
Clinical Protocol Management with Deviation
Summarization Recipe

Executive Summary
Introduction
Challenge: Streamlining Protocol Management with Effective Deviation Summarization
Workflow Overview
Key Technologies Involved
Implementation Strategy

Architecture Diagram
Leveraging Siebel OCI AI Framework (Recommended)

Steps
Leveraging OCI Gen AI Service via External Node JS Service

Steps
Siebel Customisations

Functionality
Benefits
Future Possibilities and Innovations
Limitations
Conclusion

Executive Summary

As clinical trials become more complex, managing protocol deviations efficiently is key to ensuring data integrity and compliance. When deviation records
in Siebel Clinical Trial Management Systems (CTMS) are entered in free-text fields, they often become verbose and difficult to manage. To address this, a
Generative AI-based solution is proposed that parses and summarizes protocol deviation records. This system presents the summarized information to the
user for review and editing, ensuring accuracy and clarity. Once finalized, the summary is automatically applied to the parent protocol record, reducing
manual input and improving overall protocol management efficiency. This approach leverages AI to streamline the process and ensure precise
documentation.

Introduction

In Clinical Trial Management Systems (CTMS), managing protocol deviations can be a challenging and labor-intensive process. Detailed deviation
descriptions and multiple records often result in verbose entries that are difficult to interpret and summarize. Introducing a Generative AI-based solution for
protocol deviation summarization significantly streamlines this process, enhancing clarity and efficiency.

For example, when protocol deviation records are entered into the CTMS, the Clinical Research Associate (CRA) may need to go through the entire older
deviation records for the same Protocol record which is very time consuming. But using this system the CRA can click on "Generate Summary" button in
the protocol deviation records list applet, Gen AI model parses through the detailed descriptions of each Protocol Deviation, identifies key points, and
generates a concise summary. This summary is then presented to the user for review and editing, allowing for interactive refinement. Once approved, the
final summary is stamped onto the parent protocol record, ensuring seamless integration with minimal manual intervention.

Challenge: Streamlining Protocol Management with Effective Deviation Summarization

Managing protocol deviations effectively poses several challenges, including verbose descriptions, multiple deviation records, and difficulty in maintaining
accurate summaries. These inefficiencies can lead to miscommunication, increased manual effort, and compliance risks in clinical trial workflows. A
Generative AI-based summarization solution addresses these issues by parsing detailed deviation records, generating concise summaries, and integrating
them seamlessly into protocol management systems. This innovative approach reduces manual workload, ensures consistency in documentation, and
improves overall trial efficiency.

Workflow Overview

CRA selects a Protocol record with several Protocol deviation records
CRA clicks on Generate Summary Button and gets a Popup of AI Generated Summary of all the Protocol deviations with option to Make required
changes
CRA saves the Summary for that particular Protocol deviation record

Key Technologies Involved

item Description

Siebel AI Framework Siebel AI framework is enabled in the Siebel CTMS Env which provides Gen AI REST Endpoint

CTMS UI Customization SIebel Open UI PR file for UI Customizations, Protocol Deviation records collection and Business Service invocation

Implementation Strategy

1.
2.

1.
2.
3.
4.
5.

The implementation of this flow involves

Adding a new Text Field Area in Clinical Protocol Business Object - "Generated Summary"
PR File for collecting protocol deviation, invoking Siebel AI Framework REST Endpoint and UI Customization

Architecture Diagram

This functionality can be implemented in 2 ways:

1) Leveraging Siebel OCI AI Framework

2) Creating a wrapper Node JS Service that calls the OCI APIs

Leveraging Siebel OCI AI Framework (Recommended)

Steps

CRA Clicks on Generate Summary Button on the Protocol deviations list page Applet
PR File or BS Scripts collects all the Protocol Deviation records description data
OCI AI Framework - Gen AI Endpoint is invoked and the Collective Protocol deviation records data is passed
OCI AI Framwork calls the OCI Gen AI and gets the summary
PR File/ BS Scripts update the Protocol Records Text Area Field with generated Summary

Leveraging OCI Gen AI Service via External Node JS Service

Steps

1.
2.
3.
4.
5.

1.

2.

3.
a.
b.

