ADD_PROXY_TO_DBUSER Procedure,

11-71
ADD_PROXY_USER, 2-9
ADD_PROXY_USER Procedure, 11-69
constants, 11-62
CREATE_DYNAMIC_ROLE, 2-14
CREATE_DYNAMIC_ROLE Procedure, 11-66
CREATE_ROLE, 2-13
CREATE_ROLE Procedure, 11-65
CREATE_USER, 2-4, 2-15
CREATE_USER Procedure, 11-64
DELETE_PRINCIPAL Procedure, 11-83
ENABLE_BY_DEFAULT Procedure, 11-74
ENABLE_ROLES_BY_DEFAULT Procedure,

11-75
GRANT_ROLES, 2-17
GRANT_ROLES Procedure, 11-67
object types, constructor functions, 11-62
REMOVE_PROXY_FROM_DBUSER

Procedure, 11-72

XS_PRINCIPAL PL/SQL package (continued)
REMOVE_PROXY_USERS Procedure, 11-70
REVOKE_ROLES Procedure, 11-69
security model, 11-61
SET_ACL Procedure, 11-76
SET_DESCRIPTION Procedure, 11-82
SET_DYNAMIC_ROLE_DURATION

Procedure, 11-73
SET_DYNAMIC_ROLE_SCOPE Procedure,

11-74
SET_EFFECTIVE_DATES Procedure, 11-72
SET_GUID Procedure, 11-76
SET_PASSWORD, 2-4
SET_PASSWORD Procedure, 11-79
SET_PROFILE, 2-4
SET_PROFILE Procedure, 11-77
SET_USER_SCHEMA Procedure, 11-75
SET_USER_STATUS Procedure, 11-78
SET_VERIFIER, 2-5
SET_VERIFIER Procedure, 11-80

XS_SECURITY_CLASS PL/SQL package
about, 11-83
ADD_IMPLIED_PRIVILEGES, 4-2, 4-5
ADD_IMPLIED_PRIVILEGES Procedure,

11-88
ADD_PARENTS, 4-5
ADD_PARENTS Procedure, 11-85
ADD_PRIVILEGES, 4-1, 4-5
ADD_PRIVILEGES Procedure, 11-87
CREATE_SECURITY_CLASS Procedure,

11-84
DELETE_SECURITY_CLASS, 4-5
DELETE_SECURITY_CLASS Procedure,

11-91
REMOVE_IMPLIED_PRIVILEGES, 4-5
REMOVE_IMPLIED_PRIVILEGES

Procedure, 11-89
REMOVE_PARENTS, 4-5
REMOVE_PARENTS Procedure, 11-86
REMOVE_PRIVILEGES, 4-5
REMOVE_PRIVILEGES Procedure, 11-87
security model, 11-84
SET_DESCRIPTION, 4-5
SET_DESCRIPTION Procedure, 11-90

XS_SYS_CONTEXT function, 10-2
XSSessionManager

clearCache, 6-4
createAnonymousSession, 6-5
createSession, 6-5
getLowWaterMark, 6-4

Index

Index-11

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Real Application Security Administrator's and Developer's Guide
	1 Introducing Oracle Database Real Application Security
	1.1 What Is Oracle Database Real Application Security?
	1.1.1 Disadvantages of Traditional Security for Managing Application Users
	1.1.2 Advantages of Real Application Security
	1.1.3 Architecture of Real Application Security

	1.2 Data Security Concepts Used in Real Application Security
	1.2.1 About Data Security with Oracle Database Real Application Security
	1.2.2 Principals: Users and Roles
	1.2.2.1 Understanding the Difference Between Database Users and Application Users
	1.2.2.2 Understanding the Difference Between Database Roles and Application Roles
	1.2.2.3 Granting Database Privileges to Application Users and Application Roles

	1.2.3 Application Privileges
	1.2.4 Security Classes in Oracle Database Real Application Security
	1.2.5 Access Control Entry (ACE)
	1.2.6 Access Control List (ACL)
	1.2.7 Data Security Policy

	1.3 Application Session Concepts Used in Application Security
	1.4 Flow of Design and Development
	1.4.1 Design Phase
	1.4.2 Development Flow Steps

