Oracle® Documaker

Working with XML Files
User Guide

13.0.0
Part number: G18689-01
December 2024

Copyright © 2024 Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

CONTENTS

Introduction ... ——————————————— 5
OVEIVIBW ...ttt e e e e et e e e e e e e e e eeeaeeeas 6
Setting Up the XML Add-ON........ooiiiiiiiiiiiieeee e 7

Importing and Exporting XML Files with Documaker Workstation....... 14
MOdifyiNG INIFIlES......oeiiiiii e 15
Creating an XML EXPOrt Fileooooiiiiiiieecce e 16
Example Documaker XML File Format................ccoo e 18
Importing a Documaker XML File...........coiiiiieeeeee 23

Importing and Exporting XML Files with Docupresentment.................. 24
IMPOMXMLEXIrACE ...ceeeiie e 25
IMPOMTXIMLEFIIE. ... e 28

Using XML Extract Filescccociiimmmmmiiinnrs s 32
Mapping Formatted Data from Extract Filesccccccoviiiiiiiiiiinnin. 33
Searching an XML Extract File............ccoiiiieeee 35
Handling OVerflOW...........uuu e 36
Triggering Forms and Images ... 37
USING XPath ..o 38

Using DAL XML Functions and XPathcccciiiiiiiiieeee 46
SCENAIIOS .. 47
Using XML Built-in FUNCLONS ... 48
Using the XML Path LOCatorcooiiiiiiiicii e 52

Using XML Print DrivVer........coooiiiiiiiiiiiiiiiiicscirssssss s s s s s s s s s s s s s s ssssnsssnnes 55

Additional Ways to Use XML and Documaker Servercccceeeerennnnnnns 57
Mapping Fields with XPath...........cccoooriri 58
Referencing DAL and GVM USiNg XMLoooiiiiiiiiiiiiiiiiiiieieeeee e 59
Running Documaker Server Using an XML Job Ticket...........cccccceeennne 61
Creating Multiple Print Files Using the PrintFormset Rule..................... 62

Using Docupresentment to Run Documaker Servercccceevveviiieneennn. 63
OVEIVIBW ...ttt e e e e e e et e e e e e e e e e e eaeeeeeeaanns 64
Setting Up Docupresentment.............uuuuueeuiiiiiiiiiiiiiiiiiiiiiiiiiesiannsenaeannans 65
Setting Up DOCUMAKETN SEIVET ... 67

Controlling DOCUM@KEr SEIVETiiiieiicceceeceeeee e 69

RPDCHheCKAaCNMENTS ... 70

RPDCHhECKRPRUN.uiiiiiiieiieiie e 72
RPDCIreateJobooiiiiiiiiee e 75
RPDPIrOCESSJOD...... i 79
RPDSIOPRPRUN.coiiiiiiiteeeee e 82
RULSErVErBasSEPTOC.uuuiiie e 83
ServerBaseProC........oooviiiii 86

Frequently Asked QUESLIONScccceemeiiiiiniiinnnnrr e, 89

Chapter 1
Introduction

Full support for XML in Documaker products was
introduced in version 10.2. This support provides a
vatiety of features for...

* Importing and Exporting XML Files with
Documaker Workstation on page 14

* Importing and Exporting XML Files with
Docupresentment on page 29

* Using XML Extract Files on page 37
e Using DAL XML Functions and XPath on page 51

* Additional Ways to Use XML and Documaker
Server on page 62

* Using Docupresentment to Run Documaker Server
on page 68

* Frequently Asked Questions on page 94

This chapter includes information on these topics:
e Overview on page 6

e Setting Up the XML Add-On on page 7

e XML File Format on page 12

NOTE: The ability to work with XML files is included
in Oracle Documaker Desktop. In prior
releases, this was an add-on capability PPS users
could purchase separately. If you are a PPS
customer and you would like to work with XML
file, contact your sales representative for
information on upgrading to Oracle
Documaker Desktop.

OVERVIEW

Overview

XML (Extensible Markup Language) is a simple, flexible, text format language used
primarily for data exchange. It is a structured language containing a definition of the data
as well as the data itself. Here are a couple of links you may find useful:

www.w3c.org/XML
www.w3.0tg/TR/xpath

Originally developed to meet the challenges of large-scale electronic publishing, XML is
also playing an increasingly important role in the exchange of a wide variety of data on the
web and elsewhere. An example XML file is shown below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<book isbn="0123456789" >
<title>
Hound of the Baskervilles
</title>
<aut hor >Art hur Conan Doyl e</ aut hor >
<charact er>
<nane>Sher | ock Hol mes</ nane>
<friend-of >Dr Watson</friend- of >
<si nce>1850- 10- 04</ si nce>
<qual i fication>extrovert genius</qualification>
</ character>
<charact er>
<nanme>Dr WAt son</nane>
<friend-of >l nspector LeStrade</friend-of>
<si nce>1866- 08- 22</ si nce>
<qual i ficati on>brash nedi c</qualification>
</ character>
</ book>

http://www.w3c.org/XML
http://www.w3.org/TR/xpath

SETTING UP
THE XML
ADD-ON

Setting Up the XML Add-On

With the XML add-on, you can import and export XML files while using Documaker
Workstation and you can send and receive XML messages. Setting up the new import and
export capabilities is similar to setting up any import/expott file format.

To import and export XML files in Documaker Workstation, you use these XML add-on
functions:

Function This function lets you...
WXMImportXML Import data from an XML file into a form set.
WXMExportXML Export data from a form set to an XML file.

WXMEntryHookExtXMILLoad Send messages from the system to any type of message
server.

WXMImportXMLArchive Send messages from the system to any type of message
servet.

NOTE: The ability to work with XML files is included in Documaker Workstation, but
must be purchased separately by PPS users. You must also have a Docupresentment
license to use the messaging features in the WXMEntryHookExtXMILoad and
WXMImportXMLArchive functions because they call Docupresentment files.

To use the XML add-on, you must first set up the import, export, and messaging
functions. If applicable, you then set up Docupresentment.

SETTING UP DOCUMAKER WORKSTATION

To use the import and export functions, you must also add this control group and options
to your FSISYS.INI or FSTUSER.INT file:

< XM__I| np_Exp >

Ext = .xm
File = export
Pat h = c:\fap\nstrres\ SAMPCO
SuppressDi g = No
AppendedExport = No
Option Description
Ext (Optional) Enter the extension for the output files. The default is XML.)
File (Optional) Enter a file name, such as XMLEXP. If you omit this option the
system prompts the user to enter the file name.
Path (Optional) Enter the path, such as \xmlfile. If you omit this option, the system

defaults to the current directory.

SuppressDlg (Optional) Enter Yes to suppress the File Selection window. The default is No.

Setting Up the XML Add-On

Follow the instructions below to complete the import, export, and messaging setup.

Setting Up the XML Export Format
Follow these steps to set up the XML export format:

1 Open the FSISYS.INI file in the resource library for which you want to use export
files. You can use any text editor to open this file.

2 Locate the ExportFormats control group. Most text editors have a find or search
function you can use to quickly find this group heading. Then add the following line:

For this export format Enter...

XML 09=;XM;XML Export;WXMLIB->WXMExportXML

This assumes 09 is not already being used. Here is an example:

< ExportFormats >
09=; XM XM. Export ; WXMLIB- >WKMEXpor t XM

Setting Up the XML Import Format
Follow these steps to set up the XML import format:

I Open the FSISYS.INI file in the resource library for which you want to use export
files. You can use any text editor to open this file.

2 Locate the ImportFormats control group. Most text editors have a find or search
function you can use to quickly find this group heading. Then add the following line:

For this import format Enter...

XML 09=;XM;XML Import; WXMLIB->WXMImportXML

This assumes 09 is not already being used. Here is an example:

< | nportFormats >
09=; XM XM. | nport; WXMLIB- >WKM npor t XM

Setting Up the XML Message Format

To send a message from Documaker Workstation to a message handling program such as
Docupresentment or MQSeries, you must add an option to either the ImportFormats or
AFEProcedures control groups.

One example of sending and receiving a message from Documaker Workstation to a
message handling program is to retrieve an archived record from Documaker
Workstation via Docupresentment. You can do this two ways:

e Setit up as an import hook by adding the WXMImportXMLArchive function to
ImportFormats control group.

< | nportFormats >
07=; XR; XM_ | nport from | DS; WXMLIB- >WKM npor t XMLAr chi ve

Setting Up the XML Add-On

(This assumes 07 is not already being used.)

* Setitup as an entry hook by specifying the WXMEntryHookExtXMLLoad function
as the parameter for EntryFormset option in the AFEProcedures control group.

< AFEProcedures >
EntryFormset = WXMLIB- >WKMEnt r yHookExt XM_Load

SETTING UP DOCUPRESENTMENT

If you are using Docupresentment as the message server, you must also add the INI

options shown below to let Documaker Workstation retrieve an archived record from

Docupresentment and load data into a form set before any data is entered by a user.

The archived record is retrieved using the Key1, Key2 and KeyID entered on the New
Form Set window. For this to happen, you must set up the following request type in the
DOCSERV.INI file for Docupresentment:

< ReqType: Get XM_>

functi
functi
functi
functi
functi
functi
functi
functi
functi

on
on
on
on
on
on
on
on
on

= atclib- >ATCLogTr ansacti on

= atclib- >ATCLoadAt t achnment

= atclib- >ATCUnl oadAt t achnent

= dprlib- >DPRSet Confi g

= dprlib- >DPRLocat eOneRecord, Key1, Key2, Keyl D

= dprlib- >DPRRet ri eveFor nmset

= dprlib- >DPRPri nt

= dprlib- >DPRProcessTenpl at es

= atclib- >ATCSendFi | e, DOCC _XM., SENDBACKPAGE, TEXT

You can use any name for the archive library, as long as the same MRL name is used in
Documaker Workstation.

You can set up this feature as an entry or import hook:

< AFEProcedures >
EntryFormset = WXMLIB- >WKMENnt r yHookExt XM_Load

or

< | nportFormats >
07=; XR; XML | nmport from | DS; WXMLIB- >WKM npor t XMLAr chi ve

If you set it up as an entry or import hook, you must also set up these INI options:

< XM__I np_Exp >
DSI UseNTUser | D =
DSI VARS
DSl | gnor eTi neout Error =
DSI Att achedVarFi |l e =
DSl | nport Level =
DSI Ti meout =
DSI ReqType =
DSl Recor dDFD =

Setting Up the XML Add-On

Option Description

DSIUseNTUserID (Optional) Set this option to Yes to use the NT user ID. The default
is No. This gives you a way to pass the NT user ID in the queue
instead of the normal DMWS ID.

DSIVARS (Optional) Enter variable;value, where variableis the variable name and
valne is its value. This lets you identify a constant list of variables to
be sent in the queue.

DSlIgnoreTimeoutError (Optional) Enter Yes to continue processing if a timeout occurs.
The default is No. This gives you a way to ignore a timeout when
waiting on a return queue.

DSIAttachedVarFile (Optional) The default is DOCC_XML. Set this option to the
attachment name if it differs from DOCC_XML. This gives you a
way to specify the variable name the XML file is attached to.

DSIImportLevel (Optional) This option is typically used by programmers. Enter 2 if
you want the hook to operate on the FAP_MSGOPEN level. Enter
3 if you want it to operate on the FAP_MSGRUN level. The default
is 2.

DSITimeout (Optional) Enter the number of milliseconds you want for the time-
out. The default is 60000 milliseconds or 60 seconds.

DSIReqType (Optional) Enter the name of the request type of the message placed
in the queue. The default is GETXML.

DSIRecordDFD (Optional) Enter the name of a DFD file. The system tries to match
variable fields sent in the request to field values in this DFD file. It
then attaches the DFD record to the end of the message.

If the request for an XML file comes back with an error, as opposed to a time-out,
Docupresentment displays an error message.

Using the Parser

The system uses the Expat XML parser, which was originally developed for Netscape. It
is a third-party library. You cannot plug in your own parser. Here are some links if you
want more information on Expat:

http://expat.soutceforge.net/
http:/ /soutceforge.net/projects/expat/

The Expat parser supports these encodings:

« UTF-8
* ISO-8859-1
* US-ASCII

You should be able to use any of these encodings to pass information to
Docupresentment, DSI APIs, or Documaker. Docupresentment sends back UTF-8.

http://expat.sourceforge.net/
http://sourceforge.net/projects/expat/

Byte order marks

Setting Up the XML Add-On

Some XML editors and software add the Byte Order Mark (BOM) to the beginning of the
XML file, starting at offset 1. For example, if your XML file has UTTF-8 encoding, the first
three bytes of your XML file would contain...

EE BB BF

If, however, you open this file in a browser, you will not see this information.
Furthermore, not all text editors display these values file. One sutre way to find out if your
XML file includes the BOM is to view the file using the Type DOS command.

The GenData program can handle XML files which include the BOM, but you must allow
for this offset went you define the SeachMask option. Here are some examples:

If the BOM zs included for UTF-8, define the SearchMask option as shown here:

< ExtractKeyField >
SeachMask = 4, <?xm

If the BOM 7s not included, define the SearchMask option as shown here:

< ExtractKeyField >
SeachMask = 1, <?xm

If you define the SearchMask option incorrectly, the GenData program will not create
transaction trigger records.

Setting Up

XML FILE FORMAT

Here is an example of the format of the XML file the system creates:

the XML Add-On

Group

/

Form global
fields

Page

//

Multi-page form

/

Multi-page section

Multi-line field

\

Indicates a
second page

<?xm version="1.0" encodi ng="UTF- 8" ?>
<DOCUMENT TYPE="RPW P" VERS| ON="10. 2" >
<DOCSET NAME="">
<FI ELD NAME="PCOLI CY NBR'>P1234- 1</ Fl ELD>
<Fl ELD NAME=" RENEWAL NBR'>1234- 2</ Fl ELD>
<FI ELD NAME=" AGENT' S NBR'>6789</ FI ELD>
<Fl ELD NAME=" EFFECT DATE">10/1/02</ Fl ELD>
<Fl ELD NAME="EXPI RE DATE">10/ 1/ 03</ Fl ELD>
<FI ELD NAME="| NSURED NAME'>John A. Doe</ Fl ELD>
<Fl ELD NAME="ADDR1">2345 Anystreet </ Fl ELD>
<FI ELD NAME="ClI TY" >Anyt own</ FI ELD>
<Fl ELD NAME="STATE" >GA</ FI ELD>
<FI ELD NAME="ZI| P CCDE'>30339</ FI ELD>
<Fl ELD NAME="BUSI NESS DESC1">Busi ness</ Fl ELD>
<FI ELD NAME="BUSI NESS DESC2" >Per sonal </ Fl ELD>
<Fl ELD NAME="BUSI NESS DESC3">Pr operty</ Fl ELD>
<FI ELD NAME="DATE">09/ 27/ 02</ FI ELD>
GROUP NAME="" NAME1="DOCUCORP PACKAGE"
NAME2=" PROFESSI ONAL | NSURANCE" >

<FORM NAME="Pr of essi onal Dec" >‘/

<DESCRI PTI ON>Pr of essi onal Decl arati ons
\ </ DESCRI PTI O\>
<FI ELD NAME="FORM LI NE1">Form Lett er </ Fl ELD>
<RECI Pl ENT NAME="AGENT" COPYCOUNT="1"/>
<RECI Pl ENT NAME="HOVE OFFI CE' COPYCOUNT="1"/>
<RECI Pl ENT NAME="| NSURED' COPYCOUNT="1"/>
| <SHEET>
<PAGE>
<SECTI ON NAME="pr of dec"/ >
</ PAGE>
</ SHEET>
\ </ FORW>
<FORM NAME="Form Letter">
<DESCRI PTI ON>For m Let t er </ DESCRI PTI ON\>
<RECI PI ENT NAME="AGENT" COPYCOUNT="1"/>
<RECI PI ENT NAME="HOVE OFFI CE" COPYCOUNT="1"/>
<RECI PI ENT NAME="| NSURED" COPYCOUNT="1"/>
<SHEET>
<PAGE>
<SECTI ON NAME="| et ~t bl ">
<FI ELD NAME=" Cover age" >Aut onobi | e</ FI ELD>
<FlI ELD NAME="Extra">
<P><FONT S| ZE="12"
FACE="Uni vers ATT" COLOR="#FF0000">Text in
mul tiline variable field.
</ P>
</ FI ELD>
</ SECTI O\>
</ PAGE>
<PACGE>
<SECTI ON NAME="| et ~t bl ">
<DAPI NSTANCE VALUE="2"/>
/ <DAPOPTI ONS VALUE="M'/ >
</ SECTI O\>
</ PAGE>
</ SHEET>
</ FORW>
</ GROUP>
</ DOCSET>
</ DOCUMENT>

Form set
global data

Form

Recipient
information

Section local
fields

/

Setting Up the XML Add-On

Keep in mind...

DAPOPTIONS should have a value of M for multi-page sections (FAP files). There
are other section options, but only M is applicable in XML.

Use DAPINSTANCE to provide a page number for multi-page sections. If the
section does not span multiple pages, omit the DAPINSTANCE value.

When you have multiple XML transactions within a single file, separate each
transaction with a line feed. This is a requirement of Documaker software, not the
XML parser.

Although you do not have to include line feeds inside the XML for a transaction, we
suggest you add a line feed after each element tag. This makes it easier to read the file
and helps in debugging your XML. A message like

Li ne 255, colum 8, syntax is incorrect
is easier to diagnose than

Line 1, columm 156780, syntax is incorrect.

