
Start

Oracle® Documaker

Bridge with Docupresentment
User Guide

13.0.0

Part number: G18689-01

December 2024

Copyright © 2009, 2020, 2021 Oracle and/or its affiliates. All rights reserved.
The Programs (which include both the software and documentation contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987. Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a the quality of third-party products or services; or (b fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

CONTENTS

Using the Documaker Bridge ...5

Overview ...6
Setting Up Your Resources ..8
Customizing the Bridge ...11

Returning Error Messages in Attachment Variables11
Switching to Another DBMS ...12
Using Library Manager ...14
Preserving Output Files ..14
Automatically Printing Upon Completion15
Using Image Origins with XML Import ..17
Detecting the Import File Type ..17

Setting Up the DAP.INI File ...18
Setting Up the DOCSERV.XML File ..20
Setting Up the Client Configuration Files ..22
Verifying Users ...25
Using Manually-Edited HTML Forms with Real-Time HTML Processing 29

Documaker Bridge Rules ...30

List of Rules ...31

Reading Print Stream Files ..288

Getting AFP Resources ...289
Getting Metacode Resources ...291

Xerox JSL ...291
Metacode Fonts and Images ..291
Archived Metacode Print Streams ..292

Building AFP System Resources ...293
System Initialization (INI) Files ...293

Building Metacode System Resources ..295
Creating Font Cross-reference Files ..300

Adding Fonts to the Font Cross-Reference File300
Customizing a Font Cross-reference File302
Checking Your Font Cross-reference File303

Creating Documaker Graphics Files ..306
Creating a LOGO.DAT File ...306
Removing Unwanted Text and Logos ...306

Using the MRG2FAP Utility ..307
Overlays and Page Segments ..307

Limitations ..308
AFP Loader Limitations ..308
Metacode Loader Limitations ..308
PDF Limitations ..309

5

Chapter 1

Using the Documaker
Bridge
Docupresentment Server previously knows as
Docupresentment (IDS), allows users connect to the
server via the Internet; however, executing back-end
applications requires additional components, called
bridges. The bridge components provide software rules,
document templates, and other files necessary to process
documents. Documaker Bridge provides a link to
Documaker.

This chapter provides an overview of how the bridge
works and discusses these topics:

• Overview on page 6

• Setting Up Your Resources on page 8

• Customizing the Bridge on page 11

• Setting Up the DAP.INI File on page 18

• Setting Up the DOCSERV.XML File on page 20

• Setting Up the Client Configuration Files on page
22

• Verifying Users on page 25

• Using Manually-Edited HTML Forms with Real-
Time HTML Processing on page 29

In addition, there are a variety of rules you can use to
customize how Documaker Bridge works. For more
information on these rules, see Documaker Bridge Rules
on page 30.

NOTE: See the Docupresentment SDK Reference for
information on rules you can use to control
Docpresentment.

http://docs.oracle.com/cd/G18689-01/DocupresentmentSDK_rg_13.0.0.pdf

Overview

6

OVERVIEW This chapter provides information on the Documaker Bridge, including archives stored
in DB2 and SQL Server. It covers the capabilities of Documaker Bridge, its architecture,
and product installation and setup.

The Documaker Bridge lets users retrieve archived Documaker form sets via the Internet
using a web browser. Viewing the retrieved form sets requires the Adobe Acrobat Reader.
The Acrobat Reader lets users view documents on-screen, just as the documents would
look if they were printed.

Documaker Bridge
workflow

Here is a illustration which shows how the components work together:

When a user starts his or her Internet browser and connects to Docupresentment (IDS),
a login screen appears. After logging in, the user can search for archived forms using the
search screen. Docupresentment (IDS) displays the results and the user then selects a
specific form set for retrieval. The selected form set is then displayed via the Acrobat
Reader.

Here is a more detailed, step-by-step discussion of how it all happens:

1. The user’s browser connects to the login dialog.

2. The user submits the user ID and password. Once logged in, the user’s client module
communicates with Docupresentment (IDS).

3. The client module submits the request to the server.

4. The server processes, and accepts or rejects the log-in request. The results are posted
for the client module to respond to the user.

Internet
Browser Web ServerInternet

Docupresentment’s
Internet Document

Server

Documaker
Bridge Network File Server

Documaker

Acrobat
Reader

Workstation running
Documaker software

PDF
Files Archive

Overview

7

5. If the log-in request is unsuccessful, the client module sends an error to the user. If
the log-in request is successful, the client module sends the first archive query dialog
to the user.

6. The user completes and submits the first archive query dialog. This dialog supplies
key information used in searching the archive indexes.

7. The client module submits the request to the server.

8. The server processes the query request, finding and returning a set of matching
records.

9. The client module builds a query results dialog and returns it to the user.

10. The user either requests additional records, or selects a record.

11. The server receives the request and fulfills it through the client module. When a
request is for a specific record, the server uses Documaker Bridge to retrieve the set
and examine it. A list of eligible recipients for that document set is returned to the
user, via the client module.

12. The user selects a specific recipient.

13. Once the request is received by the server, via the client module, Documaker Bridge
retrieves the document set and generates a PDF file. The URL reference to the
temporary PDF file is returned to the user, via the server and the client module.

14. The user selects the URL of the PDF document, and the user’s browser starts Acrobat
Reader, which communicates to the web server, loads, and displays the PDF
document set.

15. The user can view or print the displayed document using Acrobat Reader.

Setting Up Your Resources

8

SETTING UP
YOUR

RESOURCES

This topic explains how to modify your master resources for use with Documaker Bridge.
This includes copying your master resources and updating HTML files.

Follow these steps:

16. Copy your resources into a subdirectory of the docserv\mstrres directory in the
installation. For example, if you are adding RPEX1 resources to Documaker Bridge,
then create a subdirectory named rpex1 and copy your RPEX1 files and subdirectories
into that new directory, as shown here:

17 In the C:\DOCSERV\HTML directory, edit the LOGIN.HTM file. Edit the
login.htm file located by default in the installation's docserv\html directory. The
actual location of this file used by the web server is based on the setup of the web
server's Virtual Directory for Docupresentment (IDS) content, examples:

Add the following line after the statement...

<SELECT NAME="CONFIG">

....but change the bolded text to reflect your resource specific names:

<OPTION VALUE = "RPEX1">Rules Processor Example1

18 Create an HTML subdirectory in your resource directory. You can copy the HTML
files from another set of master resources, such as the \rpex2\html directory for
RPEX2 resources, into your resource directory and use those HTML files. For
example, if you are adding RPEX1, add this subdirectory to your resource:

For Use this directory

Windows c:\docserv\mstrres\rpex1

UNIX/Linux cd /home/docc/int022/mstrres/rpex1

For Web server virtual directory Physical directory

Windows doc-html c:\docserv\html

UNIX/Linux ~docc /home/docc/public_html/

For Use this directory

Windows c:\docserv\mstrres\rpex1\html

UNIX/Linux cd /home/docc/int022/mstrres/rpex1/html

Setting Up Your Resources

9

Updating INI Files
You must update two Docupresentment (IDS) INI files and create a master resource INI
files. Keep in mind that the master resource INI options (located in the RPEX1.INI file
in the example below) take precedence over the options in the DAP.INI file.

NOTE: You will find (or create) the following INI files in the installation directory.

DAP.INI file Add these lines and replace the bolded text (RPEX1) with your resource directory name.

< Config:RPEX1 >
INIFile = RPEX1.INI

< Configurations >
Config = RPEX1

RPEX1.INI file You must create this file. Be sure to add these lines and replace the bolded text with your
resource specific information. The name of this file must reflect your entry in the INIFile
option in the DAP.INI file.

< Archival >
ArchiveMem = Yes

< ArcRet >
AppIdx = APPIDX
AppIdx = c:\docserv\mstrres\rpex1\deflib\Appidx.dfd
CARFile = ARCHIVE
CARPath =
Catalog = CATALOG
RestartTable= RESTART

< DB2_FileConvert >
APPIDX = DAP100_APP_R1
Archive = DAP100_ARC_R1
Catalog = DAP100_CAT_R1
Restart = DAP100_RES_R1

< DBHANDLER:DB2 >
CreateTable= No
CreateIndex= No
Database = ARCDBL
UserID = Userid
PassWd = Passwd

< DBTable:APPIDX >
DBHandler = DB2

[DBTable:ARCHIVE >
DBHandler = DB2

[DBTable:CATALOG]
DBHandler = DB2

[DBTable:RESTART]
DBHandler = DB2

< MasterResource >
XRFFile = rel95sm
DefLib = mstrres\rpex1\deflib\
FormLib = mstrres\rpex1\forms\
LbyLib = mstrres\rpex1\forms\
FormFile =

< Control >
XRFExt = .fxr
ImageEXT = .fap
DateFormat = 24%

Setting Up Your Resources

10

< Trigger2Archive >
Company = Company
LOB = Lob
PolicyNum = PolicyNum
RunDate = RunDate

< UserInfo >
userinfo = userinfo\userinfo

Database-specific Administration Tasks
If you are retrieving form sets from DB2, your DB2 System Administrator must bind
Docupresentment’s (IDS) DB2 package to the DB2 system as shown below.

NOTE: If you omit this bind operation, you will receive an SQL return code -805 when
you try to retrieve archived form sets.

From the DOCSERV installation directory, issue these statements:

This statement Is used to...

DB2CMD (Windows)
DB2 (UNIX)

Invoke the DB2 command line processor

DB2 CONNECT TO
ARCDB

Connect to the DB2 Database (substitute your database name for
ARCDB)

DB2 BIND
DB2LIB.BND

Bind the DB2LIB Package to DB2

Customizing the Bridge

11

CUSTOMIZING
THE BRIDGE

There are several tasks you can do to customize how the Documaker Bridge works with
Docupresentment (IDS) and iPPS or iDocumaker. These include:

• Returning Error Messages in Attachment Variables on page 11

• Switching to Another DBMS on page 12

• Using Library Manager on page 14

• Preserving Output Files on page 14

• Automatically Printing Upon Completion on page 15

Keep in mind as you read through the following examples, that XML standards, as defined
by the W3C, require you to substitute text characters that are not in XML tags (for
example, between <entry> and </entry> tags) as escape sequences. The characters that
require substitution are listed in the following table. If you cut and paste an XML example
from this or other Docupresentment (IDS) documentation into an XML configuration
file, you will have to manually make these substitutions.

RETURNING ERROR MESSAGES IN ATTACHMENT
VARIABLES
You can return Documaker error messages in Docupresentment (IDS) attachment
variables if you provide this additional attachment variable:

ShowErrors = Yes

The RPDCreateJob rule checks the input attachment variable ShowErrors is set to Yes.
The RULServerJobProc rule translates and write errors into the JOBLOG.XML file if it
finds errors. The ERRFILE list errors encountered during Documaker processing as
shown here:

GenData

Transaction Error Report - System timestamp: Mon Jul 08 15:20:06 2002

--
FormMaker Data Generation (Base)

Transaction: 1234567
Symbol: SCO
Module: M1
State: GA
Company Name (after ini conversion): SAMPCO
Line of Business (after ini conversion): LB1

For this character Use this escape sequence

< (less than) <

> (greater than) >

& (ampersand) &

' (apostrophe) '

“ (quotation mark) "

Customizing the Bridge

12

Trans Type: T1
Run Date: 19980223
--
DM12050: Error in RPProcessOneField(): Unable to
RPLocateFieldRule(pRPS, <NOSUCHTHING>).
DM12048: Error in RPProcessFields(): Unable to
RPProcessOneField(pRPS) <FORMSET PAGE NUM OF>. Processing will
continue for image <q1vrfl>. See INI group:< GenDataStopOn > option:
FieldErrors.
==> Warning count: 0
==> Error count: 2
End of Transaction Error Report - System timestamp: Mon Jul 08
15:20:07 2002
Elapsed Time: 1 seconds

The error messages will be translated from the MSGFILE and written to the output queue
as shown here:

RPD002010
RPD00201.ErrorTransaction: 1234567
RPD00202.ErrorSymbol: SCO
RPD00203.ErrorModule: M1
RPD00204.ErrorState: GA
RPD00205.ErrorCompany Name (after ini conversion): SAMPCO
RPD00206.ErrorLine of Business (after ini conversion): LB1
RPD00207.ErrorTrans Type: T1
RPD00208.ErrorRun Date: 19980223
RPD00209.ErrorDM12050: Error in RPProcessOneField(): Unable to
RPLocateFieldRule(pRPS, <NOSUCHTHING>).
RPD002010.ErrorDM12048: Error in RPProcessFields(): Unable to
RPProcessOneField(pRPS) <FORMSET PAGE NUM OF>. Processing will
continue for image <q1vrfl>. See INI group:< GenDataStopOn > option:
FieldErrors.

SWITCHING TO ANOTHER DBMS
By default, xBase is used for Documaker Bridge retrieval from archive. You can, however,
override this default using INI options.

You must add DBTable control group options to archive and retrieve information from
non-xBase DBMS systems such as DB2 and Oracle. Here are some examples:

For Documaker, change the FSIUSER.INI file to switch from xBase:

< DBTable:APPIDX >
DBHandler = DB2 (or ORA or ODBC)

< DBTable:CATALOG >
DBHandler = DB2 (or ORA or ODBC)
{and any other tables used}

For Docupresentment (IDS), change the RPEX1.INI file to switch from xBase to another
DBMS:

< DBTable:APPIDX >
DBHandler = ORA (or DB2 or ODBC)

< DBTable:CATALOG >
DBHandler = ORA (or DB2 or ODBC)
{and any other tables used}

Customizing the Bridge

13

NOTE: ORA only applies to UNIX implementations. ODBC only applies to Windows
Implementations. For information on setting up Documaker, see the Documaker
Administration Guide.

Using an ODBC driver You can make the ODBC driver disconnect and connect again after it has been idle for
specified time. To specify the time periods, use this INI option:

< DBHandler:ODBC >
ConnectionTimer = 300

Also, the ODBC driver returns a specific error code if there is a communication error and
the Documaker Bridge forces Docupresentment (IDS) to restart in case this error is
detected. For instance, if you are writing custom code you can check for:

DB_ERROR_CONNECTION_FAILURE returned by DBGetLastError()

If found, it means the ODBC connection failed. The Documaker Bridge checks this value
and causes Docupresentment (IDS) to restart.

NOTE: Only specific error codes are expected, so some communication errors might not
be detected.

Recovering from ODBC
errors

The Documaker Bridge restarts Docupresentment (IDS) after an ODBC connection
error. This lets it automatically recover from lost connections which can occur, for
example, when the SQL server is restarted. In this scenario, Docupresentment (IDS) must
be restarted because although Documaker keeps the connection open for performance
reasons, it does not recover if the connection is dropped.

When a transaction is executed and the Documaker Bridge encounters an ODBC error,
it restarts Docupresentment (IDS). The current transaction gets an error, but the next
transaction is executed correctly if the ODBC connection is restored. If the ODBC
connection cannot be restored, the next transaction gets an error as well. The connection
is restored when Docupresentment (IDS) restarts.

NOTE: The Documaker Bridge only looks for specific ODBC errors. If you encounter
an error which does not trigger an Docupresentment (IDS) restart and you feel a
restart should occur after this error, contact Support so we can evaluate the
situation and possibly add the error.

DB2 communication
errors

When the DB2 connection is used by Documaker Bridge via Docupresentment (IDS),
the rules check for DB2 communication errors. DB2 servers return SQL error codes when
there are communication failures. Those SQL codes are mapped to an error code and
returned by the DBGetLastError function.

Docupresentment (IDS) restarts if a communication failure occurs and the DB2
connection is re-established.

Option Description

ConnectionTimer Enter the number of seconds you want the driver to remain idle before
reconnecting.

http://docs.oracle.com/cd/G18689-01/DocupresentmentSDK_rg_13.0.0.pdf
http://docs.oracle.com/cd/G18689-01/DocupresentmentSDK_rg_13.0.0.pdf

Customizing the Bridge

14

USING LIBRARY MANAGER
If you are using an xBase library — not a DBMS like DB2 or Oracle— use these INI
options to indicate you are using Library Manager:

< MasterResource >
DDTFile = master.lby
FormFile = master.lby
LogoFile = master.lby
LbyLib = ..\rpex1\

where master.lby is the name of your library and the LbyLib option points to the directory
where the library resides.

You can also turn on tracing of the Library Manager component by specifying these INI
options:

< Debug_Switches >
Enable_Debug_Options = Yes
LbyLib = Yes

With these options set, the system creates a trace file you can use to resolve problems.

PRESERVING OUTPUT FILES
You can set up Documaker Bridge so it will retain output files after they are printed or
after a complete process is run. This is helpful when you need to create output files for use
in third-party systems, such as archiving or policy management systems.

NOTE: See Automatically Printing Upon Completion on page 15 for more information
on how to set up the complete process.

To give you more control of the file clean up process from the client side, the DPRPrint
rule checks the DPRPERSISTOUTPUT attachment variable. If this variable is set to Yes,
the output file is not registered for clean up at a later time.

For the complete process under Documaker Bridge, you can use the PersistOutput option
to control file cleanup for each file type:

< Complete:XXX >
PersistOutput =

Keep in mind that if you set up Docupresentment (IDS) to retain output files for use by
third-party systems, you should set up the third-party system to clean up these files when
they are no longer needed.

Option Description

PersistOutput Enter Yes if you want Docupresentment (IDS) to retain output files after
they are printed or after a complete process is run. This is helpful when you
need to create output files for use in third-party systems.
The default is No which means these files are registered for cleanup by
Docupresentment (IDS).

Customizing the Bridge

15

AUTOMATICALLY PRINTING UPON COMPLETION
You can automatically print a transaction (usually in PDF format) when you complete the
transaction using iPPS or iDocumaker. You can, for instance, use this feature to generate
a Home Office PDF copy and automatically create a Home Office export file which you
can later import into an agency management system.

The DPRPrint rule looks for the following print type:

PRTYPE=COMPLETE

When you set the print type to COMPLETE, the DPRPrint rule automatically calls the
new DPRComplete rule. The DPRComplete rule checks the CompleteType option in the
Complete control group to get the actual print type, print file name, print path, file
extension, and auto print recipients. You can have multiple complete types.

The DPRComplete rule then sets the appropriate attachment variables for PRTTYPE and
PRINTFILE and then calls DPRPrint rule.

The DPRComplete rule expects these DSI variables and input attachment variables:

These INI options are required:

< Complete >
CompleteType = XXX

< Complete:XXX >
FileType =
FileName =
FileExt =
FilePath =
Recipient =

Variable Description

DPRFORMSE
T

DSI variable. The form set to print, created by another rule, such as
DPRLoadImportFile, DPRGetWipFormset, MTCLoadFormset, and so on.

PRTTYPE Attachment variable. For DPRPrint to call DPRComplete, set this to
COMPLETE.

Option Description

Complete control group

CompleteType Specify a CompleteType. In this example, the XXX tells the system to look in
the Complete:XXX control group.

Complete:XXX control group

FileType Enter a print file type. You can choose from PDF, PCL, XML, and so on. The
default is PDF.

FileName Enter an output file name. If you omit this option, the system creates a 46-
byte unique file name.

FileExt Enter a file extension. The default is based on your entry in the FileType
option.

FilePath Enter the print path.

Customizing the Bridge

16

NOTE: If the Complete control group includes multiple complete types, the
DPRComplete rule processes each complete type.

The Recip_Names control group is required. The Printer INI options are also
required, unless you are printing to XML, V2, or some other non-printer device.

Example Here is an example of the request type:

[ReqType:i_WipComplete]
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRGetWipFormset
function = dprlib->DPRPrint

Here is an example of the input attachments:

CONFIG SAMPCO
USERID DOCUCORP
PASSWORD DOCUCORP
RECNUM 279
PRTTYPE COMPLETE

Here is an example of the INI options:

< Complete >
CompleteType = COMP1
CompleteType = COMP2
CompleteType = COMP3

< Complete:COMP1 >
FileType = PDF
FileName =
FileExt =
FilePath =
Recipient = HOME OFFICE,INSURED

< Complete:COMP2 >
FileType = XML
FileName =
FileExt =
FilePath =
Recipient = INSURED,AGENT

< Complete:COMP3 >
FileType = PCL
FileName =
FileExt =
FilePath =
Recipient = ALLRECIPIENTS

Recipient Enter the auto print recipients. You can enter a single recipient, multiple
recipients separated by commas, or ALLRECIPIENTS.

Option Description

Customizing the Bridge

17

USING IMAGE ORIGINS WITH XML IMPORT
An output file produced from an import process can have the same image positions as an
output file created from Documaker Server.

The Documaker Bridge applies image origin (position) information during XML import.
The origin specified in the form definition takes precedence over the origin specified in
the FAP image itself.

NOTE: This only works with master resource libraries (MRLs) built using Documaker
Studio. These MRLs include the FOR, GRP, and BDF files introduced with
Documaker Studio and contain origin information. The legacy model has
separate DDT files that are not executed during XML import.

DETECTING THE IMPORT FILE TYPE
You can use the same request type and the same attachment variables to import all
supported import file types into Documaker. To determine the import file type, the
beginning of the input file is checked:

NOTE: This affects the DPRLoadImportFile rule and is only applicable if the FILETYPE
attachment variable is blank or omitted. If this variable is passed in with a value
of XML or CMBNA, that format is assumed and no automatic check occurs.

For more information, see DPRLoadImportFile on page 149.

For this kind of import The file should begin with

XML file <?xml

Combined NA/POL file WIP=

V2 import if not WIP= or <?xml, the system assumes the file is a V2 import
format file

Setting Up the DAP.INI File

18

SETTING UP THE
DAP.INI FILE

The DAP.INI file is loaded by Documaker-related rules. These rules do not have access
to the DOCSERV.INI file. The DOCSERV.INI file is the INI file used by
Docupresentment (IDS). If you need to change an option used by the Documaker system,
you must change the DAP.INI file.

Dynamic Configuration - Using the Config Control Group
These control groups specify the INI files to load at the transaction level. This lets you
keep transaction-specific resources localized and separate from the server resources. To
turn on transaction-based INI loading, be sure to include the DPRSetConfig rule in the
DOCSERV.INI file. For more information, see DPRSetConfig on page 210.

For each Config:XXX control group, you must place an entry in the Configurations
control group. You can have multiple values specified by the INIFile option for each of
the Config:XXX control groups.

< Config:RPEX1 >
INIFile = rpex1.ini

< Configurations >
Config = RPEX1

PDF File Creation Options
The next control groups, Printer, PrtType, and PDFFileCache, affect the creation of PDF
files. For more information on PDF support, including limitations and tips on improving
quality, see Docupresentment Guide.

Compression option You can choose from these PDF compression methods:

To override the default, add the Compression option in the PrtType:PDF control group
in the DAP.INI file.

< PrtType:PDF >
Compression = 3

BookMark option The Bookmark option contains two values, on/off flag and bookmark level, which are
separated by a comma (,). Here is an example:

< PrtType:PDF >
Bookmark = Yes, Form

If no value is specified, the option will be set to No. The first value could be Yes or No,
or simply Y or N, and it's not case sensitive. If you enter a string other than Yes, No, Y,
or N, the option is set to No. The second value can be Formset, Group, Form, or Page. This
value determines the lowest level the bookmarks will be set to.

Choose For

0 (zero) no compression

1 best speed

2 default compression

3 best compression

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

Setting Up the DAP.INI File

19

For example, if you enter Form, bookmarks will be set for each form set, for each group
in all form sets, and for each form in all groups. You can add spaces before and after the
value and it is not case sensitive. If you enter anything other than Formset, Group, Form,
or Page, the value will be set to Page.

< Printer >
PrtType = PDF

< PrtType:PDF >
Compression = 3
BookMark = Yes,Page
Device = NUL
DownloadFonts = No,Enabled
LanguageLevel
Module
PageNumbers
PrintFunc
SendColor
SendOverlays

= Level2
= PDFLIB

= Yes
= PDFPrint
= Yes,Enabled

= No,Disabled

TimeOut option Use this option to tell the system how long it should allow a PDF file to remain on disk before
removing it. The default is 7200 seconds, or two hours.

< PDFFileCache >
TimeOut = 7200

You can specify this option in the DAP.INI file or in the each of configuration INI files.

Configuring INI Files for Each Config Control Group
These control groups supply information needed to access the Documaker archive
module:

< MasterResource >
XRFFile = intlsm
DefLib = mstrres\rpex1\deflib\
FormLib = mstrres\rpex1\forms\
LbyLib = mstrres\rpex1\forms\
FormFile = master.lby

< Control >
XRFExt = .fxr
ImageEXT = .fap
DateFormat = 24%

< ArcRet >
APPIDX = mstrres\rpex1\arc\appidx
Catalog = mstrres\rpex1\arc\catalog
CARPath = mstrres\rpex1\arc\

< UserInfo >
UserInfo = userinfo\userinfo

NOTE: For archives stored in DB/2, Oracle, and SQL Server, there are other required
INI options, such as:

< Archival >
ArchiveMem = Yes

See the archive chapter in the Documaker Administration Guide for more
information.

https://docs.oracle.com/cd/G18689-01/DocumakerStandard_ag_13.0.0.pdf

Setting Up the DOCSERV.XML File

20

SETTING UP THE
DOCSERV.XML

FILE

The docserv.xml file is used by Docupresentment (IDS) to configure certain options.
While this file is optional when Docupresentment (IDS) is installed, it is required to use
any of the optional bridge components.

Basic Options
The rules executed for each request are specified in this configuration file. The rules are
organized by request type, as shown here.

<section name="ReqType:INI">
 <entry name="function">irllib->;IRLInit</entry>
 <entry name="function">dprlib->;DPRInit</entry>
<entry name="function">tpdlib->;TPDInitRule</entry>

</section>
<section name="ReqType:THREADINI">

 <entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>

<entry name="function">DSICoRul->;Init</entry>

 <entry name="function">DSICoRul->;Invoke,DocuCorp_IDS_DPRCo.DPR-
>;DPRCoLoginInit</entry>
</section>
<section name="ReqType:ADM">

 <entry name="function">atclib->;ATCLogTransaction</entry>
<entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">irllib->;IRLAdmin</entry>
 <entry name="function">atclib->;ATCUnloadAttachment</entry>

</section>

Advanced Options

Running timer rules You can use the AutorunInterval option in the configuration to set the interval at which
to run the periodic timer request. The request run is SAR and can be used for occasional
operations such as purging the file cache. The time is in seconds and the default is 3600,
or one hour.

Scheduling when request
types are run

You can use the Timers subsection in the configuration to schedule when request types
are sent to Docupresentment (IDS)

Here is an example that includes the periodic and timed requests. It is in the
BusinessLogicProcessor section, messaging subsection, timed subsection:

<section name="timed">
 <entry name="AutoRunIntervalSeconds">3600</entry>
 <section name="Timers">

 <entry name="RRRR">Wed 10:15:00 AM</entry>
 <entry name="JJJ">09:45:00 PM</entry>
 <entry name="RBCD">23:10:00</entry>

 </section>
</section>

The first line tells the system to run, or send to Docupresentment (IDS), request type
RRRR each Wednesday at 10:15 AM.

The second line tells the system to run JJJ every day at 9:45 PM.

The third line tells the system to run RBCD every day at 11:10 PM.

Setting Up the DOCSERV.XML File

21

You can spell out the day of the week if you like, just be sure to leave a space between the
day and the time. You must enter the time in HH:MM:SS format. You can enter the time
using a 24- or 12-hour clock. If you use the 12-hour clock, include AM or PM, as
necessary.

NOTE: The actual time the request type is run may differ from the time you specify if
Docupresentment (IDS) is busy processing other requests.

If the request time occurs before Docupresentment (IDS) is started, the request is
postponed until the following day. After a request is executed, it is marked as executed and
will not be executed again until the following day. There will be no results posted to the
result queue. Here are some more examples of how you can enter the time:

If you enter Docupresentment (IDS) treats this as

Friday 13:00:00 AM Fri 1:00:00 PM

Tue 15:00:00 PM Tue 3:00:00 PM

Thur 17:00:00 Thu 5:00 PM

19:00:00 7:00 PM every day

Setting Up the Client Configuration Files

22

SETTING UP THE
CLIENT

CONFIGURATION
FILES

The client configuration file, docclient.xml, is an initialization file used by client
programs, such as executables, Java client programs, Microsoft ActiveX controls, and
Active Server Pages.

NOTE: Before version 2.0, installations of Docupresentment (IDS) used a docclnt.ini
file; the 2.0 install procedure can convert this file into the docclient.xml file.

Basic Options
You can specify the name and location of the request queue. This value should be the same
as the value set for Docupresentment (IDS). See Setting Up the DOCSERV.XML File on
page 20 for more information.

< RequestQ >
Name = REQUESTQ

Similarly, you can also specify the name and location of the result queue:

< ResultQ >
Name = RESULTQ

To specify a list of rules to run on all requests, use:

< REQType:Default >
Function = atclib->ATCUnloadAttachment

Function = ircltlib->IRCRequest

< RESType:Default >
Function = atclib->ATCLoadAttachment
Function = atclib->ATCAppend2Attachment
Function = ircltlib->IRCResult Function
= ircltlib->IRCUnloadPage

To specify a list of rules to run on a PRT request, use:

< RESType:PRT >
Function = atclib->ATCLoadAttachment
Function = atclib->ATCAppend2Attachment
Function = ircltlib->IRCResult Function
= ircltlib->IRCPrint
Function = ircltlib->IRCUnloadPage

NOTE: The PRT request will not execute rules in the REQTYPE:Default control group
because it has to run one extra rule, IRCPrint. For more information about this
rule, see the Docupresentment SDK Reference.

To specify a list of rules to run on an ERR request, use:

< RESType:ERR >
Function = ircltlib->IRCUnloadPage

NOTE: An ERR request indicates a processing error and is posted by Docupresentment
(IDS). It should not be coming from an HTML page as the value.

To specify a list of rules to run on CAD (Client Administration) request, use:

< REQType:CAD >

http://docs.oracle.com/cd/G18689-01/DocupresentmentSDK_rg_13.0.0.pdf

Setting Up the Client Configuration Files

23

Function= ircltlib->IRCAdmin
Function= atclib->ATCUnloadAttachment
Post = N

(INI value Post = N has to be set for this request. It means that the request is not posted
to Docupresentment (IDS), it is processed by the client.)

< RESType:CAD >
Function = atclib->ATCLoadAttachment
Function = atclib->ATCAppend2Attachment
Function = ircltlib->IRCUnloadPage

To specify a list of rules to run on SCS (Client Statistics) request, use:

< REQType:SCS >
Function= ircltlib->IRCSendVersion
Function= atclib->ATCUnloadAttachment
Post = No

You must set the Post option to No for this request. It means that the request is not posted
to Docupresentment (IDS), instead it is processed by the client.

< RESType:SCS >
Function= atclib->ATCLoadAttachment
Function= ircltlib->IRCUnloadPage

Advanced Options

Generating unique IDs To specify the name and location of database table for generating unique IDs, use:

< UniqueDB >
Name = .\UNIQDB

This file can be different for the client and the server. The default is UNIQDB.

Setting Up the Client Configuration Files

24

Setting time-out values You can specify the time-out value for the client program in each of the request type INI
control groups. This value is set in seconds and is defaulted to 60, or one minute. If you
get errors because the client program times out and does not receive results from
Docupresentment (IDS), try increasing this value.

Decreasing this value will not make Docupresentment (IDS) run faster. Adjust this value
only if needed. When you change the default time-out value for a request type in the
DOCCLNT.INI file, the request type should call these rules:

atclib->ATCUnloadAttachment
ircltlib->IRCRequest

If the request type has no rules, the time-out value setting is skipped and the ReqType
default time-out (60 seconds) is used. For example to change the time-out value to two
minutes, set the INI options as shown here:

< ReqType:XXXX >
atclib->ATCUnloadAttachment
ircltlib->IRCRequest

Timeout = 120

You can also set up global time-out settings, so even if the ASP page specifies some other
value, you can overwrite it. You specify global time-out settings using these options:

< ResultQ >
DefaultTimeout = 60000L
MaxTimeout = 90000L
MinTimeout = 60000L

NOTE: If you set the DefaultTimeout option outside the limits set for the MinTimeout
and MaxTimeout options, the system uses the values for the MinTimeout and
MaxTimeout options.

Option Description

DefaultTimeout Enter, in milliseconds, the time-out to use if the application did not specify
one. The default is 15000L or 15 seconds.

MaxTimeout Enter, in milliseconds, the maximum amount of time to wait. If the
application specifies a longer time-out period, the system uses this value
instead.
This option lets you handle situations which can occur when ASP pages
specify a time-out that exceeds the IIS global setting limits. Setting this
option to the same value as IIS script time-out keeps you from having to edit
all ASP pages where the time-out was specified as too long.

MinTimeout Enter, in milliseconds, the minimum amount of time to wait. If the
application requests a time-out that is less than this value, the system uses
this value instead.
Setting this option keeps you from having to edit all ASP pages where the
time-out was specified as too short.

Verifying Users

25

VERIFYING
USERS

You can make sure all users are authenticated before they view content which contains
confidential information or client data. This authentication must be repeated each time a
user views a page. To authenticate users, you will use these rules:

• DPRCheckLogin on page 58

• DPRDecryptLogin on page 68

• DPRDefaultLogin on page 71

• DPRLoginUser on page 157

• DPRGenerateSeedValue on page 98

User IDs and passwords are not authenticated on the HTTP server. Authentication is
performed on application server (Docupresentment) in the network.

NOTE: The password is case sensitive. If you need the password to not be case sensitive,
make the client application convert the password to uppercase before it submits
the password to Docupresentment (IDS).

The authentication token includes the user ID and a password hash value. For browsers
that accept cookies, you can store the token as a cookie. For browsers that do not accept
cookies, the token information is carried in the HTTP request.

Cookies should be set to expire in 30 minutes, although each request can reset the cookie
an additional 30 minutes. At a predetermined time each day, such as at 2:00 AM, the salt
value is reset and all existing password hashes become invalid.

All subsequent login attempts pass the authentication token, which includes user ID and
password hash value. For token-based authentication, the internal application
(Docupresentment) compares the past password’s hash value to the user’s computed
password hash value. Token-based failures return the client to login screen (without a
login failed message). If token values are missing, the user should be redirected to login
screen.

Initial login flow Here is the initial login flow:

• Internet application submits the USERID and PASSWORD values to
Docupresentment (IDS).

 If these values are encrypted, they will be decrypted later.

 If these values are not encrypted, the Internet application should also provide
this value:

PASSWORDENCRYPTED=NO

• Docupresentment (IDS) preprocessing (message DSI_MSGRUNF) begins.

 The DPRDecryptLogin rule decrypts USERID and PASSWORD and adds the
clear text version of USERID to the input attachment. Password hash is created
and added to the input attachment and clear text version is removed.

 The DPRDefaultLogin rule uses the USERID value from input attachment and
locates a matching record in the user table. By default, the rule uses the
USERINFO table. The values of USERID and PASSWORD from that table are
added to the input attachment as REALUSERID and REALPASSWORD.

Verifying Users

26

 The DPRLoginUser rule creates a hash value from REALPASSWORD and
compares USERID with REALUSERID and the hash value in PASSWORD
with hash value of REALPASSWORD.

• Docupresentment (IDS) post processing (message DSIMSG_RUNR) begins.

 The DPRLoginUser rule adds the LOGINRESULT value to the output
attachment.

 The DPRDefaultLogin rule removes the values for REALUSERID and
REALPASSWORD from the input and output attachments.

 The DPRDecryptLogin rule encrypts the value for USERID, adds the password
hash to it and encrypts the resulting string again. The new value is the
authentication token. This value is appended to the output attachment as the
USERID. The Internet application passes the USERID to Docupresentment
(IDS) on all subsequent requests.

• In case of error, the rules create the attachment variable LOGINRESULT with the
value FAILURE and call the DSIErrorMessage API. The Internet application can
check for a specific error code in the attachment variable RESULTS, but it is best to
simply redirect the user to the login screen if LOGINRESULT is not SUCCESS.

• In case of error, the value for the authentication token is omitted from the output
attachment.

Data request flow Here is a summary of the data request flow:

• The Internet application submits the authentication token. This token is returned to
Docupresentment (IDS) by the initial login processing as USERID.

• Docupresentment (IDS) preprocessing (message DSI_MSGRUNF) begins.

 The DPRDecryptLogin rule decrypts the authentication token and splits it into
the USERID and PASSWORD hash. The rule then decrypts the USERID value
and adds the clear text USERID and PASSWORD hash to the input attachment
as USERID and PASSWORD.

 The DPRDefaultLogin rule uses the USERID value from input attachment to
locate a matching record in a user table, by default the USERINFO table. The
rule adds the USERID and PASSWORD values from the table to the input
attachment as REALUSERID and REALPASSWORD.

 The DPRCheckLogin rule creates a hash value from REALPASSWORD and
compares USERID with REALUSERID and the hash value in PASSWORD
with hash value of REALPASSWORD.

• Docupresentment (IDS) post processing (message DSI_MSGRUNR) begins.

 The DPRCheckLogin rule adds the value of LOGINRESULT to the output
attachment.

 The DPRDefaultLogin rule removes the values for REALUSERID and
REALPASSWORD from the input and output attachments.

 The DPRDecryptLogin rule recreates the authentication token and adds it to the
output attachment as USERID.

The Internet application should pass this value to Docupresentment (IDS) on
all subsequent requests. This token is the same as the token passed to the Internet
application on the initial login.

Verifying Users

27

 If there are errors, the rules create the attachment variable LOGINRESULT
with the value FAILURE and call the DSIErrorMessage API. The Internet
application can check for a specific error code in the attachment variable
RESULTS, but it is best to just redirect the user back to the login window if
LOGINRESULT is not SUCCESS.

• If there are errors, the value for USERID (authentication token) is missing from the
output attachment.

Changing seed value for
the password hash

You can change the password hash seed value on the timer request. Once the value is
changed, none of those generated with different seed value authentication tokens are valid.

Use the DPRGenerateSeedValue rule to reset the seed. You should execute this rule at
least once a day.

Example Docupresentment (IDS) rules use global data APIs to store the seed value, so
Docupresentment servers should be set up for global data APIs. The configuration options
for all Docupresentment servers, are shown here:

<section name="GlobalData">
 <entry name="Path"> </entry>
</section>

should point to the same valid directory. This option defaults to .\global\, so if you use the
default, create the directory global under the directory where Docupresentment is
running.

Here are example INI options for implementing the authentication schema with the
sample Documaker archive/retrieval setup. Note the use of the DPRSetConfig rule before
the login rules, this is done so you can specify the location of the Documaker USERINFO
table for each setup.

<section name="ReqType:LGN">
 <entry name="function">atclib->;ATCLogTransaction</entry>
<entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>
<entry name="function">dprlib->;DPRSetConfig</entry>
 <entry name="function">irllib->;IRLCopyAttachment</entry>
<entry name="function">dprlib->;DPRDecryptLogin</entry>
 <entry name="function">dprlib->;DPRDefaultLogin</entry>
 <entry name="function">dprlib->;DPRLoginUser</entry>

</section>
<section name="ReqType:PRT">

 <entry name="function">atclib->;ATCLogTransaction</entry>
<entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>
<entry name="function">dprlib->;DPRSetConfig</entry>
 <entry name="function">dprlib->;DPRDecryptLogin</entry>
 <entry name="function">dprlib->;DPRDefaultLogin</entry>
 <entry name="function">dprlib->;DPRCheckLogin</entry>
 <entry name="function">dprlib->;DPRInitLby</entry>
 <entry name="function">dprlib->;DPRPrintFormset</entry>

</section>
<section name="ReqType:RCP">

 <entry name="function">atclib->;ATCLogTransaction</entry>
<entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>
<entry name="function">dprlib->;DPRSetConfig</entry>
 <entry name="function">dprlib->;DPRDecryptLogin</entry>
 <entry name="function">dprlib->;DPRDefaultLogin</entry>

Verifying Users

28

 <entry name="function">dprlib->;DPRCheckLogin</entry>
 <entry name="function">dprlib->;DPRGetRecipients</entry>

</section>

Use these configuration options to reset the seed value every day at 3:00 AM.

<section name="Timer">
 <entry name="ResetSeed">3:00:00 AM</entry>
</section>
<section name="ReqType:RESETSEED">
 <entry name="function">dprlib->;DPRGenerateSeedValue</entry>
</section>

Customizing the login
process

The best way to customize the login process is to replace the DPRDefaultLogin rule. Use
the rest of the rules as designed. If you create a custom login rule to replace the
DPRDefaultLogin rule, the custom rule should do the following:

• Preprocessing (message DSI_MSGRUNF)

 Check the LOGINRESULT value in the input attachment. If it exists and is not
SUCCESS, do nothing.

 Locate the USERID in the input attachment.

 Determine the password for the user ID. For example, you could query a custom
user table and add the password value to the input attachment as
REALPASSWORD and the user ID as REALUSERID.

 If there are errors, issue an error message and add LOGINRESULT to the input
attachment with the value FAILURE.

• Post processing (message DSI_MSGRUNR)

 Remove the REALUSERID and REALPASSWORD from the input and output
attachments. If these values are missing, do not issue an error message.

Using Manually-Edited HTML Forms with Real-Time HTML Processing

29

USING
MANUALLY-

EDITED HTML
FORMS WITH

REAL-TIME
HTML

PROCESSING

Documaker Bridge can return manually-edited HTML forms instead of performing a
real-time conversion of FAP to HTML. It does not affect all FAP files, only the FAP files
you would like to handle this way.

This is useful when you have FAP files that are using DAL scripts and similar logic is
needed on HTML forms. If the FAP files do not change, you can convert specific FAP
files into HTML manually, edit the HTML files, write Java scripts and so on, and have
Docupresentment (IDS) return the HTML files instead of doing a real-time conversion
of FAP to HTML.

Use the HTMLForms option in the CONFIG.INI file to specify the directory where the
HTML files are located:

< MasterResource >
HTMLForms =

NOTE: While it is possible, it is not recommended to use this option for all FAP files in
your library as it will increase the amount of maintenance you must perform.

Use this option in the CONFIG.INI file to help resolve problems:

< Debug >
DPRGetHTMLForms = Yes

Option Description

HTMLForm
s

Enter the directory and path where the HTML forms reside. Documaker Bridge
checks this directory for filename.htm and filename.html before deciding to
convert FAP files into HTML files. For multi-page FAP files, each page has to
be in a separate file. This naming convention is used:

filename_pagenumber.htm

For example, myfile_2.htm indicates the second page of multi-page FAP file
called myfile.fap.
If you need version/revision numbers on the HTML files, use the naming
convention Studio uses for FAP files checked out of the library:

filename_versionrevision_effdate.htm

Here is an example:

CANC201B_0000300005_20060101.htm

This references FAP file CANC201B version 3, revision 5, with an effective date
of 1/1/2006. If you need to add a page number to denote the second page, do
so at the end, as shown here:

CANC201B_0000300005_19800101_2.htm

The system first checks for the file name with version, revision, and effective date
information. If not found, it then checks for just the file name. Each check is
done for both the HTM and HTML extensions.
If the FAP file does not have version/revision information the check for file
name with version/revision is omitted.

Option Description

DPRGetHTMLForms Enter Yes to create the log file with information about which file names
were checked and which files were found.

30

Chapter 2

Documaker Bridge Rules
The Documaker Bridge includes rules you can use to
control what happens to data moving across the bridge.
These rules are listed on the following pages and then
discussed in alphabetical order.

These rules run on all supported platforms except where
noted. The rule names are case sensitive.

NOTE: For information on Docupresentment rules, see
the Docupresentment SDK Reference.

https://docs.oracle.com/cd/G18689-01/DocupresentmentSDK_rg_13.0.0.pdf

List of Rules

31

LIST OF RULES Use the following rules when you use the Documaker Bridge. The rules are in alphabetical
order.

• DPRAddBlankPages on page 36

• DPRAddLogo on page 38

• DPRAddText on page 40

• DPRAddToUserDict on page 42

• DPRAddWipRecord on page 44

• DPRApproveWipRecords on page 46

• DPRArchiveFormset on page 48

• DPRAssignWipRecord on page 50

• DPRBatchArchive on page 52

• DPRBuildGroupList on page 53

• DPRCheck on page 55

• DPRCheckLogin on page 58

• DPRCheckWipRecords on page 59

• DPRCompareXMLFiles on page 63

• DPRConvertGUID on page 65

• DPRCreateEMailAttachment on page 66

• DPRDebug on page 67

• DPRDecryptLogin on page 68

• DPRDecryptValue on page 69

• DPRDefaultLogin on page 70

• DPRDelBlankPages on page 72

• DPRDeleteFiles on page 74

• DPRDeleteWipRecord on page 75

• DPRDelFromUserDict on page 77

• DPRDelMultiWipRecords on page 79

• DPRDepagination on page 81

• DPRDpw2Wip on page 82

• DPREditUserDict on page 83

• DPRExecuteDAL on page 85

• DPRFap2Html on page 86

• DPRFile2Dpw on page 88

• DPRFilterFormsetForms on page 89

List of Rules

32

• DPRFindTemplate on page 90

• DPRFindWipRecords on page 91

• DPRFindWipRecordsByUser on page 92

• DPRGenerateDefinitionFile on page 95

• DPRGenerateSeedValue on page 97

• DPRGetConfigList on page 98

• DPRGetDFDInfo on page 100

• DPRGetFormList on page 105

• DPRGetFormsetRecips on page 106

• DPRGetHTMLForms on page 107

• DPRGetInitValue on page 108

• DPRGetOneWipRecord on page 109

• DPRGetRecipients on page 110

• DPRGetUserList on page 111

• DPRGetWipList on page 114

• DPRGetWipFormset on page 117

• DPRGetWipRecipients on page 119

• DPRIni2XML on page 121

• DPRInit on page 123

• DPRInitLby on page 124

• DPRLbyCopy on page 125

• DPRLbyDelete on page 127

• DPRLbyGet on page 129

• DPRLbyLock on page 131

• DPRLbyMKCol on page 133

• DPRLbyOptions on page 134

• DPRLbyPropFind on page 135

• DPRLbyPropPatch on page 138

• DPRLbyPut on page 139

• DPRLbyUnlock on page 141

• DPRLoadDPA on page 143

• DPRLoadedXML2Formset on page 145

• DPRLoadFAPImages on page 146

• DPRLoadImportFile on page 147

List of Rules

33

• DPRLoadXMLAttachment on page 148

• DPRLoadXMLFormset on page 149

• DPRLocateOneRecord on page 150

• DPRLockWip on page 151

• DPRLog on page 153

• DPRLogin on page 154

• DPRLoginUser on page 155

• DPRMail on page 156

• DPRMapRecipData on page 158

• DPRModifyUser on page 160

• DPRModifyWipData on page 163

• DPRPatchLevel on page 165

• DPRParseRecord on page 166

• DPRPrint on page 169

• DPRPrintDpw on page 177

• DPRPrintFormset on page 179

• DPRProcessTemplates on page 181

• DPRRenameVars on page 183

• DPRRetFromUserDict on page 184

• DPRRetrieveDPA on page 186

• DPRRetrieveFormset on page 187

• DPRRotateFormsetPages on page 189

• DPRSearch on page 190

• DPRSearchLDAP on page 192

• DPRSearchWip on page 199

• DPRSendFormsetXML on page 204

• DPRSendMultiFiles on page 205

• DPRSendVersion on page 206

• DPRSet2ImageScope on page 207

• DPRSetConfig on page 208

• DPRSpellCheck on page 210

• DPRSortFormsetForms on page 213

• DPRTemporaryXMLFile on page 214

• DPRTblLookUp on page 215

List of Rules

34

• DPRTransform on page 225

• DPRUnloadExportFile on page 231

• DPRUnloadXMLFormset on page 233

• DPRUnlockWip on page 234

• DPRUpdateFromMRL on page 235

• DPRUpdateFormsetFields on page 237

• DPRUpdateFormsetFromXML on page 238

• DPRUpdateWipRecords on page 240

• DPRWip2Dpw on page 243

• DPRWipBatchPrint on page 244

• DPRWipIndex2XML on page 248

• DPRWipTableParms on page 250

• DPRXMLDiff on page 253

Use these rules to convert a Metacode print stream into documents for Docupresentment

• MTCLoadFormset on page 254

• MTCPrintFormset on page 256

Use these Documaker Bridge rules to control Documaker Server:

• RPDCheckAttachments on page 257

• RPDCheckRPRun on page 260

• RPDCreateJob on page 263

• RPDDeleteFiles on page 268

• RPDProcessJob on page 270

• RPDRunRP on page 273

• RPDSetPDFAttachmentVariables on page 278

• RPDStopRPRun on page 280

Use these rules to convert TIFF files into PDF documents for Docupresentment.

