Oracle® GoldenGate
Parameters and Functions Reference Guide

23ai
F70296-09
July 2024

ORACLE"

Oracle GoldenGate Parameters and Functions Reference Guide, 23ai
F70296-09
Copyright © 1995, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xi
Documentation Accessibility Xi
Related Information Xi
Conventions Xii

1 Oracle GoldenGate

2 Oracle GoldenGate Parameters
Summary of GLOBALS Parameters 2-1
Summary of Extract Parameters 2-2
Summary of Replicat Parameters 2-5
ABORTDISCARDRECS 2-5
ALLOCFILES 2-5
ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP 2-6
ALLOWINVISIBLEINDEXKEYS 2-7
ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS 2-7
ALLOWNONVALIDATEDKEYS 2-8
ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES 2-9
APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES 2-10
APPLY_PARALLELISM | MAX_APPLY_PARALLELISM | MIN_APPLY_PARALLELISM 2-10
ASCIITOEBCDIC 2-11
ASSUMETARGETDEFS 2-12
BATCHSQL 2-12
BEGIN 2-17
BLOBMEMORY 2-17
BINARY_JSON_FORMAT 2-17
BR 2-18
CACHEMGR 2-19
CATALOGEXCLUDE 2-21
CHARMAP 2-22
CHECKPARAMS 2-23

ORACLE" il

CHECKPOINTSECS 2-24

CHECKPOINTTABLE 2-25
CHUNK_SIZE 2-25
CMDTRACE 2-26
COLCHARSET 2-26
COLMATCH 2-28
COMPRESSDELETES | NOCOMPRESSDELETES 2-29
COMPRESSUPDATES | NOCOMPRESSUPDATES 2-30
COMMIT_SERIALIZATION 2-31
COORDSTATINTERVAL 2-32
COORDTIMER 2-32
CRYPTOENGINE 2-33
CUSEREXIT 2-33
DBOPTIONS 2-35
DDL 2-44
DDLERROR 2-52
DDLOPTIONS 2-54
DDLSUBST 2-62
DDLTABLE 2-63
DECRYPTTRAIL 2-64
DEFERAPPLYINTERVAL 2-65
DEFSFILE 2-66
DIAGLOGRECS 2-68
DICTIONARY_CACHE_SIZE 2-69
DISCARDFILE | NODISCARDFILE 2-69
DISCARDROLLOVER 2-71
DYNAMICRESOLUTION 2-72
EBCDICTOASCII 2-73
ENABLEMONITORING 2-73
ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE 2-74
ENCRYPTTRAIL | NOENCRYPTTRAIL 2-75
END 2-77
EOFDELAY | EOFDELAYCSECS 2-78
EXCLUDEHIDDENCOLUMNS 2-78
EXCLUDETAG 2-79
EXCLUDEWILDCARDOBJECTSONLY 2-80
EXTFILE 2-81
EXTRACT 2-83
EXTTRAIL 2-83
FETCHOPTIONS 2-85
FETCHUSERIDALIAS 2-89
FILTERDUPS | NOFILTERDUPS 2-89

ORACLE

FILEGROUP 2-90

FLUSHSECS | FLUSHCSECS 2-91
FUNCTIONSTACKSIZE 2-91
GETDELETES | IGNOREDELETES 2-92
GETINSERTS | IGNOREINSERTS 2-93
GETTRUNCATES | IGNORETRUNCATES 2-94
GETUPDATEAFTERS | IGNOREUPDATEAFTERS 2-95
GETUPDATEBEFORES | IGNOREUPDATEBEFORES 2-95
GETUPDATES | IGNOREUPDATES 2-97
GGSCHEMA 2-98
GROUPTRANSOPS 2-98
HANDLECOLLISIONS | NOHANDLECOLLISIONS 2-100
HAVEUDTWITHNCHAR 2-104
HEARTBEATTABLE 2-104
INCLUDE 2-105
INCLUDETAG 2-105
INITIALLOADOPTIONS 2-106
INSERTALLRECORDS 2-107
INSERTAPPEND | NOINSERTAPPEND 2-108
INSERTDELETES | NOINSERTDELETES 2-109
INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES 2-110
INSERTUPDATES | NOINSERTUPDATES 2-110
INSERTUPSERTS | NOINSERTUPSERTS 2-111
LIST | NOLIST 2-112
LOGALLSUPCOLS 2-112
LOOK_AHEAD_TRANSACTIONS 2-113
LOGOUT_RECV_TIMEOUT 2-114
LRSNTIMEDELTA 2-114
MACRO 2-115
MACROCHAR 2-117
MAP for Extract 2-118
MAP 2-119
MAPALLCOLUMNS| NOMAPALLCOLUMNS 2-119
MAP_PARALLELISM 2-120
MAPEXCLUDE 2-121
MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS 2-122
MASTERKEYNAME 2-123
MAXDISCARDRECS 2-124
MAXGROUPS 2-124
MAXSQLSTATEMENTS 2-125
MAXTRANSOPS 2-126
MGRSERVNAME 2-127

ORACLE

NAMECCSID 2-127

NAMEMATCH parameters 2-128
NLS_LENGTH_SEMANTICS 2-129
NOCATALOG 2-129
NODUPMSGSUPPRESSION 2-130
NUMFILES 2-130
OBEY 2-131
OUTPUTFILEUMASK 2-132
OUTPUTFORMAT 2-132
OVERRIDEDUPS | NOOVERRIDEDUPS 2-136
PARTITION | PARTITIONEXCLUDE 2-137
PTKMONITORFREQUENCY 2-140
PRESERVETARGETTIMEZONE 2-140
PROCEDURE 2-140
REPERROR 2-141
REPFETCHEDCOLOPTIONS 2-147
REPLACEBADCHAR 2-150
REPLACEBADNUM 2-151
REPLICAT 2-152
REPORT 2-153
REPORTCOUNT 2-154
REPORTROLLOVER 2-155
RESTARTCOLLISIONS | NORESTARTCOLLISIONS 2-156
RMTFILE 2-157
ROLLOVER 2-159
SCHEMAEXCLUDE 2-160
SEQUENCE 2-162
SESSIONCHARSET 2-162
SETENV 2-163
SOURCECATALOG 2-164
SOURCECHARSET 2-165
SOURCEDEFS 2-167
SOURCEISTABLE 2-168
SOURCETIMEZONE 2-169
SPACESTONULL | NOSPACESTONULL 2-170
SPECIALRUN 2-171
SPLIT_TRANS_RECS 2-171
SQLDUPERR 2-171
SQLEXEC 2-172
STATOPTIONS 2-183
TABLE | MAP 2-185
TABLE for DEFGEN 2-227

ORACLE Vi

TABLE for Replicat 2-228

TABLEEXCLUDE 2-229
TARGETDDLNOTIFY | NOTARGETDDLNOTIFY 2-230
TARGETDEFS 2-231
TCPSOURCETIMER | NOTCPSOURCETIMER 2-231
TRACE | TRACE2 2-232
TRAILBYTEORDER 2-234
TRAILCHARSET 2-235
TRAILCHARSETASCII 2-236
TRAILCHARSETEBCDIC 2-237
TRANLOGOPTIONS 2-237
TRANSACTIONTIMEOUT 2-256
TRIMSPACES | NOTRIMSPACES 2-257
TRIMVARSPACES | NOTRIMVARSPACES 2-258
UPDATEDELETES | NOUPDATEDELETES 2-259
UPDATEINSERTS | NOUPDATEINSERTS 2-260
UPDATERECORDFORMAT 2-261
USEDEDICATEDCOORDINATIONTHREAD 2-262
USEIPV4 | USEIPV6 2-263
USERIDALIAS 2-264
VARWIDTHNCHAR | NOVARWIDTHNCHAR 2-267
WARNLONGTRANS 2-268
WARNRATE 2-269
WILDCARDRESOLVE 2-270
Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT 2-271
3 Table and Column Mapping Functions
Summary of Column-Conversion Functions 3-1
@RANGE 3-3
@AFTER 3-4
@BEFORE 3-5
@BEFOREAFTER 3-5
@BINARY 3-6
@BINTOBASEG64 3-6
@BINTOHEX 3-6
@CASE 3-7
@COLSTAT 3-8
@COLTEST 3-8
@COMPUTE 3-9
@DATE 3-10
@DBFUNCTION 3-13

ORACLE Vii

@DATEDIFF 3-14

@DATENOW 3-15
@DDL 3-15
@EVAL 3-15
@GETENV 3-16
@GETVAL 3-34
@HEXTOBIN 3-36
@HIGHVAL | LOWVAL 3-36
@IF 3-37
@NUMBIN 3-38
@NUMSTR 3-38
@OGG_SHA1 3-38
@STRCAT 3-39
@STRCMP 3-39
@STRCMPNULL 3-40
@STREQ 3-40
@STREQNULL 3-41
@STREXT 3-41
@STRFIND 3-42
@STRLEN 3-42
@STRLTRIM 3-43
@STRNCAT 3-43
@STRNCMP 3-44
@STRNUM 3-44
@STRRTRIM 3-45
@STRSUB 3-46
@STRTRIM 3-47
@STRUP 3-47
@TOKEN 3-48
@VALONEOF 3-48
4 User Exit Functions
Summary of User Exit Functions 4-1
Calling a User Exit 4-1
Using EXIT_CALL_TYPE 4-1
Using EXIT_CALL_RESULT 4-3
Using EXIT_PARAMS 4-3
Using ERCALLBACK 4-4
Function Codes 4-5
COMPRESS_RECORD 4-8
DECOMPRESS_RECORD 4-9

ORACLE" viii

GET_BASE_OBJECT_NAME
GET_BASE_OBJECT_NAME_ONLY
GET_BASE_SCHEMA_NAME_ONLY
GET_BEFORE_AFTER_IND
GET_CATALOG_NAME_ONLY
GET_COL_METADATA_FROM_INDEX
GET_COL_METADATA_FROM_NAME
GET_COLUMN_INDEX_FROM_NAME
GET_COLUMN_NAME_FROM_INDEX
GET_COLUMN_VALUE_FROM_INDEX
GET_COLUMN_VALUE_FROM_NAME
GET_DATABASE_METADATA
GET_DDL_RECORD_PROPERTIES
@GETENV

GET_ENV_VALUE
GET_ERROR_INFO
GET_GMT_TIMESTAMP
GET_MARKER_INFO
GET_OBJECT_NAME
GET_OBJECT_NAME_ONLY
GET_OPERATION_TYPE
GET_POSITION
GET_RECORD_BUFFER
GET_RECORD_LENGTH
GET_RECORD_TYPE
GET_SCHEMA_NAME_ONLY
GET_SESSION_CHARSET
GET_STATISTICS
GET_TABLE_COLUMN_COUNT
GET_TABLE_METADATA
GET_TABLE_NAME
GET_TABLE_NAME_ONLY
GET_TIMESTAMP
GET_TRANSACTION_IND
GET_USER_TOKEN_VALUE
OUTPUT_MESSAGE_TO_REPORT
RESET_USEREXIT_STATS
SET_COLUMN_VALUE_BY_INDEX
SET_COLUMN_VALUE_BY_NAME
SET_OPERATION_TYPE
SET_RECORD_BUFFER
SET_SESSION_CHARSET

ORACLE

4-11
4-12
4-14
4-15
4-16
4-17
4-20
4-22
4-23
4-25
4-28
4-32
4-33
4-35
4-53
4-54
4-55
4-56
4-57
4-59
4-60
4-62
4-63
4-65
4-66
4-67
4-69
4-69
4-72
4-72
4-74
4-75
4-77
4-78
4-79
4-80
4-81
4-81
4-84
4-86
4-88
4-89

SET_TABLE_NAME 4-90

5 Oracle GoldenGate Programs
checkprm 5-1
defgen 5-3
keygen 5-5
logdump 5-5

ORACLE

Preface

This guide contains reference information, with usage and syntax guidelines, for:

e Oracle GoldenGate configuration parameters.

e Oracle GoldenGate column-conversion functions.

e Oracle GoldenGate user exit functions.

e Oracle GoldenGate parameters, and functions for heterogeneous databases

For details on Admin Client commands, see Command Line Interface Reference for Oracle
GoldenGate.

Audience

This guide is intended for persons who are responsible for installing and operating Oracle
GoldenGate and maintaining its performance. This audience typically includes, but is not
limited to, system administrators and database administrators.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Information

The Oracle GoldenGate Product Documentation is available from the following location:
Oracle GoldenGate Documentation

Oracle GoldenGate for Distributed Applications and Analytics

Oracle GoldenGate for Distributed Applications and Analytics

For OCI GoldenGate, refer to:

OCI GoldenGate

For details on Oracle Database High Availability, see:

Oracle Database High Availability

ORACLE

Xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
https://docs.oracle.com/en/middleware/goldengate/goldengate-daa.html
https://www.oracle.com/integration/goldengate/
https://www.oracle.com/database/technologies/high-availability.html

Conventions

The following text conventions are used in this document:

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, such as "From the File menu, select Save." Boldface also is used for
terms defined in text or in the glossary.

italic Italic type indicates placeholder variables for which you supply particular

italic values, such as in the parameter statement: TABLE table name. Italic type
also is used for book titles and emphasis.

monospace Monospace type indicates code components such as user exits and scripts;

MONOSPACE the names of files and database objects; URL paths; and input and output text
that appears on the screen. Uppercase monospace type is generally used to
represent the names of Oracle GoldenGate parameters, commands, and user-
configurable functions, as well as SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless the
name is intended to be a specific case.

{} Braces within syntax enclose a set of options that are separated by pipe

symbols, one of which must be selected, for example: {optionl | option?2 |
option3}.

Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLICAT group name [,
SAVE count]. Multiple options within an optional element are separated by a
pipe symbol, for example: [optionl | optionZ2].

Xii

Oracle GoldenGate

Learn about the parameters and functions for Oracle GoldenGate Microservices Architecture.

Note:

To know about the commands and parameters for Oracle GoldenGate for HP
Nonstop, see the Reference Guide for Oracle GoldenGate for HP NonStop
(Guardian).

ORACLE 1

Oracle GoldenGate Parameters

Summary of GLOBALS Parameters

ORACLE

This chapter contains summaries of the Oracle GoldenGate parameters that control
processing, followed by detailed descriptions of each parameter in alphabetical order.

Topics:

Here's a list of GLOBALS parameters.

Table 2-1 GLOBALS Parameters list and description

Parameter

Description

ALLOWINVISIBLEINDEXKEYS

Allows Extract and Replicat to use columns that are
part of an Oracle invisible index as a unique row
identifier

ALLOWNULLABLEKEYS | Changes the key selection logic so that it does not

NOALLOWNULLABLEKEYS consider a nullable unigue key as a viable candidate for
uniquely identifying a row.

ALLOWNONVALIDATEDKEYS Allows Extract, Replicat, and other Oracle GoldenGate

commands to use a non-validated primary key or an
invalid key as a unique identifier. This parameter
overrides the key selection criteria that is used by
Oracle GoldenGate

CHECKPOINTTABLE

Specifies the name of a default checkpoint table that
can be used by all Replicat groups in one or more
Oracle GoldenGate instances.

CRYPTOENGINE

Use this parameter to select which cryptographic library
the Oracle GoldenGate processes use to provide
implementation of security primitives.

DDLTABLE

Specifies the name of the DDL history table, if other
than the default of GGS_DDL_HIST.

ENABLEMONITORING

Enables the monitoring of Oracle GoldenGate
instances from Oracle GoldenGate Monitor and collects
trend data for Performance Metrics Service.

ENABLE_HEARTBEAT_TABLE |
DISABLE_HEARTBEAT_TABLE

Specifies whether the Oracle GoldenGate process will
be handling records from GG_HEARTBEAT table or not.

EXCLUDEWILDCARDOBJECTSONLY

Forces the inclusion of non-wildcarded source objects
specified in TABLE or MAP parameters when an
exclusion parameter contains a wildcard that otherwise
would exclude that object.

GGSCHEMA

Specifies the name of the schema that contains Oracle
GoldenGate database objects.

2-1

ORACLE

Chapter 2
Summary of Extract Parameters

Table 2-1 (Cont.) GLOBALS Parameters list and description
]

Parameter

Description

HEARTBEATTABLE

Specifies a non-default name of the heartbeat table.
The table name GG_HEARTBEAT is the default. This
name used to denote the heartbeat table is used to
create a seed and history table, GG_HEARTBEAT SEED
and GG_HEARTBEAT HISTORY respectively.

LOGOUT_RECV_TIMEOUT

Specifies the amount of time OCI client waits for a
response from database server when releasing the
connection.

MASTERKEYNAME Controls the name of the masterkey that Oracle
GoldenGate processes in a deployment will use to
retrieve the key from the wallet. |

MAXGROUPS Specifies the maximum number of process groups that
can run in an instance of Oracle GoldenGate.

NAMECCSID Specifies the CCSID (coded character set identifier) of

the database object names stored in the SQL catalog
tables.

NAMEMATCH parameters

Controls the behavior of fallback name mapping.
Fallback name mapping is enabled by default when the
source database is casesensitive and the target
database support both case-sensitive and case-
insensitive object names, such as Oracle and Db2
LUW.

NODUPMSGSUPPRESSION

Prevents the automatic suppression of duplicate
informational and warning messages in the report file,
the error log, and the system log files.

OUTPUTFILEUMASK

Specifies an octal umask for Oracle GoldenGate
processes to use when creating all files.

SESSIONCHARSET Sets the database session character set for all
database connections that are initiated by Oracle
GoldenGate processes in the local Oracle GoldenGate
instance.

TRAILBYTEORDER This is automatically handled by OracleGoldenGate.

USEIPV4 | USEIPV6

Forces the use of Internet Protocol version 4 (IPv4) by
Oracle GoldenGate for TCP/IP connections.

Summary of Extract Parameters

The Extract process captures either full data records or transactional data changes, depending
on configuration parameters, and then sends the data to a target system to be applied to target
tables or processed further by another process, such as a load utility.

Table 2-2 Extract Parameters: General

Parameter

Description

ABORTDISCARDRECS

Controls the number of discarded records after which
Extract aborts.

2-2

ORACLE

Chapter 2
Summary of Extract Parameters

Table 2-2 (Cont.) Extract Parameters: General

Parameter Description

Adjusts timestamps of records transferred to other
systems when those systems reflect different times.

UPDATERECORDFORMAT Controls whether before and after images are stored
in one trail record or two.

TCPSOURCETIMER | NOTCPSOURCETIMER

Table 2-3 Extract Parameters: Processing Method

Parameter Description
Defines an Extract group as an online process.
EXTRACT group P
Extracts entire records from source tables.
SOURCEISTABLE

Table 2-4 Extract Parameters: Selecting, Converting, and Mapping Data

Parameter Description

Controls whether Oracle GoldenGate writes only
the key or all columns to the trail for delete
operations.

COMPRESSDELETES | NOCOMPRESSDELETES

Causes only primary key columns and changed

COMPRESSUPDATES | NOCOMPRESSUPDATES o110’ he logged for updates.

EXCLUDEHIDDENCOLUMNS The parameter disables all the Oracle Database
hidden columns including the timestamp columns
created using automatic CDR.

EXCLUDETAG Specifies Replicat or data pump changes to be
excluded from trail files.

Controls certain aspects of the way that Oracle

FETCHOPTIONS GoldenGate fetches data.
LOGALLSUPCOLS Logs the columns that are required to support
Conflict Detection and Resolution and Integrated
Replicat.
Specifies sequences for synchronization.
SEQUENCE P d y
Specifies tables for extraction and controls column
TABLE | MAP mapping and conversion.
Excludes source tables from the extraction
TABLEEXCLUDE process.
TARGETDEES Specifies a file containing target table definitions

for target databases that reside on the NonStop
platform.

Specifies the ASCII character set for data captured
TRAILCHARSETASCII from DB2 on z/OS, when both ASCII and EBCDIC
tables are present.

Chapter 2
Summary of Extract Parameters

Table 2-4 (Cont.) Extract Parameters: Selecting, Converting, and Mapping Data

Parameter Description

Specifies the EBCDIC character set for data
TRAILCHARSETEBCDIC captured from DB2 on z/OS, when both ASCII and
EBCDIC tables are present.

Table 2-5 Extract Parameters: Routing Data

Parameter Description

Specifies an extract file to which extracted data is

EXTFILE written on the local system.
EXTTRAIL Specifies a trail to which extracted data is written on the
local system.
Specifies an extract file to which extracted data is
RMTFILE P

written on a remote system.

Table 2-6 Extract Parameters: Tuning

Parameter Description

BR Controls the Bounded Recovery feature of Extract.
Controls the virtual memory cache manager.

CACHEMGR y g

Determines the amount of time that record data remains buffered

FLUSHSECS | FLUSHCSECS before being written to the trail.

TRANLOGOPTIONS Supplies capture processing options.

Defines a long-running transaction and controls the frequency of

WARNLONGTRANS checking for and reporting them.

Table 2-7 Extract Parameters: Maintenance

Parameter Description

ROLLOVER Specifies the way that trail files are aged.

Table 2-8 Extract Parameters: Security

Parameter Description

DECRYPTTRAIL Required to decrypt data on the target server.

I i f i ilor E file.
ENCRYPTTRAIL | NOENCRYPTTRAIL Controls encryption of data in a trail or Extract file

ORACLE 5

N

Chapter 2
Summary of Replicat Parameters

Summary of Replicat Parameters

Replicat parameters are listed in the following table.

Parameter Description

TARGETDDLNOTIFY | Controls whether or not Replicat uses DDL notification to synchronize its
NOTARGETDDLNOTIFY target table metadata cache.

ABORTDISCARDRECS

Valid For

Initial Load Extract

Description

Use ABORTDISCARDRECS to abort Extracts configured with a DISCARDFILE after it has discarded N
number of records.

Default

Zero (0) (Do not abort Extract and any number of discards.)

Syntax

ABORTDISCARDRECS

ALLOCFILES

ORACLE

Valid For

Extract and Replicat

Description

Use the ALLOCFILES parameter to control the incremental number of memory structures that
are allocated after the initial memory allocation specified by the NUMFILES parameter is
reached. Together, these parameters control how process memory is allocated for storing
information about the source and target tables being processed.

The default values should be sufficient for both NUMFILES and ALLOCFILES, because memory is
allocated by the process as needed, system resources permitting.

ALLOCFILES must occur before any TABLE or MAP entries to have any effect. The valid range of
minimum value is 1

See NUMFILESfor more information.

Default

500

Syntax

ALLOCFILES number

2-5

Chapter 2
ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP

number

The additional number of memory structures to be allocated. Do not set ALLOCFILES to an
arbitrarily high number, or memory will be consumed unnecessarily. The memory structures of
Oracle GoldenGate support up to two million tables.

Example

ALLOCFILES 1000

ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP

ORACLE

Valid For

Extract and Replicat

Note:

Not valid for Oracle Database when running with integrated Replicat or Parallel
Replicat.

Description

Use the ALLOWDUPTARGETMAP and NOALLOWDUPTARGETMAP parameters to control whether or not
the following are accepted in a parameter file:

e In an Extract parameter file: duplicate TABLE parameters for the same source object if the
COLMAP option is used in any of them. By default, Extract abends on duplicate TABLE
statements when COLMAP is used.

* In a Replicat parameter file: duplicate MAP statements for the same source and target
objects. By default, duplicate MAP statements cause Replicat to abend.

If ALLOWDUPTARGETMAP is not specified and the same source and target tables are mapped
more than once, only the first MAP statement is used and the others are ignored.
Default

NOALLOWDUPTARGETMAP

Syntax

ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP

Examples

Example 1
The following Extract parameter file is permissible with ALLOWDUPTARGETMAP enabled.

EXTRACT extcust

USERIDALIAS tigerl

ALLOWDUPTARGETMAP

EXTTRAIL dirdat/aa

TABLE ogg.tcustmer;

EXTTRAIL dirdat/bb

TABLE ogg.tcustmer, TARGET ogg.tcustmer, COLMAP (USEDEFAULTS, coll=id, col2=name);

2-6

Chapter 2
ALLOWINVISIBLEINDEXKEYS

Example 2
The following Replicat parameter file is permissible with ALLOWDUPTARGETMAP enabled.

REPLICAT repcust

USERIDALIAS tigerl

SOURCEDEFS /ggs/dirdef/source.def

ALLOWDUPTARGETMAP

GETINSERTS

GETUPDATES

IGNOREDELETES

MAP ggs.tcustmer, TARGET ggs.tcustmer, COLMAP (USEDEFAULTS, deleted row = 'N');
IGNOREINSERTS

IGNOREUPDATES

GETDELETES

UPDATEDELETES

MAP ggs.tcustmer, TARGET ggs.tcustmer, COLMAP (USEDEFAULTS, deleted row = 'Y');

Also see About Parallel Replicat.

ALLOWINVISIBLEINDEXKEYS

Valid For
GLOBALS

Description

Use the ALLOWINVISIBLEINDEXKEYS parameter in the GLOBALS file to allow Extract and Replicat
to use columns that are part of an Oracle invisible index as a unique row identifier.

Note:

To enable trigger-based DDL replication to use Oracle invisible indexes, set the
following parameter to TRUE in the params.sql script:

define allow invisible index keys = 'TRUE'

This functionality is automatically enabled for integrated capture and Replicat.

Default

None

Syntax

ALLOWINVISIBLEINDEXKEYS

ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS

Valid For
GLOBALS

ALLOWNULLABLEKEYS is not valid for integrated Replicat.

ORACLE .

Chapter 2
ALLOWNONVALIDATEDKEYS

Description

Use NOALLOWNULLABLEKEYS to change the key selection logic so that it does not consider a
nullable unique key as a viable candidate for uniquely identifying a row. When disabled, the
nullable unique keys are viable candidates. The default value for NOALLOWNULLABLEKEYS is set
to true.

Allowing Oracle GoldenGate to use a nullable key can cause data corruption, as Oracle treats
each row with a NULL value as a key column and as a separate unique value. It is
recommended to use NOALLOWNULLABLEKEYS unless you are absolutely sure that the key
column does not contain any NULL values.

Be careful when using this parameter because it impacts the contents of the trail file and all
installations must be in sync when using this parameter.

Upon upgrade to Oracle GoldenGate 19c, it is recommended that you query

DBA LOGSTDBY NOT UNIQUE view. If SCHEMATRANDATA is not being used, then for each table in
DBA_LOGSTDBY NOT UNIQUE view, add KEYCOLS that mirror key columns returned by INFO
TRANDATA, DELETE TRANDATA, Oor ADD TRANDATA for table to select or use a key with non-NULL
columns.

Default

NOALLOWNULLABLEKEYS

Syntax

ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS

ALLOWNONVALIDATEDKEYS

ORACLE

Valid For
GLOBALS

Description

Use ALLOWNONVALIDATEDKEYS to allow Extract, Replicat, and Admin Client commands to use a
non-validated primary key or an invalid key as a unique identifier. This parameter overrides the
key selection criteria that is used by Oracle GoldenGate. When it is enabled, Oracle
GoldenGate will use NON VALIDATED and NOT VALID primary keys as a unique identifier.

A key can become invalid as the result of an object reorganization or a number of other
actions, but if you know the keys are valid, ALLOWNONVALIDATEDKEYS saves the downtime of re-
validating them, especially in a testing environment. However, when using
ALLOWNONVALIDATEDKEYS, whether in testing or in production, you accept the risk that the target
data may not be maintained accurately through replication. If a key proves to be non-valid and
the table on which it is defined contains more than one record with the same key value, Oracle
GoldenGate might choose the wrong target row to update.

To enable ALLOWNONVALIDATEDKEYS in a configuration where DDL replication is not active, stop
all processes, add ALLOWNONVALIDATEDKEYS to the GLOBALS parameter file, and then restart the
processes. To disable ALLOWNONVALIDATEDKEYS again, remove it from the GLOBALS file and then
restart the processes.

To enable ALLOWNONVALIDATEDKEYS functionality in a configuration where DDL support is active,
take the following steps.

2-8

Chapter 2
ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES

1. Add the ALLOWNONVALIDATEDKEYS parameter to the GLOBALS parameter file.
2. Update the GGS_SETUP table in the DDL schema by using the following SQL.

UPDATE owner.GGS SETUP SET value='l' WHERE property='ALLOWNONVALIDATEDKEYS';
COMMIT;

3. Restart all Oracle GoldenGate processes including Manager. From this point on, Oracle
GoldenGate selects non-validated or non-valid primary keys as a unique identifier.

To disable ALLOWNONVALIDATEDKEYS functionality when DDL support is active, take the following
steps.

1. Remove ALLOWNONVALIDATEDKEYS from the GLOBALS parameter file.

2. Update the record that you added to the GGS_SETUP table to 0.

UPDATE owner.GGS_SETUP SET value='0'"' WHERE
property='ALLOWNONVALIDATEDKEYS';
COMMIT;

Restart all of the Oracle GoldenGate processes.

Default
None (Disabled)

Syntax

ALLOWNONVALIDATEDKEYS

ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES

ORACLE

Valid For

Replicat

Description

Use ALLOWNOOPUPDATES and NOALLOWNOOPUPDATES to control how Replicat responds to a no-op
operation. A no-op operation is one in which there is no effect on the target table. The following
are some examples of how this can occur.

e The source table has a column that does not exist in the target table, or it has a column
that was excluded from replication (with a COLSEXCEPT clause). In either case, if that source
column is updated, there will be no target column name to use in the SET clause within the
Replicat SQL statement.

* Anupdate is made that sets a column to the same value as the current one. The database
does not log the new value, because it did not change. However, Oracle GoldenGate
captures the operation as a change record because the primary key was logged, but there
is no column value for the SET clause in the Replicat SQL statement.

When NOALLOWNOOPUPDATES is used, Replicat only abends if the source and target tables do not
have a key defined, or the Replicat does not use KEYCOLS. In such cases, wherein the target
table has no unique key defined and an update operation is carried out on any of the source
columns, an error similar to the following occurs:

Encountered an update for target table TELLER, which has no unique key defined.
KEYCOLS can be used to define a key. Use ALLOWNOOPUPDATES to process the update

2-9

Chapter 2
APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES

without applying it to the target database. Use APPLYNOOPUPDATES to force the
update to be applied using all columns in both the SET and WHERE clause.

You can use the parameter APPLYNOOPUPDATES to force the UPDATE to be applied.
APPLYNOOPUPDATES overrides ALLOWNOOPUPDATES. If both are specified, Replicat applies updates
for which there are key columns for the source and target tables.

If ALLOWNOOPUPDATES is specified when the HANDLECOLLISIONS or INSERTMISSINGUPDATES
parameter is being used, and if Oracle GoldenGate has all of the target key values, Oracle
GoldenGate applies an UPDATE by using all of the columns of the table in the SET clause and
the WHERE clause (invoking APPLYNOOPUPDATES behavior). This is hecessary so that Oracle
GoldenGate can determine whether the row is present or missing. If it is missing, Oracle
GoldenGate converts the UPDATE to an INSERT.

Default

NOALLOWNOOPUPDATES

Syntax

ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES

APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES

Valid For

Replicat

Description

Use APPLYNOOPUPDATES to force a no-op UPDATE operation to be applied by using all of the
columns in the SET and WHERE clauses. See ALLOWNOOPUPDATES |
NOALLOWNOOPUPDATES for a description of no-op.

APPLYNOOPUPDATES causes Replicat to use whatever data is in the trail. If there is a primary-key
UPDATE record, Replicat uses the before columns from the source. If there is a regular (non-
key) UPDATE, Replicat assumes that the after value is the same as the before value (otherwise
it would be a primary-key update). The preceding assumes source and target keys are
identical. If they are not, you must use a XEYCOLS clause in the TABLE statement on the source.

Default

NOAPPLYNOOPUPDATES

Syntax

APPLYNOOPUPDATES | NOAPPLYNOPUPDATES

APPLY PARALLELISM | MAX_APPLY_PARALLELISM |
MIN_APPLY_PARALLELISM

Valid For

Parallel Replicat

ORACLE 510

Chapter 2
ASCIITOEBCDIC

Description

Parallel Replicat has two forms of operation. It can run with a constant number of applier
threads or it can dynamically adjust the number of appliers based on the transaction mix.
These parameters control this behavior. You can adjust this behavior to increase or decrease
the number of apply threads and the initial number of connections using the parameters
APPLY PARALLELISM, MAX APPLY PARALLELISM, and MIN APPLY PARALLELISM.

If these parameters are not set, then the default behavior of Parallel Replicat is to use exactly
four appliers to apply the changes to the target database. APPLY PARALLELISM controls the
number of applier processes. If APPLY PARALLELISM is set, the number of appliers will not
dynamically increase or decrease based on transaction mix. If APPLY PARALLELISM is set, there
can be times where the number of concurrent transactions that can be applied by the Parallel
Replicat is below the number of applier threads, which can result in idle applier threads.

MAX APPLY PARALLELISM and MIN APPLY PARALLELISM are used in conjunction when you want
to allow the Parallel Replicat process to dynamically adjust the number of applier threads
based on the transaction mix. You can set a minimum (MIN APPLY PARALLELISM) and maximum
(MAX APPLY PARALLELISM) number of applier threads to define the ranges in which the Replicat
automatically adjusts its parallelism. The initial number of connections will be in the middle of
the two parameter values.

APPLY PARALLELISM is mutually exclusive with MAX APPLY PARALLELISM and

MIN APPLY PARALLELISM. If MAX APPLY PARALLELISM and MIN APPLY PARALLELISM are used,
then do not set APPY PARALLELSIM. If APPLY PARALLELISM is set, then do not use

MAX APPLY PARALLELISM and MIN APPLY PARALLELISM.

See Additional Parameter Options for Integrated Replicat

Syntax

APPLY PARALLELISM value
MIN APPLY PARALLELISM value
MAX APPLY PARALLELISM value

Example
APPLY PARALLELISM 4
MIN APPLY PARALLELISM 2

MAX APPLY PARALLELISM 10

ASCIITOEBCDIC

ORACLE

Valid For

Extract and Replicat

Description

Use the ASCIITOEBCDIC parameter to control the conversion of data in the input trail file from
ASCII to EBCDIC format. This parameter should only be used to support backward
compatibility in cases where the input trail file was created by an Extract version prior to v10.0.
It is ignored for all other cases, because ASCII to EBCDIC conversion is currently the default.

This parameter must be used in the TRANLOG Extract. It is not valid for Extract data pumps

2-11

Chapter 2
ASSUMETARGETDEFS

Default

None

Syntax

ASCIITOEBCDIC

ASSUMETARGETDEFS

Valid For

Replicat for trail file formats prior to 12c (12.2.0.1)

Description

Use the ASSUMETARGETDEFS parameter when the source and target objects specified in a MAP
statement have identical column structure, such as when synchronizing a hot site. It directs
Oracle GoldenGate to assume that the data definitions of the source and target objects are
identical, and to refer to the target definitions when metadata is needed for the source data.

When source and target tables have dissimilar structures, do not use ASSUMETARGETDEFS.
Create a data-definitions file for the source object, and specify the definitions file with the
SOURCEDEFS parameter. See SOURCEDEFS for more information. Do not use
ASSUMETARGETDEFS and SOURCEDEFS in the same parameter file.

Default

None

Syntax

ASSUMETARGETDEFS [OVERRIDE]

OVERRIDE

By default, the table definitions from the metadata records override the definitions from any
ASSUMETARGETDEFS file.

Specify OVERRIDE to request Replicat to use the definitions from the target database as the
definitions for the trail records.

BATCHSQL

ORACLE

Valid For

Replicat

Description

Use the BATCHSQL parameter to increase the performance of Replicat. BATCHSQL causes
Replicat to organize similar SQL statements into arrays and apply them at an accelerated rate.
In its normal mode, Replicat applies one SQL statement at a time.

BATCHSQL is valid for:

» DB2 for i (except V5R4 or i6.1)
« DB2 LUW

2-12

ORACLE

Chapter 2
BATCHSQL

e DB2onz/OS
* Oracle

* PostgreSQL
e SQL Server
e Teradata

« Times Ten

How BATCHSQL Works

In BATCHSQL mode, Replicat organizes similar SQL statements into batches within a memory
gueue, and then it applies each batch in one database operation. A batch contains SQL
statements that affect the same table, operation type (insert, update, or delete), and column
list. For example, each of the following is a batch:

* Inserts to table A

* Inserts to table B

e Updates to table A

e Updates to table B

* Deletes from table A

* Deletes from table B

¢ Note:

Oracle GoldenGate analyzes foreign-key referential dependencies in the batches
before executing them. If dependencies exist among statements that are in different
batches, more than one SQL statement per batch might be required to maintain the
referential integrity.

Controlling the Number of Cached Statements

The MAXSQLSTATEMENTS parameter controls the number of statements that are cached. See
"MAXSQLSTATEMENTS" for more information. Old statements are recycled using a least-
recently-used algorithm. The batches are executed based on a specified threshold (see
"Managing Memory").

Usage Restrictions
SQL statements that are treated as exceptions include:
e Statements that contain LOB or LONG data.

e Statements that contain rows longer than 25k in length.

e Statements where the target table has one or more unique keys besides the primary key.
Such statements cannot be processed in batches because BATCHSQL does not guarantee
the correct ordering for non-primary keys if their values could change.

* (SQL Server) Statements where the target table has a trigger.

° Statements that cause errors.

2-13

Chapter 2
BATCHSQL

When Replicat encounters exceptions in batch mode, it rolls back the batch operation and then
tries to apply the exceptions in the following ways, always maintaining transaction integrity:

» First Replicat tries to use normal mode: one SQL statement at a time within the transaction
boundaries that are set with the GROUPTRANSOPS parameter. See "GROUPTRANSOPS" for
more information.

e If normal mode fails, Replicat tries to use source mode: apply the SQL within the same
transaction boundaries that were used on the source.

When finished processing exceptions, Replicat resumes BATCHSQL mode.

Table 2-9 Replicat Modes Comparison

Source Transactions Replicat Transaction in Replicat Transaction in Replicat Transactions in
(Assumes same table and Normal Mode BATCHSQL Mode Source Mode
column list)
Transaction 1: INSERT INSERT (x3) Transaction 1:
INSERT DELETE DELETE (x3) INSERT
DELETE INSERT DELETE
Transaction2: DELETE Transaction 2:
INSERT INSERT INSERT
DELETE DELETE DELETE
Transaction 3: Transaction 3:
INSERT INSERT
DELETE DELETE
When to Use BATCHSQL
When Replicat is in BATCHSQL mode, smaller row changes will show a higher gain in
performance than larger row changes. At 100 bytes of data per row change, BATCHSQL has
been known to improve the performance of Replicat by up to 300 percent, but actual
performance benefits will vary, depending on the mix of operations. At around 5,000 bytes of
data per row change, the benefits of using BATCHSQL diminish.
Managing Memory
The gathering of SQL statements into batches improves efficiency but also consumes memory.
To maintain optimum performance, use the following BATCHSQL options:
BATCHESPERQUEUE
BYTESPERQUEUE
OPSPERBATCH
OPSPERQUEUE
As a benchmark for setting values, assume that a batch of 1,000 SQL statements at 500 bytes
each would require less than 10 megabytes of memory.
Default
Disabled (Process in normal Replicat mode)
Syntax
BATCHSQL
[BATCHERRORMODE | NOBATCHERRORMODE |
[BATCHESPERQUEUE n]
ORACLE

2-14

ORACLE

Chapter 2
BATCHSQL

[BATCHTRANSOPS n]

[BYTESPERQUEUE n]

[OPSPERBATCH n]

[OPSPERQUEUE n]

[THREADS (threadID[, threadID][, ...][, thread range[, thread rangel[, ...])]
[TRACE]

BATCHERRORMODE | NOBATCHERRORMODE
Sets the response of Replicat to errors that occur during BATCHSQL processing mode.

BATCHERRORMODE

Causes Replicat to try to resolve errors without leaving BATCHSQL mode. It converts inserts
that fail on duplicate-record errors to updates, and it ignores missing-record errors for
deletes. When using BATCHERRORMODE, use the HANDLECOLLISIONS parameter to prevent
Replicat from abending.

NOBATCHERRORMODE

The default, causes Replicat to disable BATCHSQL processing temporarily when there is an
error, and then retry the transaction first in normal mode and then, if normal mode fails, in
source mode (same transaction boundaries as on the source).

BATCHESPERQUEUE n
Controls the maximum number of batches that one memory queue can contain. After
BATCHESPERQUEUE is reached, a target transaction is executed.

e Minimum value is 1.
¢ Maximum value is 1000.
e Default is 50.

BATCHTRANSOPS n

Controls the maximum number of batch operations that can be grouped into a transaction
before requiring a commit. When BATCHTRANSOPS is reached, the operations are applied to the
target.

¢ Minimum value is 1.
Maximum value is 100000.

e Default is 1000 for nonintegrated Replicat (all database types) and 50 for an integrated
Oracle Replicat.

BYTESPERQUEUE n
Sets the maximum number of bytes that one queue can contain. After BYTESPERQUEUE iS
reached, a target transaction is executed.

e Minimum value is 1000000 bytes (1 megabyte).
e Maximum value is 1000000000 bytes (1 gigabyte).
e Default is 2000000 bytes (20 megabytes).

OPSPERBATCH n
Sets the maximum number of row operations that one batch can contain. After OPSPERBATCH is
reached, a target transaction is executed.

e Minimum value is 1.

e Maximum value is 100000.

2-15

ORACLE

Chapter 2
BATCHSQL

e Defaultis 1200.

OPSPERQUEUE n
Sets the maximum number of row operations in all batches that one queue can contain. After
OPSPERQUEUE is reached, a target transaction is executed.

* Minimum value is 1.

* Maximum value is 100000.

e Default is 1200.

THREADS (threadID[, threadID][, ...][, thread range[, thread range][, ...])

Valid for BATCHESPERQUEUE, BATCHTRANSOPS, and BYTESPERQUEUE. Applies these options to the
specified thread or threads of a coordinated Replicat.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadiD,
threadID, threadID.

[, thread range[, thread range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

TRACE
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do not set
tracing without the guidance of an Oracle Support analyst.

NUMTHREADS
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do not set
tracing without the guidance of an Oracle Support analyst.

¢ Minimum value is 0.

¢ Maximum value is 50.

MAXTHREADQUEUEDEPTH
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do not set
tracing without the guidance of an Oracle Support analyst.

e Minimum value is 0.

e Maximum value is 50.
e Defaultis 10.
CHECKUNIQUEKEYS

Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do not set
tracing without the guidance of an Oracle Support analyst.

ERRORHANDLING
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do not set
tracing without the guidance of an Oracle Support analyst.

2-16

Chapter 2
BEGIN

BYPASSCHECK
Enables detailed tracing of BATCHSQL activity to the console and to the report file. Do not set
tracing without the guidance of an Oracle Support analyst.

Example

BATCHSQL BATCHESPERQUEUE 100, OPSPERBATCH 2000

BEGIN

Valid For

Replicat

Description

You can use the BEGIN parameter only with the SPECTALRUN parameter. This parameter allows
you to direct Replicat to start processing at the first record in the Oracle GoldenGate trail that
has a timestamp greater than, or equal to, the time specified with BEGIN. All subsequent
records, including records where the timestamp is less than the specified time, are processed.
Use BEGIN when SPECIALRUN is specified for the same Replicat group.

Default

None

Syntax

BEGIN date[time]

date[time]

Specifies a time at which to begin processing. Valid values are a date and optional time in the
format of yyyy-mm-dd[hh:mi[:ss[.cccccc]]] based on a 24-hour clock. Seconds and
centiseconds are optional.

Example

BEGIN 2011-01-01 04:30:00

BLOBMEMORY

This parameter is an alias for LOBMEMORY.

BINARY_JSON_FORMAT

Writes out JSON columns in Oracle binary format and GLOBAL parameter. It is supported only
with Extract on Oracle Database 21c and higher.

Syntax

ORACLE 2-17

BR

ORACLE

Chapter 2
BR

Valid For

Extract (Oracle only)

Description

Use the BR parameter to control the Bounded Recovery (BR) feature. This feature currently
supports Oracle databases.

Default

BR BRINTERVAL 4, BRDIR BR

Syntax

BRDIR directory]

BRINTERVAL number {M | H}]
BRKEEPSTALEFILES]

BROFF]

BROFFONFAILURE]

BRFSOPTION { MS_ SYNC | MS ASYNC]

~

~

~

~

~

~

BRDIR directory

Specifies the relative or full path name of the parent directory that will contain the BR directory.
The BR directory contains the Bounded Recovery checkpoint files, and the name of this
directory cannot be changed. The default parent directory for the BR directory is a directory
named BR in the root directory that contains the Oracle GoldenGate installation files.

Each Extract group within a given Oracle GoldenGate installation will have its own sub-
directory under the directory that is specified with BRDIR. Each of those directories is named
for the associated Extract group.

For directory, do not use any name that contains the string temp or tmp (case-independent).
Temporary directories are subject to removal during internal or external cleanup procedures.

BRINTERVAL number {M | H}

Specifies the time between Bounded Recovery checkpoints. This is known as the Bounded
Recovery interval. This interval is an integral multiple of the standard Extract checkpoint
interval, as controlled by the CHECKPOINTSECS parameter. However, it need not be set exactly.
Bounded Recovery will adjust any legal BRINTERVAL parameter internally as it requires.

The minimum interval is 20 minutes. The maximum is 96 hours. The default interval is 4 hours.

< Note:

BRINTERVAL should only be changed after consulting with Oracle Support.

2-18

Chapter 2
CACHEMGR

BRKEEPSTALEFILES

Causes old Bounded Recovery checkpoint files to be retained. By default, only current
checkpoint files are retained. Extract cannot recover from old Bounded Recovery checkpoint
files. Retain old files only at the request of an Oracle support analyst.

BROFF

Turns off Bounded Recovery for the run and for recovery. Consult Oracle before using this
option. In most circumstances, when there is a problem with Bounded Recovery, it turns itself
off.

BROFFONFAILURE

Disables Bounded Recovery after an error. By default, if Extract encounters an error during
Bounded Recovery processing, it reverts to normal recovery, but then enables Bounded
Recovery again after recovery completes. BROFFONFAILURE turns Bounded Recovery off for the
runtime processing.

BRRESET

BRRESET is a start up option that forces Extract to use normal recovery for the current run, and
then turn Bounded Recovery back on after the recovery is complete. Its purpose is for the rare
cases when Bounded Recovery does not revert to normal recovery if it encounters an error.
Bounded Recovery is enabled during runtime. Consult Oracle Support before using this
option.

To use this option, you must start Extract from the command line. To run Extract from the
command line, use the following syntax:

extract paramfile name.prm reportfile name.rpt

Where:

e paramfile name.prmis the relative or fully qualified name of the Extract parameter file.
The command name can be abbreviated to pf.

* reportfile name.rpt is the relative or fully qualified name of the Extract report file, if you
want it in a place other than the default. The command name can be abbreviated to rf.

BR BRFSOPTION {MS SYNC | MS_ASYNC}
Performs synchronous/asynchronous writes of the mapped data in Bounded Recovery.
Consult Oracle Support before using this option.

MS SYNC
Bounded Recovery writes of mapped data are synchronized for 1/0 data integrity
completion.

MS_ASYNC
Bounded Recovery writes of mapped data are initiated or queued for servicing.

Example

BR BRDIR /user/checkpt/br specifies that the Bounded Recovery checkpoint files will be
created in the /user/checkpt/br directory.

CACHEMGR

Valid For

Extract for all databases.

ORACLE 519

ORACLE

Chapter 2
CACHEMGR

Description

Use the CACHEMGR parameter to specify a hon-default file system location for the temporary files
needed to hold uncommitted transaction data. The CACHEMGR parameter can also be used to
control the amount of virtual memory and temporary disk space that is available for caching
uncommitted transaction data. Both of these latter uses are discouraged.

Caution:

Do not change this parameter without consulting Oracle Support. CACHEMGR is
internally self-configuring and self-adjusting. It is rare that this parameter requires
modification. Doing so unnecessarily may result in performance degradation. It is
best to acquire empirical evidence before opening an Oracle Service Request and
consulting with Oracle Support.

However, you can specify the directory for the temporary files without assistance

Oracle GoldenGate only replicates committed transactions. Until a COMMIT is received, any
transactional data is stored in an area of virtual memory known as a cache. This cache is
managed by the CACHEMGR. If the amount of transaction data becomes too great for the virtual
memory, then the CACHEMGR writes some of the cached data to temporary files on disk.

Your systems should have sufficient operating system swap and page file space. Oracle
recommends a minimum of 512GB.
Identifying the Paging Directory

By default, Oracle GoldenGate maintains the transaction data that it swaps to disk a sub-
directory of the Oracle GoldenGate installation directory. CACHEMGR assumes that all of the free
space on the file system is available. This directory may fill up quickly if there is a large
transaction volume with large transaction sizes. To prevent I/O contention and possible disk-
related failures, dedicate a disk to this directory. You can assign directory location with the
CACHEDIRECTORY option of the CACHEMGR parameter. A size can also be assigned. However, this
is discouraged and should only be done after consulting Oracle Support.

Guidelines for Using CACHEMGR

e This parameter is valid for all databases supported by Oracle GoldenGate.
* At least one argument must be supplied. CACHEMGR by itself is invalid.

e Parameter options can be listed in any order.

* Only one CACHEMGR parameter is permitted in a parameter file.
Default
None

Syntax

CACHEMGR {

[CACHEDIRECTORY path [size] [, CACHEDIRECTORY path [size] [, ...1,]
CACHESIZE size

}

2-20

Chapter 2
CATALOGEXCLUDE

CACHEDIRECTORY path [size]

Specifies the name of the directory to which Oracle GoldenGate writes transaction data to disk
temporarily when necessary. The default without this parameter is the dirtmp sub-directory
of the Oracle GoldenGate installation directory. Any directory for temporary files can be on an
Oracle Database file system, but cannot be on a direct I1/O or concurrent I/O mounted file
system that does not support the mmap () or MapViewOfFile () system calls, like AlX.

On Microservices Architecture (MA), the temporary file location is $0GG_VAR HOME/temp.

You can specify more than one directory by using a CACHEDIRECTORY clause for each one. The
maximum number of directories is 100.

The value can be specified in bytes or in terms of gigabytes, megabytes, or kilobytes in any of
the following forms:

GB|MB|KB|G|MI|EK|gb|mb]|] kb I|lglm]k

CACHESIZE size

Sets a soft limit for the amount of virtual memory (CACHESIZE) that is available for caching
transaction data. You can internally adjust the CACHESIZE using CACHEMGR as necessatry.

If you feel that the default CACHEMGR configuration and internal self-adjustment is adversely
affecting your system performance, then you should open a Service Request with Oracle
Support. It is best to have acquired empirical data showing the problem symptoms in question
to aid in configuring a new default.

Example

CACHEMGR CACHEDIRECTORY /net/d4atd/ggs/temp

CATALOGEXCLUDE

ORACLE

Valid For
Extract, Replicat, DEFGEN

Description

Use the CATALOGEXCLUDE parameter to explicitly exclude source objects in the specified
container or catalog from the Oracle GoldenGate configuration when the container or catalog
name is being specified with a wildcard in TABLE or MAP statements. This parameter is valid
when the database is an Oracle container databasef, where fully qualified three-part names
are being used.

The positioning of CATALOGEXCLUDE in relation to parameters that specify files or trails
determines its effect. Parameters that specify trails or files are: EXTFILE, RMTFILE, EXTTRAIL,
RMTTRAIL. The parameter works as follows:

* When a CATALOGEXCLUDE specification is placed before any TABLE or SEQUENCE parameters,
and also before the parameters that specify trails or files, it applies globally to all trails or
files, and to all TABLE and SEQUENCE parameters.

 When a CATALOGEXCLUDE specification is placed after a parameter that specifies a trail or
file, it is effective only for that trail or file and only for the TABLE or SEQUENCE parameters
that are associated with it. Multiple trail or file specifications can be made in a parameter
file, each followed by a set of TABLE, SEQUENCE, and CATALOGEXCLUDE specifications.

CATALOGEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE parameter.
Thus, the order in which they appear does not make a difference.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

2-21

Chapter 2
CHARMAP

Default

None

Syntax

CATALOGEXCLUDE {container}

container
The source Oracle container that is to be excluded. A wildcard can be used. Follow the rules
for using wildcards described in Using Wildcards in Database Object Names.

Examples

Example 1

This example omits the pdbl pluggable database. If integrated Extract is registered with
containers pdbl, pdb2 and pdb3, you can use the following CATALOGEXCLUDE syntax to allow
Oracle GoldenGate to skip DML that occurs in the catalog pdbl, even though it matches the
wildcard syntax.

EXTRACT capt
USERIDALIAS ggeast
RMTTRAIL east/aa
CATALOGEXCLUDE pdbl
TABLE *, * *;

CHARMAP

ORACLE

Valid For

Replicat

Description

Use the CHARMAP parameter to specify that the character mapping file overrides the character
code point mapping.

Default

The encoding of the parameter file is operating system default character set.

Syntax

CHARMAP filename

The character mapping file format is as follows:

-- Sample character mapping file.

-- Can use -- or COMMENT as comment line.

-- Can use CHARSET parameter to specify file encoding.
-- Source character set

SOURCECHARSET shiftjis

-- Target character set
TARGETCHARSET jal6euc

-- Character map definition by one code point.
-- left hand is source and right hand target code point.

2-22

Chapter 2
CHECKPARAMS

\xa2cl \x89\xa2\xb7 -- override \xa2cl to \x89\xa2\xb7

-- Character map definition by range. Number of source and target characters must
be the same.
\x61 - \x7a \x41 - \xba

Example

In the following example, the source and target character sets are different, and a character
conversion definition is given using a character mapping file:

CHARMAP charmapconv. txt
REPLACEBADCHAR FORCECHECK

This enables strict character set conversion and check code point even if the source and target
are the same.

Add the following to your character mapping file:

SOURCECHARSET AL32UTFEF8
TARGETCHARSET UTF-16
\xef\xbf\xbd \x0020

Example

This example uses CHARMAP with REPLACEBADCHAR to change the target character even when
the source and target character sets are the same.

REPLACEBADCHAR FORCECHECK
CHARMAP charmapconv. txt

This enables strict character set conversion and checks the code point even if the source and
target are the same.

By enabling character set conversion for the same character sets, you may encounter some
performance degradation.

Add the following to the character mapping file:

SOURCECHARSET windows-932
TARGETCHARSET windows-932
\x61 - \x7a \x41 - \x5a

CHECKPARAMS

ORACLE

Valid For

Extract and Replicat

Description

Use the CHECKPARAMS parameter to test the syntax of a parameter file. To start the test:
1. Edit the parameter file to add CHECKPARAMS.

2. (Optional) To verify the tables, add the NODYNAMICRESOLUTION parameter.

3. Start the process. Without processing data, Oracle GoldenGate audits the syntax. If
NODYNAMICRESOLUTION exists, Oracle GoldenGate connects to the database to verify that
the tables specified with TABLE or MAP exist. If there is a syntax failure, the process abends

2-23

Chapter 2
CHECKPOINTSECS

with error 190. If the syntax succeeds, the process stops and writes a message to the
report file that the parameters processed successfully.

4. Do one of the following:

* If the test succeeds, edit the file to remove the CHECKPARAMS parameter and the
NODYNAMICRESOLUTION parameter, if used, and then start the process again to begin
processing.

e If the test fails, edit the parameter file to fix the syntax based on the report's findings,
and then remove NODYNAMICRESOLUTION and start the process again.

CHECKPARAMS can be positioned anywhere within the parameter file.

Default

None

Syntax

CHECKPARAMS

CHECKPOINTSECS

ORACLE

Valid For

Extract and Replicat

Description

Use the CHECKPOINTSECS parameter to control how often Extract and Replicat make their
routine checkpoints.

» Decreasing the value causes more frequent checkpoints. This reduces the amount of data
that must be reprocessed if the process fails, but it could cause performance degradation
because data is written to disk more frequently.

* Increasing the value causes less frequent checkpoints. This might improve performance,
but it increases the amount of data that must be reprocessed if the process fails. When
using less frequent Extract checkpoints, make certain that the transaction logs remain
available in case the data has to be reprocessed.

Note:

In addition to its routine checkpoints, Replicat also makes a checkpoint when it
commits a transaction.

Avoid changing CHECKPOINTSECS unless you first open an Oracle service request.

Default

10 seconds

Syntax

CHECKPOINTSECS seconds

2-24

Chapter 2
CHECKPOINTTABLE

seconds
The number of seconds to wait before issuing a checkpoint.

Example

CHECKPOINTSECS 20

CHECKPOINTTABLE

Valid For
GLOBALS

Description

Use the CHECKPOINTTABLE parameter in a GLOBALS parameter file to specify the name of a
default checkpoint table that can be used by all Replicat groups in one or more Oracle
GoldenGate instances. All Replicat groups created with the ADD REPLICAT command will
default to this table unless it is overridden by using the CHECKPOINTTABLE option of that
command.

To create the checkpoint table, use the ADD CHECKPOINTTABLE command. Oracle supports and
recommends that a checkpoint table is created for Integrated Replicat.

See Add a Checkpoint Table for more information about creating a checkpoint table. Also see
ADD CHECKPOINTTABLE

Default

None
Syntax
CHECKPOINTTABLE [container.] owner.table

[container.]owner. table
The owner and name of the checkpoint table. Additionally, for an Oracle container database,
specify the correct pluggable database (container).

Example

CHECKPOINTTABLE finance.ggs.chkpt

CHUNK_SIZE

ORACLE

Valid For

Parallel Replicat

Description

CHUNK_SIZE defines the memory size for transactions. It controls how large a transaction must
be for parallel Replicat to consider it as large. When parallel Replicat encounters a transaction
larger than this memory size, it will serialize it, resulting in decreased performance. Howevetr,
increasing this value will also increase the amount of memory consumed by parallel Replicat.

See About Pararallel Replicat in Oracle GoldenGate Microservices Documentation.

2-25

Chapter 2
CMDTRACE

Default
1 GB.

You can set the value in bytes (pure number), KB, MB, or GB.

CMDTRACE

Valid For

Extract and Replicat

Description

Use the CMDTRACE parameter to display macro expansion steps in the report file. You can use
this parameter more than once in the parameter file to set different options for different macros.

Default

OFF

Syntax

CMDTRACE [ON | OFF | DETAIL]

ON
Enables the display of macro expansion.

OFF
Disables the display of macro expansion.

DETAIL
Produces a verbose display of macro expansion.

Example

In the following example, tracing is enabled before #testmac is invoked, and then disabled
after the macro's execution.

MACRO #testmac

BEGIN

coll = col2,
col3 = col4d
END;

CMDTRACE ON

MAP test.table?2 , TARGET test.table2?,
COLMAP (#testmac);

CMDTRACE OFF

COLCHARSET

Valid For

Extract, Replicat, and DEFGEN

ORACLE 506

ORACLE

Chapter 2
COLCHARSET

Description

Use COLCHARSET clause to specify particular column character set or disable character set
conversion. This parameter overrides the column character set for the specified column.

The character set specified by the COLCHARSET parameter overrides the character set in the trail
file, the character set specified by the SOURCECHARSET OVERRIDE parameter and the character
set specified by the CHARSET parameter.

The character set specified by the COLCHARSET Replicat parameter overrides the column level
character set specified in the source table definition file.

If the COLCHARSET is specified for DEFGEN file format less than level four, the parameter is
ignored and warning message is issued. The column level character set attribute for the older
table definition file format is not output.

The COLCHARSET parameter overrides the source column level character set and change the
Replicat character set conversion behavior by assuming the source column character set as
specified character set.

Default

None

Syntax

COLCHARSET character set (column [, ...])

character_set
Any supported character set.

column
The name of a column. To specify multiple columns, create a comma-delimited list.

Examples

Example 1

The following example specifies multiple columns.

TABLE SchemaName.TableName, COLCHARSET (WESMSWIN1252, col0, col2);
Example 2

The following example specifies a different character set.

MAP SchemaName.*, TargetName *.*,
COLCHARSET (WE8MSWIN1252, coll),
COLCHARSET (WE8IS08859P1, col2)

Example 3
The following example specifies different character set.

MAP SchemaName.*, TargetName *.*,
COLCHARSET (WESMSWIN1252, coll),
COLCHARSET (WE8IS08859P1, col2)

Example 4
The following example specifies a wildcard.

MAP SchemaName.*, TargetName *.*, COLCHARSET(WE8SMSWIN1252, col*

2-27

Chapter 2
COLMATCH

Example 5
The following example disables character set conversion on particular column.

MAP SchemaName.*, TargetName *.*, COLCHARSET (PASSTHRU, col

COLMATCH

ORACLE

Valid For

Extract and Replicat

Description

Use the COLMATCH parameter to create global rules for column mapping. COLMATCH rules apply
to all TABLE or MAP statements that follow the COLMATCH statement. Global rules can be turned
off for subsequent TABLE or MAP entries with the RESET option.

With COLMATCH, you can map between tables that are similar in structure but have different
column names for the same sets of data. COLMATCH provides a more convenient way to map
columns of this type than does using a COLMAP clause in individual TABLE or MAP statements.

With COLMATCH, you can:

* Map explicitly based on column names.
* Ignore name prefixes or suffixes.

Either COLMATCH or a COLMAP clause of a TABLE or MAP statement is required when mapping
differently named source and target columns.

See Parameters that Control Mapping and Data Integration for more information about
mapping columns.

Default

None

Syntax

COLMATCH

{NAMES target column = source column |
PREFIX prefix |

SUFFIX suffix |

RESET}

NAMES target column = source_column

Specifies the name of a target and source column, for example CUSTOMER CODE and
CUST_CODE. If the database requires double quotes to enforce case-sensitivity, specify the
column name that way. For example: NAMES "ABC" = "ABC2". For other case-sensitive
databases, specify the column name as it is stored in the database, for example: NAMES ABC =
abc.

PREFIX prefix | SUFFIX suffix

Specifies a column name prefix or suffix to ignore. If the database requires double quotes to
enforce case-sensitivity, specify the prefix or suffix that way if it is case-sensitive. For other
case-sensitive databases, specify the prefix or suffix as it is stored in the database

For example, to map a target column named "ORDER ID" to a source column named
"P_ORDER_ID", specify:

2-28

ORACLE

COLMATCH PREFIX "P "

Chapter 2
COMPRESSDELETES | NOCOMPRESSDELETES

To map a target column named "CUST CODE K" to a source column named CUST CODE, specify:

COLMATCH SUFFIX " K"

RESET
Turns off previously defined cOLMATCH rules for subsequent TABLE or MAP statements.

Examples

Example 1

COLMATCH NAMES "CUSTOMER CODE" =

Example 2

"CUST_CODE"

COLMATCH NAMES Customer Code = "Cust Code"

Example 3

COLMATCH PREFIX P_

Example 4

COLMATCH SUFFIX K

Example 5

COLMATCH RESET

COMPRESSDELETES | NOCOMPRESSDELETES

Valid For

Extract

Description

Use the COMPRESSDELETES and NOCOMPRESSDELETES parameters to control the way that columns

are written to the trail record for DELETE operations.

COMPRESSDELETES and NOCOMPRESSDELETES can be used globally for all TABLE statements in the
parameter file, or they can be used as on-off switches for individual TABLE statements.

These parameters support the following databases:

Oracle

DB2 LUW
DB2 z/OS
DB2 for i
MySQL
SQL Server
PostgreSQL

Default

COMPRESSDELETES

2-29

Chapter 2
COMPRESSUPDATES | NOCOMPRESSUPDATES

Syntax

{COMPRESSDELETES | NOCOMPRESSDELETES [FETCHMISSINGCOLUMNS] }

COMPRESSDELETES

Causes Extract to write only the primary key to the trail for DELETE operations. This is the
default. The key provides enough information to delete the correct target record, while
restricting the amount of data that must be processed.

NOCOMPRESSDELETES [FETCHMISSINGCOLUMNS]

NOCOMPRESSDELETES sends all the columns to the trail. This becomes the default when a table
definition does not include a primary key or unique index, or when a substitute key is defined
with the KEYCOLS option of TABLE. The KEYCOLS option writes the specified columns to the trail
whether or not a real key exists. See KEYCOLS (columns) for more information about the
KEYCOLS option.

For SQL Server, columns of IMAGE, NTEXT, and TEXT data types are written as NULL values for
delete operations. For more information regarding this restriction, review the Large Object
Data Types content at the following Microsoft document:
https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-
ct-transact-sql?view=sql-server-ver1l5

NOCOMPRESSDELETES is also required when using the Conflict Detection and Resolution (CDR)
feature. See Automatic Conflict Detection and Resolution and Manual Conflict Detection and
Resolution in the Oracle GoldenGate Microservices Documentation.

FETCHMISSINGCOLUMNS is valid for Oracle Database only. It causes the values of data types that
are only supported by fetching to be fetched from the database on DELETE operations. These
data types are LOB, UDT, LONG, and some XMLType columns. For detailed information about
columns that are supported by fetching (rather than directly captured from the redo stream),
see Downstream Extract. The columns that are fetched will appear in the trail file as part of the
DELETE record. If NOCOMPRESSDELETES is used for Oracle Database data without the
FETCHMISSINGCOLUMNS option, only the LOB data that can be read from the logs (without
fetching) will be included in the DELETE operation in the trail.

COMPRESSUPDATES | NOCOMPRESSUPDATES

ORACLE

Valid For

Extract

Description

Use the COMPRESSUPDATES and NOCOMPRESSUPDATES parameters for Extract to control the way
columns are written to the trail record for UPDATE operations.

COMPRESSUPDATES and NOCOMPRESSUPDATES apply globally for all TABLE statements in a
parameter file or they can be used as on-off switches for individual TABLE statements.

GETUPDATEBEFORES is used to decide whether to get before images or not, and
COMPRESSUPDATES decides if you want all columns or selected columns. By default, only the
after images of update operations are written to the trail, but by using NOCOMPRESSUPDATES
along with GETUPDATEBEFORES writes the before image changes as well, which can be used
when implementing Conflict Detection and Resolution rules.

These parameters support the following databases:

- DB2LUW

2-30

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-ver15

Chapter 2
COMMIT_SERIALIZATION

« DB22z/OS
- DB2fori
« MySQL

e SQL Server
* PostgreSQL
For Oracle, refer to the LOGALLSUPCOLS parameter.

Default

COMPRESSUPDATES

Syntax

COMPRESSUPDATES | NOCOMPRESSUPDATES

COMPRESSUPDATES

Causes Extract to write only the primary key and the changed columns of a row to the trail for
update operations, and is the default value. This provides enough information to update the
correct target record (unless conflict resolution is required), while restricting the amount of
data that must be processed.

Additionally, if a substitute key is defined with the KEYCOLS option of the TABLE parameter,
those columns are written to the trail, whether or not a primary or unique key is defined. See
"KEYCOLS (columns)" for more information.

NOCOMPRESSUPDATES

Sends all of the columns to the trail. This becomes the default when a table definition does not
include a primary key or unique index. NOCOMPRESSUPDATES also is required when using the
Conflict Detection and Resolution (CDR) feature. See Manual Conflict Detection and
Resolution for more information about CDR.

For PostgreSQL, when using NOCOMPRESSUPDATES, LOB column data will only be written in the
after image of the record if the column was modified.

COMMIT_SERIALIZATION

ORACLE

Valid For

Parallel Replicat

Description

This parameter forces each transaction to be applied in the exact same order as it was
committed on the source database. This is recommended for environments that do any kind of
transformation on scheduling columns, or for Active-Active deployments where conflict
detection and resolution is being used.

Default

None

2-31

Chapter 2
COORDSTATINTERVAL

COORDSTATINTERVAL

Valid For

Replicat in coordinated mode

Description

Use the COORDSTATINTERVAL parameter to set the amount of time, in seconds, between
requests for statistics sent by the Replicat coordinator thread to the apply threads. If a thread
does not return statistics within an internal heartbeat interval, Replicat logs a warning
message. The heartbeat interval is not configurable and is always six times the
COORDSTATINTERVAL interval. At the default COORDSTATINTERVAL interval of 10 seconds, for
example, the heartbeat default is one minute (60 seconds).

Default

The minimum value is 0; the maximum value is 2147483647. The default value is 10 seconds
Syntax
COORDSTATINTERVAL interval

interval
The interval, in seconds, between requests for thread statistics. Valid values are 0 or any
positive number.

COORDTIMER

ORACLE

Valid For

Replicat in coordinated mode

Description

Use the COORDTIMER parameter to set a base amount of time, in seconds, that the threads and
coordinator wait for each other to start. A thread will wait for this base time interval before
retrying a connection to the coordinator and it will do this a certain number of times. The
coordinator waits for the length of this base time interval and it is reset after every thread is
successfully registered. The overall time the coordinator waits before abending is dependent
on this timer and it is variable depending on the register time of the threads.

A value of 0 disables this timing procedure. If timing is disabled, the coordinator thread may
wait indefinitely for the threads to start, and Replicat will enter a suspended state. In this case,
the internal Replicat heartbeat timer is disabled regardless of the COORDSTATINTERVAL setting.

Default

The minimum value is 0; the maximum value is 2147483647. The default value is 180 seconds
(three minutes)

Syntax

COORDTIMER walt time

2-32

Chapter 2
CRYPTOENGINE

wait time
The amount of time, in seconds, that the coordinator thread waits for the apply threads to
start. Valid values are 0 or any positive number.

CRYPTOENGINE

Valid For
GLOBALS

Description

Use the CRYPTOENGINE to select which cryptographic library the Oracle GoldenGate processes
use to provide implementation of security primitives.

Syntax

CRYPTOENGINE (CLASSIC | FIPS140 | NATIVE)

CRYPTOENGINE
Selects which cryptographic library will the OGG processes use to provide implementation of
security primitives.

CLASSIC
Uses the Oracle NNZ security framework without FIPS-140 enhancements.

FIPS140
Uses the Oracle NNA security framework, but enhanced with the FIPS-140-2 compliant
version of the RSA MES shared libraries.

NATIVE

For the platforms where this is available, it will use a native library that makes more efficient
use of the CPU cryptographic primitives, resulting in higher product throughput when using
trail and TCP encryption. Currently, Intel's IPP library version 9.0 is used for Linux.x64 and
Windows.x64. All other platforms fall back to CLASSIC behavior.

Example

To enable Oracle GoldenGate to use FIPS140-2 compliant encryption, use the following:

CRYPTOENGINE FIPS140

If this parameter is modifed, added or removed, (like any GLOBALS parameter) all Oracle
GoldenGate processes must be restarted, including Manager.

CUSEREXIT

ORACLE

Valid For

Extract when fetching from a multitenant container database (CDB) and Replicat

Description

Use the CUSEREXIT parameter to call a custom exit routine written in C programming code from
a Windows DLL or UNIX shared object at a defined exit point within Oracle GoldenGate
processing. Your user exit routine must be able to accept different events and information from

2-33

ORACLE

Chapter 2
CUSEREXIT

the Extract and Replicat processes, process the information as desired, and then return a
response and information to the caller (the Oracle GoldenGate process that called it).

User exits can be used as an alternative to, or in conjunction with, the data transformation
functions that are available within the Oracle GoldenGate solution.

Note:

When using a coordinated Replicat to call a user exit routine, you are responsible for
writing the user exits in a thread-safe manner.

For help with creating and implementing user exits, see Using User EXxits to Extend Oracle
GoldenGate Capabilities.

Default

None

Syntax

CUSEREXIT {DLL | shared object} routine
[, INCLUDEUPDATEBEFORES]
[, PARAMS 'string']

{DLL | shared object}
The name of the Windows DLL or UNIX shared object that contains the user exit function.

routine
The name of the exit routine to be executed.

INCLUDEUPDATEBEFORES

Passes the before images of column values to a user exit. When using this parameter, you
must explicitly request the before image by setting the requesting before after ind flag to
BEFORE IMAGE VAL within a callback function that supports this flag. Otherwise, only the after
image is passed to the user exit. By default, Oracle GoldenGate only works with after images.
When using INCLUDEUPDATEBEFORES for a user exit that is called from Replicat, always use the
GETUPDATEBEFORES parameter for the primary Extract process, so that the before image is
captured, written to the trail, and causes a process_record event in the user exit. In a case
where the primary Extract also has a user exit, GETUPDATEBEFORES causes both the before
image and the after image to be sent to the user exit as separate EXIT CALL PROCESS RECORD
events.

If the user exit is called from a primary Extract (one that reads the transaction log), only
INCLUDEUPDATEBEFORES is needed for that Extract. GETUPDATEBEFORES is not needed in this
case, unless other Oracle GoldenGate processes downstream will need the before image to
be written to the trail. INCLUDEUPDATEBEFORES does not cause before images to be written to
the trail.

PARAMS 'string'

Passes the specified string at startup. Can be used to pass a properties file, startup
parameters, or other string. Enclose the string within single quote marks.

Data in the string is passed to the user exit in the EXIT CALL START

exit params def.function param. If no quoted string is specified with PARAMS, the
exit params def.function param iS NULL.

2-34

Chapter 2
DBOPTIONS

Examples

Example 1

CUSEREXIT userexit.dll MyUserExit

Example 2

CUSEREXIT userexit.dll MyUserExit, PARAMS 'init.properties'

Example 3

CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, PARAMS 'init.properties'

Example 4

CUSEREXIT userexit.dll MyUserExit, INCLUDEUPDATEBEFORES, &
PARAMS 'init.properties'

Example 5

CUSEREXIT cuserexit.dll MyUserExit, &
INCLUDEUPDATEBEFORES, PARAMS 'Some text to start with during startup'

DBOPTIONS

ORACLE

Valid For

Extract and Replicat

Description

Use the DBOPTIONS parameter to specify database options. This is a global parameter, applying
to all TABLE or MAP statements in the parameter file. Some options for the DBOPTIONS
parameters apply only to Extract or Replicat.

The DBOPTIONS parameter can be placed anywhere in the parameter file irrespective of other
parameters.

Default

None
Syntax

DBOPTIONS

[ALLOWLOBDATATRUNCATE | NOALLOWLOBDATATRUNCATE]
[ALLOWUNUSEDCOLUMN | NOALLOWUNUSEDCOLUMN]
[ALLOWNONSTANDARDINTERVALDATA]
[BINDCHARFORBITASCHAR]

[CATALOGCONNECT | NOCATALOGCONNECT]
[CONNECTIONPORT port]

[DECRYPTPASSWORD shared secret ENCRYPTKEY {DEFAULT | key name}]
[DEFERREFCONST]

[DISABLECOMMITNOWAIT]

[DISABLELOBCACHING]
[ENABLE_INSTANTIATION_FILTERING]
[EMPTYLOBSTRING 'string']

[FETCHBATCHSIZE records]

2-35

ORACLE

Chapter 2
DBOPTIONS

[FETCHCHECKFREQ seconds]

[FETCHLOBS | NOFETCHLOBS]
[FETCHRETRYCOUNT number]

[FETCHTIMEOUT seconds | NOFECHTIMEOUT]
[FORCE_XML_ESCAPE_CONVERSION]

[HOST {DNS name | IP address}]
[INTEGRATEDPARAMS (parameter[, ...])]
[LIMITROWS | NOLIMITROWS]

[LOBBUFSIZE bytes]

[LOBWRITESIZE bytes]

[MAXLOBKEYLEN datalength]
[SESSIONPOOLMAX max value |
[SESSIONPOOLMIN min value] [SESSIONPOOLINCR increment value]
[SETTAG [tag value | NULL]]
[SHOWINFOMESSAGES]

[SHOWWARNINGS]

[SKIPTEMPLOB | NOSKIPTEMPLOB]
[SOURCE DB NAME src dbase global name]
[SPTHREAD | NOSPTHREAD]

[SQLMODE]

[SUPPRESSTEMPORALUPDATES]
[SUPPRESSTRIGGERS | NOSUPPRESSTRIGGERS]
[TDSPACKETSIZE bytes]

[TRANSNAME trans_name}[USEDATABASEENCODING]
[XMLBUFSIZE bytes]

ALLOWLOBDATATRUNCATE | NOALLOWLOBDATATRUNCATE

Valid for Replicat for Db2 LUW and MySQL. ALLOWLOBDATATRUNCATE prevents Replicat from
abending when replicated LOB data is too large for a target CHAR, VARCHAR, BINARY Of
VARBINARY column and is applicable to target LOB columns only. or replicat of Db2 LUW,
ALLOWLOBDATATRUNCATE prevents Replicat from abending when replicated 1.0B data is too large
for a target LOB column. The LOB data is truncated to the maximum size of the target column
without any further error messages or warnings.

NOALLOWLOBDATATRUNCATE is the default and causes Replicat to abend with an error message if
the replicated LOB is too large.

ALLOWUNUSEDCOLUMN | NOALLOWUNUSEDCOLUMN

Valid for Extract for Oracle. Controls whether Extract abends when it encounters a table with
an unused column.

The default is ALLOWUNUSEDCOLUMN. When Extract encounters a table with an unused column, it
continues processing and generates a warning.When using this parameter, either the same
unused column must exist on the target or a source definitions file for the table must be
specified to Replicat, so that the correct metadata mapping can be performed.
NOALLOWUNUSEDCOLUMN causes Extract to abend on unused columns.

ALLOWNONSTANDARDINTERVALDATA

Valid for PostgreSQL.

Use DBOPTIONS ALLOWNONSTANDARDINTERVALDATA in the Extract parameter file to capture the
mixed sign interval data (or any other format of interval data, which is not supported by Oracle
GoldenGate) as a string (not as standard interval data). When this option is used, the format
of the interval data that gets written to the trail and gets applied into the target CHAR column is
as follows:

year-component-sign years-months days-component-sign days hour-component-sign
hours:minutes:seconds.fractional seconds

2-36

ORACLE

Chapter 2
DBOPTIONS

For example, +1026-9 +0 +0:0:22.000000 should be interpreted as 1026 years 9 months 0
days 0 hours 0 minutes 22 seconds. -0-0 -0 -8 should be interpreted as 0 years 0 months 0
days -8 hours. +1-3 +0 +3:20 should be interpreted as 1 years 3 months 0 days 3 hours 20
minutes.

In case of Replicat, if the source interval data was captured using DBOPTIONS
ALLOWNONSTANDARDINTERVALDATA and written as a string to the trail, the corresponding source
column is allowed to be mapped to either a char or a binary type column on the target.

BINDCHARFORBITASCHAR

Valid for DEFGEN, Extract, and Replicat for DB2 for i. Allows columns that are defined as
CHAR or VARCHAR with CCSID 65535, or CHAR and VARCHAR FOR BIT DATA to be treated as if the
field had a normal translatable encoding. The encoding is picked up from the job CCSID.
When this option is in effect, DEFGEN does not indicate that the field is binary in the defs file.

CATALOGCONNECT | NOCATALOGCONNECT

Valid for Extract and Replicat for ODBC databases.

By default, Oracle GoldenGate creates a new connection for catalog queries, but you can use
NOCATALOGCONNECT to prevent that.

CONNECTIONPORT port
Valid for Replicat for multi-daemon MySQL. Specifies the TCP/IP port of the instance to which
Replicat must connect. The minimum value is 1 and the default value is 3306.

DEFERREFCONST | NODEFERREFCONST

Valid for nonintegrated Replicat for Oracle. Default option for parallel integrated Replicat.
Sets constraints to DEFERRABLE to delay the checking and enforcement of cascade delete and
cascade update referential integrity constraints by the Oracle target database until the
Replicat transaction is committed. At that point, if there are constraint violations, an error is
generated. Integrated Replicat does not require disabling of referential constraints on the
target system.

You can use DEFERREFCONST instead of disabling the constraints on the target tables or setting
them to DEFERRED. When used, DEFERREFCONST defers both DEFERABLE and NOT DEFERABLE
constraints. DEFERREFCONST applies to every transaction that is processed by Replicat.
DEFERREFCONST parameter works on Oracle 11.2.0.2 and up.

If used with an Oracle Database release that does not support this functionality,
DEFERREFCONST is ignored without returning a notification to the Oracle GoldenGate log. To
handle errors on the commit operation, you can use REPERROR at the root level of the
parameter file and specify the TRANSDISCARD Or TRANSEXCEPTION option.

< Note:

Do not to use with DEFERREFCONST coordinated Replicat because there is no way to
guarantee that related rows in parent and child tables are processed by same
thread

Use the NODEFERREFCONST option to disable the DEFERREFCONST option.

DISABLECOMMITNOWAIT

Valid for Replicat for Oracle.

Disables the use of asynchronous coMMIT by Replicat. An asynchronous COMMIT statement
includes the NOWAIT option.

2-37

ORACLE

Chapter 2
DBOPTIONS

When DISABLECOMMITNOWAIT is used, Replicat issues a standard synchronous COMMIT (COMMIT
with WAIT option).

DISABLELOBCACHING

Valid for nonintegrated Replicat for Oracle.

Disables Oracle's LOB caching mechanism. By default, Replicat enables Oracle's LOB
caching mechanism.

ENABLE_INSTANTIATION FILTERING

Valid for Oracle.

Enables automatic per table instantiation CSN filtering on tables instantiated using the
SET INSTANTIATION CSN command.

FETCHBATCHSIZE records

Valid for Extract for Oracle, DB2 for i, DB2 z/OS, PostgreSQL, and SQL Server.

Enables array fetches for initial loads to improve performance, rather than one row at a time. It
is used for Initial Load Extract.

Valid values for Oracle, DB2 for i, DB2 z/OS, and SQL Server are 0 through 1000000 records
per fetch. Valid values for DB2 LUW are 1 through 1000000 records per fetch; zero (0) is not a
valid value.

The default is 1000. Performance slows when batch size gets very small or very large. If the
table contains LOB data, Extract reverts to single-row fetch mode, and then resumes batch
fetch mode afterward.

FETCHCHECKFREQ seconds

Valid for integrated Extract for Oracle.

Specifies the number of seconds that Extract waits between each fetch check for the ADG to
catch up. A low number improves latency though increases the number of queries of
current scn from v$database. The default is 3 seconds; the maximum is 120 seconds.

FETCHLOBS | NOFETCHLOBS

Valid for Extract for DB2 for z/OS and DB2 for LUW.

Suppresses the fetching of LOBs directly from the database table when the LOB options for
the table are set to NOT LOGGED. With NOT LOGGED, the value for the column is not available in
the transaction logs and can only be obtained from the table itself. By default, Oracle
GoldenGate captures changes to LOBs from the transaction logs. The default is FETCHLOBS.

FETCHRETRYCOUNT number

Valid for Extract for Oracle.

Specifies the number of times that Extract tries before it reports ADG progress or the reason
for no progress when waiting for the ADG to catch up. This value is multiplied with
FETCHCHECKFREQ to determine approximately how often the ADG progress is reported. The
default value for FETCHRETRYCOUNT is 5 and the valid range of values is 0 - 1000.

FETCHTIMEOUT seconds | NOFETCHTIMEOUT

Valid for Extract for Oracle.

Specifies the number of seconds that Extract will wait after which it will abend when ADG
makes no progress. No progress can be because the MRP is not running or because it is not
applying redo changes. When this occurs, the ADG database should be examined. The
default is 30 seconds; valid values are 0 - 4294967295 (ub4 max value) seconds.
NOFETCHTIMEOUT means never timeout (the same as FETCHTIMEOUT 0) and seconds cannot be
specified with it.

FORCE_XML ESCAPE_CONVERSION
For trail fie formats of Oracle GoldenGatel9c, if FORCE XML ESCAPE CONVERSION is enabled,
Replicat will escape the linefeed characters for the character types in the ANYDATA columns. If

2-38

ORACLE

Chapter 2
DBOPTIONS

this parameter is enabled for a trail file with a format of 19.1 or higher, it is ignored because
Extract already performs the linefeed escape.

This parameter only affects ANYDATA columns when NOUSENATIVEOBJSUPPORT is turned on for
Extract.

Note:

This parameter option doesn't affect ANYDATA columns retrieved from the database
by Logminer in native mode.

HOST {DNS name | IP_address}

Valid for Replicat for multi-daemon MySQL.

Specifies the DNS name or IP address of the system that hosts the instance to which Replicat
must connect.

INTEGRATEDPARAMS (parameter[, ...])

Valid for Integrated Replicat for Oracle.

Passes settings for parameters that control the database inbound server within the target
Oracle database.

You can use the commit serialization option with INTEGRATEDPARAMS for integrated Replicat
but not for parallel Replicat in integrated mode. Setting internal database parameters for
Extract is done using TRANLOGOPTIONS INTEGRATEDPARAMS.

For more information about integrated Replicat and a list of supported inbound server
parameters, see Select a Replicat Type for the Deployment in Oracle GoldenGate
Microservices Documentation.

LIMITROWS | NOLIMITROWS

Valid for Replicat for MariaDB, MySQL, Oracle, SingleStore, SQL Server, Sybase, and
TimesTen.

LIMITROWS prevents multiple rows from being updated or deleted by the same Replicat SQL
statement when the target table does not have a primary or unique key.

LIMITROWS is the default. LIMITROWS and NOLIMITROWS apply globally to all MAP statements in a
parameter file.

For MySQL, LIMITROWS uses a LIMIT 1 clause in the UPDATE or DELETE Statement.

For Oracle targets, LIMITROWS (the default) must be used. It uses either WHERE ROWNUM = 1 Or
AND ROWNUM = 1 in the WHERE clause.

For SQL Server, LIMITROWS uses a SET ROWCOUNT 1 clause before the UPDATE or DELETE
statement.

NOLIMITROWS permits multiple rows to be updated or deleted by the same Replicat SQL
statement.

LOBBUFSIZE bytes

Valid for Extract for Db2 LUW, Db2 for i, Db2 z/OS, Oracle, PostgreSQL, and SQL Server.
For Oracle, it determines the memory buffer size in bytes to allocate for each embedded LOB
attribute that is in an Oracle object type.

For non-Oracle databases, it specifies the buffer size to fetch LOB data during initial load.
Valid values are from 1024 and 104857600 bytes. The default is 1048576 bytes.

For Oracle, if the length of embedded LOB exceeds the specified LOBBUFSIZE size, an error
message similar to the following is generated:

GGS ERROR 727Z-0L3 Buffer overflow, needed: 2048, allocated: 1024.

LOBWRITESIZE bytes
Valid for nonintegrated Replicat for Oracle.

2-39

ORACLE

Chapter 2
DBOPTIONS

Specifies a fragment size in bytes for each LOB that Replicat writes to the target database.
The LOB data is stored in a buffer until this size is reached. Because LOBs must be written to
the database in fragments, writing in larger blocks prevents excessive 1/0. The higher the
value, the fewer I/O calls that are made by Replicat to the database server to write the whole
LOB to the database.

Specify a multiple of the Oracle LOB fragment size. A given value will be rounded up to a
multiple of the Oracle LOB fragment size, if necessary. The default LOB write size is 32k if
DBOPTIONS NOSKIPTEMPLOB is specified, or 1MB if DBOPTIONS SKIPTEMPLOB is specified. Valid
values are from 2,048 bytes to 2,097,152 bytes (2MB).

By default, Replicat enables Oracle's LOB caching mechanism. To disable Oracle's LOB
caching, use the DISABLELOBCACHING option of DBOPTIONS.

MAXLOBKEYLEN datalength
Valid for Extract for PostgreSQL.

Sets the LOB datatype columns to be processed as part of the key. The valid values of
datalength parameter can be from 1 to 8000. The LOBs that can be part of the key are:

° Bytea
e Char

e Citext
° Text

. Varchar

SESSIONPOOLMAX max value

Valid for Extract in integrated mode for Oracle.

Sets a maximum value for the number of sessions in the OCI Session Pool, which is used by
Extract for fetching from a container database. The default value is 10 sessions. Must be
specified before the USERIDALIAS parameter; otherwise will be ignored and the default will be
used.

SESSIONPOOLMIN min value

Valid for Extract in integrated mode for Oracle.

Sets a minimum value for the number of sessions in the OCI Session Pool, which is used by
Extract for fetching from a container database. The default value is 2 sessions. Must be
specified before the USERIDALIAS parameter; otherwise will be ignored and the default will be
used.

SESSIONPOOLINCR increment value

Valid for Extract in integrated mode for Oracle.

Sets a value for the number of incremental sessions that can be added to the OCI Session
Pool, which is used by Extract for fetching from a container database. The default value is 2
sessions. Must be specified before the USERIDALIAS parameter; otherwise will be ignored and
the default will be used.

SETTAG [tag value | NULL

Valid for Replicat for Oracle.

Sets the value for an Oracle redo tag that will be used to identify the transactions of the
associated Replicat in the redo log. A redo tag can also be used to identify transactions other
than those of Replicat. This parameter is recommended over EXCLUDEUSER and TRACETABLE.
Use this option to prevent cycling (loop-back) of Replicat the individual records in a bi-
directional configuration or to filter other transactions from capture. The default SETTAG value is
00 and is limited to 2K bytes. A valid value is any single Oracle Streams tag. A tag value can
be up to 2000 hexadecimal digits (0-9 A-F) long.

2-40

ORACLE

Chapter 2
DBOPTIONS

Transactions in the redo that are marked with the specified tag can be filtered by an Extract
that has the TRANLOGOPTIONS parameter with the EXCLUDETAG option set to the tag value. Use
tag-based filtering to prevent cycling (loop-back) of Replicat transactions in a bi-directional
configuration or to filter other transactions from capture. For more information, see
TRANLOGOPTIONS.

You can disable the tagging of DDL by using the DDLOPTIONS parameter with the NOTAG
option.

hex value
A hexadecimal value from 0 through F. The default value is 00. The following are valid
examples:

DBOPTIONS SETTAG 00112233445566778899AABBCCDDEEFF
DBOPTIONS SETTAG 00112233445566778899%aabbccddeeff
DBOPTIONS SETTAG 123

NULL
Disables tag-based filtering for the associated Replicat.

SKIPTEMPLOB | NOSKIPTEMPLOB

Valid for Replicat for Oracle Database versions 11g and 12c¢. Controls how LOBs are applied
to a target Oracle database. The default of SKIPTEMPLOB .

SKIPTEMPLOB improves performance by directly writing LOB data to the target LOB column.
Replicat creates a SQL statement with an empty LOB value and returns the LOB locator to the
bind variable. After the SQL statement is executed successfully, the LOB data is written
directly to the LOB column using the returned LOB locator.

NOSKIPTEMPLOB uses a temporary LOB in the SQL statement. Replicat declares a bind variable
within SQL statement and associates a temporary LOB, then writes to the temporary LOB.
The Oracle Database applies the LOB column data from the temporary LOB.

SKIPTEMPLOB applies to INSERT and UPDATE operations that contain LOB data. It does not apply
if the table has a functional index with a LOB column, if the LOB data is NULL, empty, or
stored inline. It does not apply to partial LOB operations.

SKIPTEMPLOB causes Replicat to generate/perform 1 DML+ n LOB_WRITE (piece-wise)
operations when updating/inserting a row with LOB columns. However, SKIPTEMPLOB should
not be used with FETCHPARTIALLOB (an Extract Parameter) because it results in excessive
fetching.

NOSKIPTEMPLOB is provided for backward compatibility; otherwise the default of SKIPTEMPLOB
should be retained.

SOURCE_DB_NAME src_dbase_global name

Valid for Oracle.

Indicates the Global Name of the Trail Source Database. It is used to query the relevant
instantiation information when DBOPTIONS ENABLE INSTANTIATION FILTERING is enabled. This
option is optional for instantiation filtering in a 12.2. trail file with metadata enabled.

When the source has no DOMAIN, do not specify a DOMAIN for the downstream database.

SPTHREAD | NOSPTHREAD

Valid for Extract and Replicat. Not valid for Oracle and MySQL.

Creates a separate database connection thread for using SQLEXEC to execute stored
procedures. The default is NOSPTHREAD.

SQLMODE
With this option enabled, the sql mode variable is set to to 'ANSI QUOTES' (set sql mode =
'ANSI QUOTES'). Treat the double quotes (") as an identifier quote character (like the * quote

2-41

ORACLE

Chapter 2
DBOPTIONS

character) and not as a string quote character. You can still use * to quote identifiers with this
mode enabled. With ANSI QUOTES enabled, you cannot use double quotes (") to quote literal
strings, because it is interpreted as an identifier.

For more information, see Server SQL Modes.

SUPPRESSTEMPORALUPDATES

Valid for DB2 LUW 10.1 FixPack 2 and greater replication of temporal table.

Use SUPPRESSTEMPORALUPDATES to replicate system-period and bitemporal tables along with
associated history tables. Oracle GoldenGate replicates the row begin, row end, and
transaction start id columns along with the other columns of the table. You must ensure that
the database instance has the execute permission to run the

SYSPROC.SET MAINT MODE RECORD NO TEMPORALHISTORY. stored procedure at the apply side.
By default, Oracle GoldenGate does not replicate row begin, row end, and transaction start id
columns. To preserve the original values of these columns, implement one of the followings
options.

e Add extra timestamp columns in the target temporal table and map the columns
accordingly.

e Use a non-temporal table at the apply side and map the columns accordingly.

Replication in Non-Oracle Environment:

In non-Oracle environments where there is no temporal tables at the apply side, you need to
set the row begin, row end and transaction start id columns value. These source columns will
have timestamp values that the target database may not support. You should first use the map
conversion functions to convert these values into the format that target database supports,
and then map the columns accordingly. For example, MySQL has a DATETIME range from
"1000-01-01 00:00:00.000000' to '9999-12-31 23:59:59.999999;". You cannot replicate a DB2
LUW timestamp value of "0001-01-01-00.00.00.000000000000¢, to MySQL. To replicate such
values you must convert this value into the MySQL DATETIME format. For example, if a system-
period or bitemporal table has the following timestamp column:

SYS_ START

0001-01-01-00.00.00.000000000000

Then to replicate this column into MySQL, you would use the function colmap () as follows:

map <source schema>.<source table>, target <target schema>.<target table>
colmap (sys start= @IF((QNUMSTR(@STREXT(sys start,1,4))) > 1000, sys start,
'1000-01-01 00.00.00.000000"))

Initial Load of Temporal Table:
Oracle GoldenGate supports initial load of temporal table as usual.
Take into account the following considerations with temporal table:

* Replication between system-period and application-period temporal table is not
supported.

* Replication from a non-temporal table to a temporal table is not supported.

* Replication of system-period, bi-temporal tables, and SUPPRESSTEMPORALUPDATES with the
INSERTALLRECORDS parameter is not supported.

» If any unique index is created for application-period temporal table using BUSINESS TIME
WITHOUT OVERLAPS for the target table, then the same unique index must be created for
the source table.

- Bidirectional replication between temporal tables is advised only with the default.

2-42

https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_ansi_quotes

ORACLE

Chapter 2
DBOPTIONS

e CDR is supported only with SUPPRESSTEMPORALUPDATES. There is no CDR support in
bidirectional replication.

* By default, there are inconsistencies in row begin, row end, and transaction start id
columns of the temporal tables when the source and target databases operate with
different time zones. These timestamp columns of system-period and bitemporal tables
are automatically populated by the respective database managers and will have values as
per the respective time zones of the databases.

e Using the default with GETUPDATEBEFORES is in the replicate parameter file, you cannot use
the row begin, row end, and transaction start id columns in any delta calculations. For
example, taking before and after image of such columns in any kind of calculations is not
possible. These columns can be used in delta calculations using
SUPPRESSTEMPORALUPDATES.

SUPPRESSTRIGGERS | NOSUPPRESSTRIGGERS

Valid for Integrated Replicat and Classic Replicat for Oracle.

Controls whether or not triggers are fired during the Replicat session. Provides an alternative
to manually disabling triggers. (Integrated Replicat does not require disabling of triggers on the
target system.)

SUPPRESSTRIGGERS is the default and prevents triggers from firing on target objects that are
configured for replication with Oracle GoldenGate. SUPPRESSTRIGGERS is valid for Oracle
Database 12¢, 11g (11.2.0.2), and later 11g R2 releases. SUPPRESSTRIGGERS is not valid for
11g R1.

To allow a specific trigger to fire, you can use the following SQLEXEC statement in the Replicat
parameter file, where trigger owner is the owner of the trigger and trigger name is the
name of the trigger.

SQLEXEC 'DBMS DDL.SET TRIGGER FIRING PROPERTY ('"S1"','"MY TRIGGER"', FALSE);'

Note:

Once this SQLEXEC is executed with FALSE, the trigger will continue to fire until the
command is run again with a setting of TRUE.

NOSUPPRESSTRIGGERS allows target triggers to fire. To use [NO] SUPPRESSTRIGGERS, the Replicat
user must have the privileges granted through the 0GG_APPLY user role available from Oracle
Database 23ai and higher or the dbms_goldengate auth.grant admin privilege package for
Oracle Database 21c and lower. This procedure is part of the Oracle database installation.
See the database documentation for more information.