CRA Clicks on Generate Summary Button on the Protocol deviations list page Applet
PR File or BS Scripts collects all the Protocol Deviation records description data
External Node JS service is invoked and the Collective Protocol deviation records data is passed
Node JS service calls the OCI Gen AI and gets the summary
PR File/ BS Scripts update the Protocol Records Text Area Field with generated Summary

Siebel Customisations

Add a button to Applet "HSGBU Site Subject PD List Applet"

Add a Text Area Field for Clinical Protocol BC and in Applet "Clinical Protocol Short Form Applet"

In order to handle Generate Summary action we can take 2 approaches
Writing Business Service Method that gets invoked on clicking "Generate Summary" Button. (Recommended)
PR File registers event listener to handle Button click and execute the Summary generation and UI Changes.
Physical Renderer Code:

// Ensure SiebelJS Namespace and Definition
if (typeof SiebelAppFacade.ProtocolDeviationDetailAppletCustomPR === "undefined") {
 SiebelJS.Namespace('SiebelAppFacade.ProtocolDeviationDetailAppletCustomPR');

 define("siebel/custom/ProtocolDeviationDetailAppletCustomPR", ["siebel/phyrenderer"], function
(PhyRenderer) {
 SiebelAppFacade.ProtocolDeviationDetailAppletCustomPR = (function () {

 function ProtocolDeviationDetailAppletCustomPR(pm) {
 console.log('ProtocolDeviationDetailAppletCustomPR constructor called.');
 SiebelAppFacade.ProtocolDeviationDetailAppletCustomPR.superclass.constructor.call
(this, pm);
 }

 SiebelJS.Extend(ProtocolDeviationDetailAppletCustomPR, SiebelAppFacade.
PhysicalRenderer);

 // Init Method
 ProtocolDeviationDetailAppletCustomPR.prototype.Init = function () {
 console.log('ProtocolDeviationDetailAppletCustomPR Init method called.');
 SiebelAppFacade.ProtocolDeviationDetailAppletCustomPR.superclass.Init.call(this);
 };

 // BindEvents Method with jQuery Event Registration
 ProtocolDeviationDetailAppletCustomPR.prototype.BindEvents = function () {
 console.log('ProtocolDeviationDetailAppletCustomPR BindEvents method called.');
 SiebelAppFacade.ProtocolDeviationDetailAppletCustomPR.superclass.BindEvents.call
(this);

 // Button Control (Ensure button ID is accurate for your configuration)
 var buttonControl = $('#s_1_1_3_0_Ctrl'); // Replace with appropriate control ID

 if (buttonControl.length) {
 console.log("Button control found. Setting up jQuery click event.");

 buttonControl.off("click").on("click", function () {
 console.log("Generate button clicked.");
 try {
 // Get the active applet and business component
 const applet = SiebelApp.S_App.GetActiveView().GetActiveApplet();

3.

b.

 if (!applet) {
 console.error("No active applet found.");
 return;
 }

 const busComp = applet.GetBusComp();
 if (!busComp) {
 console.error("No business component associated with the applet.");
 return;
 }

 // Perform query to retrieve records
 busComp.SetSearchSpec("Id", ""); // Adjust search spec if needed
 const recs = busComp.GetRawRecords();

 // Format records into a string
 const appendedString = recs
 .map((item, index) => `${index + 1}. ${item[16]}`)
 .join("\n");

 // Call the popup creation function
 createPopup(appendedString);
 } catch (error) {
 console.error("Error during the operation:", error);
 }
 });
 } else {
 console.error("Button control not found.");
 }
 };

 // Function to Create Popup
 async function createPopup(appendedString) {
 // Fetch Chat Response
 const chatResponse = await fetchChatResponse(appendedString);

 // Popup and Overlay
 const overlay = $("<div>").css({
 position: "fixed",
 top: "0",
 left: "0",
 width: "100%",
 height: "100%",
 backgroundColor: "rgba(0, 0, 0, 0.5)",
 zIndex: "999"
 });

 const popup = $("<div>").css({
 position: "fixed",
 top: "50%",
 left: "50%",
 transform: "translate(-50%, -50%)",
 width: "520px",
 padding: "26px",
 boxShadow: "0 6px 12px rgba(0, 0, 0, 0.3)",
 backgroundColor: "#fff",
 border: "1px solid #ccc",
 zIndex: "1000",
 fontFamily: "Arial, sans-serif"
 });