NOTE: Originally, the TPD rules could only print single page TIFF files into a PDF file.
The system embedded CCITT Group 4 single strip TIFF files into the PDF file
for performance reasons and stored other types of compressed and uncompressed
TIFF file data directly into the PDF file.

Beginning with Shared Objects version 11.2, the system lets you process multi-
page CCITT Group 4 single strip TIFF files and other types of multi-page TIFF
files. This lets the system print single page, multi-page, and a combination of
single and multi-page TIFF files into a PDF file, including color TIFF, dual
resolution TIFF, and 32-bit TIFF files.

List of Rules

35

• TPDCreateFormset on page 281

• TPDCreateOutput on page 283

• TPDLoadFormset on page 284

• TPDInitRule on page 285

NOTE: The Documaker Bridge rules load the FXR and FORM.DAT files once and
stores them in cache to speed performance.

The modify date of the FORM.DAT file is checked and the file is reloaded if the
modify date change. This means Docupresentment (IDS) does not have to restart
if the FORM.DAT file was changed.

The FXR file caching is done the same way as FAP file caching and it does not
check file dates on disk. If you need to disable FXR file caching, disable FAP file
caching.

DPRAddBlankPages

36

 DPRAddBlankPages
Use this rule to add blank or filler pages into a form set. You add these pages to make sure
each physical printed page has a front and back. This lets you change a simplex form set
or a form set which contains both simplex and duplex forms into a fully duplexed form set.

For instance, you can use this to make it easier to add OMR marks, which are often
printed on the back, to simplex forms. Another use is to create PDF files for form sets
which contain both simplex and duplex forms but which print as a fully duplexed form
set.

Syntax long _DSIAPI DPRAddBlankPages (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule assumes that the form set has been loaded by the Documaker Bridge into the
DSI variable, DPRFORMSET.

If you are using this rule with a different bridge, you may need to specify a different DSI
variable that contains the form set. If you want the system to use a specific FAP file for the
filler pages, the name of that FAP file must follow the form set variable name when you
specify the rule. Here is an example:

function = dprlib->DPRAddBlankPages,DPRFORMSET,FAPFile

Omit the FAP file’s path and extension.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

37

Here is a table which shows when blank pages will be added, based on the duplex setting
of the two current pages and the duplex setting of the next page. Blank means a blank page
will be added, As is means no blank page is needed and the form will be left as is.

NOTE: You can also add blank or filler pages using custom code or a DAL script which
includes the AddBlankPages function. See the DAL Reference for more
information on the AddBlankPages DAL function.

The API to call from custom code is as follows:

DWORD _VMMAPI FAPAddBlankPages(
 VMMHANDLE objectH, /* form set or form handle */
 char FAR * imagename) /* if NULL, “Blank Page” */

If the image name is NULL, a blank page is created when a filler page is needed.
If the image name is not NULL, the image name is loaded when a filler page is
needed. If you include an image name, include only the name of the FAP file—
omit the path and file extension.

See also DPRDelBlankPages on page 72

If the current page is

And the next page is

Unknown Front Back None Short Rolling

Unknown Blank Blank As is Blank Blank Blank

None Blank Blank As is Blank Blank Blank

Front Blank Blank As is Blank Blank As is

Short Blank Blank As is Blank Blank As is

Rolling (Front) Blank Blank As is Blank Blank As is

Back As is As is Blank As is As is As is

Rolling (Back) As is As is Blank As is As is As is

https://docs.oracle.com/cd/G18689-01/DR/Index.htm

DPRAddLogo

38

 DPRAddLogo
Use this rule to add a logo to a document retrieved from an archive. The logo is not stored
with the original document. Instead, it is added when the document is retrieved from
archive and only appear in the PDF file that is created from the archive.

NOTE: You can add logos and text. Logos are graphics and may obscure overlapping
objects when viewed in Acrobat Reader version 3.x. This is not a problem if you
use Acrobat Reader version 4.x. Text displays properly in all versions of Acrobat
Reader.

Keep in mind there is no support for transparency in multi-color bitmaps or the
z-ordering of FAP objects. For best results, use a mono-color bitmap.

Syntax long _DSIAPI DPRAddLogo (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The DPRAddText and DPRAddLogo rules are located in the dprlib.DLL and run on
MSG_RUNF. Here is an example from the DOCSERV.INI file of the rule list which
shows these rules:

< ReqType:MTC >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig function
= atclib->ATCUnloadAttachment function =
mtclib->MTCLoadFormset function =
dprlib->DPRRotateFormsetPages function =
dprlib->DPRAddLogo
function = dprlib->DPRAddText
function = mtclib->MTCPrintFormset

NOTE: When you use this rule with any rules other than the MTC rules, you must
include the name of the form set, as shown here:

function = dprlib->DPRAddLogo,DPRFORMSET

If you omit the form set, the system assumes MTCFORMSET is its name. You
cannot use this rule with the TPDCreateFormset and TPDInitRule rules.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

39

INI options To add a logo, you must add a AddLogo control group to the master resource INI file.
This control group will have these options:

NOTE: You can also use DPRAddLogo functionality with the DPRPrint rule. For more
information, see Adding Logos when using DPRPrint on page 170.

Here is an example of the INI options you could use:

< AddLogo >
Logo = TRSEAL
Top = 600
Left = 1200
Pages = 1
Color = 16711680

Option Description

Logo The name of the logo you want to use. Store this logo in the FORMS directory of the
master resource library.

Top Contains the top coordinate (position) of the logo in FAP units (2400 units per inch)

Left Contains the left coordinate (position) of the logo in FAP units (2400 units per inch)

Pages (Optional) The default is to add the logo on all pages. Use this option to set the
number of pages on which you want the logo to appear. If you set this option to 1,
the system adds a logo to the first page only.

Color (Optional) Default is to display the logo as a black and white logo (value of zero). This
number is a 24-bit RGB color. The lowest 8 bits represent the amount of red color,
the next 8 bits represent the amount of green color, and the subsequent 8 bits
represent the amount of blue color. A color setting of 255 (lowest 8 bits are all on)
would indicate the full amount of red and no green or blue. A color setting of 65535
(lowest 16 bits are on) indicates the full amount of red and green but no amount of
blue. This results in yellow.

DPRAddText

40

 DPRAddText
Use this rule to add text to a document retrieved from an archive. The text is not stored
with the original document. Instead, it is added when the document is retrieved from
archive and only appear in the PDF file that is created from the archive.

NOTE: You can add two types of files: logos and text. Logo are graphics and may obscure
overlapping objects when viewed in Acrobat Reader version 3.x. This is not a
problem if you use Acrobat Reader version 4.x. Text displays properly in all
versions of Acrobat Reader.

Syntax long _DSIAPI DPRAddText (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The DPRAddText and DPRAddLogo rules are located in the dprlib.DLL and run on
MSG_RUNF. Here is an example from the DOCSERV.INI file of the rules list which
shows these rules:

< ReqType:MTC >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig function
= atclib->ATCUnloadAttachment function =
mtclib->MTCLoadFormset function =
dprlib->DPRRotateFormsetPages function =
dprlib->DPRAddLogo
function = dprlib->DPRAddText
function = mtclib->MTCPrintFormset

NOTE: When you use this rule with any rules other than the MTC rules, you must
include the name of the form set, as shown here:

function = dprlib->DPRAddText,DPRFORMSET

If you omit the form set, the system assumes MTCFORMSET is its name. You
cannot use this rule with the TPDCreateFormset and TPDInitRule rules.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

41

INI options To add text, you must add an AddText control group to the INI settings for the master
resource INI file. This control group has these options:

Here is an example of the INI options you could use:

< AddText >
Text = SAMPLE FORM
FontID = 11020
Top = 12000
Left = 12000
Color = 255

Option Description

Text The string you want to appear.

FontID The font ID that identifies the font you want to use. This ID also specifies the point
size of the font.

Top Contains the top coordinate (position) of the text in FAP units (2400 units per inch)

Left Contains the left coordinate (position) of the text in FAP units (2400 units per inch)

Pages (Optional) The default is to add the text on all pages. Use this option to set the
number of pages on which you want the text to appear. If you set this option to 1, the
system adds the text to the first page only.

Angle (Optional) The default is to display the text at a zero (0) degree angle. You can also
enter 90, 180, and 270.

Color (Optional) Default is to display the text as a black and white logo (value of zero). This
number is a 24-bit RGB color. The lowest 8 bits represent the amount of red color,
the next 8 bits represent the amount of green color, and the subsequent 8 bits
represent the amount of blue color. A color setting of 255 (lowest 8 bits are all on)
would indicate the full amount of red and no green or blue. A color setting of 65535
(lowest 16 bits are on) indicates the full amount of red and green but no amount of
blue. This results in yellow.

DPRAddToUserDict

42

 DPRAddToUserDict
Use this rule to add words into the user dictionary.

Syntax long _DSIAPI DPRAddToUserDict (DSIHANDLE hdsi,
 char * pszParms,
 unsigned ulMsg,
 unsigned ulOptions)

Parameters

Attachment variables

Attachment outputs None

INI options You can use these INI options with this rule:

< Spell >
LanguageOpt =
UserDict =
UserDictPath =

Parameter Description

DSIHANDLE hdsi The pointer to the rule data.

char *pszParms The pointer to the rule parameter string.

ULONG ulMsg The DSI message.

ULONG ulOptions Options.

Variable Description

AddLine A line of words you want to add to the user dictionary. Separate the words with
commas.

LanguageOpt The language selection. The default is US English. You can choose from these
languages and dictionaries:
Danish “ssceda.tlx,ssceda2.clx”
Dutch “sscedu.tlx,sscedu2.clx”
Finnish “sscefi.tlx,sscefi2.clx”
French “sscefr.tlx,sscefr2.clx”
German “sscege.tlx,sscege2.clx”
Italian “ssceit.tlx,ssceit1.clx”
Norwegian “sscenb.tlx,sscenb2.clx”
Portuguese_Brazil “sscepb.tlx,sscepb2.clx”
Portuguese “sscepo.tlx,sscepo2.clx”
Spanish “sscesp.tlx,sscesp2.clx”
Swedish “sscesw.tlx,sscesw2.clx”
UK English “sscebr.tlx,sscebr2.clx”
US English “ssceam.tlx,ssceam2.clx”

UserDict The name of the user dictionary. The default is user.tlx.

List of Rules

43

See also DPRDelFromUserDict on page 77

DPRRetFromUserDict on page 184

DPRSpellCheck on page 210

Option Description

LanguageOpt Enter the language option. The default is US English. You can choose from
these languages and dictionaries:
Danish “ssceda.tlx,ssceda2.clx”
Dutch “sscedu.tlx,sscedu2.clx”
Finnish “sscefi.tlx,sscefi2.clx”
French “sscefr.tlx,sscefr2.clx”
German “sscege.tlx,sscege2.clx”
Italian “ssceit.tlx,ssceit1.clx”
Norwegian “sscenb.tlx,sscenb2.clx”
Portuguese_Brazil “sscepb.tlx,sscepb2.clx”
Portuguese “sscepo.tlx,sscepo2.clx”
Spanish “sscesp.tlx,sscesp2.clx”
Swedish “sscesw.tlx,sscesw2.clx”
UK English “sscebr.tlx,sscebr2.clx”
US English “ssceam.tlx,ssceam2.clx”

UserDict Enter the name of the user dictionary. The default is user.tlx.

UserDictPath Enter the path to the user dictionary. The default is the current working
directory.

DPRAddWipRecord

44

 DPRAddWipRecord
Use this rule to take an existing form set and save it to a WIP record. It is equivalent to
the IPPAddWIP rule. This rule automatically sets the CreateTime and ModifyTime.

Syntax long _DSIAPI DPRAddWipRecord (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects this Docupresentment (IDS) attachment variable:

This rule expects these attachment variables:

Attachment outputs This rule provides these output attachment variables:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

DPRFormset Passes the form set handle.

Variable Description

Unique If Yes, the rule checks to see if the record exists. If it does not exist, it adds it.
If No, it adds it without checking.

UserID If the input fields do not include CurrUserID and OrigUserID, UserID is
used.

(field names) The fields are defined in the DFD file. To match a record, Key1, Key2,
KeyID and RecType are required (DOC_TAG).

Variable Description

RecordID The record ID.

RECNUM or/
and
UNIQUE_ID

The record ID as defined in the WIP.DFD file.

List of Rules

45

INI options You can use these INI options:

< WIPData >
File =
Path =

Returns Success or failure

See also DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDelMultiWipRecords on page 79

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRIni2XML on page 121

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRUpdateWipRecords on page 240

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

DPRWipTableParms on page 250

Option Description

File Enter the name of the WIP file.

Path Enter the path to the WIP file.

DPRApproveWipRecords

46

 DPRApproveWipRecords
Use this rule to approve or reject all records in the WIP file which have a status of WIP.

Syntax long _DSIAPI DPRApproveWipRecords (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

INI options You can use these INI options with this rule:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

UserID The ID of the queue name for the user

Status The new status (Approve or Reject)

Option Control group Description

File WIPData Specifies the name of the WIP file.

Path WIPData Specifies the path to the WIP file.

File UserInfo Specifies the name of the userinfo file.

Path UserInfo Specifies the path to the userinfo file. If omitted, the system adds
USERID in the user list.

WIP Status_CD Specifies the WIP status code.

List of Rules

47

Here is an example:

< WIPData >
File = WIP
Path = mstrres\sampco\wip
MaxWIPRecords = 200

< UserInfo >
File = userinfo
Path = mstrres

< Status_CD >
WIP = W
Approve = AP
Reject = RJ

Returns Success or failure

See also DPRCheckWipRecords on page 59

DPRGetWipList on page 114

DPRGetWipFormset on page 117

DPRGetWipRecipients on page 119

DPRSearchWip on page 199

DPRUpdateWipRecords on page 240

DPRArchiveFormset

48

 DPRArchiveFormset
Use this rule to send a form set to Documaker archive.

Syntax long _DSIAPI DPRArchiveFormset (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

This rule finds the form set by locating the DSI variable pFormName, where pFormName
is from the first input in the input parameter string. The default is DPRFORMSET.

This rule needs input attachments (fields=values) to create the archive record for the
archived. Keep in mind that the fields must be the same as those defined in the
APPIDX.DFD file.

This rule unloads the form set into temporary files, such as the POL file, NA file, and
PACKAG file, along with attached files in the package. After the form set is archived, the
temporary files are removed, unless you set the DeleteFiles option to No.

You tell the system whether you want the system to archive to a file or database using the
ArchiveMem option. The system creates a semaphore file to block access attempts until
the archival is complete.

NOTE: This rule lets you map fields from a WIP record to the Archive index record using
the AFEWIP2ArchiveRecord control group. Please refer to the Documaker
Administration Guide for information on how you can use the
AFEWIP2ArchiveRecord control group.

Attachment variables This rule expects these attachment variables:

INI options You can use these INI options with this rule:

< ArcRet >

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string which may or may not contain the DSI
variable name FormsetName that stores form set handle.

ULONG ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

ULONG ulOptions options

Variable Description

FormsetName The DSI variable name from pszParms. The default is DPRFORMSET.

FieldNames Enter the value of the field to provide information for the form set that is to
be archived. The field names should be the same as those in APPIDX.DFD.

https://docs.oracle.com/cd/G18689-01/Documaker_ag_13.0.0.pdf
https://docs.oracle.com/cd/G18689-01/Documaker_ag_13.0.0.pdf

List of Rules

49

Appidx = mstrres\sampco\arc\appidx
ArcPath = mstrres\sampco\arc\
CarFile = mstrres\sampco\arc\archive
Catalog = mstrres\sampco\arc\catalog
CarPath = mstrres\sampco\arc\

< Status_CD >
Archive = AR

< Debug >
DeleteFiles = Yes

< Archival >
ArchiveMem = Yes

Returns Success or failure

Control group Option Description

ArcRet Appidx Enter the path for the application index file, such as
mstrres\sampco\arc\appidx.

ArcPath Enter the path for the archive, such as mstrres\sampco\arc\

CARFile Enter the name and path for the CAR file, such as
mstrres\sampco\arc\archive

Catalog Enter the name and path for the catalog file, such as
mstrres\sampco\arc\catalog

CARPath Enter the path for the CAR file, such asmstrres\sampco\arc\

Status_CD Archive The default is AR.

Debug DeleteFiles Enter Yes if you want the system to remove the POL, NA,
and PKG files. Enter No to retain these files. The default is
Yes.

Archival ArchiveMem Enter Yes to archive to a database. Enter No to archive to a
file. The default is No.

DPRAssignWipRecord

50

 DPRAssignWipRecord
Use this rule to assign a new user ID to a record. It is equivalent to the IPPAssignWIP rule.

Syntax long _DSIAPI DPRAssignWipRecord (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

You can assign a WIP record to someone using...

• Record IDs. In this case, the input attachment variable RECORD is required. If it
does not exist, the system searches RECNUM for code base or the UNIQUEID for
an SQL database. If no ID is found, the system goes to the next record. If none are
found, it search for fields.

• Fields. The system searches for the fields defined in DOC_TAG to match a record.
For instance: Key1+Key2+KeyId+RecType.

The system automatically adds FromUserID, CurrUserID, and FromTime to the record
for update.

Attachment variables This rule expects these attachment variables:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string which may or may not contain the DSI
variable name FormsetName that stores form set handle.

ULONG ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

ULONG ulOptions options

Variable Description

AssignUserID Enter the user ID you want to assign the record to.

RecordID Enter the record ID. You can define it as the RECNUM or UNIQUEID in
your DFD definition.

AssignDesc Optional. Enter the description to add or replace. (IPPWIP users can no
longer use the attachment variable Desc because Desc may be a field as
defined in the WIPDFD file.

(field names) Enter the appropriate value to match a record, Key1, Key2, KeyID, and
RecType are required. See the definition of DOC_TAG.in the WIPDFD file.

List of Rules

51

INI options You can use these INI options:

< WIPData >
File =
Path =

See also DPRAddWipRecord on page 44

DPRDeleteWipRecord on page 75

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRIni2XML on page 121

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRUpdateWipRecords on page 240

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

DPRWipTableParms on page 250

Option Description

File Enter the name of the WIP file.

Path Enter the path to the WIP file.

DPRBatchArchive

52

 DPRBatchArchive
You can use this rule to archive one or more transactions. This rule performs a function
similar to that of the GenArc program. The primary use for this rule is to archive data
created on a platform that does not support archive, such as when Docupresentment
(IDS) runs Documaker on a platform where Documanage archive does not run.

You can set up Docupresentment (IDS) as a client to another Docupresentment (IDS) on
a platform where Documanage archive is supported. In this case the NEWTRN.DAT,
NAFILE.DAT, and POLFILE.DAT files are sent as attachments to the second
Docupresentment (IDS) and this rule archives the data.

Syntax long _DSIAPI DPRBatchArchive (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

NOTE: You can use this rule with the ATCReceiveFile rule which lets Docupresentment
(IDS) act as an Docupresentment (IDS) client and send a request to a second
Docupresentment (IDS).

Attachment variables This rule expects these attachment variables:

Returns Success or failure

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string which may or may not contain the DSI
variable name FormsetName that stores form set handle.

ULONG ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

ULONG ulOptions options

Variable Description

NEWTRN The name of the input NEWTRN.DAT file, with one record for each
transaction that needs to be archived.

NAFILE The name of the input NAFILE.DAT file.

POLFILE The name of the input POLFILE.DAT file.

List of Rules

53

 DPRBuildGroupList
Use this rule to build a rowset of matching Group1/Group2 groups for the form set
specified by the CONFIG attachment variable. This is useful when you are creating drop
down options for Key1/Key2 for a configuration.

Syntax long _DSIAPI DPRBuildGroupList (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

Example Here is an example:

<ROWSET NAME="GROUPS">
<ROW NUM="1">
<VAR NAME="GROUP1">AUTO</VAR>
<VAR NAME="GROUP2">LOB</VAR>
</ROW>
<ROW NUM="2">
<VAR NAME="GROUP1">AUTO</VAR>
<VAR NAME="GROUP2">APPLICATION</VAR>
</ROW>
<ROW NUM="3">
<VAR NAME="GROUP1">AUTO</VAR>
<VAR NAME="GROUP2">POLICY</VAR>
</ROW>
<ROW NUM="4">
<VAR NAME="GROUP1">AUTO</VAR>
<VAR NAME="GROUP2">CORRESPONDENCE</VAR>
</ROW>
<ROW NUM="5">
<VAR NAME="GROUP1">GENERAL LIABILITY</VAR>
<VAR NAME="GROUP2">LOB</VAR>
</ROW>

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

CONFIG The configuration value in the DAP.INI file from which you want the rule to
return a group list rowset.

Variable Description

GROUPS An XML rowset containing the Group1/Group2 combinations for the form set.

RESULTS Success or failure

DPRBuildGroupList

54

<ROW NUM="6">
<VAR NAME="GROUP1">GENERAL LIABILITY</VAR>
<VAR NAME="GROUP2">APPLICATION</VAR>
</ROW>
<ROW NUM="7">
<VAR NAME="GROUP1">GENERAL LIABILITY</VAR>
<VAR NAME="GROUP2">POLICY</VAR>
</ROW>
<ROW NUM="8">
<VAR NAME="GROUP1">GENERAL LIABILITY</VAR>
<VAR NAME="GROUP2">CORRESPONDENCE</VAR>
</ROW>
<ROW NUM="9">
<VAR NAME="GROUP1">PROPERTY</VAR>
<VAR NAME="GROUP2">LOB</VAR>
</ROW>
<ROW NUM="10">
<VAR NAME="GROUP1">PROPERTY</VAR>
<VAR NAME="GROUP2">APPLICATION</VAR>
</ROW>
<ROW NUM="11">
<VAR NAME="GROUP1">PROPERTY</VAR>
<VAR NAME="GROUP2">POLICY</VAR>
</ROW>
<ROW NUM="12">
<VAR NAME="GROUP1">PROPERTY</VAR>
<VAR NAME="GROUP2">CORRESPONDENCE</VAR>
</ROW>
<ROW NUM="13">
<VAR NAME="GROUP1">INDIVIDUAL</VAR>
<VAR NAME="GROUP2">POLICY</VAR>
</ROW>
</ROWSET>

List of Rules

55

 DPRCheck
Use this rule to check for the existence of WIP and archived records and return the total
number of records found in both WIP and archive.

Syntax long _DSIAPI DPRCheck (DSIHANDLE hdsi,
 char * pszParms,
 ULONG ulMsg,
 ULONG long ulOptions)

Parameters

This rule expects these input attachments:

Returns This rule returns these output attachments:

INI options Use these INI options with this rule:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

LOGINRESULT (Optional) SUCCESS to continue or FAILURE to stop. Used when
the rule follows others.

USERID The ID of the queue name for user.

PARTIALMATCH (Optional) If Yes, the rule conducts a partial match for the search
values provided for this variable. The default is No.

CASESENSITIVE (Optional) If Yes, the rule conducts a case sensitive search, otherwise
using uppercase values. This variable overwrites the CaseSensitiveKeys
INI option. The default is No.

TABLEINIGROUP (Optional) The name of the INI control group to get the application
index table name from. The default is ArcRet.

TABLEINIOPTION (Optional) The name of the INI option to get the application index
table name from. The default is AppIdx.

FIELDNAME One or more fields as defined in WIP DFD and archive DFD. Search
values are used to match records. At least one field is required.

CHECKINARC (Optional) If Yes, the rule searches archived records. This variable
overwrites the CheckInArc INI option. The default is No.

Variable Description

RECORD
S

Total found records from WIP and ARC.

RESULTS SUCCESS or FAILURE

DPRCheck

56

< Control >
CaseSensitiveKeys = No
CheckInArc = No

< WIPData >
MaxWIPRecords = 200
File =
Path =

< ArcRet >
MaxRecords = 200
AppIdx = mstrres/formmaker/arc/appidx
ArcPath = mstrres/formmakerformmaker/arc/
CARFile = mstrres/formmaker/arc/archive
Catalog = mstrres/formmaker/arc/catalog
CARPath = mstrres/formmaker/arc/
AppIdxDFD = mstrres/formmaker/deflib/appidx.dfd

< MasterResource >
DefLib = mstrres/formmaker/deflib

Option Description

Control control group

CaseSensitiveKeys Enter Yes if the keys are case sensitive. When keys are not case sensitive,
the system expects the fields to be uppercase in the database index. If you
use case sensitive keys, you have to enter the data on the Archive/
Retrieval window just as it appears in the archive file. The default is No.

CheckInArc Enter Yes to search archived records The default is No.

WIPData control group

MaxWIPRecords Enter the maximum number of WIP records to return. The default is
200.

File Enter the name of the WIP file.

Path Enter the complete path to the WIP file.

ArcRet control group

MaxRecords Enter the maximum number of archive records to return. The default is
200.

AppIdx Enter the name and path for the AppIdx file. Here is an example:

mstrres/formmaker/arc/appidx

ArcPath Enter the path to the archive files. Here is an example:

mstrres/formmaker/arc/

CARFile Enter the name of the archive file. Here is an example:

mstrres/formmaker/arc/archive

Catalog Enter the name and path for the catalog file. Here is an example:

mstrres/formmaker/arc/catalog

List of Rules

57

Returns Success or failure

Example Here is an example:

INPUT
CONFIG formmaker
USERID FORMAKER
KEY1 INSURANCE PACKAGE
KEY2 COMMERCIAL
CHECKINARC YES

OUTPUT
RECORDS 4
RESULTS SUCCESS
SERVERTIMESPENT 0.150
TOTALTIMESPENT 1.072

CARPath Enter the path for the archive file. Here is an example:

mstrres/formmaker/arc/

AppIdxDFD Enter the name and path for the AppIdxDFD file. Here is an example:

mstrres/formmaker/deflib/appidx.dfd

MasterResource control group

DefLib Enter the path to the DefLib directory. Here is an example:

mstrres/formmaker/deflib

Option Description

DPRCheckLogin

58

 DPRCheckLogin
Use this rule to create a hash password from REALPASSWORD and compare it with the
hash password passed in as PASSWORD. The password is case sensitive. If you do not
want to make the password case sensitive in the client application, uppercase the password
before it is submitted to Docupresentment (IDS).

NOTE: The Docupresentment (IDS) authentication rules include DPRDecryptLogin,
DPRDefaultLogin, DPRLoginUser, DPRCheckLogin, and
DPRGenerateSeedValue. These rules replace the DPRLogin rule under the
Docupresentment authentication model. For more information, see
Authenticating Users in the Docupresentment Guide.

Syntax Function = dprlib->DPRCheckLogin

Attachment variables

Attachment outputs

See also DPRDecryptLogin on page 68

DPRDefaultLogin on page 70

DPRLoginUser on page 155

DPRGenerateSeedValue on page 97

Variable Description

LOGINRESULT If this variable exists and its value is anything other than SUCCESS, the
rule does nothing.

USERID The user ID of the requestor.

PASSWORD The password of requestor. It is a hash value.

REALUSERID The user ID from the userinfo database.

REALPASSWORD The password from the userinfo database.

Variable Description

LOGINRESULT If there is an error, this variable is created with the value FAILURE.

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

List of Rules

59

 DPRCheckWipRecords
Use this rule to create a WIP list using the KEYNAME attachment variable to search. This
rule does not allow partial matches unless the PARTIALMATCH attachment variable is
present.

The search is not case sensitive unless the CASESENSITIVE attachment variable is
present or the following INI option is set to Yes:

< Control >
CaseSensitiveKeys = Yes

The rule first checks the CaseSensitiveKeys option and then checks the
CASESENSITIVE attachment variable. The attachment variable overrides the INI
option.

You can specify the starting record and the maximum records number to return. The array
of the fields is defined in the WIP DFD file or in DBFFields if the WIP DFD file is
missing.

Syntax long _DSIAPI DPRCheckWipRecords (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

KEYNAME The name of one of the fields in WIP DFD.

USERID The ID of the required name for the user.

STARTRECORD The starting record number (default is 1).

MAXRECORDS The maximum number of records to be retrieved (default is 20).

STATUS A status code specified by the WIP, Approve, and Reject INI options (W,
AP, and RJ)

FIELDNAME The value of the field as defined in the WIP DFD file or default fields,
such as Key1, Key2, KeyID, RecType, and so on. You must include all
fields even if some do not have values.

PARTIALMATCH If present, the rule includes partial matches.

CASESENSITIVE If present, the rule considers case when building the WIP list.

DPRCheckWipRecords

60

Attachment outputs The output attachment variables include:

Request types ReqType = WFD

Here is an example request type:

< ReqType:WFD >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRCheckWIPRecords

INI options You can use these INI options with this rule:

CURRUSER (Optional) If you specify this input attachment variable:

CURRUSER=~UNKNOWN~

the rule searches for records that do not belong to users found in the valid
user list.
Do not use field names such as RECORDID as the search criteria if you
want to list the unknown user WIP records. This rule checks the input
attachment variable USEREPORTTOLIST as before and it has no effect
if you specify CURRUSER=~UNKNOWN~.

Variable Description

Variable Description

WIP The status generated from WIP option in the Status_CD control group.

Approve The status generated from the Approve option in the Status_CD control group.

Reject The status generated from the Reject option in the Status_CD control group.

Records The number of selected records.

RECORDSX.
FieldName

The field name for selected single or multiple records, where the affix X
(WIPSX.FieldName) is the number of selected WIP records, counting from 1
to RECORDS; FieldName is the field name as defined WIPDFD file. If the
DFD file is missing, default field names are used, such as. Key1, Key2, KeyID,
RecType, and so on.

Option Control group Description

FormLib MasterResource Specifies the path to the forms.

ImageExt Control Specifies the type of image file.

LogoExt Control Specifies the type of logo image.

CaseSensitiveKeys Control Enter Yes if you want the rule to consider case. The
default is No. The CASESENSITIVE attachment
variable overrides this option.

File WIPData Specifies name of the WIP file.

List of Rules

61

Here is an example:

< MasterResource >
FormLib = mstrres\sampco\forms\

< Control >
ImageEXT = .fap
LogoExt = .log
CaseSensitiveKeys = Yes

< WIPData >
File = WIP
Path = mstrres\sampco\wip\
MaxWIPRecords = 200

< UserInfo >
File = userinfo
Path = mstrres\

< Status_CD >
WIP = W
Approve = AP
Reject = RJ

Returns Success or failure

See also DPRAddWipRecord on page 44

DPRApproveWipRecords on page 46

DPRAssignWipRecord on page 50

DPRCheckWipRecords on page 59

DPRDeleteWipRecord on page 75

DPRDelMultiWipRecords on page 79

DPRFindWipRecordsByUser on page 92

DPRGetWipList on page 114

DPRGetWipFormset on page 117

DPRGetWipRecipients on page 119

DPRModifyWipData on page 163

Path WIPData Specifies the path to the WIP file.

MaxWIPRecords WIPData Specifies the maximum records to read into the
processQ. Prevents it from slowing down because
of the volume of records.

File UserInfo Specifies name of the userinfo file.

Path UserInfo Specifies the path to the userinfo file. If this file is
missing, USERID is added in the user list.

WIP Status_CD Specifies the WIP status code.

Approve Status_CD Specifies the approve status code.

Reject Status_CD Specifies the reject status code.

Option Control group Description

DPRCheckWipRecords

62

DPRSearchWip on page 199

DPRUpdateWipRecords on page 240

DPRWipTableParms on page 250

List of Rules

63

 DPRCompareXMLFiles
Use this rule to compare XML files.

Syntax long _DSIAPI DPRCompareXMLFiles (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

To set up this rule, add the ReqType control group in the DOCSERV.INI file as shown
here:

< ReqType:XML >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = dprlib->DPRCompareXMLFiles
function = atclib->ATCUnloadAttachment

Set up the ATTACH.MSG file as shown here:

USERID=USER
DOCTYPE=DAP
REQTYPE=PRT
CONFIG=RPEX1
ARCKEY1=00345A0D5600000002
ARCKEY2=00345A0D5600000004
Company=1166666
Lob=Lee
PolicyNum=Roswell,Ga 30015
RunDate=020698
PRINTPATH=html\
recipient=CUSTOMER
PRTTYPE=XML
BIGVARIABLE=123456

For debugging purposes, set the Attachments control group as shown here:

< Attachments >
Debug = Yes

When this rule is called, it opens the ATTACH.MSG file to locate the ArcKey1 and
ArcKey2 variable values. If both ArcKey1, ArcKey2, and the corresponding form sets
exist, the rule retrieves and converts the form sets.

DIFCompareXMLFiles generates an XML document which contains the results of the
comparison. The XML document handle is stored under DPRXMLFORMSET in the
variable list. You can locate it by calling:

DSILocateValue(hdsi, "DPRXMLFORMSET", &hDocument,
sizeof(hDocument);

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRCompareXMLFiles

64

where, on success, hDocument returns the new XML document handle for the user's
application.

Keep in mind these scenarios you may run into:

• If ArcKey1 exists but provides a wrong value for the form set retrieval, regardless of
whether ArcKey2 exists, there will be no DIFCompareXMLFiles. The system returns
a NULL XML document handle and an error condition (DPR0019).

• If ArcKey1 exists and ArcKey2 does not an XML document handle for the first form
set is returned without DIFCompareXMLFiles. There is no error condition for this
case.

• If both ArcKey1 and ArcKey2 exist, but ArcKey2 provides an incorrect variable value,
the second form set is not retrieved. The system will generate an error condition
(DPR0019) as a warning. The rule returns an XML document handle for the first
form set without DIFCompareXMLFiles.

List of Rules

65

 DPRConvertGUID
Use this rule to convert attachment variable containing GUID in the form of a string from
a short representation to a long representation and back.

Syntax long _DSIAPI DPRConvertGUID (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

On MSG_RUNF the GUID in the input attachment is converted to a long form, on
MSG_RUNR the GUID in the output attachment is converted back to a short form.

The short form is when each three bytes of binary data are converted into four bytes of
text, the long form is when each of the binary bytes is converted into two bytes of text
which is hex representation of the byte.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRCreateEMailAttachment

66

 DPRCreateEMailAttachment
Use this rule to create HTML file from XML stored internally at XMLDOCVAR. Run
this rule after you run the DPRParseRecord rule to set up XMLDOCVAR.

NOTE: This rule is only available on Windows 32-bit platforms.

Syntax long _DSIAPI DPRCreateEMailAttachment (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

After the file is created, it can be used by the DPRMail rule.

See also DPRMail on page 156

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

67

 DPRDebug
Use this rule as a memory debugging rule for the Documaker Bridge. This rule does a
printf of the number of memory allocations, frees, and the difference on every message.

NOTE: Interpreting the information this rule provides should only be done by qualified
personnel.

Syntax long _DSIAPI DPRDebug (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters
Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRDecryptLogin

68

 DPRDecryptLogin
Use this rule to decrypt the USERID and PASSWORD values on the initial login on the
RUNF message. If these values are not encrypted they are left alone. On RUNR, this rule
encrypts a value of the encrypted USERID and hash PASSWORD and places this value
into the USERID attachment variable.

The password is case sensitive. If you do not want to make the password case sensitive in
the client application, uppercase the password before it is submitted to Docupresentment
(IDS).

NOTE: The Docupresentment (IDS) authentication rules include DPRDecryptLogin,
DPRDefaultLogin, DPRLoginUser, DPRCheckLogin, and
DPRGenerateSeedValue. These rules replace the DPRLogin rule under the
Docupresentment authentication model. For more information, see
Authenticating Users in the Docupresentment Guide.

Syntax Function = dprlib->DPRDecryptLogin

Attachment variables You have these input and output attachments on RUNF:

You have these output attachments on RUNR:

See also DPRCheckLogin on page 58

DPRDefaultLogin on page 70

DPRLoginUser on page 155

DPRGenerateSeedValue on page 97

Variable Description

LOGINRESULT If this variable exists and its value is anything other than
SUCCESS, the rule does nothing. In case of error it is created
with the value FAILURE.

USERID The user ID of the requestor.

PASSWORD The password of the requestor. A hash value is sent to output
attachment.

PASSWORDENCRYPTED A flag. If USERID and PASSWORD are encrypted values, set
to Yes. The default is Yes.

Variable Description

USERID The user ID of the requestor. It is an encrypted value of the encrypted
USERID and hash PASSWORD.

LOGINRESULT If an error occurs, it is created with the value FAILURE.

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

List of Rules

69

 DPRDecryptValue
Use this rule to decrypt the key information. Rule parameters are the comma-delimited
names of the attachment variables which are to be decrypted.

Syntax long _DSIAPI DPRDecryptValue (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

On MSG_RUNF these values are decrypted in the input attachment and put back into
the input attachment, on the MSG_RUNR these values are encrypted again from output
attachment and put back into output attachment.

This rule should be the first rule in the rule list for a particular request type after the
ATCLoadAttachment and ATCUnloadAttachment rules have been called. If one of the
variables is not found in the attachment, error message is generated and processing
continues.

INI options Use the Debug option with this rule:

< DPRDecryptValue >
Debug = No

This option defaults to No. If you set this option to Yes, the values before and after
encryption and decryption are written to the DPRTRC.LOG file.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRDefaultLogin

70

 DPRDefaultLogin
Use this rule to get the USERID value from input attachment and locate a matching
record in the user table. By default, the rule uses Documaker’s USERINFO table. In
RUNF message, this rule creates the REALUSERID and REALPASSWORD values from
userinfo database based on the USERID value passed in.

The password is case sensitive. If you do not want to make the password case sensitive in
the client application, uppercase the password before it is submitted to Docupresentment
(IDS).

NOTE: The Docupresentment (IDS) authentication rules include DPRDecryptLogin,
DPRDefaultLogin, DPRLoginUser, DPRCheckLogin, and
DPRGenerateSeedValue. These rules replace the DPRLogin rule under the
Docupresentment authentication model. For more information, see
Authenticating Users in the Docupresentment Guide.

Syntax Function = dprlib->DPRDefaultLogin

Attachment variables

Attachment outputs

INI options You can use this INI option:

< UserInfo >
UserInfo =

Variable Description

LOGINRESULT If this variable exists and its value is anything other than SUCCESS, the
rule does nothing.

USERID The user ID of the requestor.

Variable Description

LOGINRESULT In case of error, this variable is created with the value FAILURE.

REALUSERID The matched user ID from the userinfo database.

REALPASSWORD The password for the matched user ID.

RIGHTS,
REPORTTO,
SECURITY, and
USRMESSAGE

These values come from the corresponding columns in the Documaker
user table.

Option Description

UserInfo Enter the name of the userinfo database file.

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

List of Rules

71

See also DPRCheckLogin on page 58

DPRDecryptLogin on page 68

DPRLoginUser on page 155

DPRGenerateSeedValue on page 97

DPRDelBlankPages

72

 DPRDelBlankPages
Use this rule to remove blank or filler pages from a form set. For instance, you can use this
rule to remove blank pages reserved for OMR marks.

NOTE: When you use the DPRDelBlankPages or DPRRotateFormsetPages rules with
form sets created from Metacode or AFP print streams, the rules work fine. If,
however, you use these rules with form sets created from Documaker archives or
from import files, the rule appear to work incorrectly because not all of the static
form data is loaded when these rules execute. The result is that text may not be
rotated or pages with content may be deleted.

Use the DPRLoadFAPImages rule to correct this problem. Insert this rule after
the rule that creates the form set, such as DPRRetrieveFormset or
DPRLoadImportFile, and before the rule that prints the form set, such as
DPRPrintFormset or DPRPrint.

Syntax long _DSIAPI DPRDelBlankPages (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule assumes that the form set has been loaded by the Documaker Bridge into the
DSI variable, DPRFORMSET.

If you are using this rule with a different bridge, you may need to specify a different DSI
variable that contains the form set. Here is an example,

function = dprlib->DPRDelBlankPages,MTCFORMSET

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

73

NOTE: You can also remove blank or filler pages using custom code or a DAL script
which includes the DelBlankPages function. See the DAL Reference for more
information on the DelBlankPages function.

The API to call from custom code is as follows:

DWORD _VMMAPI FAPDelBlankPages(
 VMMHANDLE objectH, /* form set or form handle */

See also DPRAddBlankPages on page 36

DPRLoadFAPImages on page 146

https://docs.oracle.com/cd/G18689-01/DR/Index.htm

DPRDeleteFiles

74

 DPRDeleteFiles
Use this rule to delete the following file types from an Docupresentment (IDS)
Documanage cache: XML, TXT, HTM, PDF, TIF, JPG, DPA, AFP, GIF, MET, DOC,
BMP, and RTF.

Syntax long _DSIAPI DPRDeleteFiles (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule is useful for deleting files cached by an Docupresentment (IDS) Documanage
request when you are running performance benchmark tests. This rule runs in RUNR
message.

The DPRDeleteFiles rule only removes the files associated with the file name value for the
GEN_TARGETFILENAME attachment variable generated by a Documanage request
which generates the aforementioned output attachment variable. This rule only looks for
files to remove in the default cache directory of the current Docupresentment (IDS)
server.

Attachment variables

Attachment outputs

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

GEN_TARGETFILENA
ME

Contains the output file name of a file requested in a Documanage
request. This variable is generated by Documanage request types
that retrieve a file from Documanage, such as the BIA request type.
This information is used to remove all files associated with the file
requested.

Variable Description

RESULTS Success or failure

List of Rules

75

 DPRDeleteWipRecord
Use this rule to delete a record and remove the NAFILE.DAT and POLFILE.DAT files.
It is equivalent to the IPPDeleteWIP rule.

Syntax long _DSIAPI DPRDeleteWipRecord (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

The system identifies the record to delete by first looking for the attachment RECORDID
(or RECNUM and UNIQUE_ID). If the RECORDID is not found, it searches for the
fields defined in DOC_TAG.

Attachment variables This rule expects these attachment variables:

INI options You can use these INI options:

< WIPData >
File =
Path =

Returns Success or failure

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string which may or may not contain the DSI
variable name FormsetName that stores form set handle.

ULONG ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

ULONG ulOptions options

Variable Description

RecordID Enter the record ID. You can define it as the RECNUM or UNIQUE_ID in
your DFD definition. UNIQUE_ID is typically used in SQL databases.

(field names) Enter the appropriate value to match a record. Key1, Key2, KeyID, and
RecType are required. See the definition of DOC_TAG.in the WIP.DFD file.

Option Description

File Enter the name of the WIP file.

Path Enter the path to the WIP file.

DPRDeleteWipRecord

76

See also DPRAddWipRecord on page 44

DPRAssignWipRecord on page 50

DPRDelMultiWipRecords on page 79

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRIni2XML on page 121

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRUpdateWipRecords on page 240

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

DPRWipTableParms on page 250

List of Rules

77

 DPRDelFromUserDict
Use this rule to delete words from the user dictionary.

Syntax long _DSIAPI DPRDelFromUserDict (DSIHANDLE hdsi,
 char * pszParms,
 unsigned ulMsg,
 unsigned ulOptions)

Parameters

Attachment variables

Attachment outputs None

INI options You can use these INI options with this rule:

< Spell >
LanguageOpt =
UserDict =
UserDictPath =

Parameter Description

DSIHANDLE hdsi The pointer to the rule data.

char *pszParms The pointer to the rule parameter string.

ULONG ulMsg The DSI message.

ULONG ulOptions Options.

Variable Description

DelLine A line of words you want deleted from the user dictionary. Separate the words
with commas.

LanguageOpt The language selection. The default is US English. You can choose from these
languages and dictionaries:
Danish “ssceda.tlx,ssceda2.clx”
Dutch “sscedu.tlx,sscedu2.clx”
Finnish “sscefi.tlx,sscefi2.clx”
French “sscefr.tlx,sscefr2.clx”
German “sscege.tlx,sscege2.clx”
Italian “ssceit.tlx,ssceit1.clx”
Norwegian “sscenb.tlx,sscenb2.clx”
Portuguese_Brazil “sscepb.tlx,sscepb2.clx”
Portuguese “sscepo.tlx,sscepo2.clx”
Spanish “sscesp.tlx,sscesp2.clx”
Swedish “sscesw.tlx,sscesw2.clx”
UK English “sscebr.tlx,sscebr2.clx”
US English “ssceam.tlx,ssceam2.clx”

UserDict The name of the user dictionary. The default is user.tlx.

DPRDelFromUserDict

78

See also DPRAddToUserDict on page 42

DPRRetFromUserDict on page 184

DPRSpellCheck on page 210

Option Description

LanguageOpt Enter the language option. The default is US English. You can choose from
these languages and dictionaries:
Danish “ssceda.tlx,ssceda2.clx”
Dutch “sscedu.tlx,sscedu2.clx”
Finnish “sscefi.tlx,sscefi2.clx”
French “sscefr.tlx,sscefr2.clx”
German “sscege.tlx,sscege2.clx”
Italian “ssceit.tlx,ssceit1.clx”
Norwegian “sscenb.tlx,sscenb2.clx”
Portuguese_Brazil “sscepb.tlx,sscepb2.clx”
Portuguese “sscepo.tlx,sscepo2.clx”
Spanish “sscesp.tlx,sscesp2.clx”
Swedish “sscesw.tlx,sscesw2.clx”
UK English “sscebr.tlx,sscebr2.clx”
US English “ssceam.tlx,ssceam2.clx”

UserDict Enter the name of the user dictionary. The default is user.tlx.

UserDictPath Enter the path to the user dictionary. The default is the current working
directory.

List of Rules

79

 DPRDelMultiWipRecords
Use this rule to delete records and remove NAFILE.DAT and POFILE.DAT files.

Syntax long _DSIAPI DPRDelMultiWipRecords (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects one of these attachment variables:

To identify records, it first looks for the RECORDID attachment variable. If that variable
is not found, it looks for RECNUM, then UNIQUE_ID. Specify the multiple records
using ID numbers separated by commas.

