
Oracle® Tuxedo
Application Runtime for CICS User's Guide

Release 22c
F88193-01
June 2024



Oracle Tuxedo Application Runtime for CICS User's Guide, Release 22c

F88193-01

Copyright © 2010, 2024, Oracle and/or its affiliates.

Primary Author: Priya Pathak

Contributing Authors: Tulika Das

Contributors: Maggie Li

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

 Preface

Documentation Accessibility xii

How This Book Is Organized xii

1   Overview of the CICS Runtime

1.1 General Architecture 1-1

1.2 The CICS Runtime Library 1-2

1.3 The CICS Runtime Tuxedo Servers 1-3

1.3.1 Mandatory Servers 1-3

1.3.2 Optional Servers 1-3

1.3.3 Server Generation 1-4

1.3.4 Server Configuration 1-4

1.3.4.1 The CICS Runtime Resource Configuration Files 1-4

2   Initial Configuration of the CICS Runtime

2.1 CICS Runtime Configuration 2-1

2.1.1 The UNIX ~/.profile File 2-1

2.1.2 The Tuxedo System Files 2-3

2.1.2.1 The Tuxedo Envfile File 2-3

2.1.2.2 The Tuxedo ubbconfig File 2-5

2.1.3 The CICS Runtime Resource Configuration Files 2-9

2.1.3.1 The Mandatory Populated Files 2-9

2.1.3.2 The Optional Initially Populated Files 2-11

2.2 Verifying the Initial Setting Configuration 2-12

2.2.1 Using the Tuxedo tmadmin psr Commands 2-12

2.2.2 Using the Tuxedo tmadmin psc Commands 2-12

2.2.3 Using the CSGM CICS Good Morning Transaction 2-13

3   Security Configuration of the CICS Runtime

3.1 Authentication Configuration 3-1

3.2 Tuxedo Security Mechanisms 3-1

iii



3.3 Integration with the External Security Manager 3-2

3.3.1 Accepting 3-3

3.3.2 Returning 3-3

3.3.3 Codification 3-3

3.4 Security Profile Generator 3-3

3.5 ART for CICS 3270 Terminal Default User 3-4

4   Implementing CICS Applications

4.1 Presentation of the z/OS Simple Application 4-2

4.1.1 Introduction 4-2

4.1.2 Description of the CICS Simple Application Components 4-2

4.1.2.1 Mapsets 4-2

4.1.2.2 Programs 4-3

4.1.2.3 Transactions Codes 4-3

4.1.2.4 VSAM File 4-3

4.1.3 Configuring a Standard CICS Application With CICS Runtime 4-3

4.1.3.1 CICS Simple File-to-Oracle Application UNIX Components 4-3

4.1.4 CICS Runtime Configuration 4-4

4.1.4.1 Declaring CICS Resources to the CICS Runtime 4-5

4.1.4.2 Declaring CICS Transactions Codes 4-5

4.1.4.3 Declaring a CICS COBOL Program 4-5

4.1.4.4 Declaring CICS Mapsets 4-6

4.1.4.5 Declaring ISAM Files Resulting From a z/OS VSAM File Conversion 4-7

4.1.4.6 Modifying the CICS Runtime Tuxedo Servers 4-8

4.1.4.7 Modifying the CICS Runtime Tuxedo Servers Groups 4-10

4.2 Verifying the CICS Application Installation 4-10

4.2.1 Using the Tuxedo tmadmin psr Commands 4-10

4.2.2 Using the Tuxedo tmadmin psc Commands 4-11

4.2.3 Using the CICS Runtime Application 4-11

4.3 Presentation of Simple Application on COBOL-IT / BDB 4-13

4.3.1 Configuring ubbconfig File in CICS Runtime 4-13

4.3.2 Building BDB TMS Server 4-14

4.3.3 Exporting Variables Before Booting Up ART Servers 4-14

4.4 Implementing Synchronous CICS Transactions With a Limited Number of Parallel
Instances 4-15

4.4.1 The Special Case of Transaction Classes With MAXACTIVE=1 4-15

4.4.2 Modification of the ubbconfig File for Sequential Transactions 4-15

4.4.2.1 Modifying the tranclasses.desc File 4-17

4.4.2.2 Modifying the transactions.desc File 4-18

4.4.3 Checking the ARTSTR1 Configuration 4-19

4.4.3.1 Using the Tuxedo tmadmin psr Commands 4-19

iv



4.4.3.2 Using the Tuxedo tmadmin psc Commands 4-19

4.5 Implementing Asynchronous CICS Non-Delayed Transactions 4-20

4.5.1 Modifying the Tuxedo ubbconfig File to Manage Asynchronous Transactions 4-20

4.5.2 Using Parallel Asynchronous Transactions 4-20

4.5.3 Using Non-Parallel Asynchronous Transactions 4-21

4.6 Implementing Asynchronous CICS Delayed Transactions 4-22

4.6.1 Implementing Asynchronous Transactions With ARTSRM Server 4-22

4.6.2 Implementing Asynchronous Transactions With /Q 4-23

4.6.2.1 Creating the Tuxedo /Q 4-23

4.6.2.2 Modifying the Tuxedo ubbconfig File to Manage the Tuxedo /Q Queue 4-24

4.7 Implementing CICS Application Using Temporary Storage (TS) Queues 4-26

4.7.1 Implementing Unrecoverable TS Queues 4-28

4.7.2 Implementing Recoverable TS Queues 4-28

4.7.2.1 To Use Recoverable TS Queues 4-29

4.8 Managing TD Queue Intrapartititions 4-30

4.8.1 Presentation of the Mechanism on Source Platform 4-30

4.8.1.1 Transient Data Control 4-31

4.8.1.2 Intra-partition Transient Data Queues 4-31

4.8.2 Automatic Transaction Initiation (ATI) 4-32

4.8.3 Presentation of the Mechanism on Target Platform 4-32

4.8.3.1 Tuxedo /Q 4-32

4.8.3.2 Architecture Design 4-33

4.8.3.3 Triggering 4-33

4.8.4 Runtime CICS Configuration of TD Queue Intrapartition 4-33

4.8.4.1 CICS RuntimeResource Declaration 4-33

4.8.4.2 /Q Configuration for TD Queue Intrapartition in CICS Runtime 4-34

4.8.4.3 qopen Parameters 4-35

4.8.5 Activating the ARTTDQ in the Tuxedo ubbconfig File 4-36

4.9 Implementing CICS Application Using Temporary Storage (TS) Queue POOL 4-37

4.10 Implementing Distributed Program Link (DPL) 4-40

4.10.1 To Detect That DPL Is Needed 4-40

4.10.2 Modifying the Tuxedo ubbconfig File to Manage the DPL 4-41

4.10.3 Declaring Remote Programs in CICS Runtime 4-44

4.11 Implementing CICS Common Work Area (CWA) 4-46

4.11.1 To Replicate CICS ADDRESS CWA Functionality in CICS Runtime 4-47

4.12 Implementing a CICS Transaction Work Area (TWA) 4-47

4.12.1 Supporting TWA in ARTDPL 4-49

4.13 Implementing Integration with WebSphere MQ 4-50

4.13.1 Using ART CICS Transaction Trigger Monitor (ARTCKTI) 4-50

4.13.1.1 Work Flow 4-50

4.13.1.2 Command Configuration 4-52

v



4.13.1.3 Configuring WebSphere MQ Servers to Trigger ART for CICS
Transactions 4-53

4.13.2 Rebuilding ART for CICS Servers 4-53

4.13.2.1 Prepare WebSphere MQ RM Definitions 4-54

4.13.2.2 Rebuild TMS_MQM Server 4-54

4.13.2.3 Rebuild ART for CICS Transaction Servers 4-54

4.13.2.4 Rebuild ARTCKTI Server 4-55

4.13.2.5 Update Oracle Tuxedo UBBCONFIG and OPENINFO 4-55

4.13.3 Handling CICS Runtime Preprocessor of MQOPEN/MQCLOSE Calls 4-57

4.13.4 Encoding Character Set 4-57

4.13.5 Changing COMP-5 back to BINARY Data Type 4-57

4.14 Implementing Using Multiple Session Management 4-58

4.14.1 Writing User Plug-In for Application List 4-58

4.14.2 Configuring CICS Runtime Configuration Files 4-58

4.14.2.1 Transaction Configuration File 4-59

4.14.2.2 System Configuration File 4-59

4.14.3 Configuring UBBCONFIG 4-59

4.14.4 Starting, Switching, and Ending Sessions 4-60

4.14.4.1 Starting Sessions 4-60

4.14.4.2 Switching Sessions 4-61

4.14.4.3 Ending Sessions 4-61

4.15 Implementing Using ART for CICS TCP/IP Socket Interface 4-61

4.15.1 ART for CICS TCP/IP Socket API 4-62

4.15.2 The Client-Listener-Server Application Set 4-66

4.15.2.1 Client Call Sequence 4-67

4.15.2.2 Listener Call Sequence 4-68

4.15.2.3 User Transaction Running in ARTATRN/ARTATR1 Call Sequence 4-68

4.15.3 ART for CICS TCP/IP Listener (ARTCSKL) 4-69

4.15.3.1 Description 4-69

4.15.3.2 ARTCSKL Input Format 4-70

4.15.3.3 ARTCSKL Output Format 4-71

4.15.4 Required Configurations 4-72

4.16 Implementing Transferring CICS Regions 4-72

4.16.1 Configuring ARTSRM Server 4-72

4.16.2 Configuring Environment Variables 4-72

4.16.3 CICS Runtime Configuration Files Declaration 4-72

4.16.3.1 system.desc 4-72

4.16.3.2 transactions.desc and programs.desc 4-73

4.16.3.3 terminals.desc (Optional) 4-73

4.16.3.4 UBB Declaration 4-73

4.16.3.5 Environment Variable Declaration 4-75

4.16.4 Logon ART CICS 4-76

vi



4.17 Implementing Intersystem Communication 4-77

4.17.1 Implementing Distributed Transaction Processing (DTP) 4-77

4.17.1.1 Configurations 4-79

4.17.2 Implementing Asynchronous Processing 4-81

4.17.2.1 Defining Regions in system.desc 4-81

4.17.2.2 Configuring ARTSRM Server 4-81

4.17.2.3 Modifying the UBBCONFIG File 4-81

4.17.3 Implementing Synchronous Processing 4-82

4.17.3.1 Configuring Environment Variables 4-82

4.17.3.2 Defining Regions in system.desc 4-82

4.17.3.3 Modifying the UBBCONFIG File 4-83

4.18 Implementing Submitting JCL/KSH Online 4-84

4.18.1 Submitting JCL/KSH Job Online 4-84

4.18.1.1 Configuring the UBBCONFIG File 4-84

4.18.1.2 Configuring tdqextra.desc 4-84

4.18.2 Submitting JCL/KSH Job Online by SPOOL 4-85

4.18.2.1 Configuring SPOOL Related Environment Variables 4-85

4.19 Implementing ART for CICS Control Utility 4-86

4.19.1 Use Case 1: Implementing ART for CICS Control Utility in End-to-End Mode
(IPCP Commend Set) 4-86

4.19.1.1 Using ART for Workbench to convert JCL to KSH 4-87

4.19.1.2 Configuring UBBCONFIG in CICS Runtime Domain 4-88

4.19.1.3 Configuring Resource Files 4-88

4.19.1.4 Configuring DMCONFIG in ART for CICS Domain and ART for Batch
Domain 4-89

4.19.2 Use Case 2: Implementing ART for CICS Control Utility in Interactive Mode
(Interactive Command Set) 4-90

4.20 Implementing Printing CICS Runtime Applications Data 4-91

4.20.1 General Configurations 4-91

4.20.2 Implementing Printing with a START Command 4-94

4.20.3 Implementing Printing with Transient Data 4-95

4.21 Implementing Invoking Web Services from CICS Applications 4-95

4.21.1 Converting WSDL File into MIF and Generating COPYBOOK 4-96

4.21.2 Generating RECORD Definition from COPYBOOK 4-96

4.21.3 Configuring SALT and Metadata Repositories 4-96

4.21.4 Configuring webservice.desc 4-96

4.21.5 Modifying UBBCONFIG 4-96

4.22 Implementing CICS as HTTP Client 4-96

4.22.1 Defining REST Outbound Service in SALT 4-97

4.22.2 Configuring URIMAP Configuration File urimaps.desc 4-97

4.22.3 Modifying UBBCONFIG 4-97

4.23 Implementing CICS as HTTP Server 4-98

4.23.1 Defining REST Inbound Service in SALT 4-98

vii



4.23.2 Modifying UBBCONFIG 4-98

4.24 Implementing ART for CICS Application Server Customized Callback Support 4-99

4.24.1 Create Shared Library libkixcallback.so 4-99

4.24.1.1 int ARTKIX__svrinit_callback(ARTKIX_SRVINIT_PARA*) (at Server
Initiation) 4-100

4.24.1.2 void ARTKIX__svrdone_callback() (at Server Shutdown) 4-101

4.24.2 Include Customized C Library for Dynamically Loading 4-101

4.24.3 Use Case 1: Create Shared Memory at Server Initiation 4-101

4.24.4 Use Case 2: Open Database Table at Server Initiation 4-101

4.25 Implementing Resource-Based Authorization 4-101

4.26 Implementing COBOL Program Debugging in CICS Runtime 4-102

4.26.1 Use Case 1: Two users want to debug two COBOL programs respectively. 4-103

4.26.2 Use Case 2: One user wants to debug two COBOL programs in one
transaction. 4-103

4.26.3 Use Case 3: One user wants to debug two programs with START TRANSID. 4-104

4.26.4 Use Case 4: One user wants to debug two programs with LINK (remote). 4-104

4.27 CICS Runtime Logs 4-104

4.27.1 Tuxedo System Log 4-104

4.28 The CICS Runtime Server Logs 4-105

4.29 Disabling and Enabling Programs 4-106

4.29.1 Disabling Programs 4-107

4.29.2 Enabling Programs 4-107

4.29.3 Checking the Change in Program Status 4-107

4.29.4 Removing and Adding Applications for CICS Runtime 4-108

4.30 CICS Runtime C Program Support 4-110

4.30.1 Running C Program in CICS Runtime 4-110

4.30.2 C Programming Restrictions and Requirements 4-110

4.30.3 Accessing EIB from C 4-111

4.30.4 Accessing COMMAREA from C 4-112

4.30.5 CICS Command Translator 4-112

4.30.6 C Program Compilation 4-112

5   Reference

5.1 Cross Reference of .desc Configuration Files Used by CICS Runtime Servers 5-1

6   Oracle Tuxedo Application Runtime for CICS CSD Converter

6.1 Overview 6-1

6.2 Resource Definition Online (RDO) Mapping 6-1

viii



7   ECI Client Support

7.1 Overview 7-1

7.2 Introduction 7-1

7.3 Platform 7-2

7.4 Installation and Setup 7-2

7.4.1 Installation 7-2

7.4.2 ECI Connection to ART CICS 7-2

7.4.3 Configuration on ART CICS 7-3

7.5 Encoding and Decoding 7-3

7.6 Security 7-3

7.7 Failover 7-4

7.8 Diagnostic 7-4

7.9 Limitation and Compatibility 7-4

7.9.1 Limitation 7-4

7.9.2 Compatibility 7-4

8   IMS DB Access Support

8.1 Overview 8-1

8.2 Configurations 8-1

8.2.1 Configure ART for CICS for Accessing IMS DB 8-1

8.2.2 Configuring ART for CICS Servers 8-1

8.2.3 Configuring Environment Variables 8-2

8.2.4 Configuring IMS 8-2

8.3 Supported Platforms 8-2

9   UDB Linking

9.1 Installation Time UDB Linking 9-1

9.1.1 Rebuilding Servers for UDB 9-1

10  
 

Rebuilding ART Servers for CICS

10.1 Rebuilding the ART CICS Servers 10-1

11  
 

External CICS Interface (EXCI)

11.1 Overview 11-1

11.2 EXCI in Oracle Tuxedo Application Runtime 11-1

11.2.1 Supported EXCI Interface 11-2

11.2.2 Precompiler Controls 11-2

11.2.3 Access Authorization 11-3

ix



11.2.4 ART CICS Implementation 11-3

11.2.4.1 ART Restrictions 11-4

11.2.4.2 SRRCMIT/SRRBACK Functions 11-4

11.2.4.3 Configuration Files Declaration for EXCI EXEC CICS LINK 11-5

12  
 

COBOL Program Debugging and Error Processing in CICS Runtime

12.1 Debugging COBOL Programs in CICS Runtime 12-1

12.1.1 Debugging with Micro Focus COBOL 12-1

12.1.2 Debugging with COBOL-IT COBOL 12-2

12.1.3 Configuration 12-2

12.1.4 Dynamically Load the Debug Configuration File 12-3

12.2 Error Processing in CICS Runtime 12-3

12.2.1 Prerequisite 12-4

12.2.2 Memory Dump 12-4

13  
 

Integrating Client Applications Using CPI-C

13.1 Overview 13-1

13.1.1 Client Applications Impact 13-2

13.1.1.1 Windows Visual Studio C/C++ Environment 13-2

13.1.1.2 WebLogic Java Environment 13-2

13.1.1.3 ASCII-EBCDIC Data Conversion 13-2

13.2 Supported CPI-C Scenarios 13-3

13.2.1 Windows Application Calling Rehosted CICS Transactions 13-3

13.2.2 WebLogic Application Calling Rehosted CICS Transactions 13-4

13.3 Server Side Configuration 13-5

13.3.1 ART CICS Resources Configuration 13-5

13.3.1.1 CICS Region Definitions in systems.desc 13-5

13.3.1.2 CICS APPC Connection Definitions in connections.desc 13-5

13.3.1.3 CICS Transaction Definitions in transactions.desc 13-5

13.3.2 Oracle Tuxedo Configuration 13-6

13.3.2.1 UBBCONFIG Configuration 13-6

13.3.2.2 DMCONFIG Configuration 13-6

13.4 Client Side Configuration 13-7

13.4.1 Configuration for Windows Client 13-7

13.4.2 Configuration for WebLogic Client 13-7

13.5 Oracle Tuxedo Timeout Controls 13-8

13.5.1 Settings in UBBCONFIG 13-8

13.5.2 Security 13-9

13.5.3 Scaling 13-9

13.5.4 Diagnostics 13-9

x



13.5.5 Packaging/Installation 13-9

xi



Preface

This guide provides explanations and instructions for configuring and using Oracle Tuxedo
Application Runtime for CICS (CICS Runtime) when developing and running On Line
Transaction Processing (OLTP) applications on a UNIX/Linux platform.

This guide describes the steps required to implement and perform COBOL CICS transactions,
whether they are migrated from z/OS CICS or newly written for UNIX applications.

In addition, this guide helps you to:

• Configure CICS Runtime software.

• Declare components to CICS Runtime.

• Run a CICS Application.

To illustrate this purpose, the User Guide provides a detailed description of the deployment and
administration of the Simple Application in a UNIX environment.

• Documentation Accessibility

• How This Book Is Organized

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

How This Book Is Organized
This guide is divided into seven main chapters:

• Introduces the general principles of the CICS Runtime.

• Details how to configure the CICS Runtime to use CICS applications including examples
moving from simple to more-and-more complex cases.(4-1)

• Contains information describing the .desc files used by the different CICS Runtime servers.

Additionally,

• 5-1:Contains information describing the .desc files used by the different CICS Runtime
servers.

• 6-1:Specifies how to set the target CSD file in argument, and the translated resource
configuration files resides in current directory by default.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


• 7‑1: elaborates ECI emulator that supports customers to keep using existed program
without code change when migrating mainframe applications from IBM z/OS to an open
systems application grid running Oracle Tuxedo.

Preface

xiii



List of Figures

1-1 Oracle Tuxedo Application Runtime for CICS Architecture 1-2

2-1 Screen After Running the Command #3270 deimos:2992 2-14

4-1 Simple Application Transaction Code Entry 4-12

4-2 Simple Application Main Menu 4-13

4-3 z/OS ceda System Transaction Example 4-48

4-4 WebSphere MQ Trigger Condition 4-52

4-5 ART for CICS Application List Transaction (ALST) 4-60

4-6 The Client-Listener-Server Application Set 4-67

4-7 Client-Listener-Server Application Set 4-69

4-8 ARTCSKL Input Format 4-70

4-9 Logon Screen 4-77

4-10 Typical End-to-End User Case 4-78

4-11 Configure a LUNAME 4-93

4-12 Setting the PCOM Session Type 4-94

4-13 Printing with a START Command 4-94

6-1 Data Stream Model 6-2

7-1 ECI Emulator 7-2

11-1 EXCI in ART 11-1

13-1 CPI-C Client Application on Windows Server 13-3

13-2 CPI-C Client Application on Windows Server 13-4

xiv



List of Tables

2-1 .profile Variables 2-1

2-2 envfile Variables 2-2

2-3 envfile Variables 2-4

3-1 COBOL CICS Function Names for Resource Authorization 3-3

3-2 Function Return Status for Resource Authorization 3-3

4-1 Simple Application Mapsets 4-2

4-2 Simple Application Program 4-3

4-3 Transaction Codes 4-3

4-4 Simple Application VSAM File 4-3

4-5 Source to Target Mapping 4-33

4-6 TWA Size Values Associated to Each Transaction Code of the Simple Application 4-48

4-7 Supported C APIs 4-63

4-8 Supported Extended COBOL APIs 4-65

4-9 Client Call Sequence 4-67

4-10 User Transaction Running in ARTATRN/ARTATR1 Call Sequence 4-68

4-11 Message Files by Server 4-105

5-1 Resources Configuration " .desc " File 5-1

6-1 TRANCLASS Mapping 6-2

6-2 PROGRAM Mapping 6-3

6-3 FILE Mapping 6-3

6-4 Journaling Attributes in FILE Mapping 6-4

6-5 TSQUEUE MODEL Mapping 6-4

6-6 ENQMODEL Mapping 6-5

6-7 TDQUEUE Extra Partition Mapping 6-5

6-8 TDQUEUE Intra Partition Mapping 6-6

6-9 MAPSET Mapping 6-7

6-10 TYPETERM Mapping 6-7

13-1 ART CICS CPI-C Support Coverage 13-1

xv



1
Overview of the CICS Runtime

This chapter contains the following topics:

• General Architecture

• The CICS Runtime Library

• The CICS Runtime Tuxedo Servers

1.1 General Architecture
In a z/OS environment, CICS is used to establish transactional communications between end-
users and compiled programs via screens.

CICS is a middleware that implements the control and integrity of shared resources, providing
developers with a bag of API (EXEC CICS … END-EXEC statements) to dialog with CICS
inside programs mainly developed on z/OS in COBOL, PL1 and Assembler languages.

Once all the components of z/OS CICS applications (COBOL programs and data) are migrated
to a UNIX/linux platform using Oracle Tuxedo Application Runtime Workbench, CICS Runtime
enables them to be run unchanged using an API emulation on top of the native Tuxedo
features.

On a UNIX platform, Tuxedo performs many of the functions performed by CICS on a z/OS
platform concerning the integrity of resources and data used in transactional exchanges,
including those used for applications that are distributed across several machines. However,
Tuxedo does not manage some specific native CICS z/OS features such as screen map
handling. To provide these features on the target platform, CICS Runtime acts as a technical
layer, located between Tuxedo and the converted CICS applications.

The following schema describes the global architecture of CICS Runtime.

1-1



Figure 1-1    Oracle Tuxedo Application Runtime for CICS Architecture

CICS Runtime is composed of two major parts:

• CICS Runtime Preprocessor and CICS Runtime library

• CICS Runtime Tuxedo Servers and their Resource Configuration Files

1.2 The CICS Runtime Library
In z/OS CICS applications, all the interactions with the resources managed by CICS are made
thru the EXEC CICS API.

A CICS Preprocessor transforms these statements into calls to CICS library:

Listing 2‑1 z/OS CICS Calls

*EXEC CICS
* RECEIVE MAP ('RTSAM10')
* MAPSET ('RTSAM10')
* INTO (RTSAM10I)
*END-EXEC.
MOVE ' xxxxxxxxxxxx00203 ' TO DFHEIV0
MOVE 'RTSAM10' TO DFHC0070
MOVE 'RTSAM10' TO DFHC0071
CALL 'DFHEI1' USING DFHEIV0 DFHC0070
RTSAM10I DFHDUMMY DFHC0071.

On UNIX, the CICS Runtime Preprocessor transforms these EXEC CICS into calls to the CICS
Runtime library:

Chapter 1
The CICS Runtime Library

1-2



Listing 2‑2 CICS Runtime Calls

*EXEC CICS
* RECEIVE MAP ('RTSAM10')
* MAPSET ('RTSAM10')
* INTO (RTSAM10I)
*END-EXEC.
INITIALIZE KIX--INDICS
MOVE LOW-VALUE TO KIX--ALL-ARGS
. . .
ADD 1 TO KIX--ARGS-NB
SET KIX--INDIC-MAPSET(KIX--ARGS-NB) TO TRUE
MOVE 'RTSAM10' TO KIX--MAPSET OF KIX--BMS-ARGS
ADD 1 TO KIX--ARGS-NB
SET KIX--INDIC-MAP(KIX--ARGS-NB) TO TRUE
MOVE 'RTSAM10' TO KIX--MAP OF KIX--BMS-ARGS
CALL "KIX__RECEIVE_MAP" USING KIX--INDICS KIX--ALL-ARGS

1.3 The CICS Runtime Tuxedo Servers
The CICS Runtime Tuxedo servers are used to manage CICS features not natively present in
Tuxedo

Some of these servers are mandatory in order to make CICS Runtime available; others are
optional depending on user's actual scenario and the usage of specific EXEC CICS statements
in CICS Applications.

• Mandatory Servers

• Optional Servers

• Server Generation

• Server Configuration

1.3.1 Mandatory Servers
• The Administration server (ARTADM): required for CICS Runtime administration.

1.3.2 Optional Servers
• The Terminal Connection servers (TCP servers: ARTTCPH and ARTTCPL servers): manage

user connections and sessions to CICS applications thru 3270 terminals or emulators.

• The Connection server ARTCNX: manages the user session and some technical
transactions relative to security (CSGM: Good Morning Screen, CESN: Sign On, CESF:
Sign off).

• The Connection server ARTCNX: manages the user session and some technical
transactions relative to security (CSGM: Good Morning Screen, CESN: Sign On, CESF:
Sign off).

• The Synchronous Transaction server ARTSTRN: manages standard synchronous CICS
transactions that can run simultaneously.

• The Synchronous Transaction servers ARTSTR1: manages CICS synchronous transaction
applications that can not run simultaneously but only sequentially (one at a time).

Chapter 1
The CICS Runtime Tuxedo Servers

1-3



• The Asynchronous Transaction servers ARTATRN and ARTATR1: are similar to the ARTSTRN
and ARTSTR1 but for asynchronous transactions started by EXEC CICS START TRANSID
statements.

• The TS Queue servers ARTTSQ, TMQUEUE and TMQFORWARD: manage the use of CICS
Temporary Storage Queues - files managed by CICS thru specific commands.

• The TD Queue servers ARTTDQ: centralizes the TD Queue operations management
requested by applications.

• The Distributed Program Link server ARTDPL: runs DPL programs.

• Converse Management server ARTCTRN and ARTCTR1.

• The Web Transaction servers ARTWTRN and ARTWTR1: manage synchronous (no-
conversational) non-3270s clients oriented transactions.

• The System and Resource Management (ARTSRM) Server centralizes the management of
ART runtime information, which is generated and queried by applications.

• ARTSHM is used to manage shared memory for GETMAIN SHARED. It handles shared memory
allocation and free request.

• ARTCSKL is the listener of ART for CICS TCP/IP socket and can perform the same functions
as CICS TCP/IP listener CSKL.

1.3.3 Server Generation
Some CICS Runtime Tuxedo servers need to be built by the tool “buildartcics”, such as
“ARTSTRN”, “ARTSTR1”, “ARTSTRN_UDB”, etc.

For more information, see the Oracle Tuxedo Application Runtime from CICS Reference Guide

1.3.4 Server Configuration
The CICS Runtime Tuxedo servers are configured in:

• The ubbconfig file once compiled to the tuxconfig file, is the file read by Tuxedo at start up
that defines all the servers to be launched and their parameters.

• The CICS Runtime resource configuration files for the CICS resources managed by CICS
Runtime servers are declared.

The following topic describes how to configure the files:

• The CICS Runtime Resource Configuration Files

1.3.4.1 The CICS Runtime Resource Configuration Files
This section contains the following topics:

• Reminder about z/Os Resource Management

• CICS Runtime Resource Management

1.3.4.1.1 Reminder about z/Os Resource Management
On z/OS, all the technical components used by CICS applications (terminals, transactions,
programs, maps, files …) are named CICS resources and must be declared to CICS using a
dedicated configuration file called CSD.

Chapter 1
The CICS Runtime Tuxedo Servers

1-4



Each resource declared must belong to a resource Group name. This enables a set of
resources bound together constituting a technical or a functional application to be managed
(install, delete, copy to anther CSD...).

Once created, one or more CICS groups can be declared in a CICS List name. All or part of
these List names are given to CICS at startup to install their CICS groups, and thus make
available all the resources defined in these groups.

1.3.4.1.2 CICS Runtime Resource Management
CICS Runtime manages only a subset of the resource types previously defined in the CICS
CSD file on z/OS. Each resource type definition of this subset is stored inside its own
dedicated Resource Configuration file. All these files are located in the same UNIX directory.

The Group name notion is kept to preserve the same advantages as on the z/OS platform. For
this purpose, each resource defined in the configuration files must belong to a CICS Group
name.

CICS Runtime manages the following resources:

• Tranclasses (transclasses.desc file)
This file contains all the distinct Transaction classes (Tranclasses) referenced by the CICS
Transactions. In CICS Runtime, a Tranclass is a feature defining whether several
instances of the same transaction can be run simultaneously or sequentially.

• Transactions (transactions.desc file)
A transaction is a CICS feature allowing a program to be run indirectly thru a transaction
code either manually from a 3270 screen or from another COBOL CICS program.

A transaction belongs to a transaction class in order to define whether this transaction
must be run exclusively.

• Programs (programs.desc file)
This file contains a list of all COBOL or C programs invoked thru EXEC CICS START, LINK or
XCTL statements.

• TS Queue Model (tsqmodel.desc File)
Contains all the TS Queue models referenced by TS Queues used in the CICS programs.

A TS Queue model defines properties that complete or replace those defined in the CICS
API that manages Temporary Storage Queues. The names of these TS Queues must
match a mask defined in the TS Queue model. In CICS Runtime, these models are mainly
used to define whether TS Queues are recoverable or not.

• Mapsets (mapsets.desc file)
This file contains all the mapsets referenced by the CICS applications. A mapset is a CICS
resource, but also a physical component containing one or more screens (maps) used in
the exchanges between CICS applications and end-users.

These resources are used through dedicated CICS statements like EXEC CICS SEND MAP or
RECEIVE MAP inside COBOL programs.

• Typeterms (typeterms.desc file)
Contains all of the 3270 terminal types supported by the CICS Runtime TCP servers.

• Enqmodel (enqmodel.desc)
defines named resources for which the EXEC CICS ENQ and EXEC CICS DEQ
commands have a sysplex-wide scope.

• Extra TDQUEUE (tdqextra.desc)
Defines the attributes of extra transient data queues

Chapter 1
The CICS Runtime Tuxedo Servers

1-5



• Intra TDQUEUE (tdqintra.desc)
Defines the attributes of intra transient data queues

• System (system.desc)
Replaces the functions of system initialization table (SIT) on Mainframe.

• Terminal (terminals.desc)
Defines terminal and its attributes.

• Connection (connections.desc)
Defines the list of connections that can be loaded by ART CICS application servers.

• Web Service (webservice.desc)
Defines the Web services to be invoked. This file is used for the INVOKE WEBSERVICE
command.

• Programs List (program_list_table.desc)
Define the program list to be executed during ART CICS boot or shutdown.

• TCP/IP Socket Listener (listener.desc)
Define ART for CICS TCP/IP socket listener information.

Note:

ART CICS Runtime provides the tcxcsdcvt utility to automatically convert the
CICS CSD file to CICS Runtime resource configuration files. For more
information, see Oracle Tuxedo Application Runtime for CICS CSD Converter.

Chapter 1
The CICS Runtime Tuxedo Servers

1-6



2
Initial Configuration of the CICS Runtime

This chapter contains the following topics:

• CICS Runtime Configuration

• Verifying the Initial Setting Configuration

2.1 CICS Runtime Configuration
Before installing a CICS application, certain technical variables and paths must be defined in
order to create the CICS Runtime environment.

These operations must be completed before configuring individual CICS applications for use
with CICS Runtime.

CICS Runtime uses the following files:

• The UNIX System ~/.profile file to centralize values and paths used by the CICS
Runtime for its own needs or for Tuxedo.

• The Tuxedo envfile which contains parameters, variables and paths used by Tuxedo.

• The Tuxedo ubbconfig file to declare all the required CICS Runtime Tuxedo servers.

• The CICS Runtime resource configuration files used by the CICS Runtime Tuxedo servers

The details about configuring the runtime environment are described in the following topics:

• The UNIX ~/.profile File

• The Tuxedo System Files

• The CICS Runtime Resource Configuration Files

2.1.1 The UNIX ~/.profile File
For UNIX users, most required variables are defined in the .profile file that centralizes all of
the common variables and paths used by a user for commands and applications.

Set up in this file all of the common variables and paths that will be used later in the different
configuration files required by CICS Runtime or by the other technical software or middleware
invoked by it (Oracle, Tuxedo, MQ Series …).

This file should then be exported.

Set the following variables in the initial settings of ~/.profile file.

Table 2-1    .profile Variables

Variable Value Usage Variable usage

TUXDIR Set up at Installation time Compulsory. Directory containing
the Installed Oracle Tuxedo
product.

TUXEDO

2-1



Table 2-1    (Cont.) .profile Variables

Variable Value Usage Variable usage

TUXCONFIG Set up at Installation time Compulsory. Full path name of the
Tuxedo tuxconfig file

TUXEDO

KIXDIR Set up at Installation time Compulsory. Absolute path of the
directory containing the CICS
Runtime product

CICS Runtime

APPDIR ${KIXDIR}/bin Compulsory. Directory containing
the CICS Runtime Servers
Binaries

CICS Runtime

KIXCONFIG Set up at Installation time Compulsory. Directory where the
Resources Configuration Files of
the CICS Runtime are located

CICS Runtime

KIX_TS_DIR Set up at Installation time Compulsory. Directory used for the
non-recoverable CICS Queue TS.

CICS Runtime

Listing 2‑1 .profile file Initial Settings Example

export TUXDIR=/product/TUXEDO11GR1 # Directory containing the Installed 
Tuxedo product

export TUXCONFIG=${HOME}/SIMAPP/config/tux/tuxconfig # Full path name of the 
Tuxedo tuxconfig file

export KIXDIR=${HOME}/KIXEDO # Absolute path of the CICS Runtime product 
directory

export APPDIR=${KIXDIR}/bin # Directory containing the CICS Runtime Servers 
Binaries

export KIXCONFIG=${HOME}/SIMAPP/config/resources # Directory for resources 
files (*.desc)

export KIX_TS_DIR=${HOME}/SIMAPP/KIXTSDIR # Directory for TS no recovery

Table 2-2    envfile Variables

Variable Value Usage

LC_MESSAGES C UNIX formats of informative and
diagnostic messages

OBJECT_MODE 64 UNIX 64 bits architecture

APPDIR ${APPDIR} TUXEDO environment.

TUXCONFIG ${TUXCONFIG} TUXEDO environment

USER_TRACE SID TUXEDO environment. Trace
Type (one per user)

KIXCONFIG ${KIXCONFIG} CICS Runtime directory
containing its resource files

Chapter 2
CICS Runtime Configuration

2-2



Table 2-2    (Cont.) envfile Variables

Variable Value Usage

PATHTS ${KIX_TS_DIR} CICS Runtime directory used for
the unrecoverable Temporary
Storage

Listing 2‑2 envfile Initial Settings Example

# <TUXDIR>
# Refers to the location where you installed TUXEDO. The default
# location is "/usr/tuxedo".
#
# <APPDIR>
# Refers to the fully qualified directory name where your application
# runs (i.e., the location of the libraries, mapdefs, and MIB files).
#
# <TUXCONFIG>
# Refers to the fully qualified binary version of the TUXEDO
# configuration file. (This is usually the "tuxconfig" in the $APPDIR
# directory.)
#
#--------------------------------------------------------------------------
# TUXEDO environment
APPDIR=${KIXDIR}/bin
CONFDIR=${APPHOME}/config/tux
TUXCONFIG=${CONFDIR}/tuxconfig
FLDTBLDIR32=${KIXDIR}/src
FIELDTBLS32=msgflds32
OBJECT_MODE=64
 
#resource files directory
KIXCONFIG=${APPHOME}/config/resources
 
# Command executable paths
HAB_TRAN=none
 
# Other environment
LC_MESSAGES=C
 
# End

2.1.2 The Tuxedo System Files
This section contains the following topics:

• The Tuxedo Envfile File

• The Tuxedo ubbconfig File

2.1.2.1 The Tuxedo Envfile File
This envfile contains variables and paths used by Tuxedo and CICS Runtime. These
parameters should be set in addition to those set by the Tuxedo Administrator.

