

Oracle Banking Extensibility Workbench

User Manual

Release 14.7.5.0.0

October 2024

Oracle Banking Extensibility Workbench
User Manual
October 2024
Version 14.7.5.0.0

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India

Worldwide Inquiries:
Phone: +91 22 6718 3000 Fax: +91 22 6718 3001 https://www.oracle.com/industries/financial-services/index.html

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective

owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs

installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer

software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,

use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated

software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license

restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not

developed or intended for use in any inherently dangerous applications, including applications that may create a risk of

personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all

appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates

disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and

disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed

by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish

or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless

required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any

errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from

third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with

respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss,

costs, or damages incurred due to your access to or use of third-party content, products, or services.

https://www.oracle.com/industries/financial-services/index.html
https://www.oracle.com/industries/financial-services/index.html
https://www.oracle.com/industries/financial-services/index.html
https://www.oracle.com/industries/financial-services/index.html
https://www.oracle.com/industries/financial-services/index.html
https://www.oracle.com/industries/financial-services/index.html
https://www.oracle.com/industries/financial-services/index.html

Contents
1 Preface ... 6

1.1 Introduction ... 6

1.2 Audience ... 6

1.3 Document Accessibility ... 6

1.4 Related Documents .. 6

2 Welcome to Oracle Banking Extensibility Workbench .. 6

2.1 Introduction ... 6

2.2 OBX and Base artifacts compatibility ... 7

2.3 Setting up OBX for first time use .. 8

2.4 OBX Maintenance ... 9

2.5 OBX UI .. 10

2.5.1 Entity Details ... 11

2.5.2 Field Details .. 11

2.5.3 Child Entity Details .. 13

2.5.4 Relationship Details .. 13

3 Service Extensions ... 15

3.1 Simple Sub Domain Service ... 16

3.2 Maintenance sub domain service ... 19

3.3 Data/Resource Segment sub domain service .. 21

3.3.1 RSOV1 .. 21

3.3.2 RSOV2 DS .. 23

3.3.3 Workflow DS ... 24

3.4 Simple Publisher/Subscriber Event Service ... 27

3.5 Batch Service .. 29

3.6 Custom Validation Service.. 31

3.7 Steps to adopt Multi Entity in existing service .. 32

3.8 Service Extensibility .. 34

4 UI Extensions – Web Component .. 37

4.1 Component Server .. 39

4.2 Simple Standalone .. 40

4.3 Virtual Page .. 43

4.4 Maintenance Detail and Summary ... 46

4.5 Data Segment ... 48

4.6 Dashboard Widget .. 50

4.7 Running Component after Generation .. 53

4.8 Creating final Extended Component war for Deployment .. 54

4.9 Creating final Extended Component war for Deployment. ... 55

4.10 Understanding DB Scripts for Web Components ... 57

5 Modification of Base Web Component .. 58

5.1 Steps for Modification of Base Component .. 58

5.2 Process Workbench .. 59

5.3 OBX Update Command .. 65

5.3.1 Service Update ... 65

5.3.2 UI Update .. 66

5.4 In-Scope DS ... 67

5.5 OBX Release Command .. 67

6 Extending Product Data Segments with Additional Fields 68

6.1 Additional Fields Maintenance .. 68

6.2 Populating Data in Corresponding Fields From UI ... 75

6.3 Fetching the Saved Values ... 77

7 Action URL and Static Tag Maintenance .. 79

7.1 Action URL Maintenance .. 79

7.2 Static Tag Maintenance .. 79

8 Extensibility Use Cases for OBBRN Servicing ... 79

8.1 New Transaction Screen – 1499 (Exact Clone of 1401) .. 79

8.2 Exact Clone with Additional Fields Using Common Code .. 81

8.3 Exact Clone with Additional Fields Using Extensible Code .. 86

8.4 Jar Deployment in Weblogic: .. 87

9 Extensibility Use Cases for OBX ... 91

9.1 New Transaction screen – 1499 (Clone of 1401) ... 91

9.2 New Data Segment in Existing 1401 Screen.. 93

9.3 HTML Changes ... 94

9.4 JS Changes .. 95

9.5 JSON Changes ... 97

9.6 Model Changes ... 98

9.7 Database Changes ... 98

9.8 Service Component .. 98

9.9 New Field in Existing Base Data Segment ... 101

9.10 HTML Changes (Extended Components) .. 103

9.11 HTML Changes (Base Component) ... 103

9.12 JS Changes (Base Component) ... 104

9.13 JS Changes (Extended Component) .. 104

9.14 JSON Changes (Extended Component) .. 105

9.15 JSON Changes (Base Component) ... 105

9.16 DB Changes ... 106

9.17 Add New Columns in Base Component Table ... 107

9.18 Steps for adding extra column in task grid ... 109

9.19 Steps to use Additional Buttons provision in Task Screen ... 109

9.20 Steps to create common-extended folder for extending configJSON.js file 110

9.21 Customizing Existing LOV Fetch Result ... 111

9.22 Steps for adding Pre/post methods in extended components .. 111

9.23 ENDPOINT Overrides ... 112

9.24 Steps to create util-extended folder .. 113

9.25 Dynamic Data Configuration (DDC) ... 114

9.26 Task Screen Custom Config ... 117

10 Reference and Feedback .. 121

10.1 Reference ... 121

10.2 Documentation Accessibility ... 121

10.3 Feedback and Support ... 121

1 Preface

1.1 Introduction

This user guide would help you to understand the functioning of the Oracle Banking Extensibility Workbench – OBX

and the types of extensions it provides. It provides the steps required to be followed for implementing the

extensibility to the Base product. It is assumed that all the prior setup is already done related with Base product/

Kernel. In this document it is also assumed that installation will be done on Windows 10 operating system with

minimum 8GB Ram and available/free space of 5GB.

1.2 Audience

This document is intended for the teams and developers who are responsible for creating extensions like services

and web components for products which are developed using Oracle Banking Microservices Architecture.

1.3 Document Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.4 Related Documents

For more information, refer to the following documents:

• Oracle Banking Extensibility Workbench Installation Guide

• Oracle Banking Extensibility Workbench Release Notes

2 Welcome to Oracle Banking Extensibility Workbench

Welcome to the Oracle Banking Extensibility Workbench (OBX) user manual. It provides the complete solution to

create extensions for products based and developed on Oracle Banking Microservices architecture (OBMA). It helps in

generating the services and UI web components artifacts. This guide is designed to help you create all these types of

service and UI artifacts. It also has complete life cycle management incorporated for all the extensions generated from

tool.

2.1 Introduction

Oracle Banking Extensibility Workbench (OBX) is a combination of GUI and command line tool, intended to create

different type of extensions for Oracle Banking Micro services Architecture.

OBX support generation of following types of Extensions :

• Service Extensions

 Simple sub domain service

 Maintenance sub domain service

 Data/Resource Segment sub domain service

 Simple Publisher/Subscriber Event Service

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

 Custom Validation Service

• UI Extensions – Web Component

 Simple Standalone

 Virtual Page

 Maintenance Detail and Summary

 Data Segment

 Dashboard Widget

• Modification of Base Web Component

 Additions of Fields on Existing component

 Hiding fields from screen

 Defaulting values on screen  Disable field

 Making Non-mandatory field

2.2 OBX and Base artifacts compatibility

OJET version compatibility:

Ensure that the OJET version of app shell used by the implementation team, aligns with the OJET version present

in the OBX tool.

Note: As part of OJET upgrade some older libraries may not be supported. If consulting / implementation team is

using any of the unsupported libraries for their customizations, compatibility issues may arise if the app-shell

version they are using doesn't include those OJET libraries.

All the UI customizations / extensions are bundled into extended-components war which ultimately refer to the

app-shell OJET libraries only.

Please find the compatibility matrix of app-shell OJET versions and OBX OJET versions below.

OBX version OJET version

14.7.0.0.0 Appshell version xxxx (has 13.0.0 OJET

version)

14.7.5.0.0 Appshell version 9.5.0 (has 15.1.8 OJET

version)

2.3 Setting up OBX for first time use

It is assumed that before setting up OBX for generating the first artifact, all the installation process is completed till

extension_home folder creation and you can see the help menu like below:

Once that is done, we will proceed to next step which is setting up libraries and components from base product.

Please follow the below process to setup libraries and components:

• Create a folder component-server inside extension_home directory.

• Use 7zip or other similar tool to extract app-shell-9.5.0.war from base product to copy the common

& js folders and put it inside the component-server folder.

• Navigate inside the js folder and copy the components folders and place it in the component-

server folder.

• Create a folder lib inside extension_home directory.

• Again, using 7zip or other similar tool open any service war like cmc-datasegment-services-

9.5.0.war, navigate inside WEB-INF\lib folder and copy all the jars and put it inside the lib folder of

extension_home.

• Create a folder runtime inside extension_home directory.

• From the gradle folder which comes inside the obx.zip, navigate inside the lib folder and copy

extra_jars folder which consist of compile time dependencies for services, and paste it inside

runtime folder extension_home.

• After all the above process extension_home folder looks like below:

• Once all the above process is done, we can now generate the artifacts.

2.4 OBX Maintenance

Before generating the artifact, please verify the below items from the base installation.

• In the plato-ui-config schema, verify if the table ‘PRODUCT_EXTENDED_LEDGER’ is present or

not. If not available, please execute the below script:

--

-- DDL for Table PRODUCT_EXTENDED_LEDGER

--

CREATE TABLE "PRODUCT_EXTENDED_LEDGER" ("ID" VARCHAR2(20), "CCA_NAME"

VARCHAR2(100), "CCA_TYPE" VARCHAR2(20), "PARENT_CCA_NAME" VARCHAR2(100),

"PRODUCT_NAME" VARCHAR2(100))

--

-- Constraints for Table PRODUCT_EXTENDED_LEDGER

--

ALTER TABLE "PRODUCT_EXTENDED_LEDGER" ADD CONSTRAINT

"PRODUCT_EXTENDED_LEDGER_PK" PRIMARY KEY ("ID")

ALTER TABLE "PRODUCT_EXTENDED_LEDGER" MODIFY ("CCA_NAME" NOT NULL

ENABLE)

ALTER TABLE "PRODUCT_EXTENDED_LEDGER" MODIFY ("ID" NOT NULL ENABLE)

ALTER TABLE "PRODUCT_EXTENDED_LEDGER" ADD CONSTRAINT

"UNIQUES_CCA_NAME" UNIQUE ("CCA_NAME")

• Please maintain the product name ‘OBX’ in the table ‘SMS_TM_APPLICATION’ inside SMS schema.

• Please grant user ‘OBX’ application access through ‘SMS_TM_USER_APPLICATION’ or preferred use the

UI.

2.5 OBX UI
After setting up the OBX, we can now proceed to generate the XDL (OBX Domain Language) file which will be used

by the OBX engine to further generate the service and UI artifacts. To start OBX UI we need to navigate to

extension_home folder from console emulator (cmder) and use the command obx xdl-gen.