The USERIDALIAS parameter must precede a DBOPTIONS statement that contains
SUPPRESSTRIGGERS Of NOSUPPRESSTRIGGERS.

TRANSNAME trans name

Valid for Replicat for SQL Server.

Allows an individual Replicat to use a specific transaction name that is specified in the
parameter file. The trans name is the name of the transaction that the Replicat uses for target
DML transactions and overrides the default ggs_repl transaction name when used.

USEDATABASEENCODING

By default, the DB2 for i Extract converts all text data to UTF-8 for non-DBCS data and
UTF-16 for DBCS data. Using this option causes the Extract to store all text data in the trail in
its native character encoding for non-DBCS data. Currently, DBCS (GRAPHIC/VARGRAPHIC/
DBCLOB) data continues to be converted to UTF-16 whether this parameter is provided or not.

2-43

DDL

ORACLE

Chapter 2
DDL

For CCSID values that are not supported by Oracle GoldenGate, the Extract converts the data
to UTF-8 for non-DBCS data and UTF-16 for DBCS data to ensure compatibility for all
Replicats.

XMLBUFSIZE bytes

Valid for Extract for Oracle.

Sets the size of the memory buffer that stores XML data that was extracted from the
sys.xmltype attribute of a SDO_GEORASTER oObject type. The default is 1048576 bytes (1MB). If
the data exceeds the default buffer size, Extract will abend. If this occurs, increase the buffer
size and start Extract again. The valid range of values is 1024 to 104857600 bytes.

Examples

Example 1

DBOPTIONS HOST 127.0.0.1, CONNECTIONPORT 3307

Example 2

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAATALCKDZIRHOJBHOJUH ENCRYPTKEY DEFAULT

Example 3
DBOPTIONS TDSPACKETSIZE 2048

Example 4

DBOPTIONS FETCHBATCHSIZE 2000

Example 5
DBOOPTION XMLBUFSIZE 2097152

Valid For

Extract and Replicat

Note:

DDL replication is only supported between Oracle to Oracle databases and between
MySQL to MySQL databases.

Description

Use the DDL parameter to:
e enable DDL support

« filter DDL operations

e configure a processing action based on a DDL record

When used without options, the DDL parameter performs no filtering, and it causes all DDL
operations to be propagated as follows:

e As an Extract parameter, it captures all supported DDL operations that are generated on all
supported database objects and sends them to the trail.

2-44

ORACLE

Chapter 2
DDL

As a Replicat parameter, it replicates all DDL operations from the Oracle GoldenGate trail
and applies them to the target. This is the same as the default behavior without this
parameter.

When used with options, the DDL parameter acts as a filtering agent to include or exclude DDL
operations based on:

scope
object type
operation type
object name

strings in the DDL command syntax or comments, or both

Only one DDL parameter can be used in a parameter file, but you can combine multiple
inclusion and exclusion options to filter the DDL to the required level.

The filtering options of the DDL parameter are valid for a primary Extract that captures from
the transaction source, but not for a data-pump Extract.

When combined, multiple filter option specifications are linked logically as AND statements.

All filter criteria specified with multiple options must be satisfied for a DDL statement to be
replicated.

When using complex filtering criteria in a DDL parameter statement, it is recommended that
you test your configuration in a test environment before using it in production.

See Example 1, Example for more information.

Note:

Do not use the DDL parameter for an Extract data pump. These process types do not
permit the mapping or conversion of DDL and will propagate DDL records
automatically in pass-through mode. DDL that is performed on a source table (for
example ALTER TABLE TableA...) will be applied by Replicat with the same table
name (ALTER TABLE Tabled). It cannot be mapped as ALTER TABLE TableB.

For additional information about how to use Oracle GoldenGate DDL support, see Oracle: DDL
Replication and MySQL: DDL Replication in Oracle GoldenGate Microservices Documentation.

Syntax

DDL

[

{INCLUDE | EXCLUDE}

[, MAPPED | UNMAPPED | OTHER | ALL]

, OPTYPE type]

, OBJTYPE 'type']

, SOURCECATALOG catalog | ALLCATALOGS]
, ALLOWEMPTYOBJECT]

, ALLOWEMPTYOWNER]

, OBJNAME name]

, INSTR 'string']

, INSTRWORDS 'word Ilist']

, INSTRCOMMENTS 'comment string']
, INSTRCOMMENTSWORDS 'word list']
, STAYMETADATA]

, EVENTACTIONS (action)

2-45

ORACLE

Chapter 2
DDL

]
[...]

DDL Filtering Options

The following are the syntax options for filtering and operating upon the DDL that is replicated
by Oracle GoldenGate. These options apply to the INCLUDE and EXCLUDE clauses of the DDL
parameter and other parameters that support DDL replication.

INCLUDE | EXCLUDE
Use INCLUDE or EXCLUDE to identify the beginning of an inclusion or exclusion clause.

* Aninclusion clause contains filtering criteria that identifies the DDL that this parameter will
affect.

* An exclusion clause contains filtering criteria that excludes specific DDL from this
parameter.

The inclusion or exclusion clause must consist of the INCLUDE or EXCLUDE keyword followed by
any valid combination of the other filtering options of the DDL parameter.

If you use EXCLUDE, you must create a corresponding INCLUDE clause. For example, the
following is invalid:

DDL EXCLUDE OBJNAME "hr'".*

However, you can use either of the following:

DDL INCLUDE ALL, EXCLUDE OBJNAME "hr"."*"
DDL INCLUDE OBJNAME fin.* EXCLUDE OBJNAME "fin.ss"

An EXCLUDE takes priority over any INCLUDEs that contain the same criteria. You can use
multiple inclusion and exclusion clauses.

Do not include any Oracle GoldenGate installed DDL objects in a DDL parameter, in a TABLE
parameter, or in a MAP parameter, nor in a TABLEEXCLUDE or MAPEXCLUDE parameter. Make
certain that wildcard specifications in those parameters do not include Oracle GoldenGate-
installed DDL objects. These objects must not be part of the Oracle GoldenGate configuration,
but the Extract process must be aware of operations on them, and that is why you must not
explicitly exclude them from the configuration with an EXCLUDE, TABLEEXCLUDE, Of MAPEXCLUDE
parameter statement.

MAPPED | UNMAPPED | OTHER | ALL
Use MAPPED, UNMAPPED, OTHER, and ALL to apply INCLUDE or EXCLUDE based on the DDL
operation scope.

° MAPPED applies INCLUDE or EXCLUDE to DDL operations that are of MAPPED scope.
MAPPED filtering is performed before filtering that is specified with other DDL parameter
options.

e UNMAPPED applies INCLUDE or EXCLUDE to DDL operations that are of UNMAPPED scope.
e OTHER applies INCLUDE or EXCLUDE to DDL operations that are of OTHER scope.
° ALL applies INCLUDE or EXCLUDE to DDL operations of all scopes.

DDL EXCLUDE ALL is a special processing option that maintains up-to-date object metadata
for Oracle GoldenGate, while blocking the replication of the DDL operations themselves.
You can use DDL EXCLUDE ALL when using a method other than Oracle GoldenGate to
apply DDL to the target, but you want Oracle GoldenGate to replicate data changes to the
target objects. It provides the current metadata to Oracle GoldenGate as objects change,

2-46

Chapter 2
DDL

thus preventing the need to stop and start the Oracle GoldenGate processes. The
following special conditions apply to DDL EXCLUDE ALL:

° DDL EXCLUDE ALL does not require the use of an INCLUDE clause.

e When using DDL EXCLUDE ALL, you can set the WILDCARDRESOLVE parameter to
IMMEDIATE to allow immediate DML resolution if required.

OPTYPE type

Use OPTYPE to apply INCLUDE or EXCLUDE to a specific type of DDL operation, such as
CREATE, ALTER, and RENAME. For type, use any DDL command that is valid for the
database. For example, to include ALTER operations, the correct syntax is:

DDL INCLUDE OPTYPE ALTER

OBJTYPE 'type'’

Use OBJTYPE to apply INCLUDE or EXCLUDE to a specific type of database object. For type,
use any object type that is valid for the database, such as TABLE, INDEX, and TRIGGER. For
an Oracle materialized view and materialized views log, the correct types are snapshot
and snapshot log, respectively. Enclose the name of the object type within single quotes.
For example:

DDL INCLUDE OBJTYPE 'INDEX'
DDL INCLUDE OBJTYPE 'SNAPSHOT'

For Oracle object type USER, do not use the 0BJNAME option, because 0OBINAME expects
owner.object Of container.owner.object whereas USER only has a schema.

SOURCECATALOG catalog | ALLCATALOGS

Use these options to specify how unqualified object names in an 0BJNAME clause are
resolved to the correct container. Use these options when the source database is an
Oracle container database.

SOURCECATALOG specifies a default container for all of the object names that are specified
in the same INCLUDE or EXCLUDE clause. To take effect, SOURCECATALOG must be specified
before the OBJNAME specification. See "SOURCECATALOG" for more information including
using statements that contain two-part names, where three-part object names are
required to fully identify an object.

ALLCATALOGS specifies that all of the containers of the database should be considered
when resolving object names that are specified in the same INCLUDE or EXCLUDE clause.
ALLCATALOGS can be placed before or after the OBJNAME specification.

The following is the order of precedence that is given when there are different catalog
specifications in a parameter file:

1. ALLCATALOGS in an INCLUDE or EXCLUDE clause overrides all SOURCECATALOG
specifications in the INCLUDE or EXCLUDE clause and at the root of the parameter file,
and it overrides the container specification of a fully qualified object name in the
OBJNAME clause.

2. An explicit catalog specification in the 0BJNAME clause overrides all instances of
SOURCECATALOG (but not ALLCATALOGS).

3. SOURCECATALOG in an INCLUDE or EXCLUDE clause overrides the global SOURCECATALOG
parameter that is specified at the root of the TABLE or MAP statement.

ORACLE 2_47

ORACLE

Chapter 2
DDL

4. The global SOURCECATALOG parameter takes effect for any unqualified object names in
OBJNAME clauses if the INCLUDE or EXCLUDE clause does not specify SOURCECATALOG Or
ALLCATALOGS.

5. Inthe absence of any of the preceding parameters, all catalogs are considered.

ALLOWEMPTYOBJECT
Use ALLOWEMPTYOBJECT to allow an OBJNAME specification to process DDL that contains no
object name. For example:

DDL INCLUDE OBJNAME sch.* ALLOWEMPTYOBJECT
ALLOWEMPTYOWNER

Use ALLOWEMPTYOWNER to allow an OBJNAME specification to process DDL that contains no
owner name. For example:

DDL INCLUDE OBJNAME pdb.sch.* ALLOWEMPTYOWNER

OBJNAME name

Use 0BJNAME to apply INCLUDE or EXCLUDE to the fully qualified name of an object. To
specify two-part and three-part object names and wildcards correctly, see Using Wildcards
in Command Arguments.

Enclose case-sensitive object names within double quote marks.
Case-insensitive example:

DDL INCLUDE OBJNAME accounts.*

Case-sensitive example:

DDL INCLUDE OBJNAME accounts."cust"

Do not use 0BJINAME for the Oracle USER object, because OBJNAME expects owner.object Of
container.owner.object, Whereas USER only has a schema.

When using 0BJNAME with MAPPED in a Replicat parameter file, the value for 0BIJNAME must

refer to the name specified with the TARGET clause of the MAP statement. For example,
given the following MAP statement, the correct value is OBJNAME fin2.*.

MAP fin.exp *, TARGET fin2.*;

In the following example, a CREATE TABLE statement executes as follows on the source:

CREATE TABLE fin.exp phone;

That same statement executes as follows on the target:

CREATE TABLE fin2.exp phone;

If a target owner is not specified in the MAP statement, Replicat maps it to the database
user that is specified with the USERIDALIAS parameter.

For DDL that creates derived objects, such as a trigger, the value for 0BJNAME must be the
name of the base object, not the name of the derived object.

For example, to include the following DDL statement, the correct value is hr.accounts,
not hr.insert trig.

CREATE TRIGGER hr.insert trig ON hr.accounts;

For RENAME operations, the value for OBJNAME must be the new table name. For example,
to include the following DDL statement, the correct value is hr.acct.

2-48

ORACLE

Chapter 2
DDL

ALTER TABLE hr.accounts RENAME TO acct;

INSTR 'string'

Use INSTR to apply INCLUDE or EXCLUDE to DDL statements that contain a specific
character string within the command syntax itself, but not within comments. For example,
the following excludes DDL that creates an index.

DDL INCLUDE ALL EXCLUDE INSTR 'CREATE INDEX'

Enclose the string within single quotes. The string search is not case sensitive.
INSTR does not support single quotation marks (' ') that are within the string, nor does it
support NULL values.

INSTRCOMMENTS 'comment string'

(Valid for Oracle) Use INSTRCOMMENTS to apply INCLUDE or EXCLUDE to DDL statements that
contain a specific character string within a comment, but not within the DDL command
itself. By using INSTRCOMMENTS, you can use comments as a filtering agent.

For example, the following excludes DDL statements that include the string 'source only' in
the comments.

DDL INCLUDE ALL EXCLUDE INSTRCOMMENTS 'SOURCE ONLY'

In this example, DDL statements such as the following are not replicated.

CREATE USER john IDENTIFIED BY john /*source only*/;

Enclose the string within single quotes. The string search is not case sensitive. You can
combine INSTR and INSTRCOMMENTS to filter on a string in the command syntax and in the
comments of the same DDL statement.

INSTRCOMMENTS does not support single quotation marks (') that are within the string, nor
does it support NULL values.

INSTRWORDS 'word list'

Use INSTRWORDS to apply INCLUDE or EXCLUDE to DDL statements that contain the specified
words.

For word 1ist, supply the words in any order, within single quotes. To include spaces, put
the space (and the word, if applicable) in double quotes. Double quotes also can be used
to enclose sentences.

All specified words must be present in the DDL for INSTRWORDS to take effect.

Example:

DDL INCLUDE OPTYPE ALTER OBJTEYP 'TABLE' INSTRWORDS 'ALTER CONSTRAINT " xyz"'

This example matches the following DDL statements:

ALTER TABLE ADD CONSTRAINT xyz CHECK
ALTER TABLE DROP CONSTRAINT xyz

INSTRWORDS does not support single quotation marks (' ') that are within the string, nor
does it support NULL values.

INSTRCOMMENTSWORDS 'word list'

(Valid for Oracle) Works the same way as INSTRWORDS, but only applies to comments
within a DDL statement, not the DDL syntax itself. By using INSTRCOMMENTS, yOu can use
comments as a filtering agent.

2-49

Chapter 2
DDL

INSTRCOMMENTSWORDS does not support single quotation marks (' ') that are within the
string, nor does it support NULL values.

You can combine INSTRWORDS and INSTRCOMMENTSWORDS to filter on a string in the
command syntax and in the comments of the same DDL statement.

STAYMETADATA

(Valid for Oracle). Prevents metadata from being captured by Extract or applied by
Replicat.

When Extract first encounters DML on a table, it retrieves the metadata for that table.
When DDL is encountered on that table, the old metadata is invalidated. The next DML on
that table is matched to the new metadata so that the target table structure always is up-
to-date with that of the source.

However, if you know that a particular DDL operation will not affect the table's metadata,
you can use STAYMETADATA so that the current metadata is not retrieved or replicated. This
is a performance improvement that has benefit for such operations as imports and
exports, where such DDL as truncates and the disabling of constraints are often
performed. These operations do not affect table structure, as it relates to the integrity of
subsequent data replication, so they can be ignored in such cases. For example ALTER
TABLE ADD FOREIGN KEY does not affect table metadata.

An example of how this can be applied selectively is as follows:

DDL INCLUDE ALL INCLUDE STAYMETADATA OBJNAME xyz

This example states that all DDL is to be included for replication, but only DDL that
operates on object xyz will be subject to STAYMETADATA.

STAYMETADATA also can be used the same way in an EXCLUDE clause.

STAYMETADATA must be used the same way on the source and target to ensure metadata
integrity.

When STAYMETADATA is in use, a message is added to the report file. DDL reporting is
controlled by the DDLOPTIONS parameter with the REPORT option.

This same functionality can be applied globally to all DDL that occurs on the source by
using the @ddl staymetadata Scripts:

* (@ddl staymetadata on globally turns off metadata versioning.
* (@ddl staymetadata off globally enables metadata versioning again.

This option should be used with the assistance of Oracle GoldenGate technical support
staff, because it might not always be apparent which DDL affects object metadata. If
improperly used, it can compromise the integrity of the replication environment.

EVENTACTIONS (action)

Causes the Extract or Replicat process take a defined action based on a DDL record in
the transaction log or trail, which is known as the event record. The DDL event is triggered
if the DDL record is eligible to be written to the trail by Extract or a data pump, or to be
executed by Replicat, as determined by the other filtering options of the DDL parameter.
You can use this system to customize processing based on database events.

For action, see EVENTACTIONS under the MAP and TABLE parameters.

Guidelines for using EVENTACTIONS on DDL records:

e CHECKPOINTBEFORE: Since each DDL record is autonomous, the DDL record is
guaranteed to be the start of a transaction; therefore, the CHECKPOINT BEFORE event
action is implied for a DDL record.

ORACLE 550

Chapter 2
DDL

e IGNORE: This option is not valid for DDL records. Because DDL operations are
autonomous, ignoring a record is equivalent to ignoring the entire transaction.

EVENTACTIONS does not support the following DDL objects because they are derived

objects:
* indexes
e triggers

+ synonyms

e RENAME on a table and ALTER TABLE RENAME

Examples

Example 1 Combining DDL Parameter Options
The following is an example of how to combine the options of the DDL parameter.

DDL &
INCLUDE UNMAPPED &
OPTYPE alter &
OBJTYPE 'table' &
OBJNAME users.tab* &
INCLUDE MAPPED OBJNAME * &
EXCLUDE MAPPED OBJNAME temporary.tab

The combined filter criteria in this statement specify the following:

e INCLUDE all ALTER TABLE statements for tables that are not mapped with a TABLE or MAP
statement (UNMAPPED scope), but only if those tables are owned by users and their names
start with tab,

e INCLUDE all DDL operation types for all tables that are mapped with a TABLE or MAP
statement (MAPPED scope),

* EXCLUDE all DDL operation types for all tables that are MAPPED in scope, but only if those
tables are owned by temporary and only if their names begin with tab.

Example 2 Including an Event Action
The following example specifies an event action of REPORT for all DDL records.

DDL INCLUDE ALL EVENTACTIONS (REPORT)

Example 3 Using an Event Action on a Subset of DDL

The following example shows how EVENTACTIONS can be used on a subset of the DDL. All
DDL is to be replicated, but only the DDL that is executed on explicitly named objects qualifies
to trigger the event actions of REPORT and LOG.

DDL INCLUDE ALL &
INCLUDE OBJNAME sales.t* EVENTACTIONS (REPORT) &
INCLUDE OBJNAME fin.my tab EVENTACTIONS (LOG) &

Example 4
The following example demonstrates the different ways to specify catalog names for DDL that
is issued on objects in a source Oracle container database.

e This includes pdbl.schl.objl and pdb2.sch2.obj2 for DDL processing.

SOURCECATALOG pdbl
DDL INCLUDE OBJNAME schl.objl INCLUDE SOURCECATALOG pdb2 OBJNAME sch2.obj2

ORACLE bl

Chapter 2
DDLERROR

e This includes all objects with the name sch.obj in any catalog for DDL processing.
DDL INCLUDE ALLCATALOGS OBJNAME sch.obj

e This also includes all objects with the name sch.obj in any catalog for DDL processing,
because ALLCATALOGS overrides any other catalog specification.

DDL INCLUDE ALLCATALOGS OBJNAME pdb.sch.ob]

Example 5
The following shows the combined use of ALLOWEMPTYOBJECT and ALLOWEMPTYOWNER.

DDL INCLUDE pdb.*.* ALLOWEMPTYOWNER ALLOWEMPTYOBJECT

DDLERROR

ORACLE

Valid For

Extract and Replicat

Description

Use the DDLERROR parameter to handle DDL errors on the source and target systems. Options
are available for Extract and Replicat.

DDLERROR for Extract

Use the Extract option of the DDLERROR parameter to handle errors on objects found by Extract
for which metadata cannot be found.

Default
Abend

Syntax

DDLERROR [RESTARTSKIP number_of;skips} [RETRYDELAY seconds] [SKIPTRIGGERERROR
number of errors]

RESTARTSKIP number of skips

Causes Extract to skip and ignore a specific number of DDL operations on startup, to prevent
Extract from abending on an error. By default, a DDL error causes Extract to abend so that no
operations are skipped. Valid values are 1 to 100000.

To write information about skipped operations to the Extract report file, use the DDLOPTIONS
parameter with the REPORT option.

SKIPTRIGGERERROR number of errors

(Oracle) Causes Extract to skip and ignore a specific number of DDL errors that are caused by
the DDL trigger on startup. Valid values are 1 through 100000.

SKIPTRIGGERERROR is checked before the RESTARTSKIP option. If Extract skips a DDL operation
because of a trigger error, that operation is not counted toward the RESTARTSKIP specification.

DDLERROR for Replicat

Use the Replicat options of the DDLERROR parameter to handle errors that occur when DDL is
applied to the target database. With DDLERROR options, you can handle most errors in a default
manner, for example to stop processing, and also handle other errors in a specific manner. You
can use multiple instances of DDLERROR in the same parameter file to handle all errors that are
anticipated.

2-52

Chapter 2
DDLERROR

Default
Abend

Syntax

DDLERROR
{error | DEFAULT} {response}
INCLUDE inclusion clause | EXCLUDE exclusion clause}

{
[IGNOREMISSINGOBJECTS | ABENDONMISSINGOBJECTS]
[RETRYDELAY seconds]

{error | DEFAULT} {response}

error
Specifies an explicit DDL error for this DDLERROR statement to handle.

DEFAULT
Specifies a default response to any DDL errors for which there is not an explicit DDLERROR
statement.

response
The action taken by Replicat when a DDL error occurs. Can be one of the following:

ABEND
Roll back the operation and terminate processing abnormally. ABEND is the default.

DISCARD

Log the offending operation to the discard file but continue processing subsequent
DDL.

IGNORE
Ignore the error.

{INCLUDE inclusion clause | EXCLUDE exclusion clause}

Identifies the beginning of an inclusion or exclusion clause that controls whether specific DDL
is handled or not handled by the DDLERROR statement. See "DDL Filtering Options" for syntax
and usage.

[IGNOREMISSINGOBJECTS | ABENDONMISSINGOBJECTS]

Controls whether or not Extract abends when DML is issued on objects that could not be
found on the target. This condition typically occurs when DDL that is not in the replication
configuration is issued directly on the target, or it can occur when there is a discrepancy
between the source and target definitions.

IGNOREMISSINGOBJECTS
Causes Replicat to skip DML operations on missing tables.

ABENDONMISSINGOBJECTS
Causes Replicat to abend on DML operations on missing tables.

[RETRYDELAY seconds]

Specifies the delay in seconds between attempts to retry a failed operation. The default is 10
seconds.

ORACLE 53

Chapter 2
DDLOPTIONS

Examples

Example 1 DDLERROR Basic Example

In the following example, the DDLERROR statement causes Replicat to ignore the specified error,
but not before trying the operation again three times at ten-second intervals. Replicat applies
the error handling to DDL operations executed on objects whose names satisfy the wildcard of
tab* (any user, any operation) except those that satisfy tabl*.

DDLERROR 1234 IGNORE RETRYOP MAXRETRIES 3 RETRYDELAY 10 &
INCLUDE ALL OBJTYPE TABLE OBJNAME tab* EXCLUDE OBJNAME tabl*

To handle all errors except that error, the following DDLERROR statement can be added.

DDLERROR DEFAULT ABEND
In this case, Replicat abends on DDL errors.

Example 2 Using Multiple DDLERROR Statements

The order in which you list DDLERROR statements in the parameter file does not affect their
validity unless multiple DDLERROR Statements specify the same error, without any additional
qualifiers. In that case, Replicat only uses the first one listed. For example, given the following
statements, Replicat will abend on the error.

DDLERROR 1234 ABEND
DDLERROR 5678 IGNORE

With the proper qualifiers, however, the previous configuration becomes a more useful one.
For example:

DDLERROR 1234 ABEND INCLUDE OBJNAME tab*
DDLERROR 5678 IGNORE

In this case, because there is an INCLUDE statement, Replicat will abend only if an object
name in an errant DDL statement matches wildcard tab*. Replicat will ignore errant
operations that include any other object name.

DDLOPTIONS

ORACLE

Valid For

Extract and Replicat

Description

Use the DDLOPTIONS parameter to configure aspects of DDL processing other than filtering and
string substitution. You can use multiple DDLOPTIONS statements, but using one is
recommended. If using multiple DDLOPTIONS statements, make each of them unique so that
one does not override the other. Multiple DDLOPTIONS statements are executed in the order
listed in the parameter file.

Default

See the argument descriptions

Syntax

DDLOPTIONS
[, DEFAULTUSERPASSWORD password [algorithm [ENCRYPTKEY DEFAULT | ENCRYPTKEY key name]

2-54

Chapter 2
DDLOPTIONS

[, CAPTUREGLOBALTEMPTABLE]
[, DEFAULTUSERPASSWORDALIAS alias [DOMAIN domain]]
[, EXCLUDETAG [tag | + | NULL]
[, IGNOREMAPPING [, INCLUDETAG tag | +]
[, MAPDERIVED | NOMAPDERIVED]
[, MAPSCHEMAS]

[, MAPSESSIONSCHEMA source schema TARGET target schema]
[, NLSLENGTHSEMANTICS CHAR | BYTE | DEFAULT]
[, NOAPPLYGLOBALTEMPTABLE]
[, NOTAG]

[, PASSWORD algorithm ENCRYPTKEY {key name | DEFAULT}]
[, REMOVECOMMENTS {BEFORE | AFTER}]

[, REPLICATEPASSWORD | NOREPLICATEPASSWORD]

[, REPORT | NOREPORT]

[, UPDATEMETADATA]

[, USEPASSWORDVERIFIERLEVEL {10[11}]

[, _USEOWNERFORSESSION]

DEFAULTUSERPASSWORD password [algorithm ENCRYPTKEY {key name | DEFAULT}]

Valid for Replicat. (Oracle only)

Can be used instead of the DEFAULTUSERPASSWORDALIAS option if an Oracle GoldenGate
credential store is not being used. Specifies a different password for a replicated {CREATE |
ALTER} USER name IDENTIFIED BY password Statement from the one used in the source
statement. Replicat will replace the placeholder that Extract writes to the trail with the specified
password. When using DEFAULTUSERPASSWORD, use the NOREPLICATEPASSWORD option of
DDLOPTIONS for Extract.

DEFAULTUSERPASSWORD password without options specifies a clear-text password. If the
password is case-sensitive, type it that way.

Note:

Replication of CREATE | ALTER PROFILE will fail as the profile/password
verification function must exist in the SYS schema. To replicate these DDLs
successfully, password verification function must be created manually on both
source/target(s) since DDL to SYS schema is excluded.

Use the following options if the password was encrypted with the ENCRYPT PASSWORD
command:

algorithm
Specifies the encryption algorithm that was used to encrypt the password with the
ENCRYPT PASSWORD command: AES128, or AES192, AES256.

ENCRYPTKEY key name

Specifies the logical name of a user-created encryption key in the ENCKEYS lookup file. Use
if ENCRYPT PASSWORD was used with the KEYNAME key name option, and specify the same
key name.

ENCRYPTKEY DEFAULT
Directs Oracle GoldenGate to use a random key. Use if ENCRYPT PASSWORD was used with
the KEYNAME DEFAULT option.

CAPTUREGLOBALTEMPTABLE
Valid for Oracle

ORACLE 5 e

ORACLE

Chapter 2
DDLOPTIONS

Allows Global Temporary Tables (GTT) DDLs to be visible to Extract so that they can be
replicated. By default, GTT DDLs are not visible to Extract so using CAPTUREGLOBALTEMPTABLE
you can set Extract to include GTT DDLs that then can be filtered by the DDL statement and if
passed, written to the trail.

The GTT DDLs that are present in the trail will be filtered and executed by the Replicat if they
pass the filtering criteria.

For trigger-version of Extract, this option is set to false regardless of whether the table is GTT
or not.

DEFAULTUSERPASSWORDALIAS alias [DOMAIN domain]

Valid for Replicat. (Oracle only)

Can be used instead of the DEFAULTUSERPASSWORD option if an Oracle GoldenGate credential
store is being used. Specifies the alias of a credential whose password replaces the one in the
IDENTIFIED BY clause of a replicated CREATE USER or ALTER USER statement. The alias is
resolved to the encrypted password in the Oracle GoldenGate credential store. Replicat
replaces the placeholder that Extract writes to the trail with the resolved password before
applying the DDL to the target.

When using DEFAULTUSERPASSWORDALIAS, use the NOREPLICATEPASSWORD option of DDLOPTIONS
for Extract.

alias

Specifies the alias of the credential whose password will be used for the replacement
password. This credential must exist in the Oracle GoldenGate credential store. If you are
not sure what alias to use, you can inspect the content of the credential store by issuing
the INFO CREDENTIALSTORE command.

DOMAIN domain
Specifies the domain that is assigned to the specified user in the credential store.

[EXCLUDETAG [tag | + | NULL]

Note:

Starting with Oracle GoldenGate 23ai, the syntax for using the EXCLUDETAG and
INCLUDETAG option has been enhanced and would no longer use the GETREPLICATES,
IGNOREREPLICATES, GETAPPLOPS, and IGNOREAPPLOPS options.

Use EXCLUDETAG tag to direct the Extract process to ignore the individual records that are
tagged with the specified redo tag. Compare with older versions, new trail file contains tag
tokens, which would not introduce problems for older trail readers.

Use EXCLUDETAG + to direct the Extract process to ignore the individual records that are
tagged with any redo tag.

The EXCLUDETAG is used to exclude changes that were earlier tagged either by Replicat using
the DBOPTIONS SET TAG option or within the Oracle database session using the
dbms_xstream.set tag procedure.

Example
The following are examples of how to use tag specifiers with EXCLUDETAG.

To exclude all tagged changes:

DDLOPTIONS EXCLUDETAG +

2-56

ORACLE

Chapter 2
DDLOPTIONS

To exclude specific tagged changes:

DDLOPTIONS EXCLUDETAG 00
DDLOPTIONS EXCLUDETAG 0952

To have multiple exclude tags in a single DDLOPTIONS Statement:

DDLOPTIONS EXCLUDETAG 00 EXCLUDETAG 97ab

INCLUDETAG [tag | +]

Valid for integrated Extract.

Use INCLUDETAG tag to include specific changes trail files. The tag value can be up to 2000
hexadecimal digits (0-9 A-F).

When specifying both EXCLUDETAG and INCLUDETAG parameters with the DDLOPTIONS
command, the EXCLUDETAG should come first.

Example:

To include all tagged changes:

DDLOPTIONS INCLUDETAG +

To include specific tagged changes:

DDLOPTIONS INCLUDETAG 00

Considerations while using EXCLUDETAG and INCLUDETAG Parameters
While using EXCLUDETAG and INCLUDETAG parameters with TRANLOGOPTIONS and DDLOPTIONS
commands, consider the following:

e |f the TRANLOGOPTIONS EXCLUDETAG/INCLUDETAG are specified and DDLOPTIONS
EXCLUDETAG/INCLUDETAG are not specified, then the TRANLOGOPIIONS EXCLUDETAG/
INCLUDETAG parameters apply to both DML and DDL operations.

e If the TRANLOGOPTIONS EXCLUDETAG/INCLUDETAG options are specified and DDLOPTIONS
EXCLUDETAG/INCLUDETAG are also specified, then the TRANLOGOPIIONS EXCLUDETAG/
INCLUDETAG apply to DML operations, and the DDLOPTIONS EXCLUDETAG/INCLUDETAG apply
to DDL operations.

e |f the TRANLOGOPTIONS EXCLUDETAG/INCLUDETAG are not specified and DDLOPTIONS
EXCLUDETAG/INCLUDETAG are specified, then the DDLOPTIONS EXCLUDETAG/INCLUDETAG
applies to DDL operations, and there is no tag filtering for DML operations.

e If TRANLOGOPTIONS EXCLUDETAG/INCLUDETAG are not specified and DDLOPTIONS
EXCLUDETAG/INCLUDETAG are also not specified, then the default option DDLOPTIONS
EXCLUDETAG + is applicable, which excludes all tagged DDL operations.

e For DDLOPTIONS when specifying both EXCLUDETAG and INCLUDETAG, then EXCLUDETAG
should come first.

IGNOREMAPPING

Valid for Replicat. Disables the evaluation of hame mapping that determines whether DDL is
of MAPPED or UNMAPPED scope. This option improves performance in like-to-like DDL replication
configurations, where source and target schema names and object names match, and where
mapping functions are therefore unnecessary. With TGNOREMAPPING enabled, MAPPED or

2-57

ORACLE

Chapter 2
DDLOPTIONS

UNMAPPED scope cannot be determined, so all DDL statements are treated as OTHER scope. Do
not use this parameter when source schemas and object names are mapped to different
schema and object names on the target.

MAPDERIVED | NOMAPDERIVED
Valid for Replicat (Oracle). Controls how derived object names are mapped.

MAPDERIVED

If a MAP statement exists for the derived object, the name is mapped to the name specified
in that TARGET clause. Otherwise, the name is mapped to the name specified in the TARGET
clause of the MAP statement that contains the base object. MAPDERIVED is the default.

NOMAPDERIVED
Prevents name mapping. NOMAPDERIVED overrides any explicit MAP statements that contain
the name of the derived object.

For more information about how derived objects are handled during DDL replication, see the
How Oracle GoldenGate Handles Derived Object Names.

MAPSCHEMAS
Valid for Replicat (Oracle and Teradata). Use only when MAPSESSIONSCHEMA is used.

e MAPSESSIONSCHEMA establishes a source-target mapping for session schemas and is used
for objects whose schemas are not qualified in the DDL.

° MAPSCHEMAS maps objects that do have qualified schemas in the source DDL, but which do
not qualify for mapping with MaAP, to the same session-schema mapping as in
MAPSESSIONSCHEMA. Examples of such objects are the Oracle CREATE TABLE AS SELECT
statement, which contains a derived object in the AS SELECT clause, or the Teradata
CREATE REPLICATION RULESET Sstatement.

This mapping takes place after the mapping that is specified in the MAP statement.
As an example, suppose the following DDL statement is issued on a source Oracle database:

create table a.t as select from b.t;

Suppose the MAP statement on the target is as follows:

MAP a.*, TARGET c.*;
DDLOPTIONS MAPSESSIONSCHEMA b, TARGET bl, MAPSCHEMAS

As a result of this mapping, Replicat issues the following DDL statement on the target:

create table c.t as select from bl.t;

* The base table gets mapped according to the TARGET clause (to schema c).

* The qualified derived object (table t in SELECT FROM) gets mapped according to
MAPSESSIONSCHEMA (to schema bl) because MAPSCHEMAS is present.

Without MAPSCHEMAS, the derived object would get mapped to schema c (as specified in the
TARGET clause), because MAPSESSIONSCHEMA alone only maps unqualified objects.

MAPSESSIONSCHEMA source schema TARGET target schema
Valid for Replicat (Oracle only). Enables a source session schema to be mapped to
(transformed to) a different session schema on the target.

* source schema is the session schema that is set with ALTER SESSION set
CURRENT SCHEMA on the source.

2-58

Chapter 2
DDLOPTIONS

* target schema is the session schema that is set with ALTER SESSION set
CURRENT SCHEMA on the target.

Wildcards are not supported. You can use multiple MAPSESSTIONSCHEMA parameters to map
different schemas.

MAPSESSIONSCHEMA overrides any mapping of schema names that is based on master or
derived object names

See the example at the end of this topic for usage.

See also MAPSCHEMAS.

NLSLENGTHSEMANTICS CHAR | BYTE | DEFAULT]

Valid for Replicat (Oracle only).

Allows Replicat to override the NLS LENGTH SEMANTICS Oracle database session parameter
setting that is part of the DDL replication trail file record. For example, if the DDL is run in a
database session with NLS_LENGTH SEMANTICS parameter value as BYTE, then by default,
before Replicat applies the DDL, it will set the database session parameter

NLS LENGTH SEMANTICS to BYTE. To override this, you can set NLSLENGTHSEMANTICS parameter
to CHAR, and before the DDL is applied, the NLS_LENGTH SEMANTICS session parameter is set to
CHAR.

NOAPPLYGLOBALTEMPTABLE
Prevents Replicat from applying Global Temporary Tables (GTT). If this option is not specified,
then Replicat will always apply DDLs to Global Temporary Tables (GTT) from the trail.

NOTAG

Valid for Replicat

Prevents the tagging of DDL that is applied by Replicat with a redo tag (either the default tag
'00" or one set with the DBOPTIONS parameter with the SETTAG option).

The default tag value used by the Replicat is 00, and it can be manually changed by using the
DBOPTIONS SETTAG parameter. See DBOPTIONS.

PASSWORD algorithm ENCRYPTKEY {key name | DEFAULT}
Valid for Extract (Oracle only)
Directs Extract to encrypt all passwords in source DDL before writing the DDL to the trail.

algorithm
Specifies the encryption algorithm to be used to encrypt the password. Valid values are
AES128, AES192, Or AES256.

ENCRYPTKEY key name
Specifies the logical name of a user-created encryption key in an ENCKEYS lookup file.

ENCRYPTKEY DEFAULT
Directs Oracle GoldenGate to use a random key.

REMOVECOMMENTS {BEFORE | AFTER}

(Optional) Valid for Extract and Replicat (Oracle only). Controls whether or not comments are
removed from the DDL operation. By default, comments are not removed, so that they can be
used for string substitution with the DDLSUBST parameter. See "DDLSUBST" for more
information.

REMOVECOMMENTS BEFORE
Removes comments before the DDL operation is processed by Extract or Replicat. They
will not be available for string substitution.

ORACLE 59

ORACLE

Chapter 2
DDLOPTIONS

REMOVECOMMENTS AFTER
Removes comments after they are used for string substitution. This is the default behavior
if REMOVECOMMENTS is not specified.

REPLICATEPASSWORD | NOREPLICATEPASSWORD
Valid for Extract (Oracle only). Applies to the password in a {CREATE | ALTER} USER user
IDENTIFIED BY password command.

* By default (REPLICATEPASSWORD), Oracle GoldenGate uses the source password in the
target CREATE or ALTER Statement.

e To prevent the source password from being sent to the target, use NOREPLICATEPASSWORD.

When using NOREPLICATEPASSWORD, specify a password for the target DDL statement by using
a DDLOPTIONS statement with the DEFAULTUSERPASSWORD Or DEFAULTUSERPASSWORDALIAS option
in the Replicat parameter file.

REPORT | NOREPORT

Valid for Extract and Replicat (Oracle and Teradata). Controls whether or not expanded DDL
processing information is written to the report file. The default of NOREPORT reports basic DDL
statistics. REPORT adds the parameters being used and a step-by-step history of the operations
that were processed.

UPDATEMETADATA

Valid for Replicat (Oracle only). Use in an active-active bi-directional configuration. This
parameter notifies Replicat on the system where DDL originated that this DDL was
propagated to the other system, and that Replicat should now update its object metadata
cache to match the new metadata. This keeps Replicat's metadata cache synchronized with
the current metadata of the local database.

USEPASSWORDVERIFIERLEVEL {10|11}

Only valid in an Oracle to Oracle configuration. Checks if the password verifier being sent in a
DDL CREATE USER statement requires modifying. The reason for this check is because Oracle
has different password verifiers, depending on the database version:

e 10g: A weak verifier kept in user$.password.
e 11g: The SHA-1 verifier.
e 12c: The SHA-2 and HTTP digest verifiers.

The SHA-1, SHA-2 and HTTP verifiers are captured in users.spared in the format of:
'S:<SHA-1-verifier>;H:<http-verifier>;T:<SHA-2-verifier>'. Integrated Extract returns
the following DDL in 12c for create user DDL statements:

. In 12.0.1.0 it returns: CREATE USER username IDENTIFIED BY VALUES
'S:SHA-1;H: http;weak'.

* |n 12.0.2.0 and later it returns: CREATE USER username IDENTIFIED BY VALUES
'S:SHA-1;H: http;T: SHA-2; weak'.

If Replicat runs against Oracle 12c, these forms of CREATE USER are handled at the RDBMS
level, but if Replicat runs against Oracle 10g or 11, these forms are not handled by the
RDBMS. Oracle 10g only accepts the weak verifier, whereas Oracle 11g only accepts the
S:SHA-1 and weak verifiers.

To allow the CREATE USER DDL generated for an Extract connected to Oracle 12¢ to work with
a Replicat connected to Oracle 10g or 119, this parameter can be used to filter out the
unwanted verifiers, as follows:

2-60

ORACLE

Chapter 2
DDLOPTIONS

e If USEPASSWORDVERIFIERLEVEL is set to 10, everything except the weak verifier is filtered
out of the CREATE USER DDL verification string.

e |f USEPASSWORDVERIFIERLEVEL is set to 11, everything except the S:sHA-1 and weak
verifiers is filtered out of the CREATE USER DDL verification string.

Examples

Example 1

The following shows how MAPSESSTONSCHEMA works to allow mapping of a source session
schema to another schema on the target.

Assume the following DDL capture and mapping configurations in Extract and Replicat:
Extract:

DDL INCLUDE OBJNAME SRC.* INCLUDE OBJNAME SRCI1.*
TABLE SRC.*;
TABLE SRC1.*;
DDL INCLUDE OBJNAME SRC.* INCLUDE OBJNAME SRCI1.*
TABLE SRC.*;
TABLE SRC1.*;

Replicat:

DDLOPTIONS MAPSESSIONSCHEMA SRC TARGET DST
DDLOPTIONS MAPSESSIONSCHEMA SRC1 TARGET DST1
MAP SRC.*, TARGET DST.*;

MAP SRC1.*, TARGET DST1.*;

DDL INCLUDE OBJNAME DST.* INCLUDE OBJNAME DSTI1.*

Assume that the following DDL statements are issued by the logged-in user on the source:

ALTER SESSION SET CURRENT SCHEMA=SRC;
CREATE TABLE tab (X NUMBER);
CREATE TABLE SRCl.tab (X NUMBER) AS SELECT * FROM tab;

Replicat will perform the DDL as follows (explanations precede each code segment):

-- Set session to DST, because SRC.* is mapped to DST.* in MAP statement.
ALTER SESION SET CURRENT SCHEMA=DST;

-- Create the first TAB table in the DST schema, using the DST session schema.
CREATE TABLE DST.tab (X NUMBER);

-- Restore Replicat schema.

ALTER SESSION SET CURRENT SCHEMA=REPUSER

-- Set session schema to DST, per MAPSESSIONSCHEMA, so that AS SELECT succeeds.
ALTER SESION SET CURRENT SCHEMA=DST;

-- Create the DST1.TAB table AS SELECT * FROM the first table (DST.TAB).
CREATE TABLE DST1l.tab (X NUMBER) AS SELECT * FROM tab;

-- Restore Replicat schema.

ALTER SESSION SET CURRENT SCHEMA=REPUSER

Without MAPSESSTONSCHEMA, the SELECT * FROM TAB would attempt to select from a non-
existent SRC. TAB table and fail. The default is to apply the source schema to unqualified
objects in a target DDL statement. The DDL statement in that case would look as follows and
would fail:

-- Set session to DST, because SRC.* is mapped to DST.* in MAP statement.
ALTER SESION SET CURRENT SCHEMA=DST;

-- Create the first TAB table in the DST schema, using the DST session schema.
CREATE TABLE DST.tab (X NUMBER);

-- Restore Replicat schema.

2-61

Chapter 2
DDLSUBST

ALTER SESSION SET CURRENT SCHEMA=REPUSER

-- Set session schema to SRC, because TAB in the AS SELECT is unqualified-- and SRC is
the source session schema.

ALTER SESION SET CURRENT SCHEMA=SRC;

-- Create DST1.TAB AS SELECT * from SRC.TAB (SRC=current session schema).

CREATE TABLE DSTl.tab (X NUMBER) AS SELECT * FROM tab;

-- SRC.TAB does not exist.

-- Abend with an error unless the error is handled by a DDLERROR statement.

Example 2

The following shows how to use DEFAULTUSERPASSWORDALIAS to specify a different password
for a replicated {CREATE | ALTER} USER name IDENTIFIED BY password Statement from the
one used in the source statement. In this example, the alias ddlalias is in the target domain
in the credential store.

DDLOPTIONS DEFAULTUSERPASSWORDALIAS ddlalias DOMAIN target

DDLSUBST

Valid For

Extract and Replicat

Description

Use the DDLSUBST parameter to substitute strings in a DDL operation. For example, you could
substitute one table name for another or substitute a string within comments. The search is not
case-sensitive. To represent a quotation mark in a string, use a double quote mark.

Guidelines for Using DDLSUBST

Do not use DDLSUBST to convert column names and data types to something different on
the target. Changing the structure of a target object in this manner will cause errors when
data is replicated to it. Likewise, do not use DDLSUBST to change owner and table names in
a target DDL statement. Always use a MAP statement to map a replicated DDL operation to
a different target object.

* DDLSUBST always executes after the DDL parameter, regardless of their relative order in the
parameter file. Because the filtering executes first, use filtering criteria that is compatible
with the criteria that you are using for string substitution. For example, consider the
following parameter statements:

DDL INCLUDE OBJNAME fin.*
DDLSUBST 'cust' WITH 'customers' INCLUDE OBJNAME sales.*

In this example, no substitution occurs because the objects in the INCLUDE and DDLSUBST
statements are different. The fin-owned objects are included in the Oracle GoldenGate
DDL configuration, but the sales-owned objects are not.

e You can use multiple DDLSUBST parameters. They execute in the order listed in the
parameter file.

e For Oracle DDL that includes comments, do not use the DDLOPTIONS parameter with the
REMOVECOMMENTS BEFORE option if you will be doing string substitution on those comments.
REMOVECOMMENTS BEFORE removes comments before string substitution occurs. To remove
comments, but allow string substitution, use the REMOVECOMMENTS AFTER option.

ORACLE 562

Chapter 2
DDLTABLE

e There is no maximum string size for substitutions, other than the limit that is imposed by
the database. If the string size exceeds the database limit, the Extract or Replicat process
that is executing the operation abends.

Default

No substitution

Syntax

DDLSUBST 'search string' WITH 'replace string'
[INCLUDE inclusion clause | EXCLUDE exclusion clause]

'search string'
The string in the source DDL statement that you want to replace. Enclose the string within
single quote marks. To represent a quotation mark in a string, use a double quotation mark.

WITH
Required keyword.

'replace string'
The string that you want to use as the replacement in the target DDL. Enclose the string within
single quote marks. To represent a quotation mark in a string, use a double quotation mark.

INCLUDE inclusion _clause | EXCLUDE exclusion clause
Specifies one or more INCLUDE and EXCLUDE statements to filter the DDL operations for which
the string substitution rules are applied. See "DDL Filtering Options" for syntax and usage.

Examples

Example 1
The following replaces the string cust with the string customers for tables in the fin schema.

DDLSUBST 'cust' WITH 'customers'
INCLUDE ALL OBJTYPE 'table' OBJNAME fin.*

Example 2
The following substitutes a new directory only if the bbL. command includes the word logfile.
If the search string is found multiple times, the replacement string is inserted multiple times.

DDLSUBST '/filel/locationl' WITH '/file2/location2' INCLUDE INSTR 'logfile'

Example 3
The following uses multiple DDLSUBST statements, which execute in the order shown.

DDLSUBST 'a' WITH 'b' INCLUDE ALL
DDLSUBST 'b' WITH 'c' INCLUDE ALL

The net effect of the preceding substitutes all a and b strings with c.

DDLTABLE

Valid For
DB2 z/OS

ORACLE 563

Chapter 2
DECRYPTTRAIL

Description

This is a GLOBALS parameter. Use the DDLTABLE parameter to specify the name of the DDL
history table, if other than the default of GGS_DDL HIST. The DDL history table stores a history
of DDL operations processed by Oracle GoldenGate.

In DB2 z/OS, an acceptable value is a valid DB2 z/OS table name.

Default

GGS_DDL_HIST

Syntax

DDLTABLE table name

table name

The fully qualified name of the DDL history table. This can be a two-part name (schema. table)
or a three-part name, if stored in a container database (container. schema. table).

Example

DDLTABLE GG_DDL HISTORY

DECRYPTTRAIL

ORACLE

Valid For

Replicat

Description

Use the DECRYPTTRAIL parameter to decrypt data in a trail or Extract file. This parameter is
required in the following cases:

* If the trail was encrypted with the encryption profile method, use DECRYPTTRAIL to decrypt
trail on the Replicat side.

» If the trail was encrypted with the ENCKEYS method for the HP NonStop platform, use the
DECRYPTTRAIL for Replicat to decrypt the data before applying it to the target.

Data encryption is controlled by the ENCRYPTTRAIL | NOENCRYPTTRAIL parameters.

For Oracle, if you are using wallet based encryption DECRYPTTRAIL does not require a cipher
because it is recorded in the trail file header.

Default

None
Syntax

DECRYPTTRAIL ({AES128 | AES192 | AES256}, KEYNAME name)

DECRYPTTRAIL
Valid without any other options only if the trail or file was encrypted with ENCRYPTTRAIL without
options to use 256-key byte substitution.

2-64

Chapter 2
DEFERAPPLYINTERVAL

{AES128 | AES192 | AES256}

Valid for Encryption Profile and ENCKEYS methods.

When using the Encryption Profile method, then you need to create an encryption profile in
advance and associate it with the Replicat.

When using the ENCKEYS method, an ENCKEYS file that has the master key must exist in
the deployment home/etc/cont/ogg directory.

KEYNAME name

The KEYNAME option is only required when the trail files from HP NonStop systems are
encrypted using the ENCKEY option. See DECRYPTTRAIL in Reference Guide for Oracle
GoldenGate for HP NonStop (Guardian)

Example

Example 1
The following is an example of the encryption profile method.

DECRYPTTRAIL AES192

Example 2
The following decrypts using the ENCKEYS method.

DECRYPTTRAIL AES192, KEYNAME mykeyl

DEFERAPPLYINTERVAL

Valid For

Replicat

Description

Use the DEFERAPPLYINTERVAL parameter to set an amount of time that Replicat waits before
applying captured transactions to the target database. To determine when to apply the
transaction, Replicat adds the delay value to the commit timestamp of the source transaction,
as recorded in the local GMT time of the source system.

You can use DEFERAPPLYINTERVAL for such purposes as to prevent the propagation of
erroneous changes made to the source data, to control data arrival across different time zones,
and to allow time for other planned events to occur before the data is applied to the target.
Note that by using DEFERAPPLYINTERVAL, You are purposely building latency into the target
data, and it should be used with caution if the target applications are time-sensitive.

To find out if Replicat is deferring operations, use the SEND REPLICAT command with the STATUS
option and look for a status of Waiting on deferred apply.

If you want to stop a process (like the Replicat) at a specific time, use the END parameter.

ORACLE 565

Chapter 2
DEFSFILE

Note:

If the TCPSOURCETIMER parameter is in use, it is possible that the timestamps of the
source and target transactions could vary by a few seconds, causing Replicat to hold
its transaction (and hence row locks) open for a few seconds. This small variance
should not have a noticeable affect on performance.

Default

0 (no delay)

Syntax

DEFERAPPLYINTERVAL n unit

n
A numeric value for the amount of time to delay. The minimum delay time is the value that is
set for the EOFDELAY parameter. The maximum delay time is seven days.

unit
The unit of time for the delay. Can be:

S | SEC | SECS | SECOND | SECONDS | MIN | MINS | MINUTE | MINUTES | HOUR | HOURS | DAY
| DAYS

Example
This example directs Replicat to wait ten hours before posting its transactions.

DEFERAPPLYINTERVAL 10 HOURS

If a transaction completes at 08:00:00 source GMT time, and the delay time is 10 hours, the
transaction will be applied to the target at 18:00:00 target GMT time the same day.

DEFSFILE

ORACLE

Valid For

DEFGEN

Description

Use the DEFSFILE parameter to identify the name of the file to which DEFGEN will write data
definitions. By default, the data definitions file is written in the character set of the local
operating system. You can change the character set with the CHARSET option.

Default

None

Syntax

DEFSFILE file name [APPEND | PURGE] [CHARSET character set] [FORMAT RELEASE major.minor]

file name
The relative or fully qualified file name. The file is created when you run DEFGEN.

2-66

ORACLE

Chapter 2
DEFSFILE

APPEND

Directs DEFGEN to write new content (from the current run) at the end of any existing content, if
the specified file already exists. If the definitions file already exists, but is of an older Oracle
GoldenGate release version, you can set the FORMAT RELEASE option to the same version as
the existing file to prevent errors. Otherwise, DEFGEN will try to add newer metadata features
and abend. The following are the restrictions when using APPEND:

* If the existing data definitions file is in a format older than Oracle GoldenGate 11.2.1,
DEFGEN appends the table definitions in the old format, where table and column names
with multi-byte and special characters are not supported.

* If the existing data definitions file is in the newer format introduced in version 11.2.1,
DEFGEN appends the table definitions in the existing character set of the file.

« If the existing file is from version 11.2 or earlier, it was written when DEFGEN did not support
three-part object names and will cause an error if the new metadata contains three-part
names. You can specify objects from an Oracle container database if you remove the
container or catalog portion by using the NOCATALOG parameter in the DEFGEN parameter
file.

PURGE

Directs DEFGEN to purge the specified file before writing new content from the current run.
When using PURGE, you can overwrite an existing definitions file that was created by an older
version of DEFGEN with newer metadata that supports newer features, such as three-part object
names.

CHARSET character_set

Generates the definitions file in the specified character set. Without CHARSET, the default
character set of the operating system is used. If APPEND mode is specified for a definitions file
that is version 11.2.1 or later, CHARSET is ignored, and the character set of the existing
definitions file is used.

FORMAT RELEASE major.minor

Specifies the metadata format of the definitions that are sent by DEFGEN to the definitions file.
The metadata tells the reader process whether the file records are of a version that it
supports. The metadata format depends on the version of the Oracle GoldenGate process.
Older Oracle GoldenGate versions contain different metadata than newer ones. Use FORMAT
when the definitions file will be used by a process that is of an older Oracle GoldenGate
version than the current one.

° FORMAT is a required keyword.

° RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 9.0 through the
current Oracle GoldenGate X.x version number, for example 11.2 or 12.1. (If you use an
Oracle GoldenGate version that is earlier than 9.0, specify either 9.0 or 9.5.)

The release version is programmatically mapped back to an appropriate internal
compatibility level. The default is the current version of the process that writes to this trail.
Note that RELEASE versions earlier than 12.1 do not support three-part object names.

FORMAT RELEASE major.minor

Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a remote
task) to another process. The metadata tells the reader process whether the data records are
of a version that it supports. The metadata format depends on the version of the Oracle
GoldenGate process. Older Oracle GoldenGate versions contain different metadata than
newer ones.

2-67

Chapter 2
DIAGLOGRECS

FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 11.1 through the
current Oracle GoldenGate X.x version number, for example 11.2 or 12.1. The release version
is programmatically mapped back to the appropriate trail format compatibility level. The default
is the current version of the process that writes to this trail.

Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the same
can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

* For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1, FORMAT
RELEASE 12.2 or above is supported.

* For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.2, FORMAT
RELEASE 12.2 or above is supported.

e For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2, only FORMAT
RELEASE values 12.3 or higher are supported. This is due to the use of local undo for
PDBs, which requires augmenting the transaction ID with the PDB number to ensure
unigueness of trx IDs.

Example

DEFSFILE ./dirdef/orcldef CHARSET ISO-8859-11 FORMAT RELEASE 11.2

DIAGLOGRECS

ORACLE

Valid For
Valid for DB2 z/OS.

Description

This parameter enables a diagnostic dump of all log records read by the Extract. This implies
that the parameter, if set to true, will produce the log record trace, independent of the activity
trace.

The log record trace is used to determine issues with log records that the Extract cannot
process and other issues like sequence errors or changes in the log.

Syntax

DIAGLOGRECS true | false

The parameter provides the true or false option. The default value is false.

2-68

Chapter 2
DICTIONARY_CACHE_SIZE

DICTIONARY_CACHE_SIZE

Valid For

Valid for Extract.

Description

The dictionary cache size (default 5000) parameter sets the LogMiner dictionary cache
size.

The cache size can become a limiting factor during heavy DDL workloads causing LogMiner
builder to become CPU-bound and messages in trace file indicating dictionary objects being
reloaded.

This example explains such a situation:

krvrdgcidi GetChunkIdInt: loaded obj 137584, scn 0x000000001£f65a041, beg scn
0x000000001cl16a034, end scn Oxffffffffffffffff, tsn 6, SOESMALLTS, chunk O

DISCARDFILE | NODISCARDFILE

ORACLE

Valid For

Extract and Replicat

Description
Use the DISCARDFILE parameter to do the following:

e Customize the name, location, size, and write mode of the discard file. By default, a
discard file is generated whenever a process is started with the START command. To retain
the default properties, a DISCARDFILE parameter is not required.

» Specify the use of a discard file for processing methods where the process starts from the
command line of the operating system and a discard file is not created by default.

Use the NODISCARDFILE parameter to disable the use of a discard file. If NODISCARDFILE is used
with DISCARDFILE, the process abends.

When using DISCARDFILE, use either the PURGE or APPEND option. Otherwise, you must specify
a different discard file name before starting each process run, because Oracle GoldenGate will
not write to an existing discard file without one of these instructions and will terminate.

See "DISCARDROLLOVER" for how to control how often the discard file is rolled over to a new
file.

For more information about the discard file, see Overview of Oracle GoldenGate Error
Handling.

Default
If a process is started with the START command, it generates a discard file as follows:

* The file is named after the process that creates it, with a .dsc extension. If the process is a
coordinated Replicat, it generates one file per thread. Each file name is appended with the
thread ID of the corresponding thread.

2-69

ORACLE

Chapter 2
DISCARDFILE | NODISCARDFILE

e The file is created in the dirrpt sub-directory of the Oracle GoldenGate installation
directory.

e The maximum file size is 50 MB.
e At startup, if a discard file exists, it is purged before new data is written.
e The maximum filename is 250 characters including the directory.

When you start a process from the command line of the operating system, you should not
generate a discard file by default.

Syntax

DISCARDFILE { [file name]

[, APPEND | PURGE]

[, MAXBYTES n | MEGABYTES n] } |
NODISCARDFILE

DISCARDFILE
Indicates that the name or other attribute of the discard file is being changed.

file name

The relative or fully qualified name of the discard file, including the actual file name. For a
coordinated Replicat, specify a file name of up to five characters, because each file name is
appended with the thread ID of the thread that writes it. To store the file in the Oracle
GoldenGate directory, a relative path name is sufficient, because Oracle GoldenGate qualifies
the name with the Oracle GoldenGate installation directory.

APPEND
Adds new content to existing content if the file already exists. If neither APPEND nor PURGE is
used, you must specify a different discard file name before starting each process run.

PURGE
Purges the file before writing new content. If neither PURGE nor APPEND is used, you must
specify a different discard file name before starting each process run.

MAXBYTES n
Sets the maximum size of the file in bytes. The valid range is from 1 to 4096967295. The
default is 3000000. If the specified size is exceeded, the process abends.

MEGABYTES n
Sets the maximum size of the file in megabytes. The valid range is from 1 to 4096. The default
is 3. If the specified size is exceeded, the process abends.

NODISCARDFILE
Prevents the process from creating a discard file.

Example

Example 1

This example specifies a non-default file name and extension, non-default write mode, and
non-default maximum file size. This example shows how you could change the default
properties of a discard file for an online process or specify the use of a discard file for a
process that starts from the command line of the operating system and has no discard file by
default.

DISCARDFILE .dirrpt/discard.txt, APPEND, MEGABYTES 20

2-70

Chapter 2
DISCARDROLLOVER

Example 2
This example changes only the write mode of the default discard file for an online process.

DISCARDFILE .dirrpt/finance.dsc, APPEND

Example 3
This example disables the use of a discard file for an online process.

NODISCARDFILE

DISCARDROLLOVER

ORACLE

Valid For

Extract and Replicat

Description

Use the DISCARDROLLOVER parameter to set a schedule for aging discard files. For long or
continuous runs, setting an aging schedule prevents the discard file from filling up and causing
the process to abend, and it provides a predictable set of archives that can be included in your
archiving routine.

When the DISCARDROLLOVER age point is reached, a new discard file is created, and old files
are renamed in the format of GROUPn.extension, where:

* GROUPis the name of the Extract or Replicat group.

* nis anumber that gets incremented by one each time a new file is created, for example:
myext0.dsc, myextl.dsc, myext2.dsc, and so forth.

* extensionis the file extension, such as .dsc.

You can specify a time of day, a day of the week, or both. Specifying just a time of day (AT
option) without a day of the week (ON option) generates a discard file at the specified time
every day.

Discard files roll over at the start of a process run. However, if APPEND or PURGE is specified in
DISCARDFILE parameter, then discard files don't roll over at the start of a process.

If the NODISCARDFILE parameter is used with the DISCARDROLLOVER parameter, the process
abends.

For more information about the discard file, see Overview of Oracle GoldenGate Error
Handling.

Default

Disabled. By default, discard files are rolled over when a process starts.

Syntax

DISCARDROLLOVER
{AT hh:mi |

ON day |

AT hh:mm ON day}

AT hh:mi
The time of day to age the file.
Valid values:

2-71

e hhis an hour of the day from 00 through 23.

e mmis minutes from 00 through 59.

ON day
The day of the week to age the file.
Valid values:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

They are not case-sensitive.
Examples

Example 1

DISCARDROLLOVER AT 05:30

Example 2

DISCARDROLLOVER ON friday

Example 3

DISCARDROLLOVER AT 05:30 ON friday

DYNAMICRESOLUTION

ORACLE

Valid For

Extract and Replicat

Description

Chapter 2
DYNAMICRESOLUTION

Use the DYNAMICRESOLUTION parameter to control how table names are resolved.

DYNAMICRESOLUTION, the default, enables fast process startup when there are numerous tables
specified in TABLE or MAP statements. To get metadata for transaction records that it needs to
process, Oracle GoldenGate queries the database and then builds a record of the tables that
are involved. DYNAMICRESOLUTION causes the record to be built one table at a time, instead of
all at once. The metadata of any given table is added when Extract first encounters the object
ID in the transaction log, while record-building for other tables is deferred until their object IDs
are encountered. DYNAMICRESOLUTION is the same as WILDCARDRESOLVE DYNAMIC.

See "WILDCARDRESOLVE" for more information.

Default

DYNAMICRESOLUTION

Syntax

DYNAMICRESOLUTION

2-72

Chapter 2
EBCDICTOASCII

EBCDICTOASCI

Valid For

Extract data pump and Replicat

Description

Use the EBCDICTOASCII parameter to convert character data in the input trail from EBCDIC to
ASCII format when sending it to a DB2 target database on a z/OS system. This parameter can
be specified to request conversion of all EBCDIC columns and user token data to ASCII. This
parameter must precede the SOURCEDB parameter. This parameter is only needed if the input
trail file was created by an Extract version prior to v10.0. It is ignored for all other cases,
because the conversion is done automatically.

This parameter should be used in the TRANLOG Extract. It is not valid for Extract data pumps.

Default

None

Syntax

EBCDICTOASCII

ENABLEMONITORING

Valid For
GLOBALS

Description

Use the ENABLEMONITORING parameter to enable the monitoring of Oracle GoldenGate
instances from Oracle GoldenGate Monitor and collect trend data for Performance Metrics
Service.

Performance Metrics Server is used to monitor processes or services and collect statistics.
Starting with Oracle GoldenGate 21c, Unix Domain Sockets (UDS) is used to communicate
with the local Performance Metrics Service.

UDS is the default mode in Performance Metrics Service. This feature is applicable for Oracle
GoldenGate Microservices Architecture for Oracle and non-Oracle databases.

For operating systems such as Windows and others, which do not support UDS, UDP would
continue to be used. If you are working on operating systems that don't support UDS, you need
to set the ENABLEMONITORING UDP parameter before starting the server in legacy, to bring up the
PMSRVR GLOBALS parameter. For Oracle GoldenGate MA it is done by default. For details, see
Protocols for Performance Monitoring for Different Operating Systems in Oracle GoldenGate
Microservices Architecture.

ORACLE 573

Chapter 2
ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT TABLE

Note:

When monitoring is enabled on a UNIX system for a high number of Oracle
GoldenGate processes (approximately 400), the system-imposed limit on the
maximum amount of allowed shared memory may be exceeded. The message
returned by Manager is similar to this:

WARNING OGG-01934 Datastore repair failed" reported during "start...

If this occurs, increase the kernel parameter kernel.shmall by eight times the
default for the operating system.

Default
Disabled

Syntax

ENABLEMONITORING
[UDP]
[UDPPORT portnumber]
[HTTPPORT portnumber]

UDPPORT portnumber

Valid with upp for monitoring with a Performance Metrics Server (PMSRVR) on Windows and
other operating systems that don't support UDS.

The UDP listening port. It is optional. If provided, it overrides the existing GLOBALS
parameter,REPOUDPPORT. If not provided, it uses the value of REPOUDPPORT as the port number.
You can change the UDP port of a PMSRVR in a secure deployment by adding the repoUDPPORT
parameter to the GLOBALS file. For more information on configuring the UDP and TCP ports for
PMSRVR, see Add a Deployment.

HTTPPORT portnumber

Valid with UDP for monitoring with a Performance Metrics Server. Not valid for the BDB or
LMDB monitoring modes.

The HTTP listening port for the service. It is optional. If not provided, 9004 is the default port
number.

ENABLE_HEARTBEAT TABLE |
DISABLE_HEARTBEAT TABLE

ORACLE

Valid For
Extract, Replicat, and GLOBALS

Description

The ENABLE HEARTBEAT TABLE and DISABLE HEARTBEAT TABLE commands specify whether the
Oracle GoldenGate process will be handling records from GG_HEARTBEAT table or not. When
specified as a GLOBALS, it is true for the entire installation unless overridden by a specific
process.

2-74

Chapter 2
ENCRYPTTRAIL | NOENCRYPTTRAIL

Default

ENABLE HEARTBEAT TABLE

Syntax
ENABLE HEARTBEAT TABLE | DISABLE HEARTBEAT TABLE
ENABLE HEARTBEAT TABLE

Enables Oracle GoldenGate processes to handle records from a GG_HEARTBEAT table. This is
the default.

DISABLE_HEARTBEAT TABLE
Disables Oracle GoldenGate processes from handing records from a GG_HEARTBEAT table

ENCRYPTTRAIL | NOENCRYPTTRAIL

ORACLE

Valid For

Extract

Description

The encryption profile must be set up before using the ENCRYPTTRAIL parameter for encrypting
trail files. The encryption profile contains information about the location of the master key
and how Oracle GoldenGate will use it. See What is an Encryption Profile? in Oracle
GoldenGate Microservices Documentation to know more.

Use the ENCRYPTTRAIL and NOENCRYPTTRAIL parameters to control whether Oracle GoldenGate
encrypts or does not encrypt trail data that is written to a trail or Extract file.

Use the EXTTRAIL parameter in your Extract parameter file for encrypting trails.

Note:

When using the ENCRYPTRAIL parameter with the EXTTRAIL parameter, ensure that
the ENCRYPTRAIL parameter is mentioned before EXTTRAIL, else the trail will not be
encrypted.

ENCRYPTTRAIL and NOENCRYPTTRAIL are trail or file-specific. One affects all subsequent trail or
Extract file specifications in the parameter file until the other parameter is encountered. The
parameter must be placed before the parameter entry for the trail that it will affect.

ENCRYPTTRAIL and NOENCRYPTTRAIL cannot be used when FORMATASCII is used to write data to
a file in ASCII format. The trail file must be written in the default Oracle GoldenGate canonical
format.

ENCRYPTTRAIL encrypts the trail data across all data links and within the files themselves. Only
the data blocks are encrypted. User tokens are not encrypted.

Default

NOENCRYPTTRAIL

2-75

ORACLE

Chapter 2
ENCRYPTTRAIL | NOENCRYPTTRAIL

Syntax

ENCRYPTTRAIL (AES)

ENCRYPTTRAIL (AES)

ENCRYPTTRAIL without options specifies 256-key byte substitution AES256 as the default for all
database types except the NonStop platform because Advanced Encryption Standard (AES)
encryption is not supported on that platform.

It's mandatory to provide a value for the ENCRYPTTRAIL parameter, otherwise Extract will
abend.

ENCRYPTTRAIL supports AES 128, AES 192, AES 256 (Master key and wallet method)
encryption. Use the master key based on the encryption profile. AES includes encryption key
length to use. This is a symmetric-key encryption standard that is used by governments and
other organizations that require a high degree of data security.

e AES128 has a 128-bit block size with a key size of 128 hits.
e AES192 has a 192-bit block size with a key size of 192 bits.
* AES256 has a 256-bit block size with a key size of 256 bits.

To use AES encryption for any database other than Oracle on a 32-bit platform, the path of
the /1ib sub-directory of the Oracle GoldenGate installation directory must be specified as an
environment variable before starting any processes. This is not required on 64-bit platforms.
Set the path as follows:

* Linux: Specify the path as an entry to the LD LIBRARY PATHvariable. For example:
setenv LD LIBRARY PATH ./lib:$LD LIBRARY PATH

* For Solaris: Specify the path as an entry to the SHLIB PATH variable.
* For IBMi and AlIX: Specify the path as an entry to the LIBPATH variable.
e For Windows: Add the path to the PATH variable.

You can use the SETENV parameter to set it as a session variable for the process.

NOENCRYPTTRAIL
Prevents the trail from being encrypted. This is the default.

Examples

Example 1

In the following example, the master key and wallet method is used. The Extract process
writes to two trails. The data for the emp table is written to trail /home/ggsora/dirdat/em,
which is encrypted with the AES-192 cipher. The data for the stores table is written to trail /
home/ggsora/dirdat/st, which is not encrypted.

ENCRYPTTRAIL AES192

EXTTRAIL /home/ggsora/dirdat/em
TABLE hr.emp;

NOENCRYPTTRAIL

EXTTRAIL /home/ggsora/dirdat/st
TABLE ops.stores;

2-76

Chapter 2
END

Example 2
As an alternative to the preceding example, you can omit NOENCRYPTTRAIL if you list all non-
encrypted trails before the ENCRYPTTRAIL parameter.

EXTTRAIL /home/ggsora/dirdat/st
TABLE ops.stores;

ENCRYPTTRAIL AES192

EXTTRAIL /home/ggsora/dirdat/em
TABLE hr.emp;

END

Valid For

Replicat

Description

Use the END parameter to terminate Replicat when it encounters the first record in the data
source whose timestamp is the specified point in time.

You can only use END with the SPECIALRUN parameter. This parameter allows you to post data
as a point-in-time snapshot, rather than continuously updating the target tables.

Without END, the process runs continuously until:

* the end of the trail is reached, at which point it will stop gracefully.

* manually terminated from the command shell.

Default

Continuous processing
Syntax

END {date [time] | RUNTIME}

date [time]

Causes Replicat to terminate when it reaches a record in the data source whose timestamp
exceeds the one that is specified with this parameter.

Valid values:

e dateis a date in the format of yyyy-mm-dd.

e timeis the time in the format of hh:mi[:ss[.cccccc]] based on a 24-hour clock.

RUNTIME

Causes Replicat to terminate when it reaches a record in the data source whose timestamp
exceeds the current date and clock time. All unprocessed records with timestamps up to this
point in time are processed. One advantage of using RUNTIME is that you do not have to alter
the parameter file to change dates and times from run to run. Instead, you can control the
process start time within your batch programming.

ORACLE 2-77

Chapter 2
EOFDELAY | EOFDELAYCSECS

Examples

Example 1
SPECIALRUN
END 2010-12-31 17:00:00
Example 2

SPECIALRUN
END RUNTIME

EOFDELAY | EOFDELAYCSECS

Valid For

Extract and Replicat

Description

Use the EOFDELAY Or EOFDELAYCSECS parameter to control how often Extract or Replicat checks
for new data after it has reached the end of the current data in its data source. You can reduce
the system 1/O overhead of these reads by increasing the value of this parameter.

Note:

Large increases can increase the latency of the target data, especially when the
activity on the source database is low

This parameter is not valid when SOURCEISTABLE is used. This parameter cannot be set to zero

(0).
Default

The minimum is 1 second (1 second or 100 centiseconds ; the maximum is 60 seconds (60
seconds or 6000 centiseconds). It can be set to 1 (which is 1 centisecond) but should never be
set to below 3.

Syntax
EOFDELAY seconds | EOFDELAYCSECS centiseconds

seconds
The delay, in seconds, before searching for data to process.

centiseconds
The delay, in centiseconds, before searching for data to process.

Example

EOFDELAY 3

EXCLUDEHIDDENCOLUMNS

ORACLE

2-78

Chapter 2
EXCLUDETAG

Valid For

Oracle Integrated Extract Capture; It's not valid for data pump.

Description

The parameter disables all the Oracle hidden columns including the timestamp columns
created using automatic CDR. The parameter requires Oracle GoldenGate 12c¢ (12.2.01)
format trail or higher and must not specify the NO OBJECTDEFES parameter. The userexit
callback structure has the hidden column attributes and callback structure version is 5. You can
specify the parameter at any location of the parameter file, as long as it is after the EXTRACT
group parameter.

Syntax

EXTRACT extl...
EXCLUDEHIDDENCOLUMNS
EXTTRAIL ./dirdat/al
TABLE src.tabl;

EXCLUDETAG

ORACLE

Valid For
(Oracle) Extract and Replicat

(All databases) Extract or Replicat

Description

Use EXCLUDETAG tag in your Extract or Replicat parameter file to specify changes to be
excluded from trail files. The limitation for this parameter is that the tag value can be up to
2000 hexadecimal digits (0-9A-F) or the plus sign (+). You can have multiple EXCLUDETAG lines,
but each ExCLUDETAG should have a single value. By default, Replicat the individual records
every change it applies to the database by 00 in both classic mode or integrated mode.
Compared with older versions, new trail file contains tag tokens, which would not introduce
problems for older trail readers.

Use EXCLUDETAG + to ignore the individual records that are tagged with any redo tag.
Do not use NULL with tag or + because it operates in conflict resulting in errors.

To tag the individual records, use the DBOPTIONS parameter with the SETTAG option in the
Replicat parameter file. Use these parameters to prevent cycling (loop-back) of Replicat the
individual records in a bi-directional configuration or to filter other transactions from capture.
The default SETTAG value is 00 and this is the tag that Replicat uses when applying
transactions to the target Oracle database.

Valid value is any single Oracle Streams tag. A tag value can be up to 2000 hexadecimal digits
(0-9 A-F) long.

2-79

Chapter 2
EXCLUDEWILDCARDOBJECTSONLY

Note:

These parameters should be used instead of EXCLUDEUSER Or TRACETABLE when
possible.

Default

None

Syntax

[EXCLUDETAG [tag | NULL] | [+]
Example 1

For Replicat:

excludetag tag

EXCLUDEWILDCARDOBJECTSONLY

ORACLE

Valid For
GLOBALS

Description

Use the EXCLUDEWILDCARDOBJECTSONLY parameter to force the inclusion of non-wildcarded
source objects specified in TABLE or MAP parameters when an exclusion parameter contains a
wildcard that otherwise would exclude that object. Exclusion parameters are CATALOGEXCLUDE,
SCHEMAEXCLUDE, MAPEXCLUDE, and TABLEEXCLUDE.

The exclusion parameters get evaluated and satisfied before the TABLE or MAP statements.
Without EXCLUDEWILDCARDOBJECTSONLY, it would be possible for an object in a TABLE or MAP
statement to be wrongly excluded because it satisfies the wildcard in the exclude specification.
For EXCLUDEWILDCARDOBJECTSONLY to work on an object, that object must be explicitly named
without using wildcards in any of the name components.

Default

None

Syntax

EXCLUDEWILDCARDOBJECTSONLY

Example

In this example, schemal.src tablel is included in processing because the TABLEEXCLUDE
parameter is wildcarded and the TABLE specification is not wildcarded. Without
EXCLUDEWILDCARDOBJECTSONLY, schemal.src_tablel would be excluded because of the
wildcard specification in TABLEEXCLUDE.

TABLEEXCLUDE schemal.src table*;
TABLE schemal.src tablel;

2-80

EXTFILE

ORACLE

Chapter 2
EXTFILE

Valid For

Extract and Replicat

Description

Use the EXTFILE parameter to specify an extract file on the local system that will be created by
an initial load Extract and read by an initial load Replicat when SPECIALRUN is used.

Use this parameter for initial load configurations. For online change synchronization, use the
EXTTRAIL parameter.

EXTFILE must precede all associated TABLE or MAP statements. Multiple EXTFILE statements
can be used to define different files.

Replicat only supports the file name value and no options.

You can encrypt the data in this file by using the ENCRYPTTRAIL parameter. See "ENCRYPTTRAIL
| NOENCRYPTTRAIL" for more information.

Default

None

Syntax

EXTFILE file name

APPEND]

, PURGE]

, FORMAT RELEASE major.minor]

, MEGABYTES megabytes]

, OBJECTDEFS | NO OBJECTDEFS]

, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

file name

The relative or fully qualified name of the trail. Use only two characters for the trail name. If
you use more than two characters, it will create the file with that name but without any
sequence number.. As trail files are aged, a six-character sequence number will be added to
this name, for example /ogg/dirdat/ef000001. If using FORMAT RELEASE 12.2 or earlier, the
trail file created is a static file that does not increment, and the naming convention is not
limited to two characters.

APPEND
Adds the current data to existing data in the file. If you use APPEND, do not use PURGE.

PURGE
Deletes an existing file before creating a new one. If you use PURGE, do not use APPEND.

FORMAT RELEASE major.minor

Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a remote
task) to another process. The metadata tells the reader process whether the data records are
of a version that it supports. The metadata format depends on the version of the Oracle
GoldenGate process. Older Oracle GoldenGate versions contain different metadata than
newer ones.

2-81

ORACLE

Chapter 2
EXTFILE

FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 12.2 through the
current Oracle GoldenGate X.x version number, for example 19.1. The release version is
programmatically mapped back to the appropriate trail format compatibility level. The default is
the current version of the process that writes to this trail.

Note:

RELEASE versions earlier than 12.2 do not support three-part object names.

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the same
can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

* For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1 or higher,
FORMAT RELEASE 12.2 or above is supported, due to the larger SCN value.

* For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2 or higher, only
FORMAT RELEASE values 12.3 or higher are supported. This is due to the use of local undo
for PDBs, which requires augmenting the transaction ID with the PDB number to ensure
unigueness of trx IDs.

MEGABYTES megabytes
The maximum size, in megabytes, of a file in the trail. The default is 2000.

OBJECTDEFS | NO_OBJECTDEFS

Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include the object
definitions in the trail. These two options are applicable only when the output trail is formatted
in Oracle GoldenGate canonical format and the trail format release is greater than 12.2.
Otherwise, both options are ignored because no metadata record will be added to the trail.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}

Sets the byte format of the trail files. Valid only for trail files that have a FORMAT RELEASE
version of at least 12.2. Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian),
and NATIVEENDIAN. The default is NATTVEENDIAN. See the GLOBALS version of TRAILBYTEORDER
for additional usage instructions.

Examples

Example 1

EXTFILE dirdat/ef

Example 2

EXTFILE dirdat/ef, MEGABYTES 200

Example 3

EXTFILE /ggs/dirdat/extdat, FORMAT RELEASE 18.1

2-82

Chapter 2
EXTRACT

EXTRACT

Valid For

Extract

Description

Use the EXTRACT parameter to specify an Extract group for online (continuous) change
synchronization. This parameter links the current run with previous runs, so that data continuity
is maintained between source and target tables. Unless stopped by a user, Extract runs
continuously and maintains checkpoints in the data source and trail to ensure data integrity
and fault tolerance throughout planned or unplanned process termination, system outages, or
network failure. EXTRACT must be the first entry in the parameter file.

Default

None
Syntax

EXTRACT group name
[NLS LENTH SEMANTICS BYTE | CHAR]

group name
The group name as defined with the ADD EXTRACT command.

NLS_LENGTH_ SEMANTICS [BYTE | CHAR]
Use this option to switch index values between bytes and characters. The default is bytes.

Example
The following specifies an Extract group named finance.

EXTRACT finance

EXTTRAIL

ORACLE

Valid For

Extract

Description

Use the EXTTRAIL parameter to specify a trail on the local system that was created with the ADD
EXTTRAIL command. The trail is read by an Distribution Path, or by a Replicat on the local
system.

EXTTRAIL must precede all associated TABLE statements. Multiple EXTTRAIL statements can be
used to define different trails.

From Oracle GoldenGate 19c onwards, the primary Extract writes trail file in the same format
as existing trail file format when you upgrade, unless you explicitly specify the trail file format
version using the FORMAT RELEASE option. This prevents subsequent Replicats from abending if
they are not upgraded.

2-83

Chapter 2
EXTTRAIL

You can encrypt the data in this trail by using the ENCRYPTTRAIL parameter. See
"ENCRYPTTRAIL | NOENCRYPTTRAIL" for more information.

Note:

When using the ENCRYPTRAIL parameter with the EXTTRAIL parameter, ensure that
the ENCRYPTRAIL parameter is mentioned before EXTTRAIL, else the trail will not be
encrypted.

Note:

Local trails that are to be consumed by a Distribution Path sending to NSK, you must
use TRAILBYTEORDER BIGENDIAN. This cannot be altered in the data pump.

Default

None

Syntax

EXTTRAIL fileﬁname
[, FORMAT RELEASE major.minor]
[, TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

trail name
The relative or fully qualified path name of the trail. The trail name can contain only two
characters.

Note:

In Microservices Architecture, the trail file name two-character prefix must start with
an alphabet only.

Oracle GoldenGate appends this name with a nine-digit sequence number whenever a new
file is created. For example, a trail named /tr would have files named /tx000000001, /
tr000000002.

FORMAT RELEASE major.minor

Not valid for an Extract. Specifies the metadata format of the data that is sent by Extract to a
trail, a file, or (if a remote task) to another process. The metadata tells the reader process
whether the data records are of a version that it supports. The metadata format depends on
the version of the Oracle GoldenGate process. Older Oracle GoldenGate versions contain
different metadata than newer ones.

FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 12.2 through the
current Oracle GoldenGate X.x version number, 19.1.

The release version is programmatically mapped back to the appropriate trail format
compatibility level. The default is the current version of the process that writes to this trail.

ORACLE 584

Chapter 2
FETCHOPTIONS

Note:

The lowest supported version is 12.2.

Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the same
can coexist.

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}

Sets the byte format of the trail files. Valid only for trails that have a FORMAT RELEASE version of
at least 12.1. Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian), and
NATIVEENDIAN. The default is NATIVEENDIAN. See the GLOBALS version of TRAILBYTEORDER
for additional usage instructions.

Examples

Example 1

EXTTRAIL dirdat/ny

Example 2

EXTTRAIL /ggs/dirdat/ex, FORMAT RELEASE 18.1

Example 3
Two trail formats within the same sets of tables being captured:

EXTTRAIL ./dirdat/ea
TABLE hr.tabl

TABLE hr.tab?2
EXTTRAIL ./dirdat/eb
TABLE scott.tab3
TABLE scott.tab4

FETCHOPTIONS

ORACLE

Valid For

Extract

Description

Use the FETCHOPTIONS parameter to control certain aspects of the way that Oracle GoldenGate
fetches data in the following circumstances:

* When the transaction record does not contain enough information for Extract to reconstruct
an update operation.

2-85

ORACLE

Chapter 2
FETCHOPTIONS

* When Oracle GoldenGate must fetch a column value as the result of a MISSINGCOLS clause
of a TABLE statement.

FETCHOPTIONS is table-specific. One FETCHOPTIONS statement applies for all subsequent TABLE
statements until a different FETCHOPTIONS statement is encountered.

Default fetch properties are adequate for most installations.

Default

Ignore missing rows and continue processing

Syntax

FETCHOPTIONS
[, FETCHPKUPDATECOLS]

[, MISSINGCOLS]

[, INCONSISTENTROW action]

[, MAXFETCHSTATEMENTS number]

[, MISSINGROW action]

[, NOFETCH]

[, SUPPRESSDUPLICATES]

[, USEKEY | NOUSEKEY]

[, USELATESTVERSION | NOUSELATESTVERSION]
[, USESNAPSHOT | NOUSESNAPSHOT]

[, USEROWID | NOUSEROWID]

FETCHPKUPDATECOLS

Fetches all unavailable columns when a primary key is updated. This option is off by default.
When off, column fetching is performed according to other FETCHOPTIONS options that are
enabled.

When on, it only takes effect during an update to a primary key column. The results are the
same as using (*) in the TABLE statement. LOB columns are included in the fetch.

Use this parameter when using HANDLECOLLISIONS. When Replicat detects a missing update,
all of the columns will be available to turn the update into an insert.

MISSINGCOLS

Fetches any missing columns from update and delete operations, including LOB columns.
This option is only valid for Oracle Database. It can negatively impact the database and the
Extract performance due to additional queries to fetch the data. Especially if there are large
LOB values that need to be fetched and written to the trail.

Setting this parameter is the same as setting the following parameters:

MISSINGCOLS (*) in the TABLE statement
NOCOMPRESSDELETES FETCHMISSINGCOLS
GETUPDATEBEFORES

NOCOMPRESSUPDATES

LOGALLSUPCOLS

However, setting FETCHOPTIONS MISSINGCOLS conflicts with the following parameters:

FETCHOPTIONS NOFETCH
FETCHOPTIONS FETCHPKUPDATECOLS
COMPRESSDELETES
COMPRESSUPDATES

2-86

ORACLE

Chapter 2
FETCHOPTIONS

GETUPDATEBEFORES
LOGALLSUPCOLS

INCONSISTENTROW action

Indicates that column data was successfully fetched by row ID, but the key did not match.
Either the row ID was recycled or a primary key update occurred after this operation (and prior
to the fetch).

action can be one of the following:

ALLOW
Allow the condition and continue processing.

IGNORE
Ignore the condition and continue processing. This is the default.

REPORT

Report the condition and contents of the row to the discard file, but continue processing
the partial row.

DISCARD
Discard the data and do not process the partial row.

ABEND
Discard the data and quit processing.

MAXFETCHSTATEMENTS number

Controls the maximum allowable number of prepared queries that can be used by Extract to
fetch row data from a source database. The fetched data is used when not enough information
is available to construct a logical SQL statement from a transaction log record. Queries are
prepared and cached as needed. When the value set with MAXFETCHSTATEMENTS is reached,
the oldest query is replaced by the newest one. The value of this parameter controls the
number of open cursors maintained by Extract for fetch queries only. Additional cursors may
be used by Extract for other purposes, such as those required for stored procedures. This
parameter is only valid for Oracle databases.The default is 100 statements. Make certain that
the database can support the number of cursors specified, plus cursors used by other
applications and processes.

MISSINGROW action

Provides a response when Oracle GoldenGate cannot locate a row to be fetched, causing
only part of the row (the changed values) to be available for processing. Typically a row
cannot be located because it was deleted between the time the change record was created
and when the fetch was triggered, or because the row image required was older than the undo
retention specification.

action can be one of the following:

ALLOW
Allow the condition and continue processing. This is the default.

IGNORE
Ignore the condition and continue processing.

REPORT

Report the condition and contents of the row to the discard file, but continue processing
the partial row.

2-87

ORACLE

Chapter 2
FETCHOPTIONS

DISCARD
Discard the data and do not process the partial row.

ABEND
Discard the data and quit processing.

NOFETCH
Prevents Extract from fetching the column from the database, this option is off by default.
Extract writes the record to the trail, but inserts a token indicating that the column is missing.

SUPPRESSDUPLICATES

Valid for Oracle. Avoids target tablespaces becoming overly large when updates are made on
LOB columns. By default, SUPPRESSDUPLICATES is set to off. For example, after replication a
source tablespace of 232MB becomes a target tablespace of 7.52GB.

USEKEY | NOUSEKEY

Determines whether or not Oracle GoldenGate uses the primary key to locate the row to be
fetched.

If both USEKEY and USEROWID are specified, ROWID takes priority for faster access to the record.
USEROWID is the default.

USELATESTVERSION | NOUSELATESTVERSION

Valid for Oracle. Use with USESNAPSHOT. The default, USELATESTVERSION, directs Extract to
fetch data from the source table if it cannot fetch from the undo tablespace.
NOUSELATESTVERSION directs Extract to ignore the condition if the snapshot fetch fails, and
continue processing.

To provide an alternate action if a snapshot fetch does not succeed, use the MISSINGROW
option.

USESNAPSHOT | NOUSESNAPSHOT

Valid for Oracle. The default, USESNAPSHOT, causes Extract to use the Oracle Flashback
mechanism to fetch the correct snapshot of data that is needed to reconstruct certain
operations that cannot be fully captured from the redo record. NOUSESNAPSHOT causes Extract
to fetch the needed data from the source table instead of the flashback logs.

USEROWID | NOUSEROWID

Valid for Oracle. Determines whether or not Oracle GoldenGate uses the row ID to locate the
row to be fetched.

If both USEKEY and USEROWID are specified, ROWID takes priority for faster access to the record.
USEROWID is the default.

Examples

Example 1
The following directs Extract to fetch data by using Flashback Query and to ignore the
condition and continue processing the record if the fetch fails.

FETCHOPTIONS USESNAPSHOT, NOUSELATESTVERSION

Example 2

MAXFETCHSTATEMENTS 150

Example 3
The following directs Extract to fetch data by using Flashback Query and causes Extract to
abend if the data is not available.

FETCHOPTIONS USESNAPSHOT, NOUSELATESTVERSION, MISSINGROW ABEND

2-88

Chapter 2
FETCHUSERIDALIAS

FETCHUSERIDALIAS

Valid For

Extract on Oracle

Description

Use the FETCHUSERIDALIAS parameter to specify authentication for an Oracle GoldenGate
process to use when logging into a database. The use of FETCHUSERIDALIAS requires the use
of an Oracle GoldenGate credential store. Specify FETCHUSERIDALIAS before any TABLE or MAP
entries in the parameter file.

Default

None
Syntax

FETCHUSERIDALIAS alias [DOMAIN domain] [SYSDBA]

alias
Specifies the alias of a database user credential that is stored in the Oracle GoldenGate
credential store.

DOMAIN domain
Specifies the credential store domain for the specified alias. A valid domain entry must exist in
the credential store for the specified alias.

SYSDBA
Specifies that the user logs in as sysdba.

Example

fetchuseridalias gg user@adg inst password pwd

FILTERDUPS | NOFILTERDUPS

ORACLE

Valid For

Replicat

Description

Use the FILTERDUPS and NOFILTERDUPS parameters to handle anomalies that can occur on a
NonStop system when an application performs multiple operations on the same record within
the same transaction. This type of transaction can cause out-of-order records in the TMF audit
trail and will cause Replicat to abend. For example:

e Aninsert can occur in the audit trail before a delete on the same primary key, even though
the source application performed the delete first, followed by the insert (resulting in a
duplicate-record error when the insert is performed by Replicat).

2-89

Chapter 2
FILEGROUP

* Anupdate can occur in the audit trail before an insert on the same primary key (resulting in
a missing-record error when the update is performed by Replicat).

FILTERDUPS prevents Replicat from abending by resolving the conditions as follows:

* Inthe event of a duplicate insert, Replicat saves the duplicated insert until the end of the
transaction. If a delete with the same primary key is subsequently encountered, Replicat
performs the delete, then the insert.

* Inthe event of a missing update, Replicat saves the missing update until the end of the
transaction. If an insert with the same primary key is subsequently encountered, Replicat
performs the insert, then the update.

IDX hospital applications and some BASE?24 bank applications are the typical, but not the only,
sources of this anomaly. Use FILTERDUPS only if Replicat is abending on duplicate or missing
records and you know they were caused by out-of-order transactions originating on a NonStop
system. The Logdump utility can be used to diagnose this condition.

FILTERDUPS and NOFILTERDUPS can be used as on-off switches for different groups of MaP
statements to enable or disable the exception processing as needed.
Default

NOFILTERDUPS

Syntax

FILTERDUPS | NOFILTERDUPS

Example

This example turns on FILTERDUPS for ORDERS but disables it for any MAP statements that are
defined later in the same parameter file.

FILTERDUPS
MAP SDATALl.SQLDAT.ORDERS, TARGET MASTER.ORDERS;
NOFILTERDUPS

FILEGROUP

ORACLE

Valid For

For SQL Server only.

Description

Overrides the default database filegroup (PRIMARY) when adding TRANDATA to tables and
creating the SQL Server CDC capture tables on the designated filegroup.

The filegroup must exist in the database and have a valid database file attached to it. The
GLOBALS FILEGROUP parameter can be overwritten by the following statement, if required, but
this is not normally necessary:

ADD TRANDATA schemaname.tablename FILEGROUP filegroupname

If the FILEGROUP parameter exists in GLOBALS, then the ADD HEARTBEATTABLE command also
creates the SQL Server CDC capture tables for the heartbeat tables on the designated
filegroup.

See Enabling Supplemental Logging (CDC Extract).

2-90

Chapter 2
FLUSHSECS | FLUSHCSECS

FLUSHSECS | FLUSHCSECS

Valid For

Extract

Description

Use the FLUSHSECS or FLUSHCSECS parameters to control when Oracle GoldenGate flushes the
Extract memory buffer. When sending data to remote systems, Extract buffers data to optimize
network performance. The buffer is flushed to the target system when it is full or after the
amount of time specified with FLUSHSECS or FLUSHCSECS. Data changes are not available to the
target users until the buffer is flushed and the data is posted.

Increasing the value of FLUSHSECS or FLUSHCSECS could result in slightly more efficient use of
the network, but it could increase the latency of the target data if activity on the source system
is low and the buffer does not fill up. When source tables remain busy, FLUSHSECS and
FLUSHCSECS have little effect.

This parameter cannot be set to zero (0).

Default

The defaultis 1. The minimum is 0; the maximum is 5000.
Syntax

FLUSHSECS seconds | FLUSHCSECS centiseconds

seconds
The delay, in seconds, before flushing the buffer.

centiseconds
The delay, in centiseconds, before flushing the buffer.

Example

FLUSHSECS 80

FUNCTIONSTACKSIZE

ORACLE

Valid For

Extract and Replicat

Description

Use the FUNCTIONSTACKSIZE parameter to control the size of the memory stack that is used for
processing Oracle GoldenGate column-conversion functions. The memory stack holds
arguments supplied to and from an Oracle GoldenGate function. You should not need to use
this parameter unless Oracle GoldenGate returns a message indicating that the size of the
stack should be increased. The message is similar to:

Not enough stack space. Specify FUNCTIONSTACKSIZE greater than {0,number,0}

This could happen when you are using a very large number of functions or arguments.

2-91

Chapter 2
GETDELETES | IGNOREDELETES

The default without FUNCTIONSTACKSIZE is 200 arguments, which optimizes the performance of
Oracle GoldenGate and its usage of system memory. Increasing this parameter can adversely
affect performance and the use of system memory.

When setting FUNCTIONSTACKSIZE for a coordinated Replicat, take into account that the
specified value is applied to each thread in the configuration, not as an aggregate threshold for
Replicat as a whole. For example, if FUNCTIONSTACKSIZE 400 is specified, it is possible for
each thread to have 399 arguments without any warning or error from Replicat.

FUNCTIONSTACKSIZE must appear in the parameter file before any parameters that include
functions are listed. FUNCTIONSTACKSIZE is a global parameter. It affects all clauses in a
parameter file.

Default

200 arguments

Syntax
FUNCTIONSTACKSIZE number

number
A value between 0 and 5000 that denotes the number of function arguments to allow in a
parameter clause.

Example

FUNCTIONSTACKSIZE 300

GETDELETES | IGNOREDELETES

ORACLE

Valid For

Extract and Replicat

Description

Use the GETDELETES and IGNOREDELETES parameters to control whether or not Oracle
GoldenGate processes DELETE operations. These parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
GETDELETES threads in one set of MAP statements, and specify the IGNOREDELETES threads in a
different set of MAP statements.

If this parameter is used, and a primary key or unique key is reused then that Replicat may get
a duplicate primary key or unique key error when it attempts to apply the insert. You need to
disable this constraint (and leave the index) on the target. If this is done, the source table gets
supplemental logging on all columns. Use KEYCOLS (*) in the TABLE statement on the source,
so that the Replicat has all the necessary columns to perform any update operations.