	1.5 Scenario: Security Human Resources (HR) Demonstration of Employee Information
	1.5.1 Basic Security HR Demo Scenario: Description and Security Requirements
	1.5.2 Basic HR Scenario: Implementation Overview

	1.6 About Auditing in an Oracle Database Real Application Security Environment
	1.7 Support for Pluggable Databases

	2 Configuring Application Users and Application Roles
	2.1 About Configuring Application Users
	2.1.1 About Application User Accounts
	2.1.1.1 General Procedures for Creating Application User Accounts
	Other Tasks

	2.1.2 Creating a Simple Application User Account
	2.1.3 About Creating a Direct Login Application User Account
	2.1.3.1 Creating Direct Login Application User Accounts
	2.1.3.2 Procedure for Creating the Direct Login Application User Account
	2.1.3.3 Setting a Password Verifier for Direct Application User Accounts
	2.1.3.4 Oracle Label Security Context Is Established in Direct Logon Session

	2.1.4 Resetting the Application User's Password with the SQL*Plus PASSWORD Command
	2.1.5 Configuring an Application User Switch
	2.1.6 Validating an Application User

	2.2 About Configuring Application Roles
	2.2.1 About Application Roles
	2.2.2 Regular and Dynamic Application Roles
	2.2.2.1 Regular Application Roles
	2.2.2.2 Dynamic Application Roles

	2.2.3 About Configuring an Application Role
	2.2.3.1 Creating a Regular Application Role
	2.2.3.2 Creating a Dynamic Application Role
	2.2.3.3 Validating an Application Role

	2.2.4 Predefined Regular Application Roles and Dynamic Application Roles

	2.3 Effective Dates for Application Users and Application Roles
	2.4 About Granting Application Privileges to Principals
	2.4.1 About Granting an Application Role to an Application User
	2.4.1.1 Creating a New Application User and Granting This User an Application Role
	2.4.1.2 Granting an Application Role to an Existing Application User

	2.4.2 Granting an Application Role to Another Application Role
	2.4.3 Granting a Database Role to an Application Role

	3 Configuring Application Sessions
	3.1 About Application Sessions
	3.1.1 About Application Sessions in Real Application Security
	3.1.2 Advantages of Application Sessions

	3.2 About Creating and Maintaining Application Sessions
	3.2.1 Creating an Application Session
	3.2.2 Creating an Anonymous Application Session
	3.2.3 Attaching an Application Session to a Traditional Database Session
	3.2.4 Setting a Cookie for an Application Session
	3.2.5 Assigning an Application User to an Anonymous Application Session
	3.2.6 Switching a Current Application User to Another Application User in the Current Application Session
	3.2.7 About Creating a Global Callback Event Handler Procedure
	3.2.8 Configuring Global Callback Event Handlers for an Application Session
	3.2.9 Saving an Application Session
	3.2.10 Detaching an Application Session from a Traditional Database Session
	3.2.11 Destroying an Application Session

	3.3 About Manipulating the Application Session State
	3.3.1 About Using Namespace Templates to Create Namespaces
	3.3.1.1 Components of a Namespace Template
	3.3.1.2 About Namespace Views
	3.3.1.3 Creating a Namespace Template for an Application Session

	3.3.2 Initializing a Namespace in an Application Session
	3.3.2.1 Initializing a Namespace When the Session Is Created
	3.3.2.2 Initializing a Namespace When the Session Is Attached
	3.3.2.3 Initializing a Namespace When a Named Application User Is Assigned to an Anonymous Application Session
	3.3.2.4 Initializing a Namespace When the Application User Is Switched in an Application Session
	3.3.2.5 Initializing a Namespace Explicitly

	3.3.3 Setting Session Attributes in an Application Session
	3.3.4 Getting Session Attributes in an Application Session
	3.3.5 Creating Custom Attributes in an Application Session
	3.3.6 Deleting a Namespace in an Application Session
	3.3.7 Enabling Application Roles for a Session
	3.3.8 Disabling Application Roles for a Session

	3.4 About Administrative APIs for External Users and Roles
	3.5 About Real Application Security Session Privilege Scoping Through ACL
	3.5.1 Granting Session Privileges on a Principal Using an ACL