Chapter 2

Importing and Exporting
XML Files with
Documaker Workstation

This chapter tells you how to set up your system to
import and export XML files while using Documaker
Workstation (PPS).

These topics are discussed:

* Modifying INI Files on page 15

* Creating an XML Export File on page 16

* Example Documaker XML File Format on page 18
* Importing a Documaker XML File on page 23

e Transforming XML Files on page 24

14

Modifying INI Files

M ODIFYING To import and export XML files into Documaker Workstation, you must make sure the
I N I F S following control group and options are in your FSISYS.INI file:
ILE

< XM__I| np_Exp >

Ext = .xm
File = export
Pat h = c:\fap\nstrres\ SAMPCO

SuppressD g = No
AppendedExport = No

Option Description

Ext (Optional) Enter the extension for the output files. The default is XML.

File (Optional) Enter a file name, such as XMI.EXP. If you omit this option
the system prompts you to enter the file name.

Path (Optional) Enter the path, such as \x/file. If you omit this option, the
system defaults to the current directory.

SuppressDlg (Optional) Enter Yes to suppress the File Selection window. The default
is No.

AppendedExport Enter Yes to append the current exported transaction to the last one. The
default is No.

Setting up the XML export ~ Locate the ExportFormats control group and add this line under that control group:

format
< ExportFormats >

09=; XM XML Export; WXMLIB- >WKMEXport XM.;

NOTE: This example assumes that 09 is not already being used in this control group.

Setting up the XML import ~ Locate the ImportFormats control group and add this line:

format
< | nportFormats >

09=; XM XM | nport ; WXMLIB- >\WKM npor t XM.;

NOTE: This example assumes that 09 is not already being used in this control group.

Creating an XML Export File

CRE ATING AN To create an XML export file, follow these steps:
XM L E XPORT 1 Start Documaker Workstation (PPS). Select the File, New option.
F ILE 2 Complete the Form Selection window and press Ok.

3 Enter data on the forms and complete the form set using the File, Complete option.

4 Next, check the Print and Export Data fields. Then click XML Export and Ok.

Creating an XML Export File

5 Print the form set.

6 Export the data to an XML file.

If the SuppressDlg option is set to No under the XML_Imp_Exp control group, the
system displays this window:

The name that appears in the File Name field is the one you specified in the File
option in the XML_Imp_Exp control group. If you left that option blank, enter a file
name here.

EXAMPLE
DOCUMAKER
XML FILE
FORMAT

Example Documaker XML File Format

The XML file created from Documaker Workstation (PPS) should look similar to the file
excerpts shown below.

<?xm version="1.0" encodi ng="UTF-8"?>
<DOCUMENT TYPE="RPW P" VERSI ON="10. 3">
<DOCSET NAME="">
<FXRFI LE NAVE="rel 102sni'/ >
<GROUP NAME="" NAME1=" DOCUCORP PACKAGE" NAME2="VERSI ON 103" >
<FORM NAME="Tersub - Basic" OPTIONS="R'>
<DESCRI PTI ON>Ter sub - Basi ¢ Par agraph Assenx/ DESCRI PTI ON>
<FI ELD NAME="FI ELDTwo" >8: 30 AMNK/ FI ELD>
<FI ELD NAME="FI ELDThr ee" >5: 30PM</ FI ELD>
<RECI Pl ENT NAME=" AGENT" COPYCOUNT="1" CODE="" SEQUENCE="1"/>
<RECI Pl ENT NAME="HOVE OFFI CE" COPYCOUNT="1" CODE=""
SEQUENCE="2"/ >
<RECI PI ENT NAME="| NSURED" COPYCOUNT="1" CODE="" SEQUENCE="3"/>

</ FORW>

</ GROUP>
</ DOCSET>
</ DOCUMENT>
This table lists the system-generated tag names and attributes and gives an explanation of
each.
Tag Name Attribute Explanation
*xml The XML declaration line
DOCUMENT TYPE The Documaker Standard Header. The attribute Type is hard-coded to be exported as
RPWIP.
VERSION The version of the software being used.
DOCSET NAME The name of the document set that contains all forms required to process a single
transaction, which is usually the FORM.DAT file.
GROUP NAME1, The key names used in the FORM.DAT file to group a set of common forms, such as Keyl
NAME?2, = Company, Key2 = LOB, and so on.
NAME3
FORM NAME The name of a single document containing one or more pages and options that define the
form. See Form options on page 22 for more information.
DESCRIPTION (Optional) A user-defined description of the form.
FIELD NAME (Optional) A field tag can be at the document, form, or section level, depending on the field
scope. Fields tags at the...
- Document level will be populated to all identically named vatiable fields in all images and
all forms in a form set.
- Form level will be populated to all identically named variable fields in all images in the
current form.
- Section level will be populated only to the vatiable field within a single section/image.
RECIPIENT NAME The name used to identify who receives a copy or copies of a form set, or any part of a form

set.

Example Documaker XML File Format

Tag Name Attribute Explanation

COPYCOUNT The number of copies for a particular recipient
CODE Not required.

SEQUENCE (Optional) The order in which the recipient copies print.

<SHEET>
<PAGE>
<SECTI ON NAME="par asent >
<FI ELD NAME="FI ELD" >

<P ALI G\=" CENTER" >

Sanpl e Text </ B>

</ FONT>

</ P>

<P STYLE="margin-left: 2.00in">

Sanple text left margin is 2 inches sanple text

</ FONT>
<p>
<STOPS>
<TS FAPS="3600" SPECI AL="2"/>
<TS FAPS="7600" SPECI AL="1"/>
<TS FAPS="11600" LEADER="46"/>
</ STOPS>

<TAB/ >Center Tab Stop
<TAB/ >Ri ght Just. Tab Stop
<TAB/ >Left with Leader
</ FONT>
</ P>
</ P>

</ PAGE>
</ SHEET>
Tag
Name Attribute Explanation
SHEET Used to identify if the form pages are simplex or duplex.
PAGE Indicates a single sheet of paper.
SECTION NAME Indicates a segment of a page or an entire page. (Image Name)
FIELD NAME (Optional) The field tag at the section level is data that will be populated only to the variable field within
a single section/image.
P (Optional) Indicates a paragraph in a text area or multi-line field. P is used when paragraph attributes

are needed.

Tag

Name Attribute

BR
ALIGN
STYLE

FONT STYLE
FACE
COLOR

B

1

U

STOPS

TS FAPS
SPECIAL
LEADER

TAB

Example Documaker XML File Format

Explanation

(Optional) Indicates a paragraph break. BR is used when there are no attributes for a paragraph.
(Optional) Indicates the justification, such as Leff, Center, or Right.

(Optional) Indicates the indentation, such as a 2-inch left matgin or a 1-inch hanging indent margin.
(Optional) Indicates the point size of the font used.

(Optional) Indicates the font family name.

(Optional) Indicates the font color.

(Optional) Indicates bold text.

(Optional) Indicates italicized text.

(Optional) Indicates underlined text.

Custom tab stops group — contains non-default tab stop definitions

Width of custom tab stop, 2400 faps = 1 inch (default is 600, %4 inch)

Tab stop type: 0 = left (default), 1 = right, 2 = center, 4 = decimal, 8 = bar

Optional leader character ASCII value (46 is a period)

Denotes a tab within the text. (Note that actual tab characters embedded within the text are treated as
spaces.)

<pP>

Skywi re Software’s custonmer and technical support personnel
are avail able to answer any questions you may havi ng concerni ng
your systens. You can call them between the hours of
<I NPUT NAME="FI ELDTwo" VALUE="8:30 AM' SI ZE="7" MAXLENGTH="25"
ACCESSKEY="F"/ >

</ FONT>
</ P>

<pP>
<UL TYPE="Cl RCLE">
<Ll >
<FONT STYLE="FONT-SI ZE: 10pt"
FONT>

<Ll >
<FONT STYLE="FONT-SI ZE: 10pt"
FONT>

</ UL>
</ P>

FACE="Uni vers ATT">Sanpl e Text</

FACE="Uni vers ATT">Sanpl e Text </

20

Tag Name Attributes

Example Documaker XML File Format

Explanation

INPUT NAME
VALUE
SIZE
MAXLENGTH
ACCESSKEY

UL TYPE

OL TYPE

LI
STYLE

(Optional) Indicates the name of an embedded variable field.

(Optional) Contains the data in the variable field.

(Optional) Indicates the length of the data.

(Optional) Indicates the length of the variable field.

(Optional) Specifies the scope of the field. Enter G (global), F (form global), or L. (image local)

(Optional) Indicates an unordered bullet list, such as one using symbol bullets. The type of bullet
can be circle, square, or disc.

When importing text areas and multi-line fields from an XML file, the system modifies the default
bullet size to match that used in Documaker Studio and Documaker Workstation. This size is one-
third of the font size. This only affects imported XML files which contain unordered bullet lists.

(Optional) Indicates an ordered bullet list, such as a numbered list or an outline. The type can be:
* Arabic number (1, 2, 3, and so on)

. Upper case letter (A, B, C, and so on)

. Lower case letter (a, b, ¢, and so on)

* Upper case Roman numeral (I, IL, III, TV, and so on)

. Lower case Roman numeral (i, ii, iii, iv, and so on)
(Optional) Indicates a bullet list item.

(Optional) Indicates the indentation, such as a 2-inch left margin.

21

Example Documaker XML File Format

Form options ~ You can choose from these form options:

To indicate the form Enter this code
Is to be stapled B
Was completed C
Is a dec page D
Is an entry form with required fields E
Is fixed (non-selectable) [&
Is legal size G
Is hidden H
Is A4 size I
Is executive size]
Is in landscape K
Can be copied (multiple copies are allowed) M
Should not be defaulted to the display N
Is an overflow form (@)
Is a pull form P
Is required R
Is a sub dec - program policy S
Was user selected U
Is a master dec - program policy X
Was system generated Y
Should contain a line of Zs (z-z-z-z-z...) Z

22

Importing a Documaker XML File

Follow these steps to import a Documaker XML file:
MPORTING A ps totmp
DOCU MAKER 1 Start Documaker Workstation (PPS). Select the File, New option. The Form

XML FILE

Selection window appears. From the Form Selection window, click Import.

2 Click XML Import as the format.

3 Select the XML file you want to import.

4 Complete the Forms Selection window and click Ok.

Your form set should be populated with data from your XML import file.

23

Chapter 3

Importing and Exporting
XML Files with
Docupresentment

To import and export XML files in Documaker Server,
you use the ImportXMLFile and ImportXMLExtract
rules. These rules work similar to the other import rules,
such as ImportFile.

For more information on these rules, see
e ImportXMLExtract on page 30
e ImportXMLFile on page 33

Keep in mind that importing XML is not the same as
using an XML file as your extract file. Import assumes
you are using a specific file layout that describes your
document in a predefined manner.

29

ImportXMLEXxtract

I MPO RTXM L E Use this form set rule (level 2) to import a file which consists of one or more XML
transactions into the GenData program for processing. Using this file, the GenData
XTRACT program creates the recipient batch, NAFile, POLFile, and NewTrn files that you can
print, archive, or both using the GenPrint and GenArc programs.

You append multiple export files to create the import XML file. The export files are
created using the Documaker Workstation XML Export option. This illustration shows
an example file comprised of export files appended to one another:

Transaction 1
<?xm version="1.0"?>
<Docunent Type="Docucorp Universal" Version="5.0">
<DocSet >
<Ar cEf f ecti veDat e></ Ar cEf f ecti veDat e>
<Li brary Name="Docucorp |nsurance"></Library>
<Keyl Nane=" Conmpany” >Docul nsur </ Key1>
<KeyY2 Nane="Lob” >Package Pol i cy</Key2>
<Transactionl D Nane="Pol i cyNunt >1010j </ Tr ansacti onl D>

Transaction 2
<?xm version="1.0"?>
<Docunent Type="Docucorp Universal" Version="5.0">
<DocSet >
<Ar cEf fecti veDat e></ Ar cEf f ect i veDat e>
<Li brary Nane="Docucorp | nsurance"></Library>
<Keyl Name=" Conpany” >Docul nsur </ Key1>
<KeyY2 Nane="Lob” >Package Pol i cy</ Key2>
<Transacti onl D Nanme="Pol i cyNunt' >1110j </ Tr ansact i onl D>

Transaction 3
<?xm version="1.0"?>
<Docunent Type="Docucorp Universal" Version="5.0">
<DocSet >
<Ar cEf f ecti veDat e></ Ar cEf f ecti veDat e>
<Li brary Name="Docucorp |nsurance"></Li brary>
<Keyl Nane=" Conmpany” >Docul nsur </ Key1>
<KeyY2 Nane="Lob” >Package Policy</Key2>
<Transacti onl D Name="Pol i cyNuni >1210j </ Tr ansacti onl D>

Syntax | mpor t XMLExt ract ; ; ;

NOTE: You can only use this rule for single-step processing.

Although there ate no parameters for this rule keep in mind:

30

ImportXMLEXxtract

e Create a simplified AFGJOB.JDT file when you use this rule. For instance, omit
these rules:

LoadRcpThl
LoadExtractData
RunSetRepThbl
CreateGlbVar
LoadDDTDefs
InitOvFlw
SetOvFlwSym

ResetOvFEFlw

NOTE: For information on these and other rules, see the Rules Reference.

¢ Use the NoGenTtnTransactionProc rule because the XML file has no transaction
information on the first line.

* Place the ImportXMLExtract rule in the <Base Form Set Rules> section of the
AFGJOB.JDT file after the BuildFormList rule or any custom rule that creates a
form set.

e In the TRN_File control group, set MaxExtRecLen option to the length of the
longest record in the import file.

e Inthe TRN_Fields control group, include only the Key1, Key2, and KeyID options.
Set these options to dummy data, because the GVM variables are set to the data
values in the XMLTags2GVM control group during processing.

* Define the XMLTags2GVM control group in your FSISYS.INT file as shown here:

< XM.Tags2GVM >
GYM = XM.Tag, (Req/ Opt)

Where GVM is the name of the GVM variable and XMLTag is the tag name in the
XML file. Include Reg or Opt to specify whether it is required or optional. If it is
required and is not present in the XML file, processing will terminate. Here is an
example:

< XM.Tags2GVM >
Key1l Keyl, Req
Key?2 Key2, Req
Keyl D = Transactionl D, Opt

Example Assume you have the following items defined in your master resource library. See XML
File Format on page 12 for an example of an import file in the standard XML file format.

Here is an example of the INI options you need in your FSISYS.INI file:

< Data >
AFGIOBFil e = .\deflib\afgjob.jdt
ExtrFile = .\extract\extrfile.xm

31

http://docs.oracle.com/cd/G18689-01/RR/Index.html

< ExtractKeyField >
Sear chMask = 1, <?xnl
< KeylTabl e >

XML = XM
< Key2Table >
XML = XM
< Keyl DTabl e >
XML = XM
< Trigger2Archive >
Key1l = Keyl
Key?2 = Key2
Keyl D = Keyl D
RunDat e = RunDat e
< TRN_Fields >
Key1l =3,3,N
Key?2 = 3,3 N
Keyl D =3,3,N
< TRN File >
BinaryExt = N

MaxExt RecLen= 175
< XM.Tags2GVM >

Key1l = Keyl, Req
Key?2 = Key2, Req
Keyl D = Transacti onl D, Opt

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >
; RULSt andar dJobProc; ; ;

< Base Form Set Rules >

; NoGenTr nTransacti onProc;;;
; Bui | dFor i st ; ;

;I mpor t XMLExtract; ; ;

ImportXMLEXxtract

32

IMPORTXMLF
ILE

Syntax

ImportXMLFile

Use this form set rule (level 2) to import an XML file which specifies a Documaker Server

document layout. The XML document must conform to the Documaker Standard XML

format.

NOTE: Importing an XML document in this manner does not let you map additional

XML information other than that specified in the Documaker Standard XML
format.

;I mport XMLFi | e; ; opti on;

There are several ways to specify the import file in the option parameter:

Option

Description

FILE

INI

SCH

GVM

Enter the name and path of the import file.

Enter the INI control group and option in which the import file is defined. Separate
the control group and option with a comma.

Enter the search criteria and the file name data, separated by a space.

The name of the file, including its path, that you want to import should be contained
in the record in the file indicated by the ExtrFile option in the Data control group.

The seatch criteria are one or more comma delimited data paits, offsets and character
string, used as the search mask for finding the record in the specified file.

The file name data is a comma delimited data pair that defines the offset and length
of the file name in the record defined by the search criteria parameter.

Enter the global variable name (GVM) that contains the file name and path

information.

Keep in mind:

* Create a simplified AFGJOB.JDT file when you use this rule. For instance, omit

these rules:
LoadRepThl
LoadExtractData
RunSetRepThl
CreateGlbVar
LoadDDTDefs
InitOvFlw
SetOvFlwSym

ResetOvFlw

NOTE: For information on these and other rules, see the Rules Reference.

33

http://docs.oracle.com/cd/G18689-01/RR/Index.html

Example

ImportXMLFile

e Use the NoGenTrnTransactionProc rule because the XML file has no transaction
information on the first line.

* Place the ImportXMLExtract rule in the Base Form Set Rules section of the
AFGJOB.JDT file after the BuildFormList rule or any custom rule that creates a
form set.

e In the TRN_File control group, set MaxExtRecLen option to the length of the
longest record in the import file.

e Inthe TRN_Fields control group, include only the Key1, Key2, and KeyID options.
Set these options to dummy data, because the GVM variables are set to the data
values in the XMLTags2GVM control group during processing,.