Here is an example:

RECORDID = 5,4,3,2,1

INI options You can use these INI options:

< WIPData >
File =
Path =

Returns Success or failure

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

RECORDID Multiple record numbers separated by commas.

RECNUM Multiple record numbers separated by commas.

UNIQUE_ID Multiple record numbers separated by commas for SQL databases.

Option Description

File Enter the name of the WIP file.

Path Enter the path to the WIP file.

DPRDelMultiWipRecords

80

See also DPRAddWipRecord on page 44

DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRIni2XML on page 121

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRUpdateWipRecords on page 240

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

DPRWipTableParms on page 250

List of Rules

81

 DPRDepagination
Use this rule to depaginate a form set you will export to an XML tree.

Syntax long _DSIAPI DPRDepagination (DSIHANDLE hdsi,
 char * pszParms,
 unsigned ulMsg,
 unsigned ulOptions)

Parameters

Attachment variables

Attachment outputs None

Example Here is an example of the request type:

< ReqType:PGN >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRLoadImportFile
function = dprlib->DPRDepagination
function = dprlib->DPRUnloadExportFile

Parameter Description

DSIHANDLE hdsi The pointer to the rule data.

char *pszParms The pointer to the rule parameter string.

ULONG ulMsg The DSI message.

ULONG ulOptions Options.

Variable Description

DPRFORMSET This DSI variable should contain the name of the DAP form set to export.
This form set is created by some other rule, such as the
DPRLoadImportFile rule.

DPRDpw2Wip

82

 DPRDpw2Wip
Use this rule to save the DPW file contents in the WIP record. This rule expects the DPW
file to have already been created with the ATCReceiveFile rule.

Syntax long _DSIAPI DPRDpw2Wip (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects this input attachment variable:

Attachment outputs The WIP record is stored in this attachment variable:

See also DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRFile2Dpw on page 88

DPRGetOneWipRecord on page 109

DPRIni2XML on page 121

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

RECNUM or
UNIQUE_ID

Lets the rule find the correct WIP record.

Variable Description

RF_POSTFILE The file name of DPW file.

List of Rules

83

 DPREditUserDict
Use this rule to edit a user dictionary.

Syntax long _DSIAPI DPREditUserDict (DSIHANDLE hdsi,
 char * pszParms,
 unsigned ulMsg,
 unsigned ulOptions)

Parameters

Attachment variables

Attachment outputs None

INI options You can use these INI options with this rule:

< Spell >
LanguageOpt =
UserDict =
UserDictPath =

Parameter Description

DSIHANDLE hdsi The pointer to the rule data.

char *pszParms The pointer to the rule parameter string.

ULONG ulMsg The DSI message.

ULONG ulOptions Options.

Variable Description

EditFile The name of the input XML file you want to use to edit the user dictionary.

LanguageOpt The language selection. The default is US English. You can choose from these
languages and dictionaries:
Danish “ssceda.tlx,ssceda2.clx”
Dutch “sscedu.tlx,sscedu2.clx”
Finnish “sscefi.tlx,sscefi2.clx”
French “sscefr.tlx,sscefr2.clx”
German “sscege.tlx,sscege2.clx”
Italian “ssceit.tlx,ssceit1.clx”
Norwegian “sscenb.tlx,sscenb2.clx”
Portuguese_Brazil “sscepb.tlx,sscepb2.clx”
Portuguese “sscepo.tlx,sscepo2.clx”
Spanish “sscesp.tlx,sscesp2.clx”
Swedish “sscesw.tlx,sscesw2.clx”
UK English “sscebr.tlx,sscebr2.clx”
US English “ssceam.tlx,ssceam2.clx”

UserDict The name of the user dictionary. The default is user.tlx.

DPREditUserDict

84

Edit file layout Here is an example of the edit file layout:

<SPELLER TYPE="IENTRY" VERSION="3.1">
<FIELDH ACTION="DELETE">speling</FIELDH>
<FIELDH>spellin</FIELDH>
<FIELDH ACTION="ADD">spellng</FIELDH>
</SPELLER>

Option Description

LanguageOpt Enter the language option. The default is US English. You can choose from
these languages and dictionaries:
Danish “ssceda.tlx,ssceda2.clx”
Dutch “sscedu.tlx,sscedu2.clx”
Finnish “sscefi.tlx,sscefi2.clx”
French “sscefr.tlx,sscefr2.clx”
German “sscege.tlx,sscege2.clx”
Italian “ssceit.tlx,ssceit1.clx”
Norwegian “sscenb.tlx,sscenb2.clx”
Portuguese_Brazil “sscepb.tlx,sscepb2.clx”
Portuguese “sscepo.tlx,sscepo2.clx”
Spanish “sscesp.tlx,sscesp2.clx”
Swedish “sscesw.tlx,sscesw2.clx”
UK English “sscebr.tlx,sscebr2.clx”
US English “ssceam.tlx,ssceam2.clx”

UserDict Enter the name of the user dictionary. The default is user.tlx.

UserDictPath Enter the path to the user dictionary. The default is the current working
directory

List of Rules

85

 DPRExecuteDAL
Use this rule to execute a DAL script. Use the parameters to specify where the DAL script
is located and on what DSI message to execute this script. Values for the rule parameter
include the name of the DAL script and one of these strings:

• INIT

• RUNF

• RUNR

• TERM

Syntax long _DSIAPI DPRExecuteDAL (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule returns an error code if DAL had errors.

Attachment variables None.

Example Here is an example:

function = dprlib->DPRExecuteDAL,myownscript.dal,INIT

This will execute myownscript.dal when this rule receives message INIT. By default, the
script is executed on message DSI_MSGRUNF.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRFap2Html

86

 DPRFap2Html
Use this rule to produce HTML output for one or more FAP files. This rule can produce
standard HTML output through the HTML Print Driver or an HTML representation of
a TerSub paragraph.

This rule can process images from a form set in memory, a comma delimited list of images,
or a form set retrieved for a GROUP1/GROUP2 combination. It can write the HTML
output to a PRINTPATH or to the current Docupresentment (IDS) directory.

This rule can also send the HTML output as file attachments in the output message. This
lets you decide whether to print the files to a remote location or send them as part of the
output message.

In addition, this rule can generate unique names for each file or it can use the names of
the images as the names of the output files. It can cache the output files, when appropriate.
This rule removes the files if the Send option is set to Yes and the Debug option is omitted.
You can also send debugging information to the DPR trace log if the debug option is set.

Syntax long _DSIAPI DPRFap2Html (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these input attachment variables:

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

RESULTS (Optional) If present and the value is not SUCCESS, the rule exits. You can
use this rule to make sure other rules running before this rule but in the same
request run successfully.

SOURCE (Optional) If omitted, the system checks for the DPRFORMSET DSI global
variable to retrieve the form set from memory that it will use to retrieve image
information to produce HTML output. If present, it overrides any form set in
memory and you can provide one of these values:
• A comma-delimited list of images to process to output HTML. The list

can consist of one or more images. In this case, there is no need for a form
set to reside in memory as each image will be loaded and processed.

• An asterisk (*) tells the system to process all images for a GROUP1/
GROUP2 combination. You must provide the GROUP1 and GROUP2
input attachment variables. The rule uses them to retrieve the form set it
will use to get image information for producing the HTML output.

List of Rules

87

Returns This rule outputs these attachment variables:

Example Here are example request types:
[ReqType:TEST_DPRFap2Html_W_Source] function
= atclib->ATCLoadAttachment function =
atclib->ATCUnloadAttachment function =
dprlib->DPRSetConfig
function = dprlib->DPRInitLby
function = dprlib->DPRFap2Html

[ReqType:TEST_DPRFap2Html_W_formsetInMemory]
function = atclib->ATCLoadAttachment
function = atclib->ATCUnloadAttachment
function = dprlib->DPRSetConfig
function = dprlib->DPRInitLby
function = dprlib->DPRLoadImportFile
function = dprlib->DPRFap2Html

GROUP1 (Optional) Only include this variable when the value for the SOURCE input
attachment variable is an asterisk (*). This variable is used to retrieve a form set.

GROUP2 (Optional) Only include this variable when the value for the SOURCE input
attachment variable is an asterisk (*). This variable is used to retrieve a form set.

TERSUB (Optional) If you set this variable to Yes, the rule produces an HTML
representation of a TerSub paragraph for the images provided in the SOURCE
input attachment variable or in the form set in memory.

SEND (Optional) If you set this variable to Yes, the rule sends the HTML output as
file attachments in the output message.

UNIQUE (Optional) If you set this variable to Yes, the rule generates a unique name for
each output file. If you omit this variable, the image name is used as the name
portion of the output files.

DEBUG (Optional) If you set this variable to Yes, the rule sends debugging information
to the DPR trace log.

CACHE (Optional) If you set this variable to Yes, the rule caches the HTML output
files on disk.

PRINTPATH (Optional) If you include this variable, the rule uses the path provided as the
location for the HTML output files it will write to disk.

Variable Description

Variable Description

RESULTS Success or failure.

DPRFile2Dpw

88

 DPRFile2Dpw
Use this rule to insert files into the DPW file. You can also use it to download files such
as DFD, INI, or any other file accessible by Docupresentment (IDS).

Syntax long _DSIAPI DPRFile2Dpw (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

INI options Be sure to include these INI options:

< File2DPW >
INIToken = d:\docserv\sfcdwn.ini
DFD = d:\sfc\wip\wip.dfd
XRFToken = safeco.fxr

Attachment variables This rule expects this attachment variables:

See also DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDpw2Wip on page 82

DPRIni2XML on page 121

DPRGetOneWipRecord on page 109

DPRLockWip on page 151

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

DPRUnlockWip on page 234

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

RF_POSTFILE The path to the DPW file.

List of Rules

89

 DPRFilterFormsetForms
Use this rule to search for forms.

Syntax long _DSIAPI DPRFilterFormsetForms (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

You can use these attachment variables to search for forms:

• DPRFORMNAME

• DPRFORMDESCRIPTION

• DPRKEY1

• DPRKEY2

The conditions that can be used are: equals, contains, and starts with. To specify the value
and the condition the user will have to provide the attachment variable in the following
format:

 DPRFORMNAME.CONTAINS.

Conditions are checked in the following order: equals, starts with, contains. If more than
one is provided the first one found will be used.

See also DPRLoadXMLAttachment on page 148

DPRLoadedXML2Formset on page 145

DPRSendFormsetXML on page 204

DPRUpdateFromMRL on page 235

DPRSortFormsetForms on page 213

DPRGetFormList on page 105

DPRGetHTMLForms on page 107

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRFindTemplate

90

 DPRFindTemplate
Use this rule to find the correct template using transaction type. The REQTYPE
attachment variable is matched with an option in the XML2ATTACH or XML2BODY
control groups.

Either of these INI options should contain a path to the template for the transaction. The
file name of the template is added as an attachment variable (XMLTEMPLATTACH) if
the REQTYPE is found under XML2ATTACH.

The file name is added as the XMLTEMPLBODY variable if REQTYPE is found under
XML2BODY.

NOTE: This rule is only available on Windows 32-bit platforms.

Syntax long _DSIAPI DPRFindTemplate (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The system expects the REQTYPE attachment variable, which should have matching
entry in the INI file.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

91

 DPRFindWipRecords

NOTE: The DPRFindWipRecords rule was replaced by the DPRSearchWip rule with
the release of Shared Objects version 11.1. Any calls to DPRFindWipRecords
execute DPRSearchWip instead and there is no difference in the result. The
DPRFindWipRecords name was kept for legacy support. For more information,
see DPRSearchWip on page 199.

DPRFindWipRecordsByUser

92

 DPRFindWipRecordsByUser
Use this rule to search for one or more records based on provided fields and user IDs. This
rule returns a list by adding every field of each record into the attachment in the user’s
queue.

Syntax long _DSIAPI DPRFindWipRecordsByUser (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables The system expects these attachment variables:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

USERID The ID of the queue name for the user.

STARTRECOR
D

The starting record number. The default is one (1).

MAXRECORDS The maximum number of records to be retrieved. The default is 20.

STATUSCODE One of statuses specified by WIP, Approve, and Reject (W, AP, and RJ).

CURRUSER While this rule does not support USEREPORTTOLIST and paging, if you
specify:

CURRUSER=~UNKNOWN~

the system generates the same unknown user WIP list as does the
DPRFindWipRecords/DPRSearchWip rule.

FIELDNAME=
Value

The value of the field as defined in the WIPDFD file or in the default fields,
such as Key1, Key2, KeyID, and RecType. You must list all fields even if
some fields do not have values.

List of Rules

93

Attachment outputs The system creates these output attachment variables:

Request types ReqType = WFD

The requested type is required in the DOCSERV.INI file. Here is an example:

< ReqType:WFD >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRFindWipRecordsByUser

INI options You can use these INI options:

< MasterResource >
FormLib = mstrres\sampco\forms

< Control >
ImageExt = .fap
LogoExt = .log

< WIPData >
File = WIP
Path = mstrres\sampco\wip
MaxWIPRecords = 200

< UserInfo >
File = userinfo
Path = mstrres

< Status_CD >
WIP = W
Approve = AP
Reject = RJ

Variable Description

WIP The WIP status generated from WIP option in the Status_CD control group.

APPROVE The approve status generated from Approve option in the Status_CD control
group.

REJECT The reject status generated from Reject option in the Status_CD control group.

RECORDS The number of selected records.

RECORDSX
.FieldName

The field name for selected single or multiple records, where the affix X
(WIPSX.FieldName) is the number of selected WIP records, counting from one
to RECORDS and FieldName is the field name as defined WIPDFD file. If the
DFD file is missing, the default field names are used, such as Key1, Key2,
KeyID, and RecType.

Option Description

MasterResource control group

FormLib Specifies the path to the forms.

Control control group

ImageExt Specifies the type of image file.

LogoExt Specifies the type of logo image.

DPRFindWipRecordsByUser

94

Returns Success or failure

See also DPRSearchWip on page 199

WIPData control group

File Specifies the WIP file name.

Path Specifies the path to the WIP file

MaxWIPRecords Specifies the maximum records to read in the processQ. Use this to prevent
it from slowing due to volume records.

UserInfo control group

File Specifies the USERINFO file name.

Path Specifies the path to the USERINFO file. If the USERINFO file is
missing, USERID is added to the user list.

Status_CD control group

WIP Specifies the WIP status code.

Approve Specifies the approve status code.

Reject Specifies the reject status code.

Option Description

List of Rules

95

 DPRGenerateDefinitionFile
To use Word to create Documaker sections, forms, and paragraph lists, you typically first
create for Word a Workspace Definition file (WDF) in Documaker Studio or using this
rule. This file, which is in XML format, contains the following:

• Field entries from the Common Fields Dictionary

• DAL triggers

• Recipient information from the BDF file

• Form metadata information

• A list of fonts

• A list of the graphics found in the library

• A time stamp, including a date which identifies when the WDF file was created

The Documaker Add-in for Microsoft Word uses the information in the Workspace
Definition file to provide content for the selection lists you use when creating sections,
forms, or paragraph lists in Word.

Syntax long _DSIAPI DPRGenerateDefinitionFile (DSIHANDLE hdsi,
 char * pszParms,
 unsigned ulMsg,
 unsigned ulOptions)

Parameters

Be sure to set up a request type to handle the request for the file. Here is an example:

<section name="ReqType:GENDEFXML">
<entry name="function">atclib->ATCLoadAttachment</entry>
<entry name="function">atclib->ATCUnloadAttachment</entry>
<entry name="function">dprlib->DPRSetConfig</entry>
<entry name="function">dprlib->DPRGenerateDefinitionFile</entry>

<!-- -->
</section>

Input variables In addition, you must supply these message variables to the request.

Parameter Description

DSIHANDLE hdsi The pointer to the rule data.

char *pszParms The pointer to the rule parameter string.

ULONG ulMsg The DSI message.

ULONG ulOptions Options.

Variable Description

Config Enter the name of the configuration defined in the Docupresentment (IDS) INI
files.

BDFName (Optional) Enter the name of the BDF file if you have multiple BDF files. The
default is the name of the BDF file specified in the configuration.

DPRGenerateDefinitionFile

96

Output variables

Keep in mind that the DPRSetConfig rule and the Config message variable are all that is
necessary for Docupresentment (IDS) to load the configuration requested by the user.
The configuration must be loaded for the rule to work.

NOTE: See also the Introduction to Enterprise Web Processing Services and the
Documaker Add-In for Microsoft Word Help for more information.

Variable Description

DefinitionFile This rule returns the definition file as an attachment in the results message. The
file is removed from the Docupresentment (IDS) system.

http://docs.oracle.com/cd/G18689-01/EWPS_ug_13.0.0.pdf
http://docs.oracle.com/cd/G18689-01/DAW/Index.html

List of Rules

97

 DPRGenerateSeedValue
Use this rule to generate a random seed value of two bytes for encrypting a text string by
crypt(). It checks to see if a seed value exists and if not found, creates one. The rule can
create a new random seed on a timer if you use it with the timer setup.

NOTE: The Docupresentment (IDS) authentication rules include DPRDecryptLogin,
DPRDefaultLogin, DPRLoginUser, DPRCheckLogin, and
DPRGenerateSeedValue. These rules replace the DPRLogin rule under the
Docupresentment authentication model. For more information, see the
Docupresentment Guide.

Syntax Function = dprlib->DPRGenerateSeedValue

There are no attachments. This rule runs on the RUNF message. You should execute this
rule at least once a day. Here is an example:

< ReqType:WLG >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRDecryptLogin
function = dprlib->DPRDefaultLogin
function = dprlib->DPRLoginUser
function = dprlib->DPRGetWipList

< ReqType:WLT >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRDecryptLogin
function = dprlib->DPRDefaultLogin
function = dprlib->DPRCheckLogin
function = dprlib->DPRGetWipList

INI options Use these INI options to reset the seed value every day at 3:00 AM.

< Timer >
ResetSeed = 3:00:00 AM

< ReqType:RESETSEED >
function = dprlib->DPRGenerateSeedValue

See also DPRCheckLogin on page 58

DPRDecryptLogin on page 68

DPRDefaultLogin on page 70

DPRLoginUser on page 155

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf
https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

DPRGetConfigList

98

 DPRGetConfigList
Use this rule to get a list of the configuration information in the DAP.INI file.

Syntax long _DSIAPI DPRGetConfigList(DSIHANDLE hdsi,
char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

Parameters

Attachment variables None

Attachment outputs

Example Here is the request type for docserv.xml:

<section name="ReqType:ewps_doGetLibraries">
<entry name="function">atclib->ATCLogTransaction</entry>
<entry name="function">atclib->ATCLoadAttachment</entry>
<entry name="function">atclib->ATCUnloadAttachment</entry>
<entry name="function">dprlib->DPRGetConfigList</entry>

</section>

Here is the request type for the docserv.ini file:

[ReqType:ewps_doGetLibraries]
function = atclib->ATCLoadAttachment
function = atclib->ATCUnloadAttachment
function = dprlib->DPRGetConfigList

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

ULONG ulOptions options

Attachment Description

RESULTS Success or failure.

CONFIGLIST List of configuration information from the DAP.INI file.

List of Rules

99

Here is an example of the returned attachment variables:

RESULTS SUCCESS
SERVERTIMESPENT 0.010
CONFIGLIST 11
CONFIGLIST1.CONFIG AFP2PDF
CONFIGLIST2.CONFIG amergen
CONFIGLIST3.CONFIG DOCUMERGE
CONFIGLIST4.CONFIG EBPPTEST
CONFIGLIST5.CONFIG FINANCE
CONFIGLIST6.CONFIG INSURE
CONFIGLIST7.CONFIG PPDemo
CONFIGLIST8.CONFIG RPEX1
CONFIGLIST9.CONFIG sampco
CONFIGLIST10.CONFIG TIFF2PDF
CONFIGLIST11.CONFIG RPEX1

DPRGetDFDInfo

100

 DPRGetDFDInfo
Use this rule to retrieve an XML document with DFD field information for WIP or
archive.

Syntax long _DSIAPI DPRGetDFDInfo (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

CONFIG The configuration for which to get DFD information.

DFD Enter one of these values:
• WIP tells the system to return DFD information for WIP
• ARCHIVE tells the system to return DFD information for archive.
These values are not case sensitive.

DEBUG (Optional) Yes tells the system to output the full path and file name of the
DFD file it loaded. No tells the system to omit this debugging information.

PRINTPATH (Optional) A path for the generation of the XML document with the DFD
information. If this variable is omitted and the PRINTFILE input attachment
variable is not provided, the system generates a unique file name and writes the
XML document to the current Docupresentment (IDS) directory.

PRINTFILE (Optional) A path and file name for the final output file. If this variable is
present, it overrides any values provided for PRINTPATH.

Variable Description

RESULTS A value of success or failure.

DFDINFO The path and file name of the XML document that contains the DFD
information requested for a configuration.

List of Rules

101

Keep in mind...

The XML document will contain a root node of name of WIPKEYS or ARCHIVEKEYS,
depending on which DFD was requested by the DFD input attachment variable. The root
node will contain a list of nodes with names that correspond to each of the base DFD field
names. Each of those nodes will contain the following attributes:

Attribute Description

NAME The actual name in the user-defined DFD. This determination is made by
reading the base name and looking for a mapping in the ArcRet or
WIPData control group. If no mapping is found, the system assumes the
name is the same as that of the base name. Here is an example of an entry
in one of those groups:

< WIPData >
Key1 = Company

KEY A value of Yes or No indicating whether or not the field is defined as a key
in the DFD. This determination is made by reading the Key = Yes/No
setting for each field in the DFD.

DISPLAY A value of Yes or No indicating whether or not the field is a display field.
The value is derived by looking for Field entries in the AFEWipDisplay or
AFEArchiveDisplay control groups. If the fields are not defined in these
groups, the system sets the value equal to Yes for all fields defined as keys
(see the Key attribute). Here is an example of an entry:

< AFEWIPDisplay >
Field = Key1,%-30.30s,Company

where Key1 is the field name used to set the DISPLAY attribute for the
corresponding field in the DFD and Company is the description used to set
the DOCSETHEADINGS attribute.

DOCSET
HEADINGS

A description or text label for a display field. The value is derived by looking
in the AFEWipDisplay or AFEArchiveDisplay control groups for Field
entries. If the fields are not defined in these groups, the system sets the value
equal to that of the field name for all fields defined as keys (see Key
attribute). Here is an example of an entry:

< AFEWIPDisplay >
FIELD = KEY1,%-30.30s,Company

where KEY1 is the field name used to set the DISPLAY attribute for the
corresponding field in the DFD and Company is the description used to set
the DOCSETHEADINGS attribute.

DPRGetDFDInfo

102

In addition, the root element contains a child named CUSTOMKEYS with children
corresponding to all user-defined DFD fields that are not part of the standard DFD field
names. This determination is made by analyzing the user-defined DFD field names and
looking for mappings in the ArcRet and WIPData control groups. If an entry is not found,
the system looks for a field in the base DFD file that matches the name in the user-defined
DFD file. If a match is not found, the field is deemed as a custom field and added as a
KEY child to the CUSTOMKEYS node. Each KEY child contains these attributes:

STATUSCODE The STATUSCODE field contains children derived in the following
manner:
The system looks for the STATUS_CD control group and adds each of the
options listed as a child where the name of the node and the value of the
name attribute are defined by the name of the option in the control group
and the text for the node equals the value for the option in the control
group.
If the STATUS_CD control group is omitted, these defaults are used:

ARCHIVE = AR
ASSIGN = A
BATCHPRINT = B
COMBINE = CO
DUPLICATE = DU
IN_PROGRESS = I
PRINTED = P
QUOTE = Q
TRANSMIT = T
WIP = W

TRANCODE The TRANCODE field contains children derived in this manner:
The system looks for the TRANS_CD control group and adds each of the
options listed as a child where the name of the node and the value of the
name attribute are derived from the name of the option in the control group
and the text for the node equals the value of the option in the control group.
If the TRANS_CD control group is omitted, these defaults are used:

NEW = NB
ENDORSE = EN
REINSTATE = EI
RENEWAL = RN
CANCEL = CN

Attribute Description

NAME The actual name in the user-defined DFD.

KEY A value of Yes indicates the field is defined as a key in the DFD. This
determination is made by reading the Key = Yes/No setting for each field in the
DFD.

Attribute Description

List of Rules

103

Here is an example of an output file for WIP:

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT TYPE="RPWIP" VERSION="11.1">
<WIPKEYS>
 <KEY1 NAME="KEY1" KEY="YES" DISPLAY="YES" DOCSETHEADINGS="KEY1"/>
 <KEY2 NAME="KEY2" KEY="YES" DISPLAY="YES" DOCSETHEADINGS="KEY2"/>
 <KEYID NAME="KEYID" KEY="YES" DISPLAY="YES"
DOCSETHEADINGS="KEYID"/>
 <RECTYPE NAME="RECTYPE" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 <CREATETIME NAME="CREATETIME" KEY="NO" DISPLAY="NO"
DOCSETHEADINGS=""/>
 <ORIGUSER NAME="ORIGUSER" KEY="YES" DISPLAY="YES"
DOCSETHEADINGS="ORIGUSER"/>
 <CURRUSER NAME="CURRUSER" KEY="NO" DISPLAY="NO"
DOCSETHEADINGS=""/>
 <MODIFYTIME NAME="MODIFYTIME" KEY="NO" DISPLAY="NO"
DOCSETHEADINGS=""/>
 <FORMSETID NAME="FORMSETID" KEY="NO" DISPLAY="NO"
DOCSETHEADINGS=""/>
 <TRANCODE NAME="TRANCODE" KEY="NO" DISPLAY="NO"
DOCSETHEADINGS="">
 <NEW NAME="NEW">NB</NEW>
 <ENDORSE NAME="ENDORSE">EN</ENDORSE>
 <CANCEL NAME="CANCEL">CN</CANCEL>
 <REINSTATE NAME="REINSTATE">EI</REINSTATE>
 <RENEWAL NAME="RENEWAL">RN</RENEWAL>
 </TRANCODE>
 <STATUSCODE NAME="STATUSCODE" KEY="NO" DISPLAY="NO"
DOCSETHEADINGS="">
 <ARCHIVE NAME="ARCHIVE">A</ARCHIVE>
 <ASSIGN NAME="ASSIGN">A</ASSIGN>
 <BATCHPRINT NAME="BATCHPRINT">B</BATCHPRINT>
 <COMBINE NAME="COMBINE">CO</COMBINE>
 <DUPLICATE NAME="DUPLICATE">DU</DUPLICATE>

DISPLAY A value of Yes indicates the field is a display field. This determination is made
by looking for Field entries in the AFEWipDisplay or AFEArchiveDisplay
control groups. If the fields are not defined in these groups, the system sets the
value equal to Yes for all fields defined as keys (see the Key attribute). Here is
an example of an entry:

< AFEWIPDisplay >
 Field = KEY1,%-30.30s,Company

where KEY1 is the field name used to set the DISPLAY attribute for the
corresponding field in the DFD file and Company is the description used to set
the DOCSETHEADINGS attribute.

DOCSET
HEADINGS

A description or text label for a display field. The value is derived by looking in
the AFEWIPDisplay or AFEArchiveDisplay control groups for Field entries. If
the fields are not defined in these groups, the system sets the value equal to that
of the field name for all fields defined as keys (see the Key attribute). Here is an
example of an entry:

< AFEWIPDisplay >
Field = KEY1,%-30.30s,Company

where Key1 is the field name used to set the DISPLAY attribute for the
corresponding field in the DFD file and Company is the description used to set
the DOCSETHEADINGS attribute.

Attribute Description

DPRGetDFDInfo

104

 <PRINTED NAME="PRINTED">P</PRINTED>
 <QUOTE NAME="QUOTE">Q</QUOTE>
 <TRANSMIT NAME="TRANSMIT">T</TRANSMIT>
 <WIP NAME="WIP">W</WIP>
 </STATUSCODE>
 <FROMUSER NAME="FROMUSER" KEY="NO" DISPLAY="NO"
DOCSETHEADINGS=""/>
 <FROMTIME NAME="FROMTIME" KEY="NO" DISPLAY="NO"
DOCSETHEADINGS=""/>
 <TOUSER NAME="TOUSER" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 <TOTIME NAME="TOTIME" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 <DESC NAME="DESC" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 <INUSE NAME="INUSE" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 <ARCKEY NAME="ARCKEY" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 <APPDATA NAME="APPDATA" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 <RECNUM NAME="RECNUM" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 <CUSTOMKEYS>
 <KEY NAME="PRODUCERNO" KEY="YES" DISPLAY="YES"
DOCSETHEADINGS="PRODUCERNO"/>
 <KEY NAME="CLAIMNO" KEY="YES" DISPLAY="YES"
DOCSETHEADINGS="CLAIMNO"/>
 <KEY NAME="CLAIMANT" KEY="YES" DISPLAY="YES"
DOCSETHEADINGS="CLAIMANT"/>
 <KEY NAME="INSUREDNM" KEY="YES" DISPLAY="YES"
DOCSETHEADINGS="INSUREDNM"/>
 <KEY NAME="DATE_TIME" KEY="YES" DISPLAY="YES"
DOCSETHEADINGS="DATE_TIME"/>
 <KEY NAME="ARCDATE" KEY="NO" DISPLAY="NO" DOCSETHEADINGS=""/>
 </CUSTOMKEYS>
</WIPKEYS>
</DOCUMENT>

List of Rules

105

 DPRGetFormList
Use this rule to work with the Docupresentment (IDS) MRL and to get the group list,
form list, and image list. This rule is a replacement for the following rules and exists only
to make it more convenient to define the request type.

• DPRLoadXMLAttachment

• DPRLoadedXML2Formset

• DPRSendFormsetXML

• DPRUpdateFromMRL

• DPRFilterFormsetForms

• DPRSortFormsetForms

• DPRGetHTMLForms

When no customizations or changes to the parameters for these rules are needed, all of
these rules, in this order, can be replaced by the DPRGetFormList rule, so the same
request type can have these rules:

Syntax

function = atclib->ATCLoadAttachment
function = atclib->ATCUnloadAttachment
function = dprlib->DPRSetConfig
function = dprlib->DPRGetFormList

long _DSIAPI DPRGetFormList (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

See also DPRLoadXMLAttachment on page 148

DPRLoadedXML2Formset on page 145

DPRSendFormsetXML on page 204

DPRUpdateFromMRL on page 235

DPRFilterFormsetForms on page 89

DPRSortFormsetForms on page 213

DPRGetHTMLForms on page 107

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

DPRGetFormsetRecips

106

 DPRGetFormsetRecips
Use this rule to return a list recipients for the form set.

Syntax long _DSIAPI DPRGetFormsetRecips (DSIHANDLE hdsi,
 char * pszParms,
 ULONG ulMsg,
 ULONG ulOptions)

Parameters

Attachment variables

Attachment outputs This rule creates an attachment record called RECORDS with these values:

The rule creates an attachment variable called RESULTS which runs on the
DSI_MSGRUNF message.

Returns Success or failure

See also DPRGetRecipients on page 110

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to the rule parameter string

ULONG ulMsg DSI_ message, such as DSI_MSGRUNF

ULONG ulOptions options

Variable Description

DPRFORMSET This DSI variable supplies the name of the form set to print, which has
been created by some other rule, such as DPRLoadImportFile or
DPRRetrieveDPA. You can overwrite the name DPRFORMSET using a
parameter to this rule stored in the Docupresentment (IDS) configuration
file.

Variable Description

RECIPIENT The name of the recipient from the POL file.

DESCRIPTION The recipient description, if specified in the Recip_Names control group,
or if it is the same as the recipient name in the POL file. The application
should use DESCRIPTION for displaying the recipient list.

List of Rules

107

 DPRGetHTMLForms
Use this rule to return HTML representation of FAP files (images). This rule is specified
in the form set located in the DPRFORMSET DSI variable. Any images designated as
print only or hidden are skipped.

Syntax long _DSIAPI DPRGetHTMLForms (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The HTML files produced are sent back via the attachment. The delimiter name for the
SOAP attachment is the image name or imagename_pagenum for the second and later
pages of a multi-page image.

This rule runs on RUNF message.

See also DPRLoadXMLAttachment on page 148

DPRLoadedXML2Formset on page 145

DPRSendFormsetXML on page 204

DPRUpdateFromMRL on page 235

DPRFilterFormsetForms on page 89

DPRSortFormsetForms on page 213

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

DPRGetInitValue

108

 DPRGetInitValue
Use this rule to look up an INI value and add it as an attachment variable to the input and
output queues. This rule is useful when you are running Java rules in Docupresentment
(IDS) version 1.8 which need INI values from the DAP.INI or other INI file.

Syntax long _DSIAPI DPRGetInitValue (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

The DPRGetInitValue rule can also take arguments instead of the attachment variables
specified above. The arguments override the input attachment variables.

Here is an example of a request type that passes the arguments to the rule:

[ReqType:TEST8]
function = atclib->ATCLogTransaction

function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
IDSTransactionRule;;static;reportTimes;INCLUDEMS
function = atclib->ATCLoadAttachment
function = atclib->ATCUnloadAttachment
function = dprlib->DPRSetConfig
function = dprlib-

>DPRGetInitValue,SQLPROCEDURES,FILE,PROCFILE function =
dprw32->DPRGetInitValue,SQLPROCEDURES,GLOBALPATH,SQLPROCEDURES_GLOBALPATH
function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
SQLDBRule;Obj8;transaction;SQLDecryptProc;

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

INIGROUP The name of the INI control group to retrieve the value from.

INIOPTION The name of the INI option to retrieve the value from.

INIVALUE The name of the attachment variable generated in the input/output queues
which will hold the INI value.

Variable Description

RESULTS Success or failure

List of Rules

109

 DPRGetOneWipRecord
Use this rule to return all of the WIP index fields as attachment variables. This rule is very
similar to the DPRGetWipList rule except this rule returns the WIP index for a specific
record set by the RECNUM or UNIQUE_ID. The WIP index fields are returned as
attachment variables.

You can use this rule with the WIP Edit plug-in when a WIP record is locked. This rule
lets you view the index information for the record before taking any action to unlock the
record or postpone changes.

Syntax long _DSIAPI DPRGetOneWipRecord (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

See also DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRGetWipList on page 114

DPRIni2XML on page 121

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Attachment Description

RECNUM or
UNIQUE_ID

Lets the rule find the correct WIP record.

DPRGetRecipients

110

 DPRGetRecipients
Use this rule to return a list of recipients for the form set. This rule runs on the
DSI_MSGRUNF message. This rule uses the DAP.INI file.

Syntax long _DSIAPI DPRGetRecipients (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

This rule creates an attachment record called RECORDS with these values:

This rule also creates an attachment variable called RESULTS, which copies the input
attachment into the output attachment.

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

USERID ID of the requester

ARCKEY Archive key value used to retrieve the data

Record Description

RECIPIENT The name of the recipient from POL file

DESCRIPTION The recipient description, if specified in the Recip_Names control group or
same as recipient name in POL file. The application should use
DESCRIPTION for displaying the recipient list.

List of Rules

111

 DPRGetUserList
Use this rule to retrieve user information from a user database. For every record this rule
retrieves, it returns all columns except the password. This table lists the columns and the
maximum amount of data the column can contain, as of version 11.2.

Syntax long _DSIAPI DPRGetUserList (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

Column Maximum size

SECURITY 64 bytes

PASSWORD 64 bytes

LEVEL 1byte

REPORTTO 64 bytes

USERNAME 25 bytes

INUSE 1 byte

MESSAGE 128 bytes

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

CONFIG Configuration

Variable Description

RESULTS Success or an error code.

RECORDS The total number of user records.

RECORDSX.ID The user ID of the Xth user record.

RECORDSX.USERNAME The user name for the Xth user record.

RECORDSX.LEVEL The level of user rights for the Xth user record.

X denotes record index from 1 to the total number of user records.

DPRGetUserList

112

INI options These INI options are required:

< UserInfo >
File = UserInfo file name
Path = Path to locate UserInfo file

or

< UserInfo >
UserInfo = UserInfo file name with a full path

NOTE: You must enter either the File and Path options or the UserInfo option.

Returns Success or failure

Example For this example, you need this input attachment variable:

Here is an example of the request types:

[ReqType:i_DPRGetUserList]
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = atclib->ATCUnloadAttachment
function = dprlib->DPRSetConfig
function = dprlib->DPRGetUserList

Here is an example of the results:

CONFIG SAMPCO
RECORDS 3

RECORDSX.REPORTTO The user report-to ID for the Xth user record.

RECORDSX.SECURITY The user security for the Xth user record.

RECORDSX.INUSE The user’s InUse status for the Xth user record.

RECORDSX.MESSAGE The user message for the Xth user record.

Variable Description

X denotes record index from 1 to the total number of user records.

Option Description

File Enter the name of the UserInfo file.

Path Enter the path to the UserInfo file you entered in the File option.

UserInfo Enter the name and full path of the UserInfo file.

 Variable Description

CONFIG Configuration

List of Rules

113

RECORDS1.ID DOCUCORP
RECORDS1.INUSE Y
RECORDS1.LEVEL 0
RECORDS1.MESSAGE
RECORDS1.REPORTTO
RECORDS1.SECURITY
RECORDS1.USERNAME
RECORDS2.ID FORMAKER
RECORDS2.INUSE Y
RECORDS2.LEVEL 0
RECORDS2.MESSAGE
RECORDS2.REPORTTO DOCUCORP
RECORDS2.SECURITY
RECORDS2.USERNAME
RECORDS3.ID USER1
RECORDS3.INUSE
RECORDS3.LEVEL 9
RECORDS3.MESSAGE
RECORDS3.REPORTTO DOCUCORP
RECORDS3.SECURITY
RECORDS3.USERNAME
RESULTS SUCCESS

See also DPRModifyUser on page 160

DPRGetWipList

114

 DPRGetWipList
Use this rule to retrieve a list of WIP records for a specified user ID. It returns the list by
adding every field of each record into the attachment in your queue. You can specify the
starting record and the maximum records number to return.

The array of the fields is defined in the WIP DFD file or in DBFFields if the WIP DFD
file is missing.

Syntax long _DSIAPI DPRGetWipList (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

Attachment outputs The output attachment variables include:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

USERID The ID of the queue name for user.

STARTRECORD The starting record number (default is 1).

MAXRECORDS The maximum number of records to be retrieved (default is 20).

STATUS The current status for sorting the WIP list.

CURRUSER If you specify this input attachment variable:

CURRUSER=~UNKNOWN~

the rule lists the records that do not belong to users found in the valid user
list.

Variable Description

WIP The WIP status generated from WIP option in the Status_CD control group

Approve The status generated from Approve option in the Status_CD control group

Reject The status generated from Reject option in the Status_CD control group

Records The number of selected records.

List of Rules

115

Request types ReqType = WLT

The requested type is required in the DOCSERV.INI file. Here is an example:

< ReqType:WLT >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRGetWipList

INI options You can use these INI options with this rule:

RECORDSX.
FieldName

The field name for selected single or multiple records, where the affix X
(WIPSX.FieldName) is the number of selected WIP records, counting from 1
to RECORDS; FieldName is the field name as defined WIP DFD file. If the
DFD file is missing, default field names are used, such as Key1, Key2, KeyID,
RecType, and so on.

Variable Description

Option Control group Description

File WIPData Specifies the name of the WIP file.

Path WIPData Specifies the path to the WIP file.

MaxWIPRecords WIPData Specifies the maximum records to be read into the
processQ. Prevents it from slowing down because of
the volume of records.

File UserInfo Specifies the name of the userinfo file.

Path UserInfo Specifies the path to the userinfo file. If the userinfo file
is missing, USERID is added in the user list.

WIP Status_CD Specifies the WIP status code.

Approve Status_CD Specifies the approve status code.

Reject Status_CD Specifies the reject status code.

CREATETIME DPRWIP_Format
Fields

Outputs dates from DPRLIB DPRGetWipList in
MMDDYYYY date format instead of hex date format.
D - Date, X - is to use the following format,
and %Y/%m/%d is the format.

MODIFYTIME DPRWIP_Format
Fields

Outputs dates from DPRLIB DPRGetWipList in
MMDDYYYY date format instead of hex date format.
D - Date, X - is to use the following format,
and %Y/%m/%d is the format.

CREATETIME DPRARC_Forma
tFields

Outputs dates from DPRLIB DPRGetWipList in
MMDDYYYY date format instead of hex date format.
D - Date, X - is to use the following format,
and %Y/%m/%d is the format.

DPRGetWipList

116

Here is an example:

< WIPData >
File = WIP
Path = mstrres\sampco\wip\
MaxWIPRecords = 200

< UserInfo >
File = userinfo
Path = mstrres\

< Status_CD >
WIP = W
Approve = AP
Reject = RJ

<DPRWIP_FormatFields>

CREATETIME = DX,%Y/%m/%d

MODIFYTIME = DX,%Y/%m/%d

<DPRARC_FormatFields>

CREATETIME = DX,%Y/%m/%d

MODIFYTIME = DX,%Y/%m/%d

Returns Success or failure

See also DPRApproveWipRecords on page 46

DPRCheckWipRecords on page 59

DPRFindWipRecordsByUser on page 92

DPRGetWipFormset on page 117

DPRGetWipRecipients on page 119

DPRSearchWip on page 199

DPRUpdateWipRecords on page 240

MODIFYTIME DPRARC_Forma
tFields

Outputs dates from DPRLIB DPRGetWipList in
MMDDYYYY date format instead of hex date format.
D - Date, X - is to use the following format,
and %Y/%m/%d is the format.

Option Control group Description

List of Rules

117

 DPRGetWipFormset
Use this rule to retrieve a form set from the WIP record. If the record exists, it loads the
WIP form set by loading POL and NA files. The form set handle is added into the
attachment for other processes, such as printing out as PDF, HTML, or XML.

Syntax long _DSIAPI DPRGetWipFormset (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule expects these attachment variables:

The output attachment variables include:

Request types ReqType = WFS

The requested type is required in the docserv.ini file. Here is an example:

< ReqType:WFS >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRGetWipFormset

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

FieldName The value of the field as defined in the WIP DFD file or default fields, such as
Key1, Key2, KeyID, RecType, and so on. You must list all fields even if some
do not have values.

Variable Description

DPRFormset The form set handle used to extract the form set for printing.

DPRGetWipFormset

118

INI options You can use these INI options with this rule:

Here is an example:

< MasterResource >
FormLib = mstrres\sampco\forms\

< Control >
ImageEXT = .fap
LogoExt = .log

< WIPData >
File = WIP
Path = mstrres\sampco\wip\

Returns Success or failure

See also DPRApproveWipRecords on page 46

DPRCheckWipRecords on page 59

DPRGetWipList on page 114

DPRGetWipRecipients on page 119

DPRSearchWip on page 199

DPRUpdateWipRecords on page 240

Option Control group Description

FormLib MasterResource Specifies the path to the forms.

ImageExt Control Specifies the type of image file.

LogoExt Control Specifies the type of logo image.

File WIPData Specifies WIP file name

Path WIPData Specifies the path to the WIP file

MaxWIPRecords WIPData Specifies the maximum records to be read into the
processQ. Prevents it from slowing down because of
the volume of records.

List of Rules

119

 DPRGetWipRecipients
Use this rule to retrieve a list of recipients from the POL file for the selected WIP record.

Syntax long _DSIAPI DPRGetWipRecipients (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these input attachment variables:

Attachment outputs The output attachment variables include:

Request types ReqType = WRC

The requested type is required in the docserv.ini file. Here is an example:

< ReqType:WRC >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRGetWipRecipients

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

Fields An array of the fields in the selected record as defined in the WIP.DFD file or in
DBFFields if there is no WIP.DFD file.

Variable Description

RECORDS The number of recipients in the recipient list.

RECORDSX.
RECIPIENT

The name of the recipient from the POL file.

RECORDSX.
DESCRIPTION

The recipient description specified in the Recip_Names control group. If
omitted, it defaults to the recipient name where the affix X (in
RECORDSX.RECIPIENT and RECORDSX.DESCRIPTION) is the
index number of the recipients counting from one (1) to RECORDS.

DPRGetWipRecipients

120

INI options Use these INI options with this rule:

< WIPData >
File = WIP
Path = mstrres\sampco\wip

< Recip_Names >
AGENT = 001,Agent Copy
HOME OFFICE=002,Home Office Copy
INSURED =003,Insured Copy

Returns Success or failure

See also DPRAddWipRecord on page 44

DPRApproveWipRecords on page 46

DPRAssignWipRecord on page 50

DPRCheckWipRecords on page 59

DPRDeleteWipRecord on page 75

DPRDelMultiWipRecords on page 79

DPRGetWipList on page 114

DPRGetWipFormset on page 117

DPRSearchWip on page 199

DPRUpdateWipRecords on page 240

Option Description

WIPData control group

File Specifies the WIP file name.

Path Specifies the path to the WIP file.

Recip_Names control group

(recipients) Include the recipient name on the left and the description on the right of the
equals sign.

List of Rules

121

 DPRIni2XML
Use this rule to add items from the INI file to the XML tree found in the WIPXMLVAR
variable. The WIPXMLVAR variable is created by the DPRWipIndex2XML rule. The
DPRIni2XML rule must be run after the DPRIndex2XML rule

Syntax long _DSIAPI DPRIni2XML (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Docupresentment (IDS) can use the DPRIni2Xml rule to pass an encrypted password to
the WIP Edit plug-in to provide authentication when saving data back to
Docupresentment (IDS).

< INI2XML >
HTTPUserID = encrypteduserID
HTTPPassword = encryptedpassword

You can also use the cryrun program to create an encrypted value that can be
understood by the WIP Edit plug-in. This lets you avoid putting passwords in the INI
file where they can easily be read. For instance, if you enter this from the command
line:

cryrun.exe password

you will see the output similar to the following:

Encrypted string (2XAUnkxUYlx7i5AnQ4m4E1m00)

INI options Include this INI option:

< INI2XML >
Name of node in XML = Value of Node

Attachment variables This rule expects no specific attachment variables, however, you can include the value of
an attachment variable in the XML tree if you precede the option name with an octothorp
(#).

Here is an XML example:

< INI2XML >
PutURL = localhost

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRIni2XML

122

See also DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRGetOneWipRecord on page 109

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

List of Rules

123

 DPRInit
Use this rule to initialize the Documaker subsystem and start virtual memory
management and file caching. This rule initializes VMM, FAP, DB, and loads the
DAP.INI file. The rule also initializes FAP file cache based on rule parameters. If you omit
the rule parameter, the rule sets the number of cached FAP files to 1000.

This rule also sets the Documaker trace file name, based on the TraceFile option in the
Data control group. The default trace file name is TRACE.

This rule runs on the DSI_INIT and DSI_TERM messages. On termination, all of the
above is terminated.

Syntax long _DSIAPI DPRInit (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule loads the DAP.INI file. You can specify the name and location of the DAP.INI
file you want to use as shown here:

< ReqType:INI >
function = dprlib->DPRInit,500,d:\docserv\dap.ini

Separate parameters with commas.

The first parameter specifies the file cache. The default FAP file cache is 1000. The second
parameter specifies where to find the INI file. DAP.INI is the default file name.

NOTE: This approach does not work with the DPRCoLogin rule. Use the DPRLogin
rule instead.

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

DPRInitLby

124

 DPRInitLby
Use this rule to initialize the Library Manager. The rule runs on DSI_INIT and
DSI_TERM messages. On termination, this rule terminates the Library Manager.