	4 Configuring Application Privileges and Access Control Lists
	4.1 About Application Privileges
	4.1.1 Aggregate Privilege
	4.1.1.1 ALL Privilege

	4.2 About Configuring Security Classes
	4.2.1 About Security Classes
	4.2.2 Security Class Inheritance
	4.2.3 Security Class as Privilege Scope
	4.2.4 DML Security Class
	4.2.5 About Validating Security Classes
	4.2.6 Manipulating Security Classes

	4.3 About Configuring Access Control Lists
	4.3.1 About ACLs and ACEs
	4.3.2 Creating ACLs and ACEs
	4.3.2.1 Denying a Privilege
	4.3.2.2 Inverting an Application Privilege
	4.3.2.3 ACE Start-Date and End-Date

	4.3.3 About Validating Access Control Lists
	4.3.4 Updating Access Control Lists
	4.3.5 About Checking ACLs for a Privilege
	4.3.6 About Using Multilevel Authentication
	4.3.7 Principal Types
	4.3.8 Access Resolution Results
	4.3.9 ACE Evaluation Order
	4.3.10 ACL Inheritance
	4.3.10.1 Extending ACL Inheritance
	4.3.10.2 Constraining ACL Inheritance

	4.3.11 About ACL Catalog Views
	4.3.12 About Security Class Catalog Views

	4.4 Data Security
	4.4.1 Data Realms
	4.4.2 Parameterized ACL

	4.5 ACL Binding

	5 Configuring Data Security
	5.1 About Data Security
	5.2 About Validating the Data Security Policy
	5.3 Understanding the Structure of the Data Security Policy
	5.4 About Designing Data Realms
	5.4.1 About Understanding the Structure of a Data Realm
	5.4.2 About Using Static Data Realms
	5.4.3 Using Trace Files to Check for Policy Predicate Errors

	5.5 Applying Additional Application Privileges to a Column
	5.6 About Enabling Data Security Policy for a Database Table or View
	5.6.1 Enabling Real Application Security Using the APPLY_OBJECT_POLICY Procedure
	5.6.1.1 About Applying Multiple Policies for a Table or View

	5.6.2 About How the APPLY_OBJECT_POLICY Procedure Alters a Database Table
	5.6.3 About How ACLs on Table Data Are Evaluated

	5.7 About Creating Real Application Security Policies on Master-Detail Related Tables
	5.7.1 About Real Application Security Policies on Master-Detail Related Tables
	5.7.2 About Understanding the Structure of Master Detail Data Realms
	5.7.3 Example of Creating a Real Application Security Policy on Master-Detail Related Tables

	5.8 About Managing Application Privileges for Data Security Policies
	5.8.1 About Bypassing the Security Checks of a Real Application Security Policy
	5.8.2 Using the SQL*Plus SET SECUREDCOL Command

	5.9 Using BEQUEATH CURRENT_USER Views
	5.9.1 Using SQL Functions to Determine the Invoking Application User

	5.10 Real Application Security: Putting It All Together
	5.10.1 Basic HR Scenario: Implementation Tasks
	5.10.1.1 Connecting as User SYS to Create Real Application Security Users and Roles
	5.10.1.2 Creating Roles and Application Users
	5.10.1.3 Creating the Security Class and ACLS
	5.10.1.4 Creating the Data Security Policy
	5.10.1.5 Validating the Real Application Security Objects
	5.10.1.6 Disabling a Data Security Policy for a Table

	5.10.2 Running the Security HR Demo

	5.11 About Schema Level Real Application Security Policy Administration
	5.11.1 Setting Up and Enabling a Schema Level Data Security Policy
	Disabling the Data Security Policy and Revoking the System Privileges from the User

	6 Using Real Application Security in Java Applications
	6.1 About Initializing the Middle Tier
	6.1.1 About Mid-Tier Configuration Mode
	6.1.2 Using the getSessionManager Method
	6.1.3 About Changing the Middle-Tier Cache Setting
	6.1.3.1 About Setting the Maximum Cache Idle Time
	6.1.3.2 About Setting the Maximum Cache Size
	6.1.3.3 About Getting the Maximum Cache Idle Time
	6.1.3.4 About Getting the Maximum Cache Size
	6.1.3.5 About Removing Entries from the Cache
	6.1.3.5.1 About Setting the WaterMark
	6.1.3.5.2 About Getting the High WaterMark
	6.1.3.5.3 About Getting the Low WaterMark