* Define the XMLTags2GVM control group in your FSISYS.INT file as shown here:

< XM.Tags2GVM >
GYM = XM.Tag, (Reqg/ Opt)

Where GVM is the name of the GVM variable and XMLTag is the tag name in the
XML file. Include Reg or Opt to specify required or optional. If it is required and is
not present in the XML file, processing terminates. Here is an example:

< XML.Tags2GVM >
Key1l = Keyl, Req
Key?2 Key2, Req
KeylD = Transactionl D, Opt

These examples show the different ways you can define the import file when you use this
rule. Assume you have the following items defined in your master resource library. For an
example of the standard XML file format, see XML File Format on page 12. Here ate
sample INT settings in your FSISYS.INI file:

< Data >
AFGICBFi | e = .\deflib\afgjob.jdt
ExtrFile = .\extract\dumy. dat
< ExtractKeyField >
Sear chMask = 1, XM__FI LE_NAME
< KeylTable >
XML = xm
< Key2Tabl e >
XML = xm
< Keyl DTabl e >
XML = xm
< Trigger2Archive >
Key1l = Keyl
Key?2 = Key2
Keyl D = Keyl D
RunDat e = RunDat e
< TRN Fields >
Key1l = 1,3,N
Key?2 = 55N
Keyl D = 10,4, N
< TRN File >
Bi nar yExt =N
MaxExt RecLen = 175
< XM.Tags2GVM >
Key1l = Keyl, Req

34

ImportXMLFile

Key2
Keyl D

Here is a sample of the DUMMY.DAT file, pointed to by the ExtrFile option in the Data
control group in your FSISYS.INI file.

Key2, Req
Transacti onl D, Opt

0 1
1 5
XML_FI LE_NAME This is a dummy extract file.

Using the File Option

This example imports the F_FILE. XML file from the \export ditectory. Using this file,
the GenData program creates the recipient batch, NA, POL, and NewTrn files needed
for GenPrint and GenArc processing.

Here is an excerpt from a sample AFGJOB.JDT file using the File option:

< Base Rules >
; RULSt andar dJobProc; ; ;

< Base Form Set Rules >

; NoGenTr nTransacti onProc; ;;

; Bui | dFor i st ; ;

;I nport XMLFi l e; ; Fil e=.\ Export\F_File.xnl;

Using the INI Option

This example impotts the F_INLXML file from the \exportt directory. Using this file, the
GenData program creates the recipient batch, NA, POL, and NewTrn files needed for
GenPrint and GenArc processing.

In addition to the INT options defined previously, you must also include the this option:

< Inport_Data >
Inport_File = .\Export\F_File.xm\

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >
; RULSt andar dJobProc; ; ;

< Base Form Set Rules >

; NoGenTr nTransacti onProc;;;

; Reset OvFl w; ; ;

; Bui | dFor i st ; ; ;

;I mport NAPOLFi | e; ; INI =l nport _Data, | nport _File;

Using the SCH Option

This example imports XML files (F_SCH1.XML, F_SCH2.XML, and F_SCH3.XML)
based on the content of a line in the file pointed to by the ExtrFile option in the Data
control group. Using these files, the GenData program creates the recipient batch, NA,
POL, and NewT'n files needed for GenPrint and GenArc processing.

This INI option differs from the one defined in the assumed MRL definition:

35

ImportXMLFile

< Data >
ExtrFile = .\extract\F_Sch. DAT

Here is an excerpt from the F_SCH.DAT file in the \extract directory which contains an
entry (path and file name) for each XML file to import:

XML_FI LE_NAME .\ export\F_SCHL. xm
XML_FI LE_NAME .\ export\F_SCH2. xm
XML_FI LE_NAME .\ export\F_SCH3. xm

NOTE: This option lets you import and process multiple XML files because of the way
the file name and path are specified—one file per entry in the file specified in the
ExtrFile option in the Data control group.

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >
; RULSt andar dJobProc; ; ;

< Base Form Set Rules >

; NoGenTr nTr ansacti onProc; ; ;

; Bui | dFornii st ;;

; I mpor t XMLFi | e; 2; SCH=1, XM__FI LE_Nane 15, 19

Using the GVM Option

This example imports data from a XML file based on file name contained in the GVM
variable called Import_File. Using this file, the GenData program creates the recipient
batch, NA, POL, and NewTrn files needed for GenPrint and GenArc processing.

Any valid GVM variable can be used no matter how it is created or assigned.

This example creates the GVM variable, ImportXMLFile_GVM, by including this INI
option and adding its definition to the TRNDFDFL.DFD file:

< GentrnDumyFi el ds >
| nport XMLFi | e_GVYM = .\ export\F_G/M xni

Here is an excerpt from a sample AFGJOB.JDT file:
< Base Rules >

; RULSt andar dJobProc; ; ;

< Base Form Set Rules >

; NoGenTr nTr ansacti onProc; ; ;

; Bui | dFormii st ; ; ;

;I mpor t XMLFi | e; ; GVMEI npor t XMLFi | e_GVM

36

Chapter 4
Using XML Extract Files

You can set up Documaker Server to use extract files in
XML format. To do so, you must first set up the system,
see Setting Up the XML Add-On on page 7 for more
information.

NOTE: Duting setup, keep in mind the SuppressDlg
option is not applicable for XML extract files.
This option only applies when you are
importing and exporting XML files.

Once you have set up the XML Add-On, you can use
these rules to create an alternative data search method so
you can do direct XML mapping within the Documaker
Server:

Rule Description

UseXMLExtract Uses the extract list loaded by the
transaction as the source of the XML
tree.

XMI FileExtract Assumes the extract list contains the
name of an external file which is the

source of the XML tree.

For more information, see the Rules Reference.

This chapter contains information on these topics:

* Mapping Formatted Data from Extract Files on
page 38

* Secarching an XML Extract File on page 40
* Handling Overflow on page 41
* Triggering Forms and Images on page 42

* Mapping Formatted Data from Extract Files on
page 38

37

http://docs.oracle.com/cd/G18689-01/RR/Index.html

MAPPING
FORMATTED
DATA FROM

EXTRACT

FILES

Mapping Formatted Data from Extract Files

You can map data with XML markup directly into multi-line variable fields. This lets you
specify...

* End of paragraph or end of line syntax (including CR/LF)
e Text formatting

e Paragraph attributes

* Bullets

and so on. Whatever is supported in Skywire Software standard XML file format for text
areas is now supported for multi-line fields.

This feature is designed for data mapping from an XML extract file into a multi-line
variable field in a FAP file. The data on the XML node (element and its descendants)
being mapped must comply with the standard Skywire Software XML format.

This feature adds new syntax for XPath, which is not W3C standard XPath syntax. When
XPath is specified, you can append the following:

xm ()

and it will return a string of XML for data mapping.

Data mapping is done by supporting the mapped data that contains the XML string —
just as if it had been loaded from a file on disk.

Keep in mind...
¢ The data must start with element named FIELD.

* If the text area can possibly overflow to next page, set the Can Grow and Can Span
Pages attributes as desired on the multi-line field. Also determine whether to set the
Can Grow attribute on the image. In most cases, you should choose to include the
TextMergeParagraph rule to defer formatting of text areas until embedded fields are
mapped. In addition, you can use the CanSplitlmage rule when you are not using the
Can Span options and want the image to break across pages if the position of the
image on the page warrants this action.

* You cannot have other FAP objects below the multi-line field on the same image.
When these are pushed down, extra pages can be created.

* You should include the CheckImagel.oaded rule when mapping multi-line variable
fields, unless the FAP files are loaded via INI options

Here is an example of an XML extract file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<My_Extract _Dat a>

<FI ELD><P>Fi rst line of data.</P><P>End of <U>fi el d</ U></ B>
dat a. </ P></ Fl ELD>

<Keyl nf o Pol i cyNunmber =" APV 10003" State="OH" LOB="Auto"
AgencyCode="5432" Print Type="Dupl ex" Print Agent Copy="Fal se"
Syst em Dat e=" 06/ 02/ 2003"/ >

<Print _Header >

Based on the example, this XPath syntax returns the text highlighted above in red:

/ descendant: : My_Extract _Data/ Fl ELD. xm ()

38

Using the Move_It rule

Mapping Formatted Data from Extract Files

Since the XML string returned from XPath can exceed the 1K limit of regular data
mapping, the Move_It rule was enhanced to handle the mapping of an unlimited size of
data (but limited to available memory).

To get the desired result, you must add the B flag to the Move_It rule format mask. Here
is an example DDT line using both examples from above:

; 0; 0; FI ELD; 0; 1024; FI ELD; 0; 1024; B; nove_it; !/
descendant : : My_Extract_Data/ FI ELD. xm (); N; N, N; N; 3715; 2899; 11010;

39

SEARCHING
AN XML
EXTRACT FILE

Searching an XML Extract File

Keep in mind the extract list and the XML tree are separate. Once the XML tree is loaded,
it remains loaded and can be searched by subsequent rules — just like any extract list.

The system lets you use these search methods:

An XDB token reference such as ZITOKEN looked up in the XDB to get the actual
search text

* The legacy Offset,Mask method such as 70, HEADERREC)
e An XML search text, such as // descendant::Item
In most cases, the XBD token reference will be the preferred method.

An XDB entry can return either a legacy offset/length search mask or an XML search
path. XML search masks must begin with an exclamation mark (!). The leading
exclamation mark is not actually sent to the search routine.

You can use text movement and formatting rules, like Move_It, MoveNum, FmtDate,
and FmtNumber, to do simple operations, but keep in mind some of the more
complicated options may not work.

For instance, Move_It supports a same record flag. This does not work in XML searches.
Likewise, Move_Num supports several binary input data types like BCD and you cannot
include those in XML at present.

More complicated rules that have multiple search criteria like SetAddr, SubExtractList,
and Concat do not work with XML files.

40

HANDLING
OVERFLOW

Handling Overflow

The XML search infrastructure has position support.
/ descendant: : Forms/child::fornfposition()=2]/child::fieldl

The 2 in this case indicates you want the second form child. Since you would not want to
write the search to work with every explicit number, you must indicate where the overflow
variable fits into the equation, as shown here:

/ descendant: : Fornms/child::fornfposition()=****]/child::fieldl

The system first scans the search to see if a replacement is needed for the overflow value.
In this case, it would insert the 2 (taken from the overflow variable value) and then do the
actual XML search.

You can also handle overflow within overflow by specifying an overflow variable name in
the search. For instance, suppose you have multiple cars and each car can have multiple
drivers.

<car >
<driver>Tonxdriver/>
<driver>Ti nxdriver/>
<car/>

<car >

<driver>Sal |l y<driver/>
<car/>

If you had two overflow variables, one working for carand one for driver, you could create
a search like this:

/descendant::car[**carvar**]/child::driver[**drivevar**]

Where the system gets two overflow variables and insert them into the search text.

41

TRIGGERING
FORMS AND
IMAGES

Using the ElementText
option

Triggering Forms and Images

You can do simple triggering based upon the existence of a node. For example, this
/child::car

would trigger a form if caris a child of the root node. Referring back to the eatlier example,
you could make it trigger two of the same forms because there are two cars.

The system supports value matching. So you can do the following:
/child::car[child::driver="Ton]

Or, you can use the Reciplf rule to trigger an image with custom rule parameters, as
shown in this example:

A={!/child::car/child::driver 1,7}::if
(A="Tom)::return("~17")::end::;

If there is such a value in that element in the XML file, the image would trigger. For this
to work, define the offset of the variable attribute as 1 and the length of the data you want
to compare.

You can also use XML search strings such as these:

This string Finds
ldescendant::PolicyNumber The PolicyNumber value
Idescendant::Forms/child::Form All forms

Note that when the XPath specifies an element node such as
/' Book St or e/ Book

it returns the element handle and either its element text or its first attribute value if there
is no element text. If you want to use this to map a field, you can use the ElementText
INI option to better control what XPath returns. For instance, here is an excerpt from an
XML file:

< BookStore >
< Book Category = "Fiction"> </Book>

Since thete is no text for the element/node Book in this excerpt, this XPath statement
returns the first attribute value, which equals Fiction.

/ 1 BookSt or e/ Book

With the ElementText option set to Yes, which is the default, nothing is returned. If you
set this option to No, the first attribute is returned. Here is an example of the
ElementText option:

< XPath >
El ement Text = Yes

42

USING XPATH

Using XPath

XML path locator (XPath) complies with the standard syntax specifications (W3C
standards) found in the XML Path Language, but differs in some regards because it was

developed to support the Rules Processor in Documaker Server. Because this version
of XPath has some limitations, you should check the syntax using the XPATHTST

utility.

XPATH SYNTAX

Here are examples of the valid axes, function calls, signs, and operators to help you
understand and use the XPath syntax.

Axes

You have these axes:

Name

Used to locate the

ancestor
ancestor-or-self
patent
descendant
descendant-ot-self
attribute

child
following-sibling
following
preceding-sibling
preceding

self

Ancestors of the cutrent context node
Ancestors of the current context node and itself
Parents of the current context node
Descendants of the current context node
Descendants of the current context node and itself
Attributes of the current context node

Children of the cutrent context node

Following siblings of the current context node
Context nodes that follow the current node
Preceding siblings of the current context node
Context nodes that precede the current node

Self context node

When used, an axis is always followed by a context node name separated by two colons

(::). For example, the syntax descendant:;para locates all para descendants of the current

context node.

43

Using XPath

Symbols

You can use these calculation operators:

= 1= < > + -

Where 1=, <, >, + can be used as calculation operators in function position(), such as,
[position()=2], [position()!=2], [3+i], [position()<5], and so on. The equals sign (=) is also
used for evaluations such as @Name="Auto’.

You can use these symbols in a valid XPath:
/ /o g [| @
Where the pait of brackets ([]) enclose a condition for evaluation, the at symbol (@) is

an abbreviation of the attribute, the asterisk (*) is used for a wild card search, and others
are used in a valid XPath, as shown below.

Functions

You can use these functions:

Function Returns

concat(string, string, string. .. The concatenation of the strings

last() The last element in the selection

name() The name of the selected elements

node() The node names

position() The position of selected elements

text() The text of selected elements

string(object) The string from the context node

xml() The output buffer containing all descendents of the

specified element

44

Expressions

You can use abbreviated syntax with XPath. Here are the valid expressions:

Abbreviated syntax

Full syntax

Using XPath

*

para
chapter/para

paral]
/chaptet/parallast()]
text()

node()

para|@type]

para[@type="warning"]
para[@type="warning"[2-+i]
chapterf|title]
chapter|title="Introduction’]
doc//para

@*

@type

[@name="warning’]

//para

./ /para

../ chapter

../ @type

child::*

child::para

child::chaptet/child::para
child::para[position()=1]
/child::chapter/child::para[position()=last()]
child::text()

child::node()

child::para[attribute:type]

child::para[attribute::type="watning"|

child::para[attribute::type="warning"|[position ()#2-+i]

child::chapter|child:title]
child::chapter[child:title="Tntroduction"]
child::doc/descendant-or-self::node() / child::para
attribute:*

attribute::type

[attribute::name="warning’|
/descendant-ot-self::node()/ child::para
self::node()
self:node/descendant-or-self::node()/ child::para
parent::node()

parent:node()/child::chapter

patent:node()/attribute:type

45

Example 1

Using XPath

USING THE XPATH TESTING UTILITY
Here is the syntax of the XPATHTST testing utility:

XPATHTST /f= xm file /e=starting node /x= search path

The /e parameter specifies the node whete the search of the XPath starts. You can omit
this parameter if you want the search to start from the beginning. A pair of double quotes
is required to enclose the search mask. Here is an example:

XPATHTST /f="d:\test\test.xm” /x="Forns/Forn
Car[@Name="Car1']/text ()"

This example searches the node Carwith the attribute Name=“Carl”. It then retrieves its
text and returns a text string similar to this one:

Text string = Car 1 is Toyota

These examples illustrate some search paths most frequently used in Documaker RP
applications. Run the testing tool yourself for the answer.

These examples search for a list of nodes with or without conditions. Keep in mind a
condition is always placed within brackets, as shown here: [condition].

This Returns

Forms/Form/Car A list of the Car nodes

Forms/Form/ The first two nodes in the Car node list
Cat[@*][position()<3]

Forms/Form/ A list of the Car nodes above the first element

Car[@Name][position()>1]

Forms/Form/ A list of the Car nodes, excluding the second one
Carf[text()][position()!=2]

Forms/Form/Car[Model] A list of Car nodes that have a child named Model
Forms/Form/Car/node() A list of children nodes under the Car nodes
Forms/Form/Car/Coverage[1] A list of first child Coverage under the Cat nodes
Forms/Form/ A list of nodes Coverage under Carl

Car[@Name="Car1’]/Coverage

46

Using XPath

Example 2 These examples search for the path for a single element:

This

Produces

Forms/Form/Cat[@*][1]
Forms/Form/Car[@Name][last()]

Forms/Form/
Car[@Name="Car1’]

Forms/Form/
Car[Model="Toyota’|

Forms/Form/
Car[Model="Nissan’] /Coverage|[3]

The first node of the Car list with any attributes

The last node of the Car list with the attribute Name
The Car node with attribute name Carl

The Car node with a child Model that has a text string of
Toyota.