Default

GETDELETES

2-92

Chapter 2
GETINSERTS | IGNOREINSERTS

Syntax

GETDELETES | IGNOREDELETES

Example

This example shows how you can apply GETDELETES and IGNOREDELETES selectively to different
MAP statements, each of which represents a different thread of a coordinated Replicat.

GETDELETES

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREDELETES

MAP sales.loc, TARGET sales.loc, THREAD (3);

In this example, delete operation on sales.loc is skipped. As a best practice, you should re-
enable GETDELETES.

GETINSERTS | IGNOREINSERTS

Valid For

Extract and Replicat

Description

Use the GETINSERTS and IGNOREINSERTS parameters to control whether or not INSERT
operations are processed by Oracle GoldenGate. These parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other

parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
GETINSERTS threads in one set of MAP statements, and specify the IGNOREINSERTS threads in a
different set of MAP statements.

Default

GETINSERTS

Syntax

GETINSERTS | IGNOREINSERTS

Example

This example shows how you can apply GETINSERTS and IGNOREINSERTS selectively to different
MAP statements, each of which represents a different thread of a coordinated Replicat.

IGNOREINSERTS

MAP sales.loc, TARGET sales.loc, THREAD (3);
GETINSERTS

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);

ORACLE 593

Chapter 2
GETTRUNCATES | IGNORETRUNCATES

GETTRUNCATES | IGNORETRUNCATES

ORACLE

Valid For

Extract and Replicat

Description

Use the GETTRUNCATES and IGNORETRUNCATES parameters to control whether or not Oracle
GoldenGate processes table truncate operations. By default, truncate operations are not
captured from the source or replicated to the target.

GETTRUNCATES and IGNORETRUNCATES are table-specific. One parameter remains in effect for all
subsequent TABLE or MAP statements, until the other parameter is encountered.

In a coordinated Replicat configuration, truncates are always processed by the thread that is
responsible for barrier transactions.

Supported Databases

° GETTRUNCATES and IGNORETRUNCATES are supported by Extract for Oracle Database,
MySQL, DB2 LUW, PostgreSQL, and DB2 for i.

e GETTRUNCATES and IGNORETRUNCATES are supported by Replicat for Oracle Database, SQL
Server, DB2 for i, DB2 LUW, DB2 z/0OS, MySQL, Teradata, PostgreSQL, and TimesTen.

Note:

GETTRUNCATES and IGNORETRUNCATES for DB2 z/OS is only valid for TRUNCATE
IMMEDIATE operations. TRUNCATES without the IMMEDIATE qualifier will be processed
without regard to GETTRUNCATES and IGNORETRUNCATES as it appears as a DROP FROM
command in the DB2 logs.

DB2 LUW Limitations

» DB2 LUW does not support a TRUNCATE command, so Replicat replicates a truncate
operation by performing an IMPORT REPLACE from a NULL (blank) file.

Oracle Limitations

e Oracle GoldenGate supports the Oracle TRUNCATE TABLE command, but not TRUNCATE
PARTITION. You can replicate TRUNCATE PARTITION as part of the full Oracle GoldenGate
DDL replication support.

* The database does not log truncates against an empty table, so those operations are not
captured by Oracle GoldenGate. The DDL support of Oracle GoldenGate can be used for
this purpose.

* The database does not log truncates for empty partitions, so Oracle GoldenGate cannot
reliably process TRUNCATE TABLE when the table contains any empty partitions. Do not use
GETTRUNCATES on any partitioned table. Oracle GoldenGate DDL support can be used to
capture truncates on tables that might include empty partitions.

2-94

Chapter 2
GETUPDATEAFTERS | IGNOREUPDATEAFTERS

PostgreSQL Limitations

Oracle GoldenGate capture supports GETTRUNCATES from PostgreSQL version 11 and higher.

Default

IGNORETRUNCATES

Syntax

GETTRUNCATES | IGNORETRUNCATES

GETUPDATEAFTERS | IGNOREUPDATEAFTERS

Valid For

Extract and Replicat

Description

Use the GETUPDATEAFTERS and IGNOREUPDATEAFTERS parameters to control whether or not the
after images of columns in UPDATE operations are included in the records processed by Oracle
GoldenGate. After images contain the results of the UPDATE.

These parameters are table-specific. One parameter remains in effect for all subsequent TABLE
or MAP statements, until the other parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
GETUPDATEAFTERS threads in one set of MAP statements, and specify the IGNOREUPDATEAFTERS

threads in a different set of MAP statements.
Default

GETUPDATEAFTERS

Syntax

GETUPDATEAFTERS | IGNOREUPDATEAFTERS

Example

This example shows how you can apply GETUPDATEAFTERS and IGNOREUPDATEAFTERS selectively
to different MAP statements, each of which represents a different thread of a coordinated
Replicat.

GETUPDATEAFTERS

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREUPDATEAFTERS

MAP sales.loc, TARGET sales.loc, THREAD (3);

GETUPDATEBEFORES | IGNOREUPDATEBEFORES

Valid For

Extract and Replicat

ORACLE 5 o5

ORACLE

Chapter 2
GETUPDATEBEFORES | IGNOREUPDATEBEFORES

Description

Use the GETUPDATEBEFORES and IGNOREUPDATEBEFORES parameters to control whether or not
the before images of columns in UPDATE operations are included in the records that are
processed by Oracle GoldenGate. Before images contain column details that existed before a
row was updated.

(Oracle only) Oracle GoldenGate captures both the pre-change and post-change values for
update operations in a single unified update record by default. For other databases, only the
pre-change values are written to trail file. In previous releases the default was to only capture
the post-change value. Beginning in this release, custom SQL statements (SQLEXEC) now only
execute once per update operation with the new default update format. Prior to this release,
custom SQL statements would execute twice, once when encountering the pre-change value
and once when encountering the post-change value. If you are using the Oracle GoldenGate
with the unified update format, you can explicitly pass the pre or post-value to the custom SQL
statement using the @BEFORE, GAFTER, and @BEFOREAFTER functions. Though Oracle
GoldenGate can use this update format by default, the old format cam be preserved if there
are conflicting parameters that would have previously generated two separate pre and post
change records. In these cases, an informational message is logged in the report file.

Use the GETUPDATEBEFORES parameter as follows:

* in the Extract parameter file to extract before images from the data source.
* in the Replicat parameter file to include before images in a Replicat operation.

You can compare before images with after images to identify the net results of a transaction or
perform other delta calculations. For example, if a BALANCE field is $100 before an update
and $120 afterward, a comparison would show the difference of $20. You can use the column-
conversion functions of Oracle GoldenGate to perform the comparisons and calculations.

To reference before images in the parameter file, use the @BEFORE conversion function. For
example:

COLMAP (previous = @BEFORE (balance))

GETUPDATEBEFORES is required when using the Conflict Detection and Resolution (CDR) feature.
See Manual Conflict Detection and Resolution for more information about CDR.

The GETUPDATEBEFORES and IGNOREUPDATEBEFORES parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
GETUPDATEBEFORES threads in one set of MAP statements, and specify the IGNOREUPDATEBEFORES
threads in a different set of MAP statements.

Limitations for GETUPDATESBEFORES:

* For PostgreSQL, before images of LOB columns are not logged and will not be written to
the trails.

e For SQL Server, columns of IMAGE, NTEXT, and TEXT data types are logged as a NULL value
for before image update operations, and columns of VARBINARY (MAX), VARCHAR (MAX), and
NVARCHAR (MAX) are logged as a NULL value for before image update operations unless the
column was updated.

2-96

Chapter 2
GETUPDATES | IGNOREUPDATES

Default

IGNOREUPDATEBEFORES

Syntax

GETUPDATEBEFORES | IGNOREUPDATEBEFORES

Example

This example shows how you can apply GETUPDATEBEFORES and IGNOREUPDATEBEFORES
selectively to different MAP statements, each of which represents a different thread of a
coordinated Replicat.

GETUPDATEBEFORES

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
IGNOREUPDATEBEFORES

MAP sales.loc, TARGET sales.loc, THREAD (3);

GETUPDATES | IGNOREUPDATES

ORACLE

Valid For

Extract and Replicat

Description

Use the GETUPDATES and IGNOREUPDATES parameters to control whether or not Oracle
GoldenGate processes UPDATE operations. These parameters are table-specific. One
parameter remains in effect for all subsequent TABLE or MAP statements, until the other
parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
GETUPDATES threads in one set of MAP statements, and specify the IGNOREUPDATES threads in a
different set of MAP statements.

Default

GETUPDATES

Syntax

GETUPDATES | IGNOREUPDATES

Example

This example shows how you can apply GETUPDATES and IGNOREUPDATES selectively to different
MAP statements, each of which represents a different thread of a coordinated Replicat.

IGNOREUPDATES
MAP sales.loc, TARGET sales.loc, THREAD (3);
GETUPDATES

2-97

Chapter 2
GGSCHEMA

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);

GGSCHEMA

Valid For
GLOBALS

Description

Use this parameter to specify the name of the schema that contains Oracle GoldenGate
database objects, such as those that support Oracle DDL replication for trigger-based
replication, those that are a part of a heartbeat table implementation, and those that are part of
the SQL Server CDC Capture and Cleanup implementation.

The schema name mentioned under GGSCHEMA should be treated as a reserved schema and
should not be used as part of a TABLE or MAP statement within an Extract, or Replicat. If you
need to capture and replicate objects in GGSCHEMA, don't use wildcards and ensure that you
explicitly map the respective table names. It's recommended that you take assistance from
Oracle Support to make any changes including any CREATE, ALTER, or DROP of objects in this
schema.

This parameter is valid for all databases.
Default

None

Syntax

GGSCHEMA [container.]schema name

[container.]schema_name
The fully qualified name of the Oracle GoldenGate objects' schema. Use the full two-part
name if the schema is within an Oracle container database.

Example

GGSCHEMA ogg

GROUPTRANSOPS

ORACLE

Valid For

Replicat

Description

Use the GROUPTRANSOPS parameter to control the number of SQL operations that are contained
in a Replicat transaction when operating in its normal mode. For using GROUPTRANSOPS with
BATCHSQL, see BATCHSQL parameter, which has additional options for changing how
transactions are applied to the target database that may improve Replicat performance.

Increasing the number of operations in a Replicat transaction improves the performance of
Oracle GoldenGate by:

* Reducing the number of transactions executed by Replicat.

2-98

Chapter 2
GROUPTRANSOPS

* Reducing /O activity to the checkpoint file and the checkpoint table, if used. Replicat
issues a checkpoint whenever it applies a transaction to the target, in addition to its
scheduled checkpoints.

Replicat accumulates operations from source transactions, in transaction order, and applies
them as a group within one transaction on the target. GROUPTRANSOPS sets a minimum value
rather than an absolute value, to avoid splitting apart source transactions. Replicat waits until it
receives all operations from the last source transaction in the group before applying the target
transaction.

For example, if transaction 1 contains 200 operations, and transaction 2 contains 400
operations, and transaction 3 contains 500 operations, the Replicat transaction contains all
1,100 operations even though GROUPTRANSOPS is set to the default of 1,000. Conversely,
Replicat might apply a transaction before reaching the value set by GROUPTRANSOPS if there is
no more data in the trail to process.

Table 2-10 Replicat GROUPTRANSOPS

___|
Source Transactions (assumes same table and Replicat transaction in normal

column list) (GROUPTRANSOPS) mode
Transaction 1: Transaction:

INSERT INSERT

DELETE DELETE

Transaction 2: INSERT

INSERT DELETE

DELETE INSERT

Transaction 3: DELETE

INSERT

DELETE

Avoid setting GROUPTRANSOPS to an arbitrarily high number because the difference between
source and target transaction boundaries can increase the latency of the target data.

(Oracle only) For an integrated Replicat, GROUPTRANSOPS is effective only when the integrated
Replicat parameter PARALLELISM iS Set to 1.

Default

Nonintegrated Replicat: 1000 operations, Integrated Replicat: 50 operations

Syntax

GROUPTRANSOPS number

number

The minimum number of operations to be applied in a Replicat transaction. A value of 1
executes the operations within the same transaction boundaries as the source transaction.
The value must be at least 1.

Example

GROUPTRANSOPS 2000

ORACLE 599

Chapter 2
HANDLECOLLISIONS | NOHANDLECOLLISIONS

HANDLECOLLISIONS | NOHANDLECOLLISIONS

ORACLE

Valid For

Replicat

Description

Use the HANDLECOLLISIONS and NOHANDLECOLLISIONS parameters to control whether or not
Replicat tries to resolve duplicate-record and missing-record errors when applying SQL on the
target. These errors, called collisions, occur during an initial load, when data from source
tables is being loaded to target tables while Oracle GoldenGate is replicating transactional
changes that are being made to those tables. When Oracle GoldenGate applies the replicated
changes after the load is finished, HANDLECOLLISIONS provides Replicat with error-handling
logic for these collisions.

You can use HANDLECOLLISIONS and NOHANDLECOLLISIONS in the following ways:

* You can enable HANDLECOLLISIONS and NOHANDLECOLLISIONS in a global manner by
specifying them at the root level of the parameter file. One parameter remains enabled for
all subsequent MAP statements in the parameter file, until the opposing parameter is
encountered.

e You can enable HANDLECOLLISIONS Or NOHANDLECOLLISIONS within a specific MAP
parameter to enable or disable error handling only for that source-target mapping.

The preceding methods can be combined. You can specify a global collisions-handling rule and
then override that rule with different collisions-handling rules in the MAP statements. A MAP
specification always overrides the global specification.

Note:

Error Handling of Integrated Replicat is not appropriate with HANDLECOLLISIONS.
Oracle recommends that you use precise instantiation methods instead of using
HANDLECOLLISIONS.

How HANDLECOLLISIONS Works
The following example explains how HANDLECOLLISIONS works:

* When Replicat encounters an update to a column that Oracle GoldenGate is using as a
key, the handling is as follows:

— If the row with the old key is not found in the target, the change record in the trail is
converted to an insert.

— If arow with the new key exists in the target, Replicat deletes the row that has the old
key (it would not exist if the update had executed successfully), and then the row with
the new key is updated as an overlay where the trail values replace the current values.

This logic requires all of the columns in the table (not just the ones that changed) to be
logged to the transaction log, either by default or by force, such as by using the cOLS option
of ADD TRANDATA for an Oracle database. See Possible Solutions to Avoid Missing Column
Values.

2-100

ORACLE

Chapter 2
HANDLECOLLISIONS | NOHANDLECOLLISIONS

* When Replicat encounters a duplicate-record error, the static record that was applied by
the initial load is overwritten by the change record in the trail. Overlaying the change is
safer from an operational standpoint than ignoring the duplicate-record error.

* Replicat with HANDLECOLLISIONS doesn't discard the change record in the trail even if
update or delete operation doesn't affect a key column in the source and Replicat
encounters a missing-record error in the target. These errors happen when a record is
changed on the source system and then the record is deleted before the table data is
extracted by the initial-load process. For example:

The application updates record A in source tablel.

Extract extracts the update.

The application deletes record A in source tablel.

Extract extracts the delete.

Oracle GoldenGate extracts initial-load data from source tablel, without record A.
Oracle GoldenGate applies the initial load, without record A.

Replicat attempts to apply the update of record A.

The database returns a "record missing" error.

© © N o g » 0w NP

Replicat attempts to apply the delete of record A.
10. The database returns a "record missing" error.

Disable HANDLECOLLISIONS after the transactional changes captured during the initial load are
applied to the target tables, so that Replicat does not automatically handle subsequent errors.
Errors generated after initial synchronization indicate an abnormal condition and should be
evaluated by someone who can determine how to resolve them. For example, a missing-
record error could indicate that a record which exists on the source system was inadvertently
deleted from the target system.

You can turn off HANDLECOLLISIONS in the following ways:

e Stop Replicat and remove HANDLECOLLISIONS from the Replicat parameter file (can cause
target latency). Alternatively, you can edit the parameter file to add NOHANDLECOLLISIONS
before the MAP statements for which you want to disable the error handling.

* While Replicat is running, run GGSCI and then use the SEND REPLICAT command with the
NOHANDLECOLLISIONS option for the tables that you want to affect.

Note:

If using SEND REPLICAT, make certain to remove HANDLECOLLISIONS from the
parameter file or add a NOHANDLECOLLISIONS parameter before starting another
Replicat run, so that HANDLECOLLISIONS does not activate again.

Possible Solutions to Avoid Missing Column Values

When a database does not log all of the column values of a source table by default, there can
be errors if the target table has NOT NULL constraints when Replicat attempts to convert a
primary-key update to an insert. You can work around this scenario in the following ways:

e HANDLECOLLISIONS requires that the table have a NOT NULL primary key or NOT NULL
unigue constraint on the target table.

2-101

Chapter 2
HANDLECOLLISIONS | NOHANDLECOLLISIONS

e Use the NOCOMPRESSUPDATES parameter in the Extract parameter file to send all of the
columns of the table to the trail, and configure the database to log all column values. By
default, Extract only writes the primary key and the columns that changed to the trail. This
is the safest method, because it writes the current values at the time when the operation is
performed and eliminates the need for fetching.

e Use the FETCHOPTIONS parameter with the FETCHPKUPDATECOLS option in the Extract
parameter file. This configuration causes Extract to fetch unavailable columns when a key
column is updated on the source. A fetch is the current value, not necessarily the value at
the time of a particular update, so there can be data integrity issues. See "FETCHOPTIONS"
for more information and additional fetch options to handle unsuccessful fetches.

If the database includes all columns by default, then you must use NOCOMPRESSUPDATES and
NOCOMPRESSDELETES for HANDLECOLLISIONS to work properly. If the database does not
support NOCOMPRESSDELETES, YOu must use FETCHOPTIONS MISSINGCOLS.

See About Instantiating with Initial Load Extract for more information about Oracle GoldenGate
initial load methods.

Default

NOHANDLECOLLISIONS

Syntax

HANDLECOLLISIONS | NOHANDLECOLLISIONS [ALLOWPKMISSINGROWCOLLISIONS]
[THREADS (threadID[, threadID][, ...]1[, thread range[, thread rangell, ...1)]

HANDLECOLLISIONS
Enables collision handling.

_ALLOWPKMISSINGROWCOLLISIONS
Use HANDLECOLLISIONS with _ALLOWPKMISSINGROWCOLLISIONS to skip primary-key UPDATE
operations if the corresponding target row does not exist.

Note:

Skipping operations can cause data corruption. See the Description in this topic.

NOHANDLECOLLISIONS
Turns off collision handling.

THREADS (threadID[, threadID][, ...][, thread range[, thread range][, .. .1)
Enables HANDLECOLLISIONS for the specified threads. When used in a global
HANDLECOLLISIONS Statement at the root level of the parameter file, HANDLECOLLISIONS is
enabled for the specified threads wherever they are in all MAP statements where . When used
in a HANDLECOLLISIONS clause of a MAP statement, HANDLECOLLISIONS is enabled only for that
MAP statement.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadiD,
threadID, threadID.

ORACLE 5102

ORACLE

Chapter 2
HANDLECOLLISIONS | NOHANDLECOLLISIONS

thread _range[, thread range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

Example 1
This example enables HANDLECOLLISIONS for all MAP statements in the parameter file.

HANDLECOLLISIONS

MAP hr.emp, TARGET hr.emp;

MAP hr.job_hist, TARGET hr.job hist;
MAP hr.dep, TARGET hr.dep;

MAP hr.country, TARGET hr.country;

Example 2
This example enables HANDLECOLLISIONS for some MAP statements while disabling it for
others.

HANDLECOLLISIONS

MAP hr.emp, TARGET hr.emp;

MAP hr.job hist, TARGET hr.job hist;
NOHANDLECOLLISIONS

MAP hr.dep, TARGET hr.dep;

MAP hr.country, TARGET hr.country;

Example 3
This example shows the basic use of HANDLECOLLISIONS within a MAP statement.

MAP dbo.tcust, TARGET dbo.tcust, HANDLECOLLISIONS;

Example 4
This example shows a combination of global and MaP-level use. The MAP specification
overrides the global specification for the specified tables.

HANDLECOLLISIONS

MAP hr.emp, TARGET hr.emp;

MAP hr.job hist, TARGET hr.job hist;

MAP hr.dep, TARGET hr.dep, NOHANDLECOLLISIONS;

MAP hr.country, TARGET hr.country, NOHANDLECOLLISIONS;

Example 5
In the following example, HANDLECOLLISIONS is enabled globally for all MAP statements, except
for default thread 0 in the first MAP statement and for thread 3 in the second MAP statement.

HANDLECOLLISIONS

MAP fin.*, TARGET fin.*;

MAP sales.*, TARGET sales.*;

MAP orders.*, TARGET orders.*;

MAP scott.cust, TARGET scott.cust, NOHANDLECOLLISIONS;

MAP amy.cust, TARGET amy.cust, THREAD(3), NOHANDLECOLLISIONS;

Example 6
In this example, HANDLECOLLISIONS is enabled globally, but turned off for thread 3. The
remaining threads 1, 2, and 4 will handle collisions.

2-103

Chapter 2
HAVEUDTWITHNCHAR

HANDLECOLLISIONS

NOHANDLECOLLISIONS THREAD (3)

MAP scott.emplyees, TARGET scott.employees, THREADRANGE (1,4, OID);
MAP scott.inventory, TARGET scott.inventory, THREADRANGE (1,4, OID);
MAP scott.cust, TARGET scott.cust, THREADRANGE (1,4, OID);

Example 7

In this example, HANDLECOLLISIONS is enabled globally, then disabled globally for threads 5
through 7. In the first map statement, all threads will handle collisions, since the
HANDLECOLLISIONS parameter does not specify a thread or a range. In the second map
statement, only threads 4, 8, and 9 will handle collisions, because the global
NOHANDLECOLLISIONS applies to threads 5-7.

HANDLECOLLISIONS

NOHANDLECOLLISIONS THREADRANGE (5-7)

MAP scott.cust, TARGET scott.cust, THREADRANGE (4,9,0ID), HANDLECOLLISIONS;
MAP scott.offices, TARGET scott.offices, THREADRANGE (4,9,0ID);

MAP scott.emp, TARGET scott.emp, THREADRANGE (4,9,0ID);

MAP scott.ord, TARGET scott.ord, THREADRANGE (4,9,0ID);

MAP acct.*, TARGET acct.*;

MAP admin.*, TARGET admin.*;

HAVEUDTWITHNCHAR

Valid For

Replicat (Oracle only)

Description

Use the HAVEUDTWITHNCHAR parameter when the source data contains user-defined types that
have an NCHAR, NVARCHAR?2, or NCLOB attribute. When this data is encountered in the trail,
HAVEUDTWITHNCHAR causes Replicat to connect to the Oracle target in AL32UTF8, which is
required when a user-defined data type contains one of those attributes.

HAVEUDTWITHNCHAR is not required if the character set of the target is AL32UTF8. However, it is
required if only NLS_LANG is set to AL32UTF8 on the target. By default Replicat ignores NLS LANG
and connects to an Oracle database in the native character set of the database. Replicat uses
the 0CIString object of the Oracle Call Interface, which does not support NCHAR, NVARCHAR2, oOf
NCLOB attributes, so Replicat must bind them as CHAR. Connecting to the target in AL32UTF8
prevents data loss in this situation.

HAVEUDTWITHNCHAR must be specified before the USERIDALIAS parameter in the parameter file.

Default

None

Syntax

HAVEUDTWITHNCHAR

HEARTBEATTABLE

ORACLE

Valid For
GLOBALS

2-104

Chapter 2
INCLUDE

Description

Use HEARTBEATTABLE to specify a non-default name of the heartbeat table. The table name
GG_HEARTBEAT is the default. This name used to denote the heartbeat table is used to create a
seed and history table, GG_HEARTBEAT SEED and GG_HEARTBEAT HISTORY respectively.
Specifying one name reserves all names used by the heartbeat infrastructure. If the schema
name is not specified, the value in GGSCHEMA is used for schema name.

Default

None
Syntax
HEARTBEATTABLE schema name.heartbeat table name

schema_name
The name of the schema you want to use with the heartbeat table. This is not needed if you
have specified the schema using the GGSCHEMA parameter in your GLOBALS file.

heartbeat_table name
The heartbeat table name you want to use. The default table name is GG_HEARTBEAT.

INCLUDE

Valid For
Extract and Replicat

Description

Use the INCLUDE parameter to include a macro library in a parameter file. See Using Macros
for more information about using macros.

Default

None

Syntax

INCLUDE library

library
The relative or full path to library file.

Example
The following example includes macro library mdatelib.mac.

INCLUDE /ggs/dirprm/mdatelib.mac

INCLUDETAG

Valid For

(Oracle) Extract and Replicat

ORACLE 5105

Chapter 2
INITIALLOADOPTIONS

(All databases) Extract or Replicat

Description

Use INCLUDETAG tag in your Replicat parameter file to include specific changes trail files. The
tag value can be up to 2000 hexadecimal digits (0-9 A-F).

Note:

FFFF and + (plus symbol) are either reserved or not supported for tag usage.

This tag implicitly implies an EXCLUDETAG+, SO any tagged operations that don't match the tag
listed in INCLUDETAG are filtered out. For example, includetag AA includes untagged
transactions in addition to transactions that are tagged AA, while filtering out all other tagged
operations.

Default

None

Syntax

INCLUDETAG tag

Example
For Replicat:

includetag 00

INITIALLOADOPTIONS

ORACLE

Valid For
Valid for Initial Load Extract for PostgreSQL and SQL Server.

Description

This parameter is used to enable precision instantiation for an initial load Extract, which allows
initial data instantiation without incurring application downtime. The Precise instantiation is
achieved by creating a consistent point of the database in relation to the transaction log, or
identifiable by a transaction log position like LSN. The initial-load Extract reads the data sets
that are already committed up to the consistent point. Changes after that consistent point are
not captured by the initial load Extract. A CDC Extract can be used in conjunction to capture
the transactions after the precise instantiation LSN.

Queries in snapshot isolation level returns data that are committed by the time the transaction
is started. Uncommitted changes after the transaction is started are ignored.

By default, precise instantiation is disabled. To enable precise instantiation, use the
INITIALLOADOPTIONS parameter with the USESNAPSHOT option when configuring an online load
Extract.

2-106

Chapter 2
INSERTALLRECORDS

Syntax

INITIALLOADOPTIONS USESNAPSHOT

Examples

The example shows the use of the parameter with the USESNAPSHOT option in the initial load
Extract parameter file. The name of the initial load Extract is extinit.

EXTRACT extinit

INITIALLOADOPTIONS USESNAPSHOT

SOURCEDB psql src USERIDALIAS ggma PASSWORD WelcomeZ23
EXTFILE ei, MEGABYTES 500, PURGE

TABLE public.*;

For details on implementation steps, see Add Initial Load Extract for PostgreSQL.

INSERTALLRECORDS

ORACLE

Valid For
Replicat

This parameter does not work with UPDATERECORDFORMAT COMPACT.

Description

Use the INSERTALLRECORDS parameter to keep a record of all operations made to a target
record, instead of maintaining just the current version. INSERTALLRECORDS causes Replicat to
insert every change that is made to a record as a new record in the database. The initial insert
and subsequent updates and deletes are maintained as point-in-time snapshots.

Some cases for using INSERTALLRECORDS are the following:

e To work within an exceptions MAP statement. In an exceptions MAP statement,
INSERTALLRECORDS causes the values of operations that generated errors to be inserted as
new records in an exceptions table as part of an error-handling strategy.

* To maintain a transaction history. By inserting every change to a specific row as a new
record in the database, you can maintain a history of all changes made to that row, instead
of maintaining just the current version. Each insert is a point-in-time snapshot that can be
queried as needed for auditing purposes. Combining historical data with special
transaction information provides a way to create a more useful target reporting database.

INSERTALLRECORDS can be used at the root level of the parameter file to affect all subsequent
MAP statements, and it can be used within a MAP statement to affect a specific table or multiple
tables specified with a wildcard.

Getting More Information about INSERTALLRECORDS
See "TABLE | MAP" for MAP syntax.

Default

None

2-107

Chapter 2
INSERTAPPEND | NOINSERTAPPEND

Syntax

INSERTALLRECORDS

Examples

Example 1
This example shows INSERTALLRECORDS at the root level of the parameter file as part of an
exceptions handling configuration.

COLMAP (USEDEFAULTS,
TRAN TIME = QGETENV (“GGHEADER”,”COMMITTIMESTAMP”),
OP TYPE = @QGETENV (“GGHEADER”, “OPTYPE”),
BEFORE_AFTER IND = QGETENV (“GGHEADER”, “BEFOREAFTERINDICATOR”),
SEQUENCE _ID = @QCOMPUTE (@COMPUTE (@NUMSTR (@GETENV ("RECORD",
"FILESEQNO"))*100000000000) +@NUMSTR (@GETENV ("RECORD", "FILERBA")))
)i

Example 2
This example shows INSERTALLRECORDS in a MAP statement.

REPLICAT deliv

USERIDALIAS tigerl

SOURCEDEFS /ggs/dirdef/defs

REPERROR DEFAULT, ABEND

MAP fin.accTAB, TARGET fin.custTAB, INSERTALLRECORDS;

INSERTAPPEND | NOINSERTAPPEND

ORACLE

Valid For

Replicat (Oracle Nonintegrated mode)

Description

Use the INSERTAPPEND and NOINSERTAPPEND parameters to control whether or not a Replicat
operating in nonintegrated mode uses an APPEND hint when it applies INSERT operations (used
for array binding) to Oracle target tables. These parameters are valid only for Oracle
databases and are only compatible with BATCHSQL mode.

INSERTAPPEND causes Replicat to use the APPEND VALUES hint when it applies INSERT
operations to Oracle target tables. It is appropriate for use as a performance improvement
when the replicated transactions are large and contain multiple inserts into the same table. If
the transactions are small, using INSERTAPPEND can cause a performance decrease. For more
information about when APPEND hints should be used, consult the Oracle documentation.

The BATCHSQL parameter must be used when using INSERTAPPEND. Replicat will abend if
BATCHSQL is not used.

These parameters can be used in two ways: When used as standalone parameters at the root
of the parameter file, one remains in effect for all subsequent TABLE or MAP statements, until
the other is encountered. When used within a MAP statement, they override any standalone
INSERTAPPEND or NOINSERTAPPEND entry that precedes the MAP statement.

2-108

Chapter 2
INSERTDELETES | NOINSERTDELETES

If the table is compressed with row compression or hybrid columnar compression, DML applied
by the Replicat is not compressed even when using this parameter.

See "TABLE | MAP" for more information about the MAP parameter.

Default

NOINSERTAPPEND

Syntax

INSERTAPPEND | NOINSERTAPPEND

Examples

Example 1
The following is part of a Replicat parameter file that shows how INSERTAPPEND is used for all
of the tables in the fin schema, except for the inventory table.

BATCHSQL

INSERTAPPEND

MAP fin.*, TARGET fin2.*;

MAPEXCLUDE fin.inventory;

NOINSERTAPPEND

MAP fin.inventory, TARGET fin2.inventory;

Example 2
The following is part of a Replicat parameter file that shows how INSERTAPPEND is used for all
of the tables in the MAP statements, except for the inventory table.

BATCHSQL

MAP fin.orders, TARGET fin.orders;

MAP fin.customers, TARGET fin.customers;

MAP fin.inventory, TARGET fin.inventory, NOINSERTAPPEND;

INSERTDELETES | NOINSERTDELETES

ORACLE

Valid For

Replicat

Description

Use the INSERTDELETES and NOINSERTDELETES parameters to control whether or not Oracle
GoldenGate converts source delete operations to insert operations on the target database. The
parameters are table-specific. One parameter remains in effect for all subsequent MaAP
statements, until the other parameter is encountered.

When using INSERTDELETES, use the NOCOMPRESSDELETES parameter so that Extract does not
compress deletes.

Because you can selectively enable or disable these parameters between MaAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
INSERTDELETES threads in one set of MAP statements, and specify the NOINSERTDELETES threads
in a different set of MAP statements.

Default

NOINSERTDELETES

2-109

Chapter 2
INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES

Syntax

INSERTDELETES | NOINSERTDELETES

Example

This example shows how you can apply INSERTDELETES and NOINSERTDELETES selectively to
different MAP statements, each of which represents a different thread of a coordinated Replicat.

NOINSERTDELETES

MAP sales.loc, TARGET sales.loc, THREAD (3);
INSERTDELETES

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);

INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES

Valid For

Replicat

Description

Use the INSERTMISSINGUPDATES and NOINSERTMISSINGUPDATES parameters to control whether
or not Oracle GoldenGate inserts a record based on the source record when the target record
does not exist.

INSERTMISSINGUPDATES inserts the missing update but should only be used when the source
database logs all column values, whether or not they changed). It can work with a database
that uses a compressed form of updates (where only the changed values are logged) if the
target database allows NULL to be used for the missing column values.

If the database includes all columns by default, then you must use NOCOMPRESSUPDATES and
NOCOMPRESSDELETES for INSERTMISSINGUPDATES to work properly. If the database does not
support NOCOMPRESSDELETES, then you must use FETCHOPTIONS MISSINGCOLS.

When the default of NOINSERTMISSINGUPDATES is in effect, a missing record causes an error,
and the transaction may abend depending on REPERROR Settings.

The INSERTMISSINGUPDATES and NOINSERTMISSINGUPDATES parameters are table-specific. One
parameter remains in effect for all subsequent MAP statements, until the other parameter is
encountered.

Default

NOINSERTMISSINGUPDATES

Syntax

INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES

INSERTUPDATES | NOINSERTUPDATES

Valid For

Replicat

ORACLE 5110

Chapter 2
INSERTUPSERTS | NOINSERTUPSERTS

Description

Use the INSERTUPDATES and NOINSERTUPDATES parameters to control whether or not Oracle
GoldenGate converts update operations to insert operations. For updates to be converted to
inserts, the database must log all column values either by default or by means of supplemental

logging.

The parameters are table-specific. One parameter remains in effect for all subsequent MAP
statements, until the other parameter is encountered.

To ensure that updates are not compressed by Extract when using INSERTUPDATES, use the
NOCOMPRESSUPDATES parameter. If the database includes all columns by default, then you must
use NOCOMPRESSUPDATES and NOCOMPRESSDELETES for INSERTUPDATES to work properly. If the
database does not support NOCOMPRESSDELETES, you must use FETCHOPTIONS MISSINGCOLS.

Because you can selectively enable or disable these parameters between MAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
INSERTUPDATES threads in one set of MAP statements, and specify the NOINSERTUPDATES threads
in a different set of MAP statements.

Default

NOINSERTUPDATES

Syntax

INSERTUPDATES | NOINSERTUPDATES

Example

This example shows how you can apply INSERTUPDATES and NOINSERTUPDATES selectively to
different MAP statements, each of which represents a different thread of a coordinated Replicat.

INSERTUPDATES

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOINSERTUPDATES

MAP sales.loc, TARGET sales.loc, THREAD (3);

INSERTUPSERTS | NOINSERTUPSERTS

ORACLE

Valid For
Replicat.
Default is INSERTUPSERTS.

Trail file format 19.1 supports UPSERT operation type. Older trail file format must be used with
INSERTUPSERTS to convert UPSERT record to INSERT record.

By default, specifying INSERTUPSERTS, enables Replicat to apply UPSERT record as INSERT. If
the row exists, Replicat overwrites the row by the new record.

If the output trail format is 18.1 or older, the INSERTUPSERTS option is required, otherwise the
primary Extract fails. Primary Extract always writes UPSERT record as INSERT record for 18.1
or older trail, and you need to specify OVERRIDEDUPS option to apply the INSERT record that
was originally UPSERT.

2-111

Chapter 2
LIST | NOLIST

If the user exit module version is 5 or older, INSERTUPSERTS is required. UPSERT record is
converted to INSERT record for the user exit version 5 or older, as well as user exit stats
record count.

If the output trail format 18.1 or older is specified with NOINSERTUPSERTS, primary Extract fails.
User exit module version 6 (enable from 19.1 release) supports UPSERT record type and stats
count if NOINSERTUPSERTS is specified. If user exit module is version 5 or older and
NOINSERTUPSERTS is specified, primary Extract, pump or Replicat fail.

If UPSERT operation is applied as INSERT by specifying INSERTUPSERTS, stats still count as
UPSERT operation.

UPSERT operation type is only output if NOINSERTUPSERTS is specified, otherwise output as
INSERT.

Parallel Replicat and Oracle Integrated Replicat does not support both UPSERT and INSERT
converted from UPSERT, and fallback to non-integrated classic Replicat mode.

LIST | NOLIST

Valid For

Extract and Replicat

Description

Use the LIST and NOLIST parameters to control whether or not the macros of a macro library
are listed in the report file. Listing can be turned on and off by placing the LIST and NOLIST
parameters within the parameter file or within the macro library file. Using NOLIST reduces the
size of the report file.

Default

LIST

Syntax

LIST | NOLIST

Example

In the following example, NOLIST excludes the macros in the hugelib macro library from being
listed in the report. Using LIST after the INCLUDE statement restores normal listing for
subsequent macros.

NOLIST
INCLUDE /ggs/hugelib.mac
LIST

LOGALLSUPCOLS

ORACLE

Valid For

Extract

2-112

Chapter 2
LOOK_AHEAD_TRANSACTIONS

Description

Use the LOGALLSUPCOLS parameter to control the writing of supplementally logged columns
specified with ADD TRANDATA Or ADD SCHEMATRANDATA to the trail.

LOGALLSUPCOLS supports integrated Replicat (for Oracle database) and the Oracle
GoldenGateConflict Detection and Resolution feature (CDR). The supplementally logged
columns are a union of the scheduling columns that are required to ensure data integrity
across parallel Replicat threads and the conflict detection and resolution (CDR) columns.
Scheduling columns are primary key, unique index, and foreign key columns. Including all of
these supplementally logged columns satisfies the requirements of both CDR and dependency
computation in parallel Replicat processing.

LOGALLSUPCOLS causes Extract to do the following with these supplementally logged columns:

* Automatically includes in the trail record the before image for UPDATE operations.

* Automatically includes in the trail record the before image of all supplementally logged
columns for both UPDATE and DELETE operations.

Note:

Certain columns cannot be part of supplemental logging in Oracle due to their
data type. If you want those columns to be present in the trail file, even if they did
not change, you must use FETCHCOLS in the Extract parameter file.

For Extract versions older than 12c¢, you can use GETUPDATEBEFORES and NOCOMPRESSDELETES
parameters to satisfy the same requirement. See GETUPDATEBEFORES |
IGNOREUPDATEBEFORES and COMPRESSUPDATES | NOCOMPRESSUPDATES for more
information.

LOGALLSUPCOLS | NOLOGALLSUPCOLS takes precedence over the following parameters, if used:
e GETUPDATEBEFORES | IGNOREUPDATEBEFORES

e COMPRESSDELETES | NOCOMPRESSDELETES

e COMPRESSUPDATES | NOCOMPRESSUPDATES for before images, but COMPRESSUPDATES |
NOCOMPRESSUPDATES takes precedence over LOGALLSUPCOLS on after images.

Default

LOGALLSUPCOLS

Syntax

LOGALLSUPCOLS

LOOK_AHEAD_TRANSACTIONS

ORACLE

Valid For

Parallel Replicat

2-113

Chapter 2
LOGOUT_RECV_TIMEOUT

Description

It controls how far ahead the Scheduler looks when batching transactions. The benefit and
value to set this parameter at is highly dependent on the amount of data typically that has is in
the trail files that Replicat is reading, and depends on the transaction mix. So, different values
may work better or worse in a specific environment. Generally increment or decrement the
parameter in 10,000 interval until the best throughput is achieved.

Default

The default value is 10000.

Syntax

LOOK_AHEAD TRANSACTIONS

LOGOUT_RECV_TIMEOUT

Valid For
GLOBALS, Extract, Replicat, and Manager

Description

A new parameter LOGOUT RECV_TIMEOUT is available from the Oracle GoldenGate 21c (21.3.0)
release. Specify the amount of time OCI client waits for a response from database server when
releasing the connection.

The time can be specified in any time units such milliseconds (default), seconds, minutes, and
hours in the parameter file. Default value is 10000.

See Oracle Database Net Services Reference to learn about SQLNET .RECV_TIMEOUT.

Default

This parameter takes a value with default units as milliseconds and a default value of 10000.
Syntax

LOGOUT RECV_TIMEOUT value

Example

LOGOUT RECV_TIMEOUT=10s

LRSNTIMEDELTA

ORACLE

Valid For
Extract for DB2 z/OS

Description

Oracle GoldenGate extended LRSN and RBA support for DB2 z/OS. Because the data stored
in DB2 increased exponentially, the LRSN and RBA value had to be increased in size from six

2-114

MACRO

ORACLE

Chapter 2
MACRO

bytes to ten bytes. The RBA value is adjusted automatically to match each log record's location
in the log file. At this time DB2 z/OS has no way to adjust the LRSN timestamp value to the
proper value automatically. DB2 z/OS uses a Store Clock to LRSN delta value internallly to
adjust the LRSN timestamp. The Boot Strap Data Set (BSDS) utility report lists the LRSN
delta. The following three lines are an excerpt from the first page of the BSDS report showing
the STCK TO LRSN DELTA value.

MAX RBA FOR TORBA 00000000000000000000
MIN RBA FOR TORBA 00000000000000000000
STCK TO LRSN DELTA 00000053402130000000

If the STCK TO LRSN DELTA value is 00000000000000000000, then no change to the Extract
parameter file is needed. If there is a value other than zero, then the Extract uses a parameter
with this DELTA value to automatically adjust the log record timestamps. This is done using the
LRSNTIMEDELTA parameter and it is supplied in the Extract parameter file in a format similar to
the following:

TRANLOGOPTIONS LRSNTIMEDELTA 00000053402130000000

For a normal run you would specify cut and paste the 20 byte delta value from your BSDS
report into the parameter file Data Sharing group. If you are not using a Data Sharing group,
this value will not exist in the BSDS report.

You will see this message in the Extract report with your delta value.

2019-01-23 12:24:10 INFO 0GG-25226 The Extract is using LRSN delta
value: 00000030214053000000
This delta is used to adjust operation timestamp values.

Valid For

Extract and Replicat

Description

Use the MACRO parameter to create an Oracle GoldenGate macro. See Using Macros for more
information about using macros, including how to invoke them properly.

Default

None

Syntax
The following must be used in the order shown:

MACRO #macro name

PARAMS (#param name [, ...])
BEGIN

macro_body

END;

2-115

ORACLE

Chapter 2
MACRO

MACRO
Starts the macro specification.

#

The macro character. Macro and parameter names must begin with a macro character.
Anything in the parameter file that begins with the macro character is assumed to be either a
macro or a macro parameter.

The default macro character is the pound (#) character, as in the following examples:

MACRO #macrol
PARAMS (#paraml, #param2)

You can change the macro character with the MACROCHAR parameter.

macro_name
The name of the macro. Macro names must be one word with alphanumeric characters
(underscores are allowed) and are not case-sensitive. Each macro name in a parameter file
must be unique. Do not use quotes, or else the macro name will be treated as text and
ignored.

PARAMS
Starts a parameter clause. A parameters clause is optional. The maximum size and number of
parameters is unlimited, assuming sufficient memory is available.

param name

Describes a parameter to the macro. Parameter names are not case-sensitive. Do not use
quotes, or else the parameter name will be treated as text and ignored.

Every parameter used in a macro must be declared in the PARAMS statement, and when the
macro is invoked, the invocation must include a value for each parameter.

BEGIN
Begins the macro body. Must be specified before the macro body.

macro_body
The body of the macro. The size of the macro body is unlimited, assuming sufficient available
memory. A macro body can include any of the following types of statements:

e Simple parameter statements, as in:
COL1 = COL2

e Complex statements, as in:
COLL = #val?

* Invocations of other macros, as in:

#colmap (COL1, #sourcecol)

END;
Concludes the macro definition. The semicolon is required to complete the definition.

Examples

Example 1
The following example defines a macro that takes parameters.

MACRO #make date
PARAMS (#year, #month, #day)
BEGIN

2-116

Chapter 2
MACROCHAR

@DATE ('YYYY-MM-DD', 'CC', QIF (#year < 50, 20, 19),
'YY', #year, 'MM', #month, 'DD', #day)
END;

Example 2
The following example defines a macro that does not require parameters.

MACRO #option defaults
BEGIN

GETINSERTS

GETUPDATES

GETDELETES
INSERTDELETES

END;

Example 3
The following example defines a macro named #assign date that calls another macro named
#make date.

MACRO #assign date

PARAMS (#target col, #year, #month, #day)
BEGIN

#target col = #make date (#year, #month, #day)
END;

MACROCHAR

ORACLE

Valid For

Extract and Replicat

Description

Use the MACROCHAR parameter to change the macro character of a macro definition to
something other than the # character. You might need to change the macro character when, for
example, table names include the # character.

The MACROCHAR parameter can only be used once in the parameter file. Place the MACROCHAR
parameter before the first MACRO parameter in the parameter file. Anything in the parameter file
that begins with the specified macro character is assumed to be either a macro or a macro
parameter. All macro definitions in the parameter file must use the specified character.

MACROCHAR cannot be used with query parameters.
See also "MACRO".

See the Using Macros for more information about using macros.

Default

(pound symbol)
Syntax

MACROCHAR character

character
The character to be used as the macro character. Valid user-defined macro characters are
letters, numbers, and special characters such as the ampersand (&) or the underscore ().

2-117

Chapter 2
MAP for Extract

Example
In the following example, $ is defined as the macro character.

MACROCHAR $
MACRO $mymac
PARAMS ($pl)
BEGIN

col = $pl
END;

MAP for Extract

ORACLE

Valid For

Extract

Description

You can also use MAP in an Extract parameter file to change the name of the transactions that
Oracle GoldenGate stores for the table.

For example, consider that you capture the table scott.emp. For the first use case, you capture
it to apply all the changes to anther table called scott.emp with the same structure, but you
also want to capture scott.emp with a different set of columns and replicate that to a table
called scott.emp_old. To make this work, you'll need an Extract parameter file similar to this:

TABLE scott.emp;

MAP scott.emp,

cols(emp no, employee name),
target scott.emp old;

In the Replicat, you can do the following:

MAP *.*, target *.*;

And the changes from scott.emp would go into scott.emp, the trail data for scott.emp old
would go into scott.emp old.

Use the MAP parameter for Extract when Extract is operating in classic capture mode and you
need to use the ALTID component of this parameter to map an object ID to an object name.
ALTID specifies the correct object ID if Extract is capturing from Oracle transaction logs that
were generated by a database other than the one to which Extract is connected. This
configuration is required when Extract is not permitted to connect directly to the production
(source) database to capture production transactions.

When Extract cannot connect directly to a source database, it connects to a live standby or
other facsimile database, but it reads transaction logs that are sent from the source database.
By querying the catalog of the alternate database, Extract can get the metadata that it needs to
expand the transaction data into valid SQL statements, but it cannot use the object ID from this
query. The local object ID for a table is different from the object ID of that table in the source
database (and, thus, in the transaction log). You must manually map each table name to the
source object ID by using a MAP statement with ALTID.

2-118

Chapter 2
MAP

To Use MAP with ALTID

« Create one MAP statement with ALTID for each table that you want to capture. Wildcarded
table names are not allowed for a MAP parameter that contains ALTID.

e To specify other processing for the same table (or tables), such as data filtering or
manipulation, you must also create a TABLE statement for each of those tables.
Wildcarding can be used to specify multiple tables with one TABLE statement, if
appropriate.

« Use aregular Replicat MAP statement in the Replicat parameter file, as usual. MaP for
Extract does not substitute for MaP for Replicat, which is required to map source tables to
target tables.

e DDL capture and replication is not supported when using ALTID.
Default

None

Syntax

MAP [container.]schema.table, ALTID object ID [, object ID]

[container.]schema. table
The fully qualified name of the source table.

object ID
The object ID of the table as it exists in the production (source) database.

If a table is partitioned, you can list the object IDs of the partitions that you want to replicate,
separating each with a comma.

Examples

Example 1
This example maps a non-partitioned table or just one partition of a partitioned table.

MAP QASOURCE.T2, ALTID 75740;

Example 2
This example maps partitions of a partitioned table.

MAP QASOURCE.T P1, ALTID 75257,75258;

MAP

See "TABLE | MAP".

MAPALLCOLUMNS| NOMAPALLCOLUMNS

Valid For

Valid as a standalone Replicat parameter or as an option to MAP.

ORACLE 5119

Chapter 2
MAP_PARALLELISM

Description

An Extract or Replicat checks if all source columns are mapped directly to the target, without
using the column mapping function when MAPALLCOLUMNS parameter is specified. If any source
column is not mapped, then the Extract or Replicat abends.

Note:

This parameter is mainly used when performing heavy transformation using the
Replicat, and you must ensure that all the data is available for transformation.

MAPALLCOLUMNS and NOMAPALLCOLUMNS can be used in two different ways. When specified at a
global level, one parameter remains in effect for all subsequent MAP statements, until the other
parameter is specified. When used within a MAP statement, they override the global
specifications.

Default

NOMAPALLCOLUMNS

Syntax

MAPALLCOLUMNS | NOMAPALLCOLUMNS

Examples

Example 1
This example enables MAPALLCOLUMNS for some MAP statements while disabling it for others.

MAPALLCOLUMNS

MAP hr.emp, TARGET hr.emp2;
NOMAPALLCOLUMNS

MAP hr.dep, TARGET hr.dep2;

Example 2
This example shows a combination of global and MAP-level use of MAPALLCOLUMNS. The MAP
specification overrides the global specification for the specified table.

NOMAPALLCOLUMNS
MAP hr.dep, TARGET hr.dep2;
MAP hr.emp, TARGET hr.emp2, MAPALLCOLUMNS ;

MAP_PARALLELISM

ORACLE

Valid for

Parallel Replicat

Description

Configures number of mappers. It controls the number of threads used to read the trail file. The
minimum value is 1, maximum value is 100 and the default value is 2. Increasing this
parameter directly impacts the trail files. On a physical disk drive, you will start seeing 10
contention if you use more than 4 or 5 mappers. If it's in solid state, you can increase the value

2-120

Chapter 2
MAPEXCLUDE

a bit higher before seeing 10 contention. However, this depends on how much 10 contention
you need.

Syntax

MAP PARALLELISM value

Examples

MAP PARALLELISM 3

MAPEXCLUDE

ORACLE

Valid For

Replicat

Description

Use the MAPEXCLUDE parameter with the MAP parameter to explicitly exclude source tables and
sequences from a wildcard specification. You can use multiple MAPEXCLUDE statements for
specific MAP statements.

MAPEXCLUDE is evaluated before evaluating the associated MAP parameters. Thus, the order in
which they appear does not make a difference.

When using wildcards, be careful not to place them such that all objects are excluded, leaving
nothing to process. For example, the following example captures nothing from cat1:

MAP catl.schema*.tab*, TARGET schema*.tab*;
MAPEXCLUDE catl.*.*

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

The default for resolving wildcards is WILDCARDRESOLVE DYNAMIC. Therefore, if a table that is
excluded with MAPEXCLUDE is renamed to a name that satisfies a wildcard, the data will be
captured. The DYNAMIC setting enables new table names that satisfy a wildcard to be resolved
as soon as they are encountered and included in the Oracle GoldenGate configuration
immediately. For more information, see WILDCARDRESOLVE.

Default

None

Syntax

MAPEXCLUDE [container.]owner.{table | sequence}

container.
If the source database requires three-part names, specifies the name or wildcard specification
of the Oracle container that contains the object to exclude.

owner
Specifies the name or wildcard specification of the owner, such as the schema, of the object to
exclude.

table | sequence
The name or wildcard specification of the source object to exclude.

2-121

Chapter 2
MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS

Example 1

In this example, the source tables from catalog pdb1 with schema test beginning with tab and
the source table pdb2.fin.acct are excluded from the trail files:

MAPEXCLUDE pdbl.test.tab*
MAP pdbl.*.*, TARGET *.*;
MAPEXCLUDE pdb2.fin.acct
MAP pdb2.*.*, TARGET *.*;

Example 2

The following example excludes all source tables from catalog beginning with pdb, that is, it
excludes all tables from pdb1, pdb2, pdb3 and so on:

MAP pdbl.*.*, TARGET *.*;
MAP pdb2.*.*, TARGET *.*;
MAPEXCLUDE pdbl.test.tab*
MAPEXCLUDE pdb*.*.*

MAPEXCLUDE pdb2.fin.acct

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS

ORACLE

Valid For

Replicat on Oracle. Valid as a standalone parameter or as an option to MAP.

Description

Use MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS to control whether or not Replicat
includes invisible columns in Oracle target tables for default column mapping. For invisible
columns in Oracle target tables that use explicit column mapping, they are always mapped so
do not require this option. MAPINVISIBLECOLUMNS is required to Automatic Conflict Detection
and Resolution.

MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS can be used in two different ways. When
specified at a global level, one parameter remains in effect for all subsequent MAP statements,
until the other parameter is specified. When used within a MAP statement, they override the
global specifications.

Default

For integrated Replicat or parallel integrated Replicat the default value is
MAPINVISIBLECOLUMNS unless you explicitly specify NOMAPINVISIBLECOLUMNS in the Replicat
parameter file.

For all other types of Replicat, the default is NOMAPINVISIBLECOLUMNS.

Syntax

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS

[, THREAD (threadID[, threadID][, ...][, thread range[, thread range][, ...])]
THREADS (threadID[, threadID][, ...][, thread range[, thread range][, ...])

Specifies MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS only for the specified thread or
threads of a coordinated Replicat.

2-122

Chapter 2
MASTERKEYNAME

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadiD,
threadID, threadID

[, thread range[, thread range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

Example 1
This example enables MAPINVISIBLECOLUMNS for some MAP statements while disabling it for

others.

MAPINVISIBLECOLUMNS

MAP hr.emp, TARGET hr.emp2;
NOMAPINVISIBLECOLUMNS

MAP hr.dep, TARGET hr.dep2;

Example 2
This example shows a combination of global and MAP-level use of MAPINVISIBLECOLUMNS. The
MAP specification overrides the global specification for the specified table.

NOMAPINVISIBLECOLUMNS
MAP hr.dep, TARGET hr.dep2;
MAP hr.emp, TARGET hr.emp2, MAPINVISIBLECOLUMNS;

Example 3
In this example, MAPINVISIBLECOLUMNS is enabled globally, but turned off for thread 3. The
remaining threads 1, 2, and 4 will include invisible target columns in default column mapping.

MAPINVISIBLECOLUMNS

NOMAPINVISIBLECOLUMNS THREAD (3)

MAP hr.dep, TARGET hr.dep2, THREADRANGE (1, 4);
MAP hr.emp, TARGET hr.emp2, THREADRANGE (1, 4);

MASTERKEYNAME

ORACLE

Valid For
GLOBALS

Description

MASTERKEYNAME controls the name of the masterkey that Oracle GoldenGate processes in a
deployment will use to retrieve the key from the wallet. If no masterkey is provided, the default
value is 0GG_DEFAULT MASTERKEY. The non-mandatory option VERSION takes one number
between 1 and 65535 (0xffff). When present, it forces the Oracle GoldenGate processes in the
deployment to use that particular version of the masterkey to encrypt or decrypt trails. This is
not needed during normal operation, but might be useful when debugging old trail files if the
key has been rolled over since the date the old trail was created.

2-123

Chapter 2
MAXDISCARDRECS

Default

OGG_DEFAULT MASTERKEY

Syntax

MASTERKEYNAME [VERSION]

MAXDISCARDRECS

Valid For

Extract and Replicat

Description

Use the MAXDISCARDRECS parameter to limit the number of errors that are reported to the
discard file per MAP statement.

Use this parameter for the following reasons:

* When you expect a large number of errors but do not want them reported.
* To manage the size of the discard file.

More than one instance of MAXDISCARDRECS can be used in a parameter file to specify different
maximums for different sets of MAP statements. An instance of MAXDISCARDRECS applies to all
subsequent MAP statements until the next instance of MAXDISCARDRECS is encountered. The
minimum is 0.

Default

None

Syntax
MAXDISCARDRECS number

number
The maximum number of errors to report.

Example

MAXDISCARDRECS 1000

MAXGROUPS

Valid For
GLOBALS

Description

Use the MAXGROUPS parameter to specify the maximum number of process groups that can run
in an instance of Oracle GoldenGate. Oracle GoldenGate process checks this parameter to
control the maximum number of groups that it allows to be created.

ORACLE 5194

Chapter 2
MAXSQLSTATEMENTS

Each Replicat thread in a coordinated Replicat group is considered to be a group in the context
of MAXGROUPS. Therefore, the value of the MAXTHREADS option of COORDINATED in the ADD
REPLICAT command (default is 25), plus the number of other Replicat and Extract groups in the
Oracle GoldenGate instance, cannot exceed the MAXGROUPS value, or ADD REPLICAT returns an
error.

The actual number of processes that can run on a given system depends on the system
resources that are available. If those resources are exceeded, Oracle GoldenGate returns
errors regardless of the setting of MAXGROUPS.

Default

1000 groups
Syntax
MAXGROUPS number

number

The number of groups allowed in one instance of Oracle GoldenGate. Valid values are from
1000 to 5000.

Example

MAXGROUPS 1500

MAXSQLSTATEMENTS

ORACLE

Valid For

Replicat

Description

Use the MAXSQLSTATEMENTS parameter to control the number of prepared SQL statements that
can be used by Replicat both in regular processing mode and in BATCHSQL mode. The value for
MAXSQLSTATEMENTS determines the number of open cursors that Replicat maintains. Make
certain that the database can support the specified number of cursors, plus the cursors that
other applications and processes use. Before changing MAXSQLSTATEMENTS, contact Oracle

Support.

When setting MAXSQLSTATEMENTS for a coordinated Replicat, take into account that the specified
maximum number of cursors is applied to each thread in the configuration, not as an aggregate
threshold for Replicat as a whole. For example, if MAXSQLSTATEMENTS 100 is specified, it is
possible for each thread to have 99 open cursors without any warning or error from Replicat.

See "BATCHSQL" for more information about BATCHSQL mode.

Default

250 cursors

Syntax

MAXSQLSTATEMENTS number

2-125

Chapter 2
MAXTRANSOPS

number
The maximum number of cursors that Replicat (or each thread in a coordinated Replicat) can
use. Valid values are from 1 to 250.

Example

MAXSQLSTATEMENTS 200

MAXTRANSOPS

ORACLE

Valid For

Replicat (Not supported in integrated and parallel Replicat mode)

Description

Use the MAXTRANSOPS parameter to split large source transactions into smaller ones on the
target system. This parameter can be used when the target database is not configured to
accommodate large transactions. For example, if the Oracle rollback segments are not large
enough on the target to reproduce a source transaction that performs one million deletes, you
could specify MAXTRANSOPS 10000, which forces Replicat to issue a commit after each group of
10,000 deletes.

To use MAXTRANSOPS is to alter the transactional boundaries that are imposed by the source
application, even though Replicat applies the operations in the correct order. This can cause
errors if Extract fails during that transaction. Extract rewrites the transaction to the end of the
trail, instead of overwriting the old one. Because the trail is sequential, Replicat starts
processing the old transaction and must roll it back when it receives the recovery marker and
the new transaction, and then start applying the new transaction. If MAXTRANSOPS caused
Replicat to split the original transaction into multiple smaller transactions, Replicat may only be
able to roll back the portion that was not committed to the target. When Replicat processes the
committed operations again, they will result in duplicate-row errors or missing-row errors,
depending on the SQL operation type. The minimum is 1.

Note:

When troubleshooting Replicat abend errors, Oracle Support may request
GROUPTRANSOPS to be set to 1 and MAXTRANSOPS to be set to 1. This is only a
temporary configuration for troubleshooting purposes and should not be used
permanently in production, or it will cause data integrity errors.

Default

10,000,000

Syntax

MAXTRANSOPS number

number
The number of operations to portion into a single transaction group.

Example

MAXTRANSOPS 10000

2-126

Chapter 2
MGRSERVNAME

MGRSERVNAME

Valid For
GLOBALS

Description

Use the MGRSERVNAME parameter in a GLOBALS parameter file to specify the name of the
Manager process when it is installed as a Windows service. This parameter is only required
when installing multiple instances of Manager as a service on the same system, for example
when installing multiple Oracle GoldenGate instances or when also installing the Oracle
GoldenGate Veridata Agent, which uses a Manager process.

There must be a GLOBALS file containing MGRSERVNAME for each Manager service that is installed
with the INSTALL utility. The files must be created before the services are installed, because
the installation program refers to MGRSERVNAME when registering the service name on the
system.

Default

None

Syntax

MGRSERVNAME name

name
A one-word name for the Manager service.

Example

MGRSERVNAME Goldengate

NAMECCSID

ORACLE

Valid for
GLOBALS, Extract, Replicat, DEFGEN for DB2 on IBM i

Description

Use the NAMECCSID parameter to specify the CCSID (coded character set identifier) of the
database object names stored in the SQL catalog tables. The SQL catalog tables are created
with the CCSID of the system, but the actual database object names could be represented in
the catalog with characters from a different CCSID. The catalog does not indicate this
difference when queried, and therefore Oracle GoldenGate could retrieve the name incorrectly
unless NAMECCSID is present to supply the correct CCSID value.

To set the CCSID session, use the SET NAMECCSID command.

To view the current CCSID, use the sHOW command. If the CCSID is not set through the Admin
Client session or through the parameter NAMECCSID, the SHOW value will be DEFAULT.

Default

DEFAULT

2-127

Chapter 2
NAMEMATCH parameters

Syntax

NAMECCSID {CCSID | DEFAULT}

CCSID
A valid DB2 for i coded character set identifier that is to be used for object names in catalog
queries.

DEFAULT
Indicates that the system CCSID is to be used for object names in catalog queries.
Example

NAMECCSID 1141

NAMEMATCH parameters

Valid For
GLOBALS

Description

Use the NAMEMATCH parameters to control the behavior of fallback name mapping. Fallback
name mapping is enabled by default when the source database is case-sensitive and the
target database support both case-sensitive and case-insensitive object names, such as
Oracle and DB2 LUW.

By default, NAMEMATCHIGNORECASE fallback name matching works as follows: When a source
table name is case-sensitive, Oracle GoldenGate applies case-sensitive wildcard mapping on
the target database to find an exact match. If the target database does not contain the exact
target table name, including case, fallback name mapping performs a case-insensitive target
table mapping to find a name match.

Default

NAMEMATCHIGNORECASE

Syntax
NAMEMATCHIGNORECASE | NAMEMATCHNOWARNING | NAMEMATCHEXACT
NAMEMATCHIGNORECASE

Performs a case-insensitive target table mapping to find a name match when the target
database does not contain the exact target table name, including case.

NAMEMATCHNOWARNING
Outputs a warning message to the report file when fallback name matching is used.

NAMEMATCHEXACT
Disables fallback name mapping. If an exact, case-sensitive match is not found, Oracle
GoldenGate returns an error and abends.

ORACLE 5 108

Chapter 2
NLS_LENGTH_SEMANTICS

NLS_LENGTH_SEMANTICS

Valid For

Extract and Replicat

Description

Use NLS_LENGTH SEMANTICS parameter for Extract or Replicat to switch index values between
byte position and character position. For example, the function @STRNCMP(coll1, col2, 3)
compares the first three bytes if BYTE semantics is specified, but compares the first three
characters if CHAR semantics is specified.

Functions affected:
e @STRFIND
e @STRNCMP

Using NLS_LENGTH SEMANTICS causes the following column mapping functions to returns the
number of bytes or number characters.

° @STRLEN

The following functions always work in CHAR semantics to prevent truncation in the middle of
multibyte characters.

° @STRNCAT

° @STREXT
Default
Byte
Syntax

NLS LENGTH SEMANTICS [BYTE | CHAR]

Example
The following forces semantics to CHAR:

NLS LENGTH SEMANTICS CHAR

The following forces semantics to BYTE, which is the default:

NLS LENGTH_ SEMANTICS BYTE

NOCATALOG

ORACLE

Valid For
DEFGEN

Description

Use NOCATALOG in the DEFGEN parameter file to remove the Oracle Database container name
from table names before their definitions are written to the definitions file. This parameter is

2-129

Chapter 2
NODUPMSGSUPPRESSION

valid if the database supports container names or catalog names and the DEFSFILE parameter
includes the FORMAT RELEASE option set to 12.1. Use this parameter if the definitions file is to
be used for mapping to a database that only supports two-part names (owner.object).

DEFGEN abends with an error if duplicate schema. table names are encountered once the
container or catalog names are removed. This prevents the possibility of processing errors
caused by different sets of metadata having the same schema. table name when there is no
catalog name to differentiate them.

Default

None

Syntax

NOCATALOG

NODUPMSGSUPPRESSION

Valid For
GLOBALS

Description

Use NODUPMSGSUPPRESSION to prevent the automatic suppression of duplicate informational and
warning messages in the report file, the error log, and the system log files. A message is
issued to indicate how many times a message was repeated.

Default

Automatically suppress duplicate messages.

Syntax

NODUPMSGSUPPRESSION

NUMFILES

ORACLE

Valid For

Extract and Replicat

Description

Use the NUMFILES parameter to control the initial number of memory structures that are
allocated to contain information about tables specified in TABLE or MAP statements. NUMFILES
must occur before any TABLE or MAP entries, and before the SOURCEDEFS Or TARGETDEFS
parameter, to have any effect.

When setting NUMFILES for a coordinated Replicat, take into account that the specified value is
applied to each thread in the configuration, not as an aggregate threshold for Replicat as a
whole. For example, if NUMFILES 500 is specified, it is possible for each thread to have 499
initial memory structures without any warning or error from Replicat.

To control the number of additional memory structures that are allocated dynamically once the
NUMFILES value is reached, use the ALLOCFILES parameter. See "ALLOCFILES" for more

2-130

OBEY

ORACLE

Chapter 2
OBEY

information. The default values should be sufficient for both NUMFILES and ALLOCFILES,
because memory is allocated by the process as needed, system resources permitting. The
minimum is 1 and the maximum is 20000. While the maximum values is 20000, Oracle
GoldenGate can support up to 2 million tables in a single Replicat or Extract.

Default

1000

Syntax

NUMFILES number

number
The initial number of memory structures to be allocated. Do not set NUMFILES to an arbitrarily
high number, or memory will be consumed unnecessarily.

Example

NUMFILES 50

Valid For

Extract and Replicat

Description

Use the OBEY parameter to retrieve parameter settings from a file other than the current
parameter file.

To use OBEY, create and save a parameter file that contains the parameters that you want to
retrieve. This is known as an OBEY file. You can create a library of OBEY files that contain
different, frequently used parameter settings. Then, use the OBEY parameter in the active
parameter file to invoke the parameters in the OBEY file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the 0OBEY file and then returns to the active parameter file to
process any remaining parameters.

OBEY statements cannot be nested within other OBEY statements.

Instead of using OBEY, or in addition to it, you can use Oracle GoldenGate macros to retrieve
frequently used parameters. Refer to Using OBEY in Oracle GoldenGate Microservices
Documentation.

Default
None
Syntax
OBEY file

file
The relative or fully qualified name of the file from which to retrieve parameters or commands.

2-131

Chapter 2
OUTPUTFILEUMASK

Example

OBEY /home/ogg/myparams

OUTPUTFILEUMASK

Valid For
GLOBALS

Description

Use the OUTPUTFILEUMASK parameter to specify an octal umask for Oracle GoldenGate
processes to use when creating all files. OUTPUTFILEUMASK is not valid for Windows systems.

Default

Umask of 027 (all privileges)
Syntax

OUTPUTFILEUMASK umask

umask

The umask value. Must be between 0 and 077; otherwise there will be an error: Missing or
invalid option for OUTPUTFILEUMASK.

Example

OUTPUTFILEUMASK 066

OUTPUTFORMAT

ORACLE

Valid For

Extract

Description

Use the OUTPUTFORMAT parameter to output data in text, SQL, and XML formats.

Default

None

Syntax

OUTPUTFORMAT format type [, option] [, ...]
OUTPUTFORMAT TEXT

Use the TEXT format type to output data in external text format instead of the default Oracle
GoldenGate canonical format. You can format output that is compatible with most database
load utilities and other programs that require ASCII input. This parameter is required by the file-
to-database-utility initial load method.

2-132

ORACLE

Chapter 2
OUTPUTFORMAT

This type of statement affects all extract files or trails that are listed after it in the parameter file.
The relative order of the statements in the parameter file is important. If listed after a file or trail
specification, OUTPUTFORMAT TEXT will not take effect.

option can be one of the following:

INCLUDE (HEARTBEAT)
Includes the heartbeat table records. By default, the heartbeat table records are ignored.

BCP

Formats the output for compatibility with SQL Server's Bulk Copy Program and other bulk load
utilities.

The following options are ignored when the BCP option is specified:

° NAMES | NONAMES — Specifies whether or not to include column names. NAMES is the
default.

e NULLISSPACE — Output NULL columns as empty columns. Without NULLISSPACE, NULL
columns are output as NULL.

e PLACEHOLDERS — Outputs placeholder for missing columns.

* NOHDRFIELDS — Does not include any metadata, such as the before and after indicator,
and transaction information. Outputs column data only.

e DELIMITER 'delimiter'— Specifies the field delimiter character. To specify tabulation,
use TAB. The default is a comma *, .

* 0P | NOOP — Specifies whether or not to include operation type indicator (I, D, U, V). OP
is the default.

* IND | NOIND — Specifies whether or not to include the before and after image indicator
(B or A). IND is the default.

e TRANSTMTS | NOTRANSTMTS — Specifies whether or not to include transaction
information. TRANSTMTS is the default.

* WHOLEFILE — Includes the fully-qualified object name including the schema name.

. _FILE — Includes the object name only.

SQLLOADER
Produces a fixed-length text formatted file that is compatible with the Oracle SQL*Loader
utility or the IBM load utility.

DATE | TIME | TS
Specifies the record timestamp precision to output. By default, this parameter does not output
record timestamp. You can use one of the following:

* DATE outputs the date (year to day).
e TIME outputs the time (year to second).

e TS outputs the transaction timestamp (year to microseconds).

SQLLOADER
Produces a fixed-length, ASCII-formatted file that is compatible with the Oracle SQL*Loader
utility or the IBM Load Utility program.

OUTPUTFORMAT SQL

Use the OUTPUTFORMAT SQL parameter to output data in external SQL format, instead of the
default Oracle GoldenGate canonical format. OUTPUTFORMAT SQL generates SQL statements

2-133

ORACLE

Chapter 2
OUTPUTFORMAT

(INSERT, UPDATE, DELETE) that can be applied to SQL tables by utilities other than Oracle
GoldenGate Replicat.

INCLUDE (HEARTBEAT)
Includes the heartbeat table records. By default, heartbeat table records are ignored.

ENCODING encoding

Outputs the SQL format file in the specified encoding. Oracle GoldenGate character set
names are supported. By default, is current operating system character set. No character set
conversion on column data is performed with the default character set.

The following options specify the specific output format. The options are exclusive so cannot
be specified together.

ORACLE
Formats records for compatibility with Oracle Databases by converting date and time
columns to a format accepted by SQL*Plus.

SQLPLUS
Formats records for compatibility with Oracle Databases by converting date and time
columns to a format accepted by SQL*Plus.

SQLLOADER

Produces a fixed-length text formatted file that is compatible with the Oracle SQL*Loader
utility or the IBM load utility program.

This is exactly the same as OUTPUTFORMAT TEXT SQLLOADER, which Oracle recommends
that you use..

_TRANSTMTS | _NOTRANSTMTS
Includes SQL transaction information as comment. NOTRANSTMTS is the default.
For example:

—B, 2016-07-09:09:9:21.000000,1357991461,627

WHOLEFILE
Includes the fully-qualified object name including the schema name.

FILE
Includes the object name only.

NOPKUPDATES

Formats PKUPDATE and UNIFIED UPDATE operations as a pair of DELETE and INSERT operations.
PKUPDATE and UNIFIED UPDATE operations are formatted as an UPDATE operation if the option is
not specified. This option is ignored if the SQLLOADER option is used.

OUTPUTFORMAT XML

Use the OUTPUTFORMAT XML parameter to output data in XML format, instead of the default
Oracle GoldenGate canonical format. An OUTPUTFORMAT XML statement affects all Extract files
or trails that are defined after it. By default, the XML is output in the character set of the local
operating system.

XML stored as CLOB or BLOB is output up to 4000 bytes. To include larger XML stored as
BLOB or CLOB, use the ENCODING option.

XML stored as CLOB is always output in a CDATA section regardless of its size. This is to avoid
the overhead of converting reserved characters such as <, > and & to the appropriate XML
representation.

2-134

ORACLE

Chapter 2
OUTPUTFORMAT

Binary data including BLOB are encoded as Base64, which represents binary data in an ASCII
string format and allows output to XML.

The XML, the database object names, such as table and column names, and CHAR and
VARCHAR data are written in the default character set of the operating system unless the
ENCODING option is used to output in UTF-8.

INCLUDE (HEARTBEAT | LOB | USERTOKEN)

Includes the heartbeat table records. LOB more than 4000 bytes and Oracle GoldenGate user
tokens.

By default, heartbeat table records are ignored and doesn't include LOB more than 4000 bytes
and user tokens.

BLOB more than 4000 bytes is encoded in Base64, and CLOB more than 4000 bytes is
formatted in a CDATA section.

INLINEPROPERTIES | NOINLINEPROPERTIES

Controls whether or not properties are included within the XML tag or written separately.
INLINEPROPERTIES is the default.

TRANS | NOTRANS
Controls whether or not transaction boundaries and commit timestamps should be included in
the XML output. TRANS is the default.

CLOSETRANS | NOCLOSETRANS

Forces the closure of opened transaction boundaries and commits the timestamp upon
rollover. It adds same transaction boundaries and commit timestamp tags to the next XML file
after rollover.

The option is ignored if the TRANS option is not specified.

ENCODING xml_encoding
Outputs an XML file in the specified encoding. The default is UTF-8. The following MIME
encoding names are supported.

UTF-8 ISO-10646 UTF-8, surrogate pairs are 4 bytes per character
UTF-16 1ISO-10646 UTF-16
windows-1250 Windows Central Europe
windows-1251 Windows Cyrillic
windows-1252 Windows Latin-1
windows-1253 Windows Greek
windows-1254 Windows Turkish
windows-1255 Windows Hebrew
windows-1256 Windows Arabic
windows-1257 Windows Baltic
windows-1258 Windows Vietnam
windows-874 Windows Thai
IBM437 DOS Latin-1
IBM775 DOS 775, Baltic
IBM850 DOS multilingual
cp851 DOS Greek-1
IBM852 DOS Latin-2
IBM855 DOS Cyrillic
IBM857 DOS Turkish
IBM00858 DOS Multilingual with Euro
IBM860 DOS Portuguese
IBM861 DOS Icelandic
IBM862 DOS Hebrew
IBM863 DOS French

2-135

ORACLE

IBM864
IBM865
IBM866
IBM868
IBM869
ISO-8859-1
S0-8859-2
ISO-8859-3
ISO-8859-4
ISO-8859-5
ISO-8859-6
ISO-8859-7
ISO-8859-8
ISO-8859-9
ISO-8859-10
ISO-8859-13
ISO-8859-14
ISO-8859-15
ISO-8859-16
KOI8-R
KOI8U
TIS-620
DEC-MCS
hp-roman8
Shift_JIS
GBK
KSC_5601
Big5
EUC-JP
GB2312
EUC-KR
GB18030
HZ-GB-2312
Big5-HKSCS

Example

Chapter 2
OVERRIDEDUPS | NOOVERRIDEDUPS

DOS Arabic

DOS Nordic

DOS Cyrillic / GOST 19768-87

DOS Urdu

DOS Greek-2

ISO-8859-1 Latin-1/Western Europe
1ISO-8859-2 Latin-2/Eastern Europe
ISO-8859-3 Latin-3/South Europe
ISO-8859-4 Latin-4/North Europe
ISO-8859-5 Latin/Cyrillic
ISO-8859-6 Latin/Arabic
ISO-8859-7 Latin/Greek
ISO-8859-8 Latin/Hebrew
ISO-8859-9 Latin-5/Turkish
ISO-8859-10 Latin-6/Nordic
ISO-8859-13 Latin-7/Baltic Rim
ISO-8859-14 Latin-8/Celtic
ISO-8859-15 Latin-9/Western Europe
ISO-8859-16, Latin-10, South Eastern Europe
KOI8-R, Russian

KOI8-U, Ukranian

Thai Industrial Standard 620-2533
DEC Multilingual

HP Latin-1 Roman8

Shift_JIS, Windows-932

GBK, Windows-936

KSC-5601, Windows-949

Big-5 Traditional Chinese, Windows-950
EUC Japanese

GB-2312-1980

EUC Korean

GB-18030

HZ GB-2312

Big-5, HongKong extension

OUTPUTFORMATXML NOINLINEPROPERTIES, NOTRANS

OVERRIDEDUPS | NOOVERRIDEDUPS

Valid For

Replicat

Description

Use the OVERRIDEDUPS and NOOVERRIDEDUPS parameters to control whether or not Replicat
overwrites an existing record in the target database with a replicated one if both records have

the same key.

e OVERRIDEDUPS overwrites the existing record. It can be used for initial loads where you do
not want to truncate target tables prior to the load, or for the resynchronization of a target
table with a trusted source. Use the SQLDUPERR parameter with OVERRIDEUPS to specify the
numeric error code that is returned by the database for duplicate INSERT operations. See
"SQLDUPERR" for more information.

2-136

ORACLE

Chapter 2
PARTITION | PARTITIONEXCLUDE

NOOVERRIDEDUPS, the default, generates a duplicate-record error instead of overwriting the
existing record. You can use an exceptions MAP statement with a SQLEXEC clause to initiate
a response to the error. Otherwise, the transaction may abend.

To bypass duplicate records without causing Replicat to abend when an exceptions map is
not available, specify a REPERROR parameter statement similar to the following, where
error is the database error number for primary key constraint errors.

REPERROR (error, IGNORE)

For example, the statement for an Oracle database would be:

REPERROR (1, IGNORE)

Replicat writes ignored duplicate records to the discard file.

Place OVERRIDEDUPS or NOOVERRIDEDUPS before the TABLE or MAP statements that you want it to
affect. You can create different rules for different groups of TABLE or MAP statements. The
parameters act as toggles: one remains in effect for subsequent TABLE or MAP statements until
the other is encountered.

OVERRIDEDUPS is enabled automatically when HANDLECOLLISIONS is used. See
"HANDLECOLLISIONS | NOHANDLECOLLISIONS" for more information.

WARNING:

When OVERRIDEDUPS is in effect, records might not be processed in chronological
order across multiple Replicat processes.

Default

NOOVERRIDEDUPS

Syntax

OVERRIDEDUPS | NOOVERRIDEDUPS

PARTITION | PARTITIONEXCLUDE

Valid For

Extract, Distribution Service, and Replicat. Oracle only.

Description

These parameters work in conjunction with the TABLE and TABLEEXCLUDE parameters. Only
when a table is included, the partition rules are evaluated.

For consistency, these parameters behave much like their TABLE and TABLEEXCLUDE
counterparts.

Wildcarding will be allowed in all name portions.
GLOBALS parameter EXCLUDEWILDCARDOBJECTSONLY iS supported
Container portion is only valid in CDB environment in the three-part name.

SOURCECATALOG parameter will take affect when catalog portion is not specified.

2-137

ORACLE

Chapter 2
PARTITION | PARTITIONEXCLUDE

e Container portion must be specified when SOURCECATALOG is not specified.

» If container portion is specified, then it takes precedence over SOURCECATALOG.

If the [container.]schema.table portion of any PARTITION or PARTITIONEXCLUDE rule matches
the table, only then additional partition filtering will be performed.

Partition filtering rules are evaluated in the following order:
e If the partition name does not match any PARTITION parameter, it is excluded.

e Ifincluded by the PARTITION parameter, then exclusion rules are evaluated unless it was
included by a non-wildcard inclusion rule and EXCLUDEWILDCARDOBJECTSONLY was specified.

If using PARTITION or EXCLUDEPARTITION in Replicat, then the PARTITION parameter must be
used for the Extract TABLE parameter to write the partition metadata into the trail file so that
Replicat can process it.

Note:

An error occurs if a PARTITION or PARTITIONEXCLUDE parameter has an invalid
number of parts.

Syntax

PARTITION [container.]schema.table.partition;
PARTITIONEXCLUDE [container.]schema.table.partition;

For non-CDB, 3 parts must be specified (schema.table.partition).

For CDB, either 4 parts must be specified (pdb.schema.table.partition) or 3 parts with a
preceding SOURCECATALOG parameter.

Examples

In the following example with DML operations on partition P_0Q4 of table SH.SALES, the partition
is included because both table and partition rules include it.

TABLE

sh.sales;
PARTITION sh.sales*.p qg4;

In the following example with DML operations on partition P_04 of table SH.SALES, all partitions
are included on the Extract side using the TABLE/PARTITION parameters. The partition P_04 is

2-138

Chapter 2
PARTITION | PARTITIONEXCLUDE

excluded at the Replicat side using the MAP/PARTITIONEXCLUDE parameters. All other changes
on partitions are applied by Replicat.

TABLE sh.sales;
PARTITION sh.sales.p g*;

MAP sh.sales, TARGET sh.sales;
PARTITION sh.sales.p g4;

In the following example with DML operations on partition P_04 of table SH.SALES, the partition
P 04 is excluded because it is only valid for the partition P_03 of SH. SALES:

TABLE
sh.sales; PARTITION
sh.sales*.p q3;

The following example with DML operations on partition P_Q3 of SH. SALES shows how multiple
partition rules can be specified. Partition will be included because it is matched by one of the
partition inclusion rules.

TABLE
sh.sales; PARTITION
sh.sales.p q3;PARTITION
sh.sales.p q4;

In the following example with DML operations on partition P_04 of table SH.SALES HISTORY, the
partition P_04 is excluded because of explicit partition exclude rule.

TABLE
sh.sales history
PARTITION sh.sales*.p qg4;
PARTITIONEXCLUDE sh.sales history.p g*;

In the following example with DML operations on partition P_S1 of table SH.PRODUCTS, neither
the partition PART S1 nor the complete table SH.PRODUCTS is captured because the table
SH.PRODUCTS is not referenced.

TABLE
sh.sales; PARTITION
sh.products.p sl;

In the following example with DML operations on partition P_04 of table SH.SALES, the partition
PART Sl is included because no partition rule has a table portion matching SH. SALES.
Therefore, no partition rule is evaluated.

TABLE
sh.sales;
PARTITION sh.products.p sl;

ORACLE 5 139

Chapter 2
PTKMONITORFREQUENCY

PTKMONITORFREQUENCY

Valid For

Extract, Replicat, and Manager

Description

Use PTKMONITORFREQUENCY to set the monitoring collection frequency interval.

Default

One second.

Syntax

PTKMONITORFREQUENCY seconds

seconds
Specifies the time interval, in seconds, for monitoring collection to occur. The minimum is 1
seconds and the maximum is 60 seconds.

Examples

PTKMONITORFREQUENCY 10

PRESERVETARGETTIMEZONE

Valid For
Replicat
Description

Use the PRESERVETARGETTIMEZONE parameter to override the default Replicat session time
zone. By default, Replicat sets its session to the time zone of the source database, as written
to the trail by Extract. PRESERVETARGETTIMEZONE causes Replicat to set its session to the time
zone of the target database.

Default

None

Syntax

PRESERVETARGETTIMEZONE

PROCEDURE

This is an option that can be specified as a stand-alone statement in extract and replicat
parameter file. It indicates which feature group of procedural calls will be replicated.

ORACLE 5120

Chapter 2
REPERROR

Valid For

Extract and Replicat in Oracle only. It also requires the database to Oracle 12.2 or higher, and
requires Oracle GoldenGate and the database to be configured appropriately. See Configure
Procedural Replication.

Syntax

PROCEDURE [INCLUDE | EXCLUDE] FEATURE [ALL SUPPORTED | feature list]

Examples

Example 1
Include all system supplied packages:

PROCEDURE INCLUDE FEATURE ALL SUPPORTED
Example 2

Include specific packages

PROCEDURE INCLUDE FEATURE AQ, FGA, DBFS
Example 3

Exclude a specific packages

PROCEDURE INCLUDE FEATURE ALL SUPPORTED
PROCEDURE EXCLUDE FEATURE REDFINITION

REPERROR

ORACLE

Valid For
Replicat

Description

Use the REPERROR parameter to control how Replicat responds to errors. The default response
of Replicat to any error is to abend.

You can use one REPERROR statement to handle most errors in a default manner, while using
one or more other REPERROR Statements to handle specific errors differently. For example, you
can ignore duplicate-record errors but abend processing in all other cases.

You can use REPERROR globally (at the root of the parameter file) to affect all MAP statements
that follow it, or you can use it within a MAP statement to affect the tables specified in that
statement. Using REPERROR within a MAP statement gives you the ability to handle errors in a
particular way for each thread of a coordinated Replicat.

Using Record-level Error Handling

All REPERROR options except TRANSDISCARD and TRANSEXCEPTION apply an error-handling action
in response to an individual SQL operation on an individual record. Other, error-free records in
the same transaction are processed as configured in the MAP statements and other parameters
in the parameter file, as applicable.

2-141

ORACLE

Chapter 2
REPERROR

Using Transaction-level Error Handling

The TRANSDISCARD, TRANSEXCEPTION, and ABEND options apply an error-handling action to an
entire transaction. The triggering error can occur on an individual record in the transaction or
on the commit operation. (Commit errors do not have a particular record associated with them.)
These options can be used to:

e prevent an entire source transaction from being replicated to the target when any error is
associated with it.

e respond to a commit error when deferred constraint checking is enabled on the target.

TRANSDISCARD and TRANSEXCEPTION are mutually exclusive.

Effect of Other Parameters on Transaction-level Options

TRANSDISCARD and TRANSEXCEPTION honor the boundaries of the source transaction; however,
the presence of BATCHSQL, GROUPTRANSOPS, or MAXTRANSOPS in the parameter file may affect the
error-handling logic or outcome, because they alter transaction boundaries.

Effect of BATCHSQL and GROUPTRANSOPS

BATCHSQL or GROUPTRANSOPS (the default) both group SQL operations from different transactions
into larger transactions to improve performance, while maintaining transactional order. When
these parameters are in effect and any error occurs, Replicat first tries to resolve it by entering
an alternate processing mode (see the documentation for those parameters). If the error
persists, TRANSDISCARD Or TRANSEXCEPTION comes into effect, and Replicat reverts to source-
processing mode as follows:

1. ltrolls back the grouped or arrayed transaction.

2. It replays the offending transaction one SQL operation at a time, using the same
transaction boundaries as the source transaction.

3. It performs the discard logic (TRANSDISCARD) or exceptions-mapping (TRANSEXCEPTION).
(See those option descriptions for more detail.)

4. It resumes BATCHSQL or GROUPTRANSOPS mode after the TRANSDISCARD error handling is
completed.

Effect of MAXTRANSOPS

The integrity of TRANSDISCARD and TRANSEXCEPTION transaction-level error handling can be
adversely affected by the setting of the MAXTRANSOPS parameter. MAXTRANSOPS causes Replicat
to split very large replicated source transactions into smaller transactions when it applies them
on the target.

The TRANSDISCARD and TRANSEXCEPTION logic cause Replicat to roll back to the first record after
the last successful commit. This may or may not be the actual beginning of the offending
transaction. It depends on whether that transaction was split up and parts of it are in the
previously committed transactions. If that is the case, Replicat cannot apply the TRANSDISCARD
or TRANSEXCEPTION action to the whole transaction as it was issued on the source, but only to
the part that was rolled back from the target.

If you use MAXTRANSOPS, make certain that it is set to a value that is larger than the largest
transaction that you expect to be handled by TRANSDISCARD and TRANSEXCEPTION. This will
ensure that transactions are not be split apart into smaller ones on the target.

2-142

ORACLE

Chapter 2
REPERROR

Effect of Transaction-level Options on Statistics

The output of informational commands, such as STATS REPLICAT, will show the total number of
records in the transaction that was processed by TRANSDISCARD or TRANSEXCEPTION logic. This
number may reflect the following:

* Replicat writes all records of the transaction to the discard file, including any records that
were excluded from Oracle GoldenGate processing by means of a FILTER or WHERE clause
in a MAP statement.

« If a source table in the transaction has multiple targets, the discarded transaction will
contain multiple copies of each record, one for each target.

* Replicat ignores any exceptions mapping statements (as specified with EXCEPTIONSONLY or
MAPEXCEPTION in a MAP statement) when discarding the transaction.

Replicat abends on errors that are caused by the discard processing (TRANSDISCARD) or
exceptions mapping (TRANSEXCEPTION).

Getting More Information about Error Handling

See Error Management in Oracle GoldenGate Microservices Documentation for more
information about configuring error handling.

See "TABLE | MAP" for more information about the MAP parameter.

Default

TRANSABORT for deadlocks; ABEND for all others

Syntax

REPERROR {

(

{DEFAULT | DEFAULT2 | SQL error | user defined error},
{ABEND |

DISCARD |

EXCEPTION |

IGNORE |

RETRYOP [MAXRETRIES n] |

TRANSABORT [, MAXRETRIES] [, DELAYSECS n | DELAYCSECS n] |
TRANSDISCARD |

TRANSEXCEPTION

}
{PROCEDURE, [ABEND | IGNORE | DISCARD]}) |

RESET }

Error Specification Options

DEFAULT
Sets a global response to all errors except those for which explicit REPERROR Statements are
specified.

DEFAULT2

Provides a backup default action when the response for DEFAULT is set to EXCEPTION. Use
DEFAULT2 when an exceptions MAP statement is not specified for a MAP statement for which
errors are anticipated.

2-143

ORACLE

Chapter 2
REPERROR

SQL error
A SQL error number. This can be a record-level error or a commit-level error if using
TRANSDISCARD and TRANSEXCEPTION.

user defined error
A user-defined error that is specified with the RAISEERROR option of a FILTER clause within a
MAP statement.

Error Response Options

ABEND
Rolls back the transaction and terminates processing abnormally. ABEND is the default.

DISCARD
Logs the offending operation to the discard file but continue processing the transaction and
subsequent transactions.

EXCEPTION

Handles the operation that causes an error as an exception, but processes error-free
operations in the transaction normally. Use this option in conjunction with an exceptions MAP
statement or to work with the MAPEXCEPTION option of MAP. For example, you can map columns
from failed update statements into a "missing updates" table. In the parameter file, specify the
exceptions MAP statement after the MAP statement for which the error is anticipated.

EXCEPTION applies exception handling only to an individual SQL operation on an individual
record. To apply exception handling to the entire transaction, use the TRANSEXCEPTION option.

Note:

When the Conflict Detection and Resolution (CDR) feature is active, CDR
automatically treats all operations that cause errors as exceptions if an exceptions
MAP statement exists for the affected table. In this case, REPERROR with EXCEPTION is
not necessary, but you should use REPERROR Wwith other options to handle conflicts
that CDR cannot resolve, or for conflicts that you do not want CDR to handle.

IGNORE
Ignores the error.

RETRYOP [MAXRETRIES n]

Retries the offending operation. Use the MAXRETRIES option to control the number of retries.
For example, if a table is out of extents, RETRYOP with MAXRETRIES gives you time to add
extents so the transaction does not fail. Replicat abends after the specified number of
MAXRETRIES.

TRANSABORT [, MAXRETRIES n] [, DELAYSECS n | DELAYCSECS n]

Aborts the transaction and repositions to the beginning of the transaction. This sequence
continues either until the record(s) are processed successfully or MAXRETRIES expires. If
MAXRETRIES is not set, the TRANSABORT action will loop continuously.

Use one of the DELAY options to delay the retry. DELAYSECS n sets the delay in seconds and the
default is 60 seconds. DELAYCSECS n sets the delay in centiseconds.

The TRANSABORT option is useful for handling timeouts and deadlocks on databases that
support those conditions.

2-144

Chapter 2
REPERROR

TRANSDISCARD

Discards the entire source transaction if any operation within that transaction, including the
commit operation, causes a Replicat error that is listed in the REPERROR error specification.
Replicat aborts the transaction and, if the error occurred on a record, writes that record to the
discard file. Replicat then replays the transaction and writes all of the records to the discard
file, including the commit record. Replicat abends on errors that are caused by the discard
processing.

If the discarded record has already been data-mapped to a target record, Replicat writes it to
the discard file in the target format; otherwise, it will be written in source format. The replayed
transaction itself is always written in source format.

TRANSDISCARD supports record-level errors as well as commit errors.

Additional information is at the beginning of this topic.

TRANSEXCEPTION

If an error specified with REPERROR Occurs on any record in a transaction, performs exceptions
mapping for every record in the transaction according to its corresponding exceptions-
mapping specification, as defined by a MAPEXCEPTION or EXCEPTIONSONLY clause in an
exceptions MAP statement. If any record does not have a corresponding exceptions mapping
specification, or if there is an error writing to the exceptions table, Replicat abends with an
error message.

When an error is encountered and TRANSEXCEPTION is being used, Replicat aborts the
transaction and, if the error occurred on a record, writes that record to the discard file. Replicat
replays the transaction and examines the source records to find the exceptions-mapping
specifications, and then executes them.

TRANSEXCEPTION supports record-level errors as well as commit errors. To handle errors at the
record level (for individual SQL operations), without affecting error-free operations in the same
transaction, use the EXCEPTION option in a MAP statement.

PROCEDURE, [ABEND | IGNORE | DISCARD]

Use PROCEDURE to configure behavior of Replicat when a procedural replication error occurs.
By default, Replicat will ABEND when a procedural replication error occurs.

The IGNORE option ignores the call that failed. The DISCARD option stages the discarded errors
in the apply error queue in the target database. These errors can be re-executed or deleted at
a later time.

RESET
Use a REPERROR RESET statement to remove error-handling rules specified in previous
REPERROR parameters and apply default error handling to all MAP statements that follow.

Examples of Using REPERROR Globally

These examples show REPERROR as used at the root of the parameter file to set global error-
handling rules. You can override any or all of these rules for any given table or tables by using
REPERROR in a MAP statement. See "Examples of Using REPERROR Globally and in a MAP
Statement".

Example 1
The following example demonstrates how to stop processing for most errors, but ignore
duplicate-record errors.

REPERROR (DEFAULT, ABEND)
REPERROR (-1, IGNORE)

ORACLE 5145

ORACLE

Chapter 2
REPERROR

Example 2

The following example invokes an exceptions MAP statement created to handle errors on the
account table. Errors on the product table cause Replicat to end abnormally because an
exceptions MAP statement was not defined.

REPERROR (DEFAULT, EXCEPTION)

REPERROR (DEFAULTZ2, ABEND)

MAP sales.product, TARGET sales.product;

MAP sales.account, TARGET sales.account;
INSERTALLRECORDS

MAP sales.account, TARGET sales.account exception,
EXCEPTIONSONLY,

COLMAP (account no = account no,

optype = @GETENV ('lasterr', 'optype'),
dberr = QGETENV ('lasterr', 'dberrnum'),
dberrmsg = @GETENV ('lasterr', 'dberrmsg'));

Example 3
The following applies error rules for the first MAP statement and then restores the default of
ABEND to the second one.

REPERROR (-1, IGNORE)

MAP sales.product, TARGET sales.product;
REPERROR RESET

MAP sales.account, TARGET sales.account;

Example 4

The following discards the offending record and then replays the entire transaction if any
operation on a record within it generates an error 1403. Other error types cause Replicat to
abend.

REPERROR DEFAULT ABEND
REPERROR 1403 TRANSDISCARD

Example 5

The following discards the offending record and then replays the entire transaction to search
for an exceptions-mapping specification that writes to the exceptions table that is named
tgtexception. Other errors cause Replicat to discard the offending record (if applicable) and
then abend.

REPERROR DEFAULT ABEND

REPERROR 1403 TRANSEXCEPTION

MAP src, TARGET tgt, &

MAPEXCEPTION (TARGET tgtexception, INSERTALLRECORDS, COLMAP (..));

Examples of Using REPERROR Globally and in a MAP Statement

The following examples show different ways that REPERROR can be used in a MAP statement in
conjunction with a global REPERROR statement.

Example 1

REPLICAT group name

REPERROR (errorl , responsel)

MAP srcl, TARGET tgtl, REPERROR (errorl, responseZ);
MAP src2, TARGET tgtZ2, REPERROR (errorZ2, responsel);

In the preceding example, when errorl occurs for the first MAP statement, the action should
be response2, not responsel, because an override was specified. However, if an errorl

2-146

Chapter 2
REPFETCHEDCOLOPTIONS

occurs for the second MAP statement, the response should be responsel, the global response.
The response for error2 would be response3, which is MAP-specific.