	6.1.3.6 About Clearing the Cache

	6.2 About Managing Real Application Security Sessions
	6.2.1 Creating a Real Application Security User Session
	6.2.2 Attaching an Application Session
	6.2.3 Assigning or Switching an Application User
	6.2.4 Enabling Real Application Security Application Roles
	6.2.4.1 Enabling a Real Application Security Application Role
	6.2.4.2 Disabling a Real Application Security Application Role
	6.2.4.3 Checking If a Real Application Security Application Role Is Enabled

	6.2.5 About Performing Namespace Operations as Session User
	6.2.5.1 Creating Namespaces
	6.2.5.2 Deleting Namespaces
	6.2.5.3 Implicitly Creating Namespaces
	6.2.5.4 About Using Namespace Attributes
	6.2.5.4.1 Creating a Session Namespace Attribute
	6.2.5.4.2 About Setting a Session Namespace Attribute
	6.2.5.4.3 Getting a Session Namespace Attribute
	6.2.5.4.4 Listing Attributes
	6.2.5.4.5 Resetting Attributes
	6.2.5.4.6 Deleting Attributes

	6.2.6 About Performing Namespace Operations as Session Manager
	6.2.7 About Performing Miscellaneous Session-Related Activities
	6.2.7.1 About Getting the Oracle Connection Associated with the Session
	6.2.7.2 About Getting the Application User ID for the Session
	6.2.7.3 Getting the Session ID for the Session
	6.2.7.4 About Getting a String Representation of the Session
	6.2.7.5 Getting the Session Cookie
	6.2.7.6 Setting Session Inactivity Timeout as Session Manager
	6.2.7.7 Setting the Session Cookie as Session Manager

	6.2.8 Detaching an Application Session
	6.2.9 Destroying A Real Application Security Application Session

	6.3 Authenticating Application Users Using Java APIs
	6.4 About Authorizing Application Users Using ACLs
	6.4.1 Constructing an ACL Identifier
	6.4.2 Using the checkAcl Method
	6.4.3 About Getting Data Privileges Associated with a Specific ACL

	6.5 Human Resources Administration Use Case: Implementation in Java
	Output

	7 Oracle Fusion Middleware Integration with Real Application Security
	7.1 About External Users and External Roles
	7.2 Session APIs for External Users and Roles
	7.2.1 Namespace for External Users
	7.2.2 Creating a Session
	7.2.3 Attaching a Session
	7.2.4 Assigning a User to a Session
	7.2.5 Saving a Session and Terminating a Session

	8 Application Session Service in Oracle Fusion Middleware
	8.1 About Real Application Security Concepts
	8.2 About Application Session Service in Oracle Fusion Middleware
	8.3 About the Application Session Filter
	8.3.1 About the Application Session Filter Operation

	8.4 About Deployment
	8.5 About Application Configuration of the Application Session Filter
	8.6 Domain Configuration: Setting Up an Application Session Service to Work with OPSS and Oracle Fusion Middleware
	8.6.1 Prerequisites
	8.6.2 Manual Configuration
	8.6.3 About Automatic Configuration

	8.7 About Application Session APIs
	8.7.1 About Application Session APIs
	8.7.1.1 About Attaching to an Application Session
	8.7.1.2 Detaching from an Application Session
	8.7.1.3 Destroying an Application Session

	8.7.2 About the Privilege Elevation API
	8.7.2.1 Enabling a Dynamic Role in the Application Session

	8.7.3 About Namespace APIs
	8.7.3.1 About Creating a Namespace
	8.7.3.2 About Deleting a Namespace
	8.7.3.3 About Setting the Namespace Attribute
	8.7.3.4 About Deleting a Namespace Attribute
	8.7.3.5 Getting a Namespace Attribute