You do not have to use this rule if your Documaker environment does not use the Library
Manager to store resources. Place this rule after the DPRInit rule in the rule list.

NOTE: Keep in mind that, with Shared Objects 11.0, Patch 22 and higher, it is no longer
necessary to specify this rule. The DPRSetConfig rule will automatically do what
the DPRInitLby rule used to do.

This rule uses the DAP.INI file.

Syntax long _DSIAPI DPRInitLby (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Returns Success or failure

See also DPRInit on page 123

DPRSetConfig on page 208

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

List of Rules

125

 DPRLbyCopy
Use this rule to copy a resource from one location to another, such as from one library to
another. Keep in mind...

• The resource and destination file names must match.

• The config value for the resource must differ from the config value for the destination.

If the resource you are copying does not exist in the destination library, it will be added as
a new resource with a version and revision of 00001. If the resource being copied exists in
the destination, it will be added as a new version and revision; this is true regardless of
what version and revision was specified for the resource or destination file names. The
DRPLbyCopy rule supports this WebDav command:

Syntax long _DSIAPI DPRLbyCopy (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Use this command To

copy [source] [destination] Copies a resource from one location to another.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

LBYFILE The resource you want to use for the copy operation. A full path
and file name generated by DPRLbyGet rule, which should be run
before this rule in the WEBDAVCOPY request type.

DESTINATIONURI A URI that contains the destination of the resource you want to
copy. Here are some examples of destination URIs:

/jdoe/dms1/ddt/master.ddt
/jdoe/DMS1/DDT/
MASTER_0000100001_20030707.DDT

OVERWRITE (Optional) An overwrite flag indicator. A T means to overwrite the
destination if it exists. An F indicates the rule will fail if the
destination exists. Reserved for future use.

USERID (Optional) The user ID you want to use for the copy operation. If
this attachment variable exists, it overrides the user ID provided in
the destination URI. If the user ID is omitted from the attachment
variable and the destination URI, the rule will fail.

DPRLbyCopy

126

Attachment outputs

ARCEFFECTIVEDATE (Optional) An archive effective date. Here is an example of the
format you should use:

MM/DD/YYYY

If this variable exists, its value is used as the archive effective date
for the copy operation. Otherwise, the rule uses the current date
for the archive effective date.

Variable Description

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
403 (Webdav ’forbidden’ error code) - The source and
destination URIs are the same.
409 (Webdav ’conflict’ error code) - The resource cannot be
created at the destination.
412 (Webdav ’precondition failed’ error code) - The overwrite
header is F and the state of the destination resource is non-null.
420 (Webdav ’method failure’ error code) - An internal error or
memory error occurred.
423 (Webdav ’locked’ error code) - The destination resource was
locked.

List of Rules

127

 DPRLbyDelete
Use this rule to remove a resource or collection from Library Manager. This rule can
remove a resource file by version and revision or by name, in which case the rule removes
the latest version and revision for the resource file you specified.

If the resource you specify is a collection (file type), all resources for the collection will be
removed, provided none are locked. This rule supports this WebDav command:

Syntax long _DSIAPI DPRLbyDelete (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Use this command To

delete [path] file Delete a resource.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

RESOURCEURI The resource URI of the resource you want to delete from Library
Manager. Here is an example of the format you should use:

/userid/config/filetype/resource

Here are some examples:

/jdoe/dms1/ddt/master.ddt
/jdoe/DMS1/DDT/
MASTER_0000100001_20030707.DDT

If the resource file name in RESOURCEURI does not contain
version, revision, and archive effective date information, the
DPRLbyDelete rule tries to delete the last version and revision of
the file resource you specified.

RESULTS (Optional) This variable is only generated by the DPRLby rules
running prior to this rule in the same request type, such as the
DPRLbyGet and DPRLbyCopy rules running in the
WEBDAVMOVE request type.
If this variable exists and is set to Error — indicating either the
DPRLbyGet or DPRLbyCopy rule failed — this rule will not
execute.

DPRLbyDelete

128

Attachment outputs

WEBDAVERRORCODE (Optional) This variable is only generated by DPRLby rules
running prior to this rule in the same request type, such as the
DPRLbyGet and DPRLbyCopy rules running in the
WEBDAVMOVE request type.
If this variable exists — indicating that either the DPRLbyGet or
DPRLbyCopy rule failed — this rule will not execute.

Variable Description

Variable Description

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
Error. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API error
or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is locked.

List of Rules

129

 DPRLbyGet
Use this rule to get or check out a resource file from Library Manager. This rule can
retrieve a resource file by version and revision or by name, in which case it retrieves the
latest version and revision for the resource specified. This rule supports these WebDav
commands:

Syntax long _DSIAPI DPRLbyGet (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Arguments

Attachment variables

Use this command To

get [path] file Get a resource.

head [path] file Get header info for a resource. (currently works same as get)

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Parameter Description

CHECKOUT If you include this rule argument and set its value to Yes, the rule tries to check
out (get and lock) the resource specified. This is useful for configuring this rule
for a check-out or get request type.

Variable Description

RESOURCEURI The resource URI of the resource you want to retrieve from Library
Manager. Here is an example of the format for the resource URI:

/userid/config/filetype/resource

Here are some examples:

/jdoe/dms1/ddt/master.ddt
/jdoe/DMS1/DDT/MASTER_0000100001_20030707.DDT

If the resource file name does not contain version, revision, and archive
effective date information, the DPRLbyGet rule retrieves the last version
and revision for the resource specified. Use the DPRLbyGet rule to get or
check out a resource from Library Manager.

USERID (Optional) The user ID you want to use for the get operation. If you
include this attachment variable, it overrides the user ID provided as part
of the resource URI.
If the user ID is missing as an attachment variable and in the resource
URI, the rule will fail.

DPRLbyGet

130

Attachment outputs
Variable Description

PROPERTIES A rowset with a row for the resource specified in
RESOURCEURI. The row contains the following properties for
a file resource:
supportedlock - If locking is allowed, this XML string appears:

property: <lockentry>
<lockscope>

<exclusive/>
</lockscope>
<locktype>

<write/>
</locktype>
</lockentry>

getContentLanguage - currently returns en_US.
resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type/directory.
displayname - the display name of the resource.
HREF - the resource URL for this resource
getlastmodified - a date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.
getContentLength - currently zero (0) because there is no support
for retrieving the file size of a document stored in Library
Manager.
If a resource is locked these additional properties are returned:
LOCKOWNER - The user ID that set the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource
locked.
This rowset is only present if RESULTS contains SUCCESS.

RESULTS Success or error

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API error
or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is locked and
the system attempted a check out operation.

List of Rules

131

 DPRLbyLock
Use this rule to lock a resource in Library Manager. This rule supports the following
WebDav command:

Syntax long _DSIAPI DPRLbyLock (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

Use this command To

lock [path] file Locks a resource.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

RESOURCEURI The resource URI of the resource you want to lock in Library Manager.
Here is an example of the format for a resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpex1/ddt/master.ddt
/jdoe/RPEX1/DDT/MASTER_0000100001_20030707.DDT

If the resource file name in RESOURCEURI does not contain version,
revision, and archive effective date information, the DPRLbyLock rule tries
to lock the last version and revision of the file resource you specified.

USERID (Optional) The user ID you want to use for the lock operation. If this
attachment variable is present, it overrides the user ID provided as part
of the resource URI. If the user ID is omitted from the attachment
variable and from the resource URI, the rule will fail.

Variable Description

LOCKOWNER The user ID that owns the lock.

LOCKSCOPE The scope of the lock (exclusive).

LOCKSUBJECT The name of the resource locked.

LOCKDEPTH The depth of the resource locked (0).

LOCKTYPE The type of lock (write).

LOCKTIMEOUT The time-out value after which the lock will expire (infinity).

DPRLbyLock

132

LOCKTOKEN A unique ID that identifies the resource locked.

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API
error or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is already
locked.

Variable Description

List of Rules

133

 DPRLbyMKCol
Use this rule to create a collection in Library Manager. This rule supports this WebDav
command:

Keep in mind the mkcol command is not supported by Library Manager. You cannot
make new collections (file types) in Library Manager without first adding a resource of
that type.

This rule always returns RESULTS set to ERROR and WEBDAVERRORCODE set to
unsupported media type.

Syntax long _DSIAPI DPRLbyMKCol (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables None

Attachment outputs

Use this command To

mkcol Not supported by Library Manager.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

RESULTS ERROR.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR,
which in this case is always true. It contains the following value:
415 - (WebDav ’unsupported media type’ error code) - The server
does not support or understand the mkcol request type.

DPRLbyOptions

134

 DPRLbyOptions
Use this rule to display the WebDav commands supported by Library Manager. This rule
supports this WebDav command:

This rule displays the following WebDav commands that are supported by Library
Manager:

Syntax long _DSIAPI DPRLbyOptions (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables None

Attachment outputs

Use this command To

options [path / url] Display the options available for a path or URL.

options get head

propfind propgetall lock

unlock delete copy

move proppatch mkcol

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

OPTIONS A comma-delimited string of WebDav commands supported by Library
Manager.

RESULTS SUCCESS.

List of Rules

135

 DPRLbyPropFind
Use this rule to return:

• The properties for a file if the resource you specify is a file

• A list of files and their properties if the resource you specify is a collection or file type
(FAP, LOG, DDT, DAL, FOR, GRP, BDF)

• A list of collections or file types if the resource you specify is root (/).

This rule supports these WebDav commands by querying Library Manager for the
configuration specified:

Syntax long _DSIAPI DPRLbyPropFind (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Use this command To

ls [path] List the contents of a collection.

cd [path] Change directories.

propget [path] [property] Get a property.

propfind [path] [property] Find a property.

propgetall [path] List all properties for a resource.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

RESOURCEURI A resource URI specifying a user ID, config, file type, and resource. Here
are some examples of resource URIs:

/userid/config/filetype/resource/
/userid/config/filetype/
/userid/config/
/userid/

DEPTH Enter a depth of 0ne (1) for collections or file types in Library Manager.
Enter a depth of zero (0) for file resources.

DPRLbyPropFind

136

Attachment outputs
Variable Description

PROPERTIES A rowset of rows that match each of the file resources available for
a particular collection/file type. If DEPTH is one (1) and
RESOURCEURI specifies a collection or file type in Library
Manager, the PROPERTIES rowset returns a row for each
resource available in the collection/file type.
If DEPTH is zero (0) and RESOURCEURI specifies a file
resource, the PROPERTIES rowset returns a single row with the
properties for the resource you specified.
Each row in the PROPERTIES rowset contains the following
properties for a file resource:
supportedlock - If locking is allowed, this XML string appears:

property: <lockentry>
<lockscope>

<exclusive/>
</lockscope>
<locktype>

<write/>
</locktype>
</lockentry>

getContentLanguage - currently returns en_US.
resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type/directory.
displayname - the display name of the resource.
HREF - the resource URL for this resource
getlastmodified - the date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.
getContentLength - currently zero (0) because there is no support
for retrieving the file size of a document stored in Library
Manager (reserved for future use).
If a resource is locked these additional properties are returned:
LOCKOWNER - The user ID that set the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS contains SUCCESS.

RESULTS Success or error

List of Rules

137

INI options Use these options in the DAP.INI file to see a listing of the configurations that support
Library Manager.

< LbyConfigs >
Config = RPEX1
Config = RPEX2

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API error
or memory error occurred.

Variable Description

DPRLbyPropPatch

138

 DPRLbyPropPatch
Use this rule to set or remove properties defined on the resource identified by the
RESOURCEURI. This rule supports this WebDav command:

The proppatch command is not supported by Library Manager. You cannot modify the
properties for records in Library Manager. This rule always returns RESULTS set to
ERROR and WEBDAVERRORCODE set to method not allowed.

Syntax long _DSIAPI DPRLbyPropPatch (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables None

Attachment outputs

Use this command To

proppatch Not supported by Library Manager.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

RESULTS ERROR.

WEBDAVERRORCODE This attachment variable only exists if RESULTS contains
ERROR, which in this case is always true. It will contain this
value:
405 - (WebDav ’method not allowed’ error code) - The server
does not allow or support this method.

List of Rules

139

 DPRLbyPut
Use this rule to add a new resource or to check in (unlock and put) an existing resource
into Library Manager. You can add a new resource or put an existing resource into Library
Manager.

If the resource is new, its version and revision will be 00001. If the resource is an existing
one and it is locked by the same user ID performing the put operation, the resource will
be put into Library Manager with a new version and revision.

This rule supports this WebDav command:

Keep in mind that if a put operation is attempted on an existing resource and the version
and revision specified is not the latest one, the put operation will fail. The system only
supports put operations for new documents or for the last existing version and revision
which must be locked prior to the put call.

Syntax long _DSIAPI DPRLbyPut (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Use this command To

put [path] Put a file into Library Manager.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

RESOURCEURI A resource URI specifying the resource you want to place into
Library Manager. Here is an example of the format of the URI:

/userid/config/filetype/resource/

Here are some examples:

/cjr/rpex1/ddt/master.ddt
/jdoe/RPEX1/DDT/
MASTER_0000100001_20030707.DDT

Keep in mind that if the resource file name in RESOURCEURI
does not contain version, revision, and archive effective date
information, the DPRLbyPut rule tries to put the last version and
revision of the file resource you specified.

DPRLbyPut

140

Attachment outputs

USERID (Optional) The user ID you want to use for the put operation. If
this attachment variable is present, it overrides the user ID provided
in the resource URI.
If the user ID is missing from the attachment variable and from the
resource URI, the rule will fail. For put operations with an existing
resource, the user ID must match that of the locked record or the
put operation will fail.

ARCEFFECTIVEDATE (Optional) An archive effective date. Here is the format for this
attachment variable:

MM/DD/YYYY

If this variable is present, its value is used as the archive effective date
for the put operation. If it is missing, the rule uses the current date
as the archive effective date.

Variable Description

Variable Description

RESULTS Success or error

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API error
or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is locked
under a different user ID.

List of Rules

141

 DPRLbyUnlock
Use this rule to unlock a resource file in a library maintained by Library Manager. This
rule supports this WebDav command:

Syntax long _DSIAPI DPRLbyUnlock (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

Use this command To

unlock [path] file Unlock a resource.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

RESOURCEURI The resource URI of the resource you want to unlock in Library Manager.
Here is an example of the format for a resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpex1/ddt/master.ddt
/jdoe/RPEX1/DDT/MASTER_0000100001_20030707.DDT

If the resource file name in RESOURCEURI does not contain version,
revision, and archive effective date information, the DPRLbyUnlock rule
tries to unlock the last version and revision of the file resource specified.

USERID (Optional) The user ID you want to use for the unlock operation. If this
attachment variable is present, it overrides the user ID provided in the
resource URI.
If the user ID is omitted from the attachment variable and from the
resource URI, the rule fails. If the user ID does not match the one for the
locked record, the rule fails.

Variable Description

RESULTS Success or error.

DPRLbyUnlock

142

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:
404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.
409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav ’method error’ error code) - An internal API
error or memory error occurred.
423 - (WebDav ’locked’ error code) - The resource is locked by
another user.

Variable Description

List of Rules

143

 DPRLoadDPA
Use this rule to create an internal form set from a DPA file stored in Documanage. The
system expects the DPRRetrieveFormset and DPRPrint rules to follow this rule.

This rule splits the functionality of the DPRRetrieveDPA rule so you can insert the
DPRInitLby rule in the rule list. Unlike the DPRRetrieveDPA rule, you must call the
DPRRetrieveFormset rule.

Syntax long _DSIAPI DPRLoadDPA (DSIHANDLE hdsi,
 char * pszParms,
 ULONG ulMsg,
 ULONG ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

Attachment outputs This rule creates these attachment variables:

The CONFIG value is changed to the value stored in the DPA file when the rule is run
forward. When run in reverse, the system changes the CONFIG value back to its original
value.

Here is a sample rule list:

[ReqType:BIA]
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = briutls->GUTSwapAttachments
function = pobrs->POWInputSession
function = pobrs->POWHandleSession
function = pobrs->POWAccessPage
function = tpdlib->TPDCreateFormset
function = mtclib->MTCLoadFormset
function = dprlib->DPRLoadDPA function
= dprlib->DPRInitLby function =
dprlib->DPRRetrieveFormset function =
dprlib->DPRPrint

function = pobrs->POWPostConversion

Parameter Description

DSIHANDLE hdsi Pointer to the rules data

char * pszParms Pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions Options

Variable Description

DMSARCFILE The path to the DPA file that has been retrieved.

Variable Description

OLDCONFIG CONFIG is set to the value in the DPA file during the run forward. The run
reverse step returns it to its original value.

DPRLoadDPA

144

function = briutls->GUTSetUIConfig
function = pobrs->POWOutputSession
function = atclib->ATCUnloadAttachment

See also DPRInitLby on page 124

DPRRetrieveDPA on page 186

DPRRetrieveFormset on page 187

List of Rules

145

 DPRLoadedXML2Formset
Use this rule to load an XML tree in memory which is located in the DSI variable
DPRXMLFORMSET into a FAP form set and put it into the DSI variable
DPRFORMSET. If the DPRXMLFORMSET variable is missing, this rule does nothing
and no error message appears.

NOTE: Use this rule with the DPRLoadXMLAttachment rule.

Syntax long _DSIAPI DPRLoadedXML2Formset (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule runs on the DSI_RUNF message, destroys the FAP form set, and deletes the DSI
variable DPRFORMSET on the DSI_RUNR message.

See also DPRLoadXMLAttachment on page 148

DPRSendFormsetXML on page 204

DPRUpdateFromMRL on page 235

DPRFilterFormsetForms on page 89

DPRSortFormsetForms on page 213

DPRGetFormList on page 105

DPRGetHTMLForms on page 107

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

DPRLoadFAPImages

146

 DPRLoadFAPImages
Use this rule to load all FAP files used in a form set. Be sure to first create the form set
using a rule such as the DPRRetrieveFormset rule.

This rule is useful when you are using the DPRDelBlankPages or
DPRRotateFormsetPages rules with form sets retrieved from Documaker archives or from
import files.

Syntax long _DSIAPI DPRLoadFAPImages (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Returns Success or failure

See also DPRRetrieveFormset on page 187

DPRDelBlankPages on page 72

DPRRotateFormsetPages on page 189

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

List of Rules

147

 DPRLoadImportFile
Use this rule to load an import file into a form set. The import file must meet the
specifications outlined for the Documaker system.

NOTE: See the Documaker Workstation Administration Guide for more information on
import file formats.

Syntax long _DSIAPI DPRLoadImportFile (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

On the RUNF message, this rule loads the import file into a form set and creates the DSI
variable DPRFORMSET with this form set handle. On the RUNR message, this rule
destroys the form set and removes DSI variable.

Attachment variables The system only creates the DPRFORMSET value if the load was successful. This rule
expects these attachment variables:

Returns Success or failure

See also DPRUnloadExportFile on page 231

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

IMPORTFILE The name of the import file

PRINTFILE The name of the output file, if omitted the system will generate it.

FILETYPE Set to CMBNA to import combined NA/POL files.
If this variable is blank or omitted, the system looks into the import file to see
how the file begins.
• If the file begins with <?xml, the system assumes it is an XML file import.
• If the file begins with WIP=, the system assumes it is a combined NA/

POL file import.
• If the file begins with something other than <?xml or <?xml, the system

assumes it is a V2 file import.
By leaving the variable blank you can use the same request type and the same
attachment variables to import all supported import file types into
Documaker.

DPRLoadXMLAttachment

148

 DPRLoadXMLAttachment
Use this rule to load the XML attachment that is attached to the Docupresentment (IDS)
message XML file and create the DSI variable DPRXMLFORMSET with the handle to
this XML document. DPRLoadXMLAttachment is used with the DPRUpdateFromMRL
rule.

Syntax long _DSIAPI DPRLoadXMLAttachement (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

You can receive the XML file from the Docupresentment (IDS) message with the
delimiter XMLIMPORT or, if you are using a different delimiter to send the XML, you
can specify this name as a rule parameter. Here is an example:

function = dprlib->DPRLoadXMLAttachment,MYOWNDELIMETER

The delimiter is the value used by the client as the pszAttachName parameter when it
executed DSISendFile or DSISendBuffer APIs.

This rule runs on DSI_MSGRUNF.

It destroys the XML tree in memory and deletes the DPRXMLFORMSET DSI variable
on DSI_MSGRUNR.

If the attachment to the Docupresentment (IDS) message is missing this rule does nothing
and no error message is produced.

See also DPRLoadedXML2Formset on page 145

DPRSendFormsetXML on page 204

DPRUpdateFromMRL on page 235

DPRFilterFormsetForms on page 89

DPRSortFormsetForms on page 213

DPRGetFormList on page 105

DPRGetHTMLForms on page 107

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

List of Rules

149

 DPRLoadXMLFormset
Use this rule to load an XML form set into memory for the DPRPrint rule.

Syntax long _DSIAPI DPRLoadXMLFormset (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

NOTE: You must pass a CONFIG attachment variable to the DPRSetConfig rule.

See also DPRPrint on page 169

DPRSetConfig on page 208

DPRUnloadXMLFormset on page 233

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

XMLFORMSET Specifies the full path and file name of the XML form set.

Variable Description

RESULTS Success or failure

DPRLocateOneRecord

150

 DPRLocateOneRecord
Use this rule to locate one record matching the search criteria. If more than one record
matches, only the first one is found.

Syntax long _DSIAPI DPRLocateOneRecord (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule calls the DPRSearch rule to do the search and then copies the
RECORDS1.ARCKEY value in the output attachment into an ARCKEY value in the
input attachment, so the DPRRetrieveFormset rule can be used. Parameters to this rule
are the FIELDS value for the DPRSearch rule, the default is UNIQUE_ID.

INI options Use the Debug option with this rule:

< DPRLocateOneRecord >
Debug = No

This option defaults to No. If you set this option to Yes, the values before and after
encryption and decryption are written to the DPRTRC.LOG file.

See also DPRSearch on page 190

DPRRetrieveFormset on page 187

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

151

 DPRLockWip
Use this rule to lock a WIP record for editing purposes. This prevents one user from
overwriting changes made by another user. The lock is by user.

Syntax long _DSIAPI DPRLockWip (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

INI options Use these INI options to determine the response if record is locked. There are three levels:
error, warning, and ignore, as this example shows:

< WIPLock >
MatchUserID = Warning
UnMatchUserID = Error

Attachment variables Expects these attachment variables.

See also DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRGetOneWipRecord on page 109

DPRIni2XML on page 121

DPRUnlockWip on page 234

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Option Description

MatchUserID If the record is locked and the user IDs match, present an error, warning, or
ignore.

UnMatchUserI
D

If the record is locked and user IDs do not match, present an error, warning,
or ignore.

Variable Description

OVERRIDELOCK Lets the rule continue even if it's locked. Used if a warning was
returned.

USERID The user ID you want to lock.

RECNUM or
UNIQUE_ID

Lets the rule find the correct WIP record.

DPRLockWip

152

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

List of Rules

153

 DPRLog
Use this rule to confirm whether an email was sent by Docupresentment

Syntax long _DSIAPI DPRLog (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule stores information in a log file from either the attachment variables or the XML
document created by the DPRParseRecord rule. The DPRMail rule puts the RESULTS
attachment variable into the output queue.

You can use this information to determine if the email was sent. If no RESULTS variable
exists, the DPRMail rule was not executed and no mail was sent.

INI options Use the DPRLog control group to determine the name of the log file:

< DPRLog >
File = .\mail.log

Use the DPRLogVar control group to determine what fields go into the log:

< DPRLogVar >
FieldName =

See also DPRParseRecord on page 166

DPRMail on page 156

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Option Description

FieldName DBCOLUMN - If you specify DBCOLUMN, the system uses the XML tree
created by the DPRParseRecord rule to get data from the DFD-defined record.
ATTACHIN - If you specify ATTACHIN, the system uses the attachment
variables from the input queue.
ATTACHOUT - If you specify ATTACHOUT, the system uses the attachment
variables from the output queue.
XPOINTER - If you specify XPOINTER, the system searches the XML tree with
XPointer syntax which is created by DPRParseRecord rule.
If you enter anything else, the system copies that text into the log file.
Enter as many FieldName options as you need.

DPRLogin

154

 DPRLogin
This is the server login rule—do not run this rule on the client. This rule uses Documaker
user information in a database table to verify user IDs and passwords. This rule runs on
the DSI_RUNF message.

You can also use the DPRDecryptLogin, DPRDefaultLogin, DPRLoginUser,
DPRCheckLogin, and DPRGenerateSeedValue rules to authenticate logins. These rules
replace the DPRLogin rule under the Docupresentment authentication model.

This rule uses the DAP.INI file.

NOTE: This rule is only available on Windows 32-bit platforms.

Syntax long _DSIAPI DPRLogin (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

This rule creates attachment variables:

If execution is successful, this rule copies the input attachment into the output
attachment.

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

USERID user ID of the requestor

PASSWORD password of the requestor

Variable Description

RESULTS SUCCESS or an error code.

RIGHTS,
REPORTTO,
SECURITY and
USRMESSAGE

values from corresponding columns in the Documaker user table.

List of Rules

155

 DPRLoginUser
Use this rule to compare the hash value generated from REALPASSWORD with the hash
value of PASSWORD. If the values do not match, an error message is generated.

NOTE: The Docupresentment (IDS) authentication rules include DPRDecryptLogin,
DPRDefaultLogin, DPRLoginUser, DPRCheckLogin, and
DPRGenerateSeedValue. These rules replace the DPRLogin rule under the
Docupresentment authentication model.

The password is case sensitive. If you do not want to make the password case sensitive in
the client application, uppercase the password before it is submitted to Docupresentment
(IDS).

Syntax Function = dprlib->DPRLoginUser

Attachment variables

See also DPRCheckLogin on page 58

DPRDecryptLogin on page 68

DPRDefaultLogin on page 70

DPRGenerateSeedValue on page 97

Variable Description

LOGINRESULT If this variable exists and its value is anything other than SUCCESS, the
rule does nothing.

USERID The user ID of the requestor.

PASSWORD The password of the requestor. It is a hash value.

REALUSERID The user ID from the userinfo database.

REALPASSWORD The password from the userinfo database.

DPRMail

156

 DPRMail
Use this rule to send email from Docupresentment (IDS).

NOTE: This rule is only available on Windows 32-bit platforms.

Syntax long _DSIAPI DPRMail (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects:

INI options You can use the following INI options with the email rules. Place all of these options in
the DAP.INI file.

[EmailDFD]
Path = .\data\attchdfd.dfd

[Email2IDS]
Data = c:\docserv\html
Message = MsgBody
Subject = Subject
Address = Address

[XML2Body]
T1 = C:\DOCSERV\HTML\login.htm

< XML2Attach >
T2 = C:\DOCSERV\HTML\login.htm

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

Address email address

Msgbody body of email

Subject subject of email

Attachment file used as attachment no template processing

HTMLBodyFile file of HTML included in the body

HTMLAttachFil
e

HTML attachment from template processing

List of Rules

157

Here is an explanation of the various options:

Option Description

Path Used by DPRParseRecord to define the attachment record.

Data Directory to store temporary files.

Message Maps variables in DFD to the attachment variables expected by Subject and
Address.

Subject The DPRMail and DPRCreateEMailAttachment.

Address The address.

T1 Sets template for all request type T1.

T2 Sets template for all request type T2.

DPRMapRecipData

158

 DPRMapRecipData
Use this rule to map class recipient data into archived documents retrieved using
Docupresentment. This rule references the RecipMap2GVM control group (which
should correspond to the batch RecipMap2GVM used to create the archive document)
and the new Recip2Image control group.

For each occurrence of the form/image (form is optional) specified in RecipMap2GVM,
the rule replicates the form set and then propagates the Req and Opt fields to the target
image.

You define the target image using the new Image option in the Recip2Image control
group. You can specify multiple target images.

Syntax long _DSIAPI DPRMaapRecipData (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Example Here is an example that uses the following example INI options and data:

< RecipMap2GVM >
Image = tpinfo
Opt = tpinfo1;CORRESPOND_MAILTOADDR01;
Opt = tpinfo2;CORRESPOND_MAILTOADDR02;
Opt = tpinfo3;CORRESPOND_MAILTOADDR03;
Opt = tpinfo4;CORRESPOND_MAILTOADDR04;
Opt = tpid;TPID;

< Recip2Image >
Image = pvacov1tp

NA data segments:

...
\NA=pvacov1tp,LN=1,DUP=OFF,SIZE=L,TRAY=U,X=0,Y=0,PA=1,OPT=DLSN\
\FAP\
H,2400,(0,0),(600,400,26400,20400),pvacov1tp
A,H5," ",600,400
F,(6924,3484,7236,13084),(16010,392,352,312),40,CORRESPOND_MAILTOAD
DR01
A,F6," ",0,1,0,0,0," ",0,0,600,0,0,0,0,0,0,0,0,0,0," "
F,(7324,3484,7636,13084),(16010,392,352,312),40,CORRESPOND_MAILTOAD
DR02
A,F6," ",0,1,0,0,0," ",0,0,600,0,0,0,0,0,0,0,0,0,0," "
F,(7735,3482,8047,13082),(16010,392,352,312),40,CORRESPOND_MAILTOAD
DR03
A,F6," ",0,1,0,0,0," ",0,0,600,0,0,0,0,0,0,0,0,0,0," "

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

159

F,(8140,3468,8452,13068),(16010,392,352,312),40,CORRESPOND_MAILTOAD
DR04
A,F6," ",0,1,0,0,0," ",0,0,600,0,0,0,0,0,0,0,0,0,0," "
...
\ENDFAP\
...
\ENDIMAGE\
\NA=tpinfo-lp,LN=1,DUP=OFF,SIZE=0x0,TRAY=U,X=0,Y=0,PA=1,OPT=DSZ\
FCORRESPOND_MAILTOADDR01;34;350;16010;HN;;\US BANK, NA
FCORRESPOND_MAILTOADDR02;34;750;16010;HN;;\P. O. BOX 3427
FCORRESPOND_MAILTOADDR03;34;1161;16010;HN;;\OSH KOSH WI 54903
FTPID;34;1953;16010;HN;;\200053192
\ENDIMAGE\
\NA=tpinfo-lp,LN=1,DUP=OFF,SIZE=0x0,TRAY=U,X=0,Y=0,PA=1,OPT=DSZ\
FCORRESPOND_MAILTOADDR01;34;350;16010;HN;;\FORD MOTOR CREDIT
FCORRESPOND_MAILTOADDR02;34;750;16010;HN;;\P. O. BOX 23834
FCORRESPOND_MAILTOADDR03;34;1161;16010;HN;;\TUSCON AZ 85734
FTPID;34;1953;16010;HN;;\200053193
\ENDIMAGE\
\NA=tpinfo-lp,LN=1,DUP=OFF,SIZE=0x0,TRAY=U,X=0,Y=0,PA=1,OPT=DSZ\
FCORRESPOND_MAILTOADDR01;34;350;16010;HN;;\MOUNTAIN NAT'L. BANK
FCORRESPOND_MAILTOADDR02;34;750;16010;HN;;\320 COLLEGE DRIVE
FCORRESPOND_MAILTOADDR03;34;1161;16010;HN;;\MARTINSVILLE VA 24115
FTPID;34;1953;16010;HN;;\200053194
\ENDFORM\

This rule will replicate the form set three times (once for each occurrence of tpinfo-lp).
The field data from the first occurrence of tipinfo-lp will be mapped to the
correspondingly named fields in first occurrence of pvacov1tp. The field data for second
occurrence of tpinfo-lp will be mapped to the first occurrence of pvacov1tp in the second
copy of the form set. The process will be repeated for each occurrence of the source image.

DPRModifyUser

160

 DPRModifyUser
Use this rule to modify a single record or multiple user records in a user database. With
this rule you can update, add, and delete information.

Syntax long _DSIAPI DPRModifyUser (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Attachment variables

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

CONFIG Configuration

ACTION The type of action you want performed, such as Update, Add or
Delete. You can perform one action at a time.

USERS The number of user records you want to update, add, or delete.
The default is one (1).

USERSX.FieldName Field name of Xth user record. ID is a required field and others are
optional.

NEWUSERX.FieldName The field name of Xth new user record to modify. Here are the
field names and lengths:

SECURITY = 64 bytes
PASSWORD = 64 bytes
LEVEL = 1 byte
REPORTTO = 64 bytes
USERNAME = 25 bytes
INUSE = 1 byte
MESSAGE = 128 bytes

The field’s length should not exceed its definition.

Where X denotes record index from 1 to the total number of user records.

List of Rules

161

To update the user record, USERSX.ID is the only required input field. It is used to locate
the user record. NEWUSERSX.FieldNames specify fields to update with. You can
optionally update these fields:

SECURITY PASSWORD
LEVEL REPORTTO
USERNAME INUSE
MESSAGE

NOTE: You cannot update the ID.

Here is an example of input attachment variables to update user records:

To add user records, you must enter the total number of user records. You can then
optionally enter these fields:

ID PASSWORD
LEVEL REPORTTO
USERNAME SECURITY
MESSAGE

NOTE: Only ID is required. This prevents you from repeatedly adding the same record.

Here is an example of input attachment variables to add user records:

 CONFIG SAMPCO
 ACTION ADD
 USERS 1
 USERS1.ID USER2
 USERS1.PASSWORD USER2468
 USERS1.LEVEL 9
 USERS1.USERNAME Demo

Variable Contents Description

CONFIG SAMPCO Configuration

ACTION Update Tells the system you are updating records

USERS 2 Specifies that there are two user records to update.

USERS1.ID USER1 The ID is only required to locate the first user record.

NEWUSERS1
.
PASSWORD

1234567890 Updates the first user's password with new password
1234567890

USERS2.ID USER2 Specifies the ID of the second user record.

NEWUSERS2
.
LEVEL

5 Updates the second user's rights level to 5.

NEWUSERS2
.
USERNAME

Guest Changes the second user’s name to Guest.

DPRModifyUser

162

To delete user records, you are required to enter the total number of user records and ID
of each user record to be deleted.

Here is an example of input attachment variables to delete user records:

 CONFIG SAMPCO
 ACTION DELETE
 USERS 3
 USERS1.ID USER1
 USERS2.ID USER2
 USERS3.ID USER3

Here is an example of the request types you could use:

[ReqType:i_DPRModifyUser]
 function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = atclib->ATCUnloadAttachment
function = dprlib->DPRSetConfig
function = dprlib->DPRModifyUser

INI options These INI options are required:

< UserInfo >
File = UserInfo file name
Path = Path to locate UserInfo file

or

< UserInfo >
UserInfo = UserInfo file name with a full path

Returns Success or failure

See also DPRGetUserList on page 111

Option Description

File Enter the name of the UserInfo file.

Path Enter the path to the UserInfo file you entered in the File option.

UserInfo Enter the name and full path of the UserInfo file.

You must enter either the File and Path options or the UserInfo option.

List of Rules

163

 DPRModifyWipData
Use this rule to modify a WIP record and create new NAFILE.DAT and POLFILE.DAT
files. The rule uses RECORDID (or RECNUM, or UNIQUE_ID) or FIELD attachment
variables to identify the record. All fields can be updated as defined in WIPDFD except
RECORDID (or RECNUM, or UNIQUE_ID) and FORMSETID. The new
NAFILE.DAT and POLFILE.DAT files override the existing ones.

Syntax long _DSIAPI DPRModifyWipData (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

INI options You can use these INI options:

< WIPData >
File =
Path =

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

RecordID Enter the record ID. You can define it as the RECNUM or UNIQUE_ID in
your DFD definition. UNIQUE_ID is typically used in SQL databases.

(field names) Enter the appropriate value to match a record. Key1, Key2, KeyID, and
RecType are required. See the definition of DOC_TAG.in the WIP.DFD file.

NEWWIP.
FieldName

Used to update the record. Note that RECORDID (or RECNUM, or
UNIQUE_ID) and FORMSETID will be ignored.

Option Description

File Enter the name of the WIP file.

Path Enter the path to the WIP file.

DPRModifyWipData

164

See also DPRAddWipRecord on page 44

DPRApproveWipRecords on page 46

DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDelMultiWipRecords on page 79

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRGetOneWipRecord on page 109

DPRIni2XML on page 121

DPRLockWip on page 151

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

List of Rules

165

 DPRPatchLevel
Use this rule to get a Summary Patch Report for Docupresentment (IDS) and for
Documaker.

Syntax long _DSIAPI DPRPatchLevel (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The Summary Patch Report for Documaker is conditional and uses attachment variables
to determine if it should be run.

This report contains information about the names of attachment variables, sample output,
and so on. You can then display the patch information via HTML.

NOTE: The rule provides a summary patch report. For more detailed information, use
the FSIVER utility. See the Utilities Reference for more information on this
utility.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

http://docs.oracle.com/cd/G18689-01/UR/Utility_Reference.htm

DPRParseRecord

166

 DPRParseRecord
Use this rule to assemble the attachment into a record and then convert it to a XML tree.
The assembled record must be treated as a DFD internal record. The DFD defined in the
Path option of the EmailDFD control group is used to map into the internal record.

NOTE: This rule is only available on Windows 32-bit platforms.

Syntax long _DSIAPI DPRParseRecord (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Use the DPRCreateEMailAttachment rule after this rule to merge the XML tree with a
template and place the result into an attachment file. A global variable named
XMLDOCVAR contains the handle to the XML tree. This variable is used by the
DPRCreateEMailAttachment rule.

See also DPRCreateEMailAttachment on page 66

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

167

 DPRPostDMProcess
Use this rule when the Documanage post processing rules cannot be used. For example,
you can use this rule as a replacement for the post Documanage bridge processing in dual
Docupresentment (IDS) configurations, where one Docupresentment (IDS) is running
on Linux and another on Windows NT. This lets you retrieve data from the Linux client
and use the Linux Docupresentment (IDS) for presentment (production of PDF files).

Syntax long _DSIAPI DPRPostDMProcess (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The PRINTFILE attachment variable is removed from both input and output attachment
the PRINTPATH is added to the input attachment on the RUNF message. The
PRINTPATH value is added for later use by the DPRPrint rule. The rest of the logic is
executed on the RUNR message and does the following:

• The value of REMOTEPRINTFILE is in the output attachment and consists of
PRINTPATH and the PRINTFILE values. Here is an example:

\\servername\share\directory\tempfilename.pdf

• The system adds this value to the output attachment, GEN_TEMPFILE.

• The system uses the file name to build the URL with the following INI option This
result is added to the output attachment as GEN_DESTINATION. The
Documanage bridge client uses GEN_DESTINATION to redirect the browser to a
new URL, for example, to display a PDF file. Here are the INI options from the
CONFIG.INI file, used by this rule:

< Attachments >
URL =
PrintPath =

• The URL should have the terminating slash, such as:

https://www.domain.com/doc-html/

If the slash is missing it will be appended.

• The file name portion of the REMOTEPRINTFILE is appended so in the example
shown here the value of GEN_DESTINATION will be:

https://www.domain.com/doc-html/tempfilename.pdf

Attachment variables These variables are used as input:

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRPostDMProcess

168

These variables are created by this rule:

See also DPRPrint on page 169

Variable Description

REMOTEPRINTFILE This value is created by the DPRPrint rule. This attachment variable
is used on RUNR message.

Variable Description

PRINTPATH Taken from the appropriate PrintPath option in the Attachments
control group of the CONFIG.INI file. This is added to the input
attachment on the RUNF message.

GEN_TEMPFILE Used by the client of Documanage bridge. This value is copied from
REMOTEPRINTFILE attachment variable and is added to output
attachment on RUNR message.

GEN_DESTINATION Used by the client of Documanage bridge. This value is built from
PRINTFILE attachment variable. Added to the output attachment
on RUNR message.

List of Rules

169

 DPRPrint
Use this rule on the DSI_MSGRUNF message to return a print output. If you have
recipient filtering turned on, this rule uses the Recip_Names control group to translate
short recipient names into longer names, if this group exists in the DAP.INI file.

The DPRPrintFormset rule was replaced by two rules: DPRRetrieveFormset and
DPRPrint. If the DPRPrintFormset is specified in the INI file, it execute these rules in a
row, just as if they were specified in the INI file.

This change lets the custom rule have access to the FAP form set handle prior to print, so
additional objects can be added on the fly. Place the DPRPrint rule in the list after the
DPRRetrieveFormset rule. DPRRetrieveFormset rule creates DSI variable
DPRFORMSET, which contains FAP form set handle.

If recipient filtering is on, this rule uses the Recip_Names control group in the DAP.INI
file to translate short recipient names into longer names—if this control group exists in
the INI file.

If you set the PRTTYPE to HTM, the form set in memory is converted into an XML tree
and the DSI variable named DPRXMLFORMSET is created. This variable is used by
DPRProcessTemplates rule.

Syntax long _DSIAPI DPRPrint (DSIHANDLE hdsi,
 char * pszParms,
 ULONG ulMsg,
 ULONG ulOptions)

NOTE: The DPRPrint rule also works with the Documanage Bridge. If you include the
MTCLoadFormset rule in the rule list, the DPRPrint rule will work with the
form set loaded from that rule as well.

Parameters

Attachment variables This rule expects:

Parameter Description

DSIHANDLE hdsi Pointer to the rules data

char * pszParms Pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions Options

Variable Description

DPRFORMSET This DSI variable contains the form sets to print and is created by some
other rule, such as the DPRLoadImportFile rule.

PRINTFILE This attachment variable contains the name of the output file. If the
name of the output file is missing, this rule will generate a unique name
and add it to the attachment with the name PRINTFILE.

ALLRECIPIENTS If this attachment variable is present, all recipients copies are printed.

DPRPrint

170

Returns Success or failure

Adding Logos when using DPRPrint
When using the DPRPrint rule, you can include DPRAddLogo functionality without
having the DPRAddLogo rule in the request type. This lets you use the same request type,
for example, to create a normal PDF file and create another PDF file for proofing (with a
PROOF logo).

To use this functionality, you must pass the DPRPROOFLOGO attachment variable
with value of Yes and you have to have the same setup as the DPRAddLogo rule in the
CONFIG.INI file.

No error message is produced if the CONFIG.INI file does not include the AddLogo
control group with these options:

< AddLogo >

RECIPIENT This attachment variable contains the names of the recipients to print.
If these names are missing, the system will print without recipient
filtering.
You can select multiple but not all recipients by including a comma-
delimited list of the recipients you want to print in the RECIPIENT
attachment variable. The rule reads the recipients listed in the
attachment variable and prints copies for those recipients.
You can set up multiple RECIPIENT attachment variables, but no
RECIPIENT attachment variable can exceed 2047 bytes.
If the ALLRECIPIENTS variable is present, the system ignores this
value.

XMLALLOBJECTS See XMLALLFIELDS.
If the print type is HTML or XML, include this attachment variable to
have the system dump the objects to HTML or XML. The system
includes empty fields and object attributes.
If the print type is XML, the page is loaded into an attachment variable
called SENDBACKPAGE. If the print type is HTML, the page is
stored in memory.

XMLALLFIELDS Include this attachment variable to include empty fields as well as
fields with data in an extended XML file.
Use this attachment variable instead of the XMLALLOBJECTS
attachment variable. The latter results in overly large XML files.

DPRPROOFLOGO Include this attachment variable with a value of Yes to, for instance,
create a normal PDF file and create another PDF file for proofing
(with a PROOF logo).
See Adding Logos when using DPRPrint on page 170 for more
information.

PRTTYPE (Optional) This attachment variable indicates the name of the printer
in the PrtType control group. The default is PDF.
Set to CMBNA to create a combined NA/POL export file.
Set to V2 to create a V2 export file.

Variable Description

List of Rules

171

Logo =
Top =
Left =
Pages =
Color =

Option Description

Logo The name of the logo you want to use. Store this logo in the FORMS directory of the
master resource library.

Top Contains the top coordinate (position) of the logo in FAP units (2400 units per inch)

Left Contains the left coordinate (position) of the logo in FAP units (2400 units per inch)

Pages (Optional) The default is to add the logo on all pages. Use this option to set the
number of pages on which you want the logo to appear. If you set this option to 1,
the system adds a logo to the first page only.

Color (Optional) Default is to display the logo as a black and white logo (value of zero). This
number is a 24-bit RGB color. The lowest 8 bits represent the amount of red color,
the next 8 bits represent the amount of green color, and the subsequent 8 bits
represent the amount of blue color. A color setting of 255 (lowest 8 bits are all on)
would indicate the full amount of red and no green or blue. A color setting of 65535
(lowest 16 bits are on) indicates the full amount of red and green but no amount of
blue. This results in yellow.

DPRPrint

172

Adding Transaction Index Information to the XML Export File
The DPRPrint rule can output XML with field information needed by iPPS and
iDocumaker. These fields are mapped from a WIP record using the WIPData control
group:

< WIPData >
Key1 = Company
Key2 = Key2
KeyID = KeyID
TranCode = TranCode
StatusCode = StatusCode
Desc = Desc

The field values in the WIPData control group should be the field names that correspond
to those in the WIP DFD file. If the fields are not defined in the WIPData control group
for the master resource library (MRL) configuration file, the default names are used. In
addition, the CONFIG value will also be added as a LIBRARY element.

Here is an example of the field information:

<?xml version="1.0" encoding="UTF-8"?>
 <DOCUMENT TYPE="RPWIP" VERSION="11.1">
 <DOCSET NAME="">
 <LIBRARY CONFIG="amergen_import">amergen_import</LIBRARY>
 <KEY1 NAME="Company">GENERAL LIABILITY</KEY1>
 <KEY2 NAME="KEY2">POLICY</KEY2>
 <KEYID NAME="KEYID">TEST</KEYID>
 <TRANCODE NAME="TRANCODE">RN</TRANCODE>
 <STATUSCODE NAME="STATUSCODE">W</STATUSCODE>
 <DESC NAME="DESC" />
 </DOCSET>
 </DOCUMENT>

List of Rules

173

Generating File Names Based on Transaction Values
You can use the DPRPrint and DPRUnloadExportFile rules to specify output names
based on transaction data when Docupresentment processes WIP and archived
transactions. This is done using INI options and built-in INI functions.

This gives you control over output file names and can be used, for example, when you
need to interface to a 3rd party system that requires specific file naming conventions.

NOTE: You must make sure the generated file names are unique. If you set up the system
so that it generates the same name multiple times, the files are going to be
overwritten. Use with caution.

Here is an example of how you can use a built-in INI function and DAL function to
specify the output file while printing a transaction from WIP:

You need this request type:

< ReqType:i_WipPrint >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRGetWipFormset
function = dprlib->DPRPrint

You need these input attachment variables:

Variable Description

CONFIG Configuration

RECORDID A WIP record ID. Used to identify and retrieve a WIP record. The variable
can also be RECNUM or Unique_ID, depending on the type of database.

PRTTYPE XXX. If the INI option is not found, the system uses the default printer type
of PDF.

PRINTPATH The full path for the print file.

PRINTFILE The output file name with or without a full path.
If PRINTFILE includes a file name, a path, and a file extension, the system
ignores the PrtType:XXX control group options (FileName, FileExt, and
FileDir).
If PRINTFILE does not include a path, the system checks PRINTPATH. If
PRINTPATH does not exist, the system checks the FileDir option.
If PRINTFILE does not include an extension, the system checks the FileExt
option. If there is no entry for the FileExt option, the system defaults to the
PRTTYPE for the extension.
If both PRINTFILE is omitted and the PrtType:XXX control group options
are omitted, the system creates a unique name.

