# Oracle® Communications DSR Cloud Benchmarking Guide



Release 9.1.0.0.0 G14538-01 December 2024

ORACLE

Oracle Communications DSR Cloud Benchmarking Guide, Release 9.1.0.0.0

G14538-01

Copyright © 2014, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

# Contents

| 1.1 References                                            | 1-   |
|-----------------------------------------------------------|------|
|                                                           |      |
| Cloud Deployable DSR                                      |      |
|                                                           |      |
| Benchmarking Cloud Deployable DSR                         |      |
| 3.1 Infrastructure Environment                            | 3-2  |
| 3.1.1 General Rules for All Infrastructures               | 3-3  |
| 3.1.1.1 Hyper-Threading and CPU Over-Subscription         | 3-3  |
| 3.1.1.2 VM Packing Rate                                   | 3-4  |
| 3.1.1.3 Infrastructure Tuning                             | 3-4  |
| 3.1.2 KVM (QEMU)/Oracle X9-2 – Infrastructure Environment | 3-5  |
| 3.1.2.1 Device Drivers                                    | 3-5  |
| 3.1.2.2 BIOS Power Settings                               | 3-6  |
| 3.1.2.3 Guest Caching Modes                               | 3-6  |
| 3.1.2.4 Memory Tuning Parameters                          | 3-7  |
| 3.2 Benchmark Testing                                     | 3-9  |
| 3.2.1 DA-MP Relay Benchmark                               | 3-9  |
| 3.2.1.1 Topology                                          | 3-9  |
| 3.2.1.2 Message Flow                                      | 3-10 |
| 3.2.1.3 Indicative Alarms or Events                       | 3-10 |
| 3.2.2 RBAR Benchmark                                      | 3-11 |
| 3.2.2.1 Topology                                          | 3-11 |
| 3.2.2.2 Message Flow                                      | 3-12 |
| 3.2.2.3 Indicative Alarms or Events                       | 3-13 |
| 3.2.3 Full Address Based Resolution (FABR - SDS) Capacity | 3-13 |
| 3.2.3.1 Topology                                          | 3-14 |
| 3.2.3.2 Message Flow                                      | 3-15 |
| 3.2.3.3 Indicative Alarms or Events                       | 3-15 |
| 3.2.4 Full Address Based Resolution (FABR-UDR) Capacity   | 3-16 |
| 3.2.4.1 Topology                                          | 3-17 |
| 3.2.4.2 Message Flow                                      | 3-18 |

| 3.2.  | .4.3 Indicative Alarms or Events                 | 3-18 |
|-------|--------------------------------------------------|------|
| 3.2.5 | vSTP MP                                          | 3-19 |
| 3.2.  | .5.1 vSTP MP Benchmarking                        | 3-19 |
| 3.2.6 | Policy DRA (PDRA) Benchmarking                   | 3-20 |
| 3.2.  | .6.1 Topology                                    | 3-21 |
| 3.2.  | .6.2 Message Flow                                | 3-22 |
| 3.2.  | .6.3 Indicative Alarms or Events                 | 3-23 |
| 3.2.7 | Diameter Security Application (DSA) Benchmarking | 3-24 |
| 3.2.  | .7.1 Topology                                    | 3-25 |
| 3.2.8 | Rx-ShUDR-Application (RSA) Benchmarking          | 3-28 |
| 3.2.9 | Radius Benchmarking                              | 3-31 |

# Part I Appendix

| А | DSR VM Configurations                     |
|---|-------------------------------------------|
| D |                                           |
| B | DSR VM Disk Requirements                  |
| С | VM Networking Requirements                |
| D | Summary of Benchmark Data Recommendations |
| D |                                           |
| Е | Detailed Infrastructure Settings          |
| F | Small DSR VM Configuration                |
|   |                                           |

G 24 vCPU Profile Testing on Oracle X9-2

# What's New in This Guide

This section introduces the documentation updates for Release 9.1.0.0.0.

#### Release 9.1.0.0.0 - G14538-01, December 2024

- Updated transaction provisioning system (tps) for subscriber database processor for address resolution and subscriber location functions in Table D-2.
- Added a note about traffic 5.3K on each MP during the performance run in the Topology section.
- Updated CPU peak and RAM utilization peak for the "Relay" in the Table 3-1.
- Updated CPU peak and RAM utilization peak for the "RBAR" in the Table 3-3.
- Updated "DA-MP CPU Peak", "DA-MP RAM Utilization Peak", "DP CPU Peak", and "DP RAM Peak" for the FABR in the Table 3-5.
- Updated CPU peak and RAM utilization peak for the "FABR + Relay" in the Table 3-8.
- Added a note in the vSTP MP Benchmarking to provide information about 5K DNS traffic.
- Updated CPU peak and RAM utilization peak for the "Radius + Diameter" in the Table 3-24.
- Updated CPU peak for "Use Case (A+B) scenario with 27% of the traffic having Sh\_lookup" in the Table 3-19.
- Added appendix B DSR VM Disk Requirements.
- Updated CPU peak for "Relay" in the Table G-1.
- Added IDIH flavor in the DSR VM Configurations section.
- Updated DA-MP and CPU Peak for the following scenario in the Table 3-12.
  - Single Server group (1 SBR(s), 1 SBR(b))
  - Single Server group (4 SBR(s), 4 SBR(b))
- Updated CPU peak and RAM utilization peak for the following scenario in the Table 3-10:
  - SFAPP+MNP + GTT
  - vMNP + GTT
  - INPQ + GTT
  - GTT + MTP Routing with MTP screening (M2PA & M3UA)
  - GTT + MTP Routing
  - Elynx (E1/T1 Card) GTT Relay
  - ENUM
  - DNS



# Acronyms

The following tables provide information about the acronyms and the terminology used in this document.

### Table Acronyms

| Acronym | Description                                   |  |  |  |  |
|---------|-----------------------------------------------|--|--|--|--|
| API     | Application Programming Interface             |  |  |  |  |
| ARR     | Application Route Rule                        |  |  |  |  |
| ART     | Application Route Table                       |  |  |  |  |
| СМ      | Counter Measure                               |  |  |  |  |
| COTS    | Commercial Off the Shelf                      |  |  |  |  |
| CPU     | Central Processing Unit                       |  |  |  |  |
| DA-MP   | Diameter Agent Message Processor              |  |  |  |  |
| DB      | Database                                      |  |  |  |  |
| DP      | Database Processor                            |  |  |  |  |
| DSA     | Diameter Security Application                 |  |  |  |  |
| DSR     | Diameter Signaling Router                     |  |  |  |  |
| EIR     | Equipment Identity Register                   |  |  |  |  |
| ETG     | Egress Throttle Group                         |  |  |  |  |
| FABR    | Full Address Based Resolution                 |  |  |  |  |
| FQDN    | Fully Qualified Domain Name                   |  |  |  |  |
| GB      | Gigabyte                                      |  |  |  |  |
| HDD     | Hard Disk Drive                               |  |  |  |  |
| HP      | Hewlett Packard                               |  |  |  |  |
| HSS     | lome Subscriber Server                        |  |  |  |  |
| НТТР    | Hypertext Transfer Protocol                   |  |  |  |  |
| ID      | Identification                                |  |  |  |  |
| IDIH    | Integrated Diameter Intelligence Hub          |  |  |  |  |
| IMI     | Internal Message Interface                    |  |  |  |  |
| IMSI    | International Mobile Subscriber Identity      |  |  |  |  |
| I/O     | Input/Output                                  |  |  |  |  |
| IOP     | Interoperability                              |  |  |  |  |
| loT     | Internet of Things                            |  |  |  |  |
| IP      | Internet Protocol                             |  |  |  |  |
| IPCAN   | Internet Protocol Connectivity Access Network |  |  |  |  |
| IPFE    | IP Front End                                  |  |  |  |  |
| KPI     | Key Performance Indicator                     |  |  |  |  |
| KSM     | Kernel Same-page Merging                      |  |  |  |  |
| KVM     | Kernel-based virtual machine                  |  |  |  |  |
| LSI     | Large Scale Integration                       |  |  |  |  |
| LTE     | Long Term Evolution                           |  |  |  |  |
| MME     | Mobility Management Entity                    |  |  |  |  |
| MNO     | Mobile Network Operator                       |  |  |  |  |
| MP      | Message Processor                             |  |  |  |  |

## Table (Cont.) Acronyms

| Acronym | Description                                              |  |  |  |  |
|---------|----------------------------------------------------------|--|--|--|--|
| MPS     | Messages Per Second                                      |  |  |  |  |
| MSISDN  | Mobile Station International Subscriber Directory Number |  |  |  |  |
| мтс     | Machine Type Communication                               |  |  |  |  |
| NIC     | Network Interface Card                                   |  |  |  |  |
| NOAM    | Network Operations, Alarms, Measurements                 |  |  |  |  |
| NE      | Network Element                                          |  |  |  |  |
| OAM     | Operations, Administration, and Maintenance              |  |  |  |  |
| OCDSR   | Oracle Communications Diameter Signaling Router          |  |  |  |  |
| OCSG    | Oracle Communications Services Gatekeeper                |  |  |  |  |
| онс     | Oracle Help Center                                       |  |  |  |  |
| PCRF    | Policy and Charging Rules Function                       |  |  |  |  |
| PDRA    | Policy Diameter Routing Agent                            |  |  |  |  |
| PRR     | Peer Route Rule                                          |  |  |  |  |
| PVSCSI  | Paravirtual SCSI                                         |  |  |  |  |
| RAM     | Random Access Memory                                     |  |  |  |  |
| RBAR    | Range Based Address Resolution                           |  |  |  |  |
| SAS     | Serial Attached SCSC                                     |  |  |  |  |
| SBR     | Session Binding Repository                               |  |  |  |  |
| SBR(b)  | SBR – Binding database                                   |  |  |  |  |
| SBR(s)  | BR – Session database                                    |  |  |  |  |
| SBR(u)  | SBR – Universal database                                 |  |  |  |  |
| SCS/AS  | Service Centralization and Continuity Application Server |  |  |  |  |
| SCSI    | Small Computer System Interface                          |  |  |  |  |
| SDS     | Subscriber Database Server                               |  |  |  |  |
| SFF     | Small Form Factor                                        |  |  |  |  |
| SGSN    | Serving GPRS Support Node                                |  |  |  |  |
| SMS     | Short Message Service                                    |  |  |  |  |
| SOAM    | System (nodal) Operations, Alarms, Measurements          |  |  |  |  |
| SS7     | Signaling System #7                                      |  |  |  |  |
| SSD     | Solid State Drive                                        |  |  |  |  |
| THP     | Transparent Huge Pages                                   |  |  |  |  |
| TSA     | Target Set Address                                       |  |  |  |  |
| TTP     | Troubleshooting Trigger Point                            |  |  |  |  |
| vSTP    | virtual Signaling Transfer Point                         |  |  |  |  |
| UDR-NO  | User Data Repository Network OAM & Provisioning          |  |  |  |  |
| VM      | Virtual Machine                                          |  |  |  |  |
| VNF     | Virtual Network Function                                 |  |  |  |  |
| VoLTE   | Voice over LTE                                           |  |  |  |  |
| WAN     | Wide Area Network                                        |  |  |  |  |
| ХМІ     | External Management Interface                            |  |  |  |  |
| XSI     | External Signaling Interface                             |  |  |  |  |

### Table Terminology

| Term                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1+1 Redundancy       | For every 1, an additional 1 is needed to support redundant capacity. The specific redundancy scheme is not inferred. For example, active-active and active-standby.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Geo-Diverse          | Refers to DSR equipment located at geographically separated sites/datacenters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Geo-Redundant        | A node at a geo-diverse location which can assume the processing load for another DSR signaling node(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Ingress Message Rate | A measure of the total Diameter messages per second ingressing the DSR. For this measure, a message is defined as any Diameter message that DSR reads from a Diameter peer connection independent of how the message is processed by the DSR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Messages Per Second  | <ul> <li>A measure of the DSR Diameter message processing volume in messages per second. For this measure, a message is defined as:</li> <li>DSR processing of an ingress Diameter message and either transmitting a single outgoing Diameter message or discarding the ingress message. The outgoing message may be a variant of, or a response to, the ingress message.</li> <li>DSR transmission of any Diameter message, as required by DSR configuration, that is associated with incremental actions/events associated with #1 above. For example, the re-routing of a Request upon connection failure or the copying of a Request.</li> <li>Messages excluded from this measure are:</li> <li>Diameter peer-to-peer messages: CER/CEA, DWR/DWA, and DPR/DPA</li> <li>Ingress Diameter messages discarded by the DSR due to Overload controls</li> <li>Answers received in response to Message Copy</li> <li>For the vSTP MP the MPS excludes the equivalent SSNM status management messages.</li> </ul> |  |  |  |  |
| N+K Redundancy       | For every N, an additional K is needed to support redundant capacity. The specific redundancy scheme is not inferred. For example, active-active, active-standby.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Node                 | A DSR node is a DSR signaling node (SOAM and subtending topology), an NOAM node or<br>an SDS node. A node is synonymous with the network element (NE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Site                 | A specific geographic location or datacenter where DSR application is installed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |

# 1 Introduction

The Oracle Communications Diameter Signaling Router (OCDSR or DSR) is deployable in the cloud as a Virtual Network Function (VNF). With DSR's added flexibility of being cloud deployable, operators must be able to manage the capacity and performance of the DSR in the cloud.

This document provides:

- Recommendations on performance tuning the DSR.
- Benchmark data from our labs.
- Information on the key metrics used to manage DSR performance and capacity.

# 1.1 References

The following reference documents are available on Oracle Help Center (OHC):

- Oracle Communications Diameter Signaling Router Alarms and KPIs Guide
- Oracle Communications Diameter Signaling Router Measurement Reference Guide
- Oracle Communications Diameter Signaling Router Cloud Installation Guide
- Oracle Communications Diameter Signaling Router Policy and Charging Application User Guide
- Subscriber Data Server Installation and Configuration Guide



# 2 Cloud Deployable DSR

DSR can be deployed on the following platforms:

- **OpenStack based Cloud**: It provides virtualization of DSR, but does not use a cloud manager and does not co-reside with other applications. This deployment is compact and cost-effective.
- **KVM based environment**: It provides full virtualization. It assumes the DSR resources are managed by a Commercial Off-the-Shelf (COTS) cloud manager and that the DSR can be one of many applications in the cloud.



# 3

# Benchmarking Cloud Deployable DSR

This chapter is divided into the following sections:

Infrastructure Environment

This section provides details of the infrastructures used for the benchmark testing, including the hardware and software. It also describes key settings and attributes, and some recommendations on configuration.

 Benchmark section for each DSR server type Each DSR server type is treated independently for benchmarking. Each section describes the traffic setup, and the observed results. It also provides metrics and guidelines for assessing performance on any infrastructure.