	8.7.4 About the Check Privilege API
	8.7.4.1 Checking a Privilege on the ACLs

	8.8 Human Resources Demo Use Case: Implementation in Java
	8.8.1 Setting Up the HR Demo Application for External Principals (setup.sql)
	8.8.2 About the Application Session Filter Configuration File (web.xml)
	8.8.3 About the Sample Servlet Application (MyHR.java)
	8.8.4 About the Filter to Set Up the Application Namespace (MyFilter.java)
	8.8.5 About the HR Demo Use Case - User Roles
	8.8.6 About the HR Demo (1) - Logged in as Employee LPOPP
	8.8.7 About the HR Demo (2) - Logged in as HRMGR
	8.8.8 About the HR Demo (3) - Logged in as a Team Manager

	9 Oracle Database Real Application Security Data Dictionary Views
	9.1 DBA_XS_OBJECTS
	9.2 DBA_XS_PRINCIPALS
	9.3 DBA_XS_EXTERNAL_PRINCIPALS
	9.4 DBA_XS_USERS
	9.5 USER_XS_USERS
	9.6 USER_XS_PASSWORD_LIMITS
	9.7 DBA_XS_ROLES
	9.8 DBA_XS_DYNAMIC_ROLES
	9.9 DBA_XS_PROXY_ROLES
	9.10 DBA_XS_ROLE_GRANTS
	9.11 DBA_XS_PRIVILEGES
	9.12 USER_XS_PRIVILEGES
	9.13 ALL_XS_PRIVILEGES
	9.14 DBA_XS_IMPLIED_PRIVILEGES
	9.15 USER_XS_IMPLIED_PRIVILEGES
	9.16 ALL_XS_IMPLIED_PRIVILEGES
	9.17 DBA_XS_PRIVILEGE_GRANTS
	9.18 DBA_XS_SECURITY_CLASSES
	9.19 USER_XS_SECURITY_CLASSES
	9.20 ALL_XS_SECURITY_CLASSES
	9.21 DBA_XS_SECURITY_CLASS_DEP
	9.22 USER_XS_SECURITY_CLASS_DEP
	9.23 ALL_XS_SECURITY_CLASS_DEP
	9.24 DBA_XS_ACLS
	9.25 USER_XS_ACLS
	9.26 ALL_XS_ACLS
	9.27 DBA_XS_ACES
	9.28 USER_XS_ACES
	9.29 ALL_XS_ACES
	9.30 DBA_XS_POLICIES
	9.31 USER_XS_POLICIES
	9.32 ALL_XS_POLICIES
	9.33 DBA_XS_REALM_CONSTRAINTS
	9.34 USER_XS_REALM_CONSTRAINTS
	9.35 ALL_XS_REALM_CONSTRAINTS
	9.36 DBA_XS_INHERITED_REALMS
	9.37 USER_XS_INHERITED_REALMS
	9.38 ALL_XS_INHERITED_REALMS
	9.39 DBA_XS_ACL_PARAMETERS
	9.40 USER_XS_ACL_PARAMETERS
	9.41 ALL_XS_ACL_PARAMETERS
	9.42 DBA_XS_COLUMN_CONSTRAINTS
	9.43 USER_XS_COLUMN_CONSTRAINTS
	9.44 ALL_XS_COLUMN_CONSTRAINTS
	9.45 DBA_XS_APPLIED_POLICIES
	9.46 ALL_XS_APPLIED_POLICIES
	9.47 DBA_XS_MODIFIED_POLICIES
	9.48 DBA_XS_SESSIONS
	9.49 DBA_XS_ACTIVE_SESSIONS
	9.50 DBA_XS_SESSION_ROLES
	9.51 DBA_XS_SESSION_NS_ATTRIBUTES
	9.52 DBA_XS_NS_TEMPLATES
	9.53 DBA_XS_NS_TEMPLATE_ATTRIBUTES
	9.54 ALL_XDS_ACL_REFRESH
	9.55 ALL_XDS_ACL_REFSTAT
	9.56 ALL_XDS_LATEST_ACL_REFSTAT
	9.57 DBA_XDS_ACL_REFRESH
	9.58 DBA_XDS_ACL_REFSTAT
	9.59 DBA_XDS_LATEST_ACL_REFSTAT
	9.60 USER_XDS_ACL_REFRESH
	9.61 USER_XDS_ACL_REFSTAT
	9.62 USER_XDS_LATEST_ACL_REFSTAT
	9.63 V⁠$XS_SESSION_NS_ATTRIBUTES
	9.64 V⁠$XS_SESSION_ROLES