Chapter 2
CICS Runtime Configuration

2-3



Set the following variables in the initial settings of the envfile file:

Table 2-3    envfile Variables

Variable Value Usage

LC_MESSAGES C UNIX formats of informative and
diagnostic messages

OBJECT_MODE 64 UNIX 64 bits architecture

APPDIR ${APPDIR} TUXEDO environment.

TUXCONFIG ${APPDIR} TUXEDO environment

USER_TRACE SID TUXEDO environment. Trace Type (one
per user)

KIXCONFIG ${KIXCONFIG} CICS Runtime directory containing its
resource files

PATHTS ${KIX_TS_DIR} CICS Runtime directory used for the
unrecoverable Temporary Storage

Listing 2‑2 envfile Initial Settings Example

# <TUXDIR>
# Refers to the location where you installed TUXEDO. The default
# location is "/usr/tuxedo".
#
# <APPDIR>
# Refers to the fully qualified directory name where your application
# runs (i.e., the location of the libraries, mapdefs, and MIB files).
#
# <TUXCONFIG>
# Refers to the fully qualified binary version of the TUXEDO
# configuration file. (This is usually the "tuxconfig" in the $APPDIR
# directory.)
#
#--------------------------------------------------------------------------
# TUXEDO environment
APPDIR=${KIXDIR}/bin
CONFDIR=${APPHOME}/config/tux
TUXCONFIG=${CONFDIR}/tuxconfig
FLDTBLDIR32=${KIXDIR}/src
FIELDTBLS32=msgflds32
OBJECT_MODE=64
 
#resource files directory
KIXCONFIG=${APPHOME}/config/resources
 
# Command executable paths
HAB_TRAN=none
 
# Other environment
LC_MESSAGES=C
 
# End

Chapter 2
CICS Runtime Configuration

2-4



2.1.2.2 The Tuxedo ubbconfig File
The following initial configuration of CICS Runtime is configured for typical user scenario using
3270s clients oriented transactions. Some CICS Runtime Tuxedo servers are absolutely
needed while others can be optionally started and are not absolutely necessary at this time.

• The Mandatory Servers

• The Optional Servers

• The Mandatory Server Groups

• The Optional Server Groups

2.1.2.2.1 The Mandatory Servers
These servers must be started to run CICS Runtime and verify that the initial settings are
correct by being able to display the CICS Runtime Good Morning screen (Host Connection
Welcome Screen).

• The Terminal Control Program Listener (ARTTCPL server) is needed because it establishes
communication between end-users and CICS Runtime applications thru maps displayed
on 3270 terminals or emulators.

• The Connection Server (ARTCNX server) is also required because it offers technical
connections services during the user connection and disconnection phases. It is also used
to display the CICS system transactions CICS Runtime Good Morning screen thru the
System Transaction CSGM.

• The Administration Server (ARTADM server) is needed to replicate resources files for all
other servers.

2.1.2.2.2 The Optional Servers
These servers do not need to be launched because they are only used by CICS applications
not yet installed.

To not start these servers, comment-out the corresponding line in your ubbconfig file before
recompiling.

• The Synchronous Transaction Servers (ARTSTRN and ARTSTR1) that manage synchronous
transaction CICS applications

• The Asynchronous Transaction Servers (ARTATRN and ARTATR1) that manage asynchronous
transaction CICS applications.

• The Temporary Storage Server (ARTTSQ server) that manage TS QUEUES used in COBOL
CICS programs.

• The Tuxedo /Q TMQUEUE and TMQFORWARD servers that are only used for delayed
CICS Transactions.

Chapter 2
CICS Runtime Configuration

2-5



Note:

TMQUEUE must be started before ARTCNX to support the followings:

• INQUIRE NETNANE TERMINAL() ACQSTATUS()
• INQUIRE TERMINAL NETNAME() ACQSTATUS()
• SET TERMINAL RELEASED/ACQUIRED/CREATE
• Static LUNAME from 3270 terminal

Listing 2‑3 ubbconfig Initial Server Configuration Example

*SERVERS
ARTTCPL SRVGRP=TCP00
SRVID=101
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_tcp -e /home2/work9/demo/
Logs/TUX/sysout/stderr_tcp -- -M 4 -m 1 -L //deimos:2994 -n //deimos:2992"
 
ARTADM SRVGRP=ADM00
SRVID=3000
SEQUENCE=1
MIN=1 MAX=1
CLOPT="-o /home2/work9/trf/Logs/TUX/sysout/stdout_adm -e /home2/work9/trf/
Logs/TUX/sysout/stderr_adm -r --"
 
ARTCNX SRVGRP=GRP01
SRVID=15
CONV=Y
MIN=1 MAX=1 RQADDR=QCNX015 REPLYQ=Y
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_cnx -e /home2/work9/demo/
Logs/TUX/sysout/stderr_cnx -r --"

Where:

*SERVERS

Is the Tuxedo ubbconfig keyword indicating server definitions.

For the ARTTCPL server:

SRVGRP

Is the Tuxedo Group Name to which ARTTCPL belongs.

SRVID

Is the identifier of a ARTTCPL Tuxedo Server.

CLOPT

Is a quoted text string passed to the server containing its parameters.

-o

Indicates the file is used for the standard output messages of the server.

Chapter 2
CICS Runtime Configuration

2-6



-e

Indicates the file is used for the error output messages of the server.

-M 4

Indicates the maximum number of TCPL handler processes is 4.

-m 1

Indicates that the minimum number of TCPL handler processes is 1.

-L //deimos:2994

Indicates the internal URL address used by TCPL and TCPH for their own communication.

-n //deimos:2992

Indicates the URL address where the TN3270 terminals connect to TCPL.

For the ARTADM server:

SRVGRP

Is the Oracle Tuxedo group name to which ARTADM belongs.

SRVID

Is the identifier of a Tuxedo Server of ARTADM.

SEQUENCE=1

This line is mandatory. It indicates this server must be started first.

MIN=1 and MAX=1

Indicates that only one instance of this server must be run.

CLOPT

Is a quoted text string passed to the server containing its parameters.

-o

Indicates the file is used for standard output messages of the server.

-e

Indicates the file is used for error output messages of the server.

-r

Is a Tuxedo parameter used to produce statistical reports.

For the ARTCNX server:

SRVGRP

Is the Tuxedo Group Name to which ARTCNX belongs.

SRVID

Is the identifier of a Tuxedo Server of ARTCNX.

CONV=Y

Indicates that this server operates in a conversational mode.

Chapter 2
CICS Runtime Configuration

2-7



MIN=1 and MAX=1

Indicates that only one instance of this server must be run.

REPLYQ=Y

Indicates that this server will respond.

RQADDR=QCNX015

Name of the Tuxedo queue used for the responses.

CLOPT

Is a quoted text string passed to the server containing its parameters.

-o

Indicates the file is used for the standard output messages of the server.

-e

Indicates the file is used for the error output messages of the server.

-r

Is a Tuxedo parameter used to produce statistical reports.

2.1.2.2.3 The Mandatory Server Groups
To be started, a Tuxedo Server must be defined in a Tuxedo Server Group previously defined
in the ubbconfig file. As the ARTTCPL and ARTCNX servers are mandatory, verify that their groups
are defined, present and not commented-out, in the ubbconfig file.

In our example, ARTTCPL belongs to the Tuxedo Server Group TCP00 (SRVGRP=TCP00) and
ARTCNX belongs to the Server Group (SRVGRP=GRP01); therefore the ubbconfig file contains
these two Server Group definitions in the following example:

Listing 2‑4 Server Group Definitions

*GROUPS
DEFAULT: LMID=KIXR
# Applicative groups
TCP00 LMID=KIXR
GRPNO=1
TMSCOUNT=2
 
ADM00 GRPNO=5
GRP01
GRPNO=11
ENVFILE="/home2/work9/demo/config/tux/envfile"

Where:

*GROUPS

Tuxedo ubbconfig Keyword indicating definitions of Servers Groups.

LMID=

Name of the CICS.

Chapter 2
CICS Runtime Configuration

2-8



GRPNO=

Tuxedo Group.

TMSCOUNT=

Number of Tuxedo Transaction Manager Servers.

ENVFILE

Path of the Tuxedo envfile.

2.1.2.2.4 The Optional Server Groups
These groups are used to contain the optional servers. The first group is used by the Tuxedo
Server Servers Groups: ARTSTRN, ARTSTR1, ARTATRN, ARTATR1, ARTTSQ used by CICS
Applications. The second one is used only for TS QUEUE management.

2.1.3 The CICS Runtime Resource Configuration Files
All of the following files must exist in the ${KIXCONFIG} path, even when empty, for CICS
Runtime to be operational.

• The Mandatory Populated Files

• The Optional Initially Populated Files

2.1.3.1 The Mandatory Populated Files
1. The typeterms.desc Configuration File

This file used by the TCP servers, describes the different kinds of terminals used with a
3270 terminal or emulator.

Listing 2‑5 typeterm Description Example

[typeterm]
name=IBM-3279-5E
color=YES
defscreencolumn=80
defscreenrow=24
description="IBM 327x family terminal"
hilight=YES
logonmsg=YES
outline=NO
swastatus=ENABLED
uctran=NO
userarealen=0

Where

[typeterm]

Keyword to define a terminal type.

name=
Type of terminal.

color=YES

Chapter 2
CICS Runtime Configuration

2-9



Indicates whether the terminal uses extended color attributes.

defscreencolumn= 80

Number of columns of the terminal.

defscreenrow=24

Number of rows of the terminal

description="…"

Comment about the terminal.

hilight=YES

Indicates that this terminal supports the highlight feature.

logonmsg=YES

Indicates that "Good Morning" (CSGM) transaction is automatically started on the terminal
at logon time.

outline=NO

Indicates that this terminal does not support field outlining.
swastatus=ENABLED

Indicates that this terminal type is available for use by the system.

uctran=NO

Indicates that the lowercase alphabetic characters are not to be translated to uppercase

userarealen=0

The terminal control table user area (TCTUA) area size for the terminal.

2. The mapsets.desc Configuration File
This file must contain at least the following definition to start the CSGM transaction and
see the Good Morning screen.

Listing 2‑6 mapsets.desc Example

[mapset]
name=ABANNER
filename=<KIXDIR>/sysmap/abanner.mpdef

Where:

name=

Is the logical mapset name used inside the programs in the EXEC CICS SEND/RECEIVE
MAP(map name) MAPSET(mapset name) … END-EXEC statements.

filename=

Is the physical path containing the binary file resulting from the compilation of a mapset file
source coded in a CICS z/OS BMS format.

Chapter 2
CICS Runtime Configuration

2-10



Note:

For the particular case of the ABANNER system mapset, the filename is located
under the ${KIXDIR} directory. The bracketed text <KIXDIR> must be replaced by the
value of the ${KIXDIR} variable of your UNIX ~/.profile system file.

In our example following is the result:

Listing 2‑7 mapsets.desc Example with ${TUXDIR} Substitution

[mapset]
name=ABANNER
filename=/product/art11gR1/Cics_RT/sysmap/abanner.mpdef

2.1.3.2 The Optional Initially Populated Files
All the following files can be initially left empty:

• The transclasses.desc Configuration File

• The transactions.desc Configuration File

• The programs.desc Configuration File

• The tsqmodel.desc Configuration File

• The mapsets.desc Configuration File

• The connections.desc Configuration File

• The program_list_table.desc Configuration File

The contents and use of these files is described later.

Note:

If these files are left empty, when Tuxedo launches the CICS Runtime servers, some
error messages "CMDTUX_CAT:1685: ERROR: Application initialization failure" could be
displayed after the boot message of the ARTSTRN,ARTSTR1, ARTATRN and ARTATR1
servers indicating that the CICS Runtime considers this to be an anomaly.
The real number and type of servers displaying these messages depends on the
servers initially launched by your ubbconfig file.

In this case, the servers concerned will not be mounted.

For the moment, ignore these error messages, they do not impact the Initial Setting.

• The system.desc Configuration File

• The terminals.desc Configuration File

For more information, see Oracle Tuxedo Application Runtime for CICS Reference Guide

Chapter 2
CICS Runtime Configuration

2-11



2.2 Verifying the Initial Setting Configuration
The topics listed below describe how to verify your initial setting configuration of the resource
files:

• Using the Tuxedo tmadmin psr Commands

• Using the Tuxedo tmadmin psc Commands

• Using the CSGM CICS Good Morning Transaction

2.2.1 Using the Tuxedo tmadmin psr Commands
Once all the files have been modified (and compiled for the ubbconfig), stop and restart
Tuxedo to take their modifications into account.

The first control is to check that they are individually correctly accepted by Tuxedo and Oracle
by a visual control of the boot messages of the Tuxedo CICS Runtime Tuxedo servers.

Once this first check is made, you can enter the Tuxedo tmadmin psr command to check that
all the CICS Runtime servers are running and that their messages conform to the Tuxedo
documentation and this document.

When the mandatory servers ARTADM, ARTTCPL, and ARTCNX only are started, the following
messages are displayed:

Listing 2‑8 tmadmin psr Command Example

# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- ---------------
BBL 200933 KIXR 0 1 50 ( IDLE )
ARTTCPL 00001.00101 TCP00 101 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 3 150 ( IDLE )
 
> quit
#

Note:

The BBL Server is a Tuxedo System Server which can be compared to a CICS
server on z/OS.

2.2.2 Using the Tuxedo tmadmin psc Commands
You can also check that the required Tuxedo services are running using the tmadmin psc
command.

These services should include the System Transactions managed by CICS Runtime:

• CSGM: The Good Morning Screen

Chapter 2
Verifying the Initial Setting Configuration

2-12



• CESN: Sign On transaction

• CESF: Sign Off transaction

Listing 2‑9 tmadmin psc Command Example

# tmadmin
...
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 2 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 1 AVAIL
delsess cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
gensess cnxsvc ARTCNX GRP01 15 KIXR 1 AVAIL
update cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
inquire cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
 
> quit
#

Note:

From a certain point of view, this Tuxedo command is equivalent to the z/OS CICS
system transaction CEMT I TRAN(…) which allows you to display the available
transactions in a given z/OS CICS environment.

2.2.3 Using the CSGM CICS Good Morning Transaction
Once this first audit is made, you can access CICS Runtime with a 3270 Terminal or Emulator
using the following URL address${HOSTNAME}:${TCPNETADDR}.
Where:

${HOSTNAME}

Is the System UNIX variable containing the name of the UNIX machine on which you are
running CICS Runtime.

${TCPNETADDR}

Is the port number specified by the -n parameter of the ARTTCP server in the Oracle Tuxedo
UBBCONFIG file.

The following screen is displayed on a UNIX X11 Window after running the command # x3270
deimos:2992:

Chapter 2
Verifying the Initial Setting Configuration

2-13



Figure 2-1    Screen After Running the Command #3270 deimos:2992

Successfully displaying this screen signifies you can continue implementing CICS applications
using CICS Runtime.

Chapter 2
Verifying the Initial Setting Configuration

2-14



3
Security Configuration of the CICS Runtime

This chapter contains the following topics:

• Authentication Configuration

• Tuxedo Security Mechanisms

• Integration with the External Security Manager

• Security Profile Generator

• ART for CICS 3270 Terminal Default User

3.1 Authentication Configuration
CICS provides two system transactions for authentication purposes:

• CESN is the sign on transaction;

• CESF is the sign off transaction;

ARTTCP implements a similar authentication function leveraging Tuxedo's security
mechanisms. Two Tuxedo system services CESN and CESF are provided by CICS Runtime to
emulate the CESN and CESF transactions in CICS.

When a terminal connects to ARTTCP, ARTTCP creates a 3270 session and the session joins
Tuxedo with the default security profile. The user name defined in the default security profile
has the similar role as the CICS default user CICSUSER. The authentication process is then
as follows:

1. The operator calls the CESN transaction to sign on to Tuxedo CICS Runtime Runtime.

2. CESN sends a sign-on MAP to ask for username and password

3. The username and password are entered from the terminal.

4. ARTTCP re-joins Tuxedo using the username and password entered from the terminal.

5. If the authentication:

• succeeds, a success message is returned to the terminal.

• fails, an error message is returned to the terminal.

6. When completing the operations, the operator calls service CESF to sign off from Tuxedo
CICS Runtime Runtime.

3.2 Tuxedo Security Mechanisms
ARTTCP supports three types of Tuxedo security mechanisms: application password
(APP_PW), user-level authentication (USER_AUTH), and access control list (ACL and
MANDATORY_ACL).

The application password security mechanism requires that every client provide an application
password as part of the process of joining the Tuxedo ATMI application. The administrator
defines a single password for the entire Tuxedo ATMI application and gives the password only

3-1



to authorized users. For more information on how to configure Tuxedo application password,
please refer to Tuxedo documentation.

The user-level authentication security mechanism requires that in addition to the application
password, each client must provide a valid username and password to join the Tuxedo ATMI
application. The per-user password must match the password associated with the user name
stored in a file named tpusr. Client name is not used. The checking of per-user password
against the password and user name in tpusr is carried out by the Tuxedo authentication
service AUTHSVC, which is provided by the Tuxedo authentication server AUTHSVR. For more
information on how to configure Tuxedo user-level authentication, please refer to Tuxedo
documentation.

When Tuxedo security is enabled, a default security profile, which includes the default
USER_AUTH username and password and/or the APP_PW password, is required to allow users to
join the Tuxedo domain before calling the CESN service. A security profile generator tool is
introduced to generate the default security profile. Please refer to Security Profile Generator for
details.

In the case of APP_PW, the Tuxedo application password must be created in Tuxedo
configuration.

In the case of USER_AUTH, the Tuxedo application password, a Tuxedo username and password
must be created in the Tuxedo configuration.

In both cases, the password (and username for USER_AUTH) must be specified in the default
security profile file that is specified in the command line option (-p profile-name) of the Tuxedo
ARTTCPL server. The password (and username for USER_AUTH) will be used as parameters of
tpinit() when ARTTCP server joins Tuxedo.

3.3 Integration with the External Security Manager
CICS Runtime offers a security framework which allows a customer to choose integration with
an external security manager. The Tuxedo application key (appkey) is used as the credential to
be passed to an external security manager. The appkey is 32 bits long, Tuxedo user identifier is
in the low order 17 bits and the Tuxedo group identifier is in the next 14 bits (the high order bit
is reserved for administrative keys). For more information, please refer to Tuxedo
documentation.

The appkey is passed in AUTH-GROUPID
An authorisation function CheckResourceAuth.gnt is available for customization by the
integration team. This function is called by CICS Runtime each time a resource authorization
should be checked for a given resource.

A default function that always returns an ok status is provided. It can be replaced by a project
specific version by the integration team, for a project where CICS resource authorization must
be activated in addition to transaction authorization.

Listing 3‑1 COBOL CICS Resource Authorization Interface

01 ret-code usage int.
LINKAGE SECTION.
01 AUTH-USERID PIC X(30).
01 AUTH-GROUPID PIC X(256).
01 AUTH-RSRCE-TYPE PIC X(256).
01 AUTH-RSRCE-NAME PIC X(512).
01 AUTH-ACCESS-TYPE PIC X(6).

Chapter 3
Integration with the External Security Manager

3-2



PROCEDURE DIVISION USING LK-AUTH-USERID LK-AUTH-GROUPID
LK-AUTH-RSRCE-TYPE LK-AUTH-RSRCE-NAME
LK-AUTH-ACCESS-TYPE.

• Accepting

• Returning

• Codification

3.3.1 Accepting

Table 3-1    COBOL CICS Function Names for Resource Authorization

Function Name Description

AUTH-USERID Connection name of the user limited to 8 characters

AUTH-GROUPID Reserved for future extension

AUTH-RSRCE-TYPE Type of resource being checked (see Codification).

AUTH-RSRCE-NAME Name of the resource to check authorization on

AUTH-ACCESS-TYPE Type of access requested on the resource ("READ", "ALTER", "UPDATE")

3.3.2 Returning

Table 3-2    Function Return Status for Resource Authorization

Status Returned Description

0 For authorization approved.

-1 For authorization refused or failed.

3.3.3 Codification
The resources types are codified as in a native CICS/RACF environment: XTST for Temporary
Storage resources, XFCT for files.

See native CICS documentation for more information. The default version of this function
provided with CICS Runtime always returns 0.

3.4 Security Profile Generator
When Tuxedo security is enabled, a default security profile, which includes the APP_PW
password and the default USER_AUTH username and password, is required to allow the user to
join the Tuxedo domain before calling the CESN service.

A security profile generator tool genappprofile is introduced to generate the default security
profile for TCP

Chapter 3
Security Profile Generator

3-3

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/syscomtrans.html#wp1127714


3.5 ART for CICS 3270 Terminal Default User
If Tuxedo security is enabled, when 3270 terminal is connected, ART for CICS will use a
default user for this session. Before you do CESN to logon CICS, you can only do CESN/
CSGM/CESF.

You do not need to create additional tpuser when Tuxedo security is enabled.

Note:

Set application password to empty by entering "Enter" key when tmloadcf prompts
"Enter New Application Password".

Chapter 3
ART for CICS 3270 Terminal Default User

3-4



4
Implementing CICS Applications

This chapter contains the following sections:

• Presentation of the z/OS Simple Application

• Verifying the CICS Application Installation

• Presentation of Simple Application on COBOL-IT / BDB

• Implementing Synchronous CICS Transactions With a Limited Number of Parallel
Instances

• Implementing Asynchronous CICS Non-Delayed Transactions

• Implementing Asynchronous CICS Delayed Transactions

• Implementing CICS Application Using Temporary Storage (TS) Queues

• Managing TD Queue Intrapartititions

• Implementing CICS Application Using Temporary Storage (TS) Queue POOL

• Implementing Distributed Program Link (DPL)

• Implementing CICS Common Work Area (CWA)

• Implementing a CICS Transaction Work Area (TWA)

• Implementing Integration with WebSphere MQ

• Implementing Using Multiple Session Management

• Implementing Using ART for CICS TCP/IP Socket Interface

• Implementing Transferring CICS Regions

• Implementing Intersystem Communication

• Implementing Submitting JCL/KSH Online

• Implementing ART for CICS Control Utility

• Implementing Printing CICS Runtime Applications Data

• Implementing Invoking Web Services from CICS Applications

• Implementing CICS as HTTP Client

• Implementing CICS as HTTP Server

• Implementing ART for CICS Application Server Customized Callback Support

• Implementing Resource-Based Authorization

• Implementing COBOL Program Debugging in CICS Runtime

• CICS Runtime Logs

• The CICS Runtime Server Logs

• Disabling and Enabling Programs

• CICS Runtime C Program Support

4-1



4.1 Presentation of the z/OS Simple Application
The chapter contains the following topics:

• Introduction

• Description of the CICS Simple Application Components

• Configuring a Standard CICS Application With CICS Runtime

• CICS Runtime Configuration

4.1.1 Introduction
This application was initially developed on a z/OS platform implementing COBOL programs
used in batch and CICS contexts with VSAM and QSAM files and DB2 tables.

Data was unloaded from z/OS and converted and reloaded on a UNIX platform using Oracle
Tuxedo Application Rehosting Workbench.

The language components were converted or translated from z/OS to UNIX by Oracle Tuxedo
Application Rehosting Workbench.

These components use two major Oracle Tuxedo Application components, Batch Runtime and
CICS Runtime, to emulate the technical centralized features of their original z/OS environment.
Here, we will focus on the particular case of the CICS Runtime implementing COBOL
Programs using CICS statements and DB2 statements.

This Simple Application manages the customers of a company through a set of classical
functions like creation, modification and deletion.

4.1.2 Description of the CICS Simple Application Components
All of the CICS components are declared with the same name, in the z/OS CICS CSD File. All
of the resource declarations are made inside a z/OS CICS GROUP named PJ01TERM. This
group is declared in the z/OS CICS LIST PJ01LIST used by CICS at start up to be
automatically installed.

• Mapsets

• Programs

• Transactions Codes

• VSAM File

4.1.2.1 Mapsets

Table 4-1    Simple Application Mapsets

Name Description

RSSAM00 Customer maintenance entry menu

RSSAM01 Customer data inquiry screen

RSSAM02 Customer data maintenance screen (create, update and delete customer)

RSSAM03 Customer list screen

Chapter 4
Presentation of the z/OS Simple Application

4-2



4.1.2.2 Programs

Table 4-2    Simple Application Program

Name Description

RSSAT000 Customer maintenance entry program

RSSAT001 Customer data inquiry program

RSSAT002 Customer data maintenance program (new customer, update and delete
customer)

RSSAT003 Customer list program

4.1.2.3 Transactions Codes

Table 4-3    Transaction Codes

Name Description

SA00 Main entry transaction code (program RSSAT000)

SA01 Customer inquiry (program RSSAT001)

SA02 Customer maintenance (program RSSAT002)

SA03 Customer list (program RSSAT003)

4.1.2.4 VSAM File

Table 4-4    Simple Application VSAM File

DDName DataSetName Description

ODCSF0 PJ01AAA.SS.VSAM.CU
STOMER

VSAM Main Customer File

4.1.3 Configuring a Standard CICS Application With CICS Runtime
The first example uses the CICS Simple File-to-Oracle application which uses only a z/OS
VSAM File converted into a UNIX Oracle Table.

In our example, all of the UNIX components resulting from platform migration are stored in the
trf directory.

The COBOL programs and BMS mapsets should be compiled and available as executable
modules in the respective directories ${HOME}/trf/cobexe and ${HOME}/trf/MAP_TCP.
• CICS Simple File-to-Oracle Application UNIX Components

4.1.3.1 CICS Simple File-to-Oracle Application UNIX Components
This section contains the following topics:

• COBOL Program Files

• The Mapset Files

Chapter 4
Presentation of the z/OS Simple Application

4-3



4.1.3.1.1 COBOL Program Files
The ${HOME}/trf/cobexe directory contains the Simple Application CICS executable
programs:

• ${HOME}/trf/cobexe/RSSAT000.gnt
• ${HOME}/trf/cobexe/RSSAT000.gnt
• ${HOME}/trf/cobexe/RSSAT002.gnt
• ${HOME}/trf/cobexe/RSSAT003.gnt

4.1.3.1.2 The Mapset Files
The ${HOME}/trf/MAP_TCP directory contains the Simple Application Data z/OS BMS mapsets
compiled:

• ${HOME}/trf/MAP_TCP/RSSAM00.mpdef
• ${HOME}/trf/MAP_TCP/RSSAM01.mpdef
• ${HOME}/trf/MAP_TCP/RSSAM02.mpdef
• ${HOME}/trf/MAP_TCP/RSSAM03.mpdef

4.1.4 CICS Runtime Configuration
For a standard application, in addition to the initial settings, the following CICS resources in the
same Group must be implemented:

• Basic CICS transactions (synchronous and simultaneous).

• COBOL Programs without SQL statements, CICS TS queues.

• Mapsets.

• VSAM file (logical name and associated data accessors).

To configure these resources:

1. Declare these resources in their respective CICS Runtime Resource Configuration File.

2. Configure the CICS Runtime Tuxedo Servers Groups and Servers to manage these
resources. See Reference for a full description of which configuration files are used with
each server.

The following topics describe in detail the configuration process:

• Declaring CICS Resources to the CICS Runtime

• Declaring CICS Transactions Codes

• Declaring a CICS COBOL Program

• Declaring CICS Mapsets

• Declaring ISAM Files Resulting From a z/OS VSAM File Conversion

• Modifying the CICS Runtime Tuxedo Servers

• Modifying the CICS Runtime Tuxedo Servers Groups

Chapter 4
Presentation of the z/OS Simple Application

4-4



4.1.4.1 Declaring CICS Resources to the CICS Runtime
Each resource is declared in the file corresponding to its type (program, transaction …). Each
resource defined in a resource file must belong to a group.

In the following examples using the CICS Simple File-to- Oracle Application, we will use the
CICS Runtime Group name SIMPAPP and all our *.desc files will be located in the $
{home}/trf/config/resources directory.

Note:

In these configuration files, each line beginning with a "#" is considered as a
comment and is not processed by CICS Runtime

4.1.4.2 Declaring CICS Transactions Codes
These declarations are made by filling the transactions.desc file for each transaction you
have to implement.

For each transaction you have to declare in a csv format

1. The name of the transaction (mandatory).

2. The CICS Runtime Group name (mandatory).

3. A brief description of the transaction (optional, at least one blank)

4. The name of the program started by this transaction (mandatory).

In the File-to-Oracle Simple Application example, we have to declare four transactions: SA00,
SA01, SA02 and SA03 in the SIMPAPP Group, starting the corresponding COBOL programs
RSSAT000, RSSAT001, RSSAT002 and RSSAT003.

Once filled, the transactions.desc file looks like this:

Listing 4‑1 Simple Application transactions.desc File

#Transaction Name ;Group Name ; Description ;Program Name
SA00;SIMPAPP; Home Menu Screen of the Simple Application;RSSAT000
SA01;SIMPAPP; Customer Detailed Information Screen of the Simple 
Application;RSSAT001
SA02;SIMPAPP; Customer Maintenance Screen of the Simple Application;RSSAT002
SA03;SIMPAPP; Customer List of the Simple Application;RSSAT003

4.1.4.3 Declaring a CICS COBOL Program
All the programs used by the transactions previously declared, directly or indirectly through
EXEC CICS statements like LINK, XCTL, START … must be declared in the same Group.

These declarations are made in the programs.desc file for each program to implement.

For each program you have to declare in a csv format:

1. The name of the program (mandatory)

2. The CICS Runtime Group name (mandatory)

Chapter 4
Presentation of the z/OS Simple Application

4-5



3. A brief description of the program (optional, at least one blank)

4. The language in which the program is written COBOL (default)

In our Simple Application example, the only programs needed are RSSAT000, RSSAT001,
RSSAT002 and RSSAT003 which are all coded in the COBOL language

Once filled, the programs.desc file looks like this:

Listing 4‑2 Simple Application programs.desc File

#PROGRAM;GROUP;DESCRIPTION;LANGUAGE;
RSSAT000;SIMPAPP; Home Menu Program of the Simple Application ;COBOL
RSSAT001;SIMPAPP; Customer Detailed Information Program of the Simple 
Application ;COBOL
RSSAT002;SIMPAPP; Customer Maintenance Program of the Simple Application
RSSAT003;SIMPAPP; Customer List of the Simple Application ;COBOL

Note:

Nothing is declared in the language field of RSSAT002, meaning that the
LANGUAGE of this program is COBOL by default.

4.1.4.4 Declaring CICS Mapsets
To converse with end-users thru 3270 terminals or emulators, declare to CICS Runtime all of
the physical mapsets (*.mpdef file) used in the COBOL programs previously defined thru the
specific EXEC CICS statements described above in this document.

These declarations are made by filling the mapsets.desc file for each mapset you have to
implement.

The input format of each of your mapset definitions must respect the following format
description:

1. On the first free physical line, type the [mapset] keyword.

2. On the next line, enter the keyword name= followed by the name of your mapsets.

3. On the next line, enter the keyword filename= followed by the physical path of your
physical mapsets (.mpdef file).

In our Simple Application example, the mapsets used in our COBOL programs are RSSAM00,
RSSAM01, RSSAM02 and RSSAM03.
Once filled, the mapsets.desc file looks like this:

Listing 4‑3 Simple Application mapsets.desc File

[mapset]
name=ABANNER
filename=<KIXDIR>/sysmap/abanner.mpdef 
[mapset]
name=RSSAM00
filename=<HOME>/demo/MAP_TCP/RSSAM00.mpdef
[mapset]
name=RSSAM01

Chapter 4
Presentation of the z/OS Simple Application

4-6



filename=<HOME>/demo/MAP_TCP/RSSAM01.mpdef
[mapset]
name=RSSAM02
filename=<HOME>/demo/MAP_TCP/RSSAM02.mpdef
[mapset]
name=RSSAM03
filename=<HOME>/demo/MAP_TCP/RSSAM03.mpdef

Note:

The mapsets.desc file does not accept UNIX variables, so a fully expanded path
must be provided in this file.

• <KIXDIR>: must be replaced by the value of the ${KIXDIR} variable of the
~/.profile.

• <HOME>: must be replaced by the value of the ${HOME} variable of the
~/.profile.

4.1.4.5 Declaring ISAM Files Resulting From a z/OS VSAM File Conversion
Previously, before declaring one or more files to CICS Runtime, all the physical components,
files, accessor programs, COBOL Copybooks etc. must have been generated by the Oracle
Tuxedo Application Rehosting Workbench Data components.

Among all the components built or converted by the Oracle Tuxedo Application Rehosting
Workbench Data components, only accessor programs on converted VSAM files are used by
CICS Runtime. The reason is that, once migrated, no file can be directly accessed. The file can
only be accessed indirectly through an accessor program dedicated to the management of this
file (one and only one accessor program per source file).

The Simple Application uses only the CUSTOMER Oracle table, resulting from the Oracle
Tuxedo Application Rehosting Workbench Data Conversion of the z/OS VSAM KSDS file
PJ01AAA.SS.VSAM.CUSTOMER.

So, for our File-to-Oracle application example, we have only one accessor, RM_ODCSF0 (RM for
Relational Module), to declare to CICS Runtime.

Note:

ODCSF0 represents the logical name previously defined in CICS that pointed to the
physical file name PJ01AAA.SS.VSAM.CUSTOMER. Consequently, it is also the only file
name known from the CICS COBOL program to access this file by EXEC CICS
statements.

• To Declare the ISAM Migrated Files:

4.1.4.5.1 To Declare the ISAM Migrated Files:
1. Modify the Tuxedo envfile adding a new variable, if not already present, describing all the

VSAM/ISAM files used in the programs previously defined.

Chapter 4
Presentation of the z/OS Simple Application

4-7



For our Simple Application example the following line must be entered, (for simplicity, we
have located the file in the same place as the ubbconfig, envfile and tuxconfig files but this
is not mandatory.

DD_VSAMFILE=${HOME}/trf/config/tux/desc.vsam
2. If the file does not exist, physically create the desc.vsam file at the indicated location.

3. Modify the desc.vsam file by adding a new line describing the different information fields
used by the accessor in a "csv" format for each accessor/file used.

For our Simple Application example, the following line is entered:

Listing 4‑4 Simple Application ISAM File Declaration

#DDname;Accessor;DSNOrganization;Format;MaxRecordLength;KeyStart;KeyLength
ODCSF0;RM_ODCSF0;I;F;266;1;6

Where:

ODCSF0

Is the Data Description Name (logical name) used in the EXEC CICS Statements.

RM_ODCSF0

Is the name of the accessor program managing the access to the Oracle table resulting from
the data conversion of the former VSAM File

I

The Data Set Name organization is indexed

F

Fixed, all the records have the same fixed length format.

266

Maximum record length.

1

Key position in the file (1 means first column or first character).

6

Key length.

4.1.4.6 Modifying the CICS Runtime Tuxedo Servers
To manage CICS application transactions, in addition to the servers previously defined:

1. Implement the CICS Runtime Tuxedo Server ARTSTRN.
This server manages only basic CICS Runtime transactions, those that are the most often
used: synchronous (not delayed) and simultaneous (not only one at a time).

2. Indicate to CICS Runtime to start only the transactions belonging to the SIMPAPP CICS
Runtime Group name.
The following example of a *SERVERS section of the Tuxedo ubbconfig file shows the
configuration of a ARTSTRN server.

Chapter 4
Presentation of the z/OS Simple Application

4-8



Listing 4‑5 Simple Application CICS Runtime Server Tuxedo Configuration

*SERVERS
…
ARTSTRN SRVGRP=GRP02
SRVID=20
CONV=Y
MIN=1 MAX=1 RQADDR=QKIX110 REPLYQ=Y
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_strn -e /home2/work9/demo/
Logs/TUX/sysout/stderr_strn -r -- -s KIXR -l SIMPAPP "
…

Where

*SERVERS

Tuxedo ubbconfig Keyword indicating a Server Section definition.

SRVGRP

Is the Tuxedo Group Name to which ARTSTRN belongs.

SRVID

Is the identifier of a Tuxedo Server of ARTSTRN.

