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1. Introduction

This document introduces the reader to the procedure to be followed for Scheduler JAVA JOB
Creation for FLEXCUBE Universal Banking Solutions.
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2. Background

This document is based on the requirement of creating JAVA Jobs to be executed by Quartz
Scheduler.

This document describes the procedure to be followed to accomplish the above.
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3. Procedure

This section describes job creation:

1. Launch the job maintenance screen STDJOBMT for creation of a Job.

2. Specify the field values. For information regarding individual fields please refer to Installation
Docs.

Job Maintenance e
B New [3 Enterquery

Job Description Job Details

Job Code * Cron Expression (=]
Job Description Class Or Procedure ]

Job Group No of Submissions

Job Type Interval In Seconds
Max Number Instances * Trigger Listener El

Scheduler  SchedulerFactory Active
Trigger Type Ds Name

Scheduler Type Logging Required

Veto Blocked Trigger
Priority e

b i M Startup Mode

Audit Exit

A Java job can be stateful or stateless.

Stateful Job

If the job is configured to be STATEFUL then missed instances will be queued up so that
scheduler would start executing once the long running job ends. It means there will be no parallel
execution of the java class.

To make a class as Stateful, add two annotations to the job class.
e  @PersistJobDataAfterExecution
e @DisallowConcurrentExecution

Stateless Job

If the job is configured as STATELESS, threads can be run in parallel and can execute the same
java class.

If the job is configured as stateless, the value of field Max Number Instances will denote the
number of threads that can be executed in parallel .If the job is configured as stateful, then the
above value will denote the number of missed instances that will be queued up so that quartz
scheduler would start executing them once a long running job ends. This field specifies the
number of such job instances that needs to be queued up.

The class defined in the class field has to be provided a fully qualified name.

Job params can be added to a particular java job in this screen as shown above.
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4. Example

Suppose you have created a new FTP_COPY job, to copy ftp files from one location to another. It
is a java job, where the class to be executed is FtpCopy.java.

You have provided the fully qualified class name as com.ofss.scheduler.quartz.ftp. FtpCopy.

The physical location of the java file is
INFRA\FCJNeoWeb\Javasource\com\ofss\scheduler\quartz\ftp\FtpCopy.java.

In this class, you have to override the execute method of Job class to provide the implementation
logic, which is executed when the quartz scheduler executes the class. The execute method
format is as below.

public void execute (JobExecutionContext context) throws JobExecutionException {}

The sample java file is attached:

=

FtpCopy.java
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    FtpCopy.java
    
    


FtpCopy.javapackage com.ofss.scheduler.quartz.ftp;
import org.quartz.JobDataMap;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
import org.quartz.DisallowConcurrentExecution;
import org.quartz.Job;
import org.quartz.PersistJobDataAfterExecution;
@PersistJobDataAfterExecution
@DisallowConcurrentExecution


public class FtpCopy implements Job {    

    public FtpCopy() {

    }  
    
    public void execute(JobExecutionContext context) throws JobExecutionException {
        
        try {
            // Initialize the values
          // Logic to be written for execution  by Quartz Scheduler
            
        } catch (Exception e) {
           
        } finally {
            
        }
    }
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