	10 Oracle Database Real Application Security SQL Functions
	10.1 COLUMN_AUTH_INDICATOR Function
	10.2 XS_SYS_CONTEXT Function
	10.3 ORA_CHECK_ACL Function
	10.4 ORA_GET_ACLIDS Function
	10.5 ORA_CHECK_PRIVILEGE Function
	10.6 TO_ACLID Function

	11 Oracle Database Real Application Security PL/SQL Packages
	11.1 DBMS_XS_SESSIONS Package
	11.1.1 Security Model
	11.1.2 Constants
	11.1.3 Object Types, Constructor Functions, Synonyms, and Grants
	11.1.4 Summary of DBMS_XS_SESSIONS Subprograms
	11.1.4.1 CREATE_SESSION Procedure
	11.1.4.2 ATTACH_SESSION Procedure
	11.1.4.3 ASSIGN_USER Procedure
	11.1.4.4 SWITCH_USER Procedure
	11.1.4.5 CREATE_NAMESPACE Procedure
	11.1.4.6 CREATE_ATTRIBUTE Procedure
	11.1.4.7 SET_ATTRIBUTE Procedure
	11.1.4.8 GET_ATTRIBUTE Procedure
	11.1.4.9 RESET_ATTRIBUTE Procedure
	11.1.4.10 DELETE_ATTRIBUTE Procedure
	11.1.4.11 DELETE_NAMESPACE Procedure
	11.1.4.12 ENABLE_ROLE Procedure
	11.1.4.13 DISABLE_ROLE Procedure
	11.1.4.14 SET_SESSION_COOKIE Procedure
	11.1.4.15 REAUTH_SESSION Procedure
	11.1.4.16 SET_INACTIVITY_TIMEOUT Procedure
	11.1.4.17 SAVE_SESSION Procedure
	11.1.4.18 DETACH_SESSION Procedure
	11.1.4.19 DESTROY_SESSION Procedure
	11.1.4.20 ADD_GLOBAL_CALLBACK Procedure
	11.1.4.21 ENABLE_GLOBAL_CALLBACK Procedure
	11.1.4.22 DELETE_GLOBAL_CALLBACK Procedure

	11.2 XS_ACL Package
	11.2.1 Security Model for the XS_ACL Package
	11.2.2 Constants
	11.2.3 Object Types, Constructor Functions, Synonyms, and Grants
	11.2.4 Summary of XS_ACL Subprograms
	11.2.4.1 CREATE_ACL Procedure
	11.2.4.2 APPEND_ACES Procedure
	11.2.4.3 REMOVE_ACES Procedure
	11.2.4.4 SET_SECURITY_CLASS Procedure
	11.2.4.5 SET_PARENT_ACL Procedure
	11.2.4.6 ADD_ACL_PARAMETER Procedure
	11.2.4.7 REMOVE_ACL_PARAMETERS Procedure
	11.2.4.8 SET_DESCRIPTION Procedure
	11.2.4.9 DELETE_ACL Procedure

	11.3 XS_ADMIN_UTIL Package
	11.3.1 Security Model
	11.3.2 Constants
	11.3.3 Object Types, Constructor Functions, Synonyms, and Grants
	11.3.4 Summary of XS_ADMIN_UTIL Subprograms
	11.3.4.1 GRANT_SYSTEM_PRIVILEGE Procedure
	11.3.4.2 REVOKE_SYSTEM_PRIVILEGE Procedure

	11.4 XS_DATA_SECURITY Package
	11.4.1 Security Model for the XS_DATA_SECURITY Package
	11.4.2 Object Types, Constructor Functions, Synonyms, and Grants
	11.4.3 Summary of XS_DATA_SECURITY Subprograms
	11.4.3.1 CREATE_POLICY Procedure
	11.4.3.2 APPEND_REALM_CONSTRAINTS Procedure
	11.4.3.3 REMOVE_REALM_CONSTRAINTS Procedure
	11.4.3.4 ADD_COLUMN_CONSTRAINTS Procedure
	11.4.3.5 REMOVE_COLUMN_CONSTRAINTS Procedure
	11.4.3.6 CREATE_ACL_PARAMETER Procedure
	11.4.3.7 DELETE_ACL_PARAMETER Procedure
	11.4.3.8 SET_DESCRIPTION Procedure
	11.4.3.9 DELETE_POLICY Procedure
	11.4.3.10 ENABLE_OBJECT_POLICY Procedure
	11.4.3.11 DISABLE_OBJECT_POLICY Procedure
	11.4.3.12 REMOVE_OBJECT_POLICY Procedure
	11.4.3.13 APPLY_OBJECT_POLICY Procedure