CONV=Y

Indicates that this server operates in a conversational mode.

MIN=1 and MAX=1

Indicates that only one instance of this server must be run.

REPLYQ=Y

Indicates that this server will respond.

RQADDR=QCNX015

Name of the Tuxedo queue used for the responses.

CLOPT

Is a quoted text string passed to the server containing its parameters.

-o

Indicates the file used for the standard output messages of the server.

-e

Indicates the file used for the error output messages of the server.

-r

Is a Tuxedo parameter used to provide statistical reports.

-s KIXR

Indicates the CICS Runtime name where the KIXR transaction is run.

-l SIMAPP

Chapter 4
Presentation of the z/OS Simple Application

4-9



Indicates that only the transaction of the SIMAPP group are to be selected.

4.1.4.7 Modifying the CICS Runtime Tuxedo Servers Groups
To be started, the ARTSTRN server must be defined in a Tuxedo Server Group previously
defined (and not commented) in the ubbconfig file.

In our example, ARTSTRN belong to the Tuxedo Server Group GRP02 (SRVGRP=GRP02).

Listing 4‑6 Simple Application CICS Runtime Tuxedo Servers Groups Example:

*GROUPS
…
GRP02
GRPNO=12
ENVFILE="/home2/work9/demo/config/tux/envfile"
TMSNAME="TMS_ORA"

Where

*GROUPS

Tuxedo ubbconfig Keyword indicating a Server Section Group section definition.

GRPNO=

Tuxedo Group.

ENVFILE=

Path of the Tuxedo envfile.

TMSNAME=

Name of the Tuxedo Transaction Manager Server executable.

4.2 Verifying the CICS Application Installation
The following topics describe how to verify your CICS application installation:

• Using the Tuxedo tmadmin psr Commands

• Using the Tuxedo tmadmin psc Commands

• Using the CICS Runtime Application

4.2.1 Using the Tuxedo tmadmin psr Commands
Enter the Tuxedo tmadmin psr command to check that all of the CICS Runtime required
servers (ARTTCPL, ARTCNX, and ARTSTRN) are running and that their messages conform to the
Tuxedo documentation and this document.

Listing 4‑7 tmadmin psr Simple Application Installation Check

# tmadmin
...
 
> psr

Chapter 4
Verifying the CICS Application Installation

4-10



Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- ---------------
BBL 200933 KIXR 0 2 100 ( IDLE )
ARTTCPL 00001.00101 TCP00 101 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 2 100 ( IDLE )
ARTSTRN QKIX110 GRP02 20 6 300 ( IDLE )
 
> quit
#

4.2.2 Using the Tuxedo tmadmin psc Commands
Another possible check can be made by entering the Tuxedo tmadmin psc command to display
all the different Tuxedo Services running.

In addition to the CICS Runtime System transactions/services (CSGM, CESN, CESF …), you can
now see the transaction codes of your CICS Runtime application SA00, SA01, SA02 and SA03
Listing 4‑8 tmadmin psc Simple Application Installation Check

# tmadmin
...
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 1 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 1 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 3 AVAIL
SA02 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 3 AVAIL
 
> quit
#

4.2.3 Using the CICS Runtime Application
Before using the CICS application, you have to populate the ISAM files accessed by your
application. Then, access CICS Runtime with a 3270 Terminal or Emulator, with a UNIX x3270
command. It should be:

# x3270 ${HOSTNAME}:${TCPNETADDR}
Where:

${HOSTNAME}

Is the System UNIX variable containing the name of the UNIX machine on which you are
running CICS Runtime.

${TCPNETADDR}

Chapter 4
Verifying the CICS Application Installation

4-11



Is the port number for your UNIX 3270 emulator set up by your Tuxedo Administrator at
installation time in the ubbconfig file.

1. You will receive the Good Morning Message.

2. Clear it by pressing the Clear key of your 3270 emulator keypad.

3. Type the main transaction code SA00 (of your CICS Runtime application) in the top left
corner:

Figure 4-1    Simple Application Transaction Code Entry

4. The main menu of the application is displayed:

Chapter 4
Verifying the CICS Application Installation

4-12



Figure 4-2    Simple Application Main Menu

5. Navigate through the screens of the application to check that they are displayed without
errors.

4.3 Presentation of Simple Application on COBOL-IT / BDB
Based on BDB with XA protocol, the CICS COBOL programs compiled by COBOL-IT can
access the indexed ISAM files which are converted from Mainframe VSAM files through the
ART Workbench. The following sections describes the configurations that should be done in
ART CICS Runtime to enable this application.

• Configuring ubbconfig File in CICS Runtime

• Building BDB TMS Server

• Exporting Variables Before Booting Up ART Servers

4.3.1 Configuring ubbconfig File in CICS Runtime
Add the MRM parameter in the group entry of *GROUPS and *RMS section in Tuxedo
ubbconfig file. See the following example:

Listing 4‑9 Adding MRM Parameter in ubbconfig File Example

*GROUPS
GRP02
GRPNO=12
MRM=Y
*RMS
MRMG_RM1
SRVGRP=GRP02
RMID=15

Chapter 4
Presentation of Simple Application on COBOL-IT / BDB

4-13



TMSNAME="TMS_BDB"
OPENINFO="BERKELEY-DB:/home2/work10/data"

Where:

*GROUPS

Tuxedo ubbconfig keyword indicating the definitions of Servers Groups.

GRPNO

Indicates the Tuxedo Group.

MRM= Y

Indicates that this server group can support multiple resource managers.

*RMS

Tuxedo ubbconfig keyword indicating the definitions of resource managers.

MRMG_RM1

Indicates the logical name of RMS entry.

SRVGRP

Indicates the name of the group associated with this RM.

RMID

Indicates the unique ID number of this RM in the group. ID number must be between 1 and 31.

TMSNAME

Indicates the name of the transaction manager server associated with the group specified by
SRVGRP.

OPENINFO

Indicates the resource manager dependent information needed when opening resource
manager for the associated group.

4.3.2 Building BDB TMS Server
To build the BDB TMS server, add the following lines to

$TUXDIR/udataobj/RM::

BDB_HOME=/opt/cobol-it-64-bdb
BERKELEY-DB:db_xa_switch:-L/opt/cobol-it-64-bdb/lib -ldb-18.1
After updating the RM file, execute the following command to build TMS server for BDB:

buildtms -v -r BERKELEY-DB -o $APPDIR/TMS_BDB

4.3.3 Exporting Variables Before Booting Up ART Servers
Export the following variables explicitly before booting up the ART servers:

• DD_VSAMFILE

Chapter 4
Presentation of Simple Application on COBOL-IT / BDB

4-14



export DD_RBDB02=${DATA}/MTWART.ES.SFI.RCIBDB02.BDB0122
RBDB02 is the logical file name.

• COB_ENABLE_XA
export COB_ENABLE_XA=1

4.4 Implementing Synchronous CICS Transactions With a
Limited Number of Parallel Instances

In some particular cases, the number of transactions bearing the same transaction code
running simultaneously has to be limited, for performance constraints for example.

On z/OS, this limit cannot be defined in the transaction resource itself but is defined in a
distinct resource named TRANCLASS (transaction class) that contains a specific MAXACTIVE
parameter describing the maximum number of concurrent instances of the same transaction.

To link a transaction to a transaction class, to inherit its parameters, especially the MAXACTIVE
parameter, the z/OS CICS transaction resource has a TRANCLASS field containing the name
of the TRANCLASS resource.

This instance management is performed differently on UNIX with CICS Runtime. The
maximum number of transactions running concurrently is defined by the number of servers
offering the same transaction. This maximum number and the minimum number are indicated
respectively in the MAX and MIN parameters of the ARTSTRN definition in the *SERVERS section of
the Tuxedo file ubbconfig.

It means that the maxactive parameter is not taken in account to manage these limits except in
the following very particular case:

• The Special Case of Transaction Classes With MAXACTIVE=1

• Modification of the ubbconfig File for Sequential Transactions

• Checking the ARTSTR1 Configuration

4.4.1 The Special Case of Transaction Classes With MAXACTIVE=1
The MAXACTIVE=1 is really an exception in this management because it indicates that no
concurrent transaction belonging to these kind of transaction classes can be run
simultaneously.

To manage this very particular case of sequential transactions, a Tuxedo CICS Runtime
feature must be configured.

4.4.2 Modification of the ubbconfig File for Sequential Transactions
All of the transactions linked to transactions classes with a MAXACTIVE superior or equal to 2
are managed by the CICS Runtime Tuxedo Server ARTSTRN and do not required modifying
anything else. For the transactions with a MAXACTIVE parameter set to 1, an CICS Runtime
Tuxedo Server named ARTSTR1 is dedicated to their specific management.

To activate this server, modify the ubbconfig file to add this server in the *SERVERS section:

Chapter 4
Implementing Synchronous CICS Transactions With a Limited Number of Parallel Instances

4-15



Listing 4‑10 Adding a ARTSTR1 Server to ubbconfig

*SERVERS
…
ARTSTR1 SRVGRP=GRP02
SRVID=200
CONV=Y
MIN=1 MAX=1
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_str1 -e /home2/work9/demo/
Logs/TUX/sysout/stderr_str1 -r -- -s KIXR -l SIMPAPP"
…

Where:

*SERVERS

Tuxedo ubbconfig Keyword indicating a Server Section definition.

SRVGRP

Is the Tuxedo Group Name to which ARTSTR1 belongs.

SRVID

Is the identifier of a ARTSTR1 Tuxedo Server.

CONV=Y

Indicates that this server operates in a conversational mode.

MIN=1 and MAX=1

Are mandatory and indicate that only one instance of this server must run.

CLOPT

Is a quoted text string passed to the server containing the parameters:

-o

Indicates the file used for the standard output messages of the server.

-e

Indicates the file used for the error output messages of the server.

-r

Is a Tuxedo parameter used to produce statistical reports.

-s

KIXR indicates the CICS Runtime name where the KIXR transaction is run.

-l SIMAPP

Indicates that only the transaction of the SIMAPP group are to be selected.

Chapter 4
Implementing Synchronous CICS Transactions With a Limited Number of Parallel Instances

4-16



Note:

All of the CICS Runtime Transaction Servers (ARTSTRN, ARTSTR1, ARTATRN and
ARTATR1) share the same CICS Runtime Transaction Group Servers, no
modifications are required to the ubbconfig Server Group Section (*GROUPS).

• Modifying the tranclasses.desc File

• Modifying the transactions.desc File

4.4.2.1 Modifying the tranclasses.desc File
For ART CICS, concurrent transactions do not really need to be bound to transactions classes
with MAXACTIVE parameters superior or equal to two because parallelism is the default
behavior.

For sequential transactions, it is mandatory because it is the only way to declare these
transactions to CICS Runtime. Declare specific transaction classes defined with a MAXACTIVE=1
parameter. Like the other CICS Runtime resources, this one must belong to an CICS Runtime
Group name. For each TRANCLASS, declare in a csv format:

1. The name of the transaction class (mandatory)

2. The CICS Runtime Group name (mandatory)

3. A brief description of the transaction class (optional, at least one blank)

4. The maximum number of the same transaction to RUN (MAXACTIVE).

Note:

The MAXACTIVE parameter should be understood like a binary switch:

• MAXACTIVE=1 <=> Sequential transaction class (mandatory)

• MAXACTIVE>1 (all the values are at this step equivalent) <=> Concurrent
transaction (optional).

Examples:

TRCLASS1;SIMPAPP ; Tranclass with maxactive set to 1; 1
TRCLASS2;SIMPAPP ; Tranclass with maxactive set to 2; 2
TRCLAS10;SIMPAPP ; Tranclass with maxactive set to 10; 10

The first transclass TRCLASS1 has is maxactive parameter equal to 1, indicating that all the
transaction belonging to this transclass must be managed sequentially by the ARTSTR1.

The two last tranclasses, TRCLASS2 and TRCLASS10, are in fact similar because their maxactive
parameters are superior to 1 indicating that the transactions belonging to these tranclasses
can run concurrently managed by the ARTSTRN server.

Chapter 4
Implementing Synchronous CICS Transactions With a Limited Number of Parallel Instances

4-17



Note:

These two last definitions are optional. Their absence has the same meaning.

4.4.2.2 Modifying the transactions.desc File
In addition to the first four mandatory fields of this csv format file (Transaction name, Group
name, Description, Program name), you must add a twelfth field: TRANCLASS (Transaction
Class name).

The TRANCLASS field must be separated from the Program field by eight semicolon
characters (';') with at least one blank between each of them.

In our example, let us suppose that the CICS Runtime Simple Application must have the
following MAXACTIVE limits:

• SA00: MAXACTIVE=0

• SA01: MAXACTIVE=1

• SA02: MAXACTIVE=2

• SA03: MAXACTIVE=10

Then these transactions must be linked to the following tranclasses that we have previously
defined:

• SA00: none

• SA01: TRCLASS1

• SA02: TRCLASS2

• SA03: TRCLAS10

Once modified, the transactions.desc file will look like this:

Listing 4‑11 Example transactions.desc File

#Transaction Name ;Group Name ; Description ;Program Name
SA00;SIMPAPP; Home Menu Screen of the Simple Application;RSSAT000
SA01;SIMPAPP; Customer Detailed Information Screen of the Simple ; 
Application;RSSAT001; ; ; ; ; ; ; ;TRCLASS1
SA02;SIMPAPP; Customer Maintenance Screen of the Simple 
Application;RSSAT002; ; ; ; ; ; ; ; TRCLASS2
SA03;SIMPAPP; Customer List of the Simple Application;RSSAT003; ; ; ; ; ; ; ; 
TRCLASS10

Chapter 4
Implementing Synchronous CICS Transactions With a Limited Number of Parallel Instances

4-18



Note:

• No modification is made to SA00 meaning that no transaction class is associated
with this transaction code. It means that this transaction is not associated with a
MAXACTIVE=1 parameter and so is not sequential

• SA02 and SA03 are associated to transaction classes, respectively TRCLASS2
and TRCLASS10, defined with MAXACTIVE >= 2. Knowing that these
transactions are not required, the result would be the exactly the same if SA02
and SA03 were defined like SA00 without transaction classes.

• SA01, which can run sequentially, is the only one where the transaction class field
is mandatory. Verify that its associated transaction class, TRCLASS1, is really
defined with a MAXACTIVE=1

4.4.3 Checking the ARTSTR1 Configuration
The following topics describe how to verify ARTSTR1 configuration:

• Using the Tuxedo tmadmin psr Commands

• Using the Tuxedo tmadmin psc Commands

4.4.3.1 Using the Tuxedo tmadmin psr Commands
The ARTSTR1, is shown below:

Listing 4‑12 Checking the ARTSTR1 Server with the tmadmin psr Commands

# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- ---------------
ARTSTR1 00012.00200 GRP02 200 0 0 ( IDLE )
BBL 200933 KIXR 0 3 150 ( IDLE )
ARTTCPL 00001.00101 TCP00 101 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
 
> quit
#

4.4.3.2 Using the Tuxedo tmadmin psc Commands
No new service or transaction should appear.

In our example where ARTSTRN was the only server running, we can see that nothing
changed when ARTSTR1 is also activated.

Chapter 4
Implementing Synchronous CICS Transactions With a Limited Number of Parallel Instances

4-19



Listing 4‑13 Checking the ARTSTRN Server with the tmadmin psc Commands

# tmadmin
...
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA02 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
 
> quit
#

4.5 Implementing Asynchronous CICS Non-Delayed
Transactions

These transactions are launched by specifics CICS EXEC CICS START TRANSID requests coded
in the CICS programs that are not using DELAY or TIME parameters to delay their execution.

If at least one of your programs contains this kind of statement, install, and activate some new
features of CICS Runtime Tuxedo Severs without changing any other settings.

• Modifying the Tuxedo ubbconfig File to Manage Asynchronous Transactions

• Using Parallel Asynchronous Transactions

• Using Non-Parallel Asynchronous Transactions

4.5.1 Modifying the Tuxedo ubbconfig File to Manage Asynchronous
Transactions

The file is modified in the same manner as for the ARTSTRN and the ARTSTR1 servers, except the
"s" (synchronous) character used to prefix the name of these servers should be replaced by
the "a" (asynchronous) character.

4.5.2 Using Parallel Asynchronous Transactions
To use parallel asynchronous transactions, with a MAXACTIVE parameter strictly superior to one,
the dedicated server is the ARTATRN. Please refer to the section describing the installation of
the ARTSTRN server to install the atrn_server.
To check your settings you can use also the tmadmin psr and psc commands.

For the Simple Application example we can see that:

Chapter 4
Implementing Asynchronous CICS Non-Delayed Transactions

4-20



• The psr command shows that a new server is running ARTATRN.

• The psc command shows that five new services are running, one is dedicated to the
asynchronous transaction while each synchronous transaction (SA00 to SA03) is duplicated
(ASYNC_SA00 to ASYNC_SA03) to allow them to run in an asynchronous mode.

Listing 4‑14 tmadmin Commands Showing Parallel Asynchronous Transactions

# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- --------------
ARTSTR1 00012.00200 GRP02 200 0 0 ( IDLE )
BBL           200933 KIXR 0 4 200 ( IDLE )
ARTTCPL       00001.00101 TCP00 101 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
ARTATRN QKIXATR GRP02 30 0 0 ( IDLE )
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA02 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
ASYNC_QUEUE ASYNC_QUEUE ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA03 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA02 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA01 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA00 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
 
> quit
{deimos:work9}-/home2/work9/demo/config/tux#{deimos:work9}-/home2/work9/demo/
config/tux#

4.5.3 Using Non-Parallel Asynchronous Transactions
To use non-parallel asynchronous transactions, with a MAXACTIVE parameter exactly equal to
one, the dedicated server is ARTATR1.

Please refer to the section describing the reasons and the installation of the ARTSTR1 server to
install the ARTSTR1 server.

To check your setting, you can use also the Tuxedo tmadmin psr and psc commands

For the Simple Application example we can see that:

• The psr command shows that a new server is running ARTATR1.

Chapter 4
Implementing Asynchronous CICS Non-Delayed Transactions

4-21



• The psc command shows that no new services are running.

Listing 4‑15 tmadmin Commands Showing non-parallel Asynchronous Transactions

# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- --------------
ARTATR1 00012.00300 GRP02 300 0 0 ( IDLE )
ARTSTR1 00012.00200 GRP02 200 0 0 ( IDLE )
BBL 200933 KIXR 0 4 200 ( IDLE )
ARTTCPL 00001.00101 TCP00 101 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA02 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
 
> quit
#

4.6 Implementing Asynchronous CICS Delayed Transactions
ART CICS Runtime supports two methods for implementing asynchronous CICS delayed
transactions launched using EXEC CICS START TRANSID requests:

• Implementing Asynchronous Transactions With ARTSRM Server

• Implementing Asynchronous Transactions With /Q

4.6.1 Implementing Asynchronous Transactions With ARTSRM Server
On z/OS, there are some time-related CICS START API options can be used to start a
transaction at a specified time or after a specified interval, such as AT, TIME, AFTER, and
INTERVAL. ART CICS Runtime provides a server, ARTSRM, for implementing these options. For
more information, refer to ARTSRM Configuration in Oracle Tuxedo Application Runtime for
CICS Reference Guide.

To activate this server, configure ARTSRM in the *SERVERS section in the UBBCONFIG file. You can
configure a set of ARTSRM servers only if they are in the same group for each CICS region.
Following is an example.

Chapter 4
Implementing Asynchronous CICS Delayed Transactions

4-22



Listing 4‑16 Example of Configuring ARTSRM in UBBCONFIG

*SERVERS
…
ARTSRM
SRVGRP=ARTGRP
SRVID=500
RESTART=Y
MAXGEN=5
GRACE=3600
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_srm -e /home2/work9/demo/
Logs/TUX/sysout/stderr_strn -r -- -s KIXR -l SIMPAPP"

Note:

Although implementing asynchronous transactions with /Q is still supported, when the
START TRANID/CANCEL command is invoked, the request is submitted to the
TRANCTL_[SYSID] service advertised by ARTSRM firstly. If the call gets the TPNOENT fail
code, then use /Q to redispatch the request.

4.6.2 Implementing Asynchronous Transactions With /Q
Asynchronous transactions are launched when ASYNC_QSPACE for EXEC START is set with option
INTERVAL or PROTECT.

In this case, the transaction request is deposited into a Oracle Tuxedo /Q Queue, and when
the time is ready, the transaction will be automatically invoked.

For this feature to be available, these components must be configured:

1. An Oracle Tuxedo /Q Queue Space named ASYNC_QSPACE
2. An Oracle Tuxedo /Q Queue named ASYNC_QUEUE in ASYNC_QSPACE
3. The TMQUEUE and TMQFORWARD servers dedicated to these asynchronous transactions.

• Creating the Tuxedo /Q

• Modifying the Tuxedo ubbconfig File to Manage the Tuxedo /Q Queue

4.6.2.1 Creating the Tuxedo /Q
CICS Runtime provides a UNIX script that creates all the Tuxedo /Q components:
mkqmconfig.sh.
1. Before using the script, define and export in your UNIX ~./.profile file:

• The QMCONFIG variable QMCONFIG - containing the full directory path that stores the
Tuxedo /Q Queue Space ASYNC_QSPACE.

• The KIX_QSPACE_IPCKEY variable - containing the IPC Key for the Queue Space.
Examples of ~/.profile variables and values:

export QMCONFIG=${HOME}/trf/config/tux/kixqspace
export KIX_QSPACE_IPCKEY=200955

Chapter 4
Implementing Asynchronous CICS Delayed Transactions

4-23



2. Execute mkqmconfig.sh from the command line to create the Tuxedo /Q features.

4.6.2.2 Modifying the Tuxedo ubbconfig File to Manage the Tuxedo /Q Queue
1. The GQUEUE Server Group must be added to the ubbconfig file in the *GROUP section.

Listing 4‑17 Simple Application Tuxedo Queue ubbconfig Example

*GROUPS
…
# /Q
GQUEUE GRPNO=1000
TMSNAME=TMS_QM TMSCOUNT=2
OPENINFO="TUXEDO/QM:/home2/work9/demo/config/tux/kixqspace:ASYNC_QSPACE"

Where:

*GROUPS

Tuxedo ubbconfig Keyword indicating definitions of Servers Groups.

GRPNO=

Tuxedo Group.

TMSCOUNT=

Number of Tuxedo Transaction Manager Servers.

TMSNAME

Name of the Tuxedo Transaction Manager Server executable.

OPENINFO=

Indicates to the Tuxedo /Q Transaction Manager QM, the QSPACE name to manage and
its UNIX absolute path.

2. Then, two servers, TMQUEUE and TMQFORWARD, must be added to the ubbconfig file in the
*SERVERS section.

Listing 4‑18 Simple Application ubbconfig TMQUEUE and TMQFORWARD Example

*SERVERS
…
# /Q
TMQUEUE SRVGRP=GQUEUE
SRVID=1010
GRACE=0 RESTART=Y CONV=N MAXGEN=10
CLOPT="-s ASYNC_QSPACE:TMQUEUE -- "
TMQFORWARD
SRVGRP=GQUEUE
SRVID=1020
GRACE=0 RESTART=Y CONV=N MAXGEN=10
CLOPT="-- -n -i 2 -q ASYNC_QUEUE"
…

Where:

*SERVERS

Chapter 4
Implementing Asynchronous CICS Delayed Transactions

4-24



Tuxedo ubbconfig Keyword indicating a Server Section definition.

SRVGRP

Is the Tuxedo Group Name which the server belongs to.

SRVID

Is the identifier of a Tuxedo Server.

MAXGEN=10

Specifies that the process can have up to 10 server restarts.

GRACE=0

Means there is no limit interval to contain the number of server restarts.

CONV=N

Indicates that this server operates in a non-conversational mode.

CLOPT

Is a quoted text string passed to the server containing its parameters.

Using the tmadmin psr and psc commands check that four new servers and two new services
are running:

Listing 4‑19 Simple Application TMQUEUE and TMQFORWARD tmadmin Example

# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- --------------
ARTATR1 00012.00300 GRP02 300 0 0 ( IDLE )
ARTSTR1 00012.00200 GRP02 200 0 0 ( IDLE )
BBL           200933 KIXR 0 4 200 ( IDLE )
ARTTCPL       00001.00101 TCP00 101 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
TMS_QM        GQUEUE_TMS GQUEUE 30001 0 0 ( IDLE )
TMS_QM        GQUEUE_TMS GQUEUE 30002 0 0 ( IDLE )
TMQUEUE       01000.01010 GQUEUE 1010 0 0 ( IDLE )
TMQFORWARD    01000.01020 GQUEUE 1020 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
ARTATRN QKIXATR GRP02 30 0 0 ( IDLE )
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
TMS TMS TMS_QM GQUEUE 30001 KIXR 0 AVAIL
TMS TMS TMS_QM GQUEUE 30002 KIXR 0 AVAIL
ASYNC_QSPACE TMQUEUE TMQUEUE GQUEUE 1010 KIXR 0 AVAIL
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL

Chapter 4
Implementing Asynchronous CICS Delayed Transactions

4-25



connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA02 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
ASYNC_QUEUE ASYNC_QUEUE ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA03 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA02 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA01 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA00 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
 
> quit
#

4.7 Implementing CICS Application Using Temporary Storage
(TS) Queues

These transactions use CICS programs containing EXEC CICS requests relative to CICS
Temporary Storage Queues.

The statements used are EXEC CICS WRITEQ TS … END-EXEC, EXEC CICS READQ TS … END-
EXEC, EXEC CICS DELETEQ TS … END-EXEC.

If at least one of your programs contains one of these statements, install and activate the new
features of CICS Runtime without changing your other settings.

To manage TS Queues, activate the ARTTSQ CICS Runtime Tuxedo Server.

• To activate this server, add this server to the *SERVERS section of the Tuxedo ubbconfig file:

Listing 4‑20 Activating the ARTTSQ in the ubbconfig File

*SERVERS
…
ARTTSQ SRVGRP=GRP02
SRVID=40
MIN=1 MAX=1
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_tsq -e /home2/work9/demo/
Logs/TUX/sysout/stderr_tsq -r -- -s KIXR -l SIMPAPP"

Where:

*SERVERS

Tuxedo ubbconfig Keyword indicating a Server Section definition.

SRVGRP

Is the Tuxedo Group Name to which ARTTSQ belongs.

SRVID

Is the identifier of a Tuxedo Server of ARTTSQ.

MIN=1 and MAX=1

Chapter 4
Implementing CICS Application Using Temporary Storage (TS) Queues

4-26



Indicates that only one instance of this server must be run.

CLOPT

Is a quoted text string passed to the server containing its parameters:

-o

Indicates the following file is used for the standard output messages of the server.

-e

Indicates the following file is used for the error output messages of the servers.

-r

Is a Tuxedo parameter used to have statistical reports.

-s KIXR

Indicates the CICS Runtime name where the transaction runs is KIXR.

-l SIMAPP

Indicates that only the components of the SIMAPP group are to be selected at start up.

Use the Tuxedo tmadmin psr and psc commands to check that the server is running and that
six new services are published:

Listing 4‑21 Checking ARTTSQ Server and Services are Running

# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- --------------
ARTATR1 00012.00300 GRP02 300 0 0 ( IDLE )
ARTSTR1 00012.00200 GRP02 200 0 0 ( IDLE )
BBL           200933 KIXR 0 3 150 ( IDLE )
ARTTCPL       00001.00101 TCP00 101 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
ARTTSQ 00012.00040 GRP02 40 0 0 ( IDLE )
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA02 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
TSM00004_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00003_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL

Chapter 4
Implementing CICS Application Using Temporary Storage (TS) Queues

4-27



TSM00002_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00001_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00000_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSQUEUE tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
 
> quit
{deimos:work9}-/home2/work9/demo/config/tux#

• Implementing Unrecoverable TS Queues

• Implementing Recoverable TS Queues

4.7.1 Implementing Unrecoverable TS Queues
For unrecoverable TS Queues, no integrity is guaranteed by CICS Runtime concerning their
content. For example, if an abend occurs at any point during a CICS transaction, work done on
this TS is not rolled-back to the last consistency point.

TS Queues are stored in a sequential file in a dedicated directory defined in the KIX_TS_DIR
UNIX environment variable. This variable is defined and then exported from the ~/.profile
UNIX System File:

KIX_TS_DIR=${HOME}/trf/KIXTSDIR
Modify the Tuxedo ubbconfig file to activate the new ARTTSQ server dedicated to their
management.

4.7.2 Implementing Recoverable TS Queues
For these TS Queues, CICS Runtime guarantees the integrity of their content. For example, if
an abend occurs at any point during a CICS transaction, they are rolled-back to the last
consistency point, if all is in order, their content is committed to become a new consistency
point. These TS Queues are stored in Oracle Tables to benefit from the RDBMS integrity
management.

Concerning the TS Queue, there is an enhanced behavior for reading a recoverable TS
Queue.

On source CICS z/OS, CICS enqueuing is not invoked for READQ TS commands, thereby
making it possible for one task to read a temporary storage queue record while another is
updating the same record. To avoid this, use explicit enqueuing on the temporary storage
queues so that concurrent executing tasks can read and change queues with the same
temporary storage identifier

This behavior also allows one transaction to see or read a record freshly written in a
recoverable TS Queue, even before it is committed, and after its rollback.

On target we don't have this limitation, but in particular:

• A reading transaction is not able to see a record that is just added and not yet committed.

• A reading transaction is not able to see a modification to the record that is not yet
committed.

The following topic describes how to use Recoverable TS Queues:

• To Use Recoverable TS Queues

Chapter 4
Implementing CICS Application Using Temporary Storage (TS) Queues

4-28



4.7.2.1 To Use Recoverable TS Queues
To use recoverable TS Queues you need to define an Oracle Table to contain the TS Queues.
CICS Runtime provides a UNIX script to create all these tables: crtstable_Oracle.

1. Before using the script define and export from your UNIX ~./.profile file

• The ORA_USER variable containing the user ID used to connect to Oracle.

• The ORA_PASSWD variable containing the associated password.
Examples of ~/.profile variables and values:

export ORA_USER="Oracle_User_1"
export ORA_PASSWD="Oracle_Pswd_1"

2. Once the variables have been set, execute the crtstable_Oracle script.

3. Then, modify the Tuxedo ubbconfig file to modify the Server Group used by ARTTSQ to
establish the connection to Oracle in the *GROUPS section.
Listing 4‑22 Example of the *GROUP Section of the Tuxedo ubbconfig File
Concerning the Derver Group GRP02 used by the ARTTSQ Server.

*GROUPS
…
GRP02
GRPNO=12
ENVFILE="/home2/work9/demo/config/tux/envfile"
TMSNAME="TMS_ORA" OPENINFO="Oracle_XA:Oracle_XA+Acc=P/work9/
work9+SesTm=600+LogDir=/home2/work9/demo/Logs/TUX/xa+DbgFl=0x20"

Where:

*GROUPS

Tuxedo ubbconfig Keyword indicating definitions of Servers Groups.

GRPNO=

Tuxedo Group number.

TMSNAME=

Name of the Tuxedo Transaction Manager Server executable.

OPENINFO=

Parameters send to the Oracle_XA Manager.

4. Use the Tuxedo psr and psc commands to check that Oracle is available; three new
servers and three new services should be indicated:

Listing 4‑23 Simple Application Check For Recoverable TS Queues

# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- --------------
ARTATR1 00012.00300 GRP02 300 0 0 ( IDLE )

Chapter 4
Implementing CICS Application Using Temporary Storage (TS) Queues

4-29



ARTSTR1 00012.00200 GRP02 200 0 0 ( IDLE )
BBL           200933 KIXR 0 4 200 ( IDLE )
ARTTCPL       00001.00101 TCP00 101 0 0 ( IDLE )
TMS_ORA       GRP02_TMS GRP02 30001 0 0 ( IDLE )
TMS_ORA       GRP02_TMS GRP02 30002 0 0 ( IDLE )
TMS_ORA       GRP02_TMS GRP02 30003 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
ARTTSQ 00012.00040 GRP02 40 0 0 ( IDLE )
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
TMS TMS TMS_ORA GRP02 30001 KIXR 0 AVAIL
TMS TMS TMS_ORA GRP02 30002 KIXR 0 AVAIL
TMS TMS TMS_ORA GRP02 30003 KIXR 0 AVAIL
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA02 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
TSM00004_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00003_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00002_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00001_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00000_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSQUEUE tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
 
> quit
#

4.8 Managing TD Queue Intrapartititions
This chapter contains the following topics:

• Presentation of the Mechanism on Source Platform

• Automatic Transaction Initiation (ATI)

• Presentation of the Mechanism on Target Platform

• Runtime CICS Configuration of TD Queue Intrapartition

• Activating the ARTTDQ in the Tuxedo ubbconfig File

4.8.1 Presentation of the Mechanism on Source Platform
This section contains the following topics:

• Transient Data Control

• Intra-partition Transient Data Queues

Chapter 4
Managing TD Queue Intrapartititions

4-30



4.8.1.1 Transient Data Control
The CICS transient data control facility provides a generalized queuing facility. Data can be
queued (stored) for subsequent internal or external processing. Selected data, specified in the
application program can be routed to or from predefined symbolic transient data queues: either
intra-partition or extra-partition.

Transient data queues are intra-partition if they are associated with a facility allocated to the
CICS region and extra-partition if the data is directed to a destination that is external to the
CICS region. Transient data queues must be defined and installed before the first reference by
an application program.

You can:

• Write data to a transient data queue (WRITEQ TD command)

• Read data from a transient data queue (READQ TD command)

• Delete an intrapartition transient data queue (DELETEQ TD command).

Note:

In this document we concentrate exclusively on intrapartition TD queues.

4.8.1.2 Intra-partition Transient Data Queues
Intra-partition refers to data on direct-access storage devices for use with one or more
programs running as separate tasks. Data directed to or from these internal queues is referred
to as intra-partition data; it must consist of variable-length records.

When data is written to the queue by a user task, the queue can be used subsequently as
input data by other tasks within the CICS region. All access is sequential, governed by read
and write pointers. Once a record has been read, it cannot be read subsequently by another
task. Intrapartition data may ultimately be transmitted upon request to the terminal or retrieved
sequentially from the output dataset.

Typical uses of intra-partition data include:

• Message switching.

• Broadcasting.

• Database access.

• Routing of output to several terminals (for example, for order distribution).

• Queuing of data (for example, for assignment of order numbers or priority by arrival).

• Data collection (for example, for batched input from 2780 Data Transmission Terminals)

There are three types of intrapartition transient data queues:

Non-recoverable

Non-recoverable intrapartition transient data queues are recovered only on a warm start of
CICS. If a unit of work (UOW) updates a non-recoverable intrapartition queue and
subsequently backs out the updates, the updates made to the queue are not backed out.

Physically recoverable

Chapter 4
Managing TD Queue Intrapartititions

4-31



Physically recoverable intrapartition transient data queues are recovered on warm and
emergency restarts. If a UOW updates a physically recoverable intrapartition queue and
subsequently backs out the updates, the updates made to the queue are not backed out.

Logically recoverable

Logically recoverable intrapartition transient data queues are recovered on warm and
emergency restarts. If a UOW updates a logically recoverable intrapartition queue and
subsequently backs out the changes it has made, the changes made to the queue are also
backed out. On a warm or an emergency restart, the committed state of a logically recoverable
intrapartition queue is recovered. In-flight UOWs are ignored.

4.8.2 Automatic Transaction Initiation (ATI)
For intrapartition queues, CICS provides the option of automatic transaction initiation (ATI).

A basis for ATI is established by the system programmer by specifying a non-zero trigger level
for a particular intrapartition destination. When the number of entries (created by WRITEQ TD
commands issued by one or more programs) in the queue reaches the specified trigger level, a
transaction specified in the definition of the queue is automatically initiated. Control is passed
to a program that processes the data in the queue; the program must issue repetitive READQ
TD commands to deplete the queue.

When the queue has been emptied, a new ATI cycle begins. That is, a new task is scheduled
for initiation when the specified trigger level is again reached, whether or not execution of the
earlier task has ended. The exact point at which a new ATI cycle begins depends on whether
or not the queue is defined as logically recoverable. If the queue is defined with a
RECOVSTATUS of No or Physical, the new ATI cycle begins when the queue is read to
QZERO. But if the queue is defined with a recoverability attribute of Logical, the new ATI cycle
begins only after the task terminates after having read the queue to QZERO.

If an automatically initiated task does not empty the queue, access to the queue is not
inhibited. The task may be normally or abnormally ended before the queue is emptied (that is,
before a QZERO condition occurs in response to a READQ TD command). If the contents of the
queue are to be sent to a terminal, and the previous task completed normally, the fact that
QZERO has not been reached means that trigger processing has not been reset and the same
task is reinitiated. A subsequent WRITEQ TD command does not trigger a new task if trigger
processing has not been reset.