#### Data Usage

This data is intended to provide guidance. Recommendations may need to be adapted to the conditions in a given operator's network. Each of the following sections include metrics that provide feedback on the running performance of the application.

When planning to deploy a DSR into any cloud environment, a few steps are recommended:

- Understand the initial deployment scenario for the DSR.
  - Which features are planned?
  - How much of what type of traffic?
     This may change once deployed, and the DSR can be grown or shrunk to meet the changing needs.
- Use the DSR Cloud Dimensioning tool to get an estimate of the types of DSR virtual servers needed and an initial estimate of the quantity of the virtual machines and resources. Oracle Sales Consultant can run this tool based on DSR requirements:
  - The tool allows for a very detailed model to be built of your DSR requirements, including:
    - \* Required MPS by Diameter Application ID (S6a, Sd, Gx, Rx, so on).
    - \* Required DSR applications such as Full Address Based Resolution (FABR), Range Based Address Resolution (RBAR), Policy DRA (PDRA), and any required sizing information such as the number of subscribers supported for each application.
    - \* Any required DSR features such as Topology Hiding, Message Copy, IPSEC, or Mediation that can affect performance.
    - \* Network-level redundancy requirements, such as mated pair DSR deployments, where one DSR needs to support full traffic, when one of the DSRs is unavailable.
    - \* Infrastructure information, such as OpenStack or KVM, and Server parameters.
  - The tool then generates a recommended number of VMs for each of the required VM types.



These recommendations are just guidelines. Since the actual performance of the DSR can vary significantly based on the details of the infrastructure.

- Based on the initial deployment scenario, determine if additional benchmarking is warranted:
  - For labs and trials, there is no need to benchmark performance and capacity if the goal of the lab is to test DSR functionality.
  - If the server hardware is different from the hardware used in this document then the performance differences can likely be estimated using industry standard metrics. This is done by comparing single-threaded processor performance of the CPUs used in this document with respect to the CPUs used in the customer's infrastructure. This approach is most accurate for small differences in hardware (for instance, different clock speeds for the same generation of Intel processors) and least accurate across processor generations where other architectural differences such as networking interfaces could also affect the comparison.
  - It is the operator's decision to determine if additional benchmarking in the operator's infrastructure is desired. Here is a few things to consider when deciding:
    - \* Benchmark infrastructure is similar to the operator's infrastructure, and the operator is satisfied with the benchmark data provided by Oracle.
    - \* Initial turn-up of the DSR is handling a relatively small amount of traffic and the operator prefers to measure and adjust once deployed.
    - \* Operator is satisfied with the high-availability and geo-diversity of the DSR, and is willing to risk initial overload conditions, and adjusts once the DSR is in production.
- If required, perform benchmark testing on the target cloud infrastructure. Perform benchmark only on those types of DSR servers required for the deployment.
   For example, if full address resolution is not planned, do not waste time benchmarking the SDS, SDS SOAM, or DPs.
  - When the benchmark testing is complete, observe the data for each server type, and compare it with the baseline used for the estimate from the DSR Cloud Dimensioning tool.
    - If the performance estimate for a given DSR function is X and the observed performance is Y, then adjust the performance for that DSR function to Y.
    - Re-calculate the resources needed for deployment based on the updated values.
- Deploy the DSR.
- Monitor the DSR performance and capacity as described later in the document. As the network changes additional resources may be required. If needed, increase the DSR resources as described later in this document.

# 3.1 Infrastructure Environment

This section describes the infrastructure that was used for benchmarking. In general, the defaults or recommendations for hypervisor settings are available from the infrastructure vendors.

Whenever possible the DSR recommendations align with vendor defaults and recommendations. Benchmarking was performed with the settings described in this section. Operators may choose different values, better or worse performance compared to the



benchmarks might be observed. When recommendations other than vendor defaults or recommendations are made, additional explanations are included in the applicable section.

There is a sub-section included for each infrastructure environment used in benchmarking.

# 3.1.1 General Rules for All Infrastructures

## 3.1.1.1 Hyper-Threading and CPU Over-Subscription

All of the tests were conducted with Hyper-Threading enabled, and with a 1:1 subscription ratio for vCPUs in the hypervisor. The hardware used for the testing were dual-processor servers with 32 physical cores each (Oracle X9-2). Thus, each server had:

(2 CPUs) x (32 cores per CPU) x (2 threads per core) = 128 vCPUs

It is not recommended to use over-subscribed vCPUs (for instance 4:1) in the hypervisor. Not only is the performance lower, but it makes the performance more dependent on the other loads running on each physical server.

Turning off Hyper-Threading is also not recommended. There is a small increase in performance of a given VM without Hyper-Threading for a given number of vCPUs. But since the number of vCPUs for each processor drops in half without Hyper-Threading, the overall throughput for each server also drops almost by half.

The vCPU sizing for each VM is provided in the DSR VM Configurations section.

## Note:

The recommended configuration is: Hyper-Threading is enabled with 1:1 CPU subscription ratio.

#### **CPU Technology**

The CPUs in the servers used for the benchmarking were the Oracle X9-2. Servers with different processors does give different results. In general there are the following issues when mapping the results of the benchmarking data in this document to other CPUs:

 The per-thread performance of a CPU is the main attribute that determines VM performance. The number of threads is fixed in the VM sizing as shown in DSR VM Configurations section. A good metric for comparing the per-thread performance of different CPUs is the integer performance measured by the SPECint2006 (CINT2006) defined by SPEC.ORG.

The mapping of **SPECint2006ratios** to DSR VM performance ratios isn't exact, but it's a good measure to determine whether a different CPU is likely to run the VMs faster or slower than the benchmark results in this document.

Conversely CPU clock speeds are a relatively poor indicator of relative CPU performance. Within a given Intel CPU generation (v2, v3, v4, so on) there are other factors that affect per-thread performance, such as potential turbo speeds of the CPU in comparison with the cooling solution in a given server.

Comparing between Intel CPU generations, there is a generation over generation improvement of CPU throughput in comparison with the clock speed. This means that even a newer generation chip with a slower clock speed may run a DSR VM faster.



- The processors must have enough cores that a given VM can fit entirely into a NUMA node. Splitting a VM across NUMA nodes greatly reduces the performance of that VM. The largest VM size (refer DSR VM Configurations section) is 18 vCPUs. Thus, the smallest processor that should be used is a 9-core processor. Using processors with more cores typically makes it easier to pack VMs more efficiently into NUMA nodes but should not affect individual VM CPU-related performance otherwise.
- One caveat about CPUs with very high core counts is that the user must be aware of
  potential bottlenecks caused by many VMs contending for shared resources such as
  network interfaces and ephemeral storage on the server. These tests were run on relatively
  large CPUs (32 physical cores for each chip), and no such bottlenecks were encountered
  while running strictly DSR VMs. In clouds with VMs from other applications potentially
  running on the same physical server as DSR VMs, or in future processor generations with
  much higher core counts. This potential contention for shared server resources has to be
  watched closely.

The selected VM sizes should fit within a single NUMA node, for instance 9 physical cores for the VMs that required 18 vCPUs. Check the performance of the target CPU type against the benchmarked CPU using per-thread integer performance metrics.

# 3.1.1.2 VM Packing Rate

The DSR doesn't require or use CPU pinning. Thus, the packing of the DSR VMs onto the physical servers is under the control of OpenStack using the affinity or anti-affinity rules given in DSR VM Configurations. Typically, the VMs do not fit exactly into the number of vCPUs available in each NUMA node, leaving some un-allocated vCPUs. The ratio of the allocated to the unallocated vCPUs is the VMPacking Ratio. For instance, on a given server if 102 out of 128 vCPUs on a server were allocated by the OpenStack, that server would have a packing ratio of ~80%. The achieved packing in a deployment depends on a lot of factors, including the mix of large VMs (DA-MPs, SBRs) with the smaller VMs, and whether the DSR is sharing the servers with other applications that have a lot or large or small VMs.

When planning the number of physical servers required for an DRS a target packing ratio of 80% is a good planning number. A packing ratio of 100% is hard to achieve and may affect the performance numbers shown in the benchmarks. Some amount of server capacity is necessary to run the Host OS for the VMs. While performing functions such as interrupt handling, a packing ratio of 95% or lower is desirable.

#### Note:

When planning for physical server capacity a packing ratio of 80% is a good guideline. Packing ratios of greater than 95% might affect the benchmark numbers since there aren't sufficient server resources to handle the overhead of Host OSs.

# 3.1.1.3 Infrastructure Tuning

The following parameters should be set in the infrastructure to improve DSR VM performance. The instructions for setting them for a given infrastructure is including the *DSR Cloud Installation Guide*.



- Txqueuelen: The default of 500 is too small. Recommendation is to set this parameter to 120000.
  - Tuned on the compute hosts.
  - Default value of 500 is too small. Our recommendation is to set to 120000. This
    increases the network throughput of a VM.
- Ring buffer increase on the physical Ethernet interfaces: The default is too small. The recommendation is to set both receive and transmit values to 4096.
- Multiqueue: Multiqueue should be enabled on any IPFE VMs to improve performance.

Refer to instructions in the DSR Cloud Installation Guide.

# 3.1.2 KVM (QEMU)/Oracle X9-2 – Infrastructure Environment

There are a number of settings that affect performance of the hosted virtual machines. A number of tests were performed to maximize the performance of the underlying virtual machines for the DSR application.

#### **Host Hardware**

- Oracle Server X9-2
  - CPU Model: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
  - 2 CPUs
  - 32 physical cores per CPU
  - RAM: 768 GB
  - HDD: 3.8 TB of NVMe storage (with Software RAID-1 configured)
  - NIC
  - Oracle Quad Port 10G Base-T Adapter

#### Hypervisor

• QEMU-KVM Version: QEMU 6.2.0, libvirt 8.0.0, API QEMU 8.0.0

## 3.1.2.1 Device Drivers

VirtIO is a virtualizing standard for network and disk device drivers where just the guest's device driver knows it is running in a virtual environment and cooperates with the hypervisor. This enables guests to get high performance network and disk operations and gives most of the performance benefits of para-virtualization.

Vhost-net provides improved network performance over Virtio-net by totally by passing QEMU as a fast path for interruptions. The vhost-net runs as a kernel thread and interrupts with less overhead providing near native performance. The advantages of using the vhost-net approach are reduced copy operations, lower latency, and lower CPU usage.



The VirtIO driver was used for Test Bed setting.

# 3.1.2.2 BIOS Power Settings

Typical BIOS power settings (hardware vendor dependent, see relevant infrastructure hardware vendor documentation for details) provide three options for power settings:

- Power Supply Maximum: The maximum power the available PSUs can draw.
- Allocated Power: The power is allocated for installed and hot pluggable components.
- Peak Permitted: The maximum power the system is permitted to consume.

#### Note:

Set to Allocated Power or equivalent for your Hardware vendor.

#### **Disk Image Formats**

The preferred disk image file formats available when deploying a KVM virtual machine:

 QCOW2: Disk format supported by the QEMU emulator that can expand dynamically and supports Copy-on-write.

QCOW2 provides a number of benefits, such as:

- Smaller file size, even on file systems which don't support holes (such as, sparse files)
- Copy-on-write support, where the image only represents changes made to an underlying disk image
- Snapshot support, where the image can contain multiple snapshots of the images history

#### Test Bed Setting: QCOW2

## 3.1.2.3 Guest Caching Modes

The operating system maintains a page cache to improve the storage I/O performance. With the page cache, write operations to the storage system are considered completed after the data has been copied to the page cache. Read operations can be satisfied from the page cache if the data requested is in the cache. The page cache is copied to permanent storage using fsync. Direct I/O requests bypass the page cache. In the KVM environment, both the host and guest operating systems can maintain their own page caches, resulting in two copies of data in memory.

The following caching modes are supported for KVM guests:

- Writethrough: I/O from the guest is cached on the host but written through to the physical medium. This mode is slower and prone to scaling problems. Best used for a small number of guests with lower I/O requirements. Suggested for guests that do not support a writeback cache (such as, Red Hat Enterprise Linux 5.5 and earlier), where migration is not needed.
- Writeback (Selected): With caching set to writeback mode, both the host page cache and the disk write cache are enabled for the guest. Due to this, the I/O performance for applications running in the guest is good, but the data is not protected in a power failure.



As a result, this caching mode is recommended only for temporary data where potential data loss is not a concern.

- None: With caching mode set to none, the host page cache is disabled, but the disk write cache is enabled for the guest. In this mode, the write performance in the guest is optimal because write operations bypass the host page cache and go directly to the disk write cache. If the disk write cache is battery-backed, or if the applications or storage stack in the guest transfer data properly (either through fsync operations or file system barriers), then data integrity can be ensured. However, because the host page cache is disabled, the read performance in the guest would not be as good as in the modes where the host page cache is enabled, such as write through mode.
- Unsafe: The host may cache all disk I/O, and sync requests from guest are ignored.

Caching mode None is recommended for remote NFS storage, because direct I/O operations (O\_DIRECT) perform better than synchronous I/O operations (with O\_SYNC). Caching mode None effectively turns all guest I/O operations into direct I/O operations on the host, which is the NFS client in this environment. Moreover, it is the only option to support migration.

#### Note:

For Test Bed Setting, set Caching Mode to Writeback.

## 3.1.2.4 Memory Tuning Parameters

#### **Swappiness**

The swappiness parameter controls the tendency of the kernel to move processes out of physical memory and onto the swap disk. Since disks are much slower than RAM, this can lead to slower response times for system and applications if processes are too aggressively moved out of memory.

- vm.swappiness = 0: The kernel swaps only to avoid an out of memory condition.
- vm.swappiness = 1: Kernel version 3.5 and over, as well as kernel version 2.6.32-303 and over; Minimum amount of swapping without disabling it entirely.
- vm.swappiness = 10: This value is recommended to improve performance when sufficient memory exists in a system.
- vm.swappiness = 60: Default
- vm.swappiness = 100: The kernel swaps aggressively

#### Note:

For Test Bed Setting, set vm.swappiness to 10.

#### Kernel Same Page Merging

Kernel Same-page Merging (KSM), used by the KVM hypervisor, allows KVM guests to share identical memory pages. These shared pages are usually common libraries or other identical, high-use data. KSM allows for greater guest density of identical or similar guest operating systems by avoiding memory duplication. KSM enables the kernel to examine two or more already running programs and compare their memory. If any memory regions or pages are identical, KSM reduces multiple identical memory pages to a single page. This page is then



marked copy-on-write. If the contents of the page is modified by a guest virtual machine, a new page is created for that guest.

This is useful for virtualization with KVM. When a guest virtual machine is started, it only inherits the memory from the host qemu-kvm process. Once the guest is running, the contents of the guest operating system image can be shared when guests are running the same operating system or applications. KSM allows KVM to request that these identical guest memory regions be shared.

KSM provides enhanced memory speed and utilization. With KSM, common process data is stored in cache or in main memory. This reduces cache misses for the KVM guests, which can improve performance for some applications and operating systems. Secondly, sharing memory reduces the overall memory usage of guests, which allows for higher densities and greater utilization of resources.