This command will automatically open a new tab in cmder with OBX UI running at local port 8080

(https://localhost:8080)

Note: If you have any running on port number 8080, you may need to stop that to make obx ui up and running.

https://localhost:8080/
https://localhost:8080/
https://localhost:8080/
https://localhost:8080/
https://localhost:8080/
https://localhost:8080/
https://localhost:8080/
https://localhost:8080/
https://localhost:8080/

Please open browser once OBX UI is up and running and navigate to http://localhost:8080.

• Entity Details

• Field Details

• Child Entity Details

• Relationship Details

2.5.1 Entity Details

In this section you will capture the entity name. As the Domain Entity pattern "an object is primarily

defined by its identity is called an Entity."

2.5.2 Field Details

For the main entity you need to define the fields in this section. For doing that click on the Add button and provide

the field details.

http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/
http://localhost:8080/

Following are the different types of field types supported in OBX:

String This is inbuild field type of OBX, it gets translated to varchar

for sql scripts, string type in java files and normal text field in

UI component

Integer This is inbuild field type of OBX, it gets translated to number

for sql scripts, integer type in java files and normal text field in

UI component

Float This is inbuild field type of OBX, it gets translated to number

for sql scripts, float type in java files and normal text field in

UI component

LOV This field type is inherited from the base product and has its

own configuration as below

Here, ID is the specific id given to this LOV component, Title is displayed on the LOV dialog box and

Endpoint is the service endpoint which this field connects to for fetching values.

• Date: This field is also inherited from the base product and add date component on the

screen.

• Amount: This field is also inherited from the base product and add the amount field on the

screen. This field also captures currency along with the amount.

• Combo box: This field is taken from Ojet Cookbook and OBX UI provides configurations to

needed for this component like value and label.

• Checkbox: This field type is also taken from Ojet Cookbook and OBX UI provides

configurations to needed for this component like value and label.

• Toggle Button: This field type is taken from Ojet Cookbook.

• Text Area: This field type is taken from Ojet Cookbook.

2.5.3 Child Entity Details

Use this block for adding the child entities. Once clicked on the Add Child Entity Button, it will open a dialog box

where we can enter the child entity name. Once clicked ok it will add a child block below with its details:

Please add the child entity field details in a similar way like we added for main entity.

2.5.4 Relationship Details

Once all the entity details are added we can define relationship among them. Use this block to define the

relationship. Currently OBX supports two types of relationships:

 • One to Many

Once all of the above Entity, Field Details & Relationship is created click on the Save XDL button and it will

save the xdl file on machine.

Note: Its recommended to put the xdl file under the same extension_home folder and give it proper name

(generally main entity name).

The final XDL file looks like below:

Once XDL file is generated you may come back to cmder main tab where it is waiting for the input. You

may proceed creating next set of artifacts which are described in next sections.

3 Service Extensions

Using OBX we can create multiple types of service extensions. This services extension has complete infrastructure

needed to build to service. Also, the source folder generated out the box from OBX follows the package structure

which is adopted and used by base/kernel teams to keep it in sync.

Note: There are 2 ways to generate the service artifact:

• Select the category immediately after generating the XDL file and proceed.

• Use the service specific command to generate different types.

Both above ways will generate the same artifacts.

3.1 Simple Sub Domain Service

This is one of the primary use cases in OBX, to generate the simple sub-domain service. To generate it please

follow the below steps:

• Navigate to same extension_home folder using cmder.

• Use the command obx service new -c.

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement.

• Once all the questions are answered and path of XDL is given, it will generate a folder inside

the extension_home folder.

• Please select the option based on your requirement for question Do you want to create UI

component for this service? (Y/n).

• For building the service please go into the service folder from cmder and run the command

gradle clean build.

• This will build the service and we can find the war of the service getting created inside the

build/lib’s directory.

• Use this service and deploy it in your environment.

• Notes: DB scripts for the service will be generated inside the folder

\extension_home\obxcustomerservice\src\main\resources\d

• Please Compile the Entity script in the entity schema created for extensions only.

• Service created as part of extension should be deployed in separate domain and should not be

mixed or co-deployed with any other product specific services.

• Before compiling CONFIG_SCRIPT.sql in verify the entries manually and change it according to your

setup.

• Also, please verify PLATO_TABLE_SCRIPT.sql before executing it in the schema it may contain

some dummy values.

3.2 Maintenance sub domain service

This section describes the process to generate the maintenance type of service. Maintenance service generally has

concept of main and worktable. This allows enables functionality where all the Authorized records goes to main

table and all the unauthorized records goes to worktable. Also, with this type of service we attach audit details to

payload. To generate it please follow the below steps:

• Navigate to same extension_home folder using cmder.

• Use the command obx service mn -c.

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement.

• Once all the questions are answered and path of XDL is given, it will generate a folder inside

the extension_home folder.

• Please select the option based on your requirement for question: Do you want to create a

Maintenance and Summary Components for this service? (Y/n)

• For building the service, please go into the service folder from cmder and run the command

gradle clean build.

• This will build the service and we can find the war of the service getting created inside the

build/libs directory.

• Use this service and deploy it in your environment.

Notes:

• DB scripts for the service will be generated inside the folder:

\extension_home\obxcustomerservice\src\main\resources\db

• Please Compile the Entity script in the entity schema created for extensions only.

• Service created as part of extension should be deployed in separate domain and should not

be mixed or co-deployed with any other product specific services.

• Here SMS (Security Management System) scripts are also generated.

\extension_home\obxcustomer-service\src\main\resources\db\sms

• Execute the SMS script in sms schema, here we only generate the functional activity of service. Assigning

to proper role should be done according to the steps mentioned in base application.

3.3 Data/Resource Segment sub domain service

3.3.1 RSOV1

This section describes the process to generate the data/resource segment type of maintenance service. Here

we can generate Master Type of data segment or child type of data segment.

Master Type: This case is used when user wants to generate the complete flow from scratch. It will generate the

new screen class code for the data segments.

Child Type: This is primarily used when user wants to attach a single data-segment in the existing flow/process.

Generally, this existing flow/process is available in the base product. We use the same screen class code from

base and attach our data segment to it. To generate it please follow the below steps:

• Navigate to same extension_home folder using cmder.

• Use the command obx service ds -c

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement.

• Select the type of component according to your requirement.

 •
 Once all the questions are answered and path of XDL is given, it will generate a folder inside the

extension_home folder.

• Please select the option based on your requirement for question: Do you want to create a

Data Segment for this service?(Y/n).

• For building the service please go into the service folder from cmder and run the command:

gradle clean build.

• This will build the service and we can find the war of the service getting created inside the

build/libs directory.

• Use this service and deploy it in your environment.

Notes:

• DB scripts for the service will be generated inside the folder:

\extension_home\obxcustomerservice\src\main\resources\db.

• Please Compile the Entity script in the entity schema created for extensions only.

• Service created as part of extension should be deployed in separate domain and should not

be mixed or co-deployed with any other product specific services.

• Here SMS (Security Management System) scripts are also generated:

\extension_home\obxcustomer-service\src\main\resources\db\sms

• Execute the SMS script in sms schema, here we only generate the functional activity of service.

Assigning to proper role should be done according to the steps mentioned in base application.

• Here along with SMS and Entity, CMC scripts are also generated under folder:

\extension_home\obx-customer-service\src\main\resources\db\cmc

• Please execute them in the CMC schema.

• Screen Class and Data Segment has to be maintained from the UI which is present under

common core.

3.3.2 RSOV2 DS

For Nov patchset innvation - RSOv1 is disscontinued and RSOv2 should be adopted for all customizations

for maintenance services.

This section describes the process to generate the rsov2 data segment.

Here we can generate Master Type of data segment or child type of data segment.

Master Type: This will create two components one would be core component of product services which

will contain utility service, the other one would be the master type of component that needs to be included

in the core services folder.

Child Type: This will create only one component that needs to be included in the core services (containing utility).

1. Navigate to same extension_home folder using cmder.

2. Use the command obx service rsov2 -c.

3. Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement.

4. Select the type of component according to your requirement.

5. Once all the questions are answered and path of XDL is given, it will generate the folders

accordingly inside the extension_home.

6. Please select the option based on your requirement for question: Do you want to create a

Data Segment for this service?(Y/N)

7. Include the folders created either master or child inside the (core-services), folder and make

the modifications accordingly.

8. Use this service and deploy it in your environment.

3.3.3 Workflow DS

This section describes the process to generate the workflow data segment. Here we can generate Master Type

of data segment or child type of data segment.

Master Type: This case is used when user wants to generate the complete flow from scratch. It will generate

the new screen class code for the data segments.

Child Type: This is primarily used when user wants to attach a single data-segment in the existing flow/process.

Generally, this existing flow/process is available in the base product. We use the same screen class code from

base and attach our data segment to it To generate it please follow the below steps:

 • Navigate to same extension_home folder using cmder.

• Use the command obx service wfds -c

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement.

• Select the type of component according to your requirement.

• Once all the questions are answered and path of XDL is given, it will generate a folder inside

the extension_home folder.

• Please select the option based on your requirement for question: Do you want to create a

Data Segment for this service? (Y/n).

• For building the service please go into the service folder from cmder and run the command

gradle clean build.

• This will build the service and we can find the war of the service getting created inside the

build/libs directory.

• Use this service and deploy it in your environment.

Notes:

• DB scripts for the service will be generated inside the folder.

\extension_home\obxcustomerservice\src\main\resources\db

• Please Compile the Entity script in the entity schema created for extensions only.

• Service created as part of extension should be deployed in separate domain and should not

be mixed or co-deployed with any other product specific services.

• Here SMS (Security Management System) scripts are also generated.

\extension_home\obxcustomer-service\src\main\resources\db\sms

• Execute the SMS script in sms schema, here we only generate the functional activity of service.

Assigning to proper role should be done according to the steps mentioned in base application.

• Here along with SMS and Entity, CMC scripts are also generated under folder.
\extension_home\obx-customer-service\src\main\resources\db\cmc

• Please execute them in the CMC schema.

• Screen Class and Data Segment has to be maintained from the UI which is present under

common core.

3.4 Simple Publisher/Subscriber Event Service

This section describes the process to generate simple publisher/subscriber event service. To generate it please

follow the below steps:

• Navigate to same extension_home folder using cmder.

• Use the command obx event -c

• Once this command is fired, this will take you to next section where it will prompt other set of

questions. Answer them accordingly to your setup and requirement.

• Once all the questions are answered and path of XDL is given, it will generate a folder inside

the extension_home folder.

• For building the service please go into the service folder from cmder and run the command

gradle clean build.

• This will build the service and we can find the war of the service getting created inside the

build/libs directory.

• Use this service and deploy it in your environment.