4.8.3 Presentation of the Mechanism on Target Platform
This section contains the following topics:

• Tuxedo /Q

• Architecture Design

• Triggering

4.8.3.1 Tuxedo /Q
Tuxedo /Q offers a robust and versatile queuing system with the same capabilities as TD
queues and more.

Queues can be defined as recoverable or not, and triggering with a few different options is also
available. The management of errors is much more sophisticated, and will simplify error
management in case of ATI transaction failures on target.

Chapter 4
Managing TD Queue Intrapartititions

4-32



4.8.3.2 Architecture Design

Table 4-5    Source to Target Mapping

Source Element Target Correspondence

TD Queue intrapartition Tuxedo /Q Queue.

Associated transaction (TRANID) Associated transaction offered by an ATR server.

Trigger level Trigger level.

Recoverability: No|Physical|Logical Similar levels available as on target, but with
different configuration principles.

The CICS verbs READQ TD, WRITEQ TD and DELETEQ TD (applied to intrapartition
queues), now read, write or delete from a Tuxedo /Q queue. (tpenqueue and tpdequeue) in
terms of tuxedo vocabulary.

If the Queue is logically recoverable, these actions are done in the current UOW, else they are
done atomically, independently of the current UOW.

For information, inside CICS Runtime, this is done by adding the TPNOTRAN flag to
operations on non-logically recoverable queues.

4.8.3.3 Triggering
In case of triggering, like in native CICS, a transaction will be automatically triggered, this
transaction having to read the corresponding queue and process accordingly the messages.

In CICS Runtime these asynchronous transactions are offered and processed by a dedicated
server type ARTATR, with either of its two variants ARTATR1 and ARTATRN.

These servers process all asynchronous transactions, more precisely, transactions submitted
by START TRANSID, or by automatic Transaction Invocation related to td queue intrapartition.

In this case a specific CICS Runtime client, TDI_TRIGGER, is used to launch the
corresponding asynchronous transaction, when the trigger level is reached.

4.8.4 Runtime CICS Configuration of TD Queue Intrapartition
This section has the following topics:

• CICS RuntimeResource Declaration

• /Q Configuration for TD Queue Intrapartition in CICS Runtime

• qopen Parameters

4.8.4.1 CICS RuntimeResource Declaration
Every CICS-like resource in CICS Runtime, is declared using a dedicated configuration file
stored in directory ${KIXCONFIG}.

TD Queue extrapartition and TD Queue intrapartition resource declaration share very few
arguments, and are semantically very different objects, even if using the same API for read and
write operations.

Chapter 4
Managing TD Queue Intrapartititions

4-33



This is the reason why, in CICS Runtime, we have separated TD Queue extrapartition resource
configuration and TD Queue intrapartition resource configuration into two different resource
files.

Intrapartition queues are declared in the file tdqintra.desc , described in Oracle Tuxedo
Application Runtime for CICS Reference Guide.

The important attributes are:

TDQUEUE(name)

The queue name, exactly identical to the queue name in the source configuration, This name
must be the same as the name of the queue in the Tuxedo /Q configuration.

RECOVSTATUS(status)

Only the status NO or LOGICAL, are accepted, the difference between the two modes impacts
the treatment of WRITEQ TD and READQ TD, more precisely LOGICAL making them part of
the current UOW, while NO makes them atomic operations independent of the current UOW.

The difference between NO or PHYSICAL, is not defined in the resource configuration file but
will be implemented using native tuxedo /Q configuration parameters, mapping to persistent /Q
or non persistent.

TRANSID and TRIGGERLEVEL

In the current release are documentary only in tdqintra.desc, it is their value in /Q
configuration which is taken in account.

QSPACENAME

New argument needed for /Q: defining into which QSPACE the current /Q is stored. This
argument is mandatory and must match the QSPACENAME into which the actual /Q queue is
physically stored.

4.8.4.2 /Q Configuration for TD Queue Intrapartition in CICS Runtime
For detailed and accurate information on qmadmin and /Q configuration Using the ATMI /Q
Component in the Tuxedo documentation.

The script mk_td_qm_config.sh distributed with CICS Runtime provides an example of qspace
creation and then of queue creation and configuration into /Q, to be used for TD intrapartition
queues.

This script uses three environment variables, which must be set according to your
environment:

• KIX_TD_QSPACE_DEVICE: must contain the filename of the physical file containing the /Q
database for TD queues.

• KIX_TD_QSPACE_NAME: contains the name of the logical QSPACE to create, which will
contains the queues.

• KIX_TD_QSPACE_IPCKEY: a specific key which must be unique on the machine for the IPC
used by the instance of /Q.

The creation of the device (KIX_TD_QSPACE_DEVICE) and of the QSPACE are very standard, we
will not detail them.

The interesting part is related to queue configuration.

Chapter 4
Managing TD Queue Intrapartititions

4-34



A qopen QspaceName command, to open the qspace which will contain the queues must be
made before the creation of any queue. The QspaceName must match the QSPACENAME in the
resource declaration of these queue(s).

Below is an example of an interactive queue creation using qmadmin, where the questions
asked by qmadmin are in normal font, while the entries typed in by the user are in bold.

Listing 4‑24 qopen Dialog

qopen TD_QSPACE
qcreate
Queue name: TEST
Queue order (priority, time, expiration, fifo, lifo): fifo
Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 5
Retry delay in seconds [default=0]: 0
High limit for queue capacity warning (b for bytes used, B for blocks used,
% for percent used, m for messages [default=100%]): 5m
Reset (low) limit for queue capacity warning [default=0%]: 0m
Queue capacity command: "TDI_TRIGGER -t S049"

In a script an exact equivalent to this manual entry would be:

Listing 4‑25 qopen Script

qopen TD_QSPACE
qcreate TEST fifo none 3 0 5m 0m "TDI_TRIGGER -t S049"

4.8.4.3 qopen Parameters
TD_QSPACE

The QspaceName must match the QSPACENAME in the resource declaration of these queue(s).

Queue name

The name of the queue must match exactly the name provided in the resource declaration.

Queue order

The default dequeuing order when reading the queue, the setting corresponding to TD intra
native behavior is: fifo.

Out-of-ordering enqueuing

Not meaningful unless some application is using native /Q interface to write into these queue;
for Runtime CICS only usage to set it to is: none
Retries

Defines the number of times a message will be put back on the queue in case of abort of the
UOW having read this queue, to avoid resubmitting again and again an ATI transaction which
fails because of a bad message, set this number to a reasonable number

When this number is reached, or at the first abort if you set it to zero, the message will be
removed from this queue and put onto the error queue for further analysis.

Retry delay in seconds

Chapter 4
Managing TD Queue Intrapartititions

4-35



If retries is not null, defines a delay before putting a record back on its queue, in case of
rollback, the recommended value with Runtime CICS is the default value 0.

High limit for queue capacity warning

This is the much more flexible equivalent of the trigger level of TD queues. For a setting
compatible with TD queues, set it to the trigger level and express it in number of messages.
For example: 0m to suspend triggering, or 5m for a trigger level of 5 messages in the queue.

Reset (low) limit for queue capacity warning

This is the down level to be reached before resetting the trigger for the upper limit, for
compatibility with TD queue behavior, it should be set to 0, (QZERO) which is the reset value
for TD queues in CICS.

Queue capacity command:

This is the command to be launched when the trigger level is reached, in CICS Runtime it
should be set to: TDI_TRIGGER -tb TRID. Where TRID is the Transaction identifier of the
transaction to trigger which should match the TRANSID of the resource configuration.

Tip:

ATR servers when processing an ATI, know whether the transaction reached QZERO
or not, and whether it was a success or a rollback. So if QZERO is not reached, they
resubmit the transaction in the same manner as on the source platform.
But now it is the number of retries which will replace the ATIFACILITY parameter and
will govern the fact that a rollbacked TD queue record will be resubmitted or not.

It is a progress compared with the source is that now the administrator can decide
the number of resubmissions, and get the faulty messages on an error queue.

4.8.5 Activating the ARTTDQ in the Tuxedo ubbconfig File
To enable TDQ motoring, ARTTDQ server should be activated.

Listing 4‑26 Activating the ARTTDQ in the ubbconfig File

*SERVERS
…
ARTTDQ SRVGRP=GRP02
SRVID=40
MIN=1 MAX=1
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_tdq -e /home2/work9/demo/
Logs/TUX/sysout/stderr_tdq -r -- -s KIXR -l SIMPAPP"

Where:

*SERVERS

Tuxedo ubbconfig Keyword indicating the definition of Server Section.

SRVGRP

The Tuxedo Group Name to which ARTTDQ belongs.

Chapter 4
Managing TD Queue Intrapartititions

4-36



SRVID

The identifier of a Tuxedo Server of ARTTDQ.

MIN=1 and MAX=1

Indicates that only one instance of this server must be run.

CLOPT

A quoted text string passed to the server containing its parameters:

-o

Indicates the following file is used for the standard output messages of the server.

-e

Indicates the following file is used for the error output messages of the servers.

-r

Is a Tuxedo parameter used to have statistical reports.

-s KIXR

Indicates the CICS Runtime name where the transaction runs is KIXR.

-l SIMAPP

Indicates that only the components of the SIMAPP group are to be selected at start up.

4.9 Implementing CICS Application Using Temporary Storage
(TS) Queue POOL

These transactions use CICS programs containing EXEC CICS requests relative to CICS
Temporary Storage Queues.

The statements used are EXEC CICS WRITEQ TS ... END-EXEC, EXEC CICS READQ TS ...
END-EXEC, EXEC CICS DELETEQ TS ... END-EXEC.
If at least one of your programs contains one of these statements and the queue is defined
with POOLNAME (tsqmodel.desc), install and activate the new features of CICS Runtime without
changing your other settings.

To manage TS Queues with POOL, do the following steps:

1. First, define database table to contain the TS Queue and POOL. CICS Runtime currently
supports Oracle database and UDB
CICS Runtime provides a UNIX script, crtsptable_{Oracle|UDB}, to create all these
tables. Set MT_DB_LOGIN environment variable and then execute crtsptable_{Oracle|
UDB} to create these tables. Set MT_DB_LOGIN to enter database connection information.
For example: DBUSER/DBPASSWD@DBSID. See for Listing 4‑27 an example for Oracle
database users.

2. Second, modify the Tuxedo UBBCONFIG file to modify the server group used by ARTTSQP to
establish the connection to Oracle in the UBBCONFIG *GROUPS section.

3. Next, activate the ARTTSQP CICS Runtime Tuxedo server. To activate this server, add it to
the UBBCONFIG SERVERS section. See Listing 4‑28

Chapter 4
Implementing CICS Application Using Temporary Storage (TS) Queue POOL

4-37



4. Last, use the Tuxedo tmadmin psr and psc commands to check that the server is running
and that new services are published. See Listing;4‑29 for an example.

When using ARTTSQP_UDB, you may need to do the followings to rebind the server for new DB2
server/tables.

1. Set environment variable MT_DB_LOGIN to enter database connection information.

2. Go to $KIXDIR/bin
3. Execute:

../tools/bind.sh tspool_UDB.bnd
Listing 4‑27 Example of the UBBCONFIG Configuration Concerning the Server Group
GRP02 Used by ARTTSQP Server

*SERVERS
...
ARTTSQP SRVGRP=GRP02
SRVID=40
MIN=2 MAX=2
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_tsqp -e /home2/work9/demo/
Logs/TUX/sysout/stderr_tsqp -r -- -L list1"
...

Where:

*GROUPS

Is the Tuxedo UBBCONFIG keyword indicating definitions of server groups.

GRPNO

Is the Tuxedo group number.

TMSNAME

Is the name of the Tuxedo Transaction Manager Server executable.

OPENINFO

Is the parameters sent to the Oracle_XA Manager.

Listing 4‑28 Activating the ARTTSQP in the UBBCONFIG File

*SERVERS
...
ARTTSQP SRVGRP=GRP02
SRVID=40
MIN=2 MAX=2
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_tsqp -e /home2/work9/demo/
Logs/TUX/sysout/stderr_tsqp -r -- -L list1"
...

Where:

*SERVERS

Is the Tuxedo UBBCONFIG keyword indicating a server section definition.

Chapter 4
Implementing CICS Application Using Temporary Storage (TS) Queue POOL

4-38



SRVGRP

Is the Tuxedo group name to which ARTTSQP belongs.

SRVID

Is the identifier of a Tuxedo server of ARTTSQP.

MIN=2 and MAX=2

Indicates that you run two instances of this server (you can run greater than or equal to one
instance of this server).

CLOPT

Is a quoted text string passed to the server containing its parameters:

-o

Indicates the following file is used for the standard output messages of the server.

-e

Indicates the following file is used for the error output messages of the server.

-r

Is a Tuxedo parameter used to have statistical reports.

-L

Indicates the list of groups to be loaded by this server.

Listing 4‑29 Checking ARTTSQP Server and Services

# tmadmin
 
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- ---------------
BBL 42444 KIXR 0 30 1500 ( IDLE )
TMS_ORA GRP02_TMS GRP02 30001 0 0 ( IDLE )
ARTTCPL 00001.00101 TCP00 101 0 0 ( IDLE )
TMS_ORA GRP02_TMS GRP02 30002 0 0 ( IDLE )
ARTADM 00011.00010 GRP01 10 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 21 0 0 ( IDLE )
ARTTSQP 00012.00040 GRP02 40 0 0 ( IDLE )
ARTTSQ 00012.00045 GRP02 45 0 0 ( IDLE )
> psc -I 40
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
arttsqp_mib+ tsqp_mib_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
TSPOOL_ADM tsqp_adm_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
TSM00004_ADM tsqp_adm_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
TSM00004_TS+ tsqp_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
TSM00003_ADM tsqp_adm_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
TSM00003_TS+ tsqp_svc ARTTSQP GRP02 40 KIXR 0 AVAIL

Chapter 4
Implementing CICS Application Using Temporary Storage (TS) Queue POOL

4-39



TSM00002_ADM tsqp_adm_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
TSM00002_TS+ tsqp_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
TSM00001_ADM tsqp_adm_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
TSM00001_TS+ tsqp_svc ARTTSQP GRP02 40 KIXR 0 AVAIL
> quit
#

4.10 Implementing Distributed Program Link (DPL)
For several reasons, on z/OS, the Distributed Program Link function enables a local CICS
program (the client program) to call another CICS program (the server program) in a remote
CICS region via EXEC CICS LINK statements. CICS Runtime supports this feature used in
multi-CICS architecture like MRO among migrated regions.

• To Detect That DPL Is Needed

• Modifying the Tuxedo ubbconfig File to Manage the DPL

• Declaring Remote Programs in CICS Runtime

4.10.1 To Detect That DPL Is Needed
Unless you wish to use the DPL in a UNIX written application, check the technical specificities
of the z/OS application

1. Check on z/OS, using the CEDA system transaction, if at least one remote program is
defined in the z/OS CICS CSD file. Such programs have some of their fields of the REMOTE
ATRIBUTES section filed:
Listing 4‑30 Checking for Remote Programs

DEF PROGR
OVERTYPE TO MODIFY CICS RELEASE = 0610
CEDA DEFine PROGram( )
PROGram ==>
Group ==>
DEscription ==>
....
REMOTE ATTRIBUTES
DYnamic ==> No No ! Yes
REMOTESystem ==> XXXX
REMOTEName ==> YYYYYYYY
Transid ==> ZZZZ
EXECUtionset ==> Dplsubset Fullapi ! Dplsubset

Where (CICS default values are underlined):

DYNAMIC(YES|NO)

The following parameters cannot be overridden in the CICS LINK API. This field is only
relevant for DPL use when it is set to NO and the three following fields are empty.

REMOTESYSTEM(name)

Remote CICS region name. An empty field is not relevant with DYNAMIC(YES)
REMOTENAME(name)

Chapter 4
Implementing Distributed Program Link (DPL)

4-40



Remote server program name. An empty field is not relevant with DYNAMIC(YES) because
the default is the client program name (PROGram ==>).

TRANSID(name)

Remote mirror transaction. An empty field is not relevant with DYNAMIC(YES) because the
default is the mirror system transaction CSMI.

EXECUTIONSET(FULLAPI|DPLSUBSET)

The DPL cannot use the full CICS API but only a subset. The DPLSUBSET parameter
indicates explicit usage of a DPL subset of the CICS API, but note that this subset may
also be sufficient to execute LINK in a non-DPL context without errors. On the other hand,
this field may contain FULLAPI in a DPL context but does not ensure that no "Invalid
Request errors" will follow if non-DPL API are used.

As described above, in some cases, the Remote Attributes declaration may not exist or
can be incomplete. The reason is that these fields establish only some of the default
values, some of the previous parameters in bold in the example are not provided in the
EXEC CICS LINK API.

2. Then check in the programs, inside the EXEC CICS LINK API:

• If the names of the programs called in this order match the names of programs defined
in the CSD with remote attributes partially or fully informed.

• If these statement contain at least one of the optional remote parameters shown in
italics in the following CICS LINK API (the others fields are not relevant for DPL).

Listing 4‑31 CICS LINK API For DPL

EXEC CICS LINK PROGRAM(…)
COMMAREA(…)
LENGTH(…)
DATALENGTH(…)
RETCODE(…)
SYSID(XXXX) : Remote CICS region name
SYNCONRETURN : Used for remote CICS syncpoint or rollback
TRANSID(XXXX) : Remote mirror transaction instead of the CSMI default
INPUTMSG(…)
INPUTMSGLEN(…)
END-EXEC

4.10.2 Modifying the Tuxedo ubbconfig File to Manage the DPL
If at least one of your programs use the DPL, install and activate the ARTDPL server without
changing your other settings.

To activate this server, modify your ubbconfig file to add this server to the *SERVERS section of
the Tuxedo ubbconfig file. This server belongs to the same Server Group as the Transactions
Servers ( ARTSTRN, ARTSTR1, ARTATRN, ARTATR1).

Listing 4‑32 ubbconfig File Example of a *SERVERS Section Describing the ARTDPL
Server.

*SERVERS
…
ARTDPL SRVGRP=GRP02
SRVID=500

Chapter 4
Implementing Distributed Program Link (DPL)

4-41



CONV=N
MIN=1 MAX=1 RQADDR=QKIXDPL REPLYQ=Y
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_dpl -e /home2/work9/demo/
Logs/TUX/sysout/stderr_dpl -r -- -s KIXD -l SIMPAPP"
…

Where:

*SERVERS

Tuxedo ubbconfig Keyword indicating a Server Section definition.

SRVGRP

Is the Tuxedo Group Name to which ARTDPL belongs.

SRVID

Is the identifier of a Tuxedo Server of ARTDPL.
CONV=N

Indicates that this server operates in a non-conversational mode.

MIN=1 and MAX=1

Indicates that only one instance of this server must be run.

REPLYQ=Y

Indicates that this server will respond.

RQADDR=QKIXDPL

Name of the Tuxedo queue used for the responses.

CLOPT

Is a quoted text string passed to the server containing its parameters:

-o

Indicates the following file is used for the standard output messages of the server.

-e

Indicates the following file is used for the error output messages of the server.

-r

Is a Tuxedo parameter used to provide statistical reports.

-s KIXD

Indicates the CICS Runtime name where the KIXD transaction is run.

-l SIMAPP

Indicates that only the components of the SIMPDPL group are to be selected at start up.

Use the Tuxedo tmadmin psr and psc commands to check that this server is running and that
no new service is published:

Chapter 4
Implementing Distributed Program Link (DPL)

4-42



Listing 4‑33 tmadmin Commands to Check ARTDPL Server

# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- --------------
ARTDPL QKIXDPL GRP02 500 0 0 ( IDLE )
ARTATR1 00012.00300 GRP02 300 0 0 ( IDLE )
ARTSTR1 00012.00200 GRP02 200 0 0 ( IDLE )
BBL 200933 KIXR 0 5 250 ( IDLE )
TMS_QM GQUEUE_TMS GQUEUE 30001 0 0 ( IDLE )
TMS_ORA GRP02_TMS GRP02 30001 0 0 ( IDLE )
ARTTCPL 00001.00101 TCP00 101 0 0 ( IDLE )
TMS_QM GQUEUE_TMS GQUEUE 30002 0 0 ( IDLE )
TMS_ORA GRP02_TMS GRP02 30002 0 0 ( IDLE )
TMS_ORA GRP02_TMS GRP02 30003 0 0 ( IDLE )
TMQUEUE 01000.01010 GQUEUE 1010 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
TMQFORWARD 01000.01020 GQUEUE 1020 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
ARTATRN QKIXATR GRP02 30 0 0 ( IDLE )
ARTTSQ 00012.00040 GRP02 40 0 0 ( IDLE )
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
TMS TMS TMS_QM GQUEUE 30001 KIXR 0 AVAIL
TMS TMS TMS_ORA GRP02 30001 KIXR 0 AVAIL
TMS TMS TMS_QM GQUEUE 30002 KIXR 0 AVAIL
TMS TMS TMS_ORA GRP02 30002 KIXR 0 AVAIL
TMS TMS TMS_ORA GRP02 30003 KIXR 0 AVAIL
ASYNC_QSPACE TMQUEUE TMQUEUE GQUEUE 1010 KIXR 0 AVAIL
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA02 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
ASYNC_QUEUE ASYNC_QUEUE ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA03 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA02 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA01 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA00 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
TSQUEUE tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
 
> quit
#

Chapter 4
Implementing Distributed Program Link (DPL)

4-43



4.10.3 Declaring Remote Programs in CICS Runtime
To allow an application to use distributed programs called in EXEC CICS LINK statements,
these programs must be declared to CICS Runtime.

1. To declare REMOTE programs which can only use the DPL Subset of the CICS API:

• In the programs.desc file, set REMOTESYSTEM (the 7th field of the csv format dataset), to
remote SYSID name (KIXD in sample of Listing 4‑32).
The default is local (empty field), meaning that local programs are declared
because they can use the FULL CICS API

In our Simple Application example, if we suppose that RSSAT000, RSSAT001 are remote
and RSSAT002 and RSSAT003 are local, then the programs.desc file is set to:

Listing 4‑34 Simple Application programs.desc Configuration of Remote
Programs

#PROGRAM;GROUP;DESCRIPTION;LANGUAGE;EXECKEY;STATUS;REMOTESYSTEM;REMOTENA
ME
RSSAT000;SIMPAPP;Home Menu Program of Simple 
Application;COBOL; ;ENABLE;KIXD
RSSAT001;SIMPAPP;Customer Detailed Inf Program of Simple 
Application;COBOL; ;ENABLE;KIXD
RSSAT002;SIMPAPP;Customer Maintenance Program of the Simple 
Application;COBOL; ;ENABLE
RSSAT003;SIMPAPP;Customer List of the Simple Application;COBOL; ;ENABLE

2. Shutdown and reboot Tuxedo.

3. Using the Tuxedo tmadmin psr and psc commands, check that new services for DPL
programs are published and managed by ARTDPL: KIXD_RSSAT0001 and KIXD_RSSAT0003.

Note:

To avoid problems with homonyms, these distributed services have their names
composed of the Tuxedo DOMAINID defined in the ubbconfig and the name of the
program they manage.

Listing 4‑35 Using tmadmin Commands to Check DPL Services

{deimos:work9}-/home2/work9/demo/Logs/TUX/sysout# tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- ---------------
ARTDPL QKIXDPL GRP02 500 0 0 ( IDLE )
ARTATR1 00012.00300 GRP02 300 0 0 ( IDLE )
ARTSTR1 00012.00200 GRP02 200 0 0 ( IDLE )
BBL 200933 KIXR 0 5 250 ( IDLE )
TMS_QM GQUEUE_TMS GQUEUE 30001 0 0 ( IDLE )
TMS_ORA GRP02_TMS GRP02 30001 0 0 ( IDLE )
ARTTCPL 00001.00101 TCP00 101 0 0 ( IDLE )
TMS_QM GQUEUE_TMS GQUEUE 30002 0 0 ( IDLE )

Chapter 4
Implementing Distributed Program Link (DPL)

4-44



TMS_ORA GRP02_TMS GRP02 30002 0 0 ( IDLE )
TMS_ORA GRP02_TMS GRP02 30003 0 0 ( IDLE )
TMQUEUE 01000.01010 GQUEUE 1010 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
TMQFORWARD 01000.01020 GQUEUE 1020 0 0 ( IDLE )
ARTSTRN QKIX110 GRP02 20 0 0 ( IDLE )
ARTATRN QKIXATR GRP02 30 0 0 ( IDLE )
ARTTSQ 00012.00040 GRP02 40 0 0 ( IDLE )
 
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
KIXD_RSSAT0+ dplsvc ARTDPL GRP02 500 KIXR 0 AVAIL
KIXD_RSSAT0+ dplsvc ARTDPL GRP02 500 KIXR 0 AVAIL
TMS TMS TMS_QM GQUEUE 30001 KIXR 0 AVAIL
TMS TMS TMS_ORA GRP02 30001 KIXR 0 AVAIL
TMS TMS TMS_QM GQUEUE 30002 KIXR 0 AVAIL
TMS TMS TMS_ORA GRP02 30002 KIXR 0 AVAIL
TMS TMS TMS_ORA GRP02 30003 KIXR 0 AVAIL
ASYNC_QSPACE TMQUEUE TMQUEUE GQUEUE 1010 KIXR 0 AVAIL
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
SA03 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA01 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
SA00 kixsvc ARTSTRN GRP02 20 KIXR 0 AVAIL
ASYNC_QUEUE ASYNC_QUEUE ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA03 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA01 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
ASYNC_SA00 atrsvc ARTATRN GRP02 30 KIXR 0 AVAIL
TSM00004_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00003_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00002_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00001_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSM00000_TSQ tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
TSQUEUE tsqsvc ARTTSQ GRP02 40 KIXR 0 AVAIL
 
> quit
# .

To reduce the scope of the services listed to only those managed by ARTDPL (SRVID=500), use
the Tuxedo psc command followed with the -i srvid parameter to restrict the display to a
particular server id.

In our example, the srvid of the ARTDPL server is 500 as displayed just above.

Listing 4‑36 Using tmadmin Commands to Check Specific DPL Service in Verbose Mode

# tmadmin
...
 
> verbose

Chapter 4
Implementing Distributed Program Link (DPL)

4-45



Verbose now on.
 
> psc -i 500
Service Name: KIXD_RSSAT003
Service Type: USER
Routine Name: dplsvc
Prog Name: /home2/work9/KIXEDO/bin/ARTDPL
Queue Name: QKIXDPL
Process ID: 1327244, Machine ID: KIXR
Group ID: GRP02, Server ID: 500
Current Load: 50
Current Priority: 50
Current Trantime: 30
Current Blocktime: 0
Current BUFTYPECONV: 0
Requests Done: 0
Current status: AVAILABLE
 
Service Name: KIXD_RSSAT001
Service Type: USER
Routine Name: dplsvc
Prog Name: /home2/work9/KIXEDO/bin/ARTDPL
Queue Name: QKIXDPL
Process ID: 1327244, Machine ID: KIXR
Group ID: GRP02, Server ID: 500
Current Load: 50
Current Priority: 50
Current Trantime: 30
Current Blocktime: 0
Current BUFTYPECONV: 0
Requests Done: 0
Current status: AVAILABLE
 
> quit
#

4.11 Implementing CICS Common Work Area (CWA)
On z/OS, the CWA is a common storage area defined in memory for a CICS region that
programs can use to save and exchange data between themselves as long as this CICS
region is running.

This area is addressed thru a pointer delivered by the CICS statement EXEC CICS ADDRESS
CWA. If you find this CICS statement in your application, you have to implement this feature in
CICS Runtime.

Listing 4‑37 COBOL Example of CWA Usage

LINKAGE SECTION.
01 COMMON-WORK-AREA.
03 APPL-1-ID PIC X(4).
03 APPL-1-PTR USAGE IS POINTER.
03 APPL-2-ID PIC X(4).
03 APPL-2-PTR USAGE IS POINTER.
PROCEDURE DIVISION.

Chapter 4
Implementing CICS Common Work Area (CWA)

4-46



. . .
END-EXEC.
* Set up addressability to the CWA
EXEC CICS ADDRESS
CWA(ADDRESS OF COMMON-WORK-AREA)
END-EXEC.

After the CICS ADDRESS CWA, the address of the COBOL group named COMMON-WORK-
AREA is set to the address of the CWA allocated by CICS, meaning that COMMON-WORK-
AREA maps and refines this memory area. The total amount of this shared memory is fixed
and defined at CICS start up.

• To Replicate CICS ADDRESS CWA Functionality in CICS Runtime

4.11.1 To Replicate CICS ADDRESS CWA Functionality in CICS Runtime
1. Contact your z/OS CICS Administrator to know the size of memory implemented. (For your

information this value is defined with the parameter WRKAREA of the DFHSIT. The default
value is 512 bytes and the size can vary from 0 to 3584 bytes). Another way is to calculate
the biggest size of the data record contained in the programs addressing the CWA

2. Modify your ~/.profile UNIX system file to export a new CICS Runtime variable,
KIX_CWA_SIZE, and set it to the value found in the WRKAREA of the DFHSIT. If this variable is
not declared, note that the default value is 0 and the authorized interval from 0 to 32760
bytes.
Example:

KIX_CWA_SIZE=512
3. Modify your ~/.profile UNIX system file to export a new CICS Runtime variable,

KIX_CWA_IPCKEY, and valorize it to a Unix IPC key to define the cross memory segment
used as CWA.
Example:

KIX_CWA_ IPCKEY=200944
4. Restart Tuxedo to take all these changes into account.

4.12 Implementing a CICS Transaction Work Area (TWA)
On z/OS, the TWA is a common storage area defined in memory for a CICS region that
programs can use to save and exchange data between themselves during the execution time
of one CICS transaction. In other words, this TWA can only be accessed by the programs
participating in the transaction. This area is addressed thru a pointer delivered by the CICS
statement EXEC CICS ADDRESS TWA.. If you find an EXEC CICS ADDRESS TWA statement in
your application, you have to implement this feature in CICS Runtime.

Listing 4‑38 A COBOL Example of Use of the TWA

LINKAGE SECTION.
01 TRANSACTION-WORK-AREA.
03 APPL-1-ID PIC X(4).
03 APPL-1-PTR USAGE IS POINTER.
03 APPL-2-ID PIC X(4).
03 APPL-2-PTR USAGE IS POINTER.
PROCEDURE DIVISION.

Chapter 4
Implementing a CICS Transaction Work Area (TWA)

4-47



. . .
END-EXEC.
* Set up addressability to the TWA
EXEC CICS ADDRESS
TWA(ADDRESS OF TRANSACTION-WORK-AREA)
END-EXEC.

After the CICS ADDRESS TWA, the address of the COBOL group named TRANSACTION-WORK-AREA
is set to the address of the TWA allocated by CICS, meaning that TRANSACTION -WORK-AREA
maps and refines this memory area. The total amount of this shared memory is defined for
each transaction in the z/OS CSD configuration file in the field TWasize.

The next screen shows the result of a z/OS CEDA system transaction where the TWasize
parameter is set to 122 for the SA00 transaction code:

Figure 4-3    z/OS ceda System Transaction Example

To replicate this functionality in CICS Runtime:

1. Modify the CICS Runtime transactions.desc file to report the needed amount of TWA
memory (TWasize>0)

2. For each transaction using programs with CICS ADDRESS TWA statements, modify the
transactions.desc file to declare its TWasize in the sixteenth field of this csv format file.

Table 4-6    TWA Size Values Associated to Each Transaction Code of the Simple
Application

Transaction TWA Size

SA00 0
SA01 100
SA02 200
SA03 300

Chapter 4
Implementing a CICS Transaction Work Area (TWA)

4-48



Listing 4‑39 Configuration of TWA in the transactions.desc File

#Transaction;Group;Description;Program; ; ; ; ; ; ;Status; ; ; ;Tranclass ;
TWA Size
SA00;SIMPAPP;pg for simpapp;RSSAT000; ; ; ; ; ; ;ENABLED
SA01;SIMPAPP;pg for simpapp;RSSAT001; ; ; ; ; ; ;ENABLED; ; ; ; ;100
SA02;SIMPAPP;pg for simpapp;RSSAT002; ; ; ; ; ; ;ENABLED; ; ; ; ;200
SA03;SIMPAPP;pg for simpapp;RSSAT003; ; ; ; ; ; ;ENABLED; ; ; ; ;300

Note:

Nothing is indicated for the SA00 transaction that had a TWA size equal to zero.

3. Restart the CICS Runtime Tuxedo servers, the modifications can be seen in the different
stderr files of the servers involved in the transaction management (ARTSTRN, ARTSTR1,
ARTATRN and ARTATR1)

Listing 4‑40 stderr_strn TWA Example

|---------------------------------|
| TRANSACTIONS loaded : < 4> |
|----------------------------------------------|----|-|-|---|-|-|----------|--
---|-|--------|-----|---|
| | | | |C|C| |R|R| | |T| | | |
|TRAN| GROUP | PROGRAM |ALIA|M|O|PRI|E|E| STATUS |TASK |R| TRAN | TWA |MAX|
| | | | |D|N| |S|S| |DATA |A| CLASS | SIZ |ACT|
| | | | |S|F| |S|T| |KEY |C| | |IVE|
|----|----------|------------------------------|----|-|-|---|-|-|----------|--
---|-|--------|-----|---|
|SA00|SIMPAPP |RSSAT000 | |N|N|001|N|N|ENABLED |USER |Y| |00000|999|
|SA01|SIMPAPP |RSSAT001 | |N|N|001|N|N|ENABLED |USER |Y| |00100|999|
|SA02|SIMPAPP |RSSAT002 | |N|N|001|N|N|ENABLED |USER |Y| |00200|999|
|SA03|SIMPAPP |RSSAT003 | |N|N|001|N|N|ENABLED |USER |Y| |00300|999|

• Supporting TWA in ARTDPL

4.12.1 Supporting TWA in ARTDPL
The programs within a transaction run by ARTDPL now can access TWA with following steps:

1. Modify the CICS Runtime transactions.desc file to configure TWA Size needed for
ARTDPL transaction.
Listing 4‑41 Configuration of TWA for ARTDPL in the transactions.desc File

#Transaction;Group;Description;Program; ; ; ; ; ; ;Status; ; ; ;Tranclass ;
TWA Size
CPMI;SIMPAPP;pg for simpapp;DFHMIRS; ; ; ; ; ; ;ENABLED; ; ; ; ;100

DFHMIRS is the internal mirror program in CICS that handles inbound function shipping. In
CICS RT, this mirror program should be defined under the transaction used to run the
linked program in the transaction resource file if TWA is used. In the list, ARTDPL runs
remote linked program under transaction named CPMI and it has TWA size equal to 100.

Chapter 4
Implementing a CICS Transaction Work Area (TWA)

4-49



Note:

Users should not name application program as DFHMIRS

2. Restart the CICS Runtime Tuxedo servers and the modifications can be seen in ARTDPL
stdout file.
Listing 4‑42 stdout_dpl TWA Example

|---------------------------------|
| TRANSACTIONS loaded : < 1> |
|----------------------------------------------|----|-|-|---|-|-|----------
|-----|-|--------|-----|---|
| | | | |C|C| |R|R| | |T| | | |
|TRAN| GROUP | PROGRAM |ALIA|M|O|PRI|E|E| STATUS |TASK |R| TRAN | TWA |MAX|
| | | | |D|N| |S|S| |DATA |A| CLASS | SIZ |ACT|
| | | | |S|F| |S|T| |KEY |C| | |IVE|
|----|----------|------------------------------|----|-|-|---|-|-|----------
|-----|-|--------|-----|---|
|CPMI|SIMPAPP |DFHMIRS | |N|N|001|N|N|ENABLED |USER |Y| |00100|999|
|--------------------------------------------------------------------------
---------------------------|

4.13 Implementing Integration with WebSphere MQ
This chapter contains the followings topics:

• Using ART CICS Transaction Trigger Monitor (ARTCKTI)

• Rebuilding ART for CICS Servers

• Handling CICS Runtime Preprocessor of MQOPEN/MQCLOSE Calls

• Encoding Character Set

• Changing COMP-5 back to BINARY Data Type

4.13.1 Using ART CICS Transaction Trigger Monitor (ARTCKTI)
The ART CICS Transaction Trigger Monitor (ARTCKTI) behaves the same as the CICS CKTI
transaction. It listens on one or multiple WebSphere MQ initiation queues, retrieves trigger
messages when a trigger event occurs, and then forwards the trigger messages to the target
transaction.