Example 2

REPLICAT group name

REPERROR (errorl , responsel)

MAP srcl, TARGET tgtl, REPERROR (error2, responsel),
REPERROR (error3, response3);

In the preceding example, when replicating from srcl to src2, all errors and actions (1-3)
should apply, because all REPERROR statements address different errors (there are no MAP-
specific overrides).

Example 3

REPLICAT group name

REPERROR (errorl , responsel)

MAP srcl, TARGET tgtl, REPERROR (errorl, responseZ);
MAP src2, TARGET tgt2, REPERROR (errorZ2, response3l);
REPERROR (errorl , response4)

MAP src2, TARGET tgtZ2, REPERROR (error3, responsel);

In the preceding example, if errorl occurs for the first MAP statement, the action should be
response?. For the second one it would be responsel (the global response), and for the third
one it would be response4 (because of the second REPERROR statement). A global REPERROR
statement applies to all MAP statements that follow it in the parameter file until another
REPERROR Statement starts new rules.

Example 4

REPERROR DEFAULT ABEND
REPERROR 1403 TRANSDISCARD.
MAP src, TARGET tgt, REPERROR (600 TRANSDISCARD);

In the preceding example, if error 600 is encountered while applying source table src to target
table tgt, the whole transaction is written to discard file. Encountering error 1403 also results
in the same action based on the global REPERROR specification. On the other errors, the
process simply discards only the offending record and then abends.

REPFETCHEDCOLOPTIONS

ORACLE

Valid For

Replicat

Description

Use the REPFETCHEDCOLOPTIONS parameter to determine how Replicat responds to operations
for which a fetch from the source database was required. The Extract process fetches column
data when the transaction record does not contain enough information to construct a SQL
statement, when a FETCHCOLS clause is used, or when FETCHOPTIONS MISSINGCOLS is used.

See "{FETCHCOLS | FETCHCOLSEXCEPT} (column list)"and MISSINGCOLS for more
information. This parameter is used when testing Oracle GoldenGate transformation in the
Replicat to help instruct the Replicat what to do when a value is missing from the trail, or to
report information about how that value was obtained (if it was not directly obtained from the
transaction log).

2-147

Chapter 2
REPFETCHEDCOLOPTIONS

Default

None

Syntax

REPFETCHEDCOLOPTIONS

[, INCONSISTENTROW ALLOW|IGNORE |REPORT |DISCARD|ABEND]
[, LATESTROWVERSION ALLOW|IGNORE |REPORT |DISCARD |ABEND]
[, MISSINGROW ALLOW|IGNORE |REPORT |DISCARD|ABEND]

[, NOFETCH ALLOW|IGNORE|REPORT |DISCARD|ABEND]

[, REDUNDANTROW ALLOW|IGNORE |REPORT |DISCARD|ABEND]

[, SNAPSHOTROW ALLOW|IGNORE |REPORT |DISCARD|ABEND]

[, SETIFMISSING string]

INCONSISTENTROW

Determines the action to perform when column data was successfully fetched by row ID, but
the key did not match. Either the row ID was recycled or a primary key update occurred after
this operation (and prior to the fetch). Valid values are

ALLOW
Process the operation unless the record length is zero (0).

IGNORE
Ignore the condition and continue processing.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Discard the data and do not process the row.

ABEND
Discard the data and quit processing.

LATESTROWVERSION action

Provides a response when column data was fetched from the current row in the table. Valid
values are:

ALLOW
Process the operation unless the record length is zero (0).

IGNORE
Ignore the condition and continue processing.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Discard the data and do not process the row.

ABEND
Discard the data and quit processing.

NOFETCH action
Prevents fetching. One use for this option is when the database is a standby and Oracle
GoldenGate does not have a database connection. In this case, an attempt to fetch from the

ORACLE 5148

ORACLE

Chapter 2
REPFETCHEDCOLOPTIONS

database would result an error. Other scenarios may warrant the use of this parameter as
well.

When Oracle GoldenGate cannot fetch data it normally would fetch, it probably will cause data
integrity issues on the target.

The following are valid actions that can be taken when a NOFETCH is encountered:

ABEND
Write the operation to the discard file and abend the Replicat process. This is the default.

ALLOW
Process the operation unless the record length is zero (0).

IGNORE

Ignore the operation. If fetch statistics are being reported in the process report (based on
STATOPTIONS settings) they will be updated with this result.

REPORT
Write the record to the discard file and process the operation.

DISCARD

Write the record to the discard file, but do not process the operation. If fetch statistics are
being reported in the process report (based on STATOPTIONS settings) they will be updated
with this result.

MISSINGROW action

Provides a response when only part of a row (the changed values) is available to Replicat for
processing. The column data that is missing from the trail typically could not be fetched
because the row was deleted between the time the change record was created and when the
fetch was triggered, or because the row image required was older than the undo retention
specification.

Valid values are:

ALLOW
Process the operation unless the record length is zero (0).

IGNORE
Ignore the condition and continue processing.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Discard the data and do not process the partial row.

ABEND
Discard the data and quit processing.

REDUNDANTROW

Indicates that column data was not fetched because column data was previously fetched for
this record.

SETIFMISSING [string]

Provides a value when a fetch was unsuccessful (and the value is missing from the trail
record) but the target column has a not-null constraint. It takes an optional ASCII string as a
value for CHAR and BINARY data types or defaults to the following.

CHAR, VARCHAR: Single space

BINARY, VARBINARY: A NULL byte

2-149

Chapter 2
REPLACEBADCHAR

TIMESTAMP: Current date/time

FLOAT, INTEGER: Zero

Besides SETIFMISSING, you can use the COLMAP clause of the MAP statement to map a value for
the target column. See "COLMAP (column mapping)" for more information.

SNAPSHOTROW

Indicates that column data was fetched from a snapshot. Generally, this option would only be
used for reporting or discarding operations. Valid values are:

ALLOW
Process the operation unless the record length is zero (0).

IGNORE
Ignore the condition and continue processing.

REPORT
Write the record to the discard file and process the operation.

DISCARD
Discard the data and do not process the row.

ABEND
Discard the data and quit processing.

REPLACEBADCHAR

ORACLE

Valid For

Extract and Replicat

Description

Use the REPLACEBADCHAR parameter to control the response of the process when a valid code
point does not exist for either the source or target character set when mapping character-type
columns. By default, the check for invalid code points is only performed when the source and
target databases have different character sets, and the default response is to abend. You can
use the FORCECHECK option to force the process to check for invalid code points when the
source and target databases have the same character set. REPLACEBADCHAR applies globally.

Default

ABORT

Syntax

REPLACEBADCHAR {ABORT | SKIP | ESCAPE | SUBSTITUTE string | NULL | SPACE} [FORCECHECK]
[NOWARNING]

ABORT
The process abends on an invalid code point. This is the default.

SKIP

The process skips the record that has the invalid code point. Use this option with caution,
because skipping a record can cause data discrepancies on the target.

2-150

Chapter 2
REPLACEBADNUM

ESCAPE
The process replaces the data value with an escaped version of the data value. Depending on
the character set of the source database, the value is output as one of the following:

» If the source data is not UTF-16 (NCHAR/NVARCHAR), the output is hexadecimal (\xXX).

e If the source data is UTF-16, the output is Unicode (\uxxXxX) .

SUBSTITUTE string

The process replaces the data with a specified string, either Unicode notation or up to four
characters. By default the default substitution character of the target character set is used for
replacement.

NULL
The process replaces an invalid character with the value of NULL if the target column is
nullable or, otherwise, assigns a white space (U+0020).

SPACE
The process replaces an invalid character with a white space (U+0020).

FORCECHECK

The process checks for invalid code points when the source and target databases have
identical character sets. This overrides the default, where the validation is skipped when the
source and target character sets are identical.

NOWARNING
The process suppresses warning messages related to conversion and validation errors.

Examples

Example 1
The following example replaces invalid code points with the value of NULL.

REPLACEBADCHAR NULL
Example 2
Because ESCAPE is specified, Oracle GoldenGate will replace the Euro symbol in a source

NCHAR column with the escaped version of u20Ac, because the target is ISO-8859-1, which
does not support the Euro code point.

REPLACEBADCHAR ESCAPE

Example 3
The following substitutes a control character for invalid characters.

REPLACEBADCHAR SUBSTITUTE \uOOlA

REPLACEBADNUM

ORACLE

Valid For

Replicat

Description

Use the REPLACEBADNUM parameter to specify a substitution value for invalid humeric data
encountered when mapping number columns. REPLACEBADNUM applies globally.

2-151

Chapter 2
REPLICAT

Default

Replace invalid numbers with NULL.

Syntax

REPLACEBADNUM {number | NULL | UNPRINTABLE}

number
Replace with the specified number.

NULL
Replace with NULL if the target column accepts NULL values; otherwise replace with zero.

UNPRINTABLE
Reject any column with unprintable data. The process stops and reports the bad value.

Examples

Example 1

REPLACEBADNUM 1

Example 2

REPLACEBADNUM NULL

REPLICAT

Valid For

Replicat

Description

Use the REPLICAT parameter to specify a Replicat group for online change synchronization.
This parameter links the current run with previous runs, so that data changes are continually
processed to maintain synchronization between source and target tables. Replicat will run
continuously and maintain checkpoints in the data source and trail to ensure data integrity and
fault tolerance throughout planned or unplanned process termination, system outages, or
network failure.

Either REPLICAT or SPECIALRUN is required in the Replicat parameter file and must be the first
entry. See "SPECIALRUN" for more information.

Default

None

Syntax
REPLICAT group name
group name

The group name as defined with the ADD REPLICAT command. To view the names of existing
Replicat groups, use the INFO REPLICAT * command.

ORACLE 5150

Chapter 2
REPORT

Example

REPLICAT finance

REPORT

Valid For

Extract and Replicat

Description

Use the REPORT parameter to specify the interval at which Extract or Replicat generates interim
runtime statistics in a process report. The statistics are added to the existing report. By default,
runtime statistics are displayed at the end of a run unless the process is intentionally killed.

The statistics for REPORT are carried over from the previous report. For example, if the process
performed 10 million inserts one day and 20 million the next, and a report is generated at 3:00
each day, then the first report would show the first 10 million inserts, and the second report
would show those plus the current day's 20 million inserts, totalling 30 million. To reset the
statistics when a new report is generated, use the STATOPTIONS parameter with the
RESETREPORTSTATS option. See "STATOPTIONS" for more information.

For more information about the process reports, see Using the Process Report in Oracle
GoldenGate Microservices Documentation.

Default

Generate runtime statistics at the end of each run.

Syntax

REPORT

{AT hh:mi |

ON day |

AT hh:mi ON day}

AT hh:mi
Generates the report at a specific time of the day. Using AT without ON generates a report at
the specified time every day.

ON day
Generates the report on a specific day of the week. Valid values are:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

ORACLE _r

Chapter 2
REPORTCOUNT

Examples

Example 1

REPORT AT 17:00

Example 2

REPORT ON SUNDAY AT 1:00

REPORTCOUNT

Valid For

Extract and Replicat

Description

Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical database
operation that was performed within a transaction that was captured by Oracle GoldenGate.
The record count is printed to the report file and to the screen.

Note:

This count might differ from the number of records that are contained in the Oracle
GoldenGate trail. If an operation affects data that is larger than 4K, it must be stored
in more than one trail record. Hence, a report count might show 1,000 records (the
database operations) but a trail count might show many more records than that. To
obtain a count of the records in a trail, use the Logdump utility.

You can schedule record counts at regular intervals or after a specific number of records.
Record counts are carried over from one report to the other.

REPORTCOUNT can be used only once in a parameter file. If there are multiple instances of
REPORTCOUNT, Oracle GoldenGate uses the last one.

Default
None

Syntax

REPORTCOUNT [EVERY] count
{RECORD | RECORDS | SECOND | SECONDS | MINUTE | MINUTES | HOUR |HOURS} [, RATE]

count
The interval after which to output a count.

RECORD | RECORDS | SECOND | SECONDS | MINUTE | MINUTES | HOUR |HOURS
The unit of measure for count, in terms of records, seconds, minutes, or hours.

ORACLE 5154

Chapter 2
REPORTROLLOVER

RATE

Reports the number of operations per second and the change in rate, as a measurement of
performance. The Rate statistic is the total number of records divided by the total time elapsed
since the process started. The Delta statistic is the number of records since the last report
divided by the time since the last report.

Note:

The calculations are done using microsecond time granularity. The time intervals are
shown without fractional seconds, and the rate values are shown as whole numbers.

Examples

Example 1
This example generates a record count every 5,000 records.

REPORTCOUNT EVERY 5000 RECORDS

Example 2
This example generates a record count every ten minutes and also reports processing
statistics.

REPORTCOUNT EVERY 10 MINUTES, RATE

The processing statistics are similar to this:

12000 records processed as of 2011-01-01 12:27:40 (rate 203,delta 308)

REPORTROLLOVER

ORACLE

Valid For

Extract and Replicat

Description

Use the REPORTROLLOVER parameter to force report files to age on a regular schedule, in
addition of when a process starts. For long or continuous runs, setting an aging schedule aids
in controlling the size of the active report file and provides a more predictable set of archives
that can be included in your archiving routine.

Note:

Report statistics are carried over from one report to the other. To reset the statistics in
the new report, use the STATOPTIONS parameter with the RESETREPORTSTATS option.

You can specify a time of day, a day of the week, or both. Specifying just a time of day (AT
option) without a day of the week (ON option) generates a report at the specified time every day.

Rollovers caused by this parameter do not generate runtime statistics in the process report:

« To control when runtime statistics are generated to report files, use the REPORT parameter.

2-155

RESTARTCOLLISIONS | NORESTARTCOLLISIONS

ORACLE

Chapter 2

RESTARTCOLLISIONS | NORESTARTCOLLISIONS

* To generate new runtime statistics on demand, use the SEND EXTRACT Of SEND REPLICAT

command with the REPORT option.

Default

Roll reports at startup

Syntax

REPORTROLLOVER
{AT hh:mi |

ON day |

AT hh:mi ON day}

AT hh:mi
The time of day to age the file.
Valid values:

* hhis based on a 24-hour clock and accepts values of 1 through 23.

e mi accepts values from 00 through 59.
ON day
The day of the week to age the file. Valid values are:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

Examples

Example 1

REPORTROLLOVER AT 05:30

Example 2

REPORTROLLOVER ON friday

Example 3

REPORTROLLOVER AT 05:30 ON friday

Valid For

Replicat

Description

Use the RESTARTCOLLISIONS and NORESTARTCOLLISIONS parameters to control whether or not
Replicat applies HANDLECOLLISIONS logic after Oracle GoldenGate has stopped because of a
conflict. By default, NORESTARTCOLLISIONS applies. However, there might be circumstances

when you would want Oracle GoldenGate to apply HANDLECOLLISIONS logic for the first

2-156

RMTFILE

ORACLE

Chapter 2
RMTFILE

transaction after startup. For example, if the server is forcibly shut down, the database might
have committed the last Replicat transaction, but Oracle GoldenGate might not have received
the acknowledgement. Consequently, Replicat will retry the transaction upon startup.
HANDLECOLLISIONS automatically handles the resultant errors that occur.

RESTARTCOLLISIONS enables HANDLECOLLISIONS functionality until the first Replicat checkpoint
(transaction) is complete. You need not specify the HANDLECOLLISIONS parameter in the
parameter file. After the first checkpoint, HANDLECOLLISIONS is automatically turned off.

See "HANDLECOLLISIONS | NOHANDLECOLLISIONS" for more information about handling
collisions.

Default

NORESTARTCOLLISIONS

Syntax

RESTARTCOLLISIONS | NORESTARTCOLLISIONS

Valid For

Extract

Description

Use the RMTFILE parameter to define the name of an extract file on a remote system that will
be created by an initial-load Extract and read by an initial-load Replicat when SPECIALRUN is
used. Use this parameter for initial load configurations. For online change synchronization, use
the RMTTRAIL parameter.

RMTFILE must be preceded by an RMTHOST statement, and it must precede any TABLE
statements.

RMTFILE is deprecated and ignored for Extract Pump.

You can encrypt the data in this file by using the ENCRYPTTRATL parameter. See "ENCRYPTTRAIL
| NOENCRYPTTRAIL" for more information.

Default

None

Syntax

RMTFILE file name

APPEND]

PURGE]

MEGABYTES megabytes]

FORMAT RELEASE major.minor]

OBJECTDEFS | NO_ OBJECTDEFS]

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}]

file name
The relative or fully qualified name of the remote trail. Use only two characters for the trail
name. As trail files are aged, a six-character sequence number is added to this name, for

2-157

ORACLE

Chapter 2
RMTFILE

example /ogg/dirdat/rf000001. If using FORMAT RELEASE 11.2 or earlier, the trail file created is a
static file that does not increment, and the naming convention is not limited to two characters..

APPEND
Adds the current data to existing data in the file. If you use APPEND, do not use PURGE.

PURGE
Deletes an existing file before creating a new one. If you use PURGE, do not use APPEND.

MEGABYTES megabytes
Specifies the maximum size, in megabytes, of a file in the trail. The default size is 2000 MB.

FORMAT RELEASE major.minor

Specifies the metadata format of the data that is sent by Extract to a trail, a file, or (if a remote
task) to another process. The metadata tells the reader process whether the data records are
of a version that it supports. The metadata format depends on the version of the Oracle
GoldenGate process. Older Oracle GoldenGate versions contain different metadata than
newer ones.

FORMAT RELEASE specifies an Oracle GoldenGate release version. major is the major version
number, and minor is the minor version number. The X.x must reflect a current or earlier,
generally available (GA) release of Oracle GoldenGate. Valid values are 11.1 through the
current Oracle GoldenGate X.x version number, for example 11.2 or 12.1. The release version
is programmatically mapped back to the appropriate trail format compatibility level. The default
is the current version of the process that writes to this trail.

¢ Note:

RELEASE versions earlier than 12.1 do not support three-part object names.

Note:

If using multiple trails in a single Extract, only RELEASE versions that are the same
can coexist.

The following settings are supported for Oracle Database 12.2 and higher:

* For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.1, FORMAT
RELEASE 12.2 or above is supported.

e For Oracle Database 12.2 non-CDB or higher with compatibility set to 12.2, FORMAT
RELEASE 12.2 or above is supported.

* For Oracle Database 12.2 CDB/PDB or higher with compatibility set to 12.2, only FORMAT
RELEASE values 12.3 or higher are supported. This is due to the use of local undo for
PDBs, which requires augmenting the transaction ID with the PDB number to ensure
unigueness of trx IDs.

OBJECTDEFS | NO_OBJECTDEFS

Use the OBJECTDEFS and NO_OBJECTDEFS options to control whether or not to include the object
definitions in the trail. These two options are applicable only when the output trail is formatted
in Oracle GoldenGate canonical format and the trail format release is greater than 12.1.
Otherwise, both options are ignored because no metadata record will be added to the trail.

2-158

Chapter 2
ROLLOVER

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}

Sets the byte format of the file records. Valid only for files that have a FORMAT RELEASE version
of at least 12.1. Valid values are BIGENDIAN (big endian), LITTLEENDIAN (little endian), and
NATIVEENDIAN. The default is NATIVEENDIAN. See the GLOBALS version of TRAILBYTEORDER for
additional usage instructions.

Examples

Example 1

RMTFILE /east/rf, MEGABYTES 200

Example 2

RMTFILE /west/salesny, MEGABYTES 500, FORMAT RELEASE 12.3

ROLLOVER

ORACLE

Valid For

Extract

Description

Use the ROLLOVER parameter to specify the interval at which trail files are aged and new ones
are created. ROLLOVER is global and applies to all trails defined with RMTTRAIL Or RMTFILE
statements in a parameter file.

Use ROLLOVER to create trail files that represent distinct periods of time (for example, each day).
It facilitates continuous processing while providing a means for organizing the output. It also
provides a means for organizing batch runs by deactivating one file and starting another for the
next run.

Files roll over between transactions, not in the middle of one, ensuring data integrity.
Checkpoints are recorded when files roll over to ensure that previous files are no longer
required for processing.

Rollover occurs only if the rollover conditions are satisfied during the run. For example, if
ROLLOVER ON TUESDAY is specified, and data extraction starts on Tuesday, the rollover does not
occur until the next Tuesday (unless more precise ROLLOVER rules are specified). You can
specify up to 30 rollover rules.

Rollover is required when the DB UNIQUE NAME parameter is changed at the source. The
reason is that changing that parameter requires the instance itself to be stopped and restarted.
After restarting, Extract starts the new trail file in the sequence according to the existing
rollover logic. Other processes such as Distribution Path, and Replicat don't abend or require a
restart after DB UNIQUE NAME parameter is changed.

If the value of the DbUnigueName token on the source changes, then Data Pump and
Distribution Service cause a rollover to the next trail file in order to maintain a correct value for
the unique name in the trail header.

Either the AT or ON option is required. Both options can be used together, and in any order.
Using AT without ON creates a new trail file at the specified time every day.

A trail sequence number can be incremented from 000001 through 999999, and then the
sequence numbering starts over at 000000.

2-159

Chapter 2
SCHEMAEXCLUDE

Default

Roll over when the default file size is reached or the size specified with the MEGABYTES option of
the ADD RMTTRAIL or ADD EXTTRAIL command is reached.

Syntax

ROLLOVER {AT hh:mi | ON day | AT hh:mi ON day} [REPORT]

AT hh:mi
The time of day to age the file.
Valid values:

* hhis based on a 24-hour clock, with valid values of 1 through 23.

 mi accepts values from 00 through 59.

ON day
The day of the week to age the file.
Valid values:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

The values are not case-sensitive.

REPORT

Generates a report for the number of records extracted from each table since the last report
was generated. The report represents the number of records output to the corresponding trail
unless other reports are generated by means of the REPORT parameter.

Examples

Example 1
The following ages trails every day at 3:00 p.m.

ROLLOVER AT 15:00

Example 2
The following ages trails every Sunday at 8:00 a.m.

ROLLOVER AT 08:00 ON SUNDAY

SCHEMAEXCLUDE

ORACLE

Valid For
Extract, Replicat, DEFGEN

Description

Use the SCHEMAEXCLUDE parameter to exclude source objects that are owned by the specified
source owner (such as a schema) from the Oracle GoldenGate configuration when wildcards

2-160

ORACLE

Chapter 2
SCHEMAEXCLUDE

are being used to specify the owners in TABLE or MAP statements. This parameter is valid for
two- and three-part names.

Wildcards can be used for the optional catalog or container specification, as well as the
schema specification. Make certain not to use wildcards such that all objects are excluded.

The positioning of SCHEMAEXCLUDE in relation to parameters that specify files or trails
determines its effect. Parameters that specify trails or files are: EXTFILE, RMTFILE, EXTTRAIL,
RMTTRAIL. The parameter works as follows:

* When a SCHEMAEXCLUDE specification is placed before any TABLE or SEQUENCE parameters,
and also before the parameters that specify trails or files, it applies globally to all trails or
files, and to all TABLE and SEQUENCE parameters.

 When a SCHEMAEXCLUDE specification is placed after a parameter that specifies a trail or file,
it is effective only for that trail or file and only for the TABLE or SEQUENCE parameters that are
associated with it. Multiple trail or file specifications can be made in a parameter file, each
followed by a set of TABLE, SEQUENCE, and TABLEEXCLUDE specifications.

SCHEMAEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE parameters.
Thus, the order in which they appear does not make a difference.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

Default

None

Syntax

SCHEMAEXCLUDE [container.]schema

container.

If the database requires three-part names, specifies the source Oracle container that contains
the source owner that is to be excluded. Use if a qualifier is required to identify the correct
owner to exclude.

schema

Specifies the name of the source owner that is to be excluded. For databases that require
three-part names, you can use schema Without container if the SCHEMAEXCLUDE specification
precedes a set of TABLE or MAP parameters for which the default container is specified with the
SOURCECATALOG parameter.

Examples

Example 1
This Oracle example requires both container and schema specifications and demonstrates
how wildcards can be used as part of the specification.

EXTRACT capt

USERIDALIAS aliasl

RMTHOST sysb, MGRPORT 7809
RMTTRAIL /ggs/dirdat/aa
SCHEMAEXCLUDE pdbtest.test*
TABLE pdb*.*.*;

Example 2
This example shows how to use SCHEMAEXCLUDE when the database requires only a two-part
name.

2-161

Chapter 2
SEQUENCE

TABLE abc*.*;
SCHEMAEXCLUDE abctest*

SEQUENCE

Valid For

Extract

Description

Use the SEQUENCE parameter to capture sequence values from the transaction log. Currently,
Oracle GoldenGate supports sequences for the Oracle database.

Note:

Using sequences requires additional configuration steps within the Oracle Database.
See Support for Oracle Sequences and Using Sequences topics in the Oracle
GoldenGate Microservices Documentation.

Default

None
Syntax

SEQUENCE [container.]schema.sequence;

[container.] schema.sequence
Specifies the fully qualified name of the source sequence. Include the name of the pluggable
database if the source is an Oracle container database.

’

Terminates the SEQUENCE parameter statement.

Example

SEQUENCE hr.employees seq;

SESSIONCHARSET

ORACLE

Valid For
GLOBALS, valid for MySQL

Description

Use the SESSIONCHARSET parameter to set the database session character set for all database
connections that are initiated by Oracle GoldenGate processes in the local Oracle GoldenGate
instance. Processes that log into the database include, DEFGEN, Extract, and Replicat.

This parameter supports MySQL. The database character set for other databases is obtained
programmatically.

2-162

SETENV

ORACLE

Chapter 2
SETENV

The SESSIONCHARSET option of the DBLOGIN command can be used to override this setting for
any commands issued in the same session. The SESSTONCHARSET option of the SOURCEDB and
TARGETDB parameters can be used to override this setting for individual process logins.
Default

Character set of the operating system

Syntax

SESSIONCHARSET character set

character_set
The database session character set.

Example

SESSIONCHARSET IS0-8859-11

Valid For
Extract and Replicat

Any SETENV values should be set before any USERID, USERIDALIAS, FETCHUSERID,
FETCHUSERIDALIAS, TRANLOGOPTIONS MININGUSER, MININGUSERALIAS, SOURCEDB Of, TARGETDB
entries in the parameter files.

Description

Use the SETENV parameter to set a value for an environment variable. When Extract or Replicat
starts, it uses the specified value instead of the one that is set in the operating system
environment. A variable set in the SETENV statement overrides any existing variables set at the
operating system level. Use one SETENV statement per variable to be set.

For integrated extracts, you can set new environment variables if they are available from the Icr
server. The new environment variables are:

* USERNAME: Database login user name

° OSUSERNAME: Operating System user name

* MACHINENAME: Name of the host, machine, or server where the database is running

° PROGRAMNAME: Name of program or application that started the transaction or session

* CLIENTIDENTIFIER: Value set using DBMS SESSION.set identifier()

SETENV cannot be used with query parameters.

Default

None

Syntax

SETENV (

{environment variable |
GGS_CacheRetryCount |
GGS_CacheRetryDelay}

2-163

Chapter 2
SOURCECATALOG

= 'value'

environment variable
The name of the environment variable to be set.

'value'
A value for the specified variable. Enclose the value within single quotes.

GGS_CacheRetryCount

(SQL Server) Oracle GoldenGate environment parameter that controls the number of times
that Extract tries to read the source transaction log files when they are blocked because of
excessive system activity. The default is 10 retries. After trying the specified number of times,
Extract abends with an error that begins as follows:

GGS ERROR 600 [CFileInfo::Read] Timeout expired after 10 retries with 1000 ms delay
waiting to read transaction log or backup files.

If you continue to see timeout messages in the report file or error log, increase this parameter
to allow more retries.

GGS_CacheRetryDelay

(SQL Server) Oracle GoldenGate environment parameter that controls the number of
milliseconds that Extract waits before trying again to read the transaction logs when the
previous attempt has failed. The default is 1000 milliseconds delay.

Examples

Example 1

Using separate SETENV statements allows a single instance of Oracle GoldenGate to connect
to multiple Oracle database instances without having to change environment settings. The
following parameter statements set a value for ORACLE_HOME and ORACLE_SID.

SETENV (ORACLE HOME = '/home/oracle/ora9/product’)
SETENV (ORACLE SID = 'ora9')

Example 2

The following parameter statements set values for Oracle GoldenGate in a SQL Server
environment where Extract tries to read the transaction log for a maximum of 20 times before
abending, with a delay of 3000 milliseconds between tries.

SETENV (GGS_CacheRetryCount
SETENV (GGS_CacheRetryDelay

20)
3000)

SOURCECATALOG

ORACLE

Valid For

Extract and Replicat

Description

Use the SOURCECATALOG parameter to specify one of the following for subsequent TABLE or MAP
statements that contain two-part names, where three-part object names are required to fully
identify a default source Oracle pluggable database (PDB)

This parameter provides an efficient alternative to specifying the full three-part object name
(container.schema.object Or catalog.schema.object) when specifying source objects from
an Oracle consolidated database. Only the two-part name (schema.object) need be specified

2-164

Chapter 2
SOURCECHARSET

in subsequent TABLE or MAP statements when SOURCECATALOG is used. You can use multiple
instances of SOURCECATALOG to specify different default containers or catalogs for different sets
of TABLE statements (or SEQUENCE statements, if Oracle).

Three-part name specifications encountered after SOURCECATALOG override the SOURCECATALOG
specification in a TABLE statement, MAP statement, or other parameter that takes object names
as input.

Default

None

Syntax

SOURCECATALOG {container}

container
The name of an Oracle pluggable database that contains the specified objects in the TABLE of
MAP statement.

Example

In the following example, SOURCECATALOG is used to specify three different source Oracle PDBs
in an Extract parameter file.

SOURCECATALOG FINANCE
TABLE SAP.*;

TABLE REPORTS.*;
SOURCECATALOG HR
TABLE SIEBEL.*;

TABLE REPORTS.*;
SOURCECATALOG MFG
TABLE CUSTOMER.ORDERS;
TABLE REPORTS.*;

TABLE HQ.LOCATIONS.*;

In this example, Extract captures the following:

e Alltables in the sap and REPORTS schemas in the FINANCE PDB.
e All tables in the STEBEL and REPORTS schemas in the HR PDB.

e All tables in the cUSTOMER and REPORTS schemas in the MFG PDB.

* For the last TABLE statement, Extract captures all tables in the LOCATIONS schema in the HQ
PDB. This statement is a fully qualified three-part name and overrides the previous
SOURCECATALOG specification.

SOURCECHARSET

ORACLE

Valid For
Replicat
Description

Use the SOURCECHARSET parameter to control the conversion of data from the source character
set to the target character set by Replicat. Replicat converts character sets by default for
versions 11.2.1 and later, but you may need to intervene in the following cases:

2-165

ORACLE

Chapter 2
SOURCECHARSET

* To enable accurate conversion of data written by an Extract version earlier than 11.2.1.
Extract versions prior to version 11.2.1 do not write information about the source character
set to the trail, so the information must be supplied to Replicat directly. Extract versions
11.2.1 and later write information about the source character set to the trail for use by
Replicat, and any SOURCECHARSET specification is ignored.

» To override the source database character set in the trail file. Use SOURCECHARSET with the
OVERRIDE option to specify the character set you want to use. An example use case is
migrating a database to UNICODE or particular character set database from garbage in,
garbage out type of non-character set aware database by ignoring the source database
character set.

Replicat issues a warning message when it uses the SOURCECHARSET character set.

Use the REPLACEBADCHAR parameter to handle validation errors where there are invalid
characters in the source data or the target character set does not support a source character. It
provides options to abend on these errors, skip the record that caused the error, or specify a
substitute value for the character.

Default

None

Syntax

SOURCECHARSET {source charset | PASSTHRU | OVERRIDE} [DB2Z0S]

source charset

Specifies the source character set for data that is written by an Extract version that is earlier
than 11.2.1. Replicat uses the specified character set when converting character-type columns
to the target character set.

For source charset, specify the appropriate character-set identifier that represents the source
database.

For Oracle, if SOURCECHARSET is not specified but there is an NLS_LANG environment variable on
the target, Replicat uses the NLS_LANG value as the source database character set. If neither
SOURCECHARSET nor NLS_LANG is present, Replicat abends to prevent possible data corruption.

PASSTHRU

PASSTHRU

Forces Replicat to apply the data without converting the character set. Character set
differences are ignored as follows:

« If the database is Oracle, the data is applied the way it is stored in the trail.

« If the database is other than Oracle, the data is applied as binary data if the database
supports a bind as binary data. Otherwise, the data is applied as-is.

PASSTHRU is not compatible with the BULKLOAD parameter (direct-bulk load).

If PASSTHRU is specified and a mapping between CHAR/VARCHAR/CLOB and NCHAR/NVARCHAR/
NCLOB exists in the MAP statement, Replicat abends.

If any Oracle GoldenGate column-mapping functions are used for character-based columns
when PASSTHRU mode is specified, Replicat issues a warning message and converts the
results of those functions to the target database character set before mapping them to the
target column.

PASSTHRU should only be used if you are certain the source and target character sets are
compatible. If you are not sure whether PASSTHRU is appropriate in your environment, contact
Oracle Support before using it.

2-166

Chapter 2
SOURCEDEFS

OVERRIDE

Forces Replicat to use the specified character set thus overriding the source database
character set in the trail file. This option overrides character type column character set except
in the following cases:

e The character set is overridden by the CHARSET and COLCHARSET parameters.
e Use of NCHAR, NVARCHAR and NCLOB data types.

e The database overrides the column character set explicitly to a set other than the
database character set.

DB2 for z/0S

Valid for DB2 for z/OS.

Required if the version of a trail that contains DB2 data from the z/OS platform is Oracle
GoldenGate 12.1 or lower. This parameter ensures that Replicat recognizes that the data is
from DB2 for z/OS, which permits a mix of ASCII and EBCDIC character formats.

Examples

Example 1

SOURCECHARSET ISO-8859-9

Example 2
SOURCECHARSET PASSTHRU

Example 3

SOURCECAHRSET JA16EUC

Example 4

SOURCECHARSET OVERRIDE WE8ISO8859P15

SOURCEDEFS

ORACLE

Valid For

Replicat

Description

Use the SOURCEDEFS parameter to specify the name of a file that contains definitions of source
tables or files. Source definitions are not required, by default, when trail files with format Oracle
GoldenGate release 12.2.x are used because the trail files contains metadata records with the
object definitions. However, source definitions are required when replicating data between
heterogenous source and targets using trail files with format Oracle GoldenGate release 12.1.x
and lower or when trail files with created with the no_objectdefs option.

Use SOURCEDEFS for a Replicat process on the target system, as per your Oracle GoldenGate
configuration:

To generate the source-definitions file, use the DEFGEN utility. Transfer the file to the
intermediary or target system before starting a Replicat.

You can have multiple SOURCEDEFS statements in the parameter file if more than one source-
definitions file will be used, for example if each SOURCEDEFS file holds the definitions for a
distinct application.

Do not use SOURCEDEFS and ASSUMETARGETDEFS in the same parameter file.

2-167

Chapter 2
SOURCEISTABLE

Default

None

Syntax
SOURCEDEFS file name [OVERRIDE]

file name
The relative or fully qualified name of the file containing the source data definitions.

OVERRIDE

By default, the table definitions from the metadata records override the definitions from any
SOURCEDEFS file.

Specify OVERRIDE to request Replicat to use the definitions from the definitions file instead of
the metadata.

Examples

Example 1

SOURCEDEFS dirdefl\tcust.def

Example 2

SOURCEDEFS /ggs/dirdef/source defs

SOURCEISTABLE

ORACLE

Valid For

Extract

Description

Use the SOURCEISTABLE parameter to extract complete records directly from source tables in
preparation for loading them into another table or file. SOURCEISTABLE extracts all column data
specified within a TABLE statement.

This parameter applies to the following initial load methods:
e Loading data from file to Replicat.

e Loading data from file to database utility.

Do not use this parameter for the following initial load methods:

* An Oracle GoldenGate direct load, where Extract sends load data directly to the Replicat
process without use of a file.

¢ An Oracle GoldenGate direct bulk load to SQL*Loader.

For those processes, SOURCEISTABLE is specified as an ADD EXTRACT argument instead of
being used in the parameter file.

When used, SOURCEISTABLE must be the first parameter statement in the Extract parameter file.

To use SOURCEISTABLE, disable DDL extraction and replication by omitting the DDL parameter
from the Extract and Replicat parameter files. See "DDL" for more information.

2-168

Chapter 2
SOURCETIMEZONE

Default

None

Syntax

SOURCEISTABLE

SOURCETIMEZONE

ORACLE

Valid For

Replicat

Description

Use the SOURCETIMEZONE parameter to specify the time zone of the source database. Use this
parameter for one of the following purposes:

e To override the source time zone that is stored in the trail. By default, Replicat sets its
session to the specified time zone, in both region ID and offset value. This option applies to
Oracle GoldenGate versions 12.1.2 or later, where the source time zone is written to the
trail by Extract. Replicat will set its session to the specified time zone.

e To supply the time zone of the source database when the trail is written by an Extract
version that is older than 12.1.2. In these versions, Extract does not write the source time
zone to the trail, so it must be supplied by this parameter. Replicat will set its session to the
specified time zone.

To disable the default use of the source time zone by Replicat, use the
PRESERVETARGETTIMEZONE parameter in the Replicat parameter file. See
PRESERVETARGETTIMEZONE for more information.

Default

None

Syntax

SOURCETIMEZONE time zone

time zone
The time zone of the source database as output by the database for DATE, TIME and
TIMESTAMP data types. It can be specified in the following ways.

e Asaregion ID that is valid in the IANA Time Zone Database (tz database). (A region ID is
also known as an Olson time zone ID). An adjustment for Daylight Saving Time can be
performed by the target database, if supported.

* As an offset from UTC.
Examples
The following examples show different ways to specify SOURCETIMEZONE.

e These examples specify a region ID.

SOURCETIMEZONE America/New York

SOURCETIMEZONE US/Pacific

2-169

Chapter 2
SPACESTONULL | NOSPACESTONULL

SOURCETIMEZONE Japan
SOURCETIMEZONE UTC

SOURCETIMEZONE Pacific/Guam
* These examples specify an offset from UTC.

SOURCETIMEZONE +09:00

SOURCETIMEZONE -04:30

SPACESTONULL | NOSPACESTONULL

ORACLE

Valid For

Replicat on Oracle Database only

Description

Use the SPACESTONULL and NOSPACESTONULL parameters to control whether or not a source
column that contains only spaces is converted to NULL in the target column. SPACESTONULL
converts spaces to NULL if the target column accepts NULL values. NOSPACESTONULL converts
spaces to a single space character in the target column.

This parameter is applicable to the follow two scenarios:
e asource column that contains only spaces
e asource column is empty, such as empty CHAR/VARCHAR column data from DB2

Oracle does not distinguish empty and NULL column though other databases do so you should
consult your database documentation to determine how these types of columns.

The parameters are table specific. One parameter applies to all subsequent MAP statements,
until the other parameter is encountered.

Because you can selectively enable or disable these parameters between MAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
SPACESTONULL threads in one set of MAP statements, and specify the NOSPACESTONULL threads in
a different set of MAP statements.

Default

NOSPACESTONULL

Syntax

SPACESTONULL | NOSPACESTONULL

Example

This example shows how you can apply SPACESTONULL and NOSPACESTONULL selectively to
different MAP statements, each of which represents a different thread of a coordinated Replicat.

SPACESTONULL

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOSPACESTONULL

MAP sales.loc, TARGET sales.loc, THREAD (3);

2-170

Chapter 2
SPECIALRUN

SPECIALRUN

Valid For

Replicat

Description

Use the SPECIALRUN parameter in a Replicat parameter file for a one-time processing run to
direct Replicat not to create checkpoints. A one-time run has a beginning and an end, so
checkpoints are not needed. Use SPECIALRUN for certain initial data load methods.

When Replicat is in SPECIALRUN mode, do not start it with the START REPLICAT command. It is
started automatically during the initial load.

SPECIALRUN requires the use of the END parameter. Either REPLICAT or SPECIALRUN is required
in the Replicat parameter file. See "REPLICAT" for more information.

Default

None

Syntax

SPECIALRUN

SPLIT TRANS RECS

Valid For

Parallel Replicat

Description

Specifies that large transactions should be broken into pieces of specified size and applied in
parallel. Dependencies between pieces are still honored. Disabled by default.

Syntax

SPLIT TRANS RECS value

Example

SPLIT TRANS RECS 100000

SQLDUPERR

ORACLE

Valid For

Replicat

Description

Use the SQLDUPERR parameter to specify the numeric error code returned by the target
database when a duplicate row is encountered. A duplicate-record error indicates that an

2-171

Chapter 2
SQLEXEC

INSERT operation was attempted with a primary key that matches the key of an existing record
in the database.

You must use SQLDUPERR when you specify the special handling of duplicate records with the
OVERRIDEDUPS parameter. See "OVERRIDEDUPS | NOOVERRIDEDUPS" for more
information.

Default

None

Syntax

SQLDUPERR error number

error number
The numeric error code to return for duplicate records.

Example

SQLDUPERR -2601

SQLEXEC

ORACLE

Valid For

Extract and Replicat

Description

Use the SQLEXEC parameter to execute a stored procedure, query, or database command within
the context of Oracle GoldenGate processing. SQLEXEC enables Oracle GoldenGate to
communicate directly with the database to perform any work that is supported by the database.
This work can be part of the synchronization process, such as retrieving values for column
conversion, or it can be independent of extracting or replicating data, such as executing a
stored procedure that executes an action within the database.

Note:

SQLEXEC provides minimal globalization support. To use SQLEXEC in the capture
parameter file of the source capture, make sure that the client character set in the
source .prn file is either the same or a superset of the source database character
set.

SQLEXEC works as follows:

e As a standalone statement at the root level of a parameter file to execute a SQL stored
procedure or query or to execute a database command. As a standalone statement,
SQLEXEC executes independently of a TABLE or MAP statement during Oracle GoldenGate
processing. When used in a standalone SQLEXEC parameter, a query or procedure cannot
include parameters. See "Standalone SQLEXEC".

e As part of a TABLE or MAP parameter to execute a stored procedure or query with or without
parameters. When used with parameters, the procedure or query that is executed can
accept input parameters from source or target rows and pass output parameters. See
"SQLEXEC in a TABLE or MAP Parameter".

2-172

ORACLE

Chapter 2
SQLEXEC

Caution:

Use caution when executing SQLEXEC procedures against the database, especially
against the production database. Any changes that are committed by the procedure
can result in overwriting existing data.

< Note:

The SQLEXECONBEFOREIMAGE parameter supports SQLEXEC execution on Before Image
records.

Note:

The SQLEXECONBEFOREIMAGE parameter is ignored on PK update or unified update
record when EXEC type is TRANSACTION, SOURCEROW, Or ONCE.

Standalone SQLEXEC

A standalone SQLEXEC parameter is one that is used at the root level of a parameter file and
acts independently of a TABLE or MAP parameter. The following are guidelines for using a
standalone SQLEXEC parameter.

A standalone SQLEXEC statement executes in the order in which it appears in the
parameter file relative to other parameters.

A SQLEXEC procedure or query must contain all exception handling.

A query or procedure must be structured correctly when executing a SQLEXEC statement,
with legal SQL syntax for the database; otherwise Replicat will abend, regardless of any
error-handling rules that are in place. Refer to the SQL reference guide provided by the

database vendor for permissible SQL syntax.

A database credential for the Oracle GoldenGate user must precede the SQLEXEC clause.
For Extract, use the SOURCEDB and USERID or USERIDALIAS parameters as appropriate for
the database. For Replicat, use the TARGETDB and USERID or USERIDALIAS parameters, as
appropriate.

The database credential that the Oracle GoldenGate process uses is the one that executes
the SQL. This credential must have the privilege to execute commands and stored
procedures and call database-supplied procedures.

A standalone SQLEXEC statement cannot be used to get input parameters from records or
pass output parameters. You can use stored procedures and queries with parameters by
using a SQLEXEC statement within a TABLE or MAP statement. See "SQLEXEC in a TABLE
or MAP Parameter".

All objects affected by a standalone SQLEXEC statement must exist before the Oracle
GoldenGate processes start. Because of this, DDL support must be disabled for those
objects; otherwise, DDL operations could change the structure of, or delete an object,
before the SQLEXEC procedure or query executes on it.

Object names must be fully qualified in their two-part or three-part name format.

2-173

ORACLE

Chapter 2
SQLEXEC

e For DB2 on z/OS, Oracle GoldenGate uses the ODBC sQLExecDirect function to execute
a SQL statement dynamically. ODBC prepares the SQL statement every time that it is
executed, at a specified interval. To support this function, the connected database server
must be configured to prepare SQL dynamically. See the DB2 for z/OS documentation for
more information.

Getting More Information about Using Standalone SQLEXEC

See Use SQLEXEC to Execute Commands, Stored Procedures, and Queries for more
information about how to use SQLEXEC.

Syntax for Standalone SQLEXEC

SQLEXEC

{'call procedure name()' | 'SQL query' | 'database command'}

[EVERY n {SECONDS | MINUTES | HOURS | DAYS}]

[ONEXIT]

[, THREADS (threadID[, threadID)[, ...][, thread range[, thread rangel[, ...l)]

'call procedure name ()'

Specifies the name of a stored procedure to execute. Enclose the statement within single
quotes. The call keyword is required. The following is an example of how to execute a
procedure with standalone SQLEXEC:

SQLEXEC 'call prc job count ()'
'SQL query'
Specifies the name of a query to execute. Enclose the query within single quotes. Specify

case-sensitive object names in the same format required by the database. The following is an
example of how to execute a query with standalone SQLEXEC:

SQLEXEC ' select x from dual '

For a multi-line query, use the single quotes on each line. For best results, type a space after
each begin quote and before each end quote (or at least before each end quote).

'database_command'
Executes a database command. The following is an example of how to execute a database
command with standalone SQLEXEC:

SQLEXEC 'SET TRIGGERS OFF'

EVERY n {SECONDS | MINUTES | HOURS | DAYS}
Causes a standalone stored procedure or query to execute at a defined interval, for example:

SQLEXEC 'call prc_job count ()' EVERY 30 SECONDS

The interval must be a whole, positive integer.

ONEXIT
Executes the SQL when the Extract or Replicat process stops gracefully, for example:

SQLEXEC 'call prc_job count ()' ONEXIT

THREADS (threadID[, threadID][, ...][, thread range[, thread range][, ...])
Executes SQLEXEC only for the specified thread or threads of a coordinated Replicat.

2-174

ORACLE

Chapter 2
SQLEXEC

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadiD,
threadID, threadID

[, thread range[, thread range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimted list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

If no THREADS clause is used, the SQL is executed by all of the threads that were configured for
this Replicat group by the ADD REPLICAT command. However, if the SQL satisfies the criteria
for a barrier transaction, the entire SQLEXEC statement is processed by thread 0 regardless of
the actual thread mapping.

SQLEXEC in a TABLE or MAP Parameter

A SQLEXEC parameter in a TABLE or MAP parameter can be used to execute a stored procedure
or query that does or does not accept parameters. The following are SQLEXEC dependencies
and restrictions when used in a MAP or TABLE statement:

The SQL is executed by the database user under which the Oracle GoldenGate process is
running. This user must have the privilege to execute stored procedures and call database-
supplied procedures.

A query or procedure must be structured correctly when executing a SQLEXEC statement. If
Replicat encounters a problem with the query or procedure, the process abends
immediately, despite any error-handling rules that are in place. Refer to the SQL reference
guide provided by the database vendor for permissible SQL syntax.

The coMMIT operation of a Replicat transaction to the target database also commits any
DML changes that are made in a SQLEXEC statement within the boundary of the original
source transaction. This is not true for Extract, because Extract does not perform SQL
transactions. When using SQLEXEC for Extract, you can either enable implicit commits or
execute an explicit commit within the SQLEXEC procedure.

Specify literals in single quotes. Specify case-sensitive object names the same way they
are specified in the database.

Do not use SQLEXEC to change the value of a primary key column. The primary key value is
passed from Extract to Replicat. Without it, Replicat operations cannot be completed. If
primary key values must be changed with SQLEXEC, you may be able to avoid errors by
mapping the original key value to another column and then defining that column as a
substitute key with the KEYCOLS option of the TABLE and MAP parameters.

For DB2 on z/OS, Oracle GoldenGate uses the ODBC SQLExecDirect function to execute
a SQL statement dynamically. ODBC prepares the SQL statement every time that it is
executed, at a specified interval. To support this function, the connected database server
must be configured to prepare SQL dynamically. See the DB2 for z/OS documentation for
more information.

When using Oracle GoldenGate to replicate DDL, all objects that are affected by a stored
procedure or query must exist with the correct structures prior to the execution of the SQL.
Consequently, DDL on these objects that affects structure (such as CREATE or ALTER) must
execute before the SQLEXEC executes.

2-175

ORACLE

Chapter 2
SQLEXEC

« All object names in a SQLEXEC statement must be fully qualified with their two-part or three-
part names, as appropriate for the database.

* Do not use SQLEXEC for tables being processed in pass-through mode by a data-pump
Extract group.

e The following data types are supported by SQLEXEC for input and output parameters.
— Numeric data types
— Date data types
— Character data types

e When executed by a coordinated Replicat, SQLEXEC is executed by the thread or threads
that are specified with the THREAD or THREADRANGE option of the MAP statement. However, if
the SQLEXEC is specified in a MAP parameter that contains the COORDINATED keyword, it is
executed as a barrier transaction automatically by the thread with the lowest ID number,
regardless of the actual thread mapping.

Getting More Information About Using SQLEXEC in TABLE and MAP

For more information about TABLE and MAP, see "TABLE | MAP".
Syntax for SQLEXEC in TABLE or MAP

SQLEXEC (
{SPNAME procedure name[, ID logical name] |
ID logical name, QUERY ' SQL query '}

{, PARAMS [OPTIONAL | REQUIRED] parameter name = {source column |

OGG_function} |

NOPARAMS }

AFTERFILTER | BEFOREFILTER]

ALLPARAMS {OPTIONAL | REQUIRED}]
|
|

~

~

ERROR {IGNORE | REPORT | RAISE
EXEC {MAP | ONCE | TRANSACTION
PARAMBUFSIZE bytes]

TRACE]

o]

BEFORE coll = @BEFORE (coll),

FINAL | FATAL}]
SOURCEROW}] [, MAXVARCHARLEN bytes]

~

~

~ ~

~

~ o — — — =
~

SPNAME procedure name[, ID logical name]
Executes a stored procedure.

SPNAME procedure name

Specifies the name of the procedure to execute.

The following example shows a single execution of a stored procedure named lookup. In
this case, the actual name of the procedure is used. A logical name is not needed.

SQLEXEC (SPNAME lookup), PARAMS (paraml = srccol)), &
COLMAP (targcol = lookup.paraml);

ID logical name
Defines an optional logical name for the procedure. For example, logical names for a
procedure named lookup might be lookupl, lookup2, and so forth. Use this option to

2-176

Chapter 2
SQLEXEC

execute the procedure multiple times within a MAP statement. A procedure can execute up
to 20 times per MAP statement. 1D is not required when executing a procedure once.

The following example shows the use of the 1D option to enable multiple executions of a
stored procedure that gets values from a lookup table. The values are mapped to target
columns.

SQLEXEC (SPNAME lookup, ID lookupl, &
PARAMS (long name = current residence state)), &
SQLEXEC (SPNAME lookup, ID lookup2, &
PARAMS (long name = birth state)), &
COLMAP (custid = custid, current residence state long = lookupl.long name, &
birth state long = lookup2.long name);

ID logical name, QUERY ' SQL query '
Executes a query.

ID logical name
Defines a logical name for the query. A logical name is required in order to extract values
from the query results. ID logical name references the column values returned by the

query.

QUERY ' SQL query '

Specifies the SQL query syntax to execute against the database. The query can either
return results with a SELECT statement or execute an INSERT, UPDATE, Or DELETE Statement.
A SELECT statement should only return one row. If multiple rows are returned, only the first
row is processed. Do not specify an INTO ... clause for any SELECT statements.The
query must be valid, standard query language for the database against which it is being
executed. Most queries require placeholders for input parameters. How parameters are
specified within the query depends on the database type, as follows:

e For Oracle, input parameters are specified by using a colon (:) followed by the
parameter name, as in the following example.

'SELECT NAME FROM ACCOUNT WHERE SSN = :SSN AND ACCOUNT = :ACCT'

e For other databases, input parameters are specified by using a question mark, as in
the following example.

'SELECT NAME FROM ACCOUNT WHERE SSN = ? AND ACCOUNT = ?'

The query must be contained on one line, within single quotes. Quotation marks are not
required around a parameter name for any database.

The following examples illustrate the use of a SQLEXEC query for Oracle and SQL Server
queries, respectively.

Oracle example:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc _col into desc param from lookup table &
where code col = :code param', &
PARAMS (code param = account code)), &
COLMAP (newacct id = account id, newacct val = lookup.desc param);

SQL Server example:

MAP sales.account, TARGET sales.newacct, &
SQLEXEC (ID lookup, &
QUERY 'select desc _col into desc param from lookup table &
where code col = ?', &

ORACLE 2-177

Chapter 2
SQLEXEC

PARAMS (pl = account code)), &
COLMAP (newacct id = account id, &
newacct val = lookup.desc param);

PARAMS [OPTIONAL | REQUIRED] parameter name = {source column | OGG_function} |
NOPARAMS

Defines whether or not the procedure or query accepts parameters and, if yes, maps the
parameters to the input source. Either a PARAMS clause or NOPARAMS must be used.

OPTIONAL | REQUIRED

Determines whether or not the procedure or query executes when parameter values are
missing.

OPTIONAL indicates that a parameter value is not required for the SQL to execute. If a
required source column is missing from the database operation, or if a column-conversion
function cannot complete successfully because a source column is missing, the SQL
executes anyway. OPTIONAL is the default for all databases except Oracle. For Oracle,
whether or not a parameter is optional is automatically determined when retrieving the
stored procedure definition.

REQUIRED indicates that a parameter value must be present. If the parameter value is not
present, the SQL will not be executed.

parameter name = {source column | OGG_function}
Maps the name of a parameter to a column or function that provides the input. The
following data types are supported by SQLEXEC for input and output parameters.

* Numeric data types

e Date data types

e Character data types

parameter name is one of the following:

» For a stored procedure, it is the name of any parameter in the procedure that can
accept input.

* For an Oracle query, it is the name of any input parameter in the query excluding the
leading colon. For example, :vemplid would be specified as vemplid in the PARAMS
clause. Oracle permits naming an input parameter any logical name.

SQLEXEC (ID appphone, QUERY ' select per type from ps personal data '
' where emplid = :vemplid '
' and per status = 'N' and per type = 'A' ',
PARAMS (vemplid = emplid)),

TOKENS (applid = RQGETVAL (appphone.per type));

e For a non-Oracle query, it is Pn, where n is the number of the parameter within the
statement, starting from 1. For example, in a query with two parameters, the
parameter name entries are pl and p2. Consider whether the database requires the p
to be upper or lower case.

SQLEXEC (ID appphone, QUERY ' select per type from ps personal data '
' where emplid = ? '
' and per status = 'N' and per type = 'A' ',
PARAMS (pl = emplid)),

TOKENS (applid = RGETVAL (appphone.per type)):;

source column is the name of a source column that provides the input. By default, if the
specified column is not present in the log (because the record only contains the values of

ORACLE 5178

ORACLE

Chapter 2
SQLEXEC

columns that were updated) the parameter assumes any default value specified by the
procedure or query for the parameter.

0GG_function is the name of an Oracle GoldenGate column-conversion function that
executes to provide the input. See "Table and Column Mapping Functions".

To pass output values from the stored procedure or query as input to a FILTER Or COLMAP
clause, use the following syntax:

{procedure name | logical name}.parameter

Where:

* procedure name is the actual name of a stored procedure, which must match the value
given for SPNAME in the SQLEXEC statement. Use this argument only if executing a
procedure one time during the course of the Oracle GoldenGate run.

* logical name is the logical name specified with the 1D option of SQLEXEC. Use this
argument to pass input values from either a query or an instance of a stored procedure
when the procedure executes multiple times within a MAP statement.

* parameter is the name of a parameter or RETURN_VALUE if extracting returned values. By
default, output values are truncated at 255 bytes per parameter. If output parameters must
be longer, use the MAXVARCHARLEN option.

Note:

As an alternative to the preceding syntax, you can use the @GETVAL function. See
"@GETVAL" for more information.

The following examples apply to a set of Oracle source and target tables and a lookup table.
These examples show how parameters for the tables are passed for a single instance of a
stored procedure and multiple instances of a stored procedure.

Source table cust:

custid Number
current residence state Char (2)
birth state Char (2)

Target table cust_extended:

custid Number
current residence state long Varchar (30)
birth state long Varchar (30)

Lookup table state_lookup

abbreviation Char (2)
long name Varchar (30)

The following example shows the use of a stored procedure that executes once to get a value
from the lookup table. When processing records from the cust table, Oracle GoldenGate
executes the lookup stored procedure before executing the column map. The long name
parameter in the procedure accepts input from the birth state source column.The value is
mapped to the target column birth state long in the COLMAP statement.

MAP sales.cust, TARGET sales.cust extended, &
SQLEXEC (SPNAME lookup, &

2-179

Chapter 2
SQLEXEC

PARAMS (long name = birth state)), &
COLMAP (custid = custid, &
birth state long = lookup.long name);

The following example shows the use of the ID option to enable multiple executions of a
stored procedure that gets values from a lookup table. The values are mapped to target
columns.

MAP sales.cust, TARGET sales.cust extended, &

SQLEXEC (SPNAME lookup, ID lookupl, &

PARAMS (long name = current residence state)), &

SQLEXEC (SPNAME lookup, ID lookup2, &

PARAMS (long name = birth state)), &

COLMAP (custid = custid, current residence state long = lookupl.long name, &
birth state long = lookup2.long name);

AFTERFILTER | BEFOREFILTER
Use AFTERFILTER and BEFOREFILTER to specify when to execute the stored procedure or query
in relation to the FILTER clause of a MAP statement.

AFTERFILTER
Causes the SQL to execute after the FILTER statement. This enables you to skip the
overhead of executing the SQL unless the filter is successful. This is the default.

BEFOREFILTER

Causes the SQL to execute before the FILTER statement, so the results can be used in
the filter.

The following is an example using BEFOREFILTER.

SQLEXEC (SPNAME check, NOPARAMS, BEFOREFILTER)

ALLPARAMS [OPTIONAL | REQUIRED]
Use ALLPARANMS as a global rule that determines whether or not all of the specified parameters

must be present for the stored procedure or query to execute. Rules for individual parameters
established within the PARAMS clause override the global rule set with ALLPARAMS.

OPTIONAL

Permits the SQL to execute whether or not all of the parameters are present. This is the
default.

REQUIRED
Requires all of the parameters to be present for the SQL to execute.

The following is an example using OPTIONAL.

SQLEXEC (SPNAME lookup,
PARAMS (long name = birth state, short name = state),
ALLPARAMS OPTIONAL)

ERROR {IGNORE | REPORT | RAISE | FINAL | FATAL}

Use ERROR to define a response to errors associated with the stored procedure or query.
Without explicit error handling, the Oracle GoldenGate process abends on errors. Make
certain your procedures return errors to the process and specify the responses with ERROR.
With Oracle GoldenGate 21c, the functionality allows you to specify different behaviors based
on the type SQL error.

ORACLE 5180

ORACLE

Chapter 2
SQLEXEC

The following example demonstrates an abend ER process when SQL error code 1403 or
1405 is detected when executing stored procedure lookup. All other errors are reported and
replication continues.

SQLEXEC (SPNAME lookup,
PARAMS (long name = birth state, short name = state),
ERROR REPORT, ERROR FATAL (1403, 1405));

IGNORE

Causes Oracle GoldenGate to ignore all errors associated with the stored procedure or
qguery and continue processing. Any resulting parameter extraction results in "column
missing" conditions. This is the default.

REPORT

Ensures that all errors associated with the stored procedure or query are reported to the
discard file. The report is useful for tracing the cause of the error. It includes both an error
description and the value of the parameters passed to and from the procedure or query.
Oracle GoldenGate continues processing after reporting the error.

RAISE

Handles errors according to rules set by a REPERROR parameter. Oracle GoldenGate
continues processing other stored procedures or queries associated with the current MAP
statement before processing the error.

FINAL

Is similar to RAISE except that when an error associated with a procedure or query is
encountered, remaining stored procedures and queries are bypassed. Error processing is
invoked immediately after the error.

FATAL

Causes Oracle GoldenGate to abend immediately upon encountering an error associated
with a procedure or query.

EXEC {MAP | ONCE | TRANSACTION | SOURCEROW}
Use EXEC to control the frequency with which a stored procedure or query in a MAP statement
executes and how long the results are considered valid, if extracting output parameters.

MAP

Executes the procedure or query once for each source-target table map for which it is
specified. Using MAP renders the results invalid for any subsequent maps that have the
same source table. MAP is the default.

The following example shows the incorrect use of the default of MAP. Because MAP is the
default, it need not be explicitly listed in the SQLEXEC statement. In this example, a source
table is mapped in separate MAP parameters to two different target tables. In this case, the
results are valid only for the first mapping. The results of the procedure lookup are expired
by the time the second MAP parameter executes, and the second MAP results in a "column
missing" condition. To implement this correctly so that each MAP returns valid results,
SOURCEROW should be used.

MAP sales.srctab, TARGET sales.targtab, &
SQLEXEC (SPNAME lookup, PARAMS (paraml = srccol)), &
COLMAP (targcol = lookup.param2);

MAP sales.srctab, TARGET sales.targtab2, &
COLMAP (targcol2 = lookup.param?);

2-181

ORACLE

Chapter 2
SQLEXEC

ONCE

Executes the procedure or query once during the course of the Oracle GoldenGate run,
upon the first invocation of the associated MAP statement. The results remain valid for as
long as the process remains running.

The following is an example of using ONCE.

MAP sales.cust, TARGET sales.cust extended, &

SQLEXEC (SPNAME lookup, PARAMS (long name = birth state), EXEC ONCE), &
COLMAP (custid = custid, &

birth state long = lookup.long name);

TRANSACTION

Executes the procedure or query once per source transaction. The results remain valid for
all operations of the transaction.

The following is an example of using TRANSACTION.

MAP sales.cust, TARGET sales.cust extended, &

SQLEXEC (SPNAME lookup, PARAMS (long name = birth state), EXEC TRANSACTION), &
COLMAP (custid = custid, &

birth state long = lookup.long name);

SOURCEROW

Executes the procedure or query once per source row operation. Use this option when
you are synchronizing a source table with more than one target table, so that the results of
the procedure or query are invoked for each source-target mapping.

The following is an example of using SOURCEROW. In this case, the second map returns a
valid value because the procedure executes on every source row operation.

MAP sales.srctab, TARGET sales.targtab, &
SQLEXEC (SPNAME lookup, PARAMS (paraml = srccol), EXEC SOURCEROW), &
COLMAP (targcol = lookup.param2);

MAP sales.srctab, TARGET sales.targtab2, &
COLMAP (targcol2 = lookup.param?);

MAXVARCHARLEN bytes

Use MAXVARCHARLEN to specify the maximum byte length allocated for the output value of any
parameter in a stored procedure or query. Beyond this maximum, the output values are
truncated. The default is 255 bytes without an explicit MAXVARCHARLEN clause. The valid range
of values is from 50 to 32767 bytes.

The following example limits the byte length of output values to 100.

MAXVARCHARLEN 100

PARAMBUFSIZE bytes

Use PARAMBUFSIZE to specify the maximum number of bytes allowed for the memory buffer
that stores SQLEXEC parameter information, including both input and output parameters. The
default is 10,000 bytes without an explicit PARAMBUFSIZE clause. The valid range of values is
from 1000 to 2000000 bytes. Oracle GoldenGate issues a warning whenever the memory
allocated for parameters is within 500 bytes of the maximum.

The following example increases the buffer to 15,000 bytes.

PARAMBUFSIZE 15000

TRACE {ALL | ERROR}
Use TRACE to log SQLEXEC input and output parameters to the report file.
The following is a sample report file with SQLEXEC tracing enabled:

2-182

Chapter 2
STATOPTIONS

Input parameter values...
LMS TABLE: INTERACTION ATTR VALUES
KEY1: 2818249
KEY2: 1
Report File:
From Table MASTER.INTERACTION ATTR VALUES to MASTER.INTERACTION ATTR VALUES:

inserts: 0
wupdates: 0
deletes: 0
discards: 1

Stored procedure GGS INTERACTION ATTR VALUES:
attempts: 2
successful: 0

ALL
Writes the input and output parameters for each invocation of the procedure or query to
the report file. This is the default.

ERROR
Writes the input and output parameters for each invocation of the procedure or query to
the report file only after a SQL error occurs.

STATOPTIONS

ORACLE

Valid For

Extract and Replicat

Description

Use the STATOPTIONS parameter to specify the information that is to be included in statistical
displays generated by the STATS EXTRACT or STATS REPLICAT command. These options also
can be enabled as needed as arguments to those commands.

Default

See individual options.

Syntax

STATOPTIONS

[, REPORTDETAIL | NOREPORTDETAIL]

[, REPORTFETCH | NOREPORTFETCH]

[, RESETREPORTSTATS | NORESETREPORTSTATS]

[, THREADS (threadID[, threadID][, ...1[, thread rangel, thread rangel[, ...1)]

REPORTDETAIL | NOREPORTDETAIL
Valid for Replicat. Controls the reporting of statistics for operations that were not applied to the
target because they were discarded as the result of collision handling.

REPORTDETAIL

Returns statistics for the discarded operations. These operations are reported in the
regular STATS REPLICAT statistics (inserts, updates, and deletes performed) and as
discard statistics if STATS REPLICAT is issued with the DETAIL option. For example, if 10
records were INSERT operations and they were all ignored due to duplicate keys, the
report would indicate that there were 10 inserts and also 10 discards due to collisions.
REPORTDETATIL is the default.

2-183

ORACLE

Chapter 2
STATOPTIONS

NOREPORTDETAIL
Turns off the reporting of statistics for discarded operations.

REPORTFETCH | NOREPORTFETCH

Valid for Extract. Controls the reporting of statistics for the amount of row fetching performed
by Extract, such as the fetches that are triggered by a FETCHCOLS clause or fetches that must
be performed when not enough information is in the transaction record.

REPORTFETCH
Reports statistics for row fetching. The output is as follows:

e row fetch attempts: The number of times Extract attempted to fetch a column value
from the database when it could not obtain the value from the transaction log.

e fetch failed: The number of row fetch attempts that failed.

« row fetch by key: (Valid for Oracle) The number of row fetch attempts that were made
by using the primary key.

NOREPORTFETCH
Turns off the reporting of fetch statistics. NOREPORTFETCH is the default.

RESETREPORTSTATS | NORESETREPORTSTATS

Valid for Extract and Replicat. Controls whether or not statistics generated by the REPORT
parameter are reset when a new report is created. RESETREPORTSTATS resets the statistics
from one report to the other. NORESETREPORTSTATS continues the statistics from one report to
another and is the default, see REPORT. Report rollover is controlled by the REPORTROLLOVER
parameter, see REPORTROLLOVER.

THREADS (threadID[, threadID][, ...][, thread range[, thread range][, ...])
Enables the selected STATOPTIONS options for the specified threads of a coordinated
Replicat.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadiD,
threadID, threadID.

[, thread range[, thread range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

This example includes fetch details of a coordinated Replicat.

STATOPTIONS REPORTFETCH

This example resets the statistics from one report to another for thread 0 of a coordinated
Replicat .

STATOPTIONS RESETREPORTSTATS THREADS 0

2-184

Chapter 2
TABLE | MAP

TABLE | MAP

ORACLE

Valid For

TABLE is valid for Extract. You can use TABLE with Replicat only with the EVENTACTIONS
parameter. MAP is valid for Extract in certain situations and Replicat. See MAP for Extract for
details.

Description

The TABLE and MAP parameters control the selection, mapping, and manipulation of the objects
that are to be affected by an Oracle GoldenGate process. These parameters work as follows:

* Use the TABLE parameter in an Extract parameter file to specify one or more objects that
are to be captured from the data source by the Extract process. TABLE options specify
processing work such as filtering and token definitions that must be performed before
Extract writes the captured data to the Oracle GoldenGate trail.

e List the TABLE parameter after listing the EXTFILE, EXTTRAIL, RMTFILE, Or RMTTRAIL
parameter of the Extract. To write multiple trails within the same Extract, create a separate
TABLE parameter after each trail specification.

e Use the MAP parameter in the Replicat parameter file to map the data from the source
objects to the appropriate target objects. MAP options specify processing work such as
filtering, conversion, and error handling that must be performed before the data is applied
to the target objects. Each target object that you want to synchronize with a source object
must be associated with that source object by means of a MAP parameter. Multiple source-
target relationships can be specified by means of a wildcard.

TABLE and MAP are valid for initial load configurations and for online processes configured to
support the replication of transactional changes.

You can process the following objects with TABLE and MAP:

* Index Organized Tables
e Materialized views
e Tables

To specify a sequence for capture by Extract, use the SEQUENCE parameter.

Note:

Oracle GoldenGate supports replication of actual data values of Oracle materialized
views.

You can use one or more TABLE or MAP statements in a parameter file, with or without
wildcards, to specify all of the objects that you want to process.

You can exclude objects from a wildcarded TABLE or MAP statement with the TABLEEXCLUDE
and MAPEXCLUDE parameters. Additional exclusion parameters are CATALOGEXCLUDE,
SCHEMAEXCLUDE, and EXCLUDEWILDCARDOBJECTSONLY.

2-185

ORACLE

Chapter 2
TABLE | MAP

Default

None

Syntax for TABLE

For tables, you can use all of the TABLE options. For non-table objects, use TABLE only to
specify an object for capture.

TABLE source table[, TARGET target table]

, ATTRCHARSET (charset)]

, CHARSET character set]

; COLCHARSET character set]

, COLMAP (column mapping)]

{COLS | COLSEXCEPT} (column list)]

{DEF | TARGETDEF} template]

EVENTACTIONS action]

EXITPARAM 'parameter']

{FETCHCOLS | FETCHCOLSEXCEPT} (column_list)}
{FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column_list)]
FETCHBEFOREFILTER]

FILTER (filter clause)]

GETBEFORECOLS (column specification)]
KEYCOLS (columns)]

SQLEXEC (SQL specification)]

SQLPREDICATE 'WHERE where clause']

TOKENS (token definition)]

TRIMSPACES | NOTRIMSPACES]

TRIMVARSPACES | NOTRIMVARSPACES]

WHERE (clause)]

container.]schema.table PARTITIONOBJID ptn object ID [, ptn object ID]

~ N~~~ ~

~

~ N SN S N S~ N~~~

~

~

Syntax for MAP

MAP source table, TARGET target table

[, MOD COMPARE COLS(tgt col = source)]
[, COLMAP (column mapping)]

[, COMPARECOLS (column specification)]

[, COORDINATED]

[, {DEF | TARGETDEF} template]

[, EXCEPTIONSONLY]

[, EXITPARAM 'parameter']

[, EVENTACTIONS (action)]

[, FILTER (filter clause)]

[, HANDLECOLLISIONS | NOHANDLECOLLISIONS]
[, INSERTALLRECORDS]

[, INSERTAPPEND | NOINSERTAPPEND]

[, KEYCOLS (columns)]

[, MAPALLCOLUMNS | NOMAPALLCOLUMNS]

[, MAPEXCEPTION (exceptions mapping)]

[, MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS]

[, REPERROR (error, response)]

[, RESOLVECONFLICT (conflict resolution specification)]
[, SQLEXEC (SQL specification)]

2-186

ORACLE

THREAD (thread ID)]

~

~

TRIMSPACES | NOTRIMSPACES]
TRIMVARSPACES | NOTRIMVARSPACES]
WHERE (clause)]

~

~

— — — — — —
~

~

TABLE and MAP Options

THREADRANGE (thread range[, column list])]

Chapter 2
TABLE | MAP

container.]schema.table PARTITIONOBJID ptn object ID [, ptn object ID]

The following table summarizes the options that are available for the TABLE and MAP

parameters. Note that not all options are valid for both parameters.

Table 2-11 Summary of TABLE and MAP Syntax Components

Component

Description Vali
d
For

MAP MOD COMPARE COL(tgt col = source

This is a Replicat

only parameter. MA
Assigns specified P
source value to

target column's

before image as key
value, and the value

is used for WHERE
clause.

TABLE
source table[, TARGET
target]

Specifies the source TABL
object in a TABLE E
statement for Extract

and an optional

mapping to a target

object. Use in the

Extract parameter

file.

MAP source table, TARGET target table

Specifies the source- MAP
target object

mapping for the

Replicat process.

Use in the Replicat
parameter file.

ATTRCHARSET (charset)

specifies the source TABL
character set E
information at UDT
attribute level.

COLCHARSET character set

Specifies any TABL
supported character E
set.

COLMAP (column mapping)

Maps records TABL
between different E
source and target and
columns. MAP

{COLS | COLSEXCEPT} (column list)

Selects or excludes TABL
columns for E
processing.

2-187

ORACLE

Chapter 2
TABLE | MAP

Table 2-11 (Cont.) Summary of TABLE and MAP Syntax Components
]

Component Description Vali
d
For
COMPARECOLS (column specification) Specifies col_umns to TABL
- use for conflict E
detection and and
resolution. MAP

COORDINATED Forces a transaction MAP
to be processed as a
barrier transaction.

(DEF| TARGETDEF} template Specifies a source- TABL
definitions or target- E
definitions template. gnd

MAP

EXCEPTIONSONLY Specifies that the MAP
MAP statement is an
exceptions MAP
statement.

EVENTACTIONS (action) Triggers an action — TABL
based on a record E
that satisfies a and
specified filter rule. map

EXITPARAM 'parameter' .Passes a paramgter TABL
in the form of a literal E
string to a user exit. gnd

MAP

FETCHBEFOREFILTER Directs the TABL
FETCHCOLS or E
FETCHCOLSEXCEPT
action to be
performed before a
filter is executed.

{FETCHCOLS | FETCHCOLSEXCEPT} (column list) Enables the fetching TABL

— of column values E
from the source
database when the
values are not in the
transaction record.

{(FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column list) Forces column TABL

- values to be fetched E
from the database
when the columns
are present in the
transaction log.

FILTER (filter clause) Selects records . TABL

- based on a numeric E
value. FILTER and
provides more MAP

flexibility than WHERE.

2-188

Chapter 2
TABLE | MAP

Table 2-11 (Cont.) Summary of TABLE and MAP Syntax Components
]

Component Description Vali
d
For
Forces before TABL

GETBEFORECOLS (column specification)

images of columns E
to be captured and
written to the trail.

HANDLECOLLISIONS | NOHANDLECOLLISIONS

Reconciles the MAP
results of changes

made to the target

table by an initial

load process with

those applied by a
change-

synchronization

group.

INSERTALLRECORDS

Applies all row MAP
changes as inserts.

INSERTAPPEND | NOINSERTAPPEND

Controls whether or MAP
not Replicat uses an
Oracle APPEND hint

for INSERT

statements.

KEYCOLS (columns)

Designates columns TABL

that uniquely identify E

rows. and
MAP

MAPALLCOLUMNS| NOMAPALLCOLUMNS

Controls whether or NA
not Replicat obtains
non-key columns.

MAPEXCEPTION (exceptions mapping)

Specifies that the MAP
MAP statement

contains exceptions
handling for

wildcarded tables.

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS

Controls whether or MAP
not Replicat includes
invisible columns in
Oracle target tables
for default column
mapping. For
invisible columns in
Oracle target tables
that use explicit
column mapping,
they are always
mapped so do not
require this option.

ORACLE

2-189

Chapter 2
TABLE | MAP

Table 2-11 (Cont.) Summary of TABLE and MAP Syntax Components
]

Component Description Vali
d

For

Controls how MAP

REPERROR (error, response) Replicat responds to

errors when
executing the MAP
statement.

Specifies rules for MAP

RESOLVECONFLICT (conflict resolution specification) : .
- - conflict resolution.

SQLEXEC (SQL specification) Er()ecceucgﬁfesstc;fc? EABL
queries. and
MAP

Enables a WHERE TABL
clause to select rows E
for an initial load.

SQLPREDICATE 'WHERE where clause'

THREAD (thread ID) Valid for Replicatin ~ MAP
coordinated mode.
Specifies that the
MAP statement will
be processed by the
specified Replicat
thread.

THREADRANGE (thread range, column list) Valid for Replicatin MAP
coordinated mode.
Specifies that the
MAP statement will
be processed by the
specified range of
Replicat threads.

TOKENS (token definition) Defines user tokens. TABL

TRIMSPACES | NOTRIMSPACES Controls whether TABL
trailing spaces are E
trimmed or not when gnd
mapping CHAR to MAP
VARCHAR columns.

TRIMVARSPACES | NOTRIMVARSPACES Controls whether TABL
trailing spaces are E
trimmed or not when gnd
mapping VARCHAR t0 MaAPp

CHAR or VARCHAR
columns.

WHERE (clause) Selects records TABL
based on conditional E
operators. and

MAP

ORACLE 5190

ORACLE

Chapter 2
TABLE | MAP

Table 2-11 (Cont.) Summary of TABLE and MAP Syntax Components
]

Component Description Vali
d
For
; (Semicolon) TABL
Terminates the E
TABLE or MAP and
statement and is MAP
required.
PARTITIONOBJID Available for TABL

Integrated Extract. E
This optionisused gnd
to specify the object map
IDs of the partitions

to be captured for
partitioned tables.

MAP MOD COMPARE COL(tgt col = source [,...])

tgt_col must be target table column name, and should be the key column to take effect
properly. source can be source table column, constant value (number or string), column
mapping function or SQLEXEC results. For example, source coll is mapped to target coll.
source coll before image value is 1, which is a dummy value because it is masked by DBA
for security. Replicat can query actual before image value of target coll by SQLEXEC. Using
MOD COMPARE COLS (), Replicat replaces dummy source coll value by SQLEXEC result, so
that UPDATE or DELETE operation works properly.

TABLE source table[, TARGET target]
TABLE is valid in an Extract parameter file.

Use TABLE to specify a source object for which you want Extract to capture data. Specify the
fully qualified two-part or three-part name of the object, such as schema. table or
catalog.schema. table. You can use a wildcard to specify multiple objects with one TABLE
statement. To specify object names and wildcards correctly, see Using Wildcards in Database
Object Names and Using Wildcards in Command Arguments in Oracle GoldenGate
Microservices Documentation.

Use the TARGET option only when Extract must refer to a target definitions file (specified with
the TARGETDEFS parameter) to perform conversions or when the COLMAP option is used to map
columns. Otherwise, it can be omitted from a TABLE parameter. Column mapping with COLMAP
and conversion work usually are performed on the target system to minimize the impact of
replication activities on the source system, but can be performed on the source system if
required. For example, column mapping and conversion can be performed on the source
system in a configuration where there are multiple sources and one target. In this scenario, it
may be easier to manage one target definitions file rather than managing a definitions file for
each source database, especially if there are frequent application changes that require new
definitions files to be generated.

Using TARGET in a TABLE parameter identifies the metadata of the extracted data based on the
target structure, rather than that of the source, to reflect the structure of the record that is
reflected in the definitions file or the column map. Do not use three-part names if TARGET
specifies tables in a target Oracle container database. Replicat can only connect to one
container or catalog, so it is assumed that the container or catalog portion of the name is the

2-191

ORACLE

Chapter 2
TABLE | MAP

same as the one that Replicat logs into (as specified with USERID, USERIDALIAS, Of TARGETDB,
depending on the database).

If no other TABLE syntax options are required to process the specified source data, you can use
a simple TABLE statement, making sure to terminate it with a semicolon.

TABLE sales.customers;

The following shows the use of a wildcard to specify multiple tables:

TABLE sales.*;

The preceding TABLE statements direct Extract to capture all supported column data for the
specified objects and write it to the trail without performing any filtering, conversion, or other
manipulation.

MAP source table, TARGET target table

MAP is valid in a Replicat parameter file. You can also use MAP in a Extract parameter file to
change the name of the transactions that Oracle GoldenGate stores for the table. See

Use MAP to specify a source object, and use TARGET to specify the target object to which
Replicat applies the replicated source data. Together, the MAP and TARGET clause comprise a

mapping.

* For MAP source table, specify the source object. Specify the fully qualified two-part or
three-part name of the object, such as schema. table Or catalog.schema.table. YOU can
use a wildcard to specify multiple source objects.

» For TARGET target table, specify a two-part name, even if the target is a container
database. Replicat can only connect to one container or catalog, so it is assumed that the
container or catalog portion of the name is the same as the one that Replicat logs into (as
specified with USERID, USERIDALIAS, Or TARGETDB, depending on the database). You can
use a wildcard to specify multiple target objects.

The following shows the use of a wildcard to specify multiple tables. Note that the TARGET
clause does not include the tab prefix before the wildcard. That specification would be invalid,
because the wildcard would be resolved as sales.tabtabl, sales.tabtab2, and so forth.

MAP sales.tab*, TARGET sales.*;

If no filtering, mapping, or other work is required for the objects, you can use simple MAP
statements like the following, making sure to terminate each one with a semicolon.

MAP sales.customers, TARGET sales.customers;
MAP fin.*, TARGET fin.*;

ATTRCHARSET (charset)
ATTRCHARSET is valid for TABLE.

Use the ATTRCHARSET clause to specify the source character set information at UDT attribute
level. It overrides the character set defined in the trail file or specified by SOURCECHARSET,
CHARSET, Or COLCHARSET parameters.

Valid values are character set names and valid UDT attribute names. Wildcard attribute names
are supported. For example:

TABLE SCHEMA.T*,
ATTRCHARSET (WE8DEC, col*.attrl, coll.attr*.attr3);

2-192

Chapter 2
TABLE | MAP

COLCHARSET character set
COLCHARSET is valid for TABLE.

Use the COLCHARSET clause to specify any supported character set. See COLCHARSET for
more information.

COLMAP (column_mapping)
COLMAP is valid for TABLE and MAP.
Use COLMAP to:

* Map individual source columns to target columns when the source and target columns
have different names.

» Specify default column mapping when the source and target names are identical.

COLMAP provides instructions for selecting, translating, and moving column data from a source
column to a target column.

Note:

To create global rules for column mapping across all tables in subsequent MAP
statements, use the COLMATCH parameter.

Getting More Information About Configuring Column Mapping

To use COLMAP, related configuration considerations must be taken into account, such as
whether source and target column structures are identical or different and whether global
column mapping parameters may be sufficient.

Syntax

COLMAP (

[USEDEFAULTS,]

target column = source_expression [BINARYINPUT]
[, ...1]

)

USEDEFAULTS

Automatically maps source and target columns that have the same name if they were not
specified in an explicit column mapping. The data types are translated automatically, as
needed, based on the local data-definitions file. USEDEFAULTS eliminates the need for an
explicit column mapping if those columns have the same name and the data does not require
any filtering or conversion.

Specify USEDEFAULTS before explicit column mappings in the COLMAP clause.

target column = source expression
Defines an explicit source-target column mapping.

target column

Specifies the name of the target column. For supported characters in column names, see
Supported Character Sets.

ORACLE 5193

ORACLE

Chapter 2
TABLE | MAP

source_expression
Can be any of the following:

* The name of a source column, such as ORD DATE
e A numeric constant, such as 123
e A string constant within single quotes, such as 'ABCD'

e An expression using an Oracle GoldenGate column-conversion function, such as
@STREXT (COL1, 1, 3).See "Table and Column Mapping Functions" for more
information.

BINARYINPUT

Use BINARYINPUT when the target column is defined as a binary data type, such as RAW or
BLOB, but the source input contains binary zeros in the middle of the data. he source input is
handled as binary input, and replacement of data values is suppressed.

Example 1

MAP ggs.tran, TARGET ggs.tran2, COLMAP (loc2 = loc, type2 = type);

Example 2

TABLE ggs.tran, COLMAP (SECTION = @STRCAT ('\u00a7', SECTION));

{COLS | COLSEXCEPT} (column_list)
COLS and COLSEXCEPT are valid for TABLE.
Use cOLS and COLSEXCEPT to control the columns for which data is captured.

* COLS specifies columns that contain the data that you want to capture. When COLS is used,
all columns that are not in the COLS list are ignored by Oracle GoldenGate.

* COLSEXCEPT specifies columns to exclude from being captured. When COLSEXCEPT is used,
all columns that are not in the COLSEXCEPT list are captured by Oracle GoldenGate. For
tables with numerous columns, COLSEXCEPT may be more efficient than listing each column
with COLS.

Caution:

Do not exclude key columns, and do not use COLSEXCEPT to exclude columns that
contain data types that are not supported by Oracle GoldenGate. COLSEXCEPT
does not exclude unsupported data types.

To use CoLs, the following is required:

e The table must have one or more key columns, or a substitute key must be defined with
the XKEYCOLS option. See "KEYCOLS (columns)".

e The key columns or the columns specified with KEYCOLS must be included in the column list
that is specified with coLs. Otherwise, they will not be captured, and an error will be
generated during processing.

Without a primary key, a unique key, or a KEYCOLS clause in the TABLE statement, Oracle
GoldenGate uses all of the columns in the table, rendering COLS unnecessary.

2-194

ORACLE

Chapter 2
TABLE | MAP

Note:

Do not use this option for tables that are processed in pass-through mode by a data-
pump Extract group.

Syntax

{COLS | COLSEXCEPT} (column [, ...])

column
The name of a column. To specify multiple columns, create a comma-delimited list, for
example:

COLS (name, city, state, phone)

< Note:

If the database only logs values for columns that were changed in an update
operation, a column specified for capture with cOLS might not be available. To make
those columns available, use the FETCHCOLS option in the TABLE statement or enable
supplemental logging for the column.

Example

The coLs clause in this example captures only columns 1 and 3, whereas the COLSEXCEPT
clause captures all columns except columns 1 and 3.

TABLE hg.acct, COLS (coll, col3);
TABLE hqg.sales, COLSEXCEPT (coll, col3);

COMPARECOLS (column specification)
COMPARECOLS is valid for MAP.

Use COMPARECOLS to specify the columns that Replicat uses to detect and resolve update or
delete conflicts when configured with the RESOLVECONFLICT option of MAP in a multi-master
configuration. A conflict is a mismatch between the before image of a record in the trail and the
correct data in the target table.

To use COMPARECOLS, the before image must be available in the trail record by means of the
GETBEFORECOLS parameter in the Extract TABLE statement. The specified columns must exist in
the target database and also be part of the Replicat configuration (satisfy the TARGET
specification with or without a COLMAP clause).

Only scalar data types are supported by COMPARECOLS as comparison columns. A scalar data
type can be used in a WHERE clause, has a single, atomic value and no internal components.
Scalar data types supported by Oracle GoldenGate include the following, but not LOBs.

¢ Numeric data types
e Date data types

e Character data types

2-195

Chapter 2
TABLE | MAP

Some examples of non-scalar data types are spatial data, user-defined data types, large
objects (LOB), XML, reference data types, and RAW. A row being considered for CDR can
include non-scalar data so long as the conflict is not in the non-scalar data itself.

To specify conflict resolution routines, use the RESOLVECONFLICT option of MAP. COMPARECOLS
and RESOLVECONFLICT can be in any order in the MAP statement.

Getting More Information About Configuring the CDR Feature

See Automatic Conflict Detection and Resolution or Manual Conflict Detection and Resolution
for more information about configuring conflict detection and resolution.

Syntax

COMPARECOLS (

{ON UPDATE | ON DELETE}

{ALL | KEY | KEYINCLUDING (col[,...]) | ALLEXCLUDING (col[,...]) }

brenn]
)

{ON UPDATE | ON DELETE}

Specifies whether the before image of the specified columns should be compared for updates
or deletes. You can use ON UPDATE only, ON DELETE only, or both. If using both, specify them
within the same COMPARECOLS clause. See the example for how to use both.

{ALL | KEY | KEYINCLUDING (col[,...]) | ALLEXCLUDING (col[,...])}
Specifies the columns for which a before image is captured.

ALL

Compares using all columns in the target table. An error is generated if any corresponding
before images are not available in the trail. Using ALL imposes the highest processing load
for Replicat, but allows conflict-detection comparisons to be performed using all columns
for maximum accuracy.

KEY

Compares only the primary key columns. This is the fastest option, but does not permit
the most accurate conflict detection, because keys can match but non-key columns could
be different.

KEYINCLUDING
Compares the primary key columns and the specified column or columns. This is a
reasonable compromise between speed and detection accuracy.

ALLEXCLUDING
Compares all columns except the specified columns. For tables with numerous columns,
ALLEXCLUDING may be more efficient than KEYINCLUDING. Do not exclude key columns.

Example 1
In the following example, the key columns plus the name, address, and salary columns are
compared for conflicts.

MAP src, TARGET tgt

COMPARECOLS (

ON UPDATE KEYINCLUDING (name, address, salary),
ON DELETE KEYINCLUDING (name, address, salary));

ORACLE 5196

ORACLE

Chapter 2
TABLE | MAP

Example 2
In the following example, the comment column is ignored and all other columns are compared
for conflicts.

MAP src, TARGET tgt
COMPARECOLS (ON UPDATE ALLEXCLUDING (comment))

COORDINATED
COORDINATED is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use the COORDINATED option to force transactions made on objects in the same MAP statement
to be processed as barrier transactions. It causes all of the threads across all MAP statements
to synchronize to the same trail location. The synchronized position is the beginning of the
transaction that contains a record that satisfies a MAP that contains the COORDINATED keyword.
The transaction is then applied atomically by a single thread, which is either the thread with the
lowest thread ID among the currently running threads or a dedicated thread with the ID of 0O if
USEDEDICATEDCOORDINATIONTHREAD is specified in the parameter file.

THREAD and THREADRANGE clauses specified in conjunction with COORDINATED are ignored
because the record will not be applied by the designated thread(s). The COORDINATED keyword
results in temporarily suspending parallelism so that the target tables are in a consistent state
before the force-coordinated transaction is applied. After this point, parallel execution
commences again.

Replicat by default coordinates transactions in which the primary key is updated, transactions
that perform DDL, and certain EVENTACTIONS actions. COORDINATED provides for explicit
coordination.

See About Coordinated Replicat for more information.

Syntax

COORDINATED

Example

The following is an example of the use of the COORDINATED option. In this example, business
rules require that the target tables be in a consistent state before Replicat executes
transactions that include SQLEXEC operations on the objects specified in the MAP statement.
Parallelism must be temporarily converted to serial SQL processing in this case.

Given the following MAP statement, if another thread inserts into t2 a record with a value of 100
for col val before the insert to t1 is performed by thread 1, then the SQLEXEC will delete the
row. If other threads are still processing the record that has the value of 100, the SQLEXEC fails.
The results of this MAP statement are, therefore, not predictable.

MAP ul.tl, TARGET u2.tl SQLEXEC (ID test2, QUERY ' delete from u2.t2 where col val =100
', NOPARAMS)), THREAD(1);

Conversely, when COORDINATED is used, all of the threads synchronize at a common point,
including the one processing the col val=100 record, thereby removing the ambiguity of the
results.

MAP ul.tl, TARGET u2.tl SQLEXEC (ID test2, QUERY ' delete from u2.t2 where col val =100
', NOPARAMS)), THREAD(1), COORDINATED;

{DEF| TARGETDEF} template

DEF and TARGETDEF are valid for TABLE and MAP.

2-197

ORACLE

Chapter 2
TABLE | MAP

Use DEF and TARGETDEF to specify the name of a definitions template that was created by the
DEFGEN utility.

e DEF specifies a source-definitions template.
° TARGETDEF specifies a target-definitions template.

A template is based on the definitions of a specific table. It enables new tables that have the
same definitions as the original table to be added to the Oracle GoldenGate configuration
without running DEFGEN for them, and without having to stop and start the Oracle
GoldenGate process. The definitions in the template are used for definitions lookups.

Syntax

{DEF | TARGETDEF} template

template
The name of one of the following definitions templates generated by the DEFGEN utility:

* Use DEF to specify a source-definitions template generated by the DEF option of the TABLE
parameter in the DEFGEN parameter file.

* Use TARGETDEF to specify a target-definitions template generated by the TARGETDEF option
of the TABLE parameter in the DEFGEN parameter file.

The definitions contained in the template must be identical to the definitions of the table or
tables that are specified in the same TABLE or MAP statement.

Case-sensitivity of the template name is observed when the name is specified the same way
that it is stored in the database. Make certain that the template name is specified the same
way in both the DEF or TARGETDEF clause in this TABLE or MAP statement, and in the DEFGEN
parameter file that created the template.

Example 1
This example shows a case-insensitive template name.

MAP acct.cust*, TARGET acct.cust*, DEF custdef;

Example 2
This example shows a case-sensitive template name when the database requires quotes to
enforce case-sensitivity.

TABLE acct.cust*, DEF "CustDef";

Example 3
This example shows a case where both DEF and TARGETDEF are used.

MAP acct.cust*, TARGET acc.cust*, DEF custdef, TARGETDEF tcustdef;
EXCEPTIONSONLY

EXCEPTIONSONLY is valid for MAP.

Use EXCEPTIONSONLY in an exceptions MAP statement intended for error handling. The
exceptions MAP statement must follow the MAP statement for which errors are anticipated. The
exceptions MAP statement executes only if an error occurs for the last record processed in the
preceding regular MAP statement.

To use EXCEPTIONSONLY, use a REPERROR statement with the EXCEPTION option either within the
regular MAP statement or at the root of the parameter file. See "REPERROR" for more
information.

2-198

ORACLE

Chapter 2
TABLE | MAP

Note:

If using the Oracle GoldenGate Conflict Detection and Resolution (CDR) feature, a
REPERROR With EXCEPTION is not needed. CDR automatically sends all operations that
cause errors to the exceptions MAP statement.

The exceptions MAP statement must specify the same source table as in the regular MAP
statement, but the target table in the exceptions MAP statement must be an exceptions table.

Note:

See "MAPEXCEPTION (exceptions mapping)" to support wildcarded object names.

Syntax

EXCEPTIONSONLY

EVENTACTIONS (action)

EVENTACTIONS is valid for TABLE and MAP. Some options apply only to one or the other
parameter and are noted as such in the descriptions.

Use EVENTACTIONS to cause the process to take a defined action based on a record in the trail,
known as the event record, that qualifies for a specific filter rule. You can use this system,
known as the event marker system (or event marker infrastructure) to customize processing
based on database events. For example, you can suspend a process to perform a
transformation or report statistics. The event marker feature is supported for the replication of
data changes, but not for initial loads.

To trigger actions that do not require data to be applied to target tables, you can use the
Replicat TABLE parameter with filtering options that support EVENTACTIONS. See "TABLE for
Replicat" for more information.

You may need to combine two or more actions to achieve your goals. When multiple actions
are combined, the entire EVENTACTIONS statement is parsed first, and then the specified options
execute in order of precedence. The following list shows the order of precedence. The actions
listed before Process the record occur before the record is written to the trail or applied to the
target (depending on the process). Actions listed after Process the record are executed after
the record is processed.

TRACE

LOG

CHECKPOINT BEFORE
DISCARD

SHELL

ROLLOVER
(Process the record)
IGNORE

REPORT

SUSPEND

ABORT

2-199

ORACLE

Chapter 2
TABLE | MAP

CHECKPOINT AFTER
FORCESTOP
STOP

To prevent the event record itself from being processed in the normal manner, use the IGNORE
or DISCARD option. Because IGNORE and DISCARD are evaluated before the record itself, they
prevent the record from being processed. Without those options, EVENTACTIONS for Extract
writes the record to the trail, and EVENTACTIONS for Replicat applies that operation to the target
database.

You should take into account the possibility that a transaction could contain two or more
records that trigger an event action. In such a case, there could be multiple executions of
certain EVENTACTIONS specifications. For example, encountering two qualifying records that
trigger two successive ROLLOVER actions will cause Extract to roll over the trail twice, leaving
one of the two files empty of transaction data.

You should also take into account that when the GETUPDATEBEFORES parameter is in effect, two
records are generated for UPDATE operations: a record that contains the before image and a
record that contains the after image. An event action is triggered for each of those records
when the operation qualifies as an event record. You can use the BEFOREAFTERINDICATOR token
of the GGHEADER column-conversion function as a filter in a FILTER clause to qualify the records

so that the event action triggers only once, either on the before record or the after record, but
not both.