The third child node of Coverage under the parent node
Car that has a child named Model with a text string of
Nissan

Example 3 These examples seatrch for a list of attributes:

This

Produces

Forms/Form/

Car[Model="Nissan’]/ @*

A list of attributes of the Car node that have a Child node
named Model with a value of Nissan

Forms/Form/Cat/@Name A list of the attribute Name that has a parent node of Car
Example 4 These examples search for a single attribute:

This Produces

Forms/Form/ The first attribute of the Car node that has a child named

Car[Model="Honda’]/@*[1]

Forms/Form/Car
[Model="Honda’]/ @Name

Forms/Form/Cat[1]/@Name

Model with a value of Honda

The attribute Name of the Car node that has a child
named Model with a value of Honda

The attribute Name of first Car node

Example 5 These examples search for a list of text strings:
This Produces
Forms/Form/Car/text() A list of text strings of Car nodes

Forms/Form/Car[Model] /text()

A list of text strings of Car nodes which have children
named Model

47

Using XPath

Example 6 These examples search for a single text string:
This Produces
Forms/Form/ The text string of the Car node which has a child name
Car[Model="Toyota’] /text() Model with a value of Toyota
Forms/Form/ The text string of the node Form which has a child named
Car[Model="Honda'| / patent::*/ Car that, in turn, has a child named Model with a value of
text() Honda

NOTE: There are three types of returned lists: elements, attributes, and text. When a list
includes only one element, the structure returns a single element instead of a list.

Example 7 These examples search for the name of elements:
This Returns
//*[name()="Car’] “Car” nodes
Forms/Form/*[name()="Car’][2]/ A text string of second “Car” nodes
text()
Example 8 These examples concatenate text strings:
This Returns
concat('Carl', 'and', 'Car2")" A string “Carl and Car2”
concat(//Cat[@Name='Carl'], A string “Toyata and Nissan are imported cars.”

'and',/ /Car[@Name="Car3"], 'are
imported cars."))

48

Using XPath

Example 9 These examples search for strings:
This Returns
string(* 12345’) The string “ 12345”
string(/ /Cat[2] /*[1]) The string of the first child of the second Cat node
Example 10 This examples returns a buffer that contains all descendants of the specified element:
This Produces

XPATHTST /f=cars.xml /x="//Cat[2]/xml() <Car Name=" Car2">Car 2 is Honda
<Model>Honda</Model>
<Coverage>Cover 4< / Coverage>
<Coverage>Cover 5< / Coverage>
<Coverage>Cover 6</Coverage>
</Car>

Note that the XPath must point to a single element, such as Car/2] in the example.

49

EXAMPLE XML FILE
Here is an example XML file (TEST.XML):

<?xm version="1.0" encodi ng="UTF-8"?>

<I--Sanmple XM_ file generated by XML Spy v4.2 U (http://

www. xm spy. con) - - >
<For s>
<For n»
<Car Name="Carl1">Car 1 is Toyota
<Mbdel >Toyot a</ Mbdel >
<Cover age>Cover 1</ Coverage>
<Cover age>Cover 2</ Coverage>
<Cover age>Cover 3</ Coverage>
</ Car >
<Car Name="Car2">Car 2 is Honda
<Mbdel >Honda</ Mbdel >
<Cover age>Cover 4</ Cover age>
<Cover age>Cover 5</ Cover age>
<Cover age>Cover 6</ Coverage>
</ Car >
<Car Name="Car3">Car 3 is N ssan
<Mbdel >Ni ssan</ Mbdel >
<Cover age>Cover 7</ Coverage>
<Cover age>Cover 8</ Cover age>
<Cover age>Cover 9</ Cover age>
</ Car >
</ For >
</ For ms>

Using XPath

50

Chapter 5

Using DAL XML
Functions and XPath

The DAL XML API extends existing DAL functionality
so Documaker Server applications can access a specified
XML document and retrieve XML data via a DAL
script.

This chapter discusses:

* Scenarios on page 52

* Using XML Built-in Functions on page 53
* Using the XML Path Locator on page 57

51

SCENARIOS

Scenario 1

Scenario 2

Scenarios

There are two scenarios in which you would use DAL XML API functions:

A Documaker Server program, such as GenData, loads an XML document and extracts
the XML tree at the transaction level using the XMLFileExtract rule. This rule creates a
list type DAL variable with a default name of %extract and pushes it onto the DAL stack.

Then you can call other XML API functions in a DAL script to access the XML tree and
extract XML data.

Here are examples of the form set and image rules you would add and a DAL script that
would call the XML API functions.

e Add this in the AFGJOB.JDT file:
 XMLFi | eExtract; 2; File=.\deflib\test.xmn

The rule loads the XML file and creates a list type DAL variable to pass the XML
tree to the XML API function.

* Add this in your DDT file:

; 0; 0; DALXMLSCRI PT; 0; 9; DALXMLSCRI PT; 0; 9; ; DAL; Cal | ("TEST. DAL"); N, N; N;
N; 4792; 19444; 11010;

TEST.DAL is the name of the DAL script file.

* Here is an example of the DAL script:

% i st H=XMLFi nd(%extract, “Forns”, “Forni);
#rc=XM.First(%istH;

if #rc=0

return(“Failed to XMLFirst”);

end

aStr=XM_Get Cur Text (% i stH);

return(astr);

%listH denotes a list type DAL variable. #rc denotes an integer type DAL variable.
aStr denotes a string type DAL variable.

You can also load the XML document and create the XML tree at a specific image field
by calling the LoadXMILList rule from a DAL script. You must set the calling procedure
in the DDT file as shown in Scenario 1.

Here is an example of DAL script file:

%Li st H=LoadXM_Li st ("test.xm ");

% i st H=EXMLFi nd(%Li stH, "Forms","Form @");
aStr=XM_Nt hAttrVal ue(%istH, 2);
#rc=DestroyLi st (%Li stH);

return(astr);

52

UsING XML
BUILT-IN
FUNCTIONS

LoadXMLList

DestroyList

GetListElem

IsXMLError

Using XML Built-in Functions

The DAL XML API function are registered in keywords, called built-in functions. A DAL
XML built-in function performs an operation on a set of parameters and returns a DAL
variable in one of the three types: list, integer, or string.

NOTE: Alist type DAL variable always begins with a percent sign (%) and an integer type
DAL variable always begins with an octothorpe (#). Floating decimal numbers
begin with a dollar sign (§). A string type DAL variable does not begin with a
leading symbol.

Here are brief descriptions of the DAL XML built-in functions:

%Li st H=LoadXM_Li st (fi | enane);

This function loads a XML document and extracts a XML tree. The only required input
parameter is the XML document file name. This function returns the XML tree in the list
type DAL variable.

For an example, see the DAL script in scenario 2.

#rc=DestroyLi st (%Li stH);

This function destroys the XML tree created by LoadXMLList. The input parameter is a
list type DAL vatiable that passes the XML tree handle. This function returns one (1) for
success or zero (0) for failure. The return DAL variable is of integer type.

For an example, see the DAL script in scenario 2.

aStr=Get Li st El em{ %ListH, SrchCriteria);

This function has two input parameters. The first is a list type DAL variable that passes
the XML tree handle. The second is a string type DAL variable that passes the search
criteria.

The search criteria can be a node name, followed by up to five pairs of attribute names
and values. If success, it returns a text string which contains the first element that matches
the search criteria.

This example returns the text of the first matched element node Formz with the attribute
name ID and value Agent.

% Li st H=LoadXM_Li st (“test.xm ") ;
aStr= GetListEl en{%ListH, “Forni, “ID", “Agent”);
return(astr);

| sSXMLErr or;

This function checks the list for etror status. The input parameter is a list type DAL
variable that passes the XML tree handle. This function returns one (1) if there no errors
occur or zero (0) if errors do occur.

53

XMLFind

XMLFirst

XMLNext

XMLGetCurName

Using XML Built-in Functions

Resul t =XM_Fi nd(%Li stH, srchnode, xpath);

This function locates the XML path from the extracted XML tree and returns a list of
matched elements to a list type DAL variable or a matched text to a string type DAL
variable, depending on the search request.

This function has three input parameters. The first is a list type DAL variable passed from
either the XMLFileExtract rule or the LoadXMLList built-in function. The second is a
string type DAL variable that passes a node name from which the search starts. The third
is also a string type DAL variable that passes the XML location. If you omit the second
parameter, the search starts from the root of the XML tree.

Result can be a list type or a string type DAL variable.

For an example, see the next section.

#rc=XMLFirst(%istH;

This function takes one input parameter, a list type DAL variable. The variable can be
either a XML tree or a list of extracted elements. In any cases, it sets the current pointer
to the first element in the specified list. This function returns one (1) for success or zero
(0) for failure.

This example returns text from the last element in the list.

aStr="Text not found!";

% Li st H=LoadXMLLi st ("test.xm ") ;
% i st H=EXMLFi nd(%Li stH, "Fornms","Forn{text()]");
#rc=XM.First(%istH;

| oop:

if #rc=0

got o endl oop:

end

aSt r=XM_Get Cur Nane(% i st H) ;
#rc=XM_Next (% i stH);

goto | oop:

endl oop:

#rc=DestroyLi st (%Li stH);
return(astr);

#rc=XM_Next (% i stH);

This function is similar to XMLFirst. It sets the current pointer to the next node or
element in the specified list and returns one (1) for success or zero (0) for failure.

For an example, see XMLFirst.

aStr=XM_Get Cur Nane(% i st H);

This function takes one input parameter of the list type. It can be either an XML tree or
a list of elements. It returns the element name from the current element. The return value
is the string type.

For an example see XMLFirst.

54

XMLGetCurText

XMLFirstAttrib

XMLNextAttrib

XMLAttrName

XMLAttrValue

Using XML Built-in Functions

aSt r=XM_Cet Cur Text (% i st H);

This function is similar to XMLGetCurName. It returns the text from the current
element. The return value is the string type. The message is similar to that from the
XMLGetCurName function.

For an example see XMLFirst.

rc=XMLFirstAttrib(%istH);

This function has one input parameter of a list type variable. It can be an element or
attribute list. This function sets the attribute pointer to the first attribute for the current
element in the element list or to the first attribute element in the attribute list.

If the input is an element list, use these functions to retrieve the attribute name and value:
* XMLAttrName

* XMLAttrValue

If the input is an attribute list, use these functions to retrieve attribute name and value:

e XMLNthAttrName

* XMLNthAttrValue

For examples, see XMLAttrName and XMLNthAttrName.

rc=XM.Next Attrib(%istH);

This function is similar to XMLFirstAttrib. It sets the current attribute pointer to the next
attribute for the current element in the list or to the next attribute element in the attribute
list.

For an example, see XMLAttrName and XMLNthAttrName.

aStr=XM_Attr Name(% i stH);

This function takes a list type DAL variable of input parameter. It returns the name of the
current attribute pointed to by the XMLFirstAttrib and XMLNextAttrib functions.

The example returns the second attribute name of the first Form is the list.

aStr="Attribute not found!";

% Li st =LoadXM_Li st ("test.xm");
% i st H=EXMLFi nd(%Li st, " Forns", " Form');
#rc=XMLFirst(%istH;
#rc=XM.FirstAttrib(%istH);
#rc=XM_Next Attrib(%istH);

if #rc >0
aStr=XM_Attr Name(% i stH);

end

#rt =DestroyLi st (%List);
return(astr);

aStr=XM_AttrVal ue(%istH);

This function is similar to XMLAttrName. It returns the value of the current attribute
pointed to by the XMLFirstAttrib and XMLNextAttrib functions.

For an example, see XMLAttrName. Use XMLAttrValue to replace XMLAttrName.

55

XMLNthText

XMLNthAttrName

XMLNthAttrValue

Using XML Built-in Functions

aSt r =XMLNt hText (% i st H, #i ndex) ;

This function has two input parameters. One is a list type DAL variable that passes a text
list. The other is an integer type DAL vatiable that passes an index number. It returns the
nth text value indicated by the index number.

In this example, LoadXMILList returns a text list and XMLNthText gets the first text.

AStr="Text not found”;

% Li st =LoadXM_Li st ("test.xm");

% i st H=EXMLFi nd(%Li st, "Forms","Formtext()");
aStr=XM_Nt htext (% istH, 1);

#rt =DestroyLi st (%List);

return(astr);

aSt r=XM_Nt hAt tr Val ue(% i st H, #i ndex) ;

This function has two input parameters. One is a list type DAL variable that passes an
attribute list. The other is a integer type DAL variable that passes an index number. It
returns the nth attribute name indicated by the index number.

In this example, XMLFind returns a list of attributes and XMLNthAttrName returns the
name of the first attribute in the list.

astr="Attribute not found!";

% Li st =LoadXM_Li st ("test.xm");

% i st H=XMLFi nd(%Li st, " Forms","Forml @");
aStr=XMLNt hAttr Name(% i stH, 1);

end

#rt=DestroyLi st (%List);

return(astr);

aStr=XM_Nt hAt tr Val ue(% i st, #i ndex) ;

This function is similar to XMLNthAttrName. It returns the nth attribute value indicated
by the index number.

For an example, see XMLNthAttrName. Use XMLNthAttrValue to replace
XMLNthAttrName.

56

USING THE
XML PATH
LOCATOR

Axes

Function calls

Operators or signs

Expressions

Using the XML Path Locator

The XMLFind function is called the DAL XML path locator or DAL XPath. It is a limited
version of the XML path and does not cover all aspects defined in the W3C literature.

Refer to W3C recommendations for the description of XPointer and XPath syntax. You
can use the XPATHTST testing tool to verify the applicable specifications of Skywire
Software’s DAL XPath. Run the XPATHTST program to get the syntax.

Below is a summary of XML path specifications for DAL XPath:

These axes apply:
ancestor ancestor-or-self
child descendant
following following-sibling
preceding preceding-sibling

You can use these function calls:
last() position()
text() name(node-set)
concat(string, string, string...)

You can use these operators or signs:

= 1= < > + -

attribute

descendant-or-self

parent

self

node()

string(object)

// * i []

You can use abbreviated syntax, as this table shows:

For... Use this abbreviation:
child::* *

child::para para
child::chapter/child::para chapter/pata
child::para[position()=1] para[l]
/child::chapter/child::para[position()=last()] /chaptet/para[last()]
child::text() text()

child::node() node()
child::paralattribute:type] para[@type]

—_n

child::para[attribute:type="warning"]

— i

child::paralattribute:type="warning"|[position()=2]

para[@type="warning"]

pata[@type="warning"][2]

57

Element list

Attribute list

Text list

Using the XML Path Locator

For... Use this abbreviation:
child::chapter|child::title] chapter(title]
child::chapter|child::title="Introduction"] chapter[title="Introduction"]
child::doc/descendant-or-selfi:node() /child::para doc//para

attribute::* @*

attribute:type @type
/descendant-ot-self::node() /child::para //para

self::node()

self::node/descendant-or-self::node() / child::para ./ /para

parent:node()
parent:node()/child::chapter ../ chapter

parent:node()/attribute::type ../ @type

XMLFind locates the XML path from the extract XML tree and returns a valid DAL
variable result. It requires three input parameters, a list type DAL variable and two string
type variables. They in turn pass in an XML tree, a node name from which the search
starts, and XML path location for searching,.

If you omit the second parameter, the search starts from the root. The return DAL
variable Resu/t can be cither list type or string type, depending on XML path.

Here are some examples that result in different return values:

%! enlLi st H=EXMLFi nd(%extract, , “descendant:: Fornf @ D=Agent]”);

In this example, DAL XPath selects the For element descendants that have an attribute
with name ID and value Agent from the extract XML tree (root), and returns an element

list.

%attrLi st H=EXMLFi nd(%extract, “Forns”, “Forml @ype="warning ”);
In this example, DAL XPath returns an attribute list that collects type attributes with value
warning for Form children of current context node Forms.

%ext Li st H= XMLFi nd(%extract, “Forms”, “Formitext()”);

In this example, DAL XPath returns a text list that contains all text nodes of For children
of current context node Forms.

58

Text string

Using the XML Path Locator

aSt r=XM_Fi nd(%extract, Forms, “string(Forn{2])");
It returns the text of second child Fomr of the current context node Forus.

aStr=XM_Fi nd(%extract, “Forms”, “concat(“CGet form2 text: ",
“Forn{2])");

It returns the concatenation of the text string Gez form 2 text: , and the text of the second
child Form of current context node Forzs.

aStr=XM_Fi nd(%extract, “Forms”, “nanme()”);

It returns the name of current context node.

59

Chapter 6
Using XML Print Driver

The XMPLIB library allows you to use Documaker RP
to create Docucorp Standard XML output. You can
unload Docucorp Standard XML output from GenData
or GenPrint programs (using the PrintFormset rule).
Here is an example of the INI setup this feature requites:

< Printers >

Prt Type = XWP

< PrtType: XWP >

Modul e = XMPLIB

Print Func = XMPPri nt

NOTE: No other INI options are needed.

Additional XML tags and information can be optionally
written to the output files.

To produce these additional XML tags, add either Filter
and\or OutputEmptyField options to the INI group
<Prt Type: XVP>

Filter = Yes | No (the default is Yes)
Qut put EmptyFields = Yes | No (the default
is No)

60

Options

Description

Filter

Yes (default): Standard XML tag and attribute information is
written to the XML output files.

No: Additional static section (FAP) content, font and
attribute information is written to the XML output files.
When this option is set to No, field information such as
prompt, color, font id and coordinates, text label name (plus
coordinates, color, font id) is also written to the XML output
file

OutputEmptyFields

Yes: If a field is not populated with data, the field name is still
written to the output XML files.