The following 2 services controls KSM:

- KSM Service: When the KSM service is started, KSM shares up to half of the host system's main memory. Start the KSM service to enable KSM to share more memory.
- KSM Tuning Service: The ksmtuned service loops and adjusts KSM. The ksmtuned service is notified by libvirt, when a guest virtual machine is created or destroyed

#### Note:

For Test Bed Setting, set KSM service to active and ensure ksmtuned service running on KVM hosts.

#### **Zone Reclaim Mode**

When an operating system allocates memory to a NUMA node, but the NUMA node is full, the operating system reclaims memory for the local NUMA node rather than immediately allocating the memory to a remote NUMA node. The performance benefit of allocating memory to the local node outweighs the performance drawback of reclaiming the memory. However, in some situations reclaiming memory decreases performance to the extent that the opposite is true. In other words, in these situations, allocating memory to a remote NUMA node generates better performance than reclaiming memory for the local node.

A guest operating system causes zone to reclaim in the following situations:

- When you configure the guest operating system to use huge pages.
- When you use KSM to share memory pages between guest operating systems.

Configuring huge pages and running KSM are both best practices for KVM environments. Therefore, to optimize performance in KVM environments, it is recommended to disable zone reclaim.

#### Note:

For Test Bed Setting, disable zone reclaim.

#### **Transparent Huge Pages**

Transparent huge pages (THP) automatically optimize system settings for performance. By allowing all free memory to be used as cache, performance is increased.



✓ Note: For Test Bed Setting, enable THP.

# 3.2 Benchmark Testing

The way the testing was performed and the benchmark test set-up is the same for each benchmark infrastructure. Each section describes the common set-up and procedures used to benchmark, and then the specific results for the benchmarks are provided for each benchmark infrastructure.

# 3.2.1 DA-MP Relay Benchmark

This benchmarking case illustrates conditions for an overload of a DSR DA MP.

# 3.2.1.1 Topology

The below figure illustrates the logical topology used for this testing. Diameter traffic is generated by an MME simulator and sent to an HSS simulator.




Figure 3-1 DA-MP Relay Testing Topology

The dsr.cpu utilization can be further increased to higher levels by means of configuration changes with DOC/CL1/CL2 discards set to 0 and multi-queuing enabled on all hosts. With this configuration, it must be noted that all the discards are at one step CL3 for all incoming and outgoing messages.



# 3.2.1.2 Message Flow

The following figure illustrates the Message sequence for this benchmark case.

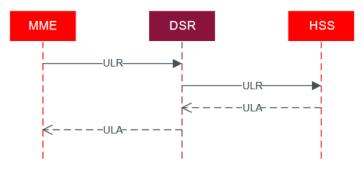



Figure 3-2 DA-MP Relay Message Sequence

| Scenario                                                                                                                               | Call Flow<br>Model | DSR MPS<br>Achieved | DA-MP Flavor         | DA-MP Profile    | Avg Msg<br>Size | CPU Peak | RAM<br>Utilizatio<br>n Peak |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|----------------------|------------------|-----------------|----------|-----------------------------|
| Relay                                                                                                                                  | 100%<br>Relay      | 288K                | 12 vCPU<br>(Regular) | 30K_MPS          | 2.0 K           | 28%      | 24%                         |
| Relay (with Multique<br>enable, configuration<br>set to DOC/CL1/CL2<br>discards set to 0 and<br>multi queuing enabled<br>on all hosts) | 100%<br>Relay      | 576K                | 12 vCPU<br>(Regular) | 40K_MPS_FAB<br>R | 2.0 K           | 36%      | 32%                         |
| Relay                                                                                                                                  | 100%<br>Relay      | 560K                | 18 vCPU<br>(Large)   | 35K_MPS          | 2.0 K           | 25%      | 22%                         |

# 3.2.1.3 Indicative Alarms or Events

During benchmark testing the following alarms or events were observed when it reaches congestion.

Table 3-2 DA-MP Relay Alarms or Events

| Number | Severity | Server | Name                 | Description                                                                                                                                   |
|--------|----------|--------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 5007   | Minor    | IPFE   | Out of Balance: Low  | Traffic statistics reveal that an application server is processing lower than average load.                                                   |
| 5008   | Minor    | IPFE   | Out of Balance: High | Traffic statistics reveal that an<br>application server is<br>processing higher than<br>average load and will not<br>receive new connections. |



Table 3-2 (Cont.) DA-MP Relay Alarms or Events

| Number | Severity | Server | Name                               | Description                                                                                                                                      |
|--------|----------|--------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 22008  | Info     | DA-MP  | Orphan Answer Response<br>Received | An answer response was<br>received for which no<br>pending request transaction<br>existed resulting in the<br>Answer message being<br>discarded. |
| 22201  | Minor    | DA-MP  | MpRxAllRate                        | DA-MP ingress message rate threshold crossed.                                                                                                    |
| 22221  | Minor    | DA-MP  | Routing MPS Rate                   | Message processing rate for<br>this DA-MP is approaching or<br>exceeding its engineered<br>traffic handling capacity.                            |
| 22225  | Minor    | DA-MP  | MpRxDiamAllLen                     | DA-MP diameter average<br>ingress message length<br>threshold crossed.                                                                           |

# 3.2.2 RBAR Benchmark

Range Based Address Resolution (RBAR) is a DSR-enhanced routing application that allows the routing of Diameter end-to-end transactions based on Diameter Application ID, Command Code, Routing Entity Type, and Routing Entity Addresses (range and individual) as a Diameter Proxy Agent.

A Routing Entity can be:

- A User Identity:
  - International Mobile Subscriber Identity (IMSI)
  - Mobile Subscriber Integrated Services Digital Network (Number) (MSISDN)
  - IP Multimedia Private Identity (IMPI)
  - IP Multimedia Public Identity (IMPU)
- An IP Address associated with the User Equipment:
  - IPv4 (based upon the full 32-bit value in the range of 0x00000000 to 0xFFFFFFF)
  - IPv6-prefix (1 to 128 bits)
- A general-purpose data type: UNSIGNED16 (16-bit unsigned value)

Routing resolves to a Destination that can be configured with any combination of a Realm and Fully Qualified Domain Name (FQDN); Realm-only, FQDN-only, or Realm and FQDN.

When a message successfully resolves to a destination, RBAR replaces the destination information (Destination-Host and/or Destination-Realm) in the ingress message with the corresponding values assigned to the resolved destination and forwards the message to the (integrated) Diameter Relay Agent for egress routing into the network.

## 3.2.2.1 Topology

The following figure illustrates the logical topology used for this testing. Diameter traffic is generated by an MME simulator and sent to an HSS simulator.



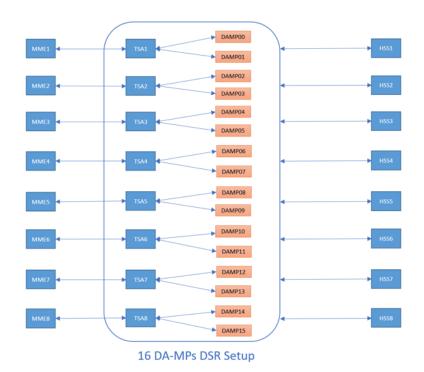



Figure 3-3 RBAR Testing Topology

# 3.2.2.2 Message Flow

The following figure illustrates the Message sequence for this benchmark case.

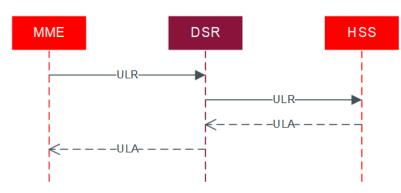



Figure 3-4 DA-MP RBAR Message Sequence

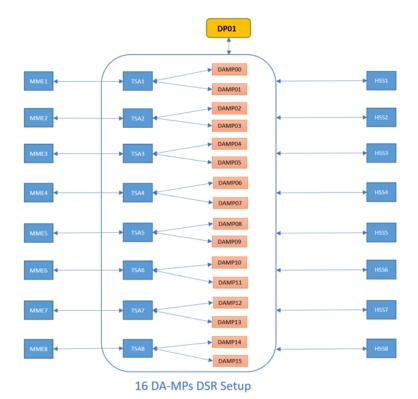
Table 3-3 RBAR Performance Benchmarking on 16 DA-MPs DSR Setup

| Scenario | Call Flow<br>Model | DSR MPS<br>Achieved | DA-MP Flavor         | DA-MP Profile | Avg Msg<br>Size | CPU Peak | RAM<br>Utilization<br>Peak |
|----------|--------------------|---------------------|----------------------|---------------|-----------------|----------|----------------------------|
| RBAR     | 100% RBAR          | 256K                | 12 vCPU<br>(Regular) | 30K_MPS       | 2.0 K           | 31%      | 35%                        |

# 3.2.2.3 Indicative Alarms or Events

During benchmark testing the following alarms or events were observed when it reaches into congestion.

Table 3-4 DA-MP RBAR Alarms or Events


| Number | Severity | Server | Name                               | Description                                                                                                                                |
|--------|----------|--------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 22008  | Info     | DA-MP  | Orphan Answer<br>Response Received | An answer response was received for<br>which no pending request transaction<br>existed resulting in the Answer message<br>being discarded. |
| 22225  | Minor    | DA-MP  | MpRxDiamAllLen                     | DA-MP diameter average ingress message length threshold crossed.                                                                           |

# 3.2.3 Full Address Based Resolution (FABR - SDS) Capacity

The FABR application adds a Database Processor (DP) server to perform database lookups with a user defined key (IMSI, MSISDN, or Account ID and MSISDN or IMSI). If the key is contained in the database, the DP returns the realm and FQDN associated with that key. The returned realm and FQDN can be used by the DSR Routing layer to route the connection to the desired endpoint. Since there is additional work done on the DA-MP to query the DP, running the FABR application has an impact on the DA-MP performance. This section contains the performance of the DA-MP while running FABR as well as benchmark measurements on the DP itself.



# 3.2.3.1 Topology



#### Figure 3-5 SDS DP Testing Topology

SDS DB Details

The SDS database was first populated with subscribers. This population simulates real-world scenarios likely encountered in a production environment and ensure the database is of substantial size to be queried against.

- SDS DB Size: 300 million routing entities (150 million MSISDNs or 150 million IMSIs)
- AVP Decoded: User-Name for IMSI

SDS profile (Large) enhances the capacity of SDS FABR database to 780 million routing entities. The Large profile is defined in DSR VM Configurations based on the below 780 million entry configuration:

- 260 million subscribers having 2 IMSI, 1 MSISDN = 780 million routing entities
- IMSI = 15 bytes
- MSISDN = 10 bytes



# 3.2.3.2 Message Flow

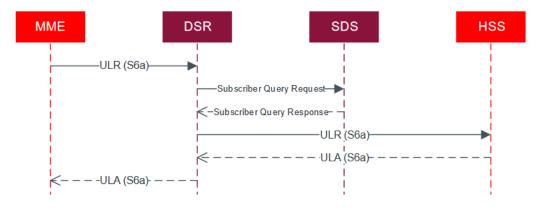



Figure 3-6 SDS DP Message Sequence

#### Table 3-5 SDS DP Performance Benchmarking using one SDS DP

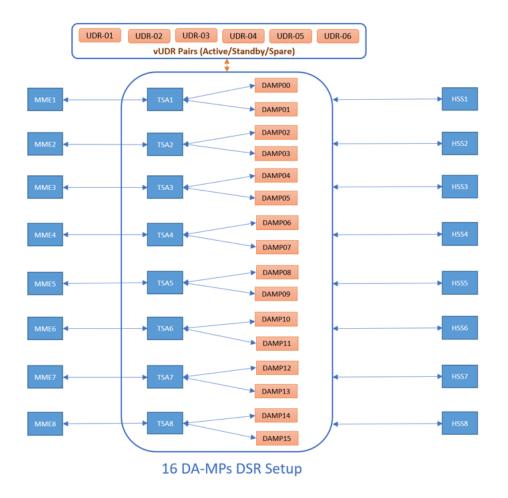
| Scenario | Call Flow<br>Model | DP MPS<br>Achieved | DA-MP<br>MPS<br>Achieved | DA-MP<br>Flavor      | DA-MP<br>Profile | Avg Msg<br>Size | DA-MP<br>CPU Peak | DA-MP<br>RAM<br>Utilization<br>Peak | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |
|----------|--------------------|--------------------|--------------------------|----------------------|------------------|-----------------|-------------------|-------------------------------------|----------------------------------------------------------------------------|
| FABR     | 100% FABR          | 80K                | 160K                     | 12 vCPU<br>(Regular) | 30K_MPS          | 400             | 26%               | 38%                                 | 33<br>77<br>%%                                                             |

# 3.2.3.3 Indicative Alarms or Events

Table 3-6SDS DP Alarms or Events

| Number | Severity        | Server | Name                                                    | Description                                                                                                                                                                                     |
|--------|-----------------|--------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19814  | Info            | DA-MP  | Communication Agent Peer has not responded to heartbeat | Communication Agent Peer has not responded to heartbeat.                                                                                                                                        |
| 19825  | Major, Critical | DA-MP  | Communication Agent Transaction<br>Failure Rate         | The number of failed transactions during the sampling period has exceeded configured thresholds.                                                                                                |
| 19832  | Info            | DA-MP  | Communication Agent Reliable<br>Transaction Failed      | Communication Agent Reliable<br>Transaction Failed.                                                                                                                                             |
| 22004  | Info            | DA-MP  | Maximum pending transactions allowed exceeded           | Routing attempted to select an egress<br>Diameter connection to forward a<br>message but the maximum number of<br>allowed pending transactions queued on<br>the Diameter connection is reached. |

| Table 3-6 | (Cont.) | ) SDS DP Alarms or Event | S |
|-----------|---------|--------------------------|---|
|-----------|---------|--------------------------|---|


| Number | Severity | Server | Name                               | Description                                                                                                                                                                                            |
|--------|----------|--------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22008  | Info     | DA-MP  | Orphan Answer Response<br>Received | An answer response was received for<br>which no pending request transaction<br>existed resulting in the Answer message<br>being discarded.                                                             |
| 22225  | Minor    | DA-MP  | MpRxDiamAllLen                     | DA-MP diameter average ingress message length threshold crossed.                                                                                                                                       |
| 22606  | Info     | DA-MP  | Database or DB connection error    | FABR application received service<br>notification indicating Database (DP) or<br>DB connection (COM Agent) Errors (DP<br>timeout, errors or COM Agent internal<br>errors) for the sent database query. |
| 31000  | Critical | DA-MP  | S/W Fault                          | Program impaired by s/w fault                                                                                                                                                                          |

# 3.2.4 Full Address Based Resolution (FABR-UDR) Capacity

The FABR is a DSR application that provides an enhanced DSR routing capability to enable network operators to resolve the designated Diameter server (IMS HSS, LTE HSS PCRF, OCS, OFCS, and AAA) addresses based on individual user identity addresses in the incoming Diameter request messages. It offers enhanced functionalities with User Data Repository (UDR), which is used to store subscriber data. FABR routes the message as a Diameter Proxy Agent based on request message parameter content.