The following example filters on the BEFORE indicator. The EVENTACTION issues the ECHO shell
command to output the string 'Triggered on BEFORE' to the event log when a BEFORE record is
encountered.

TABLE gasource.test, &
FILTER (@STRFIND ('BEFORE', Q@GETENV ('GGHEADER' , 'BEFOREAFTERINDICATOR')) > 0), &
EVENTACTIONS (shell ('echo --== Triggered on BEFORE ==-- '), LOG);

The following shows the result of the event action:

013-03-06 17:59:31 INFO 0GG-05301 Shell command output: '--== Triggered
on AFTER ==--'

The following example does the same thing, but for the AFTER indicator.

TABLE gasource.test, &

FILTER (@STRFIND ('AFTER', QGETENV ('GGHEADER' , 'BEFOREAFTERINDICATOR')) > 0), &
EVENTACTIONS (shell ('echo --== Triggered on AFTER ==-- '), LOG);

Syntax

EVENTACTIONS (

STOP | SUSPEND | ABORT | FORCESTOP]
IGNORE [RECORD | TRANSACTION [INCLUDEVENT]]

[
[
[DISCARD]
[LOG [INFO | WARNING]]
[REPORT]
[ROLLOVER]
[SHELL 'command'
SHELL ('command', VAR variable = {column name | expression}

[I -.-1) 1
[TRACE[2] file [TRANSACTION] [DDL[INCLUDE] | DDLONLY] [PURGE | APPEND]]
[CHECKPOINT [BEFORE | AFTER | BOTH]]

2-200

ORACLE

Chapter 2
TABLE | MAP

o]
)

STOP

Valid in TABLE for Extract and in MAP for Replicat.

Brings the process to a graceful stop when the specified event record is encountered. The
process waits for other operations within event transaction to be completed before stopping. If
the transaction is a Replicat grouped or batched transaction, the current group of transactions
are applied before the process stops gracefully. The process restarts at the next record after
the event record, so long as that record also signified the end of a transaction.

The process logs a message if it cannot stop immediately because a transaction is still open.
However, if the event record is encountered within a long-running open transaction, there is no
warning message that alerts you to the uncommitted state of the transaction. Therefore, the
process may remain running for a long time despite the STOP event.

STOP can be combined with other EVENTACTIONS options except for ABORT and FORCESTOP.

SUSPEND

Valid in TABLE for Extract and in MAP for Replicat.

Pauses the process so that it retains the active context of the current run and can still respond
to SEND commands that are issued in Admin Client. When a process is suspended, the INFO
command shows it as RUNNING, and the RBa field shows the last checkpoint position.

To resume processing, issue the SEND command with the RESUME option.

To use the CHECKPOINT BEFORE option in conjunction with SUSPEND, the event record must be
the start of a transaction for the SUSPEND to take place. That way, if the process is killed while
in the suspended state, the event record with the SUSPEND action is the first record to be
reprocessed upon restart. If both CHECKPOINT BERORE and SUSPEND are specified, but the event
record is not the start of a transaction, the process abends before SUSPEND can take place.

To use the CHECKPOINT AFTER option in conjunction with SUSPEND, the RESUME command must
be issued before the checkpoint can take place, and the event record must be a COMMIT
record. If the process is killed while in a SUSPEND state, the process reprocesses the
transaction from the last checkpointed position upon restart.

SUSPEND cannot be combined with ABORT but can be combined with all other options.

ABORT

Valid in TABLE for Extract and in MAP for Replicat.

Forces the process to exit immediately when the specified event record is encountered,
whether or not there are open transactions. The event record is not processed. A fatal error is
written to the log, and the event record is written to the discard file if DISCARD is also specified.
The process will undergo recovery on startup.

ABORT can be combined only with CHECKPOINT BEFORE, DISCARD, SHELL, and REPORT.

FORCESTOP

Valid in TABLE for Extract and in MAP for Replicat.

Forces the process to stop gracefully when the specified event record is encountered, but only
if the event record is the last operation in the transaction or the only record in the transaction.
The record is written normally.

If the event record is encountered within a long-running open transaction, the process writes a
warning message to the log and exits immediately, as in ABORT. In this case, recovery may be
required on startup. If the FORCESTOP action is triggered in the middle of a long-running
transaction, the process exits without a warning message.

FORCESTOP can be combined with other EVENTACTIONS options except for ABORT, STOP,
CHECKPOINT AFTER, and CHECKPOINT BOTH. If used with ROLLOVER, the rollover only occurs if
the process stops gracefully.

2-201

ORACLE

Chapter 2
TABLE | MAP

IGNORE [RECORD | TRANSACTION [INCLUDEVENT]]
Valid in TABLE for Extract and in MAP for Replicat.
Ignores some or all of the transaction, depending on the selected action.

e RECORD is the default. It forces the process to ignore only the specified event record, but
not the rest of the transaction. No warning or message is written to the log, but the Oracle
GoldenGate statistics are updated to show that the record was ignored.

e Use TRANSACTION to ignore the entire transaction that contains the record that triggered
the event. If TRANSACTION is used, the event record must be the first one in the transaction.
When ignoring a transaction, the event record is also ignored by default. TRANSACTION can
be shortened to TRANS.

e Use INCLUDEEVENT with TRANSACTION to propagate the event record to the trail or to the
target, but ignore the rest of the associated transaction.

IGNORE can be combined with all other EVENTACTIONS options except ABORT and DISCARD.

An IGNORE action is processed after all the qualification, filtering, mapping, and user-exit
operations are processed. The record or transaction is ignored in the final output phase and
prevents the record or transaction from being written to the output target (the trail in the case
of Extract or the database in the case of Replicat). Therefore, in certain expressions, for
example those that include SQLEXEC operations, the SQLEXEC will be executed before the
IGNORE is processed. This means that, while the record is not written to the trail or target
database, all of the effects of processing the record through qualification, filtering, mapping
and user-exit will occur.

This action is not valid for DDL records. Because DDL operations are autonomous, ignoring a
record is equivalent to ignoring the entire transaction.

DISCARD
Valid in TABLE for Extract and in MAP for Replicat.
Causes the process to:

* write the specified event record to the discard file.
* update the Oracle GoldenGate statistics to show that the record was discarded.

The process resumes processing with the next record in the trail.
DISCARD can be combined with all other EVENTACTIONS options except IGNORE.

LOG [INFO | WARNING]

Valid in TABLE for Extract and in MAP for Replicat.

Causes the process to log the event when the specified event record is encountered. The
message is written to the report file, to the Oracle GoldenGate error log, and to the system
event log.

Use the following options to specify the severity of the message:

* INFO specifies a low-severity informational message. This is the default.
° WARNING specifies a high-severity warning message.

L0G can be combined with all other EVENTACTIONS options except ABORT. If using ABORT, LOG is
not needed because ABORT logs a fatal error before the process exits.

REPORT

Valid in TABLE for Extract and in MAP for Replicat.

Causes the process to generate a report file when the specified event record is encountered.
This is the same as using the SEND command with the REPORT option in GGSCI.

The REPORT message occurs after the event record is processed (unless DISCARD, IGNORE, Or
ABORT are used), so the report data will include the event record.

2-202

ORACLE

Chapter 2
TABLE | MAP

REPORT can be combined with all other EVENTACTIONS options.

ROLLOVER

Valid in TABLE for Extract.

Causes Extract to roll over the trail to a new file when the specified event record is
encountered. The ROLLOVER action occurs before Extract writes the event record to the trail
file, which causes the record to be the first one in the new file unless DISCARD, IGNORE Of ABORT
are also used.

ROLLOVER can be combined with all other EVENTACTIONS options except ABORT. ROLLOVER
cannot be combined with ABORT because ROLLOVER does not cause the process to write a
checkpoint, and ROLLOVER happens before ABORT.

Without a ROLLOVER checkpoint, ABORT causes Extract to go to its previous checkpoint upon
restart, which would be in the previous trail file. In effect, this cancels the rollover.

SHELL 'command'

Valid in TABLE for Extract and in MAP for Replicat.

Causes the process to execute the specified shell command when the event record is
encountered. SHELL 'command' executes a basic shell command. The command string is
taken at its literal value and sent to the system that way. The command is case-sensitive.
Enclose the command string within single quote marks, for example:

EVENTACTIONS (SHELL 'echo hello world! > output.txt')

If the shell command is successful, the process writes an informational message to the report
file and to the event log. Success is based upon the exit status of the command in accordance
with the UNIX shell language. In that language, zero indicates success.

If the system call is not successful, the process abends with a fatal error. In the UNIX shell
language, non-zero equals failure. Note that the error message relates only to the execution of
the SHELL command itself, and not the exit status of any subordinate commands. For example,
SHELL can execute a script successfully, but commands in that script could fail.

SHELL can be combined with all other EVENTACTIONS options.

SHELL ('command', VAR variable = {column name | expression} [, ...])

Valid in TABLE for Extract and in MAP for Replicat.

Causes the process to execute the specified shell command when the event record is
encountered and supports parameter passing. The command and the parameters are case-
sensitive.

When SHELL is used with arguments, the entire command and argument strings must be
enclosed within parentheses, for example:

EVENTACTIONS (SHELL
('Current timestamp: $1 SQLEXEC result is $2 ',VAR $1 = QGETENV('JULIANTIMESTAMP'),
VAR $2 = mytest.description));

The input is as follows:

command
Is the command, which is passed literally to the system.

VAR
Is a required keyword that starts the parameter input.

variable

Is the user-defined name of the placeholder variable where the run-time variable value will
be substituted. Extra variables that are not used in the command are ignored. Note that
any literal in the SHELL command that matches a VAR variable name is replaced by the

2-203

ORACLE

Chapter 2
TABLE | MAP

substituted VAR value. This may have unintended consequences, so test your code before
putting it into production.

column name
Can be the before or after (current) image of a column value.

expression
can be the following, depending on whether column data or DDL is being handled.

e Valid expressions for column data:
— The value from a TOKENS clause in a TABLE statement.
— Arreturn value from any Oracle GoldenGate column-conversion function.
— Areturn value from a SQLEXEC query or procedure.
* Valid expressions for DDL:
— Return value from @TOKEN function (Replicat only).
— Return value from @GETENV function.

— Return value from other functions that do not reference column data (for example,
@DATENOW).

— Return value from @DDL function.

TRACE[2] file [TRANSACTION] [DDL[INCLUDE] | DDLONLY] [PURGE | APPEND]

Valid in TABLE for Extract and in MAP for Replicat.

Causes process trace information to be written to a trace file when the specified event record
is encountered. TRACE provides step-by-step processing information. TRACE?2 identifies the
code segments on which the process is spending the most time.

By default (without options), standard DML tracing without consideration of transaction
boundaries is enabled until the process terminates.

file specifies the name of the trace file and must appear immediately after the TRACE
keyword. You can specify a unique trace file, or use the default trace file that is specified
with the standalone TRACE or TRACE2 parameter.

The same trace file can be used across different TABLE or MAP statements in which
EVENTACTIONS TRACE is used. If multiple TABLE or MAP statements specify the same trace
file name, but the TRACE options are not used consistently, preference is given to the
options in the last resolved TABLE or MAP that contains this trace file.

Use TRANSACTION to enable tracing only until the end of the current transaction, instead of
when the process terminates. For Replicat, transaction boundaries are based on the
source transaction, not the typical Replicat grouped or batched target transaction.
TRANSACTION can be shortened to TRANS. This option is valid only for DML operations.

DDL [INCLUDE] traces DDL and also DML transactional data processing. Either DDL or
DDLINCLUDE is valid.

DDLONLY traces DDL but does not trace DML transactional data.
These options are valid only for Replicat. By default DDL tracing is disabled.

Use PURGE to truncate the trace file before writing additional trace records, or use APPEND
to write new trace records at the end of the existing records. APPEND is the default.

TRACE can be combined with all other EVENTACTIONS options except ABORT.
To disable tracing to the specified trace file, issue the GGSCI SEND process command with
the TRACE OFF file name option.

2-204

ORACLE

Chapter 2
TABLE | MAP

CHECKPOINT [BEFORE | AFTER | BOTH]

Valid in TABLE for Extract and in MAP for Replicat.

Causes the process to write a checkpoint when the specified event record is encountered.
Checkpoint actions provide a context around the processing that is defined in TABLE or MAP
statements. This context has a begin point and an end point, thus providing synchronization
points for mapping the functions that are performed with SQLEXEC and user exits.

BEFORE

BEFORE for an Extract process writes a checkpoint before Extract writes the event record to
the trail. BEFORE for a Replicat process writes a checkpoint before Replicat applies the
SQL operation that is contained in the record to the target.

BEFORE requires the event record to be the first record in a transaction. If it is not the first
record, the process will abend. Use BEFORE to ensure that all transactions prior to the one
that begins with the event record are committed.

When using EVENTACTIONS for a DDL record, note that since each DDL record is
autonomous, the DDL record is guaranteed to be the start of a transaction; therefore the
CHECKPOINT BEFORE event action is implied for a DDL record.

CHECKPOINT BEFORE can be combined with all EVENTACTIONS options.

AFTER

AFTER for Extract writes a checkpoint after Extract writes the event record to the trail.
AFTER for Replicat writes a checkpoint after Replicat applies the SQL operation that is
contained in the record to the target.

AFTER flags the checkpoint request as an advisory, meaning that the process will only
issue a checkpoint at the next practical opportunity. For example, in the case where the
event record is one of a multi-record transaction, the checkpoint will take place at the next
transaction boundary, in keeping with the Oracle GoldenGate data-integrity model.
When using EVENTACTIONS for a DDL record, note that since each DDL record is
autonomous, the DDL record is guaranteed to be the end (boundary) of a transaction;
therefore the CHECKPOINT AFTER event action is implied for a DDL record.

CHECKPOINT AFTER can be combined with all EVENTACTIONS options except ABORT.

BOTH

BOTH combines BEFORE and AFTER. The Extract or Replicat process writes a checkpoint
before and after it processes the event record.

CHECKPOINT BOTH can be combined with all EVENTACTIONS options except ABORT.

CHECKPOINT can be shortened to CP.

Example 1
The following example shows how you can configure a process to ignore certain records.
When Extract processes any trail record that has name = abc, it ignores the record.

TABLE fin.cust, &
WHERE (name = 'abc'), &
EVENTACTIONS (ignore);

Example 2

Based on the compatibility and precedence rules of EVENTACTIONS options, DISCARD takes
higher precedence than ABORT, so in this example the event record gets written to the discard
file before the process abends.

MAP fin.cust, TARGET fin.cust2, &
WHERE (name = 'abc'), &
EVENTACTIONS (DISCARD, ABORT);

2-205

ORACLE

Chapter 2
TABLE | MAP

Example 3
The following example executes a SHELL action. It gets the result of a SQLEXEC query and pairs
it with the current timestamp.

TABLE src.tab &

SQLEXEC (id mytest, query 'select description from lookup &

where pop = :mycol2', params (mycol2 = col2)), &

EVENTACTIONS (SHELL ('Current timestamp: $1 SQLEXEC result is $2 ', &

VAR $1 = @QGETENV ('JULIANTIMESTAMP'), VAR $2 = mytest.description));

The shell command that results from this example could be similar to the following:
'Current timestamp: 212156002704718000 SQLEXEC result is test passed'

Example 4

The following example shows how invalid results can occur if a placeholder name conflicts

with literal text in the command string. In this example, a placeholder named $1 is associated
with a column value, and the sHELL command echoes a literal string that includes $1.

MAP src.tabl, TARGET targ.tabl &
EVENTACTIONS (SHELL ('echo Extra charge for $1 is $1', VAR $1 = COLl));

This is the unintended result, assuming the column value is gift wrap:

'Extra charge for gift wrap is gift wrap'

Changing the placeholder variable to $col results in the correct output:

MAP src.tabl, TARGET targ.tabl &

EVENTACTIONS (SHELL ('echo Extra charge for $col is $1', VAR $col = COL1));
'Extra charge for gift wrap is $1'

The following shows similar potential for unintended results:

MAP src.tabl, TARGET targ.tabl &
EVENTACTIONS (SHELL ('Timestamp: $1 Price is $13 > out.txt ', &
VAR $1 = QGETENV ('JULIANTIMESTAMP')));

The redirected output file might contain a string like this (notice the second timestamp
contains an appended value of 3):

'Timestamp: 212156002704718000 Price is 2121560027047180003"

The intended result is this:

'Timestamp: 212156002704718000 Price is $13'

Example 5

These examples show different ways to configure tracing.

MAP tabl, TARGET tabl EVENTACTIONS (TRACE ./dirrpt/tracel.txt);
MAP tab2, TARGET tab2 EVENTACTIONS (TRACE ./dirrpt/trace2.txt TRANSACTION) ;

e Inthe first MAP statement, the tracel.txt trace file is generated just before the first tabl
event record is applied to the target. It contains all of the tracing information from that
point forward until Replicat terminates or unless tracing is turned off with the GGSCI SEND
REPLICAT command.

* Because the second MAP statement contains the TRANSACTION option, the trace2.txt file
is generated just before the first tab2 event record is applied to the target, but the tracing

2-206

ORACLE

Chapter 2
TABLE | MAP

stops automatically at the conclusion of the transaction that contains the tab2 event
record.

Example 6
The following shows how EVENTACTIONS with SUSPEND can be used.

e Case 1: You are replicating DDL, and you want to ensure that there is enough space in
the target database to create a new table. Use EVENTACTIONS with SUSPEND in the MAP
statement that maps the CREATE TABLE DDL operation, and then execute a SQL statement
in that MAP statement to query the amount of space remaining in a tablespace. If there is
enough space, use SEND REPLICAT with RESUME to resume processing immediately; if not,
leave Replicat suspended until a DBA can add the space, and then use SEND REPLICAT
with RESUME to resume processing.

e Case 2: You want to fix unique key violations when they occur on any table. Because
Replicat is processing thousands of tables, you do not want to stop the process each time
there is a violation, because this would cause Replicat to spend time rebuilding the object
cache again upon restart. By using EVENTACTIONS with SUSPEND, you can simply suspend
processing until the problem is fixed.

e Case 3: At the end of the day, you suspend Replicat to run daily reports, and then resume
processing immediately without stopping and restarting the process.

EXITPARAM 'parameter'
EXITPARAM is valid for TABLE and MAP.

Use EXITPARAM to pass a parameter to the EXIT PARAMS function of a user exit routine
whenever a record from the TABLE or MAP statement is encountered.
Syntax

EXITPARAM 'parameter string'

'parameter string'
A parameter that is a literal string. Enclose the parameter within single quotes. You can
specify up to 100 characters for the parameter string.

FETCHBEFOREFILTER
FETCHBEFOREFILTER is valid for TABLE.

Use FETCHBEFOREFILTER to fetch columns that are specified with FETCHCOLS or
FETCHCOLSEXCEPT before a FILTER operation is executed. Fetching before the filter ensures that
values required for the filter are available. Without FETCHBEFOREFILTER, fetches specified with
FETCHCOLS or FETCHCOLSEXCEPT are not performed until after filters are executed. Specify
FETCHBEFOREFILTER before FILTER in the parameter file.

Do not use this option for tables being processed in pass-through mode by a data-pump
Extract group.

Syntax

FETCHBEFOREFILTER

Example

TABLE hr.salary, FETCHCOLS (sal level),
FETCHBEFOREFILTER,

2-207

ORACLE

Chapter 2
TABLE | MAP

FILTER (sal level >= 8)

’

{FETCHCOLS | FETCHCOLSEXCEPT} (column list)

FETCHCOLS and FETCHCOLSEXCEPT are valid for TABLE. These options are only valid for the
primary Extract.

Use FETCHCOLS and FETCHCOLSEXCEPT to fetch column values from the database when the
values are not present in the transaction log record. Use this option if the database only logs
the values of columns that were changed in an update operation, but you need to ensure that
other column values required for FILTER operations are available.

e FETCHCOLS fetches the specified columns.

e FETCHCOLSEXCEPT fetches all columns except the specified columns. For tables with
numerous columns, FETCHCOLSEXCEPT may be more efficient than listing each column with
FETCHCOLS.

FETCHCOLS and FETCHCOLSEXCEPT are valid for all databases that are supported by Oracle
GoldenGate.

For an Oracle Database, Oracle GoldenGate fetches the values from the undo tablespace
through Oracle's Flashback Query mechanism. The query provides a read-consistent image of
the columns as of a specific time or SCN. For more information about how Oracle GoldenGate
uses Flashback Query.

Instead of using FETCHCOLS or FETCHCOLSEXCEPT, it may be more efficient to enable
supplemental logging for the desired columns.

To control fetching and enable a response when a column specified for fetching cannot be
located, use the FETCHOPTIONS parameter. To include fetch results in statistical displays
generated by the STATS EXTRACT command, use the STATOPTIONS parameter.

If values for columns specified with FETCHCOLS or FETCHCOLSEXCEPT are present in the
transaction log, no database fetch is performed. This reduces database overhead.

Syntax

{FETCHCOLS | FETCHCOLSEXCEPT} (column [, ...])

column
Can be one of the following:

¢ A column name or a comma-delimited list of column names, as in (coll, col2).

e An asterisk wildcard, as in (*).

Example

The FETCHCOLS clause in this example fetches only columns 1 and 3, whereas the
FETCHCOLSEXCEPT clause fetches all columns except columns 1 and 3.

TABLE hg.acct, FETCHCOLS (coll, col3);
TABLE hqg.sales, FETCHCOLSEXCEPT (coll, col3);

{FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column_list)

FETCHMODCOLS and FETCHMODCOLSEXCEPT are valid for TABLE. These options are only valid for
the primary Extract.

2-208

ORACLE

Chapter 2
TABLE | MAP

Use FETCHMODCOLS and FETCHMODCOLSEXCEPT to force column values to be fetched from the
database even if the columns are present in the transaction log. These Depending on the
database type, a log record can contain all of the columns of a table or only the columns that
changed in the given transaction operation.

e FETCHMODCOLS fetches the specified columns.

° FETCHMODCOLSEXCEPT fetches all columns that are present in the transaction log, except the
specified columns. For tables with numerous columns, FETCHMODCOLSEXCEPT might be more
efficient than listing each column with FETCHMODCOLS.

FETCHMODCOLS and FETCHMODCOLSEXCEPT are valid for all databases that are supported by
Oracle GoldenGate.

Observe the following usage guidelines:

e Do not use FETCHMODCOLS and FETCHMODCOLSEXCEPT for key columns.

Syntax

{FETCHMODCOLS | FETCHMODCOLSEXCEPT} (column [, ...])

(column [, ...])
Can be one of the following:

e A column name or a comma-delimited list of column names, as in (coll, col2).

* An asterisk wildcard, as in (*).

Example

The FETCHMODCOLS clause in this example fetches only columns 1 and 3, whereas the
FETCHMODCOLSEXCEPT clause fetches all columns except columns 1 and 3.

TABLE hg.acct, FETCHMODCOLS (coll, col3);
TABLE hqg.sales, FETCHMODCOLSEXCEPT (coll, col3);

FILTER (filter_ clause)
FILTER is valid for TABLE and MAP.

Use FILTER to select or exclude records based on a numeric value. A filter expression can use
conditional operators, Oracle GoldenGate column-conversion functions, or both.

Note:

To filter based on a string, use one of the Oracle GoldenGate string functions. See
"Table and Column Mapping Functions" for more information about these functions.
You can also use the WHERE option. See "WHERE (clause)".

Separate all FILTER components with commas. A FILTER clause can include the following:

e Numbers
e Columns that contain numbers
* Functions that return numbers

e Arithmetic operators:

2-209

ORACLE

Chapter 2
TABLE | MAP

+ (plus)
- (minus)
* (multiply)
/ (divide)
\ (remainder)
e Comparison operators:
> (greater than)
>= (greater than or equal)
< (less than)
<= (less than or equal)
= (equal)
<> (not equal)

Results derived from comparisons can be zero (indicating FALSE) or non-zero (indicating
TRUE).

e Parentheses (for grouping results in the expression)
e Conjunction operators: AND, OR

Enclose literals in single quotes. Specify case-sensitive column names as they are stored in
the database, and enclose them in double quotes if the database requires quotes to enforce
case-sensitivity (such as Oracle).

Oracle GoldenGate supports FILTER for columns that have a multi-byte character set.

Syntax

FILTER (

[, ON INSERT | ON UPDATE| ON DELETE]

[, IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE]
, filter clause

[, RAISEERROR error number]

)

filter clause
Selects records based on an expression, such as:

FILTER ((PRODUCT PRICE*PRODUCT AMOUNT) > 10000))

You can use the column-conversion functions of Oracle GoldenGate in a filter clause, as in:

FILTER (QCOMPUTE (PRODUCT PRICE*PRODUCT AMOUNT)>10000)

Enclose literals in single quotes. Specify case-sensitive column names as they are stored in
the database, and enclose them in double quotes if the database requires quotes to enforce
case-sensitivity (such as Oracle).

Oracle GoldenGate does not support FILTER for columns that have a multi-byte character set
or a character set that is incompatible with the character set of the local operating system.
The maximum size of the filter clause is 5,000 bytes.

2-210

ORACLE

Chapter 2
TABLE | MAP

ON INSERT | ON UPDATE | ON DELETE

Restricts record filtering to the specified operation(s). Separate operations with commas, for
example:

FILTER (ON UPDATE, ON DELETE,
@COMPUTE (PRODUCT PRICE*PRODUCT AMOUNT)>10000)

The preceding example executes the filter for UPDATE and DELETE operations, but not INSERT
operations.

IGNORE INSERT | IGNORE UPDATE | IGNORE DELETE

Does not apply the filter for the specified operation(s). Separate operations with commas, for
example:

FILTER (IGNORE INSERT, @COMPUTE (PRODUCT PRICE*PRODUCT AMOUNT)>10000)

The preceding example executes the filter on UPDATE and DELETE operations, but ignores
INSERT operations.

RAISEERROR error

Raises a user-defined error number if the filter fails. Can be used as input to the REPERROR
parameter to invoke error handling. Make certain that the value for error is outside the range
of error numbers that is used by the database or by Oracle GoldenGate. For example:
RAISEERROR 21000.

GETBEFORECOLS (column specification)
GETBEFORECOLS is valid for TABLE.

Use GETBEFORECOLS to specify columns for which you want before image to be captured and
written to the trail upon an update or delete operation. Use GETBEFORECOLS when using the
Oracle GoldenGate Conflict Detection and Resolution (CDR) feature in a bi-directional or multi-
master configuration. Also use it when using conversion functions or other processing features
that require the before image of a record.

For updates, the before image of the specified columns is included in the trail whether or not
any given column is modified. In addition to the columns specified in the GETBEFORECOLS
clause, an Oracle database will also log the before image of other columns that are modified.
For other supported databases, you can use the GETUPDATEBEFORES parameter to force the
inclusion of the before values of other columns that are modified.

Note:

GETUPDATEBEFORES overrides GETBEFORECOLS if both are used in the same parameter
file.

To use this parameter, supplemental logging must be enabled for any database that does not
log before values by default.

GETBEFORECOLS overrides COMPRESSUPDATES and COMPRESSDELETES if used in the same
parameter file.

2-211

ORACLE

Chapter 2
TABLE | MAP

This parameter is valid for all databases except DB2 z/OS. For DB2 z/OS on all platforms that
are supported by Oracle GoldenGate, use the GETUPDATEBEFORES parameter instead of
GETBEFORECOLS.

Syntax

GETBEFORECOLS (

{ON UPDATE | ON DELETE}

{ALL | KEY | KEYINCLUDING (col[,...]) | KEYANDMOD | | ALLEXCLUDING (coll,...]) }

bre..]
)

{ON UPDATE | ON DELETE}

Specifies whether the before image of the specified columns should be captured for updates
or deletes. You can use ON UPDATE only, ON DELETE only, or both. If using both, specify them
within the same GETBEFORECOLS clause. See the example for how to use both.

{ALL | KEY | KEYINCLUDING (col[,...]) | KEYANDMOD | ALLEXCLUDING (col[,...])}
Specifies the columns for which a before image is captured.

ALL

Captures a before image of all supported data type columns in the target table, including
the primary key; all unsupported columns are skipped and logged in the Extract or
Replicat parameter file as an information message. This imposes the highest processing
load for Extract, but allows conflict-detection comparisons to be performed using all
columns for maximum accuracy.

KEY

Capture before image only for the primary key. This is the fastest option, but does not
permit the most accurate conflict detection, because keys can match but non-key columns
could be different. KEY is the default.

KEYINCLUDING
Capture before image of the primary key and also the specified column or columns. This
is a reasonable compromise between speed and detection accuracy.

KEYANDMOD

Use this option as an extension of the key option for both Extract and Replicat. For update
DMLs on the source, Extract logs the key and modified columns. Replicat on the target
will use the KEY and MODIFIED columns during conflict detection in a WHERE clause. With
Oracle databases, the modified column is always used for conflict detection by default and
this parameter makes it explicit.

ALLEXCLUDING

Capture before image of all columns except the specified columns. For tables with
numerous columns, ALLEXCLUDING may be more efficient than KEYINCLUDING. Do not
exclude key columns.

Example

In the following example, the before images for the key column(s) plus the name, address, and
salary are always written to the trail file on update and delete operations.

TABLE src,

GETBEFORECOLS (

ON UPDATE KEYINCLUDING (name, address, salary),
ON DELETE KEYINCLUDING (name, address, salary));

2-212

ORACLE

Chapter 2
TABLE | MAP

HANDLECOLLISIONS | NOHANDLECOLLISIONS
HANDLECOLLISIONS and NOHANDLECOLLISIONS are valid for MAP.

Use HANDLECOLLISIONS and NOHANDLECOLLISIONS to control whether or not Oracle GoldenGate
reconciles the results of an initial load with replicated transactional changes that are made to
the same tables. When Oracle GoldenGate applies replicated changes after the load is
finished, HANDLECOLLISIONS causes Replicat to overwrite duplicate records in the target tables
and provides alternate handling of errors for missing records.

HANDLECOLLISIONS and NOHANDLECOLLISIONS can be used globally for all MAP statements in the
parameter file or as an ON/OFF switch for groups of tables specified with MAP statements, and
they can be used within a MAP statement. When used in a MAP statement, they override the
global specifications.

See "HANDLECOLLISIONS | NOHANDLECOLLISIONS" for syntax and usage.

INSERTALLRECORDS
INSERTALLRECORDS is valid for MAP.

Use the INSERTALLRECORDS parameter to convert all mapped operations to INSERT operations
on the target. INSERTALLRECORDS can be used at the root level of the parameter file, within a
MAP statement, and within a MAPEXCEPTION clause of a MAP statement.

See "INSERTALLRECORDS" for syntax and usage.

INSERTAPPEND | NOINSERTAPPEND
INSERTAPPEND is valid for MAP.

Use the INSERTAPPEND and NOINSERTAPPEND parameters to control whether or not Replicat uses
an APPEND hint when it applies INSERT operations to Oracle target tables. These parameters
are valid only for Oracle databases.

See "INSERTAPPEND | NOINSERTAPPEND" for syntax and usage.

KEYCOLS (columns)
KEYCOLS is valid for TABLE and MAP.

Use KEYCOLS to define one or more columns of the target table as unique. The primary use for
KEYCOLS is to define a substitute primary key when a primary key or an appropriate unique
index is not available for the table. You can also use KEYCOLS to specify additional columns to
use in the row identifier that Replicat uses. Without the availability of a key or KEYCOLS clause,
Replicat uses all columns of the table to build its WHERE clause, essentially performing a full
table scan.

The columns of a key rendered by KEYCOLS must uniquely identify a row, and they must match
the columns that are used as a key on the source table. The source table must contain at least
as many key or index columns as the KEYCOLS key specified for the target table. Otherwise, in
the event of an update to the source key or index columns, Replicat will not have the before
images for the extra target KEYCOL columns.

When defining a substitute key with KEYCOLS, observe the following guidelines:

e If the source and target tables both lack keys or unique indexes, use a KEYCOLS clause in
the TABLE parameter and in the MAP parameter, and specify matching sets of columns in
each KEYCOLS clause.

2-213

Chapter 2
TABLE | MAP

« If either of the tables lacks a key or unique index, use KEYCOLS for that table. Specify
columns that match the actual key or index columns of the other table. If a matching set
cannot be defined with KEYCOLS, you must use KEYCOLS for the source table (TABLE
parameter) and for the target table (MAP parameter). Specify matching sets of columns that
contain unique values. KEYCOLS overrides a key or unique index.

* If the target table has a larger key than the source table does (or if it has more unique-
index columns), use KEYCOLS in the TABLE statement to specify the source columns that
match the extra target columns. You must also include the actual source key or index
columns in this KEYCOLS clause. Using KEYCOLS in this way ensures that before images are
available to Replicat in case the non-key columns are updated on the source.

When using KEYCOLS, make certain that the specified columns are configured for logging so
that they are available to Replicat in the trail records. For an Oracle database, you can enable
the logging by using the coLs option of the ADD TRANDATA command.

On the target tables, create a unique index on the XKEYCOLS-defined key columns. An index
improves the speed with which Oracle GoldenGate locates the target rows that it needs to
process.

Do not use KEYCOLS for tables being processed in pass-through mode by a data-pump Extract
group.

Additional Considerations for KEYCOLS when using Parallel Replicat or Integrated Replicat:

* When using KEYCOLS with ALLOWDUPTARGETMAP, the key columns must be the same for each
mapped table. For example, if you map HR.EMP to HR.EMP_TARGET and HR.EMP BACKUP and
if you specify KEYCOLS, they must be the same for both HR.EMP_TARGET and HR.EMP BACKUP.

* When using KEYCOLS to map from multiple source tables to the same target table, the Map
statements must use the same set of KEYCOLS.
Syntax

KEYCOLS (column [, ... 1)

column

Defines a column to be used as a substitute primary key. If a primary or unique key exists,
those columns must be included in the KEYCOLS specification. To specify multiple columns,
create a comma-delimited list as in:

KEYCOLS (id, name)

The following column-types are not supported in KEYCOLS:
e Oracle column types not supported by KEYCOLS:

Virtual columns, UDTs, function-based columns, and any columns that are explicitly
excluded from the Oracle GoldenGate configuration.

e SQL Server, DB2 LUW, DB2 z/OS, MySQL, and Teradata:

Columns that contain a timestamp or non-materialized computed column, and any
columns excluded from the Oracle GoldenGate configuration. For SQL Server Oracle
GoldenGate enforces the total length of data in rows for target tables without a primary
key to be below 8000 bytes.

Example

TABLE hr.emp, KEYCOLS (id, first, last, birthdate);

ORACLE 5514

ORACLE

Chapter 2
TABLE | MAP

MAPEXCEPTION (exceptions mapping)
MAPEXCEPTIONS is valid for MAP.

Use MAPEXCEPTION as part of an exceptions MAP statement intended for error handling.
MAPEXCEPTION maps failed operations that are flagged as exceptions by the REPERROR
parameter to an exceptions table. Replicat writes the values of these operations along with
other information to the exceptions table.

You can use MAPEXCEPTION within the same MAP statement that includes the source-target table
mapping and other standard MAP options. The source and target table names can include
wildcards.

When using MAPEXCEPTION, use a REPERROR statement with the EXCEPTION option either within
the same MAP statement or at the root of the Replicat parameter file. See "EXCEPTIONSONLY"
and "REPERROR".

Syntax

MAPEXCEPTION (TARGET exceptions table, INSERTALLRECORDS [, exception MAP options])

TARGET exceptions table
The fully qualified name of the exceptions table. Standard Oracle GoldenGate rules for object
names apply to the name of the exceptions table.

exception MAP options
Any valid options of the MAP parameter that you want to apply to the exceptions handling.

INSERTALLRECORDS
Applies all exceptions to the exceptions table as INSERT operations. This parameter is
required when using MAPEXCEPTION.

Example

This is an example of how to use MAPEXCEPTION for exceptions mapping. The MAP and TARGET
clauses contain wildcard source and target table names. Exceptions that occur when
processing any table with a name beginning with TRX will be captured to the
fin.trxexceptions table using the specified mapping.

MAP src.trx*, TARGET trg.*,

MAPEXCEPTION (TARGET fin.trxexceptions,
INSERTALLRECORDS,

COLMAP (USEDEFAULTS,

ACCT _NO = ACCT NO,

OPTYPE = QGETENV ('LASTERR', 'OPTYPE'),
DBERR = @GETENV ('LASTERR', 'DBERRNUM'),
DBERRMSG = QGETENV ('LASTERR', 'DBERRMSG')
)

)i

MAPALLCOLUMNS | NOMAPALLCOLUMNS
MAPALLCOLUMNS and NOMAPALLCOLUMNS are valid for MAP.

Use MAPALLCOLUMNS to obtain unmapped columns (non-key). When this option is specified,
Extract or Replicat checks if all source columns are directly mapped to the target without the
column mapping function. If any source columns isn’t mapped, then the Extract and/or Replicat
abends.

2-215

ORACLE

Chapter 2
TABLE | MAP

See “"MAPALLCOLUMNS| NOMAPALLCOLUMNS

MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS
MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS are valid for MAP.

Use MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS to control whether or not Replicat
includes invisible columns in Oracle target tables for default column mapping. For invisible
columns in Oracle target tables that use explicit column mapping, they are always mapped so
do not require this option.

MAPINVISIBLECOLUMNS and NOMAPINVISIBLECOLUMNS can be used in two different ways. When
specified at a global level, one parameter remains in effect for all subsequent MAP statements,
until the other parameter is specified. When used within a MAP statement, they override the
global specifications

See “MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS?” for syntax and usage.

REPERROR (error, response)
REPERROR is valid for MAP.

Use REPERROR to specify an error and a response that together control how Replicat responds
to the error when executing the MAP statement. You can use REPERROR at the MAP level to
override and supplement global error handling rules set with the REPERROR parameter at the
root level of the parameter file. Multiple REPERROR statements can be applied to the same MAP
statement to enable automatic, comprehensive management of errors and interruption-free
replication processing.

For syntax and descriptions, see "REPERROR".

RESOLVECONFLICT (conflict resolution specification)
RESOLVECONFLICT is valid for MAP.

Use RESOLVECONFLICT in a bi-directional or multi-master configuration to specify how Replicat
handles conflicts on operations made to the tables in the MAP statement.

Multiple resolutions can be specified for the same conflict type and are executed in the order
listed in RESOLVECONFLICT. Multiple resolutions are limited to INSERTROWEXISTS and
UPDATEROWEXISTS conflicts only.

RESOLVECONFLICT can be used multiple times in a MAP statement to specify different resolutions
for different conflict types.

The following are the data types and platforms that are supported by RESOLVECONFLICT.

° RESOLVECONFLICT supports all databases that are supported by Oracle GoldenGate for
Windows and UNIX.

* To use RESOLVECONFLICT, the database must reside on a Windows, Linux, or UNIX system
(including those running on NonStop OSS).

« CDR supports data types that can be compared with simple SQL and without explicit
conversion. See the individual parameter options for details.

e Do not use RESOLVECONFLICT for columns that contain LOBs, abstract data types (ADT), or
user-defined types (UDT).

2-216

Chapter 2
TABLE | MAP

Syntax

RESOLVECONFLICT (
{INSERTROWEXISTS | UPDATEROWEXISTS | UPDATEROWMISSING |
DELETEROWEXISTS | DELETEROWMISSING}
({DEFAULT | resolution name},
{USEMAX (resolution column) | USEMAXEQ (resolution_column) | USEMIN
(resolution column) | USEMINEQ (resolution column) | USEDELTA |
DISCARD | OVERWRITE | IGNORE}

)
[, COLS (column[,...])]

)

INSERTROWEXISTS | UPDATEROWEXISTS | UPDATEROWMISSING |
DELETEROWEXISTS | DELETEROWMISSING

The type of conflict that this resolution handles.

INSERTROWEXISTS
An inserted row violates a uniqueness constraint on the target.

UPDATEROWEXISTS
An updated row exists on the target, but one or more columns have a before image in the
trail that is different from the current value in the database.

UPDATEROWMISSING
An updated row does not exist in the target.

DELETEROWEXISTS
A deleted row exists in the target, but one or more columns have a before image in the
trail that is different from the current value in the database.

DELETEROWMISSING
A deleted row does not exist in the target.

DEFAULT | resolution name

DEFAULT

The default column group. The resolution that is associated with the DEFAULT column
group is used for all columns that are not in an explicitly named column group. You must
define a DEFAULT column group.

resolution name

A name for a specific column group that is linked to a specific resolution type. Supply a
name that identifies the resolution type. Valid values are alphanumeric characters. Avoid
spaces and special characters, but underscores are permitted, for example:

delta res method
Use either a named resolution or DEFAULT, but not both.

USEMAX (resolution _column) | USEMAXEQ (resolution column) | USEMIN
(resolution_column) | USEMINEQ (resolution column) | USEDELTA |
DISCARD | OVERWRITE | IGNORE

The conflict-handler logic that is used to resolve the conflict. Valid resolutions are:

ORACLE 2-217

ORACLE

Chapter 2
TABLE | MAP

USEMAX
If the value of resolution columnin the trail record is greater than the value of the
column in the database, the appropriate action is performed.

e (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an update to
avoid a uniqueness violation, and overwrite the existing values.

e (UPDATEROWEXISTS conflict) Apply the trail record as an update.

USEMAXEQ
If the value of resolution column in the trail record is greater than or equal to the value of
the column in the database, the appropriate action is performed.

e (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an update to
avoid a uniqueness violation, and overwrite the existing values.

e (UPDATEROWEXISTS conflict) Apply the trail record as an update.

USEMIN
If the value of resolution column in the trail record is less than the value of the column in
the database, the appropriate action is performed:

e (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an update to
avoid a uniqueness violation, and overwrite the existing values.

* (UPDATEROWEXISTS conflict) Apply the update from the trail record.

USEMINEQ
If the value of resolution column in the trail record is less than or equal to the value of
the column in the database, the appropriate action is performed:

* (INSERTROWEXISTS conflict) Apply the trail record, but change the insert to an update to
avoid a uniqueness violation, and overwrite the existing values.

* (UPDATEROWEXISTS conflict) Apply the update from the trail record.

resolution column

The name of a NOT NULL column that serves as the resolution column. This column must
be part of the column group that is associated with this resolution. The value of the
resolution column compared to the current value in the target database determines how a
resolution should be applied. The after image of the resolution column is used for the
comparison, if available; otherwise the before image value is used. Use a column that can
be compared through simple SQL:

e NUMERIC
° DATE

e TIMESTAMP

e CHAR/NCHAR

° VARCHAR/ NVARCHAR

To use a latest-timestamp resolution, use a timestamp column as the resolution column
and set the timestamp column to the current time when a row is inserted or updated. If
possible, define the resolution column with the SYSTIMESTAMP data type, which supports
fractional seconds. When comparisons are performed with sub-second granularity, there is
little need for tie-breaking conflict handlers that resolve cases where the value of the
resolution column is identical in both trail and target. If you ensure that the value of the

2-218

ORACLE

Chapter 2
TABLE | MAP

timestamp column can only increase or only decrease (depending on the resolution), then
USEMAX and USEMIN does not lead to data divergence.

Note:

Do not use a primary key column as the resolution column in a USEMAX statement for
the UPDATEROWEXISTS conflict. Otherwise, Replicat abends with an error similar to the
following:

2013-04-04 10:18:38 ERROR 0GG-01922 Missing RESOLUTION COLUMN NAME while
mapping to target table "FIN"."ACCT".

USEDELTA

(uPDATEROWEXISTS conflict only) Add the difference between the before and after values in
the trail record to the current value of the column in the target database. If any of the
values is NULL, an error is raised. Base USEDELTA on columns that contain NUMERIC data
types. USEDELTA is useful in a multi-node configuration when a row is getting
simultaneously updated on multiple nodes. It propagates only the difference in the column
values to the other nodes, so that all nodes become synchronized.

DISCARD

(Valid for all conflict types) Retain the current value in the target database, and write the
data in the trail record to the discard file.

Use DISCARD with caution, because it can lead to data divergence.

OVERWRITE
(Valid for all conflict types except DELETEROWMISSING) Apply the trail record as follows:

e (INSERTROWEXISTS conflict) Apply the trail record but change the insert to an update to
avoid a uniqueness violation, and overwrite the existing values.

e (UPDATEROWEXISTS conflict) Apply the update from the trail record.

e (UPDATEROWMISSING conflict) Apply the trail record but convert the missing UPDATE to
an INSERT by using the modified columns from the after image and the unmodified
columns from the before image. To convert an update to an insert, the before image of
all columns of the row must be available in the trail. Use supplemental logging if the
database does not log before images by default, and specify ALL for the Extract
GETBEFORECOLS parameter.

e (DELETEROWEXISTS conflict) Apply the delete from the trail record, but use only the
primary key columns in the WHERE clause.

Use OVERWRITE with caution, because it can lead to data divergence.
IGNORE

(Valid for all conflict types) Retain the current value in the target database, and ignore the
trail record: Do not apply to the target table or a discard file.

COLS (column[, ...])

A non-default column group. This is a list of columns in the target database (after mapping)
that are linked to, and operated upon by, a specific resolution type. If no column group is
specified for a conflict, then all columns are affected by the resolution that is specified for the
given conflict.

2-219

ORACLE

Chapter 2
TABLE | MAP

Alternatively, you can specify a DEFAULT column group, which includes all columns that are not
listed in another column group. See the DEFAULT option.

You can specify multiple column groups, each with a different resolution. For example, you
could use OVERWRITE for col2 and col3, and you could use USEDELTA for col4. No column in
any group can be in any other group. Conflicts for columns in different column groups are
resolved separately according to the specified resolution, and in the order listed.

Column groups work as follows:

e For INSERTROWEXISTS and UPDATEROWEXISTS conflicts, you can use different column
groups to specify more than one of these conflict types and resolutions per table. Conflicts
for columns in different column groups are resolved separately, according to the conflict
resolution method specified for the column group.

e For UPDATEROWMISSING, DELETEROWEXISTS, and DELETEROWMISSING, you can use only one
column group, and all columns of the table must be in this column group (considered the
default column group).

Examples

Example 1
This example demonstrates all conflict types with USEMAX, OVERWRITE, DISCARD.

MAP fin.src, TARGET fin.tgt,

COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),

RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMAX (lastimoditime)),

RESOLVECONFLICT (INSERTROWEXISTS, (DEFAULT, USEMAX (lastimoditime)),
RESOLVECONFLICT (DELETEROWEXISTS, (DEFAULT, OVERWRITE)),
(
(

RESOLVECONFLICT (UPDATEROWMISSING, (DEFAULT, OVERWRITE)),
RESOLVECONFLICT (DELETEROWMISSING, (DEFAULT, DISCARD)),
)i

Example 2

This example demonstrates UPDATEROWEXISTS with USEDELTA and USEMAX.

MAP fin.src, TARGET fin.tgt,
COMPARECOLS
(ON UPDATE KEYINCLUDING (address, phone, salary, last mod time),
ON DELETE KEYINCLUDING (address, phone, salary, last mod time)),
RESOLVECONFLICT (
UPDATEROWEXISTS,
(delta res method, USEDELTA, COLS (salary)),
(DEFAULT, USEMAX (last mod time)));

Example 3
This example demonstrates UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE.

MAP fin.src, TARGET fin.tgt,
COMPARECOLS
(ON UPDATE ALLEXCLUDING (comment)),
RESOLVECONFLICT (
UPDATEROWEXISTS,
(delta res method, USEDELTA, COLS (salary, balance)),
(max_res method, USEMAX (last mod time), COLS (address, last mod time)),
(DEFAULT, IGNORE));

SQLEXEC (SQL specification)
SQLEXEC is valid for TABLE and MAP.

Use SQLEXEC to execute a SQL stored procedure or query from within a MAP statement during
Oracle GoldenGate processing. SOLEXEC enables Oracle GoldenGate to communicate directly

2-220

ORACLE

Chapter 2
TABLE | MAP

with the database to perform any work that is supported by the database. This work can be
part of the synchronization process, such as retrieving values for column conversion, or it can
be independent of extracting or replicating data, such as executing a stored procedure that
executes an action within the database.

See "SQLEXEC" for syntax and usage.

SQLPREDICATE 'WHERE where clause'
SQLPREDICATE is valid for TABLE.

Use SQLPREDICATE to include a conventional SQL WHERE clause in the SELECT statement that
Extract uses when selecting data from a table in preparation for an initial load. SQLPREDICATE
forces the records returned by the selection to be ordered by the key values.

SQLPREDICATE is a faster selection method for initial loads than the WHERE or FILTER options. It
affects the SQL statement directly and does not require Extract to fetch all records before
filtering them.

For Oracle tables, SQLPREDICATE reduces the amount of data that is stored in the undo
segment, which can reduce the incidence of snapshot-too-old errors. This is useful when
loading very large tables.

By using a SQLPREDICATE clause, you can partition the rows of a large table among two or more
parallel Extract processes. This configuration enables you to take advantage of parallel
delivery load processing as well.

SQLPREDICATE also enables you to select data based on a timestamp or other criteria to filter
the rows that are extracted and loaded to the target table. SQLPREDICATE can be used for ORDER
BY clauses or any other type of selection clause.

Make certain that the WHERE clause contains columns that are part of a key or index. Otherwise,
Extract performs a full table scan, which reduces the efficiency of the SELECT statement.

SQLPREDICATE is valid for Oracle, DB2 LUW, DB2 on z/OS, DB2 for i, and SQL Server
databases. Do not use SQLPREDICATE for an Extract group that is configured to synchronize
transactional changes. It is only appropriate for an initial load Extract, because it re quires a
SELECT statement that selects records directly from tables.

Syntax

TABLE source table, SQLPREDICATE 'WHERE where clause';
WHERE
This is a required keyword.

where_clause
A valid SQL WHERE clause that selects records from the source tables.

Example

TABLE hr.emp, SQLPREDICATE 'WHERE state = 'CO' and city = 'DENVER''

THREAD (thread ID)

THREAD is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use THREAD to specify that all of the object or objects in the same MAP statement are to be
processed by the specified Replicat thread. The specified thread handles filtering,

2-221

Chapter 2
TABLE | MAP

manipulation, delivery to the target, error handling, and other work that is configured for those
objects. Wildcards can be used in the TARGET clause when THREAD is used.

All tables that have referential dependencies among one another must be mapped in the same
thread. For example, if tables scott.cust and scott.ord have a foreign-key relationship, the
following is a possible mapping:

MAP scott.cust, TARGET scott.cust, THREAD (5);
MAP scott.ord, TARGET scott.ord, THREAD (5);

The thread with the lowest thread ID always processes barrier transactions if the THREAD or
THREADRANGE option is omitted. Additionally, and work that is not explicitly assigned to a thread
is processed through this thread. For example, if there are threads with IDs ranging from 1 to
10, barrier and non-assigned transactions are performed by thread 1.

To process a MAP statement among multiple threads, see THREADRANGE (thread range,
column list). THREAD and THREADRANGE are mutually exclusive options. Do not use them
together in the same MAP statement.

Syntax

THREAD (thread ID)

thread ID

A numerical identifier for the thread that will process this MAP statement. Valid values are 1
through the value that was specified with the MAXTHREADS option of the ADD REPLICAT
command that created this group. You can use the INFO REPLICAT command to verify the
maximum number of threads allowed for a Replicat group. When specifying thread IDs, the
following must be true:

e The total number of threads specified across all MAP statements of a Replicat group cannot
exceed the value of MAXTHREADS.

* No single thread IDvalue in the Replicat group can be higher than the value of
MAXTHREADS. For example, if MAXTHREADS is 25, there cannot be a thread ID of 26 or
higher.

If MAXTHREADS was not used, the default maximum number of threads is 25.

Examples

The following examples show some ways to use the THREAD option.

Example 1
In this example, thread 1 processes table cust.

MAP scott.cust, TARGET scott.cust, THREAD (1);

Example 2
In this example, thread 1 processes all of the tables in the scott schema.

MAP scott.*, TARGET scott.*, THREAD (1);

ORACLE 5999

Chapter 2
TABLE | MAP

Example 3

In this example, the orders table is partitioned among two MAP statements through the use of
FILTER (filter clause) and the @RANGE function. For more information about @RANGE, see
"@RANGE".

MAP scott.orders, TARGET scott.orders, FILTER (@RANGE (1, 2, OID)), THREAD
(1)
MAP scott.orders, TARGET scott.orders, FILTER (@RANGE (2, 2, OID)), THREAD
(2);

THREADRANGE (thread range, column_list)
THREADRANGE is valid for MAP. This option is valid when Replicat is in coordinated mode.

Use THREADRANGE to specify that the workload of the target table is to be partitioned evenly
among a range of Replicat threads, based on the value of a specified column or columns. For
example, if the partitioning is based on the value of a column named 1D, and the THREADRANGE
value is 1-3, then thread 1 processes rows with 1D values from 1 through 10, thread 2
processes rows with 1D values from 11 through 20, and thread 3 processes rows with 1D
values from 21 through 30. The partitioning may not be as absolutely even as shown in the
preceding example, depending on the initial calculation of the workload, but it is coordinated so
that same row is always processed by the same thread. Each specified thread handles
filtering, manipulation, error handling, delivery to the target, and other work for its range of
rows.

Partitioning a table across a range of threads may improve apply performance for very large
tables or tables that frequently incur long-running transactions or heavy volume, but can be
used in other cases, as well. You can process more than one table through the same range of
threads.

A wildcarded TARGET clause can be used when THREADRANGE is used if the optional column list
is omitted. When using a column list, use separate explicit MAP statements for each table that is
using the same thread range.

To process a MAP statement with one specific thread, see THREAD (thread ID). THREAD and
THREADRANGE are mutually exclusive options. Do not use them together in the same MAP
statement.

Do not specify tables that have referential dependencies among one another in a thread range.
Use the THREAD option and process all of those tables with the same thread.

Do not use THREADRANGE to partition sequences. If coordination is required, for example when a
sequence is part of a SQLEXEC operation, partition the sequence work to one thread with the
THREAD option.

The thread with the lowest thread ID always processes barrier transactions if the THREAD or
THREADRANGE option is omitted. Additionally, and work that is not explicitly assigned to a thread
is processed through this thread. For example, if there are threads with IDs ranging from 1 to
10, barrier and non-assigned transactions are performed by thread 1.

ORACLE 5993

ORACLE

Chapter 2
TABLE | MAP

Note:

The columns specified in a list of columns must exist in the trail file. You can control
this using KEYCOLS in the Extract to include this column, or by using FETCHCOLS in the
Extract for the column, or by ensuring that the column is part of the supplemental log
group and then using LOGALLSUPCOLS.

Syntax

THREADRANGE (lowID-highID, [column[, column][, ...1])

lowID
The lowest thread identifier of this range. Valid values are 1 through 500.

highID
The highest thread identifier of this range, which must be a higher number than I1ow1D. Valid
values are IowID+1 through 500. The number of threads in the range cannot exceed the value
that was specified with the MAXTHREADS option of the ADD REPLICAT command. If MAXTHREADS
was not used, the default maximum number of threads is 25.

[column[, column][, ...]]

Optional. Specifies one or more unique columns on which to base the row partitioning. To
specify multiple columns, use a comma-delimited list, such as coll, col2, col3. When this
option is omitted, the partitioning among the threads is based by default on the following
columns, in the order of preference shown:

* Primary key
e KEYCOLS clause in the same MAP statement

e All of the columns of the table that are supported by Oracle GoldenGate for use as a key.

Example

The following example divides the orders and order lines tables between the same two
threads, based on the value of the 01D column.

MAP scott.orders, TARGET scott.orders, THREADRANGE (1-2, OID);
MAP scott.order lines, TARGET scott.order lines, THREADRANGE (1-2, OID);

TOKENS (token definition)
TOKENS is valid for TABLE.

Use TOKENS to define a user token and associate it with data. Tokens enable you to extract and
store data within the user token area of a trail record header. Token data can be retrieved and
used in many ways to customize the way that Oracle GoldenGate delivers data. For example,
you can use token data in column maps, stored procedures called by SQLEXEC, or macros.

To use the defined token data in target tables, use the @TOKEN column-conversion function in
the COLMAP clause of a Replicat MAP statement. The @TOKEN function maps the name of a token
to a target column.

Do not use this option for tables being processed in pass-through mode by a data-pump
Extract group.

The character set of token data is not converted. The token must be in the character set of the
source database for Extract and in the character set of the target database for Replicat.

2-224

ORACLE

Chapter 2
TABLE | MAP

Syntax

TOKENS (token name = token data [, ...])

token name
A name of your choice for the token. It can be any number of valid characters and is not case-
sensitive. Multi-byte names are not supported.

token data

Any valid character string of up to 2000 bytes. The data can be either a literal that is enclosed
within single quotes (or double quotes if NOUSEANSISQLQUOTES is in use) or the result of an
Oracle GoldenGate column-conversion function.

Example

The following creates tokens named TK-0SUSER, TK-GROUP, and TK-HOST and maps them to
token data obtained with the eGETENV function.

TABLE ora.oratest, TOKENS (

TK-OSUSER = @GETENV ('GGENVIRONMENT' , 'OSUSERNAME'),
TK-GROUP = @GETENV ('GGENVIRONMENT' , 'GROUPNAME')
TK-HOST = (@GETENV ('GGENVIRONMENT' , 'HOSTNAME'));

TRIMSPACES | NOTRIMSPACES
TRIMSPACES and NOTRIMSPACES are valid for TABLE and MAP.

Use TRIMSPACES and NOTRIMSPACES at the root level of a parameter file or within a TABLE or MAP
statement to control whether or not trailing spaces in a source CHAR column are truncated when
applied to a target CHAR or VARCHAR column. The default is TRIMSPACES.

See "TRIMSPACES | NOTRIMSPACES" for syntax and usage.

TRIMVARSPACES | NOTRIMVARSPACES
TRIMVARSPACES and NOTRIMVARSPACES are valid for TABLE and MAP.

Use TRIMVARSPACES and NOTRIMVARSPACES at the root level of a parameter file or within a TABLE
or MAP statement to control whether or not trailing spaces in a source VARCHAR column are
truncated when applied to a target CHAR or VARCHAR column. The default is NOTRIMVARSPACES.

See "TRIMVARSPACES | NOTRIMVARSPACES" for syntax and usage.

WHERE (clause)
WHERE is valid for TABLE and MAP.

Use WHERE to select records based on a conditional statement. WHERE does not support the
following:

* Columns that have a multi-byte character set or a character set that is incompatible with
the character set of the local operating system.

* The evaluation of the before image of a primary key column in the conditional statement as
part of a primary key update operation.

Enclose literals in single quotes. Specify case-sensitive column names as they are stored in
the database, and enclose them in double quotes if the database requires quotes to enforce
case-sensitivity (such as Oracle).

2-225

ORACLE

Chapter 2
TABLE | MAP

Getting More Information about Record Filtering

Syntax

WHERE (clause)

clause
Selects records based on a condition, such as:

WHERE (branch = 'NY')

Table 2-12 shows permissible WHERE operators.

Table 2-12 Permissible WHERE Operators

]
Operator Example

Column names PRODUCT AMT

"Product Amt"
Numeric values 123, 5500.123
Literal strings enclosed in single 'AUTO', 'Ca
quotes
Column tests @NULL, @PRESENT, @ABSENT (column is null, present or absent in

the record). These tests are built into Oracle GoldenGate.

Comparison operators o, >, 5, <, =, <=

Conjunctive operators AND, OR

Grouping parentheses Use open and close parentheses for logical grouping of multiple
elements.

Example

The following WHERE example returns all records when the AMOUNT column is over 10,000 and
does not cause a record to be discarded when AMOUNT is absent.

WHERE (amount = @PRESENT AND amount > 10000)

PARTITIONOBJID
Valid for Integrated Extract.

PARTITIONOBJID is used to specify the object IDs of the partitions to be captured for partitioned
tables, and applies to Integrated Extract. For an IO table (with or without overflow area), index
segment object ID should be used for partition level filtering. In this case, PARTITIONOBJID

in the MAP or TABLE statement specifies the index segment object IDs of the partitions to be
extracted.

Syntax

MAP/TABLE [container.]schema.table PARTITIONOBJID ptn object ID [, ptn object ID]

The following restrictions apply:

2-226

Chapter 2
TABLE for DEFGEN

* Wildcarded table names are not allowed for a MAP/TABLE parameter that
contains PARTITIONOBJID.

e DDL Capture and replication is not supported when using PARTITIONOBJID.
Syntax for 10 table TABLE statement:

TABLE [container.]schema.table PARTITIONOBJID index segment object ID [,
index segment object ID]

Syntax for 10 table MAP statement:

MAP [container.]schema.table PARTITIONOBJID index segment object ID [,
index segment object ID]

TABLE for DEFGEN

ORACLE

Valid For
DEFGEN

Description

Use the TABLE parameter in a DEFGEN parameter file to identify a source table or tables for
which you want to run the utility.

You can output definitions for objects that are in different containers in an Oracle container
database to the same definitions file. All table attributes must be identical, such as case
sensitivity, character set, and the use of the full three-part name. For example, you cannot use
two-part names (stripped of their container or catalog by the NOCATALOG parameter) and three-
part names in the same definitions file.

Default

None

Syntax

TABLE [catalog.]owner.table[, DEF template];

[catalog.]owner. table

The Oracle container database if applicable, and the owner and name of the table. This
parameter accepts wildcards. Oracle GoldenGate automatically increases the internal storage
to track up to 100,000 wildcard entries.

Oracle GoldenGate preserves the case of the table name. Some databases require a name to
be within double quotes to enforce case-sensitivity. Other case-sensitive databases do not
require double quotes to enforce case-sensitivity, but the names must be specified the way
they are stored in the database.

DEF template

Creates a definitions template based on the definitions of the specified table. A template
enables new tables that have the same definitions as the specified table to be added during
an Oracle GoldenGate process run, without the need to run DEFGEN for them first, and
without the need to stop and start the Oracle GoldenGate process to update its definitions
cache. To use a template that is generated by DEFGEN, specify it with the DEF or TARGETDEF
option of the TABLE or MAP statement. To retain case-sensitivity, specify the template name the
way you would specify any case-sensitive object in the database. This option is not supported
for initial loads.

2-227

Chapter 2
TABLE for Replicat

Terminates the TABLE statement.

Examples

Example 1

TABLE fin.account;

Example 2

TABLE fin.acc*;

Example 3

TABLE fin."acctl", DEF "acctdefs";

TABLE for Replicat

ORACLE

Valid For

Replicat

Description

Use the TABLE parameter in a Replicat parameter file to specify filtering rules that qualify a data
record from the trail to be eligible for an event action that is specified with EVENTACTIONS.

This form of TABLE statement is similar to that of the Replicat MAP statement, except that there
is no mapping of the source table in the data record to a target table by means of a TARGET
clause. TABLE for Replicat is solely a means of triggering a hon-data action to be taken by
Replicat when it encounters an event record. If Replicat is in coordinated mode, all actions are
processed through the thread with the lowest thread ID.

Because a target table is not supplied, the following apply:

* No options are available to enable Replicat to map table names or columns to a target
table, nor are there options to enable Replicat to manipulate data.

e The ASSUMETARGETDEFS parameter cannot be used in the same parameter file as a Replicat
TABLE statement, because ASSUMETARGETDEFS requires the names of target tables so that
Replicat can query for table definitions. You must create a source-definitions file to provide
the definitions of the source tables to Replicat. Transfer this file to the target system and
use the SOURCEDEFS parameter in the Replicat parameter file to specify the path name of
the file.

e The event record itself is not applied to the target database by Replicat. You must specify
either IGNORE or DISCARD as one of the EVENTACTIONS options.

Syntax

See "TABLE | MAP" for descriptions of the following syntax options.

TABLE table spec,

[, SQLEXEC (SQL specification), BEFOREFILTER]
[, FILTER (filter clause)]

[, WHERE (where clause)]

{, EVENTACTIONS ({IGNORE | DISCARD} [action])}

’

2-228

Chapter 2
TABLEEXCLUDE

Example

The following example enables Replicat tracing for an order transaction that contains an insert
operation for a specific order number (order no = 1). The trace information is written to the
order 1.trc trace file. The MAP parameter specifies the mapping of the source table to the
target table.

MAP sales.order, TARGET rpt.order;

TABLE sales.order,

FILTER (@QGETENV ('GGHEADER', 'OPTYPE') = 'INSERT' AND @STREQ (order no, 1), &
EVENTACTIONS (TRACE order_l.trc TRANSACTION) ;

TABLEEXCLUDE

ORACLE

Valid For

Extract

Description

Use the TABLEEXCLUDE parameter with the TABLE and SEQUENCE parameters to explicitly exclude
tables and sequences from a wildcard specification. The positioning of TABLEEXCLUDE in
relation to parameters that specify files or trails determines its effect. Parameters that specify
trails or files are: EXTFILE, RMTFILE, EXTTRAIL, RMTTRAIL. The parameter works as follows:

e When a TABLEEXCLUDE specification is placed before any TABLE or SEQUENCE parameters,
and also before the parameters that specify trails or files, it applies globally to all trails or
files, and to all TABLE and SEQUENCE parameters.

* When a TABLEEXCLUDE specification is placed after a parameter that specifies a trail or file,
it is effective only for that trail or file and only for the TABLE or SEQUENCE parameters that are
associated with it. Multiple trail or file specifications can be made in a parameter file, each
followed by a set of TABLE, SEQUENCE, and TABLEEXCLUDE specifications.

TABLEEXCLUDE is evaluated before evaluating the associated TABLE or SEQUENCE parameter.
Thus, the order in which they appear does not make a difference.

When using wildcards, be careful not to place them such that all objects are excluded, leaving
nothing to capture. For example, the following captures nothing:

TABLE catl.schema*.tab*;
TABLEEXCLUDE catl.*x.*

The default for resolving wildcards is WILDCARDRESOLVE DYNAMIC. Therefore, if a table that is
excluded with TABLEEXCLUDE is renamed to a name that satisfies a wildcard, the data will be
captured. The DYNAMIC setting enables new table names that satisfy a wildcard to be resolved
as soon as they are encountered and included in the Oracle GoldenGate configuration
immediately. For more information, see WILDCARDRESOLVE.

See also the EXCLUDEWILDCARDOBJECTSONLY parameter.

Default

None

Syntax

TABLEEXCLUDE [container. | catalog.]lowner.{table | sequence}

2-229

Chapter 2
TARGETDDLNOTIFY | NOTARGETDDLNOTIFY

container.
If the database requires three-part names, specifies the name or wildcard specification of the
Oracle container that contains the object to exclude.

owner
Specifies the name or wildcard specification of the owner, such as the schema, of the object to
exclude.

table | sequence
The name or wildcard specification of the object to exclude.

Example

In this example, test.tab* specifies that all tables beginning with tab in schema test are to
be excluded from all trail files. Table fin.acct is excluded from trail ee. Table fin.sales is
excluded from trail £f.

TABLEEXCLUDE test.tab*
EXTTRAIL ./dirdat/ee
TABLE pdbl.*.*;
TABLEEXCLUDE pdbl.fin.acct
EXTTRAIL ./dirdat/ff
TABLE pdb2.*.*;
TABLEEXCLUDE pdb2.fin.sales

TARGETDDLNOTIFY | NOTARGETDDLNOTIFY

ORACLE

Valid For

Replicat

Description

This parameter controls whether or not Replicat uses DDL notification to synchronize its target
table metadata cache. If it's not supported by the database, then the parameter is ignored. It is
supported by all types of Replicat (classic, coordinated, integrated, parallel and parallel
integrated). It applies to all tables mapped by the Replicat.

It is ON by default if the target Oracle database supports it.

NOTARGETDDLNOTIFY turns it OFF.

Default

ON
Syntax

TARGETDDLNOTIFY

2-230

Chapter 2
TARGETDEFS

Examples

For Oracle database 23ai and Oracle GoldenGate 23ai Replicat, the target table DDL
notification is enabled by default. The following example shows how to turn off target table
DDL notification for Replicat in the Replicat parameter file:

NOTARGETDDLNOTIFY

TARGETDEFS

Valid For

Primary Extract

Description

Use the TARGETDEFS parameter to specify a target-definitions file. TARGETDEFS names a file on
the source system or on an intermediary system that contains data definitions of tables and
files that exist on the target system.

You can have multiple TARGETDEFS statements in the parameter file if more than one target-
definitions file is needed for different definitions, for example if each TARGETDEF'S file holds the
definitions for a specific application.

To generate the target-definitions file, use the DEFGEN utility. Transfer the file to the source or
intermediary system before starting Extract.

Default

None

Syntax

TARGETDEFS file

file
The relative or fully qualified path name of the target-definitions file.

Examples

Example 1

TARGETDEFS C:\repodbc\sales.def

Example 2

TARGETDEFS /ggs/dirdef/ODBC/tandem defs

TCPSOURCETIMER | NOTCPSOURCETIMER

Valid For

Extract

ORACLE 5031

Chapter 2
TRACE | TRACE2

Description

Use the TCPSOURCETIMER and NOTCPSOURCETIMER parameters to manage the timestamps of
replicated operations for reporting purposes within the Oracle GoldenGate environment.

TCPSOURCETIMER and NOTCPSOURCETIMER are global parameters and apply to all TABLE
statements in the Extract parameter file.
Default

TCPSOURCETIMER

Syntax

TCPSOURCETIMER | NOTCPSOURCETIMER

TCPSOURCETIMER
Adjusts the timestamp of data records when they are sent to other systems, making it easier
to interpret synchronization lag. This is the default.

NOTCPSOURCETIMER

Retains the original timestamp value. Use NOTCPSOURCETIMER when using timestamp-based
conflict resolution in a bidirectional configuration and when using a user token that refers to
'GGHEADER', 'COMMITTIMESTAMP' Of the @GETENV column-conversion function.

TRACE | TRACEZ2

ORACLE

Valid For

Extract and Replicat

Description

Use the TRACE and TRACE2 parameters to capture Extract or Replicat processing information to
help reveal processing bottlenecks. Both support the tracing of DML and DDL.

Tracing also can be turned on and off by using the SEND EXTRACT or SEND REPLICAT command
in GGSCI. .

Contact Oracle Support for assistance if the trace reveals significant processing bottlenecks.

Default

No tracing

Syntax

TRACE | TRACE2

[, DDL[INCLUDE] | DDLONLY]

[, [FILE] file name]

[, THREADS (threadID[, threadID][, ...l1[, thread rangel, thread rangel[, ...])]

TRACE
Provides step-by-step processing information.

TRACE2
Identifies the code segments on which Extract or Replicat is spending the most time.

2-232

ORACLE

Chapter 2
TRACE | TRACE2

DDL[INCLUDE] | DDLONLY
(Replicat only) Enables DDL tracing and specifies how DDL tracing is included in the trace
report.

DDL [INCLUDE]
Traces DDL and also traces transactional data processing. This is the default. Either DDL
or DDLINCLUDE is valid.

DDLONLY
Traces DDL but does not trace transactional data.

[FILE] file name

The relative or fully qualified name of a file to which Oracle GoldenGate logs the trace
information. The FILE keyword is optional, but must be used if other parameter options will
follow the file name, for example:

TRACE FILE file name DDLINCLUDE

If no other options will follow the file name, the FILE keyword can be omitted, for example:

TRACE DDLINCLUDE file name

THREADS (threadID[, threadID][, ...][, thread range[, thread range][, ...])
Enables tracing only for the specified thread or threads of a coordinated Replicat. Tracing is
only performed for threads that are active at runtime.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadiD,
threadID, threadID.

[, thread range[, thread range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

If the Replicat is in coordinated mode and TRACE is used with a THREADS list or range, a trace
file is created for each currently active thread. Each file name is appended with its associated
thread ID. This method of identifying trace files by thread ID does not apply when SEND
REPLICAT is issued by groupname with threadID (as in SEND REPLICAT fin003 TRACE...) Or
when only one thread is specified with THREADS.

Contact Oracle Support for assistance if the trace reveals significant processing bottlenecks.

Examples

Example 1
The following traces to a file named trace. trc. If this is a coordinated Replicat group, the
tracing applies to all active threads.

TRACE /home/ggs/dirrpt/trace.trc

Example 2
The following enables tracing for only thread 1. In this case, because only one thread is being
traced, the trace file will not have a threadID extension. The file name is trace.trc.

TRACE THREADS (1) FILE ./dirrpt/trace.trc

2-233

Chapter 2
TRAILBYTEORDER

Example 3
The following enables tracing for threads 1,2, and 3. Assuming all threads are active, the
tracing produces files trace001, trace002, and trace003.

TRACE THREADS (1-3) FILE ./dirrpt/trace.trc

TRAILBYTEORDER

ORACLE

Valid For
GLOBALS

Description

< Note:

TRAILBYTEORDER is automatically handled by Oracle GoldenGate, and should only be
used if the default settings are not working or when you want a required conversion
to take place on the source machine and not the target to manage overhead.

Use the TRAILBYTEORDER parameter in the GLOBALS file to set the byte format of the trails or files
created by Extract. By default, Extract always writes the trail metadata in the native byte order
of the source machine..

When used in the GLOBALS file, TRAILBYTEORDER affects all of the files or trails in the same
Oracle GoldenGate instance. To specify the byte order of a specific trail or file, use the
TRAILBYTEORDER option of the associated EXTFILE, RMTFILE, or EXTTRAIL parameters in the
Extract parameter file. In cases where Extract writes to multiple trails or files on different
platforms, TRAILBYTEORDER in the Extract parameter file enables the correct byte ordering of
each one. When TRAILBYTEORDER is used as an Extract parameter, it overrides any
TRAILBYTEORDER specification in the GLOBALS file.

In the case where the source byte order is different than the target and where some conversion
is required, you can decide whether the conversion takes place at the source or at the target.
To perform the conversion on the source, set TRATLBYTEORDER to the endianness of the target.
To perform the conversion on the target, do not use this parameter.

If nothing is specified with TRAILBYTEORDER, a data pump writes the trail using the same byte
order as the input trail, which may not be the desired format and cannot be altered in a data
pump.

TRAILBYTEORDER is valid for files that have a FORMAT RELEASE version of at least 12.1. For older
versions, this parameter is ignored.

You must use TRAILBYTEORDER when replicating data to a NonStop system. On the NonStop
platform, Oracle GoldenGate only supports BIGENDIAN, generally not the default of the source.

To identify the byte order of the metadata in a trail, use the ENv command of the Logdump
utility.

Default

NATIVEENDIAN

2-234

Chapter 2
TRAILCHARSET

Syntax

TRAILBYTEORDER {BIGENDIAN | LITTLEENDIAN | NATIVEENDIAN}

BIGENDIAN
Formats the trail metadata in big endian.

LITTLEENDIAN
Formats the trail metadata in little endian.

NATIVEENDIAN

Formats the trail metadata in the default byte order of the local system. Enables you to make
certain the output trail is converted to the native format of the source machine.

Example

TRAILBYTEORDER BIGENDIAN

TRAILCHARSET

ORACLE

Valid For

Replicat

Description

Note:

This parameter has been replaced by the SOURCECHARSET parameter but may still be
retained in existing parameter files for backward compatibility.

Use the TRATLCHARSET parameter to supply a character set for the source data if the trail is
written by an Extract version that is earlier than 11.2.1.0.0. In the earlier versions, the source
character set is not stored in the trail.

When TRAILCHARSET is used, Replicat uses the specified character set as the source character
set when converting character-type columns to the target character set. Replicat issues a
warning message when it uses the TRAILCHARSET character set.

By default, Replicat performs character set conversion. This feature is controlled by the
CHARSETCONVERSION (default) and NOCHARSETCONVERSION parameters. To use TRAILCHARSET,
NOCHARSETCONVERSION cannot be used.

Default

Character set of the operating system

Syntax

TRAILCHARSET source charset [, REPLACEBADCHAR];

2-235

Chapter 2
TRAILCHARSETASCII

source_charset

The ICU character-set identifier or an Oracle character-set identifier of the source database.
For Oracle databases, Oracle GoldenGate converts an Oracle identifier to the corresponding
ICU identifier for conversion to the character set that is specified with the NLS_LANG
specification in the SETENV parameter in the Replicat parameter file.

REPLACEBADCHAR

Prevents Replicat from abending when a conversion attempt fails. The failed character is
replaced with a replacement character for each target character set. The replacement
character is pre-defined in each character set.

Examples

Example 1

TRAILCHARSET IS0-8859-9;

Example 2

TRAILCHARSET windows-932, REPLACEBADCHAR;

Example 3

TRAILCAHRSET EUC-CN;

TRAILCHARSETASCII

ORACLE

Valid For

Extract for DB2 on z/OS; not valid for Extract or Replicat.

Description

Use TRAILCHARSETASCII to cause character data to be written to the trail file in the local ASCII
code page of the DB2 subsystem from which data is to be captured.

e Specification of this parameter on a single-byte DB2 z/OS subsystem causes character
data from non-Unicode tables to be written to the trail file in the installed ASCII single-byte
CCSID. Data from EBCDIC tables is converted to this ASCIl CCSID.

« Specification of this parameter on a multi-byte DB2 z/OS subsystem causes Extract to
process only ASCII and Unicode tables. Extract abends with an error if it encounters
EBCDIC tables. Data from ASCII tables is written to the trail file in the installed ASCII
mixed CCSID.

Either TRATLCHARSETASCII Or TRAILCHARSETEBCDIC is required if the target is a multi-byte
system. To replicate both ASCII and EBCDIC tables to a multi-byte DB2 z/OS target, process
each character set with an Extract process for the EBCDIC tables.

Default

Character data is written in the character set of the host table.

Syntax

TRAILCHARSETASCII

2-236

Chapter 2
TRAILCHARSETEBCDIC

TRAILCHARSETEBCDIC

Valid For

Extract for DB2 on z/OS; not valid for Extract or Replicat.

Description

Use TRAILCHARSETEBCDIC to cause character data to be written to the trail file in the local
EBCDIC code page of the DB2 subsystem from which data is to be captured.

« Specification of this parameter causes all character data to be written to the trail file in the
EBCDIC code page of the job in which Extract is running.

e Specification of this parameter on a single-byte DB2 z/OS subsystem causes character
data from non-Unicode tables to be written to the trail file in the installed EBCDIC single-
byte CCSID. Data from ASCII tables is converted to this EBCDIC CCSID.

e Specification of this parameter on a multi-byte DB2 z/OS subsystem causes Extract to
process only EBCDIC and Unicode tables. Extract abends with an error if it encounters
ASCII tables. Data from EBCDIC tables is written to the trail file in the installed EBCDIC
mixed CCSID.

Either TRATLCHARSETASCII or TRAILCHARSETEBCDIC is required if the target is a multi-byte
system. To replicate both ASCII and EBCDIC tables to a multi-byte DB2 z/OS target, process
each character set with an Extract process for the EBCDIC tables.

Default

Character data is written in the character set of the host table.

Syntax

TRAILCHARSETEBCDIC

TRANLOGOPTIONS

ORACLE

Valid For

Extract

Description

Use the TRANLOGOPTIONS parameter to control the way that Extract interacts with the
transaction log or with the API that passes transaction data, depending on the database or
capture mode. You can use multiple TRANLOGOPTIONS statements in the same parameter file, or
you can specify multiple options within the same TRANLOGOPTIONS statement, if permissible for
those options.

Use a given TRANLOGOPTIONS option only for the database or databases for which it is intended.

Default

None

2-237

ORACLE

Chapter 2
TRANLOGOPTIONS

Syntax

TRANLOGOPTIONS ({
[ALLOWTABLECOMPRESSION] [ALTLOGDEST path | REMOTE]
[ALWAYSONREADONLYROUTING]
[{DBLOGREADERBUFSIZE size}] [ASYNCTRANSPROCESSING buffer_size]
[BUFSIZE size]
[CHECKPOINTRETENTIONTIME days] [DB2APIRETRY retry count]
[DBZZVllCOMPATIBILITYMODE][DICTIONARY_CACHE_SIZE value]
[DLFAILOVER TIMEOUT seconds]
[DISABLESOFTEOFDELAY]
[EXCLUDEFILTERTABLE table]
[EXCLUDETAG [tag | NULL] | [EXCLUDETAG +]
[EXCLUDETRANS transaction]
[EXCLUDEUSER user]
[EXCLUDEUSERID Oracle_uid]
[FAILOVERTARGETDESTID n] [FETCHPARTIALJSON] [FETCHPARTIALLOB] [FETCHPARTIALXML]
[FORCEFETCHLOB]
[GETCTASDML | NOGETCTASDML] [HANDLEDLFAILOVER [STANDBY WARNING value |
STANDBY ABEND value]]
[IFILOCKSECONDS (seconds)]
[IGNOREDATACAPTURECHANGES | NOIGNOREDATACAPTURECHANGES] [INCLUDEAUX
(AUX specification)]
[INCLUDEREGIONID | INCLUDEREGIONIDWITHOFFSET]
[INCLUDETAG tag]
[ENABLE PROCEDURAL REPLICATION Y]
[ENABLE AUTO CAPTURE | DISABLE AUTO CAPTURE]
[LOB CHUNK SIZE size] [MAXAUTOCMTTRANSSIZE (range, default)][MININGUSER {/ |
user} [, MININGPASSWORD password]

[algorithm ENCRYPTKEY {key name | DEFAULT}] [SYSDBA]
[MININGUSERALIAS alias [DOMAIN domain]]
[MIXEDENDIAN [ON|OFF]]
[MANAGECDCCLEANUP | NOMANAGECDCCLEANUP]
[MANAGESECONDARYTRUNCATIONPOINT | NOMANAGESECONDARYTRUNCATIONPOINT]
[PERFORMANCEPROFILE HIGH|MEDIUM|LOW RES] [QUERYTIMEOUT seconds]
[QUERYRETRYCOUNT seconds]
[READQUEUESIZE size]
[READTIMEOUT milliseconds]
[REDO TRANSPORT LAG THRESHOLD seconds]
[REDO_TRANSPORT LAG TIMEOUT value]
[REQUIRELONGDATACAPTURECHANGES | NOREQUIRELONGDATACAPTURECHANGES]
[SOURCE 0OS TIMEZONE timezone]
[SKIPUNKNOWNEVENT]
[SUPPRESSNOOOPUPDATES] [TRACKSCHEMACHANGES]
[TRANCOUNT integer]
[TSLOOKUPBEGINLRI | TSLOOKUPENDLRI]
[VALIDATEINLINESFLOB]
[USE_ROOT CONTAINER TIMEZONE]
[USENATIVEOBJSUPPORT | NOUSENATIVEOBJSUPPORT]
[VERSIONCHECK DYNAMIC | IMMEDIATE]
}

ALWAYSONREADONLYROUTING
Valid for SQL Server

2-238

ORACLE

Chapter 2
TRANLOGOPTIONS

The ALWAYSONREADONLYROUTING parameter allows Extract for SQL Server to route its read-only
processing to an available read-intent Secondary when connected to an Always On availability
group listener.

ALTLOGDEST path | REMOTE

Valid for MySQL.

Specifies the location of the MySQL log index file. Extract looks for the log files in this location
instead of the database default location. ALTLOGDEST can be used when the database
configuration does not include the full path name to the logs or when there are multiple
MySQL installations on the machine. Extract reads the log index file to find the binary log file
that it needs to read. When ALTLOGDEST is used, Extract assumes that the logs and the index
are in the same location.

Supply the full path name to the directory.

On Windows, enclose the path within double quotes if the path contains any spaces, such as
in the following example.

TRANLOGOPTIONS ALTLOGDEST "C:\Program Files\MySQL\MySQL Server
5.7\1log\binlog.index"

On Linux system:

TRANLOGOPTIONS ALTLOGDEST "/mnt/rdbms/mysql/data/logs/binlog.index"

When capturing against a remote MySQL database, use the REMOTE option instead of the
index file path. From remote capture, specify the following in the Extract parameter file.

TRANLOGOPTIONS ALTLOGDEST REMOTE

For more information on using the REMOTE option, see Setting Logging Parameters.

ASYNCTRANSPROCESSING buffer size

Valid for Extract in integrated capture mode for Oracle.

Controls whether integrated capture runs in asynchronous or synchronous processing mode,
and controls the buffer size when Extract is in asynchronous mode. The minimum is 1 and the
maximum is 1024; the default is 300.

ASYNCTRANSPROCESSING buffer size
In asynchronous transaction processing mode, there are two threads of control:

* One thread groups logical change records (LCR) into transactions, does object-level
filtering, and does partial rollback processing,

* The other thread formats committed transactions, performs any user-specified
transformations, and writes to the trail file.

The transaction buffer is the buffer between these two threads and is used to transfer
work from one thread to the other. The default transaction buffer size is 300 committed
transactions, but is adjusted downward by the Oracle GoldenGate memory manager if its
cache memory is close to being exhausted.

NOASYNCTRANSPROCESSING
Disables asynchronous processing and causes Extract to operate in synchronous mode.
In this mode, one thread performs all capture work.

2-239

ORACLE

Chapter 2
TRANLOGOPTIONS

BUFSIZE size

Valid for DB2 LUW, and DB2 z/OS. Valid for DB2 for i from Oracle GoldenGate 19¢ and
higher. Valid for Oracle database from Oracle GoldenGate 21c and higher.

Controls the maximum size, in bytes, of the buffers that are allocated to contain the data that
is read from the transaction log.

High values increase capture speed but cause Extract to consume more memory. Low values
reduce memory usage but increase I/O because Extract must store data that exceeds the
cache size to disk.

For Oracle database, the DDL operation record size is limited by Oracle GoldenGate internal
record capture buffer size. The DDL size can be up to the Oracle RDBMS size limit. Although
Oracle database 21c allows creating DDL greater than 10MB, the maximum internal record
capture buffer size is limited to 10MB.

The default buffer size is determined by the source of the redo data. The following are the
valid ranges and default sizes, in bytes:

DB2 LUW:

e Minimum: 8,192
e Maximum: 10,000,000
* Default: 204,800

e The preceding values must be in multiples of the 4096 page size. Extract will truncate to a
multiple if a given value does not meet this requirement.

DB2 z/OS and DB2 for i:

¢ Minimum: 36KB (36864)

¢ Maximum: 32MB (33554432)
« Default: 2MB (2097152)

e The preceding values must be in multiples of the 4096 page size. Extract will truncate to a
multiple if a given value does not meet this requirement.

* Each Extract uses a fixed 32bytes of ECSA on the DB2 z/OS system that the Extract
connects to. This doesn't apply to DB2 for i.

CHECKPOINTRETENTIONTIME days

Valid for Extract in integrated mode only for Oracle.

Controls the number of days that Extract retains checkpoints before they are purged. Partial
days can be specified using decimal values. For example, 8.25 specifies 8 days and 6 hours.
When the checkpoint of an Extract in integrated capture mode is purged, LogMiner data
dictionary information for the archived redo log file that corresponds to the checkpoint is
purged, and the first scn value of the capture process is reset to the SCN value
corresponding to the first change in the next archived redo log file. The default is seven days
and the minimum is 0.00001.

DB2APIRETRY number of retries

If Extract receives an error from the DB2 log reading APl db2ReadLog (), then for certain
errors the API call is retried. Use the DB2APIRETRY to change the number of retries. The default
number of retries is set to 3. SQL code for which the API is retried is SQLCODE -30108.

DB2ZV11COMPATIBILITYMODE

Valid for Extract for DB2 z/OS.

When using Oracle GoldenGate to extract from DB2 z/OS version 11 in some compatibility
modes, the Extract process may not programmatically determine the actual database version
and an OGG-00551 or OGG-00804 error occurs. Use this option in your Extract parameter file
to manually set the correct database version.

2-240

ORACLE

Chapter 2
TRANLOGOPTIONS

DICTIONARY CACHE SIZE value
Use this option to tune dictionary cache size from Extract. The default value is 5000. If
PERFORMANCEPROFILE is set to HIGH, then the default value is 10000.

DLFAILOVER TIMEOUT seconds

Valid for Extract in integrated mode for Oracle.

Provides a configurable timeout in seconds to allow for standby database reinstatement post-
role transition. It is used in conjunction with HANDLEDLFAILOVER to allow Integrated Extract to
start up immediately after a role transition. At the end of the timeout period, if the standby
database is still not available, then Extract will terminate.

The default is 300 seconds. You can also use centiseconds or milliseconds.

DISABLESOFTEOFDELAY

Valid for Extract only in integrated mode for Oracle and DB2 LUW.

Use DISABLESOFTEOFDELAY in the Extract parameter file to set that the wait time takes effect
when the an EOF status is reported with no records to return.

[EXCLUDETAG [tag | NULL] | [EXCLUDETAG +]

Use EXCLUDETAG tag to direct the Extract process to ignore the individual records that are
tagged with the specified redo tag. Compare with older versions, new trail file contains tag
tokens, which would not introduce problems for older trail readers.

Use EXCLUDETAG + to direct the Extract process to ignore the individual records that are
tagged with any redo tag.

The EXCLUDETAG is used to exclude changes that were earlier tagged either by Replicat using
the DBOPTIONS SET TAG option or within the Oracle database session using the
dbms_xstream.set tag procedure.

Example
The following are examples of how to use tag specifiers with EXCLUDETAG.
To exclude all tagged changes:

TRANLOGOPTIONS EXCLUDETAG +

To exclude specific tagged changes:

TRANLOGOPTIONS EXCLUDETAG 00
TRANLOGOPTIONS EXCLUDETAG 0952

Considerations while using EXCLUDETAG and INCLUDETAG Parameters
While using EXCLUDETAG and INCLUDETAG parameters with TRANLOGOPTIONS and DDLOPTIONS
commands, consider the following:

e If the TRANLOGOPTIONS EXCLUDETAG/INCLUDETAG are specified and DDLOPTIONS
EXCLUDETAG/INCLUDETAG are not specified, then the TRANLOGOPIIONS EXCLUDETAG/
INCLUDETAG parameters apply to both DML and DDL operations.

e If the TRANLOGOPTIONS EXCLUDETAG/INCLUDETAG options are specified and DDLOPTIONS
EXCLUDETAG/INCLUDETAG are also specified, then the TRANLOGOPIIONS EXCLUDETAG/
INCLUDETAG apply to DML operations, and the DDLOPTIONS EXCLUDETAG/INCLUDETAG apply
to DDL operations.

e If the TRANLOGOPTIONS EXCLUDETAG/INCLUDETAG are not specified and DDLOPTIONS
EXCLUDETAG/INCLUDETAG are specified, then the DDLOPTIONS EXCLUDETAG/INCLUDETAG
applies to DDL operations, and there is no tag filtering for DML operations.

2-241

Chapter 2
TRANLOGOPTIONS

e |f TRANLOGOPTIONS EXCLUDETAG/INCLUDETAG are not specified and DDLOPTIONS
EXCLUDETAG/INCLUDETAG are also not specified, then the default option DDLOPTIONS
EXCLUDETAG + is applicable, which excludes all tagged DDL operations.

e For DDLOPTIONS when specifying both EXCLUDETAG and INCLUDETAG, then EXCLUDETAG
should come first.

EXCLUDETRANS transaction

Valid for Integrated Extract for Oracle.

Specifies the transaction name of the Replicat database user or any other user so that those
transactions are not captured by Extract. Use for bi-directional processing to prevent data
looping between the databases.

For more information about bidirectional synchronization, see Configuring Bi-Directional
Replication in Oracle GoldenGate Microservices Documentation.

EXCLUDEUSER user

Valid for DB2 LUW, DB2 for z/OS, DB2 for i, Oracle, and Sybase.

Specifies the name of the Replicat database user, or of any other user, to be used as a filter
that identifies transactions that will be subject to the rules of the GETREPLICATES or
IGNOREREPLICATES parameter. Typically, this option is used to identify Replicat transactions in
a bi-directional or cascading processing configuration, for the purpose of excluding or
capturing them. However, it can be used to identify transactions by any other user, such as
those of a specific business application.

You can use EXCLUDEUSER and EXCLUDEUSERID in the same parameter file. Do not use
wildcards in either parameter.

The user name must be valid. Oracle GoldenGate queries the database to get the associated
user ID and maps the numeric identifier back to the user name. For this reason, if the
specified user is dropped and recreated while name resolution is set to the default of
DYNAMICRESOLUTION, EXCLUDEUSER remains valid. If the same transaction is performed when
name resolution is set to NODYNAMICRESOLUTION, EXCLUDEUSER becomes invalid, and Extract
must be stopped and then started to make EXCLUDEUSER take effect, see
DYNAMICRESOLUTION .

 DB2 z/OS considerations: In DB2 for z/OS, the user is always the primary authorization
ID of the transaction, which is typically that of the original RACF user who logged on, but
also could be a different authorization ID if changed by a transaction processor or by DB2
exits.

* Oracle considerations: For an Oracle database, multiple EXCLUDEUSER statements can
be used. All specified users are considered the same as the Replicat user, in the sense
that they are subject to the rules of GETREPLICATES or IGNOREREPLICATES. You must
include the IGNOREAPPLOPS parameter for EXCLUDEUSER to operate correctly unlike all other
supported databases. EXLCUDEUSER is not supported for multitenant source databases.

Example

The following Oracle example filters for two users (one by name and one by user ID). The
transactions generated by these users will be handled according to the GETREPLICATES or
IGNOREREPLICATES rules, and a new transaction buffer size is specified.

TRANLOGOPTIONS EXCLUDEUSER ggsrep, EXCLUDEUSERID 90, BUFSIZE 100000

ORACLE 5540

ORACLE

Chapter 2
TRANLOGOPTIONS

To use EXCLUDEUSER with multitenant, you must specify the PDB. USERNAME. The following
example excludes any DML operation made by PDBXYZ.SCOTT:

TRANLOGOPTIONS EXCLUDEUSER PDBXYZ.SCOTT

EXCLUDEUSERID Database uid

Valid for Extract for Oracle.

Specifies the database user ID (uid) of the Replicat database user, or of any other user, to be
used as a filter that identifies transactions that will be subject to the rules of the
GETREPLICATES Or IGNOREREPLICATES parameter. This parameter is not valid for multitenant
Extracts. Use tagging and EXCLUDETAG instead.

Usage is the same as that of EXCLUDEUSER.

Oracle uidis anon-negative integer with a maximum value of 2147483638. There are
several system views that can be queried to get the user ID. The simplest one is the

ALL USERS view. Oracle GoldenGate does not validate the user ID. If the user that is
associated with the specified user ID is dropped and recreated, a new user ID is assigned;
therefore, EXCLUDEUSERID becomes invalid for that user.

FAILOVERTARGETDESTID n

Valid for Extract for Oracle.

When using Oracle GoldenGate Extract processes in an Oracle Data Guard configuration, the
GoldenGate Extract process must remain behind the redo that has been applied to the Oracle
Data Guard standby database. The FAILOVERTARGETDESTID parameter is used to identify the
LOG_ARCHIVE DEST n initialization parameter which points to the standby, that is the failover
target which Extract must remain behind. This parameter is used in combination with
HANDLEDLFAILOVER to control whether Extract will throttle its writing of trail data based on the
apply progress of the Oracle Data Guard standby database. Note that the
FAILOVERTARGETDESTID is not needed if the Data Guard configuration has Fast Start Failover
(FSFO) enabled. The minimum value is 0, the maximum is 32 and the default 0.

Example

To determine the correct value for the TRANLOGOPTIONS FAILOVERTARGETDESTID Extract
parameter, connect to the database from which Extract is extracting data from, and issue the
following command.

SQL> show parameters log archive dest
NAME TYPE VALUE

log archive dest 1 string location=USE DB RECOVERY FILE DEST,
valid for=(ALL LOGFILES, ALL ROLES)

log archive dest 2 string service="ggs2d",

ASYNC NOAFFIRM delay=0 optional compression =disable max failure=0
max_connections=1 reopen=300 db unique name="GGS2D" net timeout=30,
valid for=(online logfile,all roles)

The Extract parameter TRANLOGOPTIONS FAILOVERTARGETDESTID will be set to 2 because that
is the Standby database Oracle GoldenGate should stay behind. The first entry
(log_archive dest 1) is for the local archive logs for that database, and the second is for the
standby database.

2-243

ORACLE

Chapter 2
TRANLOGOPTIONS

It would be set to 2 because that is the Standby database Oracle GoldenGate should stay
behind. The first entry (log_archive dest 1) is for the local archive logs for that database,
and the second is for the standby database.0

FETCHPARTIALJSON

Valid for Extract for MySQL

Use this option in the Extract parameter file to directly fetch data from the table, if there are
partial updates to the JSON data type columns of a table.

Note:

Processing JSON column data updates depends on the value of the MySQL server
variable, binlog row value options, the value of which needs to be set as
PARTIAL JSON and the Extract parameter file includes the FETCHPARTIALJSON
parameter.