No (default): If a field is not populated with data, the field
name is omitted from the output XML files.

When using with Documaker RP, it is recommended to use the MultiFilePrint
functionality to create a separate XML file per transaction. If multiple XML files are

written into the same file, the file will not load in an XML parser, browser, or editor.

61

Chapter 7

Additional Ways to Use
XML and Documaker
Server

This chapter describes other ways you can use XML and
Documaker Server.

This chapter discusses:
e Mapping Fields with XPath on page 63

* Referencing DAL and GVM Using XML on page
64

* Running Documaker Server Using an XML Job
Ticket on page 66

* Creating Multiple Print Files Using the
PrintFormset Rule on page 67

62

MAPPING
FIELDS WITH
XPATH

Mapping Fields with XPath

The GenT'rn program and the NoGenTrnTransactionProc rule let you use the
TRN_Fields control group to map all of your fields with the XPath. To let the system
know you are using the XML file, set the XMLTrnFields option in the TRN_File control
group to Yes and also set the XMLExtract option in the RunMode control group to Yes.

Here is an example:

< RunMode >
XMLExtract = Yes
< TRN File >
XM.Tr nFi el ds= Yes
< TRN_Fi el ds >

Conpany = I/ Forms/ Keyl

LOB = 1/ For s/ Key2

Poli cyNum = !/ Forms/ PolicyNum
RunDat e = !/ Forns/ RunDat e; DM 4; D4

NOTE: Use this format for the Ttn_Fields options:

(Field in the Transaction DFD File) = XPath;Field Format

Be sure to include the leading exclamation mark (). This tells the system to use an XML
path search but is not part of the actual search routine. Do not specify whether a field is
a key. The system does not support multiple (search) keys with the XML implementation.

If you are selectively excluding transactions, in your exclude file, instead of an offset and
SearchMask, replace it with the XPath. Here is an example:

'/ Forms[Pol i cyType="0LD"]

63

REFERENCING
DAL AND
GVM USING
XML

Referencing DAL and GVM Using XML

The system lets you reference the GVM and DAL expressions before it rebuilds XPath
search masks. The format is as follows:

=XXX(expr essi on)

where XXX is one of the supported ways of finding data from a symbol, such as DAL or
GVM.

Here are the standard access methods:

=(“expression”) returns the value of a DAL symbol represented by expression
Here is an example:
'/ Forms/ Dat al[Dat a2="**=("dal Var")**"]/ Dat a3

dalVar is a DAL symbol. If the value of this variable is Two, the system resolves the
expression and returns the following XPath search mask:

'/ For ms/ Dat al[Dat a2="Two"]/ Dat a3

=(expression) returns the value of a DAL variable named in the expression which
contain a name of another DAL variable.

Here is an example:
'/ For ms/ Dat al[Dat a2="**=(dal Var2) **"]/ Dat a3

If you assign dalVar2 equal to another DAL variable called dalVar which holds a
value of Two, here is the result:

'/ For ms/ Dat al[Dat a2="Two"]/ Dat a3

=DAL(“expression”) returns the value of a DAL script named by expression.
Here is an example:

'/ For ms/ Dat al[Dat a2="**=DAL("test.dal ")**"]/ Dat a3

The system runs the named DAL script and returns the value as a result of that run.
If zest.dal returns a value of Three, the expression is resolved and this XPath search
mask is the result:

'/ For ms/ Dat al[Dat a2="Thr ee"]/ Dat a3

=GVM(“expression”) returns the value of a GVM symbol named by the expression.
Here is an example:

'/ For ms/ Dat al[Dat a2="**=GvYM "gvmvar ") **"]/ Dat a3

gvmVar is a GVM symbol. If the value for this symbol is Oze, the system resolves the
expression and returns this XPath search mask:

'/ For ms/ Dat al[Dat a2="0One"]/ Dat a3

64

Referencing DAL and GVM Using XML

* =GVM(expression) returns the DAL or GVM variable named in the expression
which contains a name of another GVM variable.

Here is an example:
'/ For ms/ Dat al[Dat a2="**=GvM dal Var)**"]/ Dat a3

dalVar is a DAL variable. If dalVar was assigned a value equal to another GVM
variable called gvmVar and the value for this variable is Oze, here is the result:

'/ For ms/ Dat al[Dat a2="0One"]/ Dat a3
'/ For ms/ Dat al[Dat a2="**=GvM gvnVar 2) **"]/ Dat a3

gvmVar2 is a GVM variable. If gvmVar2 was assigned a value equal to another GVM
variable called gvmVar and the this variable holds a value of Oe, here is the result:

'/ For ms/ Dat al[Dat a2="0One"]/ Dat a3

* =() Retrieves the contents of a DAL variable that is, by default, the root name of the
source name of the current DDT field.

Here is an example:
I/ Forms/ Test GYM GVMFi el d="**=()**"]/ Dat a

Assume, current DDT field has destination name da/l”ar #003 and also source name
dall’ar #003 and the content of this DAL variable, dalVar, is Ore, the system resolves
the expression and returns this XPath search mask:

'/ For ms/ Test GYM GVMFi el d="One"]/ Dat a

If you have GVM, DAL, or other symbols in the XPath, you may want to know what
symbolic data you are referencing. Use these INI options to have the system write the
symbol and its referred data into the log file:

< Debug_Swi tches >
Enabl e_Debug_Options = Yes
XPat h = Yes

65

RUNNING
DOCUMAKER
SERVER
USING AN
XML JoB
TICKET

Running Documaker Server Using an XML Job Ticket

Now you can run Documaker Server from another application using an XML job ticket.
You receive results in an XML job log file.

The layout of these files is the same as those used by Docupresentment for running
Documaker Server. See Creating Multiple Print Files Using the PrintFormset Rule on
page 67 for more information.

The name of the Job ticket is passed to the GenData program on the command line as
/jticket= paraneter

The default name is JOBTICKET.XMI..

To set this up replace the StandardJobProc rule with the TicketJobProc rule. Keep in
mind you must run Documaker Server in single step mode, since only the GenData
program is executed.

You can specify the name of the resulting job log file using this command line parameter:
/jlog=
The default is JOBLOG.XML.

66

CREATING
MULTIPLE
PRINT FILES
USING THE
PRINTFORMS
ET RULE

Creating Multiple Print Files Using the PrintFormset Rule

The PrintFormset rule lets you create multiple print files when you run the GenData
program in single-step mode.

NOTE: When running in multi-step mode, use the MultFilePrint callback functionality.

To use this feature, add these options to PrintFormset control group:

< PrintFornset >
MultiFilePrint = Yes

LogFi |l eType = XM
LogFile = (log file name and path)
Option Description

MultiFilePrint Set this option to Yes to allow multiple file print.

LogFileType Specifies the type of the log file. Enter XML for an XML file. Any other entry
results in a text file.

LogFile Specifies the name of the log file. Include the full path. If you omit the path,
the system uses DATAPATH. If you omit this option, the system creates a file
named TMP.LOG. If you enter XML in the LogFileType option and a
different extension here, the system uses XML.

The log file that is created is either a semicolon-delimited text file, formatted like the file
created by the MultiFilePrint callback function or an XML file. Here is an example of the
layout of the XML file:

<?xm version="1.0" encodi ng="UTF-8" ?>

- <LOGFI LE>

- <TRANSACTI ON | NSTANCE="1">
<BATCH NAME="Logi cal Batch Nanme">.\dat a\ BATCHL. BCH</ BATCH>
<GROUP1 NAME=" Conpany" >SAMPCO</ GROUP1>
<GROUP2 NAME="Lob" >LB1</ GROUP2>
<TRANSACTI ONl D NAME=" Pol i cyNunt' >1234567</ TRANSACTI ONI D>
<TRANSACTI ONTYPE NAME="Tr ansact i onType" >T1</ TRANSACT| ONTYPE>
<REC!I Pl ENT NAME="| NSURED' > NSUREDS COPY</ RECI Pl ENT>
<FI LE>DATA\ Or DcP7Wkyt EBECp5j exhWKVgkV840Vw_F- GykT_VM d. PDF</ FI LE>
</ TRANSACTI ON>

- <TRANSACTI ON | NSTANCE="2">
<BATCH NAME="Logi cal Batch Nane">.\dat a\ BATCH2. BCH</ BATCH>
<CGROUP1 NAME=" Conpany" >SAMPCO</ GROUP1>
<GROUP2 NAME="Lob">LB1</ GROUP2>
<TRANSACTI ONI D NAME="Pol i cyNuni' >1234567</ TRANSACTI ONI D>
<TRANSACTI ONTYPE NAME="Tr ansact i onType" >T1</ TRANSACTI ONTYPE>
<RECI Pl ENT NAME=" COVPANY" >COVPANY COPY</ RECI Pl ENT>
<FI LE>DATA\ 0v 3l 7pBdVgHceoRL5hf 2xqgj J7WWki RVOOU70i Fi | cne. PDF</ FI LE>
</ TRANSACTI ON>

</ LOGFI LE>

Use the options in the DocSetNames control group to determine which XML elements

are created. The values in this control group are the same as those written to a recipient
batch or TRN file.

67

Chapter 8

Using Docupresentment
to Run Documaker
Server

This chapter tells you how to set up Docupresentment
and Documaker Server so Docupresentment can run
Documaker Server as a subordinate process.

This chapter discusses:

¢ Overview on page 69

e Setting Up Docupresentment on page 70
e Setting Up Documaker Server on page 72

* Controlling Documaker Server on page 74

68

Overview

OVE RVI EW When using Docupresentment to run Documaker Server, web clients communicate with
Docupresentment using queues. Docupresentment communicates with Documaker
Server via XML files called job tickets and job logs, as shown below.

XML Job
Ticket
BN Documaker
Docupresentment Server
(GenData)
«—
XML
Job Log

Docupresentment can start or stop Documaker Server as needed, without user
interaction. One Docupresentment session controls one Documaker Server process. You
can, however, implement multiple Docupresentment sessions and have multiple
Documaker Server processes as well.

The ServerBaseProc rule replaces the RULStandardJobProc rule and lets
Docupresentment run Documaker Server as a separate, stzy alive process. This means
Documaker Server only has to start once and Docupresentment can continue even if
Documaker Server fails. See ServerBaseProc on page 91 for more information.

Keep in mind these limitations:

* You can only run Documaker Server in single step mode. Consult the Documaker
Administration Guide for more information on single step processing.

* You must run Documaker on Windows 2000 or higher.

* Ifany Docupresentment transaction specifies a different resource setup, the
Documaker Server process will automatically re-initialize to change to those
resources. Such resource changes can affect the overall performance of the system.

* During processing, some INI options can be changed by the client. Since some
Documaker Server rules use static variables and store INI values in memory, it is
possible that a client will be unable to change an INI option if those Documaker
Server rules are used. To handle these situations, you must restart Documaker Server.

69

https://docs.oracle.com/cd/G18689-01/DocumakerStandard_ag_13.0.0.pdf

SETTING UP
DOCUPRESEN
TMENT

DOCSERV.INI file

DAP.INI file

RPEX1.INT file

Setting Up Docupresentment

To set up Docupresentment so that it will run Documaker Server, you will need to make
the following changes in the following INI files:

Make these changes in the DOCSERV.INI file, or the INI file the Docupresentment is
configured to use. Here is an example of how to add a request type for Documaker Server:

< ReqType: RPD >
function = atclib->ATCLogTransaction

function = atclib->ATCLoadAttachnent
function = atclib->ATCUnl oadAttachnent
function = dprlib->DPRSetConfig
function = rpdlib->RPDCheckRPRun
function = rpdlib->RPDCreatelob
function = rpdlib->RPDProcessJob

If necessary, you can add two more request types, one to check if Documaker Server is
running and one to stop Documaker Server. Here is an example:

< ReqType: CHECK >

function = atclib->ATCLogTransaction
function = atclib->ATCLoadAttachnent
function = atclib->ATCUnl oadAttachnent

function = dprlib->DPRSet Config
function = rpdlib->RPDCheckRPRun
< ReqType: STOP >
function = atclib->ATCLogTransaction
function atclib- >ATCLoadAt t achnent
function = atclib->ATCUnl oadAttachnent
function = dprlib->DPRSet Config
function = rpdlib->RPDSt opRPRun

You will also need to add the following Docupresentment rule to the ReqType:INI
control group:

functi on= rpdlib- >RPDSt opRPRun
Add a configuration option for a the master resource library you will use. Here is an
example which is based on the RPEX1 master resource library:

< Configurations >

CONFI G = RPEX1
< Config: RPEX1 >
INFile = RPEX1.IN

Make these changes in the RPEX1.INI file (or the INI file you are using for your
configuration):

< | DSServer >

Ext r Pat h = e:\fap\nmstrres\rpexl\extract\
Print Pat h = e:\fap\nstrres\rpexl\data\
Wi t ForStart = 60

Sl eepi ngTi ne = 500
MaxWai t Time = 120
GENSemaphor eNane = gendat a
RPDSemaphoneNanme = rpdrunrp

70

Setting Up Docupresentment

PrintFileCacheTime = 7200
Text Fi | eCacheTi me = 7200
< RPDRunRP >

Execut abl e = e:\rell300\shipw64\gendata. exe
Directory = e:\fap\nstrres\rpexl\
User I NI = e:\fap\nstrres\rpexl\fsiuser.ini

BaselLocation = http://10.8.10.69/fap/ nstrres/rpexl/ data/
< Printer >

Prt Type = PDF
< Debug >

RPDPr ocessJob = Yes

Setting up multiple ~ The semaphores used by Docupresentment and Documaker Setver are global for a
Docupresentment servers computet, so if you need multiple Docupresentment processes on the same computer,
each Docupresentment process and subordinate Documaker Server process should use
different semaphore names.

The semaphore names are generated automatically by Docupresentment for each
additional Docupresentment instance. These names are passed to Documaker Server as
command line parameters. No user intervention is usually needed.

To specify the own naming conventions for these semaphores, do so by changing these
INI options:
< | DSServer >

CGENSemaphor eNane =
RPDSenmaphor eNanme =

Keep in mind the names must be unique for a computer, so two Docupresentment
servers will have to use two different INI files specifying semaphore names.

71

SETTING UP
DOCUMAKER
SERVER

FSISYS.INI or
FSIUSER.INI file

AFGJOB.JDT file

Setting Up Documaker Server

The first step is to set up Documaker Server to run in a single step mode. See the
Documaker Administration Guide for more information

Keep in mind these considerations...

e If the Documaker Server executables and DILs are located on the network, the start
time for Documaker Server can be significant. Keep in mind, however, that the start
time only affects the first transaction. Subsequent transactions will process much
more quickly. If the start time exceeds 10 seconds, consider changing the
WaitForStart option to a higher value.

* All of the standard Documaker Server performance-related INI options are available
even when Docupresentment runs Documaker Server as a subordinate process. For
best results, optimize Documaker Server’s performance before using it with
Docupresentment.

* Documaker Server will run fastest if the resource files for Documaker Server, as well
as input and output files, are physically located on the computer where
Docupresentment and Documaker Server are running,

In addition, you will need to make changes to your FSISYS.INI or FSTUSER.INI files and
to your AFGJOB.]DT file.

Be sure to turn off all Documaker Server stop options, as shown here:

< CenDat aSt opOn >
BaseErrors =
TransactionErrors =
| mgeErrors =
FieldErrors =

£§685

Also, add the following control groups and options:

< | DSServer >

Sl eepi ngTi me = 500
GENSemaphor eNanme = gendata
RPDSemaphoneNanme = rpdrunrp
< Debug >
RULServerJobProc = Yes
< PrintFornmsSet >
Mil ti FilePrint = Yes
LogFi | eType = XM
LogFile = .\data\printlog.xm

Change the base rule from RULStandardBaseProc, as shown here:

<Base Rul es>
; RULSer ver JobProc; 1; ;

The ServerBaseProc on page 91 rule replaces the RULStandard]JobProc rule and lets

Docupresentment run Documaker Server as a separate, stay alive process. This means
Documaker Server only has to start once and Docupresentment can continue even if
Documaker Server fails.

72

Setting Up Documaker Server

Naming Conventions for Output Files

The output files from Documaker Server use the names generated by the
Docupresentment rules and submitted to Documaker Server in the job ticket file. If you
need different names, provide them in the Docupresentment request. In this case, you
must make sure the names are unique or else they will be overwritten. The names
generated by Docupresentment can consist of up to 45 characters and are similar to the
names generated by the DPRPrint rule in Docupresentment.

The directory where the output files are created is determined in this manner:
* If the file name and path was provided, the system uses that information.

* Ifthe file name was provided, but the path was omitted, the system looks for the path
in the PRINTPATH attachment variable.

* If the path is not in the PRINTPATH attachment variable, the system looks for the
PrintPath INI option in the IDSServer control group.

* If no path was specified in the PrintPath INI option, the system places the output
file in the current directory.

The extension of the output files is determined in this manner:

* If the name and extension was provided in the attachment, the system uses that
information.

* If the name and extension were omitted, the system generates a name and uses the
printer type as the extension for the print output files. For other files, the system
looks for the FileExt option in the IDSServer control group to find the extension.
The default is DAT.

73

CONTROLLING
DOCUMAKER
SERVER

Controlling Documaker Server

To control Documaker Server via Docupresentment, use these Docupresentment rules:

RPDCheckAttachments - Checks the required input attachment variables and INI
options before starting the GenData program.