3.5 Batch Service

This section describes the process to generate OBMA based Batch service. The purpose of this service is to create

reader, writer and processor in which methods will be written according to business use case. To generate it please

follow the below steps:

• Navigate to same extension_home folder using cmder.

• Use the command obx batch -c

• Inputs to be given after the command.

• Select the product family.

• Enter name of the service(I'll construct it as <productFamilyName>-

batch<serviceName>extended-services):

• Enter product release version.

• Upon successful creation of batch service, user will find a folder generated with

<productFamilyName>-batch-<serviceName>-extended-services having the sample service code

generated.

• The generated code has two types of batch job template inside.o Simple job creation using

spring batch features. The method name for this type of job creation is jobName(). The

reader, writer, processor etc are taken from spring’s itemReader, itemWriter, itemProcessor.

• Plato batch type job creation by keeping plato batch into consideration. The method name for

this type of job creation is batchProcessJob(). In this case reader is specified as EReader,

writer as TWriter and processor as ETProcessor. E means the entity to be read for this job; T

means the transformed object to be persisted in the database. Hence the names are given in

that manner.

• For plato batch type job, user needs to write his/her entity classes in which the business logic

will be kept. For example, this is the structure of the entity class highlighted in the left.

• One needs to write methods for reader, writer, and processor accordingly.

• To build the service o Navigate to the service.

o Fire the command gradle clean build.

o This will create the war file of the service in the folder structure build/libs/

productFamilyName>-batch-<serviceName>-extended-services.war.

3.6 Custom Validation Service

This section describes the process to generate validation service. The purpose of this service is to perform custom

validations on the base service. It is important to remember that we will be only able to perform the validation and

never modify the payload to change the value. To generate it please follow the below steps:

• Navigate to same extension_home folder using cmder.

• Use the command obx validation -c.

• It will generate a folder inside the extension_home folder with obx-validation-service.

• For building the service, please go into the service folder from cmder and run the command

gradle clean build

• This will build the service and we can find the war of the service getting created inside the

build/libs directory.

• Use this service and deploy it in your environment.

3.7 Steps to adopt Multi Entity in existing service

Plato Micro Service Dependencies Changes

compile("release.obma.plato.21_0_0.services:plato-microservice-dependencies:6.0.0")

Eventhub dependency changes

compile("release.obma.plato.21_0_0.services:plato-eventhub-dependencies:6.0.0")

PlatoInterceptor Changes

@Bean public MappedInterceptor gemInterceptor(PlatoInterceptor

platoInterceptor) {

LOG.info("Added interceptor for fetching the application headers"); return new

MappedInterceptor(new String[] { "/**" }, platoInterceptor); }

Logging (Please include only ,%X{entityId}, change. Rest of them remain as per the old logback.xml)

Please include only %X{entityId} in the existing value of the LOG_PATTERN of your logbac

k.xml

One sample format is below,

<property name="LOG_PATTERN" value="%clr(%d{yyyy-MM- dd

HH:mm:ss.SSS}){faint} %clr(%5p [${applicationName},%X{entityId},%X{X-B3-

TraceId:},%X{X-B3-SpanId:-},%X{X-Span-Export:-}]) %clr([%mdc{env:-null}] [%mdc{tenant:- null}]

[%mdc{user:-null}] [%mdc{branch:-null}]){faint} %clr(${PID:- }){magenta} %clr(--

-){faint} %clr([%15.15t]){faint} %clr(%-

40.40logger{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}" />

Feed Services

Folder structure should be */parentFolder/<<entityId>>/{fileName}

compile("release.obma.plato.21_0_0.services:plato-feed-core:6.0.0")

Caching Strategy

@Cacheable(value = "customers", key = "{ <<funtionalKeys>> T(oracle.fsgbu.plato.core.per

sistence.provider.PlatoHolder).getCurrentEntityId() }")

Introduce appId in application.yml of individual micro services

If the service is a eventhub based service they should use

spring:

 application:

appID:

If the service is a non-eventhub based service they can use either

spring:

 application:

 appID:

or

appId: <<appId>>

3.8 Service Extensibility

Structure of Service Extensions can be seen in below table.

Component Name Component Description

<< micro - service - name

>>extn.jar

Extension jar

<< micro - service - name

>>.war

WAR File which refers to << micro - service - name >>-extn.jar during

runtime.

Step # 1)

Add all the required classes from << micro - service - name >>.war to the classpath of<< micro - service - name

>>-extn.jar project and then build it.

For creation of war, we can use the command “obx create-jar”

• Go to extension home.

• Run the command obx create-jar.

• It will prompt you with the location of the extended war file. (After giving the location give

enter two times).

• On providing the war file, it will create a jar for the same in the same location.

Step # 2)

The build.gradle of the extension project should include the statement

compileOnly files("classes")

Step # 3)

For shared libraries we follow the optional packages approach. The following entries are expected in the

MANIFEST.MF of respective war file.

Extension-List: << micro - service - name >>-extn,

<< micro - service - name >>-extn-Extension-Name: << micro - service - name >>-extn

For this, we need to modify the build.gradle of war files to include the below statements.

war {

 ...

 manifest {

attributes(

 "Extension-List": "<< micro - service - name >>-extn",

 "<< micro - service - name >>-extn-Extension-Name": "<< micro - service - name >>-extn"

)

 }

...

}

Step # 4)

In the extension jar create a new service class that extends the original service class and annotate the class with

"@Primary" annotation to give the service class in the extension jar higher precedence.

CustomerServiceImplExt

@Primary@Service

public class CustomerServiceImplExt extends CustomerServiceImpl

implements CustomerService {.....}

If the extension jar is provided the methods in the extension jar will be invoked or else the methods in the orginal war

will be invoked.

Step # 5)

Weblogic deployment

Deploy the extension jar first in the weblogic then in the same server deploy the war.

Tomcat deployment

Modification in server.xml

<Context ...>

 <Resources>

 <PreResources className="org.apache.catalina.webresources.DirResourceSet" base="<<directory

containing the extension jars" webAppMount="/WEB-INF/lib"/>

 </Resources>

</Context>

Step # 6)

The class names inside the << micro - service - name >>-extn.jar, should have the naming convention as below,

<<basePackageNameOf<< micro - service - name >>.war>>.<<service/controller/model>>

 l

4 UI Extensions – Web Component

This section describes the OBX capability to generate to different types of web components. Each Web

component can run itself locally. There are various types of these web components each serving different

functionality.

Standalone Component: A standalone component can be thought of as a smallest reusable.

UI component. They are generally the building blocks of main screens. Components like amount, text fields, lov

etc. are part of standalone components.

Virtual Page: A virtual page can be thought of as a screen or a web page in single page applications. They are

loaded inside the content area next to the left navigation menu. Important point to remember when designing

virtual page is, it appends and changes the router (app URL) when navigation is done.

Container Component: These Components are a special type of components which are loaded inside a

container called as Wizard. It gives functionality like minimizing the component and open multiple screens

simultaneously on the screen. Important point to remove here is that these components never change to router

state, so bookmarking is not possible for these screens.

Data/Resource Segment: A component designed using data segment approach are similar to that of virtual

page but are always part of flow or process and loaded like container components. It is helpful in use cases

where data to be captured is huge or is captured in various stages of applications.

In above screenshot Customer and Income Details on left are two data segments which is part of Customer DS

Details Application.

Widgets: Widgets are special components meant for dashboard. These are generally created in the form of

tiles and are attached to the dashboard.

 l

Note:

• All the above components except standalone components have SMS applied on it.

• We have to assign functional activity of web components to the role and then only

they are integrated with the main application shell.

• Also, it always recommended to try and run the component locally before merging

them into main application.

• All web components come bundled with testing framework including unit test cases

and functional test. Therefore, it’s a good practice to write them along with the

development.

4.1 Component Server

It is one of highlight feature from OBX. A component server is hub of components which are available from

the base/kernel application. As each component is developed individually and reusable, we can use this

functionality to reuse even the components from base application. It saves time as we don’t have to code

same thing again and again. We can reuse as many components as possible from base application into

extensions.

Component server is started automatically when you generate the web component. It runs on

http://localhost:8002. One can simply go to browser and copy components and put them in a metadata.js file

which is created inside the component and by doing so it indicated OBX that we have to reuse the

component and it generates the code automatically.

http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/

4.2 Simple Standalone

This section describes the process of creating the simple standalone component using OBX.

Following are the steps needed to be followed:

• Navigate to extension_home folder from cmder.

• Use the command: obx ui ––sd .

• Once this command is executed, this will take you to next section where it will prompt

other set of questions. Answer them accordingly to your setup and requirement.

 l

• It will automatically generate the libraries for the component to run locally and you will

be also able to see new cmder tab opened where component server is running.

• At this point of time go to browser and navigate to http://localhost:8002. You will be

able to see component server home page like:

http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/

• Select the component which you want to reuse in your extension and paste it in

module.exports = [] inside the metadata.js file

• Once done come back to main tab in cmder where is waiting with question, Please

modify the Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder now

and open a new tab on cmder where component will be running.

Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen.

 l

4.3 Virtual Page

This section describes the process of creating the virtual page component using OBX.

Following are the steps needed to be followed:

• Navigate to extension_home folder from cmder

• Use the command obx ui --vp

• Once this command is executed, this will take you to next section where it will prompt

other set of questions. Answer them accordingly to your setup and requirement.

• It will automatically generate the libraries for the component to run locally and you will

be also able to see new cmder tab opened where component server is running.

• At this point of time go to browser and navigate to http://localhost:8002. You will be

able to component server home page like:

http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/

 l

• Select the component which you want to reuse in your extension and paste it in

module.exports = []; inside the metadata.js file

• Once done come back to main tab in cmder where is waiting with question: Please

modify the Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder now

and open a new tab on cmder where component will be running.

• Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen.

4.4 Maintenance Detail and Summary

This section describes the process of creating the Maintenance Detail and Summary component using OBX.

Here we must remember that we will be generating two web components one will be detail component and

another one for summary component. Following are the steps needed to be followed:

• Navigate to extension_home folder from cmder

• Use the command obx ui –mnsm

• Once this command is executed, this will take you to next section where it will prompt

other set of questions. Answer them accordingly to your setup and requirement.

 l

• It will automatically generate the libraries for the components.

• At this point of time go to browser and navigate to http://localhost:8002. You will be

able to component server home page like:

http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/

• Select the component which you want to reuse in your extension and paste it in

module.exports = []; inside the metadata.js file

• Once done come back to main tab in cmder where is waiting with question Please

modify the Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder for

maintenance details screen and same process will be followed for summary screen as

well.

• For this case we will be not able to see the component running locally as we must 2

components generated.

• To start the component, one needs to go inside the component are run it manually.

4.5 Data Segment

This section describes the process of creating the virtual page component using OBX.

Following are the steps needed to be followed:

• Navigate to extension_home folder from cmder.

• Use the command obx ui –ds.