FETCHPARTIALLOB

Valid for Extract in integrated capture mode for Oracle.

Use this option when replicating to a heterogeneous target or in other conditions where the full
LOB image is required. It causes Extract to fetch the full LOB object, instead of using the
partial change object from the redo record. By default, the database logmining server sends
Extract a whole or partial LOB, depending on whether all or part of the source LOB was
updated. To ensure the correct snapshot of the LOB, the Oracle Flashback feature must be
enabled for the table and Extract must be configured to use it. The Extract FETCHOPTIONS
parameter controls fetching and must be set to USESNAPSHOT (the default in the absence of
NOUSESNAPSHOT). Without a Flashback snapshot, Extract fetches the LOB from the table, which
may be a different image from the point in time when the redo record was generated.

FETCHPARTIALXML

Valid for Extract in integrated capture mode Oracle.

Use this option when replicating to a heterogeneous target or in other conditions where the full
LOB image is required. It causes Extract to fetch the full XML document, instead of using the
partial change image from the redo record. By default, the database logmining server sends
Extract a whole or partial XML document, depending on whether all or part of the source XML
was updated. To ensure the correct snapshot of the XML, the Oracle Flashback feature must
be enabled for the table and Extract must be configured to use it. The Extract FETCHOPTIONS
parameter controls fetching and must be set to USESNAPSHOT (the default in the absence of
NOUSESNAPSHOT). Without a Flashback snapshot, Extract fetches the XML document from the
table, which may be a different image from the point in time when the redo record was
generated.

EXCLUDEFILTERTABLE table

Valid for Extract for MySQL, PostgreSQL, and SQL Server.

Use this option to identify a source transaction for filtering. If a source transaction includes any
operation for the specified EXCLUDEFILTERTABLE, then that transaction is identified as a
replicated transaction. Transaction filtering is based on the GETREPLICATES/IGNOREREPLICATES
and GETAPPLOPS/IGNOREAPPLOPS parameters.

When a Replicat uses a checkpoint table, it writes a recovery record in the checkpoint table at
the end of each transaction that it applies. Considering that all transactions applied by the
Replicat contain an update to the checkpoint table, the Extract ignores the entire transaction
applied by the Replicat, which prevents data looping. For PostgreSQL and SQL Server,
ensure that TRANDATA has been added for the checkpoint table.

2-244

ORACLE

Chapter 2
TRANLOGOPTIONS

If using a parallel Replicat in a bidirectional replication, then multiple filter tables are supported
using the TRANLOGOPTIONS EXCLUDEFILTERTABLE option. Multiple filter tables allow the
TRANLOGOPTIONS EXCLUDEFILTERTABLE to be specified multiple times with different table
names or wildcards.

You can include single or multiple TRANLOGOPTIONS EXCLUDEFILTERTABLE entries in the Extract
parameter file. In the following example, multiple TRANLOGOPTIONS EXCLUDEFILTERTABLE
entries are included in the Extract parameter file with explicit object names and wildcards.

TRANLOGOPTIONS EXCLUDEFILTERTABLE ggs.chkpt2
TRANLOGOPTIONS EXCLUDEFILTERTABLE ggs.chkpt RABC *

For information about creating a checkpoint table, see Add a Primary Extract. To specify
object names and wildcards correctly, see Using Wildcards in Command Arguments in Oracle
GoldenGate Microservices Documentation.

FORCEFETCHLOB

Valid for Extract for Oracle.

Overrides the default behavior of capturing LOB data from the redo log. Causes LOBs to be
fetched from the database by default.

Caution:

If a value gets deleted before the fetch occurs, Extract writes a null to the trail. If a
value gets updated before a fetch, Extract writes the updated value. To prevent
these inaccuracies, try to keep Extract latency low. The Oracle GoldenGate
documentation provides guidelines for tuning process performance. Also, see
Interactions Between Fetches from a Table and DDL for instructions on setting fetch
options.

GETCTASDML | NOGETCTASDML

Enables Create Table As Select (CTAS) functionality. When GETCTASDML is enabled, CTAS
DMLs are sent from LogMiner and replicated on the target. This option is enabled by default.
Execution of the CTAS DDL is suppressed on the target. This parameter cannot be enabled
while using the DDL metadata trigger. Trail files produced with the CTAS functionality enabled
cannot be consumed by a Replicat version lower than 12.1.2.1.0.

Use GETCTASDML to allow CTAS to replay the inserts of the CTAS thus preserving OIDs during
replication. This parameter is only supported with Integrated Dictionary and any downstream
Replicat must be 12.1.2.1 or greater to consume the trail otherwise, there may be divergence.

HANDLEDLFAILOVER [STANDBY WARNING value | STANDBY ABEND value]

Valid for Extract for Oracle

STANDBY WARNING and STANDBY ABEND valid for Oracle Database 21c and higher.

Controls whether Extract will throttle its writing of trail data based on the apply progress of the
Fast Start Failover standby database. It is intended to keep Extract at a safe point behind any
data loss failover.

When using this for data loss in a Data Guard configuration without Fast Start Failover
(FSFO), you must set the FAILOVERTARGETDESTID Extract parameter to identify the archive log
destination ID to where the standby can be connected.

Extract is found to be in a stalled state when Extract queries the standby database apply SCN
information (SELECT applied scn FROM v$archive dest where dest id=n) and this SCNis
less than Extract processing LCR SCN. In this case, Extract will not process the LCR and
waits until the applied scn becomes greater than or equal to Extract processing LCR SCN.

2-245

ORACLE

Chapter 2
TRANLOGOPTIONS

STANDBY WARNING value
The amount of time before a warning message is written to the Extract report file, if
Extract is stalled. The default is 60 seconds.

STANDBY ABEND value
The amount of time before Extract abends, if Extract is stalled. The default is 30 minutes.

If both STANDBY WARNING and STANDBY ABEND are specified, STANDBY ABEND should always be
greater than STANDBY WARNING.

IFILOCKSECONDS seconds

Valid for Db2 z/OS

Sets the interval in seconds, for which the Extract holds the implicit locks held in the database
by the calls to IFCID 0306. The locks can affect the ability to perform certain database
operations such as REORGS. The default value is 20 seconds,with minimum and maximum
values as 1 second and 300 seconds, respectively.

< Note:

If the IFILOCKSECONDS parameter is set for a longer duration, other database
operations such as REORGS, can be impacted due to internal locking caused by the
Extract IFI calls. Therefore, if any lock contention occurs with relation to an Extract,
either set the lock timeout for the operation to a duration longer than the value of the
IFILOCKSECONDS parameter, or shut down the Extract.

IGNOREDATACAPTURECHANGES | NOIGNOREDATACAPTURECHANGES

Valid for Db2 LUW

Controls whether or not Extract captures tables for which DATA CAPTURE CHANGES is not set.
IGNOREDATACAPTURECHANGES ignores tables for which DATA CAPTURE CHANGES is not set. Use if
tables were specified with a wildcard to ensure that processing continues for tables that do
have change capture set. A warning is issued to the error log for tables that were skipped. The
default is NOIGNOREDATACAPTURECHANGES.

INCLUDEREGIONID | INCLUDEREGIONIDWITHOFFSET

Valid for Extract for Oracle.

These options support the Oracle data type TIMESTAMP WITH TIME ZONE specified as TZR
(which represents the time zone region, such as Us/Pacific). By default, Extract abends on
TIMESTAMP WITH TIME ZONE if it includes a time zone region. These options enable you to
handle this timestamp based on the target database type.

When Extract detects that the source data type is TIMESTAMP and there is a region ID mapping
token, Replicat applies the timestamp as follows:

e ATIMESTAMP WITH TIME ZONE with TZR is applied if the target Oracle version supports it.

* Atimestamp with a UTC offset is applied to a heterogeneous database, or to an earlier
version of Oracle that does not support TIMESTAMP WITH TIME ZONE with TZR.

INCLUDEREGIONID

Valid for Integrated Extract for Oracle.

The INCLUDEREGIONID is deprecated for Oracle GoldenGate 19c¢ (19.1.0). From Oracle
GoldenGate 19c (19.1.0) onward, TIMESTAMP WITH TIME ZONE with region ID data is
included by default including initial load.

2-246

Chapter 2
TRANLOGOPTIONS

Use when replicating from an Oracle source to an Oracle target of the same version or
later. When INCLUDEREGIONID is specified, Extract adds a column index and the two-byte
TMZ value as a time-zone mapping token and outputs it to the trail in the UTC format of
YYYY-MM-DD HH:MI.SS.FFFFFF +00:00.

INCLUDEREGIONIDWITHOFFSET

Valid for Integrated Extract for Oracle.

Use this option to convert region ID to hour and minutes offset value (+06:00 as example).
If the option is not specified, then the timestamp is always written to the trail file in UTC
and the time zone is always +00:00.

If you need to preserve the time zone value in hour and minutes instead of UTC, then this
option can be used.

In the following cases, the option is forced to turn on to preserve the TIMEZONE value in
hour and minutes offset:

e Old trail file format because Replicat does not support region ID.

e XML, TEXT, and sQL format because they don't support region ID.

INCLUDETAG tag

Valid for integrated Extract.

Use INCLUDETAG tag to include specific changes trail files. The tag value can be up to 2000
hexadecimal digits (0-9 A-F).

Note:

FFFF and + (plus symbol) are not supported for tag usage.

To avoid conflicts, don't use INCLUDETAG in conjunction with EXCLUDETAG.
Example: tranlogoptions includetag 00

LOB_CHUNK_SIZE

Valid for SQL Server, PostgreSQL.

If you have huge LOB data sizes, then you can adjust the LOB_CHUNK_SIZE from the default of
4000 bytes, to a higher value up to 65535 bytes, so that the fetch size is increased, reducing
the trips needed to fetch the entire LOB

Example: TRANLOGOPTIONS LOB CHUNK SIZE 8000

(PostgreSQL) Specifies the size of chunk for the 1.0B (CLOB/BLOB) data that will be used to push
in COM. It's unit is in bytes. The minimum and maximum lob chunk size values lies between
4000 to 65535 bytes.

INTEGRATEDPARAMS (parameter value [, ...])
Valid for Extract in integrated capture mode for Oracle Standard or Enterprise Edition 12¢ or
later.

Passes parameters and values to the Oracle Database logmining server when Extract is in
integrated capture mode. The input must be in the form of parameter value, asin:

TRANLOGOPTIONS INTEGRATEDPARAMS (downsream real time mine Y)
Valid parameter specifications and their values are the following:

max sga size

Specifies the amount of SGA memory that is used by the database logmining server. Can
be a positive integer in megabytes. The default is 1 GB if streams pool size is greater
than 1 GB; otherwise, it is 75% of streams _pool size.

ORACLE 2247

ORACLE

Chapter 2
TRANLOGOPTIONS

parallelism
Specifies the number of processes supporting the database logmining server. Can be a
positive integer. The default is 2.

downstream real time mine

Specifies whether or not integrated capture mines a downstream mining database in real-
time mode. A value of Y specifies real-time capture and requires standby redo logs to be
configured at the downstream mining database. A value of N specifies capture from
archived logs shipped to the downstream mining database. The default is N.

enable procedural replication

Enables procedural replication at capture. Procedural replication is disabled by default. A
value of Y enables procedural replication. Once this option is turned on for an Extract, it
remains on. The parameter value can not be toggled back.

ENABLE_AUTO CAPTURE | DISABLE AUTO CAPTURE

Set this option to enable auto capture mode, which would deliver LCRs of tables enabled for
automatic capture. This option can be set when the source database's Oracle binary version is
21c or higher.

MANAGESECONDARYTRUNCATIONPOINT | NOMANAGESECONDARYTRUNCATIONPOINT
Valid for PostgreSQL.

MANAGESECONDARYTRUNCATIONPOINT is the default setting and controls the restart 1sn of the
replication slot for the specific Extract.

NOMANAGESECONDARYTRUNCATIONPOINT does not move the Extract’s replication slot and is
typically only used for development and testing purposes where an Extract needs to be
repositioned to an earlier LSN from the Extract’s recovery LSN. If used, the PostgreSQL write-
ahead log will continue to grow and consume disk space.

MAXAUTOCMTTRANSSIZE (range, default)

Valid for DB2 for i only

Provides the range of the maximum autocommited transaction size.

DB2 for i autocommited records (journal entry has CCID equal to 0) do not have a commit
record in the journal and therefore Oracle GoldenGate must create an implicit transaction to
include these records in the trail. The default allows for a single record to be included in a
single transaction, which maintains the accuracy of the indicated IO Time for each record
because the IO time is based on the commit for the transaction.

This parameter sets the maximum number of records that will be included in an implicitly
created transaction, but the number could be less if any other type of entry is seen in the
journal before the maximum is reached. This behavior avoids issues with overlap for
checkpoints on records that belong to explicitly committed records.

Setting the value for this parameter to 1 (the defulat) will provide an accurate 10 time for each
record in the trail for records that are autocommitted (have a CCID of 0 in the journal entry), at
the potential expense of throughput for the Extract. The value of this parameter also affects
the maximum potential size of a cached transaction for these records in memory. Setting it to
a lower value causes the transaction memory to be lower if the Extract is able to store the
maximum number of entries per implicit transaction. By definition there can only be one such
implicit transaction in memory at any given time since any other transaction records will cause
an immediate commit to the trail of any records in an implicit transaction already in memory.
The default range is between 1-10000 and the default value is 1.

MININGUSER {/ | useridalias
[algorithm ENCRYPTKEY {key name | DEFAULT}] [SYSDBA]]

Valid for Oracle GoldenGate Extract for Oracle.

2-248

ORACLE

Chapter 2
TRANLOGOPTIONS

Specifies login credentials for Extract to log in to a downstream Oracle mining database to
interact with the logmining server. Can be used instead of the MININGUSERALIAS option if an
Oracle GoldenGate credential store is not being used.

This user must:

Have the privileges granted in 0GG_CAPTURE and 0GG_APPLY role for Oracle GoldenGate
23ai and later. For Oracle database 21c, the privileges granted in
dboms_goldengate auth.grant admin privilege must be applied.

Be the user that issues the MININGDBLOGIN or MININGDBLOGIN USERIDALIAS and REGISTER
EXTRACT or UNREGISTER EXTRACT commands for the Extract group that is associated with
this MININGDBLOGIN USERIDALIAS.

Not be changed.

/

Directs Oracle GoldenGate to use an operating-system login for Oracle, not a database
user login. Use this argument only if the database allows authentication at the operating-
system level. Bypassing database-level authentication eliminates the need to update
Oracle GoldenGate parameter files if application passwords frequently change.

To use this option, the correct user name must exist in the database, in relation to the
value of the Oracle 0S_AUTHENT PREFIX initialization parameter. The value set with
0S_AUTHENT PREFIX is concatenated to the beginning of a user's operating system
account name and then compared to the database name. Those two names must match.
When 0S_AUTHENT PREFIXissetto ' ' (a null string), the user name must be created with
IDENTIFIED EXTERNALLY. For example, if the OS user name is ogg, you would use the
following to create the database user:

CREATE USER ogg IDENTIFIED EXTERNALLY;

When 0S_AUTHENT PREFIX IS setto OPS$ or another string, the user name must be created
in the format of:

OS AUTHENT PREFIX value OS user name

For example, if the OS user name is ogg, you would use the following to create the
database user:

CREATE USER ops$ogg IDENTIFIED BY oggpassword;

user
Specifies the name of the mining database user or a SQL*Net connect string.

password

The user's password. Use when database authentication is required to specify the
password for the database user. If the password was encrypted by means of the ENCRYPT
PASSWORD command, supply the encrypted password; otherwise, use the clear-text
password. If the password is case-sensitive, type it that way. If either the user ID or
password changes, the change must be made in the Oracle GoldenGate parameter files,
including the re-encryption of the password if necessary.

algorithm
Specifies the encryption algorithm that was used to encrypt the password with ENCRYPT
PASSWORD. Can be one of:

2-249

ORACLE

Chapter 2
TRANLOGOPTIONS

AES128
AES192
AES256

ENCRYPTKEY {key name | DEFAULT}
Specifies the encryption key that was specified with ENCRYPT PASSWORD.

* ENCRYPTKEY key name specifies the logical name of a user-created encryption key in
the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME
key name option.

e ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if ENCRYPT
PASSWORD was used with the KEYNAME DEFAULT option.

SYSDBA
Specifies that the user logs in as sysdba.

MININGUSERALIAS alias

Valid for Extract for Oracle.

Specifies the alias for the login credentials that Extract uses to log in to a downstream Oracle
mining database to interact with the logmining server. Can be used instead of MININGUSER if an
Oracle GoldenGate credential store is being used.

This alias must be:

e Associated with a database user login credential that is stored in the local Oracle
GoldenGate credential store. This user must have the privileges granted in
dbms_goldengate auth.grant admin privilege for Oracle database 21c and lower and
the 0GG_CAPTURE and 0GG_APPLY role for Oracle database 23ai and higher.

* The user that issues the MININGDBLOGIN Oor MININGDBLOGINALIAS and REGISTER EXTRACT
or UNREGISTER EXTRACT commands for the Extract group that is associated with this
MININGUSERALIAS.

This alias and user must not be changed while Extract is in integrated capture mode.

MIXEDENDIAN [ON|OFF]

Valid for Db2 LUW with Oracle GoldenGate primary Extract

Oracle GoldenGate Extract for Db2 LUW supports cross-endian capture where the database
and Oracle GoldenGate are running on different byte order servers. Detection of byte order is
automatic for Db2 LUW database version 10.5 and higher. If you need to disable auto-
detection on Db2 LUW 10.5, then you can override it by specifying this parameter. For version
10.1, the parameter must be used in the Extract parameter file for the cross-endian capture.
By default, the value is set to OFF for version 10.1.

Syntax:

TRANLOGOPTIONS MIXEDENDIAN [ON]|OFF]

ON: If this is set, then the Extract assumes that the database and Oracle GoldenGate are
running on servers with a different byte order and necessary byte reversal conversion is
performed.

OFF: If this is set, then the Extract assumes that the database and Oracle GoldenGate are
running on servers with the same byte order and no byte order reversal conversion is
performed.

MANAGECDCCLEANUP | NOMANAGECDCCLENUP
Valid for SQL Server.

2-250

ORACLE

Chapter 2
TRANLOGOPTIONS

MANAGECDCCLEANUP is the default and recommended setting that instructs the Extract to
validate the existence of the Oracle GoldenGate CDC Cleanup job or Purge Change Data
task, depending on the architecture and version of Oracle GoldenGate.

For all Oracle GoldenGate Classic Architecture versions, and for Microservices versions prior
to Oracle GoldenGate 21.4, use the ogg_cdc _cleanup setup.bat/sh program to install the
Oracle GoldenGate CDC Cleanup job and associated tables and stored procedures.

For Oracle GoldenGate Microservices 21.4 and later installations, create a Purge Change
Data task from the Tasks page from the Configuration section of the Administration Service of
the WebUI. The Purge Change Data task creates the required stored procedures and
associated tables, and handles the purge function within the Oracle GoldenGate and not
through the SQL Server Agent job.

The NOMANAGECDCCLEANUP option instructs Extract not to check for the existence of the Oracle
GoldenGate CDC Cleanup job or Purge Change Data task. This is not a recommended option
for production environments but can be used for testing an Extract without having to create the
Oracle GoldenGate CDC Cleanup job or task.

PERFORMANCEPROFILE HIGH|MEDIUM|LOW_RES
Valid for Extract in Integrated Capture mode.

For tuning Integrated Capture.

It can be set to HIGH, MEDIUM (default), or LOW_RES. It helps achieve better performance by
grouping the parameters that affect performance. Once the performance profile is set up, this
option automatically configures the relevant parameters, to achieve the desired throughput
and latency.

e The HIGH option allows high workload with a continuous throughput to be processed more
efficiently in terms of the end-to end replication. The HIGH option increases the trail file
buffer size to 4 MB and decreases the end-of-file and flush option values to 0.1 second.

e The MEDIUM option sets the trail file buffer size to 1 MB, and the values for end-of-file delay
and flush to 1 second.

* The Low RES option is applicable when resources are low and has been added for
memory or resource constrained deployment.

When HIGH option is enabled for low to medium intensity workload, it spikes the integrated
Extract latency to several seconds. This is because the HIGH option increases the Extract's
read buffer size to 8MB. However, the rule to flush the extract read buffer is either when the
buffer is full or when there is no incoming records for a duration of 0.2 seconds. Therefore,
any continuous workload with extract ingestion rate below 8MB will result in integrated Extract
latency to exceed 1 second. Ensure that if the extract ingestion rates (or redo generation rates
if 100% of redo is being captured) are below specific value, such as ~15 MB/sec to get ~0.5
second extract latency, do not use the HIGH option. If sub-second latency is required, it is
recommended to lower the buffer size accordingly. For example, set the buffer size to one-
third of the redo generation rate in MB/sec to get ~0.3 second maximum extract latency.

QUERYTIMEOUT seconds

Valid for SQL Server.

Specifies how long queries to SQL Server will wait for results before reporting a timeout error
message. This option takes an integer value to represent the number of seconds. The default
query timeout value is 300 seconds (5 minutes). The minimum value is 0 seconds (infinite
timeout). The maximum is 2147483645 seconds.

The following example instructs SQL Server to wait 60 seconds for results before timing out.

TRANLOGOPTIONS QUERYTIMEOUT 60

2-251

Chapter 2
TRANLOGOPTIONS

QUERYRETRYCOUNT seconds

Valid for Extract for SQL Server and MySQL.

Specifies how many times to retry calls to the CDC stored procedure used by Extract, in case
of a result set timeout.

QUERYRETRYCOUNT can be specified to retry multiple times. If all of the retry attempts falil,
Extract abends with the normal connection timeout error message.

For SQL Server, the default is one retry attempt, after which the process abends.The minimum
setting (0) is infinite, maximum is 1000, and default is 1.

For MySQL, the minimum and default setting is 50 and maximum is 1000. There is no infinite
value. Any attempt to set the QUERYRETRYCOUNT to less than minimum, will be ignored with no
error or warning.

The following example causes Extract to attempt its CDC stored procedure call 4 times:

TRANLOGOPTIONS QUERYRETRYCOUNT 4

The following example causes Extract to attempt its CDC stored procedure call 100 times:

TRANLOGOPTIONS QUERYRETRYCOUNT 100

READQUEUESIZE size

Valid for MySQL.

Specifies the internal queue size, in bytes, for transaction data. It can be increased to improve
performance. Valid values are integers from 3 through 1500. The default is 256 bytes; start
with the default and evaluate performance before adjusting upward.

REDO_TRANSPORT LAG THRESHOLD seconds

Valid for Integrated Extract in Downstream Mining Mode.

Monitors the network latency between a source database and target database when redo logs
are shipped. If the latency exceeds the specified threshold then a warning appears in the
report file and a subsequent information message appears when the lag drops to the normal
level.

The default threshold value is 30 seconds. The minimum threshold value that can be specified
is 15 seconds.

For more information, see Downstream Extract

REDO_TRANSPORT LAG_TIMEOUT value

Valid for Integrated Extract in Downstream Mining Mode.

The value provided as input in this parameter option is the time period for which Extract will
wait for redo from each thread. If all the threads have waited for the timeout (in seconds) and
have not received any redo then Extract will abend.

REQUIRELONGDATACAPTURECHANGES | NOREQUIRELONGDATACAPTURECHANGES

Valid for DB2 LUW.

Controls the response of Extract when DATA CAPTURE isS Set to NONE Or to CHANGES without
INCLUDE LONGVAR COLUMNS and the parameter file includes any of the following Oracle
GoldenGate parameters that require the presence of before images for some or all column
values: GETBEFOREUPATES, NOCOMPRESSUPDATES, and NOCOMPRESSDELETES. Both of those DATA
CAPTURE settings prevent the logging of before values for LONGVAR columns. If those columns
are not available to Extract, it can affect the integrity of the target data.

REQUIRELONGDATACAPTURECHANGES
Extract abends with an error.

ORACLE 5 o0

ORACLE

Chapter 2
TRANLOGOPTIONS

NOREQUIRELONGDATACAPTURECHANGES
Extract issues a warning but continues processing the data record.

SOURCE_OS_TIMEZONE timezone

Valid for Extract in integrated capture mode for Oracle.

Specifies the system time zone of the source database. The system time zone of a database
is usually given by the default time zone of its operating system, and can also be overridden
by setting the Tz environment variable when the database is started. You should specify this
option only if the source database and the Extract process use different system time zones.
For example, in a downstream capture deployment where the source database and the
Extract process run on different servers in different time zones.

You can specify the value of this option in a time zone region name or a UTC offset form and
you must use the same form used by the source database. For example, if the source
database uses a region name form like America/New_York, then you must specify America/
New_York, US/Eastern, or EST5EDT. Alternately, if the source database uses a UTC offset
form like -05:00, then you must use the syntax (GMT) [+|-]1hh[:mm]. For example, GMT-05:00
or -5.

SKIPUNKNOWNEVENT

Valid for MySQL.

You can use this parameter in the Extract parameter file to enable skipping any unhandled or
unknown event in the MySQL binary log. If this parameter is specified, then the Oracle
GoldenGate for MySQL Extract continues processing without any error on finding an event
that is not handled by the current Extract process.

SUPPRESSNOOOPUPDATES

Valid for Extract on Oracle Database.

You can control whether no-op updates are filtered or not in Integrated Extract. The default is
no suppression.

TRACKSCHEMACHANGES
Valid for Db2 z/OS and MySQL

This parameter enables Extract to capture table level DDL statements and retain a history of
the changes to be used to process DML when the log records refers to a table version that is
earlier than the current version of the table. This would usually be before images of updates,
but could be after images, inserts or deletes if the Extract is running in a lag situation from the
log backlog. When Extract encounters appropriate DDL operations, it will note the version
number of the DDL and update the DDL history table with the new information. The Extract will
create a new TDR record that relates to the change in the trail as well. When Extract
encounters prior versions of the table in the log, it will reference the DDL history to be able to
correctly interpret the DDL for the older version of the table. The DDL change is not actually
being replicated, and synchronization of any changes to the source table are still required to
be manually executed by the user in the target database.

Syntax:

TRANLOGOPTIONS TRACKSCHEMACHANGES

This will enable table level DDL changes to be tracked by the Extract and the trail metadata
updated as appropriate. To use TRACKSCHEMACHANGES properly, the table metadata must be at
a known consistent state, which means that all the tables that need version tracking must be
created and never altered or reorganized before using TRACKSCHEMACHANGES so that no prior
table versions will appear in the transaction log for update or delete operations. The script
ddl update.sh has been provided to assist in the creation of an initial set of DDL history
records for the database.

To use DDL processing, the database needs to be set up with a history table that will capture
DDL changes of the various versions of all tables on the database system. Also system tables

2-253

ORACLE

Chapter 2
TRANLOGOPTIONS

need to be enabled for data capture changes. To create and maintain the history table the
following UNIX shell scripts are provided:

* ddl create.sh : This script is used to create the DDL history table. It also enables data
capture changes for the following system tables:

SYSIBM.SYSTABLES

SYSIBM.SYSCOLUMNS

SYSIBM.SYSINDEXES

SYSIBM.SYSKEYCOLUSE

Example:
./ddl create.sh -f crt ddl hist.sql -s OGGSCHEMA

In this example, the resulting file, crt ddl hist.sgl must be processed by another
program.

./ddl create.sh -d DB2DSXY -u gguser -p ggpw -s OGGSCHEMA

This will call a local Db2 to make a remote connection to a mainframe database to
immediately create the DDL history table.

* ddl remove.sh: This script is used to remove the DDL history table. However, the system
tables are not altered.

* ddl update.sh: This script should be run to establish an initial start point for the DDL
version tracking using TRACKSCHEMACHANGES. It must be run after the creation of the DDL
history table and should not be necessary to be run again unless the extract must be
repositioned in such a way that table versions may be missed in the transaction log.
Rerunning ddl_update.sh will only add information for tables that are not already present
in the DDL history.

* execsqgl.sh: This script should not be run directly but must be available to the other scripts
to be sourced. It provides common facilities for parsing command line and executing SQL
or writing it to a file.

These scripts may be used to create the tables directly using a db2 connection or they may be
used to create SQL files which may be run in a SQL processing program of choice. The files
have been checked to be compatible with DB2 remote and SPUFI.

Following is a description of options accepted by these scripts:

e -h shows this usage help.

e -d dsn specifies the DB2 DSN to connect to.

e -u userid specifies the User ID to connect to the database with.

* -p password specifies the password to connect to the database with.

* -s ggschema specifies the name of the schema the DDL history table should be stored in.
This schema should be the same as GGSCHEMA in GLOBALS.

* -t ddltable specifies the name of the table the DDL history table. GGS_DDL HIST is the
default.

e -f outfile specifies the name of a file to write the SQL statements to instead of
executing them. If -d, -u, -p must all be specified if used or -£. Currently -t should not be
used. -£ must be used if only the db2c1i command is available on the remote host since
db2cli cannot run the SQL statements that are generated.

2-254

ORACLE

Chapter 2
TRANLOGOPTIONS

TRANCOUNT

Valid for SQL Server.

Allows adjustment of the number of transactions processed per call by Extract to pull data
from the SQL Server change data capture staging tables. Based on your transaction workload,
adjusting this value may improve capture rate throughput. The minimum value is 1, maximum
is 100, and the default is 10.

Example:

TRANLOGOPTIONS TRANCOUNT 20

This example instructs Extract to fetch 20 transactions at a time from change data capture
enabled tables.

[TSLOOKUPBEGINLRI | TSLOOKUPENDLRI]

Valid for Db2 LUW v 10.1 and later.

When you specify an LRI range using these parameters, Extract looks for the timestamp
specified in the ADD or ALTER EXTRACT command within this range. This helps Extract to
optimize the look up process for a particular timestamp in the database transaction log. The
TSLOOKUPBEGINLRI parameter is mandatory while TSLOOKUPENDLRI is optional. Specifying only
TSLOOKUPENDLRI without TSLOOKUPBEGINLRI is invalid that causes the Extract to abend. For
example:

TRANLOGOPTIONS TSLOOKUPBEGINLRI 75200.666197, TSLOOKUPENDLRI 75207.666216
TRANLOGOPTIONS TSLOOKUPBEGINLRI 75200.666197

If the provided timestamp falls between the given LRI ranges or the provided timestamp falls
after the TSLOOKUPBEGINLRI LRI timestamp then Extract starts from a record with timestamp
equal to or nearest less than the provided timestamp.

If the provided timestamp falls before TSLOOKUPBEGINLRI LRI timestamp, Extract is started
from the specified TSLOOKUPBEGINLRI LRI. If the provided timestamp falls after
TSLOOKUPENDLRI timestamp, then Extract abends.

USENATIVEOBJSUPPORT | NOUSENATIVEOBJSUPPORT

Valid for Extract in integrated capture mode for Oracle.

Integrated Capture adds redo-based capture for User Defined Type (UDT) and ANYDATA data
types. It is enabled by default and can only be enabled if the source database version is
12.1.0.1 or greater and the source database compatibility is 12.0.0.0.0 or greater. Replicat
from Oracle GoldenGate release 12.1.2.1.0 must be used. To use Native Support, all of your
Oracle databases and Oracle GoldenGate instances must be release 12.1.0.1 or greater to be
compatible.

If redo-based capture is enabled but a UDT contains an unsupported attribute, Integrated
Capture retries to capture the UDT using fetch. For limitations of support for capture, see XML
Data Types. If you create object tables by using a CREATE TABLE AS SELECT (CTAS)
statement, Integrated Capture must be configured to capture DML from CTAS operation in
order to fully support object tables. For CTAS, refer to How Oracle GoldenGate Handles
Derived Object Names in Oracle GoldenGate Microservices Documentation

The default is USENATIVEOBJSUPPORT if supported.

USE_ROOT_CONTAINER TIMEZONE

Valid for Oracle integrated Extract only.

This parameter is for a CDB environment. Each PDB in a CDB can use a different database
time zone. If the database time zone is available, Extract tries to get the time zone of a PDB
from Integrated Dictionary. The time zone extraction requires a patch on the mining database.
If the patch is not available, Extract sends a query to the PDB to get the time zone. If the
database patch or a connection to the PDB is not available, and this parameter is specified,

2-255

Chapter 2
TRANSACTIONTIMEOUT

Extract assumes that the PDB database time zone is the same as the root container database
time zone.

VERSIONCHECK DYNAMIC | IMMEDIATE

This is valid for SQL Server.

Use this option when when you want Extract to validate CDC object versions of common
stored procedures, such as OracleCDCExtract and OracleGGCreateProcs, at startup.
DYNAMIC (default) identifies the CDC object versions of table specified in the parameter file
once per table while records are processed.

IMMEDIATE identifies CDC object version issues upfront, instead of while records are
processed. Databases with large numbers of tables configured for capture require longer
startup validation.

TRANSACTIONTIMEOUT

ORACLE

Valid For

Replicat

Description

Use the TRANSACTIONTIMEOUT parameter to prevent an uncommitted Replicat target transaction
from holding locks on target tables and consuming database resources unnecessarily. You can
change the value of this parameter so that Replicat can work within existing application
timeouts and other database requirements on the target.

TRANSACTIONTIMEOUT limits the amount of time that Replicat will hold a target transaction open
if it has not received the end-of-transaction record for the last source transaction in that
transaction. By default, Replicat groups multiple source transactions into one target transaction
to improve performance, but it will not commit a partial source transaction and will wait
indefinitely for that last record. The Replicat parameter GROUPTRANSOPS controls the minimum
size of a grouped target transaction. The range is 1-604800.

The following events could last long enough to trigger TRANSACTIONT IMEOUT:

* Network problems prevent trail data from being delivered to the target system.

* Running out of disk space on any system, preventing trail data from being written.
e Collector abends (a rare event).

e Extract abends or is terminated in the middle of writing records for a transaction.
e An Extract data pump abends or is terminated.

e There is a source system failure, such as a power outage or system crash.

How TRANSACTIONTIMEOUT Works

During normal operations, Replicat remembers the position in the trail of the beginning of the
first source transaction in the current target transaction, in case the transaction must be
abended and retried. When TRANSACTIONTIMEOUT is enabled, Replicat also saves the position
of the first record of the current source transaction and will use that position as the logical end-
of-file (EOF) if TRANSACTIONTIMEOUT is triggered.

When triggered, TRANSACTIONTIMEOUT does the following:

1. Aborts the current target transaction

2-256

Chapter 2
TRIMSPACES | NOTRIMSPACES

2. Repositions to the beginning of the first source transaction in the aborted target
transaction.

3. Processes all of the trail records up to the logical end-of-file position (the beginning of the
last, incomplete source transaction).

4. Commits the transaction at logical EOF point.
5. Waits for new trail data before processing any more trail records.

TRANSACTIONTIMEOUT can be triggered multiple times for the same source transaction,
depending on the nature of the problem that is causing the trail data to arrive slowly enough to
trigger TRANSACTIONTIMEOUT.

Detecting a TRANSACTIONTIMEOUT Condition

To determine whether or not Replicat is waiting for the rest of a source transaction when
TRANSACTIONTIMEOUT is enabled, issue the SEND REPLICAT command with the STATUS option.
The following statuses indicate this condition:

Performing transaction timeout recovery
Waiting for data at logical EOF after transaction timeout recovery

Default

Disabled

Syntax

TRANSACTIONTIMEOUT n units

n

An integer that specifies the wait interval. Valid values are from one second to one week
(seven days). This value should be greater than that set with the EOFDELAY parameter in both
the primary Extract and any associated data pumps.

units

One of the following: S, SEC, SECS, SECOND, SECONDS, MIN, MINS, MINUTE, MINUTES,
HOUR, HOURS, DAY, DAYS.

Example

TRANSACTIONTIMEOUT 5 S

TRIMSPACES | NOTRIMSPACES

ORACLE

Valid For

Extract and Replicat

Description

Use the TRIMSPACES and NOTRIMSPACES parameters to control whether or not trailing spaces in
a source CHAR column are truncated when applied to a target CHAR or VARCHAR column.
TRIMSPACES and NOTRIMSPACES can be used at the root level of the parameter file as global
ON/OFF switches for different sets of TABLE or MAP statements, and they can be used within an
individual TABLE or MAP statement to override any global settings for that particular MAP or TABLE
statement.

2-257

Chapter 2
TRIMVARSPACES | NOTRIMVARSPACES

TRIMSPACES is applied only to single-byte white spaces (U+0020). Ideographic spaces
(U+3000) are not supported.

For Extract, TRIMSPACES only has an effect if Extract is performing mapping within the TABLE
statement (by means of a TARGET statement).

Default

TRIMSPACES

Syntax

TRIMSPACES | NOTRIMSPACES

Examples

Example 1

The following example uses TRIMSPACES and NOTRIMSPACES at the root level of the parameter
file. The default of TRIMSPACES is in effect until the last MAP statement, to which NOTRIMSPACES
applies.

MAP fin.srcl, TARGET fin.tgtl;
MAP fin.src2, TARGET fin.tgt2;
MAP fin.src3, TARGET fin.tgt3;
NOTRIMSPACES

MAP fin.src4, TARGET fin.tgt4;

Example 2

The following example uses NOTRIMSPACES within a MAP statement to override the global
default of TRIMSPACES. The default applies to the first two MAP statements, and then
NOTRIMSPACES applies to the last two targets.

MAP fin.srcl, TARGET fin.tgtl;
MAP fin.srcl, TARGET fin.tgt2;
MAP fin.srcl, TARGET fin.tgt3, NOTRIMSPACES;
MAP fin.srcl, TARGET fin.tgt4, NOTRIMSPACES;

TRIMVARSPACES | NOTRIMVARSPACES

ORACLE

Valid For

Extract and Replicat

Description

Use the TRIMVARSPACES and NOTRIMVARSPACES parameters to control whether or not trailing
spaces in a source VARCHAR column are truncated when applied to a target CHAR or VARCHAR
column. TRIMVARSPACES and NOTRIMVARSPACES can be used at the root level of the parameter
file as global on/OFF switches for different sets of TABLE or MAP statements, and they can be
used within an individual TABLE or MAP statement to override any global settings for that
particular MAP or TABLE Sstatement.

The default is NOTRIMVARSPACES because the spaces in a VARCHAR column can be part of the
data. Before using TRIMVARSPACES, make certain that trailing spaces are not required as part of
the target data.

For Extract, TRIMVARSPACES only has an effect if Extract is performing mapping within the TABLE
statement (by means of a TARGET statement).

2-258

Chapter 2
UPDATEDELETES | NOUPDATEDELETES

Default

NOTRIMVARSPACES

Syntax

TRIMVARSPACES | NOTRIMVARSPACES

Examples

Example 1

The following example uses TRIMVARSPACES and NOTRIMVARSPACES at the root level of the
parameter file. The default of NOTRIMVARSPACES is in effect until the last MAP statement, to
which TRIMVARSPACES applies.

MAP fin.srcl, TARGET fin.tgtl;
MAP fin.src2, TARGET fin.tgt2;
MAP fin.src3, TARGET fin.tgt3;
TRIMVARSPACES

MAP fin.src4, TARGET fin.tgt4;

Example 2

The following example uses TRIMVARSPACES within a MAP statement to override the global
default of NOTRIMVARSPACES. The default applies to the first two MAP statements, and then
TRIMVARSPACES applies to the last two targets.

MAP fin.srcl, TARGET fin.tgtl;
MAP fin.srcl, TARGET fin.tgt2;
MAP fin.srcl, TARGET fin.tgt3, TRIMVARSPACES;
MAP fin.srcl, TARGET fin.tgt4, TRIMVARSPACES;

UPDATEDELETES | NOUPDATEDELETES

ORACLE

Valid For

Replicat

Description

Use the UPDATEDELETES parameter to convert delete operations to update operations for all MaP
statements that are specified after it in the parameter file. Use NOUPDATEDELETES to turn off
UPDATEDELETES. These parameters are table-specific. One remains in effect for subsequent MAP
statements until the other is encountered. The UPDATE WHERE clause uses the same key
columns that the DELETE statement was going to use. So this works best on tables that have a
primary key or unique key.

Because you can selectively enable or disable these parameters between MaAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
UPDATEDELETES threads in one set of MAP statements, and specify the NOUPDATEDELETES threads
in a different set of MAP statements.

When using UPDATEDELETES, use the NOCOMPRESSDELETES parameter. This parameter causes
Extract to write all of the columns to the trail, so that they are available for updates.

Default

NOUPDATEDELETES

2-259

Chapter 2
UPDATEINSERTS | NOUPDATEINSERTS

Syntax

UPDATEDELETES | NOUPDATEDELETES

Example

This example shows how you can apply UPDATEDELETES and NOUPDATEDELETES selectively to
different MAP statements, each of which represents a different thread of a coordinated Replicat.

UPDATEDELETES

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOUPDATEDELETES

MAP sales.loc, TARGET sales.loc, THREAD (3);

UPDATEINSERTS | NOUPDATEINSERTS

ORACLE

Valid For

Replicat

Description

Use the UPDATEINSERTS parameter to convert insert operations to update operations for all MAP
statements that are specified after it in the parameter file. Use NOUPDATEINSERTS to turn off
UPDATEINSERTS. The UPDATE WHERE clause will use the same key columns as a regular UPDATE
statement. So, it works best on tables that have a primary key or unique key.

Because you can selectively enable or disable these parameters between MAP statements, you
can enable or disable them for different threads of a coordinated Replicat. Specify the
UPDATEINSERTS threads in one set of MAP statements, and specify the NOUPDATEINSERTS threads
in a different set of MAP statements.

Default

NOUPDATEINSERTS

Syntax

UPDATEINSERTS | NOUPDATEINSERTS

Example

This example shows how you can apply UPDATEINSERTS and NOUPDATEINSERTS selectively to
different MAP statements, each of which represents a different thread of a coordinated Replicat.

UPDATEINSERTS

MAP sales.cust, TARGET sales.cust, THREAD (1);
MAP sales.ord, TARGET sales.ord, THREAD (2);
NOUPDATEINSERTS

MAP sales.loc, TARGET sales.loc, THREAD (3);

2-260

Chapter 2
UPDATERECORDFORMAT

UPDATERECORDFORMAT

Valid For

Extract for all databases. This parameter can only be used in a TRANLOG Extract. It cannot be
used in an Extract or distribution service.

Description

Use the UPDATERECORDFORMAT parameter to cause Extract to combine the before and after
images of an UPDATE operation into a single record in the trail. It is valid for Extract in classic
and integrated capture modes.

Before images are generated when the GETUPDATEBEFORES, GETBEFORECOLS, and
LOGALLSUPCOLS parameters are used. (In the case of an update to a primary key, unique index,
or user-specified KEYCOLS key, the before and after images are stored in the same record by
default. UPDATERECORDFORMAT does not apply in these cases.) The NOCOMPRESSUPDATES
parameter is required for non-Oracle databases.

When two records are generated for an update to a single row, it incurs additional disk I/O and
processing for both Extract and Replicat. If supplemental logging is enabled on all columns, the
unmodified columns may be repeated in both the before and after records. The overall size of
the trail is larger, as well. This overhead is reduced by using UPDATERECORDFORMAT.

When UPDATERECORDFORMAT is used, Extract writes the before and after images to a single
record that contains all of the information needed to process an UPDATE operation. In addition
to improving the read performance of downstream processes, this enables column mapping
functions to access the before and after column values at the same point in time, rather than
having to cache the before image column values while reading the after values.

UPDATERECORDFORMAT takes effect for all TABLE statements in the parameter file.

If you specify both UPDATERECORDFORMAT and FORMAT RELEASE 11.x or earlier, then Extract will
abend.

Note:

Many-columned tables can cause the trail record to reach its maximum size when
UPDATERECORDFORMAT is used. The rest of the record is continued in one or more
additional, chained record fragments. This has a minor effect on processing
performance.

Note:

INSERTALLRECORDS only works with UPDATERECORDFORMAT FULL. So if you are using
INSERTALLRECORDS in Replicat, you must set UPDATERECORDFORMAT FULL in the
Extract.

ORACLE 5061

Chapter 2
USEDEDICATEDCOORDINATIONTHREAD

Default

If you specify UPDATERECORDFORMAT, you have to set COMPACT or FULL. But for Oracle database,
if neither of the parameters, 1logallsupcols Or updaterecordformat, is specified, then
logallsupcols and updaterecordformat compact is set by default.

If you specify the parameter, then you must specify the option full or compact.

For heterogeneous database, you have to set compact or full, if using the parameter. If not
using the parameter, then updaterecordformat is not on at all and you get a single after image
in the trail, unless you enable getupdatebefores, then you get two records in the trail and not a
unified record.

Syntax

UPDATERECORDFORMAT [FULL | COMPACT]

FULL

Generates one trail record that contains the before and after images of an UPDATE, where the
before image includes all of the columns that are available in the transaction record for both
the before and after images. When viewed in the Logdump utility, this record appears as
GGSUnifiedUpdate.

COMPACT

Generates one trail record that contains the before and after images of an UPDATE, where the
before image includes all of the columns that are available in the transaction record, but the
after image is limited to the primary key columns and the columns that were modified in the
UPDATE. UPDATERECORDFORMAT COMPACT is recommended for configurations that include an
integrated Replicat. This is the default.

When either FULL or COMPACT are viewed in the Logdump utility, the record appears as
GGSUnifiedUpdate. The record contains the following:

e aheader

e the length of the before image

» the before values of each column

e the after values of the primary key, unique index, or KEYCOLS columns
e the after values of the modified columns

* internal token data

Example

UPDATERECORDFORMAT COMPACT

USEDEDICATEDCOORDINATIONTHREAD

ORACLE

Valid For

Replicat (coordinated mode)

Description

Use USEDEDICATEDCOORDINATIONTHREAD to force Replicat to maintain a dedicated coordination
thread to apply barrier transactions. The thread ID of this thread is always 0.

2-262

Chapter 2
USEIPV4 | USEIPV6

By default, Replicat uses the thread with the lowest thread ID to apply barrier transactions, but
that thread also includes work that is mapped to it explicitly. By using a dedicated thread for
barrier transactions, you can get an accurate view in Oracle GoldenGate statistics of the
number of barrier events and exposes the amount of work that is performed serially.
Coordinated Replicat statistics are written to the report file and also can be viewed with the
STATS REPLICAT command.

USEDEDICATEDCOORDINATIONTHREAD applies to the Replicat group as a whole, across all MAP
statements.
Syntax

USEDEDICATEDCOORDINATIONTHREAD

Example

USEDEDICATEDCOORDINATIONTHREAD

MAP ul.tl, TARGET u2.tl SQLEXEC &

(ID test2, QUERY 'delete from u2.t2 where col val =100 ', &
NOPARAMS)), THREAD(1), COORDINATED;

USEIPV4 | USEIPVG

ORACLE

Valid For
GLOBALS

Description

Use the USEIPV4 parameter to force the use of Internet Protocol version 4 (IPv4) by Oracle
GoldenGate for TCP/IP connections. By default, Oracle GoldenGate uses IPv6 in dual-stack
mode and this parameter forces the use of IPv4 only.

When USEIPV4 is used, the entire network in which Oracle GoldenGate operates must be IPv4
compatible.

Use the USEIPV6 parameter to force the use of Internet Protocol version 6 (IPv6) by Oracle
GoldenGate for TCP/IP connections. By default, Oracle GoldenGate uses IPv6 in dual-stack
mode but falls back to IPv4, and only then to IPv6. USEIPV6 eliminates the IPv4 fallback step.
The order of socket selection becomes:

e |Pv6 dual-stack
* |Pv6

When USEIPV6 is used, the entire network in which Oracle GoldenGate operates must be IPv6
compatible.

Default
Disabled

Syntax

USEIPV4

USEIPV6

2-263

Chapter 2
USERIDALIAS

USERIDALIAS

ORACLE

Valid For
Extract, Replicat, DEFGEN, Admin Client.

Supported for

All supported databases for the release.

Description

Use the USERIDALIAS parameter to specify authentication for an Oracle GoldenGate process to
use when logging into a database. The use of USERIDALIAS requires the use of an Oracle
GoldenGate credential store. Specify USERIDALIAS before any TABLE or MAP entries in the
parameter file. The privileges that are required for the USERIDALIAS user vary by database.

USERIDALIAS Compared to USERID

USERIDALIAS enables you to specify an alias, rather than a user ID and password, in the
parameter file. The user IDs and encrypted passwords are stored in a credential store.
USERIDALIAS supports databases running on Linux, UNIX, and Windows platforms.

USERID requires either specifying the clear-text password in the parameter file or encrypting it
with the ENCRYPT PASSWORD command and, optionally, storing an encryption key in an ENCKEYS
file. USERID supports a broad range of the databases that Oracle GoldenGate supports. In
addition, it supports the use of an operating system login for Oracle databases.

USERIDALIAS Requirements Per Database Type

The usage of USERIDALIAS varies depending on the database type.

Note:

Login that requires a database user and password must be stored in the Oracle
GoldenGate credential store.

The supported specified USERID in USERIDALIAS in Oracle GoldenGate with MySQL MA are:
e user/db
* userlhost/db

* userlhost:port/db

If an Oracle GoldenGate user is allowed to alter or add a USERIDALIAS that does not follow any
of the preceding patterns, the user will see the error in pattern matching on the client such as
the MA web interface client or Admin Client.

DB2 for LUW

Use USERIDALIAS parameter for all Oracle GoldenGate processes that connect to a Db2 LUW
database using database authentication.

2-264

ORACLE

Chapter 2
USERIDALIAS

MySQL

Use USERIDALIAS for all Oracle GoldenGate processes that connect to a MySQL database.

Oracle
Use USERIDALIAS for Oracle GoldenGate processes that connect to an Oracle Database.

« Specify the alias of a database credential that is stored in the Oracle GoldenGate
credential store.

» Special database privileges are required for the USERIDALIAS user when Extract is
configured to use LOGRETENTION. These privileges might have been granted when Oracle
GoldenGate was installed., see Configure Logging Properties for more information about
LOGRETENTION.

e To use USERIDALIAS for an Extract group that is configured for integrated capture, the user
must have privileges. If using Oracle Database 23ai and higher, then the user privileges
can be granted with the 0GG_CAPTURE and 0GG_APPLY user roles. If using Oracle database
21c or lower, then the user must have privileges in the
dbms_goldengate auth.grant admin privilege procedure. The user must be the same
one that issues DBLOGIN and REGISTER EXTRACT or UNREGISTER EXTRACT for the Extract
group that is associated with this USERIDALIAS.

For details on granting Oracle Database 23ai user privileges, see Grant User Privileges for
Oracle Database 23ai and higher.

For details on granting privileges for Oracle Database 21c¢ and lower, see Grant User
Privileges for Oracle Database 21c and lower

USERIDALIAS with Kerberos Authentication
Supported for Oracle Database only.

You need to set the ALTER CREDENTIALSTORE to use the NOPASSWORD keyword as the
authentication is external. See ALTER CREDENTIALSTORE to know more.

SQL Server

Use USERIDALIAS if the ODBC data source connection that will be used by the Oracle
GoldenGate process is configured to connect using SQL Server authentication.

e Onasource SQL Server system, also use the SOURCEDB parameter to specify the source
ODBC data source.

e On atarget SQL Server system, also use the TARGETDB parameter to specify the target
ODBC data source.

Teradata

Use USERIDALIAS for Oracle GoldenGate processes that connect to a Teradata database.

On a target Teradata system, use the TARGETDB parameter to specify the target ODBC data
source.

Default

None

2-265

ORACLE

Chapter 2
USERIDALIAS

Syntax

USERIDALIAS alias [DOMAIN domain] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread range[, thread range]
L, ...11

alias

Specifies the alias of a database user credential that is stored in the Oracle GoldenGate
credential store.

DOMAIN domain

Specifies the credential store domain for the specified alias. A valid domain entry must exist in
the credential store for the specified alias.

SYSDBA
(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread range[, thread range][, ...])
Valid for Replicat. Links the specified credential to one or more threads of a coordinated
Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadiD,
threadID, threadID.

[, thread range[, thread range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

TimesTen
Use USERIDALIAS for Oracle GoldenGate processes that connect to a TimesTen database.

On a target TimesTen system, use the TARGETDB parameter to specify the target ODBC data
source.

Default

None

Syntax

USERIDALIAS alias [DOMAIN domain] [SYSDBA]
[, THREADS (threadID[, threadID][, ...][, thread range[, thread range][, ...])]

alias

Specifies the alias of a database user credential that is stored in the Oracle GoldenGate
credential store.

DOMAIN domain

Specifies the credential store domain for the specified alias. A valid domain entry must exist in
the credential store for the specified alias.

2-266

Chapter 2
VARWIDTHNCHAR | NOVARWIDTHNCHAR

SYSDBA
(Oracle) Specifies that the user logs in as sysdba.

THREADS (threadID[, threadID][, ...][, thread range[, thread range][, ...])
Valid for Replicat. Links the specified credential to one or more threads of a coordinated
Replicat. Enables you to specify different logins for different threads.

threadID[, threadID][, ...]
Specifies a thread ID or a comma-delimited list of threads in the format of threadlD,
threadID, threadID.

[, thread range[, thread range][, ...]

Specifies a range of threads in the form of threadIDlow-threadIDhigh or a comma-
delimited list of ranges in the format of threadIDlow-threadIDhigh, threadIDlow-
threadIDhigh.

A combination of these formats is permitted, such as threadID, threadID, threadIDlow-
threadIDhigh.

Examples

Example 1

The following supplies a credential for the user in the credential store that has the alias of
tigerl in the domain of east.

USERIDALIAS tigerl DOMAIN east

Example 2
The following supplies a credential for thread 3 of a coordinated Replicat.

USERIDALIAS tigerl DOMAIN east THREADS (3)

Example 3
The following example shows the use of the parameter in PostgreSQL:

USERIDALIAS pgdsn

The following example shows using Kerberos authentication with Oracle GoldenGate Admin
Client:

0GG (http://localhost:9005 demo)4> dblogin useridalias ggma
Successfully logged into database CDB1 PDBI

In this example, the credential store is previously set up using the ALTER CREDENTIALSTORE
command.

VARWIDTHNCHAR | NOVARWIDTHNCHAR

ORACLE

Valid For
Extract, Replicat, DEFGEN for Oracle

Description

Use the VARWIDTHNCHAR and NOVARWIDTHNCHAR parameters to control how NCHAR data is written
to the trail and interpreted by Replicat.

2-267

Chapter 2
WARNLONGTRANS

¢ VARWIDTHNCHAR causes an NCHAR, NVARCHAR2, or NCLOB character set to be treated as a
variable-length character set (UTF-8).

e NOVARWIDTHNCHAR causes an NCHAR, NVARCHAR2, or NCLOB character set to be treated as
UTF-16.

» If neither option is specified, the NLS NCHAR CHARACTERSET property value from the
database is used to determine how an NCHAR, NVARCHAR2, or NCLOB character set is treated.

Default

Use NLS NCHAR CHARACTERSET property from database

Syntax

VARWIDTHNCHAR | NOVARWIDTHNCHAR

WARNLONGTRANS

ORACLE

Valid For

Extract

Description

Use the WARNLONGTRANS parameter to specify a length of time that a transaction can be open
before Extract generates a warning message that the transaction is long-running. Also use
WARNLONGTRANS to control the frequency with which Oracle GoldenGate checks for long-running
transactions.

This parameter is valid for Oracle and SQL Server.

When WARNLONGTRANS is specified, Oracle GoldenGate checks for transactions that satisfy the
specified threshold, and it reports the first one that it finds to the Oracle GoldenGate error log,
the Extract report file, and the system log. By default, Oracle GoldenGate repeats this check
every five minutes.

To view a list of open transactions on demand, to output transaction details to a file, or to either
cancel those transactions or force them to the trail, use the options of the SEND EXTRACT
command.

Default

One hour (and check every five minutes using a separate processing thread)

Syntax

WARNLONGTRANS duration

[, CHECKINTERVAL interval]
[, NOUSETHREADS]

[, USELASTREADTIME]

duration

Sets a length of time after which an open transaction is considered to be long-running. The
duration is specified as a whole number, followed by the unit of time in any of the following
formats to indicate seconds, minutes, or hours. Do not put a space between the numeric value
and the unit of time. The unit is not case-sensitive. The default is one hour.

2-268

Chapter 2
WARNRATE

S|SEC|SECS|SECOND | SECONDS
M|MIN|MINS |MINUTE |[MINUTES
H|HOUR|HOURS

D|DAY|DAYS

The following are examples of valid durations:

WARNLONGTRANS 1DAY
WARNLONGTRANS 600sec
WARNLONGTRANS 40s

CHECKINTERVAL interval

Sets the frequency at which Oracle GoldenGate checks for transactions that satisfy
WARNLONGTRANS and reports the longest running one. The interval is specified as a whole
number, followed by the unit of time in any of the following formats to indicate seconds,
minutes, or hours. Do not put a space between the numeric value and the unit of time. The
unit is not case-sensitive. The default is five minutes, which is also the minimum valid value.
The minimum value is 300 and the maximum is 20000000.

S|SEC|SECS|SECOND | SECONDS
M|MIN|MINS |MINUTE |[MINUTES
H|HOUR|HOURS

D|DAY|DAYS

CHECKINTERVAL lday
CHECKINTERVAL 600SEC
CHECKINTERVAL 2m

NOUSETHREADS

Valid for Oracle.

Specifies that the monitoring will be done by the main process thread. By default, it is done
with a separate thread for performance reasons. NOUSETHREADS should only be used if the
system does not support multi-threading.

USELASTREADTIME

Valid for Oracle.

Forces Extract to always use the time that it last read the Oracle redo log to determine
whether a transaction is long-running or not. By default, Extract uses the timestamp of the last
record that it read from the redo log. This applies to an Extract that is running in archive log
only mode, as configured with TRANLOGOPTIONS using the ARCHIVEDLOGONLY option.

Example

NOUSETHREADS

WARNRATE

ORACLE

Valid For

Replicat

Description

Use the WARNRATE parameter to set a threshold for the number of SQL errors that can be
tolerated on any target table before being reported to the process report and to the error log.
The errors are reported as a warning. If your environment can tolerate a large number of these
errors, increasing WARNRATE helps to minimize the size of those files.

2-269

Chapter 2
WILDCARDRESOLVE

When setting WARNRATE for a coordinated Replicat, take into account that the specified
WARNRATE threshold is applied to each thread in the configuration, not as an aggregate
threshold for Replicat as a whole. For example, if WARNRATE 100 is specified, it is possible for
each thread to return 99 errors without a warning from Replicat.

For Replicat running in an Oracle environment, this parameter is valid for nonintegrated mode
only.

Default

100 errors

Syntax

WARNRATE number of errors

number of errors
The number of SQL errors after which a warning is issued.

Example

WARNRATE 1000

WILDCARDRESOLVE

ORACLE

Valid For

Extract and Replicat

Description

Use the WILDCARDRESOLVE parameter to alter the rules for processing wildcarded table
specifications in a TABLE, SEQUENCE, or MAP statement. WILDCARDRESOLVE must precede the
associated TABLE, SEQUENCE, or MAP statements in the parameter file.

The target objects must already exist in the target database when wildcard resolution is
attempted. If a target object does not exist, Replicat abends.

Default

DYNAMIC

Syntax

WILDCARDRESOLVE {DYNAMIC | IMMEDIATE}

DYNAMIC

Source objects that satisfy the wildcard definition are resolved each time the wildcard rule is
satisfied. The newly resolved object is included in the Oracle GoldenGate configuration upon
resolution. This is the default. This is the required setting for Teradata.

Do not use this option when SOURCEISTABLE or GENLOADFILES is specified. WILDCARDRESOLVE
will always be implicitly set to IMMEDIATE for these parameters.

DYNAMIC must be used when using wildcards to replicate Oracle sequences with the SEQUENCE
parameter.

To keep the default of DYNAMIC, an explicit WILDCARDRESOLVE parameter is optional, but its
presence helps make it clear to someone who is reviewing the parameter file which method is
being used.

2-270

Chapter 2
Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

IMMEDIATE

Source objects that satisfy the wildcard definition are processed at startup. This option is not
supported for Teradata. This is the forced default for SOURCEISTABLE.

This option does not support the Oracle interval partitioning feature. Dynamic resolution is
required so that new partitions are found by Oracle GoldenGate.

Example

The following example resolves wildcards at startup.

WILDCARDRESOLVE IMMEDIATE
TABLE hg.acct *;

Y2KCENTURYADJUSTMENT |
NOY2KCENTURYADJUSTMENT

ORACLE

Valid For

Extract and Replicat

Description

Use the Y2KCENTURYADJUSTMENT and NOY2KCENTURYADJUSTMENT parameters to control the
conversion of year values when the century portion consists of zeroes (such as 0055) or is not
specified (such as in a two-digit, year-only specification).

With Y2KCENTURYADJUSTMENT enabled (the default), a two-digit year value that is greater than or
equal to 50 is converted to a four-digit year in the 20th century (19xx). If a two-digit year value
is less than 50, it is converted to a four-digit year in the 21st century (20xx).If the century
portion of the year is non-zero, or if NOY2KCENTURYADJUSTMENT is specified, no conversion is
performed.

Default

Y2KCENTURYADJUSTMENT

Syntax

Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

2-271

Table and Column Mapping Functions

The Table and Column mapping functions of Oracle GoldenGate enable you to manipulate
source values into the appropriate format for target tables and columns.

You can manipulate numbers and characters, perform tests, extract parameter values, return
environment information, and more using these functions. See Mapping and Manipulating Data
to know more.

Topics:

Summary of Column-Conversion Functions

This summary is organized according to the types of processing that can be performed with the
Oracle GoldenGate functions.

These functions are used to perform tests.

Function Description

@CASE Selects a value depending on a series of value tests.

@EVAL Selects a value based on a series of independent tests.

@IF Selects one of two values depending on whether a conditional statement returns

TRUE or FALSE.

These functions handle missing columns.

Function Description
@COLSTAT Returns an indicator that a column is MISSING, NULL, or INVALID.
@COLTEST Performs conditional calculations to test whether a column is PRESENT, MISSING,

NULL, or INVALID.

These functions work with dates.

Function Description

@DATE Returns a date and time based on the format passed into the source column.
@DATEDIFF Returns the difference between two dates or datetimes.

@DATENOW Returns the current date and time.

These functions are used to perform arithmetic calculations.

Function Description

@COMPUTE Returns the result of an arithmetic expression.

These functions work with strings.

ORACLE -

ORACLE

Chapter 3
Summary of Column-Conversion Functions

Function Description

@NUMBIN Converts a binary string into a number.

@NUMSTR Converts a string into a number.

@STRCAT Concatenates one or more strings.

@STRCMP Compares two strings.

@STREXT Extracts a portion of a string.

@STREQ Determines whether or not two strings are equal.
@STRFIND Finds the occurrence of a string within a string.
@STRLEN Returns the length of a string.

@STRLTRIM Trims leading spaces.

@STRNCAT Concatenates one or more strings to a maximum length.
@STRNCMP Compares two strings based on a specified number of characters.
@STRNUM Converts a number into a string.

@STRRTRIM Trims trailing spaces.

@STRSUB Substitutes one string for another.

@STRTRIM Trims leading and trailing spaces.

@STRUP Changes a string to uppercase.

@VALONEOF Compares a string or string column to a list of values.

These are miscellaneous functions.

Function Description

@AFTER Returns the after image of the specified column.

@BEFORE Returns the before image of the specified column.

@BEFOREAFTER Returns the before image of the specified column, if available, otherwise returns
the after image.

@BINARY Maintains source binary data as binary data in the target column when the source
column is defined as a character column.

@BINTOHEX Converts a binary string to a hexadecimal string.

@GETENV Returns environmental information.

@GETVAL Extracts parameters from a stored procedure as input to a FILTER or COLMAP
clause.

@HEXTOBIN Converts a hexadecimal string to a binary string.

@HIGHVAL | Constrains a value to a high or low value.

LOWVAL

@RANGE Divides rows into multiple groups of data for parallel processing.

@TOKEN Retrieves token data from a trail record header.

@OGG_SHA1 Hashes some fields while replicating them to Operational Data Store.

3-2

Chapter 3
@RANGE

@RANGE

ORACLE

Use the @RANGE function to divide the rows of any table across two or more Oracle GoldenGate
processes. It can be used to increase the throughput of large and heavily accessed tables and
also can be used to divide data into sets for distribution to different destinations. Specify each
range in a FILTER clause in a TABLE or MAP statement.

@RANGE is safe and scalable. It preserves data integrity by guaranteeing that the same row will
always be processed by the same process group. To ensure that rows do not shift partitions to
another process group and that the DML is performed in the correct order, the column on
which you base the @RANGE partitioning must not ever change during a process run. Updates to
the partition column may result in "row not found" errors or unique-constraint errors.

@RANGE computes a hash value of the columns specified in the input. If no columns are
specified, the KEYCOLS clause of the TABLE or MAP statement is used to determine the columns
to hash, if a KEYCOLS clause exists. Otherwise, the primary key columns are used.

Oracle GoldenGate adjusts the total number of ranges to optimize the even distribution across
the number of ranges specified.

Because any columns can be specified for this function, rows in tables with relational
constraints to one another must be grouped together into the same process or trail to preserve
referential integrity.

Note:

Using Extract to calculate the ranges is more efficient than using Replicat.
Calculating ranges on the target side requires Replicat to read through the entire trail
to find the data that meets each range specification.

Syntax

@RANGE (range, total ranges [, column] [, column] [, ...])

range
The range assigned to the specified process or trail. Valid values are 1, 2, 3, and so forth, with
the maximum value being the value defined by total ranges.

total ranges
The total number of ranges allocated. For example, to divide data into three groups, use the
value 3.

column

The name of a column on which to base the range allocation. This argument is optional. If not
used, Oracle GoldenGate allocates ranges based on the table's primary key.

Your data cannot contain missing or NULL columns; this will cause the @RANGE function to
abend.

The columns specified in a list of columns must exist in the trail file. You can control this using
KEYCOLS in the Extract to include this column, or by using FETCHCOLS in the Extract for the
column, or by ensuring that the column is part of the supplemental log group and then using
LOGALLSUPCOLS.

3-3

@AFTER

ORACLE

Chapter 3
@AFTER

Examples

Example 1

In the following example, the replication workload is split into three ranges (between three
Replicat processes) based on the 1D column of the source acct table.

(Replicat group 1 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (QRANGE (1, 3, ID));

(Replicat group 2 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (Q@RANGE (2, 3, ID));

(Replicat group 3 parameter file)

MAP sales.acct, TARGET sales.acct, FILTER (Q@RANGE (3, 3, ID));

Example 2

In the following example, one Extract process splits the processing load into two trails. Since
no columns were defined on which to base the range calculation, Oracle GoldenGate will use
the primary key columns.

RMTTRAIL /ggs/dirdat/aa
TABLE fin.account, FILTER (@RANGE (1, 2));
RMTTRAIL /ggs/dirdat/bb
TABLE fin.account, FILTER (@RANGE (2, 2));

Example 3

In the following example, two tables have relative operations based on an order ID column.
The order master table has a key of order ID, and the order detail table has a key of
order IDand item number. Because the key order ID establishes relativity, it is used in
QRANGE filters for both tables to preserve referential integrity. The load is split into two ranges.
(Parameter file #1)

MAP sales.order master, TARGET sales.order master,
FILTER (@RANGE (1, 2, order ID));
MAP sales.order detail, TARGET sales.order detail,
FILTER (@RANGE (1, 2, order ID));

(Parameter file #2)

MAP sales.order master, TARGET sales.order master,
FILTER (@RANGE (2, 2, order ID));
MAP sales.order detail, TARGET sales.order detail,
FILTER (@RANGE (2, 2, order ID));

Use the @AFTER function to return the after image of the specified source column. This is the
default behavior.

Syntax

@AFTER (column)

column
The name of the source column for which to return the after image.

3-4

Chapter 3
@BEFORE

Example

@AFTER (quantity)

@BEFORE

Use the @BEFORE function to return the before image of the specified source column.

When using this parameter, use the GETUPDATEBEFORES parameter in the Extract parameter file
to capture before images from the transaction record, or use it in the Replicat parameter file to
use the before image in a column mapping or filter. If using the Conflict Resolution and
Detection (CDR) feature, you can use the GETBEFORECOLS option of TABLE. To use these
parameters, the specified column must be present in the transaction log.

If the database only logs values for changed columns, make certain the required column
values are available by enabling supplemental logging for those columns. Alternatively, you
can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE parameter. The fetch option
involves additional processing overhead.

Syntax

@BEFORE (column)

column
The name of the source column for which to return the before image.

Example

@BEFORE (quantity)

@BEFOREAFTER

ORACLE

Use the @BEFOREAFTER function to return the before image if available, or otherwise the after
image.

When using this parameter, use the GETUPDATEBEFORES parameter in the Extract parameter file
to capture before images from the transaction record, or use it in the Replicat parameter file to
use the before image in a column mapping or filter. If using the Conflict Resolution and
Detection (CDR) feature, you can use the GETBEFORECOLS option of TABLE. To use these
parameters, all columns must be present in the transaction log.

If the database only logs values for changed columns, make certain the required column
values are available by enabling supplemental logging for those columns. Alternatively, you
can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE parameter. The fetch option
involves additional processing overhead.

Syntax
@BEFOREAFTER (column)

column
The name of the source column for which to return the before image, if available, or otherwise
the after image.

Example

@BEFOREAFTER (quantity)

3-5

Chapter 3
@BINARY

@BINARY

Use the @BINARY function when a source column referenced by a column-conversion function
is defined as a character column but contains binary data that must remain binary on the
target. By default, binary data in a character column is converted (if necessary) to ASCII and
assumed to be a null-terminated string. The @BINARY function copies arbitrary binary data to
the target column.

Syntax

@BINARY (column)

column
The name of the target column to which the data will be copied.

Example

The following shows how @BINARY can be used to copy the data from the source column
ACCT CREATE DATE to the target column ACCT COMPLAINT.

ACCT COMPLAINT =
@IF (G@NUMBIN (ACCT CREATE DATE) < 48633, 'xxxxxx',
@BINARY (ACCT_COMPLAINT))

@BINTOBASEG4

Use the @BINTOBASE64 function to convert supplied binary data into BASE64 text.

Syntax

@BINTOBASE64 (data)

data
Can be one of the following:

The name of the source column that contains the data
* An expression

« Aliteral string that is enclosed within single quote marks

Example

@BINTOBASEG4 ('12345') converts to 'MTIzNDU='

@BINTOHEX

ORACLE

Use the @BINTOHEX function to convert supplied binary data into its hexadecimal equivalent.

Syntax

@BINTOHEX (data)

data
Can be one of the following:

3-6

@CASE

ORACLE

Chapter 3
@CASE

e The name of the source column that contains the data
* An expression

e Aliteral string that is enclosed within single quote marks

Example

@BINTOHEX ('12345'") converts to 3132333435.

Use the @CASE function to select a value depending on a series of value tests. There is no limit
to the number of cases you can test with @CASE. If the number of cases is large, list the most
frequently encountered conditions first for the best performance.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

This function does not support NCHAR Or NVARCHAR data types.

Syntax

@CASE (value, test valuel, test resultl
[, test value2, test result2] [, ...]
[, default result]

value
A value to test, for example, a column name. Enclose literals within single quote marks.

test value
A valid result for value. Enclose literals within single quote marks.

test result
A value to return based on the value of test value. Enclose literals within single quote marks.

default result
A default value to return if value results in none of the test value values. Enclose literals
within single quote marks.

Examples

Example 1

The following returns A car if PRODUCT CODE is CAR and A truck if PRODUCT CODE is TRUCK. If
PRODUCT _CODE fits neither of the first two cases, a FIELD MISSING indication is returned
because a default value was not specified.

@CASE (PRODUCT CODE, 'CAR', 'A car', 'TRUCK', 'A truck')

Example 2
The following is similar to the previous example, except that it provides for a default value. If
PRODUCT CODE is neither CAR nor TRUCK, the function returns & vehicle.

@CASE (PRODUCT CODE, 'CAR', 'A car', 'TRUCK', 'A truck', 'A vehicle')

3-7

Chapter 3
@COLSTAT

@COLSTAT

Use the @COLSTAT function to return an indicator to Extract or Replicat that a column is missing,
null, or invalid. The indicator can be used as part of a larger manipulation formula that uses
additional conversion functions.

Syntax

@COLSTAT ({MISSING | NULL | INVALID})

Examples

Example 1
The following example returns a NULL into target column ITEM.

ITEM = @COLSTAT (NULL)

Example 2
The following @1F calculation uses @COLSTAT to return NULL to the target column if PRICE and
QUANTITY are less than zero.

ORDER _TOTAL = PRICE * QUANTITY, @IF (PRICE < O AND QUANTITY < 0, QCOLSTAT (NULL))

@COLTEST

Use the @COLTEST function to enable conditional calculations by testing for one or more column
conditions. If a condition is satisfied, @COLTEST returns TRUE. To perform the conditional
calculation, use the @IF function.

Syntax

@COLTEST (source column, test condition [, test condition] [, ...])

source_column
The name of a source column.

test condition
Valid values:

PRESENT

Indicates a column is present in the source record and not NULL. Column values can be
missing if the database does not log values for columns that do not change, but that is not
the same as NULL.

NULL
Indicates a column is present in the source record and NULL.

MISSING
Indicates a column is not present in the source record.

INVALID
Indicates a column is present in the source record but contains invalid data.

ORACLE -

Chapter 3
@COMPUTE

Examples

Example 1

The following example uses @IF to map a value to the HIGH SALARY column only if the
BASE_SALARY column in the source record was both present (and not NULL) and greater than
250000. Otherwise, NULL is returned.

HIGH SALARY =

@IF (QCOLTEST (BASE SALARY, PRESENT) AND
BASE SALARY > 250000,

BASE SALARY, @COLSTAT (NULL))

Example 2
In the following example, 0 is returned when the aMT column is missing or invalid; otherwise a

value for AMT is returned.

AMOUNT = @IF (QCOLTEST (AMT, MISSING, INVALID), 0, AMT)

@COMPUTE

Use the @COMPUTE function to return the value of an arithmetic expression to a target column.
The value returned from the function is in the form of a string.

You can omit the @COMPUTE phrase when returning the value of an arithmetic expression to
another Oracle GoldenGate function, as in:

@STRNUM ((AMOUNT1 + AMOUNT2), LEFT)

The preceding returns the same result as:

@STRNUM ((@COMPUTE (AMOUNT1 + AMOUNT2), LEFT)

Arithmetic expressions can be combinations of the following elements.
e Numbers
e The names of columns that contain numbers
e Functions that return numbers
e Arithmetic operators:

+ (plus)

- (minus)

* (multiply)

/ (divide)

\ (remainder)
e Comparison operators:

> (greater than)

>= (greater than or equal)

< (less than)

<= (less than or equal)

= (equal)

ORACLE 29

@DATE

ORACLE

Chapter 3
@DATE

<> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

e Parentheses (for grouping results in the expression)

e The conjunction operators AND, OR. Oracle GoldenGate only evaluates the necessary part
of a conjunction expression. Once a statement is FALSE, the rest of the expression is
ignored. This can be valuable when evaluating fields that may be missing or null. For
example, if the value of COL1 is 25 and the value of cOL2 is 10, then the following are
possible:

@COMPUTE (COL1 > 0 AND COL2 < 3) returns 0.
@COMPUTE (COL1 < 0 AND COL2 < 3) returns 0. COL2 < 3 is never evaluated.

@COMPUTE ((COL1 + COL2)/5) returns 7.

Syntax
@COMPUTE (expression)
expression

A valid arithmetic expression. The numeric value plus the precision cannot be greater than 17
digits. If this limit is exceeded, @COMPUTE returns an error similar to the following.

2013-08-01 01:54:22 ERROR 0GG-01334 Error mapping data from column to column in
function COMPUTE.

Examples

Example 1

AMOUNT TOTAL = @COMPUTE (AMT + AMT2)

Example 2

AMOUNT TOTAL = QIF (AMT >= 0, AMT * 100, 0)

Example 3

ANNUAL SALARY = QCOMPUTE (MONTHLY SALARY * 12)

mod (id,10) = 1 MAP otest.tab, TARGET mtest.tabl,FILTER (@compute (id \ 10) = 1)
This example illustrates how to achieve the remainder SQL. Ensure that there is a space
between id \ 10 in the three characters, otherwise it will be reported as a filter syntax error.

Use the @DATE function to return dates and times in a variety of formats to the target column
based on the format passed into the source column. @DATE converts virtually any type of input
into a valid SQL date. @DATE also can be used to extract portions of a date column or to
compute a numeric timestamp column based on a date.

Syntax

@DATE ('output descriptor', 'input descriptor', source column
[, 'input descriptor', source column] [, ...])

3-10

ORACLE

Chapter 3
@DATE

'output_descriptor’

The output of the function. The valid value is a string that is composed of date descriptors and
optional literal values, such as spaces or colons, that are required by the target column. Date
descriptors can be strung together as needed. See Table 3-1 for descriptions of date
descriptors. The format descriptor must match the date/time/timestamp format for the target.
Oracle GoldenGate overrides the specified format to make it correct, if necessary.

'input descriptor'’

The source input. The valid value is a string that is composed of date descriptors and optional
literal values, such as spaces or colons. Date descriptors can be strung together as needed.
The following are examples:

» Descriptor string 'yYYYMMDD' indicates that the source column specified with
source_column contains (in order) a four-digit year (YYYY), month (MM), and day (DD).

« Descriptor string 'DD/MM/YY' indicates that the source column specified with
source column contains the day, a slash, the month, a slash, and the two digit year.

See Table 3-1 for date descriptions.

source_column
The name of the numeric or character source column that supplies the input specified with
input descriptor.

Table 3-1 Date Descriptors
]

Descriptor Description Valid for...

cc Century Input/Output
vy Two-digit year Input/Output
YYYY Four-digit year Input/Output
MM Numeric month Input/Output
MMM Alphanumeric month, such as APR, OCT Input/Output
DD Numeric day of month Input/Output
DDD Numeric day of the year, such as 001 or 365 Input/Output
DOWO Numeric day of the week (Sunday = 0) Input/Output
DOW1 Numeric day of the week (Sunday = 1) Input/Output
DOWA Alphanumeric day of the week, such as SUN, MON, TUE Input/Output
HH Hour Input/Output
MI Minute Input/Output

3-11

ORACLE

Chapter 3
@DATE

Table 3-1 (Cont.) Date Descriptors
]

Descriptor Description Valid for...
ss Seconds Input/Output
JTSLCT Use for a Julian timestamp that is already local time, or to keep local Input/Output
time when converting to a Julian timestamp.
JTSGMT Julian timestamp, the same as JTS. Input/Output
JTS Julian timestamp. JUL and JTS produce numbers you can use in Input/Output
numeric expressions. The unit is microseconds. On a Windows
machine, the value will be padded with zeros (0) because the
granularity of the Windows timestamp is milliseconds.
JUL Julian day. JUL and JTS produce numbers you can use in numeric Input/Output
expressions.
TS NonStop 48-bit timestamp Input
PHAMIS PHAMIS application date format Input
FFFFFF Fraction (up to microseconds) Input/Output
STRATUS STRATUS application timestamp Input/Output
CDATE C timestamp in seconds since the Epoch Input/Output
Examples
Example 1

In an instance where a two-digit year is supplied, but a four-digit year is required in the output,
several options exist to obtain the correct century.

e The century can be hard coded, as in:
'cc', 19 or 'cC', 20
e The @1F function can be used to set a condition, as in:
'cc', @IF (YY > 70, 19, 20)
This causes the century to be set to 19 when the year is greater than 70; otherwise the
century is set to 20.

* The system can calculate the century automatically. If the year is less than 50, the system
calculates a century of 20; otherwise, a century of 19 is calculated.

Example 2
The following converts year, month and day columns into a date.

date col = @DATE ('YYYY-MM-DD', 'YY', datel yy, 'MM', datel mm, 'DD', datel dd)

Example 3
The following converts a date and time, defaulting seconds to zero.

3-12

Chapter 3
@DBFUNCTION

date col = @DATE ('YYYY-MM-DD HH:MI:00', 'YYMMDD', datel, 'HHMI', timel)

Example 4
The following converts a numeric column stored as YYYYMMDDHHMISS to a SQL date.

datetime col = QDATE ('YYYY-MM-DD HH:MI:SS', 'YYYYMMDDHHMISS', numeric date)

Example 5
The following converts a numeric column stored as YYYYMMDDHHMISS to a Julian timestamp.

julian ts col = @DATE ('JTS', 'YYYYMMDDHHMISS', numeric date)

Example 6

The following converts a Julian timestamp column to two separate columns: a datetime
column in the format YYYY-MM-DD HH:MI:SS and a fraction column that holds the microseconds
portion of the timestamp.

datetime col = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS', jts field), fraction col = @DATE
('"FFFFFF', 'JTS', jts_field)

Example 7

The following produces the time at which an order is filled. The inner @DATE expression
changes the order taken column into a Julian timestamp, then adds the order minutes
column converted into microseconds to this timestamp. The expression is passed back as a
new Julian timestamp to the outer @DATE expression, which converts it back to a more
readable date and time.

order filled = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS', @DATE ('JTS',
'YYMMDDHHMISS', order taken) + order minutes * 60 * 1000000)

Example 8

The following does a full calculation of times. It goes from a source date column named dt to
a target column named dt5 that is to be converted to the date + 5 hours. The calculation also
goes from a source timestamp column named ts to a target column named ts5 that is to be
converted to the timestamp + 5 hours.

MAP scratch.t4, TARGET scratch.t4 copy,

COLMAP (USEDEFAULTS,

dt5 = @DATE ('YYYY-MM-DD HH:MI:SS', 'JTS',

@COMPUTE (Q@DATE ('JTS', 'YYYY-MM-DD HH:MI:SS', dt) + 18000000000)),

ts5 = Q@DATE ('YYYY-MM-DD HH:MI:SS.FFFFFF', 'JTS',

@COMPUTE (@DATE ('JTS', 'YYYY-MM-DD HH:MI:SS.FFFFFF', ts) + 18000000000))
) 7

@DBFUNCTION

ORACLE

@DBFUNCTION is a column-conversion function introduced in Oracle GoldenGate 23ai. It
provides a column mapping to a database function that executes within the database when
exectuing a DML operation. This is helpful for applications that are tracking the database
timestamp, time-sensitive operations, or ETL loads where the Apply Time of the DML operation
within the database is needed. The database function must exist within the database and the
Replicat user must have privileges to execute it. For Oracle database, this function is available
for all Replicats. For non-Oracle databases, this function is available for Replicat in classic
mode, parallel Replicat, and coordinated Replicat.

Limitations

e The database function used by @DBFUNCTION does not allow column as arguments.
However, static arguments/constants are supported.

3-13

Chapter 3
@DATEDIFF

For example, the following argument is supported:

TO_CHAR(SYSTIMESTAMP, 'SSSSS.FF'')

If you want to map this argument (to_char) with @dbfunction, it can be done as follows:

coll = @dbfunction('TO _CHAR(SYSTIMESTAMP, ''SSSSS.FF'')"')

If the string mapped to @dbfunction contains single quote ', then it needs to be written as
"' to be parsed correctly.

e @DBFUNCTION cannot be mapped to key columns.

° @DBFUNCTION cannot be used as an argument including inside:
— FILTER Or WHERE clause
— SQLEXEC

— Other column-conversion functions

Example
The following example shows the use of @DBFUNCTION to determine the system timestamp for
the ORDERS table.

MAP OE.ORDERS, TARGET OE.ORDERS, COLMAP (USEDEFAULTS, TS =
@DBFUNCTION ('SYSTIMESTAMP'))

@DATEDIFF

ORACLE

Use the @DATEDIFF function to calculate the difference between two dates or datetimes, in days
or seconds.
Syntax

@DATEDIFF ('difference', 'date', 'date')

difference
The difference between the specified dates. Valid values can be:

* DD, which computes the difference in days.

e ss, which computes the difference in seconds.

date
A string within single quote marks, in the format of 'YYYY-MM-DD[*HH:MI[:SS]]', where * can
be a colon (:) or a blank space, or the @DATENOW function without quotes to return the current
date.

Examples

Example 1
The following calculates the number of days since the beginning of the year 2011.

YTD = @DATEDIFF ('DD', '2011-01-01', @DATENOW ())

3-14

Chapter 3
@DATENOW

Example 2
The following calculates the numerical day of the year. (@DATEDIFF returns O for 2011-01-01):

todays day = @COMPUTE (@DATEDIFF ('DD', '2011-01-01', Q@DATENOW ()) +1)

@DATENOW

@DDL

@EVAL

ORACLE

Use the @DATENOW function to return the current date and time in the format YYYY-MM-DD
HH:MI:SS. The date and time are returned in local time, including adjustments for Daylight
Saving Time. @DATENOW takes no arguments.

Syntax

@DATENOW ()

Use the @DDL function to return information about a DDL operation.

Syntax

@DDL ({TEXT | OPTYPE | OBJNAME | OBJTYPE | OBJOWNER})

OBJNAME
Returns the name of the object that is affected by the DDL.

OBJOWNER
Returns the name of the owner of the object that is affected by the DDL.

OBJTYPE
Returns the type of object that is affected by the DDL, such as TABLE or INDEX)

OPTYPE
Returns the operation type of the DDL, such as CREATE Or ALTER.

TEXT
Returns the first 200 characters of the text of the DDL statement.

Example
The following example uses the output from @DDL in an EVENTACTIONS shell command.

DDL INCLUDE OBJNAME src.t* &
EVENTACTIONS (SHELL ('echo The DDL text is varl> out.txt ', &
VAR varl = @DDL (TEXT)));

The redirected output file might contain a string like this:

The DDL text is CREATE TABLE src.test tab (coll int);

Use the @EVAL function to select a value based on a series of independent tests. There is no
limit to the number of conditions you can test. If the number of cases is large, list the most
frequently encountered conditions first for best performance.

3-15

Chapter 3
@GETENV

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

Syntax

@EVAL (condition, result
[condition, result] [,]
[, default result])

condition
A conditional test using standard conditional operators. More than one condition can be
specified.

result
A value or string to return based on the results of the conditional test. Enclose literals within
single quote marks. Specify a result for each condition that is used.

default result
A default result to return if none of the conditions is satisfied. A default result is optional.

NOT_SUPPORTED

In the following example, if the AMOUNT column is greater than 10000, a result of high amount
is returned. If AMOUNT is greater than 5000 (and less than or equal to 10000), a result of
somewhat high is returned (unless the prior condition was satisfied). If neither condition is
satisfied, a COLUMN MISSING indication is returned because a default result is not specified.

AMOUNT DESC = @EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high'")

NOT_SUPPORTED

The following is a modification of the preceding example. It returns the same results, except
that a default value is specified, and a result of lower is returned if AMOUNT is less than or equal
to 5000.

@EVAL (AMOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high', 'lower')

@Q@GETENV

Use the @GETENV function to return information about the Oracle GoldenGate environment. You
can use the information as input into the following:

e Stored procedures or queries (with SQLEXEC)
e Column maps (with the COLMAP option of TABLE or MAP)

e User tokens (defined with the TOKENS option of TABLE and mapped to target columns by
means of the @TOKEN function)

* The GET ENV VALUE user exit function (see "GET_ENV_VALUE")

Note:

All syntax options must be enclosed within quotes as shown in the syntax
descriptions.

ORACLE 316

ORACLE

Chapter 3
@GETENV

* Retrieve the value of the DB_UNIQUE NAME parameter of the source or the target databases,
depending on which processes (Extract or Replicat) executes the function.

Syntax

@GETENV (

'"LAG' , 'unit' |

'"LASTERR' , 'error info' |
'"JULIANTIMESTAMP' |
'JULIANTIMESTAMP PRECISE' |
'RECSOUTPUT' |
{'"STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic'
'GGENVIRONMENT', 'environment info' |
'"GGFILEHEADER', 'header info'|
'"GGHEADER', 'header info' |
'"RECORD', 'location info' |
'DBENVIRONMENT', 'database info,',
"TRANSACTION', 'transaction info' |
'"OSVARIABLE', 'variable' |
"TLFKEY', SYSKEY, unique key
"USERNAME',

"OSUSERNAME ',

'MACHINENAME',

' PROGRAMNAME ',

'CLIENTIDENTIFIER',

' SOURCEDATABASEINFO'

)

'LAG' , 'unit'

Valid for Extract and Replicat.

Use the LAG option of @GETENV to return lag information. Lag is the difference between the time
that a record was processed by Extract or Replicat and the timestamp of that record in the data
source.

Syntax
@GETENV ('LAG', {'SEC'|'MSEC'|'MIN'})

'SEC'
Returns the lag in seconds. This is the default when a unit is not explicitly provided for LAG.

'MSEC'
Returns the lag in milliseconds.

'MIN'
Returns the lag in minutes.

'"LASTERR' , 'error_ info'
Valid for Replicat.

Use the LASTERR option of @GETENV to return information about the last failed operation
processed by Replicat.

3-17

Chapter 3
@GETENV

Syntax

@GETENV ('LASTERR', {'DBERRNUM'|'DBERRMSG'|'OPTYPE'|'"'ERRTYPE'})

' DBERRNUM'
Returns the database error number associated with the failed operation.

' DBERRMSG'
Returns the database error message associated with the failed operation.

'OPTYPE'
Returns the operation type that was attempted.

'"ERRTYPE'
Returns the type of error. Possible results are:

* DB (for database errors)

e MAP (for errors in mapping)

'JULIANTIMESTAMP' | ' JULIANTIMESTAMP PRECISE'
Valid for Extract and Replicat.

Use the JULIANTIMESTAMP option of QGETENV to return the current time in Julian format. The unit
is microseconds (one millionth of a second). On a Windows machine, the value is padded with
zeros (0) because the granularity of the Windows timestamp is milliseconds (one thousandth of
a second). For example, the following is a typical column mapping:

MAP dbo.tab8451, Target targ.tabjts, COLMAP (USEDEFAULTS, &
JISS = QGETENV ('JULIANTIMESTAMP')

JTSFFFFFF = @date ('yyyy-mm-dd hh:mi:ss.ffffff', 'JTS', &
@getenv ('JULIANTIMESTAMP')))

Possible values that the JTSS and JTSFFFFFF columns can have are:

212096320960773000 2010-12-17:16:42:40.773000
212096321536540000 2010-12-17:16:52:16.540000
212096322856385000 2010-12-17:17:14:16.385000
212096323062919000 2010-12-17:17:17:42.919000
212096380852787000 2010-12-18:09:20:52.787000

The last three digits (the microseconds) of the number all contain the padding of Os .

Optionally, you can use the 'JULIANTIMESTAMP PRECISE' option to obtain a timestamp with
high precision though this may effect performance.

Note:

Do not use these values for ordering operations. Instead use this value:
QCOMPUTE (RCOMPUTE (@NUMSTR (QGETENV ("RECORD",
"FILESEQNO")*100000000000) +@NUMSTR (@GETENV ("RECORD", "FILERBA")))"

Syntax

@GETENV ('JULIANTIMESTAMP')
@GETENV ('JULIANTIMESTAMP PRECISE')

ORACLE 318

ORACLE

Chapter 3
@GETENV

'"RECSOUTPUT'
Valid for Extract.

Use the RECSOUTPUT option of GGETENV to retrieve a current count of the number of records that
Extract has written to the trail file since the process started. The returned value is not unique to
a table or transaction, but instead for the Extract session itself. The count resets to 1 whenever
Extract stops and then is started again.

Syntax

@GETENV ('RECSOUTPUT')

{'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic'
Valid for Extract and Replicat.

Use the STATS and DELTASTATS options of @GETENV to return the number of operations that were
processed per table for any or all of the following:

e INSERT operations
e UPDATE operations
° DELETE operations
e TRUNCATE operations
e Total DML operations
e Total DDL operations

* Number of conflicts that occurred, if the Conflict Detection and Resolution (CDR) feature is
used.

* Number of CDR resolutions that succeeded
* Number of CDR resolutions that failed

Any errors in the processing of this function, such as an unresolved table entry or incorrect
syntax, returns a zero (0) for the requested statistics value.

Understanding How Recurring Table Specifications Affect Operation Counts

An Extract that is processing the same source table to multiple output trails returns statistics
based on each localized output trail to which the table linked to @GETENV is written. For
example, if Extract captures 100 inserts for table ABC and writes table ABC to three trails, the
result for the @GETENV is 300

EXTRACT ABC

EXTTRAIL c:\north\aa;

TABLE TEST.ABC;

EXTTRAIL c:\north\bb;

TABLE TEST.ABC;

TABLE EMI, TOKENS (TOKEN-CNT = QGETENV ('STATS', 'TABLE', 'ABC', 'DML'));
EXTTRAIL c:\north\cc;

TABLE TEST.ABC;

In the case of an Extract that writes a source table multiple times to a single output trail, or in
the case of a Replicat that has multiple MAP statements for the same TARGET table, the statistics
results are based on all matching TARGET entries. For example, if Replicat filters 20 rows for

3-19

ORACLE

Chapter 3
@GETENV

REGION 'WEST,' 10 rows for REGION 'EAST,' 5 rows for REGION 'NORTH,' and 2 rows for REGION
'SouTH' (all for table ABC) the result of the RGETENV is 37.

REPLICAT ABC

MAP TEST.ABC, TARGET TEST.ABC, FILTER

(@STREQ (REGION, 'WEST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'EAST'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'NORTH'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'SOUTH'));
MAP TEST.EMI, TARGET TEST.EMI, &
COLMAP (CNT = QGETENV ('STATS', 'TABLE', 'ABC', 'DML'));

Capturing Multiple Statistics
You can execute multiple instances of @GETENV to get counts for different operation types.

This example returns statistics only for INSERT and UPDATE operations:

REPLICAT TEST

MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, IU = @COMPUTE (QGETENV &
("STATS', 'TABLE', 'ABC', 'DML') - (@GETENV ('STATS', 'TABLE', &
"ABC', 'DELETE'));

This example returns statistics for DDL and TRUNCATE operations:

REPLICAT TEST2

MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, DDL = @QCOMPUTE &
(@GETENV ('STATS', 'DDL') + (@GETENV ('STATS', 'TRUNCATE'));

Example Use Case

In the following use case, if all DML from the source is applied successfully to the target,
Replicat suspends by means of EVENTACTIONS with SUSPEND, until resumed from GGSCI with
SEND REPLICAT with RESUME.

GETENV used in Extract parameter file:

TABLE HR1.HR*;

TABLE HR1.STAT, TOKENS ('env_stats' = @GETENV ('STATS', 'TABLE', &
"HRL.HR*', 'DML'));

GETENV used in Replicat parameter file:

MAP HR1.HR*, TARGET HR2.*;

MAP HR1.STAT, TARGET HR2.STAT, filter (
@if (
@token ('stats') =
@getenv ('STATS', 'TABLE', 'TSSCAT.TCUSTORD', 'DML'), 1, 0)
)I
eventactions (suspend);

3-20

ORACLE

Chapter 3
@GETENV

Using Statistics in FILTER Clauses

Statistics returned by STATS and DELTASTATS are dynamic values and are incremented after
mapping is performed. Therefore, when using CDR statistics in a FILTER clause in each of
multiple MAP statements, you need to order the MAP statements in descending order of the
statistics values. If the order is not correct, Oracle GoldenGate returns error OGG-01921. For
detailed information about this requirement, see Document 1556241.1 in the Knowledge base
of My Oracle Support at http://support.oracle.com.

Example 3-1 MAP statements containing statistics in FILTER clauses

In the following example, the MAP statements containing the filter for the CDR_CONFLICTS statistic
are ordered in descending order of the statistic: >3, then =3, then <3.

MAP TEST.GG_HEARTBEAT TABLE, TARGET TEST.GG HEARTBEAT TABLE COMPARECOLS (ON
UPDATE ALL), RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, OVERWRITE)),FILTER
(QGETENV ("STATS", "CDR CONFLICTS") > 3),EVENTACTIONS (LOG INFO);MAP
TEST.GG_HEARTBEAT TABLE, TARGET TEST.GG_HEARTBEAT TABLE COMPARECOLS (ON
UPDATE ALL), RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, OVERWRITE)),FILTER
(@GETENV ("STATS", "CDR CONFLICTS") = 3),EVENTACTIONS (LOG WARNING) ;MAP
TEST.GG_HEARTBEAT TABLE, TARGET TEST.GG_HEARTBEAT TABLE COMPARECOLS (ON
UPDATE ALL), RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, OVERWRITE)),FILTER
(QGETENV ("STATS", "CDR CONFLICTS") < 3),EVENTACTIONS (LOG WARNING) ;

Syntax
@GETENV ({'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic')
{'STATS' | 'DELTASTATS'}

STATS returns counts since process startup, whereas DELTASTATS returns counts since the last
execution of a DELTASTATS.
The execution logic is as follows:

e When Extract processes a transaction record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved source tables in the TABLE
statement.