	11.5 XS_DATA_SECURITY_UTIL Package
	11.5.1 Security Model
	11.5.2 Constants
	11.5.3 Summary of XS_DATA_SECURITY_UTIL Subprograms
	11.5.3.1 SCHEDULE_STATIC_ACL_REFRESH Procedure
	11.5.3.2 ALTER_STATIC_ACL_REFRESH Procedure

	11.6 XS_DIAG Package
	11.6.1 Security Model
	11.6.2 Summary of XS_DIAG Subprograms
	11.6.2.1 VALIDATE_PRINCIPAL Function
	11.6.2.2 VALIDATE_SECURITY_CLASS Function
	11.6.2.3 VALIDATE_ACL Function
	11.6.2.4 VALIDATE_DATA_SECURITY Function
	11.6.2.5 VALIDATE_NAMESPACE_TEMPLATE Function
	11.6.2.6 VALIDATE_WORKSPACE Function

	11.7 XS_NAMESPACE Package
	11.7.1 Security Model
	11.7.2 Constants
	11.7.3 Object Types, Constructor Functions, Synonyms, and Grants
	11.7.4 Summary of XS_NAMESPACE Subprograms
	11.7.4.1 CREATE_TEMPLATE Procedure
	11.7.4.2 ADD_ATTRIBUTES Procedure
	11.7.4.3 REMOVE_ATTRIBUTES Procedure
	11.7.4.4 SET_HANDLER Procedure
	11.7.4.5 SET_DESCRIPTION Procedure
	11.7.4.6 DELETE_TEMPLATE Procedure

	11.8 XS_PRINCIPAL Package
	11.8.1 Security Model
	11.8.2 Constants
	11.8.3 Object Types, Constructor Functions, Synonyms, and Grants
	11.8.4 Summary of XS_PRINCIPAL Subprograms
	11.8.4.1 CREATE_USER Procedure
	11.8.4.2 CREATE_ROLE Procedure
	11.8.4.3 CREATE_DYNAMIC_ROLE Procedure
	11.8.4.4 GRANT_ROLES Procedure
	11.8.4.5 REVOKE_ROLES Procedure
	11.8.4.6 ADD_PROXY_USER Procedure
	11.8.4.7 REMOVE_PROXY_USERS Procedure
	11.8.4.8 ADD_PROXY_TO_DBUSER
	11.8.4.9 REMOVE_PROXY_FROM_DBUSER Procedure
	11.8.4.10 SET_EFFECTIVE_DATES Procedure
	11.8.4.11 SET_DYNAMIC_ROLE_DURATION Procedure
	11.8.4.12 SET_DYNAMIC_ROLE_SCOPE Procedure
	11.8.4.13 ENABLE_BY_DEFAULT Procedure
	11.8.4.14 ENABLE_ROLES_BY_DEFAULT Procedure
	11.8.4.15 SET_USER_SCHEMA Procedure
	11.8.4.16 SET_GUID Procedure
	11.8.4.17 SET_ACL Procedure
	11.8.4.18 SET_PROFILE Procedure
	11.8.4.19 SET_USER_STATUS Procedure
	11.8.4.20 SET_PASSWORD Procedure
	11.8.4.21 SET_VERIFIER Procedure
	11.8.4.22 SET_DESCRIPTION Procedure
	11.8.4.23 DELETE_PRINCIPAL Procedure

	11.9 XS_SECURITY_CLASS Package
	11.9.1 Security Model for the XS_SECURITY_CLASS Package
	11.9.2 Summary of XS_SECURITY_CLASS Subprograms
	11.9.2.1 CREATE_SECURITY_CLASS Procedure
	11.9.2.2 ADD_PARENTS Procedure
	11.9.2.3 REMOVE_PARENTS Procedure
	11.9.2.4 ADD_PRIVILEGES Procedure
	11.9.2.5 REMOVE_PRIVILEGES Procedure
	11.9.2.6 ADD_IMPLIED_PRIVILEGES Procedure
	11.9.2.7 REMOVE_IMPLIED_PRIVILEGES Procedure
	11.9.2.8 SET_DESCRIPTION Procedure
	11.9.2.9 DELETE_SECURITY_CLASS Procedure