• Work Flow

• Command Configuration

• Configuring WebSphere MQ Servers to Trigger ART for CICS Transactions

4.13.1.1 Work Flow
ARTCKTI is a standalone Oracle Tuxedo server. The ARTCKTI server behaves as follows:

1. Monitor one or multiple WebSphere MQ initiation queues.
One server instance can only monitor WebSphere MQ initiation queues within the same
WebSphere MQ queue manager. The queues in different WebSphere MQ queue
managers should be monitored by separate ARTCKTI server instances.

Chapter 4
Implementing Integration with WebSphere MQ

4-50



2. When trigger message has arrived, the ARTCKTI server retrieves the message.

3. Retrieve the transaction ID from the trigger message.

4. Transfer the trigger message from structure MQTMC to MQTMC2
Since MQTMC has many fields, it is always too complicated to send the structure as the
parameter of EXEC CICS START call. MQTMC2 is used in CKTI to pass the structure as data to
the START request for the trigger monitor.

5. Invoke the target transaction, and send the MQTMC2 data.
Since CICS CKTI transaction starts the target transaction with asynchronized call (EXEC
CICS START), the ARTCKTI server also starts the target transaction with asynchronized call
(Tuxedo tpacall).

6. User transaction retrieves the trigger message by CICS RETRIEVE, and performs
operations on the WebSphere MQ application queue.
If the user transaction does not retrieve the message or the triggered transaction is not
available, WebSphere MQ no longer sends trigger message in this condition. A new trigger
message is issued until the WebSphere MQ initiation queue is reopened or a new trigger
condition is met.

The following figure illustrates the behavior:

Chapter 4
Implementing Integration with WebSphere MQ

4-51



Figure 4-4    WebSphere MQ Trigger Condition

Note:

By default, ARTCKTI is built with client mode and a specific Websphere MQ version.
You need to rebuild ARTCKTI server if your ARTCKTI accesses Websphere MQ with
server mode or if your Websphere MQ runtime version is lower than the version upon
which the default ARTCKTI is built. For more information, see Rebuild ARTCKTI
Server.

4.13.1.2 Command Configuration
ARTCKTI accepts the following parameters for the ubbconfig file.

• -i trigger_interval: specifies the maximum time (in milliseconds) that the ARTCKTI
server waits for a message to arrive at the WebSphere MQ initiation queue.

Chapter 4
Implementing Integration with WebSphere MQ

4-52



• -s retry_interval: specifies the retry interval for ARTCKTI to reconnect to WebSphere
MQ queue manager or reopen WebSphere MQ initiation queue upon failure.

• -m queue_manager_name : specifies the name of the WebSphere MQ queue manager to be
monitored.

• -q queue1,queue2,……: specifies the name of the WebSphere MQ initiation queue to be
monitored.

4.13.1.3 Configuring WebSphere MQ Servers to Trigger ART for CICS Transactions
WebSphere MQ can trigger CICS transactions when one or more messages are placed on the
queue. ART for CICS provides ARTCKTI server as trigger monitor (equivalent to CICS CKTI
transaction).

To enable MQ Manager to trigger an ART for CICS transaction, the triggering queue and
process need to be defined appropriately in the MQ Manager configuration.The following listing
shows a sample configuration:

Listing 4‑43 Sample Configuration to Trigger ART for CICS Transactions

runmqsc MYMQM << EOF
 
DEFINE QLOCAL(INIT1) REPLACE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE) 
DESCR('INITIATION QUEUE')
DEFINE QLOCAL(APP1) REPLACE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE) 
DESCR('APPLICATION QUEUE') INITQ('INIT1') PROCESS('APP1.P') TRIGGER 
TRIGTYPE(FIRST)
DEFINE PROCESS(APP1.P) DESCR('PROCESS DEFINITION') APPLTYPE(UNIX) 
APPLICID('SA01')
 
DEFINE QLOCAL(APP2)
 
DEFINE CHANNEL(APP.C) CHLTYPE(SVRCONN)
DEFINE LISTENER(APP.L) TRPTYPE( TCP )
 
ALTER QMGR TRIGINT(0)
DEFINE QMODEL('SYSTEM.SAMPLE.REPLY') REPLACE DESCR('GENERAL REPLY QUEUE')
EOF

In the example above, INIT1 is defined as a trigger queue associated with process APP1.P,
and specifies that the FIRST message placed on the queue will be used for triggering. The
process definition that follows defines APPLTYPE as UNIX and specifies ART for CICS
transaction ID to be triggered as APPLICID.

Based on this definition, when the first message is queued on INIT1 queue, ARTCKTI trigger
monitor will START TRANID('SA01') in ARTATRN server. The application transaction will usually
drain the queue and process all available messages. The next time a new message is queued
on INIT1, it will be triggered again.

4.13.2 Rebuilding ART for CICS Servers
Before rebuilding the CICS transaction servers, you need to prepare the WebSphere MQ RM
Definitions, as discussed in this section. If ART for CICS transaction servers use different

Chapter 4
Implementing Integration with WebSphere MQ

4-53



modes to access the WebSphere MQ, then you must perform the tasks described later in this
section and upgrade Oracle Tuxedo after rebuilding the servers.

• Prepare WebSphere MQ RM Definitions

• Rebuild TMS_MQM Server

• Rebuild ART for CICS Transaction Servers

• Rebuild ARTCKTI Server

• Update Oracle Tuxedo UBBCONFIG and OPENINFO

4.13.2.1 Prepare WebSphere MQ RM Definitions
Prepare WebSphere MQ RM definitions by adding the following in $TUXDIR/udataobj/RM file if
using local WebSphere MQ server:

# For building TMS_MQM server to work with local MQ server
MQSeries_XA_RMI:MQRMIXASwitchDynamic: /opt/mqm/lib64/libmqmxa64.so /opt/mqm/
lib64/libmqm.so
# For building ARTSTR*/ARTATR*/ARTDPL server
MQSeries_XA_RMI_COB:MQRMIXASwitch: -L${MQMDIR}/lib64 -lmqmxa64 -lmqmcb

If using local WebSphere MQ client for remote connection to WebSphere MQ server, use this
version (do not use duplicate entries in RM file):

# For building TMS_MQM server to work with local MQ client
MQSeries_XA_RMI:MQRMIXASwitchDynamic: /opt/mqm/lib64/libmqcxa64.so /opt/mqm/
lib64/libmqic.so
# For building ARTSTR*/ARTATR*/ARTDPL server
MQSeries_XA_RMI_COB:MQRMIXASwitch: -L${MQMDIR}/lib64 -lmqcxa64 -lmqicb

Note:

${MQMDIR} is the environment variable which indicates the installation path of MQM.

4.13.2.2 Rebuild TMS_MQM Server
Build TMS_MQM server and put it in a directory included in the PATH set in setenv (for
example, $TUXDIR/bin and $KIXDIR/bin) with correct execute permissions.

buildtms -r MQSeries_XA_RMI -o TMS_MQM

4.13.2.3 Rebuild ART for CICS Transaction Servers
Build transaction server (ARTSTR*/ARTATR*/ARTDPL) and put them in $KIXDIR/bin directory or a
local directory under $APPDIR (but then add it in the $PATH definition in setenv) with correct
execute permissions. See an example for.

ARTATRN
buildartcics -M -r Oracle_XA -r MQSeries_XA_RMI_COB -o ARTATRN_ORA_MQM

Chapter 4
Implementing Integration with WebSphere MQ

4-54



Note:

• -M means "multiple RM involved".

• -r flags specify RMs to link with. For example, -r Oracle_XA points to Oracle DB
RM definition, and -r MQSeries_XA_RMI_COB points to MQ RM for COBOL
programs.

4.13.2.4 Rebuild ARTCKTI Server
Build ARTCKTI server if MQ-initiated transaction support is required.

In general, default ARTCKTI does not need to be rebuilt unless WebSphere MQ version is
changed or you need to use it in MQ server mode. (Default version is for use with WebSphere
MQ client.)

To build the ARTCKTI server, execute the following command as the Oracle Tuxedo
administrator with write permission for the $KIXDIR/bin directory:

buildserver -o $KIXDIR/bin/ARTCKTI -t -f "$KIXDIR/objs/ARTCKTI.o $KIXDIR/objs/
list.o" -l "-L$MQMDIR/lib64 -lmqic_r"

The above is to build for use with WebSphere MQ client. For use with locally installed
WebSphere MQ server, use the library shown below:

buildserver -o $KIXDIR/bin/ARTCKTI -t -f "$KIXDIR/objs/ARTCKTI.o $KIXDIR/objs/
list.o" -l "-L$MQMDIR/lib64 -lmqm_r"

Note:

$MQMDIR is the path where WebSphere MQ has been installed.

For more information, see ARTCKTI Configuration.

4.13.2.5 Update Oracle Tuxedo UBBCONFIG and OPENINFO
ARTCKTI server does not need to be configured in the TMS group.

ARTSTR*/ARTATR*/ARTDPL should be configured in the TMS group, and TMS group should be
configured as MQM group.

Listing 4‑44 Example of Updating Oracle Tuxedo UBBCONFIG and OPENINFO

*GROUPS
# For ARTCKTI
GRP01
GRPNO=10
ENVFILE="/xxx/envfile"
 
 

Chapter 4
Implementing Integration with WebSphere MQ

4-55

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ServerConfiguration.html#wp1117576


#For ARTSTR/ATR/DPL
GRP02
GRPNO=12
ENVFILE="/xxx/envfile "
TMSNAME=TMS_ORA
TMSCOUNT=2
OPENINFO="Oracle_XA:Oracle_XA+Acc=P/SYSADM1/
SYSADM1+SqlNet=ANA99C1O+SesTm=600+LogDir=/home/oracle/DRIVERMQ/deploy/CICS_RT/
LOGS/xa+DbgFl=0x20"
MRM=Y
 
*RMS
RM_MQM
SRVGRP=GRP02
RMID=2
TMSNAME="TMS_MQM"
TMSCOUNT=2
# For local MQ connection: The OPENINFO only needs to configure RM name and 
MQ manager name as following:
OPENINFO="MQSeries_XA_RMI_COB: MYMQM"
# For remote MQ connection: The OPENINFO needs to configure as following:
OPENINFO="MQSeries_XA_RMI_COB:qmname=MYMQM,channel=APP.C,trptype=TCP,AXLIB=/
home/bofzhu/zhubf/tuxedo/tux1213L31/lib/
libtux.so,conname=10.182.73.205(8000),tpm=Tuxedo"
AUTO=Y
 
*SERVERS
ARTCKTI
SRVGRP=GRP00
SRVID=1010
GRACE=0 RESTART=Y CONV=N MAXGEN=10
# -m means MQ manager name, -q means MQ queue name
# Refer to ARTCKTI Configuration in Oracle Tuxedo Application Runtime for 
CICS Reference Guide
CLOPT="-A -- -m MYMQM -q INIT1"
 
#Add all required ART*_MQM servers (here ARTSTRN, ARTATRN, and ARTDPL are 
shown)
ARTATRN_ORA_MQM
SRVGRP=GRP02
SRVID=60
MIN=3 MAX=3
CLOPT="-o xxx -e xxx -r -- -s xxx -l xxx"
 
ARTSTRN_ORA_MQM
SRVGRP=GRP02
SRVID=65
MIN=2 MAX=2
CLOPT="-o xxx -e xxx -r -- -s xxx -l xxx"
 
ARTDPL_ORA_MQM
SRVGRP=GRP02
SRVID=70
MIN=2 MAX=2
CLOPT="-o xxx -e xxx -r -- -s xxx -l xxx"

Chapter 4
Implementing Integration with WebSphere MQ

4-56



4.13.3 Handling CICS Runtime Preprocessor of MQOPEN/MQCLOSE Calls
For proper connection to WebSphere MQ, the sequence is MQCONN, MQOPEN, MQxxx (GET/PUT),
MQCLOSE, and MQDISC. In mainframe CICS, MQCONN and MQDISC are often handled by CICS as
resource management functions and applications only do MQOPEN/MQxxx/MQCLOSE.

To support this in ART for CICS, we use ART for CICS pre-processor to convert MQOPEN/
MQCLOSE calls to KIX_MQxxxx wrappers, which then handle MQCONN and MQDISC under the
covers. This approach also enables ART for CICS to handle connection issues and re-connect
if necessary. Check the pre-processor output to verify that KIX_MQxxx calls are there.

In terms of the MQ wrapper, MQ wrapper can help CICS transaction to recycle or free the MQ
connection if the CICS transaction does not do this itself. prepro-cics.pl introcues a switch
MQ_wrapper to enable this MQ wrapper. For every application server (for example, ARTSTR*/
ARTATR*/ARTDPL), CLOPT -m queue_manager_name is introduced to specify the target MQ
Manager, because MQ wrapper can help to do the MQCONNECT before MQOPEN but MQCONNECT
needs to know which MQ Manager that it should connect to. For more information, see 
MQ_wrapper and WebSphere MQ Queue Manager Name.

4.13.4 Encoding Character Set
When using local WebSphere MQ client for remote connection to z/OS based MQ Manager,
the EBCDIC-to-ASCII conversion is not automatically enabled. It can be enabled by setting
MQGMO-CONVERT flag in MQGET options as shown in example below.

Listing 4‑45 Example for MQGMO-CONVERT

COMPUTE MQGMO-OPTIONS = MQGMO-WAIT
+ MQGMO-SYNCPOINT
+ MQGMO-FAIL-IF-QUIESCING
+ MQGMO-CONVERT
END-COMPUTE.

For MQPUT the ASCII-to-EBCDIC conversion is done automatically if MQMD-FORMAT is set to
MQFMT-STRING. For example,

MOVE MQFMT-STRING TO MQMD-FORMAT.
When using local WebSphere MQ server, with channel defined as SENDER, transcoding can be
done without program change by adding CONVERT (YES) on the channel definition.

4.13.5 Changing COMP-5 back to BINARY Data Type
Oracle Tuxedo ART Workbench adapts COBOL programs to target environment, in part by
changing some mainframe numeric data types (BINARY/COMP) to compatible data type COMP-5,
which is the native equivalent. This is transparent in COBOL applications.

However, on Linux, for Websphere MQ libraries this can cause an issue as they require the
use of BINARY types in the parameters passed in MQ calls. Similar data type mapping is done
by Pro*COBOL pre-processor.

Therefore, change the WebSphere MQ interface definitions from COMP-5 back to BINARY before
the final compile stage. See an example of the changed MQ interface definitions (BINARY data
type).

Chapter 4
Implementing Integration with WebSphere MQ

4-57

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/Preprocessor.html#wp1116223
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ServerConfiguration.html#wp1140100


Listing 4‑46 Example of the Changed MQ Interface Definitions (BINARY Data Type)

01 QM-NAME PIC X(48) VALUE SPACES.
01 HCONN PIC S9(9) BINARY.
01 Q-HANDLE PIC S9(9) BINARY.
01 OPTIONS PIC S9(9) BINARY.
01 COMPLETION-CODE PIC S9(9) BINARY.
01 OPEN-CODE PIC S9(9) BINARY.
01 REASON-CODE PIC S9(9) BINARY.
01 CONN-REASON PIC S9(9) BINARY.
01 USER-DATA-LENGTH PIC S9(9) BINARY.
01 DATA-LENGTH PIC S9(9) BINARY.
01 TOTAL-NUM PIC S9(9) BINARY.

4.14 Implementing Using Multiple Session Management
ART for CICS provides multiple session management function. When connecting to ART for
CICS via one 3270 terminal, you can select and run different transactions through this terminal
without terminating the previous transaction, and switch between active transactions back and
forth.

Note:

• The multiple session management function does not support conversational user
transaction.

• The default user can only run CESN/CSGM transactions when the multiple
session management function is enabled.

• PA1/PA2 cannot be used in user application when this feature is enabled.

• Writing User Plug-In for Application List

• Configuring CICS Runtime Configuration Files

• Configuring UBBCONFIG

• Starting, Switching, and Ending Sessions

4.14.1 Writing User Plug-In for Application List
ART for CICS provides a system transaction, whose program name is DFHALST, to get and
show application list for a user when doing multiple session management. The transaction calls
a user plug-in to get the list.

You should provide this plug-in, and place the library in the correct library path so that
DFHALIST can call it. For more information about this plug-in, see CICS Runtime Integration
with Application List Transaction in Oracle Tuxedo Application Runtime for CICS Reference
Guide.

4.14.2 Configuring CICS Runtime Configuration Files
The following topics describe how to configure the CICS Runtime Configuration file:

Chapter 4
Implementing Using Multiple Session Management

4-58



• Transaction Configuration File

• System Configuration File

4.14.2.1 Transaction Configuration File
You should define application list transaction (ALST) in transactions.desc, and set the
program to DFHALST. ARTSTRN servers will load this transaction.

ALST;SIMPAPP;Application list transaction;DFHALST

For more information, ALST (Application List Transaction) in Oracle Tuxedo Application
Runtime for CICS Reference Guide

4.14.2.2 System Configuration File
You should configure GMTRAN=CESN in system.desc to let ART for CICS initiate CESN
transaction automatically when a user connects to it.

[kixr]
APPLID=DBDCkixR
GMTRAN=CESN

4.14.3 Configuring UBBCONFIG
You should enable security to do multiple session management. For more information, see
Security Configuration of the CICS Runtime.

You should configure the following servers to UBBCONFIG. See the listing below for an example.

• ARTTCPL, specifying its -t option. For more information, ARTTCPL/ARTTCPH
Configuration in Oracle Tuxedo Application Runtime for CICS Reference Guide.

• ARTCNX, specifying its SYSID.

• ARTSRM (to prevent the same user connects to ART for CICS via different terminals).

• ARTSTRN (to run application list transaction and user transactions).

Listing 4‑47 Example of Configuring UBBCONFIG

* SERVERS
ARTTCPL
SRVGRP=TCP00
SRVID=101
CLOPT=" -- -M 4 -m 1 -L //hostname:34582 -n //hostname:34583 -t ALST"
 
ARTCNX
SRVGRP=GRP01
SRVID=15
CONV=Y
MIN=1 MAX=1 RQADDR=QCNX015 REPLYQ=Y
CLOPT="-o /home2/work9/demo/LOGS/sysout/stdout_cnx -e /home2/work9/demo /LOGS/
sysout/stderr_cnx -r -- -s KIXR "
 
ARTSRM

Chapter 4
Implementing Using Multiple Session Management

4-59



SRVGRP=GRP02
SRVID=18
MIN=1 MAX=1
CLOPT="-o /home2/work9/demo/LOGS/sysout/stdout_srm -e /home2/work9/demoLOGS/
sysout/stderr_srm -r -- -s KIXR -l SIMPAPP"
 
ARTSTRN
SRVGRP=GRP02
SRVID=20
CONV=Y
MIN=2 MAX=10 RQADDR=QKIX110 REPLYQ=Y
CLOPT="-o /home2/work9/demo/LOGS/sysout/stdout_strn -e /home2/work9/demo/LOGS/
sysout/stderr_strn -r -- -s KIXR -l SIMPAPP"

4.14.4 Starting, Switching, and Ending Sessions
Boot the application, and connect to ART for CICS through a 3270 terminal. When you
complete sign on, ART for CICS runs application list transaction (ALST) automatically, which
shows you the application list.

Figure 4-5    ART for CICS Application List Transaction (ALST)

• Starting Sessions

• Switching Sessions

• Ending Sessions

4.14.4.1 Starting Sessions
To start up a transaction (also known as session), do one of the following:

• Move the cursor to the field at the left of the session that you want to activate, and press
Enter. DFHALST actives the session and switches the display to the application screen.

• Type /sessid in the command field and press Enter.

Chapter 4
Implementing Using Multiple Session Management

4-60



4.14.4.2 Switching Sessions
To switch back to application list transaction from a user transaction screen, press PA1.

To switch to the next active transaction, press PA2.

4.14.4.3 Ending Sessions
In user transaction, issue CICS RETURN without TRANSID parameter to end the transaction, and
then ART for CICS terminates the session of the transaction.

You are not able to exit application list transaction; instead, you should disconnect from ART
for CICS to terminate it.

4.15 Implementing Using ART for CICS TCP/IP Socket Interface
In z/OS, CICS TCP/IP socket interface allows remote users to access CICS client/server
applications over TCP/IP Internets. CICS TCP/IP provides a variant of the Berkeley Software
Distribution 4.3 sockets interface, which is widely used in TCP/IP networks and is based on the
UNIX system and other operating systems. The socket interface consists of a set of calls that
your CICS application programs can use to set up connections, send and receive data, and
perform general communications control functions.

ART for CICS now supports CICS TCP/IP socket interface, enabling you to use it when you
develop new peer-to-peer applications in which both ends of the connection are
programmable.

CICS Runtime server, ARTCSKL, is ART for CICS TCP/IP socket listener. When client request
comes, it passes the request to work task for processing, and then waits for another client
request. CICS Runtime transaction server, ARTATRN/ARTATR1, starts up and runs user-written
transactions.

You can use ART for CICS TCP/IP socket interface to write these transactions. The user-
written transaction uses EXEC CICS RETRIEVE commands to make a socket available to
ARTATRN/ARTATR1 (it should use the output parameter to call takesocket()), uses write/
read() to transfer data, and then closes the socket.

• ART for CICS TCP/IP Socket API

• The Client-Listener-Server Application Set

• ART for CICS TCP/IP Listener (ARTCSKL)

• Required Configurations

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-61



Note:

• ART for CICS TCP/IP only provides connection-oriented (TCP) services and
does not support the IP (raw socket) protocol and connectionless (UDP)
services. Supports both IPv4 and IPv6.

• Client applications and user transactions running in ARTATRN/ARTATR1 can be
written in both C and COBOL languages. The errno returned by C socket API on
all supported platforms and the errno returned by COBOL socket API on AIX/
Solaris platforms are different from mainframe; you should use macro definition in
errno.h in your programs.

• Client applications and user transactions running in ARTATRN/ARTATR1 can be
written in both C and COBOL languages. The errno returned by C socket API on
all supported platforms and the errno returned by COBOL socket API on AIX/
Solaris platforms are different from mainframe; you should use macro definition in
errno.h in your programs.

• Only supports to start user transactions using EXEC CICS START with no delay
interval.

• Only supports ASCII routines for those peer-to-peer applications (on both ends).

• ARTCSKL is the only supported socket listener; user-written listener is not
supported.

• Security function is not supported.

• If a user-written program depends on platform endianness and you want to
migrate it to Linux platforms, you should change your code, reconsidering its
order (on mainframe it is big endian); you do not need to worry about this issue if
you want to migrate it to other platforms.

• ART for CICS TCP/IP Socket API

• The Client-Listener-Server Application Set

• ART for CICS TCP/IP Listener (ARTCSKL)

• Required Configurations

4.15.1 ART for CICS TCP/IP Socket API
CICS TCP/IP socket API is a collection of socket calls that enable you to perform the following
primary communication functions between application programs.

• Set up and establish connections to other users on the network

• Send and receive data to and from other users

• Close down connections

In addition to these basic functions, these APIs enable you to:

• Interrogate the network system to get names and status of relevant resources

• Perform system and control functions as required

ART for CICS supports the above functions as well, providing a set of C APIs and extended
COBOL APIs. The following table lists the supported C APIs; the last three functions are
provided by ART for CICS while other functions can use OS socket library directly.

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-62



Table 4-7    Supported C APIs

Call Format Description

accept() int accept(int s,
struct sockaddr_in
*name,int *namelen)

A server issues the accept() call to accept a connection
request from a client. The call uses a socket already created
with a socket() call and marked by a listen() call.

bind() int bind(int s,
struct sockaddr_in
*name, int namelen)

The bind() call binds a unique local port to an existing
socket. Note that, on successful completion of a socket()
call, the new socket descriptor does not have an associated
port.

close() int close(int s) A close() call shuts down a socket and frees all resources
allocated to the socket. If the socket refers to an open TCP
connection, the connection is closed. If a stream socket is
closed when input data is queued, the TCP connection is
reset rather than being cleanly closed.

connect() int connect(int s,
struct sockaddr_in
*name, int namelen)

A connect() call attempts to establish a connection between
a local socket and a remote socket. For a stream socket, the
call performs two tasks.

fcntl() signed int
fcntl(int s, int
cmd, int arg)

The fcntl() call controls whether a socket is in blocking or
nonblocking mode.

gethostid() unsigned long
gethostid()

gethostid() gets the unique 32-bit identifier for the current
host in network byte order. This value is the default home IP
address.

gethostnam
e()

int
gethostname(char
*name, int namelen)

gethostname() returns the name of the host processor on
which the program is running.

getpeernam
e()

int getpeername(int
s, struct sockaddr
*name, int
*namelen)

getpeername() returns the name of the peer connected to a
specified socket.

getsocknam
e()

int getsockname(int
s, struct
sockaddr_in *name,
int *namelen)

A getsockname() call returns the current name for socket s
in the sockaddr structure pointed to by the name parameter.

getsockopt(
)

int getsockopt(int
s, int level, int
optname, char
*optval, int
*optlen)

getsockopt() gets options associated with a socket.

ioctl() int ioctl(int s,
unsigned long cmd,
char *arg)

The ioctl() call controls the operating characteristics of
sockets.

listen() int listen(int s,
int backlog)

The listen() call indicates a readiness to accept client
connection requests.

read() int read(int s,
char *buf, int len)

The read() call reads data on a specified connected socket.

recv() - The recv() call receives data on a specified socket.

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-63



Table 4-7    (Cont.) Supported C APIs

Call Format Description

recvfrom() int recvfrom(int s,
char *buf, int len,
int flags, struct
sockaddr_in *name,
int *namelen)

The recvfrom() call receives data on a specified socket.
The recvfrom() call applies to any datagram socket,
whether connected or unconnected.

select() int select(int
nfds, fd_set
*readfds, fd_set
*writefds, fd_set
*exceptfds, struct
timeval *timeout)

The select() call is useful in processes where multiple
operations can occur, and it is necessary for the program to
be able to wait on one or several of the operations to
complete.

send() int send(int s,
char *msg, int len,
int flags)

send() sends data on an already-connected socket.

sendto() int sendto(int s,
char *msg, int len,
int flags, struct
sockaddr_in *to,
int tolen)

sendto() sends data to the address specified in the call.

setsockopt(
)

int setsockopt(int
s, int level, int
optname, char
*optval, int
*optlen)

setsockopt() sets the options.

shutdown() int shutdown(int s,
int how)

The shutdown() call shuts down all or part of a duplex
connection.

socket() int socket(int
domain, int type,
int protocol)

The socket() call creates an endpoint for communication
and returns a socket descriptor representing the endpoint.

write() int write(int s,
char *buf, int len)

write() writes data on a connected socket.

getclienti
d()

int getclientid(int
domain, struct
clientid)

A getclientid() call returns the identifier by which the
calling application is known to the TCP/IP address space.

initapi() int initapi(int
max_sock, char
*subtaskid)

The initapi() call connects your application to the TCP/IP
interface.

takesocket(
)

int
takesocket(struct
clientid
*client_id, int
hisdesc)

takesocket() acquires a socket from another program.

Note:

takesocket()call can only be use in ARTATRN/ARTATR1 givesocket()call is not
supported.

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-64



The following lists the supported extended COBOL APIs:

Table 4-8    Supported Extended COBOL APIs

Call Format Description

ACCEPT CALL 'EZASOKET' USING SOC-
FUNCTION S NAME ERRNO RETCODE.

A server issues the ACCEPT call to accept a
connection request from a client.

BIND CALL 'EZASOKET' USING SOC-
FUNCTION S NAME ERRNO RETCODE.

In a typical server program, the BIND call
follows a SOCKET call and completes the
process of creating a new socket.

CLOSE CALL 'EZASOKET' USING SOC-
FUNCTION S ERRNO RETCODE.

The CLOSE call shuts down a socket and
frees all resources allocated to it.

CONNECT CALL 'EZASOKET' USING SOC-
FUNCTION S NAME ERRNO RETCODE.

The CONNECT call is issued by a client to
establish a connection between a local socket
and a remote socket.

FCNTL CALL 'EZASOKET' USING SOC-
FUNCTION S COMMAND REQARG ERRNO
RETCODE.

The blocking mode of a socket can either be
queried or set to nonblocking using the
FNDELAY flag described in the FCNTL call.

LISTEN CALL 'EZASOKET' USING SOC-
FUNCTION S BACKLOG ERRNO
RETCODE.

The LISTEN call:
• Completes the bind, if BIND has not

already been called for the socket.
• Creates a connection-request queue of a

specified length for incoming connection
requests.

READ CALL 'EZASOKET' USING SOC-
FUNCTION S NBYTE BUF ERRNO
RETCODE.

The READ call reads the data on sockets.

RECV CALL 'EZASOKET' USING SOC-
FUNCTION S FLAGS NBYTE BUF
ERRNO RETCODE.

The RECV call, like READ, receives data on a
socket with descriptor S.

RECVFROM CALL 'EZASOKET' USING SOC-
FUNCTION S FLAGS NBYTE BUF NAME
ERRNO RETCODE.

The RECVFROM call receives data on a socket
with descriptor S and stores it in a buffer.

SELECT CALL 'EZASOKET' USING SOC-
FUNCTION MAXSOC TIMEOUT RSNDMSK
WSNDMSK ESNDMSK RRETMSK WRETMSK
ERETMSK ERRNO RETCODE.

In a process where multiple I/O operations
can occur, it is necessary for the program to
be able to wait on one or several of the
operations to complete.

SEND CALL 'EZASOKET' USING SOC-
FUNCTION S FLAGS NBYTE BUF
ERRNO RETCODE.

The SEND call sends data on a specified
connected socket.

SENDTO CALL 'EZASOKET' USING SOC-
FUNCTION S FLAGS NBYTE BUF NAME
ERRNO RETCODE.

SENDTO is similar to SEND, except that it
includes the destination address parameter.

SHUTDOWN CALL 'EZASOKET' USING SOC-
FUNCTION S HOW ERRNO RETCODE.

The SHUTDOWN call can be used to close one-
way traffic while completing data transfer in
the other direction.

SOCKET CALL 'EZASOKET' USING SOC-
FUNCTION AF SOCTYPE PROTO ERRNO
RETCODE.

The SOCKET call creates an endpoint for
communication and returns a socket
descriptor representing the endpoint.

WRITE CALL 'EZASOKET' USING SOC-
FUNCTION S NBYTE BUF ERRNO
RETCODE.

The WRITE call writes data on a connected
socket.

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-65



Table 4-8    (Cont.) Supported Extended COBOL APIs

Call Format Description

GETCLIENTID CALL 'EZASOKET' USING SOC-
FUNCTION CLIENT ERRNO RETCODE.

GETCLIENTID call returns the identifier by
which the calling application is known to the
TCP/IP address space in the calling program.

IINITAPI - The INITAPI calls connect an application to
the TCP/IP interface.

TAKESOCKET WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE
IS 'TAKESOCKET'.
01 SOCRECV PIC 9(4) BINARY.
01 CLIENT.
03 DOMAIN PIC 9(8) BINARY.
03 TASK PIC X(8)
03 NAME PIC X(8)..

03 RESERVED PIC X(20).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.
PROCEDURE DIVISION.
CALL 'EZASOKET' USING SOC-
FUNCTION SOCRECV CLIENT ERRNO
RETCODE.

The TAKESOCKET call acquires a socket from
another program and creates a new socket.

Note:

GETSOCKOPT, IOCTL, SETSOCKOPT, and GIVESOCKET are not supported.

4.15.2 The Client-Listener-Server Application Set
The image below shows the sequence of CICS Runtime commands and socket calls involved
in setup. CICS Runtime commands are prefixed by EXEC CICS; all other numbered items in this
figure are ART for CICS TCP/IP calls.

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-66



Figure 4-6    The Client-Listener-Server Application Set

In this case, "Client" might be running TCP/IP under the OS/2 operating system or one of the
various UNIX operating systems such as AIX*. "CICS Runtime Server ARTCSKL" and
"ARTATRN/ARTATR1" processes both run under ART for CICS TCP/IP.

• Client Call Sequence

• Listener Call Sequence

• User Transaction Running in ARTATRN/ARTATR1 Call Sequence

4.15.2.1 Client Call Sequence

Table 4-9    Client Call Sequence

Call Description

(1)INITAPI Connect the CICS application to the TCP/IP interface. Use the MAX-
SOCK parameter to specify the maximum number of sockets to be used
by the application.

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-67



Table 4-9    (Cont.) Client Call Sequence

Call Description

(2)SOCKET This obtains a socket. You define a socket with 3 parameters:
• The domain, or addressing family
• The type of socket
• The protocol
For CICS TCP/IP, the domain can only be the TCP/IP internet domain
(AF_INET). The type can be stream sockets (SOCK_STREAM), or
datagram sockets (SOCK_DGRAM). The protocol can be either TCP or
UDP.

Passing 0 for the protocol selects the default protocol.

If successful, the SOCKET call returns a socket descriptor, s, which is
always a small integer. Notice that the socket obtained is not yet
attached to any local or destination address.

(3)CONNECT Client applications use this to establish a connection with a remote
server. You must define the local socket s (obtained above) to be used in
this connection and the address and port number of the remote socket.
The system supplies the local address, so on successful return from
CONNECT, the socket is completely defined, and is associated with a
TCP connection (if stream) or UDP connection (if datagram).

(4)WRITE This sends the first message to ARTCSKL if it runs in standard mode.
The listener in standard mode requires ARTCSKL input format from the
client in its first transmission. The message contains the CICS
transaction code as its first 4 bytes of data. You must also specify the
buffer address and length of the data to be sent.

(5)READ/WRITE These calls continue the conversation with the server until it is complete.

(6)CLOSE This closes a specified socket and so ends the connection. The socket
resources are released for other applications.

4.15.2.2 Listener Call Sequence
The Listener server, ARTCSKL, is provided as part of ART for CICS TCP/IP. Figure 5‑5 shows
the calls issued by ARTCSKL. Your client and server call sequences must be prepared to work
with this sequence. For more information, see ART for CICS TCP/IP Listener (ARTCSKL).

4.15.2.3 User Transaction Running in ARTATRN/ARTATR1 Call Sequence

Table 4-10    User Transaction Running in ARTATRN/ARTATR1 Call Sequence

Call Description

(7)EXEC CICS RETRIEVE This retrieves the data passed by the EXEC CICS START command in
the Listener program. This data includes the socket descriptor and the
Listener client ID as well as optional additional data from the client.

(8)TAKESOCKET This acquires the newly created socket from the Listener. The
TAKESOCKET parameters must specify the socket descriptor to be
acquired and the client ID of the Listener. This information was obtained
by the EXEC CICS RETRIEVE command.

(9)READ/WRITE The conversation with the client continues until complete.

(10)CLOSE Terminates the connection and releases the socket resources when
finished.

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-68



4.15.3 ART for CICS TCP/IP Listener (ARTCSKL)
This chapter contains the following topics:

• Description

• ARTCSKL Input Format

• ARTCSKL Output Format

4.15.3.1 Description
ARTCSKL is the listener of ART for CICS TCP/IP socket and can perform the same functions as
CICS TCP/IP listener CSKL. When client request comes, it passes the request to work task for
processing, and then waits for another client request. ARTCSKL can run in standard or enhanced
mode; you can set the mode through FORMAT parameter of ART for CICS TCP/IP socket
listener configuration file (listener.desc).

Note:

ARTCSKL is the only supported socket listener; user-written listener is not supported.

Figure 4-7    Client-Listener-Server Application Set

As shown in this figure, client A has already established a connection with the server, which
has created a user transaction run in ARTATRN/ARTATR1. This allows the server to process client
B's request without waiting for client A's transaction to complete. More than one user
transaction can be started in this way.

ARTCSKL is written to make some of this activity go on in parallel, and it has a listening socket
that has a port to receive incoming connection requests. When a connection request is
received, ARTCSKL creates a new socket representing the endpoint of this connection and
passes it to the applications by way of TCP/IP socket givesocket/takesocket calls.

The listener performs the following functions.

• It issues appropriate TCP/IP calls to listen on the port specified in the configuration file and
waits for incoming connection requests issued by clients. The port number must be
configured in ART for CICS TCP/IP socket listener configuration file (listener.desc).

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-69



• When an incoming connection request arrives, the listener accepts it and obtains a new
socket to pass to the ARTATRN/ARTATR1 server.

• The listener in standard mode starts the user transaction based on information in the first
message on the new connection. The format of this information is given in following 
ARTCSKL Input Format. For the listener in enhanced mode starts the user transaction
based on information in ART for CICS TCP/IP socket listener configuration file
(listener.desc).

• It waits for the user transaction to take the new socket and then issues the close call.
When this occurs, the receiving application assumes ownership of the socket and the
listener has no more interest in it.