• Once this command is executed, this will take you to next section where it will prompt

other set of questions. Answer them accordingly to your setup and requirement.

 l

• It will automatically generate the libraries for the component to run locally and you will

be also able to see new cmder tab opened where component server is running.

• At this point of time go to browser and navigate to http://localhost:8002. You will be

able to component server home page like:

• Select the component which you want to reuse in your extension and paste it in

module.exports = []; inside the metadata.js file.

http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/

• Once done come back to main tab in cmder where is waiting with question Please

modify the Metadata.js file before proceeding. Once done press 'y' to proceed?

• On completing the above process, it will automatically generate the source folder now

and open a new tab on cmder where component will be running.

• Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen.

4.6 Dashboard Widget

This section describes the process of creating the simple standalone component using OBX.

Following are the steps needed to be followed:

• Navigate to extension_home folder from cmder

• Use the command obx ui --wd

 l

• Once this command is executed, this will take you to next section where it will prompt

other set of questions. Answer them accordingly to your setup and requirement.

• It will automatically generate the libraries for the component to run locally and you will

be also able to see new cmder tab opened where component server is running.

• At this point of time go to browser and navigate to http://localhost:8002. You will be

able to see component server home page like:

• Select the component which you want to reuse in your extension and paste it in

module.exports = []; inside the metadata.js file.

http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/
http://localhost:8002/

• Once done come back to main tab in cmder where is waiting with question Please

modify the Metadata.js file before proceeding. Once done press 'y' to proceed?.

• On completing the above process, it will automatically generate the source folder now

and open a new tab on cmder where component will be running.

• Along with cmder tab it will automatically open a tab on default browser as well with

component rendered on the screen.

 l

4.7 Running Component after Generation

This section describes the steps you need to follow to re-run the component created or generated earlier.

Please follow the below steps to do the same:

• Make sure you always have the component server rightly created.

• Open two tabs in the cmder tool and navigate to component folder in both the tabs for

example \extension_home\obx-vp-customer.

• From the first tab run the command node startCS.js

• This will make the component server up and running again. This is important as

component server not only serves base component but also some other important

files which is needed for the component to run locally.

• After this from another cmder tab run the command npm start

• This will make the component running again on http://localhost:8001/ and also open

the default browser.

4.8 Creating final Extended Component war for Deployment

This is the final stage for generating extended-component war for all the Web components inside the

extension_home folder. Important point to note here that before any component gets bundled to extended-

component.war, it needs to pass all the test cases. Please perform the following steps to generate the war:

• Go inside the individual component and run the command sh

buildExtendedComponent.sh. This command will start performing and running unit

test cases on the component.

• Once the test cases are executed successfully it will create a folder inside the

extension_home folder named extended components.

• Now we have to navigate back to extension_home folder and run the command obx

build-cca.

http://localhost:8001/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/
http://localhost:8001/

 l

• This extended-component.war should be deployed in the same domain where

application shell is deployed.

4.9 Creating final Extended Component war for Deployment.

This is the final stage for generating extended-component war for all the Web components inside the

extension_home folder. Important point to note here that before any component gets bundled to extended-

component.war, it needs to pass all the test cases. Please perform the following steps to generate the war:

• Go inside the individual component and run the command sh

buildExtendedComponent.sh

• This command will start performing and running unit test cases on the component.

• Once the test cases are executed successfully it will create a folder inside the

extension_home folder named extended-components.

• Now we have to navigate back to extension_home folder and run the command obx

build-cca.

• This extended-component.war should be deployed in the same domain where

application shell is deployed.

 l

4.10 Understanding DB Scripts for Web Components

This section describes the significance of DB folder generate inside the web component folder. This is

important as without executing these scripts extension web components will not be loaded inside application

shell and even these components menu will be not listed in left navigation menu.

DB folder inside the web component consists of two folders sms and ui-config:

• SMS: The sms scripts consists of all the service activity, functional activity generated

all out of the box from OBX.

• UI Config: This script should be compiled in ui-config schema. It maintains the ledger

of all the extended components. App-shell uses this configuration to identify which

components should be referred from extended-component war.

5 Modification of Base Web Component

This feature of OBX enables users to create extensions which helps to modify the behaviour of existing

component. It serves the one of the most common use cases from extensibility perspective. There are few

important points which should be remembered before modifying the behaviour of existing components.

Important Points:

• Addition of fields can be done on various locations of base screen, but this breaks the

CSS if not handled properly (Responsive Behaviour). In such cases it is always

recommended to put additional fields at the bottom of other fields

• Wherever possible, use Data-segments to add additional field.

• In use case where you want to hide the fields from existing screen, always check

whether the field is mandatory or not. If it is mandatory, then it should set before

making it hidden on the screen. If not done so service calls make break

• Above point is also valid in case where you want to disable a field on the screen

Following are the uses cases which can be achieved using modification of existing component

• Addition of Fields

• Hiding fields from screen

• Defaulting values on screen

• Disable field.

• Making Non-mandatory field Mandatory

5.1 Steps for Modification of Base Component

This section describes the steps to follow in case of adding fields on the existing screen. It is assumed that

before using this command a developer knows the name of the base component in which he will be adding

the additional fields. Following are the steps needed to be followed:

• Navigate to the extension_home folder from the cmder.

• Execute the command obx ui --mb

 l

• After above command is executed, it will prompt for the name of base component.
Once given it will create a folder with base component name appending -extended at

the end of it.

• Here also like above all the libraries are generated at runtime.

• Component generated contains the boiler plate or reference code, which helps to

achieve the use case.

Again, db folder contains all the relevant scripts which is needed to be executed prior to see

the component live and running in main application shell.

5.2 Process Workbench

• This screen is used for creation or modification of a process.

• We can add a new stage or modify an existing stage of an existing process.

• We can also upload a json-based dsl into the system using this screen.

• This screen will also help for any customization to do in workflow definition.

• This also provides to download JSON- based dsl based on whatever modifications

done in UI.

• We can preview the flow-diagram of a modified or new added process.

• Any process, if modified, will be automatically incremented by 1 from the latest

version.

https://confluence.oraclecorp.com/confluence/display/BLA/Process+Workbench

1

Screen 1:

Shows list of the

processes

Upload DSL button:

Can be used to upload

workflow in JSON

format.

blank option - 1st row

can be used for

creating new process.

2

Selecting one

 Process

 l

3

Screen 2:

 Shows stages.

under the process which

was selected on screen

1

4

Create

Stage button:

Used to create a new

stage.

Dialog box for creating

a new stage

5

We can edit/delete a

particular

stage in Process Stage

list

6

Dialogue box which

opens.

when we edit a

particular stage

 l

7

Drag and Drop

Functionality

Stage named "Testing1"

from all stage list was

dragged

and dropped on the

process stage list as

shown here

8

Screen 3

Preview: To preview

flow diagram of the

process selected

Create Process:

For creating a new

process

Export DSL:

To Export DSL into a

file in JSON format

9
Flow Diagram of the

process

10

When "Export DSL"

button is clicked.

The DSL gets

downloaded in

workflow(1).json file as

shown

 l

11

When "Create Process"

button is clicked.

Process is Created.

12

Version is updated.

when the process is

created successfully

5.3 OBX Update Command

This section helps in migrating the artifacts from previous version of OBX to latest. This is applied to both

services and web components. Following sections describes the steps to be followed to upgrade the existing

artifacts:

5.3.1 Service Update

To migrate services developed in previous versions of OBX to latest please follow the below steps:

• Navigate to service specific folder inside the extension_home directory.

• Execute the command obx service-update.

• Provide the relevant product release version number.

• Once provided it will automatically change the build.gradle file and service is ready to

be built with latest dependencies.

5.3.2 UI Update

To migrate services developed in previous versions of OBX to latest please follow the below steps:

• Navigate to UI (Web Component) specific folder inside the extension_home directory

o Execute the command obx ui-update.

o

• This command will automatically start removing old libraries without changing the

source folder. This help will help you retaining the business logic already written in

web component.

• One done and executed successfully you will the below message.

 l

• Now to run the command with new libraries run below command sequentially:

• sh npm-link.sh – it will create new node module folder inside the component with

latest modules and dependencies.

• node startCS.js - Open a new tab in cmder and navigate to same web component

directory and run command node startCS.js.

• npm start – From the main tab, where we executed npm-link command run the

command npm start, it will automatically run the web component with latest libraries

and launch it on the browser as well.

5.4 In-Scope DS

• Additional of fields at any desired location in an existing data-segment is supported

now.

• Data will be stored in separate custom schema.

• In-scope Data segment can be used for addition of new fields. (using jquery, at any

position, we can add the field).

Example of In-Scope DS (Additional fields):

• Include the hooks required in js and html of base components accordingly.

• Run the command “obx ui --af” for adding fields in extended components.

• Include the additional field in “self.data”

self.data = {

 "newField": ko.observable("")

 };

• Subscribe it to change handler.
self.data.newField.subscribe(self.changeHandler);

• Use jquery to insert it in the location you want to add the fields.

var element = context.properties.data.payload.homeBranch;

$('#homeBranch').parent().parent().parent().append($('#ui-ex-divnewField').parent());

5.5 OBX Release Command

This command is used to check all the available features bundled with OBX version installed on the

machine. To run this command, navigate to extension_home folder and run the command: obx release.

6 Extending Product Data Segments with Additional Fields

6.1 Additional Fields Maintenance

This screen is used to maintain the additional fields for a transaction screen. To process this screen, type

Additional Fields Maintenance in the Menu Item Search located at the left corner of the application toolbar

and select the appropriate screen (or) do the following steps:

• From Home screen, click Core Maintenance. Under Core Maintenance, click

Additional Fields Maintenance.

• The Additional Fields Maintenance screen is displayed.

 Figure 1: Additional Fields Maintenance Screen

 l

• Specify the details in the Additional Fields Maintenance screen. For more information

on fields, refer to table Field Description – Additional Field Maintenance

 Field Description – Additional Field Maintenance

Field Description

Component Name Specify the data segment name as component name.

NOTE: By default, the value fsgbu-ob-cmndsadditional-fields is

displayed, which is the Common Core Data Segment that displays the

maintained additional fields. It will fetch the corresponding maintained

record for Additional Fields by querying with uiKey = DataSegmentName

@ ProductCode.

Product Code Specify the function code as product code.

Product Name Displays the product name of the specified product code.

Description Displays the description as Additional Fields.

Application ID Displays the Application ID.

+ icon Click this icon to add a new row.

– icon Click this icon to delete a row, which is already added.

Construct Additional

Fields

MetaData

Specify the fields.

Select Check this box to select a row.

Field ID Specify the Field ID.

Field Label Specify the field label.

Category Specify the category.

Field Type Specify the field type.

Edit Select if a value needs to be inputted in the additional field.

Mandatory
Select if the input value is mandatory in the additional field.

Construct Validation

MetaData Specify the fields.