* When Replicat processes a trail record that satisfies ¢GETENV with STATS or DELTASTATS,
the table name is matched against resolved target tables in the TARGET clause of the MAP
statement.

'"TABLE', 'table'

Executes the STATS or DELTASTATS only for the specified table or tables. Without this option,
counts are returned for all tables that are specified in TABLE (Extract) or MAP (Replicat)
parameters in the parameter file.

Valid table name values are:

e 'schema.table' specifies a table.
e 'table' specifies a table of the default schema.
* 'schema.* specifies all tables of a schema.

e ' gpecifies all tables of the default schema.

3-21

http://support.oracle.com

Chapter 3
@GETENV

For example, the following counts DML operations only for tables in the hr schema:

MAP fin.*, TARGET fin.*;

MAP hr.*, TARGET hr.*;

MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = Q@GETENV ('STATS',
"TABLE', 'hr.*', 'DML'));

Likewise, the following counts DML operations only for the emp table in the hr schema:

MAP fin.*, TARGET fin.*;

MAP hr.*, TARGET hr.*;

MAP hqg.rpt, TARGET hqg.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS',
'TABLE', 'hr.emp', 'DML'));

By contrast, because there are no specific tables specified for STATS in the following example,
the function counts all INSERT, UPDATE, and DELETE operations for all tables in all schemas that
are represented in the TARGET clauses of MAP statements:

MAP fin.*, TARGET fin.*;

MAP hr.*, TARGET hr.*;

MAP hq.rpt, TARGET hg.rpt, COLMAP (USEDEFAULTS, CNT = &
@GETENV ('STATS', 'DML'));

'statistic'
The type of statistic to return. See Using Statistics in FILTER Clauses for important
information when using statistics in FILTER clauses in multiple TABLE or MAP statements.

"INSERT'
Returns the number of INSERT operations that were processed.

'UPDATE'
Returns the number of UPDATE operations that were processed.

'DELETE'
Returns the number of DELETE operations that were processed.

lDMLl
Returns the total of INSERT, UPDATE, and DELETE operations that were processed.

' TRUNCATE'

Returns the number of TRUNCATE operations that were processed. This variable returns a
count only if Oracle GoldenGate DDL replication is not being used. If DDL replication is
being used, this variable returns a zero.

'DDL'

Returns the number of DDL operations that were processed, including TRUNCATES and
DDL specified in INCLUDE and EXCLUDE clauses of the DDL parameter, all scopes (MAPPED,
UNMAPPED, OTHER). This variable returns a count only if Oracle GoldenGate DDL replication
is being used. This variable is not valid for ' DELTASTATS'.

ORACLE 399

ORACLE

Chapter 3
@GETENV

'"CDR_CONFLICTS'

Returns the number of conflicts that Replicat detected when executing the Conflict
Detection and Resolution (CDR) feature.

Example for a specific table:

@GETENV ('STATS', 'TABLE', '"HR.EMP', 'CDR_CONFLICTS')

Example for all tables processed by Replicat:

@GETENV ('STATS', 'CDR_CONFLICTS')

'CDR_RESOLUTIONS SUCCEEDED'

Returns the number of conflicts that Replicat resolved when executing the Conflict
Detection and Resolution (CDR) feature.

Example for a specific table:

@GETENV ('STATS','TABLE', 'HR.EMP', 'CDR RESOLUTIONS SUCCEEDED')
Example for all tables processed by Replicat:
@GETENV ('STATS', 'CDR RESOLUTIONS SUCCEEDED')

"CDR_RESOLUTIONS FAILED'

Returns the number of conflicts that Replicat could not resolve when executing the
Conflict Detection and Resolution (CDR) feature.

Example for a specific table:

@GETENV ('STATS', 'TABLE', 'HR.EMP', 'CDR RESOLUTIONS FAILED')

Example for all tables processed by Replicat:

@GETENV ('STATS', 'CDR RESOLUTIONS FAILED')

'GGENVIRONMENT' , 'environment info'
Valid for Extract and Replicat.

Use the GGENVIRONMENT option of @GGETENV to return information about the Oracle GoldenGate
environment.

Syntax

@GETENV ('GGENVIRONMENT', {'DOMAINNAME'|'GROUPDESCRIPTION'|'GROUPNAME' |
'GROUPTYPE' | "HOSTNAME' | "OSUSERNAME' | ' PROCESSID')

'DOMAINNAME '
(Windows only) Returns the domain name associated with the user that started the process.

' GROUPDESCRIPTION'

Returns the description of the group, taken from the checkpoint file. Requires that a
description was provided with the DESCRIPTION parameter when the group was created with
the ADD command.

' GROUPNAME '
Returns the name of the process group.

3-23

ORACLE

Chapter 3
@GETENV

' GROUPTYPE'
Returns the type of process, either EXTRACT or REPLICAT.

'HOSTNAME'
Returns the name of the system running the Extract or Replicat process.

'OSUSERNAME '
Returns the operating system user name that started the process.

' PROCESSID'
Returns the process ID that is assigned to the process by the operating system.

'GGHEADER' , 'header info'
Valid for Extract and Replicat.

Use the GGHEADER option of @GETENV to return information from the header portion of an Oracle
GoldenGate trail record. The header describes the transaction environment of the record. For
more information on record headers and record types, see Trail Record Format.

Syntax

@GETENV ('GGHEADER', {'BEFOREAFTERINDICATOR'|'COMMITTIMESTAMP'|'LOGPOSITION' |
'LOGRBA' | 'OBJECTNAME' | 'TABLENAME' | 'OPTYPE' | 'RECORDLENGTH' |
'TRANSACTIONINDICATOR'})

< Note:

Do not use TIMESTAMP PRECISE for ordering operations. Instead use this value:
QCOMPUTE (RCOMPUTE (@NUMSTR (QGETENV ("RECORD",
"FILESEQNO"))*100000000000) +@NUMSTR (RGETENV ("RECORD", "FILERBA")))

'BEFOREAFTERINDICATOR'
Returns the before or after indicator showing whether the record is a before image or an after
image. Possible results are:

e BEFORE (before image)

e AFTER (after image)

'COMMITTIMESTAMP'
Returns the transaction timestamp (the time when the transaction committed) expressed in the
format of YYYY-MM-DD HH:MI:SS.FFFFFF, for example:

2011-01-24 17:08:59.000000

'LOGPOSITION'
Returns the position of the Extract process in the data source. (See the LOGRBA option.)

'LOGRBA'

LOGRBA and LOGPOSITION store details of the position in the data source of the record. For
transactional log-based products, LOGRBA is the sequence number and LOGPOSITION is the
relative byte address. However, these values will vary depending on the capture method and
database type.

3-24

Chapter 3
@GETENV

'"OBJECTNAME' | 'TABLENAME'
Returns the table name or object name (if a non-table object).

"OPTYPE'
Returns the type of operation. Possible results are:

INSERT

UPDATE

DELETE

SQL COMPUPDATE
PK UPDATE
TRUNCATE

If the operation is not one of the above types, then the function returns the word TYPE with the
number assigned to the type.

'RECORDLENGTH'
Returns the record length in bytes.

'TRANSACTIONINDICATOR'

Returns the transaction indicator. The value corresponds to the TransInd field of the record
header, which can be viewed with the Logdump utility.

Possible results are:

° BEGIN (represents TransInD of O, the first record of a transaction.)
° MIDDLE (represents TransInD of 1, a record in the middle of a transaction.)
* END (represents TransInD of 2, the last record of a transaction.)

° WHOLE (represents TransInD of 3, the only record in a transaction.)

'GGFILEHEADER' , 'header info'

Valid for Replicat only.

Use the GGFILEHEADER option of @GETENV to retrieve attributes of an Oracle GoldenGate Extract
file or trail file. These attributes are stored as tokens in the file header.

Note:

If a given database, operating system, or Oracle GoldenGate version does not
provide information that relates to a given token, a NULL value will be returned.

Syntax

@GETENV ('GGFILEHEADER', {'COMPATIBILITY'|'CHARSET'|'CREATETIMESTAMP' |
"FILENAME' | 'FILETYPE'|'FILESEQNO'|'FILESIZE'|'FIRSTRECCSN' |
"LASTRECCSN' | '"FIRSTRECIOTIME' | 'LASTRECIOTIME' | 'URI' | 'URIHISTORY' |
"GROUPNAME ' | ' DATASOURCE' | ' GGMAJORVERSION' | 'GGMINORVERSION' |
"GGVERSIONSTRING' | 'GGMAINTENANCELEVEL' | 'GGBUGFIXLEVEL' | ' GGBUILDNUMBER' |
"HOSTNAME' | '"OSVERSION' | 'OSRELEASE' | 'OSTYPE' | 'HARDWARETYPE' |
"DBNAME' |

"DBUNIQUENAME' | 'DBINSTANCE' | 'DBTYPE' | 'DBCHARSET' | ' DBMAJORVERSION' |

ORACLE .

ORACLE

Chapter 3
@GETENV

'DBMINORVERSION' | 'DBVERSIONSTRING' | 'DBCLIENTCHARSET' | 'DBCLIENTVERSIONSTRING' |
'LASTCOMPLETECSN' | ' LASTCOMPLETEXIDS' | 'LASTCSN' | 'LASTXID' |
'LASTCSNTS' | 'RECOVERYMODE' })

'COMPATIBILITY'

Returns the compatibility level of the trail file. The compatibility level of the current Oracle
GoldenGate version must be greater than, or equal to, the compatibility level of the trail file to
be able to read the data records in that file. Current valid values are from O or 6.

¢ 1 means that the trail file is of Oracle GoldenGate version 10.0 or later, which supports file
headers that contain file versioning information.

* 0 means that the trail file is of an Oracle GoldenGate version that is older than 10.0. File
headers are not supported in those releases. The 0 value is used for backward
compatibility to those Oracle GoldenGate versions.

5 means that the trail file is of Oracle GoldenGate version 12.2 or later.
* 6 means that the trail file is of Oracle GoldenGate version 12.3.0.1.

This value keeps increasing as per the Oracle GoldenGate version depending on the trail
file version.

'CHARSET'
Returns the global character set of the trail file. For example:
WCP1252-1

'CREATETIMESTAMP'
Returns the time that the trail was created, in local GMT Julian time in INT64.

'FILENAME'
Returns the name of the trail file. Can be an absolute or relative path, with a forward or
backward slash depending on the file system.

'"FILETYPE'

Returns a numerical value indicating whether the trail file is a single file (such as one created
for a batch run) or a sequentially numbered file that is part of a trail for online, continuous
processing. The valid values are:

e 0 - EXTFILE

e 1 - EXTTRAIL

e 2 - UNIFIED and EXTFILE
e 3 - UNIFIED and EXTTRAIL
'FILESEQNO'

Returns the sequence number of the trail file, without any leading zeros. For example, if a file
sequence number is aa000026, FILESEQNO returns 26.

'"FILESIZE'
Returns the size of the trail file. It returns NULL on an active file and returns a size value when
the file is full and the trail rolls over.

'FIRSTRECCSN'
Returns the commit sequence number (CSN) of the first record in the trail file. Value is NULL
until the trail file is completed.

3-26

ORACLE

Chapter 3
@GETENV

'LASTRECCSN'
Returns the commit sequence number (CSN) of the last record in the trail file. Value is NULL
until the trail file is completed.

'FIRSTRECIOTIME'
Returns the time that the first record was written to the trail file. Value is NULL until the trail file
is completed.

'"LASTRECIOTIME'
Returns the time that the last record was written to the trail file. Value is NULL until the trail file
is completed.

' RECOVERYMODE '
Returns recovery information for internal Oracle GoldenGate use. It is usually set to
APPENDMODE.

'"URI'
Returns the universal resource identifier of the process that created the trail file, in the
following format:

host name:dir:[:dir][:dir n]group name

Where:

* host_name is the name of the server that hosts the process

* dir is a subdirectory of the Oracle GoldenGate installation path.

* group name is the name of the process group that is linked with the process.

The following example shows where the trail was processed and by which process. This

includes a history of previous runs.

sysl:home:oracle:v9.5:extora

'"URIHISTORY'
Returns a list of the URIs of processes that wrote to the trail file before the current process.

e For a primary Extract, this field is empty.
e For a data pump, this field is URTHistory + URI of the input trail file.
' GROUPNAME '

Returns the name of the group that is associated with the Extract process that created the
trail. The group name is the one that was supplied when the ADD EXTRACT command was

issued.

'DATASOURCE'
Returns the data source that was read by the process as a number. The return value can be
one of the following:

* DS _EXTRACT TRAILS: The source was an Oracle GoldenGate extract file, populated with
change data. The return value is 0.

* DS DATABASE: The source was a direct select from database table written to a trail, used
for SOURCEISTABLE-driven initial load. The return value is 2.

e DS _TRAN LOGS: The source was the database transaction log. The return value is 3.

3-27

Chapter 3
@GETENV

e DS _INITIAL DATA LOAD: The source was a direct select from database tables for an initial
load. The return value is 4.

* DS VAM EXTRACT: The source was a vendor access module (VAM). The return value is 5.
* DS VAM TWO PHASE COMMIT: The source was a VAM trail. The return value is 6.
' GGMAJORVERSION'

Returns the major version of the Extract process that created the trail, expressed as an
integer. For example, if a version is 1.2.3, it returns 1.

' GGMINORVERSION'
Returns the minor version of the Extract process that created the trail, expressed as an
integer. For example, if a version is 1.2.3, it returns 2.

' GGVERSIONSTRING'
Returns the maintenance (or patch) level of the Extract process that created the trail,
expressed as an integer. For example, if a version is 1.2.3, it returns 3.

' GGMAINTENANCELEVEL'
Returns the maintenance version of the process (xx.xx.xx).

' GGBUGFIXLEVEL'
Returns the patch version of the process (xx.xx.xx.xx).

' GGBUILDNUMBER'
Returns the build number of the process.

"HOSTNAME'
Returns the DNS name of the machine where the Extract that wrote the trail is running. For
example:

°* sSysa
* sysb
* paris
* hqg25
'OSVERSION'

Returns the major version of the operating system of the machine where the Extract that wrote
the trail is running. For example:

* Version s10 69
e #1 SMP Fri Feb 24 16:56:28 EST 2006

e 5.00.2195 Service Pack 4
'OSRELEASE'
Returns the release version of the operating system of the machine where the Extract that

wrote the trail is running. For example, release versions of the examples given for 0SVERSION
could be:

e 5.10

* 2.6.9-34.ELsmp

ORACLE 308

ORACLE

Chapter 3
@GETENV

'OSTYPE'
Returns the type of operating system of the machine where the Extract that wrote the trail is
running. For example:

e Sun0S

e Linux

* Microsoft Windows
'HARDWARETYPE'

Returns the type of hardware of the machine where the Extract that wrote the trail is running.
For example:

* sundu
e x86 64
e x86
'DBNAME'

Returns the name of the database, for example findb.

' DBUNIQUENAME '
Returns the value of the DB_UNIQUE NAME token as read from the header of the source trail file.
Its value matches the DB _UNIQUE NAME parameter of the source database.

'DBINSTANCE'
Returns the name of the database instance, if applicable to the database type, for example
ORA1022A.

'DBTYPE'
Returns the type of database that produced the data in the trail file. Can be one of:

DB2 UDB
DB2 Z70S
MSSQL
MYSQL
ORACLE
TERADATA
ODBC

'DBCHARSET'
Returns the character set that is used by the database that produced the data in the trail file.
(For some databases, this will be empty.)

' DBMAJORVERSION'
Returns the major version of the database that produced the data in the trail file.

' DBMINORVERSION'
Returns the minor version of the database that produced the data in the trail file.

'DBVERSIONSTRING'
Returns the maintenance (patch) level of the database that produced the data in the trail file.

'DBCLIENTCHARSET'
Returns the character set that is used by the database client.

3-29

Chapter 3

@GETENV
' DBCLIENTVERSIONSTRING'
Returns the maintenance (patch) level of the database client. (For some databases, this will
be empty.)
' LASTCOMPLETECSN'

Returns recovery information for internal Oracle GoldenGate use.

' LASTCOMPLETEXIDS'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCSN'
Returns recovery information for internal Oracle GoldenGate use.

'LASTXID'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCSNTS'
Returns recovery information for internal Oracle GoldenGate use.

'RECORD' , 'location_info'
Valid for a data pump Extract or Replicat.

Use the RECORD option of @GETENV to return the location or Oracle rowid of a record in an
Oracle GoldenGate trail file.

Syntax

@GETENV ('RECORD',
{'TIMESTAMP PRECISE'|'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

'TIMESTAMP PRECISE'

Valid for Extract or Replicat.

The TIMESTAMP PRECISE option returns the timestamp from year to microseconds. However,
depending on the database, the value can be in milliseconds with O microseconds.

'"FILESEQNO'
Returns the sequence number of the trail file without any leading zeros.

'"FILERBA'
Returns the relative byte address of the record within the FILESEQNO file.

"ROWID'
(Valid for Oracle) Returns the row id of the record.

'RSN'

Returns the record sequence number within the transaction. This value does not always
generate uniquely increasing values and should not be used to order operations. For ordering
transactions or DML operations within a transaction, use the information outlined in MOS DOC
ID 1340823.1.

'TIMESTAMP'
Returns the timestamp of the record.

ORACLE 330

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=355027630061971&id=1439822.1&_afrWindowMode=0&_adf.ctrl-state=1dv3nz3o4z_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=355027630061971&id=1439822.1&_afrWindowMode=0&_adf.ctrl-state=1dv3nz3o4z_4

ORACLE

Chapter 3
@GETENV

Example:

REC-TIMESTAMP: 2017-10-31 06:21:07 REC-TIMESTAMP-PRECISE: 2017-10-31
06:21:07.478064

'DBENVIRONMENT' , 'database info'

Valid for Extract and Replicat.

Use the DBENVIRONMENT option of @GGETENV to return global environment information for a
database.

Syntax

@GETENV ('DBENVIRONMENT',
{ "DBNAME' | ' DBUNIQUENAME' | 'DBVERSION' | 'DBUSER' | ' SERVERNAME' })

'"DBNAME '
Returns the database name.

' DBUNIQUENAME '

Returns the value of the DB_UNIQUE NAME parameter of the database to which the process is
connected. The source database in the case of Extract and the target database for Replicat.
This value will be set only for Oracle databases.

'"DBVERSION'
Returns the database version.

'DBUSER'
Returns the database login user. Note that SQL Server does not log the user ID.

' SERVERNAME '
Returns the name of the server.

'TRANSACTION' , 'transaction_info
Valid for Extract.

Use the TRANSACTION option of QGETENV to return information about a source transaction. This
option is valid for the Extract process but not for pump Extract and Replicat.

Syntax

@GETENV ('TRANSACTION',
{'TIMESTAMP PRECISE'|'TRANSACTIONID'|'XID'"|'CSN'|'TIMESTAMP'|'NAME" |

'USERNAME' | 'PLANNAME' | 'LOGBSN' | 'REDOTHREAD' | 'PROGRAMNAME' |
'CLIENTIDENTIFTER' | 'MACHINENAME' | 'USERNAME')
Note:

Do not use TIMETSAMP PRECISE or TIMESTAMP for ordering operations. Instead use
this value: @COMPUTE (@COMPUTE (@NUMSTR (@GETENV ("RECORD",
"FILESEQNO"))*100000000000) +@NUMSTR (RGETENV ("RECORD", "FILERBA")))

3-31

ORACLE

Chapter 3
@GETENV

'"TIMESTAMP PRECISE'

This option is valid for Extract. Use the TIMESTAMP PRECISE returns the timestamp from year
to microseconds. However, depending on the database, the value can be in milliseconds with
0 microseconds

'"TRANSACTIONID' | 'XID'

Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The transaction
ID and the CSN are associated with the first record of every transaction and are stored as
tokens in the trail record. For each transaction ID, there is an associated CSN. Transaction ID
tokens have no zero-padding on any platform, because they never get evaluated as relative
values. They only get evaluated for whether they match or do not match. Note that in the trail,
the transaction ID token is shown as TRANID.

'CSN'

Returns the commit sequence number (CSN). The CSN is not zero-padded when returned for
these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other supported databases, the
CSN is zero-padded.

Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.

For more information about the CSN, see Commit Sequence Number (CSN).

'TIMESTAMP'
Returns the commit timestamp of the transaction.

'"NAME'
Returns the transaction name, if available.

'USERNAME'
(Oracle) Returns the Oracle user name of the database user that committed the last
transaction. This is not valid for pump Extract and/or Replicat.

' PLANNAME'
(DB2 z/OS) Returns the plan name under which the current transaction was originally
executed. The plan name is included in the begin unit of recovery log record.

'LOGBSN'

Returns the begin sequence number (BSN) in the transaction log. The BSN is the native
sequence number that identifies the beginning of the oldest uncommitted transaction that is
held in Extract memory. For example, given an Oracle database, the BSN would be expressed
as a system change number (SCN). The BSN corresponds to the current I/O checkpoint value
of Extract. This value can be obtained from the trail by Replicat when @GETENV
("TRANSACTION', 'LOGBSN') is used. This value also can be obtained by using the INFO
REPLICAT command with the DETAIL option. The purpose of obtaining the BSN from Replicat is
to get a recovery point for Extract in the event that a system failure or file system corruption
makes the Extract checkpoint file unusable.

'"REDOTHREAD'

Returns the thread number of a RAC node extract; on non-RAC node extracts the value is
always 1. For data pump and Replicat, the thread id used by Extract capture of a RAC node is
returned; on non-RAC, @GETENV () returns an error. Logdump shows the token, ORATHREADID,
in the token section if the transaction is captured by Extract on a RAC node.

‘PROGRAMNAME’
Name of the program or application that started the transaction or session.

3-32

ORACLE

Chapter 3
@GETENV

‘CLIENTIDENTIFIER’
Value set by using DBMS SESSION .set identifier().

‘MACHINENAME'
Name of the host, machine, or server where database is running

‘USERNAME'’
Database login user name.

Example:

DB2 zO0S:
TRANS-TIMESTAMP: 2017-10-31 06:21:07
TRANS-TIMESTAMP-PRECISE: 2017-10-31 06:21:07.485792

'OSVARIABLE' , 'variable'

Valid for Extract and Replicat.

Use the 0SVARIABLE option of @GETENV to return the string value of a specified operating-
system environment variable.

Syntax

@GETENV ('OSVARIABLE', 'variable')

'variable'

The name of the variable. The search is an exact match of the supplied variable name. For
example, the UNIX grep command would return all of the following variables, but

@GETENV ('OSVARIABLE', 'HOME') would only return the value for HOME:

ANT HOME=/usr/local/ant

JAVA HOME=/usr/java/j2sdkl.4.2 10
HOME=/home/judyd

ORACLE HOME=/rdbms/oracle/oral0221i/64

The search is case-sensitive if the operating system supports case-sensitivity.
'"TLFKEY' , SYSKEY, 'unique key'

Valid for Extract and Replicat.

Use the TLFKEY option of @GETENV to associate a unique key with TLF/PTLF records in ACI's
Base24 application. The 64-bit key is composed of the following concatenated items:

e The number of seconds since 2000.
e The block number of the record in the TLF/PTLF block multiplied by ten.
* The node specified by the user (must be between 0 and 255).

Syntax

@GETENV ('TLFKEY', SYSKEY, unique key)

3-33

Chapter 3
@GETVAL

SYSKEY, unique key

The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax element in
quotes.

Example:

GETENV ('TLFKEY', SYSKEY, 27)

' SOURCEDATABASEINFO'

This option has the DBUNIQUENAME and DBNAME fields. The fields from SOURCEDATABASEINFO are
different from the GGFILEHEADER fields. Firstly, their performance is better as compared to
the fields from GGFILEHEADER, SO Using SOURCEDATABASEINFO is a better alternative for
scenarios where performance is critical. Secondly, when the DBUNIQUENAME token is not
available in the trail header, either because the trail file was generated by an older version of
Oracle GoldenGate, or because the database is not Oracle, GETENV will treat DBUNIQUENAME as
a synonym of DBNAME. In this case, a warning message will be written to the report file, the first
time a header without the token is read.

@GETVAL

ORACLE

Use the QGETVAL function to extract values from a stored procedure or query so that they can
be used as input to a FILTER or COLMAP clause of a MAP or TABLE Statement.

Whether or not a parameter value can be extracted with €GETVAL depends upon the following:

1. Whether or not the stored procedure or query executed successfully.
2. Whether or not the stored procedure or query results have expired.

When a value cannot be extracted, the @GETVAL function results in a "column missing"”
condition. Typically, this occurs for update operations if the database only logs values for
columns that were changed.

Usually this means that the column cannot be mapped. To test for missing column values, use
the @COLTEST function to test the result of @GETVAL, and then map an alternative value for the
column to compensate for missing values, if desired. Or, to ensure that column values are
available, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE or MAP
parameter to fetch the values from the database if they are not present in the log. Enabling
supplemental logging for the necessary columns also would work.

Syntax

@GETVAL (name.parameter)

name

The name of the stored procedure or query. When using SQLEXEC to execute the procedure or
query, valid values are as follows:

For queries, use the logical name specified with the 1D option of the SQLEXEC clause. IDis a
required SQLEXEC argument for queries.

For stored procedures, use one of the following, depending on how many times the procedure
is to be executed within a TABLE or MAP Statement:

* For multiple executions, use the logical name defined by the ID clause of the SQLEXEC
statement. 1D is required for multiple executions of a procedure.

« For a single execution, use the actual stored procedure name.

3-34

ORACLE

Chapter 3
@GETVAL

parameter
Valid values are one of the following.

e The name of the parameter in the stored procedure or query from which the data will be
extracted and passed to the column map.

* RETURN VALUE, if extracting values returned by a stored procedure or query.

Alternate Syntax

With SQLEXEC, you can capture parameter results without explicitly using the @GETVAL keyword.
Simply refer to the procedure name (or logical name if using a query or multiple instances of a
procedure) and parameter in the following format:

{procedure name | logical name}.parameter

Examples, Standard Syntax

Example 1

The following enables each map statement to call the stored procedure lookup by referencing
the logical names lookupl and lookup2 within the @GETVAL function and refer appropriately to
each set of results.

MAP schema.srctab, TARGET schema.targtab,

SQLEXEC (SPNAME lookup, ID lookupl, PARAMS (paraml = srccol)),
COLMAP (targcoll = QGETVAL (lookupl.param2));

MAP schema.srctab, TARGET schema.targtabz,

SQLEXEC (SPNAME lookup, ID lookup2, PARAMS (paraml = srccol)),
COLMAP (targcol2= QGETVAL (lookup2.param?));

Example 2
The following shows a single execution of the stored procedure lookup. In this case, the
actual name of the procedure is used. A logical name is not needed.

MAP schema.tabl, TARGET schema.tab2,
SQLEXEC (SPNAME lookup, PARAMS (paraml = srccol)),
COLMAP (targcol = Q@GETVAL (lookup.paraml));

Example 3
The following shows the execution of a query from which values are mapped with @GETVAL.

MAP sales.account, TARGET sales.newacct,

SQLEXEC (ID lookup,

QUERY ' select desc col into desc param from lookup table '

' where code col = :code param ',

PARAMS (code param = account code)),

COLMAP (newacct id = account id, newacct val = @QGETVAL (lookup.desc param));

Examples, Alternate Syntax

Example 1
In the following example, @GETVAL is called implicitly for the phrase procl.p2 without the
@QGETVAL keyword.

MAP test.tabl, TARGET test.tab2,
SQLEXEC (SPNAME procl, ID myproc, PARAMS (pl = sourcecoll)),
COLMAP (targcoll = procl.p2);

Example 2
In the following example, the @GETVAL function is called implicitly for the phrase
lookup.desc param without the @GETVAL keyword.

3-35

Chapter 3
@HEXTOBIN

MAP sales.account, TARGET sales.newacct,

SQLEXEC (ID lookup,

QUERY ' select desc col into desc param from lookup table '

' where code col = :code param ',

PARAMS (code param = account code)),

COLMAP (newacct id = account id, newacct val = lookup.desc param);

@HEXTOBIN

Use the @HEXTOBIN function to convert a supplied string of hexadecimal data into raw format.
Syntax
@HEXTOBIN (data)

data

The name of the source column, an expression, or a literal string that is enclosed within
double quote marks.

Example

@HEXTOBIN ('414243') converts to three bytes: 0x41 0x42 0x43.

@HIGHVAL | LOWVAL

ORACLE

Use the @HIGHVAL and RLOWVAL functions when you need to generate a value, but you want to

constrain it within an upper or lower limit. These functions emulate the COBOL functions of the
same names.

Use @HIGHVAL and @LOWVAL only with string and binary data types. When using them with
strings, only @STRNCMP is valid. Using them with decimal or date data types or with SQLEXEC
operations can cause errors. DOUBLE data types result in -1 or 0 (Oracle NUMBER, ho precision,
no scale).

Syntax

@HIGHVAL ([length]) | QLOWVAL ([length])

length
Optional. Specifies the binary output length in bytes. The maximum value of length is the
length of the target column.

Example

The following example assumes that the size of the group level column is 5 bytes.

Function statement Result

group level = @HIGHVAL () {0xFF, O0xFF, OxFF, OxFF, OxFF}
group level = @QLOWVAL () {0x00, 0x00, 0x00, 0x00, 0x00}
group level = QHIGHVAL (3) {0xFF, OxFF, OxFF}

3-36

QIF

ORACLE

Chapter 3
@IF

Function statement Result

group level = QLOWVAL (3) {0x00, 0x00, 0x00}

Use the @1F function to return one of two values, based on a condition. You can use the ¢IF
function with other Oracle GoldenGate functions to begin a conditional argument that tests for
one or more exception conditions. You can direct processing based on the results of the test.
You can nest @IF statements, if needed.

Syntax

QIF (condition, value if non-zero, value if-zero)

condition

A valid conditional expression or Oracle GoldenGate function. Use humeric operators (such as
=, > or <) only for numeric comparisons. For character comparisons, use one of the character-
comparison functions.

value if non-zero
Non-zero is considered true.

value if zero
Zero (0) is considered false.

Examples

Example 1
The following returns an amount only if the AMT column is greater than zero; otherwise zero is
returned.

AMOUNT COL = QIF (AMT > 0, AMT, 0)

Example 2

The following returns WEST if the STATE column is CA, AZ or NV; otherwise it returns EAST.
REGION = @IF (Q@VALONEOF (STATE, 'CA', 'AZ', 'NV'), 'WEST', 'EAST')

Example 3

The following returns the result of the PRICE column multiplied by the QUANTITY column if both
columns are greater than 0. Otherwise, the @QCOLSTAT (NULL) function creates a NULL value in
the target column.

ORDER TOTAL = QIF (PRICE > 0 AND QUANTITY > 0, PRICE * QUANTITY,
@COLSTAT (NULL))

Example 4
The following example demonstrates a nested @IF statement. In the example, if the QUANTITY
is more than 10, then the item price is 90% of thePRICE.

ORDER TOTAL = QIF (PRICE > 0 AND QUANTITY > 0, @IF (QUANTITY > 10, (PRICE * 0.9) *
QUANTITY, PRICE * QUANTITY), QCOLSTAT (NULL))

3-37

Chapter 3
@NUMBIN

Note:

When enclosed in parenthesis (), Oracle GoldenGate column mapping function
expects numeric results. The column value must be specified using single quotes.

@NUMBIN

Use the @NUMBIN function to convert a binary string of eight or fewer bytes into a number. Use
this function when the source column defines a byte stream that actually is a number
represented as a string.

Syntax
@NUMBIN (source column)

source_column
The name of the source column that contains the string to be converted.

Example

The following combines @NUMBIN and @DATE to transform a 48-bit column to a 64-bit Julian
value for local time.

DATE = @QDATE ('JTSLCT', 'TTS' @NUMBIN (DATE))

@NUMSTR

Use the @NUMSTR function to convert a string (character) column or value into a number. Use
@NUMSTR to do either of the following:

e Map a string (character) to a number.

* Use a string column that contains only numbers in an arithmetic expression.
Syntax

@NUMSTR (input)

input
Can be either of the following:

* The name of a character column.

e Aliteral string that is enclosed within single quote marks.

Example

PAGE NUM = @NUMSTR (ALPHA PAGE NO)

@0GG_SHAL

Use the 0GG_SHA1 function to return the SHA-1 160 bit / 20 bytes hash value.

Syntax

OGG_SHAI (expression)

ORACLE 338

Chapter 3
@STRCAT

expression
The name of a column, literal string, other column mapping function.

Example

OGG_SHAI (col name)

@STRCAT

Use the @STRCAT function to concatenate one or more strings or string (character) columns.
Enclose literal strings within single quote marks.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

Syntax

@STRCAT (stringl, string2 [, ...])

stringl
The first column or literal string to be concatenated.

string2
The next column or literal string to be concatenated.

Example

The following creates a phone number from three columns and includes the literal formatting
values.

PHONE NO = @STRCAT (AREA CODE, PREFIX, '-', PHONE)

@STRCMP

ORACLE

Use the @STRCMP function to compare two character columns or literal strings. Enclose literals
within single quote marks.

@STRCMP returns the following:

e -1 if the first string is less than the second.

e 0 if the strings are equal.

e 1 if the first string is greater than the second.

Trailing spaces are truncated before comparing the strings.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRCMP (stringl, string2)

3-39

Chapter 3
@STRCMPNULL

stringl
The first column or literal string to be compared.

string2
The second column or literal string to be compared.

Example

The following example compares two literal strings and returns 1 because the first string is
greater than the second one.

@STRCMP ('JOHNSON', 'JONES')

@STRCMPNULL

@STREQ

ORACLE

Use the @STRCMPNULL in the same way as @STRCMP function to compare two character columns
or literal strings, but if the arguments are NULL, the result value is 0 instead of NULL.

Syntax

@STRCMPNULL (stringl, string2)

stringl
The first column or literal string to be compared.

string2
The second column or literal string to be compared.

Use the @STREQ function to determine whether or not two string (character) columns or literal
strings are equal. Enclose literals within single quote marks. @STREQ returns the following:

e 1 (true) if the strings are equal.
e 0 (false) if the strings are not equal.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems.

Trailing spaces are truncated before comparing the strings.

This function does not support NCHAR or NVARCHAR data types.
Syntax
@STREQ (stringl, string2)

stringl
The first column or literal string to be compared.

string2
The second column or literal string to be compared.

Example

The following compares the value of the region column to the literal value EAST. If region =
EAST, the record passes the filter.

3-40

Chapter 3
@STREQNULL

FILTER (@STREQ (region, 'EAST'))

You could use @STREQ in a comparison to determine a result, as shown in the following
example. If the state is NY, the expression returns East Coast. Otherwise, it returns Other.

@IF (@STREQ (state, 'NY'), 'East Coast', 'Other')

@STREQNULL

Use the @STREQNULL function in the same way as @STREQ to determine whether or not two string
(character) columns or literal strings are equal. However, if the two arguments passed to the
function are NULL, then the return value is 1.

Syntax

@STREQNULL (stringl, string2)

stringl
The first column or literal string to be compared.

string2
The second column or literal string to be compared.

@STREXT

ORACLE

Use the @STREXT function to extract a portion of a string.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

This function does not support NCHAR Or NVARCHAR data types.

Syntax

@STREXT (string, begin position, end position)

string
The string from which to extract. The string can be either the name of a character column or a
literal string. Enclose literals within single quote marks.

begin position
The character position at which to begin extraction.
end position

The character position at which to end extraction. The end position is included in the
extraction.

Example

The following example uses three ¢STREXT functions to extract a phone number into three
different columns.

AREA CODE = @STREXT (PHONE, 1, 3),
PREFIX = @STREXT (PHONE, 4, 6),
PHONE NO = @STREXT (PHONE, 7, 10)

3-41

Chapter 3
@STRFIND

@STRFIND

Use the @STRFIND function to determine the position of a string within a string column or else
return zero if the string is not found. Optionally, @STRFIND can accept a starting position within
the string.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.
Syntax
@STRFIND (string, 'search string' [, begin position])

string
The string in which to search. This can be either the name of a character column or a literal
string that is within single quote marks.

'search string'
The string for which to search. Enclose the search string within single quote marks.

begin position
The byte position at which to begin searching.

Example

Assuming the string for the ACCT column is ABC123ABC, the following are possible results.

Function statement Result
5

@STRFIND (ACCT, '23'")

@STRFIND (ACCT, 'ZZ'")

@STRFIND (ACCT, 'ABC', 2) 7 (because the search started at the second byte)

@STRLEN

ORACLE

Use the @STRLEN function to return the length of a string, expressed as the number of
characters.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRLEN (string)

3-42

Chapter 3
@STRLTRIM

string
The name of a string (character) column or a literal string. Enclose literals within single quote
marks.

Examples

@STRLEN (ID_NO)

@STRLEN ('abcd')

@STRLTRIM

Use the @STRLTRIM function to trim leading spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

Syntax
@STRLTRIM (string)

string
The name of a character column or a literal string that is enclosed within single quote marks.

Example

birth state = @strltrim (state)

@STRNCAT

ORACLE

Use the @STRNCAT function to concatenate one or more strings to a maximum length.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRNCAT (string, max length [, string, max length] [, ...])

string
The name of a string (character) column or a literal string that is enclosed within single quote
marks.

max_length
The maximum string length, in characters.

Example
The following concatenates two strings and results in ABC123.

PHONE NO = @STRNCAT ('ABCDEF', 3, '123456', 3)

3-43

Chapter 3
@STRNCMP

@STRNCMP

Use the @STRNCMP function to compare two strings based on a specific number of bytes. The
string can be either the name of a string (character) column or a literal string that is enclosed
within single quote marks. The comparison starts at the first byte in the string.

@STRNCMP returns the following:

e -1 ifthe first string is less than the second.

e 0 if the strings are equal.

e 1 if the first string is greater than the second.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRNCMP (stringl, string2, max length)

stringl
The first string to be compared.

string2
The second string to be compared.

max_length
The maximum number of bytes in the string to compare.

Example

The following example compares the first two bytes of each string, as specified by a
max_length of 2, and it returns 0 because both sets are the same.

@STRNCMP ('JOHNSON', 'JONES', 2)

@STRNUM

ORACLE

Use the @STRNUM function to convert a number into a string and specify the output format and
padding.

Syntax
@STRNUM (column, {LEFT | LEFTSPACE, | RIGHT | RIGHTZERO} [length])

column
The name of a source numeric column.

LEFT
Left justify, without padding.

LEFTSPACE
Left justify, fill the rest of the target column with spaces.

RIGHT
Right justify, fill the rest of the target column with spaces. If the value of a column is a negative
value, the spaces are added before the minus sign. For example, strnum(Coll, right) used

3-44

Chapter 3
@STRRTRIM

for a column value of -1.27 becomes ###-1.27, assuming the target column allows 7 digits.
The minus sign is not counted as a digit, but the decimal is.

RIGHTZERO

Right justify, fill the rest of the target column with zeros. If the value of a column is a negative
value, the zeros are added after the minus sign and before the numbers. For example,
strnum(Coll, rightzero) used for a column value of -1.27 becomes -0001.27, assuming the
target column allows 7 digits. The minus sign is not counted as a digit, but the decimal is.

length
Specifies the output length, when any of the options are used that specify padding (all but
LEFT). For example:

* strnum(Coll, right, 6) used for a column value of -1.27 becomes ##-1.27. The minus
sign is not counted as a digit, but the decimal is.

e strnum(Coll, rightzero, 6) used fora column value of -1.27 becomes -001.27. The
minus sign is not counted as a digit, but the decimal is.

Example

Assuming a source column named NUM has a value of 15 and the target column's maximum
length is 5 characters, the following examples show the different types of results obtained with
formatting options.

Function statement Result (# denotes a space)
CHAR1 = @STRNUM (NUM, LEFT) 15

CHAR1 = @STRNUM (NUM, LEFTSPACE) 15444

CHAR1 = @STRNUM (NUM, RIGHTZERO) 00015

CHAR1 = @STRNUM (NUM, RIGHT) ##4#15

If an output Iength of 4 is specified in the preceding example, the following shows the different
types of results.

Function statement Result (# denotes a space)
CHAR1 = @STRNUM (NUM, LEFTSPACE, 4) 1544
CHAR1 = @STRNUM (NUM, RIGHTZERO, 4) 0015
CHAR1 = Q@STRNUM (NUM, RIGHT, 4) ##15

@STRRTRIM

ORACLE

Use the @STRRTRIM function to trim trailing spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft

3-45

Chapter 3
@STRSUB

Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

Syntax

@STRRTRIM (string)

string
The name of a character column or a literal string that is enclosed within single quote marks.

Example

street address = @strrtrim (address)

@STRSUB

Use the @STRSUB function to substitute strings within a string (character) column or constant.
Enclose literal strings within single quote marks.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

Any single byte code value 1 to 255 can be used in hexadecimal or octal format for the string
arguments. Hex values A to F are case insensitive and the leading 'x' must be lower case.
Value zero (0) (\x00 and \000) is not allowed because it is a string terminator.

No UNICODE values are supported.

This function does not support NCHAR or NVARCHAR data types.
Syntax

@STRSUB
(source string, search string, substitute string
[, search string, substitute string] [, ...])

For multibyte characters, STRSUB () must be used as follows:

FIND CATEGORY = @STRSUB (FIND CATEGORY, '\uOOAQ', ''),

source string
A source string, within single quotes, or the name of a source column that contains the
characters for which substitution is to occur.

search string
The string, within single quotes, for which substitution is to occur.

substitute string
The string, within single quotes, that will be substituted for the search string.

ORACLE 346

Chapter 3
@STRTRIM

Examples

The following returns xxABCxx.

@STRSUB ('123ABC123', '123', 'xx')
The following returns 023zBC023.
@STRSUB ('123ABC123', 'A', 'z', '1l', '0')

The following is an example of replacing ~z, using a hexadecimal string argument, with a
space.

@strsub (coll, '\x1A',' "));

@STRTRIM

@STRUP

ORACLE

Use the @STRTRIM function to trim leading and trailing spaces.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

Syntax

@STRTRIM (string)

string
The name of a character column or a literal string that is enclosed within single quote marks.

Example

pin no = @strtrim (custpin)

Use the @STRUP function to change an alphanumeric string or string (character) column to
upper case.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@STRUP (string)

string
The name of a character column or a literal string that is enclosed within single quote marks.

3-47

@TOKEN

Chapter 3
@TOKEN

Example
The following returns SALESPERSON.

@STRUP ('salesperson')

Use the @TOKEN function to retrieve token data that is stored in the user token area of the
Oracle GoldenGate record header. You can map token data to a target column by using @TOKEN
in the source expression of a COLMAP clause. As an alternative, you can use @TOKEN within a
SQLEXEC statement, an Oracle GoldenGate macro, or a user exit.

To define token data, use the TOKENS clause of the TABLE parameter in the Extract parameter
file.

Syntax

@TOKEN ('token'")

"token'
The name, enclosed within single quote marks, of the token for which data is to be retrieved.

Example

In the following example, 10 tokens are mapped to target columns.

MAP ora.oratest, TARGET ora.rpt,
COLMAP (

host = @token ('tk host'),
gg_group = @token ('tk group'),
osuser = @token ('tk osuser'),
domain = @token ('tk domain'),
ba ind = @token ('tk ba ind'),
commit ts = @token ('tk commit ts'),
pos = @token ('tk pos'),

rba = @token ('tk rba'),
tablename = @token ('tk table'),
optype = Qtoken ('tk optype')

)i

@VALONEOF

ORACLE

Use the @VALONEOF function to compare a string or string (character) column to a list of values.
If the value or column is in the list, 1 is returned; otherwise 0 is returned. This function trims
trailing spaces before the comparison.

For this function, Oracle GoldenGate supports the use of an escape sequence to represent
characters in a string column in Unicode or in the native character encoding of the Microsoft
Windows, UNIX, and Linux operating systems. The target column must be a SQL Unicode data
type if any argument is supplied as Unicode.

This function does not support NCHAR or NVARCHAR data types.

Syntax

@VALONEOF (expression, value [, value]l [, ...])

3-48

ORACLE

Chapter 3
@VALONEOF

expression
The name of a character column or a literal enclosed within single quote marks.

value
A criteria value.

Example

In the following example, if STATE is CA or NY, the expression returns COAST, which is the
response returned by @IF when the value is non-zero (true). Otherwise, the expression returns
MIDDLE.

@IF (@VALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MIDDLE')

3-49

User Exit Functions

This chapter describes the Oracle GoldenGate user exit functions and their syntax.
For more information about using Oracle GoldenGate user exits, see Using User Exits to
Extend Oracle GoldenGate Capabilities.

Topics:

Summary of User Exit Functions

If you use CUSEREXITS, the LD LIBRARY PATH environment variable needs to be extended for
Microservices Architecture. With CUSEREXITS, you create shared objects (*.so, *.dd1), which
are picked up only if the files are in the path.

It is recommended that you do not use (the default) $0GG_HOME/1ib directory for the shared
objects as the software location should be managed as Read-Only.

Parameter Description

EXIT CALL TYPE Indicates when, during processing, the routine is called.
EXIT CALL RESULT Provides a response to the routine.
EXIT PARAMS Supplies information to the routine.

ERCALLBACK Implements a callback routine. Callback routines retrieve record and Oracle
GoldenGate context information, and they modify the contents of data records.

Calling a User Exit

Write the user exit routine in C programming code. Use the CUSEREXIT parameter to call the
user exit from a Windows DLL or UNIX shared object at a defined exit point within Oracle
GoldenGate processing. Your user exit routine must be able to accept different events and
information from the Extract and Replicat processes, process the information as desired, and
return a response and information to the caller (the Oracle GoldenGate process that called it).
For more information and syntax for the CUSEREXIT parameter, see "CUSEREXIT".

Using EXIT_CALL TYPE

ORACLE

Use EXIT CALL TYPE to indicate when, during processing, the Extract or Replicat process (the
caller) calls a user exit routine. A process can call a routine with the following calls.

4-1

Table 4-1 User Exit Calls

Chapter 4
Using EXIT_CALL_TYPE

Call type

Processing point

EXIT CALL ABORT TRANS

Valid when the RECOVERYOPTIONS mode is APPEND (the default). Called when a
data pump or Replicat reads a RESTART ABEND record from the trail, placed
there by a writer process that abended. (The writer process can be the primary
Extract writing to a local trail read by a data pump, or a data pump writing to a
remote trail read by Replicat.) This call type enables the user exit to abort or
discard the transaction that was left incomplete when the writer process stopped,
and then to recover and resume processing at the start of the previous completed
transaction.

EXIT CALL BEGIN TRANS

Called just before either of the following:
* aBEGIN record of a transaction that is read by a data pump
e the start of a Replicat transaction

EXIT CALL CHECKPOINT

Called just before an Extract or Replicat checkpoint is written.

EXIT CALL DISCARD ASCII RECORD

Called during Extract processing before an ASCII input record is written to the
discard file. The associated ASCII buffer can be retrieved and manipulated by the
user exit using callback routines.

This call type is not applicable for use with the Replicat process.

EXIT CALL DISCARD RECORD

Called during Replicat processing before a record is written to the discard file.
Records can be discarded for several reasons, such as when a value in the
Oracle GoldenGate change record is different from the current version in the
target table.The associated discard buffer can be retrieved and manipulated by
the user exit using callback routines.

This call type is not applicable for use with the Extract process.

EXIT CALL END TRANS

Called just after either of the following:
e an END record of a transaction that is read by a data pump
e the last record in a Replicat transaction

EXIT CALL FATAL ERROR

Called during Extract or Replicat processing just before Oracle GoldenGate
terminates after a fatal error.

EXIT CALL PROCESS MARKER

Called during Replicat processing when a marker from a NonStop server is read
from the trail, and before writing to the marker history file.

EXIT CALL PROCESS RECORD

. For Extract, called before a record buffer is output to the trail.

« For Replicat, called just before a replicated operation is performed.

This call is the basis of most user exit processing. When

EXIT CALL PROCESS RECORD is called, the record buffer and other record
information are available to the user exit through callback routines. If source-
target mapping is specified in the parameter file, the mapping is performed before
the EXIT CALL PROCESS RECORD event takes place. The user exit can map,
transform, clean, or perform virtually any other operation with the record. The
user exit can return a status indicating whether the caller should process or
ignore the record.

EXIT CALL START

Called at the start of processing. The user exit can perform initialization work,
such as opening files and initializing variables.

EXIT CALL STOP

Called before the process stops gracefully or ends abnormally. The user exit can
perform completion work, such as closing files or outputting totals.

EXIT CALL RESULT

Set by the user exit routines to instruct the caller how to respond when each exit
call completes.

ORACLE

4-2

Using EXIT_CALL_RESULT

Chapter 4
Using EXIT_CALL_RESULT

Use EXIT CALL RESULT to provide a response to the routine.

Table 4-2 User Exit Responses

Call result

Description

EXIT ABEND VAL

Instructs the caller to terminate immediately.

EXIT IGNORE_VAL

Rejects records for further processing. EXIT IGNORE VAL is
appropriate when the user exit performs all the required processing for
a record and there is no need to output or replicate the data record.

EXIT OK VAL

If the routine does nothing to respond to an event, EXIT OK VAL is
assumed. If the exit call type is any of the following...

. EXIT CALL PROCESS RECORD

. EXIT CALL DISCARD RECORD

e EXIT CALL DISCARD ASCII RECORD

...and EXIT OK VAL is returned, then Oracle GoldenGate processes
the record buffer that was returned by the user exit.

EXIT PROCESSED REC VAL

Instructs Extract or Replicat to skip the record, but update the
statistics that are printed to the report file for that table and for that
operation type.

EXIT STOP_ VAL

Instructs the caller to stop processing gracefully. EXIT STOP_ VAL or
EXIT ABEND VAL may be appropriate when an error condition occurs
in the user exit.

Using EXIT_PARAMS

Use EXIT PARAMS to supply information to the user exit routine, such as the program name and
user-defined parameters. You can process a single data record multiple times.

Table 4-3 User Exit Input

Exit parameter Description

Specifies the full path and name of the calling process, for example \ggs\extract or

PROGRAM NAME

\ggs\replicat. Use this parameter when loading an Oracle GoldenGate callback routine

using the Windows API or to identify the calling program when user exits are used with both
Extract and Replicat processing.

« Allows you to pass a parameter that is a literal string to the user exit. Specify the

FUNCTION PARAM

parameter with the EXITPARAM option of the TABLE or MAP statement from which the

parameter will be passed. See "EXITPARAM 'parameter'". This is only valid during the
exit call to process a specific record.

e FUNCTION PARAM can also be used at the exit call startup event to pass the parameters
that are specified in the PARAMS option of the CUSEREXIT parameter. (See
"CUSEREXIT".) This is only valid to supply a global parameter at exit startup.

Set on return from an exit. For database records, determines whether Extract or Replicat

MORE_RECS IND

processes the record again. This allows the user exit to output many records per record

processed by Extract. To request the same record again, set MORE_RECS IND to
CHAR NO VAL or CHAR YES VAL.

ORACLE

4-3

Using ERCALLBACK

Chapter 4
Using ERCALLBACK

ERCALLBACK is the basic user exit function for Oracle GoldenGate. It is used to pull the record
context into user exit. It's like a package that contains multiple individual functions inside it. You
can call these functions and get return values. For example, functions such as

GET BEFORE AFTER IND, Or GET COLUMN VALUE FROM NAME can be called. These functions are

called function code.

Syntax

ERCALLBACK (function code, buffer, result code);

function code

The function to be executed by the callback routine. The user callback routine behaves
differently based on the function code passed to the callback routine. While some functions
can be used for both Extract and Replicat, the validity of the function in one process or the
other is dependent on the input parameters that are set for that function during the callback
routine. See Function Codes for a full description of available function codes.

buffer

A void pointer to a buffer containing a predefined structure associated with the specified

function code.

result code

The status of the function executed by the callback routine. The result code returned by the
callback routine indicates whether or not the callback function was successful. A result code
can be one of the values in Table 4-4.

Table 4-4 Result Codes

Code

Description

EXIT_FN RET BAD COLUMN DATA

Invalid data was encountered when retrieving or setting column data.

EXIT FN RET BAD DATE TIME

A date, timestamp, or interval type of column contains an invalid date or
time value.

EXIT_FN RET BAD NUMERIC VALUE

A numeric type of column contains an invalid numeric value.

EXIT_FN RET COLUMN NOT FOUND

The column was not found in a compressed update record (update by a
database that only logs the values that were changed).

EXIT_FN RET ENV_NOT FOUND

The specified environment value could not be found in the record.

EXIT FN RET EXCEEDED MAX LENGTH

The metadata could not be retrieved because the name of the table or
column did not fit in the allocated buffer.

EXIT FN RET FETCH ERROR

The record could not be fetched. View the error message to see the
reason.

EXIT FN RET INCOMPLETE DDL_REC

An internal error occurred when processing the DDL record. The record is
probably incomplete.

EXIT FN RET INVALID CALLBACK FNC CD

An invalid callback function code was passed to the callback routine.

EXIT_FN RET INVALID COLUMN

A non-existent column was referred to in the function call.

EXIT FN RET INVALID COLUMN TYPE

The routine is trying to manipulate a data type that is not supported by
Oracle GoldenGate for that purpose.

EXIT FN RET INVALID CONTEXT

The callback function was called at an improper time.

EXIT_FN RET INVALID PARAM

An invalid parameter was passed to the callback function.

ORACLE

4-4

Chapter 4
Function Codes

Table 4-4 (Cont.) Result Codes
|

Code Description

EXIT FN RET NO SRCDB INSTANCE The source database instance could not be found.
EXIT FN RET NO TGTDB INSTANCE The target database instance could not be found.
EXIT FN RET NOT SUPPORTED This function is not supported for this process.

EXIT FN RET OK

The callback function succeeded.

EXIT FN RET SESSION CS CNV_ERR AULIB ERR INVALID CHAR FOUND error was returned to the character-
set conversion routine. The conversion failed.

EXIT FN RET TABLE NOT FOUND An invalid table name was specified.

EXIT FN RET TOKEN NOT FOUND The specified user token could not be found in the record.

You can use ERCALLBACK to perform many different function calls. For example, if you want to
get the name of a table, you can use the following command:

ERCALLBACK (GET TABLE NAME, &var, &result code)

These functions are used inside the ¢ code for the user exit to perform any of the calls for
functions provided in the section Function Codes. With the combination of the different
function code calls, you can perform many tasks using ERCALLBACK, such as:

 Recreate DML statements
¢ Perform transformations
* Pull specific columns out of a record

e Write information to a report file

For example, if you need a message written to the report file each time the lag in the heartbeat
table exceeds a certain threshold, you could use the CUSEREXIT function. The CUSEREXIT
function would then make numerous calls to ERCALLBACK to get the lag column data, perform
calculations and the comparison, and if the lag is over the specified threshold then write a
message to the report file.

Function Codes

Function codes determine the output of the callback routine. The callback routine expects the
contents of the data buffer to match the structure of the specified function code. The callback
routine function codes and their data buffers are described in the following sections. The
following is a summary of available functions.

Table 4-5 Summary of Oracle GoldenGate Function Codes
. __|

Function code

Description

COMPRESS_RECORD Use the COMPRESS_RECORD function when some, but not all, of a target table's

columns are present after mapping and the entire record must be manipulated,
rather than individual column values.

DECOMPRESS_RECORD Use the DECOMPRESS RECORD function when some, but not all, of a target table's

columns are present after mapping and the entire record must be manipulated,
rather than individual column values.

ORACLE

4-5

Chapter 4
Function Codes

Table 4-5 (Cont.) Summary of Oracle GoldenGate Function Codes

Function code

Description

GET_BASE_OBJECT_NAME

Use the GET BASE OBJECT NAME function to retrieve the fully qualified name of
the base object of an object in a record.

GET_BASE_OBJECT_NAME_ONLY

Use the GET BASE OBJECT NAME ONLY function to retrieve only the name of the
base object of an object in a record.

GET_BASE_SCHEMA_NAME_ONLY

Use the GET BASE SCHEMA NAME ONLY function to retrieve only the name of the
schema of the base object of an object in a record.

GET_BEFORE_AFTER_IND

Use the GET BEFORE AFTER IND function to determine whether a record is a
before image or an after image of the database operation.

GET_CATALOG_NAME_ONLY

Use the GET CATALOG NAME ONLY function to return the name of the database
catalog.

GET_COL_METADATA_FROM_INDEX

Use the GET COL METADATA FROM INDEX function to determine the column
metadata that is associated with a specified column index.

GET_COL_METADATA_FROM_NAME

Use the GET COL_METADATA FROM NAME function to determine the column
metadata that is associated with a specified column name.

GET_COLUMN_INDEX_FROM_NAME

Use the GET COLUMN INDEX FROM NAME function to determine the column index
associated with a specified column name.

GET_COLUMN_NAME_FROM_INDEX

Use the GET COLUMN NAME FROM INDEX function to determine the column name
associated with a specified column index.

GET_COLUMN_VALUE_FROM_INDEX

Use the GET COLUMN VALUE FROM INDEX function to return the column value
from the data record using the specified column index.

GET_COLUMN_VALUE_FROM_NAME

Use the GET COLUMN VALUE FROM NAME function to return the column value from
the data record by using the specified column name.

GET_DATABASE_METADATA

Use the GET DATABASE METADATA function to return database metadata.

GET_DDL_RECORD_PROPERTIES

Use the GET DDL_RECORD_ PROPERTIES function to return information about a
DDL operation.

GET_ENV_VALUE

Use the GET ENV_VALUE function to return information about the Oracle
GoldenGate environment.

GET_ERROR_INFO

Use the GET ERROR_INFO function to return error information associated with a
discard record.

GET_GMT_TIMESTAMP

Use the GET GMT_ TIMESTAMP function to return the operation commit timestamp
in GMT format.

GET_MARKER_INFO

Use the GET MARKER INFO function to return marker information when posting
data. Use markers to trigger custom processing within a user exit.

GET_OBJECT_NAME

Returns the fully qualified two- or three-part name of a table or other object that is
associated with the record that is being processed.

GET_OBJECT _NAME_ONLY

Returns the unqualified name of a table or other object that is associated with the
record that is being processed.

GET_OPERATION_TYPE

Use the GET OPERATION TYPE function to determine the operation type
associated with a record.

GET_POSITION

Use the GET POSITION function is obtain a read position of an Extract data pump
or Replicat in the Oracle GoldenGate trail.

GET_RECORD_BUFFER

Use the GET RECORD_BUFFER function to obtain information for custom column
conversions.

ORACLE

4-6

Chapter 4
Function Codes

Table 4-5 (Cont.) Summary of Oracle GoldenGate Function Codes

Function code

Description

GET_RECORD_LENGTH

Use the GET RECORD_LENGTH function to return the length of the data record.

GET_RECORD_TYPE

Use the GET RECORD_TYPE function to return the type of record being processed

GET_SCHEMA_NAME_ONLY

Use the GET SCHEMA NAME ONLY function to return only the schema name of a
table.

GET_SESSION_CHARSET

Use the GET SESSION CHARSET function to return the character set of the user
exit session.

GET_STATISTICS

Use the GET STATISTICS function to return the current processing statistics for
the Extract or Replicat process.

GET_TABLE_COLUMN_COUNT

Use the GET TABLE COLUMN COUNT function to return the total number of
columns in a table.

GET_TABLE_METADATA

Use the GET TABLE METADATA function to return metadata for the table that
associated with the record that is being processed.

GET_TABLE_NAME

Use the GET TABLE NAME function to return the fully qualified two- or three-part
name of the source or target table that is associated with the record that is being
processed.

GET_TABLE_NAME_ONLY

Use the GET TABLE NAME ONLY function to return only the unqualified name of
the table that is associated with the record that is being processed.

GET_TIMESTAMP

Use the GET TIMESTAMP function to return the I/O timestamp associated with a
source data record.

GET_TRANSACTION_IND

Use the GET TRANSACTION IND function to determine whether a data record is
the first, last or middle operation in a transaction,

GET_USER_TOKEN_VALUE

Use the GET USER TOKEN VALUE function to obtain the value of a user token from
a trail record.

OUTPUT MESSAGE_TO REPORT

Use the OUTPUT MESSAGE TO REPORT function to output a message to the report
file.

RESET_USEREXIT_STATS

Use the RESET USEREXIT STATS function to reset the statistics for the Oracle
GoldenGate process.

SET_COLUMN_VALUE_BY_INDEX

Use the SET COLUMN VALUE BY INDEX function to modify a single column value
without manipulating the entire data record.

@STRNCMP

Use the SET COLUMN VALUE BY NAME function to modify a single column value
without manipulating the entire data record.

SET_OPERATION_TYPE

Use the SET OPERATION TYPE function to change the operation type associated
with a data record.

SET_RECORD_BUFFER

Use the SET RECORD_BUFFER function for compatibility with HP NonStop user
exits, and for complex data record manipulation.

SET_SESSION_CHARSET

Use the SET SESSION CHARSET function to set the character set of the user exit
session.

SET_TABLE_NAME

Use the SET TABLE NAME function to change the table name associated with a
data record.

ORACLE

4-7

COMPRESS_RECORD

ORACLE

Valid For

Extract and Replicat

Description

Chapter 4
COMPRESS_RECORD

Use the COMPRESS RECORD function to re-compress records that have been decompressed with
the DECOMPRESS RECORD function. Call COMPRESS RECORD only after using DECOMPRESS RECORD.

The content of the record buffer is not converted to or from the character set of the user exit. It

is passed as-is.

Syntax

#include "usrdecs.h"
short result code;
compressed rec def compressed rec;

ERCALLBACK (COMPRESS RECORD, &compressed rec, &result code);

Buffer

typedef struct

{

char *compressed rec;

long compressed len;

char *decompressed rec;

long decompressed len;

short *columns present;

short source or target;

char requesting before after ind;
} compressed rec def;

Input

decompressed_rec

A pointer to the buffer containing the record before compression. The record is assumed to be

in the default Oracle GoldenGate canonical format.

decompressed len
The length of the decompressed record.

source_or_target

One of the following to indicate whether the source or target record is being compressed.

EXIT FN_SOURCE VAL
EXIT FN TARGET VAL

requesting before after_ind

Used as internal input. Does not need to be set. If set, it will be ignored.

columns present

An array of values that indicates the columns present in the compressed record. For example,
if the first, third and sixth columns exist in the compressed record, and the total number of

columns in the table is seven, the array should contain:

4-8

Chapter 4
DECOMPRESS_RECORD

Use the GET TABLE COLUMN COUNT function to get the number of columns in the table (see
"GET_TABLE_COLUMN_COUNT").

Output

compressed rec

A pointer to the record returned in compressed format. Typically, compressed rec is a pointer
to a buffer of type exit rec buf def. The exit rec buf def buffer contains the actual record
about to be processed by Extract or Replicat. The buffer is supplied when the call type is

EXIT CALL DISCARD RECORD. Exit routines may change the contents of this buffer, for example
to perform custom mapping functions. The caller must ensure that the appropriate amount of
memory is allocated to compressed rec.

compressed len
The returned length of the compressed record.

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET OK
EXIT FN RET INVALID PARAM

DECOMPRESS_RECORD

ORACLE

Valid For

Extract and Replicat

Description

Use the DECOMPRESS RECORD function when you want to retrieve or manipulate an entire update
record with the GET RECORD BUFFER (see "GET_RECORD_BUFFER") or SET RECORD BUFFER
function (see "SET_RECORD_BUFFER") and the record is compressed. DECOMPRESS RECORD
makes compressed records easier to process and map by putting the record into its logical
column layout. The columns that are present will be in the expected positions without the index
and length indicators (see "Compressed Record Format"). The missing columns will be
represented as zeroes. When used, DECOMPRESS RECORD should be invoked before any
manipulation occurs. After the user exit processing is completed, use the COMPRESS RECORD
function (see "COMPRESS_RECORD") to re-compress the record before returning it to the
Oracle GoldenGate process.

This function is valid for processing UPDATE operations only. Deletes, inserts and updates
appear in the buffer as full record images.

The content of the record buffer is not converted to or from the character set of the user exit. It
is passed as-is.

Compressed Record Format

Compressed SQL updates have the following format:
index length value [index length value][...]
where:

e index is atwo-byte index into the list of columns of the table (first column is zero).

e length is the two-byte length of the table.

4-9

ORACLE

Chapter 4
DECOMPRESS_RECORD

* valueis the actual column value, including one of the following two-byte null indicators
when applicable. 0 is not null. -1 is null.

Syntax

#include "usrdecs.h"

short result code;

compressed rec_def compressed rec;

ERCALLBACK (DECOMPRESS RECORD, &compressed rec, &result code);

Buffer

typedef struct

{

char *compressed rec;

long compressed len;

char *decompressed rec;

long decompressed len;

short *columns present;

short source or target;

char requesting before after ind;
} compressed rec_def;

Input

compressed rec
A pointer to the record in compressed format. Use the GET RECORD BUFFER function to obtain
this value (see "GET_RECORD_BUFFER").

compressed len

The length of the compressed record. Use the GET RECORD BUFFER (see
"GET_RECORD_BUFFER") or GET_RECORD_LENGTH (see "GET_RECORD_LENGTH") function
to get this value.

source or_target
One of the following to indicate whether the source or target record is being decompressed.

EXIT_FN SOURCE VAL
EXIT FN TARGET VAL

requesting before after_ ind
Used as internal input. Does not need to be set. If set, it will be ignored.

Output

decompressed rec

A pointer to the record returned in decompressed format. The record is assumed to be in the
Oracle GoldenGate internal canonical format. The caller must ensure that the appropriate
amount of memory is allocated to decompressed_rec.

decompressed len
The returned length of the decompressed record.

columns present

An array of values that indicate the columns present in the compressed record. For example, if
the first, third and sixth columns exist in the compressed record, and the total number of
columns in the table is seven, the array should contain:

4-10

Chapter 4
GET_BASE_OBJECT_NAME

This array helps mapping functions determine when and whether a compressed column
should be mapped.

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET OK
EXIT FN RET INVALID PARAM

GET_BASE_OBJECT_NAME

Valid For

Extract and Replicat

Description

Use the GET BASE OBJECT NAME function to retrieve the fully qualified name of the base object
of a source or target object that is associated with the record being processed. This function is
valid tables and other objects in a DDL operation.

To return only part of the base object name, see the following:
GET_BASE_OBJECT_NAME_ONLY GET_BASE_SCHEMA_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"

short result code;

env_value def env_value;

ERCALLBACK (GET BASE OBJECT NAME, &env value, &result code);

Buffer

typedef struct

{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env_value def;

Input

buffer
A pointer to a buffer to accept the returned object name. The name is null-terminated.

max length
The maximum length of your allocated buffer to accept the object name. This is returned as a
NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target object name.

ORACLE 411

Chapter 4
GET_BASE_OBJECT_NAME_ONLY

EXIT FN SOURCE_VAL
EXIT FN TARGET VAL

Output

buffer

The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS DEFAULT in the
ucharset.h file, the object name is interpreted in the session character set.

actual length
The string length of the returned object name. The actual length does not include the null
terminator. The actual length is O if the object is a table.

value truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the object name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET_BASE_OBJECT_NAME_ONLY

ORACLE

Valid For

Extract and Replicat

Description

Use the GET BASE OBJECT NAME ONLY function to retrieve the unqualified name (without the
catalog, container, or schema) of the base object of a source or target object that is associated
with the record that is being processed. This function is valid for tables and other objects in a
DDL operation.

To return the fully qualified name of a base object, see the following:
GET_OBJECT_NAME

To return only the schema of the base object, see the following:
GET_BASE_SCHEMA_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET BASE OBJECT NAME ONLY, &env value, &result code);

4-12

ORACLE

Chapter 4
GET_BASE_OBJECT_NAME_ONLY

Buffer

typedef struct

{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env _value def;

Input

buffer
A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the object name. This is returned as a
NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target object name.

EXIT FN SOURCE_ VAL
EXIT FN TARGET VAL

Output

buffer

The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB CS DEFAULT in the
ucharset.h file, the object name is interpreted in the session character set.

actual length
The string length of the returned object name. The actual length does not include the null
terminator. The actual length is O if the object is a table.

value truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the object name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

4-13

Chapter 4
GET_BASE_SCHEMA_NAME_ONLY

GET BASE_SCHEMA_NAME_ONLY

ORACLE

Description

Use the GET BASE SCHEMA NAME ONLY function to retrieve the name of the owner (such as
schema), but not the name, of the base object of the source or target object associated with
the record being processed. This function is valid for DDL operations.

To return the fully qualified name of a base object, see the following:
GET_BASE_OBJECT _NAME

To return only the unqualified base object name, see the following:
GET_BASE_OBJECT _NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET_BASE_SCHEMA NAME ONLY, &env_value, &result code);

Buffer

typedef struct

{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env _value def;

Input

buffer
A pointer to a buffer to accept the returned schema name. The name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the schema name. This is returned as
a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target schema name.

EXIT FN SOURCE_VAL
EXIT FN TARGET VAL

Output

buffer
The fully qualified, null-terminated schema name.

4-14

Chapter 4
GET_BEFORE_AFTER_IND

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB _CS DEFAULT in the
ucharset.h file, the schema name is interpreted in the session character set.

actual_length
The string length of the returned name. The actual length does not include the null terminator.

value_ truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the schema name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET BEFORE_AFTER IND

ORACLE

Valid For

Extract and Replicat

Description

Use the GET BEFORE AFTER_IND function to determine whether a record is a before image or an
after image of the database operation. INSERTS are after images, DELETES are before images,
and UPDATES can be either before or after images (see the Extract and Replicat parameters
GETUPDATEBEFORES and GETUPDATEAFTERS). If the before images of UPDATE operations are being
extracted, the before images precede the after images within the same update.

Syntax

#include "usrdecs.h"

short result code;

record def record;

ERCALLBACK (GET BEFORE AFTER IND, &record, &result code);

Buffer

typedef struct

{

char *table name;

char *buffer;

long length;

char before after ind;

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;
} record def;

4-15

Chapter 4
GET_CATALOG_NAME_ONLY

Input

None

Output

before after ind
One of the following to indicate whether the record is a before or after image.

BEFORE_IMAGE VAL
AFTER IMAGE VAL

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET OK

GET_CATALOG_NAME_ONLY

ORACLE

Valid For

Extract and Replicat

Description

Use the GET CATALOG NAME ONLY function to retrieve the name of theOracle CDB container, but
not the name of the owner (such as schema) or object, of the source or target object
associated with the record being processed. This function is valid for DML and DDL
operations.

To return the fully qualified name of a table, see the following:
GET_TABLE_NAME

To return the fully qualified name of a non-table object, such as a user, view or index, see the
following:

GET_OBJECT_NAME

To return only the unqualified table or object name, see the following:
GET_TABLE_NAME_ONLY

GET_OBJECT_NAME_ONLY

To return other parts of the table or object name, see the following:
GET_SCHEMA NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"

short result code;

env value def env value;

ERCALLBACK (GET CATALOG NAME ONLY, &env value, é&result code);

4-16

Chapter 4
GET_COL_METADATA_FROM_INDEX

Buffer

typedef struct
{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env _value def;

Input

buffer

A pointer to a buffer to accept the returned catalog name. The name is null-terminated.

If the character session of the user exit is set with SET SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB CS DEFAULT in the
ucharset.h file, the catalog name is interpreted in the session character set.

max length
The maximum length of your allocated buffer to accept the name. This is returned as a NULL
terminated string.

source or_ target
One of the following indicating whether to return the source or target table catalog.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

Output

buffer
The fully qualified, null-terminated catalog name.

actual length
The string length of the returned name. The actual length does not include the null terminator.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the catalog name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET_COL_METADATA_FROM_INDEX

ORACLE

Valid For

Extract and Replicat

4-17

ORACLE

Chapter 4
GET_COL_METADATA_FROM_INDEX

Description

Use the GET COL METADATA FROM INDEX function to retrieve column metadata by specifying the
index of the desired column.

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"

short result code;

col metadata def column meta rec;

ERCALLBACK (GET COL METADATA FROM INDEX, &column meta rec, &result code);

Buffer

typedef struct
{
short column index;
char *column name;
long max name length;
short native data type;
short gg data type;
short gg sub data type;
short is nullable;
short is part of key;
short key column index;
short length;
short precision;
short scale;
short source or target;
} col metadata def;

Input

column_index
The column index of the column value to be returned.

max name_length

The maximum length of the returned column name. Typically, the maximum length is the
length of the name buffer. Since the returned name is null-terminated, the maximum length
should equal the maximum length of the column name.

source_or_target
One of the following to indicate whether the source or target record is being compressed.

EXIT FN_SOURCE VAL
EXIT FN TARGET VAL

Output

column name
The column name of the column value to be returned.

actual name length
The actual length of the returned name.

4-18

ORACLE

Chapter 4
GET_COL_METADATA FROM_INDEX

value_truncated
A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if the
length of the column name plus the null terminator exceeds the maximum buffer length.

native data_ type
The native (to the database) data type of the column. Either native data type or
dd_data_type is returned, depending on the process, as follows:

» If Extract is making the callback request for a source column, native data type is
returned. If Extract is requesting a mapped target column, gg data_type is returned
(assuming there is a target definitions file on the system).

e If an Extract data pump is making the callback request for a source column and there is a
local database, native data type is returned. If there is no database, gg data type is
returned (assuming there is a source definitions file on the system). If the pump is
requesting the target column, gg_data_type is returned (assuming a target definitions file
exists on the system).

* If Replicat is making the callback request for the source column, then gg_data type is
returned (assuming a source definitions file exists on the system). If Replicat is requesting
the source column and ASSUMETARGETDEFS is being used in the parameter file, then
native data_ type is returned. If Replicat is requesting the target column,
native data type is returned.

gg_data_type
The Oracle GoldenGate data type of the column.

gg_sub_data_type
The Oracle GoldenGate sub-type of the column.

is nullable
Flag indicating whether the column permits a null value (TRUE or FALSE).

is _part of key
Flag (TRUE or FALSE) indicating whether the column is part of the key that is being used by
Oracle GoldenGate.

key column_index

Indicates the order of the columns in the index. For example, the following table has two key
columns that exist in a different order from the order in which they are declared in the primary
key.

CREATE TABLE ABC
(

cust_code VARCHAR2 (4),
name VARCHAR2 (30),
city VARCHAR2 (20),
state CHAR(2),

PRIMARY KEY (city, cust code)
USING INDEX
)

Executing the callback function for each column in the logical column order returns the
following:

* cust_codereturns 1

°* name returns -1

4-19

Chapter 4
GET_COL_METADATA_FROM_NAME

e cityreturns 0
e statereturns -1

If the column is part of the key, the value returned is the order of the column within the key.
If the column is not part of the key, a value of -1 is returned.

length
Returns the length of the column.

precision
If a numeric data type, returns the precision of the column.

scale
If a numeric data type, returns the scale.

Return Values

EXIT FN RET INVALID PARAM
EXIT FN RET INVALID CONTEXT
EXIT FN RET EXCEEDED MAX LENGTH
EXIT FN RET INVALID COLUMN
EXIT FN RET OK

GET_COL_METADATA FROM_NAME

ORACLE

Valid For

Extract and Replicat

Description

Use the GET COL METADATA FROM NAME function to retrieve column metadata by specifying the
name of the desired column. If the character session of the user exit is set with

SET SESSION CHARSET to a value other than the default character set of the operating system,
as defined in ULIB _CS DEFAULT in the ucharset.h file, the character data that is exchanged
between the user exit and the process is interpreted in the session character set.

If the database is case-sensitive, object names must be specified in the same letter case as
they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"

short result code;

col metadata def column meta rec;

ERCALLBACK (GET COL METADATA FROM NAME, &column meta rec, &result code);

Buffer

typedef struct

{
short column index;
char *column name;
long max name length;
short native data type;
short gg data type;
short gg sub data type;
short is nullable;

4-20

Chapter 4
GET_COL_METADATA FROM_NAME

short is part of key;

short key column_ index;

short length;

short precision;

short scale;

short source or target;
} col metadata def;

Input

column name
The column name of the column value to be returned.

max name_length

The maximum length of the returned column name. Typically, the maximum length is the
length of the name buffer. Since the returned name is null-terminated, the maximum length
should equal the maximum length of the column name.

source or_target
One of the following to indicate whether the source or target record is being compressed.

EXIT_FN SOURCE_VAL
EXIT FN TARGET VAL

Output

column_index
The column index of the column value to be returned.

actual name length
The actual length of the returned name.

source or_target
One of the following to indicate whether the source or target record is being compressed.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

value_truncated
A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if the
length of the column name plus the null terminator exceeds the maximum buffer length.

native data_type
The native (to the database) data type of the column.

gg_data_type
The Oracle GoldenGate data type of the column.

gg_sub_data_type
The Oracle GoldenGate sub-type of the column.

is_nullable
Flag indicating whether the column permits a null value (TRUE or FALSE).

is part of key
Flag (TRUE or FALSE) indicating whether the column is part of the key that is being used by
Oracle GoldenGate.

ORACLE 401

Chapter 4

GET_COLUMN_INDEX_FROM_NAME

key column_index

Indicates the order of the columns in the index. For example, the following table has two key

columns that are defined in one order in the table and another in the index definition.

CREATE TABLE tcustmer
(

cust_code VARCHARZ2 (4),
name VARCHAR2 (30),
city VARCHAR2 (20),
state CHAR(2),

PRIMARY KEY (city, cust code)
USING INDEX

)

The return is as follows:

* cust_codereturns 1

° name returns -1

e cityreturns 0

* statereturns -1

If the column is part of the key, its order in the index is returned as an integer.
If the column is not part of the key, a value of -1 is returned.

length
Returns the length of the column.

precision
If a numeric data type, returns the precision of the column.

scale
If a numeric data type, returns the scale.

Return Values

EXIT FN RET INVALID PARAM
EXIT FN RET INVALID CONTEXT
EXIT FN RET EXCEEDED MAX LENGTH
EXIT FN RET INVALID COLUMN
EXIT FN RET OK

GET_COLUMN_INDEX_FROM_NAME

ORACLE

Valid For

Extract and Replicat

Description

Use the GET COLUMN INDEX FROM NAME function to determine the column index associated with

a specified column name. If the character session of the user exit is set with

SET SESSION CHARSET to a value other than the default character set of the operating system,
as defined in ULIB_CS DEFAULT in the ucharset.h file, the character data that is exchanged

between the user exit and the process is interpreted in the session character set.

If the database is case-sensitive, object names must be specified in the same letter case as

they are defined in the hosting database; otherwise, the case does not matter.

4-22

Chapter 4
GET_COLUMN_NAME_FROM_INDEX

Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET COLUMN INDEX FROM NAME, &env value, &result code);

Buffer

typedef struct
{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env_value def;

Input

buffer
A pointer to the column name

actual_length
The length of the column name within the buffer.

source or_target
One of the following to indicate whether to use the source or target table to look up column
information.

EXIT FN SOURCE_ VAL
EXIT FN TARGET VAL

Output

index
The returned column index for the specified column name.

Return Values

EXIT_FN RET INVALID COLUMN
EXIT _FN RET INVALID CONTEXT
EXIT _FN RET INVALID PARAM
EXIT FN RET OK

GET _COLUMN_NAME_FROM INDEX

Valid For

Extract and Replicat

Description

Use the GET COLUMN NAME FROM INDEX function to determine the column name associated with
a specified column index. If the character session of the user exit is set with

SET SESSION CHARSET to a value other than the default character set of the operating system,
as defined in ULIB CS DEFAULT in the ucharset.h file, the character data that is exchanged
between the user exit and the process is interpreted in the session character set.

ORACLE 403

ORACLE

Chapter 4
GET_COLUMN_NAME_FROM_INDEX

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET COLUMN NAME FROM INDEX, &env_value, &result code);

Buffer

typedef struct
{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env_value def;

Input

buffer
A pointer to a buffer to accept the returned column name. The column name is null-
terminated.

max_length
The maximum length of your allocated buffer to accept the resulting column name. This is
returned as a NULL terminated string.

index
The column index of the column name to be returned.

source or_target
One of the following to indicate whether to use the source or target table to look up column
information.

EXIT FN SOURCE_ VAL
EXIT FN TARGET VAL

Output

buffer
The null-terminated column name.

actual length
The string length of the returned column name. The actual length does not include the null
terminator.

value truncated
A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if the
length of the column name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT

4-24

Chapter 4
GET_COLUMN_VALUE_FROM_INDEX

EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET _COLUMN_VALUE_FROM_INDEX

ORACLE

Valid For

Extract and Replicat

Description

Use the GET _COLUMN VALUE FROM INDEX function to retrieve the column value from the data
record using the specified column index. Column values are the basis for most logic within the
user exit. You can base complex logic on the values of individual columns within the data
record. You can specify the character format of the returned value.

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process is
interpreted in the session character set.

A column value is set to the session character set only if the following is true:

e The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR?2 /
NCLOB), a SQL date/timestamp/interval/number type)

* The column value mode indicator is set to EXIT FN CNVTED SESS CHAR FORMAT.

Syntax

#include "usrdecs.h"

short result code;

column def column;

ERCALLBACK (GET_COLUMN_VALUE FROM_INDEX, &column, &result code);

Buffer

typedef struct

{

char *column value;

unsigned short max value length;
unsigned short actual value length;
short null value;

short remove column;

short value truncated;

short column_index;

char *column name;

/* Version 3 CALLBACK STRUCT VERSION */
short column value mode;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;

char more lob data;

/* Version 3 CALLBACK STRUCT VERSION */
ULibCharSet column charset;

} column def;

4-25

Chapter 4
GET_COLUMN_VALUE_FROM_INDEX

Input

column value
A pointer to a buffer to accept the returned column value.

max value length

The maximum length of the returned column value. Typically, the maximum length is the
length of the column value buffer. If ASCII format is specified with column_value mode, the
column value is null-terminated and the maximum length should equal the maximum length of
the column value.

column_index
The column index of the column value to be returned.

column value mode
Indicates the format of the column value.

EXIT FN_CHAR FORMAT
ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a known
exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because the value
is interpreted as an ASCII string and is supposed to be null-terminated. The first
value of 0 becomes the string terminator.

« Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional time is
database-dependent.

e Numeric values are in their string format. For example, 123.45 is represented as
"123.45".

* Non-printable characters or binary values are converted to hexadecimal notation.
* Floating point types are output as null-terminated strings, to the first 14 significant
digits.

EXIT FN_RAW FORMAT

Internal Oracle GoldenGate canonical format: This format includes a two-byte NULL
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character data type.

EXIT FN_CNVTED_SESS CHAR FORMAT
User exit character set: This only applies if the column data type is:

e acharacter-based type, single or multi-byte
e anumeric type with a string representation

This format is not null-terminated.

source_or_target
One of the following to indicate whether to use the source or the target data record to retrieve
the column value.

ORACLE 406

ORACLE

Chapter 4
GET_COLUMN_VALUE_FROM_INDEX

EXIT FN SOURCE_VAL
EXIT FN TARGET VAL

requesting before after ind

Set when processing an after image record and you want the before-image column value of
either an update or a primary key update.

To get the "before" value of the column while processing an "after image" of a primary key
update or a regular (non-key) update record, set the requesting before after ind flag to
BEFORE IMAGE VAL.

» To access the before image of the key columns of a primary key update, nothing else is
necessary.

* To access non-key columns of a primary key update or any column of a regular update,
the before image must be available.

The default setting is AFTER IMAGE VAL (get the after image of the column) when an explicit
input for requesting before after ind is not specified.

To make a before image available, you can use the GETUPDATEBEFORES parameter or you can
use the INCLUDEUPDATEBEFORES option within the CUSEREXIT parameter statement.

Note that:

° GETUPDATEBEFORES causes an Extract process to write before-image records to the trail
and also to make an EXIT CALL PROCESS RECORD call to the user exit with the before
images.

* INCLUDEUPDATEBEFORES does not cause an EXIT CALL PROCESS RECORD call to the user
exit nor, in the case of Extract, does it cause the process to write the before image to the
trail.

requesting before after_ ind

To get the before image of the column, set the char requesting before after indflagto
BEFORE IMAGE VAL. To get the after image, set it to AFTER IMAGE VAL. The default is to always
work with the after image unless the before is specified.

To make the before images available, you can use the GETUPDATEBEFORES parameter for the
TABLE statement that contains the table, or you can use the INCLUDEUPDATEBEFORES option
within the CUSEREXIT parameter statement. Both will cause the same callout to the user exit for
process_record

Output

column value

A pointer to the returned column value. If column_value mode is specified as

EXIT FN CHAR FORMAT, the column value is returned as a null-terminated ASCII string;
otherwise, the column value is returned in the Oracle GoldenGate internal canonical format. In
ASCII format, dates are returned in the following format:

YYYY-MM-DD HH:MI:SS.FFFFFF

The inclusion of fractional time is database-dependent.

actual_value_length
The string length of the returned column name, in bytes. The actual length does not include a
null terminator when column_value mode is specified as EXIT FN CHAR FORMAT.

null value
A flag (0 or 1) indicating whether or not the column value is null. If the null value flag is 1,
then the column value buffer is filled with null bytes.

4-27

Chapter 4
GET_COLUMN_VALUE_FROM_NAME

value_truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the column value exceeds the maximum buffer length. If colunn value mode was
specified as EXIT FN CHAR FORMAT, the null terminator is included in the length of the column.

char more lob_data

A flag that indicates if more LOB data is present beyond the initial 4K that can be stored in the
base record. When a LOB is larger than the 4K limit, it is stored in LOB fragments.

You must allocate the appropriate amount of memory to contain the returned values. Oracle
GoldenGate will access LOB columns up to 8K of data at all times, filling up the buffer to the
amount that the user exit has allocated. If the LOB is larger than that which was allocated,
subsequent callbacks are required to obtain the total column data, until all data has been sent
to the user exit.

To determine the end of the data, evaluate more lob data. The user exit sets this flag to
either CHAR NO VAL or CHAR YES VAL before accessing a new column. If this flag is still
initialized after first callback and is not set to either CHAR YES VAL or CAR_NO VAL, then one of
the following is true:

e Enough memory was allocated to handle the LOB.

e ltisnota LOB.

e It was not over the 4K limit of the base trail record size.

It is recommended that you obtain the source table metadata to determine if a column might
be a LOB.

Return Values

EXIT FN RET BAD COLUMN DATA
EXIT FN RET COLUMN NOT FOUND
EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET_COLUMN_VALUE_FROM_NAME

ORACLE

Valid For

Extract and Replicat

Description

Use the GET COLUMN VALUE FROM NAME function to retrieve the column value from the data
record by using the specified column name. Column values are the basis for most logic within
the user exit. You can base complex logic on the values of individual columns within the data
record.

If the character session of the user exit is set with SET SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process is
interpreted in the session character set.

A column value is set to the session character set only if the following is true:

e The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2 /
NCLOB), a SQL date/timestamp/interval/number type)

4-28

ORACLE

Chapter 4
GET_COLUMN_VALUE_FROM_NAME

* The column value mode indicator is set to EXIT FN CNVTED SESS CHAR FORMAT.

If the database is case-sensitive, object names must be specified in the same letter case as
they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"

short result code;

column def column;

ERCALLBACK (GET COLUMN VALUE FROM NAME, &column, &result code);

Buffer

typedef struct

{

char *column value;

unsigned short max value length;
unsigned short actual value length;
short null value;

short remove column;

short value truncated;

short column_index;

char *column name;

/* Version 3 CALLBACK STRUCT VERSION */
short column value mode;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;

char more lob data;

/* Version 3 CALLBACK STRUCT VERSION */
ULibCharSet column charset;

} column def;

Input

column value
A pointer to a buffer to accept the returned column value.

max value length

The maximum length of the returned column value. Typically, the maximum length is the
length of the column value buffer. If ASCII format is specified (see column_value mode) the
column value is null-terminated, and the maximum length should equal the maximum length of
the column value.

column name
The name of the column for the column value to be returned.

column value mode
Indicates the character set of the column value.

EXIT FN_CHAR FORMAT
ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a known
exception for the sub-data type UTF16 BE, which is converted to UTF8.)

4-29

ORACLE

Chapter 4
GET_COLUMN_VALUE_FROM_NAME

Note:

A column value might be truncated when presented to a user exit, because the value
is interpreted as an ASCII string and is supposed to be null-terminated. The first
value of 0 becomes the string terminator.

« Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional time is
database-dependent.

* Numeric values are in their string format. For example, 123.45 is represented as
"123.45".

* Non-printable characters or binary values are converted to hexadecimal notation.

* Floating point types are output as null-terminated strings, to the first 14 significant
digits.

EXIT FN RAW FORMAT

Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character data type.

EXIT FN_CNVTED_SESS CHAR FORMAT
User exit character set: This only applies if the column data type is:

e acharacter-based type, single or multi-byte
e anumeric type with a string representation

This format is not null-terminated.

source_or_target
One of the following indicating whether to use the source or target data record to retrieve the
column value.

EXIT FN SOURCE_VAL
EXIT FN TARGET VAL

requesting before after ind

Set when processing an after image record and you want the before columns of either an
update or a primary key update.

To get the "before" value of the column while processing an "after image" of a primary key
update or a regular (non-key) update record, set the requesting before after ind flag to
BEFORE IMAGE VAL.

» To access the before image of the key columns of a primary key update, nothing else is
necessary.

* To access non-key columns of a primary key update or any column of a regular update,
the before image must be available.

The default setting is AFTER IMAGE VAL (get the after image of the column) when an explicit
input for requesting before after ind is not specified.

To make a before image available, you can use the GETUPDATEBEFORES parameter or you can
use the INCLUDEUPDATEBEFORES option within the CUSEREXIT parameter statement.

Note that:

4-30

ORACLE

Chapter 4
GET_COLUMN_VALUE_FROM_NAME

° GETUPDATEBEFORES causes an Extract process to write before-image records to the trail
and also to make an EXIT CALL PROCESS RECORD call to the user exit with the before
images.

e INCLUDEUPDATEBEFORES does not cause an EXIT CALL PROCESS RECORD call to the user
exit nor, in the case of Extract, does it cause the process to write the before image to the
trail.

Output

column value

A pointer to the returned column value. If column_value mode is specified as

EXIT FN CHAR FORMAT, the column value is returned as a null-terminated ASCII string;
otherwise, the column value is returned in the Oracle GoldenGate internal canonical format. In
ASCII format, dates are returned in the following format:

CCYY-MM-DD HH:MI:SS.FFFFFF

The inclusion of fractional time is database-dependent.

actual length
The string length of the returned column name. The actual length does not include a null
terminator when column value mode is specified as EXIT FN CHAR FORMAT.

null value
A flag (0 or 1) indicating whether or not the column value is null. If the null value flagis 1,
then the column value buffer is filled with null bytes.

value truncated

A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the column value exceeds the maximum buffer length. If colunn_value mode was
specified as EXIT FN CHAR FORMAT, the null terminator is included in the length of the column.

char more lob data

A flag that indicates if more LOB data is present beyond the initial 4K that can be stored in the
base record. When a LOB is larger than the 4K limit, it is stored in LOB fragments.

You must allocate the appropriate amount of memory to contain the returned values. Oracle
GoldenGate will access LOB columns up to 8K of data at all times, filling up the buffer to the
amount that the user exit has allocated. If the LOB is larger than that which was allocated,
subsequent callbacks are required to obtain the total column data, until all data has been sent
to the user exit.

To determine the end of the data, evaluate more lob data. The user exit sets this flag to
either CAR_NO VAL or CHAR_YES VAL before accessing a new column. If this flag is still
initialized after first callback and is not set to either CHAR YES VAL or CAR_NO VAL, then one of
the following is true:

* Enough memory was allocated to handle the LOB.

e ltisnotaLOB.

* It was not over the 4K limit of the base trail record size.

It is recommended that you obtain the source table metadata to determine if a column might
be a LOB.

Return Values

EXIT FN RET BAD COLUMN DATA
EXIT FN RET COLUMN NOT FOUND
EXIT FN RET INVALID COLUMN

4-31

Chapter 4

GET_DATABASE_METADATA

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

Example

memset (&col meta, 0, sizeof(col meta));

if (record.mapped)

col meta.source or target = EXIT FN TARGET VAL;
else

col meta.source or target = EXIT FN SOURCE VAL;
col meta.source or target = EXIT FN SOURCE VAL;
col meta.column name = (char *)malloc(100);

col meta.max name length = 100;

col meta.column index = 1;

call callback (GET COL METADATA FROM NAME, &col meta, &result code);

GET_DATABASE_METADATA

Valid For

Extract and Replicat

Description

Use the GET DATABASE METADATA function to return the metadata of the database that is

associated with a record.

Buffer

typedef struct
{

char* dbName;
long dbName max length;
long dbName actual length;

unsigned char dbNameMetadata [MAXDBOBJTYPE] ;
char* locale;

long locale max length;

long locale actual length;

} database def;

typedef struct

{

database def source db def;
database def target db def;
} database defs;

Input

dbname
A pointer to a buffer to accept the database name.

dbname max_length
The maximum length of the buffer to hold the name.

dbname actual length
The actual length of the database name.

ORACLE

4-32

Chapter 4
GET_DDL_RECORD_PROPERTIES

dbNameMetadata

The name metadata for case-sensitivity, which is the same value that is written by Extract and
the data pump to a trail. See for a list of macros that can be used by the user exit to
checkUsing Macros database object name metadata, given an object name type.

locale
A null-terminated character string specifying the locale of the database. This is returned as a
conjunction of:

* |SO-639 two-letter language code

e |SO-3166 two-letter country code

e Variant code using '_' U+005F as separator.
Example: "en US", "ja Japen"

locale max length
The maximum length of the buffer to accept the locale.

locale_actual length
The actual length of the locale.

database def source db_def
Directs the process to return metadata for the source database.

database def target db def
Directs the process to return metadata for the target database.

GET DDL_RECORD PROPERTIES

ORACLE

Valid For

Extract and Replicat, for databases for which DDL replication is supported

Description

Use the GET DDL RECORD PROPERTIES function to return a DDL operation, including information
about the object on which the DDL was performed and also the text of the DDL statement
itself. The Extract process can only get the source table layout. The Replicat process can get
source or target layouts.

If the character session of the user exit is set with SET SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process is
interpreted in the session character set. This includes the DDL type, the object type, the two-
or three-part object name, the owner name and the DDL text itself.

#include "usrdecs.h"

short result code;

ddl record def ddl rec;

ERCALLBACK (GET DDL RECORD PROPERTIES, &ddl rec, &result code);

Buffer

typedef struct

{

char *ddl type;

long ddl type max length; /* Maximum Description length PASSED IN BY USER */
long ddl type length; /* Actual length */

4-33

ORACLE

Chapter 4
GET_DDL_RECORD_PROPERTIES

char *object type;
long object type max length; /* Maximum Description length PASSED IN BY USER */
long object type length; /* Actual length */

char *object name; /* Fully qualified name of the object

(3-part for CDB, 2-part for non-CDB) */
long object max_length; /* Maximum Description length PASSED IN BY USER */
long object length; /* Actual length */

char *owner name;
long owner max length; /* Maximum Description length PASSED IN BY USER */
long owner length; /* Actual length */

char *ddl text;
long ddl text max length; /* Maximum Description length PASSED IN BY USER */
long ddl text length; /* Actual length */

short ddl_text truncated; /* Was value truncated? */
short source or target; /* Source or target value? */
} ddl record def;

Input

ddl_type length
object type length
object_length
owner_length
ddl_text length

A pointer to one buffer for each of these items to accept the returned column values. These
items are as follows:

ddl_type length
Contains the length of the type of DDL operation, for example a CREATE or ALTER.

object_type length
Contains the length of type of database object that is affected by the DDL operation, for
example TABLE Or INDEX.

object_length
Contains the length of the name of the object.

object length
Contains the length of the owner of the object (schema or database).

ddl_text length
Contains the length of the actual DDL statement text.

ddl_type max length
The maximum length of the DDL operation type that is returned by *dd1 type. The DDL type
is any DDL command that is valid for the database, such as ALTER.

object_type max length
The maximum length of the object type that is returned by *object type. The object type is
any object that is valid for the database, such as TABLE, INDEX, and TRIGGER.

object max length
The maximum length of the name of the object that is returned by *object name.

4-34

Chapter 4
@GETENV

owner_max_length
The maximum length of the name of the owner that is returned by *owner name.

ddl text max length
The maximum length of the text of the DDL statement that is returned by *ddl text.

source or_target
One of the following indicating whether to return the operation type for the source or the target
data record.