RPDCheckRPRun - Makes sure Documaker Server is running. If Documaker Server
is not running, this rule starts it.

RPDCreateJob - Finds the attachment variables for each of the values in the job
ticket and adds them to the XML tree. The XML tree is added to the RPDJobTicket
DSI variable so the next rule can use it.

RPDProcess]ob - Gets the XML tree from the RPDJobTicket variable and writes it
to a file. This file is used as the job ticket which triggers the Documaker Server
process.

RPDStopRPRun - Receives the current process ID from the DSI variable
RPDRunProcess and then terminates Documaker Server.

74

RPDCHECKA
TTACHMENTS

Syntax

Parameters

RPDCheckAttachments

Use this rule to check the required input attachment variables and INI options before
starting the GenData program.

_DSI EXPORT DWORD _DSI APl RPDCheckAtt achnments (DSI HANDLE hdsi ,
char * pszPar s,
ULONG ul Msg,
ULONG ul Opti ons)

Parameter Description

DSIHANDLE hlnstanceDSI instance handle
char * pszParms ~ Pointer to rule parameter string unsigned long
ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

This rule runs before the RPDCheckRPRun rule. Using this rule, ReqType becomes:

< ReqType: RPD >
function = atclib- >ATCLogTransacti on
function = atclib- >ATCLoadAtt achment
function = atclib- >ATCUnl oadAttachment
function = irllib->| RLCopyAttachnent
function = dprlib- >DPRSet Config
functi on = rpdlib- >RPDCheckAttachnents
function = rpdlib- >RPDCheckRPRun
function = rpdlib->RPDCreat eJob
functi on = rpdlib- >RPDProcessJob

The expected attachment variables are checked only if they are in the RPD Attachments
control group. Here is an example:

< RPDAttachments >
Variabl e = ReqType
Variable = Config
Variabl e = PrintBatches
Variable = ExtrFile

If the ExtrFile option is required, the rule checks to see if it exists. Keep in mind the
ExtrFile option includes a full path. If you omit the path, the system uses the path
specified in the ExtrPath option as the default path.

This rule also checks these options in the RPDRunRP control group:

< RPDRunRP >
Execut abl e
Directory
User I NI

d: \ RP\ Mst rr es\ gendata. exe
d: \ RP\ Mst rres\rpex1\
f si user

If the UserINI option does not include a drive letter, the system will look at the Directory
option to find the path, so the full UserINI name becomes:

d: \RP\ Mstrres\rpex1\fsiuser.ini

In other cases, you can set the UserINI option, as shown here:

75

TLJACKSO
Sticky Note
irlw32 doesn't even ship in earlier releases. Need replacement for irlw32 rules

INT options

Returns

Error messages

RPDCheckAttachments

Directory = d:\Progl DS\ RP\ Mstrres\Validate\wé64bin

\ UserI NI

= fsiuser

So the full UserINI name becomes:

d: \ Progl DS\ RP\ Mst rr es\ Val i dat e\ we4bin\ f si user. i ni

This tule also makes sure the USERINIINI file exists. For UNIX, if the first byte is “/”,
the system looks at the UserINI option for the full path, for example:

User I NI

= /Progl DS/ RP/ Mstrres/ Deflib

Otherwise, the system uses the path specified in the Directory option. Keep in mind that
if you omit the UserINI option, the system uses the FSTUSER.INI file instead.

< RPDAttachnents >

Vari abl e = ReqType
Vari abl e = Config
Vari abl e = PrintBat ches
Vari abl e = ExtrFile
< | DSServer >
Ext r Pat h = d:\fap\nstrres\rpexl\extract\

< RPDRunRP >
Executabl e = d:\rel1300\rpsl00\ wé4bin\ gendata. exe

Directory = d:\fap\nstrres\rpexl\
User I NI = fsiuser
Success or failure.
Message Description
RPD0001 Can not locate variable #VARIABLE,# in the attachment list at
#LOCATION,#.
RPD0004 Can not add variable #VARIABLE,# to attachment at #LOCATION #.
RPD0007 File #FILENAME,# does not exists. Failed to #LOCATION,#.
RPD0009 The INT option #INIOPTION,# could not be located in the group

#INIGROUP,#.

76

RPDCHECKR
PRUN

Syntax

Parameters

Input attachment variables

RPDCheckRPRun

Use this rule to make sure Documaker Server is running. If Documaker Server is not
running, this rule starts it.

_DSI EXPORT DWORD _DSI APl RPDCheckRPRun (DSI HANDLE hdsi ,
char * pszPar s,
ULONG ul Msg,
ULONG ul Opti ons)

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms ~ Pointer to rule parameter string unsigned long
ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

To determine if Documaker Server is running, the rule looks at the CONFIG value. If the
CONFIG value is not the same as it was in the previous run, this rule stops and then
restarts Documaker Server.

On the RUNF message, this rule looks to see if a Documaker Server process exists and
starts one if needed. On the RUNR message, this rule stops the Documaker Server
process if there was an error.

On DSI_MSGRUNIY, this rule first checks to see if Documaker Server is running by
detecting the gendata semaphore created by RULServerBaseProc rule. If the semaphore
does not exist, Documaker Server is not running. This rule then starts Documaker Server
and creates a semaphote called rpdrunrp.

This lets Documaker Server check the status of the Docupresentment by detecting the
existence of the semaphore. It also lets Documaker Server terminate normally in case
Docupresentment stops.

To handle situations where you have multiple master resource libraries (MRLSs), the rule
checks the CONFIG value for every job process to see if a new MRL is requested. If the
CONFIG value changes, the rule stops the current Documaker Server process and starts
another one which uses the new MRL.

On DSI_MSGRUNR, this rule terminates Documaker Server if errors occur.

Variable Description

CONFIG The configuration for the master resource library (MRL). See also the
DPRSetConfig rule and the setup with multiple master resource directoties.

71

RPDCheckRPRun

Output DSI variables

Variable Description

RPDRunProcess This value is the process ID for the Documaker Server process.
RPDSemaphoteName The semaphore name from the RPDSemaphore INI option.
GENSemaphoreName The semaphore name from the GENSemaphore INI option.
RPDRunSemaphore Stores the RPDSemaphore handle.

RPDJobLogName The name of the job log file name to use.

RPDJobTicketName The name of the job ticket file name to use.

INT options You can use these INI options:

< RPDRunRP >

Execut abl e =
Directory =
UserI NI =
< | DSServer >
GENSemaphor eNanme =
RPDSemaphor eNane =
Option Description

RPDRunRP control group

Executable The name and path of the program you want to execute, such as
d:\rpsetup\gendata.exe.
Ditectory The path to the master resource library, where you want to run

Documaker Server.

UserINI (Optional) The name and path of the INI file you want to use. The
default is the FSTUSER.INI located in the directory specified by the
Ditectory option.

IDSServer control group

GENSemaphoreName The name of the semaphore. The default is gendata.

RPDSemaphoreName The name of the semaphore. The default is rpdruntp.

Returns Success or failure.

Error messages

Message Description

RPDO0001 Cannot locate variable #VARIABLE, # in the attachment list at
#LOCATION,#.

RPD0004 Cannot add variable #VARIABLE, # to attachment at #LOCATION, #.

78

RPDCheckRPRun

Message Description

RPD0008 The call by #LOCATION,# to API #APINAME,# failed.

RPD0009 The INT option #INIOPTION,# can not be located in the group
#INIGROUP #.

RPD0010 Cannot create DSI variable #VARIABLE #. #LOCATION,# failed.

79

RPDCREATEJ
OB

Syntax

Parameters

Input attachment variables

RPDCreateJob

Use this rule to find the attachment variables for each of the values in the job ticket and
add them to the XML tree. The XML tree is added to the RPDJOBTICKET DSI variable
so the next rule can use it.

Keep in mind that the RPDCreateJob rule always adds the DbLogFile XML element to
the job ticket. If a value for this element is not in the job ticket, a unique file name is
generated and added. If an attachment variable or INI option is present but set to a blank
value, the RPDCreateJob rule does not add the DbLogFile element.

_DSI EXPORT DWORD _DSI APl RPDCr eat eJob (DSI HANDLE hdsi ,
char * pszParns,
ULONG ul Msg,
ULONG ul Opti ons)

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string unsigned long
ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

On DSI_MSGRUNLTF, this rule creates the XML document for the job ticket that triggers
the job processing. You should direct your results to designated directories and use unique
file names, especially if you want to support multiple MRL setups, multiple Documaker
Server processes, or multiple job processes.

You can change INT options via attachment variables. These changes are added onto the
XML tree so Documaker Server can update the INI options in memory.

On DSI_MSGRUNR, this rule processes the XML document of the job log, and all
values of the XML tree are added to the output attachment.

You can use these input attachment variables:

Variable Description
ExtrFile Extract file name and path. This is a required input file.
MsgFile (Optional) Message file name and path. If you omit the path, the

PrintPath attachment variable is used. If the PrintPath was omitted, the
system uses the PrintPath defined in the IDSServer control group. If
the file name is omitted, the system creates a 46-byte unique file name.

ErrFile (Optional) Error file name and path. If you omit the path, the PrintPath
attachment variable is used. If the PrintPath was omitted, the system
uses the PrintPath defined in the IDSServer control group. If the file
name is omitted, the system creates a 46-byte unique file name.

LogFile (Optional) Log file name and path. If you omit the path, the PrintPath
attachment variable is used. If the PrintPath was omitted, the system
uses the PrintPath defined in the IDSServer control group. If the file
name is omitted, the system creates a 46-byte unique file name.

80

Variable

DBLogFile

NAFile

POLFile

NewTrn

PrintBatchPath

PrintBatches

PrintBatchesX

BatchFiles

BatchFilesX

INIOptions
INIOptionsX.Group
INIOptionsX.Option

INIOptionsX.Value

RPDCreateJob

Description

(Optional) DB log file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was omitted, the
system uses the PrintPath defined in the IDSServer control group. If
the file name is omitted, the system creates a 46-byte unique file name.

(Optional) NA file name and path. If you omit the path, the PrintPath
attachment variable is used. If the PrintPath was omitted, the system
uses the PrintPath defined in the IDSServer control group. If the file
name is omitted, the system cteates a 46-byte unique file name.

(Optional) POL file name and path. If you omit the path, the PrintPath
attachment variable is used. If the PrintPath was omitted, the system
uses the PrintPath defined in the IDSServer control group. If the file
name is omitted, the system creates a 46-byte unique file name.

(Optional) NewTrn file name and path. If you omit the path, the
PrintPath attachment variable is used. If the PrintPath was omitted, the
system uses the PrintPath defined in the IDSServer control group. If
the file name is omitted, the system creates a 46-byte unique file name.

The default path for print batches.

The number of batches to print. If you enter zero or you do not enter
this variable, no print batch information is updated. Your entry cannot
exceed the number of printers listed in the PrinterInfo control group in
the FSISYS.INI file.

The name of a print batch, where X denotes the number of the print
batch, continuing from one to PrintBatches. If omitted, the system
creates a 46-byte unique name for the print batch. A print batch can
have a full path. If it does not have a path, PrintPath is used. If PrintPath
is omitted, the system uses the path specified in the PrintPath option in
the Data control group.

The number of batch files. If you enter zero or omit this option, no
batch file information is updated. Your entry should not exceed the
number of batch files listed in the Print_Batches control group in the
FSISYS.INI file.

The name of the batch file. X denotes the number of the batch file,
counting from one to the maximum. If you omit this option, the system
creates a 46-byte unique name for the batch file.

You can include a full path. If you omit the path, the system uses the
PrintPath. If the PrintPath is omitted, the system uses the path specified
in the PrintPath option in the IDSServer control group.

The number of other INI options to update.

The INI group name you want to update.

The INI option name you want to update.

The value of the INI option you want to update. X indicates the
number of INI options, counting from one to the maximum.

81

RPDCreateJob

Output DSI variables

Variable Description

RPDJOBTICKET Job ticket variable. Its value is a XML document handle for the job

ticket.

Input DSI variables
Variable Description
RPDJOBLOG Job log variable. Returns an XML document handle for the job log.

Output attachment
variables Variable Desctiption

ExtrFile Extract file name and path.
MsgFile Message file name and path.
ErrFile Error file name and path.
LogFile Log file name and path.

DBLogFile DB log file name and path.

NAFile NA file name and path.

POLFile Pol file name and path.

NewTrn NewTrn file name and path.

PrinterX Name and path of print batches. X denotes the number of the print batches from

one to the maximum.

BatchX The name and path of the batch files. X denotes the number of batch files, from
one to the maximum.

Results Success ot an error code from the Docupresentment rules.

RPResults An error code from Documaker Server: 0=Success, 4=Warning, 8 or 16=Failure.

Note that the input attachments for PrintBatchX should be in the same order as those for
PrinterX, as defined in the PrintInfo control group in the FSISYS.INI file. Also keep in
mind that PrinterX and BatehX are option names you define in the Printlnfo and
Print_Batches control groups.

INT options < | DSServer >
PrintPath
PrintFil eCacheTi e
Text Fi | eCacheTi me
< Printer >
Prt Type =
< RPDRunRP >
Baselocati on =

82

RPDCreateJob

Option Description

IDSServer control group
PrintPath Used as a default path for print batches and the rest of the output files.

PrintFileCacheTime The length of time, in seconds, you want the system to store the print
files. At expiration time, the system removes the print batch files. The
default is 1800 (30 minutes). Note that only print files with the 46-byte
unique name created by the system are cached.

TextFileCacheTime The length of time, in seconds, you want the system to store the text files.
At expiration time, the system removes the text files. The default is 1800
(30 minutes). Note that only text files with the 46-byte unique name
created by the system are cached.

Printer control group

PrtType The type of print batch file. Your entry must be consistent with the
control group defined in the FSISYS.INI file. For instance, if you set up
a PrtType:PDF control group there, enter PDF here.

RPDRunRP control group

BaseLocation The URL to the output data directory. Your entry must be consistent
with the PrintPath or other defined data path.

Returns Success or failure.

Error messages

Message Description

RPD0002 Cannot create *TAGNAME, # at #LLOCATION,#.

RPD0003 Cannot create DSI variable #VARIABLE, # at #LOCATION, #.

RPD0004 Cannot add vatiable #VARIABLE,# to attachment at #LOCATION,#.

RPDO0005 Cannot locate DSI variable #VARIABLE # at #LOCATION,#.

RPD0006 DSI variable #VARIABLE,# does not contain valid data. Failed to
H#LOCATION,#.

83

RPDPROCES
SJOB

Syntax

Parameters

Input Docupresentment
variables

RPDProcessJob

Use this rule to get the XML tree from the DSI variable RPDJobTicket and write it to a
file written on the RUNF message. On the RUNR message, this rule waits for the job log
file. The job log file is located in the same directory and is loaded as an XML file on the
RUNR message.

_DSI EXPORT DWORD _DSI APl RPDPr ocessJob (DSI HANDLE hdsi ,
char * pszParns,
ULONG ul Msg,
ULONG ul Opti ons)

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string unsigned long
ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

The Docupresentment variable RPDJobLog is created with the XML job log. The
RPD]JobLog variable and the XML tree associated with it is destroyed in this rule on the
TERM message.

You can set the maximum amount of time to wait using the MaxWaitTime option. On
the RUNR message, this rule also removes the job log file from disk. You can also control
the removal of the job log file with the RPDProcessJob INI option. This option is for
debugging purposes only.

On DSI_MSGRUNIF, this rule receives the XML document handle from the DSI variable
RPD]JobTicket, and writes the XML tree into the JOBTICKET. XML file specified in the
Directory option.

On DSI_MSGRUNR, this rule waits until it receives the job log file JOBLOG.XML),
from Documaker Server. You specify how long the system should wait using the
SleepingTime INI option. If the waiting time exceeds the limit, the rule stops Documaker
Server.

The system locates a job log placed in the directory specified in the Directory INI option.
The job log file is loaded into an XML document so the XML tree can be written out in
attachments. Whether the JOBLOG.XML file should be removed, depends on your entry
in the RPDProcessJob INI option.

Variable Description
RPDJobTicket A job ticket vatiable. It returns the XML document handle for the job
ticket.

84

Output files

Output DSI variables

INI options

Return values

RPDProcessJob

File Description

JOBTICKET. XML A job ticket, which is a trigger for the Documaker Server process. It
contains request information and information used to update INI
options.

Variable Description

RPDJobLog The job log variable. Its value is an XML document handle for the job log.

< RPDRunRP>
Directory =

< | DSServer >
MaxWai t Time =
Sl eepi ngTinme =
WaitForStart =

< Debug >
RPDPr ocessJob =

Option Description

RPDRunRP control group

Directory Enter the path where you want to load and unload the JOBTICKET. XML
and JOBLOG.XML files.

IDSServer control group

MaxWaitTime Enter, in seconds, the maximum length of time you want
Docupresentment to wait for the JOBLOG.XML file. The default is 60
seconds.

SleepingTime Enter the time, in milliseconds, to specify how often Docupresentment

should check for a job ticket. The default is 1000 (1 second).

WaitForStart The length of time Docupresentment should wait for Documaker Server
to start before assuming Documaker Server is not running. The default is
10 seconds. Adjust this value if the Documaker Server requires more time
to start. If Documaker Server does not start within the allotted time, this
rule returns an error and stops processing.

Debug control group

RPDProcessjob Enter Yes to keep the JOBLOG.XML file. Enter No to remove it.

Success or failure.