FABR use the services of the Diameter Plug-In for sending and receiving Diameter messages from or to the network. It uses Communication Agent to interact with off-board data repository (UDR) for address resolution. This section contains the performance of the DA-MP while running FABR.

# 3.2.4.1 Topology

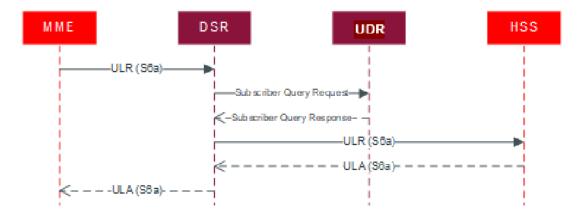


#### Figure 3-7 FABR with UDR Testing Topology

#### **UDR DB Details**

The UDR database was first populated with subscribers. This population simulates real-world scenarios likely encountered in a production environment and ensure the database is of substantial size to be queried against.

- UDR DB Size: Tested with 40 Million records
- AVP Decoded: User-Name for IMSI


Following UDR profile is used for benchmarking.

#### Table 3-7 UDR Profile

| vCPU | RAM (GB) | HDD (GB) |
|------|----------|----------|
| 18   | 70       | 400      |



# 3.2.4.2 Message Flow



#### Figure 3-8 FABR with UDR Message Sequence

#### Table 3-8 FABR with UDR Performance Benchmarking on 16 DA-MPs DSR Setup

| Scenario     | Call Flow<br>Model | DSR MPS<br>Achieved | DA-MP Flavor | DA-MP<br>Profile | Avg Msg<br>Size | CPU Peak | RAM<br>Utilizatio<br>n Peak |
|--------------|--------------------|---------------------|--------------|------------------|-----------------|----------|-----------------------------|
| FABR + Relay | 70% FABR +         | 288K                | 12 vCPU      | 30K_MPS          | 2.0 K           | 24%      | 26%                         |
|              | 30% Relay          | (18K/MP)            | (Regular)    |                  |                 |          |                             |

# 3.2.4.3 Indicative Alarms or Events

Table 3-9 FABR with UDR Alarms or Events

| Number | Severity                 | Server | Name                                               | Description                                                                                                                                      |
|--------|--------------------------|--------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 19825  | Minor/Major/<br>Critical | DA-MP  | Communication Agent Transaction<br>Failure Rate    | The number of failed transactions during the sampling period has exceeded the configured thresholds.                                             |
| 19832  | Info                     | DA-MP  | Communication Agent Reliable<br>Transaction Failed | Failed transaction between servers result<br>in normal maintenance actions, overload<br>conditions, software failures, or equipment<br>failures. |
| 22008  | Info                     | DA-MP  | Orphan Answer Response<br>Received                 | An answer response was received for<br>which no pending request transaction<br>existed resulting in the Answer message<br>being discarded.       |
| 22201  | Minor                    | DA-MP  | MpRxAllRate                                        | DA-MP ingress message rate threshold<br>crossed.                                                                                                 |
| 22221  | Minor                    | DA-MP  | Routing MPS Rate                                   | Message processing rate for this DA-MP<br>is approaching or exceeding its<br>engineered traffic handling capacity.                               |
| 22225  | Minor                    | DA-MP  | MpRxDiamAllLen                                     | DA-MP diameter average ingress message length threshold crossed.                                                                                 |

Table 3-9 (Cont.) FABR with UDR Alarms or Events

| Number | Severity | Server | Name                            | Description                                                                                                                                                                                            |
|--------|----------|--------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22606  | Info     | DA-MP  | Database or DB connection error | FABR application received service<br>notification indicating Database (DP) or<br>DB connection (COM Agent) Errors (DP<br>timeout, errors or COM Agent internal<br>errors) for the sent database query. |

# 3.2.5 vSTP MP

The vSTP-MP server type is a virtualized STP that supports M2PA, M3UA, and TDM. It can be deployed either with other DSR functionality as a combined DSR or vSTP, or as a standalone virtualized STP without any DSR functionality.

# 3.2.5.1 vSTP MP Benchmarking

The following table describes the feature wise vSTP MP benchmarking.

Table 3-10 Feature-wise vSTP MP Benchmarking

| Scenario                                                 | Call Flow Model                          | vSTP MPS<br>Achieved | SS7-MP Flavor | CPU Peak | RAM Peak |
|----------------------------------------------------------|------------------------------------------|----------------------|---------------|----------|----------|
| SFAPP + MNP + GTT                                        | 2K MNP + 2K SFAPP<br>+ 6K GTT            | 18K/MP               | 8 vCPU        | 33       | 55       |
| SFAPP + MNP +<br>GFLEX + GTT                             | 2K MNP + 2K SFAPP<br>+ 1K GFLEX + 4K GTT | 18K/MP               | 8 vCPU        | 25       | 49       |
| TIF + GTT                                                | 5K MNP + 10K GTT                         | 20K/MP               | 8 vCPU        | 28       | 39       |
| vMNP + GTT                                               | 5K MNP + 10K GTT                         | 20K/MP               | 8 vCPU        | 28       | 43       |
| GFLEX + GTT                                              | 5K MNP + 10K GTT                         | 20K/MP               | 8 vCPU        | 27       | 61       |
| INPQ + GTT                                               | 5K MNP + 10K GTT                         | 20K/MP               | 8 vCPU        | 19       | 42       |
| GTT + MTP Routing<br>with MTP screening<br>(M2PA & M3UA) | 16K MPS                                  | 16K/MP               | 8 vCPU        | 59       | 47       |
| GTT + MTP Routing                                        | 20K MPS                                  | 20K/MP               | 8 vCPU        | 56       | 42       |
| vEIR                                                     | 5K                                       | 5K/MP                | 8 vCPU        | 17       | 49       |
| Elynx (E1/T1 Card) –<br>GTT Relay                        | 10K TDM + 10K GTT                        | 20K/MP               | 8 vCPU        | 29       | 43       |
| ENUM                                                     | 5K                                       | 5K/MP                | 8 vCPU        | 10       | 47       |
| DNS                                                      | 10K                                      | 10K/MP               | 8 vCPU        | 3        | 42       |
| vSTP – Home SMS                                          | MO-FSM AllowList +                       | 10K/SS7              | 8 vCPU        | 46       | 45       |
|                                                          | BlockList Traffic (10K + 10K)            | (2 MPs)              |               |          |          |
|                                                          |                                          | 20K /Proxy MP        |               |          |          |
| Tracing (GTT)                                            | 9K (Tracing)                             | 18K/MP               | 8 vCPU        | 45       | 48       |
| Tracing (GTT) + Non-<br>Tracing (GTT)                    | 6K (Tracing) + 6K<br>(GTT)               | 18K/MP               | 8 vCPU        | 40       | 44       |

# Note: For ENUM, new vENUM-MP is introduced. vENUM sends messages to UDR over ComAgent interface. Default timer values are supported when vSTP is configured to operate at 10K MPS for each MP. When vSTP is configured to operate at 20K MPS, then the t1Timer to t5Timer values has to be updated. For information about the updated timer values, see *MMI API Specification*. MNP processing is equivalent to two messages and SFAPP processing is equivalent to four messages. For tracing feature, the tracing is applied on all GTT traffic. ENUM MP shall support 5K DNS traffic with Load balancing (CPU Peak=3, Ram Peak=47).

# 3.2.6 Policy DRA (PDRA) Benchmarking

The Policy DRA (PDRA) application adds two additional database components, the SBR(session) (SBR-s) and the SBR (binding) (SBR-b). The DA-MP performance was also measured since the PDRA application puts a different load on the DA-MP than either running Relay or FABR traffic. There are two sizing metrics when determining how many SBR-s or SBR-g server groups (for example, horizontal scaling units) are required. The first is the MPS traffic rate seen at the DA-MPs. This is the metric that is benchmarked in this document. The second factor is the number of bindings (SBR-b) or sessions (SBR-s) that can be supported. This session or binding capacity is set primarily by the memory sizing of the VM and is fixed at a maximum of 16 million per SBR from the DSR 8.3 release. The number of bindings and sessions required for a given network are customer dependent. But a good starting place for engineering is to assume:

- The number of bindings is equal to the number of subscribers supported by the PCRFs.
- The number of sessions is equal to number of subscribers times the number of IPCAN sessions required on average for each subscriber. For instance, a subscriber might have one IPCAN session for LTE, and one for VoLTE.

## Note:

The number of sessions is equal to or greater than the number of bindings.

# 3.2.6.1 Topology

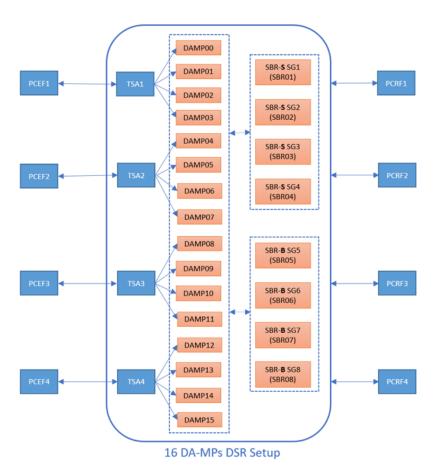
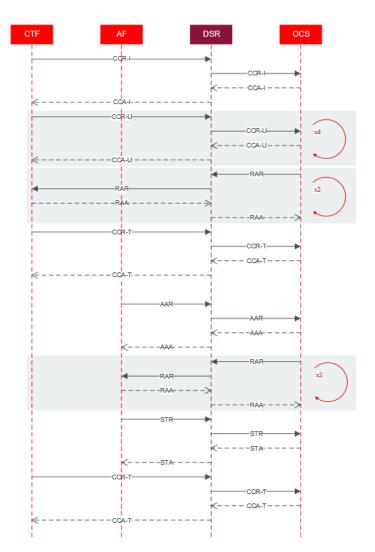




Figure 3-9 SBR Testing Topology



# 3.2.6.2 Message Flow



#### Figure 3-10 PDRA Message Sequence

The following table shows the call model used for the testing. The message distribution is Oracle's baseline benchmarking may differ significantly from customer distributions based on factors such as the penetration of LTE support in comparison with VoLTE support. The Traffic Details shows the configured PDRA options. For more details on these options, see Oracle Communications Diameter Signaling Router Policy and Charging Application User Guide.

| Table 3-11 | PDRA Test Call Mod | el |
|------------|--------------------|----|
|------------|--------------------|----|

| Messages                   |   |         | Traffic Details                 |      |  |
|----------------------------|---|---------|---------------------------------|------|--|
| Message Count Distribution |   | Message | Distribution                    |      |  |
| CCR-I, CCA-I               | 1 | 7.14%   | Gx with MSISDN Alternative Key, | 100% |  |
|                            |   |         | Gx Topology Hiding              |      |  |



#### Table 3-11 (Cont.) PDRA Test Call Model

| Messages         |       |              | Traffic Details    | Traffic Details |  |  |
|------------------|-------|--------------|--------------------|-----------------|--|--|
| Message          | Count | Distribution | Message            | Distribution    |  |  |
| CCR-U, CCA-U     | 3     | 21.42%       | Gx Topology Hiding | 100%            |  |  |
| CCR-T, CCA-T     | 1     | 7.14%        | Gx Topology Hiding | 100%            |  |  |
| Gx RAR, RAA      | 3     | 21.42%       | Gx Topology Hiding | 100%            |  |  |
| AAR, AAA Initial | 2     | 14.29%       | Rx Topology Hiding | 100%            |  |  |
| STR, STA         | 2     | 14.29%       | Rx Topology Hiding | 100%            |  |  |
| Rx RAR, RAA      | 2     | 14.29%       | Rx Topology Hiding | 100%            |  |  |

## Table 3-12 PDRA Performance Benchmarking on 16 DA-MPs DSR Setup

| Scenario                                          | Call Flow<br>Model | SBR MPS<br>Achieved | DA-MP Flavor         | DA-MP Profile | Avg Msg<br>Size | DA-MP<br>CPU Peak | RAM<br>Utilizatio<br>n Peak |
|---------------------------------------------------|--------------------|---------------------|----------------------|---------------|-----------------|-------------------|-----------------------------|
| Single Server<br>group<br>(1 SBR(s), 1<br>SBR(b)) | 100% PDRA          | 50K                 | 12 vCPU<br>(Regular) | 30K_MPS       | 600             | 24%               | 38%                         |
| Single Server<br>group<br>(4 SBR(s), 4<br>SBR(b)) | 100% PDRA          | 200K                | 12 vCPU<br>(Regular) | 30K_MPS       | 648             | 28%               | 23%                         |

# 3.2.6.3 Indicative Alarms or Events

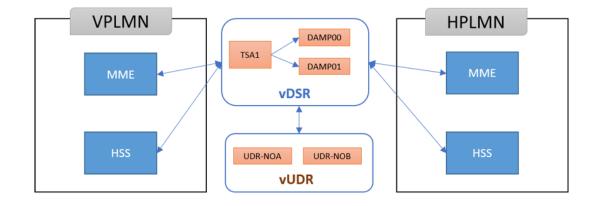
#### Table 3-13 PDRA Alarms or Events

| Number | Severity        | Server | Name                                                          | Description                                                                                                                                         |
|--------|-----------------|--------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 19814  | Info            | DA-MP  | Communication Agent<br>Peer has not<br>responded to heartbeat | Communication Agent<br>Peer has not<br>responded to<br>heartbeat.                                                                                   |
| 19825  | Major, Critical | DA-MP  | Communication Agent<br>Transaction Failure<br>Rate            | The number of failed<br>transactions during the<br>sampling period has<br>exceeded configured<br>thresholds.                                        |
| 19832  | Info            | DA-MP  | Communication Agent<br>Reliable Transaction<br>Failed         | Communication Agent<br>Reliable Transaction<br>Failed                                                                                               |
| 22008  | Info            | DA-MP  | Orphan Answer<br>Response Received                            | An answer response<br>was received for which<br>no pending request<br>transaction existed<br>resulting in the Answer<br>message being<br>discarded. |



#### Table 3-13 (Cont.) PDRA Alarms or Events

| Number | Severity        | Server | Name                                                                      | Description                                                                                                                                |
|--------|-----------------|--------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 22328  | Minor           | DA-MP  | IcRate                                                                    | Connection ingress<br>message rate<br>threshold crossed                                                                                    |
| 22704  | Info            | DA-MP  | Communication Agent<br>Error                                              | Policy and Charging<br>server to SBR server<br>communication failure                                                                       |
| 22705  | Info            | DA-MP  | SBR Error Response<br>Received                                            | Policy and Charging<br>server received<br>response from SBR<br>server indicating SBR<br>errors                                             |
| 22714  | Info            | SBR    | SBR RAR Initiation<br>Error                                               | SBR encountered an<br>error while processing<br>PCA initiated RAR<br>requests                                                              |
| 22716  | Info            | SBR    | SBR Audit Statistics<br>Report                                            | SBR Audit Statistics<br>Report                                                                                                             |
| 22718  | Info            | DA-MP  | Binding Not Found for<br>Binding Dependent<br>Session Initiate<br>Request | Binding record is not<br>found for the<br>configured binding<br>keys in the binding<br>dependent session-<br>initiation request<br>message |
| 22741  | Info            | DA-MP  | Failed to route PCA generated RAR                                         | RAA with Unable To<br>Deliver (3002) error is<br>received at PCA for the<br>locally generated RAR                                          |
| 31232  | Critical, Minor | DA-MP  | HA Late Heartbeat<br>Warning                                              | High availability server<br>has not received a<br>message on specified<br>path within the<br>configured interval                           |
| 31236  | Major           | DA-MP  | HA Link Down                                                              | High availability TCP<br>link is down                                                                                                      |


# 3.2.7 Diameter Security Application (DSA) Benchmarking

Counter measures are applied for benchmarking, for ingress messages received from external foreign network and for egress messages sent to external foreign network. Different counter measure profiles can be created for different IPX or roaming partners by enabling or disabling counter measures individually for different IPX provider or roaming partner Diameter Peers.