Select Check this box to select a row.

Validation Name Specify the validation name.

Validation Template to

Use Specify the template to be used for validation.

Custom

Error

Message Specify the custom error message to be displayed.

Edit Arguments Select if arguments needs to be edited in the additional field.

• Click Save to add the additional field in the maintenance work table.

(CMC_TW_ADDT_ATTR_MASTER).

• NOTE: Once it is approved, the data will persist in the master table. Currently, Mobile

Number and Date are added as additional fields. In addition, the validation is added

for Date.

• Sign in with different user ID since maker will not be able to approve the records with

the same user ID.

 Figure 2: Additional Fields Maintenance Records

• Map the new data segment for the function code. Make sure that the data is present in

CMC_TM_SCREEN_DS_MAPPING.

 l

• NOTE: Once the additional fields are added for a particular function code, a separate

data segment will be enabled in the transaction screen for Additional Fields.

• Click Submit, to save the transaction data of additional fields to the

CMC_TB_ADDT_ATTR_DATA. In addition, the following actions have been

performed from service side.

• Fetch record through inter-service call to additional attributes service in common

transaction with record ID.

• Append the field data to the main payload for the ejlogging.

{

"data": {

 "addDtls": {

"signatureVerifyIndicator": "Y",

"hostStatus": null,

"hostMultiTripId": null,

"txnBranchCcy": "GBP",

"txnBranchDate": "2020-03-25T18:30:00.000+0000",

"txnType": "C",

"cashInOutIndicator": "I",

"ejLoggingRequired": null,

"ejTxnAmtMapping": "TO",

"ejTxnCcyMapping": "TO",

"adviceName": null,

"orchestratorId": null,

"rsp": null,

"isReversal": "N",

"isAdvice": "N",

"reversalButton": "N",

"ignoreApproval": false,

"ignoreWarning": false,

"isExternal": false

},

"txnDtls": {

"functionCode": "1401",

"txnBranchCode": null,

"txnBranchCcy": null,

"txnBranchDate": null,

"requestStatus": "COMPLETED",

"assignmentMode": null,

"txnId": "f6b36a91-889d-4505-aac0-d7b98484d098",

"txnRefNumber": "989124345493245",

"tellerSeqNumber": null,

"overrideConfirmFlag": null,

"supervisorId": null,

"onlineOfflineTxn": null,

"userComments": null,

"authoriserComments": null,

"eventCode": null, "accountType":

"UBS"

},

"dataPayload": {

"datasegment": null,

"fromAccountAmt": 100,

"fromAccountCcy": "GBP",

"toAccountCcy": "GBP", "beneficiaryName":

null,

"beneficiaryAddress1": null,

"beneficiaryAddress2": null,

"beneficiaryAddress3": null,

"beneficiaryAddress4": null,

"identificationType": null,

"identificationNumber": null,

"exchangeRate": 1,

"recievedAccount

Ccy": null,

 l

"recievedAccount

Amt": null,

"totalCharges": null,

"cashAmount":

100,

"netAccountCcy": null, "netAccountAmt":

null,

"narrative": "Cash Deposit",

"txnControllerRefNo": null, "recordId":

"f6b36a91-889d-4505-

aac0d7b98484d098", "cashAmtCcy":

null, "cashAmt":

null,

"chequeDate": null,

"chequeNumber": null,

"eventCode": null,

"ejId": null,

"emailId": null,

"fromAccountBranch": "000",

"fromAccountNumber": null,

"mobileNumber": null,

"orginalExchangeRate": null,

"payee": null,

"productCode": null, "reversalDate":

null,

"stationId": null,

"toAccountBranch": "000",

"toAccountNumber": "00000008010010",

"toAccountAmt": 100,

"txnBranchCode": "000",

"functionCode": null,

"txnCustomer": null,

"tellerId": null,

"txnDate": 1585161000000,

"txnRefNumber": "9892566557744",

"txnSeqNumber": null,

"uniqueIdentifierNumber": null,

"uniqueIdentifierType": null,

"userRefNumber": null,

"valueDate": null,

"versionNumber": null,

"referenceNumber": null,

"createdBy": null, "createdTs":

null,

"updatedBy": null, "updatedTs":

null,

"demDtls": [],

"fxInDemDtls": null,

"fxOutDemDtls": null,

"prcDtls": [],

"addDtls": null,

"txnDtls": null,

"overrideDtls": null, "batchTableDetails":

null,

"cmcAddlFields": [

{

"id": "OTH_passprt",

"label": "Passport No",

"type": "TEXT", "value":

"43243"

},

{

"id": "UDF_aadhar",

"label": "Aadhar",

 l

"type": "TEXT",

"value": "1243"

},

{

"id": "TMIS_toDate",

"label": "To Date",

"type": "DATE",

"value": ""

},

{

"id": "TMIS_fromDate",

"label": "From Date",

"type": "DATE",

"value": ""

}

},

"extDetails": null,

"warDtls": [], "authoriserDtls":

[]

},

"errors": null,

"warnings": null,

"informations": null,

"authorizations": null,

"paging": ""

}

6.2 Populating Data in Corresponding Fields From UI

Unlike the other transaction screen data-segments, the ejlogged data is not required. Instead, two GET calls

that happen during screen launch fetches all the details. To fetch the corresponding Additional-

FieldsMaintenance screen record based on which it will display the maintained fields for this function code.

Endpoint:

CORE.GET_CMC_ADDITIONAL_ATTRIBUTES Request

URL - http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributesservices/cmcadditional-

attributes-services/?uiKey=fsgbu-ob-cmn-ds-additionalfields@1006

 Sample Response:

{

"data": [

{

"keyId": "33347926-842b-4232-af31-8c1b59612244",

"makerId": "ABHINAV",

"makerDateStamp": null,

"checkerId": null,

"checkerDateStamp": null,

"modNo": 1,

"recordStatus": "O",

"authStatus": "A",

"onceAuth": null,

"doerRemarks": null,

"approverRemarks": null, "links":

[

{

"rel": "self",

"href":

"http://10.40.158.157:8005/cmcadditional-

attributesservices/cmcadditionalattributes-

services/33347926-842b-

4232af318c1b59612244"

}

],

"description": "Additional Fields", "fieldMetaData":

"[{\"id\":\"OTH_Mobile\",\"label\":\"Mobile

Number\",\"type\":\"NUMBER\",\"required\":true},{\"id\":\"OTH

file:///C:/Users/Shyamala%20shetty/AppData/Local/Temp/d6f2ff13-d320-439d-873d-38ace82043d9_OBX%2014.7.5.0.0%20patch%20set%20documents%20(002).zip.3d9/14.7.5/http
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/cmc-additional-attributes-services/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006

 l

_From\",\"label\":\"Fr om

Date\",\"type\":\"DATE\",\"required\":true},{\"id\":\"OTH_To_D

ate\",\"label\":\"To

Date\",\"type\":\"DATE\",\"required\":true}]", "uiKey": "fsgbuob-cmn-

ds-additional-fields@1006", "validationMetaData":

"[{\"id\":\"\",\"validateMethod\":\"compareFromToDates\",\"type\":\"

\",\"args\":[{\"ty

pe\":\"FIELD\",\"value\":\"OTH_From\"},{\"type\":\"FIELD\",\"value\

":\"OTH_To_Date\"

}],\"errorMsg\":\"Error Date 1 must be &gt; Date

2\",\"validationName\":\"Date

Validation\"}]",

"applicationId": "OBTFPM"

}],

"paging": {

"totalResults": 1,

"links": {

"next": null,

"prev": null

}

}

}

6.3 Fetching the Saved Values

You can fetch the values saved for each field during the transaction.Endpoint:

CORE.GET_ADDITIONAL_ATTRIBUTES.

Request URL:

http://whf00peb.in.oracle.com:8003/api-gateway/cmc-

additionalattributesservices/additionalattributes/?uiKey=fsgbu-ob-cmn-

dsadditionalfields@1006&dataReferenceKey=00a01dfd- 0d6f-4400-a9c5-0f56551165e4

Sample Response:

{

http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/ap
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4
http://whf00peb.in.oracle.com:8003/api-gateway/cmc-additional-attributes-services/additionalattributes/?uiKey=fsgbu-ob-cmn-ds-additional-fields@1006&dataReferenceKey=00a01dfd-0d6f-4400-a9c5-0f56551165e4

"ExtensibleDTO": [

{

"id": "1644022a-179e-429b-82c8-873761c3ac74",

"uiKey": "fsgbu-ob-cmn-ds-additional-fields@1006",

"dataReferenceKey": "00a01dfd-0d6f-4400-a9c5-

0f56551165e4",

"fieldMetaDataVersion": "1",

"fieldData": [

{

"id": "OTH_Mobile",

"label": "Mobile Number",

"type": "NUMBER", "value":

“678688789”

},

{

"id": "OTH_From",

"label": "From Date",

"type": "DATE", "value":

”678688789”

},

{

"id": "OTH_To_Date",

"label": "To Date",

"type": "DATE",

"value": null

}

],

"applicationId": "OBREMO"

}

]

}

 l

7 Action URL and Static Tag Maintenance

7.1 Action URL Maintenance

Endpoints are maintained in cmn-transaction-services for the specific transaction based on function code.

The operation has to be maintained as action URL in table SRV_TB_BC_ACTIONS_URL. Action URL will

be called from all the domain services based on function code and action (like OPENCHECK, CREATE,

OVERRIDE, REVERSAL, PENDING_APPROVAL, or AUTHORIZE). The database details are as follows:

Schema: BRANCHCOMMON

Table: SRV_TB_BC_ACTIONS_URL

If the action URL is not maintained for the specific operation of the particular transaction, the error message

will be displayed as Action URL not maintained. Error code is maintained in ERTB_MSGS as RM-BC-UR-01.

7.2 Static Tag Maintenance

Static tag is maintained for accounting, till update, and debit-credit for each transaction based on the

function code in table SRV_TB_TX_STATIC_TAGS.

The database details are as follows:

Schema: TRANSACTION

Table: SRV_TB_TX_STATIC_TAGS

TILL_TAGS, DRCR_TAGS and ACCOUNTING_TAGS are maintained as JSON structure. Static tags will be

fetched from cmn-transaction-services based on function code. If it is not maintained for the function code,

the transaction will be failed.