DPRPrint

174

INI options You need these INI options:

< Printer >
PrtType = XXX

< PrtType:XXX >
FileName =
FileExt =
FileDir =

Here is another example of how you can use a built-in INI function to specify the output
file while exporting a transaction from WIP:

You need this request type:

< ReqType:i_WipExport >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRGetWipFormset
function = dprlib->DPRUnloadExportFile

Option Description

Printer control group

PrtType Optional. Specify the printer type.

PrtType:XXX control group

FileName Enter the output file name, with or without a full path. You can get the file name
using built-in INI functions, as shown here: ~DALRUN, ~Key1, ~Key2, or
~KeyID, and so on.
If you use the ~DALRUN built-in INI function to specify the file name, you can
set the FileName option as shown here:

FileName = ~DALRUN wipkey.dal

Where wipkey.dal is the DAL script you want the ~DALRUN built-in INI
function to execute. Here is an example of a DAL script:

Val=WIPKEY();
return Val;

You can also use WIPKEY1(), WIPKEY2(), or WIPFLD(“FieldName”).
If you use the ~Key1, ~Key2, or ~KeyID built-in INI function, you can set the
FileName option as shown here:

FileName = ~KeyID

FileExt (Optional) Enter the appropriate file extension for the file type. The system uses
your entry if it cannot find the PRTTYPE input attachment variable.

FileDir Enter the name of the directory into which the output file should be placed. The
system uses your entry if the FileName option does not include a full path and it
cannot find the PRINTPATH input attachment variable.

List of Rules

175

You need these input attachments:

INI options You need these INI options to export a V2 file:

< ExpFile_CD >
File =
Ext =
Path =

Variable Description

CONFIG Configuration

RECORDID A WIP record ID. Used to identify and retrieve a WIP record. The variable can
also be RECNUM or Unique_ID, depending on the type of database.

FILETYPE The file type. The default is V2.

EXPORT The output file name, with or without a path. If omitted, the system checks the
INI options in the following control groups to determine the file type.
• For V2, it checks the ExpFile_CD control group
• For CMBNA, it checks the ImpExpCombined control group
• For XML, it checks the XML_IMP_EXP control group.
If these INI options are omitted, the system creates a unique file name.

Option Description

File Enter the output file name, with or without a full path.
If you use the ~DALRUN built-in INI function to specify the file name, you can set
it as shown here:

File = ~DALRUN wipkey.dal

If you use the ~Key1, ~Key2, or ~KeyID built-in INI function to specify the file
name, you can set it as shown here:

File = ~KeyID

Ex t (Optional) Enter the file extension. The default is out.

Path Enter the path of the output file. This option is ignored if you enter a full path in the
File option.

DPRPrint

176

You need these INI options to export a CMBNA file:

< ImpExpCombined >
File =
Ext =
Path =

You need these INI options to export an XML file:

< XML_IMP_EXP >
File =
Ext =
Path =

See also DPRAddLogo on page 38

DPRPrintFormset on page 179

DPRRetrieveFormset on page 187

DPRProcessTemplates on page 181

DPRUnloadExportFile on page 231

Option Description

File Enter the output file name, with or without a full path.
If you use the ~DALRUN built-in INI function to specify the file name, you can set
it as shown here:

File = ~DALRUN wipkey.dal

If you use the ~Key1, ~Key2, or ~KeyID built-in INI function to specify the file
name, you can set it as shown here:

File = ~KeyID

Ext (Optional) Enter the file extension. The default is ds.

Path Enter the path of the output file. This option is ignored if you enter a full path in the
File option.

Option Description

File Enter the output file name, with or without a full path.
If you use the ~DALRUN built-in INI function to specify the file name, you can set
it as shown here:

File = ~DALRUN wipkey.dal

If you use the ~Key1, ~Key2, or ~KeyID built-in INI function to specify the file
name, you can set it as shown here:

File = ~KeyID

Ext (Optional) Enter the file extension. The default is xml.

Path Enter the path of the output file. This option is ignored if you enter a full path in the
File option.

List of Rules

177

 DPRPrintDpw
Use this rule to print a DPW file that can be added as a new WIP record or to generate a
DPW file from an existing WIP record. The rule creates a temporary INI context and adds
the necessary INI options for DPWLIB to generate a DPW file. The code looks up values
for the DPW index as follows:

• It first looks up values for the DPW index from rule arguments (see the Rule
Arguments section below).

• The code then looks up values in the Ini2Xml group for backwards compatibility (see
feature 1208 for version 1.8).

• Finally, it traverses the WIP index fields and looks up the values from input
attachment variables matching the field names. In the case were values are found in
more than one location, rule arguments take first precedence, then values from the
Ini2Xml group, and lastly, values from input attachment variables.

Syntax long _DSIAPI DPRPrintDpw (DSIHANDLE hdsi,
 char * pszParms,
 ULONG ulMsg,
 ULONG ulOptions)

Parameters

Attachment variables None

Attachment outputs

Example Here is an example request type:

<section name="ReqType:DPR_IWIPEDIT">
<entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>

<entry name="function">atclib->
;ATCSendFile,RF_POSTFILE,PRINTFILE,Binary</entry>

<entry name="function">dprlib->;DPRSetConfig</entry>
<entry name="function">dprlib->;DPRInitLby</entry>
<entry name="function">dprlib->;DPRDecryptLogin</entry>
<entry name="function">dprlib->;DPRDefaultLogin</entry>
<entry name="function">dprlib->;DPRCheckLogin</entry>
<entry name="function">dprlib->;DPRGetWipFormset</entry>

<entry name="function">dprlib-
>;DPRPrintDpw,ENCRYPTEDLOGIN,DEBUG,KEYID</entry>
</section>

Parameter Description

DEBUG (Optional) If this rule argument is present, the rule will set the debug
flag for DPWLIB.

ATTACHVARNAME
or
ATTACHVARNAME
= VALUE

(Optional) Where ATTACHVARNAME is the name of an input
attachment variable you want to use to update the DPW index.
Multiple ATTACHVARNAME names can be provided. If a value is
provided, the rule uses it instead of looking up a value in the input
attachment.

Attachment Description

RESULTS Returns Success or failure.

DPRPrintDpw

178

NOTE: The DPRPrintDpw rule uses DPWLIB to generate the DPW file. For more
information on generating DPW files, see the Docupresentment Guide.

http://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

List of Rules

179

 DPRPrintFormset
Use this rule to return printed output. This rule retrieves data from a Documaker archive,
loads the NA and POL files, and creates a print spool file in PDF format. This rule also
registers the PDF file with the server cache for removal in two hours.

Syntax long _DSIAPI DPRPrintFormset (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

This rule creates these attachment variables:

If the execution was successful, this rule copies input attachment into the output
attachment.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

USERID ID of the requester.

ARCKEY Documaker archive key value used to retrieve the data.

PRTTYPE (Optional) Defaults to PDF, the name of printer in the PrtType control
group.

PRINTPATH (Optional) Location of the output print file, if this value is missing, the system
uses PrintPath option in the Attachments control group.

RECIPIENT The name of the Documaker recipient from POL file.

Variable Description

REMOTEPRINTFILE The name of the output file, it consists of the PRINTPATH and the
generated output file name. For instance, if PRINTPATH was html\,
the REMOTEPRINTFILE will be something like
html\00001AB0.pdf

RESULTS SUCCESS or DPRXXXX error code

DPRPrintFormset

180

INI options This rule uses these INI options:

Returns Success or failure

Control Group Option Description

Attachments Debug If set to Yes, the temporary NA and POL files are not
removed. This is useful for debugging purposes. The
default is No.

PrintPath Location for the output PDF file, this option is ignored if
attachment variable PRINTPATH exists.

MasterResource DefLib Location of the Documaker resources DefLib. Defaults to
current directory.

XRFFile Name of the FXR file, no default. If you omit this option,
an error occurs.

Control XRFExt Extension of the FXR file. Defaults to FXR

FormLib Location of Documaker resources. Defaults to the current
directory.

ImageExt Extension of Documaker image files. Defaults to FAP

LogoExt Extension of Documaker logo files. Defaults to LOG

PDFFileCache TimeOut Specifies the number of seconds to keep the PDF file
before deleting it. The default is 7200 seconds or 2 hours.
You can add this control group and option to the
DAP.INI file or in the each of the configuration INI files.

Recip_Names (Optional) Use this INI control group to translate short
recipient names from POL file into long names.

PrtType:PDF See the chapter on using the PDF Converter in the
Docupresentment Guide for more information.

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

List of Rules

181

 DPRProcessTemplates
Use this rule to take information from an XML tree and place it onto an HTML template.
Use this rule with the DPRPrint rule and place it in the rule list after the DPRPrint rule.

When you use the DPRProcessTemplates rule, the system runs template processing
against the XML tree in memory located in the DPRXMLFORMSET DSI variable. You
create this tree using the DPRPrintFormset rule.

You can specify the name of this variable as a parameter to the rule. If the system cannot
find the variable, no error is generated and the rule simply returns.

The names of the templates are determined by INI control groups. The main page is
specified in the Template option of the EBPP control group. The templates for the other
pages are specified in the EBPPTemplates control group. Here is an example:

< EBPP >
Template = mstrres\ebpp\tmpl\bill.htm
DebugXML = Yes

< EBPPTemplates >
History = mstrres\ebpp\tmpl\history.htm
Details = mstrres\ebpp\tmpl\details.htm

< Attachments >
PrintPath = mstrres\ebpp\html

The following settings add the following XML elements to the XML tree as children of
the <DOCSET> element and will produce three output files. The extension of the file
output names are the same as the extensions of the input files, as specified in the INI file.

<TEMPLATES>
<MAINPAGE>

7C311063A8F2F811D3F0B6C600A028CC56DF6578.htm
</MAINPAGE>
<Details>

B6313FD4CDF2F711D322B6C600A048CC56DF659A.htm
</Details>
<History>

B6313FD6CFF2F711D326B6C600A050CC56DF659B.htm
</History>
</TEMPLATES>

Syntax long _DSIAPI DPRProccessTemplate (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Option Description

Template Use this option to specify the template to use for the main page.

DebugXML Set this option to Yes if you want the system to unload the XML tree into a file
named EBPPTEST.XML. You can review this file for debugging purposes. This
option defaults to No.

History
Details

These options serve as examples of how you specify the templates to use for the
remaining pages.

PrintPath Use this option to tell the system where to place the output files it creates.

DPRProcessTemplates

182

Parameters

Attachment variables This rule expects these attachment variables:

This rule creates these attachment variables:

Returns Success or failure

See also DPRPrint on page 169

DPRPrintFormset on page 179

Parameter Description

DSIHANDLE hdsi Pointer to the rules data

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

PrintFile If provided, the output of a main template is written to this file. Otherwise, the
output the system generates a unique file name and writes the output to that file.

PrintPath The location for the output files. If you omit this value, the system uses the
PrintPath option in the Attachments control group for this information.

PRTType The default extension for the output file names, if the specification of the templates
in the INI file did not include an extension.

Variable Description

RemotePrintFile The name of the output file. This name consists of the print path and the
generated output file name. For instance if the print path was html\, the
result will be something like html\00001AB0.pdf.

Results Success or a DPRXXXX error code

List of Rules

183

 DPRRenameVars
Use this rule to rename attachment variables. The rule parameters specify a name1=name2
pair. On the MSG_RUNF the name1 attachment value in the input attachment is
renamed to name2, on MSG_RUNR the name2 attachment variable in the output
attachment is renamed to name1. Multiple pairs of comma-delimited name1=name2 pairs
can be specified for the same rule.

Syntax long _DSIAPI DPRRenameVars (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

You can use this rule to glue together two rules, one of which creates the attachment
variable with one name, but another expects this value in the different attachment
variable.

This rule should be the very first rule in the rule list for a particular request type after the
ATCLoadAttachment and ATCUnloadAttachment rules. If the variable is missing in the
attachment, error is generated and processing continues.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRRetFromUserDict

184

 DPRRetFromUserDict
Use this rule to retrieve words from a user dictionary.

Syntax long _DSIAPI DPRRetFromUserDict (DSIHANDLE hdsi,
 char * pszParms,
 unsigned ulMsg,
 unsigned ulOptions)

Parameters

INI options You can use these INI options with this rule:

< Spell >
LanguageOpt =
UserDict =
UserDictPath =

Parameter Description

DSIHANDLE hdsi The pointer to the rule data.

char *pszParms The pointer to the rule parameter string.

ULONG ulMsg The DSI message.

ULONG ulOptions Options.

Option Description

LanguageOpt Enter the language option. The default is US English. You can choose from
these languages and dictionaries:
Danish “ssceda.tlx,ssceda2.clx”
Dutch “sscedu.tlx,sscedu2.clx”
Finnish “sscefi.tlx,sscefi2.clx”
French “sscefr.tlx,sscefr2.clx”
German “sscege.tlx,sscege2.clx”
Italian “ssceit.tlx,ssceit1.clx”
Norwegian “sscenb.tlx,sscenb2.clx”
Portuguese_Brazil “sscepb.tlx,sscepb2.clx”
Portuguese “sscepo.tlx,sscepo2.clx”
Spanish “sscesp.tlx,sscesp2.clx”
Swedish “sscesw.tlx,sscesw2.clx”
UK English “sscebr.tlx,sscebr2.clx”
US English “ssceam.tlx,ssceam2.clx”

UserDict Enter the name of the user dictionary. The default is user.tlx.

UserDictPath Enter the path to the user dictionary. The default is the current working
directory.

List of Rules

185

Attachment variables

Attachment outputs

Returns Success or failure

Example Here is an example of the retrieved file layout:

<?xml version="1.0" encoding="UTF-8" ?>
<SPELLER TYPE="IENTRY" VERSION="3.1">
<FIELDH>speling</FIELDH>
<FIELDH>spellin</FIELDH>
<FIELDH>spellng</FIELDH>
</SPELLER>

Variable Description

RETFILE The output XML file name with full path for the new XML document tree.
This file will include all words retrieved from the user dictionary.
If you omit the name, the system generates a unique name for you. If you omit
the path, the system checks the UserDictPath INI option to get the default
path. If no path is specified there, the system exports the file to the current
working directory.

LanguageOpt The language selection. The default is US English. You can choose from these
languages and dictionaries:
Danish “ssceda.tlx,ssceda2.clx”
Dutch “sscedu.tlx,sscedu2.clx”
Finnish “sscefi.tlx,sscefi2.clx”
French “sscefr.tlx,sscefr2.clx”
German “sscege.tlx,sscege2.clx”
Italian “ssceit.tlx,ssceit1.clx”
Norwegian “sscenb.tlx,sscenb2.clx”
Portuguese_Brazil “sscepb.tlx,sscepb2.clx”
Portuguese “sscepo.tlx,sscepo2.clx”
Spanish “sscesp.tlx,sscesp2.clx”
Swedish “sscesw.tlx,sscesw2.clx”
UK English “sscebr.tlx,sscebr2.clx”
US English “ssceam.tlx,ssceam2.clx”

UserDict The name of the user dictionary. The default is user.tlx.

Variable Description

RETFILE The name of the retrieved XML tree file with a full path. See the discussion of this
variable in the input attachment table.

DPRRetrieveDPA

186

 DPRRetrieveDPA
Use this rule to read a DPA file and create in memory a form set.

Before you run the DPRRetrieveDPA rule, the DPA file must be placed on disk by some
other rule or set of rules. For instance, if you are using Documanage, you could use
Documanage Bridge rules to put the DPA file on disk.

Once this rule creates the form set from the DPA file, you can use other Documaker
Bridge rules, such as DPRPrint, to further process the form set.

Syntax Function = dprlib->DPRRetrieveDPA

Attachment variables

Attachment outputs

Be sure to set up the proper INI file options and resources before using this rule.

The DPRRetrieveDPA rule automatically calls the DPRRetrieveFormset and
DPRSetConfig rules. There is no need to place them on the rules list.

See also DPRPrint on page 169

Variable Description

DMSARCFILE This tells the DPRRetrieveDPA rule the path to the cached DPA file.
If DMSARCFILE does not appear on the input attachment list, the
DPRRetrieveDPA rule does nothing.

Variable Description

OLDCONFIG The DPRRetrieveDPA rule sets CONFIG to the value in the DPA file during
the run forward step.
During the run reverse step, the DPRRetrieveDPA rule restores CONFIG to
its original value unless that value differs from what it was set to for the DPA
conversion.

List of Rules

187

 DPRRetrieveFormset
Use this rule to retrieve a form set from a Documaker archive. This rule retrieves data from
Documaker archive, loads the NA and POL files, and creates the DSI variable
DPRFORMSET.

Syntax long _DSIAPI DPRRetrieveFormset (DSIHANDLE hdsi,
 char * pszParms,
 ULONG ulMsg,
 ULONG ulOptions)

Parameters

The DPRPrintFormset rule was replaced by two rules: DPRRetrieveFormset and
DPRPrint. If the DPRPrintFormset is specified in the INI file, it execute these rules in a
row, just as if they were specified in the INI file.

This change lets the custom rule have access to the FAP form set handle prior to printing,
so additional objects can be added. Place the DPRPrint rule after the
DPRRetrieveFormset rule. DPRRetrieveFormset rule creates DSI variable
DPRFORMSET, which contains FAP form set handle.

INI options This rule uses these INI options:

< Attachments >
Debug = No

< MasterResource >
DefLib = /DefLib
FormLib = /FormLib

< Control >
ImageExt =
LogoExt =

< Attachments >
PrintPath =

< Recip_Names >
xxx = xxx

< PrtType:PDF >
xxx = xxx

The Recip_Names control group is used to translate short recipient names from POL file
into long names, this group is optional. The entire PrtType:PDF control group is used.
See the Using the PDF Converter in the Docupresentment Guide for more information.

Parameter Description

DSIHANDLE hdsi Pointer to the rules data

char * pszParms Pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions Options

Option Description

Debug If set to Yes, the temporary NAFILE.DAT and POLFILE.DAT files are not
removed, useful for debugging. Defaults to No.

DefLib The location of the Documaker resources DefLib. Defaults to the current directory.

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

DPRRetrieveFormset

188

Attachment variables This rule expects these attachment variables:

Returns Success or failure

See also DPRPrint on page 169

DPRPrintFormset on page 179

FormLib The location of Documaker resources. Defaults to the current directory.

ImageExt The extension of Documaker image files. Defaults to FAP.

LogoExt The extension of Documaker logo files. Defaults to LOG.

PrintPath The location for the output PDF file, this option is ignored if the PRINTPATH
attachment variable exists.

Option Description

Variable Description

UserID The ID of the requester.

ARCKEY The Documaker archive key value used to retrieve the data.

List of Rules

189

 DPRRotateFormsetPages
Use this rule to rotate text from Metacode pages. This rule rotates the pages if most of the
text and other objects are rotated so the page will look correct when viewed with the PDF
viewer. This rule does not expect any attachment variables.

NOTE: When you use the DPRDelBlankPages or DPRRotateFormsetPages rules with
form sets created from Metacode or AFP print streams, the rules work fine. If,
however, you use these rules with form sets created from Documaker archives or
from import files, the rule appear to work incorrectly because not all of the static
form data is loaded when these rules execute. The result is that text may not be
rotated or pages with content may be deleted.

Use the DPRLoadFAPImages rule to correct this problem. Insert this rule after
the rule that creates the form set, such as DPRRetrieveFormset or
DPRLoadImportFile, and before the rule that prints the form set, such as
DPRPrintFormset or DPRPrint.

Syntax long _DSIAPI DPRRotateFormsetPages (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The pszParms parameter is the name of the variable in the form set. The default value, if
no rule parameter is specified in the INI file, is MTCFORMSET. It is registered on the
MTC request in between the MTCLoadFormset and MTCPrintFormset rules.

This DSI variable should contain a valid Documaker form set handle. This rule runs on
DSI_RUNF message.

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

DPRSearch

190

 DPRSearch
Use this rule to return a list of matching archive records.

Syntax long _DSIAPI DPRSearch (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

If the TABLEINIGROUP and TABLEINIOPTION variables are missing, the system
uses the value for the AppIdx option in the ArcRet control group as a default.

All of the columns specified in the FIELDS attachment variable should be in the
attachment as well. For example, if...

FIELDS = Key1,Key2,KeyD

...then Key1, Key2, and KeyID are required attachment variables.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

USERID The user ID of the requestor

FIELDS The comma-delimited list of columns in application index file, to be
used in the query

MAXRECORDS (Optional) Enter the maximum number of records to return, if this
value is missing, the system uses the value entered for the MaxRecords
option in the ArcRet control group, if none is specified, the system uses
20 as the default.

CASESENSITIVE If this attachment variable is present, the search is case sensitive.

RESTART The condition for setting the start position before the search

PARTIALMATCH If this value is present, the search condition uses partial match, so the
value A matches the column value ABC.

TABLEINIGROUP (Optional) The name of the INI control group to get the application
index table name from, the default is the ArcRet control group

TABLEINIOPTION (Optional) The name of the INI option to get the application index
table name from, the default is AppIdx.

List of Rules

191

This rule creates these attachment variables:

This rule creates an attachment variable RESULTS with the value SUCCESS.

On successful execution, this rule copies the input attachment into output.

Returns Success or failure

Variable Description

MORERECORDS if there are more matches than was returned, this variable is set to Yes.

FIRSTRECORD the number of the first record in the returned record set, 1 when this is
the first search

LASTRECORD the number of the last record in the returned record set

RECORDS the attachment record, stem variable with every column from the
application index table.

DPRSearchLDAP

192

 DPRSearchLDAP
Use this rule to search a Directory Information Tree (DIT) in an LDAP server to
determine a user ID group or role membership. This rule looks for all configuration
options in rule arguments, a properties file, INI options, and input attachment variables,
in that order. Option values found in more than one source override the previous value.

Syntax long _DSIAPI DPRSearchLDAP (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Option Description

RUNMSG (Optional) An integer value between 1 and 4 indicating in
which message the rule should run: INIT(1), TERM(2),
RUNF(3), RUNR(4). This option is only searched as a rule
argument or input message variable. The default is 3.

LDAP.PROPERTIES (Optional) The name of a properties file that should be used
to look up the options for the rule. The default file name is
ldap.properties, which is looked up in the current directory for
Docupresentment (IDS). This option is only searched as a
rule argument or input message variable.

LDAP.HOST (Optional) The host name or IP address of the LDAP server.
The default is localhost.

LDAP.PORT (Optional) The port in which the LDAP server is listening
on. The default is 389 when SSL is not used, 636 otherwise
(see LDAP.USE.SSL option).

LDAP.URL (Optional) The URL the LDAP server is listening on. If a
value is specified for this property, it overrides the values
specified for LDAP.HOST and LDAP.PORT.

LDAP.UID (Optional) The user ID for logging into the LDAP server. If
this value is provided and LDAP.USER is not provided, the
user ID is derived from this value and the value provided for
LDAP.DOMAIN option, such as administrator@pd.com.

List of Rules

193

LDAP.USER (Optional) An explicit value to use for the user ID for the
purpose of login into the LDAP server. Define this option to
override the behavior used to determine the user ID when
LDAP.UID and LDAP.DOMAIN are defined - see
LDAP.DOMAIN.

LDAP.AUTHENTICATION.
MODE

(Optional) The method of authentication used to login into
the LDAP server. You can choose from:
(simple) - clear-text password authentication
(none) - anonymous authentication
The default is (simple).

LDAP.PWD (Optional) The password used to login into the LDAP server.

LDAP.TIMEOUT (Optional) The amount of time (in milliseconds) after which
a connection attempt or query should expire. The default is
10000 (10 seconds).

LDAP.SEARCH.BASE (Optional) The base of the search in the DIT. This is the
starting point (node location) of a search in the DIT. If a
value is not provided, the system looks for the
LDAP.DOMAIN option and builds a search base from it.

LDAP.DOMAIN (Optional) This is the domain of the LDAP server. It is used
to build the user ID for login into the LDAP server by
appending the at symbol (@) plus the value of this option to
the LDAP.UID value.
The value of LDAP.DOMAIN is further parsed into domain
components which are used as the default value for
LDAP.SEARCH.BASE, if not already defined.

LDAP.OBJECTS (Optional) A semicolon-delimited filter list of object classes
to search in the LDAP server. If defined, it overrides the
default filter list of object classes to search: group and
groupOfNames.

LDAP.OBJECTS.SEARCH.
STRING

(Optional) An explicit string value to be used as the filter of
object classes to search. If defined, it overrides any value
provided for LDAP.OBJECTS option.
The value provided for this option must be specified in the
appropriate LDAP protocol filter format. Also, if the search
filter contains a question mark (?), the system replaces it with
the user ID passed in as an argument to this function. Here
are some examples:

(|(objectClass=group)(objectClass=group
OfNames)).
 Cn=?

LDAP.OBJECT.
ATTRIBUTES

(Optional) The name of the attributes to retrieve for each
object class, which contain a value that will be used to
determine a match for USERID specified. The default values
are member and cn (cn is always included).

Option Description

DPRSearchLDAP

194

LDAP.MATCH.
ATTRIBUTES

(Optional) The name of one or more attributes that are
contained within the value returned by a search for the
LDAP.OBJECT.ATTRIBUTES option. This is the name of
an attribute whose value will be used to compare vs. the
USERID specified to determine a match.
For example, if LDAP.OBJECTS contains a value of
'groupOfUniqueNames' and
LDAP.OBJECT.ATTRIBUTES contains a value of
'uniqueMember' and value returned for the 'uniqueMember'
attribute of 'groupOfUniqueNames' object class is
'uid=admin,ou=people, dc=mycompany,dc=com' and you
want to match the USERID value with the value for 'uid',
you would supply a value of 'uid' for this option. The default
is cn.

LDAP.SEARCH.
SCOPE

(Optional) The scope of the search. You can choose from:
(base) - search only the named context
(one) - search one level below the named context but not the
named context
(sub) - search the entire subtree, including the named
context.
The default is (sub).

LDAP.DEREF.LINK (Optional) Enter No if you do not want the system to
reference links to other nodes during a search. The default is
Yes.

LDAP.VERSION (Optional) An integer value indicating the LDAP protocol
version to use. You can choose from:
(2) - Version 2
(3) - Version 3
The default is (3).

LDAP.SEARCH.LEVEL (Optional) This property specifies the search level. You can
choose from
1 (USER)
2 (GROUPS)
The system executes different logic to search group type
objects or user type objects based on the search level specified.
The default is 1 (USER).

Option Description

List of Rules

195

LDAP.DN.IDENTIFIER (Optional) The value for this property is used in the
following ways:
- In cases were LDAP.SEARCH.LEVEL is equal to 1
(USER) and there is no
LDAP.OBJECTS.SEARCH.STRING value specified, the
system generates a default search filter of the format
identifier=userID, where identifier is the value of this
property and userID is the user ID passed in as an argument
to this function.
- In cases were LDAP.SEARCH.LEVEL is equal to 2
(GROUPS) and there is no
LDAP.OBJECTS.SEARCH.STRING value specified, the
system generates a default search filter from
LDAP.OBJECTS and LDAP.OBJECT.ATTRIBUTES,
where each attribute value in the search filter is an asterisk (*).
This tells the system to match any value for the attributes
specified. If LDAP.RDNDS property is also provided, the
asterisk (*) is replaced with identifer=userID, followed by a
comma and the LDAP.RDNS value to fine tune the search,
where identifier is the value for this property and userID is the
user ID passed in as an argument to this function. Here is an
example of a default search filter:

(&((objectClass=groupOfNames)(member=*)
))

In a case where a value of

'CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM'

is specified for LDAP.RDNS and this property contains a
value of CN, the search filter generated would look like this:

(&((objectClass=groupOfNames)(member=CN
=Administrator,
CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM))).

The default is CN.

LDAP.RDNS (Optional) This property is only used when
LDAP.SEARCH.LEVEL is equal to 2 (GROUPS) and when
the LDAP.OBJECTS.SEARCH.STRING option is not
specified. In such a case, the system builds a default search
filter from LDAP.OBJECTS and
LDAP.OBJECT.ATTRIBUTES and attribute values
specified in the default search filter will contain an asterisk
(*). This tells the system to match any value for the attributes
specified.
When this property is specified, the system uses the value
along with the value for LDAP.DN.IDENTIFIER to replace
the asterisk (*) and narrow the search, thereby speeding the
process. Here is an example of a default search filter:

(&((objectClass=groupOfNames)(member=*)
))

In a case where a value of

'CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM'

is specified for this property and LDAP.DN.IDENTIFIER
contains a value of CN, the search filter generated would look
like this:

(&((objectClass=groupOfNames)(member=CN
=Administrator,
CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM))).

Option Description

DPRSearchLDAP

196

Attachment outputs

Example Here is an example of a properties file:

ldap.uid=Administrator
ldap.pwd=~Encrypted 2XAUnkxUYlx7i5AnQ4m4E1m00
ldap.host=PDDC.pd.com
ldap.port=389
ldap.authentication.mode=simple
ldap.domain=PDDC.pd.com
ldap.objects.search.string=(&(objectClass=group)(cn=Administrators)
)
ldap.object.attributes=member
ldap.match.attributes=cn
ldap.debug=yes

Here is another example of a properties file:

ldap.user=uid=admin,ou=people,dc=mycompany,dc=com
ldap.pwd=~Encrypted 2XAUnkxUYlx7i5AnQ4m4E1m00
ldap.host=localhost
ldap.port=636
ldap.authentication.mode=simple
ldap.search.base=ou=roles,dc=mycompany,dc=com
ldap.objects=group;groupOfNames;groupOfUniqueNames
ldap.object.attributes=uniqueMember;member
ldap.match.attributes=uid;cn
ldap.debug=yes
ldap.version=3
ldap.search.scope=sub
ldap.deref.link=true
ldap.use.ssl=Y
ldap.ssl.protocol=SSLv3
ldap.ssl.socketFactory.class=com.docucorp.util.LDAPSSLSocketFactory

LDAP.USE.SSL (Optional) A value of Yes enables encrypted communication
through an SSL channel. For SSL connections to work, the
LDAP server must be configured for SSL with a certificate
from a trusted certification authority. This configuration is
vendor specific, consult your vendor documentation for
more information.

LDAP.DEBUG (Optional) A value of Yes enables logging of debugging
information to a file named trace.

Option Description

Variable Description

RESULTS Success or failure. No matches means failure.</td></tr>

LDAPERROR A standard LDAP error is returned as a rowset in case of failure. In such a
case, the LDAPERROR will also be added as an entry in the ERRORS
rowset.

LDAP.ENTRIES Matches for the search criteria specified will be returned in the form of an
LDAP.ENTRIES rowset, with each element named as an ENTRY in the
rowset.

List of Rules

197

ldap.ssl.key.store=c:/docserv/keystore/javakeystore
ldap.ssl.key.store.pwd=~Encrypted 2yQgqaRIZkRJd6m8L7WWD1000
ldap.ssl.key.store.type=JKS
ldap.ssl.key.store.manager.type=SunX509
ldap.ssl.trust.store=c:/docserv/keystore/javakeystore
ldap.ssl.trust.store.pwd=~Encrypted 2yQgqaRIZkRJd6m8L7WWD1000
ldap.ssl.trust.store.type=JKS
ldap.ssl.trust.store.manager.type=SunX509

Here is another example of a properties file:

ldap.host=localhost
ldap.port=389
ldap.authentication.mode=none
ldap.search.base=ou=roles,dc=mycompany,dc=com
ldap.objects=group;groupOfNames;groupOfUniqueNames
ldap.object.attributes=uniqueMember;member
ldap.match.attributes=uid;cn
ldap.debug=yes
ldap.version=3
ldap.search.scope=sub
ldap.deref.link=true

Here is an example request type:

<section name="ReqType:TEST_LDAP_Search_2">
<entry name="function">atclib->ATCLoadAttachment</entry>
<entry name="function">atclib->ATCUnloadAttachment</entry>
<entry name="function">dprlib->DPRSetConfig</entry>
<entry name="function">dprlib->DPRSearchLDAP,

RUNMSG=4</entry>
</section>

Keep in mind...

• Encrypted option values should be preceded by this keyword:

~Encrypted

followed by a space (see the ldap.pwd value in the examples of a properties file).

• The options in an INI file for a configuration available to Docupresentment (IDS)
should be placed in a control group named LDAP. You must also provide a CONFIG
input message variable or rule argument so Docupresentment (IDS) can find the
LDAP control group in the appropriate INI file. Here is an example:

The DAP.INI file configuration:

< Config:Example >
INIFile = example.ini

The EXAMPLE.INI file configuration:

< LDAP >
ldap.host = localhost
ldap.port = 389
ldap.timeout = 10000
ldap.uid = userID@PDDC.pd.com
ldap.pwd = 123456xxx
ldap.objects.search.string = cn=?
ldap.authentication.mode = simple
ldap.domain = PDDC.pd.com
ldap.dn.identifier = cn

DPRSearchLDAP

198

The input message variable that is part of the request:

CONFIG=Example

The request type:

<section name="ReqType:SearchLDAP">
<entry name="function">atclib->ATCLoadAttachment</entry>
<entry name="function">atclib->ATCUnloadAttachment</entry>
<entry name="function">dprlib->DPRSetConfig</entry>
<entry name="function">dprlib->DPRSearchLDAP>/entry>

</section>

• Configuring this rule with SSL involves installing the certificate submitted by the
LDAP server into the trusted certification authorities store of the box where
Docupresentment (IDS) is running. If the client program (Docupresentment) is also
to submit a certificate during the SSL hand-shake, then that certificate also needs to
be installed into the trusted certification authorities store of the LDAP server.

List of Rules

199

 DPRSearchWip
Use this function to return a list of records from a WIP database that matches the search
fields specified.

Syntax long _DSIAPI DPRSearchWip (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Search fields can include date field values which should be specified in one of these
formats:

Using the STATUS, STATUSCODE, and KEYNAME input attachment variables, the
DPRSearchWIP rule can also filter records by status code and return a sorted list of
records based on input status code and sort key values. Information on input attachment
variables can be found in the table below.

You can also filter the records returned by a report-to list for the user ID specified in the
USERID input attachment variable if the USEREPORTTOLIST input attachment
variable is present. The rule builds the user report-to list for filtering records in the
following manner:

• If the user ID is found in the userinfo database, all user IDs reporting to the user ID
provided, including that user ID, will be returned. For example: If user ID USER1
reports to user ID FORMAKER which reports to user ID DOCUCORP, and user
ID DOCUCORP is provided in the USERID input attachment variable, the user list
returned will contain user IDs DOCUCORP, FORMAKER, and USER1.

• If the user ID provided can not be found in the userinfo database, the system returns
a list with one user entry that corresponds to the user ID provided.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Format Description

YYYYMMDD default; search any values equal to the given date.

<.YYYYMMDD search any values less than the given date.

<=.YYYYMMDD search any values less than or equal to the given date.

=.YYYYMMDD search any values equal to the given date.

>.YYYYMMDD search any values greater than the given date.

>=.YYYYMMDD search any values greater or equal than the given date.

!=.YYYYMMDD search any values not equal to the given date.

DPRSearchWip

200

• If the input attachment variable USERLIST is provided, the system does not use the
userinfo database to build the report-to list; instead, it uses the user IDs provided in
the attachment variable.

Attachment variables
Variable Description

RESULTS (Optional) If present, the rule checks that its value is SUCCESS. If
the value is other than SUCCESS the rule will exit.

LOGINRESULT (Optional) If present, the rule checks that its value is SUCCESS. If
the value is other than SUCCESS the rule will exit.

USERID If not found, the rule issues an error and exits. Use this variable to
build a list of users that report to the user ID specified to filter the
records returned from the WIP database.
See also the USERLIST and USEREPORTTOLIST input
attachment variables.
While USERID is a required attachment variable, it is not checked
against CURRUSER if the report to functionality is turned off.

PAGE (Optional) The page number to display. The default is one (1).

PAGESIZE (Optional) The number of records to display per page. The default is
20.

STARTRECORD
STARTON

(Optional) The starting record number to display for the records
matching the search criteria provided. The system first looks for
STARTRECORD. If not found, it looks for STARTON. If a value
is found, the start record defined overrides any values provided for the
PAGE and PAGESIZE variables, which are otherwise used to
compute the start record number. PAGE, PAGESIZE, NEXTPAGE,
and PREVPAGE should not be used when using the
STARTRECORD, STARTON, and MAXRECORDS input
attachment variables.

MAXRECORDS (Optional) Only used if the STARTRECORD or STARTON input
attachment variables are present. If MAXRECORDS is present it will
override any value provided for PAGESIZE. The default is 20.

KEYNAME (Optional) The name of one of the fields in WIP DFD used to sort
the records returned.

PARTIALMATCH (Optional) If present, the rule conducts a partial match for the search
values provided. The value provided for this variable is irrelevant; as
long as the variable is present the option is enabled.

CASESENSITIVE (Optional) If present, the rule will conduct a case sensitive search;
otherwise, the rule will conduct a search using uppercase values. The
value provided for this variable is irrelevant; as long as the variable is
present the option will be enabled.

List of Rules

201

Attachment outputs

FIELDNAME (Optional) Any field name in the WIP DFD with a search value to be
used for filtering the records returned, where FIELDNAME is the
name of one of the fields in the DFD and the value provided for the
input attachment variable is the search value.
Multiple search fields are supported. Add a FIELDNAME/value
entry for each search field that should be used to filter the records
returned.

STATUS (Optional) The WIP status used for filtering the list of
STATUSCODE records returned. If STATUS is present, it will be
used to look up an option with the same name under the
STATUS_CD control group. If that option is not found, the value
used for STATUS to look up the INI option is used.
If STATUS cannot be found, the STATUSCODE input attachment
variable is used and it follows the same logic applied for STATUS.
If neither STATUS nor STATUSCODE exist, the value from the
WIP option under the STATUS_CD control group is used and it will
follow the same logic applied for STATUS.
The default is WIP.
If the value is an asterisk (*), the status code is not used as a filter for
the records returned.

STATUSCODELIST (Optional) - A comma-delimited list of status codes to search. If
present, this variable overrides the behavior described for STATUS
and STATUSCODE input message variables.

USERLIST (Optional) A comma-delimited string of user IDs that should be used
to build the report-to list for filtering records. If present, the code will
use the user IDs provided to build the list instead of looking in the
userinfo database.

USEREPORTTOLIST (Optional) If present, the rule filters the records returned using a
report-to list for the user ID provided in the USERID input
attachment variable. Only the records which contain a current user
that matches one of the users in the report-to list are returned.

CURRUSER (Optional) If you specify this input attachment variable:

CURRUSER=~UNKNOWN~

the rule searches for records that do not belong to users found in the
valid user list.
Do not use field names such as RECORDID as the search criteria if
you want to list the unknown user WIP records. This rule checks the
input attachment variable USEREPORTTOLIST as before and it has
no effect if you specify CURRUSER=~UNKNOWN~.

RECORDID
RECNUM
UNIQUE_ID

(Optional) If a value is present for one of these input attachment
variables, the system returns a single record matching the value
provided without applying the search and filter logic.

Variable Description

Variable Description

WIP The WIP status generated from the WIP option in the STATUS_CD
control group. The default is WIP.

APPROVE The Approve status generated from the Approve option in the
STATUS_CD control group. The default is AP.

DPRSearchWip

202

INI options You can use these INI options with this rule:

< WIPSearchFormatKeys >
FieldName = Format

Where FieldName is one of the date fields in the DFD and Format is one of the formats
supported:

• DX = Hex

• DT = ODBC date field

• D4 = A date value already in YYYYMMDD format

Here is an example of the different format specifiers:

< WIPSearchFormatKeys >
CreateTime = DX
ModifyTime = DT
FromTime = D4

If the date fields are not defined in the WIPSearchFormatKeys control group, the rule
only checks these default date fields and assumes they are defined in hex format:

CREATETIME
FROMTIME
MODIFYTIME
TOTIME

< STATUS_CD >
Approve = Definition of value for approve.
Reject = Definition of value for reject.
WIP = Definition of value for WIP.
Status = Definition of value for status.

For a definition of the APPROVE, REJECT or other options, you can refer to variables
with the same name in the output attachment variables table.

REJECT The Reject status generated from the Reject option in the STATUS_CD
control group. The default is RJ.

STATUS The status definition used for the search. This is the same value
determined by the logic defined under the STATUS and STATUSCODE
input attachment variables. The default is WIP.

MORERECORDS Indicates there are more records matching the search criteria. This variable
is only present if there are more records.

NEXTPAGE The next page number. This is only present if there are more records
matching the search criteria.

PREVPAGE The previous page number. This is only present if the current page is not
the first page.

RESULTS This attachment variable contains a value of SUCCESS if the rule ran
successfully; otherwise, FAILURE.

Variable Description

List of Rules

203

See also DPRApproveWipRecords on page 46

DPRCheckWipRecords on page 59

DPRGetWipList on page 114

DPRGetWipFormset on page 117

DPRGetWipRecipients on page 119

DPRSearchWip on page 199

DPRUpdateWipRecords on page 240

DPRSendFormsetXML

204

 DPRSendFormsetXML
Use this rule to convert the form set specified in the DSI variable DPRFORMSET into
an XML file in memory and then send this XML file as an attachment to the
Docupresentment (IDS) client.

Syntax long _DSIAPI DPRSendFormsetXML (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The delimiter name for this attachment can be specified as this rule’s parameter. If not
specified it defaults to DOCUMENTSTREAM. The default is used if no rule parameter
is provided.

If the DPRFORMSET DSI variable does not exist this rule does nothing and no error
message is produced.

This rule runs on DSI_MSGRUNR.

See also DPRLoadXMLAttachment on page 148

DPRLoadedXML2Formset on page 145

DPRUpdateFromMRL on page 235

DPRFilterFormsetForms on page 89

DPRSortFormsetForms on page 213

DPRGetFormList on page 105

DPRGetHTMLForms on page 107

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

List of Rules

205

 DPRSendMultiFiles
Use this rule to send multiple files to an attachment one by one, so they can be received
at the other end. This rule supports text and binary files. The size of file is limited to the
queue message size.

Syntax long _DSIAPI DPRSendMultiFiles (DSIHANDLE hdsi,
 char * pszParms,
 ULONG ulMsg,
 ULONG long ulOptions)

Parameters

Returns Success or failure

Example Here is an example:

[ReqType:WLGN]
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRSendMultiFiles, DPRWIPTABLE
function = dprlib->DPRGetWipList

where DPRWIPTABLE specifies this INI control group:

< DPRWIPTable >
WIPTABLE1 = WIPTABLE,wip.asp,TEXT
WIPTABLE2 = ABCTABLE,test.asp,TEXT

The INI value is composed of attachment name, sending file, and file type.

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

DPRSendVersion

206

 DPRSendVersion
Use this rule to gather version information about these DLLs:

Syntax

• dprlib.DLL

• PDFLIB.DLL

long _DSIAPI DPRSendVersion (DSIHANDLE hInstance, char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule creates the attachment record LIBRARIES with these variables:

This rule creates an attachment variable RESULTS with the value SUCCESS.

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

NAME name of the DLL (DPR or PDF)

VERSION version of the DLL, string like 100.002.001

DATE date the DLL was compiled as MMM DD YYYY

TIME time the DLL was compiled as HH:MM:SS in 24-hour format

List of Rules

207

 DPRSet2ImageScope
Use this rule to change the scope of fields from form level to image level.

Syntax long _DSIAPI DPRSet2ImageScope (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Here is an example of how you can use this rule to change the scope of the ACCTNUM1
and Service Address fields:

function = dprlib->DPRSet2ImageScope,ACCTNUM1;Service Address

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

DPRSetConfig

208

 DPRSetConfig
Use this rule to set the current INI file context based on the CONFIG value. The
CONFIG value is passed from the client in the attachment. If this value does not exist,
the rule does nothing and returns.

This rule runs on DSI_SMGRUNF and DSI_MSGRUNR. On DSI_SMGRUNF it
saves the current INI context in the DSI variable INICONTEXT. The rule then loads all
of the INI files specified under the INIFile option in the Config:XXX control group.

The values assigned to this option indicate the value of the attachment variable CONFIG.
If you have multiple INI file option lines, the system loads all of the lines.

The latter in the INI file is appended to the end of INI context in memory. After all the
INI files are loaded, the current INI context (usually from the DAP.INI file) is appended
to the resulting list.

On DSI_SMGRUNR, the system restores the current INI context saved in the DSI
variable INICONTEXT, destroys DSI variable INICONTEXT, and destroys the INI
context created on DSI_RUNF message.

Syntax long _DSIAPI DPRSetConfig (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule uses the following control group setting in the DAP.INI file to define the INI
file name, where CGF is the name of a configurations group.

< Config:CFG >
INIFile =

For each Config:CFG control group, you must make an entry in the Configurations
control group, as shown below:

< Config:RPEX1 >
INIFile = rpex1.ini

< Configurations >
Config = RPEX1

Detecting MRL changes Documaker Bridge automatically detects changes made to a Studio master resource library
(MRL) and flashes cached files. This keeps you from having to manually restart
Docupresentment (IDS) when MRL updates are made.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to the rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

209

The DPRSetConfig rule detects the update and flashes cached files. Instances of
Docupresentment (IDS) running Documaker Server (GenData) using the same MRL are
terminated and then restarted so the GenData program will realize the change to the
MRL.

Keep in mind the only updates to files in Library manager are detected. MRL changes that
are not part of Library manager are ignored.

NOTE: This is helpful in situations where your MRL changes frequently. Once you are
in production mode, you should schedule updates to your production MRL at
times when no one is using the system.

Detecting INI changes The DPRSetConfig rule reloads the DAP.INI file when a change is detected. The system
also updates the list of files loaded for CONFIG based on any changes to the files listed as
INIFile option entries in DAP.INI file.

If any of the configuration files that correspond to INIFile option entries for a CONFIG
change, these files are also reloaded.

Returns Success or failure

DPRSpellCheck

210

 DPRSpellCheck
Use this rule to spell check an XML document tree. The user dictionary (USER.TLX) and
main dictionaries (SSCEAM.TLX and SSCEAM2.CLX) are required. If a hyphen is at the
end of current text line, the rule removes the hyphen and moves the first word on the next
text line to the end of current line.

Syntax long _DSIAPI DPRSpellCheck (DSIHANDLE hdsi,
 char * pszParms,
 unsigned ulMsg,
 unsigned ulOptions)

Parameters

Attachment variables

Attachment outputs

Returns Success or failure

Export file layout Here is an export file layout:

<?xml version="1.0" encoding="ISO-8859-1"?>
<SPELLER TYPE="IENTRY" VERSION="3.1">
<FIELD NAME="document.forms[0].elements[6].value">
<P>Now is the timme for
<WORD VALUE="timme" POS="11">
<CHOICE MATCH="TRUE">time</CHOICE>
<CHOICE>timed</CHOICE>
<CHOICE>timer</CHOICE>
<CHOICE>times</CHOICE>
<CHOICE>timber</CHOICE>
<CHOICE>timbre</CHOICE>
</WORD>
</P>
<P>a new begning for<WORD VALUE="begning" POS="6">

Parameter Description

DSIHANDLE hdsi The pointer to the rule data.

char *pszParms The pointer to the rule parameter string.