4.15.3.2 ARTCSKL Input Format
ARTCSKL in standard mode requires the following input format from the client in its first
transmission. The client should then wait for a response before sending any subsequent
transmissions. Input can be in uppercase or lowercase. The commas are required.

ARTCSKL in enhanced mode does not need this input format; ART for CICS gets transaction
information from its TCP/IP Socket Listener configuration file (listener.desc).

Figure 4-8    ARTCSKL Input Format

tran
The transaction ID (in uppercase) that the listener is going to start. This field can be one to four
characters.

client-in-data
Optional. Application data, the maximum length of this field is a 40-byte character (35 bytes,
plus one byte filler and 4 bytes for startup type).

kc (only KC in uppercase is supported)

Optional. The startup type that for ART for CICS task control. Only KC in uppercase is
supported, indicating that the user transaction is started using EXEC CICS START with no delay
interval. If this field is left blank, startup is immediate using the task control (KC).

hhmmss (not supported)

This is reserved for future use.

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-70



4.15.3.3 ARTCSKL Output Format
There are two different formats for the listener output; one for user transaction started through
a standard listener (see Listing 4‑48 below) and one for user transaction started through the
enhanced listener (see Listing 4‑49 below).

A user transaction program, using the EXEC CICS RETRIEVE function to get the data passed to
it by the by the listener, should expand the storage it has allocated to contain the IPv6 socket
address structure. The LENGTH specified on the EXEC CICS RETRIEVE function should reflect the
amount of storage allocated to contain the listener output format. The LENGERR flag is raised if
the LENGTH is smaller than the amount of data sent. Coding a HANDLE condition allows you to
contain this.

Note:

Output through ART for CICS Transient Data Queue (by ARTCSKL) is not supported.

Listing 4‑48 C Structure of the Listener Output Format - Standard Listener

struct sock_standard_tim { /* declaration of structure */
unsigned long give_take_socket; /* Socket being given */
char listen_name[8]; /* Listener name */
char listen_taskid[8]; /* Listener task id */
char client_in_data[35]; /* Client data */
char ote[1]; /* Threadsafe ind. @W1C */
union { /* Clients socket address */
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} sockaddr_in_parm;
char reserved2[68]; /* reserved */
};

Listing 4‑49 C Structure of the Listener Output Format - Enhanced Listener

struct sock_enhanced_tim { /* declaration of structure */
unsigned long give_take_socket; /* Socket being given */
char listen_name[8]; /* Listener name */
char listen_taskid[8]; /* Listener task id */
char client_in_data[35]; /* Client-in-data */
char ote[1]; /* Threadsafe ind. @W1C */
union { /* Clients socket address */
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} sockaddr_in_parm;
char reserved2[68]; /* reserved */
short client_in_data_length; /* Length of data recved */
char client_in_data_2; /* data from Client */
};

Chapter 4
Implementing Using ART for CICS TCP/IP Socket Interface

4-71



4.15.4 Required Configurations
To use ART for CICS TCP/IP Socket Interface functions, you should

• Declare resources on ART for CICS TCP/IP socket listener configuration file
(listener.desc). For more information, seeTCP/IP Socket Listener Configuration File
(listener.desc) in Oracle Tuxedo Application Runtime for CICS Reference Guide.

• Configure CICS Runtime server ARTCSKL and ARTATRN/ARTATR1. CICS Runtime server
ARTCSKL and ARTATRN/ARTATR1 should be configured on the same machine. For more
information about ARTCSKL and ARTATRN/ARTATR1 servers, see Oracle Tuxedo Application
Runtime for CICS Reference GuideOracle Tuxedo Application Runtime for CICS
Reference Guide

4.16 Implementing Transferring CICS Regions
In z/OS, ISSUE PASS command is used to transfer CICS regions without terminal
reconnection; users can also implement data transference using LOGONMSG. When ISSUE PASS
is invoked, the GMTRAN of destination region will be invoked by force.

ART CICS also supports the above scenario. Following configurations are required.

• Configuring ARTSRM Server

• Configuring Environment Variables

• CICS Runtime Configuration Files Declaration

• Logon ART CICS

4.16.1 Configuring ARTSRM Server
It is required to configure ARTSRM. For more information, please refer to ARTSRM
Configuration.

4.16.2 Configuring Environment Variables
It is required to set environment variable ISC_ENABLE to YES. For more information, please
refer to ISC_ENABLE.

4.16.3 CICS Runtime Configuration Files Declaration
The following configurations are required:

• system.desc

• transactions.desc and programs.desc

• terminals.desc (Optional)

• UBB Declaration

• Environment Variable Declaration

4.16.3.1 system.desc
system.desc defines system initialization parameters of CICS regions.

Chapter 4
Implementing Transferring CICS Regions

4-72

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ServerConfiguration.html#wp1117786
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ServerConfiguration.html#wp1117786
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/EnvironmentVariables.html#wp1114007


Listing 4‑50 Example for system.desc Configurations

[kixr]
APPLID=DBDCkixR
INITPARM=(ASINTP='Hello world')
[kixl]
APPLID=DBDCkixL
INITPARM=(ASINTP='Hello world')
GMTRAN=ISSS
LGNMSG=YES

In this example, two CICS regions are defined. SYSID are specified as kixr and kixl
respectively. On one hand, kixl specifies GMTRAN=ISSS; when users log in DBDCkixL,
transaction are invoked automatically. On the other hand, kixr doesn't specify GMTRAN; default
CSGM is used. LGNMSG specified in kixl enables data transference function using ISSUE PASS in
EXTRACT LOGONMSG. For more information about system.desc, please refer to System
Configuration File.

4.16.3.2 transactions.desc and programs.desc
If GMTRAN (not other system transactions, such as CSGM, CESN, or CESF) is defined, transactions/
programs should be configured in transactions.desc/programs.desc, and then loaded by
ARTSTRN/ARTSTR1. For more information about transactions.desc/programs.desc, please
refer to Transaction Configuration File and Programs Configuration File.

Listing 4‑51 Example for transactions.desc and programs.desc Configurations

transactions.desc:
ISSS;SIMPAPPB;pg for simpapp;ISSPASSS
programs.desc:
ISSPASSS;SIMPAPPB;pg for simpapp;COBOL; ;ENABLED

4.16.3.3 terminals.desc (Optional)
This configuration file defines terminal available to ART CICS; it is mandatory for using static
LUNAME to logon ART CICS. For more information about terminals.desc, please refer to 
Terminal Configuration File.

Listing 4‑52 Example for terminals.desc Configurations

[terminal]
name=0001
netname=CICS0001
group=SIMPAPP
[terminal]
name=0002
netname=CICS0002
group=SIMPAPP

4.16.3.4 UBB Declaration
To implement transferring CICS regions, the following requirements should be met.

Chapter 4
Implementing Transferring CICS Regions

4-73

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ConfigurationFile.html#1140589
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ConfigurationFile.html#1140589
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ConfigurationFile.html#1127112


• TMQUEUE should be configured for each CICS region.

• ARTLOGN should be configured.

• At least one ARTCNX should be configured for each CICS region.

• DDR published by ARTCNX should be configured (an example is provided as below).

Listing 4‑53 Example for DDR Configurations

GRP00
GRPNO=10
ENVFILE="/home2/work9/demo/config/tux/envfile"
 
GRP01
GRPNO=11
ENVFILE="/home2/work9/demo/config/tux/envfile"
GRP02
GRPNO=12
ENVFILE="/home2/work9/demo/config/tux/envfile"
 
GQUEKIXR
GRPNO=1010
TMSNAME=TMS_QM TMSCOUNT=2
OPENINFO="TUXEDO/QM: /home2/work9/demo/sysfile/kixrqspace:DBDCkixR"
GQUEKIXL
GRPNO=1020
TMSNAME=TMS_QM TMSCOUNT=2
OPENINFO="TUXEDO/QM: /home2/work9/demo/sysfile/kixlqspace:DBDCkixL"
...
TMQUEUE
SRVGRP=GQUEKIXR
SRVID=1110
RESTART=Y GRACE=0 CONV=N MAXGEN=10
CLOPT="-s DBDCkixR:TMQUEUE -- "
TMQUEUE
SRVGRP=GQUEKIXL
SRVID=1210
RESTART=Y GRACE=0 CONV=N MAXGEN=10
CLOPT="-s DBDCkixL:TMQUEUE -- "
 
ARTCNX
SRVGRP=GRP01
SRVID=15
CONV=Y
MIN=1 MAX=1 RQADDR=QCNX015 REPLYQ=Y
CLOPT="-o /home2/work9/demo /LOGS/sysout/stdout_cnx_15 -e /home2/work9/demo /
LOGS/sysout/stderr_cnx_15 -r -- -s KIXR -l SIMPAPP"
ARTCNX
SRVGRP=GRP02
SRVID=16
CONV=Y
MIN=1 MAX=1 RQADDR=QCNX016 REPLYQ=Y
CLOPT="-o /home2/work9/demo /sysout/stdout_cnx_16 -e /home2/work9/demo /LOGS/
sysout/stderr_cnx_16 -r -- -s KIXL -l SIMPAPP"
ARTLOGN
SRVGRP=GRP00
SRVID=18

Chapter 4
Implementing Transferring CICS Regions

4-74



CONV=Y
MIN=1 MAX=1 RQADDR=QLGN018 REPLYQ=Y
CLOPT="-o /home2/work9/demo /LOGS/sysout/stdout_logn -e /home2/work9/demo /
LOGS/sysout/stderr_logn -r --"
 
...
*SERVICES
DEFAULT: SVCTIMEOUT=0 TRANTIME=80
connect ROUTING=CICSISC
disconnect ROUTING=CICSISC
inquire ROUTING=CICSISC
update ROUTING=CICSISC
CSGM ROUTING=CICSISC
CESN ROUTING=CICSISC
CESF ROUTING=CICSISC
authfail ROUTING=CICSISC
 
*ROUTING
CICSISC FIELD=CX_APPLID RANGES="'DBDCKIXR':GRP01,'DBDCKIXL':GRP02,*:GRP01" 
BUFTYPE="FML32"

Note:

DDR configuration in UBB is mandatory. DDR routes login request to ARTCNX in
different CICS regions by FML field CX_APPLID
The APPLID configured in ROUTING RANGES should be in upper case.

ART reserved FML FIELD ID from 8100 to 8191 for DDR.

4.16.3.5 Environment Variable Declaration
Set environment variable ISC_ENABLE=YES to transfer CICS regions.

Use Tuxedo tmadmin psr and tmadmin psc to check whether ARTLOGN starts successfully.
ARTCNX and TMQUEUE are included in each region.

Listing 4‑54 Example for Environment Variable Declaration

/home2/work9/demo> tmadmin> tmadmin
...
 
> psr
Prog Name Queue Name Grp Name ID RqDone Load Done Current Service
--------- ---------- -------- -- ------ --------- ---------------
BBL 34790 KIXR 0 55 2750 ( IDLE )
TMS_QM GQUEKIXL_T+ GQUEKIXL 30001 0 0 ( IDLE )
TMS_QM GQUEKIXR_T+ GQUEKIXR 30001 0 0 ( IDLE )
ARTTCPL 00001.00101 TCP00 101 0 0 ( IDLE )
TMS_QM GQUEKIXL_T+ GQUEKIXL 30002 0 0 ( IDLE )
TMS_QM GQUEKIXR_T+ GQUEKIXR 30002 0 0 ( IDLE )
TMQUEUE 01020.01210 GQUEKIXL 1210 1 50 ( IDLE )
TMQUEUE 01010.01110 GQUEKIXR 1110 2 100 ( IDLE )

Chapter 4
Implementing Transferring CICS Regions

4-75



ARTADM 00011.00010 GRP01 10 0 0 ( IDLE )
ARTCNX QCNX015 GRP01 15 0 0 ( IDLE )
ARTCNX QCNX016 GRP02 16 0 0 ( IDLE )
ARTLOGN QLGN018 GRP00 18 0 0 ( IDLE )
ARTSTRN QKIX110 GRP12 20 0 0 ( IDLE )
...
> psc
Service Name Routine Name Prog Name Grp Name ID Machine # Done Status
------------ ------------ --------- -------- -- ------- ------ ------
DBDCkixL TMQUEUE TMQUEUE GQUEK+ 1210 KIXR 1 AVAIL
DBDCkixR TMQUEUE TMQUEUE GQUEK+ 1110 KIXR 2 AVAIL
disconnect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
update cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
inquire cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
authfail cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP01 15 KIXR 0 AVAIL
disconnect cnxsvc ARTCNX GRP02 16 KIXR 0 AVAIL
connect cnxsvc ARTCNX GRP02 16 KIXR 0 AVAIL
update cnxsvc ARTCNX GRP02 16 KIXR 0 AVAIL
inquire cnxsvc ARTCNX GRP02 16 KIXR 0 AVAIL
authfail cnxsvc ARTCNX GRP02 16 KIXR 0 AVAIL
CESF cnxsvc ARTCNX GRP02 16 KIXR 0 AVAIL
CESN cnxsvc ARTCNX GRP02 16 KIXR 0 AVAIL
CSGM cnxsvc ARTCNX GRP02 16 KIXR 0 AVAIL
delsess lognsvc ARTLOGN GRP00 18 KIXR 0 AVAIL
gensess lognsvc ARTLOGN GRP00 18 KIXR 0 AVAIL
ART_LOGON lognsvc ARTLOGN GRP00 18 KIXR 0 AVAIL
ISSS strsvc ARTSTRN GRP12 25 KIXR 0 AVAIL
...

4.16.4 Logon ART CICS
After a successful boot up, users can connect to ART CICS, and then logon screen prompts
out for users to specify the CICS region (APPLID) to logon.

Chapter 4
Implementing Transferring CICS Regions

4-76



Figure 4-9    Logon Screen

4.17 Implementing Intersystem Communication
ART CICS Runtime supports implementing two z/OS intercommunication features:

• Implementing Distributed Transaction Processing (DTP)

• Implementing Asynchronous Processing

• Implementing Synchronous Processing

4.17.1 Implementing Distributed Transaction Processing (DTP)
ART CICS supports DTP connections in multiple ART CICS regions through APPC mapped
and LUTYPE6.1 protocol. On this view, COBOL applications using DTP (APPC/LUTYPE6.1)
verbs can be deployed to ART CICS directly after being translated by Oracle Tuxedo
Application Rehosting Workbench.

ART CICS also supports integration with Oracle TMA to enable DTP connections between
ART CICS region and Mainframe CICS region through APPC. Following is a typical end-to-end
user case.

Chapter 4
Implementing Intersystem Communication

4-77



Figure 4-10    Typical End-to-End User Case

In this scenario, there are three ART CICS regions, KIXA, KIXB, and KIXC, among which KIXA
and KIXB communicates with each other via APPC protocol, and KIXA and KIXC
communicates with each other via LU61 protocol.

Besides, there is another CICS region called CICA on Mainframe, which communicates with
either KIXA or KIXB via APPC protocol.

As shown in figure above, the conversations occur in these regions are:

• Conversations among ART CICS regions

– APPC conversation, issued from the terminal in KIXA, to KIXB

* KVA0 KIXB KVA5

* KVA2 KIXB KVA5

– LU61 conversation, issued from the terminal in KIXA, to KIXC

* RV60 KIXC RV65

• Conversations between ART CICS region and Mainframe CICS region through TMA

– APPC outbound conversation issued from the terminal in KIXA to CICA

* KVA0 CICA KVA5

* KVA2 CICA KVA5

– APPC inbound conversation issued from the terminal in CICA to KIXB

* KVA0 CRM1 KVA5

Chapter 4
Implementing Intersystem Communication

4-78



* KVA2 CRM1 KVA5

Note:

CRM1 is a connection from CICA to TMA LU

• Configurations

4.17.1.1 Configurations
Following are configurations required for DTP connections to work in this scenario.

• CICS Region Definitions in system.desc

• Connections Definitions in connections.desc

• Programs Definitions in programs.desc

• Transactions Definitions in transactions.desc

• UBBCONFIG Configuration

• DMCONFIG Configuration

4.17.1.1.1 CICS Region Definitions in system.desc
Following CICS regions are defined in the system.desc configuration file:

• Three ART CICS regions on open system

– KIXA: APPC/LU61 front end

– KIXB: APPC back end

– KIXC: LU61 back end

• One CICS region on Mainframe:

– CICA: APPC front / back end

For more information about system.desc, refer to System Configuration File..

4.17.1.1.2 Connections Definitions in connections.desc
Following connections are defined in the connection.desc configuration file:

• Three connections are defined in KIXA:

– Three connections are defined in KIXA:

– KIXB: connects to KIXB, protocol is APPC
– KIXC: connects to KIXC, protocol is LU61
– CICA: connects to CICA, protocol is APPC

• Two connections are defined in KIXB:

– KIXA: connects to KIXA, protocol is APPC
– CICA: connects to CICA, protocol is APPC

• One connection is defined in KIXC:

Chapter 4
Implementing Intersystem Communication

4-79

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ConfigurationFile.html#wp1125235


– KIXA: connects to KIXA, protocol is LU61

Note:

Connection definition for CICA is not presented on local because CICA is an
external region.

For more information about connections.desc, refer to Connection Configuration File..

4.17.1.1.3 Programs Definitions in programs.desc
Following programs are defined in the programs.desc configuration file:

• Two programs in KIXA:

– COVSATMC: APPC client with view32

– RVS61C: LU61 client

• One program in KIXB:

– COVSATMS: APPC server with view32

• One program in KIXC:

– One program in KIXC:

* RVS61S: LU61 server

For more information about programs.desc, .Programs Configuration File.

4.17.1.1.4 Transactions Definitions in transactions.desc
Following transactions are defined in the transactions.desc configuration file:

• Three transactions in KIXA:

– KVA0: APPC client on COVSATMC, sync level 0

– KVA2: APPC client on COVSATMC, sync level 2

– RV60: LU61 client on RVS61C
• One transaction inKIXB:

– KVA5: APPC server on COVSATMS
• One transaction in KIXC:

RV65: LU61 server on RVS61S
For more information about transactions.desc, refer to Transaction Configuration File..

4.17.1.1.5 UBBCONFIG Configuration
Following are configured in the UBBCONFIG file:

• One ARTSTRN server for KIXA, with three services defined in transactions.desc: KVA0,
KVA2, and RV60

• One ARTCTRN server for KIXC, with one service defined in transactions.desc: KIXC_RV65
• GWSNAX gateway for TMA integration (for CICA)

Chapter 4
Implementing Intersystem Communication

4-80

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ConfigurationFile.html#wp1131111
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ConfigurationFile.html#wp1113102
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ConfigurationFile.html#wp1115753


For more information about ARTSTRN and ARTCTRN, refer to CICS Runtime Servers.

Note:

For ARTCTRN configurations in UBBCONFIG, it is required to specify CONV=Y.

4.17.1.1.6 DMCONFIG Configuration
Following are configured in the DMCONFIG file:

• Remote domain definition for TMA integration (for CICA)

• Import the CICA_KVA5 service from external

• Export the KIXB_KVA5 service to external

4.17.2 Implementing Asynchronous Processing
On z/OS, asynchronous processing refers to a START command that starts a transaction on a
remote system. ART CICS Runtime supports implementing this feature using the START
command with a SYSID option.

The following sections describe the configuration tasks you need to perform:

• Defining Regions in system.desc

• Configuring ARTSRM Server

• Modifying the UBBCONFIG File

4.17.2.1 Defining Regions in system.desc
Define your CICS regions in the system.desc configuration file. Following is an example that
defines two regions, KIXR and KIXX, with respective application definitions, DBDCkixR and
DBDCKIXX.

Listing 4‑55 Example of Defining Regions in system.desc

[KIXR]
APPLID=DBDCkixR
INITPARM=(ASINTP='Hello world')
[KIXX]
APPLID=DBDCKIXX
INITPARM=(ASINTP='Hello worldL')

4.17.2.2 Configuring ARTSRM Server
It is required to configure ARTSRM server. For more information, please refer to ARTSRM
Configuration.

4.17.2.3 Modifying the UBBCONFIG File
It is required to configure ARTATRN servers in the UBBCONFIG file for each CICS region.

Chapter 4
Implementing Intersystem Communication

4-81

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ConfigurationFile.html#wp1115753
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ServerConfiguration.html#wp1117786
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/ServerConfiguration.html#wp1117786


Suppose you have defined two regions, KIXR and KIXX, as shown in the Listing 4-55 of the
topic Defining Regions in system.desc. Following is a configuration example.

Listing 4‑56 Example of Modifying UBBCONFIG

…
*SERVERS
…
ARTATRN
SRVGRP=GRP02
SRVID=30
CONV=N
MIN=1 MAX=1 RQADDR=QKIXATR REPLYQ=Y
CLOPT="-o /u01/common/patches/yfli/KIX12110/test/CIT_ORA/strt/LOGS/sysout/
stdout_atrn -e /u01/common/patches/yfli/KIX12110/test/CIT_ORA/strt/LOGS /
sysout/stderr_atrn -r -- -s KIXR -l SIMPAPP"
ARTSRM SRVGRP= GRPX SRVID=36 MIN=1 MAX=1 RQADDR= QKIXATR REPLYQ=Y CLOPT="-
o /u01/common/patches/yfli/KIX12110/test/CIT_ORA/strt/LOGS/sysout/stdout_srm -
e /u01/common/patches/yfli/KIX12110/test/CIT_ORA/strt/LOGS/sysout/stderr_srm -
r -- -s KIXR -l SIMPAPP "
ARTATRN
SRVGRP=GRPX
SRVID=35
CONV=N
MIN=1 MAX=1 RQADDR=QKIXATRX REPLYQ=Y
CLOPT="-o /u01/common/patches/yfli/KIX12110/test/CIT_ORA/strt/LOGS/sysout/
stdout_atrn -e /u01/common/patches/yfli/KIX12110/test/CIT_ORA/strt/LOGS /
sysout/stderr_atrn -r -- -s KIXX -l SIMPAPP"
ARTSRM SRVGRP= GRPX SRVID=36 MIN=1 MAX=1 RQADDR= QKIXATRX REPLYQ=Y CLOPT="-
o /u01/common/patches/yfli/KIX12110/test/CIT_ORA/strt/LOGS/sysout/stdout_srm -
e /u01/common/patches/yfli/KIX12110/test/CIT_ORA/strt/LOGS/sysout/stderr_srm -
r -- -s KIXX -l SIMPAPP "
…
*SERVICES

4.17.3 Implementing Synchronous Processing
ART CICS Runtime supports invoking a synchronous transaction, which resides on a remote
CICS system. To implement this feature, the following configurations are required:

• Configuring Environment Variables

• Defining Regions in system.desc

• Modifying the UBBCONFIG File

4.17.3.1 Configuring Environment Variables
Set the ISC_ENABLE environment variable to YES to enable the synchronous processing feature.

4.17.3.2 Defining Regions in system.desc
Define your CICS regions in system.desc configuration file. Following is an example that
defines two regions, KIXR and KIXX, with respective application definitions, DBDCKIXR and
DBDCKIXX.

Chapter 4
Implementing Intersystem Communication

4-82



Listing 4‑57 Example of Defining Regions in system.desc

[KIXR]
APPLID=DBDCKIXR
[KIXX]
APPLID=DBDCKIXX

4.17.3.3 Modifying the UBBCONFIG File
Make the following configurations in the UBBCONFIG file:

• ARTSTRN servers for each CICS region

• Configure the DDR routing definition appropriately

Suppose you have defined two regions, KIXR and KIXX, as shown in Listing 4‑57 of the topic 
Defining Regions in system.desc

Following is a configuration example:

Listing 4‑58 Example of Modifying UBBCONFIG

*GROUPS
GRPKIXR
GRPNO=11
TMSNAME="TMS_ORA"
TMSCOUNT=2
OPENINFO="Oracle_XA:Oracle_XA+Acc=P/yfli/yfli+SqlNet=artkix+SesTm=600+LogDir=/
LOGS/xa+DbgFl=0x20"
GRPKIXX
GRPNO=12
TMSNAME="TMS_ORA"
TMSCOUNT=2
OPENINFO="Oracle_XA:Oracle_XA+Acc=P/yfli/yfli+SqlNet=artkix+SesTm=600+LogDir=/
LOGS/xa+DbgFl=0x20"
 
*SERVERS
ARTSTRN
SRVGRP=GRPKIXR
SRVID=1101
CONV=Y
MIN=1 MAX=1 RQADDR=QKIXSTRR REPLYQ=Y
CLOPT="-- -s KIXR -l SIMPAPP"
 
ARTSTRN
SRVGRP=GRPKIXX
SRVID=1201
CONV=Y
MIN=1 MAX=1 RQADDR=QKIXSTRX REPLYQ=Y
CLOPT="-- -s KIXX -l SIMPAPP"
 
 
*SERVICES
DEFAULT: SVCTIMEOUT=0 TRANTIME=80
SB00 ROUTING=APPLID
SB01 ROUTING=APPLID
SB02 ROUTING=APPLID

Chapter 4
Implementing Intersystem Communication

4-83



SB03 ROUTING=APPLID
 
*ROUTING
APPLID FIELD=CX_APPLID RANGES="'DBDCKIXX':GRPKIXX,*:GRPKIXR" BUFTYPE="FML32"

In this example, requests from KIXX region are routed to ARTSTRN in GRPKIXX, and all other
requests are routed to ARTSTRN in GRPKIXR.

4.18 Implementing Submitting JCL/KSH Online
The following topics describe how to sumbit a JCL/KSH job online:

• Submitting JCL/KSH Job Online

• Submitting JCL/KSH Job Online by SPOOL

4.18.1 Submitting JCL/KSH Job Online
On z/OS, CICS programs can submit JCL/KSH job by the WRITEQ TD command and pass the
JCL/KSH job statements to JES internal reader by TDQ. ART CICS Runtime supports this
function by using the special TDQ definition and the internal service advertised by TuxJES
system.

Before using this feature, make sure ART Batch Runtime and TuxJES environment is set up.
For more information, refer to Using Tuxedo Job Enqueueing Service (TuxJES).

• Configuring the UBBCONFIG File

• Configuring tdqextra.desc

4.18.1.1 Configuring the UBBCONFIG File
The submitted JCL/KSH job statements are transferred to TuxJES by the ARTTDQ server. To
activate this server, configure ARTTDQ in the *SERVERS section in the UBBCONFIG file. Following is
an example.

Listing 4‑59 Example of Configuring ARTTDQ in UBBCONFIG

*SERVERS
…
ARTTDQ
SRVGRP=GRP02
SRVID=50
MIN=1 MAX=1
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_strn -e /home2/work9/demo/
Logs/TUX/sysout/stderr_strn -r -- -s KIXR -L LIST1"

4.18.1.2 Configuring tdqextra.desc
To implement the submitting JCL/KSH function, you need to specify the following fields in the
tdqextra.desc configuration file:

• BLOCKFORMAT: An unblocked or blocked record format for the extrapartition queues that are
used as the interface to the TuxJES internal reader.

• INTRDR: Set the TDQ definition as the internal reader.

Chapter 4
Implementing Submitting JCL/KSH Online

4-84

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/batchuser/tuxjesug.html


For example:

IRDR;SIMPAPP;ON LINE SUBMIT JOB;EXTRAQJ; ; ; ;V; ;32767;OUTPUT;DSN; ; ;Y;U;
Where:

Y

Indicates this is an internal reader TDQ.

U

Indicates the block format is UNBLOCKED.

Note:

• For JCL job file: To submit a JCL job to TuxJES, one JCL end flag "/*EOF" needs
to be written to TDQ INTRDR. If BLOCKFORMAT=B in tdqextra.desc is set for TDQ,
two end flags "/*EOF" need to be written to TDQ.

• For KSH job file: To submit a KSH job to TuxJES, one KSH end flag "#EOF" needs
to be written to TDQ.

For more information, refer to TD Queue Extra Partition Configuration File in Oracle Tuxedo
Application Runtime for CICS Reference Guide.

4.18.2 Submitting JCL/KSH Job Online by SPOOL
On z/OS, CICS programs can submit JCL/KSH job by SPOOLWRITE command and pass the
JCL/KSH job statements to JES internal reader by SPOOL. ART for CICS supports this function
by using the internal service advertised by TuxJES system.

Before using this feature, make sure ART Batch Runtime and TuxJES environment is set up.
For more information, refer to Using Tuxedo Job Enqueueing Service (TuxJES).

Note:

You should write end flag to SPOOL file to submit JCL/KSH job; otherwise, the job file
written to SPOOL will be submitted automatically to TuxJES as a JCL job file when
EXEC CICS SPOOLCLOSE is used.

• For JCL job file: To submit a JCL job to TuxJES, one JCL end flag "/*EOF" needs
to be written to SPOOL file.

• For KSH job file: To submit a KSH job to TuxJES, one KSH end flag "#EOF" needs
to be written to SPOOL file.

• Configuring SPOOL Related Environment Variables

4.18.2.1 Configuring SPOOL Related Environment Variables
Configure the following environment variables:

Chapter 4
Implementing Submitting JCL/KSH Online

4-85

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/batchuser/tuxjesug.html


• KIX_SPOOL_JOB_AUTO_SUBMIT=YES
• KIX_SPOOL_OUTPUT_DIR=${APPHOME}/spool
For more information, see KIX_SPOOL_JOB_AUTO_SUBMIT and 
KIX_SPOOL_OUTPUT_DIR in Oracle Tuxedo Application Runtime for CICS Reference Guide.

4.19 Implementing ART for CICS Control Utility
ART for CICS provides artcicsutil utility to track and dominate the CICS related resources
from ART for Batch. It's always triggered by ART for Batch jobs. With the single command,
ART for Batch jobs can open/close files, enable/disable CICS transactions, initiate CICS
transactions, and etc.

artcicsutil provides two modes of commend set to control ART for CICS. They are end-to-
end mode (IPCP commend set and CAFC commend set) and interactive mode (interactive
commend set). For all supported subcommands for each commend set, see artcicsutil in
Oracle Tuxedo Application Runtime for CICS Reference Guide.

Note:

• artcicsutil must work together with the ART for CICS server ARTSRM.
artcicsutil is the trigger to centralize the CICS resources related operations;
ARTSRM is the portal of each CICS region in ART for CICS, and ARTSRM takes
charge of all operation executions.

• Before using this feature, make sure ART Batch Runtime and TuxJES
environment is set up. For more information, see Using Tuxedo Job Enqueueing
Service (TuxJES)

There are some typical use cases for implementing ART for CICS Control Utility.

• Use Case 1: Implementing ART for CICS Control Utility in End-to-End Mode (IPCP
Commend Set)

• Use Case 2: Implementing ART for CICS Control Utility in Interactive Mode (Interactive
Command Set)

4.19.1 Use Case 1: Implementing ART for CICS Control Utility in End-to-
End Mode (IPCP Commend Set)

Follow this work flow to implement artcicsutil utility in End-to-End mode (use IPCP commend
set here for example).

• Using ART for Workbench to convert JCL to KSH

• Configuring UBBCONFIG in CICS Runtime Domain

• Configuring Resource Files

• Configuring DMCONFIG in ART for CICS Domain and ART for Batch Domain

Chapter 4
Implementing ART for CICS Control Utility

4-86

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/EnvironmentVariables.html#wp1121810
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/EnvironmentVariables.html#wp1121800
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/EnvironmentVariables.html


4.19.1.1 Using ART for Workbench to convert JCL to KSH
Suppose you have a JCL file containing IPCP commend set (see the following listing for a
sample).

Listing 4‑60 Sample JCL Containing IPCP Subcommands

//IPCPEXP4 JOB 0001,'IPCP',CLASS=A
//IPCP01 EXEC PGM=IPCPBTCH,PARM='CICS CC ONLY=CICS3'
//STEPLIB DD DSN=IPCPvn.LOADLIB,DISP=SHR
//IPCPCDS DD DSN=IPCPvn.COMMAND.DATASET,DISP=SHR
//AUDIT DD SYSOUT=X
//SYSIN DD *
INIT KC HEL1

In this JCL, IPCP program IPCPBTCH is issued inside (EXEC PGM=IPCPBTCH), the target CICS
region is set as CICS3 (EXEC PARM='CICS CC ONLY=CICS3'), and CICS transaction HEL1 is
started in the target CICS region (INIT KC HEL1). In this case, the IPCP subcommands can be
issued by both EXEC PARM and JCL SYSIN DD.

You should use ART for Workbench to convert this JCL file to the following KSH file.

Listing 4‑61 KSH Converted by ART for Workbench

#!/usr/bin/ksh
 
m_JobBegin -j IPCPEXP4 -s START -v 2.0 -c A
while true ;
do
m_PhaseBegin
case ${CURRENT_LABEL} in
(START)
# ********************************************************//
JUMP_LABEL= IPCPEXP4
;;
(IPCPEXP4)
m_FileAssign -d SHR IPCPCDS ${DATA}/XXXX.IPCP.CICS.IPCPCNTL
m_OutputAssign -c "*" AUDIT
m_FileAssign -i SYSIN
artcicsutil -t IPCPBTCH "CICS CC ONLY=CICS3"
JUMP_LABEL=END_JOB
;;
(END_JOB)
break
;;
(*)
m_RcSet ${MT_RC_ABORT:-S999} "Unknown label : ${CURRENT_LABEL}"
break
;;
esac
m_PhaseEnd
done
m_JobEnd
#@(#)---------------------------------------------------------------------

Chapter 4
Implementing ART for CICS Control Utility

4-87



In this KSH (note artcicsutil -t IPCPBTCH "CICS CC ONLY=CICS3" subcommand), the
program IPCPBTCH is translated to artcicsutil, EXEC PARM is passed to artcicsutil as its
positional parameter, and all other subcommands), (included in SYSIN DD) are stored by ART
for Batch as a local file that artcicsutil can directly access. -t option is used to specify the type
of command set; its value is set to IPCPBTCH (IPCP command set).

4.19.1.2 Configuring UBBCONFIG in CICS Runtime Domain
In UBBCONFIG, set the following servers.

• ARTSRM (mandatory)
ARTSRM is the proxy of artcicsutil utility and thus must be configured in the UBBCONFIG.
The corresponding System Configuration File (system.desc) should be configured as well;
see Configuring Resource Files for more information.

ARTSRM must be configured in every ART for CICS region.

• ARTATRN (optional)

If command INIT KC or ENAB/DISA KC in IPCP commend set or STRT in CAFC commend set is
used in your JCL file, you should set ARTATRN in UBBCONFIG. You should also define the target
transaction in the transaction configuration file (transactions.desc) and programs
configuration file (programs.desc); see Configuring Resource Files for more information.

If you use ARTATRN, ARTATRN must be configured in every ART for CICS region.

See the following listing as an example.where the ARTSRM server is mandatory, because all
requests that artcicsutil issues are received by ARTSRM at first, and then ARTSRM acts as the
proxy to ask the target CICS server to handle these requests. ARTATRN server is also specified
because INIT KC subcommand is used in JCL (see Listing 4‑60 of the topic Using ART for
Workbench to convert JCL to KSH) the target CICS transaction of INIT KC subcommand is the
one that is just deployed at ARTATRN server.

Listing 4‑62 Example of Configuring UBBCONFIG in CICS Runtime Domain (Server
ARTSRM and ARTATRN)

*SERVERS
...
ARTATRN
SRVGRP=GRP02
SRVID=30
MIN=1 MAX=1
CLOPT="-o /home2/work9/demo/cics/LOGS/sysout/stdout_atrn -e /home2/work9/demo/
cics/LOGS/sysout/stderr_atrn -r -- -s KIXR -l SIMPAPP"
 
ARTSRM
SRVGRP=GRP02
SRVID=25
CLOPT="-o /home2/work9/demo/cics/LOGS/sysout/stdout_srm -e /home2/work9/demo/
cics/LOGS/sysout/stderr_srm -r -- -s KIXR -l SIMPAPP"
...

4.19.1.3 Configuring Resource Files
Configure the following resource files:

Chapter 4
Implementing ART for CICS Control Utility

4-88



• System Configuration File (system.desc)
This is mandatory. See The listing below for an example. CICS Runtime region CICS3 is
configured, for this CICS3 is specified in your JCL file (see EXEC PGM=IPCPBTCH,PARM='CICS
CC ONLY=CICS3' subcommand in Listing 4‑60 of the topic Using ART for Workbench to
convert JCL to KSH.

• Transaction Configuration File (transactions.desc) and Programs Configuration File
(programs.desc)
They are optional. If command INIT KC in IPCP commend set or STRT in CAFC commend
set is used in your JCL file, ARTATRN is required; you should define the target transaction in
transaction configuration file (transactions.desc) and programs configuration file
(programs.desc).

• VSAM Configuration File (desc.vsam)
This is optional. If command OPEN/CLOS DB in IPCP commend set is used in your JCL file,
you should configure this VSAM configuration file (desc.vsam).