#### Enabling DSA Application (DSA) Benchmarking

DSA application is enabled on DA-MP and it uses vUDR to store context information.

# 3.2.7.1 Topology





The following stateful and stateless counter measure application configuration and the modes of operations used in benchmarking tests.

| Table 3-14 Stateful and Statelss Counter Measur |
|-------------------------------------------------|
|-------------------------------------------------|

| Application Configuration Data |                                   | General Options Settings       |          |  |
|--------------------------------|-----------------------------------|--------------------------------|----------|--|
| Table Name                     | Count of<br>Configured<br>Entries | Options                        | Values   |  |
| AppCmdCst_Config               | 2                                 | Opcodes Accounting             | Disabled |  |
| AppIdWL_Config                 | 1                                 | Max. UDR Queries per Message   | 5        |  |
| AVPInstChk_Config              | 48                                | Max. Size of Application State | 4800     |  |
| Foreign_WL_Peers_Cfg_Sets      | 14                                | Logging of Vulnerable Messages | Enabled  |  |
| MCC_MNC_List                   | 11                                |                                |          |  |
| MsgRateMon_Config              | 1                                 |                                |          |  |
| Realm_List                     | 6                                 |                                |          |  |
| Security_Countermeasure_Config | 19                                |                                |          |  |
| SpecAVPScr_Config              | 1                                 | Application Threads            |          |  |
| System_Config_Options          | 1                                 | Request                        | 6        |  |
| TimeDistChk_Config             | 2000                              | Answer                         | 4        |  |
| TTL_Config                     | 5                                 | SbrEvent                       | 4        |  |
| VplmnORCst_Config              | 1                                 | AsyncEvent                     | 2        |  |
| TimeDistChk_Country_Config     | 2                                 |                                |          |  |
| TimeDistChk_Exception_List     | 0                                 |                                |          |  |
| TimeDistChk_Continent_Config   | 15                                |                                |          |  |
| VplmnORCst_Config              | 1                                 |                                |          |  |
| RealmIMSICst_Config            | 210                               |                                |          |  |
| Exception_Rule_Config          | 0                                 |                                |          |  |

| Application Configuration Data                                                                                                                                                                                 |                                   | General Options Settings |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|--------|
| Table Name                                                                                                                                                                                                     | Count of<br>Configured<br>Entries | Options                  | Values |
| All Exception Types Table <ul> <li>IMSI_Exception_Config</li> <li>MCC_MNC_Exception_Config</li> <li>Origin_Host_Exception_Config</li> <li>Realm_Exception_Config</li> <li>VPLMN_ID_Exception_Config</li> </ul> | 0                                 |                          |        |

#### Table 3-14 (Cont.) Stateful and Statelss Counter Measures

#### Note:

The following error is received during performance run, if the call rate is more than 1.7k in each MP DSA:

UDR Internal Error: Create record failed. Error Code = SendError

This is caused due to comagent connection getting timeout due to ttl expired.

Communication Agent Reliable Transaction Failed} .. GN\_INFO/INF Failure reason = Time to live limit exceeded

To avoid this, run the following commands from Active DSR NOAM before running performance traffic:

iset -fvalue=400 ComAgtConfigParams where "name='IntraNe Maximum Timeout Value'" iset -fvalue=3 ComAgtConfigParams where "name='Maximum Number Of Retries'"

- The following error is encountered, when the traffic is around 5.3k on each MP during the performance run:
  - Communication Agent Reliable Transaction Failed: Communication Agent Reliable Transaction Failed.
  - DCA to UDR ComAgent Error: DCA failed to send query to UDR due to ComAgent Error.
  - Communication Agent Transaction Failure Rate: The number of failed transactions over the sampling period exceeded the configured thresholds.

To improve efficiency and to avoid the above issue, use the xsi2 interface for comagent connections between DSR and UDR.

| Counter<br>Measure (CM)                  | Call Flow<br>Model                                  | DSR MPS<br>Achieved<br>(Per DA-<br>MP) | DA-MP<br>Flavor      | UDR<br>Flavor | DA-MP<br>Profile | Avg Msg<br>Size | CPU Peak | RAM<br>Utilizatio<br>n Peak |
|------------------------------------------|-----------------------------------------------------|----------------------------------------|----------------------|---------------|------------------|-----------------|----------|-----------------------------|
| Previous_Locatio<br>n_Check              | 15% Vulnerable<br>and 85% Non<br>Vulnerable traffic | 9.2K                                   | 12 vCPU<br>(Regular) | 18vCPU        | 30K_MPS          | 2.0 K           | 29%      | 63%                         |
| Time_Distance_<br>Check                  | 15% Vulnerable<br>and 85% Non<br>Vulnerable traffic | 9.8K                                   | 12 vCPU<br>(Regular) | 18vCPU        | 30K_MPS          | 2.0 K           | 34%      | 63%                         |
| Source_Host_Va<br>lidation_Hss           | 15% Vulnerable<br>and 85% Non<br>Vulnerable traffic | 9.6K                                   | 12 vCPU<br>(Regular) | 18vCPU        | 30K_MPS          | 2.0 K           | 34%      | 62%                         |
| Source_Host_Va<br>lidation_Mme           | 15% Vulnerable<br>and 85% Non<br>Vulnerable traffic | 10K                                    | 12 vCPU<br>(Regular) | 18vCPU        | 30K_MPS          | 2.0 K           | 33%      | 63%                         |
| Message_Monito<br>ring_Rate              | 15% Vulnerable<br>and 85% Non<br>Vulnerable traffic | 10K                                    | 12 vCPU<br>(Regular) | 18vCPU        | 30K_MPS          | 2.0 K           | 30%      | 63%                         |
| Session_Integrit<br>y_Validation_Ch<br>k | 15% Vulnerable<br>and 85% Non<br>Vulnerable traffic | 10K                                    | 12 vCPU<br>(Regular) | 18vCPU        | 30K_MPS          | 2.0 K           | 39%      | 63%                         |
| All Stateful                             | 15% Vulnerable<br>and 85% Non<br>Vulnerable traffic | 7.02K                                  | 12 vCPU<br>(Regular) | 18vCPU        | 30K_MPS          | 2.0 K           | 15%      | 30%                         |
| All Stateful + All<br>stateless          | 15% Vulnerable<br>and 85% Non<br>Vulnerable traffic | 5.25K                                  | 12 vCPU<br>(Regular) | 18vCPU        | 30K_MPS          | 2.0 K           | 24%      | 18%                         |

Table 3-15 DSA Performance Benchmarking on 2 DA-MPs DSR Setup

Indicative Alarms/Events

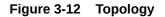
### Table 3-16 Indicative Alarms/Events

| Number | Severity                     | server | Name                                               | Description                                                                                                                                        |
|--------|------------------------------|--------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 19825  | Minor/<br>Major/<br>Critical | DA-MP  | Communication Agent Transaction<br>Failure Rate    | The number of failed transactions during the<br>sampling period has exceeded configured<br>thresholds.                                             |
| 19832  | Info                         | DA-MP  | Communication Agent Reliable<br>Transaction Failed | Failed transaction between servers result from<br>normal maintenance actions, overload<br>conditions, software failures, or equipment<br>failures. |
| 33308  | Info                         | DA-MP  | DCA to UDR Comagent Error                          | DCA failed to send query to UDR due to<br>ComAgent Error.                                                                                          |
| 33446  | Major                        | DA-MP  | SrcHostValHssExecFailedAlrm                        | Failed executing Source-Host-Validation-HSS business logic. Disable the CounterMeasure until the problem is resolved.                              |
| 33449  | Major                        | DA-MP  | TimeDistChkExecFailedAlrm                          | Failed executing <i>Time-Distance Check</i> business logic. Disable the CounterMeasure until the problem is resolved.                              |

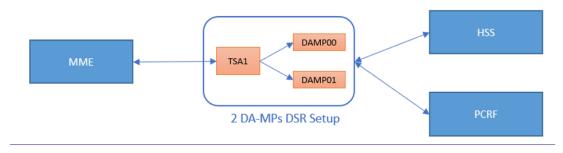
## 3.2.8 Rx-ShUDR-Application (RSA) Benchmarking

Rx-ShUDR Application (RSA) will be implemented using DCA framework and will be deployed at the Oracle Roaming DRA which is a virtual DSR. Oracle Roaming DRA (R-DRA) Virtual DSR establishes Diameter Rx connection with Oracle PCRF segments.

When deciding on whether a request should be processed, the Rx-ShUDR Application takes a number of aspects into consideration:


- Sh Lookup parameter should be enabled for received Rx Client FQDN. It can be checked in the Rx\_Client Table.
- Sh UDR message should be created as per the content received in the Rx AAR message from MCPTT client and send it to the dedicated HSS via Core DRA.

## Note:


If Sh Lookup parameter is disabled, AAR message should be forwarded to the RBAR dip for PCRF segment address resolution using the IPv6 prefixes from the received Rx AAR message.

 RBAR (Range Based Address Resolution) activated on Roaming DRA (R-DRA), populated with IPv6 Prefixes mapped to PCRF segment FQDNs.

Topology



Topology



Message Flow

#### Figure 3-13 Message Flow

### **Message Flow**

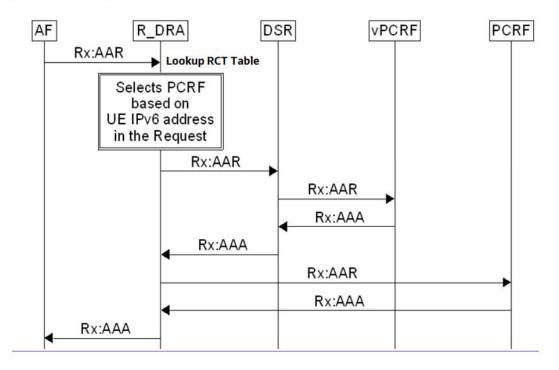
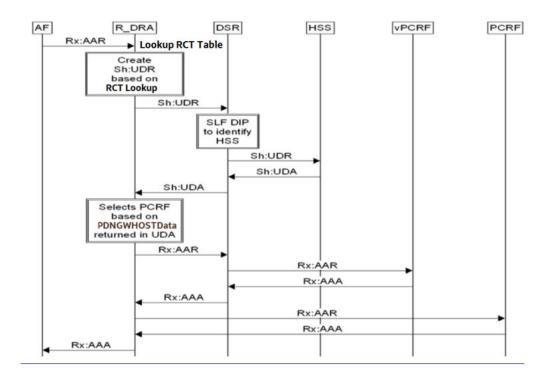




Figure 3-14 Sh lookup



ORACLE

### Configuration

The following table describes the application configurations and the modes of operations used in benchmarking tests.

**RSA** Test Cal Model

#### Table 3-17 DSR common configuration

| DSR Common Configuration parameters | No of Records | Rx Message<br>originator | Supported Diameter<br>Message |
|-------------------------------------|---------------|--------------------------|-------------------------------|
| No of DAMP's                        | 2             | MCPTT Client             | AAR-I/U, STR                  |
| No of Local Nodes                   | 2             | PCRF                     | ASR, RAR                      |
| No of Peer Nodes                    | 40            | -                        | -                             |
| No of MCPTT Client Connections      | 16            | Rx Message originator    | Supported Message<br>Type     |
| No of PCRF connections              | 16            | Rx ShUDR application     | Sh-UDR                        |
| No of HSS Connections               | 8             | -                        | -                             |
| Total No of connections             | 40            | -                        | -                             |

### Table 3-18 Application configuration

| Table Name             | Counts | Messages            | Distribution |
|------------------------|--------|---------------------|--------------|
| Error_Action_Config    | 41     | Rx AAR, AAA Initial | 40%          |
| PDNGWHost_PCRF_Mapping | 7      | Rx AAR, AAA Update  | 4%           |
| Rx_Client              | 10     | Rx STR, STA         | 13%          |
| System_Config_Options  | 1      | Rx ASR, ASA         | 13%          |
| Topology_Hiding        | 3      | Rx RAR, RAA         | 3%           |
| -                      | -      | Sh-UDR, Sh-UDA      | 27%          |

RSA Performance Benchmarking on 2 DA-MPs DSR Setup

#### Table 3-19 RSA Performance Benchmarking

| Scenario                                                               | Call Flow<br>Model  | DSR MPS<br>Achieved | DA-MP<br>Flavor      | DA-MP<br>Profile | Avg Msg<br>Size | CPU Peak | RAM<br>Utilization<br>Peak |
|------------------------------------------------------------------------|---------------------|---------------------|----------------------|------------------|-----------------|----------|----------------------------|
| Use Case (A+B) scenario<br>with 27% of the traffic<br>having Sh_lookup | Use Case<br>(A + B) | 30K<br>(15K/MP)     | 12 vCPU<br>(Regular) | 30K_MPS          | 400             | 53%      | 24%                        |

Indicative Alarms/Events

### Table 3-20 Indicative Alarms/Events

| Number | Severity | Server | Name              | Description                                                                                                                       |
|--------|----------|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 22008  | Info     | DA-MP  | Response Received | An Answer response was received for which no pending request transaction existed resulting in the Answer message being discarded. |



| Number | Severity | Server | Name                                                                                                      | Description                                                                                          |
|--------|----------|--------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 33318  | Major    | DA-MP  | DCA CreateAndSend<br>Request Message<br>Send Failed                                                       | Failed While Sending a CreateAndSend<br>Request Message.                                             |
| 33430  | Major    | DA-MP  | RxShUDRAppExecFail         Failed executing Rx-ShUDR application           edAlrm         business logic. |                                                                                                      |
| 5002   | Critical | IPFE   | IPFE address<br>configuration error                                                                       | An address pertaining to inter-IPFE state<br>synchronization is configured incorrectly.              |
| 5003   | Critical | IPFE   | IPFE state sync run<br>error                                                                              | Error syncing state data between IPFEs.                                                              |
| 5011   | Critical | IPFE   | System or platform<br>error prohibiting<br>operation                                                      | Error related to system misbehavior or platform misconfiguration, check traces for more information. |
| 5012   | Critical | IPFE   | Signaling interface<br>heartbeat timeout                                                                  | Heartbeats to monitor the liveness of a signaling interface have timed out.                          |

Table 3-20 (Cont.) Indicative Alarms/Events

## 3.2.9 Radius Benchmarking

Radius (Remote Authentication Dial In User Service) is an Authentication, Authorization and Accounting (AAA) protocol that is a predecessor to diameter. Radius is frequently used, specially in WLAN networks and 3G mobile data applications. DSR will be deployed in networks requiring support for both Diameter and Radius nodes as well in Radius only networks.