 // Add Content to Popup
 popup.append($("<h4>").text("AI Generated Summary").css({
 marginTop: "0",
 marginBottom: "10px",
 fontSize: "16px",
 textAlign: "left",
 color: "#333"
 }));

 const textarea = $("<textarea>").css({

3.

b.

 width: "100%",
 height: "195px",
 marginBottom: "10px",
 fontSize: "14px",
 resize: "none",
 border: "1px solid black",
 borderRadius: "0",
 padding: "8px",
 overflow: "auto",
 whiteSpace: "pre-wrap"
 }).val(chatResponse);

 popup.append(textarea);

 // Add Buttons
 const saveButton = $("<button>").text("Save").css({
 marginRight: "10px",
 padding: "8px 10px",
 border: "none",
 backgroundColor: "#385427",
 color: "#fff",
 fontSize: "15px",
 cursor: "pointer",
 borderRadius: "4px"
 }).on("click", function () {
 // Save Logic
 const updatedText = textarea.val();
 console.log("Updated Text:", updatedText);
 // Remove Popup and Overlay
 overlay.remove();
 popup.remove();
 });

 const exitButton = $("<button>").text("Exit").css({
 padding: "8px 10px",
 border: "none",
 backgroundColor: "#c0533f",
 color: "#fff",
 fontSize: "15px",
 cursor: "pointer",
 borderRadius: "4px"
 }).on("click", function () {
 // Close Logic
 overlay.remove();
 popup.remove();
 });

 popup.append(saveButton, exitButton);
 $("body").append(overlay, popup);
 }

 // Fetch Chat Response
 async function fetchChatResponse(inputText) {
 try {
 const response = await fetch("http://127.0.0.1:5000/chat-response", {
 method: "POST",
 headers: {
 "Content-Type": "application/json"
 },
 body: JSON.stringify({ input: inputText })
 });

 if (response.ok) {
 const data = await response.json();
 return data.text.replace(/^"(.*)"$/, '$1'); // Clean up quotes
 } else {
 console.error("Failed to fetch chat response:", response.statusText);
 return inputText;
 }
 } catch (error) {
 console.error("Error during POST request:", error);

3.

b.

1.

2.

3.

 return inputText;
 }
 }

 return ProtocolDeviationDetailAppletCustomPR;

 }());

 return "SiebelAppFacade.ProtocolDeviationDetailAppletCustomPR";
 });
}

Functionality

CRA clicks on "Generate Summary Button"

CRA gets a popup window with an option to edit and make changes to generated Summary.

CRA Saves the Summary after making necessary changes and it gets saved in the Text Area field.

Benefits

Streamlined Protocol Management
By automating the summarization of verbose protocol deviation records, the system reduces manual effort, allowing clinical teams to save time
and focus on critical trial activities.
Enhanced Data Accuracy
The AI-powered summarization ensures that only accurate and relevant details are captured, minimizing errors and inconsistencies across
protocol documentation.

1.

1.

Improved User Efficiency
With an intuitive review and editing interface, users can quickly refine and approve summaries, ensuring a seamless workflow and reducing
cognitive load.

Future Possibilities and Innovations

Predict Total % Severity as a BO field in cumulative Protocol deviations.

Limitations

A limitation of the AI-driven summarization feature is that the generated summary may miss crucial deviations.

Conclusion

By leveraging Generative AI for protocol deviation summarization, CRA can significantly enhance the efficiency and accuracy of clinical trial management.
The seamless integration of AI-driven summarization reduces manual effort, ensures consistency in documentation, and improves compliance. This
innovative approach streamlines protocol deviation handling, enabling Clinical Research Associates to focus on critical decision-making while maintaining
data integrity. Automating summary generation and integration into protocol records not only saves time and costs but also enhances the overall efficiency
of clinical trial workflows, ensuring more effective and transparent protocol management.

	Clinical Protocol Management with Deviation Summarization Recipe