Listing 4‑63 Example of Configuring System Configuration File

[KIXA]
APPLID=CICS1
[KIXB]
APPLID=CICS2
[KIXR]
APPLID=CICS3

4.19.1.4 Configuring DMCONFIG in ART for CICS Domain and ART for Batch
Domain

For end-to-end mode, you should configure DMCONFIG. The key service entry, $
(APPLID)_CICS_CTRL, should be exported/imported crossing ART for CICS domain (Listing
4‑64, note the CICS3_CICS_CTRL in bold) and ART for Batch domain (Listing 4‑65, note the
CICS3_CICS_CTRL in bold). This service is advertised by each configured ARTSRM (ARTSRM is
configured in every ART for CICS region); the prefix CICS3 is the APPLID of target CICS region.

Note:

${APPLID} here should be in uppercase.

Listing 4‑64 Example of Configuring DMCONFIG in ART for CICS Domain

*DM_RESOURCES
VERSION=U22
 
*DM_LOCAL
CICS1 GWGRP="GWGRP1"
TYPE=TDOMAIN
ACCESSPOINTID="CICSAP1"
DMTLOGDEV="/home/work9/demo/cics/config/tux/DMTLOG1"
DMTLOGNAME="DMTLOG1"
CONNECTION_POLICY="ON_STARTUP"
*DM_REMOTE
#

Chapter 4
Implementing ART for CICS Control Utility

4-89



BATCH1
TYPE=TDOMAIN
ACCESSPOINTID="BATCHAP1"
*DM_TDOMAIN
CICS1 NWADDR="//optiplex:8301"
BATCH1 NWADDR="//optiplex:8401"
 
*DM_EXPORT
CICS3_CICS_CTRL RACCESSPOINT=BATCH1
*DM_IMPORT

Listing 4‑65 Example of Configuring DMCONFIG in ART for Batch Domain

*DM_RESOURCES
VERSION=U22
 
*DM_LOCAL
BATCH1 GWGRP="GWGRP1"
TYPE=TDOMAIN
ACCESSPOINTID="BATCHAP1"
DMTLOGDEV="/home/work9/demo/jes/config/tux/DMTLOG1"
DMTLOGNAME="DMTLOG1"
CONNECTION_POLICY="ON_STARTUP"
 
*DM_REMOTE
#
CICS1 TYPE=TDOMAIN
ACCESSPOINTID="CICSAP1"
*DM_TDOMAIN
CICS1 NWADDR="//optiplex:8301"
BATCH1 NWADDR="//optiplex:8401"
 
*DM_EXPORT
 
*DM_IMPORT
CICS3_CICS_CTRL
*DM_ROUTING

4.19.2 Use Case 2: Implementing ART for CICS Control Utility in Interactive
Mode (Interactive Command Set)

This use case describes the way to invoke artcicsutil utility in interactive mode. In this
example, transaction EQDQ is started.

Listing 4‑66 Example of Invoking artcicsutil Utility in Interactive Mode

> artcicsutil -t native
> start EQDQ
start trans:
transaction ' EQDQ'
trmid ''

Chapter 4
Implementing ART for CICS Control Utility

4-90



from ''
start trans done.

4.20 Implementing Printing CICS Runtime Applications Data
ART CICS Runtime supports printing applications data to a CICS 3270 printer using two
methods:

• General Configurations

• Implementing Printing with a START Command

• Implementing Printing with Transient Data

4.20.1 General Configurations
Before using either of the methods to implement printing, you need to perform the following
configuration tasks:

1. Configure the printer terminal definition in typeterms.desc. Following is an example:

Listing 4‑67 Example of Configuring Printer Terminal Definition in typeterms.desc

[typeterm]
name=IBM-3287-1
color=YES
defscreencolumn=80
defscreenrow=24
description="IBM 327x family printer"
hilight=YES
logonmsg=NO
outline=NO
swastatus=ENABLED
uctran=NO
userarealen=100

Note:

ART CICS does not support the alternate size for printer, so the following
attributes must not be defined in typeterms.desc for IBM-3287-1:
scrnsize=alternate, altscreenrow, and altscreencolumn

2. Configure the printer transactions to the class that will never be executed concurrently:
For example:

TRCLASS1;UNIGRP; A tranclass bidon for UNIGRP; 1
3. Configure the printer program definition to the ARTSTR1 program group in

transactions.desc.
For example:

PRNT;UNIGRP;pg for ARTSTR1; PRNTPROG; ; ; ; ; ; ;ENABLED; ; ; ;TRCLASS1
4. Configure the printer program to the ARTSTR1 program group in programs.desc.

For example:

PRNTPROG;UNIGRP;pg for UNIGRP;COBOL; ;ENABLED

Chapter 4
Implementing Printing CICS Runtime Applications Data

4-91



5. Define a printer terminal in terminals.desc to indicate the printer LUNAME and TERMID
For example:

[terminal]
name=PRT1
netname=CICSPRT1
group=UNIGRP

6. Configure the printer program group to the ARTSTR1 program group using CLOPT -l
option in UBBCONFIG
For example:

CLOPT="-o stdout_str1 -e stderr_str1 -r -- -s KIXR - UNIGRP"
7. Do one of the following to specify a printer device:

• If you use a wc3270 client as the printer terminal, configure the terminal type to
IBM-3287-1
For example:

-tn IBM-3287-1
• If you use a PCOM client as the printer terminal, configure a LUNAME in the Telnet3270

interface and set the Session Type to Printer in the Session Parameters interface, as
shown in following figures:

Chapter 4
Implementing Printing CICS Runtime Applications Data

4-92



Figure 4-11    Configure a LUNAME

Chapter 4
Implementing Printing CICS Runtime Applications Data

4-93



Figure 4-12    Setting the PCOM Session Type

4.20.2 Implementing Printing with a START Command
The following figure depicts Printing with a START Command

Figure 4-13    Printing with a START Command

The figure above shows a typical user case. The procedure to implement printing with a START
command in such scenario are as follows:

1. Configure the Pcomm terminal to connect to an external printer device.

Chapter 4
Implementing Printing CICS Runtime Applications Data

4-94



2. Establish the connection from the Printer terminal to ART TCP with the LUNAME you
specified previously.

3. Establish the connection from the Display terminal to ART CICS, and start a transaction A
from the Display terminal.

4. Transaction A invokes an asynchronous transaction B with the START command, and
specifies the TERMID as one of the LUNAME defined previously.

5. Transaction B invokes a BMS or terminal control command, then sends the command
application data to the printer terminal, and finally the Printer terminal sends the print job to
the connected external printer device for printing.

4.20.3 Implementing Printing with Transient Data
To implement printing with transient data, do the following:

1. Configure ATIFACILITY and FACILITYID in tdqintra.desc, as follows:
Listing 4‑68 Example of Configuring ATIFACILITY and FACILITYID in tdqintra.desc

# 
TDQUEUE;GROUP;DESCRIPTION;RECOVSTATUS;TRANSID;TRIGGERLEVEL;USERID;WAIT;WAIT
ACTION;QSPACENAME;TRT;ATIFACILITY;FACILITYID
MTI1;SIMPAPP;TDQ FOR PRINTER;;BBBB;1;;;;;;T;PRT2

2. Define PRT2 in terminals.desc
For example:

[terminal]
name=PRT2
netname=CICSPRT2
group=UNIGRP

3. After ART CICS is started, establish the connection between PCOMM (printer with the
specified LUNAME= CICSPRT2) and ART CICS.

4. For ATI users, configure a /Q as follows:

qcreate MTI1 fifo none 2 30 1m 0m "TDI_TRIGGER -q queue_name -d space_name"

When the ATI trigger level is reached, TDI_TRIGGER client will be invoked, and the -q and -
d options will notify ART CICS to start a transaction associated queue_name and
space_name on the terminal PRT2.

4.21 Implementing Invoking Web Services from CICS
Applications

ART CICS provides support for invoking web services from CICS applications using the INVOKE
WEBSERVICE command. To implement this feature, you need to perform the configuration tasks
described in the following sections:

• Converting WSDL File into MIF and Generating COPYBOOK

• Generating RECORD Definition from COPYBOOK

• Configuring SALT and Metadata Repositories

Chapter 4
Implementing Invoking Web Services from CICS Applications

4-95



• Configuring webservice.desc

• Modifying UBBCONFIG

4.21.1 Converting WSDL File into MIF and Generating COPYBOOK
Convert your WSDL file into the Oracle Tuxedo metadata repository input file (MIF) using the
Oracle SALT command utility, wsdlcvt. Specify its -C option to generate COPYBOOK. For
more information, see Configuring an Oracle SALT Application..

4.21.2 Generating RECORD Definition from COPYBOOK
Use cpy2record tool to generate RECORD definition from the COPYBOOK that the previous
step generates, and export environment variable for RECORD. For more information, see 
Using a RECORD Typed Buffer.

4.21.3 Configuring SALT and Metadata Repositories
Build SALT configuration file (using Oracle Tuxedo SALT utility wsloadcf), and loads service
information into an Oracle Tuxedo service metadata repository (using tmloadrepos). For more
information, see Configuring an Oracle SALT Application.

4.21.4 Configuring webservice.desc
Add a service section in webservice.desc configuration file, specifying REQUEST and RESPONSE
in webservice.desc. The following listing below shows an example:

Listing 4‑69 Example of webservice.desc Configuration

[DFH0XCMNOperation]
REQUEST=DFH0XCMNOperation
RESPONSE=DFH0XCMNOperationResponse
TRANSACTION=N

4.21.5 Modifying UBBCONFIG
Configure the TMMETADATA and GWWS servers in the UBBCONFIG file. The following listing shows
an example:

Listing 4‑70 Example of Adding TMMETADATA and GWWS in UBBCONFIG

*SERVERS
...
TMMETADATA SRVGRP=GROUP2 SRVID=2 CLOPT="-A -- -f pmu.repos"
GWWS SRVGRP=GROUP2 SRVID=3 CLOPT="-A -r -- -iGWWS1"

4.22 Implementing CICS as HTTP Client
Oracle Tuxedo Application Runtime for CICS supports CICS works as HTTP client. You can
use CICS WEB verbs to connect to internet. To implement this feature, do the following:

• Defining REST Outbound Service in SALT

Chapter 4
Implementing CICS as HTTP Client

4-96

https://docs.oracle.com/cd/E72452_01/salt/docs1222/config/config.html
https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/pgc/pgbuf.html#wp1330375
https://docs.oracle.com/cd/E72452_01/salt/docs1222/config/config.html


• Configuring URIMAP Configuration File urimaps.desc

• Modifying UBBCONFIG

4.22.1 Defining REST Outbound Service in SALT
In Tuxedo SALT deployment file, configure REST outbound service for each HTTP endpoint
you want to access. You should set "outputbuffer" (of "Service" element) to "CARRAY", and
specify "enableCustomHTTPHeaders" and "enableHTTPRequestLine" properties to enable the
support for WEB WRITE/READ HTTPHEADER, WEB EXTRACT HTTPMETHOD/QUERYSTRING/... and so
on. The following listing is an example.

Also, you should define and load other required Tuxedo SALT configurations, such as WSDF
and Metadata configuration. See SALT Deployment File Reference for more information.

Listing 4‑71 Example for Defining REST Outbound Service in SALT

<GWInstance id="GWWS1">
<Outbound>
<HTTP>
<Service name="TOUPPOST"
content-type="XML"
method="POST"
address="http://demobox:8080/ARTCICS/DEMOS/TOUPSVR"
outputbuffer="CARRAY"/>
</HTTP>
</Outbound>
<Properties>
<Property name="enableMultiEncoding" value="true"/>
<Property name="enableCustomHTTPHeaders" value="true"/>
<Property name="enableHTTPRequestLine" value="true"/>
</Properties>

4.22.2 Configuring URIMAP Configuration File urimaps.desc
Add an entry in URIMAP configuration file urimaps.desc. For example:

TOUPPOST;SIMPAPP; demo test; ENABLED ; /ARTCICS/DEMOS/TOUPSVR; HTTP ; CLIENT; 
demobox; 8080; ; TOUPPOST

4.22.3 Modifying UBBCONFIG
Configure ART transaction servers to run user program, and configure Tuxedo SALT
TMMETADATA and GWWS in UBBCONFIG. For example:

Listing 4‑72 Example for Modifying UBBCONFIG

ARTSTRN
SRVGRP=GRP02
SRVID=20
CONV=Y
MIN=1 MAX=1
CLOPT="-o /home/demo/restclnt/LOGS/sysout/stdout_strn -e /home/demo/restclnt/
LOGS/sysout/stderr_strn -r -- -s KIXR -l SIMPAPP"

Chapter 4
Implementing CICS as HTTP Client

4-97

https://docs.oracle.com/cd/E72452_01/salt/docs1222/ref/deploy.html


……
TMMETADATA SRVGRP=GROUP2 SRVID=2 CLOPT="-A -- -f artcics.repos"
GWWS SRVGRP=GROUP2 SRVID=3 CLOPT="-A -r -- -iGWWS1"

4.23 Implementing CICS as HTTP Server
Oracle Tuxedo Application Runtime for CICS supports CICS as HTTP server. HTTP client can
call Oracle Tuxedo Application Runtime for CICS programs via HTTP. To implement this
feature, do the following:

• Defining REST Inbound Service in SALT

• Modifying UBBCONFIG

4.23.1 Defining REST Inbound Service in SALT
In Tuxedo SALT deployment file, configure REST inbound service you want to expose to HTTP
client. You should set the "inputbuffer" (of "Method" element) to "CARRAY", specify
"enableCustomHTTPHeaders" and "enableHTTPRequestLine" properties to enable support for
WEB WRITE/READ HTTPHEADER, WEB EXTRACT HTTPMETHOD /QUERYSTRING/... and so on. The
following listing is an example.

Also, you should define and load other required Tuxedo SALT configurations, such as WSDF
and Metadata configuration. See the SALT Deployment File Reference for more information.

Listing 4‑73 Example for Defining REST Inbound Service in SALT

<GWInstance id="GWWS1">
<Inbound>
<HTTP>
<Network http="demobox:8080"/>
<Service name="ARTCICS/DEMOS/TOUPSVR">
<Method name="POST" service="KIXR_TOUPSVR" inputbuffer="CARRAY"/>
</Service>
</HTTP>
</Inbound>
<Properties>
<Property name="enableMultiEncoding" value="true"/>
<Property name="enableCustomHTTPHeaders" value="true"/>
<Property name="enableHTTPRequestLine" value="true"/>
</Properties>
</GWInstance>

4.23.2 Modifying UBBCONFIG
Configure ARTDPL to run user web aware programs, and configure Tuxedo SALT TMMETADATA
and GWWS in UBBCONFIG. For example:

Listing 4‑74 Example for Modifying UBBCONFIG

ARTDPL
SRVGRP=GRP02
SRVID=60
MIN=1 MAX=1

Chapter 4
Implementing CICS as HTTP Server

4-98

https://docs.oracle.com/cd/E72452_01/salt/docs1222/ref/deploy.html


CLOPT="-o /home/demo/restsvr/LOGS/sysout/stdout_dpl -e /home/demo/restsvr/
LOGS/sysout/stderr_dpl -r -- -s KIXR -l SIMPAPP"
……
TMMETADATA SRVGRP=GROUP2 SRVID=2 CLOPT="-A -- -f artcics.repos"
GWWS SRVGRP=GROUP2 SRVID=3 CLOPT="-A -r -- -iGWWS1"

4.24 Implementing ART for CICS Application Server Customized
Callback Support

Oracle Tuxedo Application Runtime for CICS allows you to extend one or more of your ART for
CICS application servers by loading your customized functions at server initiation and
unloading those functions at server shutdown. To implement this feature, do the following:

• Create Shared Library libkixcallback.so

• Include Customized C Library for Dynamically Loading
There are some typical use cases for implementing this feature.

• Use Case 1: Create Shared Memory at Server Initiation

• Use Case 2: Open Database Table at Server Initiation

Note:

Only the following ART for CICS application servers support this feature: ARTSTR1/N,
ARTATR1/N, ARTCTR1/N, ARTWTR1/N, ARTDPL and ARTDPL_XN

• Create Shared Library libkixcallback.so

• Include Customized C Library for Dynamically Loading

• Use Case 1: Create Shared Memory at Server Initiation

• Use Case 2: Open Database Table at Server Initiation

4.24.1 Create Shared Library libkixcallback.so
You need to create one and only one shared library called libkixcallback.so, and declare the
following two callback functions in this shared library.

Note:

Although you can extend many application servers, you should put all callback
functions in the same shared library.

• int ARTKIX__svrinit_callback(ARTKIX_SRVINIT_PARA*) (at Server Initiation)

• void ARTKIX__svrdone_callback() (at Server Shutdown)

We recommend you put this shared library under the directory where the CICS Runtime
product is installed. (Environment variable $KIXDIR is used to declare this directory. Usually it
is $KIXDIR/lib directory.) When you do it, do not remove this shared library from this directory
when your Oracle Tuxedo Application Runtime for CICS is updating or migrating.

Chapter 4
Implementing ART for CICS Application Server Customized Callback Support

4-99



Oracle Tuxedo Application Runtime for CICS provides you a user header file called
artkixcallback.h (published in directory $KIXDIR/include) to help you develop your shared
library. It defines the following enumeration inside the header file.

Listing 4‑75 User Header File artkixcallback.h

typedef enum artkix_svrtype
{
e_ARTKIX_STR1, // for Synchronous Transaction server type
e_ARTKIX_STRN,
e_ARTKIX_ATR1, // this is for Asynchronous Transaction servers type
e_ARTKIX_ATRN,
e_ARTKIX_CTR1, // for Converse Management server type
e_ARTKIX_CTRN,
e_ARTKIX_WTR1, // for Non-3270s Terminal server type
e_ARTKIX_WTRN,
e_ARTKIX_DPL // for Distributed Program Link server type
} ARTKIX_SVRTYPE;

• int ARTKIX__svrinit_callback(ARTKIX_SRVINIT_PARA*) (at Server Initiation)

• void ARTKIX__svrdone_callback() (at Server Shutdown)

4.24.1.1 int ARTKIX__svrinit_callback(ARTKIX_SRVINIT_PARA*) (at Server
Initiation)

ART for CICS application servers call this function when initiated.

Input: The input argument is a pointer to the following structure.

Listing 4‑76 Structure

typedef struct artkix_svrinfo_t
{
long tux_svr_grpno;
/* this is the server's group id. */
long tux_svr_id;
/* this is the server's id. */
char kix_applid[8];
/* this is the server's applid. */
char kix_sysid[4];
/* this is the server's sysid. */
ARTKIX_SVRTYPE kix_svrtype;
/* this is the server's type. */
int tux_svr_argc;
const char ** tux_svr_argv;
/* these are command line options to be passed to server when it is 
activated. */
} ARTKIX_SRVINIT_PARA;

Output: None

Return code: Returns zero if initiation succeeds. Returns nonzero if it fails (and these servers
cannot start up).

Chapter 4
Implementing ART for CICS Application Server Customized Callback Support

4-100



4.24.1.2 void ARTKIX__svrdone_callback() (at Server Shutdown)
ART for CICS application servers call this function when shutting down.

Input: None

Output: None

Return code: None

4.24.2 Include Customized C Library for Dynamically Loading
Include your customized C library in $LD_LIBRARY_PATH for Linux/Solaris (or $LIBPATH for AIX).
This library will be loaded dynamically in the runtime.

If ART for CICS application servers cannot find any customized shared library in the above
paths, this feature is disabled but these servers can still successfully start up.

4.24.3 Use Case 1: Create Shared Memory at Server Initiation
If you want to create a shared memory used when ARTDPL server starts up, you need to create
a shared library named libkixcallback.so, which exports two callback functions, and place
the extended shared library under $KIXDIR/lib/ directory. For more information, see Create
Shared Library libkixcallback.so.

When the ARTDPL server starts up, it searches this extended shared library under $KIXDIR/lib
at first. If it cannot find it, it continues to search $LD_LIBRARY_PATH for Linux/Solaris
(or $LIBPATH for AIX). After finding this shared library, the ARTDPL server loads it.

At this server initiation, you can create your shared memory. If the function fails, it returns
nonzero and then the ARTDPL server cannot start up; if the function succeeds, it returns zero
and then the ARTDPL server starts up as usual.

4.24.4 Use Case 2: Open Database Table at Server Initiation
If you want to open some database tables on your Linux platform when an ARTDPL server starts
up, you need to create a named libkixcallback.so shared library, which exports two callback
functions, and make sure the pathname of this C shared library is included
in $LD_LIBRARY_PATH environment variable. For more information, see Create Shared Library
libkixcallback.so.

When the ARTDPL server starts up, it searches this customized shared library under $KIXDIR/
lib. If it cannot find it, it continues to search under $LD_LIBRARY_PATH. After finding this shared
library, the ARTDPL server loads it.

When the shared library is initiated, you can open your database tables. If the function fails, it
returns nonzero and then the ARTDPL server cannot start up; if the function succeeds, it returns
zero and then the ARTDPL server starts up as usual.

4.25 Implementing Resource-Based Authorization
ART for CICS offers a security framework which allows a customer to choose integration with
an external security manager. Using this framework, ART for CICS can perform authorization
checking when you access a resource in a transaction. For example, if you issue CICS

Chapter 4
Implementing Resource-Based Authorization

4-101



WRITEQ TS command, ART for CICS first consults external security manager to confirm
whether you have the right to write the TS queue.

To enable resource-based authorization, do the following:

• Set environment variable KIX_RESSEC to A or Y
– KIX_RESSEC=A: performs resource-based authorization when you access a resource in

a transaction. This applies to all transactions.

– KIX_RESSEC=Y: performs resource-based authorization when you access a resource in
a transaction. This only applies to the transactions whose RESSEC=Y is specified in
transactions.desc.

For more information, see KIX_RESSEC in Oracle Tuxedo Application Runtime for CICS
Reference Guide.

• If KIX_RESSEC=Y is set, in transactions.desc, configure RESSEC=Y for the transactions that
you want to check resource-based authorization.
For more information, see Transaction Configuration FileTransaction Configuration File in
Oracle Tuxedo Application Runtime for CICS Reference Guide.

• Replace the default authorization function with your customized function.
ART for CICS has a default authorization function called CheckResourceAuth.gnt (under
ART for CICS installation directory). To integrate with external ESM, you need to replace
the default CheckResourceAuth.gnt with your customized function.

The function interface is listed in Integration with the External Security Manager.

• Enable Tuxedo Security in UBBCONFIG.
Enable Tuxedo security. For example, configure XAUTHSVR in UBBCONFIG to enable LDAP
based authentication and authorization.

For more information, see XAUTHSVR(5) in Oracle Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference

Listing 4‑77 Enable Tuxedo Security in UBBCONFIG

*RESOURCES
SECURITY ACL
AUTHSVC "..AUTHSVC"
OPTIONS EXT_AA, EXT_MON
 
*GROUPS
AUTHGRP
GRPNO=25
*SERVERS
XAUTHSVR SRVGRP=AUTHGRP
SRVID=5
MIN=1 MAX=1
CLOPT="-A -- -n /opt/oracle/CICS_RT/atnldap -z /opt/oracle/CICS_RT/atzldap"

4.26 Implementing COBOL Program Debugging in CICS
Runtime

There are some typical use cases for implementing COBOL program debugging in CICS
runtime.

Chapter 4
Implementing COBOL Program Debugging in CICS Runtime

4-102

https://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html#3595387


You can also issue XCTL or LINK (local) inside one transaction.

For more information, see COBOL Program Debugging and Error Processing in CICS Runtime
and Debug Configuration File in Oracle Tuxedo Application Runtime for CICS Reference
Guide.

The following topics describe each use case in detail:

• Use Case 1: Two users want to debug two COBOL programs respectively.

• Use Case 2: One user wants to debug two COBOL programs in one transaction.

• Use Case 3: One user wants to debug two programs with START TRANSID.

• Use Case 4: One user wants to debug two programs with LINK (remote).

4.26.1 Use Case 1: Two users want to debug two COBOL programs
respectively.

If ART for CICS user A wants to debug COBOL Program1 and ART for CICS user B wants to
debug COBOL Program2, the two users should do the following:

1. Add COBOL debug information into kix_cobol_dbg.cfg configuration file.
myAnimSrvID1;;;;; Program1
myAnimSrvID2;;;;; Program2

2. Input anim command lines.

• User A inputs the following command line from his/her terminal.
anim %XmyAnimSrvID1

• User B inputs the following command line from his/her terminal.
anim %XmyAnimSrvID2

3. User A and B either start up their own ART for CICS application servers with the same
Linux account which starts up the anim utility, or dynamically change the debug
configuration resource file without restarting the ART for CICS servers.

Note:

The Linux user account that starts up the ART for CICS server must be the same
as the Linux user account that runs the anim command line. Only the ANIMSRVID
which the anim utility specifies will be debugged.

4.26.2 Use Case 2: One user wants to debug two COBOL programs in one
transaction.

If one ART for CICS user wants to debug two different COBOL programs in one transaction
(for example, if ART for CICS user wants to debug COBOL Program1 and COBOL Program2,
and both programs are in the same transaction), do the following:

1. Add COBOL debug information into kix_cobol_dbg.cfg configuration file.
myAnimSrvID1;;;;transaction1;

2. Input the following command line in one terminal, and then both programs can be
debugged.

Chapter 4
Implementing COBOL Program Debugging in CICS Runtime

4-103



anim %XmyAnimSrvID1

4.26.3 Use Case 3: One user wants to debug two programs with START
TRANSID.

If one ART for CICS user wants to debug two different COBOL programs with START TRANSID
command, do the following:

1. Add COBOL debug information into kix_cobol_dbg.cfg configuration file.
myAnimSrvID1;;;;; program1
myAnimSrvID2;;;;; program2

2. Input the following command lines in separate terminals respectively:
anim %XmyAnimSrvID1
anim %XmyAnimSrvID2
When these two programs are launched by the ART for CICS application server, the user
can debug both programs in separate terminals respectively.

4.26.4 Use Case 4: One user wants to debug two programs with LINK
(remote).

If one ART for CICS user wants to debug two different COBOL programs with LINK command,
do the following:

1. Add the following COBOL debug information into kix_cobol_dbg.cfg configuration file.
anim %XmyAnimSrvID1
anim %XmyAnimSrvID2

2. Input the following command lines in separate terminals respectively:

When two programs are launched by the ART for CICS application server, the user can debug
both programs in separate terminals respectively.

4.27 CICS Runtime Logs
The chapter contains the following topics:

• Tuxedo System Log

4.27.1 Tuxedo System Log
Like other Tuxedo applications, CICS Runtime is managed by Tuxedo that records certain
events and problems in a dedicated system log.

This log is the standard Tuxedo User Log (ULOG) whose name is contained in the system
variable ULOGPFX of the Tuxedo ubbconfig file.

Example:

ULOGPFX="/home2/work9/demo/Logs/TUX/log/ULOG"

Chapter 4
CICS Runtime Logs

4-104



4.28 The CICS Runtime Server Logs
When declaring a service in the Tuxedo ubbconfig file, each server has CLOPT options
defined including two files:

• -o option for stdout (normal messages)
The name of this file is stdout_<server name> without the ART prefix.

For example: the ARTSTRN server has a standard output named stdout_strn.
• -e option for stderr (error messages)

The name of this file is stderr_<server name> without the ART prefix.

For example: the ARTSTRN server has an error output named stderr_strn.
The different stdout and stderr message files for each CICS Runtime server are:

Table 4-11    Message Files by Server

Server name -o standard output file -e standard error file

ARTTCPL stdout_tcp stderr_tcp
ARTCNX stdout_cnx stderr_cnx
ARTSTRN stdout_strn stderr_strn
ARTSTR1 stdout_str1 stderr_str1
ARTATRN stdout_atrn stderr_atrn
ARTATR1 stdout_atr1 stderr_atr1
ARTTSQ stdout_tsq stderr_tsq
ARTDPL stdout_dpl stderr_dpl

Note:

In the stderr file of a server all the configuration files mounted are described. The
stderr file contains not only the error messages concerning problems encountered
when the servers are booted but also information about the different resources
loaded. Specifically you will find:

• The groups of resources installed depending on the-l list parameter of each
CICS Runtime server.

• The resources successfully installed and available for use (remember that an
installed resource may be disabled for use) depending on the valorization of
each .desc configuration file.

Listing 4‑78 Example of the stdout_strn Just After Start Up for a ARTSTRN Server

Groups loaded: <0001>
|----------|
| GROUP |
|----------|
|SIMPAPP |
|----------|
ARTSTRN: Read config done

Chapter 4
The CICS Runtime Server Logs

4-105



|---------------------------------------------------|
| TRANCLASS loaded : < 2> |
|---------------------------------------------------|
| TRANCLASS | GROUP |MAXACTIVE|
|------------------------------|----------|---------|
|TRCLASS1 |SIMPAPP | 001|
|TRCLASS2 |SIMPAPP | 002|
|---------------------------------------------------|
|--------------------------------------------------|
| PROGRAMS loaded : < 4> |
|------------------------------------------------------------------|
| PROGRAM | GROUP |LANGUAGE|EXEC| STATUS |
| | | |KEY | |
|------------------------------|----------|--------|----|----------|
|RSSAT000 |SIMPAPP |COBOL |USER|ENABLED |
|RSSAT001 |SIMPAPP |COBOL |USER|ENABLED |
|RSSAT002 |SIMPAPP |COBOL |USER|ENABLED |
|RSSAT003 |SIMPAPP |COBOL |USER|ENABLED |
|------------------------------------------------------------------|
|---------------------------------|
| TRANSACTIONS loaded : < 4> |
|----------------------------------------------|----|-|-|---|-|-|----------|--
---|-|--------|-----|---|
| | | | |C|C| |R|R| | |T| | | |
|TRAN| GROUP | PROGRAM |ALIA|M|O|PRI|E|E| STATUS |TASK |R| TRAN | TWA |MAX|
| | | | |D|N| |S|S| |DATA |A| CLASS | SIZ |ACT|
| | | | |S|F| |S|T| |KEY |C| | |IVE|
|----|----------|------------------------------|----|-|-|---|-|-|----------|--
---|-|--------|-----|---|
|SA00|SIMPAPP |RSSAT000 | |N|N|001|N|N|ENABLED |USER |Y| |00000|999|
|SA01|SIMPAPP |RSSAT001 | |N|N|001|N|N|ENABLED |USER |Y| |00000|999|
|SA02|SIMPAPP |RSSAT002 | |N|N|001|N|N|ENABLED |USER |Y| |00000|999|
|SA03|SIMPAPP |RSSAT003 | |N|N|001|N|N|ENABLED |USER |Y| |00000|999|
|-----------------------------------------------------------------------------
------------------------|
Warning: zero TSQMODEL loaded!!
FILES<FILE> lineNo(1) skipping Record: Group not to load
FILES<FIC3> lineNo(4) skipping Record: Group not to load

We can note in this example that

• One group (SIMPAPP) is selected with the -l option

• Four configurations files are used: transactions, tranclasses, programs and tsqmodels.

• Information on the successful loading of these resources (Warning: zero TSQMODEL
loaded).

• The detail of the resources loaded and their explicit characteristics (name, group,
description …) even default/implicit values were used in the .desc file leaving the fields
filed with space(s).

4.29 Disabling and Enabling Programs
Sometimes, problems are encountered in a program that significantly impacts your system and
the program must be eliminated urgently by prohibiting end-users from running it. In the

Chapter 4
Disabling and Enabling Programs

4-106



immediate, this helps temporarily to stabilize the system giving time to analyze and solve the
dysfunction.

As on z/OS, CICS Runtime allows to disable a program. A program is disabled by modifying
the CICS Runtime configuration file programs.desc. This file contains a dedicated field, the
STATUS field, to indicate if a program is DISABLED or ENABLED (status by default).

See also dynamic administration of CICS resources information in the Oracle Tuxedo
Application Runtime for CICS Reference Guide

• Disabling Programs

• Enabling Programs

• Checking the Change in Program Status

• Removing and Adding Applications for CICS Runtime

4.29.1 Disabling Programs
To switch your transaction from enabled to disabled, you have to modify the seventh field of
this csv file, to change the previous value from an implicit (" " space(s)) or an explicit ENABLED
status to the explicit DISABLED status.

After shutting down and booting the CICS Runtime Tuxedo servers, your modifications of one
or more programs will be taken in account.

If you disable a program, when somebody wants to use it, the error messages displayed
depend on the way that the application handles CICS errors.

Listing 4‑79 Example Simple Application SA02 COBOL Program Set to DISABLED in
programs.desc

#PROGRAM;GROUP;DESCRIPTION;LANGUAGE; ; ;STATUS
RSSAT000;SIMPAPP; Home Menu Program of the Simple Application ;COBOL
RSSAT001;SIMPAPP; Customer Detailed Information Program of the Simple 
Application ;COBOL; ; ;ENABLED;
RSSAT002;SIMPAPP; Customer Maintenance Program of the Simple 
Application;COBOL; ; ;DISABLED;
RSSAT003;SIMPAPP; Customer List of the Simple Application ;COBOL

4.29.2 Enabling Programs
To enable a program, you have only to do the opposite, changing the STATUS field from
DISABLED to ENABLED or " " (at least one space).

After shutting down and booting the CICS Runtime Tuxedo servers, your modifications of one
or more programs take effect.

4.29.3 Checking the Change in Program Status
If you consult the logs of the different transactions servers or the CICS Runtime you will note
the modification of the modified status in the stderr_* logs.

Just after the start up of this server, the logs shows (in italics) that this program is disabled.

Chapter 4
Disabling and Enabling Programs

4-107



Listing 4‑80 Log Report Showing Program Status

Groups loaded: <0001>
|----------|
| GROUP |
|----------|
|SIMPAPP |
|----------|
ARTSTRN: Read config done
|---------------------------------------------------|
| TRANCLASS loaded : < 2> |
|---------------------------------------------------|
| TRANCLASS | GROUP |MAXACTIVE|
|------------------------------|----------|---------|
|TRCLASS1 |SIMPAPP | 001|
|TRCLASS2 |SIMPAPP | 002|
|---------------------------------------------------|
|--------------------------------------------------|
| PROGRAMS loaded : < 4> |
|------------------------------------------------------------------|
| PROGRAM | GROUP |LANGUAGE|EXEC| STATUS |
| | | |KEY | |
|------------------------------|----------|--------|----|----------|
|RSSAT000 |SIMPAPP |COBOL |USER|ENABLED |
|RSSAT001 |SIMPAPP |COBOL |USER|ENABLED |
|RSSAT002 |SIMPAPP |COBOL |USER|DISABLED |
|RSSAT003 |SIMPAPP |COBOL |USER|ENABLED |
|------------------------------------------------------------------|
|---------------------------------|
| TRANSACTIONS loaded : < 4> |
|----------------------------------------------|----|-|-|---|-|-|----------|--
---|-|--------|-----|---|
| | | | |C|C| |R|R| | |T| | | |
|TRAN| GROUP | PROGRAM |ALIA|M|O|PRI|E|E| STATUS |TASK |R| TRAN | TWA |MAX|
| | | | |D|N| |S|S| |DATA |A| CLASS | SIZ |ACT|
| | | | |S|F| |S|T| |KEY |C| | |IVE|
|----|----------|------------------------------|----|-|-|---|-|-|----------|--
---|-|--------|-----|---|
|SA00|SIMPAPP |RSSAT000 | |N|N|001|N|N|ENABLED |USER |Y| |00000|999|
|SA01|SIMPAPP |RSSAT001 | |N|N|001|N|N|ENABLED |USER |Y| |00000|999|
|SA02|SIMPAPP |RSSAT002 | |N|N|001|N|N| ENABLED |USER |Y| |00000|999|
|SA03|SIMPAPP |RSSAT003 | |N|N|001|N|N|ENABLED |USER |Y| |00000|999|
|-----------------------------------------------------------------------------
------------------------|
Warning: zero TSQMODEL loaded!!

4.29.4 Removing and Adding Applications for CICS Runtime
Sometimes, you want to delete an application from a given machine either to definitely delete
all its components or to move them to another machine. If all the resources used by your
application were defined in one or more resource groups dedicated to your application, you
have only to suppress these groups from CICS Runtime and eventually install them elsewhere.

Each CICS Runtime Tuxedo Server reads a list of groups to be selected and installed at start
up, contained in its CLOPT options after the -l parameter. To remove or add group(s) from an

Chapter 4
Disabling and Enabling Programs

4-108



application, you have only to remove or add theses groups from this list for each CICS
Runtime Tuxedo server.

Your modifications on one or more programs take effect after shutting down and booting up the
CICS Runtime Tuxedo servers.