	12 Real Application Security HR Demo
	12.1 Overview of the Security HR Demo
	12.2 What Each Script Does
	12.3 Setting Up the Security HR Demo Components
	12.3.1 About Creating Roles and Application Users
	12.3.2 About Creating the Security Class and ACLs
	12.3.3 About Creating the Data Security Policy
	12.3.4 About Validating the Real Application Security Objects
	12.3.5 About Setting Up the Mid-Tier Related Configuration

	12.4 Running the Security HR Demo Using Direct Logon
	12.5 Running the Security HR Demo Attached to a Real Application Security Session
	12.6 Running the Security HR Demo Cleanup Script
	12.7 Running the Security HR Demo in the Java Interface

	A Predefined Objects in Real Application Security
	A.1 Users
	A.2 Roles
	A.2.1 Regular Application Roles
	A.2.2 Dynamic Application Roles
	A.2.3 Database Roles

	A.3 Namespaces
	A.4 Security Classes
	A.5 ACLs

	B Configuring OCI and JDBC Applications for Column Authorization
	B.1 About Using OCI to Retrieve Column Authorization Indicators
	B.1.1 Example of Obtaining the Return Code
	B.1.2 About Using the Return Code and Indicator with Authorization Indicator
	B.1.3 About the Warning for Unknown Authorization Indicator
	B.1.4 Using OCI Describe for Column Security

	B.2 About Using JDBC to Retrieve Column Authorization Indicators
	B.2.1 About Checking Security Attributes for a Table Column
	B.2.2 About Checking User Authorization for a Table Column
	B.2.3 Example of Checking Security Attributes and User Authorization

	C Real Application Security HR Demo Files
	C.1 How to Run the Security HR Demo
	C.2 Scripts for the Security HR Demo
	C.2.1 hrdemo_setup.sql
	C.2.2 hrdemo.sql
	C.2.3 hrdemo_session.sql
	C.2.4 hrdemo.java
	C.2.5 hrdemo_clean.sql

	C.3 Generated Log Files for Each Script
	C.3.1 hrdemo_setup.log
	C.3.2 hrdemo.log
	C.3.3 hrdemo_run_sess.log
	C.3.4 hrdemo.log
	C.3.5 hrdemo_clean.log

	D Troubleshooting Oracle Database Real Application Security
	D.1 About Real Application Security Diagnostics
	D.1.1 About Using Validation APIs
	D.1.2 How to Check Which ACLs Are Associated with a Row for the Current User
	D.1.3 How to Find If a Privilege Is Granted in an ACL to a User
	D.1.4 About Exception State Dumps
	D.1.5 About Event-Based Tracing
	D.1.6 About In-Memory Tracing
	D.1.7 About Statistics

	D.2 About Event-Based Tracing of Real Application Security Components
	D.2.1 About Application Sessions (XSSESSION) Event-Based Tracing
	D.2.2 About Application Principals (XSPRINCIPAL) Event-Based Tracing
	D.2.3 About Security Classes (XSSECCLASS) Event-Based Tracing
	D.2.4 About ACL (XSACL) Event-Based Tracing
	D.2.5 About Data Security (XSXDS and XSVPD) Event-Based Tracing

	D.3 About Exception State Dump Information
	D.4 About Session Statistics
	D.5 Using Middle-Tier Tracing

	Glossary
	access control entry (ACE)
	access control list (ACL)
	ACE
	ACL
	aggregate privilege
	application role
	application session
	application user
	column level security
	custom privilege
	data realm
	database role
	database user
	dynamic ACL
	dynamic application role
	dynamic data realm constraint
	function security
	globally unique identifier (GUID)
	GUID
	heavyweight role
	heavyweight user
	namespace
	object instance
	password verifier
	principal
	privilege
	security class
	static ACL
	static data realm constraint
	system privilege
	unique identifier (UID)
	UID
	user switch

	Index