Radius has similarities to Diameter but is significantly different in many ways. Radius is primarily supported on DSR by a new connection layer called the Radius Connection Layer, while using the existing routing services of the Diameter Routing Layer (DRL) and the existing Diameter based message interface to or from the DRL.

Ingress radius request or response messages are encapsulated in Diameter Request or Answer messages respectively. Diameter Request message content is created by Radius Connection Layer based on a set of predefined rules using both configuration data and radius message content. Diameter answer message content is created by Radius Connection Layer based on a set of predefined rules using mostly the Diameter Request message content associated with the transaction.

Radius request message routing is based upon the associated Diameter Request message which encapsulates the Radius message, the user must be familiar with how the Diameter Request capsule is created so they can configure the DRL to route Radius request messages.

Diameter Routing Layer provides required information to Radius Connection Layer to enable forwarding of Radius messages to the peer.

The Radius Connection Layer prevents accidental routing of non Radius messages to a Radius connection due to misconfiguration.



### Figure 3-15 Topology

## Topology Radius Access Client Diameter MME Radius Accounting Client 2 DA-MPs DSR Setup Radius Accounting Server

## Configuration

Following table describes the configurations used in benchmarking tests:

#### Table 3-21 Radius Configuration

| Parameters                                             | Counts |
|--------------------------------------------------------|--------|
| Number of DAMP's                                       | 2      |
| Number of Radius Client Connections for Access-Accept  | 16     |
| Number of Radius Server Connections Access-Request     | 45     |
| Number of Radius Client Connections Accounting-Accept  | 8      |
| Number of Radius Server Connections Accounting-Request | 45     |
| Total Number of Connections                            | 114    |
| Number of Local Nodes                                  | 9      |
| Number of Peer Nodes                                   | 114    |

### Table 3-22 Diameter Configuration

| Parameters                                         | Counts |
|----------------------------------------------------|--------|
| Number of DAMP's                                   | 2      |
| Number of DAMPs with fixed or floating connections | 2      |
| Number of IFEE                                     | 2      |
| Number of TSA Defined                              | 1      |
| Number of DAMP in TSA Groups                       | 2      |
| Number of Initiator Connections                    | 120    |
| Number of Responder Connections                    | 40     |
| Total Number of Diameter Connections               | 160    |
| Number of Local Nodes                              | 2      |
| Number of Peer Nodes                               | 10     |

## Table 3-23 Traffic Call Model

| Traffic Type              | Distribution |
|---------------------------|--------------|
| Radius Access Traffic     | 5%           |
| Radius Accounting Traffic | 25%          |

## Table 3-23 (Cont.) Traffic Call Model

| Traffic Type           | Distribution |
|------------------------|--------------|
| Diameter Relay Traffic | 70%          |

#### Table 3-24 Radius + Diameter Performance Benchmarking on 2 DA-MPs DSR Setup

| Scenario             | Call Flow Model              | DSR MPS Achieved | DA-MP<br>Flavor      | DA-MP<br>Profile | Avg Msg<br>Size | CPU Peak | RAM<br>Utilizatio<br>n Peak |
|----------------------|------------------------------|------------------|----------------------|------------------|-----------------|----------|-----------------------------|
| Radius +<br>Diameter | 30% Radius + 70%<br>Diameter | 36K (18K/MP)     | 12 vCPU<br>(Regular) | 30K_MPS          | 400             | 48%      | 27%                         |

#### Table 3-25 Indicative Alarms/Events

| Number | Severity | Server | Name                               | Description                                                                                                                                         |
|--------|----------|--------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 22008  | Info     | DA-MP  | Orphan Answer<br>Response Received | An Answer response<br>was received for which<br>no pending request<br>transaction existed<br>resulting in the Answer<br>message being<br>discarded. |
| 22201  | Minor    | DA-MP  | MpRxAllRate                        | DA-MP ingress<br>message rate<br>threshold crossed.                                                                                                 |
| 22221  | Minor    | DA-MP  | Routing MPS Rate                   | Message processing<br>rate for this DA-MP is<br>approaching or<br>exceeding its<br>engineered traffic<br>handling capacity                          |



## Appendix

This section provides information about the following:

- Summary of VM configurations
- Networking characteristics of different VMs
- DSR Benchmarking values on KVM/Oracle X9-2 server

# A DSR VM Configurations

The following table provides a summary of the VM configurations used for the benchmarking data and the affinity rules for deploying those VMs. Using VM sizes different from these tested values may give unexpected results because the application profiles are tuned to this number of vCPUs and memory sizes.

| VM Name                  | VCPU | RAM (GB) | Disk (GB) | Max<br>Config        | Redunda<br>ncy<br>Models                              | Affinity/Placement<br>Rules (Per Site)                                              | Notes                                                                                                                                                                                                                                                        |
|--------------------------|------|----------|-----------|----------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSR<br>NOAM<br>(Regular) | 4    | 14       | 120       | 1 Pair               | Active/<br>Standby                                    | 2 VMs per DSR<br>network in any site.<br>VMs to be deployed on<br>separate servers. |                                                                                                                                                                                                                                                              |
| DSR<br>NOAM<br>(Large)   | 8    | 14       | 120       | 1 Pair               | Active/<br>Standby                                    | 2 VMs per DSR<br>network in any site.<br>VMs to be deployed on<br>separate servers. | It is recommended to<br>use large NOAM profile<br>if the deployment is<br>more than 32 C level<br>servers.<br>If SOAM profile is<br>large, NOAM profile<br>must be large. In large<br>profiles, the scheduled<br>two measurement<br>exports run in parallel. |
| DSR<br>SOAM<br>(Regular) | 4    | 14       | 120       | 1 Pair per<br>DSR NF | Active/<br>Standby or<br>Active/<br>Standby/<br>Spare | 2 VMs per site. VMs to<br>be deployed on<br>separate servers.                       | Redundancy model<br>Active/Standby/Spare<br>model is used for PCA<br>mated-pair<br>deployments. For all<br>other deployments<br>Active or Standby<br>model is used.                                                                                          |

Table A-1 VM Configurations and Affinity Rules

| VM Name                | VCPU | RAM (GB) | Disk (GB) | Max<br>Config        | Redunda<br>ncy<br>Models                              | Affinity/Placement<br>Rules (Per Site)                                                                  | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|------|----------|-----------|----------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSR<br>SOAM<br>(Large) | 8    | 14       | 120       | 1 Pair per<br>DSR NF | Active/<br>Standby or<br>Active/<br>Standby/<br>Spare | 2 VMs per site. VMs to<br>be deployed on<br>separate servers.                                           | Redundancy model<br>Active/Standby/Spare<br>model is used for PCA<br>mated-pair<br>deployments. For all<br>other deployments<br>Active or Standby<br>model is used. If the<br>diameter connections<br>are higher than 4K, it is<br>recommended to use<br>SOAM large profile. If<br>NOAM profile is large,<br>SOAM profile must be<br>large. In large profiles,<br>the scheduled two<br>measurement exports<br>will run in parallel.                                         |
| DA-MP<br>(Regular)     | 12   | 16       | 120       | 32 per<br>DSR NF     | Active<br>Cluster<br>(N+0)                            | Should be spread over<br>as many servers as<br>possible to minimize<br>capacity loss on server<br>loss. | The limit of 32 is the<br>combined total of DA-<br>MPs, DA-MPs with<br>IWF, and DA-MP with<br>EIR. The vSTP MPs do<br>not count against this<br>32. Cannot max out all<br>types in one DSR (for<br>instance 32 DA-MPs<br>AND 32 vSTPs). Any<br>solution using more<br>than 500 ART<br>(Application Route<br>Tables)/ARR<br>(Application Route<br>Rules)+PRR (Peer<br>Route Rules) beyond<br>20k please use the<br>below profile (DAMP w/<br>IWF) which is with<br>24GB RAM. |

| Table A-1 | (Cont.) VM Configurations and Affinity Rules |
|-----------|----------------------------------------------|
|           | (cond) vin conigurations and / minty reaces  |

| VM Name                    | VCPU | RAM (GB) | Disk (GB) | Max<br>Config    | Redunda<br>ncy<br>Models   | Affinity/Placement<br>Rules (Per Site)                                                                  | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|------|----------|-----------|------------------|----------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DA-MP<br>(Large)           | 18   | 24       | 120       | 32 per<br>DSR NF | Active<br>Cluster<br>(N+0) | Should be spread over<br>as many servers as<br>possible to minimize<br>capacity loss on server<br>loss. | The limit of 32 is the<br>combined total of DA-<br>MPs, DA-MPs with<br>IWF, and DA-MP with<br>EIR. The vSTP MPs do<br>not count against this<br>32. Cannot max out all<br>types in one DSR (for<br>instance 32 DA-MPs<br>and 32 vSTPs). Any<br>solution using more<br>than 500 ART<br>(Application Route<br>Tables)/ARR<br>(Application Route<br>Rules) + PRR (Peer<br>Route Rules) beyond<br>20k please use the<br>below profile (DAMP w/<br>IWF) which is with<br>24GB RAM. |
| vSTP MP                    | 8    | 12       | 120       | 32 per<br>DSR NF | Active<br>Cluster<br>(N+0) | Should be spread over<br>as many servers as<br>possible to minimize<br>capacity loss on server<br>loss. | The vSTP MPs do not<br>count against the 32<br>DA-MP limits in a<br>single OCDSR node,<br>so a DSR can have up<br>to 32vSTP MPs.<br>Cannot max out all<br>types in one DSR (for<br>instance 32 DA-MPs<br>and 32 vSTPs).                                                                                                                                                                                                                                                       |
| HomeSMS<br>C Service<br>MP | 8    | 12       | 120       | 32 per<br>DSR NF | Active<br>Cluster<br>(N+0) | Should be spread over<br>as many servers as<br>possible to minimize<br>capacity loss on server<br>loss. | The Service MPs do<br>not count against the<br>32 DA-MP limits in a<br>single OCDSR node,<br>so a DSR can have up<br>to 32service MPs.<br>Cannot max out all<br>types in one DSR (for<br>instance 32 DA-MPs<br>and 32 service).                                                                                                                                                                                                                                               |
| vENUM<br>Service<br>MP     | 8    | 12       | 150       | 32 per<br>DSR NF | Active<br>Cluster<br>(N+0) | Should be spread over<br>as many servers as<br>possible to minimize<br>capacity loss on server<br>loss. | The vENUM MPs do<br>not count against the<br>32 DA-MP limits in a<br>single OCDSR node,<br>so a DSR can have up<br>to 32 ENUM MPs.<br>Cannot max out all<br>types in one DSR (for<br>instance 32 DA-MPs<br>and 32 service).                                                                                                                                                                                                                                                   |

| Table A-1 | (Cont.) VM Configurations and Affinity Rules |
|-----------|----------------------------------------------|

| VM Name                      | VCPU | RAM (GB) | Disk (GB) | Max<br>Config                       | Redunda<br>ncy<br>Models       | Affinity/Placement<br>Rules (Per Site)                                                                                                     | Notes                                                                                                                                                                        |
|------------------------------|------|----------|-----------|-------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IPFE                         | 6    | 16       | 120       | 2 pairs per<br>DSR NF               | Active/<br>Standby             | Each VM in a pair must<br>be deployed on<br>separate server.                                                                               | Deployed in pairs. Max<br>2 pairs (4VMs).                                                                                                                                    |
| SBR(s)                       | 12   | 25       | 120       | 8 Server<br>Groups<br>per<br>SBR(b) | Active/<br>Standby/<br>Spare   | Active/Standby VMs to<br>be deployed on<br>separate servers,Spare<br>is typically at another<br>geographic location for<br>geo-redundancy. | Can be either Active/<br>Standby/Spare or<br>Active/Standby<br>depending on<br>customer geo-<br>redundancy<br>requirements.                                                  |
| SBR(b)                       | 12   | 32       | 120       | 8 Server<br>Groups<br>per<br>SBR(b) | Active/<br>Standby/<br>Spare   | Active/Standby VMs to<br>be deployed on<br>separate servers,Spare<br>is typically at another<br>geographic location for<br>geo-redundancy. | Can be either Active/<br>Standby/Spare or<br>Active/Standby<br>depending on<br>customer geo-<br>redundancy<br>requirements.                                                  |
| SBR(u)                       | 12   | 24       | 120       | 64 Server<br>Groups<br>per SBR(b    | Active/<br>Standby/<br>Spare   | Active/Standby VMs to<br>be deployed on<br>separate servers,Spare<br>is typically at another<br>geographic location for<br>geo-redundancy. | Can be either Active/<br>Standby/Spare or<br>Active/Standby<br>depending on<br>customer geo-<br>redundancy<br>requirements.                                                  |
| SDS<br>NOAM<br>(Regular)     | 4    | 32       | 350       | 1 Pair per<br>Network               | Active/<br>Standby             | Anti-affinity between<br>the Active/Standby<br>VMs                                                                                         | Active/Standby. An<br>optional "Disaster<br>Recovery" SDS is<br>supported that would<br>typically be located at a<br>different data center to<br>provide geo-<br>redundancy. |
| Query<br>Server<br>(Regular) | 4    | 32       | 350       | 1 per SDS<br>NOAM                   | N/A since<br>non-<br>redundant | Non, non-redundant                                                                                                                         | Optional 1 per site.<br>Can have one for the<br>primary SDS-NOAM<br>and one for the<br>Disaster Recovery<br>SDS-NOAM                                                         |
| SDS<br>SOAM<br>(Regular)     | 4    | 12       | 175       | 1Pair per<br>DSR NF                 | Active/<br>Standby             | 2 VMs per site. VMs to<br>be deployed on<br>separate servers.                                                                              |                                                                                                                                                                              |
| SDS DP<br>(Regular)          | 6    | 10       | 175       | 10 per<br>DSR NF                    | Active<br>Cluster<br>(N+0)     | Should be spread over<br>as many servers as<br>possible to minimize<br>capacity loss on server<br>loss.                                    | To be evenly<br>distributed across<br>servers to minimize<br>capacity loss.                                                                                                  |