85

Error messages

RPDProcessJob

Message Description

RPD0003 Cannot create the DSI variable #VARIABLE # at #LOCATION, #.

RPD0004 Cannot add the variable #VARIABLE, # to attachment at #LOCATION, #.

RPDO0005 Cannot locate the DSI variable #VARIABLE # at #LOCATION, #.

RPD0006 The DSI variable #VARIABLE,# does not contain valid data. Failed to
H#LOCATION,#.

RPDO0007 The file #FILENAME,# does not exist. Failed to #LLOCATION,#.

RPD0008 The call by #LOCATION,# to API #APINAME # failed.

RPDO0009 The INI option #INIOPTION,# cannot be located in the group

#INIGROUP,#.

86

RPDSTOPRP
RUN

Syntax

Parameters

Return values

RPDStopRPRun

Use this rule to stop Documaker Server. To do so, you need to execute the request type
STOP as described in the topic, Setting Up Docupresentment on page 70.

This rule is also used as an INIT/TERM rule and is registered on Docupresentment
under the ReqType:INI control group. You can use this rule to make sure that when
Docupresentment stops, Documaker Server also stops.

_DSI EXPORT DWORD _DSI APl RPDSt opRPRun (DSI HANDLE hdsi ,
char * pszParns,
ULONG ul Msg,
ULONG ul Opti ons)

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string unsigned long
ulMsg DSI_MSG, such as DSI_MSGRUNF unsigned long

ulOptions options

This rule receives the current process ID from the DSI variable RPDRunProcess and
then terminates Documaker Server.

Success or failure.

87

RULSERVER
BASEPROC

Syntax

INI options

RULServerBaseProc

When you use Docupresentment to run Documaker Server, this rule replaces the
RULStandardBaseProc rule and is registered as RULServerJobProc.

; RULSer ver BaseProc; ; ;

Insert this rule in the AFGJOB.JDT file as the first rule.

This rule looks for a job ticket file in the current working directory and loads it as an XML
file. All of the values on the XML tree are added to or updated in the INI options. After
Documaker Server finishes processing, the rule checks the status. If there ate errors, it
returns a #o more bases return code on the next iteration. This terminates Documaker
Server.

This rule uses a polling technique—sleep a while and check for the file existence— which
you can configure using INI options. The rule loads the job ticket and sets INI options
used when running subsequent rules. On the post message, this rule creates a job log XML
tree and writes it to disk. If any necessary values are missing from the XML job ticket,
these values are generated and changed (or appended) in the INI context.

On RP_PRE_PROC_B, this rule creates a semaphore (gendata), which makes it possible
for the Docupresentment RPDCheckRPRun rule to detect the status of Documaker
Setver when the next processing job starts.

This rule stays in waiting status and checks for the existence of job ticket file
(JOBTICKET.XML) and the rpdrunrp semaphore. As soon as the job ticket file is
detected, this rule loads it onto the XML tree and uses the contents of the XML tree to
update INI options in memory.

If the rule does not detect the 7pdrunrp semaphore, the rule terminates Documaker Server
by returning a msgNO_MORE_BASES return code. It also creates a GVM variable
(DSISERYV) so the CUSInitPrint rule can re-initialize printers after the job process is
complete. This GVM variable can be used by any of the Documaker Server rules to detect
if the Documaker Server is running under Docupresentment, if different logic is needed.

On RP_POST_PROC_B, the rule writes out the job log file and removes the job ticket
file. If the RULServerJobPRoc option is set to Yes, a copy of the file will be obtained for
debugging purposes.

Use these INI options with this rule:

< Data >
Dat aPath =
ExtrFile =
MsgFil e =
ErrFile =
LogFile =
DBLogFi l e =
NAFi l e =
POLFile =
NewTrn =

< Printerlnfo >
Printer =

< Printer >
Port =

< Print_Batches >

88

RULServerBaseProc

Bat chl = batchl. bch
< | DSServer >
Sl eepi ngTime =
CGENSemaphor eNane =
RPDSenmaphor eNanme =
< Debug >
RULSer ver JobPr oc
< Print FornBet >
MiltiFilePrint =
LogFil eType =
LogFile =

Option Description

Data control group

DataPath Used as the default path if you omit PrintPath.
ExtrFile Enter the name and path of the extract file.
MsgFile Enter the name and path of the message file.
ErrFile Enter the name and path of the error file.
LogFile Enter the name and path of the log file.
DBLogFile Enter the name and path of the DB log file.
NAFile Enter the name and path of the NA file.
POLFile Enter the name and path of the POL file.
NewTrn Enter the name and path of the NewT'n file.

PrinterInfo control group

Printer Enter the designated printers for print batches.

Printer control group

Port Enter the name of the print batch file for each designated printer.
Note the group name is defined by the printer option in the
PrinterInfo control group.

Print_Batches control group

Batchl Then name of the batch file.

IDSServer control group

SleepingTime Enter the amount of time in milliseconds you want the system to wait
before it checks for a job ticket. The default is 1000 (1 second).

GENSemaphoreName Enter the name of the semaphore. The default is gendata.

RPDSemaphoreName Enter the name of the semaphore. The default is 7pdrunsp.

&9

RULServerBaseProc

Option Description

Debug control group

RULServerJobProc Enter Yes if you want errors appended to the ErrFile, the LogTrace
file to record the trace, and the JobLog file to be renamed and saved.

PrintFormSet control group

MultiFilePrint Enter Yes to generate multiple print files which use 46-byte unique
names.
To identify which recipients are in which print batch, enter No or
omit this option.This causes the PrintFormSet rule to save the printer
for the print batch along with its recipient information. The
RULServerBaseProc rule then adds three new tags for each print
batch file and adds them to the JOBLOG.XML file.
For example, for the print batch file on PRINTERT1, the system
creates these new tags:

<PRI NTER1REC! P>| nsur ed</ PRI NTER1REC!I P>

<PRI NTERLCODE>001</ PRI NTER1 CODE>
<PRI NTERLDESC>| nsur ed Copy</ PRI NTERLDESC>

LogFileType Specify the type of print log file, such as XML or TEXT.

LogFile Enter the name and path of the print log file. If you omit the
extension, the system uses the LogFileType option to determine the
extension.

Input file JOBTICKET.XML

Output file ~ JOBLOG.XML

90

SERVERBASE
PROC

Syntax

INI options

ServerBaseProc

When you use Docupresentment to run Documaker Server, this rule replaces the
RULStandardJobProc rule.

; Server BaseProc; ; ;

Insert this rule in the AFGJOB.JDT file as the first rule.

This rule looks for a job ticket file in the current working directory and loads it as an XML
file. All of the values on the XML tree are added to or updated in the INI options. After
Documaker Server finishes processing, the rule checks the status. If there ate errors, it
returns a #o more bases return code on the next iteration. This terminates Documaker
Server.

This rule uses a polling technique—sleep a while and check for the file existence— which
you can configure using INI options. The rule loads the job ticket and sets INI options
used when running subsequent rules. On the post message, this rule creates a job log XML
tree and writes it to disk. If any necessary values are missing from the XML job ticket,
these values are generated and changed (or appended) in the INI context.

On RP_PRE_PROC_B, this rule creates a semaphore (gendata), which makes it possible
for the Docupresentment RPDCheckRPRun rule to detect the status of Documaker
Setver when the next processing job starts.

This rule stays in waiting status and checks for the existence of job ticket file
(JOBTICKET.XML) and the rpdrunrp semaphore. As soon as the job ticket file is
detected, this rule loads it onto the XML tree and uses the contents of the XML tree to
update INI options in memory.

If the rule does not detect the 7pdrunrp semaphore, the rule terminates Documaker Server
by returning a msgNO_MORE_BASES return code. It also creates a GVM variable
(DSISERYV) so the CUSInitPrint rule can re-initialize printers after the job process is
complete. This GVM variable can be used by any of the Documaker Server rules to detect
if the Documaker Server is running under Docupresentment , if different logic is needed.

On RP_POST_PROC_B, the rule writes out the job log file and removes the job ticket
file. If the RULServerJobPRoc option is set to Yes, a copy of the file will be obtained for
debugging purposes.

< Data >
Dat aPath =
ExtrFile =
MsgFile =
ErrFile =
LogFile =
DBLogFi l e =
NAFi le =
POLFile =
NewTrn =

< Printerlnfo >
Printer =

< Printer >
Port =

< Print_Batches >
Bat chl = batchl. bch
| DSServer >

A

91

ServerBaseProc

Sl eepi ngTine =
GENSemaphor eNarre
RPDSenmaphor eNane
< Debug >
RULSer ver JobPr oc
< PrintFornBet >
MiltiFilePrint =
LogFil eType =
LogFile =

Option Description

Data control group

DataPath Used as the default path if you omit PrintPath.
ExtrFile Enter the name and path of the extract file.
MsgFile Enter the name and path of the message file.
ErrFile Enter the name and path of the error file.
LogkFile Enter the name and path of the log file.
DBLogFile Enter the name and path of the DB log file.
NAFile Enter the name and path of the NA file.
POLFile Enter the name and path of the POL file.
NewTrn Enter the name and path of the NewTrn file.

PrinterInfo control group

Printer Enter the designated printers for print batches.

Printer control group

Port Enter the name of the print batch file for each designated printer.
Note the group name is defined by the printer option in the
PrinterInfo control group.

Print_Batches control group

Batchl Then name of the batch file.

IDSServer control group

SleepingTime Enter the amount of time in milliseconds you want the system to wait
before it checks for a job ticket. The default is 1000 (1 second).

GENSemaphoreName Enter the name of the semaphore. The default is gendata.
RPDSemaphoreName Enter the name of the semaphore. The default is 7pdruntp.

Debug control group

92

Option

RULServerJobProc

ServerBaseProc

Description

Enter Yes to get a copy of the job ticket file before the system
removes it.

PrintFormSet control group

MultiFilePrint

LogFileType

LogFile

Enter Yes to generate multiple print files which use 46-byte unique
names.

To identify which recipients are in which print batch, enter No or
omit this option. This causes the PrintFormSet rule to save the printer
for the print batch along with its recipient information. The
RULServerBaseProc rule then adds three new tags for each print
batch file and adds them to the JOBLOG.XML file.

For example, for the print batch file on PRINTER1, the system
creates these new tags:

<PRI NTERLRECI P>| nsur ed</ PRI NTER1LRECI P>
<PRI NTER1CODE>001</ PRI NTER1CODE>
<PRI NTER1DESC>I nsur ed Copy</ PRI NTER1DESC>

Specify the type of print log file, such as XML or TEXT.
Enter the name and path of the print log file. If you omit the

extension, the system uses the LogFileType option to determine the
extension.

Input file ~ JOBTICKET.XML

Output file JOBLOG. XML

93

Chapter 9

Frequently Asked
Questions

This chapter provides answers to commonly asked
questions.

94

Is XML the same as HTML?

No. XML is primarily a data exchange format and contains the data definitions and the
data. HTML can contain data and layout, however the definitions of the data are not
defined in #ags (such as <author>) as they are in XML. These tags are defined in a schema.

To portray XML data in a page layout an XSL (Extensible Stylesheet Language) file is
required. This would contain information such as position, fonts, and so on.

The benefits of XML over HTML are that it is becoming an industry standard accepted
format for data transfer and it has a more defined structure. When an XML file has a valid
structure it is known as being wel/ formed.

Who developed the XML parser?

The system uses the Expat XML parser, which was originally developed for Netscape. It
is a third-party library. You cannot plug in your own parser. Here are some links if you
want more information on Expat:

http://expat.sourceforge.net/

http://sourceforge.net/projects/expat/

What is an XML tag?
XML tags are created like HTML tags. There is a start tag and a closing tag.

<TAG>cont ent </ TAG>

The closing tag uses a slash after the opening bracket. The text between the brackets is
called an element. Keep in mind...

* Tags are case sensitive.

e Starting tags always need a closing tag.

* All tags must be nested propetly.

* Comments can be used in the same way as HTML, for instance <l--Comments-->

Empty tags can be defined as <TAG/>. Empty tags do not requite a closing tag.

What is an XML attribute?

Elements in XML can use attributes. The syntax is:
<el enent attribute-name="attribute-val ue”>.</el enent >

The value of an attribute needs to be quoted, even if it contains only numbers. For
example:

<car color = “red”>Vol vo</car>
The same entry could be defined without using attributes:

<car >
<br and>Vol vo</ br and>
<col or >red</ col or>
</ car>

95

http://expat.sourceforge.net/
http://sourceforge.net/projects/expat/

What is a schema?

A schema is a map of the structure of the data. This is presented in an XML type layout.
Using the sample XML file on the previous page the schema for this would be as shown
below.

<?xm version="1.0" encodi ng="utf-8"?>
<xs:schema xm ns: xs="http://ww.yourco. org// XM.Schema" >
<xs: el ement nanme="book">
<xs: conpl exType>
<Xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:el ement name="author" type="xs:string"/>

<xs: el ement name="character" m nQccurs="0"
maxQccur s=" unbounded" >

<xs:conpl exType>
<Xs:sequence>
<xs: el ement name="nane" type="xs:string"/>

<xs:elenment name="friend-of" type="xs:string"
m nCccur s="0"

maxCccur s="unbounded"/ >
<xs: el ement name="since" type="xs:date"/>
<xs: el ement name="qualification" type="xs:string"/>
</ xs: sequence>
</ xs: conmpl exType>
</ xs: el enent >
</ xs: sequence>
<xs:attribute nanme="isbn" type="xs:string"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schenma>

What XML standards are accepted by Documaker and
Docupresentment applications?

XML standards are set and defined by the W3C organization (www.w3c.org). This is a
consortium of over 450 organizations that set and define common standards and
protocols in use on the World Wide Web. Documaker and Docupresentment applications
use the XML 1.0 standard and will support the following encoding:

« UTF-8
* ISO-8859-1
* US-ASCII

You should be able to use any of these encodings to pass information to
Docupresentment, DSI APIs or Documaker Server. Docupresentment sends back UTT-
8.

96

http://www.w3c.org

Are ampersands (&) and octothorpes (#) supported in XML
files?
Yes, however some characters must be defined as entity references ot character references. For
instance, you can use octothorpes in XML files as shown here:

<message>Use #1 before using #2</ message>

Entity references begin with an ampersand (&) and end with a semicolon (). These are
predefined codes within the XML specification for commonly used characters. Here are
some examples:

Character In XML
& &

«“ "

¢ '
> >

< <

Character references begin with an ampersand and an octothorpe (&#) and end with a
semicolon () . These are used for characters which are not commonly used and do not
already have entity references pre-defined.

Here are some examples:

Character In XML
@ é
i í,;
u &H252;

Refer to the W3C (www.w3c.org) for more information on special characters.

What tag names cannot be used in XML?
There are a number of restrictions for tag names. These include:
* No tag names can start with xz/.

e Tag names cannot start with underscores or numbers.

* Names cannot contain semicolons (:).

* There cannot be a space after the opening < character.

Reserved words are defined by the W3C. Some of the words that cannot be used include:

If Typeswitch Item Node

97

http://www.w3c.org

Element Attribute Comment Child

Text Processing- 1D Key
instruction

For a full list of reserved words refer to the W3C (www.w3c.org).

How do you send an XML input file to Documaker?

You can use these two rules to send an XML file to Documaker:

e XMLFileExtract - Used when you point to a flat file which contains references to
multiple XML files. For example, this method can be used if the key information is
in the flat file and the triggering and variable data is in the XML file.

* UseXMLExtract - Used when you have one XML file containing all transactions.

See the Rules Reference for more information.

How do you export an XML file from Documaker
Workstation?

To configure the import and export capabilities of Documaker Workstation:

1 Open the FSISYS.INI file in the resource library for which you want to use export
files. You can use any text editor to open this file.

2 Locate the ExportFormats control group. Add the following line:
XML =09=; XM XML Export ; WXMLIB- >WKMVEXpor t XM
Here is an example, which assumes 09 is not already being used.

< ExportFormats >
09=; XM XM. Export ; WXMLIB- >WKVEXpor t XM

What are the Unicode capabilities of XML?

The Documaker and Docupresentment XML parser supports the following encodings:
UTT-8,1SO-8859-1, and US-ASCII. The input XML file must use one of these encodings
or should not specify an encoding at all. Here is an example of an XML header that
specifies UTT-8 encoding:

<?xm version="1.0" encodi ng="UTF-8" ?>

If you do not specify an encoding, the system uses an encoding of ISO-8859-1. You can
find more information on encoding standards in the Using Unicode Support manual
located at:

http:/ /www.oracle.com/us/support/index.html

98

http://www.oracle.com/us/support/index.html
http://www.w3c.org
http://docs.oracle.com/cd/G18689-01/RR/Index.html

How do you set up Docupresentment to use XML?

If you are using Docupresentment as the message server, you must also add the INI
options shown below to let Documaker Workstation retrieve an archived record from
Docupresentment and load data into a form set before any data is entered by a user.