EXIT_FN SOURCE VAL
EXIT FN TARGET VAL

Output

ddl_type length

object_type length

object length

owner_ length

ddl_text length

All of these fields return the actual length of the value that was requested. (See the input for
descriptions.)

ddl_text truncated

A flag (0 or 1) to indicate whether or not the DDL text was truncated. Truncation occurs if the
length of the DDL text plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET OK

EXIT FN RET NOT SUPPORTED

EXIT FN RET INVALID CONTEXT
EXIT FN RET INCOMPLETE DDL REC

@Q@GETENV

Use the @GETENV function to return information about the Oracle GoldenGate environment. You
can use the information as input into the following:

» Stored procedures or queries (with SQLEXEC)
e Column maps (with the cOLMAP option of TABLE or MAP)

* User tokens (defined with the TOKENS option of TABLE and mapped to target columns by
means of the @TOKEN function)

* The GET ENV_VALUE user exit function (see "GET_ENV_VALUE")

< Note:

All syntax options must be enclosed within quotes as shown in the syntax
descriptions.

» Retrieve the value of the DB_UNIQUE NAME parameter of the source or the target databases,
depending on which processes (Extract or Replicat) executes the function.

ORACLE 435

ORACLE

Chapter 4
@GETENV

Syntax

@GETENV (

'"LAG' , 'unit' |

'"LASTERR' , 'error info' |
'"JULIANTIMESTAMP' |
"JULIANTIMESTAMP PRECISE' |
'RECSOUTPUT' |
{'"STATS'|'DELTASTATS'}, ['TABLE', 'table'], 'statistic'
'"GGENVIRONMENT', 'environment info' |
'"GGFILEHEADER', 'header info'|
'"GGHEADER', 'header info' |
'"RECORD', 'location info' |
'DBENVIRONMENT', 'database info,',
"TRANSACTION', 'transaction info' |
'"OSVARIABLE', 'variable' |
'"TLFKEY', SYSKEY, unique key
'"USERNAME',

"OSUSERNAME ',

'MACHINENAME',

' PROGRAMNAME ',

'CLIENTIDENTIFIER',

' SOURCEDATABASEINFO'

)

'LAG' , 'unit'

Valid for Extract and Replicat.

Use the LAG option of @GETENV to return lag information. Lag is the difference between the time
that a record was processed by Extract or Replicat and the timestamp of that record in the data
source.

Syntax
@GETENV ('LAG', {'SEC'|'MSEC'|'MIN'})

'SEC'
Returns the lag in seconds. This is the default when a unit is not explicitly provided for LAG.

'MSEC'
Returns the lag in milliseconds.

'MIN'
Returns the lag in minutes.

'"LASTERR' , 'error info'
Valid for Replicat.

Use the LASTERR option of @GETENV to return information about the last failed operation
processed by Replicat.

Syntax

@GETENV ('LASTERR', {'DBERRNUM'/|'DBERRMSG'|'OPTYPE'|'"'ERRTYPE'})

4-36

ORACLE

Chapter 4
@GETENV

' DBERRNUM'
Returns the database error number associated with the failed operation.

' DBERRMSG'
Returns the database error message associated with the failed operation.

'OPTYPE'
Returns the operation type that was attempted.

'ERRTYPE'
Returns the type of error. Possible results are:

* DB (for database errors)

e MAP (for errors in mapping)

'JULIANTIMESTAMP' | ' JULIANTIMESTAMP PRECISE'
Valid for Extract and Replicat.

Use the JULIANTIMESTAMP option of @GETENV to return the current time in Julian format. The unit
is microseconds (one millionth of a second). On a Windows machine, the value is padded with
zeros (0) because the granularity of the Windows timestamp is milliseconds (one thousandth of
a second). For example, the following is a typical column mapping:

MAP dbo.tab8451, Target targ.tabjts, COLMAP (USEDEFAULTS, &
JTSS = QGETENV ('JULIANTIMESTAMP')

JTSFFFFFF = @date ('yyyy-mm-dd hh:mi:ss.ffffff', 'JIS', &
@getenv ('JULIANTIMESTAMP')))

Possible values that the JTss and JTSFFFFFF columns can have are:

212096320960773000 2010-12-17:16:42:40.773000
212096321536540000 2010-12-17:16:52:16.540000
212096322856385000 2010-12-17:17:14:16.385000
212096323062919000 2010-12-17:17:17:42.919000
212096380852787000 2010-12-18:09:20:52.787000

The last three digits (the microseconds) of the number all contain the padding of Os .

Optionally, you can use the ' JULIANTIMESTAMP PRECISE' option to obtain a timestamp with
high precision though this may effect performance.

Note:

Do not use these values for ordering operations. Instead use this value:
QCOMPUTE (@COMPUTE (@NUMSTR (@GETENV ("RECORD",
"FILESEQNO")*100000000000) +@NUMSTR (@GETENV ("RECORD", "FILERBA")))"

Syntax

@GETENV ('JULIANTIMESTAMP')
@GETENV ('JULIANTIMESTAMP PRECISE')

'RECSOUTPUT'

Valid for Extract.

4-37

ORACLE

Chapter 4
@GETENV

Use the RECSOUTPUT option of GGETENV to retrieve a current count of the number of records that
Extract has written to the trail file since the process started. The returned value is not unique to
a table or transaction, but instead for the Extract session itself. The count resets to 1 whenever
Extract stops and then is started again.

Syntax

@GETENV ('RECSOUTPUT')

{'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic'
Valid for Extract and Replicat.

Use the STATS and DELTASTATS options of QGETENV to return the number of operations that were
processed per table for any or all of the following:

e INSERT operations
e UPDATE operations
e DELETE operations
e TRUNCATE operations
* Total DML operations
e Total DDL operations

* Number of conflicts that occurred, if the Conflict Detection and Resolution (CDR) feature is
used.

« Number of CDR resolutions that succeeded
¢ Number of CDR resolutions that failed

Any errors in the processing of this function, such as an unresolved table entry or incorrect
syntax, returns a zero (0) for the requested statistics value.

Understanding How Recurring Table Specifications Affect Operation Counts

An Extract that is processing the same source table to multiple output trails returns statistics
based on each localized output trail to which the table linked to @GETENV is written. For
example, if Extract captures 100 inserts for table ABC and writes table ABC to three trails, the
result for the @GETENV is 300

EXTRACT ABC

EXTTRAIL c:\north\aa;

TABLE TEST.ABC;

EXTTRAIL c:\north\bb;

TABLE TEST.ABC;

TABLE EMI, TOKENS (TOKEN-CNT = QGETENV ('STATS', 'TABLE', 'ABC', 'DML'));
EXTTRAIL c:\north\cc;

TABLE TEST.ABC;

In the case of an Extract that writes a source table multiple times to a single output trail, or in
the case of a Replicat that has multiple MAP statements for the same TARGET table, the statistics
results are based on all matching TARGET entries. For example, if Replicat filters 20 rows for
REGION 'WEST,' 10 rows for REGION 'EAST,' 5 rows for REGION 'NORTH," and 2 rows for REGION
'SoUTH' (all for table ARC) the result of the RGETENV is 37.

REPLICAT ABC

MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'WEST'));

4-38

ORACLE

Chapter 4
@GETENV

MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'EAST'"));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'NORTH'));
MAP TEST.ABC, TARGET TEST.ABC, FILTER (@STREQ (REGION, 'SOUTH'))
MAP TEST.EMI, TARGET TEST.EMI, &

COLMAP (CNT = @GETENV ('STATS', 'TABLE', 'ABC', 'DML'));

’

Capturing Multiple Statistics
You can execute multiple instances of @GETENV to get counts for different operation types.

This example returns statistics only for INSERT and UPDATE operations:

REPLICAT TEST

MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, IU = @QCOMPUTE (Q@GETENV &
('"STATS', 'TABLE', 'ABC', 'DML') - (Q@QGETENV ('STATS', 'TABLE', &
'ABC', 'DELETE'));

This example returns statistics for DDL and TRUNCATE operations:

REPLICAT TEST2

MAP TEST.ABC, TARGET TEST.ABC, COLMAP (USEDEFAULTS, DDL = @COMPUTE &
(@GETENV ('STATS', 'DDL') + (@GETENV ('STATS', 'TRUNCATE'));

Example Use Case

In the following use case, if all DML from the source is applied successfully to the target,
Replicat suspends by means of EVENTACTIONS with SUSPEND, until resumed from GGSCI with
SEND REPLICAT with RESUME.

GETENV used in Extract parameter file:

TABLE HR1.HR*;
TABLE HR1.STAT, TOKENS ('env stats' = QGETENV ('STATS', 'TABLE', &
'HR1.HR*', 'DML'));

GETENV used in Replicat parameter file:

MAP HR1.HR*, TARGET HR2.*;
MAP HR1.STAT, TARGET HR2.STAT, filter (
@if (
@token ('stats') =
@getenv ('STATS', 'TABLE', 'TSSCAT.TCUSTORD', 'DML'), 1, 0)
)I

eventactions (suspend);

Using Statistics in FILTER Clauses

Statistics returned by STATS and DELTASTATS are dynamic values and are incremented after
mapping is performed. Therefore, when using CDR statistics in a FILTER clause in each of
multiple MAP statements, you need to order the MAP statements in descending order of the
statistics values. If the order is not correct, Oracle GoldenGate returns error OGG-01921. For

4-39

ORACLE

Chapter 4
@GETENV

detailed information about this requirement, see Document 1556241.1 in the Knowledge base
of My Oracle Support at http://support.oracle.com.

Example 4-1 MAP statements containing statistics in FILTER clauses

In the following example, the MAP statements containing the filter for the CDR CONFLICTS statistic
are ordered in descending order of the statistic: >3, then =3, then <3.

MAP TEST.GG_HEARTBEAT TABLE, TARGET TEST.GG_HEARTBEAT TABLE COMPARECOLS (ON
UPDATE ALL),RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, OVERWRITE)),FILTER
(QGETENV ("STATS", "CDR CONFLICTS") > 3),EVENTACTIONS (LOG INFO);MAP
TEST.GG_HEARTBEAT TABLE, TARGET TEST.GG_HEARTBEAT TABLE COMPARECOLS (ON
UPDATE ALL),RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, OVERWRITE)), FILTER
(@GETENV ("STATS", "CDR CONFLICTS") = 3),EVENTACTIONS (LOG WARNING) ;MAP
TEST.GG_HEARTBEAT TABLE, TARGET TEST.GG_HEARTBEAT TABLE COMPARECOLS (ON
UPDATE ALL),RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, OVERWRITE)), FILTER
(QGETENV ("STATS", "CDR CONFLICTS") < 3),EVENTACTIONS (LOG WARNING) ;

Syntax
@GETENV ({'STATS' | 'DELTASTATS'}, ['TABLE', 'table'], 'statistic')
{'STATS' | 'DELTASTATS'}

STATS returns counts since process startup, whereas DELTASTATS returns counts since the last
execution of a DELTASTATS.
The execution logic is as follows:

* When Extract processes a transaction record that satisfies @GETENV with STATS or
DELTASTATS, the table name is matched against resolved source tables in the TABLE
statement.

* When Replicat processes a trail record that satisfies @GETENV with STATS or DELTASTATS,
the table name is matched against resolved target tables in the TARGET clause of the MAP
statement.

'"TABLE', 'table'

Executes the STATS or DELTASTATS only for the specified table or tables. Without this option,
counts are returned for all tables that are specified in TABLE (Extract) or MAP (Replicat)
parameters in the parameter file.

Valid table name values are:

° 'schema.table' specifies a table.

* 'table' specifies a table of the default schema.

e 'schema.* specifies all tables of a schema.

- "' gpecifies all tables of the default schema.

For example, the following counts DML operations only for tables in the hr schema:
MAP fin.*, TARGET fin.*;

MAP hr.*, TARGET hr.¥*;

MAP hq.rpt, TARGET hg.rpt, COLMAP (USEDEFAULTS, CNT = QGETENV ('STATS',
'TABLE', 'hr.*', 'DML'));

4-40

http://support.oracle.com

ORACLE

Chapter 4
@GETENV

Likewise, the following counts DML operations only for the emp table in the hr schema:

MAP fin.*, TARGET fin.*;

MAP hr.*, TARGET hr.*;

MAP hqg.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = @GETENV ('STATS',
'TABLE', 'hr.emp', 'DML'));

By contrast, because there are no specific tables specified for STATS in the following example,
the function counts all INSERT, UPDATE, and DELETE operations for all tables in all schemas that
are represented in the TARGET clauses of MAP statements:

MAP fin.*, TARGET fin.*;

MAP hr.*, TARGET hr.*;

MAP hq.rpt, TARGET hq.rpt, COLMAP (USEDEFAULTS, CNT = &
@GETENV ('STATS', 'DML'));

'statistic'
The type of statistic to return. See Using Statistics in FILTER Clauses for important
information when using statistics in FILTER clauses in multiple TABLE or MAP statements.

' INSERT'
Returns the number of INSERT operations that were processed.

'UPDATE'
Returns the number of UPDATE operations that were processed.

'DELETE'
Returns the number of DELETE operations that were processed.

IDMLI
Returns the total of INSERT, UPDATE, and DELETE operations that were processed.

' TRUNCATE'

Returns the number of TRUNCATE operations that were processed. This variable returns a
count only if Oracle GoldenGate DDL replication is not being used. If DDL replication is
being used, this variable returns a zero.

'DDL'

Returns the number of DDL operations that were processed, including TRUNCATES and
DDL specified in INCLUDE and EXCLUDE clauses of the DDL parameter, all scopes (MAPPED,
UNMAPPED, OTHER). This variable returns a count only if Oracle GoldenGate DDL replication
is being used. This variable is not valid for 'DELTASTATS'.

'CDR_CONFLICTS'

Returns the number of conflicts that Replicat detected when executing the Conflict
Detection and Resolution (CDR) feature.

Example for a specific table:

@GETENV ('STATS', 'TABLE', '"HR.EMP', 'CDR CONFLICTS')

Example for all tables processed by Replicat:

@GETENV ('STATS', 'CDR CONFLICTS')

4-41

ORACLE

Chapter 4
@GETENV

'CDR_RESOLUTIONS_SUCCEEDED'

Returns the number of conflicts that Replicat resolved when executing the Conflict
Detection and Resolution (CDR) feature.

Example for a specific table:

@GETENV ('STATS', 'TABLE', 'HR.EMP', 'CDR RESOLUTIONS SUCCEEDED')
Example for all tables processed by Replicat:
@GETENV ('STATS', 'CDR RESOLUTIONS SUCCEEDED')

'CDR_RESOLUTIONS FAILED'

Returns the number of conflicts that Replicat could not resolve when executing the
Conflict Detection and Resolution (CDR) feature.

Example for a specific table:

@GETENV ('STATS', 'TABLE', 'HR.EMP', 'CDR RESOLUTIONS FAILED')

Example for all tables processed by Replicat:

@GETENV ('STATS', 'CDR_RESOLUTIONS FAILED')

'GGENVIRONMENT' , 'environment info'
Valid for Extract and Replicat.

Use the GGENVIRONMENT option of QGETENV to return information about the Oracle GoldenGate
environment.

Syntax

@GETENV ('GGENVIRONMENT', {'DOMAINNAME'/|'GROUPDESCRIPTION' |'GROUPNAME" |
'GROUPTYPE' | '"HOSTNAME' | 'OSUSERNAME' | ' PROCESSID'")

'DOMAINNAME '
(Windows only) Returns the domain name associated with the user that started the process.

' GROUPDESCRIPTION'

Returns the description of the group, taken from the checkpoint file. Requires that a
description was provided with the DESCRIPTION parameter when the group was created with
the ADD command.

' GROUPNAME '
Returns the name of the process group.

' GROUPTYPE'
Returns the type of process, either EXTRACT or REPLICAT.

"HOSTNAME '
Returns the name of the system running the Extract or Replicat process.

'OSUSERNAME'
Returns the operating system user name that started the process.

' PROCESSID'
Returns the process ID that is assigned to the process by the operating system.

4-42

ORACLE

Chapter 4
@GETENV

'GGHEADER' , 'header info'
Valid for Extract and Replicat.

Use the GGHEADER option of @GETENV to return information from the header portion of an Oracle
GoldenGate trail record. The header describes the transaction environment of the record. For
more information on record headers and record types, see Trail Record Format.

Syntax

@GETENV ('GGHEADER', {'BEFOREAFTERINDICATOR'|'COMMITTIMESTAMP'|'LOGPOSITION' |
'LOGRBA' | 'OBJECTNAME' | 'TABLENAME' | 'OPTYPE' | "RECORDLENGTH' |
'TRANSACTIONINDICATOR'})

< Note:

Do not use TIMESTAMP PRECISE for ordering operations. Instead use this value:
QCOMPUTE (RCOMPUTE (@NUMSTR (QGETENV ("RECORD",
"FILESEQNO"))*100000000000) +@NUMSTR (RGETENV ("RECORD", "FILERBA")))

'BEFOREAFTERINDICATOR'
Returns the before or after indicator showing whether the record is a before image or an after
image. Possible results are:

e BEFORE (before image)

e AFTER (after image)

'COMMITTIMESTAMP'
Returns the transaction timestamp (the time when the transaction committed) expressed in the
format of YYYY-MM-DD HH:MI:SS.FFFFFF, for example:

2011-01-24 17:08:59.000000

'LOGPOSITION'
Returns the position of the Extract process in the data source. (See the LOGRBA option.)

'LOGRBA'

LOGRBA and LOGPOSITION store details of the position in the data source of the record. For
transactional log-based products, LOGRBA is the sequence number and LOGPOSITION is the
relative byte address. However, these values will vary depending on the capture method and
database type.

'"OBJECTNAME' | 'TABLENAME'
Returns the table name or object name (if a non-table object).

'OPTYPE'
Returns the type of operation. Possible results are:

INSERT
UPDATE
DELETE

4-43

ORACLE

Chapter 4
@GETENV

SQL COMPUPDATE
PK UPDATE
TRUNCATE

If the operation is not one of the above types, then the function returns the word TYPE with the
number assigned to the type.

'RECORDLENGTH'
Returns the record length in bytes.

'TRANSACTIONINDICATOR'

Returns the transaction indicator. The value corresponds to the TransInd field of the record
header, which can be viewed with the Logdump utility.

Possible results are:

° BEGIN (represents TransInD of O, the first record of a transaction.)
° MIDDLE (represents TransInD of 1, a record in the middle of a transaction.)
* END (represents TransInD of 2, the last record of a transaction.)

° WHOLE (represents TransInD of 3, the only record in a transaction.)

'GGFILEHEADER' , 'header info'

Valid for Replicat only.

Use the GGFILEHEADER option of @GETENV to retrieve attributes of an Oracle GoldenGate Extract
file or trail file. These attributes are stored as tokens in the file header.

Note:

If a given database, operating system, or Oracle GoldenGate version does not
provide information that relates to a given token, a NULL value will be returned.

Syntax

@GETENV ('GGFILEHEADER', {'COMPATIBILITY'|'CHARSET'|'CREATETIMESTAMP' |
"FILENAME' | 'FILETYPE'|'FILESEQNO'|'FILESIZE'|'FIRSTRECCSN' |
"LASTRECCSN' | '"FIRSTRECIOTIME' | 'LASTRECIOTIME' | 'URI' | 'URIHISTORY' |
"GROUPNAME ' | ' DATASOURCE' | ' GGMAJORVERSION' | 'GGMINORVERSION' |
"GGVERSIONSTRING' | 'GGMAINTENANCELEVEL' | 'GGBUGFIXLEVEL' | 'GGBUILDNUMBER' |
"HOSTNAME' | 'OSVERSION' | 'OSRELEASE' | 'OSTYPE' | 'HARDWARETYPE' |
"DBNAME' |

"DBUNIQUENAME' | 'DBINSTANCE' | 'DBTYPE' | 'DBCHARSET' | ' DBMAJORVERSION' |

'DBMINORVERSION' | 'DBVERSIONSTRING' | 'DBCLIENTCHARSET' | 'DBCLIENTVERSIONSTRING' |
'LASTCOMPLETECSN' | 'LASTCOMPLETEXIDS' | 'LASTCSN' | 'LASTXID' |
'LASTCSNTS' | 'RECOVERYMODE ' })

'COMPATIBILITY'

Returns the compatibility level of the trail file. The compatibility level of the current Oracle
GoldenGate version must be greater than, or equal to, the compatibility level of the trail file to
be able to read the data records in that file. Current valid values are from O or 6.

4-44

Chapter 4
@GETENV

¢ 1 means that the trail file is of Oracle GoldenGate version 10.0 or later, which supports file
headers that contain file versioning information.

* 0 means that the trail file is of an Oracle GoldenGate version that is older than 10.0. File
headers are not supported in those releases. The 0 value is used for backward
compatibility to those Oracle GoldenGate versions.

5 means that the trail file is of Oracle GoldenGate version 12.2 or later.
* 6 means that the trail file is of Oracle GoldenGate version 12.3.0.1.

This value keeps increasing as per the Oracle GoldenGate version depending on the trail
file version.

'CHARSET'

Returns the global character set of the trail file. For example:
WCP1252-1

'CREATETIMESTAMP'
Returns the time that the trail was created, in local GMT Julian time in INT64.

'FILENAME'
Returns the name of the trail file. Can be an absolute or relative path, with a forward or
backward slash depending on the file system.

'"FILETYPE'

Returns a numerical value indicating whether the trail file is a single file (such as one created
for a batch run) or a sequentially numbered file that is part of a trail for online, continuous
processing. The valid values are:

° 0 - EXTFILE
° 1 - EXTTRAIL
e 2 - UNIFIED and EXTFILE

e 3 - UNIFIED and EXTTRAIL

'FILESEQNO'
Returns the sequence number of the trail file, without any leading zeros. For example, if a file
sequence number is aa000026, FILESEQNO returns 26.

'"FILESIZE'
Returns the size of the trail file. It returns NULL on an active file and returns a size value when
the file is full and the trail rolls over.

'"FIRSTRECCSN'
Returns the commit sequence number (CSN) of the first record in the trail file. Value is NULL
until the trail file is completed.

'LASTRECCSN'
Returns the commit sequence number (CSN) of the last record in the trail file. Value is NULL
until the trail file is completed.

'"FIRSTRECIOTIME'
Returns the time that the first record was written to the trail file. Value is NULL until the trail file
is completed.

ORACLE o

ORACLE

Chapter 4
@GETENV

'"LASTRECIOTIME'
Returns the time that the last record was written to the trail file. Value is NULL until the trail file
is completed.

'RECOVERYMODE'
Returns recovery information for internal Oracle GoldenGate use. It is usually set to
APPENDMODE.

"URI'
Returns the universal resource identifier of the process that created the trail file, in the
following format:

host name:dir:[:dir][:dir n]lgroup name

Where:

* host name is the name of the server that hosts the process

* dir is a subdirectory of the Oracle GoldenGate installation path.

* group name is the name of the process group that is linked with the process.

The following example shows where the trail was processed and by which process. This

includes a history of previous runs.

sysl:home:oracle:v9.5:extora

'"URIHISTORY'
Returns a list of the URIs of processes that wrote to the trail file before the current process.

* For a primary Extract, this field is empty.

* For a data pump, this field is URIHistory + URI of the input trail file.

' GROUPNAME '

Returns the name of the group that is associated with the Extract process that created the
trail. The group name is the one that was supplied when the ADD EXTRACT command was
issued.

'DATASOURCE'
Returns the data source that was read by the process as a number. The return value can be
one of the following:

* DS _EXTRACT TRAILS: The source was an Oracle GoldenGate extract file, populated with
change data. The return value is 0.

e DS DATABASE: The source was a direct select from database table written to a trail, used
for SOURCEISTABLE-driven initial load. The return value is 2.

* DS _TRAN LOGS: The source was the database transaction log. The return value is 3.

* DS _INITIAL DATA LOAD: The source was a direct select from database tables for an initial
load. The return value is 4.

* DS VAM EXTRACT: The source was a vendor access module (VAM). The return value is 5.

e DS _VAM TWO PHASE COMMIT: The source was a VAM trail. The return value is 6.

4-46

ORACLE

Chapter 4
@GETENV

' GGMAJORVERSION'
Returns the major version of the Extract process that created the trail, expressed as an
integer. For example, if a version is 1.2.3, it returns 1.

' GGMINORVERSION'
Returns the minor version of the Extract process that created the trail, expressed as an
integer. For example, if a version is 1.2.3, it returns 2.

' GGVERSIONSTRING'
Returns the maintenance (or patch) level of the Extract process that created the trail,
expressed as an integer. For example, if a version is 1.2.3, it returns 3.

' GGMAINTENANCELEVEL'
Returns the maintenance version of the process (xx.xx.xx).

' GGBUGFIXLEVEL'
Returns the patch version of the process (xx.xx.xx.xx).

' GGBUILDNUMBER'
Returns the build number of the process.

"HOSTNAME '
Returns the DNS name of the machine where the Extract that wrote the trail is running. For
example:

°* sysa
* sysb
* paris
* hqg25
'OSVERSION'

Returns the major version of the operating system of the machine where the Extract that wrote
the trail is running. For example:

* Version s10 69
e #1 SMP Fri Feb 24 16:56:28 EST 2006

o 5.00.2195 Service Pack 4

'OSRELEASE'

Returns the release version of the operating system of the machine where the Extract that
wrote the trail is running. For example, release versions of the examples given for 0SVERSION
could be:

e 5.10
°* 2.6.9-34.ELsmp

'OSTYPE'
Returns the type of operating system of the machine where the Extract that wrote the trail is
running. For example:

e SunOS
o Linux

e Microsoft Windows

4-47

ORACLE

Chapter 4
@GETENV

'HARDWARETYPE '
Returns the type of hardware of the machine where the Extract that wrote the trail is running.
For example:

* sundu
* x86 64
e x86
'DBNAME'

Returns the name of the database, for example findb.

' DBUNIQUENAME '
Returns the value of the DB_UNIQUE NAME token as read from the header of the source trail file.
Its value matches the DB_UNIQUE NAME parameter of the source database.

'DBINSTANCE'
Returns the name of the database instance, if applicable to the database type, for example
ORA1022A.

'DBTYPE'
Returns the type of database that produced the data in the trail file. Can be one of:

DB2 UDB
DB2 Z70S
MSSQL
MYSQL
ORACLE
TERADATA
ODBC

'DBCHARSET'
Returns the character set that is used by the database that produced the data in the trail file.
(For some databases, this will be empty.)

' DBMAJORVERSION'
Returns the major version of the database that produced the data in the trail file.

' DBMINORVERSION'
Returns the minor version of the database that produced the data in the trail file.

'DBVERSIONSTRING'
Returns the maintenance (patch) level of the database that produced the data in the trail file.

'DBCLIENTCHARSET'
Returns the character set that is used by the database client.

' DBCLIENTVERSIONSTRING'
Returns the maintenance (patch) level of the database client. (For some databases, this will
be empty.)

' LASTCOMPLETECSN'
Returns recovery information for internal Oracle GoldenGate use.

' LASTCOMPLETEXIDS'
Returns recovery information for internal Oracle GoldenGate use.

4-48

ORACLE

Chapter 4
@GETENV

'LASTCSN'
Returns recovery information for internal Oracle GoldenGate use.

'LASTXID'
Returns recovery information for internal Oracle GoldenGate use.

'LASTCSNTS'
Returns recovery information for internal Oracle GoldenGate use.

'RECORD' , 'location_info'
Valid for a data pump Extract or Replicat.

Use the RECORD option of @GETENV to return the location or Oracle rowid of a record in an
Oracle GoldenGate trail file.

Syntax

@GETENV ('RECORD',
{'TIMESTAMP PRECISE'|'FILESEQNO'|'FILERBA'|'ROWID'|'RSN'|'TIMESTAMP'})

'TIMESTAMP PRECISE'

Valid for Extract or Replicat.

The TIMESTAMP PRECISE option returns the timestamp from year to microseconds. However,
depending on the database, the value can be in milliseconds with O microseconds.

'"FILESEQNO'
Returns the sequence number of the trail file without any leading zeros.

'"FILERBA'
Returns the relative byte address of the record within the FILESEQNO file.

'"ROWID'
(Valid for Oracle) Returns the row id of the record.

'RSN'

Returns the record sequence number within the transaction. This value does not always
generate uniquely increasing values and should not be used to order operations. For ordering
transactions or DML operations within a transaction, use the information outlined in MOS DOC
ID 1340823.1.

'TIMESTAMP'
Returns the timestamp of the record.

Example:

REC-TIMESTAMP: 2017-10-31 06:21:07 REC-TIMESTAMP-PRECISE: 2017-10-31
06:21:07.478064

'DBENVIRONMENT' , 'database info'

Valid for Extract and Replicat.

Use the DBENVIRONMENT option of GGETENV to return global environment information for a
database.

4-49

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=355027630061971&id=1439822.1&_afrWindowMode=0&_adf.ctrl-state=1dv3nz3o4z_4
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=355027630061971&id=1439822.1&_afrWindowMode=0&_adf.ctrl-state=1dv3nz3o4z_4

ORACLE

Chapter 4
@GETENV

Syntax

@GETENV ('DBENVIRONMENT',
{ "DBNAME' | 'DBUNIQUENAME' | 'DBVERSION' | 'DBUSER' | ' SERVERNAME' })

'"DBNAME '
Returns the database name.

' DBUNIQUENAME '

Returns the value of the DB_UNIQUE NAME parameter of the database to which the process is
connected. The source database in the case of Extract and the target database for Replicat.
This value will be set only for Oracle databases.

'"DBVERSION'
Returns the database version.

'DBUSER'
Returns the database login user. Note that SQL Server does not log the user ID.

' SERVERNAME '
Returns the name of the server.

'TRANSACTION' , 'transaction_info
Valid for Extract.

Use the TRANSACTION option of QGETENV to return information about a source transaction. This
option is valid for the Extract process but not for pump Extract and Replicat.

Syntax

@GETENV ('TRANSACTION',
{'TIMESTAMP PRECISE'|'TRANSACTIONID'|'XID'"|'CSN'|'TIMESTAMP'|'NAME" |

'"USERNAME' | 'PLANNAME' | 'LOGBSN' | 'REDOTHREAD' | 'PROGRAMNAME' |
'CLIENTIDENTIFTER' | 'MACHINENAME' | 'USERNAME')
Note:

Do not use TIMETSAMP PRECISE or TIMESTAMP for ordering operations. Instead use
this value: @COMPUTE (@QCOMPUTE (@NUMSTR (@GETENV ("RECORD",
"FILESEQNO"))*100000000000) +@NUMSTR (@GETENV ("RECORD", "FILERBA")))

'"TIMESTAMP PRECISE'

This option is valid for Extract. Use the TIMESTAMP PRECISE returns the timestamp from year
to microseconds. However, depending on the database, the value can be in milliseconds with
0 microseconds

'TRANSACTIONID' | 'XID'

Returns the transaction ID number. Either TRANSACTIONID or XID can be used. The transaction
ID and the CSN are associated with the first record of every transaction and are stored as
tokens in the trail record. For each transaction ID, there is an associated CSN. Transaction ID
tokens have no zero-padding on any platform, because they never get evaluated as relative

4-50

Chapter 4
@GETENV

values. They only get evaluated for whether they match or do not match. Note that in the trail,
the transaction ID token is shown as TRANID.

'CSN'

Returns the commit sequence number (CSN). The CSN is not zero-padded when returned for
these databases: Oracle, DB2 LUW, and DB2 z/OS. For all other supported databases, the
CSN is zero-padded.

Note that in the trail, the CSN token is shown as LOGCSN. See the TRANSACTIONID | XID
environment value for additional information about the CSN token.

For more information about the CSN, see Commit Sequence Number (CSN).

'TIMESTAMP'
Returns the commit timestamp of the transaction.

'NAME'
Returns the transaction name, if available.

'USERNAME'
(Oracle) Returns the Oracle user name of the database user that committed the last
transaction. This is not valid for pump Extract and/or Replicat.

' PLANNAME'
(DB2 z/0OS) Returns the plan name under which the current transaction was originally
executed. The plan name is included in the begin unit of recovery log record.

' LOGBSN'

Returns the begin sequence number (BSN) in the transaction log. The BSN is the native
sequence number that identifies the beginning of the oldest uncommitted transaction that is
held in Extract memory. For example, given an Oracle database, the BSN would be expressed
as a system change number (SCN). The BSN corresponds to the current I/O checkpoint value
of Extract. This value can be obtained from the trail by Replicat when @GETENV
("TRANSACTION', 'LOGBSN') is used. This value also can be obtained by using the INFO
REPLICAT command with the DETAIL option. The purpose of obtaining the BSN from Replicat is
to get a recovery point for Extract in the event that a system failure or file system corruption
makes the Extract checkpoint file unusable.

'"REDOTHREAD'

Returns the thread number of a RAC node extract; on non-RAC node extracts the value is
always 1. For data pump and Replicat, the thread id used by Extract capture of a RAC node is
returned; on non-RAC, @GETENV () returns an error. Logdump shows the token, ORATHREADID,
in the token section if the transaction is captured by Extract on a RAC node.

'PROGRAMNAME’
Name of the program or application that started the transaction or session.

‘CLIENTIDENTIFIER’
Value set by using DBMS SESSION .set identifier().

‘MACHINENAME'
Name of the host, machine, or server where database is running

‘USERNAME'’
Database login user name.

ORACLE 451

ORACLE

Chapter 4
@GETENV

Example:

DB2 zO0S:
TRANS-TIMESTAMP: 2017-10-31 06:21:07
TRANS-TIMESTAMP-PRECISE: 2017-10-31 06:21:07.485792

'OSVARIABLE' , 'variable'

Valid for Extract and Replicat.

Use the 0SVARIABLE option of @GETENV to return the string value of a specified operating-
system environment variable.

Syntax

@GETENV ('OSVARIABLE', 'wvariable')

'variable'

The name of the variable. The search is an exact match of the supplied variable name. For
example, the UNIX grep command would return all of the following variables, but

@GETENV ('OSVARIABLE', 'HOME') would only return the value for HOME:

ANT HOME=/usr/local/ant

JAVA HOME=/usr/java/j2sdkl.4.2 10
HOME=/home/judyd

ORACLE HOME=/rdbms/oracle/oral022i/64

The search is case-sensitive if the operating system supports case-sensitivity.
'"TLFKEY' , SYSKEY, 'unique key'
Valid for Extract and Replicat.

Use the TLFKEY option of @GETENV to associate a unique key with TLF/PTLF records in ACI's
Base24 application. The 64-bit key is composed of the following concatenated items:

e The number of seconds since 2000.
e The block number of the record in the TLF/PTLF block multiplied by ten.
e The node specified by the user (must be between 0 and 255).

Syntax

@GETENV ('TLFKEY', SYSKEY, unique key)

SYSKEY, unique key

The NonStop node number of the source TLF/PTLF file. Do not enclose this syntax element in
quotes.

Example:

GETENV ('TLFKEY', SYSKEY, 27)

4-52

Chapter 4
GET_ENV_VALUE

' SOURCEDATABASEINFO'

This option has the DBUNIQUENAME and DBNAME fields. The fields from SOURCEDATABASEINFO are
different from the GGFILEHEADER fields. Firstly, their performance is better as compared to
the fields from GGFILEHEADER, SO using SOURCEDATABASEINFO is a better alternative for
scenarios where performance is critical. Secondly, when the DBUNIQUENAME token is not
available in the trail header, either because the trail file was generated by an older version of
Oracle GoldenGate, or because the database is not Oracle, @GETENV will treat DBUNIQUENAME as
a synonym of DBNAME. In this case, a warning message will be written to the report file, the first
time a header without the token is read.

GET ENV_VALUE

ORACLE

Valid For

Extract and Replicat

Description

Use the GET_ENV_VALUE function to return information about the Oracle GoldenGate
environment. The information that is supplied is the same as that of the @GETENV column-
conversion function and is specified by using the same input values. For more information
about the valid information types, environment variables, and return values, see "@GETENV".

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB CS DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process is
interpreted in the session character set.

Syntax

#include "usrdecs.h"

short result code;

getenv value def env ptr;

ERCALLBACK (GET_ENV VALUE, &env ptr, &result code);

Buffer

typedef struct

{

char *information type;
char *env value name;
char *return value;
long max return length;
long actual length;
short value truncated;
} getenv value def;

Input

information_type

The information type that is to be returned, for example 'GGENVIRONMENT' Or 'GGHEADER'. The
information type must be supplied within double quotes. For a list of information types and
subsequent detailed descriptions, see "@GETENV".

4-53

Chapter 4
GET_ERROR_INFO

env_value_name

The environment value that is wanted from the information type. The environment value must
be supplied within double quotes. For valid values, see "@GETENV". For example, if using
the 'GGENVIRONMENT' information type, a valid environment value would be ' GROUPNAME'.

max return length
The maximum length of the buffer for this data.

Output

return value
A valid return value for the supplied environment value.

actual_length
The actual length of the data in this buffer.

value truncated
A flag (0 or 1) to indicate whether or not the value was truncated. Truncation occurs if the
length of the value plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET OK
EXIT FN RET ENV NOT FOUND
EXIT FN RET INVALID PARAM

GET_ERROR_INFO

ORACLE

Valid For

Extract and Replicat

Description

Use the GET_ERROR_INFO function to retrieve error information associated with a discard record.
The user exit can use this information in custom error handling logic. For example, the user
exit could send an e-mail message with detailed error information.

If the character session of the user exit is set with SET SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB _CS DEFAULT in the
ucharset.h file, the message data that is exchanged between the user exit and the process is
interpreted in the session character set.

Syntax

#include "usrdecs.h"

short result code;

error info def error info;

ERCALLBACK (GET ERROR INFO, &error info, &result code);

Buffer

typedef struct

{

long error num;
char *error msg;
long max length;
long actual length;

4-54

Chapter 4
GET_GMT_TIMESTAMP

short msg truncated;
} error info def;

Input

error_msg
A pointer to a buffer to accept the returned error message.

max length
The maximum length of your allocated error msg buffer to accept any resulting error
message. This is returned as a NULL terminated string.

Output

error_num
The SQL or system error number associated with the discarded record.

error_msg
A pointer to the null-terminated error message string associated with the discarded record.

actual_length
The length of the error message, not including the null terminator.

msg_truncated
A flag (0 or 1) indicating whether or not the error message was truncated. Truncation occurs if
the length of the error message plus a null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET OK

GET_GMT_TIMESTAMP

ORACLE

Valid For

Extract and Replicat

Description

Use the GET _GMT TIMESTAMP function to retrieve the operation commit timestamp in GMT
format. This function requires compiling with Version 2 usrdecs.h or later.

Syntax

#include "usrdecs.h"

short result code;

record def record;

ERCALLBACK (GET GMT TIMESTAMP, &record, &result code);

Buffer

typedef struct

{

char *table name;

char *buffer;

long length;

char before after ind;
short io type;

4-55

Chapter 4
GET_MARKER_INFO

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;

} record def;

Input

None

Output

timestamp
The returned 64-bit I/0 timestamp in GMT format.

io_datetime

A null-terminated string containing the local I/O date and time:
YYYY-MM-DD HH:MI:SS.FFFFFF

The format of the datetime string is in the session character set.

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET OK

GET _MARKER_INFO

ORACLE

Valid For

Extract (data pump only) and Replicat

Description

Use the GET MARKER INFO function to retrieve marker information sent from a NonStop source
system when Replicat is applying data. Use markers to trigger custom processing within a user
exit.

If the character session of the user exit is set with SET _SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB CS DEFAULT in the
ucharset.h file, all of the returned marker data is interpreted in the session character set.

Syntax

#include "usrdecs.h"

short result code;

marker info def marker info;

ERCALLBACK (GET MARKER INFO, &marker info, &result code);

Buffer

typedef struct
{

char *processed;
char *added;
char *text;
char *group;

4-56

Chapter 4
GET_OBJECT_NAME

char *program;
char *node;
} marker info def;

Input

processed
A pointer to a buffer to accept the processed return value.

added
A pointer to a buffer to accept the added return value.

text
A pointer to a buffer to accept the text return value.

group
A pointer to a buffer to accept the group return value.

program
A pointer to a buffer to accept the program return value.

node
A pointer to a buffer to accept the node return value.

Output

processed
A null-terminated string in the format of YYyY-MM-DD HH:MI:SS indicating the local date and
time that the marker was processed.

added
A null-terminated string in the format of YYYY-MM-DD HH:MI:SS indicating the local date and
time that the marker was added.

text
A null-terminated string containing the text associated with the marker.

group
A null-terminated string indicating the Replicat group that processed the marker.

program
A null-terminated string indicating the program that processed the marker.

node
A null-terminated string representing the Himalaya node on which the marker was originated.

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET OK

GET_OBJECT_NAME

Valid For

Extract and Replicat

ORACLE 4-57

Chapter 4
GET_OBJECT_NAME

Description

Use the GET _OBJECT NAME function to retrieve the fully qualified name of a source or target
object that is associated with the record being processed. This function is valid tables and
other objects in a DML or DDL operation.

To return only part of the object name, see the following:
GET_OBJECT_NAME_ONLY GET_SCHEMA NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET OBJECT NAME, &env value, é&result code);

Buffer

typedef struct

{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env_value def;

Input

buffer
A pointer to a buffer to accept the returned object name. The name is null-terminated.

max length
The maximum length of your allocated buffer to accept the object name. This is returned as a
NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target object name.

EXIT FN_SOURCE VAL
EXIT FN TARGET VAL

Output

buffer

The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.

If the character session of the user exit is set with SET SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS DEFAULT in the
ucharset.h file, the object name is interpreted in the session character set.

ORACLE 458

Chapter 4
GET_OBJECT_NAME_ONLY

actual length
The string length of the returned object name. The actual length does not include the null
terminator. The actual length is O if the object is a table.

value truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the object name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET_OBJECT_NAME_ONLY

Valid For

Extract and Replicat

Description

Use the GET_OBJECT NAME ONLY function to retrieve the unqualified name (without the catalog,
container, or schema) of a source or target object that is associated with the record that is
being processed. This function is valid for tables and other objects in a DML or DDL operation.

To return the fully qualified name of an object, see the following:
GET_OBJECT_NAME

To return other parts of the object name, see the following:
GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET_OBJECT NAME ONLY, &env_value, &result code);

Buffer

typedef struct

{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env _value def;

ORACLE 459

Chapter 4
GET_OPERATION_TYPE

Input

buffer
A pointer to a buffer to accept the returned object name. The name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the object name. This is returned as a
NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target object name.

EXIT FN SOURCE_ VAL
EXIT FN TARGET VAL

Output

buffer

The fully qualified, null-terminated object name, for example schema.object or
catalog.schema.object, depending on the database platform.

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS DEFAULT in the
ucharset.h file, the object name is interpreted in the session character set.

actual length
The string length of the returned object name. The actual length does not include the null
terminator. The actual length is O if the object is a table.

value truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the object name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET_OPERATION_TYPE

ORACLE

Valid For

Extract and Replicat

Description

Use the GET OPERATION TYPE function to determine the operation type associated with a
record. Knowing the operation type can be useful in a user exit. For example, the user exit can
perform complex validations any time a delete is encountered. It also is important to know
when a compressed record is being processed if the user exit is manipulating the full data
record.

As an alternative, you can use the GET RECORD BUFFER function to determine the operation type
(see "GET_RECORD_BUFFER").

4-60

ORACLE

Syntax

#include "usrdecs.h"
short result code;
record def record;

ERCALLBACK (GET OPERATION TYPE, &record, &result code);

Buffer

typedef struct

{

char *table name;

char *buffer;

long length;

char before after ind;
short io type;

short record type;
short transaction ind;
int64 t timestamp;
exit ts str io datetime;
short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION
char requesting before after ind;

} record def;

Input

source or_target

Chapter 4

GET_OPERATION_TYPE

One of the following indicating whether to return the operation type for the source or the target

data record.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

Output
io_type
Returned as one of the following:
 DDL type:
SQL DDL_VAL
DML types:
DELETE_ VAL
INSERT VAL
UPDATE VAL

 Compressed SQL update:

UPDATE COMP SQL VAL
UPDATE COMP PK SQL VAL

e Other:

TRUNCATE TABLE VAL

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

4-61

Chapter 4
GET_POSITION

GET_POSITION

Valid For

Extract (data pump only) and Replicat

Description

Use the GET_POSITION function is obtain a read position of an Extract data pump or Replicat in
the Oracle GoldenGate trail.

Syntax

#include "usrdecs.h"
short result code;
ERCALLBACK (GET_POSITION &position def, &result code);

Buffer

typedef struct

{

char *position;

long position len;

short position type;
short ascii or internal;
} position def;

Input

position_len
Allocation length for the position length.

position_type
Can be one of the following:

STARTUP_CHECKPOINT
The start position in the trail.

CURRENT CHECKPOINT
The position of the last read in the trail.

column value_mode

An indicator for the format in which the column value was passed. Currently, only the default
Oracle GoldenGate canonical format is supported, as represented by:

EXIT FN RAW FORMAT

Output

*position

A pointer to a buffer representing the position values. This buffer is declared in the
position def as two binary values (unsigned int32t and int32t) as seqnorba for eight bytes
in a char field. The user exit must move the data to the correct data type. Using this function
on a Little Endian platform will cause the process to "reverse bytes" on the two fields
individually.

ORACLE 6o

Chapter 4
GET_RECORD_BUFFER

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET NOT SUPPORTED
EXIT FN RET OK

GET_RECORD_BUFFER

ORACLE

Valid For

Extract and Replicat

Description

Use the GET RECORD BUFFER function to obtain information for custom column conversions.
User exits can be used for data mapping between dissimilar source and target records when
the COLMAP option of the MAP or TABLE parameter is not sufficient. For example, you can use a
user exit to convert a proprietary date field.

You can use the SET RECORD BUFFER function (see "SET_RECORD_BUFFER") to modify the
data retrieved with GET RECORD BUFFER. However, it requires an understanding of the data
record as written in the internal Oracle GoldenGate canonical format. As an alternative, you
can set column values in the data record with the SET COLUMN VALUE BY INDEX function (see
"SET_COLUMN_VALUE_BY_INDEX") or the SET COLUMN VALUE BY NAME function (see
"@STRNCMP").

Deletes, inserts and updates appear in the buffer as full record images.

Compressed SQL updates have the following format:

index length value [index length value][...]

where:
e index is atwo-byte index into the list of columns of the table (first column is zero).
e length is the two-byte length of the table.

* value is the actual column value, including one of the following two-byte null indicators
when applicable. 0 is not null. -1 is null.

For SQL records, you can use the DECOMPRESS RECORD function ("DECOMPRESS_RECORD")
to decompress the record for possible manipulation and then use the COMPRESS RECORD
function ("COMPRESS_RECORD") to compress it again, as expected by the process.

Syntax

#include "usrdecs.h"

short result code;

record def record;

ERCALLBACK (GET RECORD BUFFER, &record, &result code);

Buffer

typedef struct

{

char *table name;

char *buffer;

long length;

char before after ind;

4-63

ORACLE

Chapter 4
GET_RECORD_BUFFER

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;

} record def;

Input

source or_ target
One of the following indicating whether to return the record buffer for the source or target data
record.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

requesting before after_ind

Optional. Set when requesting a record buffer on a record io_type of UPDATE COMP_PK SQL VAL
(primary key update). Use one of the following to indicate which portion of the primary key
update is to be accessed. The default is AFTER IMAGE VAL.

BEFORE IMAGE VAL
AFTER IMAGE VAL

Output

buffer

A pointer to the record buffer. Typically, buffer is a pointer to a buffer of type

exit rec buf def. The exit rec buf def buffer contains the actual record about to be
processed by Extract or Replicat. The buffer is supplied when the call type is

EXIT CALL DISCARD RECORD. EXit routines can change the contents of this buffer, for example,
to perform custom mapping functions.

The content of the record buffer is not converted to or from the character set of the user exit. It
is passed as-is.

length
The returned length of the record buffer.

io_type
Returned as one of the following:
 DDL type:
SQL DDL VAL
DML types:
DELETE VAL
INSERT VAL
UPDATE VAL

* Compressed SQL update:

UPDATE_COMP_SQL VAL
UPDATE COMP PK SQL VAL

4-64

e Other:

TRUNCATE TABLE VAL

mapped

A flag (0 or 1) indicating whether or not this is a mapped record buffer.

before after ind

Chapter 4
GET_RECORD_LENGTH

One of the following to indicate whether the record is a before or after image.

BEFORE IMAGE VAL
AFTER IMAGE VAL

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET RECORD_LENGTH

ORACLE

Valid For

Extract and Replicat

Description

Use the GET RECORD LENGTH function to retrieve the length of the data record. As an
alternative, you can use the GET RECORD BUFFER function to retrieve the length of the data

record.

Syntax

#include "usrdecs.h"
short result code;
record def record;

ERCALLBACK (GET RECORD LENGTH, é&record,

Buffer

typedef struct

{

char *table name;

char *buffer;

long length;

char before after ind;

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION
char requesting before after ind;
} record def;

&result code);

*/

4-65

Chapter 4

GET_RECORD_TYPE

Input

source or_ target

One of the following indicating whether to return the record length for the source or target data

record.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

Output

length
The returned length of the data record.

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET _RECORD TYPE

ORACLE

Valid For

Extract and Replicat

Description

Use the GET RECORD TYPE function to retrieve the type of record being processed. The record

can be a SQL record. The record type is important when manipulating the record buffer,
because each record type has a different format.

Syntax

#include "usrdecs.h"

short result code;

record def record;

ERCALLBACK (GET RECORD TYPE, &record, &result code);

Buffer

typedef struct

{

char *table name;

char *buffer;

long length;

char before after ind;

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;
} record def;

4-66

Chapter 4
GET_SCHEMA_NAME_ONLY

Input

source or_ target
One of the following indicating whether or not to return the record type for the source or target
data record.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

Output

record type
The returned record type.

EXIT REC_TYPE SQL

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET_SCHEMA_NAME_ONLY

ORACLE

Valid For

Extract and Replicat

Description

Use the GET _SCHEMA NAME ONLY function to retrieve the name of the owner (such as schema),
but not the name of the catalog or container (if applicable) or the object, of the source or target
object associated with the record being processed. This function is valid for DML and DDL
operations.

To return the fully qualified name of a table, see the following:
GET_TABLE_NAME

To return the fully qualified name of a non-table object, such as a user, view or index, see the
following:

GET_OBJECT_NAME

To return only the unqualified table or object name, see the following:
GET_TABLE_NAME_ONLY

GET_OBJECT_NAME_ONLY

To return other parts of the table or object name, see the following:
GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

4-67

Chapter 4
GET_SCHEMA_NAME_ONLY

Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET_SCHEMA NAME ONLY, &env_value, &result code);

Buffer

typedef struct
{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env_value def;

Input

buffer
A pointer to a buffer to accept the returned schema name. The name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the schema name. This is returned as
a NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target schema name.

EXIT FN SOURCE_VAL
EXIT FN TARGET VAL

Output

buffer

The fully qualified, null-terminated schema name.

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB CS DEFAULT in the
ucharset.h file, the schema name is interpreted in the session character set.

actual length
The string length of the returned name. The actual length does not include the null terminator.

value_truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the schema name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT_FN RET INVALID COLUMN
EXIT _FN RET INVALID CONTEXT
EXIT _FN RET INVALID PARAM
EXIT FN RET OK

ORACLE 468

Chapter 4
GET_SESSION_CHARSET

GET_SESSION_CHARSET

Valid For

Extract and Replicat

Description

Use GET SESSION CHARSET to get the current user exit session character set. This character set
can be set through callback function SET SESSION CHARSET. The character set of the user exit
session indicates the encoding of any character-based callback structure members that are
used between the user exit and the caller process (Extract, data pump, Replicat), including
metadata such as (but not limited to):

e database names and locales

e table and column names

e DDL text

e error messages

e character-type columns such as CHAR and NCHAR

* date-time and numeric columns that are represented in string form

The valid values of the session character set are defined in the header file ucharset.h. This
function can be called at any time that the user exit has control.

Syntax

#include usrdecs.h

short result code;

session def session charset def;

ERCALLBACK (GET SESSION CHARSET, &session charset def, &result code);

Buffer

typedef struct
{

ULibCharSet session charset;
} session def;

Input

None

Output

session charset def.session charset

Return Values

EXIT FN RET OK

GET_STATISTICS

Valid For

Extract and Replicat

ORACLE 469

ORACLE

Chapter 4
GET_STATISTICS

Description

Use the GET STATISTICS function to retrieve the current processing statistics for the Extract or
Replicat process. For example, the user exit can output statistics to a custom report should a
fatal error occur during Extract or Replicat processing.

Statistics are automatically handled based on which process type has requested the data:

e The Extract process will always treat the request as a source table, counting that table
once regardless of the number of times output.

e The Replicat process will always treat the request as a set of target tables. The set
includes all counts to the target regardless of the number of source tables.

If the database is case-sensitive, object names must be specified in the same letter case as
they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"

short result code;

statistics def statistics;

ERCALLBACK (GET STATISTICS, &statistics, &result code);

Buffer

typedef struct

{

char *table name;

short group;

exit timestamp string start datetime;
long num inserts;

long num updates;

long num befores;

long num deletes;

long num discards;

long num ignores;

long total db operations;

long total operations;

/* Version 2 CALLBACK STRUCT VERSION */
long num truncates;

} statistics def;

Input

table name

A null-terminated string specifying the fully qualified name of the source table. Statistics are
always recorded against the source records. If the character session of the user exit is set with
SET SESSION CHARSET to a value other than the default character set of the operating system,
as defined in ULIB CS DEFAULT in the ucharset.h file, the table name and the date are
interpreted in the session character set.

group
Can be one of the following:

EXIT STAT GROUP_STARTUP
Retrieves statistics since the Oracle GoldenGate process was last started.

4-70

ORACLE

Chapter 4
GET_STATISTICS

EXIT STAT GROUP_DAILY
Retrieves statistics since midnight of the current day.

EXIT STAT GROUP_HOURLY
Retrieves statistics since the start of the current hour.

EXIT STAT GROUP_RECENT
Retrieves statistics since the statistics were reset using GGSCI.

EXIT STAT GROUP_REPORT
Retrieves statistics since the last report was generated.

EXIT STAT GROUP_USEREXIT
Retrieves statistics since the last time the user exit reset the statistics with
RESET USEREXIT STATS.

Output

start_datetime
A null-terminated string in the format of YYYY-MM-DD HH:MI:SS indicating the local date and
time that statistics started to be recorded for the specified group.

num_inserts
The returned number of inserts processed by Extract or Replicat.

num_updates
The returned number of updates processed by Extract or Replicat.

num befores
The returned number of update before images processed by Extract or Replicat.

num _deletes
The returned number of deletes processed by Extract or Replicat.

num discards
The returned number of records discarded by Extract or Replicat.

num_ignores
The returned number of records ignored by Extract or Replicat.

total_db_operations
The returned number of total database operations processed by Extract or Replicat.

total operations
The returned number of total operations processed by Extract or Replicat, including discards
and ignores.

num_truncates
The returned number of truncates processed by Extract or Replicat.

Return Values

EXIT_FN RET INVALID CONTEXT
EXIT _FN RET INVALID PARAM
EXIT _FN RET TABLE NOT FOUND
EXIT FN RET OK

4-71

Chapter 4
GET_TABLE_COLUMN_COUNT

GET TABLE_COLUMN_COUNT

Valid For

Extract and Replicat

Description

Use the GET _TABLE COLUMN COUNT function to retrieve the total number of columns in a table,
including the number of key columns.

Syntax

#include "usrdecs.h"

short result code;

table def table;

ERCALLBACK (GET TABLE COLUMN COUNT, &table, &result code);

Buffer

typedef struct

{

short num columns;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
short num key columns;

} table def;

Input

source or_target
One of the following indicating whether to return the total number of columns for the source or
target table.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

Output

num_columns
The returned total number of columns in the specified table.

num key columns
The returned total number of columns that are being used by Oracle GoldenGate as the key
for the specified table.

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET_TABLE_METADATA

ORACLE

Valid For

Extract and Replicat

4-72

Chapter 4
GET_TABLE_METADATA

Description

Use the GET TABLE METADATA function to retrieve metadata about the table that associated with
the record that is being processed.

Syntax

#include "usrdecs.h"

short result code;

table metadata def tbl meta rec;

ERCALLBACK (GET TABLE METADATA, &tbl meta rec, &result code);

Buffer

typedef struct

{

char *table name;

short value truncated;
long max name length;
long actual name length;
short num columns;

short num key columns;
short *key columns;
short num keys returned;
BOOL using pseudo key;
short source or target;
} table metadata def;

Input

table name
A pointer to a buffer to accept the table name return value

key columns
A pointer to an array of key columns indexes.

max name length

The maximum length of the returned table name. Typically, the maximum length is the length
of the table name buffer. Since the returned table name is null-terminated, the maximum
length should equal the maximum length of the table name.

source_or_target
One of the following indicating whether to return the source or target table name.

EXIT FN SOURCE_VAL
EXIT FN TARGET VAL

Output

table name

The name of the table associated with the record that is being processed. If the character
session of the user exit is set with SET_SESSION CHARSET to a value other than the default
character set of the operating system, as defined in ULIB CS DEFAULT in the ucharset.h file,
the table name is interpreted in the session character set.

value truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the table name plus the null terminator exceeds the maximum buffer length.

ORACLE 473

Chapter 4
GET_TABLE_NAME

actual_name length
The string length of the returned table name. The actual length does not include the null
terminator.

num_columns
The number of columns in the table.

num_key columns
The number of columns in the key that is being used by Oracle GoldenGate.

key columns
The values for the key columns. You must know the expected number of keys multiplied by
the length of the columns, and then allocate the appropriate amount of buffer.

num keys returned
The number of key columns that are requested.

using pseudo_key
A flag that indicates whether or not KEYCOLS-specified columns are being used as a key.
Returns TRUE or FALSE.

Return Values

EXIT FN RET INVALID PARAM
EXIT FN RET INVALID CONTEXT
EXIT FN RET EXCEEDED MAX LENGTH
EXIT FN RET OK

GET TABLE_NAME

ORACLE

Valid For

Extract and Replicat

Description

Use the GET TABLE NAME function to retrieve the fully qualified name of the source or target
table associated with the record being processed. This function is valid only for tables in DML
and DDL operations. To retrieve the fully qualified name of a non-table object, see the
following:

GET_OBJECT_NAME
To return only part of the fully qualified name, see also the following:
GET_TABLE_NAME_ONLY GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

This function returns a value only if the object is a table. Otherwise, the actual length of the
env_value def variable returns O.
Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET TABLE NAME, &env value, &result code);

4-74

Chapter 4
GET_TABLE_NAME_ONLY

Buffer

typedef struct
{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env _value def;

Input

buffer
A pointer to a buffer to accept the returned table name. The table name is null-terminated.

max_length
The maximum length of your allocated buffer to accept the table name. This is returned as a
NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target table name.

EXIT FN SOURCE_VAL
EXIT FN TARGET VAL

Output

buffer

The fully qualified, null-terminated table name, for example schema.table or
catalog.schema.table, depending on the database platform.

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB CS DEFAULT in the
ucharset.h file, the table name is interpreted in the session character set.

actual length
The string length of the returned table name. The actual length does not include the null
terminator. The actual length returned is 0O if the object is anything other than a table.

value truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the table name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET TABLE_NAME_ONLY

ORACLE

Valid For

Extract and Replicat

4-75

Chapter 4
GET_TABLE_NAME_ONLY

Description

Use the GET TABLE NAME ONLY function to retrieve the unqualified name (without the catalog,
container, or schema) of the source or target table associated with the record being processed.
This function is valid only for tables in DML and DDL operations. To retrieve the unqualified
name of a non-table object, see the following:

GET_OBJECT_NAME_ONLY
To return the fully qualified name of a table, see the following:
GET_TABLE_NAME

To return other parts of the table name, see the following:
GET_SCHEMA_NAME_ONLY GET_CATALOG_NAME_ONLY

Database object names are returned exactly as they are defined in the hosting database,
including the letter case.

This function returns a value only if the object is a table. Otherwise, the actual length of the
env_value def variable returns 0.

Syntax

#include "usrdecs.h"

short result code;

env_value def env value;

ERCALLBACK (GET TABLE NAME ONLY, é&env value, &result code);

Buffer

typedef struct

{

char *buffer;

long max length;

long actual length;
short value truncated;
short index;

short source or target;
} env_value def;

Input

buffer
A pointer to a buffer to accept the returned table name. The table name is null-terminated.

max length
The maximum length of your allocated buffer to accept the table name. This is returned as a
NULL terminated string.

source_or_target
One of the following indicating whether to return the source or target table name.

EXIT FN_SOURCE_VAL
EXIT FN TARGET VAL

ORACLE 476

Chapter 4
GET_TIMESTAMP

Output

buffer

The fully qualified, null-terminated table name, for example schema.table or
catalog.schema.table, depending on the database platform.

If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB_CS DEFAULT in the
ucharset.h file, the table name is interpreted in the session character set.

actual length
The string length of the returned table name. The actual length does not include the null
terminator. The actual length returned is 0 if the object is anything other than a table.

value truncated
A flag (0 or 1) indicating whether or not the value was truncated. Truncation occurs if the
length of the table name plus the null terminator exceeds the maximum buffer length.

Return Values

EXIT FN RET INVALID COLUMN
EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

GET_TIMESTAMP

ORACLE

Valid For

Extract and Replicat

Description

Use the GET_TIMESTAMP function to retrieve the I/O timestamp associated with a source data
record in ASCII datetime format. The timestamp is then converted to local time and
approximates the time of the original database operation.

Note:

The ASCII commit timestamp can vary with the varying regional use of Daylight
Savings Time. The user exit callback should return the ASCII datetime as a GMT
time to avoid this variance. The Oracle GoldenGate trail uses GMT format. See
"GET_GMT_TIMESTAMP".

Syntax

#include "usrdecs.h"

short result code;

record def record;

ERCALLBACK (GET TIMESTAMP, &record, &result code);

Buffer

typedef struct
{

4-77

char *table name;

char *buffer;

long length;

char before after ind;

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION
char requesting before after ind;
} record def;

Input

None

Output

timestamp

The returned 64-bit 1/0 timestamp in ASCII format.

io_datetime

*/

Chapter 4
GET_TRANSACTION_IND

A null-terminated string containing the local I/O date and time, in the format of:

YYYY-MM-DD HH:MI:SS.FFFFFF

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET OK

GET_TRANSACTION_IND

ORACLE

Valid For

Extract and Replicat

Description

Use the GET TRANSACTION IND function to determine whether a data record is the first, last or
middle operation in a transaction. This can be useful when, for example, a user exit can
compile the details of each transaction and output a special summary record.

Syntax

#include "usrdecs.h"
short result code;
record def record;

ERCALLBACK (GET_ TRANSACTION IND, &record, &result code);

Buffer

typedef struct

{

char *table name;

char *buffer;

long length;

char before after ind;

4-78

Chapter 4
GET_USER_TOKEN_VALUE

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;

} record def;

Input

None

Output

transaction_ind
The returned transaction indicator, represented as one of the following:

BEGIN_TRANS_VAL
The record is the beginning of a transaction.

MIDDLE_TRANS_VAL
The record is in the middle of a transaction.

END_TRANS VAL
The record is the end of a transaction.

WHOLE TRANS_VAL
The record is the only one in the transaction.

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET OK

GET_USER_TOKEN_VALUE

Valid For

Extract and Replicat

Description

Use the GET USER_TOKEN VALUE function to obtain the value of a user token from a trail record.
No character-set conversion is performed on the token value.

Syntax

#include "usrdecs.h"

Buffer

typedef struct

{

char *token name;
char *token value;
long max length;
long actual length;

ORACLE 4-79

Chapter 4
OUTPUT_MESSAGE_TO_REPORT

short value truncated;
} token value def;

Input

token name

A pointer to a buffer representing the name of a token. It is assumed that the token name is
encoded in the default character set of the operating system that hosts the Extract TABLE
statement where the token is configured. The user exit prepares the token name in the
character set that is specified with SET_SESSION CHARSET, but converts it back to the operating
system character set before retrieving the matching token value.

max length
The maximum length of your allocated token name buffer to accept any resulting token value.
This is returned as a NULL terminated string.

Output

token_value
A pointer to a buffer representing the return value (if any) of a token. The token value is
passed back to the user exit as-is, without any character-set conversion.

actual length
The actual length of the token value that is returned. A value of 0 is returned if the token is
found and there is no value present.

value truncated

A flag of either 0 or 1 that indicates whether or not the token value was truncated. Truncation
occurs if the length of the table name plus the null terminator exceeds the maximum buffer
length.

Return Values

EXIT FN RET INVALID PARAM
EXIT FN RET INVALID CONTEXT
EXIT FN RET TOKEN NOT FOUND
EXIT FN RET OK

OUTPUT MESSAGE_TO REPORT

ORACLE

Valid For

Extract and Replicat

Description

Use the OUTPUT MESSAGE TO REPORT function to output a message to the report file. If a
character session for the user exit is set with SET SESSION CHARSET, the message is
interpreted in the session character set but is converted to the default character set of the
operating system before being written to the report file.

Syntax

#include "usrdecs.h"

short result code;

char message[500];

ERCALLBACK (OUTPUT MESSAGE TO REPORT, message, &result code);

4-80

Chapter 4
RESET_USEREXIT_STATS

Buffer
None
Input

message
A null-terminated string.

Output

None

Return Values

EXIT FN RET OK

RESET _USEREXIT_STATS

Valid For

Extract and Replicat

Description

Use the RESET USEREXIT STATS function to reset the EXIT STAT GROUP USEREXIT statistics for
the Oracle GoldenGate process since the last call to GET STATISTICS was processed. This
function enables the user exit to control when to reset the group statistics that are returned by
the GET STATISTICS function, but does not permit any of the other statistics to be reset.

Syntax

#include "usrdecs.h"
short result code;
call callback (RESET USEREXIT STATS, NULL, &result code);

Input

None

Output

None

Return Values

None

SET COLUMN_VALUE BY INDEX

Valid For

Extract and Replicat

ORACLE 481

ORACLE

Chapter 4
SET_COLUMN_VALUE_BY_INDEX

Description

Use the SET COLUMN VALUE BY INDEX Or SET COLUMN VALUE BY NAME function to modify a
single column value without manipulating the entire data record. If the character session of the
user exit is set with SET SESSION CHARSET to a value other than the default character set of the
operating system, as defined in ULIB CS DEFAULT in the ucharset.h file, the character data
that is exchanged between the user exit and the process is interpreted in the session character
set.

A column value is set to the session character set only if the following is true:

e The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2 /
NCLOB), a SQL date/timestamp/interval/number type)

* The column value mode indicator is set to EXIT FN CNVTED SESS CHAR FORMAT.

Syntax

#include "usrdecs.h"

short result code;

column def column;

ERCALLBACK (SET COLUMN VALUE BY INDEX, &column, &result code);

Buffer

typedef struct

{

char *column value;

unsigned short max value length;
unsigned short actual value length;
short null value;

short remove column;

short value truncated;

short column index;

char *column name;

/* Version 3 CALLBACK STRUCT VERSION */
short column value mode;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;

char more lob data;

/* Version 3 CALLBACK STRUCT VERSION */
ULibCharSet column charset;

} column def;

Input

column value
A pointer to a buffer representing the new column value.

actual_value_length
The length of the new column value, in bytes. The actual length should not include the null
terminator if the new column value is in ASCII format.

null value
A flag (0 or 1) indicating whether the new column value is null. If the null value flag is set to
1, the column value in the data record is set to null.

4-82

Chapter 4
SET_COLUMN_VALUE_BY_INDEX

remove_column

A flag (0 or 1) indicating whether to remove the column from a compressed update if it exists.
A compressed update is one in which only the changed column values are logged, not all of
the column values. This flag should only be set if the operation type for the record is

UPDATE COMP_SQL VAL Or PK_UPDATE SQL VAL.

column_index
The column index of the new column value to be copied into the data record buffer. Column
indexes start at zero.

column value mode
Indicates the format of the column value.

EXIT FN_CHAR FORMAT
ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a known
exception for the sub-data type UTF16_BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because the value
is interpreted as an ASCII string and is supposed to be null-terminated. The first
value of 0 becomes the string terminator.

e Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional time is
database-dependent.

e Numeric values are in their string format. For example, 123.45 is represented as
'123.45".

* Non-printable characters or binary values are converted to hexadecimal notation.
* Floating point types are output as null-terminated strings, to the first 14 significant
digits.

EXIT FN_RAW_FORMAT

Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character data type.

EXIT FN_CNVTED_SESS_CHAR FORMAT
User exit character set: This only applies if the column data type is:

e acharacter-based type, single or multi-byte
* anumeric type with a string representation

This format is not null-terminated.

source or_target
One of the following indicating whether the source or target record is being modified.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

ORACLE 483

Chapter 4
SET_COLUMN_VALUE_BY_NAME

requesting before after_ind

Set when setting a column value on a record io_type of UPDATE COMP PK SQL VAL (primary
key update). Use one of the following to indicate which portion of the primary key update is to
be accessed. The default is AFTER_IMAGE VAL.

e BEFORE_IMAGE VAL

e AFTER IMAGE VAL

Output

None

Return Values

EXIT FN RET BAD COLUMN DATA
EXIT FN RET INVALID COLUMN

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

EXIT FN RET NOT SUPPORTED

EXIT FN RET INVALID COLUMN TYPE

SET COLUMN_VALUE BY NAME

ORACLE

Valid For

Extract and Replicat

Description

Use the SET COLUMN VALUE BY NAME or SET COLUMN VALUE BY INDEX function to modify a
single column value without manipulating the entire data record.

If the character session of the user exit is set with SET SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB _CS DEFAULT in the
ucharset.h file, the character data that is exchanged between the user exit and the process is
interpreted in the session character set.

A column value is set to the session character set only if the following is true:

e The column value is a SQL character type (CHAR/VARCHAR2/CLOB, NCHAR/NVARCHAR2 /
NCLOB), a SQL date/timestamp/interval/number type)

* The column value mode indicator is set to EXIT FN CNVTED SESS CHAR FORMAT.

If the database is case-sensitive, object names must be specified in the same letter case as
they are defined in the hosting database; otherwise, the case does not matter.

Syntax

#include "usrdecs.h"

short result code;

column def column;

ERCALLBACK (SET COLUMN VALUE BY NAME, &column, é&result code);

Buffer

typedef struct
{

char *column value;

4-84

Chapter 4
SET_COLUMN_VALUE_BY_NAME

unsigned short max value length;
unsigned short actual value length;
short null value;

short remove column;

short value truncated;

short column_ index;

char *column name;

/* Version 3 CALLBACK STRUCT VERSION */
short column value mode;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;

char more lob data;

/* Version 3 CALLBACK STRUCT VERSION */
ULibCharSet column charset;

} column def;

Input

column value
A pointer to a buffer representing the new column value.

actual_value_length
The length of the new column value, in bytes. The actual length should not include the null
terminator if the new column value is in ASCII format.

null value
Aflag (0 or 1) indicating whether the new column value is null. If the null value flag is set to
1, the column value in the data record is set to null.

remove_column

A flag (0 or 1) indicating whether to remove the column from a compressed update if it exists.
A compressed update is one where only the changed column values are logged, not all of the
column values. This flag should only be set if the operation type for the record is

UPDATE COMP_SQL VAL Or PK_UPDATE SQL VAL.

column name
The name of the column that corresponds to the new column value to be copied into the data
record buffer.

column value mode
Indicates the format of the column value.

EXIT FN_CHAR FORMAT
ASCII format: The value is a null-terminated ASCII (or EBCDIC) string (with a known
exception for the sub-data type UTF16 BE, which is converted to UTF8.)

Note:

A column value might be truncated when presented to a user exit, because the value
is interpreted as an ASCII string and is supposed to be null-terminated. The first
value of 0 becomes the string terminator.

ORACLE e

Chapter 4
SET_OPERATION_TYPE

 Dates are in the format CCYY-MM-DD HH:MI:SS.FFFFFF, in which the fractional time is
database-dependent.

* Numeric values are in their string format. For example, 123.45 is represented as
'123.45".

e Non-printable characters or binary values are converted to hexadecimal notation.
* Floating point types are output as null-terminated strings, to the first 14 significant
digits.

EXIT FN_RAW_FORMAT

Internal Oracle GoldenGate canonical format: This format includes a two-byte null
indicator and a two-byte variable data length when applicable. No character-set
conversion is performed by Oracle GoldenGate for this format for any character data type.

EXIT FN_CNVTED SESS CHAR FORMAT
User exit character set: This only applies if the column data type is:

* acharacter-based type, single or multi-byte
* anumeric type with a string representation

This format is not null-terminated.

source_or_target
One of the following indicating whether the source or the target data record is being modified.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

requesting before after_ind

Set when setting a column value on a record io_type of UPDATE COMP_PK SQL VAL (primary
key update). Use one of the following to indicate which portion of the primary key update is to
be accessed. The default is AFTER IMAGE VAL.

¢ BEFORE_IMAGE VAL

e AFTER IMAGE VAL

Output

None

Return Values

EXIT FN RET BAD COLUMN DATA
EXIT FN RET INVALID COLUMN

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

EXIT FN RET NOT SUPPORTED

EXIT FN RET INVALID COLUMN TYPE

SET_OPERATION_TYPE

ORACLE

Valid For

Extract and Replicat

4-86

ORACLE

Chapter 4
SET_OPERATION_TYPE

Description

Use the SET OPERATION TYPE function to change the operation type associated with a data
record. For example, a delete on a specified table can be turned into an insert into another
table. The record header's before/after indicator is modified as appropriate for insert and delete
operations.

Syntax

#include "usrdecs.h"

short result code;

record def record;

ERCALLBACK (SET OPERATION TYPE, &record, &result code);

Buffer

typedef struct
{

char *table name;

char *buffer;

long length;

char before after ind;

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;
} record def;

Input
io_type
Returned as one of the following for deletes, inserts, and updates, respectively:

DELETE VAL
INSERT VAL
UPDATE VAL

For a compressed SQL update, the following is returned:

UPDATE COMP SQL VAL

If the new operation type is an insert or delete, the before/after indicator for the record is set to
one of the following:

Insert: AFTER IMAGE VAL (after image)
Delete: BEFORE IMAGE VAL (before image)

source or_target
One of the following indicating whether to set the operation type for the source or target data
record.

EXIT FN SOURCE VAL
EXIT FN TARGET VAL

Output

None

4-87

Chapter 4
SET_RECORD_BUFFER

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

SET_RECORD_BUFFER

ORACLE

Valid For

Extract and Replicat

Description

Use the SET_RECORD BUFFER function for compatibility with user exits, and for complex data
record manipulation. This function manipulates the entire record. It is best to modify individual
column values, rather than the entire record, because the Oracle GoldenGate internal record
formats must be known in order to accurately modify the data record buffer directly. To modify
column values, use the SET COLUMN VALUE BY INDEX and SET COLUMN VALUE BY NAME
functions. These functions are sufficient to handle most custom mapping within a user exit.

Syntax

#include "usrdecs.h"

short result code;

record def record;

ERCALLBACK (SET RECORD BUFFER, &record def, é&result code);

Buffer

typedef struct

{

char *table name;

char *buffer;

long length;

char before after ind;

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;
} record def;

Input

buffer

A pointer to the new record buffer. Typically, buffer is a pointer to a buffer of type

exit rec buf def. The exit rec buf def buffer contains the actual record about to be
processed by Extract or Replicat. The buffer is supplied when the call type is

EXIT CALL DISCARD RECORD. Exit routines can change the contents of this buffer, for example
to perform custom mapping functions.

The content of the record buffer is not converted to or from the character set of the user exit. It
is passed as-is.

4-88

Chapter 4
SET_SESSION_CHARSET

length
The new length of the record buffer.

Output

None

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

EXIT FN RET NOT SUPPORTED

SET_SESSION_CHARSET

Valid For

Extract and Replicat

Description

Use the SET SESSION CHARSET function to set the character set of the user exit. The character
set of the user exit session indicates the encoding of any character-based callback structure
members that are used between the user exit and the caller process (Extract, data pump,
Replicat), including metadata such as (but not limited to):

e database names and locales

e table and column names

e DDL text

° error messages

e character-type columns such as CHAR and NCHAR

* date-time and numeric columns that are represented in string form

This function can be called at any time that the user exit has control. When the user exit sets
the session character set, it takes effect immediately, and all character values start being
converted to the specified set. The recommended place to call this function is with call type
EXIT CALL START.

< Note:

SET SESSION CHARSET is not thread-safe.

If SET SESSION CHARSET is not called, the session gets set to the default character set of the
operating system, which is a predefined enumerated type value in ULIB CS DEFAULT in the
ucharset.h file. When the session character set is a default from ULIB CS DEFAULT, no
conversion is performed by Oracle GoldenGate for character-type values that are exchanged
between the user exit and the caller process. In addition, the object-name metadata of the
database are considered to be the default character set of the operating system. Keep in mind
that the default may not be correct.

ORACLE 489

Chapter 4
SET_TABLE_NAME

The character set of the user exit is printed to the report file when the user exit is loaded and
when SET SESSION CHARSET is called. If the session character set is ULIB CS DEFAULT, there is
a message stating that no column data character-set conversion is being performed.

Syntax

#include usrdecs.h

short result code;

session def session charset def;

ERCALLBACK (SET_SESSION CHARSET, &session charset def, &result code);

Buffer

typedef struct
{

ULibCharSet session charset;
} session def;

Input

session charset
The valid values of the session character set are defined in the header file ucharset.h.

Output

None

Return Values

EXIT FN RET OK

SET TABLE NAME

ORACLE

Valid For

Extract and data pumps

Description

Use the SET_TABLE NAME function to change the table name associated with a data record. For
example, a delete on a specified table can be changed to an insert into a history table. You can
change the table name only during Extract processing.

If the database is case-sensitive, object names must be specified in the same letter case as
they are defined in the hosting database; otherwise, the case does not matter. Specify the full
two-part or three-part table name.

Syntax

#include "usrdecs.h"

short result code;

record def record;

ERCALLBACK (SET TABLE NAME, &record def, &result code);

Buffer

typedef struct
{

char *table name;
char *buffer;

4-90

Chapter 4
SET_TABLE_NAME

long length;

char before after ind;

short io type;

short record type;

short transaction ind;

int64 t timestamp;

exit ts str io datetime;

short mapped;

short source or target;

/* Version 2 CALLBACK STRUCT VERSION */
char requesting before after ind;
} record def;

Input

table name

A null-terminated string specifying the new table name to be associated with the data record.
If the character session of the user exit is set with SET_SESSION CHARSET to a value other than
the default character set of the operating system, as defined in ULIB CS DEFAULT in the
ucharset.h file, the table name is interpreted in the session character set.

Output

None

Return Values

EXIT FN RET INVALID CONTEXT
EXIT FN RET INVALID PARAM
EXIT FN RET OK

ORACLE 401

Oracle GoldenGate Programs

checkprm

ORACLE

This chapter describes the programs issued directly from the native command line of the Linux,
UNIX, or Windows platforms.

The following environment variables need to be set up from the bash prompt to be able to use
command line utilities such as defgen:

* 0GG_HOME: Full path of the Oracle GoldenGate installation. Example:
export OGG_HOME=/u0l/ogg

* 0GG_VAR HOME: Path of the deployment's var directory. Example:
export OGG VAR HOME=/ul02/ogg/deployments/ora/var

° ODBCSYSINI: Valid for SQL Server. Provide the path to the included Microsoft driver
supplied by Oracle GoldenGate. This path is the msodbc folder of the Oracle GoldenGate
installation. Example:
export ODBCSYSINI=$0GG HOME/msodbc

e ODBCINST: Valid for PostgreSQL. Provide the path of the included Oracle GoldenGate
driver's odbcinst.ini file located in the datadirect folder of the Oracle GoldenGate
installation. Example:
export ODBCINST=$0GG HOME/datadirect/odbcinst.ini

e ODBCINI: When using a DSN for connectivity to databases such as PostgreSQL or SQL
Server, set this variable to the full path of the odbc. ini file that contains the DSN entry.

Example:

export ODBCINI=/u02/ogg/deployments/mssql/odbc.ini

Topics:

Use the checkprm program to assess the validity of the specified parameter file, with a
configurable application and running environment. It can provide either a simple PASS/FAIL or
with optional details about how the values of each parameter are stored and interpreted.

When you use checkprm and do not use any of these arguments, then checkprm attempts to
automatically detect Extract or Replicat and the platform and database of the Oracle
GoldenGate installation.

5-1

Chapter 5
checkprm

Note:

The options are not case-sensitive.

Syntax

checkprm

-v]

? | help]

parameter file]

-COMPONENT | -C) component name]
-MODE | -M) mode name]
-PLATFORM | -P) platform name]
-DATABASE | -D) database ame]
-VERBOSE | -V)]

'
Displays the Oracle GoldenGate version banner. Cannot be combined with other options.
Does not produce verbose (--VERBOSE | -V) output.

? | help
Displays detailed usage information, include all possible values of each option. Cannot be
combine with other options.

parameter file
Specified the full path and name of the parameter file to be evaluated, for example: /ogg/
deployments/ora/etc/conf/ogg/myext.prm.

--COMPONENT | -C component_name

Specifies the running component (application) that this parameter file is validated for. This
option can be omitted for Extract or Replicat because automatic detection is attempted. Valid
values include:

CACHEFILEDUMP COBGEN CONVCHK CONVPRM DDLCOB DEFGEN EMSCLNT EXTRACT GGCMD GGSCI KEYGEN
LOGDUMP

MGR OGGERR REPLICAT RETRACE

REVERSE SERVER GLOBALS

There is no default for this option.

--MODE | -Mmode name

Specifies the mode of the running application if applicable. This option is optional, only
applicable to Extract or Replicat.

Valid input of this option includes:

* Integrated Extract

e Initial Load Extract

e Classic Replicat

e Coordinated Replicat

* Integrated Replicat

« Parallel Integrated Replicat

« Parallel Nonintegrated Replicat

ORACLE -

defgen

ORACLE

Chapter 5
defgen

e Special Run Replicat
o Al

When key in the value for this option, the application name is optional, as long as it matches
the value of component. For example, "A Data Pump ExtractA" iS equivalentto "A Data
pumpA" if the component is Extract. However, it is invalid if the component is Replicat.

--PLATFORM | -P platform name

Specifies the platform the application is supposed to run on. The default value is the platform
that this checkprm executable is running on.

The possible values are:

AIX HP-0SS HPUX-IT HPUX-PA
Linux 0S400 Z0OS Solaris SPARC
Solaris x86 Windows x64 All

--DATABASE | -D database name

Specifies the database the application is built against. The default value is the database for
your Oracle GoldenGate installation.

The database options are:

Generic Oracle 8 Oracle 9i
Oracle 10g Oracle 1lg Oracle 1l2c
Oracle 18c

Oracle 19c

DB2LUW 9.5 DB2LUW 9.7

DB2LUW 10.5 DB2LUW 10.1 DB2 Remote
DB2LUW 11.1

Teradata

MySQL

DB2 for i

DB2 for i Remote

MS SQL

MS SQL CDC

DB2 z/0S

--VERBOSE | -V
Directs checkprm to display detailed parameter information, to demonstrate how the values are
read and interpreted. It must be the last option specified in a validation.

< Note:

Make sure to set the environment variables as described in Oracle GoldenGate
Programs section, to be able to use the DEFGEN ultility.

Use the DEFGEN utility to generate source table metadata definitions, which can be used by a
Replicat to read from a trail file that is in a format release older than Oracle GoldenGate 12.2
and that does not contain source table metadata. The DEFGEN program is installed in Oracle
GoldenGate’s home, bin directory.

5-3

ORACLE

Chapter 5
defgen

Syntax for Windows, UNIX, and Linux

defgen PARAMFILE parameter file
[NOEXTATTR]

[PAUSEATEND | NOPAUSEATEND]
[REPORTFILE report file]
[UPDATECS characterset]

PARAMFILE parameter file

Required. Specifies the relative or absolute path name of the parameter file for the DEFGEN
program that is being run. The parameter file must be created manually and will list a defs file
for table definition output, database connection information, and which tables to generate
definitions.

NOEXTATTR

Can be used to support backward compatibility with Oracle GoldenGate versions that are
older than Release 11.2.1 and do not support character sets other than ASCII, nor case-
sensitivity or object names that are quoted with spaces. NOEXTATTR prevents DEFGEN from
including the database locale and character set that support the globalization features that
were introduced in Oracle GoldenGate Release 11.2.1. If the table or column name has multi-
byte or special characters such as white spaces, DEFGEN does not include the table definition
when NOEXTATTR is specified. If APPEND mode is used in the parameter file, NOEXTATTR is
ignored, and the new table definition is appended in the existing file format, whether with the
extra attributes or not.

PAUSEATEND | NOPAUSEATEND (default)

(Windows only) When the process stops, requires an Oracle GoldenGate user to look at the
console output and then strike any key to clear it. Also indicates whether the process ended
normally or abnormally.

REPORTFILE report file
Sends command output to the specified report file. Without the reportfile option, the
command output is printed to the screen.

defs_file UPDATECS charset

Converts the character set of a definitions file to a different character set if the file is
transferred to an operating system with an incompatible character set. This procedure takes
the name of the definitions file and the targeted character set as input. For example: defgen
source.def UPDATECS UTF-8.

UPDATECS helps in situations such as when a Japanese table name on Japanese Windows is
written in Windows CP932 to the data-definitions file, and then the definitions file is transferred
to Japanese UNIX. The file cannot be used unless the UNIX is configured in PCK locale.
Thus, you must use UPDATECS to convert the encoding of the definitions file to the correct
format.

Example

The following is a sample DEFGEN parameter file, defgenparam.prm. See the DEFSFILE
parameter for details.

DEFSFILE /home/oracle/ogg/ora/bin/ora.defs, PURGE
USERIDALIAS oracle source
TABLE hr.employees;

5-4

keygen

logdump

ORACLE

Chapter 5
keygen

Use the following command to run the DEFGEN program:

$0GG_HOME/bin/defgen PARAMFILE defgenparam.prm

Use keygen to generate one or more encryption keys to use with Oracle GoldenGate security
features that use an ENCKEYS file. The key values are returned to your screen. You can copy
and paste them into the ENCKEYS file.

Syntax
KEYGEN key length n

keygen
Used without options, the command runs the program interactively.

key length
The length of the encryption key, up to 256 bits (32 bytes).

n
The number of keys to generate.

Use logdump to run the Logdump utility. This program takes no arguments and runs
interactively. For more information about the Logdump utility, see Logdump Reference for
Oracle GoldenGate.

Syntax for Windows, UNIX, and Linux

logdump

5-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Oracle GoldenGate
	2 Oracle GoldenGate Parameters
	Summary of GLOBALS Parameters
	Summary of Extract Parameters
	Summary of Replicat Parameters
	ABORTDISCARDRECS
	ALLOCFILES
	ALLOWDUPTARGETMAP | NOALLOWDUPTARGETMAP
	ALLOWINVISIBLEINDEXKEYS
	ALLOWNULLABLEKEYS | NOALLOWNULLABLEKEYS
	ALLOWNONVALIDATEDKEYS
	ALLOWNOOPUPDATES | NOALLOWNOOPUPDATES
	APPLYNOOPUPDATES | NOAPPLYNOOPUPDATES
	APPLY_PARALLELISM | MAX_APPLY_PARALLELISM | MIN_APPLY_PARALLELISM
	ASCIITOEBCDIC
	ASSUMETARGETDEFS
	BATCHSQL
	BEGIN
	BLOBMEMORY
	BINARY_JSON_FORMAT
	BR
	CACHEMGR
	CATALOGEXCLUDE
	CHARMAP
	CHECKPARAMS
	CHECKPOINTSECS
	CHECKPOINTTABLE
	CHUNK_SIZE
	CMDTRACE
	COLCHARSET
	COLMATCH
	COMPRESSDELETES | NOCOMPRESSDELETES
	COMPRESSUPDATES | NOCOMPRESSUPDATES
	COMMIT_SERIALIZATION
	COORDSTATINTERVAL
	COORDTIMER
	CRYPTOENGINE
	CUSEREXIT
	DBOPTIONS
	DDL
	DDLERROR
	DDLOPTIONS
	DDLSUBST
	DDLTABLE
	DECRYPTTRAIL
	DEFERAPPLYINTERVAL
	DEFSFILE
	DIAGLOGRECS
	DICTIONARY_CACHE_SIZE
	DISCARDFILE | NODISCARDFILE
	DISCARDROLLOVER
	DYNAMICRESOLUTION
	EBCDICTOASCII
	ENABLEMONITORING
	ENABLE_HEARTBEAT_TABLE | DISABLE_HEARTBEAT_TABLE
	ENCRYPTTRAIL | NOENCRYPTTRAIL
	END
	EOFDELAY | EOFDELAYCSECS
	EXCLUDEHIDDENCOLUMNS
	EXCLUDETAG
	EXCLUDEWILDCARDOBJECTSONLY
	EXTFILE
	EXTRACT
	EXTTRAIL
	FETCHOPTIONS
	FETCHUSERIDALIAS
	FILTERDUPS | NOFILTERDUPS
	FILEGROUP
	FLUSHSECS | FLUSHCSECS
	FUNCTIONSTACKSIZE
	GETDELETES | IGNOREDELETES
	GETINSERTS | IGNOREINSERTS
	GETTRUNCATES | IGNORETRUNCATES
	GETUPDATEAFTERS | IGNOREUPDATEAFTERS
	GETUPDATEBEFORES | IGNOREUPDATEBEFORES
	GETUPDATES | IGNOREUPDATES
	GGSCHEMA
	GROUPTRANSOPS
	HANDLECOLLISIONS | NOHANDLECOLLISIONS
	HAVEUDTWITHNCHAR
	HEARTBEATTABLE
	INCLUDE
	INCLUDETAG
	INITIALLOADOPTIONS
	INSERTALLRECORDS
	INSERTAPPEND | NOINSERTAPPEND
	INSERTDELETES | NOINSERTDELETES
	INSERTMISSINGUPDATES | NOINSERTMISSINGUPDATES
	INSERTUPDATES | NOINSERTUPDATES
	INSERTUPSERTS | NOINSERTUPSERTS
	LIST | NOLIST
	LOGALLSUPCOLS
	LOOK_AHEAD_TRANSACTIONS
	LOGOUT_RECV_TIMEOUT
	LRSNTIMEDELTA
	MACRO
	MACROCHAR
	MAP for Extract
	MAP
	MAPALLCOLUMNS| NOMAPALLCOLUMNS
	MAP_PARALLELISM
	MAPEXCLUDE
	MAPINVISIBLECOLUMNS | NOMAPINVISIBLECOLUMNS
	MASTERKEYNAME
	MAXDISCARDRECS
	MAXGROUPS
	MAXSQLSTATEMENTS
	MAXTRANSOPS
	MGRSERVNAME
	NAMECCSID
	NAMEMATCH parameters
	NLS_LENGTH_SEMANTICS
	NOCATALOG
	NODUPMSGSUPPRESSION
	NUMFILES
	OBEY
	OUTPUTFILEUMASK
	OUTPUTFORMAT
	OVERRIDEDUPS | NOOVERRIDEDUPS
	PARTITION | PARTITIONEXCLUDE
	PTKMONITORFREQUENCY
	PRESERVETARGETTIMEZONE
	PROCEDURE
	REPERROR
	REPFETCHEDCOLOPTIONS
	REPLACEBADCHAR
	REPLACEBADNUM
	REPLICAT
	REPORT
	REPORTCOUNT
	REPORTROLLOVER
	RESTARTCOLLISIONS | NORESTARTCOLLISIONS
	RMTFILE
	ROLLOVER
	SCHEMAEXCLUDE
	SEQUENCE
	SESSIONCHARSET
	SETENV
	SOURCECATALOG
	SOURCECHARSET
	SOURCEDEFS
	SOURCEISTABLE
	SOURCETIMEZONE
	SPACESTONULL | NOSPACESTONULL
	SPECIALRUN
	SPLIT_TRANS_RECS
	SQLDUPERR
	SQLEXEC
	STATOPTIONS
	TABLE | MAP
	TABLE for DEFGEN
	TABLE for Replicat
	TABLEEXCLUDE
	TARGETDDLNOTIFY | NOTARGETDDLNOTIFY
	TARGETDEFS
	TCPSOURCETIMER | NOTCPSOURCETIMER
	TRACE | TRACE2
	TRAILBYTEORDER
	TRAILCHARSET
	TRAILCHARSETASCII
	TRAILCHARSETEBCDIC
	TRANLOGOPTIONS
	TRANSACTIONTIMEOUT
	TRIMSPACES | NOTRIMSPACES
	TRIMVARSPACES | NOTRIMVARSPACES
	UPDATEDELETES | NOUPDATEDELETES
	UPDATEINSERTS | NOUPDATEINSERTS
	UPDATERECORDFORMAT
	USEDEDICATEDCOORDINATIONTHREAD
	USEIPV4 | USEIPV6
	USERIDALIAS
	VARWIDTHNCHAR | NOVARWIDTHNCHAR
	WARNLONGTRANS
	WARNRATE
	WILDCARDRESOLVE
	Y2KCENTURYADJUSTMENT | NOY2KCENTURYADJUSTMENT

	3 Table and Column Mapping Functions
	Summary of Column-Conversion Functions
	@RANGE
	@AFTER
	@BEFORE
	@BEFOREAFTER
	@BINARY
	@BINTOBASE64
	@BINTOHEX
	@CASE
	@COLSTAT
	@COLTEST
	@COMPUTE
	@DATE
	@DBFUNCTION
	@DATEDIFF
	@DATENOW
	@DDL
	@EVAL
	@GETENV
	@GETVAL
	@HEXTOBIN
	@HIGHVAL | LOWVAL
	@IF
	@NUMBIN
	@NUMSTR
	@OGG_SHA1
	@STRCAT
	@STRCMP
	@STRCMPNULL
	@STREQ
	@STREQNULL
	@STREXT
	@STRFIND
	@STRLEN
	@STRLTRIM
	@STRNCAT
	@STRNCMP
	@STRNUM
	@STRRTRIM
	@STRSUB
	@STRTRIM
	@STRUP
	@TOKEN
	@VALONEOF

	4 User Exit Functions
	Summary of User Exit Functions
	Calling a User Exit
	Using EXIT_CALL_TYPE
	Using EXIT_CALL_RESULT
	Using EXIT_PARAMS
	Using ERCALLBACK
	Function Codes
	COMPRESS_RECORD
	DECOMPRESS_RECORD
	GET_BASE_OBJECT_NAME
	GET_BASE_OBJECT_NAME_ONLY
	GET_BASE_SCHEMA_NAME_ONLY
	GET_BEFORE_AFTER_IND
	GET_CATALOG_NAME_ONLY
	GET_COL_METADATA_FROM_INDEX
	GET_COL_METADATA_FROM_NAME
	GET_COLUMN_INDEX_FROM_NAME
	GET_COLUMN_NAME_FROM_INDEX
	GET_COLUMN_VALUE_FROM_INDEX
	GET_COLUMN_VALUE_FROM_NAME
	GET_DATABASE_METADATA
	GET_DDL_RECORD_PROPERTIES
	@GETENV
	GET_ENV_VALUE
	GET_ERROR_INFO
	GET_GMT_TIMESTAMP
	GET_MARKER_INFO
	GET_OBJECT_NAME
	GET_OBJECT_NAME_ONLY
	GET_OPERATION_TYPE
	GET_POSITION
	GET_RECORD_BUFFER
	GET_RECORD_LENGTH
	GET_RECORD_TYPE
	GET_SCHEMA_NAME_ONLY
	GET_SESSION_CHARSET
	GET_STATISTICS
	GET_TABLE_COLUMN_COUNT
	GET_TABLE_METADATA
	GET_TABLE_NAME
	GET_TABLE_NAME_ONLY
	GET_TIMESTAMP
	GET_TRANSACTION_IND
	GET_USER_TOKEN_VALUE
	OUTPUT_MESSAGE_TO_REPORT
	RESET_USEREXIT_STATS
	SET_COLUMN_VALUE_BY_INDEX
	SET_COLUMN_VALUE_BY_NAME
	SET_OPERATION_TYPE
	SET_RECORD_BUFFER
	SET_SESSION_CHARSET
	SET_TABLE_NAME

	5 Oracle GoldenGate Programs
	checkprm
	defgen
	keygen
	logdump