8 Extensibility Use Cases for OBBRN Servicing

8.1 New Transaction Screen – 1499 (Exact Clone of 1401)

For this use case, you need to ensure data is present in the tables similar to 1401. The below mentioned

tables need to be checked in SMS schema:

• SMS_TM_MENU

• SMS_TM_MENU_Description

• SMS_TM_SERVICE_ACTIVITY

• SMS_TM_FUNCTIONAL_ACTIVITY

• SMS_TM_FUNC_ACTIVITY_DETAIL

• SMS_TM_ROLE_ACTIVITY

• SMS_TM_UI_ACTIVITY

The below mentioned tables need to be checked in common core schema:

• CMC_TM_SCREEN_CLASS

• CMC_TM_SCREEN_DS_MAPPING

The below mentioned tables need to be checked in branch common schema:

• SRV_TM_BC_FUNCTION_INDICATOR

• SRV_TM_BC_FUNCTION_CODE

• SRV_TM_BC_FUNCTION_PREF

• SRV_TM_BC_FUNCTION_PREF_DTLS

• SRV_TM_BC_BRANCH_ACCOUNTING

• SRV_TM_MENU_CONFIG

• SRV_TB_BC_ACTIONS_URL

The below mentioned tables need to be checked in transaction schema:

• SRV_TB_TX_STATIC_TAGS

 Figure 5: Cash Deposit Clone

 l

8.2 Exact Clone with Additional Fields Using Common Code

A new screen is available with function code 9999. The Additional Fields is shown as 4th data segment as

below:

 Figure 7: Additional Fields Segment

• The library reference in weblogic.xml is available for extensibility, for example,

obremo-srv-ext-common-txn. A new jar obremo-srv-cmn-common-txn, which holds

most of the code of transaction service and can be a dependency in the external jar.

<wls:library-ref>

<wls:library-name>obremo-srv-cmn-commontxn</wls:library-name>

</wls:library-ref> Response:

{

"data": {

"addDtls": {

Figure 6:

Informatio
: Information Message

"signatureVerifyIndicator": "Y",

"hostStatus": null,

"hostMultiTripId": null,

"txnBranchCcy": "GBP",

"txnBranchDate": "2020-03-25T18:30:00.000+0000",

"txnType": "C",

"cashInOutIndicator": "I",

"ejLoggingRequired": null,

"ejTxnAmtMapping": "TO",

"ejTxnCcyMapping": "TO",

"adviceName": null,

"orchestratorId": null,

"rsp": null,

"isReversal": "N",

"crossCcyEnabled": null,

"isTotChargesReq": null

},

"txnDtls": {

"functionCode": "9999",

"txnBranchCode": null,

"txnBranchCcy": null,

"txnBranchDate": null,

"requestStatus": "COMPLETED",

"assignmentMode": null,

"txnId": "71a08a0f-ee2a-405b-a1e3-b77ca9e59b6e",

"txnRefNumber": "0002008600007160",

"tellerSeqNumber": null,

"overrideConfirmFlag": "N",

"supervisorId": null,

 l

"onlineOfflineTxn": null,

"userComments": null,

"authoriserComments": null,

"eventCode": null, "accountType":

"UBS"

},

"dataPayload": {

"datasegment": null,

"fromAccountAmt": 100,

"fromAccountCcy": "GBP",

"toAccountCcy": "GBP", "beneficiaryName":

null,

"beneficiaryAddress1": null,

"beneficiaryAddress2": null,

"beneficiaryAddress3": null,

"beneficiaryAddress4": null, "identificationType":

null,

"identificationNumber": null,

"exchangeRate": 1,

"recievedAccount

Ccy": null,

"recievedAccount

Amt": null,

"totalCharges": null,

"cashAmount":

null,

"netAccountCcy": null, "netAccountAmt":

null,

"narrative": "Cash Deposit",

"txnControllerRefNo": null, "recordId":

"bd40562d-06b4-4f95-

95fee66fa6eb7f13", "cashAmtCcy":

null, "cashAmt":

null,

"chequeDate": null,

"chequeNumber": null,

"eventCode": null,

"ejId": null,

"emailId": null,

"fromAccountBranch": "000",

"fromAccountNumber": null,

"mobileNumber": null,

"orginalExchangeRate": null,

"payee": null,

"productCode": null, "reversalDate":

null,

"stationId": null,

"toAccountBranch": "000",

"toAccountNumber": "00000008010010",

"toAccountAmt": 100,

"txnBranchCode": "000",

"functionCode": null,

"txnCustomer": null,

"tellerId": null,

"txnDate": 1585161000000,

"txnRefNumber": "0002008600007160",

"txnSeqNumber": null,

"uniqueIdentifierNumber": null,

"uniqueIdentifierType": null,

"userRefNumber": null,

 l

"valueDate": null,

"versionNumber": null,

"referenceNumber": null,

"createdBy": null, "createdTs":

null,

"updatedBy": null, "updatedTs":

null,

"demDtls": null,

"fxInDemDtls": null,

"fxOutDemDtls": null,

"prcDtls": null,

"addDtls": null,

"txnDtls": null,

"overrideDtls": null,

"batchTableDetails": null

},

"extDetails": null,

"warDtls": [], "authoriserDtls":

[]

},

"errors": null,

"warnings": null,

"informations": null,

"authorizations": null,

"paging": ""

 Figure 8: Common Core Additional Attributes

}

• In the debug, you can find that the common code is used, stempImpl

onCashSubmitTillAcc will be called.

 Figure 9: Common Code

8.3 Exact Clone with Additional Fields Using Extensible Code

A screen is created with function code 9999 and Additional Fields as 4th data segment.

 Figure 10: Additional Fields Segment

• A library reference is added weblogic.xml (obremo-srv-ext-common-txn) for

extensibility. A new jar obremosrvcmn-common-txn, which holds the most of the code

of transaction service and can be a dependency in the external jar.

<wls:library-ref>

<wls:library-name>obremo-srv-cmn-common-txn</wls:library-name>

</wls:library-ref>

 l

8.4 Jar Deployment in Weblogic:

 Figure 11: Jar Deployment

Response:

{

"data": {

 "addDtls": {

"signatureVerifyIndicator": "Y",

"hostStatus": null,

"hostMultiTripId": null,

"txnBranchCcy": "GBP",

"txnBranchDate": "2020-03-25T18:30:00.000+0000",

"txnType": "C",

"cashInOutIndicator": "I",

"ejLoggingRequired": null,

"ejTxnAmtMapping": "TO",

"ejTxnCcyMapping": "TO",

"adviceName": null,

"orchestratorId": null,

"rsp": null,

"isReversal": "N",

"crossCcyEnabled": null,

"isTotChargesReq": null

},

"txnDtls": {

"functionCode": "9999",

"txnBranchCode": null,

"txnBranchCcy": null,

"txnBranchDate": null,

"requestStatus": "COMPLETED",

"assignmentMode": null,

"txnId": "71a08a0f-ee2a-405b-a1e3-b77ca9e59b6e",

"txnRefNumber": "0002008600007160",

"tellerSeqNumber": null,

"overrideConfirmFlag": "N",

"supervisorId": null,

"onlineOfflineTxn": null,

"userComments": null,

"authoriserComments": null,

"eventCode": null, "accountType":

"UBS"

},

"dataPayload": {

"datasegment": null,

"fromAccountAmt": 100,

"fromAccountCcy": "GBP",

"toAccountCcy": "GBP",

"beneficiaryName": null,

"beneficiaryAddress1": null,

"beneficiaryAddress2": null,

"beneficiaryAddress3": null,

"beneficiaryAddress4": null, "identificationType":

null,

"identificationNumber": null,

"exchangeRate": 1,

"recievedAccountCcy": null, "recievedAccountAmt":

null,

"totalCha

rges": null,

"cashAm

ount":

 l

null,

"netAccountCcy": null, "netAccountAmt":

null,

"narrative": "Cash Deposit",

"txnControllerRefNo": null, "recordId":

"bd40562d-06b4-4f95-

95fee66fa6eb7f13", "cashAmtCcy":

null, "cashAmt":

null,

"chequeDate": null,

"chequeNumber": null,

"eventCode": null,

"ejId": null,

"emailId": null,

"fromAccountBranch": "000",

"fromAccountNumber": null,

"mobileNumber": null,

"orginalExchangeRate": null,

"payee": null,

"productCode": null, "reversalDate":

null,

"stationId": null,

"toAccountBranch": "000",

"toAccountNumber": "00000008010010",

"toAccountAmt": 100,

"txnBranchCode": "000",

"functionCode": null,

"txnCustomer": null,

"tellerId": null,

"txnDate": 1585161000000,

"txnRefNumber": "0002008600007160",

"txnSeqNumber": null, "uniqueIdentifierNumber":

null,

"uniqueIdentifierType": null,

"userRefNumber": null,

"valueDate": null,

"versionNumber": null,

"referenceNumber": null,

"createdBy": null, "createdTs":

null,

"updatedBy": null,

"updatedTs": null,

"demDtls": null,

"fxInDemDtls": null,

"fxOutDemDtls": null,

"prcDtls": null,

"addDtls": null,

"txnDtls": null,

"overrideDtls": null,

"batchTableDetails": null

},

"extDetails": null,

"warDtls": [], "authoriserDtls":

[]

},

"errors": null,

"warnings": null,

"informations": null,

"authorizations": null,

 l

 Figure 12: Common Core Additional Attributes

• In the debug, the extensible code is used, which is present in the extension jar

(obremo-srv-ext-commontxn.jar). Instead stempImpl onCashSubmitTillAcc, FC9999
onCashSubmitTillAcc will be called, where you can add code that is required for the

new dataSegment added or to achieve different functionality of charging, accounting,

till updates, etc.

 Figure 13: Debug Codes

9 Extensibility Use Cases for OBX

9.1 New Transaction screen – 1499 (Clone of 1401)

For this use case, make sure that the data is present in the below tables similar to 1401. The below

mentioned tables need to be checked in SMS schema:

• SMS_TM_MENU

• SMS_TM_MENU_Description

• SMS_TM_SERVICE_ACTIVITY

• SMS_TM_FUNCTIONAL_ACTIVITY

• SMS_TM_FUNC_ACTIVITY_DETAIL

• SMS_TM_ROLE_ACTIVITY

• SMS_TM_UI_ACTIVITY

The below mentioned tables need to be checked in in Common Core schema:

 paging

}

• CMC_TM_SCREEN_CLASS

• CMC_TM_SCREEN_DS_MAPPING

The below mentioned tables need to be checked in branch Common schema:

• SRV_TM_BC_FUNCTION_INDICATOR

• SRV_TM_BC_FUNCTION_CODE

• SRV_TM_BC_FUNCTION_PREF

• SRV_TM_BC_FUNCTION_PREF_DTLS

• SRV_TM_BC_BRANCH_ACCOUNTING

• SRV_TM_MENU_CONFIG

 Figure 14: Cash Deposit Clone

 Figure 15: Information Message

 l

9.2 New Data Segment in Existing 1401 Screen

For this use case, it is needed to implement UI Component and Service side to persist data. The steps to

create UI Component are as follows:

• Start OBX and create XDL by running command obx xdl-gen.

• Once XDL is created, go to Cmder tab, and press Y for XDL generation.

 Figure 16 XDL Generation
• Select the option UI Component.

• Choose product family as Oracle Banking Retail Mid Office.

• Specify the name of virtual page/data-segment/stand-alone component to be created.