ULONG ulMsg The DSI message.

ULONG ulOptions Options.

Variable Description

ImportFile The name of the input XML file to check spelling with a full path, such as:

d:\ids2.0\spell\spellXML_input.xml

Variables Description

ExportFile The name of the output XML file for new XML document tree that includes
spelling check information, such as

d:\ids2.0\spell\spellXML_output.xml

List of Rules

211

<CHOICE MATCH="TRUE">begging</CHOICE>
</WORD>
</P>
<P>successs.<WORD VALUE="successs" POS="0">
<CHOICE MATCH="TRUE">success</CHOICE>
<CHOICE>successes</CHOICE>
</WORD>
</P>
</FIELD>
<FIELD NAME="document.forms[0].elements[7].value">
iPPS Livve
<WORD VALUE="iPPS" POS="0">
<CHOICE MATCH="TRUE">PP</CHOICE>
<CHOICE>PS</CHOICE>
<CHOICE>its</CHOICE>
</WORD>
<WORD VALUE="Livve" POS="5">
<CHOICE MATCH="TRUE">Live</CHOICE>
<CHOICE>Five</CHOICE>
<CHOICE>Give</CHOICE>
<CHOICE>Life</CHOICE>
<CHOICE>Like</CHOICE>
<CHOICE>Line</CHOICE>
<CHOICE>Love</CHOICE>
</WORD>
</FIELD>
<FIELD NAME="document.forms[0].elements[8].value">
begning
<WORD VALUE="begning" POS="0">
<CHOICE MATCH="TRUE">begging</CHOICE>
</WORD>
</FIELD>
<FIELD NAME="document.forms[0].elements[9].value">2727 Paces Ferry
Road</FIELD>
<FIELD NAME="document.forms[0].elements[10].value">Suite II-900</
FIELD>
<FIELD NAME="document.forms[0].elements[11].value">Atlanta</FIELD>
<FIELD NAME="document.forms[0].elements[12].value">GA</FIELD>
<FIELD NAME="document.forms[0].elements[13].value">30339</FIELD>
<WORD VALUE="spellinng" POS="10">
<CHOICE MATCH="TRUE">spelling</CHOICE>
<CHOICE>spellings</CHOICE>
<CHOICE>speckling</CHOICE>
<CHOICE>spellbind</CHOICE>
<CHOICE>spewing</CHOICE>
<CHOICE>telling</CHOICE>
</WORD>
<WORD VALUE="neew" POS="39">
<CHOICE MATCH="TRUE">nee</CHOICE>
<CHOICE>new</CHOICE>
<CHOICE>need</CHOICE>
<CHOICE>knew</CHOICE>
<CHOICE>news</CHOICE>
</WORD>
</SPELLER>

*
**/

Here is an example of the request type in the docserve.xml file:

DPRSpellCheck

212

<section name="ReqType:SPELL">
<entry name="function">atclib->;ATCLogTransaction</entry>
<entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>
<entry name="function">dprlib->;DPRSetConfig</entry>
<entry name="function">dprlib->;DPRSpellCheck</entry>

</section>

Attachment variables:

• CONFIG

• ImportFile

• ExportFile

List of Rules

213

 DPRSortFormsetForms
Use this rule to sort the form list.

Syntax long _DSIAPI DPRSortFormsetForms (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

The DPRORDERBY attachment variable is checked and you can have the following
values FORMNAME and FORMDESCRIPTION in any order and just like in SQL
keyword DESC or DESCENDING.

Here are some examples:

DPRORDERBY=FORMNAME DESC,FORMDESCRIPTION
DPRORDERBY=FORMDESCRIPTION
DPRORDERBY=FORMDESCRIPTION DESC, FORMNAME DESC

The real sorting is done within groups, the same as if the SQL had ORDER BY KEY1,
KEY2 ... (value of DPRORDERBY).

See also DPRLoadXMLAttachment on page 148

DPRLoadedXML2Formset on page 145

DPRSendFormsetXML on page 204

DPRUpdateFromMRL on page 235

DPRFilterFormsetForms on page 89

DPRGetFormList on page 105

DPRGetHTMLForms on page 107

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to the rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRTemporaryXMLFile

214

 DPRTemporaryXMLFile
Use this rule to load and unload XML files into or from a temporary file.

Syntax long _DSIAPI DPRTemporaryXMLFile (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

When loading an XML file, this rule locates the DSI variable DPRXMLFORMSET to
retrieve the XML document handle. It then unloads it into a temporary XML file with a
unique name.

The file name is assigned as the value of a new attachment variable. The new attachment
variable name is taken from pszParms. If pszParms is empty, the system uses
XMLFORMSETFILE as the default variable name.

When unloading an XML file, this rule locates the temporary XML file and then converts
it back into XML document format. If the debug option is off, the temporary XML file is
then removed.

NOTE: You can use this rule with your Java rules instead of using SENDBACKPAGE
attachment variable.

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to the rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

215

 DPRTblLookUp
Use this rule to generate an XML document that contains table entries for a table ID in a
table file.

Syntax long _DSIAPI DPRTblLookUp (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule creates a DSI global variable TEMPLATESOURCEDOCUMENT for the
document handle on the RUNF message for other rules that follow. The global variable
is removed on the RUNR message.

The table entries are added as records to the output message. If the KEEP rule argument
or input attachment variable is present, the rule also writes the XML document to disk
and adds the TBLLKUPFILE attachment variable to the input and output messages for
other rules that follow.

Each table entry returned contains these elements:

Attachment variables

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to the rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Element Description

ENTRY_NAME The key.

DESCRIP A description.

RETURNS The value returned. See the TABLERETURNS input attachment variable.

Attachment Description

CONFIG A configuration value for a master resource library in the DAP.INI file for
Docupresentment (IDS).

TABLEFILE The name and path of a table file accessible to Docupresentment (IDS).
If you omit the path, the DPRTblLookUp rule looks for the table file path
in the following manner (using the first path found):
- Look in the TableLib option in the MasterResource control group
- Look in the DefLib option in the MasterResource control group
- Set the path to the current Docupresentment (IDS) directory path value

TABLEID The name of a table in the table file for which to retrieve the entries.

DPRTblLookUp

216

Attachment outputs

Arguments

Example 1 Here is the request type for this example:

<section name="ReqType:TBLLKUP">
 <entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>
<entry name="function">dprlib->;DPRSetConfig</entry>
 <entry name="function">dprlib->;DPRInitLby</entry>

TABLERETURNS (required) An indicator of how to return the entries for a table. You can
specify these values:
KEY - Return the key value in the returns element for each entry.
KEY only - Return the key value in the returns element for each entry.
Description - Return the description value in the returns element for each
entry.
Description only - Return the description value in the returns element for
each entry.
Key & Description - Return the key followed by a space followed by the
description in the returns element for each entry.
Key and description - Return the key followed by a space followed by the
description in the returns element for each entry.
Description & Key - Return the description followed by a space followed
by the key in the returns element for each entry.
Description and key - Return the description followed by a space followed
by the key in the returns element for each entry.
Nothing - Do not return anything for the returns element for each entry.

PRINTPATH (Optional) A path accessible to Docupresentment (IDS) where the output
file will be written to if the KEEP rule argument or input attachment
variable is present. If you omit this value, the rule uses the current
Docupresentment (IDS) directory.

TBLLKUPFILE (Optional) A path and file name for the output file that will be written to
disk if the KEEP rule argument or input attachment variable is present.

KEEP (Optional) If this variable is present, the rule writes the XML document
to disk and adds the TBLLKUPFILE input/output attachment variable
with the path and file name of the output file.

Attachment Description

Attachment Description

TBLLKUPFILE Only present if the KEEP input attachment variable or rule argument is
present. It contains the path and file name of the output file.

RESULTS Success or failure

Argument Description

KEEP (Optional) If this rule argument is present the rule writes the XML document to
disk and adds the TBLLKUPFILE input/output attachment variable with the full/
relative path and file name of the output file.

List of Rules

217

 <entry name="function">dprlib->;DPRTblLookUp</entry>
 <entry name="function">dprlib->

;DPRGetInitValue,TBLLKUP,SOURCE,SOURCE</entry>
 <entry name="function">dprlib->

;DPRGetInitValue,TBLLKUP,DOCTYPE,DOCTYPE</entry>
 <entry name="function">dprlib->

;DPRGetInitValue,TBLLKUP,TEMPLATE,XSLTFILE</entry>
 <entry

name="function">java;com.docucorp.ids.rules.XsltTransformRule;TF1;t
ransaction;transform;</entry>
</section>
Here is the input message for Example 1:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/

soap/envelope/">
 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>

 <REQTYPE>TBLLKUP</REQTYPE>
 <UNIQUE_ID>5533591529132872004-0-Thread-1</

UNIQUE_ID>
 </CTLBLOCK>
 <MSGVARS>

 <VAR NAME="CONFIG">AMERGEN</VAR>
 <VAR NAME="KEEP"></VAR>

 <VAR
NAME="TABLEFILE">C:\rp\mstrres\insure\table\mktmsg.dbf</VAR>

 <VAR NAME="TABLEID">mktmsg</VAR>
 <VAR NAME="TABLERETURNS">KEY & DESCRIPTION</VAR>
 </MSGVARS>

 </DSIMSG>
 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

Here is the output message for this example:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/

soap/envelope/">
 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>

 <REQTYPE>TBLLKUP</REQTYPE>
 <UNIQUE_ID>5533591529132872004-0-Th</UNIQUE_ID>

 </CTLBLOCK>
 <MSGVARS>

 <VAR NAME="DOCTYPE">htm</VAR>
 <VAR NAME="RESULTS">SUCCESS</VAR>
 <VAR NAME="SERVERTIMESPENT">0.203</VAR>
 <VAR NAME="SOURCE">TBLLKUPFILE</VAR>

 <VAR NAME="TBLLKUPFILE">0rc74eSla-
Bh5yuEiiOczVSVP9hIrvVaIyXg0PoiSFo8Y.xml</VAR>

 <VAR NAME="XSLOUTPUT">7706561529132872004-0-BLP-
0.htm</VAR>

 <VAR NAME="XSLTFILE">tbllkup.xsl</VAR>
 <ROWSET NAME="RECORDS">

DPRTblLookUp

218

 <ROW NUM="1">
 <VAR NAME="ENTRY_NAME">Coverage</VAR>
 <VAR NAME="DESCRIP">Did you know you could
save 5% off your policy premium if you place more than one policy
with Amergen?</VAR>
 <VAR NAME="RETURNS">Coverage Did you know
you could save 5% off your policy premium if you place more than one
policy with Amergen?</VAR>
 </ROW>
 <ROW NUM="2">
 <VAR NAME="ENTRY_NAME">Greeting</VAR>
 <VAR NAME="DESCRIP">Hello World</VAR>
 <VAR NAME="RETURNS">Greeting Hello World</VAR>
 </ROW>
 <ROW NUM="3">
 <VAR NAME="ENTRY_NAME">Technique</VAR>
 <VAR NAME="DESCRIP">Are you using the 5
techniques to manage risk?</VAR>
 <VAR NAME="RETURNS">Technique Are you
using the 5 techniques to manage risk?</VAR>
 </ROW>
 </ROWSET>
 </MSGVARS>
 </DSIMSG>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Here is the Xslt template, which is used by the XsltTransformRule:

 <xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="html"/>
 <xsl:template match="/">
 <html>
 <head>
 <xsl:element name="script">
 <xsl:attribute name="language">JavaScript 1.2</
xsl:attribute>
 <xsl:attribute name="type">text/javascript</xsl:attribute>
 <xsl:comment>
 <![CDATA[

 function setValue(obj){

 if (obj.value != null)
 window.returnValue = obj.value;
 else
 window.returnValue = "";

 window.close();

 }

]]>
 </xsl:comment>

List of Rules

219

 </xsl:element>
 </head>
 <body bgcolor="#f2eddb" onload="window.focus();">

 <table width="100%" height="100%">
 <tr>

 <td align="center" valign="top">
 <select name="Lookup" onChange="setValue(this);"

value="">
 <xsl:call-template name="process" />

 </select>
 </td>

 </tr>
 <tr>

 <td align="center" valign="center">
 <input type="button" value="close" name="close"

onclick="self.close();"/>
 </td>

 </tr>
 </table>

 </body>
 </html>
 </xsl:template>

 <xsl:template name="process">

 <xsl:for-each select="//DOCUMENT/ENTRIES/INDEX">

 <xsl:variable name="key"
select="COLUMN[@NAME='ENTRY_NAME']/."/>

 <xsl:variable name="description"
select="COLUMN[@NAME='DESCRIP']/."/>

 <option value="{$description}"><xsl:value-of
select="$key"/></option>

 </xsl:for-each>
 </xsl:template>

 </xsl:stylesheet>

Example 2 Here is the request type for this example:

 <section name="ReqType:TBLKUP2">
 <entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>
<entry name="function">dprlib->;DPRSetConfig</entry>
 <entry name="function">dprlib->;DPRInitLby</entry>
 <entry name="function">dprlib->;DPRTblLookUp</entry>

 <entry name="function">dprlib-
>;DPRGetInitValue,TBLLKUP,DOCTYPE,FILETYPE</entry>

 <entry name="function">dprlib-
>;DPRGetInitValue,TBLLKUP,HTMTEMPLATE,TEMPLATE</entry>

 <entry name="function">dprlib->;DPRTransform</entry>
</section>

Here is the input message for this example:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/

soap/envelope/">
 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">

DPRTblLookUp

220

 <CTLBLOCK>
 <REQTYPE>TBLKUP2</REQTYPE>
 <UNIQUE_ID>4809681331132872004-0-Thread-2</
UNIQUE_ID>
 </CTLBLOCK>
 <MSGVARS>
 <VAR NAME="CONFIG">AMERGEN</VAR>
 <VAR
NAME="TABLEFILE">C:\rp\mstrres\insure\table\mktmsg.dbf</VAR>
 <VAR NAME="TABLEID">TEST</VAR>
 <VAR NAME="TABLERETURNS">KEY & DESCRIPTION</VAR>
 </MSGVARS>
 </DSIMSG>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Here is the output message for this example:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/
soap/envelope/">
 <SOAP-ENV:Body>
 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>
 <REQTYPE>TBLKUP2</REQTYPE>
 <UNIQUE_ID>4809681331132872004-0-Th</UNIQUE_ID>
 </CTLBLOCK>
 <MSGVARS>
 <VAR NAME="FILETYPE">htm</VAR>
 <VAR NAME="RESULTS">SUCCESS</VAR>
 <VAR NAME="SERVERTIMESPENT">0.094</VAR>
 <VAR NAME="TEMPLATE">tbllkup.htm</VAR>
 <VAR
NAME="TRANSFORMFILE">0uyQNhTch_idAmANizRkyh3CMnFQX5j7n_BcXZC0lRMaX.
htm</VAR>
 <ROWSET NAME="RECORDS">
 <ROW NUM="1">
 <VAR NAME="ENTRY_NAME">Entry1</VAR>
 <VAR NAME="DESCRIP">Entry Number One</VAR>
 <VAR NAME="RETURNS">Entry1 Entry Number
One</VAR>
 </ROW>
 <ROW NUM="2">
 <VAR NAME="ENTRY_NAME">Entry2</VAR>
 <VAR NAME="DESCRIP">Entry Number two</VAR>
 <VAR NAME="RETURNS">Entry2 Entry Number
two</VAR>
 </ROW>
 <ROW NUM="3">
 <VAR NAME="ENTRY_NAME">Entry3</VAR>
 <VAR NAME="DESCRIP">Entry Number three</VAR>
 <VAR NAME="RETURNS">Entry3 Entry Number
three</VAR>
 </ROW>
 </ROWSET>

List of Rules

221

 </MSGVARS>
 </DSIMSG>

 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Here is the HTML template used by the DPRTransform rule for this example:

 <html>
 <head>
 <script language="javascript">

 function setValue(obj){

 if (obj.value != null)
 window.returnValue = obj.value;

 else
 window.returnValue = "";

 window.close();

 }

 </script>
 </head>
 <body bgcolor="#f2eddb" onload="window.focus();">

 <table width="100%" height="100%">
 <tr>

 <td align="center" valign="top">
 <select name="Lookup" onChange="setValue(this);"

value="">
 <!-- DCL BEGIN

SECTION;NAME=descendant::ENTRIES;LOOP=descendant::INDEX;FOR-
EACH=INDEX;-->

 <option value="<%./
descendant::COLUMN[attribute::NAME="DESCRIP"],%>">

 <%./
descendant::COLUMN[attribute::NAME="ENTRY_NAME"],%>

 </option>
 <!-- DCL END SECTION -->
 </select>

 </td>
 </tr>
 <tr>

 <td align="center" valign="center">
 <input type="button" value="close" name="close"

onclick="self.close();"/>
 </td>

 </tr>
 </table>

 </body>
 </html>

Example 3 Here is the request type for this example:

<section name="ReqType:TBLLKUP3">
 <entry name="function">atclib->;ATCLoadAttachment</entry>
 <entry name="function">atclib->;ATCUnloadAttachment</entry>

 <entry name="function">dprlib->;DPRSetConfig</entry>
<entry name="function">dprlib->;DPRInitLby</entry>
<entry name="function">dprlib->;DPRTblLookUp</entry>

DPRTblLookUp

222

 <entry name="function">atclib->;ATCDumpAttachment,ATC1</
entry>

 <entry name="function">dprlib->
;DPRGetInitValue,TBLLKUP,SOURCEVAR,SOURCE</entry>

 <entry name="function">dprlib->
;DPRGetInitValue,TBLLKUP,DOCTYPE,FILETYPE</entry>

 <entry name="function">dprlib->
;DPRGetInitValue,TBLLKUP,HTMTEMPLATE,TEMPLATE</entry>
 <entry name="function">atclib-

>;ATCDumpAttachment,ATC2</entry>
 <entry name="function">dprlib->;DPRTransform</entry>

</section>
Here is the input message for this example:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/

soap/envelope/">
 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>

 <REQTYPE>TBLLKUP3</REQTYPE>
 <UNIQUE_ID>5060623132132872004-0-Thread-3</

UNIQUE_ID>
 </CTLBLOCK>
 <MSGVARS>

 <VAR NAME="CONFIG">AMERGEN</VAR>
 <VAR NAME="KEEP"></VAR>

 <VAR
NAME="TABLEFILE">C:\rp\mstrres\insure\table\mktmsg.dbf</VAR>

 <VAR NAME="TABLEID">mktmsg</VAR>
 <VAR NAME="TABLERETURNS">KEY</VAR>

 </MSGVARS>
 </DSIMSG>

 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Here is the output message for this example:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/

soap/envelope/">
 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>

 <REQTYPE>TBLLKUP3</REQTYPE>
 <UNIQUE_ID>5060623132132872004-0-Th</UNIQUE_ID>

 </CTLBLOCK>
 <MSGVARS>

 <VAR NAME="FILETYPE">htm</VAR>
 <VAR NAME="RESULTS">SUCCESS</VAR>
 <VAR NAME="SERVERTIMESPENT">0.093</VAR>

 <VAR NAME="SOURCE">LOOKUPVAR.OUTPUT.TBLLKUPFILE</
VAR>

List of Rules

223

 <VAR
NAME="TBLLKUPFILE">0swwpsCxVzAQvwEKFySYeoeIKkRN7wGG3_ScpmwGuKqLZ.xm
l</VAR>
 <VAR NAME="TEMPLATE">tbllkup.htm</VAR>
 <VAR NAME="TRANSFORMFILE">0pDp_S_-
UehF1YuqKukd0oR6pqgrTMle4AZxuwguYRrXj.htm</VAR>
 <ROWSET NAME="RECORDS">
 <ROW NUM="1">
 <VAR NAME="ENTRY_NAME">Coverage</VAR>
 <VAR NAME="DESCRIP">Did you know you could
save 5% off your policy premium if you place more than one policy
with Amergen?</VAR>
 <VAR NAME="RETURNS">Coverage</VAR>
 </ROW>
 <ROW NUM="2">
 <VAR NAME="ENTRY_NAME">Greeting</VAR>
 <VAR NAME="DESCRIP">Hello World</VAR>
 <VAR NAME="RETURNS">Greeting</VAR>
 </ROW>
 <ROW NUM="3">
 <VAR NAME="ENTRY_NAME">Technique</VAR>
 <VAR NAME="DESCRIP">Are you using the 5
techniques to manage risk?</VAR>
 <VAR NAME="RETURNS">Technique</VAR>
 </ROW>
 </ROWSET>
 </MSGVARS>
 </DSIMSG>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Here is the HTML template used by the DPRTransform rule for this example:

<html>
 <head>
 <script language="javascript">

 function setValue(obj){

 if (obj.value != null)
 window.returnValue = obj.value;
 else
 window.returnValue = "";

 window.close();

 }

 </script>
 </head>
 <body bgcolor="#f2eddb" onload="window.focus();">
 <table width="100%" height="100%">
 <tr>
 <td align="center" valign="top">
 <select name="Lookup" onChange="setValue(this);"
value="">
 <!-- DCL BEGIN
SECTION;NAME=descendant::ENTRIES;LOOP=descendant::INDEX;FOR-
EACH=INDEX;-->
 <option value="<%./
descendant::COLUMN[attribute::NAME="DESCRIP"],%>">

DPRTblLookUp

224

 <%./
descendant::COLUMN[attribute::NAME="ENTRY_NAME"],%>
 </option>
 <!-- DCL END SECTION -->
 </select>
 </td>
 </tr>
 <tr>
 <td align="center" valign="center">
 <input type="button" value="close" name="close"
onclick="self.close();"/>
 </td>
 </tr>
 </table>
 </body>
 </html>

List of Rules

225

 DPRTransform
Use this rule to transform an XML document into an output file with embedded data.
The rule uses a template with embedded XSL to transform the output template file.

Syntax long _DSIAPI DPRTransform (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

Example 1 Here is the request type for Example 1:

<section name="ReqType:TBLKUP2">
<entry name="function">atclib->;ATCLoadAttachment</entry>
<entry name="function">atclib->;ATCUnloadAttachment</entry>

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Attachment Description

CONFIG A configuration value for a master resource library in the DAP.INI for
Docupresentment (IDS).

SOURCE (Optional) A path and file name of an XML document to process. It
must be accessible to Docupresentment (IDS). If this variable is not
present the rule will look for a DSI global variable
TEMPLATESOURCEDOCUMENT which must be set by a rule run
in the same request type prior to this rule (see DPRTblLookUp rule,
feature 1612 for an example).

TEMPLATE A full path and file name of a template with embedded XSL to use for
the transformation. It must be accessible to Docupresentment (IDS).

FILETYPE The extension of the output file.

PRINTPATH (Optional) A path accessible to Docupresentment (IDS) where the
output file will be written to. If a value is not provided the rule will use
the current Docupresentment (IDS) directory.

TRANSFORMFILE (Optional) The path and file name of the output file.

Attachment Description

TRANSFORMFILE The path and file name of the output file.

RESULTS Success or failure.

DPRTRANSFORMFI
LE

The output template, sent as an output attachment, which is part of
the output message.

DPRTransform

226

<entry name="function">dprlib->;DPRSetConfig</entry>
<entry name="function">dprlib->;DPRInitLby</entry>
<entry name="function">dprlib->;DPRTblLookUp</entry>

<entry name="function">dprlib->
;DPRGetInitValue,TBLLKUP,DOCTYPE,FILETYPE</entry>

<entry name="function">dprlib->
;DPRGetInitValue,TBLLKUP,HTMTEMPLATE,TEMPLATE</entry>

<entry name="function">dprlib->;DPRTransform</entry>
</section>

Here is the input message for Example 1:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/

soap/envelope/">
 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>

 <REQTYPE>TBLKUP2</REQTYPE>
 <UNIQUE_ID>4809681331132872004-0-Thread-2</

UNIQUE_ID>
 </CTLBLOCK>
 <MSGVARS>

 <VAR NAME="CONFIG">AMERGEN</VAR>
 <VAR

NAME="TABLEFILE">C:\rp\mstrres\insure\table\mktmsg.dbf</VAR>
 <VAR NAME="TABLEID">TEST</VAR>

 <VAR NAME="TABLERETURNS">KEY & DESCRIPTION</VAR>
 </MSGVARS>

 </DSIMSG>
 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

Here is the output message for Example 1:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/

soap/envelope/">
 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>

 <REQTYPE>TBLKUP2</REQTYPE>
 <UNIQUE_ID>2399062548162892004-0-Th</UNIQUE_ID>
 <ATTACHMENT TYPE="BINARY">

 <DELIMITER>DPRTRANSFORMFILE</DELIMITER>
 </ATTACHMENT>

 </CTLBLOCK>
 <MSGVARS>

 <VAR NAME="FILETYPE">htm</VAR>
 <VAR NAME="RESULTS">SUCCESS</VAR>
 <VAR NAME="SERVERTIMESPENT">0.094</VAR>
 <VAR NAME="TEMPLATE">tbllkup.htm</VAR>

List of Rules

227

 <VAR NAME="TRANSFORMFILE">0vQolgBFkriVOqxB4wBd5XU-
An7I2-Dhdpq-alQGA53LY.htm</VAR>
 <ROWSET NAME="RECORDS">
 <ROW NUM="1">
 <VAR NAME="ENTRY_NAME">Entry1</VAR>
 <VAR NAME="DESCRIP">Entry Number One</VAR>
 <VAR NAME="RETURNS">Entry1 Entry Number
One</VAR>
 </ROW>
 <ROW NUM="2">
 <VAR NAME="ENTRY_NAME">Entry2</VAR>
 <VAR NAME="DESCRIP">Entry Number two</VAR>
 <VAR NAME="RETURNS">Entry2 Entry Number
two</VAR>
 </ROW>
 <ROW NUM="3">
 <VAR NAME="ENTRY_NAME">Entry3</VAR>
 <VAR NAME="DESCRIP">Entry Number three</VAR>
 <VAR NAME="RETURNS">Entry3 Entry Number
three</VAR>
 </ROW>
 </ROWSET>
 </MSGVARS>
 </DSIMSG>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Here is the HTML template for Example 1:

 <html>
 <head>
 <script language="javascript">

 function setValue(obj){

 if (obj.value != null)
 window.returnValue = obj.value;
 else
 window.returnValue = "";

 window.close();

 }

 </script>
 </head>
 <body bgcolor="#f2eddb" onload="window.focus();">
 <table width="100%" height="100%">
 <tr>
 <td align="center" valign="top">
 <select name="Lookup" onChange="setValue(this);"
value="">
 <!-- DCL BEGIN
SECTION;NAME=descendant::ENTRIES;LOOP=descendant::INDEX;FOR-
EACH=INDEX;-->
 <option value="<%./
descendant::COLUMN[attribute::NAME="DESCRIP"],%>">
 <%./
descendant::COLUMN[attribute::NAME="ENTRY_NAME"],%>
 </option>
 <!-- DCL END SECTION -->

DPRTransform

228

 </select>
 </td>

 </tr>
 <tr>

 <td align="center" valign="center">
 <input type="button" value="close" name="close"

onclick="self.close();"/>
 </td>

 </tr>
 </table>

 </body>
 </html>

Example 2 Here is the request type for Example 2:

 <section name="ReqType:TBLLKUP3">
 <entry name="function">atclib;ATCLoadAttachment</entry>

 <entry name="function">atclib->;ATCUnloadAttachment</entry>
 <entry name="function">dprlib->;DPRSetConfig</entry>
 <entry name="function">dprlib->;DPRInitLby</entry>
 <entry name="function">dprlib->;DPRTblLookUp</entry>
 <entry name="function">atclib-

>;ATCDumpAttachment,ATC1</entry>
 <entry name="function">dprlib->

;DPRGetInitValue,TBLLKUP,SOURCEVAR,SOURCE</entry>
 <entry name="function">dprlib->

;DPRGetInitValue,TBLLKUP,DOCTYPE,FILETYPE</entry>
 <entry name="function">dprlib->

;DPRGetInitValue,TBLLKUP,HTMTEMPLATE,TEMPLATE</entry>
 <entry name="function">atclib->;ATCDumpAttachment,ATC2</

entry>
 <entry name="function">dprlib->;DPRTransform</entry>

</section>

Here is the input message for Example 2:

 Content-Type: text/xml
 Content-Transfer-Encoding: 8bit

 <?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/

soap/envelope/">
 <SOAP-ENV:Body>

 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>

 <REQTYPE>TBLLKUP3</REQTYPE>
 <UNIQUE_ID>5060623132132872004-0-Thread-3</

UNIQUE_ID>
 </CTLBLOCK>
 <MSGVARS>

 <VAR NAME="CONFIG">AMERGEN</VAR>
 <VAR NAME="KEEP"></VAR>

 <VAR
NAME="TABLEFILE">C:\rp\mstrres\insure\table\mktmsg.dbf</VAR>

 <VAR NAME="TABLEID">mktmsg</VAR>
 <VAR NAME="TABLERETURNS">KEY</VAR>

 </MSGVARS>
 </DSIMSG>

 </SOAP-ENV:Body>

List of Rules

229

 </SOAP-ENV:Envelope>

Here is the output message for Example 2:

 Content-Type: text/xml
Content-Transfer-Encoding: 8bit

<?xml version="1.0" encoding="UTF-8"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/
soap/envelope/">
 <SOAP-ENV:Body>
 <DSIMSG VERSION="100.020.0">
 <CTLBLOCK>
 <REQTYPE>TBLLKUP3</REQTYPE>
 <UNIQUE_ID>4157034449162892004-0-Th</UNIQUE_ID>
 <ATTACHMENT TYPE="BINARY">
 <DELIMITER>DPRTRANSFORMFILE</DELIMITER>
 </ATTACHMENT>
 </CTLBLOCK>
 <MSGVARS>
 <VAR NAME="FILETYPE">htm</VAR>
 <VAR NAME="RESULTS">SUCCESS</VAR>
 <VAR NAME="SERVERTIMESPENT">0.094</VAR>
 <VAR NAME="SOURCE">LOOKUPVAR.OUTPUT.TBLLKUPFILE</
VAR>
 <VAR NAME="TBLLKUPFILE">0kCIZfRhu_QkisrZ6tCkg-
ScKnfxexBzy0EwXmCPRMaX2.xml</VAR>
 <VAR NAME="TEMPLATE">tbllkup.htm</VAR>
 <VAR NAME="TRANSFORMFILE">0FS7HpzYXvT33h_JxsFsQgV_p-
UZmoUEn-OZyu5jrBLOK.htm</VAR>
 <ROWSET NAME="RECORDS">
 <ROW NUM="1">
 <VAR NAME="ENTRY_NAME">Coverage</VAR>
 <VAR NAME="DESCRIP">Did you know you could
save 5% off your policy premium if you place more than one policy
with Amergen?</VAR>
 <VAR NAME="RETURNS"Coverage</VAR>
 </ROW>
 <ROW NUM="2">
 <VAR NAME="ENTRY_NAME">Greeting</VAR>
 <VAR NAME="DESCRIP">Hello World</VAR>
 <VAR NAME="RETURNS">Greeting</VAR>
 </ROW>
 <ROW NUM="3">
 <VAR NAME="ENTRY_NAME">Technique</VAR>
 <VAR NAME="DESCRIP">Are you using the 5
techniques to manage risk?</VAR>
 <VAR NAME="RETURNS">Technique</VAR>
 </ROW>
 </ROWSET>
 </MSGVARS>
 </DSIMSG>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Here is the HTML Template for Example 2:

 <html>
 <head>
 <script language="javascript">

 function setValue(obj){

DPRTransform

230

 if (obj.value != null)
 window.returnValue = obj.value;
 else
 window.returnValue = "";

 window.close();

 }

 </script>
 </head>
 <body bgcolor="#f2eddb" onload="window.focus();">
 <table width="100%" height="100%">
 <tr>
 <td align="center" valign="top">
 <select name="Lookup" onChange="setValue(this);"
value="">
 <!-- DCL BEGIN
SECTION;NAME=descendant::ENTRIES;LOOP=descendant::INDEX;FOR-
EACH=INDEX;-->
 <option value="<%./
descendant::COLUMN[attribute::NAME="DESCRIP"],%>">
 <%./
descendant::COLUMN[attribute::NAME="ENTRY_NAME"],%>
 </option>
 <!-- DCL END SECTION -->
 </select>
 </td>
 </tr>
 <tr>
 <td align="center" valign="center">
 <input type="button" value="close" name="close"
onclick="self.close();"/>
 </td>
 </tr>
 </table>
 </body>
 </html>

List of Rules

231

 DPRUnloadExportFile
Use this rule to unload an export file from a form set (FAP file) in memory. This rule runs
on DSI_MSGRUNR. The output file format is controlled by the FILETYPE attachment
variable. Set it to XML to create XML files, otherwise the system creates a V2 file.

NOTE: You can use the DPRPrint and DPRUnloadExportFile rules to specify output
names based on transaction data when Docupresentment processes WIP and
archived transactions. This is done using INI options and built-in INI functions.
See Generating File Names Based on Transaction Values on page 173 for more
information.

Syntax long _DSIAPI DPRUnloadExportFile (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

To use this rule you will need to specify the following rule name:

dprlib->DPRUnloadExportFile

Attachment variables This rule expects these attachment variables:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

DPRFORMSET The form set to export. This form set is created by some other rule,
such as the DPRLoadImportFile rule.

EXPORT The name of the output file.

APPENDEDEXPORT If this variable is present in the attachment, the output is appended
to the file specified in the EXPORT attachment variable. If you omit
this value, the system uses the AppendedExport option in the
ExpFile_CD control group to determine if the output should be
appended to the export file. The default for the AppendedExport
option is No.

EXPORTRECIPS If this variable is present in the attachment, the output export file will
contain recipient information. If you omit this value, the system uses
the value in the AFEExportRecips option in the ExpFile_CD control
group to determine if the output should contain the recipient
information. The default for AFEExportRecips option is No.

KEYID Specifies the KeyID. If you omit this value the system uses the
attachment variable specified in the TransactionID option in the
DocSetNames control group.

DPRUnloadExportFile

232

Returns Success or failure

See also DPRPrint on page 169

TRANCODE Specifies the WIP transaction code.

STATUSCODE Specifies the WIP status code.

FILETYPE Set this to XML to create an XML export file.
Set to CMBNA to create a combined NA/POL file.
The default is to create a V2 export file.

XMLALLOBJECTS See XMLALLFIELDS.
If you set FILETYPE to XML, use this variable to control how much
information is output. If you include this attachment variable, the
system includes additional Documaker attributes, such as
coordinates, in the output XML file.

XMLALLFIELDS Include this attachment variable to include empty fields as well as
fields with data in an extended XML file.
Use this attachment variable instead of the XMLALLOBJECTS
attachment variable. The latter results in overly large XML files.

DESC (Optional) Specifies the WIP description.

Variable Description

List of Rules

233

 DPRUnloadXMLFormset
Use this rule to unload different versions of an XML form set based on different options
passed in as input attachment variables. The form set unloaded is a sub-form set based on
GROUP1 and GROUP2 input attachment variables.

Syntax long _DSIAPI DPRUnloadXMLFormset (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Attachment outputs

NOTE: You must pass a CONFIG attachment variable to DPRSetConfig rule in the
same request type so it can find the form set it needs to unload.

See also DPRLoadXMLFormset on page 149

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

GROUP1 The Key1 for a form set.

GROUP2 The Key2 for a form set.

PRINTPATH (Optional) Specifies the print path location of the XML form set.

XMLIMAGEOPTIONS (Optional) Unloads all image options for a form set.

XMLALLFIELDS (Optional) Unloads all empty field information for a form set.

XMLALLOBJECTS (Optional) Unloads all objects for a form set.

Variable Description

XMLFORMSET Contains the full path and file name of the unloaded XML form set.

RESULTS Success or failure

DPRUnlockWip

234

 DPRUnlockWip
Use this rule to unlock a WIP record after it has been edited so other users can make
changes to the record.

Syntax long _DSIAPI DPRUnlockWip (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects these attachment variables:

See also DPRAddWipRecord on page 44

DPRApproveWipRecords on page 46

DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDelMultiWipRecords on page 79

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRGetOneWipRecord on page 109

DPRIni2XML on page 121

DPRLockWip on page 151

DPRModifyWipData on page 163

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

USERID The user ID you want to unlock.

RECNUM or
UNIQUE_ID

Lets the rule find the correct WIP record.

List of Rules

235

 DPRUpdateFromMRL
Use this rule to get group and form lists from Docupresentment (IDS). You can use this
rule to get the...

• Group list

• Form list for a specific group or groups

• Forms with image and field information

• HTML representation of FAP images

This rule locates the form set in the DSI variable DPRFORMSET. If there is no form set,
this rule creates the form set with group information only. If the form set has groups but
no forms, the rule updates it with a list of forms for the groups.

If the form set has forms, DPRUpdateFromMRL updates it with image and required field
information.

You can use the DPRUpdateFromMRL rule with these rules on the same request type:

• DPRLoadXMLAttachment

• DPRLoadedXML2Formset

• DPRSortFormsetForms

• DPRFilterFormsetForms

Syntax long _DSIAPI DPRUpdateFromMRL (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

RECORDS The attachment variable RECORDS is created with the value of the total
number of returned groups or the total number of forms in the list of
groups provided as input. MAXRECORDS and PAGE values do not
affect this number, however, searching for forms does affect it.

XMLFORMID If the XMLFORMID attachment variable is checked, the unique form ID
is generated for each form. When this variable is set to No the form ID is
not generated. It is only applicable when forms are returned.

MAXRECORDS If the attachment variable MAXRECORDS is checked, the number of
forms returned is limited to its value. If this variable is missing, all forms
will be returned. When getting the group list this variable is ignored as the
number of groups is usually small and can be returned at once.

DPRUpdateFromMRL

236

Using MAXRECORDS and PAGE lets the application implement paging in case the total
number of forms is large. For example, if the passed in values are PAGE=20 and
MAXRECORDS=10 the forms 191-200 will be returned.

The form set is updated from MRL on DSI_MSGRUNF and the forms are removed from
it based on PAGE and MAXRECORDS values on the DSI_MSGRUNR message.

See also DPRLoadXMLAttachment on page 148

DPRLoadedXML2Formset on page 145

DPRSendFormsetXML on page 204

DPRFilterFormsetForms on page 89

DPRSortFormsetForms on page 213

DPRGetFormList on page 105

DPRGetHTMLForms on page 107

PAGE When the attachment variable PAGE is checked, the form starting at the
position of MAXRECORDS times PAGE number is the first form to be
returned. This does not apply to group list.

STARTRECORD Enter the record you with which you want the rule to start.

Variable Description

List of Rules

237

 DPRUpdateFormsetFields
Use this rule to update form set fields in memory with values specified in attachment
variables. Attachment variable names must start with FORMSETUPDATEFIELD and
are in the following format:

\FORM\IMAGE\FIELD\FieldData

The form and image names are optional but the format of the value must be the same.
Here is an example:

\\\FIELD\FieldData

If no attachment variables named FORMSETUPDATEFIELD are found, no error is
produced and there is no modification to the form set.

All matching fields will be updated in case there is more then one with the same name.
Updating fields that are embedded into text areas will force the reformatting and might
create more pages.

The form set in memory is located in the DSI variable DPRFORMSET. If the particular
request type uses a different DSI variable to store the form set, the rule parameter in the
INI file should provide the name of the DSI variable.

Syntax long _DSIAPI DPRUpdateFormsetFields (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

ULONG ulOptions options

DPRUpdateFormsetFromXML

238

 DPRUpdateFormsetFromXML
Use this rule to update forms in the form set based on an XML document in memory.
This rule updates form set data during form selection when using iPPS or iDocumaker
and the WIP Edit plug-in. You can update all fields or only global scope fields.

NOTE: This rule is also used by iPPS and iDocumaker to do form selection when you are
using the WIP Edit plug-in.

With Shared Objects version 11.2 and higher, you can use this rule with HTML
entry. When you use this rule with HTML entry, it acts like the
DPRLoadImportFile rule.

Syntax long _DSIAPI DPRUpdateFormsetFromXML (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

The rule expects the XML to be loaded into the DSI variable DPRXMLFORMSET by
DPRLoadXMLAttachment rule. It also expects the form set (NA and POL files) to be
loaded into the DSI variable DPRFORMSET by a rule such as the DPRGetWipFormset
rule.

This rule is executed on DSI_MSGRUNF.

This rule only allows you to add information. You cannot use it to remove information or
change the order of forms or modify image and field information.

Attachment variables

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

DPRSETALLFIELDS To update all fields, set this variable to Yes. If set to Yes, the
DPRSETGLOBALFIELDS value passed on the same request
is ignored and assumed to be Yes as well. Keep in mind the
DPRSETALLFIELDS value updates regular variable fields
but not multi-line variable fields.
Using this variable helps in situations where processing
outside the Documaker environment provides additional
field data and you must apply this additional data to the
document. For example, if you have a rating engine evaluate
a transaction and you now need to add the rating information
to the transaction.

List of Rules

239

NOTE: This is relevant only when you are using the WIP Edit plug-in. These attachment
variables affect only DPRUpdateFormsetFromXML rule.

See also DPRGetWipFormset on page 117

DPRLoadXMLAttachment on page 148

DPRLoadImportFile on page 147

DPRSETGLOBALFIELDS To update global scope fields, the XML file sent to
Docupresentment (IDS) should provide the values for these
fields and should also set the DPRSETGLOBALFIELDS
attachment variable to Yes.

DPRIFORMSPROTOCOL This attachment variable determines if only forms are
changed or if image and field information is affected as well.
• When the value of DPRIFORMSPROTOCOL is blank,

missing, or PLUGIN, only form information is
updated, so the rule can add, remove, and change order
of forms. Image and field information is ignored.

• If the DPRIFORMSPROTOCOL value is
something else, like Docupresentment (IDS) or
RDBMS, this rule acts similar to the
DPRLoadImportFile rule when importing XML
files. The form set is replaced with the information
in the XML file, including forms, images, fields,
and so on.

iPPS and iDocumaker provide the
DPRIFORMSPROTOCOL value

DPRSUPPRESSPAGINATION This optional attachment variable can be added to suppress
pagination when transactions contain paragraph selection
fields. This variable is valid only when the
DPRIFORMSPROTOCOL variable is not specified as a
PLUGIN. The suppress pagination behavior is triggered by
the presence of this variable and its value is ignored.

DPRUpdateWipRecords

240

 DPRUpdateWipRecords
Use this rule to update multiple WIP records. It retrieves a record each time based on the
user's selection, and replaces one or more fields with a user-specified value. It then updates
the record.

This rule accepts the minimum required fields, such as UniqID and Status Code, as input
attachments when retrieving records. Other fields are optional. The Status Code field can
also be optional if goChange is set to Yes.

NOTE: Normally, goChange is left blank and defaults to No. Only when the provided
status code and status code from record file differ—such as when the status code
is changed by another user while the status code remains unchanged on your local
machine — should it be set to Yes. This makes sure that during the next
submission, the new status code is used to update the record.

You must include the UniqID field to retrieve the record. You can also include other fields
as input attachments to update the original fields in the record. Here is an example for
Print Preview to update status code:

WIPS=1&WIPS1.StatusCode=W&WIPS1.RecNum=5&NEWWIP1.StatusCode=RJ

In this case WIPS1.RecNum is required and WIPS1.StatusCode=W is recommended.
NEWWIP1.StatusCode=RJ is the only field that provides a new status code to update the
original one.

Syntax long _DSIAPI DPRUpdateWipRecords (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule expects these attachment variables:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

WIPS The number of records to be updated.

WIPSX.FieldName The value of the field to be updated in the original record.

List of Rules

241

Request types ReqType = WST

The requested type is required in the DOCSERV.INI file. Here is an example:

< ReqType:WST >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRUpdateWipRecords

INI options Use these INI options in the WIPData control group with this rule:

Here is an example:

< WIPData >
File = WIP

NEWWIPX.FieldName The new value of the field to update the original one. Where the affix
X (WIPSX.FieldName) is the number of WIP records to be updated,
counting from 1 to WIPS; FieldName is the field defined in the WIP
DFD file.
All fields are expected even though some may be empty. In absence
of the DFD file, FieldName takes default field names, such as Key1,
Key2, KeyID, RecType, and so on.

GOCHANGE This input attachment variable can be set to Yes or No. The default
value is No. You can use this attachment variable in situations where
the STATUS CODE of the selected record may have been changed
by another user.
In the retrieved record list, the STATUS CODE may still be the old
value. When you try to update the STATUS CODE, the system will
not do it since it has been updated. After you realize it, you can
update STATUS CODE by setting GOCHANGE to Yes.
This input attachment variable is normally used with Print Preview.
For more information, refer to the Docupresentment Guide.

ACTION This input attachment variable has these values: UPDATE, ADD, or
DELETE. The default is UPDATE.
This lets you create one piece of code that can, for instance, update,
add, and delete records. When you set ACTION to UPDATE, you
have to input both WIPSX.fieldnames set and
NEWWIPX.fieldnames set.
When you set ACTION to ADD or DELETE, you only have to
input WIPSX.fieldnames set.
If you have multiple records to update, add, or delete, specify
WIPS=number of records, and WIPS1.fieldnames,
WIPS2.fieldnames, and so on, along with NEWWIP1.fieldnames,
NEWWIP2.fieldnames, and so on.

Variable Description

Option Description

File Specifies the name of the WIP file.

Path Specifies the path to the WIP file.

MaxWIPRecords Specifies the maximum number of records to read into the processQ. This
prevents it from slowing down because of a large volume of records.

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

DPRUpdateWipRecords

242

Path = mstrres\sampco\wip\

Returns Success or failure

NOTE: This rule can update any field in a record, but it is typically used to change the
status code.

Remember that WIPS1.fieldnames set is for the original fields in the selected
record, while NEWWIP1.fieldnames set is for the new fields. In the new fields,
you can specify the new values you want to replace the old values.

This rule can add or delete records. To add or delete records, it expects the
attachment variable ACTION with the value UPDATE, ADD or DELETE. The
default is UPDATE. This rule is tested only for updating the status code.

See also DPRApproveWipRecords on page 46

DPRCheckWipRecords on page 59

DPRGetWipList on page 114

DPRGetWipFormset on page 117

DPRGetWipRecipients on page 119

DPRSearchWip on page 199

List of Rules

243

 DPRWip2Dpw
Use this rule to create a DPW file from WIP. The DPW file will contain the following:

• WIP index - in XML format (created by the DPRWipIndex2XML rule)

• Menu file - path defined by INI option

• NA file - from WIP

• POL file - from WIP

• FAP files - all FAP files within the form set

• LOG files - all logos used in the form set.

Syntax long _DSIAPI DPRWip2Dpw (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

This rule creates the final section of the DPW file. Use this rule with these other rules:

• DPRWipIndex2XML - to get the XML portion of the DPW file.

• DPRGetWipFormset - to get the form set handle needed to get the FAP files and
logos in the DPW file

• ATCSendFile - to send the DPW file back to the client.

See also DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRGetOneWipRecord on page 109

DPRGetWipFormset on page 117

DPRIni2XML on page 121

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRWipIndex2XML on page 248

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

DPRWipBatchPrint

244

 DPRWipBatchPrint
Use this rule to print multiple transactions from WIP. This rule is used with iDocumaker
or iPPS to produce non-PDF output when all transactions are output into one print-ready
file. The print types are PCL, PCL6 (PXL), or PostScript.