## Table A-1 (Cont.) VM Configurations and Affinity Rules

| VM Name                    | VCPU | RAM (GB) | Disk (GB) | Max<br>Config             | Redunda<br>ncy<br>Models       | Affinity/Placement<br>Rules (Per Site)                                                                                                               | Notes                                                                                                                                                                                                                                     |
|----------------------------|------|----------|-----------|---------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDS<br>NOAM<br>(Large)     | 4    | 128      | 890       | 1 Pair per<br>Network     | Active/<br>Standby             | Anti-affinity between<br>the Active/Standby<br>VMs                                                                                                   | Active/Standby. An<br>optional "Disaster<br>Recovery" SDS is<br>supported that would<br>typically be located at a<br>different data center to<br>provide geo-<br>redundancy.                                                              |
| Query<br>Server<br>(Large) | 4    | 128      | 890       | 1 per SDS<br>NOAM         | N/A since<br>non-<br>redundant | Non, non-redundant                                                                                                                                   | Optional 1 per site.<br>Can have one for the<br>primary SDS-NOAM<br>and one for the<br>Disaster Recovery<br>SDS-NOAM.                                                                                                                     |
| SDS<br>SOAM<br>(Large)     | 4    | 64       | 450       | 1 Pair per<br>DSR NF      | Active/<br>Standby             | 2 VMs per site. VMs to<br>be deployed on<br>separate server.                                                                                         | Supports                                                                                                                                                                                                                                  |
| SDS DP<br>(Large)          | 24   | 64       | 450       | 10 per<br>DSR NF          | Active<br>Cluster<br>(N+0)     | Should be spread over<br>as many servers as<br>possible to minimize<br>capacity loss on server<br>loss.                                              | To be evenly<br>distributed across<br>servers to minimize<br>capacity loss.                                                                                                                                                               |
| UDR NO<br>(Small)          | 6    | 16       | 270       | n<br>(Active,Sta<br>ndby) | Active/<br>Standby/<br>Spare   | Active/Standby/Spare<br>VMs to be deployed on<br>separate servers,<br>Spare is typically at<br>another geographic<br>location for geo-<br>redundancy | Redundancy model<br>Active/Standby/Spare<br>model is used. Active/<br>Standby on Site 1 and<br>Spare on Site 2. UDR<br>is scaled by adding<br>UDR NOs. The<br>Standby UDR NO also<br>receives query traffic<br>from STP-MP and DA-<br>MP. |
| UDR NO<br>(Medium)         | 12   | 32       | 450       | n<br>(Active,Sta<br>ndby) | Active/<br>Standby/<br>Spare   | Active/Standby/Spare<br>VMs to be deployed on<br>separate servers,<br>Spare is typically at<br>another geographic<br>location for geo-<br>redundancy | Redundancy model<br>Active/Standby/Spare<br>model is used. Active/<br>Standby on Site 1 and<br>Spare on Site 2. UDR<br>is scaled by adding<br>UDR NOs. The<br>Standby UDR NO also<br>receives query traffic<br>from STP-MP and DA-<br>MP. |

## Table A-1 (Cont.) VM Configurations and Affinity Rules

| VM Name                    | VCPU | RAM (GB) | Disk (GB) | Max<br>Config             | Redunda<br>ncy<br>Models       | Affinity/Placement<br>Rules (Per Site)                                                                                                               | Notes                                                                                                                                                                                                                                     |
|----------------------------|------|----------|-----------|---------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UDR NO<br>(Regular)        | 18   | 70       | 450       | n<br>(Active,Sta<br>ndby) | Active/<br>Standby/<br>Spare   | Active/Standby/Spare<br>VMs to be deployed on<br>separate servers,<br>Spare is typically at<br>another geographic<br>location for geo-<br>redundancy | Redundancy model<br>Active/Standby/Spare<br>model is used. Active/<br>Standby on Site 1 and<br>Spare on Site 2. UDR<br>is scaled by adding<br>UDR NOs. The<br>Standby UDR NO also<br>receives query traffic<br>from STP-MP and DA-<br>MP. |
| UDR NO<br>(Large)          | 32   | 128      | 850       | n<br>(Active,Sta<br>ndby) | Active/<br>Standby/<br>Spare   | Active/Standby/Spare<br>VMs to be deployed on<br>separate servers,<br>Spare is typically at<br>another geographic<br>location for geo-<br>redundancy | Redundancy model<br>Active/Standby/Spare<br>model is used. Active/<br>Standby on Site 1 and<br>Spare on Site 2. UDR<br>is scaled by adding<br>UDR NOs. The<br>Standby UDR NO also<br>receives query traffic<br>from STP-MP and DA-<br>MP. |
| UDR NO<br>(Extra<br>Large) | 56   | 256      | 850       | n<br>(Active,Sta<br>ndby) | Active/<br>Standby/<br>Spare   | Active/Standby/Spare<br>VMs to be deployed on<br>separate servers,<br>Spare is typically at<br>another geographic<br>location for geo-<br>redundancy | Redundancy model<br>Active/Standby/Spare<br>model is used. Active/<br>Standby on Site 1 and<br>Spare on Site 2. UDR<br>is scaled by adding<br>UDR NOs. The<br>Standby UDR NO also<br>receives query traffic<br>from STP-MP and DA-<br>MP. |
| VNFM                       | 8    | 10       | 80        | NA                        | N/A since<br>non-<br>redundant | None, non-redundant                                                                                                                                  | VNF Manager<br>deployment                                                                                                                                                                                                                 |
| service_pr<br>ofile        | 6    | 16       | 120       |                           | 0                              | 0                                                                                                                                                    |                                                                                                                                                                                                                                           |
| ATS                        | 8    | 16       | 120       | NA                        | N/A since<br>non-<br>redundant | None, non-redundant                                                                                                                                  | Automated Test Suite<br>Tool                                                                                                                                                                                                              |

## Table A-1 (Cont.) VM Configurations and Affinity Rules

## Table A-2 IDIH Flavor

| Flavor name       | VCPUs | RAM(GB) | Root<br>Disk(GB) | Ephemer<br>al | Swap<br>Disk | Additional Information             |
|-------------------|-------|---------|------------------|---------------|--------------|------------------------------------|
| kafka_flavor      | 12    | 16      | 120              | 0             | 0            | Additional Cinder volume of 50 GB  |
| Mysql-DB-DataNode | 12    | 16      | 120              | 0             | 0            | Additional Cinder volume of 100 GB |
| service_profile   | 12    | 16      | 120              | 0             | 0            | NA                                 |

## B DSR VM Disk Requirements

This section provides guidance on the disk requirements for the OCDSR VMs. Characterizing disk requirements can be tricky since there are many variables that can affect disk usage, such as how many reports are being run on the OAM systems, or how often backups are run. Peak disk utilization can also be different from average disk utilization, for instance during backups or restore operations. While these guidelines are provided for the disk usage of the different VM types, customers should verify their disk usage under their own conditions since they are more driven by how the customer uses their system than by easier to calculate factors such as CPU utilization per MPS.

The OCDSR has been designed as a low disk utilization application, with all critical call processing applications performed in memory. There is also no swap disk utilization in any of the VMs. As a background for all of these numbers, the OCDSR has been run for years on "bare metal" deployments with a single pair of industry standard 10k RPM, 2½ inch disk drives in Raid 1. So even maximum sized OCDSR configurations run successfully on the approximately 120 IOPs provided by those disks. When run on higher performance disk subsystems such as SSDs, high disk utilization tasks such as background report generation just complete faster. The notes for each VM type give some of the factors that can drive different disk utilization levels. For instance, the primary traffic handling VMs, the IPFEs and the different types of MPs, have a fairly constant disk utilization independent of the traffic level. This is because the primary disk utilization is for saving statistics, then forwarding them to the SOAM.

| VM Name     | Disk (GB) | Routine<br>Disk<br>Utilizatio<br>n (IOPs)1 | Peak Disk<br>Utilizatio<br>n (IOPs)2 | Disk Usage Modes                                                                                          | Notes                                                                                                                                                                                                                                      |
|-------------|-----------|--------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSR<br>NOAM | 120       | 100                                        | 800                                  | Periodic (30 second) small writes to collect statistics. Large block reads                                | Background disk utilization is<br>mostly statistics collection from                                                                                                                                                                        |
| DSR<br>SOAM | 120       | 100                                        | 800                                  | generation and maintenance                                                                                | utilization driven by customer report                                                                                                                                                                                                      |
| DAMP        | 120       | 50                                         | 500                                  | Writes statistics to disk at 30<br>second intervals, reads them at 5-<br>minute intervals to send to SOAM | Disk utilization is independent to<br>traffic levels. Is affected by the size<br>of the DSR configuration (number<br>of connections for instance) and the<br>utilization of features that create<br>measurements such as ETGs and<br>TTPs. |
| vSTP MP     | 120       | 50                                         | 500                                  |                                                                                                           | Disk utilization is independent to<br>traffic levels. Is affected by the size<br>of the vSTP configuration such as<br>the number of local and remote<br>peers.                                                                             |
| SS7 MP      | 120       | 50                                         | 500                                  |                                                                                                           | Disk utilization is independent to<br>traffic levels. Is affected by the size<br>of the DSR configuration                                                                                                                                  |

### Table B-1 VM Disk Utilization Characteristics



#### Appendix B

| VM Name                | Disk (GB) | Routine<br>Disk<br>Utilizatio<br>n (IOPs)1 | Peak Disk<br>Utilizatio<br>n (IOPs)2 | Disk Usage Modes                                                                                | Notes                                                                                                                                 |  |
|------------------------|-----------|--------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| IPFE                   | 120       | 20                                         | 100                                  |                                                                                                 | IPFE has relatively few configuration items and statistics, and very low disk utilization.                                            |  |
| SBR(s)                 | 120       | 50                                         | 800                                  | Disk writes mostly short bursts for                                                             | Peak disk utilization driven by                                                                                                       |  |
| SBR(b)                 | 120       | 50                                         | 800                                  | statistics storage                                                                              | recovery activities between active/<br>standby servers.                                                                               |  |
| SDS<br>NOAM            | 350       | 100                                        | 800                                  | Synchronizes changes to in-<br>memory database to disk. Mostly                                  | SDS can maintain multiple copies of large subscriber database. Peak                                                                   |  |
| SDS<br>SOAM            | 175       | 50                                         | 800                                  | write application                                                                               | disk utilization is mostly driven by creating new backups.                                                                            |  |
| SDS DP                 | 175       | 80                                         | 500                                  |                                                                                                 |                                                                                                                                       |  |
| SDS<br>Query<br>Server | 350       | 100                                        | 800                                  | Synchronizes changes to in-<br>memory database to disk. Reads<br>are driven by customer queries | The query server is not a real-time<br>system. The amount of disk reads<br>is driven entirely by manual<br>customer database queries. |  |

Table B-1 (Cont.) VM Disk Utilization Characteristics

The "routine" disk utilization is the minimum engineered IOPs for the proper functioning of the VM. Average disk utilization is typically lower.

The "Peak" disk utilization is number of IOPs the VM is capable of using given sufficient resources.

# C VM Networking Requirements

This section gives information on the networking characteristics of the different VMs. The traffic is broken down into signaling traffic handled on the XMI network, and OAM traffic carried on the IMI and XMI networks.

The Diameter Traffic requirements on the XSI networks can be calculated from the MPS. Treating the OCDSR as black box, this network traffic is simply the average Diameter message size (for requests and answers) times the MPS rate for the OCDSR node. The complication is that some Diameter traffic is likely to go through both an ingress DA-MP and an egress DA-MP. The most conservative consumption is that any ingress message is equally likely to go out any of the DA-MPs. Thus, if a DSR has X DA-MPs, and Y total MPS per DA-MP, the average Diameter signaling traffic through a DA-MP is:

```
((Average Diameter message size including IP overhead) * Y) * (1+ ((2X-1)/X))
```

As an example, if the average Diameter message size is 2,000 bytes including overhead, the overall DSRMPS is 10000 MPS, and the number of DA-MPs is three, the calculation would be:

(2,000 bytes \* 8 bits/byte \*10,000 MPS) \* (1+ (2\*3 DA-MPs) -1)/(3 DA-MPs)) = (160,000 kb/s) \* (2.66) = 426,666 kb/s per DA-MP

For the MP types other than the DA-MPs simply substitute the average size of signaling types, for instance SS7 messages for the vSTP MP. Since typically SS7 messages are much smaller than Diameter messages (for instance ~200 bytes for SMS), the vSTP MP bandwidth is much smaller than the DA-MP bandwidth.

The OAM traffic on the VMs can be much more variable since it's dependent to customerspecific usage patterns such as the number of reports requested and the number of periodic activities (backups and restores). The notes for each VM type give some background on the network impacts of these customer-driven activities.

### Table C-1 VM Networking Utilization Characteristics

| VM Name                         | Networks<br>Supported | Management<br>Networks<br>(Gb/s) | Traffic<br>Networks<br>(Gb/s) | Notes                                                                                                                                                                |
|---------------------------------|-----------------------|----------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSR NOAM<br>DSR SOAM            | XMI<br>IMI            | 2 1                              | N/A                           | Activities such as backups can generate higher<br>network utilization but runs at the rate of the<br>bandwidth available since they are not real-time<br>activities. |
| DA MP<br>DA MP w/IWF<br>vSTP MP | XMI<br>IMI<br>XSI     | 0.2                              | MPS Dependent                 | See explanation above for how to calculate the signaling network traffic.                                                                                            |

| VM Name      | Networks<br>Supported | Management<br>Networks<br>(Gb/s) | Traffic<br>Networks<br>(Gb/s) | Notes                                                                                                                                                                                                                                                                                                                           |
|--------------|-----------------------|----------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IPFE         | XMI<br>IMI<br>XSI     | 0.2                              | MPS Dependent                 | The peak networking capacity supported by the IPFE is 3.2 Gb/s. Typically, the IPFE is deployed only on the ingress (towards clients such as MMEs) side of the DA-MP, so the total traffic through the IPFE is ½ the total bandwidth of the DA-MPs.                                                                             |
| SBR(s)       | XMI                   | 1.0                              | N/A                           | The given OAM bandwidth is for routine                                                                                                                                                                                                                                                                                          |
| SBR(b)       | IMI                   |                                  |                               | operations. Some recovery operations such as synchronizing the database between the active                                                                                                                                                                                                                                      |
| SBR(u)       |                       |                                  |                               | and standby servers after a prolonged<br>disconnection can consume an order of<br>magnitude or more of network bandwidth. The<br>required amount of bandwidth for these recovery<br>operations is very dependent on customer-<br>factors such as number of subscribers, the MPS<br>rate, and the amount of networking downtime. |
| SDS NOAM     | XMI<br>IMI            | 1.0                              | N/A                           | The maximum bandwidth required by the SDS<br>NOAM is determined primarily by the<br>provisioning rate from external customer<br>systems along with the size of the customer<br>records.                                                                                                                                         |
| DP SOAM      | XMI<br>IMI            | 1.0                              | N/A                           | All of the subscriber data provisioned at the SDSNOAM is passed down to each DP SOAM, which then distributes the data to any attached DPs.                                                                                                                                                                                      |
| DP           | XMI<br>IMI            | 1.0                              | N/A                           | The DP receives writes of new subscriber records from the SOAM, and database queries from the DA-MPs.                                                                                                                                                                                                                           |
| Query Server | XMI<br>IMI            | 1.0                              | N/A                           | The Query Server is synchronized to the changes in the SDS NOAM. In addition, there is some network traffic due to customer search requests, but this traffic is small compared to the synchronization traffic.                                                                                                                 |
| UDR NO       | XMI<br>IMI            | 1.0                              | N/A                           | UDR NO receives internal query from STP MP and DAMP.                                                                                                                                                                                                                                                                            |
|              | XSI                   |                                  |                               |                                                                                                                                                                                                                                                                                                                                 |

### Table C-1 (Cont.) VM Networking Utilization Characteristics

The following table shows some guidelines for mapping the logical OCDSR networks (XMI, IMI, so on) to interfaces. There is nothing fixed about these assignments in the application, so they can be assigned as desired if the customer has other requirements driving interface assignment.