• Specify absolute path of the XDL generated. (XDL is generated inside

extension_home folder).

• NOTE: A new UI Component will be created in extension_home folder with prefix

obxvp/obx-ds. In the Cmder tab, OBX will prompt to modify Metadata.js file of the

newly created component. In addition, the component-server will start running at port

8002.

 Figure 17: XDL Path

 Figure 18: Extension Home Folder

• The generated UI component contains boiler plate code to do the common operations

of Save, Get, Get All etc. Changes needed in the newly created component from OBX

tool from UI side.

9.3 HTML Changes

• The HTML fields look like Figure 19: HTML Changes for all the screens. According to

the screen design, one can change the HTML values like payload()

and.mobileNumber. If mobileNumber field is entered by the user, value of

mobileNumber will directly update the JS payload that will be going as a part of save

call.

 l

 Figure 19: HTML Changes

• The oj-validation-group is required for configuring the HTML as part of validation.

 Figure 20: Validation

9.4 JS Changes

Perform the following steps to implement JS changes:

• Add all the dependencies in define block.

• The JS self.payload is an observable, which will hold all the info inputted from the

HTML. All keys in self.payload is directly linked with HTML.

 Figure 21: JS Changes

 Figure 22: JS Self Payload

• Save method implementation will look like Figure 23: Save Method. In the next line, it

is making a promise and calling the save function of cmn-ct-datasegment providing

the payload and endpoint as parameters. If save is success, it will resolve and for

failures it will come to reject.

 Figure 23: Save Method

 l

 • The function null check is as shown below:

 Figure 24: Function Null Check

• The validate function is shown in the Figure 25: Validate Function, which will check all

mandatory fields during save.

Figure 25: Validate Function

9.5 JSON Changes

The data and datatransferPayload properties need to be exposed from JSON. The data property is used to

take the information of transaction specific and the datatransferPayload property is used to share data

between data segments.

 Figure 26: JSON Changes

9.6 Model Changes

There will be no methods in the model. All the REST calls need to go through cmn-ctdatasegment similar to

Save. Perform the following steps to make model changes:

• Run the DB Scripts present in this component.

• NOTE: The OBX generates SQL script with default HEADER_APPID as

PXDSSRV001 for all components. This script can be changed and used.

• Create extended war for the component and deploy.

9.7 Database Changes

• Add the newly created data segment name in the PRODUCT_EXTENDED_LEDGER

table (this will be done when DB script from UI component is run).

• Make a fourth Data Segment entry for function code 1401 in

CMC_TM_SCREEN_DS_MAPPING table of CMNCORE. The DS_CODE should be

the name of the UI Component created. The entry is as shown in the Figure 27: Data

Segment Entry.

 Figure 27: Data Segment Entry

• If the service is created separately than UI Component, change the endpoint URL in

SQL script for table PRODUCT_SERVICES_LEDGER accordingly.

9.8 Service Component

• Start OBX and use the XDL file that is already generated.

• Select the domain service with optional UI component.

 l

 Figure 28: Domain Service

• Select product family as Oracle Banking Retail Mid Office

 Figure 29: Product Family

• Specify the service name as additional Details and all the remaining details as

mentioned in the Figure 30: Service Name.

 Figure 30: Service Name

• A new service is generated in extension_home folder with prefix obremo-

additionadetails-service

 Figure 31: Extension Home Folder

• Run the DB scripts present in this service.

• NOTE: It will create a new table to persist data of new data segment. For example, a

table is created as ADDITIONALDETAILS. This table can be created in existing

schema or in a new schema.

• If you need to create a new schema, mention that in table.

PRODUCT_SERVICES_CTX_LEDGER while running UI Component Script.

• Restart plato servers once this change is completed.

• If required, make appropriate changes in the service, build it, and deploy.

• NOTE: After deploying extended war and additional details service along with proper

DB entry, you can see a new data segment in the appshell screen.

• Fill the necessary details and click Submit, the data for new DS will be saved in new

table.

 l

 Figure 32: Additional Details Segment

9.9 New Field in Existing Base Data Segment

This use case defines a new field in the existing base data segment (fsgbu-ob-remo-srv-dscash-deposit) in

1401 screen class. For this use case, you need to create an extended UI Component, make changes in the

existing UI appshell, and make changes in the service. Perform the following steps:

• Modify the base component cca and create an extended component. To do this, start

OBX and run the command obx ui --mb. It will prompt for name of base web

component.

• Specify the name of base web component. A folder will be created with base

component name appending -extended at the end of it.

Figure 33: Updated Data in New Table

 Figure 34: Base Web Component

 Figure 35: Extended Folder

 • NOTE: Changes needed in the extended component from UI side.

 l

9.10 HTML Changes (Extended Components)

The extended component contains the boiler plate codes, in which you need to make the changes as shown

in the below figure HTML Changes (Extended Component). After you make the necessary changes, the

additional fields will be added after the existing fields in the base component.

Figure 36: HTML Changes (Extended Component)

The following changes are required only if you need to add the additional field at the end of

the base component and in a separate extension panel. You can choose to add the additional

fields in the existing base component or in the extension panel as per the requirement.

 Figure 37: Extension Panel

9.11 HTML Changes (Base Component)

Perform the HTML changes in the base component as shown in Figure 38: HTML Changes (Base

Component).

 Figure 38: HTML Changes (Base Component)

9.12 JS Changes (Base Component)

Perform the JS changes in the base component as shown in Figure 39: JS Changes (Base Component).

 Figure 39: JS Changes (Base Component)

The part of code shown below is present in JS or view model file. From the self.connected

method, you need to call self.loadExtendedComponent method.

 Figure 40: Self Connected Method

9.13 JS Changes (Extended Component)

In the bindings applied, it will take the ID of the fields and add the additional fields after the field base

component. Both additional fields will be added after the field of base component for which the ID is lastTab.

 l

 Figure 41: JS Changes (Extended Component)

9.14 JSON Changes (Extended Component)

Perform the HTML changes as shown in Figure 42: JSON Changes (Extended Component) to add data and

base property for extended component.

 Figure 42: Json Changes (Extended Component)

9.15 JSON Changes (Base Component)

In base component JSON file, the properties isExtensible and authMode are present. You need to make

changes in the existing appshell UI component so that it reads the extended component. In addition, it will

contain DB scripts which need to be run.

 Figure 43: JSON Changes (Base Component)

9.16 DB Changes

Add the newly created data segment name in the PRODUCT_EXTENDED_LEDGER table. Perform the

following steps to make the service level change:

• Add a new field named additionalFields with data type String in work and main table

entity classes of the respective service. The corresponding setters and getters should

also be added in these classes.

• @Column(name = “ADDITIONAL_FIELDS”) private String additionalFields;

• Add a column with the name ADDITIONAL_FIELDS in the main and work tables of

the DB with CLOB data type.

• For persistence of data in main table, add additionalFields with data type String in

model class.

• Deploy the changed service, extended war component, and changed appshell.

• NOTE: After deployment, the two additional fields named Pan No and Aadhaar No

will be added in existing data segment.

 l

• Specify the necessary details and click Submit. The additional fields will be saved in

respective work and main table in an additional column ADDITIONAL_FIELDS.

 Figure 44: Data Segment with Additional Fields

 • In the request payload from UI to backend, the values appear as follows:

 Figure 45: Request Payload

• The data will get saved in newly added column Additional Fields in the respective

table.

 Figure 46: SRV_TB_CH_CASH_TXN Table

9.17 Add New Columns in Base Component Table

• Create an extended component for the base cca by making these changes in the

base accordingly.

• Changes in base

In HTML

<!-- ko if: ifExtension -->

<componentName-extended data="{{base}}">

</componentName-extended>

<!-- /ko -->

In JS

 self.base

= this;

self.ifExtension = ko.observable(false);

 self.connected = function () { if

(requirejs.s.contexts._.config.paths['components/componentName-

extended']) {

 require(['components/componentName-extended/loader'], function () {

self.ifExtension(true);

 });

 }

 }

• Changes in extended

 self.bindingsApplied = function (context) {

context.props.then(function (properties) {

console.log(properties.data.columnArray);

 properties.data.columnArrray.splice(columnIndex, 0, {

headerText: "Manager Id", field: "ManagerId"

 });

tableId.refresh(properties.data.columnArray);

 });

• Changes needed at service level

For data inside table, custom projection service had to be written, custom events needs to be

raised while custom fields persistence. For base fields, a call can be made from projection

service to base service to fetch data and persisting the same over projection schema.

 l

9.18 Steps for adding extra column in task grid

• Clone the respective Free/My/Hold Task components

• Then the additional column can be added using the following example code snippet

 self.additionalColumns = [{

 dataIndex:

'customerName', dataType:

'string', displayType: 'text',

width: '60px', sortable: true,

resizable: true,

 accessTo: ['AVAILABLE', 'HOLD', 'ACQUIRED']

 }];

 The above code needs to be added in js file of the cloned components.

 While calling ‘fsgbu-ob-cmn-fd-work-list’ from the html of the cloned

components please make a call like this (which also sends additional

columns as a property)

• Example:

<fsgbu-ob-cmn-fd-work-list id='completedTaskGridCCA' dashboard-id='STANDARD'

dashboardqueue-name='ACQUIRED'

 process-code={{processCode}} dashboard-queue-type='L' worklist-columns='{{columnArray}}'

additional-columns='{{additionalColumns}}' page-size=20 dependent-

vm="{{dialogParameters}}"></fsgbu-ob-cmn-fd-work-list>

• Making these changes would display the extra column in the task screens.

9.19 Steps to use Additional Buttons provision in Task Screen

• In the custom component (example - fsgbu-ob-slp0-vp-wl-locked-task-extended) from

where you will be calling ‘fsgbu-ob-cmn-fd-work-list’, make the following changes

a. In the js file you can declare an array of the buttons you want to include like this-

 self.extraButtons = [{ label: 'Extraa', icons: {

start: 'oj-ux-ico-refresh' }, display: 'all',

accessTo: ['L', 'F', 'H', 'C', 'S', 'A', 'O', 'T', 'WFCC']

 }, { label: 'Extrab',

icons: { start: 'oj-ux-ico-refresh' },

display: 'all', accessTo: ['L', 'F']

 }

]

And also the method which needs to be executed on the button click

 self.extraa = function(data){

console.log("it got called");

 }

Note: The function name should be same as label of the button (in lower case)

b. In the html file, additional butons attribute needs to be included like this:

 <fsgbu-ob-cmn-fd-work-list id='completedTaskGridCCA' dashboard-id='STANDARD'

dashboard-queue-name='ACQUIRED' dashboard-queue-type='L' worklist-

columns='{{columnArray}}' additional-columns='{{additionalColumns}}'

additional-buttons='{{extraButtons}}' page-size=20>

</fsgbu-ob-cmn-fd-work-list>

c. In the json file, the methods which would be implemented on the custom button

click needs to be exposed

 "methods": {

 "extraa": {

 "description": "Would be implemented on Extraa button click"

 },

 "extrab": {

 "description": "Would be implemented on Extrab button click"

 }

 }

9.20 Steps to create common-extended folder for extending configJSON.js

file

• Create a folder inside extended-components\js\components.