Syntax long _DSIAPI DPRWipBatchPrint (DSIHANDLE hdsi,
 char * pszParms,
 ULONG ulMsg,
 ULONG ulOptions)

Parameters

Attachment variables This rule expects these input attachment variables:

Parameter Description

DSIHANDLE hdsi pointer to the rule data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI message

ULONG ulOptions options

Variable Description

PrtType (Optional) This specifies the print type, such as PCL, PCL6 (PXL), or
PostScript. If omitted, the system checks the Printer control group. The
default is PCL.

PrtDevice (Optional) This is the name of the print device.

PrintFile (Optional) The name of the print file. If the PrtDevice variable is present, this
variable is ignored. By default, the system creates a 46-byte unique file name.

PrintPath (Optional) This path points to the location of the print file.

DPRProofLogo (Optional) Enter Yes if you want to include a logo. See DPRAddLogo on
page 38 for information on setup options.

RecordIDs The number of records or a list of record IDs delimited by commas. Here is
an example of how you can use RecordIDs to specify a list of record IDs:

RecordIDs 00000001,00000002,00000003, ...

You can also use this variable to specify the total number of record IDs and
then list those IDs using RecordIDsX, as shown in the RecordIDsX
discussion.

DPRWipBatchPrint

245

NOTE: You can use either RecordIDs or RecNums, both accomplish the same purpose.
Both are provided for your convenience.

Keep in mind that the values passed in via RecordIDs or RecNums are the record
numbers if the WIP index is in xBase or the values in the UNIQUE_ID column
if the WIP index is in an SQL database, depending on your setup.

RecordIDsX A record ID, where X denotes a record index from one (1) to the number of
records. Include this variable if RecordIDs contains the total number of
records.
Here is an example of how you would specify the number of records (using
RecordIDs) and the actual record IDs (using RecordIDsX):

RecordIDs 10
RecordIDs1 00000001
RecordIDs2 00000002
...
RecordIDs10 00000010

RecNums The number of records or a list of record IDs. This variable is ignored if
RecordIDs exists. Here is an example of how you can use RecNums to specify
a list of record IDs:

RecNums 00000001,00000002,00000003...

You can also use this variable to specify the total number of record IDs and
then list those IDs using RecNumsX, as shown in the RecNumsX discussion.

RecNumsX This is a record ID, where X denotes a record index from one (1) to the
number of records. Include this variable if RecNums contains the total
number of records.
Here is an example of how you would specify the number of records (using
RecNums) and the actual record IDs (using RecNumsX):

RecNums 10
RecNums1 00000001
RecNums2 00000002
...
RecNums10 00000010

AllRecipients (Optional) If present, all recipients copies are printed to the print file.

Recipient Enter a list of recipients delimited by commas. Here is an example:

AGENT,COMPANY,INSURED

Recipient is ignored if you include AllRecipients.

Variable Description

List of Rules

246

INI options You can use these INI options:

< Printer >
PrtType =

< Attachments >
PrintPath =

You may also need to set up INI options for WIP record retrieval and printers in the
PrtType:XXX control group and also define recipients in the Recip_Names control group.

To reduce the number of PCL fonts being downloaded into the print stream, which
optimizes the size of the output file, set these INI options:

< PrtType:PCL >
InitFunc = PCLInit
TermFunc = PCLTerm
DownloadFonts = Yes

This makes sure each font is downloaded only once and only when needed.

In addition, if you want to add a logo you can add the AddLogo control group to the
master resource INI file. Here is an example of the INI options you could use:

< AddLogo >
 Logo = TRSEAL
 Top = 600
 Left = 1200
 Pages = 1
 Color = 16711680

Option Description

PrtType (Optional) This specifies the print type, such as PCL, PCL6 (PXL), or PostScript.
If not present, the system checks the Printer control group. The system ignores
this option if the input attachment variable PrtType is present. The default is
PCL.

PrintPath (Optional) The name of the print device. The system ignores this option if input
attachment variable PrintPath is present.

Option Description

Logo The name of the logo you want to use. Store this logo in the FORMS directory of
the master resource library.

Top Contains the top coordinate (position) of the logo in FAP units (2400 units per
inch)

Left Contains the left coordinate (position) of the logo in FAP units (2400 units per
inch)

Pages (Optional) The default is to add the logo on all pages. Use this option to set the
number of pages on which you want the logo to appear. If you set this option to 1,
the system adds a logo to the first page only.

Color (Optional) Default is to display the logo as a black and white logo (value of zero).
This number is a 24-bit RGB color. The lowest 8 bits represent the amount of red
color, the next 8 bits represent the amount of green color, and the subsequent 8 bits
represent the amount of blue color. A color setting of 255 (lowest 8 bits are all on)
would indicate the full amount of red and no green or blue. A color setting of 65535
(lowest 16 bits are on) indicates the full amount of red and green but no amount of
blue. This results in yellow.

DPRWipBatchPrint

247

Returns Success or failure

Example Here is an example request type:

[ReqType:i_WipBatchPrint]
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = dprlib->DPRWipBatchPrint

Here are some example input attachments:

CONFIG SAMPCO
USERID DOCUMAKER
PRTTYPE PCL
PRINTFILE TMP.PCL
PRINTPATH d:\docserv\mstrres\sampco
RECORDIDS 3
RECORDIDS1 1
RECORDIDS2 2
RECORDIDS3 3
ALLRECIPIENTS YES

See also DPRAddLogo on page 38

List of Rules

248

 DPRWipIndex2XML
Use this rule to create the XML portion of DPW file. Other rules can get the variables
through WIPXMLVAR. Be sure to set up the menu file as shown here:

< WIP2DPW >
Menu = wipedit.res

Syntax long _DSIAPI DPRWipIndex2XML (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects this input attachment variable:

The WIP record is broken into attachment variables.

Attachment outputs This rule creates these DSI variables:

The rule writes out the WIP index portion of the DPW file on run-reverse.

See also DPRAddWipRecord on page 44

DPRApproveWipRecords on page 46

DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDelMultiWipRecords on page 79

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRGetOneWipRecord on page 109

DPRIni2XML on page 121

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

RECNUM or
UNIQUE_ID

Lets the rule find the correct WIP record.

Variable Description

WIPDATAPTR An internal variable that contains the WIP buffer.

WIPXMLVAR The XML version of the WIP record.

DPRWipIndex2XML

249

DPRLockWip on page 151

DPRUnlockWip on page 234

DPRModifyWipData on page 163

DPRWip2Dpw on page 243

DPRWipTableParms on page 250

List of Rules

250

 DPRWipTableParms
Use this rule to update the parameters for the WIP table shown on the WIP List page.
This rule is expected for Print Preview in all required REQTYPEs.

Syntax long _DSIAPI DPRWipTableParms (DSIHANDLE hdsi,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables This rule expects this input attachment variable:

Attachment outputs This rule expects these output attachments:

INI options This rule reads the WIP table parameters from the PRTView_WIPTable control group
and add the text strings to output queue. If the control group is missing, the rule uses the
default WIP parameters.

You use these options in the PrtView_WIPTable control group to define the output
attachments:

Parameter Description

DSIHANDLE hdsi pointer to the rules data

char * pszParms pointer to rule parameter string

ULONG ulMsg DSI_ message

ULONG ulOptions options

Variable Description

CONFIG The user configuration.

Variable Description

Fields Specifies the WIP fields as defined in the WIP.DFD file.

Table Specifies the WIP fields in the WIP table.

WIPKey Specifies the WIP fields to fill in the WIP table.

OptKey Specifies the action keys (status code) for the SELECTION options.

AppTxt Specifies the application options.

ShwTxt Specifies the show options.

EntryTbl Specifies the entry table for searching table.

EntryKey Specifies the entry keys for search records.

Option Description

Fields Specifies the WIP fields as defined in the WIP.DFD file.

DPRWipTableParms

251

Here is an example:

< PrtView_WIPTable >
;table

Fields = KEY1,KEY2,KEYID,RECTYPE,CREATETIME,ORIGUSER,CURRUSER,
MODIFYTIME,FORMSETID,TRANCODE,STATUSCODE,FROMUSER,FROMTIME,
TOUSER,TOTIME,DESC,INUSE,ARCKEY,APPDATA,RECNUM

Table = KEY1,KEY2,KEYID,RT,CT,OU,CU,MT,ID,TR,ST,DESC,RECNUM
WIPKey = KEY1,KEY2,KEYID,RECTYPE,CREATETIME,ORIGUSER,CURRUSER,

MODIFYTIME,FORMSETID,TRANCODE,STATUSCODE,DESC,RECNUM
;dropdown

OptKey = AP,AR
AppTxt = Approve,Archive only
ShwTxt = Approved,Archived

;entry table
EntryTbl = Key 1,Key 2,Key ID,Record Type,Formset ID,Tran

Code,Status Code
EntryKey = KEY1,KEY2,KEYID,RECTYPE,FORMSETID,TRANCODE,STATUSCODE

If you omit this control group, the default arrays are used. Be sure to include all INI
options shown here.

Returns Success or failure

See also DPRAddWipRecord on page 44

DPRApproveWipRecords on page 46

DPRAssignWipRecord on page 50

DPRDeleteWipRecord on page 75

DPRDelMultiWipRecords on page 79

DPRDpw2Wip on page 82

DPRFile2Dpw on page 88

DPRGetOneWipRecord on page 109

DPRIni2XML on page 121

DPRLockWip on page 151

Table Specifies the WIP fields in the WIP table.

WIPKey Specifies the WIP fields to fill in the WIP table.

OptKey Specifies the action keys (status code) for the SELECTION options.

AppTxt Specifies the application options.

ShwTxt Specifies the show options.

EntryTbl Specifies the entry table for searching table.

EntryKey Specifies the entry keys for search records.

Option Description

List of Rules

252

DPRUnlockWip on page 234

DPRModifyWipData on page 163

DPRWip2Dpw on page 243

DPRWipIndex2XML on page 248

DPRXMLDiff

253

 DPRXMLDiff
Use this rule after the DPRCompareXMLFiles rule to unload the XML file that rule
created.

Syntax long _DSIAPI DPRXMLDiff (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

When this rule is called, it first locates the DSI variable DPRXMLFORMSET to retrieve
the XML document handle. If the XML document handle does not exist, the rule returns
without output.

To unload the XML file, it will locate the attachment variable PRINTFILE to get a user
defined file name. If the file name does not exist, a unique file name will be generated for
the unloading. If the defined file name includes a path, use it, otherwise it will locate the
attachment variable PRINTPATH for the user-defined path.

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

254

 MTCLoadFormset
Use this rule to load the Metacode or AFP print stream into a DAP form set. This rule
creates a variable called MTCFORMSET with the value of the DAP form set handle. This
rule expects the value METACODEFILE in the attachment with the name of the file to
load. This rule destroys the DAP form set on the DSI_MSGRUNR message.

Syntax long _DSIAPI MTCLoadFormset (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

NOTE: The DPRPrint rule also works with the Documanage Bridge as well as the
Documaker Bridge. If you include the MTCLoadFormset rule in the rule list, the
DPRPrint rule will work with the form set loaded from that rule as well.

Parameters

This rule uses these options in the MasterResource control group in the DAP.INI file:

< MasterResource >
DefLib =
XrfFile =
FormLib =

You can also use the following INI option to tell the system where to look for your
Metacode files:

< Metacode2PDF >
MetacodePath =

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Option Definition

MetacodePath This option specifies where the MET files are located.

MTCLoadFormset

255

Attachment variables The required attachment variables are:

This rule creates and destroys the MTCFORMSET DSI value.

Returns Success or failure

Variable Description

USERID The user ID

METACODEFILE
or AFPFILE

The name of the Metacode file to load. If you omit the path, the
MetacodePath option in the Metacode2PDF control group defines
where the file is located.
The name of the AFP file to load. If you omit the path, the AFPPath
option in the AFP2PDF control group defines where the file is located.

PRTINPUTTYPE The name of the printer control group (PrtType:XXX) to use for your
INI settings. The default printer group is XER for the Metacode printer
group and AFP for the AFP printer group.

List of Rules

256

 MTCPrintFormset
Use this rule to return a print output. This rule requires that the MTCFORMSET DSI
variables created. Use the MTCLoadFormset on page 254 rule to create this variable.

Syntax long _DSIAPI MTCPrintFormset (DSIHANDLE hInstance,
 char * pszParms,
 unsigned long ulMsg,
 unsigned long ulOptions)

Parameters

Attachment variables There are no required attachment variables. If present, the system uses the following
attachment variable:

This rule generates a unique file name for the PDF file it creates and adds the name to the
attachment as REMOTEPRINTFILE. The file name also includes path information.

This rule expects the MTCFORMSET variable be created with the DAP form set handle.
It is similar to DPRPrint, but does not do any recipient filtering.

This rule can use the following control group and option in the DAP.INI file:

< Attachments >
PrintPath =

Returns Success or failure

Parameter Description

DSIHANDLE hInstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

Variable Description

PrintPath The full path for the output PDF file. If you omit this variable, the system uses
the PrintPath option in the Attachments control group to determine the location
of PDF file.

RPDCheckAttachments

257

 RPDCheckAttachments
Use this rule to check the required input attachment variables and INI options before
starting the GenData program.

Syntax _DSIEXPORT DWORD _DSIAPI RPDCheckAttachments (DSIHANDLE hdsi,
char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

Parameters

This rule runs before the RPDCheckRPRun rule. Using this rule, ReqType becomes:

< ReqType:RPD >
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = atclib->ATCUnloadAttachment
function = irllib->IRLCopyAttachment
function = dprlib->DPRSetConfig
function = rpdlib->RPDCheckAttachments
function = rpdlib->RPDCheckRPRun
function = rpdlib->RPDCreateJob
function = rpdlib->RPDProcessJob

The expected attachment variables are checked only if they are in the RPDAttachments
control group. Here is an example:

< RPDAttachments >
Variable = ReqType
Variable = Config
Variable = PrintBatches
Variable = ExtrFile

If the ExtrFile option is required, the rule checks to see if it exists. Keep in mind the
ExtrFile option includes a full path. If you omit the path, the system uses the path
specified in the ExtrPath option as the default path.

This rule also checks these options in the RPDRunRPcontrol group:

< RPDRunRP >
Executable = d:\RP\Mstrres\gendata.exe
Directory = d:\RP\Mstrres\rpex1\
UserINI =..\..\fsiuser

If the UserINI option does not include a drive letter, the system will look at the Directory
option to find the path, so the full UserINI name becomes:

d:\ProgIDS\RP\Mstrres\Validate\w64bin\..\..\fsiuser

Parameter Description

DSIHANDLE hdsi DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

List of Rules

258

In other cases, you can set the UserINI option, as shown here:

Directory = d:\ProgIDS\RP\Mstrres\Validate\w64bin\..\..\fsiuser
UserINI = ..\..\fsiuser

So the full UserINI name becomes:

d:\ProgIDS\RP\Mstrres\Validate\w64bin\..\..\fsiuser

This rule also makes sure the USERINI.INI file exists. For UNIX, if the first byte is “/”,
the system looks at the UserINI option for the full path, for example:

UserINI=/ProgIDS/RP/Mstrres/Deflib

Otherwise, the system uses the path specified in the Directory option. Keep in mind that
if the UserINI option is omitted, the FSIUSER.INI file is used as the default
USERINI.INI file.

INI options You can use these INI options:

< RPDAttachments >
Variable = ReqType
Variable = Config
Variable = PrintBatches
Variable = ExtrFile

< IDSServer >
ExtrPath = d:\fap\mstrres\rpex1\extract\

< RPDRunRP >
Executable = d:\rel1300\rps100\shipw64\gendata.exe
Directory = d:\fap\mstrres\rpex1\
UserINI = fsiuser

< Debug >
RPDCheckAttachments =

Returns Success or failure

Option Description

RPDAttachments control group

Variable Enter the name of the variable.

IDSServer control group

ExtrPath Enter the default path for the ExtrFile option.

RPDRunRP control group

Executable Enter the name and path of the program you want to execute, such
as d:\rpsetup\gendata.exe.

Directory Enter the path to the master resource library, where you want to run
Documaker.

UserINI (Optional) The name and path of the INI file you want to use. The
default is the FSIUSER.INI located in the directory specified by the
Directory option.

Debug control group

RPDCheckAttachments Enter Yes to append errors to the ErrFile.

RPDCheckAttachments

259

See also RPDCheckRPRun on page 260

RPDCreateJob on page 263

RPDDeleteFiles on page 268

RPDProcessJob on page 270

RPDRunRP on page 273

RPDSetPDFAttachmentVariables on page 278

RPDStopRPRun on page 280

List of Rules

260

 RPDCheckRPRun
Use this rule to make sure Documaker Server is running. If Documaker Server is not
running, this rule starts it.

Syntax _DSIEXPORT DWORD _DSIAPI RPDCheckRPRun (DSIHANDLE hdsi,
char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

Parameters

To determine if Documaker Server is running, the rule looks at the CONFIG value. If the
CONFIG value is not the same as it was in the previous run, this rule stops and then
restarts Documaker.

On the RUNF message, this rule looks to see if a Documaker process exists and starts one
if needed. On the RUNR message, this rule stops the Documaker process if there was an
error.

On DSI_MSGRUNF, this rule first checks to see if Documaker is running by detecting
the gendata semaphore created by RULServerBaseProc rule. If the semaphore does not
exist, Documaker is not running. This rule then starts Documaker and creates a
semaphore called rpdrunrp.

This lets Documaker check the status of the Docupresentment (IDS) by detecting the
existence of the semaphore. It also lets Documaker terminate normally in case
Docupresentment (IDS) stops.

To handle situations where you have multiple master resource libraries (MRLs), the rule
checks the CONFIG value for every job process to see if a new MRL is requested. If the
CONFIG value changes, the rule stops the current Documaker process and starts another
one which uses the new MRL.

On DSI_MSGRUNR, this rule terminates Documaker if errors occur.

Attachment variables

Attachment outputs

Parameter Description

DSIHANDLE hdsi DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

CONFIG The configuration for the master resource library (MRL). See also the
DPRSetConfig rule and the setup with multiple master resource directories.

Variable Description

RPDRunProcess This value is the process ID for the Documaker process.

RPDSemaphoreName The semaphore name from the RPDSemaphore INI option.

RPDCheckRPRun

261

INI options You can use these INI options:

< RPDRunRP >
Executable =
Directory =
UserINI =

< IDSServer >
GENSemaphoreName =
RPDSemaphoreName =

Returns Success or failure

GENSemaphoreName The semaphore name from the GENSemaphore INI option.

RPDRunSemaphore Stores the RPDSemaphore handle.

RPDJobLogName The name of the job log file name to use.

RPDJobTicketName The name of the job ticket file name to use.

Variable Description

Option Description

RPDRunRP control group

Executable The name and path of the program you want to execute, such
as d:\rpsetup\gendata.exe.

Directory The path to the master resource library, where you want to run
Documaker.

UserINI (Optional) The name and path of the INI file you want to use. The
default is the FSIUSER.INI located in the directory specified by the
Directory option.

IDSServer control group

GENSemaphoreName The name of the semaphore. The default is gendata.

RPDSemaphoreName The name of the semaphore. The default is rpdrunrp.

MaxConfigAllowed A number of maximum configurations allowed for multiple
processes. If a configuration is not found in a list in memory, start a
new process and save the configuration in the list.

Debug control group

RPDCheckRPRun Enter Yes if you want errors appended to the ErrFile and the
LogTrace file to record the trace.

RPDErrFile Specify a name for the RPDErrfile. Include the full path

List of Rules

262

See also RPDCheckAttachments on page 257

RPDCreateJob on page 263

RPDDeleteFiles on page 268

RPDProcessJob on page 270

RPDRunRP on page 273

RPDSetPDFAttachmentVariables on page 278

RPDStopRPRun on page 280

RPDCreateJob

263

 RPDCreateJob
Use this rule to find the attachment variables for each of the values in the job ticket and
add them to the XML tree. The XML tree is added to the RPDJOBTICKET DSI variable
so the next rule can use it.

Syntax _DSIEXPORT DWORD _DSIAPI RPDCreateJob (DSIHANDLE hdsi,
char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

Parameters

On DSI_MSGRUNF, this rule creates the XML document for the job ticket that triggers
the job processing. You should direct your results to designated directories and use unique
file names, especially if you want to support multiple MRL setups, multiple RP processes,
or multiple job processes.

You can change INI options via attachment variables. These changes are added onto the
XML tree so Documaker can update the INI options in memory.

On DSI_MSGRUNR, this rule processes the XML document of the job log, and all
values of the XML tree are added to the output attachment.

NOTE: See also the ServerFilterFromRecipient rule in the Rules Reference.

Attachment variables You can use these input attachment variables:

Parameter Description

DSIHANDLE hdsi DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

ExtrFile Extract file name and path. This is a required input file.

MsgFile (Optional) Message file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was omitted,
the system uses the PrintPath defined in the IDSServer control group.
If the file name is omitted, the system creates a 46-byte unique file
name.

ErrFile (Optional) Error file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was omitted,
the system uses the PrintPath defined in the IDSServer control group.
If the file name is omitted, the system creates a 46-byte unique file
name.

https://docs.oracle.com/cd/G18689-01/RR/Index.html

List of Rules

264

LogFile (Optional) Log file name and path. If you omit the path, the PrintPath
attachment variable is used. If the PrintPath was omitted, the system
uses the PrintPath defined in the IDSServer control group. If the file
name is omitted, the system creates a 46-byte unique file name.

DBLogFile (Optional) DB log file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was omitted,
the system uses the PrintPath defined in the IDSServer control group.
If the file name is omitted, the system creates a 46-byte unique file
name.

NAFile (Optional) NA file name and path. If you omit the path, the PrintPath
attachment variable is used. If the PrintPath was omitted, the system
uses the PrintPath defined in the IDSServer control group. If the file
name is omitted, the system creates a 46-byte unique file name.

POLFile (Optional) POL file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was omitted,
the system uses the PrintPath defined in the IDSServer control group.
If the file name is omitted, the system creates a 46-byte unique file
name.

NewTrn (Optional) NewTrn file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was omitted,
the system uses the PrintPath defined in the IDSServer control group.
If the file name is omitted, the system creates a 46-byte unique file
name.

PrintBatchPath The default path for print batches.

PrintBatches The number of batches to print. Your entry cannot exceed the number
of printers listed in the PrinterInfo control group in the FSISYS.INI
file.
If you do not set this attachment variable. Documaker Bridge looks in
the Documaker INI files and determines the correct value.
The system determines the value based on the number of Printer
options in the PrinterInfo control group of your Documaker
(GenData) INI files (FSIUSER.INI and FSISYS.INI):

< PrinterInfo >
Printer =

PrintBatchesX The name of a print batch, where X denotes the number of the print
batch, continuing from one to PrintBatches. If omitted, the system
creates a 46-byte unique name for the print batch. A print batch can
have a full path. If it does not have a path, PrintPath is used. If
PrintPath is omitted, the system uses the path specified in the
PrintPath option in the Data control group.

BatchFiles The number of batch files. If you enter zero or omit this option, no
batch file information is updated. Your entry should not exceed the
number of batch files listed in the Print_Batches control group in the
FSISYS.INI file.

BatchFilesX The name of the batch file. X denotes the number of the batch file,
counting from one to the maximum. If you omit this option, the
system creates a 46-byte unique name for the batch file.
You can include a full path. If you omit the path, the system uses the
PrintPath. If the PrintPath is omitted, the system uses the path
specified in the PrintPath option in the IDSServer control group.

Variable Description

RPDCreateJob

265

Output DSI variables

Input DSI variables

Attachment outputs

Note that the input attachments for PrintBatchX should be in the same order as those for
PrinterX, as defined in the PrintInfo control group in the FSISYS.INI file. Also keep in
mind that PrinterX and BatchX are option names you define in the PrintInfo and
Print_Batches control groups.

INIOptions The number of other INI options to update.

INIOptionsX.Group The INI group name you want to update.

INIOptionsX.Option The INI option name you want to update.

INIOptionsX.Value The value of the INI option you want to update. X indicates the
number of INI options, counting from one to the maximum.

Variable Description

Variable Description

RPDJOBTICKET Job ticket variable. Its value is a XML document handle for the job ticket.

Variable Description

RPDJOBLOG Job log variable. Returns an XML document handle for the job log.

Variable Description

ExtrFile Extract file name and path.

MsgFile Message file name and path.

ErrFile Error file name and path.

LogFile Log file name and path.

DBLogFile DB log file name and path.

NAFile NA file name and path.

POLFile POL file name and path.

NewTrn NewTrn file name and path.

PrinterX Name and path of print batches. X denotes the number of the print batches from
one to the maximum.

BatchX The name and path of the batch files. X denotes the number of batch files, from
one to the maximum.

Results Success or an error code from the Docupresentment (IDS) rules.

RPResults An error code from Documaker: 0=Success, 4=Warning, 8 or 16=Failure.

List of Rules

266

INI options You can use these INI options:

< IDSServer >
PrintPath =
PrintFileCacheTime =
TextFileCacheTime =

< Printer >
PrtType =

< RPDRunRP >
BaseLocation =

Returns Success or failure

See also RPDCheckAttachments on page 257

RPDCheckRPRun on page 260

RPDDeleteFiles on page 268

RPDProcessJob on page 270

RPDRunRP on page 273

RPDSetPDFAttachmentVariables on page 278

RPDStopRPRun on page 280

Option Description

IDSServer control group

PrintPath Used as a default path for print batches and the rest of the output files.

PrintFileCacheTime The length of time, in seconds, you want the system to store the print
files. At expiration time, the system removes the print batch files. The
default is 1800 (30 minutes). Note that only print files with the 46-byte
unique name created by the system are cached.

TextFileCacheTime The length of time, in seconds, you want the system to store the text files.
At expiration time, the system removes the text files. The default is 1800
(30 minutes). Note that only text files with the 46-byte unique name
created by the system are cached.

FileExt The file extension you want to use if an output file specified by input
attachment, such as ExtrFile, MsgFile, ErrFile, LogFile, DbLogFile,
NaFile, PolFile, and PrtLog, does not have an extension. The default is
.dat.

Printer control group

PrtType The type of print batch file. Your entry must be consistent with the
control group defined in the FSISYS.INI file. For instance, if you set up
a PrtType:PDF control group there, enter PDF here.

RPDRunRP control group

BaseLocation The URL to the output data directory. Your entry must be consistent
with the PrintPath or other defined data path.

Debug control group

RPDCreateJob Enter Yes if you want errors appended to the ErrFile and the LogTrace
file to record the trace.

RPDCreateJob

267

List of Rules

268

 RPDDeleteFiles
Use this rule to delete files created by the RPDRunRP rule.

Syntax _DSIEXPORT DWORD _DSIAPI RPDDeleteFiles (DSIHANDLE hdsi,
char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

Parameters

This rule gets the values for the attachment variables RETCODE and RESULTS which
were set in the RPDRunRP rule. It then gets the INI setting for the SaveOnErrors option.

If the RETCODE is greater than or equal to 8 and the SaveOnErrors option is True, the
rule does not delete the files. If the SaveOnErrors option is set to True and RESULTS
contains FAILURE, the rule does not delete the files. The rule then gets the INI setting
for the KeepAll option. If this option is set to True, the rule does not delete the files.

If the files should be deleted, the rule deletes the extract, NA, POL, NEWTRN, TRN,
DBLog, LOG, MSG, and print batch files. It also deletes the ERRFILE if the other files
are deleted and RETCODE. And finally, the rule deletes the FSIUSER.INI file for the
request.

Attachment variables You can use these input attachment variables:

You have these output attachment variables:

INI options You can use these INI options with this rule:

< RPRun >
SaveOnErrors=
KeepAll =

Parameter Description

DSIHANDLE hdsi DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

RETCODE Returned code from a prior RPD rule.

RESULTS Success or failure from a prior RPD rule.

Variable Description

TEMPNAME A 46-byte unique name for creating temporary output files, such as .usr, .sys,
and so on.

RPDDeleteFiles

269

Use the following option in the request INI to determine if the files should be saved on
error (defaults to false if there is no entry in the INI file):

< RPRun >
SaveOnErrors =

Use these settings in the request INI to determine if all files should be kept:

< RPRun >
KeepAll =

To trigger this rule, add this line in the DOCSERV.INI file:

function = rpdlib->RPDDeleteFiles

Returns Success or failure

See also RPDCheckAttachments on page 257

RPDCheckRPRun on page 260

RPDCreateJob on page 263

RPDProcessJob on page 270

RPDRunRP on page 273

RPDSetPDFAttachmentVariables on page 278

RPDStopRPRun on page 280

Option Description

SaveOnErrors When the returned error code is greater than 4 or RESULTS returns a
FAILURE and if SaveOnErrors is set to Yes, the Delete flag is set to No and
temporary files are saved. Otherwise, temporary files are deleted.
The temporary files include Extrfile, Nafile, PolFile, NewTrn, TrnFile,
DbLogFile, LogFile and MsgFile.
The default is No, with the Delete flag defaulting to TRUE.

KeepAll If the Delete flag is Yes and KeepAll is Yes, the Delete flag is set to No to keep
all temporary files.

List of Rules

270

 RPDProcessJob
Use this rule to get the XML tree from the DSI variable RPDJobTicket and write it to a
file written on the RUNF message. On the RUNR message, this rule waits for the job log
file. The job log file is located in the same directory and is loaded as an XML file on the
RUNR message.

Syntax _DSIEXPORT DWORD _DSIAPI RPDProcessJob (DSIHANDLE hdsi,
char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

Parameters

The Docupresentment (IDS) variable RPDJobLog is created with the XML job log. The
RPDJobLog variable and the XML tree associated with it is destroyed in this rule on the
TERM message.

You can set the maximum amount of time to wait using the MaxWaitTime option. On
the RUNR message, this rule also removes the job log file from disk. You can also control
the removal of the job log file with the RPDProcessJob INI option. This option is for
debugging purposes only.

On DSI_MSGRUNF, this rule receives the XML document handle from the DSI variable
RPDJobTicket, and writes the XML tree into the JOBTICKET.XML file specified in the
Directory option.

On DSI_MSGRUNR, this rule waits until it receives the job log file (JOBLOG.XML),
from Documaker. You specify how long the system should wait using the SleepingTime
INI option. If the waiting time exceeds the limit, the rule stops Documaker.

The system locates a job log placed in the directory specified in the Directory INI option.
The job log file is loaded into an XML document so the XML tree can be written out in
attachments. Whether the JOBLOG.XML file should be removed, depends on your entry
in the RPDProcessJob INI option.

Attachment variables

Output files

Parameter Description

DSIHANDLE hdsi DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

RPDJobTicket A job ticket variable. It returns the XML document handle for the job
ticket.

File Description

JOBTICKET.XML A job ticket, which is a trigger for the RP process. It contains request
information and information used to update INI options.

RPDProcessJob

271

Attachment outputs

INI options You can use these INI options:

< RPDRunRP>
Directory =

< IDSServer >
MaxWaitTime =
SleepingTime =
WaitForStart =

< Debug >
RPDProcessJob =

Returns Success or failure

Variable Description

RPDJobLog The job log variable. Its value is an XML document handle for the job log.

Option Description

RPDRunRP control group

Directory Enter the path where you want to load and unload the JOBTICKET.XML
and JOBLOG.XML files.

IDSServer control group

MaxWaitTime Enter, in seconds, the maximum length of time you want Docupresentment
(IDS) to wait for the JOBLOG.XML file. The default is 60 seconds.

SleepingTime Enter the time, in milliseconds, to specify how often Docupresentment
(IDS) should check for a job ticket. The default is 1000 (1 second).

WaitForStart The length of time Docupresentment (IDS) should wait for Documaker to
start before assuming RP is not running. The default is 10 seconds. Adjust
this value if the Documaker requires more time to start. If Documaker does
not start within the allotted time, this rule returns an error and stops
processing.

Debug control group

RPDProcessJob Enter Yes if you want errors appended to the ErrFile, the LogTrace file to
record the trace, and the JobLog file to be renamed and saved.

List of Rules

272

See also RPDCheckAttachments on page 257

RPDCheckRPRun on page 260

RPDCreateJob on page 263

RPDDeleteFiles on page 268

RPDRunRP on page 273

RPDSetPDFAttachmentVariables on page 278

RPDStopRPRun on page 280

RPDRunRP

273

 RPDRunRP
Use this rule to run Documaker Server. It will either run the GenTrn, GenData, and
GenPrint program, depending on how you set the SingleStepGenData INI option.

Syntax _DSIEXPORT DWORD _DSIAPI RPDRunRP (DSIHANDLE hdsi,
char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

To trigger this rule, set the following option in the DOCSERV.INI file:

function = rpdlib->RPDRunRP

Attachment variables This rule expects these input attachment variables:

This rule creates these attachment variables:

Parameter Description

DSIHANDLE hdsi DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

CONFIG This identifier specifies the identity of a specific application configuration. You
must have a corresponding entry in the DAP.INI file. For example, if
CONFIG=ABC you would need this entry in the DAP.INI file:

< CONFIG:ABC >
 INIFile = ABC.INI

There must also be an ABC.INI file in the document server root directory. This
ABC.INI file would contain application specific implementation details. See
INI File Options below for more information.

EXTRACT The full name and path of the extract file you want to process.

Variable Description

ERRORFILE The URL of the error file created by Documaker Server. This variable only
exists if there is an error or a warning. If no error file has been created, this
variable will be blank.

ERRORMSG This variable only exists if there was an error and will contain the error
message.

RESULTS Success or failure

RETCODE The code returned from Documaker Server. If the error occurred before
Documaker Server was called, the return code contains FAIL.

List of Rules

274

This rule copies input attachment into the output attachment.

Returns Success or failure

INI options This rule uses these options in the RPRun control group:

The INI file loaded by Docupresentment (IDS) for the request that uses this rule (either
DAP.INI or the INI listed in the Config control group for the request), must contain an
RPRun control group as described above.

TEMPNAME This variable contains the path and unique 4 character hex base name of the
output files created by Documaker Server. Here is an example:

/docserv/tempdata/04AD.

Variable Description

Option Description

BaseDirectory This is the path for the output files created by this rule and Documaker.
This is a required entry with no default. For example:

d:/docserv/tempdata/

BaseLocation This is the URL for the base directory. This is a required entry with no
default. This gets used for the error file (if applicable). For example:

http://205.176.142.5./doc-data/

(where doc-data is the alias for d:\docserv\tempdata)

CacheTime If an error file is created by the rule, it is cached for this length of time
in minutes.The default is 60.

Debug Set this to Yes to create a debug log which will be created in the doc
server directory. This file will have a four character hex unique name
with a DBG extension. The default is No.

SingleStepGenData Set this to Yes to run GenData only. The default is No.

Startup This is the path to run Documaker from. This is helpful when
Documaker is a different release from the Doc Server. Default is the
current directory. Include a slash at the end of the path, as shown here:

Startup = e:\dap\dll\

TempRetries This is the max number of times an attempt will be made to find a
unique name and create a temporary file with that name and an RPD
extension. (This temporary file is used as a place holder for that Unique
Name). The default is 128.

UserINI This is the name and path of the FSIUSER INI file to be used by
Documaker. This is a required entry with no default. Here is an
example:

d:/docserv/mstrres/rpd/ini/fsiuser.ini

Debug Enter Yes to generate a file containing trace information in the
Docupresentment (IDS) directory. The file will have a 46-byte unique
name with a .dbg extension. The default is No.

RPDRunRP

275

The FSIUSER.INI file listed in this INI, the FSISYS.INI file (listed in FSISYSINI control
group of the FSIUSER.INI file), and the extract file (named in the Extract attachment
variable) are copied to the directory listed in the BaseDirectory control group of the INI
file. These copied files are renamed to use a four-character UniqName that was generated
by the rule. The copied files will have these new extensions:

extract = .ext
fsiuser =-.usr
fsisys =. sys

The new FSIUSER.INI file is then updated to rename the output files listed in the Data
control group.

NOTE: After the update, all entries from the FSISYS will be included in the FSIUSER.
The FSISYSINI entry in FSIUSER is cleared to prevent it from being loaded in
again by Documaker.

Each of the renamed output files will contain the BaseDirectory path followed by the
unique name and the following extensions:

NOTE: This BaseDirectory followed by the Unique Name is placed in the TempName
attachment variable.

Extrfile =ext
Nafile =na
PolFile =pol
NewTrn =.ntn
Trnfile =trn (for SingleStepGendata, this is renamed to NUL)
NewTrn =ntn
DBLogFile =dbl
Errfile =.err
MsgFile =.msg
PrintBatches =.bn (for each batch where n is sequential from 1)
PrinterInfo =for each printer listed under printerinfo
port =.xxx where xxx is the PrtType.

NOTE: Since every port is getting the same name, this only works with one printer.
Likewise, it will only work for one batch.

The new FSIUSER is then passed in the command line to run Documaker. If you set the
SingleStepGendata option to Yes, only the GenData program is executed. Otherwise, the
GenTrn program is executed first. If it completes successfully, the GenData program is
then executed. Finally if the GenData program completes successfully, GenPrint is
executed.

If Documaker creates warnings or errors, the error file is converted to an HTML page and
the URL is placed in the ERRORFILE attachment variable. The original error file is
deleted.

List of Rules

276

If the process is successful, the RESULTS attachment variable contains SUCCESS.
Otherwise, it contains FAILURE.

Errors This rule can return these messages:

RDP0001 RPDRunRP failed. #ERRORMSG#

One of the following messages will be substituted:

Message Description

BaseDirectory not specified in
RPRUN section of INI

You need to specify the BaseDirectory in the RPRun control
group.

BaseLocation not specified in
RPRUN section of INI

You need to specify the BaseLocation in the RPRun control
group.

UserINI not specified in RPRun
section of INI

The UserINI file was not specified in RPRun section of the
INI file

BaseDirectory does not exist Appears if the BaseDirectory listed in the INI does not exist.
(The actual BaseDirectory is displayed)

UserINI does not exist Appears if the UserINI listed in the INI does not exist. (The
actual UserINI file name is displayed)

Unable to locate 'Extract'
Attachment variable

Appears when unable to locate extract attachment variable

Empty extract file specification in
'Extract' attachment variable

Appears when there is an empty extract file specification in
the extract attachment variable

Extract file does not exist Appears if the extract file specified in the attachment variable
does not exist (the actual extract file name is displayed)

Unable to create temporary file Appears when the attempt to create a temporary file with the
new unique name was unsuccessful.

Call to CopyFiles() failed Appears when there was an error copying the extract file or
INI files to the BaseDirectory using the new unique name.

Call to RPDGetFsisys failed.
Check The <Environment>
FSISYSINI entry in FSIUSER

Appears when the FSISYS.INI file listed in the FSISYS.INI
section of the FSIUSER.INI file does not exist.

GENTRAN step failed Appears when the GenTrn program completes with a return
code that is greater than four (4).

GENDATA step failed Appears when the GenData program completes with a
return code that is greater than four (4)
Note: if you use the GenDataStopOn option to bypass
errors, the GenData program may complete processing and
produce all expected output files, however since there were
errors, the return code from GenData is 8 and this error
message appears.

GENPrint step failed Appears when the GenPrint program completes with a
return code that is greater than four (4).

Call to CopyFiles() failed. Appears when the call to CopyFiles fails.

RPDRunRP

277

See also RPDCheckAttachments on page 257

RPDCheckRPRun on page 260

RPDCreateJob on page 263

RPDDeleteFiles on page 268

RPDProcessJob on page 270

RPDSetPDFAttachmentVariables on page 278

RPDStopRPRun on page 280

Call to RPDGetFsisys failed. Check the FSISYSINI option in the Environment control
group in your FSIUSER.INI file.

GENTRAN step failed. The GenTrn processing step failed.

GENDATA step failed. The GenData processing step failed.

GENPRINT step failed. The GenPrint processing step failed.

Startup path does not exist. The startup path is incorrect.

Unable to create temporary file. The system cannot create a temporary file.

Unknown critical error occurred. Appears when there was a failure for an unknown reason.

Message Description

List of Rules

278

 RPDSetPDFAttachmentVariables
Use this rule to create PDF file name and URL attachment variables. This rule is run after
the RPDRunRP rule.

Syntax _DSIEXPORT DWORD _DSIAPI RPDSetPDFAttachmentVariables (DSIHANDLE
hdsi,

char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

Parameters

This rule creates the FILE and URL attachment variables in the DSI_OUTPUTQUEUE
for PDF files generated by Documaker Server (RPDRunRP) which was run as a prior rule.

This rule uses the TEMPNAME attachment variable from DSI_INPUTQUEUE which
is a path and unique file name generated for this request, such as c:/docserv/data/0be4.

The rule uses it to generate a wildcard search mask to search for PDF files. For each file
found by the search, the rule adds an attachment record to DSI_OUTPUTQUEUE and
adds to that attachment record a FILE value and a URL value such as:

http://10.2.10.23/doc-prog/data/79eb.pdf

Use this option in the request INI to specify the base location to use:

< RPRun >
BaseLocation =

Use these INI settings in the request INI to specify how long to cache the PDF file. When
the time expires, the file is deleted the next time SAR is triggered. If there is no entry in
the INI file, the cache time defaults to one hour.

< RPRun >
CacheTime =

You can trigger this rule by adding the following line in the DOCSERV.INI file:

function = rpdlib->RPDSetPDFAttachmentVariables

Attachment variables

Attachment outputs

Parameter Description

DSIHANDLE hdsi DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Variable Description

TEMPNAME A unique 4-character hex name used as an output file. In PDF format.

Variable Description

PDFS The number of PDF files.

PDFSX.FILE The output PDF file.

RPDSetPDFAttachmentVariables

279

Returns Success or failure

See also RPDCheckAttachments on page 257

RPDCheckRPRun on page 260

RPDCreateJob on page 263

RPDDeleteFiles on page 268

RPDProcessJob on page 270

RPDRunRP on page 273

RPDStopRPRun on page 280

PDFSX.URL A complete URL.

Variable Description

List of Rules

280

 RPDStopRPRun
Use this rule to stop Documaker. To do so, you need to execute the request type STOP
as described in the topic, Setting Up Docupresentment (IDS) in the Docupresentment
Guide.

This rule is also used as an INIT/TERM rule and is registered on Docupresentment (IDS)
under the ReqType:INI control group. You can use this rule to make sure that when
Docupresentment (IDS) stops, Documaker also stops.

Syntax _DSIEXPORT DWORD _DSIAPI RPDStopRPRun (DSIHANDLE hdsi,
char * pszParms,
ULONG ulMsg,
ULONG ulOptions)

Parameters

This rule receives the current process ID from the DSI variable RPDRunProcess and then
terminates Documaker.

Attachment outputs < Debug >
RPDStopRPRun =

Returns Success or failure

See also RPDCheckAttachments on page 257

RPDCheckRPRun on page 260

RPDCreateJob on page 263

RPDDeleteFiles on page 268

RPDProcessJob on page 270

RPDRunRP on page 273

RPDSetPDFAttachmentVariables on page 278

Parameter Description

DSIHANDLE hdsi DSI instance handle

char * pszParms Pointer to rule parameter string unsigned long

ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

Option Description

RPDStopRPRun Enter Yes to append errors to the ErrFile and have the LogTrace file record
the trace.

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf
https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

TPDCreateFormset

281

 TPDCreateFormset
Use this rule to create a PDF file from a TIFF, BMP, or JPEG file. On RUNF, this rule
creates a DSIValue named TPDFORMSET and locates the stem attachment variable
named TIFFNAME. For each of the stem values called NAME, the rule creates a page in
PDF format.

NOTE: This rule is only available on Windows 32-bit platforms.

Syntax long _DSIAPI TPDCreateFormset (DSIHANDLE hdsi,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

This rule can submit a combination of TIF, BMP, and JPG bitmap files in one request by
specifying their types. The input attachment variables NAME and TYPE are sent to
Docupresentment (IDS) with a full file name and type for each bitmap. If the bitmap file
name is sent to Docupresentment (IDS) without the bitmap type, this rule checks for the
source type attachment variable SRCTYPE. If this variable does not exist, TIF is used as
the default type.

Here is an example of the request type setup:

[ReqType:INI]
function = tpdlib->TPDInitRule

[ReqType:TPD]
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = tpdlib->TPDCreateFormset
function = tpdlib->TPDPrintFormset

Attachment variables Here are the input attachment variables:

Parameter Description

DSIHANDLE hdsi the DSI instance handle

char * pszParms a pointer to the rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

Variable Description

CONFIG This is the name of the configuration, such as SAMPCO.

TIFFNAME This is the number of input bitmap files.

List of Rules

282

NOTE: You can have as many TIFFNAME#.NAME/TIFFNAME#.TYPE variables as
necessary.

The rule also tries to locate PDFNAME in the input attachment as the name of the output
file. If one cannot be located, the rule generates a unique name and adds it to the output
attachment as REMOTEFILENAME.

This rule uses the TIFFPATH option to locate TIFF, BMP, or JPEG files if the name of
the TIFF, BMP, or JPEG file in the TIFFNAME variable does not already have a path.

< TIFF2PDF >
TIFFPath =

On RUNR message, this rule locates the TPDFORMSET value, destroys the form set and
deletes the value.

This rule depends on the TPDInitRule rule being registered on the INI request.

Returns Success or failure

SRCTYPE This is the source bitmap file type, such as TIF.

TIFFNAME1.NAME
TIFFNAME1.TYPE

This is the name and path of the first bitmap file, such as
d:\docserv\mstrres\sampco\tif1.tif.
The type of the first bitmap file.

TIFFNAME2.NAME
TIFFNAME2.TYPE

This is the name and path of the second bitmap file.
The type of the second bitmap file.

TIFFNAME3.NAME
TIFFNAME3.TYPE

This is the name and path of the third bitmap file.
The type of the third bitmap file.

Variable Description

TPDCreateOutput

283

 TPDCreateOutput
Use this rule to create a PDF output file. This rule uses the TPDFORMSET value created
by the TPDLoadFormset rule. The rule tries to locate PDFNAME in the input
attachment as the name of the output file. If it cannot locate PDFNAME, the rule
generates a unique name and adds it to the output attachment as REMOTEFILENAME.

Syntax long _DSIAPI TPDCreateOutput (DSIHANDLE hdsi,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

NOTE: This rule depends on the TPDInit rule being registered on the INI request.

See also TPDInitRule on page 285

TPDLoadFormset on page 284

Parameter Description

DSIHANDLE hdsi the DSI instance handle

char * pszParms a pointer to the rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

List of Rules

284

 TPDLoadFormset
Use this rule to load bitmap files. On the RUNF message, the rule creates a DSIValue
named TPDFORMSET to hold the form set handle created by the TPDStartFormset
API, locates the stem attachment variable with the name TIFFNAME, and for each of the
stem values NAME, calls TPDAddPage.

Syntax long _DSIAPI TPDLoadFormset (DSIHANDLE hdsi,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

This rule uses this INI option:

< TIFF2PDF >
TIFFPath =

to locate TIFF files if the name of the TIFF file in TIFFNAME variable does not have a
path. The rule creates a DSI value called TPDFORMSETH that holds the form set in
memory.