## Table C-2 Typical OCDSR Network to Device Assignments

| VM Name     | OAM<br>(XMI) | Local<br>(IMI) | Signaling<br>A (XSI1) | Signaling<br>B (XSI2) | Signaling<br>C (XSI3) | Signaling<br>() | Signaling<br>D (XSI6) | Replicati<br>on (SBR<br>Rep) | DIH<br>Internal |
|-------------|--------------|----------------|-----------------------|-----------------------|-----------------------|-----------------|-----------------------|------------------------------|-----------------|
| DSR<br>NOAM | eth0         | eth1           |                       |                       |                       |                 |                       |                              |                 |

| VM Name         | OAM<br>(XMI) | Local<br>(IMI) | Signaling<br>A (XSI1) | Signaling<br>B (XSI2) | Signaling<br>C (XSI3) | Signaling<br>() | Signaling<br>D (XSI6) | Replicati<br>on (SBR<br>Rep) | DIH<br>Internal |
|-----------------|--------------|----------------|-----------------------|-----------------------|-----------------------|-----------------|-----------------------|------------------------------|-----------------|
| DSR<br>SOAM     | eth0         | eth1           |                       |                       |                       |                 |                       |                              |                 |
| DA-MP           | eth0         | eth1           | eth2                  | eth3                  | eth4                  |                 | eth17                 | eth18                        |                 |
| IPFE            | eth0         | eth1           | eth2                  | eth3                  | eth4                  |                 | eth17                 |                              |                 |
| SBRB            | eth0         | eth1           |                       |                       |                       |                 |                       | eth2                         |                 |
| SBRS            | eth0         | eth1           |                       |                       |                       |                 |                       | eth2                         |                 |
| vSTP            | eth0         | eth1           | eth2                  | eth3                  | eth4                  |                 | eth17                 |                              |                 |
| UDRNO           | eth0         | eth1           | eth2                  | eth3                  | eth4                  |                 | eth17                 |                              |                 |
| SDS<br>NOAM     | eth0         | eth1           |                       |                       |                       |                 |                       |                              |                 |
| DP              | eth0         | eth1           |                       |                       |                       |                 |                       |                              |                 |
| Query<br>Server | eth0         | eth1           |                       |                       |                       |                 |                       |                              |                 |

Table C-2 (Cont.) Typical OCDSR Network to Device Assignments

## D Summary of Benchmark Data Recommendations

The information shown in the following table is a summary of the benchmark data described throughout the document. This data is intended to provide guidance and is based solely on the observed results from the test setups described in this document. Recommendations may need to be adapted to the conditions in a given operator's cloud, such as differences in traffic patterns, feature utilization patterns, and infrastructure differences.

#### Table D-1 Benchmark Data Summary

| Benchmark Run        | Openstack/KVM                      |
|----------------------|------------------------------------|
| Application Software | DSR 9.0 (running Oracle Linux 8.x) |
| Host VM              | OpenStack Wallaby, KVM             |
| HW                   | Oracle Server X9-2                 |
| VM Profiles/Flavors  | DSR VM Configurations              |

### Table D-2 Recommended Maximum Engineering Targets

| VM Name                                                                                                                              | VM Purpose                                                                                | Recommer<br>Engineerin | nded Maximum<br>g Targets   |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|-----------------------------|
|                                                                                                                                      |                                                                                           | Unit                   | Quantity                    |
| DSR NOAM                                                                                                                             | Network Operation, Administration, Maintenance (and Provisioning)                         | VM                     | 1+1                         |
| DSR SOAM                                                                                                                             | Site (node/Network Element)<br>Operation,Administration,Maintenance (and<br>Provisioning) | VM                     | 1+1                         |
| DA MP (Relay) (Regular<br>Profile)                                                                                                   | Diameter Agent Message Processor                                                          | MPS                    | 18,000                      |
| DA MP (Relay) (Regular<br>Profile) configuration set to<br>DOC/CL1/CL2discards set to<br>0 and multi queuing enabled<br>on all hosts | Diameter Agent Message Processor                                                          | MPS                    | 36,000                      |
| DA MP (Relay) (Large<br>Profile)                                                                                                     | Diameter Agent Message Processor                                                          | MPS                    | 35,000                      |
| DA MP (RBAR)                                                                                                                         | Diameter Agent Message Processor                                                          | MPS                    | 16,000                      |
| DA MP (FABR with UDR)                                                                                                                | Diameter Agent Message Processor                                                          | MPS                    | 18,000                      |
|                                                                                                                                      |                                                                                           |                        | (70% FABR and<br>30% Relay) |
| DSA (All Stateful)                                                                                                                   | Diameter Agent Message Processor                                                          | MPS                    | 7.02K                       |
| DSA (All Stateful + All<br>Stateless)                                                                                                | Diameter Agent Message Processor                                                          | MPS                    | 5.25K                       |
| vSTP MP                                                                                                                              | Virtual STP for M3UA and M2PA message Processing                                          | MPS                    | 20,000                      |
| vSTP w/ EIR                                                                                                                          | Virtual STP Message processor with EIR application                                        | MPS                    | 10000                       |

| VM Name                         | VM Purpose                                                                                                                           | Recommended I<br>Engineering Tar                                |                                                                           |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|
|                                 |                                                                                                                                      | Unit                                                            | Quantity                                                                  |
| EIR + GTT                       | Virtual STP Message processor with EIR application and GTT                                                                           | MPS                                                             | 5000 EIR + 8000<br>GTT                                                    |
| SBR(s) (Single Server<br>Group) | Subscriber Binding Repository (session) for Policy DRA                                                                               | Diameter<br>sessions                                            | 16,000,000                                                                |
|                                 |                                                                                                                                      | MPS                                                             | 50,000                                                                    |
| SBR(s) (4 Server Groups)        | Subscriber Binding Repository (session) for Policy DRA                                                                               | Diameter<br>sessions                                            | 64,000,000                                                                |
|                                 |                                                                                                                                      | MPS                                                             | 200,000                                                                   |
| SBR(b) (Single Server<br>Group) | Subscriber Binding Repository (binding) for Policy DRA                                                                               | Diameter<br>sessions                                            | 16,000,000                                                                |
|                                 |                                                                                                                                      | MPS                                                             | 50,000                                                                    |
| SBR(b) (4 Server Groups)        | Subscriber Binding Repository (binding) for Policy DRA                                                                               | Diameter<br>sessions                                            | 64,000,000                                                                |
|                                 |                                                                                                                                      | MPS                                                             | 200,000                                                                   |
| SDS SOAM                        | Database Processor Site (node) Operation,<br>Administration, Maintenance for address resolution<br>and subscriber location functions | VM                                                              | 1+1                                                                       |
| SDS DP                          | Database Processor for address resolution and subscriber location functions                                                          | MPS requiring<br>DP lookups<br>(usually 50% of<br>FABR traffic) | 80,000                                                                    |
| SDS (NOAM)                      | Subscriber Database Processor for address resolution<br>and subscriber location functions                                            | Routing Entities<br>(SDS Large<br>Profile)                      | 780 million (260<br>million<br>subscribers<br>having 2 IMSI, 1<br>MSISDN) |
|                                 |                                                                                                                                      | Routing Entities<br>(SDS Regular<br>Profile)                    | 300 million<br>Routing Entities<br>(150 M<br>MSISDNs/150 M<br>IMSIs)      |
|                                 |                                                                                                                                      | Provisioning<br>TPS                                             | 800                                                                       |
| SDS Query Server                | Allows customers to query FABR subscriber data via a MySQL interface                                                                 | N/A                                                             | N/A                                                                       |

| Table D-2 | (Cont.) Recommended Maximum Engineering Targets |
|-----------|-------------------------------------------------|
|-----------|-------------------------------------------------|

Е

## Detailed Infrastructure Settings

| Attribute               | KVM/Oracle X9-2                                                                                                                                      |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model                   | Oracle Server X9-2                                                                                                                                   |
| Processor Type          | Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz                                                                                                         |
| vCPUs                   | 2 CPUs (32 physical cores per CPU)                                                                                                                   |
| RAM                     | 768 G                                                                                                                                                |
| CPU Cache Memory        | L1d Cache: 48K                                                                                                                                       |
|                         | L1i Cache: 32K                                                                                                                                       |
|                         | L2 Cache: 1280K                                                                                                                                      |
|                         | L3 Cache: 49152K                                                                                                                                     |
| Number and Type of NICs | Oracle Quad Port 10G Base-T Adapter                                                                                                                  |
| BIOS Power Settings     | Power Supply Maximum: Maximum power the available<br>PSUs can draw<br>Allocated Power: Power allocated for installed and hot<br>pluggable components |
|                         | Peak Permitted: Maximum power the system is permitted to consume (set to Allocated Power)                                                            |
| HDD                     | 3.8 TB of NVMe storage (with Software RAID-1 configured)                                                                                             |

## Table E-1 Detailed Infrastructure Settings



## F Small DSR VM Configuration

Many customers do not need the capacity provided by even a single pair of standard size DSR DA-MP VMs. The fixed configuration in this section is for customers who need the following configuration:

- Relay or RBAR applications
- 6k MPS or less (assuming an infrastructure equal to or better than the X5-2 processors used for the benchmark tests)
- 5K or less RBAR entries
- No IPFE

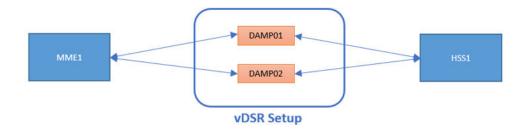

This configuration should be run with the 6k DA-MP profile.

Table F-1 Minimal System VM Configurations and Affinity Rules

| VM Name  | vCPU | RAM<br>(GB) | Disk<br>(GB) | Max<br>Config        | Redundanc<br>y Models | Affinity/Placement<br>Rules (Per Site)                                      | Notes                                                                                                                                                                    |
|----------|------|-------------|--------------|----------------------|-----------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSR NOAM | 4    | 8           | 120          | 1 Pair               | Active/<br>Standby    | 2 VMs for each DSR network in any site.                                     | Two NOAMs are always required to                                                                                                                                         |
| DSR SOAM | 4    | 8           | 120          | 1 Pair per<br>DSR NF | Active/<br>Standby    | VMs to be deployed<br>on separate servers<br>if possible.                   | support upgrades,<br>but they can be on<br>the same server if<br>only one server is<br>available.                                                                        |
| DA-MP    | 4    | 8           | 120          | 1 or 2 per<br>DSR NF | 1 or 1+1              | The 1+1<br>configuration should<br>have the DA-MPs on<br>different servers. | There is a little value<br>in having redundant<br>DA-MPs (1+1) if they<br>are on the same<br>server, since the<br>server is the thing<br>that is most likely to<br>fail. |

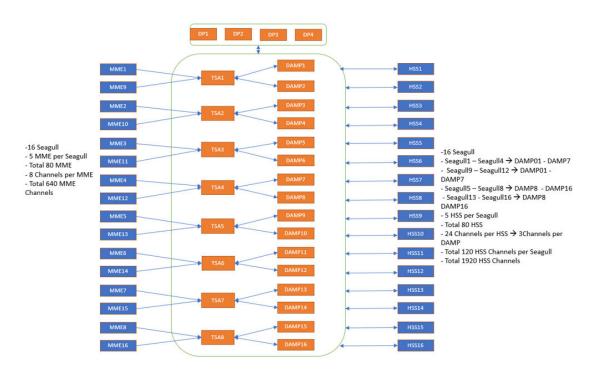
Topology

Figure F-1 vDSR Setup





| Scenario | Call Flow<br>Model | DSR MPS<br>Achieved | DA-MP<br>Flavor | DA-MP<br>Profile | Avg Msg<br>Size | CPU Peak | RAM<br>Utilizatio<br>n Peak |
|----------|--------------------|---------------------|-----------------|------------------|-----------------|----------|-----------------------------|
| Relay    | 100% Relay         | 12K (6K/MP)         | 4 vCPU          | 6K_MPS           | 2.0 K           | 25%      | 42%                         |
| RBAR     | 100% RBAR          | 12K (6K/MP)         | 4 vCPU          | 6K_MPS           | 2.0 K           | 35%      | 35%                         |


## Table F-2 Performance Benchmarking Figures (Small DSR VM Profile)



## G 24 vCPU Profile Testing on Oracle X9-2

This section provided the DSR Benchmarking figures on KVM/Oracle X9-2 server with 24 vCPU Profile.

Topology



## Figure G-1 Topology for KVM/Oracle X9-2 server with 24 vCPU Profile

Table G-1 Performance Benchmarking on Oracle X9-2

| Scenario        | Call Flow<br>Model      | DSR MPS<br>Achieved | DA-MP<br>Flavor | SDS DP<br>Flavor | DA-MP Profile    | Avg Msg<br>Size | CPU Peak | RAM<br>Utilizatio<br>n Peak |
|-----------------|-------------------------|---------------------|-----------------|------------------|------------------|-----------------|----------|-----------------------------|
| Relay           | 100% Relay              | 720K<br>(45K/MP)    | 24 vCPU         | 24 vCPU          | 40K_MPS_FAB<br>R | 2.0 K           | 42%      | 24%                         |
| FABR +<br>Relay | 70% FABR +<br>30% Relay | 664K<br>(41.5K/MP)  | 24 vCPU         | 24 vCPU          | 40K_MPS_FAB<br>R | 2.0 K           | 36%      | 23%                         |