The archived record is retrieved using the Key1, Key2, and KeyID entered on the New
Form Set window. For this to happen, you must set up the following request type in the
DOCSERV.INI file for Docupresentment:

< ReqType: Get XML >
function = atclib- >ATCLogTr ansacti on
function = atclib- >ATCLoadAtt achment
function = atclib->ATCUnl oadAttachnent
function = dprlib- >DPRSet Confi g
function = dprlib- >DPRLocat eOneRecord, Keyl, Key2, Keyl D
function = dprlib- >DPRRetri eveFor nset
function = dprlib- >DPRPri nt
function = dprlib- >DPRProcessTenpl at es
function = atclib->ATCSendFile, DOCC_XM., SENDBACKPAGE, TEXT

You can use any name for the archive library, as long as the same MRL name is used in
Documaker Workstation. You can set up this feature as an entry or import hook:

< AFEProcedures >
EntryFornset = WXMLIB- >WKMEnt r yHookExt XM_Load

or

< |l nportFormats >
07=; XR, XML | nmport from | DS; WXMLIB- >WKM mrpor t XMLAr chi ve

If you set it up as an entry or import hook, you must also set up these INI options:

< XM__I| MP_EXP >
DSI UseNTUser | D =
DSl Var s =
DSl | gnor eTi neout Error =
DSl Att achedVar Fi |l e =
DSl | nport Level =
DSl Ti neout =
DSI ReqType =
DSI Recor dDFD =

Option Description

DSIUseNTUserID Set this option to Yes to use the NT user ID. The default is No.
This gives you a way to pass the NT user ID in the queue instead
of the normal DMWS ID.

DSIVars Enter variable;value, whete variable is the variable name and value is
its value. This lets you identify a constant list of vatiables to be
sent in the queue.

DSlIgnoreTimeoutError Enter Yes to continue processing if a timeout occurs. The default
is No. This gives you a way to ignore a timeout when waiting on
a return queue.

99

Option Description

DSIAttachedVarFile The default is DOCC_XML. Set this option to the attachment
name if it differs from DOCC_XML. This gives you a way to
specify the variable name the XML file is attached to.

DSIImportLevel This option is typically used by programmers. Enter 2 if you
want the hook to operate on the FAP_MSGOPEN level. Enter
3 if you want it to operate on the FAP_MSGRUN level. The
default is 2.

DSITimeout Enter the number of milliseconds you want for the time-out. The
default is 60000 milliseconds or 60 seconds.

DSIReqType Enter the name of the request type of the message placed in the
queue. The default is GETXML.

DSIRecordDFD Enter the name of a DFD file. The system tries to match variable
fields sent in the request to field values in this DFD file. It then
attaches the DFD record to the end of the message.

If the request for an XML file comes back with an error, as opposed to a time out,
Docupresentment displays an error message.

Can the SOAP standard be used with Docupresentment?

Docupresentment version 1.7 added a new open and documented queue control message
format based on XML and the evolving SOAP standard. The XML message format is
supported by the MSMQ and MQSeries queues, but s #of supported by the generic queue
system that ships with the base Docupresentment product. The base product queues use
a proprietary message format.

You can find more information on the XML and SOAP on the W3C WEB site:
http:/ /www.w3.otg/
You can also find information about SOAP messages with attachments at:

http:/ /www.w3.otg/tr/soap-attachments

NOTE: Skywire Softwate will follow the evolving standards of SOAP and UDDI and
move toward universal messaging. The first version of the DSI message format
is based on XML and complies with many of the initial standards for SOAP
message envelopes. Later versions will move transactions and servers toward
fuller SOAP and UDDI compliance.

Skywire Software has used message queuing as a means of serializing requests and
responses between loosely coupled clients and servers without requiring one-to-one
connections. MQ Series has evolved into a standard program-to-program message bus for
integrating loosely coupled applications.

100

http://www.w3.org/
http://www.w3.org/tr/soap-attachments

Docupresentment includes the client and server sides of the DSI (document server
interface) system and of the DQM (document queuing and messaging) system. These
interface layers help manage connections between multiple simultaneous clients and
multiple simultaneous servers. The DQM layer provides a logical abstract layer over the
physical process of accessing the queue, so one implementation can support and switch
between multiple queuing systems. This layer supports these models:

* A generic system that ships with Docupresentment (handled by DCBLIB)
* Supportt for Microsoft MSMQ (handled by MQLIB)
* Support for IBM MQ Series (handled by QSRLIB)

The DSI system provides a logical abstract layer over the physical process of assembling,
delivering, and parsing of a message, so the initiator of the message does not have to know
the physical format of the message, and is insulated from internal software changes to the
message format between product versions.

For instance, you can use the DSI messaging client with Documaker Workstation so
Documaker Workstation can work with

* External systems via either MQ Series or MSMQ messaging middleware.
* Docupresentment as a bridge to a legacy system to retrieve data for import.

The first ability means second is optional. You can also use your own internal programs
and interface using MQSeries.

The advantage of having a logical abstract layer is that it lets you deploy applications for
different message queuing systems without requiring program changes. Only minimal
setup changes are required to test or deploy the same application with a different queuing
system. By abstracting the message format, applications are insulated from internal
changes to the message format and can use the Skywire Software APIs to correctly
assemble or disassemble messages.

The disadvantage of message format abstraction is that non-Skywire Software
applications might be required to use Skywire Software APIs to communicate with
Skywire Software applications.

On some platforms, it may not be practical to invoke these APIs. The proprietary nature
of the original message format further complicates the issue.

If you are integrating with Docupresentment as the server, the message format
documentation is not necessary. If, however, you are integrating with another application,
the message format may be needed if you do not use Docupresentment APIs and you can
communicate via MQSeries.

For additional information on SOAP and Docupresentment, see the Docupresentment
Guide.

101

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf

How can Docupresentment run Documaker using XML job-
tickets?

You can set up Docupresentment to run Documaker as a subordinate process. Web
clients communicate with Docupresentment using queues. Docupresentment
communicates with Documaker via XML files called job tickets and job logs.

This diagram illustrates the process:

XML Job
Ticket
q Documaker
5 Server
ocupresentment
(GenData)
XML
Job Log

Docupresentment can start or stop Documaker as needed, without user interaction. One
Docupresentment session controls one Documaker process. You can, however,
implement multiple Docupresentment sessions and have multiple Documaker processes
as well. Keep in mind these limitations:

* You can only run Documaker in single step mode.
* You must run Documaker on Windows NT, Windows XP, or Windows 2000.

* Different resource setups for Documaker are supported, but Documaker processing
restarts if resoutces are changed, eliminating the performance benefits. This should
not be a problem because it is unlikely multiple Documaker setups will be used with
a single Docupresentment implementation. You can, however, experience problems
testing a system with multiple setups.

* During processing, some INI options can be changed by the client. Since some
Documaker rules use static variables and store INI values in memory, it is possible
that a client will be unable to change an INI option if those Documaker rules are
used. To handle these situations, you must restart Documaker.

For more information, see the Docupresentment Guide and the Docupresentment SDK
Reference.

Can you use DAL with XML files?

You can use DAL XML API functions to let Documaker applications access specified
XML documents and retrieve XML data via a DAL script. There are two scenarios in
which you would use DAL XML API functions:

102

https://docs.oracle.com/cd/G18689-01/Docupresentment_ug_13.0.0.pdf
https://docs.oracle.com/cd/G18689-01/DocupresentmentSDK_rg_13.0.0.pdf

Scenario 1

Scenario 2

A Documaker program, such as GenData, loads an XML document and extracts the
XML tree at the transaction level using the XMLFileExtract rule. This rule creates a list
type DAL variable with a default name of %extract and pushes it onto the DAL stack.

Then you can call other XML API functions in a DAL script to access the XML tree and
extract XML data.

Here are examples of the form set and image rules you would add and a DAL script that
would call the XML API functions.

Add this in the AFGJOB.JDT file:
; XMLFi | eExtract; 2; File=.\deflib\test.xm

The rule loads the XML file and creates a list type DAL variable to pass the XML tree to
the XML API function.

Add this in your DDT file:

; 0; 0; DALXMLSCRI PT; 0; 9; DALXMLSCRI PT; 0; 9; ; DAL; Cal | (" TEST. DAL") ; N, N; N,
N; 4792; 19444, 11010;
TEST.DAL is the name of the DAL script file. DALXMLSCRIPT is the name of the
vatiable field in the FAP file.

Here is an example of the DAL script:

% i st H=XMLFi nd(%extract, “Forns”, “Forni);
#rc=XM.First(%istH;

if #rc=0

return(“Failed to XMLFirst”);

end

aStr=XM_Get Cur Text (% i stH);

return(astr);

%istHdenotes a |list type DAL variable. #rc denotes an integer type
DAL vari abl e.

aStr denotes a string type DAL variable.

You can also load the XML document and create the XML tree at a specific field by calling
the LoadXMLList rule from a DAL script. You must set the calling procedure in the DDT
file as shown in Scenario 1.

Here is an example of DAL script file:

% Li st H=LoadXM_Li st ("test.xm ");

% i st H=EXMLFi nd(%Li stH, " Forms","Form @");
aStr=XM_Nt hAttrVal ue(%istH, 2);
#rc=DestroyLi st (%Li stH);

return(astr);

For more information, see the DAL Reference.

103

http://docs.oracle.com/cd/G18689-01/DR/Index.htm

Are triggers set the same way when you use XML files in
Documaker?

No, triggers are set differently when you use XML. The XML file should contain the
names of the forms to trigger.

If the FORM.DAT has all recipients set to zero copy counts, then those forms will be
removed from the form set. The recipient copy count should be set in the FORM.DAT
file. For example, based on

<car >
<driver>Tonxdriver/>
<driver>Ti nxdriver/>
<car/>

<car >

<driver>Sal |l y<driver/>
<car/>

You can do simple triggering based on the existence of a node. For example, this
/child::car

would trigger a form if caris a child of the root node. You could make it trigger two of the
same forms because there are two cars.

The system supports value matching. So you can do the following:
/child::car[child::driver="Ton]

Or, you can use the Reciplf rule to trigger an image with custom rule parameters, as
shown in this example:

A={!/child::car/child::driver 1,7}::if
(A=" Tom "Yirreturn("MN")rend:

If there is such a value in that element in the XML file, the image would trigger. For this
to work, define the offset of the variable attribute as 1 and the length of the data you want
to compare.

For more information, see the Documaker Administration Guide.

Can you use the Concat rule with XML?

You cannot use the Concat rule with XML files. Instead, use a DAL script. Here is an
example:
; 0; 0; Cl TYSTATEZI P; 0; 30; Cl TYSTATEZI P; 0; 30; ; DAL; csz=@"ADDR-Cl TY") & ,
' &@ " ADDR- STATE") & ' &@ " ADDR-ZI P"): : Ret urn
csz)::;; NN, N N; 135; 1972; 16010;

See the DAL Reference for more information.

Can you use the SetAddr rule with XML?

You cannot use the SetAddr rules with XML files. Instead, use the RemoveWhiteSpace
rule to remove the white space from between fields. This rule works similarly to the
SetAddr rules, but is not address specific.

See the Rules Reference for more information.

104

http://docs.oracle.com/cd/G18689-01/DR/Index.html
http://docs.oracle.com/cd/G18689-01/RR/Index.html

Can you use the Printlf rule with XML?

You cannot use the PrintIf rule with XML files. Instead, use a DAL script. Here is an
example:

; 0; 0; COVPANY; 0; 8; COVPANY; 0; 8; ; DAL; i f (@" PRI NTI FSUB") =" A") THEN
ANSWER1="Accident":: elseif (@"PRI NTIFSUB")="C") THEN ANSWER1=
"Casual ty"::end::return (ANSWERL)::; N, N, N; N; 11292; 919; 12010;

See the DAL Reference for more information.

How does Documaker deal with empty tags in XML files?

Documaker and Docupresentment use the same XML loading routine. The XML loading
routine does not care whether you define all of the fields that might occur in a FAP file,
nor does it care whether if field data is missing, so no error is produced when you load an
XML file with missing field tags.

Just make sure the XML file you are loading is valid according to Documaker’s XML
standards.

If, however, you export the form set, you may get similar same results — if the FAP files
were loaded, the empty fields are written into the XML file with no data. If the FAP files
are not loaded, the system only includes those fields created during the run — which is
usually limited to just the fields with data.

The entries you can use to indicate empty tags are:

<Si ngl eTag />

<Enpt yTags></ Enpt yTags>

<SpacedQut > </ SpacedCut >

<Nul Eval ># \ NoSuchOnbj ect #</ Nul Eval >

How are overflows defined?

When you define the SetOvFlow rule in the AFGJOB.]JDT file, use the XML tag shown
here:

; Set OvFl wSym 1; covsym xmi |, 1;
When you define the IncOvSym rule in the DDT file, use the XML tag, shown here:
; I ncOvSyny covsym xm ;

If an image contains XML data on the same level, use the /descendant parameter instead of
XPath:

<name>
<fi el da>
<fi el db>xxxxx<\fi el db>
<fieldc>yyyyy<\fiel dc>
<\fielda>
<\ nane>

The data for <fieldb> and <field> are on the same level so you cannot use an XPath of:

"\nane\fielda\fieldb[**ovsynt*]
"\nane\fielda\fieldc[**ovsynt*]

You would have to use:

105

http://docs.oracle.com/cd/G18689-01/DR/Index.html

I'descendant:: fiel db[**ovsynt*]
I descendant:: fiel dc[**ovsynt*]

How do you handle overflow within overflow using XML?

Use the SetRecipFromlImage rule with the XML overflow variable to get this to work.
Image A (which overflows will trigger image B using the SetRecipFromImage rule)
Image B (which overflows will trigger image C using the SetRecipFromImage rule)
and so on...

See the Rules Reference for more information.

Can you use the LoadExtractData and UseXMLEXxtract rules
in single-step mode?

When running in single- or two-step mode, omit the LoadExtractData rule. Including it
makes the GenData program enter a processing loop.

You can use the UseXMLExtract rule in single-step, two-step, or multi-step mode. When
you use this rule in multi-step mode, place it after the LoadExtractData rule. In single-step
or two-step mode, place it after the NoGenTrnTransactionProc rule.

You do not have to use the UseXMLExtract rule with the LoadExtractData rule when
running in single-step or two-step mode.

Which version of XML does Transall support?

XML version 1.0 is compliant with Transall. Transall version 10.2 (20011101) supports
both reading and writing XML files.

How do you write HTML pages to output XML via
Docupresentment?

Modify the RECIPS.HTM page to add an XML option to the drop-down box on the
page. Here is an example:

 Qutput file type: </ B>
<SELECT NAME="PRTTYPE" >
<OPTI ON> PDF

<OPTI ON> XML

</ SELECT>

Then modify the DAP.INI file to make sure the PrtType control group is set to XML and
not PDF, as follows:

< Printer >
Prt Type = XM

106

http://docs.oracle.com/cd/G18689-01/RR/Index.html

What are some common XML-related errors?

Here is a list of common errors reported to Oracle Support concerning XML,

Documaker, and Docupresentment:

Problem

Solution

I get an error message when trying the InitQueue method of the
DSICoAPI library. In the trace file this information is reported:
1. Mon Nov 12 08:34:13 2001 DUTLoadLi brary error.
Cannot | oad DCBLIB.DLL (DCBLIB.DLL).Error:
2. Mon Nov 12 08:34:13 2001 * DUTDef ErrorExit

3. Mon Nov 12 08:34:13 2001 * Cannot QueryProcAddr
<0> <0> DCBSysl nit

This is caused by the security settings on the server
sharing.

Revise these settings and provide users with access to
all areas with content.

I have a display problem in the Blackline version. The system is not
correctly merging the XML file with the style sheet
(TEXTMERGE.XSL).

Some features were added to the style sheet that
require MSXML 3.0 to work propetly.

After installing MSXML 3.0, which installed the
MSXMIL3.DLL, and un-registering the
MSXML.DLL, the Blackline feature should work
propetly.

XML files are delete periodically, before another process can pick them
up.

For XML, you have to include TimeOut option in
the HTMLFileCache control group. Enter the
timeout value in seconds.

I need to write a DAL script to do conditional triggering using native
XML.

Use the UseXMLExtract or XMLFileExtract rule to
load the XML file and extract the XML tree at the
transaction level. As part of this process, the system
creates a list type DAL variable with a default name
of Yoexctract.

The XML data does not get mapped if the value within the element starts
on a new line with leading spaces.

A single exclamation mark (!) removes the leading
white space. To keep the space, use two exclamation
marks ().

107

	Start
	Notice
	Contents
	Introduction
	Overview
	Setting Up the XML Add-On
	Setting Up Documaker Workstation
	Setting Up Docupresentment
	XML File Format

	Importing and Exporting XML Files with Documaker Workstation
	Modifying INI Files
	Creating an XML Export File
	Example Documaker XML File Format
	Importing a Documaker XML File

	Importing and Exporting XML Files with Docupresentment
	ImportXMLE xtract
	ImportXMLF ile

	Using XML Extract Files
	Mapping Formatted Data from Extract Files
	Searching an XML Extract File
	Handling Overflow
	Triggering Forms and Images
	Using XPath
	XPath Syntax
	Using the XPath Testing Utility
	Example XML File

	Using DAL XML Functions and XPath
	Scenarios
	Using XML Built-in Functions
	Using the XML Path Locator

	Using XML Print Driver
	Additional Ways to Use XML and Documaker Server
	Mapping Fields with XPath
	Referencing DAL and GVM Using XML
	Running Documaker Server Using an XML Job Ticket
	Creating Multiple Print Files Using the PrintForms et Rule

	Using Docupresentment to Run Documaker Server
	Overview
	Setting Up Docupresen tment
	Setting Up Documaker Server
	Controlling Documaker Server
	RPDCheckA ttachments
	RPDCheckR PRun
	RPDCreateJ ob
	RPDProces sJob
	RPDStopRP Run
	RULServer BaseProc
	ServerBase Proc

	Frequently Asked Questions