On the RUNR message, the rule locates the TPDFORMSET value, destroys the form set
by calling TPDStopFormset, and deletes the value. It also deletes the TPDFORMSETH
value.

NOTE: This rule depends on the TPDInit rule being registered on the INI request.

Here is an example of the server INI configuration:

[ReqType:TPD]
function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachment
function = dprlib->DPRSetConfig
function = atclib->ATCUnloadAttachment
function = tpdlib->TPDLoadFormset
function = dprlib->DPRAddLogo,TPDFORMSETH
function = dprlib->DPRAddText,TPDFORMSETH
function = tpdlib->TPDCreateOutput

See also TPDInitRule on page 285

Parameter Description

DSIHANDLE hdsi the DSI instance handle

char * pszParms a pointer to the rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions options

TPDInitRule

285

 TPDInitRule
Use this rule to initialize the TIFF2PDF Bridge. On INIT message, this rule creates a
DSIValue named TPDHANDLE which holds the handle to the TIFF2PDF Bridge.

On TERM message, this rule terminates the TIFF2PDF Bridge and deletes DSIValue
TPDHANDLE.

NOTE: This rule is only available on Windows 32-bit platforms.

Syntax long _DSIAPI TPDInitRule (DSIHANDLE hdsi,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

You should use this rule as an INIT rule, only on the INI request type.

Returns Success or failure

See also TPDLoadFormset on page 284

Parameter Description

DSIHANDLE hdsi the DSI instance handle

char * pszParms a pointer to the rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long
ulOptions

options

295

Chapter 3

Reading Print Stream Files
Documaker Bridge provides a way to read print-ready
files, such as those produced by Documerge. This
appendix discusses the following topics:

• Getting AFP Resources on page 296

• Getting Metacode Resources on page 298

• Building AFP System Resources on page 300

• Building Metacode System Resources on page 302

• Creating Font Cross-reference Files on page 307

• Creating Documaker Graphics Files on page 313

• Limitations on page 315

Chapter 3
Reading Print Stream Files

296

GETTING AFP
RESOURCES

The first step to prepare Docupresentment (IDS) for producing Adobe™ Portable
Document Format (PDF) output from AFP archives is to get a copy of the AFP resources
used to produce these archives. You will need these AFP resources:

• AFP fonts (coded font, character set, and code page files)

• AFP overlays

• AFP page segments

• Archived AFP print streams

AFP Fonts
AFP fonts are designed solely for AFP printers. In IBM AFP terminology, a font is
described by three components:

Coded font A coded font file contains references to specific character set and specific code page. Coded
font files always begin with the letter X, such as X0DATIN8.

Code page In IBM AFP terminology, a code page file maps code points to an AFP character name in
a character set file. Code page files always begin with the letter T, such as T1DOC037.

Character set A character set file contains the bitmap image of each character in the character set.
Character set files always begin with the letter C, such as C0FATIN8.240 or
C0FATIN8.300. The character set file name extension (240 or 300) indicates whether the
bitmap images are drawn at 240 or 300 dots per inch.

You will use these AFP fonts to create a font cross-reference (FXR) file. You must have
these system resources available to produce PDF files from the archived AFP print streams.

Having these AFP fonts also lets you print the AFP archives so you can establish baselines
for testing. If the AFP fonts are not installed for the AFP printer you are testing with, you
will need to install the AFP fonts for that printer.

NOTE: Sampling the AFP fonts will also help you fine-tune the font cross-reference
(FXR) file.

AFP Overlays
You must have a copy of the AFP overlays used by the archived AFP print streams. You
will use these AFP overlays to produce PDF files from the archived AFP print streams.

If the AFP overlays are not installed for the AFP printer you are testing with, you will need
to install the AFP overlays for that printer.

AFP Page Segments
You must have a copy of the AFP page segments used by the archived AFP print streams.
Page segments are graphics files. You will use these AFP page segments to produce PDF
files from the archived AFP print streams.

If the AFP page segments are not installed for the AFP printer you are testing with, you
will need to install the AFP page segments for that printer.

Getting AFP Resources

297

Archived AFP Print Streams
You must also have a copy of the archived AFP print streams to produce PDF files using
Docupresentment (IDS). You can print the archived AFP print streams beforehand to
establish baselines as you test.

Your next step is to build system resources, turn to Building AFP System Resources on
page 300.

Chapter 3
Reading Print Stream Files

298

GETTING
METACODE
RESOURCES

The first step necessary to prepare Docupresentment (IDS) to produce Adobe Portable
Document Format (PDF) output from Metacode archives is to get a copy of the Metacode
resources used to produce these archives. You will need these Metacode resources:

• Xerox JSL

• Metacode fonts and images

• Archived Metacode print streams

XEROX JSL
First get a copy of the Xerox JSLs used to print the Metacode print streams before they
were archived. You will use these Xerox JSLs as you configure Docupresentment’s (IDS)
INI settings to read Metacode archives. If the JSL is not installed on the Metacode printer
you are testing with, install the JSL on the printer and compile the JSL into a JDL on that
printer.

You will also need to know which JDE was used within the JSL file to produce the
archived Metacode print stream. Metacode print streams can switch to a different JDL/
JDE than the JDL/JDE the printer was started with. If the archived Metacode print
streams switch to a different JDL/JDE, IDS’s INI settings will be based on the JDL/JDE
which is switched to by the archive Metacode print streams.

Once the Xerox JSL files are installed and compiled on the printer, you can print the
Metacode archives to establish baselines for testing.

METACODE FONTS AND IMAGES
Next, get a copy of the Xerox fonts (FNT files) and images (IMG files) used by the
archived Metacode print streams. You will use these Xerox fonts and images to create a
font cross-reference (FXR) file and Documaker graphics (LOG) files. You must have these
system resources available to produce PDF files from the archived Metacode print streams.

The Documaker Bridge and the MRG2FAP utility let you load FRM files and IMG files
referenced in the Metacode print stream being converted. The system looks for the FRM
and IMG files in the directory specified by the FormLib option in the MasterResource
control group. If you omit this option, the system looks in the current directory.

Having these Xerox fonts and images also lets you print the Metacode archives so you can
establish baselines for testing. If the Xerox fonts and images are not installed on the
Metacode printer you are testing with, you will need to install these files on that printer.

NOTE: Sampling the Xerox fonts and images will also help you fine-tune the font cross-
reference (FXR) file.

Getting Metacode Resources

299

Loading fonts directly To handle Xerox fonts that contain multiple signatures or characters that must be printed
vertically for the bitmap image to print correctly, the Documerge Metacode loader lets
you load Xerox fonts directly.

The system loads a Xerox font when the print stream references a font that is not listed in
the FXR and it cannot find a logo with the same name as the Xerox font. The system loads
the Xerox font from the master resource's FontLib directory, as specified in the INI file.
In addition to signature fonts, you can also use this feature to include bar code, MICR, or
symbol fonts.

Using this capability slows performance and increases the size of PDF files. Do not use
this capability to load all fonts if you are making PDF files—doing so causes the PDF
driver to crash.

ARCHIVED METACODE PRINT STREAMS
You must also have a copy of the archived Metacode print streams to produce PDF files
using Docupresentment (IDS). You can print the archived Metacode print streams
beforehand to establish baselines as you test.

Your next step is to build Metacode system resources, turn to Building Metacode System
Resources on page 302.

Chapter 3
Reading Print Stream Files

300

BUILDING AFP
SYSTEM

RESOURCES

To build system resources, you must modify the system initialization (INI) files used by
the various Documaker applications. The INI files you will modify are listed below:

• FSISYS.INI

• FAPCOMP.INI

SYSTEM INITIALIZATION (INI) FILES
You must add a PrtType:AFP control group to these INI files. This control group contains
the AFP options used for the archived AFP print streams.

PrtType Control Group
Below is an example of the PrtType:AFP control group, which contains these INI options:

< PrtType:AFP >
OverlayExt = .ovr
PageSegExt = .psg
PaperSize = 0

AFP2PDF Control Group
Below is an example of the AFP2PDF control group which contains INI options used by
the system

< AFP2PDF >
AFPPath =

Master Resource Control Group
Below is an example of the MasterResource control group that contains the INI options
used by the system:

< CONFIG:AFPFiles >
FormLib= .\

Option Description

OverlayExt Use this option to tell the system what file extension is used by the AFP overlay
file names. The default is OVL.

PageSegExt Use this option to tell the system what file extension is used by the AFP page
segment file names. The default is PSG.

PaperSize Use this option to specify the size of the paper. Here are the most commonly-
used sizes:
zero (0) for US letter size (default)
1 for US legal size
2 for A4 size
3 for US executive size
4 for US ledger
98 for a custom size

Option Description

AFPPath Defines the location of input AFP files.

Building AFP System Resources

301

< Configurations >
Config = AFPFiles

< MasterResource >
FormLib= [CONFIG:AFPFiles] FormLib =

Option Description

FormLib Use this option to tell the system where the resource files (AFP overlays, AFP page
segments, and the IBMXREF.TBL file) are stored. If not found, the system
looks in the location specified in the DEFLIB option)

Chapter 3
Reading Print Stream Files

302

BUILDING
METACODE

SYSTEM
RESOURCES

The FSISYS.INI and FAPCOMP.INI files are system initialization files used by various
Documaker applications. You must add a PrtType:XER control group to these INI files.
This control group will contain the Xerox Metacode options used for the archived
Metacode print streams.

PrtType Control Group
Below is an example of the PrtType:XER control group, which contains these options:

< PrtType:XER >
DJDEIden = A'@@@DJDE'
DJDEOffset = 0
DJDESkip = 8
OutMode = BARR
ImageOpt = No
JDEName = DFLT
JDLCode = NONE
JDLData = 0,255
JDLHost = IBMONL
JDLName = CBA
JDLRStack = 0,10,EQ,X'13131313131313131313' (optional)
JDLRPage = 1,5,EQ,X'FFFF26FFFF' (optional)
PrinterInk = Blue
PaperSize = 0
DefaultFont= 11010

Several of these INI settings are based on comparable options and values in the settings of
the printer's JSL. A JSL may contain many JDLs from which to choose, or there may be
multiple JSLs compiled into multiple JDLs.

An excerpt of a JDL follows, along with an explanation of each of the PrtType:XER
control group options.

JDL example Here is an excerpt of a JDL. This excerpt is referenced in the control group options
discussion.

 CBA: JDL;

 T1: TABLE CONSTANT=X'121212121212121212';
 T2: TABLE CONSTANT=X'13131313131313131313';
 T3: TABLE CONSTANT=X'FFFF26FFFF';
 C1: CRITERIA CONSTANT=(0,9,EQ,T1);
 C2: CRITERIA CONSTANT=(0,10,EQ,T2);
 C3: CRITERIA CONSTANT=(1,5,EQ,T3);
 VOLUME HOST=IBMONL;
 LINE DATA=(0,255);
 IDEN PRE=A'@@@DJDE',
 OFF=0,
 SKIP=8;
 ROFFSET TEST=C1;
 RSTACK TEST=C2,DELIMITER=YES,PRINT=NONE;
 RPAGETEST=C3,SIDE=NUFRONT;

 /* 8.5 x 11 job */
 USA1: JDE; /* JOB can be used in place of JDE */
 OUTPUT PAPERSIZE=USLETTER;

 /* 8.5 x 14 job */
 META: JOB;

Building Metacode System Resources

303

 VOLUME CODE=NONE

 /* Default job */
 DFLT: JDE;
 VOLUME CODE=EBCDIC

 END;

DJDEIden, DJDEOffset,
and DJDESkip

These options represent the IDEN statement of the JDL. The value of the DJDEIden
setting is a string constant. The types of supported string constants are ASCII (A'string'),
EBCDIC (E'string'), Character ('string'), and Hex (X'string').

These types of strings are not supported: Octal, H2, and H6. Strings containing repeat
counts, embedded hex values, and upper/lower case toggles are not supported. Using the
JDL sample listed earlier, the INI options should be:

DJDEIden = A'@@@DJDE'
DJDEOffset = 0
DJDESkip = 8

OutMode This option indicates the output format for the Metacode data stream generated by
Documerge. You have these options:

Enter BARR, if you generate output using a Windows system and then transmit that
output to a Xerox printer using BARR SPOOL hardware and software. If you choose
BARR, a length byte is placed at the start and end of each Metacode record.

Enter BARRWORD only if records longer than 255 characters can be handled by your
Xerox printer.

Enter ELIXIR to convert Elixir-formatted Metacode print files into FAP files.

For normalized Metacode, the system supports the standard Documerge 4-byte ISI format
and the 2-byte variable (ISI 2-byte) format. Enter MRG4 to use the Documerge 4-byte
ISI format. Enter MRG2 to indicate you want to use the 2-byte variable (ISI 2-byte)
format.

Enter PCO if you generate output using a Windows system and then transmit that output
to a Xerox printer using PCO hardware and software (from Prism). When you select
PCO, a 4-byte length field is placed at the start of each Metacode record.

NOTE: Oracle Insurance has not completely tested the PCO interface.

Enter JES2 for MVS environments. If you will upload output generated on a Windows
system to an MVS system and then transmit the output to your printer via JES2, use
OutMode = JES2.

Enter ENTIRE if you will transmit output generated by a Windows or UNIX system to
a Xerox printer via a Sun workstation using ENTIRE/FIBER GATEWAY hardware and
software (from Entire, Inc.). When you choose ENTIRE, a 2-byte length field is placed
at the start of each Metacode record.

Enter LAN4235, if you generate output for a Xerox 4235 printer attached to a network.

Here is an example of this INI option:

OutMode = BARR

Chapter 3
Reading Print Stream Files

304

NOTE: This version assumes Metacode output produced by Documerge which does not
correspond to any of the outmodes listed above. You must, however, still choose
an outmode from those options listed previously.

ImageOpt Use this option to specify if the logos are saved on the Xerox printer as IMG files or as
FNT files. To use IMG files, your printer must have GVG or GHO hardware installed.
Also, in the JSL, you must set the Graphics option to Yes.

If you are using IMG files, set this option to Yes; otherwise set it to No. Metacode printers
have a limit of 16 images on a page. Here is an example of this option:

ImageOpt = No

JDEName Use this option to represent the name of the job. A JDL may contain many jobs (JDEs)
from which to choose. Using the JDL sample listed earlier, the Metacode job is selected
using this INI setting: (This JDE must contain VOLUME CODE=NONE)

JDEName = META

JDLCode Use this option to represent the type of input format expected by the Xerox printer during
normal operation (that is, the JDL/JDE setting used to start the printer). Character
translation is performed as necessary.

The system supports EBCDIC, ASCII, or NONE, which is the same as ASCII. These
formats are not supported: BCD, H2BCD, H6BCD, IBMBCD, PEBCDIC, and user-
defined code translation.

Referring to the sample JSL, if the printer is normally started with STA DLFT,CBA then
the JDLCode parameter must be set to CODE = EBCDIC. The INI setting must contain
the value of the CODE= statement for the printer's normal operation. Here is an example
of this INI option:

JDLCode = EBCDIC

JDLData Use this option to represent the starting position and length of the print line data within
an input data record. The LINE statement contains a DATA entry which holds these
values. Here is an example of this INI setting:

JDLData = 0,255

JDLHost Use this option to tell the system whether the printer is normally on-line or off-line. You
can choose from IBMONL (on-line) and IBMOS (off-line). Using the JDL example
listed earlier, this INI option should be set to:

JDLHost = IBMONL

Building Metacode System Resources

305

Additional settings for
Xerox printers

For a Xerox print driver, specify these functions in the PrtType:XER control group:

OutputFunc = XEROutput
OutMetFunc = XEROutMet
InitFunc = XERInit
TermFunc = XERTerm
Module = XERLIB

JDLName Use this option to represent the name of the JDL to use. Using the JDL sample listed
earlier, this option should be set to:

JDLName = CBA

JDLRStack Use this optional INI option to represent criteria which tells the system to send an end of
report condition to the printer. In the JDL example, the RSTACK statement performed
a criteria test named C2. The C2 test checks a specific part of each input line against the
string named T2. If the string T2 matches an input data record at position 0 for length of
10 bytes, an end of report condition is signaled. Only CONSTANT criteria using an EQ
operator is supported.

NOTE: If the printer is alternately used for Metacode and text file print jobs, you must
include the JDLRStack option. Always use JDLRStack.

Using the JDL sample listed earlier, this option should be set to:

JDLRStack = 0,10,EQ,X'13131313131313131313'

JDLRPage Use this optional INI option to represent the criteria which signals a jump to the front
side of a new sheet to the printer. In the JDL sample listed earlier, the RPAGE statement
performed a criteria test named C3. The C3 test checks a specific part of each input line
against the string named T3. If the string T3 matches an input data record at position zero
(0) for a length of 5 bytes, a jump to new sheet condition is signaled because of the
SIDE=NUFRONT setting. Only CONSTANT criteria using an EQ operator is
supported. The SIDE=NUFRONT setting in the JSL is required for JDLRPage to work
properly.

NOTE: If the print job is likely to contain duplex pages alternating with simplex (one
sided) pages, JDLRPAGE provides a way to leave the back sides of certain pages
blank.

Using the JDL sample listed earlier, this option should be set to:

JDLRPage = 1,5,EQ,X'FFFF26FFFF'

PrinterInk Use this option to specify the color of ink loaded on a Xerox highlight color printer. You
can set the PrinterInk option to either Blue, Red, or Green (blue is the default). This
option is used with the SendColor INI option. If you set the SendColor option to Yes,
you should also set the PrinterInk option. Here is an example of this INI option:

PrinterInk = Blue

Chapter 3
Reading Print Stream Files

306

PaperSize Use this option to specify the size of the paper. Here is a list of the most commonly-chosen
options. For a complete listing of all options, see Choosing a Paper Size in the Output
Management Guide.

DefaultFont Use this option when displaying the names of fonts which are not found in the font cross-
reference (FXR) or LOGO.DAT files. The value for the DefaultFont option is a font ID
which is contained in the font cross-reference (FXR) file being used.

< PrtType:XER >
DefaultFont = 11010

For Enter

letter zero (0). This is the default.

legal 1

A4 2

executive 3

custom 98

https://docs.oracle.com/cd/G18689-01/OutputManagement_ug_13.0.0.pdf
https://docs.oracle.com/cd/G18689-01/OutputManagement_ug_13.0.0.pdf

307

CREATING FONT
CROSS-

REFERENCE
FILES

Creating Font Cross-reference Files

You will need to create a font cross-reference (FXR) file using the AFP fonts referenced by
the archived AFP or Metacode print streams. You can create and update font cross-
reference (FXR) files using the Studio Font Manager.

ADDING FONTS TO THE FONT CROSS-REFERENCE FILE
First, start the Documaker Studio by entering this command, in the directory in which
you installed Docupresentment (IDS):

dmstudio

The Studio Font Manager's Insert option lets you add font information to your font
set (FXR file). Follow these steps to add font information:

1 When browsing for a FXR file, you see the following window:

Select the font cross-reference file to which you want to add fonts and click Ok. The
Font List window for the font cross-reference file appears.

2 To insert fonts, click Insert in the Font List window. The Insert Fonts window
appears.

NOTE: The Insert button is active only if no font is selected. If the Insert button is not
active, click the Deselect All button. This activates the Insert button.

3 Select AFP font or Xerox Metacode fonts as the font type you want to insert and click
Ok. The Load AFP Font File window appears.

Chapter 3
Reading Print Stream Files

308

4 Select the font files you want to add. You can insert multiple fonts. If the file is in a
different directory or folder, use the Drives and Folders fields to find the file. Once
you select the file you want, click Ok. The selected font set is inserted in your font set.

NOTE: Remember that AFP coded font files begin with the letter X, such as
X0DATIN8.FNT. A coded font file contains references to specific character set
and specific code page. The corresponding character set and code page files
should be in the same directory as the coded font file to import it. The font
information imported from the AFP font will be assigned a font ID which is one
greater than the largest font ID contained in the font cross-reference file (FXR).

If you get an error while inserting AFP fonts, the error may have occurred because your
AFP fonts are corrupt or the files do not contain AFP fonts.

If you get an error while inserting Xerox fonts, the error may have occurred because…

• Xerox fonts are encrypted. The Documaker Bridge cannot use encrypted fonts. Xerox
can take an encrypted font and provide a non-encrypted equivalent.

• Xerox fonts are corrupt or the files do not contain Xerox fonts.

Creating Font Cross-reference Files

309

CUSTOMIZING A FONT CROSS-REFERENCE FILE
While using the Studio Font Manager, you can edit the information about fonts and
printers. Highlight the font you for which you want to edit information and click Edit.
This window appears:

On the Description tab, make sure the settings for the Stroke wt., Style, and Spacing fields
are correct. Italic fonts should have a style of Italic. Bold fonts should have a stroke weight
that’s greater than zero. Fixed pitch fonts should have a spacing of fixed. And, proportional
fonts should have a spacing of proportional.

When you click the Printers tab, the following window appears:

Chapter 3
Reading Print Stream Files

310

The Printers tab lets you enter printer-specific information for PCL, AFP, Metacode, and
PostScript printers. In the AFP (or Metacode) section of the Printers page, the Font File
field should contain the name of the font file.

AFP font file names For AFP font files, the names begin with an X. AFP font file names are limited to eight
characters. AFP font file names must be in uppercase letters and should not include an
extension.

Metacode font file names Xerox Metacode font file names are limited to six characters. Do not enter an extension.
The Rotated Font Files field should include the 90, 180, and 270 degree versions of the
Portrait Xerox font file separated by semicolons, such as:

FNT90;FNT180;FNT270

Acrobat fonts The Adobe Acrobat Reader uses PostScript fonts instead of AFP or Metacode fonts. To
make the PDF look as much like the original printed output, the AFP or Metacode fonts
must be mapped to one of the standard base fonts which are always available to the Adobe
Acrobat Reader. The system uses the PostScript Font Name (also called Setup Data)
setting in the font cross-reference file (FXR) to specify which base font to use. The
standard base fonts for Acrobat Reader are:

• Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique

• Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique

• Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic

• Symbol, ZapfDingbats

CHECKING YOUR FONT CROSS-REFERENCE FILE
Once you finish making changes to the font cross-reference file, you can use the
FXRVALID utility to check a font cross-reference (FXR) file for settings which would
cause problems when creating PDF files.

NOTE: For more information on FXRVALID and other utilities, see the Utilities
Reference.

The FXRVALID utility performs several checks on font IDs in the font cross-reference
(FXR) file, including the following.

Checking typefaces This check makes sure all font IDs contain one of the following PostScript font names in
the Setup Data field for PostScript printing:

Courier Helvetica-Bold Symbol

Courier-Bold Helvetica-Oblique Univers-Medium

Courier-BoldItalic Helvetica-BoldOblique Univers-Bold

Courier-Oblique Times-Roman Univers-MediumItalic

Courier-BoldOblique Times-Bold Univers-BoldItalic

http://docs.oracle.com/cd/G18689-01/UR/Utility_Reference.htm
http://docs.oracle.com/cd/G18689-01/UR/Utility_Reference.htm

Creating Font Cross-reference Files

311

The FXRVALID utility tells you via an error message if the FXR file contains an invalid
PostScript font name or does not contain a PostScript font. The message also tells you
whether a fixed or proportional font will be used in place of the invalid typeface. The PDF
printer driver will make the font substitution.

NOTE: Font IDs have either a fixed pitch or a proportional spacing value. If font
substitution is required for fixed pitch fonts, Courier is typically used. If font
substitution is required for proportional fonts, Helvetica is typically used. In
addition, the stroke weight and style settings of the font ID are checked to see if
bold and/or italic versions of these fonts should be used.

Checking point sizes This check compares the font height to the point size for each PostScript font in the FXR.
A warning message appears for every font ID whose font height differs from the point size
by a factor of 1/3 or greater. The utility uses the font height to determine the point size.
A warning also appears if the font height equals zero.

NOTE: If the font height and point size do differ by the factor of 1/3, the printer driver
will use font height to determine point size. The FXRVALID utility does not
determine point size in these situations.

Checking the code page A warning appears for any font IDs whose code page field is not empty or is not set to
1004.

NOTE: The PDF printer driver uses the ANSI code page for text. Code page 1004 is the
OS/2 code page which is equivalent to the ANSI code page. Code page 1004 is
the value in the FXR used to make the system display forms under OS/2 using
the same code page as the ANSI code page.

Checking spacing This check makes sure the spacing value (fixed or proportional) of the font ID matches a
PostScript font with an equivalent spacing style. If the spacing value does not match, a
warning appears.

Checking the style This check makes sure the font style (upright or italic) of the font ID matches a PostScript
font with an equivalent font style. If a font ID specifies an italic style, a warning appears
if the Setup Data field does not contain a PostScript font name containing the word Italic
or Oblique. If a font ID specifies an upright style, a warning appears if the Setup Data field
contains Italic or Oblique.

Checking the weight This check makes sure the font weight (bold or normal) of the font ID matches a
PostScript font with an equivalent font weight. If a font ID specifies a bold style, a message
appears if the Setup Data field does not contain a PostScript font name which includes
the word Bold and vice versa.

Courier-Italic Times-Italic ZapfDingbats

Helvetica Times-BoldItalic

Chapter 3
Reading Print Stream Files

312

Using the FXRVALID Utility
To use this utility, enter this command:

fxrvalid /I /E /G /O /R /D?

For example, if you enter:

fxrvaldw /I=rel115sm

The utility checks the font cross-reference file named REL115SM.FXR and creates an
error file named REL115SM.ERR which you can open in any ASCII text editor.

Parameter Description

/I The name of the font cross-reference (FXR) file, omit the extension.

/E (Optional) An error file name, omit the extension.

/G Turns on the adding of “OTH” entry and the grouping of fonts. You can specify
the grouping threshold as an error percentage. The default is zero (0). The default
range is 32,127.

/O (Optional) An output file name. The new FXR file contains “OTH” entries and
grouping. If you omit the file name, the utility uses the input file name with an
FXX extension. If you include a file name without an extension, the utility defaults
to FXX.

/R (Optional) Use this parameter (startchar,endchar) to specify the range of
characters in width table to be checked for grouping. You can enter any integer
from 0 to 255. The default value for startchar is 32 and the default value for
endchar is 127. If endchar is less than startchar, the value of endchar is set to that
for startchar.

/D? Turns on the DownloadFont option, known as the Option field in the “OTH”
entry, in every “OTH” entry. The DownloadFont option in every “OTH” entry
is turned off if you omit this parameter.

Creating Documaker Graphics Files

313

CREATING
DOCUMAKER

GRAPHICS FILES

To optimize performance, you should create graphics (LOG) files for signature fonts,
images, and logos referenced by the archived Metacode print streams. While the system
can load Xerox fonts directly for signature fonts, doing so makes processing slower than if
you had used logos.

You can convert a Xerox font, image, or logo into a logo using the XER2LOGW utility.
For example, if you are running on a Windows computer, you would enter…

xer2logw /I=xfont.fnt

to create a logo named XFONT.LOG. You could also enter…

xer2logw /I=ximage.img

to create a logo named XIMAGE.LOG. You could also enter…

xer2logw /I=xlogo.lgo

to create a logo named XLOGO.LOG.

CREATING A LOGO.DAT FILE
You do not need to create logos for Xerox fonts and images which are rotated versions of
the Xerox fonts and images you previously converted into system logos. Instead, you will
need to create a LOGO.DAT text file for these non-portrait signature fonts or images
referenced by the archived Metacode print streams.

The LOGO.DAT file should be placed in the FormLib directory. The LOGO.DAT file,
which is a semicolon-delimited file, should look similar to...

FNT0;FNT90;FNT180;FNT270;

...where FNT0 is the file name for zero (0°) rotation, FNT90 is the file name for 90°
rotation, FNT180 is the file name for 180° rotation, and FNT270 is the file name for 270°
rotation.

REMOVING UNWANTED TEXT AND LOGOS
If you see text or logos when viewing a form using the Acrobat Reader that do not appear
in the printed Metacode output, it is because your Metacode output contains characters
not defined in the Xerox font.

To prevent this, add an INI control group whose name is the Xerox font name and specify
the first and last characters defined in that font. Typically, this is only affects signature and
other non-text fonts.

For example, if your signature font is named QFLOGO.FNT, you would set up an INI
control group with the following options:

< QFLogo >
FirstChar = 65
LastChar = 68

In this example, the first and last character code points are 65 (A) and 68 (D) respectively.
Do not include the file extension (.FNT) in the group name. Do not use letters like A and
D or hexadecimal numbers for the FirstChar and LastChar option settings. You must use
decimal numbers.

Chapter 3
Reading Print Stream Files

314

NOTE: To determine the first and last characters used in a font, sample the font on the
Xerox printer.

These settings only affect signature and other non-text fonts that have been converted into
Documaker LOG files.

USING THE MRG2FAP UTILITY
You can use the MRG2FAP utility to convert a Documerge AFP or Metacode file into a
FAP file. This utility also converts AFP print files created by the Documaker system into
FAP files. You can then view and edit the FAP file using Documaker Studio.

The MRG2FAP utility lets you load Xerox FRM files and IMG files that are referenced
in the Metacode print stream being converted. In addition, the MRG2FAP utility can
produce a BPSD/Field cross-reference listing.

The system looks for the FRM and IMG files in the directory specified by the FormLib
option in the MasterResource control group. If you omit this option, the system looks in
the current directory.

Use the KeepBlankPages option when you are converting AFP and Xerox Documerge files
into FAP files (MRG2FAP) to retain blank pages. Here is an example:

< PrtType:AFP > or < PrtType:XER >
KeepBlankPages = Yes

Normally blank pages are removed because the system assumes they are duplex back pages
that are not needed. If, however, you want to retain these pages, add this option and set it
to Yes. The default is No which indicates you do want to remove blank pages during a
conversion.

For more information, see the Utilities Reference.

OVERLAYS AND PAGE SEGMENTS
If the AFP print file contains references to overlays or page segments, copy the overlay or
page segment files into the directory in which the AFP print file resides. Add the following
options in the PrtType:AFP control group in the FSISYS.INI file to specify the file
extension for overlay and page segment files.

< PrtType:AFP >
OverlayExt =
PageSegExt =

http://docs.oracle.com/cd/G18689-01/UR/Utility_Reference.htm

Limitations

315

LIMITATIONS Here is a summary of the AFP, Xerox Metacode, and PDF limitations you should keep in
mind:

AFP LOADER LIMITATIONS

• The AFP loader works with AFP output produced by Documaker applications. It
assumes records are delimited by a blocking scheme similar to files produced under
MVS. At the beginning of the file is a four-byte block length. A four-byte record data
length follows this.

The record data length indicates the length of the next piece of data, in this case, an
AFP command. Additional record data lengths and associated data follow this until
the block length is exhausted. At this point, a new block length is expected and the
process repeats itself. The AFP page segment and overlay files must use the same
format as the AFP print stream being converted. The AFP loader should also work
on AFP print streams without the logical block and record data lengths.

• All fonts used by an AFP print stream must be found in the font cross-reference
(FXR) file.

• Large print-ready files (more than 100 pages) will process slowly.

• The AFP loader cannot display charts and inline graphics. Inline graphic support
only applies to the Metacode loader.

METACODE LOADER LIMITATIONS

• The PrtType settings must match the settings used to produce the print-ready
Metacode file.

• All fonts used by a Metacode print stream must be found in the font cross-reference
(FXR) file or in a Documaker graphics (LOG) file.

• Rotated text may not display properly. Short bind back pages will display
upside-down. Landscape pages display sideways.

• Large print-ready files (more than 100 pages) will process slowly.

Chapter 3
Reading Print Stream Files

316

PDF LIMITATIONS
The system does not currently support the full set of Adobe Acrobat PDF capabilities.
Here are a some of the limitations.

• If the PostScript Font Name/Setup Data setting in the FXR does not match a PDF
base font, the system maps these PostScript font names to PDF base font names:

Courier-Italic maps to Courier-Oblique

Courier-BoldItalic maps to Courier-BoldOblique

Univers-Medium maps to Helvetica

Univers-Bold maps to Helvetica-Bold

Univers-MediumItalic maps to Helvetica-Oblique

Univers-BoldItalic maps to Helvetica-BoldOblique

Finally, if the PostScript font name fails to map to a PDF base font name using the
preceding rules, then fixed pitch fonts will map to Courier and proportional fonts will
map to Helvetica. If a font has bold, italic, or bold and italic attributes, the Courier
or Helvetica PDF base font with corresponding attributes will be used.

• Only the ANSI code page (also known as code page 1004) is supported for PDF files.
Normally, this will only be an issue if your documents include international
characters. If you have used the system fonts for printing, this should not be an issue.

• The system currently supports four standard page size in the PDF file:

 Letter (8.5 x 11 inches)

 Legal (8.5 x 14 inches)

 A-4 (8.26x 11.69 inches)

 Executive (7.25 x 10.5 inches)

Portrait and landscape page orientations are available for these standard page size.
The customized page size will be converted into Letter size with corresponding
orientation.

• Page-at-a-Time downloading of PDF files is supported. To take advantage of this you
must have an Acrobat 3.0 or higher viewer with an appropriate web browser and web
server. The web browser would have to support a proposed HTTP extension for
specifying byte ranges of a file to be downloaded, and the web server must support
byte range downloading.

• Although Acrobat Reader supports variable fields, radio buttons, push buttons, list
boxes, and hypertext links, the system does not support creation of these objects
within a PDF file.

• The Metacode loader can load fonts directly. Using this capability slows performance
and increases the size of PDF files. Do not use this capability to load all fonts if you
are making PDF files—doing so causes the PDF Print Driver to crash.

Index

INDEX

A
A4 page size

PaperSize option 293, 299
PDF files 309

Acrobat Reader
logos 38
logos and text 40

Address option 159
AFP

AFP2PDF control group 293
limitations 308
location of overlays 294
location of page segments 294
system resources 289, 293

AFP2PDF control group 257
AFPPath INI option 257
ANSI code page 309
Approve option 61, 116
archive keys 190
archive module

configuring INI control group options 19
Documaker Bridge 5

archived Metacode print streams 292
ArchiveMem option 48
ATTACH.MSG file

DPRCompareXMLFiles 63
attachment variables

finding 265
Attachments control group 182

DPRCompareXMLFiles 63
authenticating users 25
AutorunInterval option 20

B
barcode fonts

loading directly 292
BARR SPOOL 296
BARRWORD 296
BCD 297
bind operation 10
blank pages 36, 73
Bookmark option

Documaker Bridge 18

bridges
Documaker Bridge rules 31

browsers
authenticating users 25

building system resources
Metacode 295

C
cache

DPRInit 124
CAD request type 22
CaseSensitiveKeys option 60
checking

code pages 304
font cross-reference files 303
font styles 304
font weight 304
point sizes 304
spacing 304
typefaces 303

code pages
1004 309
Documaker Bridge 304
support for PDF files 309

colors
logos 39, 248
text 41

compressing
PDF files 18, 19

confidential data 25
Config:XXX control group

DAP.INI file 19
dynamic configuration 18

Control control group 182
cookies

authenticating users 25
creating

logo files 306

D
DAL scripts 86
DAP.INI file

Documaker Bridge 18

Index

modifying 9
PDF compression option 18
TimeOut option 19

Data option 159
DB2 12

communication errors 13
retrieving form sets from 10

DBGetLastError function 13
DBTable control group 12
DDTFile option 14
Debug option 70, 152, 182, 189
decryption 25, 70
DefaultFont 299
DefaultTimeout option 24
DefLib option 182, 189
DeleteFiles option 48
dictionary

adding words 42
DIFCompareXMLFiles 63
Directory Information Tree 194
DJDEIden 296
DJDESkip 296
DLLs

version information 208
DOCCLNT.INI file

setting up 22
DOCSERV.INI file

and the DAP.INI file 18
docserv.xml file 20
Documaker

bridge 5
configuring INI control group options 19

Documaker Bridge
DAP.INI file 18
debugging rule 67
debugging rules 67
illustration 6
modifying resources 8
overview 6
rules 31
setting up the DOCCLNT.INI file 22
using 5

Documaker RP
checking 262
stopping 282

Documaker Server

Documaker Bridge 5
Documerge

converting Metacode files 307
DPA files

DPRLoadDPA 145
DPRAddBlankPages 36
DPRAddLogo 38
DPRAddText 40
DPRAddToUserDict 42
DPRAddWipRecord 44
DPRApproveWipRecords 44, 46, 80
DPRArchiveFormset 48, 50, 52, 76
DPRAssignWipRecord 50
DPRAUpdateFormsetFromXML 240
DPRBatchArchive 52
DPRBuildGroupList 53
DPRCheck 55
DPRCheckLogin 58
DPRCheckWipRecords 59
DPRCompareXMLFiles 63
DPRConvertGUID 65
DPRCreateEMailAttachment 66

and DPRParseRecord 168
DPRDebug 67
DPRDecryptLogin 68
DPRDecryptValue 70
DPRDecryptValue control group 70
DPRDefaultLogin 71
DPRDelBlankPages 73
DPRDeleteFiles 75
DPRDeleteWipRecord 76
DPRDelFromUserDict 78
DPRDelMultiWipRecords 80
DPRDpw2Wip 83
DPREditUserDict 84
DPRFap2Html 86, 87
DPRFile2Dpw 89
DPRFilterFormsetForms 90
DPRFindTemplate 91
DPRFindWipRecordsByUser 93
DPRGenerateDefinitionFile 96
DPRGenerateSeedValue 98
DPRGetConfigList 99
DPRGetDFDInfo 101
DPRGetFormList 106
DPRGetFormsetRecips 107

Index

DPRGetHTMLForms 108
DPRGetInitValue 109
DPRGetOneWipRecord 110
DPRGetRecipients 111
DPRGetUserList 112
DPRGetWipFormset 118
DPRGetWipList 115
DPRGetWipRecipients 120
DPRIni2XML 122
DPRInit 124
DPRInitLby 125
DPRLbyCopy 126
DPRLbyDelete 128
DPRLbyGet 130
DPRLbyLock 133
DPRLbyMKCol 135
DPRLbyOptions 136
DPRLbyPropFind 137
DPRLbyPropPatch 140
DPRLbyPut 141
DPRLbyUnlock 143
DPRLoadDPA 145
DPRLoadedXML2Formset 147
DPRLoadFAPImages 148
DPRLoadImportFile 149, 171
DPRLoadXMLAttachment 150
DPRLoadXMLFormset 151
DPRLocateOneRecord 152
DPRLockWip 153
DPRLog 155
DPRLog control group 155
DPRLogin 156
DPRLoginUser 157
DPRLogVar control group 155
DPRMail 158

and DPRCreateAttachment 66
and DPRLog 155

DPRMapRecipData 160
DPRModifyUser 162
DPRModifyWipData 165
DPRParseRecord 168

and DPRLog 155
DPRPatchLevel 167
DPRPostDMProcess 169
DPRPrint 171
DPRPrintDpw 179

DPRPrintFormset 171, 181
and DPRRetrieveFormset 189

DPRProccessTemplate 183
DPRProcessTemplate 183
DPRRenameVars 185
DPRRetFromUserDict 186
DPRRetrieveDPA 188

and DPRLoadDPA 145
DPRRetrieveFormset 189
DPRRotateFormsetPages 191
DPRSearch 192
DPRSearchLDAP 194
DPRSearchWip 201
DPRSendFormsetXML 206
DPRSendMultiFiles 207
DPRSendVersion 208
DPRSet2ImageScope 209
DPRSetConfig 210
DPRSetConfig rule 27

dynamic configuration 18
DPRSortFormsetForms 215
DPRSpellCheck 212
DPRTblLookUp 217
DPRTemporaryXMLFile 216

defined 216
DPRTransform 227
DPRTRC.LOG file 70, 152
DPRUnloadExportFile 233
DPRUnloadXMLFormset 235
DPRUnlockWip 236
DPRUpdateFormsetFields 239
DPRUpdateFromMRL 237
DPRUpdateWipRecords 242
DPRWip2Dpw 245
DPRWipBatchPrint 246
DPRWipIndex2XML 250
DPRWipTableParms 252
DPRXMLDiff 255

defined 255
dummy pages 73

E
Elixir 296
email

and DPRLog 155
and DPRMail 158

Index

creating an attachment 66
Email2IDS control group 158
EmailDFD control group 158, 168
Enable_Debug_Options option 14
encrypted fonts 301
encryption 25, 70
Entire, Inc. 296
ERR request type

rules to run 22
error messages

Documaker Server 11
executive page size 309
export files

unloading 233

F
FAPAddBlankPages 37, 74
FAPCOMP.INI file 295
fields

scope 209
File option 61, 116, 119, 243

DPRApproveWipRecords 46
filler pages 73
FirstChar option 306
FNT files 297
font cross-reference files

checking 303
font IDs 303
FontID option 41
fonts

in added text 41
loading Xerox fonts directly 292
Metacode 291
Postscript 309
removing unwanted characters 307
signature fonts 306
system 309
Xerox 301

FormFile option 14
FormLib option 60, 119, 182, 291
FRM files 291
FSISYS.INI file

building Metacode resources 295
FSIVER utility 167
FXR file

checking fonts 303

FXRVALID utility 303

G
GenArc program

Documaker Bridge 5
GenData program

checking attachments 259
running 275

generating unique IDs
DOCCLNT.INI file 23

GenPrint program
running 275

GenTrn program
running 275

getting Metacode resources 291

H
H2 296
H2BCD 297
H6 296
H6BCD 297
hash values 25
highlight color printer 298
HTML files

creating email 66
DPRMail 158

HTML templates
DPRProcessTemplate 183

I
IBMBCD 297
IBMXREF.TBL file

location of 294
IDEN statement 296
ImageExt option 60, 119, 182, 189
ImageOpt option 297
images

for Metacode 291
IMG files 291, 297
import file

loading 149
INI files

DAP.INI 18
DOCCLNT.INI file 22
FAPCOMP.INI 295
FSISYS,INI 295

Index

loading 18
modifying 9

InitFunc option 298

J
JD 295
JDE 291
JDEName 297
JDLCode 297
JDLData 297
JDLHost 297
JDLName 298
JDLRPage 298
JDLRStack 298
JOBLOG.XML file 11
JSL, Xerox 291, 295

K
KeepAll option 270, 271
KeepBlankPages option 307

L
landscape orientation 309
LastChar option 306
LbyLib option 14
LDAP

DPRSearchLDAP rule 194
legal page size

supported sizes 309
letter page size

supported sizes 309
Library Manager 125

using 14
limitations 308

linking to Documerge 308
log files

DPRLog 155
LOGIN.HTM

editing 8
LogoExt option 60, 119, 182, 189
LogoFile option 14
logos

DPRAddLogo 38
linking to Documerge 306

M
master resources

modifying 8
MasterResource control group 182, 291
MaxTimeout option 24
MaxWaitTime option 272
MaxWIPRecords option 61, 116, 119, 243
memory

debugging 67
Message option 159
Metacode 308

archived print streams 292
building system resources 295
converting to FAP files 307
creating graphics files 306
file locations 256
fonts and images 291
getting resources 291
loader limitations 308
MRG2FAP utility 307
normalized 296
PDF limitations 309
resources 291
rotating pages 191

Metacode2PDF control group 256, 257
MetacodePath option 256, 257
MICR fonts

loading directly 292
MinTimeout option 24
Module option 298
MRG2FAP utility 291, 307
MTCLoadFormset 256

and DPRPrint 171
MTCPrintFormset 258

N
non-text fonts 306

O
Octal 296
ODBC

connection errors 13
disconnecting 13

OMR marks 73
Oracle DBMS 12
orientations

Index

supported 309
OutMetFunc option 298
OutMode 296
OutputFunc option 298
overlays

MRG2FAP utility 307

P
page segments

MRG2FAP utility 307
page sizes 309
pages

blank 36, 73
PaperSize option 293, 299
passwords

authenticating users 25
Path option 61, 116, 119, 159, 168, 243

DPRApproveWipRecords 46
PCO hardware and software 296
PDF 309
PDF files

and the Metacode loader 292
compression 19
creation options 18
deleting 182
INI options 18
limitations 309
registering 181
removing (TimeOut option) 19
TIFF files 34
TPDCreateFormset 283

PDFFileCache control group 19, 182
PEBCDIC 297
PersistOutput option 14
portrait orientation 309
PrinterInk option 298
PrintPath option 182, 189
PRT request

rules to run 22
PrtType control group

Metacode resources 295
PDF compression option 18
PrintFormset 182

PrtView_WIPTable control group 252

R
recipient filtering 171
Recip_Names control group 182

DPRPrint 171
Reject option 61, 116
renaming

attachment variables 185
REQTYPE

Documaker Bridge 22
ReqType control group

DPRCompareXMLFiles 63
request

queue INI settings 22
resources

modifying 8
rotating

text 41
RPDCheckAttachments 259

defined 259
RPDCheckRPRun 262

defined 262
RPDCreateJob 265

defined 265
RPDCreateJob rule 11
RPDDeleteFiles 270

defined 270
RPDProcessJob 272

defined 272
RPDRunRP 275

defined 275
RPDSetPDFAttachmentVariables 280

defined 280
RPDStopRPRun 282

defined 282
RPEX1.INI file

modifying 9
rules

bridge 31
to run on a request 22

RULServerJobProc rule 11

S
SaveOnErrors option 270, 271
SCS request type 23
security

authenticating users 25

Index

SENDBACKPAGE 216
SendColor option

Metacode printers 298
Setting 24
setting up

the DAP INI file, Documaker Bridge 18
the DOCCLNT.INI file, Documaker

Bridge 22
time-out values in the DOCCLNT.INI file

24
ShowErrors attachment variable 11
signature fonts 306
signatures

fonts 306
in Metacode print streams 292

SingleStepGenData option 275
SQL return code -805 10
Subject option 159
Summary Patch Report 167
symbol fonts 292

T
T1 option 159
T2 option 159
templates

DPRFindTemplate 91
TermFunc option 298
TerSub paragraph 87
TIFF2PDF bridge

initializing 287
TIFF2PDF control group 284
TPDInitRule 287

TIFFNAME variable 283
TIFFPath option 284
TimeOut option 182

PDF files 19
timeout settings 24
time-out values

DOCCLNT.INI file 24
global 24

TPDCreateFormset 283
TPDCreateOutput 285
TPDFORMSET 283
TPDInitRule 287

and TPDCreateFormset 284
TPDLoadFormset 286

trace files 14
transaction-based INI loading 18

U
UserDictPath option 187
using

Documaker Bridge 5

V
V2 files

DPRUnloadExportFile 233
version information

DLLs 208

W
WIP

assigning users 50
DPRApproveWipRecords 46
DPRCheckWipRecords 59
DPRGetWipFormset 118
DPRGetWipList 115
DPRGetWipRecipients 120
DPRUpdateWipRecords 242

WIP option 61, 116
WIPEdit plug-in 110
Word

creating a WDF file 96
workspace definition file 96

X
xBase libraries

using 14
XER2LOGW utility 306
Xerox

4235 printer 296
additional printer settings 298
fonts 292, 301
highlight color printer 298
JSL 291
signature fonts 306

XML
DPRProcessTemplate 183

XML files
DPRCompareXMLFiles 63
DPRTemporaryFile 216
DPRUnloadExportFile 233

Index

DPRXMLDiff 255
XML2Attach control group 91, 158
XML2Body control group 91, 158
XRFExt option 182
XRFFile option 182