• Folder structure \common-extended\js\util.

• Next we will add a file configJSON.js in the created folder.

• The code inside this configJSON.js would be like

define(['cmn-util/configJSON'], function (baseobj) {

baseobj.applicationObject.entityIdByProcessCode['CUSTOM'] = {'ccName': 'fsgbu-

ob-remo-deposit-ct-process-flow', 'Name': 'RD Amount Block', 'shortName': 'RD

Amount Block'};

});

• Some understanding of the code: -

 Including the base object by giving the path of configJSON.js base file.

 l

 Then for example adding the entry for custom process as shown above.

 The extended configJSON file would be loaded from base commonFunction.js

• Insertion of the below script into PRODUCT_EXTENDED_LEDGER table

Insert into PRODUCT_EXTENDED_LEDGER

(ID,CCA_NAME,CCA_TYPE,PARENT_CCA_NAME,PRODUCT_NAME) select nvl(new_uuid

,'common-extended','config',null,'EXTENDED_COMPONENTS'from

PRODUCT_EXTENDED_LEDGER;

9.21 Customizing Existing LOV Fetch Result

• Inscope Datasegment can be used for addition of new fields. (using jquery, at any

position, we can add the field)

• Service Extensibility to be used for overriding the base method, OBX tool will generate

the base service jar from base service war and this jar should be used to override the

base service method and implement the custom changes.

• From UI, call will go to custom service , from custom service, call will go to base

service for base field persistence as Java to Java call, then custom functionality to be

implemented for persistence of custom fields as part of REST call to another custom

service.

• For LOV data, custom projection service to be written. Custom Event needs to be

raised while custom fields persistence. For base fields, a call can be made from

projection service to base service to fetch data and persisting over the projection

schema.

9.22 Steps for adding Pre/post methods in extended components

Suppose here we consider that we want to persist custom fields on postnext call (which means first

‘self.next’ method of base would get called and then the control will come in postnext method written in

extended component).

• Write postnext method in .js file of the extended component – wherein you can call the

custom Api for persisting the custom fields.

• Expose this method in the .json file of the extended component.

• Similarly we can add prenext method as well.(it would get executed before ‘self.next’

method of base executes).

• Note : The hooks for these methods to work should be a part of common

infrastructure components in appshell.

Below is the list of CCAs and the common methods which has pre and post hooks :

CCA Name Common

method

name

Pre hook

present

Post hook

present

fsgbu-ob-cmn-ct-authorization compare No Yes

 approve No Yes

fsgbu-ob-cmn-ct-act-summary-

template

delete No Yes

 reopen No Yes

 close No Yes

fsgbu-ob-cmn-ct-maintenance save Yes Yes

fsgbu-ob-cmn-ct-wizard next Yes Yes

 previous Yes Yes

 saveClose Yes Yes

 cancel Yes Yes

 hold Yes Yes

 Applicable for

custom footer

buttons as

well

Yes Yes

fsgbu-ob-cmn-ct-rs-authorization approve No Yes

fsgbu-ob-cmn-ct-summary-template delete No Yes

 open No Yes

 close No Yes

9.23 ENDPOINT Overrides

To enhance the endpoint override extensibility, we've added a new column, CCA_NAME, to the

PRODUCT_SERVICE_EXT_LEDGER table.

This column provides an extensibility for overriding the existing endpoint behaviour for specific UI

components.

How to configure:

1. Determine the component for which you want to override the endpoint.
2. Enter the component's name in the CCA_NAME column of the

PRODUCT_SERVICE_EXT_LEDGER table.
3. PRODUCT_NAME & ENDPOINT_KEY must be same as endpoint we are extending.
4. The ENDPOINT_VALUE field should be populated with the new endpoint URI, while the

SERVICE_NAME field should specify the corresponding service to which this endpoint belongs.
5. An entry of extension service should also be present in PRODUCT_SERVICE_CTX_LEDGER to pick

up the new APPID or other properties.
6. If CCA_NAME column contains NULL value, then endpoint override will be applicable across all

components subscribed to respective ENDPOINT_KEY.

 l

How it works:

When a request is made for the component, the ext orchestrator service will now consult the
CCA_NAME column. If a matching entry exists, the endpoint specified in the ext orchestrator service

(PRODUCT_SERVICE_EXT_LEDGER) will take precedence over the existing endpoint of base

product.

This new approach offers several advantages:

• Any endpoint can be extended using this approach.
• The PRODUCT_SERVICE_EXT_LEDGER table is independent of product-related flyway updates,

ensuring that future changes won't impact existing overrides.

• This extensibility allows for specific endpoint overrides, other components are unaffected with their
original endpoints.

9.24 Steps to create util-extended folder

• Create a folder inside extended-components\js\components in app-shell for

component you want to make label-changes.

• Folder structure:

<%componentName%>-util-extended\resources\<component-name>\nls.

Example : for sms it would look like: sms-util-extended\resources\sms\nls.

• Next we will add a file bundle.js in the created folder.

• The code inside bundle.js would be like

define(['ojL10n!' + window.location.origin + '/<%componentName%>-component-

server/js/components/resources/<%componentName%>/nls/bundle.js'],

 function (baseLabels) {

baseLabels.fsgbuobsmsmnusers.lblhomeBranch = "Foreig111n Branch"

baseLabels.fsgbuobsmsmnusers.lblstatusChangedOn = "Yogesh" return

{

 'root': baseLabels

 };

});

• Some understanding for the code: -

 Including the base labels by giving the path of bundle.js of main component.

 Then changing the labels accordingly like in the example above -> Home

Branch is replaced with “Foreign111n Branch”.

 Returning the labels (including the changes).

• Insertion of the below script into PRODUCT_EXTENDED_LEDGER table

Insert into PRODUCT_EXTENDED_LEDGER

(ID,CCA_NAME,CCA_TYPE,PARENT_CCA_NAME,PRODUCT_NAME)

select nvl(new_uuid ,'<%=componentName%>-util-

extended','util',null,'EXTENDED_COMPONENTS'from PRODUCT_EXTENDED_LEDGER;

9.25 Dynamic Data Configuration (DDC)

DDC is an infrastructure component comprising a user interface and a service. It empowers developers to

define prepared statements for dynamic data retrieval. The DDC service's response is utilized by UI

components or invoking services to render List of Values (LOV) results.

 DDC infra can be utilized with OBX code to call endpoint and bind the response.

Prerequisites:

• For domain services to perform dynamic data queries on the domain schema, the
@ComponentScan annotation must include the "oracle.fsgbu.plato.validation" where
domain services reside.

• A database schema created for the DDC service.
• A configured JDBC data source named jdbc/PLATODYNADATA on the server.
• Configure newly created schema name in PROPERTIES table of PLATO schema.

 l

Deployment Steps:

1. Deploy the DDC service to the server.

2. Once deployed, the DDC user interface should be accessible.

Configuration steps:

1. Select the desired product processor.

2. Specify the service name.

3. Define the unique key for the data.

4. List the required columns.

5. Provide the from query to retrieve data.

6. Set the paging parameters (if applicable).

7. Determine the desired response format.

Test Query:

• Test API: Use the test API to execute the query. Provide any necessary query parameters and click
"OK." The results will be displayed based on the query.

 Test LOV: If applicable, use the test LOV (List of Values) to test the query.

 l

Once satisfied with the results, save the dynamic data query.

9.26 Task Screen Custom Config

This document outlines how to customize the task screen using a CUSTOM_CONFIG table ,you can show

or hide existing columns, and even add additional filters to the task search screen for specific fields.

Prerequisites:

Ensure that all columns on the task screen are listed in the CUSTOM_CONFIG table present in

PLATO_ORCH schema. All the default columns would already be present in this table.

• For all the default columns in Task screen, TASK_SCREEN_VIEW column value will be set
to YES by default. If consulting wishes to hide any default column, they can set it to ‘NO’.

• Also, if they wish to add new custom column, they need to add the key (key in which we will
get the value of custom field in response of task screen ‘plato-orch-service/api/v1/extn/tasks’
api) of that column in CUSTOM_FIELD_NAME column in CUSTOM_CONFIG table.

Adding Custom Filters

1. Determine the custom field for which you want to add a filter.
2. Update CUSTOM_CONFIG table:

 - Add the field name (custom field key) to the CUSTOM_FIELD_NAME column.
 - Set the SEARCH_SCREEN_VIEW column to YES for this field

Once these changes are made, the additional filter will be displayed on the search screen's UI.

Hiding/Adding Columns on the Task Screen

1. Identify the column you want to hide.
2. Update CUSTOM_CONFIG table:

 -Set the TASK_SCREEN_VIEW column to NO for that column.

After updating the configuration, the column will no longer be visible on the task screen.

 l

Similarly , we can even add new custom column in Task screens. For this they need to add the custom field

name(key in which we will get the value of custom field in response of task screen ‘plato-orch-

service/api/v1/extn/tasks’ api) of that column in CUSTOM_FIELD_NAME column in CUSTOM_CONFIG

table.

Configurations needed from backend

Configurations needed from backend side to get the custom field in ‘plato-orch-
service/api/v1/extn/tasks’ response –

During workflow initiation, the customer provides key-value pairs for specific columns. In the
CUSTOM_CONFIG table, columns are mapped under the MAPPED_COLUMN_NAME field.
For instance, COLUMN4 is mapped to a custom_field_name, such as CustomField.

 Here's how it works: In the CUSTOM_CONFIG table, COLUMN4 is mapped to the field
CustomField. During workflow initiation, the customer provides the value for COLUMN4, such as
COLUMN4 = CF_1. The system uses this mapping to interpret the value as follows:
CustomField (from the CUSTOM_CONFIG mapping) will get the value CF_1 for that task ,
provided by the customer during initiation. This allows the customer to input COLUMN4 = CF_1
during workflow initiation, and it will be mapped with CUSTOM_FIELD_NAME based on the
mapping defined in the CUSTOM_CONFIG table This way, you can map any internal column to
a custom field name that suits your specific use case.

Additionally, the columns that can be used for such mappings currently range from COLUMN1
to COLUMN20, providing flexibility to define up to 20 custom fields.

 l

10 Reference and Feedback

10.1 Reference

For more information on any related features, you can refer to the following documents:

 • Oracle Banking Extensibility Workbench Installation Guide

10.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at

http://www.oracle.com/us/corporate/accessibility/index.html

10.3 Feedback and Support

Oracle welcomes customers' comments and suggestions on the quality and usefulness of the document.

Your feedback is important to us. If you have a query that is not covered in this user guide.

http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/index.html