Listing 4‑81 Example of Application in ARTSTRN Server

ARTSTRN SRVGRP=GRP02
SRVID=20
CONV=Y
MIN=1 MAX=1 RQADDR=QKIX110 REPLYQ=Y
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_strn
-e /home2/work9/demo/Logs/TUX/sysout/stderr_strn -r -- -
s KIXR -l SIMPAPP"

If you want to add one or more groups, you have to concatenate these new groups to those
previously defined, separating them with a ":" character.

Listing 4‑82 Example of Adding group1 and group2 in ARTSTRN Server

ARTSTRN SRVGRP=GRP02
SRVID=20
CONV=Y
MIN=1 MAX=1 RQADDR=QKIX110 REPLYQ=Y
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_strn
-e /home2/work9/demo/Logs/TUX/sysout/stderr_strn -r -- -
s KIXR -l SIMPAPP:GROUP1:GROUP2"

Listing 4‑83 Example of Removing group1 in ARTSTRN Server

ARTSTRN SRVGRP=GRP02
SRVID=20
CONV=Y
MIN=1 MAX=1 RQADDR=QKIX110 REPLYQ=Y
CLOPT="-o /home2/work9/demo/Logs/TUX/sysout/stdout_strn
-e /home2/work9/demo/Logs/TUX/sysout/stderr_strn -r -- -
s KIXR -l SIMPAPP:GROUP2"

Note:

• When the groups are removed, all the resources of these groups are only
logically suppressed. If you want also to suppress them physically, you have to
delete all the lines of the CICS Runtime resource configuration files containing
the group names.

• When the groups are added, all the resources of theses groups must be present
in the different CICS Runtime resource configuration files under the group
names. To avoid future problems, do not omit to declare resources in a group
because they are already declared in groups from other applications.

• When groups are added or removed, be careful to indicate the same list of
groups in each CICS Runtime server.

Chapter 4
Disabling and Enabling Programs

4-109



4.30 CICS Runtime C Program Support
ART CICS allows users to implement and run CICS applications in C language.

• Running C Program in CICS Runtime

• C Programming Restrictions and Requirements

• Accessing EIB from C

• Accessing COMMAREA from C

• CICS Command Translator

• C Program Compilation

4.30.1 Running C Program in CICS Runtime
Each C program is loaded as a COBOL program and executed in COBOL runtime, so CICS C
program support is COBOL production depended.

4.30.2 C Programming Restrictions and Requirements
Restrictions and requirements for CICS/C support on ART CICS are listed as below:

• The EXEC CICS commands related to nonstructured exception handling are not
supported, including:

– HANDLE ABEND
– HANDLE AID
– HANDLE CONDITION
– IGNORE CONDITION
– PUSH HANDLE
– POP HANDLE

• In a C application, every EXEC CICS command is treated as if it had NOHANDLE or RESP
option specified.

• In a C application, every EXEC CICS command is treated as if it had NOHANDLE or RESP
option specified.

• On Linux, file names and words are case-sensitive. If a header file name is in lowercase in
C source file while such name in file system is in uppercase, errors will occur in compiling.

• Does not support packed decimal data.

• Does not support the use of CICS command in macros.

• Support CICS keywords in mixed case.

• Where CICS expects a fixed-length character string (such as a program name, map name,
or queue name), you must pad the literal with blanks up to the required length if it is shorter
than expected.

• Take care not to define a variable with a field name. That behavior will cause C compiler
abend.

Chapter 4
CICS Runtime C Program Support

4-110



• /**/ is used for single line comments. Do not put a comment in the middle of an EXEC
CICS command.

• ART CICS does not support argc, argv, and envp
• ART CICS provides two methods to access COMMAREA:

– ADDRESS COMMAREA
– Provide an extern global pointer __commptr declared by ART CICS pre-processor

automatically. __commptr is system reserved; users cannot define it as other usages.

• ART CICS provides two methods to access EIB:

– ADDRESS EIB
– Provide an extern global pointer __eibptr declared by ART CICS pre-processor

automatically. __eibptr is system reserved; users cannot define it as other usage.

• The EIB declarations are enclosed in #ifndef and #endif lines, but are not included in all
translated files. ART CICS publishes header file dfheiblk.h to contain the definition of all
the fields in the EIB. Each translated file just needs to include this header file and all
actions are completed by pre-processor automatically.

• BMS screen attributes definitions: C versions of the DFHBMSCA and DFHAID files are supplied
by CICS, and may be included by the application programmer when using BMS.

• The string handling functions in the C standard library use a null character as an end-of-
string marker. Because CICS does not recognize a null as an end-of-string marker,
customers must take care of it when using C functions, for example strcmp, to operate on
CICS data areas.

• The string handling functions in the C standard library use a null character as an end-of-
string marker. Because CICS does not recognize a null as an end-of-string marker,
customers must take care of it when using C functions, for example strcmp, to operate on
CICS data areas.

• ART CICS provides iscics() declared in cics.h as well, but users only need to modify
makefile to include the header file path.

• Keep EXEC CICS as a whole in one line.

• Multiple CICS commands in one line is not support.

• #pragma will be automatically translated to comments.

• C function exit() will be translated to return.

• Keep C function main(), its parameter list, and parenthesis in one line. For example,
void main(int argc, char **argv)

• COMMAREA should be a pointer. ART CICS only supports specifying a struct by pointer, not
value.

4.30.3 Accessing EIB from C
The address of the EXEC interface block (EIB) is not passed as an argument to a C main
function; however, users can use the following two methods to obtain the address of the EIB:

• Using ADDRESS EIB
• Using global pointer __eibptr which points to EIB

Chapter 4
CICS Runtime C Program Support

4-111



4.30.4 Accessing COMMAREA from C
The address of COMMAREA is not passed as an argument to a C main function; however, users
can use the following two methods to obtain the address of the COMMAREA:

• Using ADDRESS COMMAREA
• Using global pointer __commptr which points to COMMAREA

4.30.5 CICS Command Translator
ART CICS provides prepro-cics-C.pl for CICS/COBOL APIs translation. For more
information about prepro-cics-C.pl, please refer to prepro-cics-C.pl.

4.30.6 C Program Compilation
In order to make sure the C programs could be successfully loaded by COBOL runtime, please
build C programs using COBOL compiler rather than gcc/g++.

Use cob to compile C source code as a callable shared object. Please note that dynamic
library must have the same name as the C source file name in uppercase.

For example,

CPYINC=../includes
cob -z,CC zample_treated.c -o ZAMPLE.so -CC -I${CPYINC}

Chapter 4
CICS Runtime C Program Support

4-112

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/Preprocessor.html#wp1115215


5
Reference

This chapter contains the following topics:

• Cross Reference of .desc Configuration Files Used by CICS Runtime Servers

5.1 Cross Reference of .desc Configuration Files Used by CICS
Runtime Servers

The following table lists the configuration .desc files used per each CICS Runtime server. The
value of 1 at the intersection of a server and a file means that they are linked.

Table 5-1    Resources Configuration " .desc " File

Ser
ver
s

Lis
t of
Gr
ou
p

PR
OG
RA
MS

TR
AN
CL
AS
SE
S

TR
AN
SA
CTI
ON
S

TS
QM
OD
EL

EN
QU
EM
OD
EL

TD
Q
INT
RA

TD
Q
EX
TR
A

TY
PE
TE
RM

MA
PS
ET

SY
ST
EM

TE
RM
IN
AL
S

CO
NN
EC
TIO
N

WE
BS
ER
VIC
E

PR
OG
RA
MS
LIS
T

PO
OL

Lis
ten
er

Tot
al

ART
TCP
L/H

1 1

ART
CNX

1 1

ART
ATR
1

1 1 1 1 1 1 1 1 1 1 1 1 12

ART
ATR
N

1 1 1 1 1 1 1 1 1 1 1 1 12

ART
STR
1

1 1 1 1 1 1 1 1 1 1 1 1 1 13

ART
STR
N

1 1 1 1 1 1 1 1 1 1 1 1 1 13

ART
CTR
1

1 1 1 1 1 1 1 1 1 1 1 1 12

ART
CTR
N

1 1 1 1 1 1 1 1 1 1 1 1 12

ART
WTR
1

1 1 1 1 1 1 1 1 1 1 1 1 1 13

5-1



Table 5-1    (Cont.) Resources Configuration " .desc " File

Ser
ver
s

Lis
t of
Gr
ou
p

PR
OG
RA
MS

TR
AN
CL
AS
SE
S

TR
AN
SA
CTI
ON
S

TS
QM
OD
EL

EN
QU
EM
OD
EL

TD
Q
INT
RA

TD
Q
EX
TR
A

TY
PE
TE
RM

MA
PS
ET

SY
ST
EM

TE
RM
IN
AL
S

CO
NN
EC
TIO
N

WE
BS
ER
VIC
E

PR
OG
RA
MS
LIS
T

PO
OL

Lis
ten
er

Tot
al

ART
WTR
N

1 1 1 1 1 1 1 1 1 1 1 1 1 13

ART
DPL

1 1 1 1 1 1 1 1 1 1 1 1 12

ART
TSQ

1 1 2

ART
TSQ
P

1 1 1 3

ART
TDQ

1 1 1 3

ART
ADM

0

ART
CKT
I

0

ART
SRM

1 1 1 1 1 1 6

ART
CSK
L

1 1

Tot
al

13 10 8 10 11 9 10 10 2 6 10 2 9 7 1 10 1 129

Chapter 5
Cross Reference of .desc Configuration Files Used by CICS Runtime Servers

5-2



6
Oracle Tuxedo Application Runtime for CICS
CSD Converter

This chapter contains the following topics:

• Overview

• Resource Definition Online (RDO) Mapping

6.1 Overview
The administration of CICS Runtime is based on Oracle Tuxedo native tools with the addition
of a limited number of configuration tables for features that are specific to CICS. In CICS
configurations, resources are currently defined in the CICS system definition file (CSD).

The tcxcsdcvt tool (located in the $KIXDIR/tools directory), maps the CSD file to resource
descriptive files (including transaction, transaction class, program, files, TS Queue, ENQ, TD
Queue extra partition, TD Queue intra partition, mapset, and typeterm).

This tool is used to set the target CSD file in argument, and the translated resource
configuration files resides in current directory by default. You can also specify other target
directories to store the configuration files.

6.2 Resource Definition Online (RDO) Mapping
Resource Definition Online (RDO) Mapping consists of two parts:

1. Files conversion from RDO/CSD on z/OS to resource configuration files of all types on
universal platform, such as transactions, programs, mapsets and etc.

2. For each types, tool tcxcsdcvt reads the value of all fields, and then generates a record in
the corresponding resource configuration file. For more information, see Oracle Tuxedo
Application Runtime for CICS Reference Guide

6-1



Figure 6-1    Data Stream Model

Tables 1~10 describe detailed correspondence between RDO/CSD and target resource
configuration files, which have ".desc" as suffix mentioned above. These mappings include:

• TRANCLASS Mapping

• PROGRAM Mapping

• FILE Mapping

• Journaling Attributes in FILE Mapping

• TSQUEUE MODEL Mapping

• ENQMODEL Mapping

• TDQUEUE Extra Partition Mapping

• TDQUEUE Intra Partition Mapping

• MAPSET Mapping

• TYPETERM Mapping

Note:

Since some field names are new options added in CICS Runtime Configuration Files,
they are not defined or supported by RDO/CSD. To mark these attributes "----" is
used.

Table 6-1    TRANCLASS Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

TRANCLASS TRANCLASS Name of the transaction class.

GROUP GROUP The group notion of CICS allowing a group of
related resources to be declared and instantiated
or not by a CICS system when starting.

Chapter 6
Resource Definition Online (RDO) Mapping

6-2



Table 6-1    (Cont.) TRANCLASS Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

DESCRIPTION DESCRIPTION A small textual comment zone for description of the
resource.

MAXACTIVE MAXACTIVE Defines the degree of parallelism of execution.

Table 6-2    PROGRAM Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

PROGRAM PROGRAM Name of the program.

GROUP GROUP The group notion of CICS allowing a group of
related resources to be declared and instantiated
or not by a CICS system when starting.

DESCRIPTION DESCRIPTION A small textual comment zone for description of the
resource.

LANGUAGE LANGUAGE The language of the program, required to know
how to communicate with it.

EXECKEY EXECKEY Reserved for future use. Concerns memory
protection of CICS shared structures.

STATUS STATUS Specifies the program status.

REMOTESYSTEM REMOTESYSTEM Specifies that the program is not offered locally but
in a DPL server.

REMOTENAME REMOTENAME Specifies for a DPL program the name of the
program on the distant site.

Table 6-3    FILE Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

FILE FILE Name of the file; logical name of the file used in
EXEC CICS related to this file.

GROUP GROUP The group notion of CICS allowing a group of
related resources to be declared and instantiated
or not by a CICS system when starting.

DESCRIPTION DESCRIPTION A small textual comment zone for description of the
resource.

DISPOSITION DISPOSITION Specifies the disposition of this file.

DSNAME DSNAME Specifies the data set name to be used for this file.

JOURNAL JOURNAL Specifies whether you want automatic journaling
for this file.

KEYLENGTH KEYLENGTH Specifies the length in bytes of the logical key of
records in remote files, and in coupling facility data
tables that are specified with LOAD (NO).

OPENTIME OPENTIME Specifies when the file is opened.

Chapter 6
Resource Definition Online (RDO) Mapping

6-3



Table 6-3    (Cont.) FILE Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

READINTEG READINTEG Specifies the level of read integrity required for files
defined with RLSACCESS (YES).

RECORDSIZE RECORDSIZE Specifies the maximum length in bytes of records
in a remote file or a coupling facility data table.

REMOTENAME REMOTENAME Specifies the name of the file on the remote
system.

REMOTESYSTEM REMOTESYSTEM On source, specifies the name of the connection
that links the local system to the remote system
where the file resides. On the target platform, will
be used only in case of file shipping to another
system, either another TUXEDO system or native
CICS system.

STATUS STATUS Specifies the initial status of the file following a
CICS initialization.

Table 6-4    Journaling Attributes in FILE Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

JNLADD JNLADD Specifies if you want the add operations recorded
on the journal nominated by the JOURNAL
attribute.

JNLREAD JNLREAD Specifies the read operations you want recorded
on the journal nominated by the JOURNAL
attribute.

JNLSYNCREAD JNLSYNCREAD Specifies whether you want the automatic
journaling records, written for READ operations to
the journal, to be synchronous.

JNLSYNCWRITE JNLSYNCWRITE Specifies whether you want the automatic
journaling records, written for WRITE operations to
the journal, to be synchronous.

JNLUPDATE JNLUPDATE Specifies whether you want REWRITE and
DELETE operations recorded on the journal.

Table 6-5    TSQUEUE MODEL Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

TSMODEL TSMODEL Name of the TS Queue model.

GROUP GROUP The group notion of CICS allowing a group of
related resources to be declared and instantiated
or not by a CICS system when starting.

DESCRIPTION DESCRIPTION A small textual zone for description of the resource.

LOCATION LOCATION Specifies the kind of storage to use: file or memory.

PREFIX
XPREFIX

PREFIX
XPREFIX

Specifies the character string that is to be used as
the prefix for this model.

Chapter 6
Resource Definition Online (RDO) Mapping

6-4



Table 6-5    (Cont.) TSQUEUE MODEL Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

RECOVERY RECOVERY Specifies whether or not queues matching this
model are to be recoverable.

POOLNAME POOLNAME Specifies the 8-character name of the shared TS
pool definition that you want to use with this
TSMODEL definition.

REMOTE_SYSTEM REMOTESYSTEM On source platform, specifies the name of the
connection that links the local system to the remote
system where the temporary storage queue
resides. On the target platform, used only in case
of TS shipping to another system, either another
TUXEDO system or native CICS system.

REMOTEPREFIX
XREMOTEPREFIX

REMOTEPREFIX
XREMOTEPREFIX

Specifies the character string that is to be used as
the prefix on the remote system. The prefix may be
up to 16 characters in length

SECURITY SECURITY Specifies whether security checking is to be
performed for queues matching this model.

Table 6-6    ENQMODEL Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

ENQMODEL ENQMODEL Name of the ENQ model.

GROUP GROUP The group notion of CICS allowing a group of
related resources to be declared and instantiated
or not by a CICS system when starting.

DESCRIPTION DESCRIPTION A small textual zone for description of the resource.

ENQNAME ENQNAME Specifies the 1 to 255-character resource name.

ENQSCOPE ENQSCOPE If omitted or specified as blanks, matching
enqueue models will have a local scope, else they
will have a global scope

STATUS STATUS E = Enabled; D = Disabled.

Table 6-7    TDQUEUE Extra Partition Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

TDQUEUE TDQUEUE Specifies the 1- to 4-character name of a transient
data queue.

GROUP GROUP The group notion of CICS allowing a group of
related resources to be declared and instantiated
or not by a CICS system when starting.

DESCRIPTION DESCRIPTION A small textual zone for description of the resource.

DDNAME DDNAME Specifies a 1-to 8-character value that may refer to
a data set defined in the startup JCL.

DISPOSITION DISPOSITION Specifies the disposition of the data set (MOD;
OLD; SHR).

Chapter 6
Resource Definition Online (RDO) Mapping

6-5



Table 6-7    (Cont.) TDQUEUE Extra Partition Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

ERRORPTION ERRORPTION (UNSUPPORTED) Specifies the action to be taken
if an I/O error occurs.

OPENTIME OPENTIME (UNSUPPORTED) Specifies the initial status of the
data set.

RECORDFORMAT RECORDFORMAT Specifies the record format of the data set.

PRINTCONTROL PRINTCONTROL (UNSUPPORTED) Specifies the control characters
to be used.

RECORDSIZE RECORDSIZE Specifies the record length in bytes.

TYPEFILE TYPEFILE Specifies the type of data set the queue is to be
associated with an input or output dataset.

DSNAME DSNAME Specifies the name of the file that is to be used to
store records written to this extra partition queue.

SYSOUTCLASS SYSOUTCLASS (UNSUPPORTED) Specify the class of the
SYSOUT data set.

TRT ---- Allow integrators and customers to make their own
specific implementation of extra-partition queues.

Table 6-8    TDQUEUE Intra Partition Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

TDQUEUE TDQUEUE Specifies the 1- to 4-character name of a transient
data queue.

GROUP GROUP The group notion of CICS allowing a group of
related resources to be declared and instantiated
or not by a CICS system when starting.

DESCRIPTION DESCRIPTION A small textual zone for description of the resource.

RECOVSTATUS RECOVSTATUS Specifies if the queue is logically recoverable or
not.

TRANSID TRANSID Specifies the name of the transaction that is to be
automatically initiated when the trigger level is
reached.

TRIGGERLEVEL TRIGGERLEVEL Specifies the number of records to be accumulated
before a task is automatically initiated to process
them.

USERID USERID Specifies the userid you want CICS to use for
security checking when verifying the trigger-level
transaction specified in the TRANSID field.

WAIT WAIT (INACTIVE field) Accepted only in the resource
loading.

WAITACTION WAITACTION (INACTIVE field) Accepted only in the resource
loading.

QSPACENAME ---- Specify the name of the tuxedo /Q QSPACE into
which this queue is physically stored.

TRT ---- Allow integrators and customers to make their own
specific implementation of intra-partition queues.

Chapter 6
Resource Definition Online (RDO) Mapping

6-6



Table 6-9    MAPSET Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

NAME MAPSET Name of the MAPSET.

GROUP GROUP Installation group name.

DESCRIPTION DESCRIPTION A general description of the MAPSET resource.

RESIDENT RESIDENT YES=preload. NO=load on first use.

swastatus STATUS Sets the status of the resource, to specify if it is
available.

Usage USAGE Specifies the caching scheme to be used once the
MAPSET is loaded.

FILENAME ---- Specifies the physical (binary) file name of the
mapset, which is generated by the tcxmapgen
utility (refer to section).

Table 6-10    TYPETERM Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

NAME TYPETERM Name of the typeterm.

GROUP GROUP The group notion of CICS allowing a group of
related resources to be declared and instantiated
or not by a CICS system when starting.

DESCRIPTION DESCRIPTION A small textual zone for description of the resource.

color COLOR Designates extended color attributes.

defscreencolumn DEFSCREEN (rows,
columns)

Number of columns of the default screen size.

defscreenrow DEFSCREEN (rows,
columns

Number of rows of the default screen size.

hilight HILIGHT Indicates whether a terminal supports the highlight
feature.

logonmsg LOGONMSG Indicates whether the "Good Morning" (CSGM)
transaction is automatically started on the terminal.

outline OUTLINE Indicates whether the terminal supports field
outlining.

swastatus STATUS Specifies the resource status (whether available).

uctran UCTRAN Specify whether translate lowercase alphabetic
characters to uppercase, or only translate the
transaction ID from lowercase to uppercase, or not
translate any characters.

userarealen USERAREALEN The terminal control table user area (TCTUA) area
size for the terminal.

INTERCODE ---- Specifies which encoding type of inbound data is
used.

EXTERCODE ---- Specifies which encoding type of outbound data is
used.

SOSI SOSI Specifies whether mixed EBCDIC and double-byte
character set (DBCS) is supported.

Chapter 6
Resource Definition Online (RDO) Mapping

6-7



Table 6-10    (Cont.) TYPETERM Mapping

Field Name in ART
FOR CICS

Resource Attribute in
RDO/CSD

Description

PROGSYMBOLS PROGSYMBOLS Specifies whether the programmed symbol (PS)
facility is supported.

Chapter 6
Resource Definition Online (RDO) Mapping

6-8



7
ECI Client Support

This chapter contains the following topics:

• Overview

• Introduction

• Platform

• Installation and Setup

• Encoding and Decoding

• Security

• Failover

• Diagnostic

• Limitation and Compatibility

7.1 Overview
The external interfaces allow non-CICS applications to access and update CICS resources by
calling CICS programs. When communicating with CICS, the external interfaces enable non-
CICS programs to access and update resources on any CICS system. This method of using
the external interfaces supports such activities as the development of graphical user interface
(GUI) front ends for CICS applications and allows the integration of CICS systems and non-
CICS systems.

Oracle Tuxedo Application Runtime for CICS and Batch provides the target environment for
migrating mainframe applications from IBM z/OS to an open systems application grid running
Oracle Tuxedo.

When customers choose to use Oracle Tuxedo Application Runtime for CICS, ECI emulator
enables customers to keep using their existed program without code change.

7.2 Introduction
CICS Transaction Gateway and CICS Universal Client provide ECI programming interface for
C, C++, COBOL, COM, .NET, and JAVA. Regarding that the implementation of programming
interface is done in dynamic load library (DLL), the basic idea of ECI emulator is to replace the
library and so users can keep using their application as if nothing changed; in DLL, ECI
request is routed to Tuxedo and leverages all the benefits provided by Tuxedo.

This figure demonstrates how ECI Emulator works. In this document, we focus on ECI C API.

7-1



Figure 7-1    ECI Emulator

Note:

For ECI C API, only ECI v1 API CICS_ExternalCall (ECI_Parms) is supported.

For more information, refer to Supported ECI API Parameters in CICS Commands and
Parameters Coverage.

7.3 Platform
The supported platforms are listed in the Supported Platforms.

7.4 Installation and Setup
This section contains the following topics:

• Installation

• ECI Connection to ART CICS

• Configuration on ART CICS

7.4.1 Installation
The delivery of ECI Emulator is a ZIP package, including one cclapi32.dll file and other Tuxedo
dependency files. To use ECI Emulator, users need to install CICS Transaction Gateway or
CICS Universal Client and unzip the package under the directory, where the original
cclapi32.dll is located in, to replace the original DLL with the delivery.

7.4.2 ECI Connection to ART CICS
In typical case, user application runs on Windows while ART CICS runs on Linux. To build
connection between ECI client and ART CICS, Tuxedo /WS is used.

Users need to set environment variables before calling ECI client application. For example:

set TUXDIR=<where the delivered package will be unzip to>

set WSNADDR=//<machine>:<port>

Chapter 7
Platform

7-2

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/CICSCommands.html#1168976
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/CICSCommands.html
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/CICSCommands.html


7.4.3 Configuration on ART CICS
CICS programs that are invoked by an ECI request must be configured as DPL programs on
ART CICS Runtime as the following:

• Configure the program in programs.desc, and specify the system name in REMOTESYSTEM
field.

• Configure ARTDPL server in ubbconfig, and specify the system name using ARTDPL -s
option.
In ECI call CICS_ExternalCall (ECI_Parms), specify the program name using
eci_program_name parameter, and the system name using eci_system_name parameter.

Note:

For more information about ART CICS DPL configuration, please refer to 
Implementing Distributed Program Link (DPL).

7.5 Encoding and Decoding
If the code page of the user application is different from that of the server, data conversion in a
COMMAREA must be performed, and then two cases, legacy user application and new
created user application, are required to handle.

For legacy application, the data in COMMAREA could be converted to EBCDIC before such
legacy application connects server; however, regarding that the data flow on ART CICS is in
ASCII format, ECI emulator needs to both convert COMMAREA from EBCDIC to ASCII before
ECI request is routed to ART CICS and convert returned information back to EBCDIC.

For new created application, users could use ASCII directly without any conversion operation
needed. To do this, we introduce an environment variable CTG_CLIENT_CHARSET. If its value is
set to “EBCDIC”, ECI Emulator is to perform data conversion for COMMAREA between
EBCDIC and ASCII; by contrast, if this environment is not set or its value is not “EBCDIC”, no
conversion will be done.

7.6 Security
In ECI parameter block fields, the supplied user ID and password are used in subsequent
security checking in the server. Usually, eci_userid and eci_password are used, but they are
8 character fields. Therefore, if a user ID or password more than 8 characters is required,
users should set eci_userid and eci_password to nulls, and use fields eci_userid2 and
eci_password2 instead.

Regarding that the security mechanism of ART CICS is different from the security mechanism
in ECI request, a problem occurs if security is enabled on ART CICS requiring user ID,
password, and application password while there is no application password defined in ECI
parameter. To solve this problem, ECI Emulator offers two alternatives for users.

1. Set application password as empty when enabling security in ART CICS side. ECI
Emulator can read user ID and password from ECI parameter and then feed application
password with an empty string when doing tpinit()

Chapter 7
Encoding and Decoding

7-3



2. Specify application password in an environment variable CTG_APP_PWD. If it is defined, the
content in this variable will be used as application password.

If security is not enabled in ART CICS, security checking will not be performed even user ID
and password are supplied in ECI parameter.

7.7 Failover
Tuxedo / WS allows to configure alternative network address connecting to /WS remote clients.
This feature is used in ECI Emulator to implement failover. More precisely, the feature enables
users to configure multiple WSL servers in UBBCONFIG and set environment variable WSNADDR
with all alternative network address on client side.

For example, users can set environment variables as “set WSNADDR=//bjlinux16:46249, //
bjlinux16:46246” when first address is not available; then the next address will be picked up
automatically.

7.8 Diagnostic
This emulator provides a mechanism for users to diagnose the problems they met. To enable
emulator log, users can set environment variables CTG_CLIENT_TRACE_FILE to specify log file
name and CTG_CLIENT_TRACE_LEVEL to set log level.

The log level is ranged from 0 to 4 inclusive: 0 (no log), 1 (error), 2 (warning), 3 (info), and 4
(debug).

If environment variable CTG_CLIENT_TRACE_FILE is not set, userlog will be used.

If environment variable CTG_CLIENT_TRACE_LEVEL is not set, default log level will be set to error,
meaning only error log will be printed. If CTG_CLIENT_TRACE_LEVEL is set with invalid log level,
such as a negative number, debug level will be used.

7.9 Limitation and Compatibility
This section contains the following topics:

• Limitation

• Compatibility

7.9.1 Limitation
Only supports encoding/decoding on the whole eci_commarea between ASCII and EBCDIC;
MBCS is not supported.

7.9.2 Compatibility
1. Most ECI return code does not have matched error code in Tuxedo. If ECI call is failed and

there is no matched Tuxedo error code, this emulator will only return a general error code
ECI_ERR_SYSTEM_ERROR and users can view detailed error information and diagnose
problem by enabling log output. Supported ECI defined return codes are listed below:

• ECI_NO_ERROR
• ECI_ERR_SYSTEM_ERROR

Chapter 7
Failover

7-4



• ECI_ERR_INVALID_EXTEND_MODE
• ECI_ERR_INVALID_CALL_TYPE

2. ECI emulator supports both customer legacy ECI program and new created ECI client.

Chapter 7
Limitation and Compatibility

7-5



8
IMS DB Access Support

This chapter contains the following topics:

• Overview

• Configurations

• Supported Platforms

8.1 Overview
ART for CICS enables you to use DL/I CALL 'CBLTDLI' to access IMS DB through Oracle
ODBA. With this feature, ART for CICS application programs can do operations in IMS DB,
such as adding, searching, and deleting data.

8.2 Configurations
Configure the followings for the IMS DB Access Support:

• Configure ART for CICS for Accessing IMS DB

• Configuring ART for CICS Servers

• Configuring Environment Variables

• Configuring IMS

8.2.1 Configure ART for CICS for Accessing IMS DB
ART for CICS servers provide you IMS DB access environment by dynamically loading DL/I
library (libcicsdli.so and libcicsdlidb.so), which works as a plug-in component in ART for
CICS.

The DL/I library is located in

• art22.1.0.0.0/IMS_RT/lib/libcicsdli.so
• art22.1.0.0.0/IMS_RT/lib/libcicsdlidb.so
For more information about LD_LIBRARY_PATH, see Environment Variables in the Oracle Tuxedo
Application Runtime for CICS Reference Guide.

8.2.2 Configuring ART for CICS Servers
It is required to configure --IMSDB argument in ART for CICS Server CLOPT in UBBCONFIG file.
For example,

--IMSDB -x -o wasa.myexample.com:6799:IMSD

8-1



Note:

--IMSDB argument must be the last argument in CLOPT

For more information, see IMS DB Argument in the Oracle Tuxedo Application Runtime for
CICS Reference Guide

8.2.3 Configuring Environment Variables
It is required to set the following environment variables.

• ART_IMS_CONFIG
• ART_IMS_DB
• KIX_IMSDB_TRACE_LEVEL
• LD_LIBRARY_PATH
For more information, see Environment Variables in the Oracle Tuxedo Application Runtime for
CICS Reference Guide

8.2.4 Configuring IMS
ART for CICS uses the following configuration files for accessing IMS DB:

• Application Definition - imsapps.desc

• Database Definition - imsdbs.desc

• PSB Definition - $appname.psb

• Segments Definition - segments.desc

• Segment Definition - $segname.desc

For more information, see Configuration Files in Oracle Tuxedo Application Runtime for IMS
Reference Guide.

8.3 Supported Platforms
This feature supports all Linux/AIX 64-bits platforms that Oracle Tuxedo Application Runtime
for CICS and Batch 22c Release 1 (22.1.0.0.0) supports, which are listed in the Supported
Platforms in Oracle Tuxedo Application Runtime for CICS and Batch Installation Guide.

Tip:

When using COBOL-IT COBOL, you should use option -falloc-unused-linkage to
compile programs which include DLIUIB in linkage section.

Chapter 8
Supported Platforms

8-2



9
UDB Linking

This chapter contains the following topics:

• Installation Time UDB Linking

9.1 Installation Time UDB Linking
The CICS Server Build Tool buildartcics is provided to help you generate CICS Runtime
servers. CICS Runtime servers can be linked with an Oracle database or a UDB (LUW)
database.

• Rebuilding Servers for UDB

9.1.1 Rebuilding Servers for UDB
The servers delivered are built to be used with Oracle; to rebuild a server for UDB, you can run
buildartcics with UDB_XA as the RM. For example:

buildartcics -r UDB_XA -o ARTSTRN_UDB
For detailed information of this tool, please see CICS Runtime Server Build Tool in the Oracle
Tuxedo Application Runtime for CICS Reference Guide

Besides, the file makefile_sample is provided as an example to help you generate multiple
CICS Runtime servers at a time:

1. Open the <ART_INSTALL_DIR>/Cics_RT/tools directory;

2. Set correct environment variables as required, such as “DB2DIR”, “TUXDIR”, “KIXDIR”, and
“COBDIR/COBOLITDIR”. For more information of each environment variable, see in the CICS
Runtime Server Build Tool in the Oracle Tuxedo Application Runtime for CICS Reference
Guide

3. Make sure all the servers in "ALL_EXECUTABLES" target in makefile_smaple are exactly the
targeted servers (*_UDB) you need;

4. Run “gmake -f makefile_sample all”.

Note:

For UDB linking, make sure that you have the following line in the Tuxedo RM
file:

UDB_XA:db2xa_switch_std:-L${DB2DIR}/lib64 -ldb2 -ldb2gmf

9-1



10
Rebuilding ART Servers for CICS

You need to rebuild the ART CICS servers in case of updates on one of the following
components:

• Major OS version

• Tuxedo

• RDBMS: Oracle or UDB

• WebSphere MQ

• COBOL compiler: Micro Focus COBOL or COBOL-IT

• C++ compiler

The following topic describes how to rebuild an ART Server for CICS:

• Rebuilding the ART CICS Servers

10.1 Rebuilding the ART CICS Servers
To rebuild a server with Oracle as the RM, you can simply use the CICS Server Build Tool
buildartcics. For example:

buildartcics -r Oracle_XA -o ARTSTRN
For detailed information of this tool, see CICS Runtime Server Build Tool in the Oracle Tuxedo
Application Runtime for CICS Reference Guide

Besides, the file makefile_sample is provided as an example to help you generate multiple
CICS Runtime servers at a time:

1. Open the <ART_INSTALL_DIR>/Cics_RT/tools directory;

2. Set correct environment variables as required, such as “ORACLE_HOME”, “TUXDIR”, “KIXDIR”,
and “COBDIR/COBOLITDIR”. For more information of each environment variable, see CICS
Runtime Server Build Tool Tool in the Oracle Tuxedo Application Runtime for CICS
Reference Guide

3. Make sure all the servers in "ALL_EXECUTABLES" target in makefile_smaple are exactly the
targeted servers you need;

4. Run “gmake - f makefile_sample all”

10-1



11
External CICS Interface (EXCI)

This chapter contains the following topics:

• Overview

• EXCI in Oracle Tuxedo Application Runtime

11.1 Overview
The external CICS interface is an application programming interface which enables a non-
CICS program running in MVS to:

• Allocate and open sessions to a CICS system, and issue DPL requests on these sessions.

• Call a server program running in a CICS environment, pass and receive data by means of
a communications area.

The external CICS interface provides two forms of programming interface:

• The EXCI CALL interface, which consists of six commands that allow you to:

– Allocate and open sessions to a CICS system from non-CICS programs running under
the MVS.

– Issue DPL requests on these sessions from the non-CICS programs.

– Close and release the sessions on completion of the DPL requests.

• The EXCI EXEC CICS interface, which provides a single composite command that performs
all six commands of the EXCI CALL interface in one invocation.

11.2 EXCI in Oracle Tuxedo Application Runtime

Figure 11-1    EXCI in ART

Each EXCI ART CICS program must be defined as a DPL service in the resource/
program.desc file. The seventh column must contain the CICS SYSID, and the service is
advertised with the name: <SYSID>_<PROGRAM>.

11-1



If a mirror transaction is defined in transaction.desc using DFHMIRS, DPL advertises a service
with name <APPLID>_MIRROR_<TRANSID> or MIRROR_<TRANSID>.

If all DPL requests are done with SYNCONRETURN and not under the RRMS control, no Resource
Manager is required in the Tuxedo Client. The initialization is done during the first EXCI
request process and the Tuxedo session is terminated at the end of the client process.

If RRMS is used or one DPL request is done without SYNCONRETURN, the Tuxedo Client process
must be built with one Resource Manager. At the initialization, the Resource Manager is
opened and the transaction is begun at the beginning of the Client process. If one of these
steps is not successful, the Client process aborts. At the normal end of the client process, the
transaction is committed if it was not explicitly done by the client program (RSSCMIT). At the
abnormal end of the client process, the transaction is rolled back. In each of these cases the
Resource Manager is closed and the Tuxedo session is terminated.

• Supported EXCI Interface

• Precompiler Controls

• Access Authorization

• ART CICS Implementation

11.2.1 Supported EXCI Interface
The EXCI precompiler option must be used for CICS client batch program.

The COBOL precompiler supports EXCI CALL or only one CICS command, EXEC CICS LINK
with the next described options. The C precompiler only supports EXCI EXEC CICS LINK.

ART CICS supports DFHXCIS API for making EXCI requests (DFHXCIS is a procedure API that
client programs make EXCI CALL).

In case of EXEC CICS LINK, the RETCODE command option is mandatory with EXCI but forbidden
with NOEXCI, and the APPLID option is EXCI specific. Without EXCI the SYSID option can be
used.

With the EXCI precompiler option neither DFHEIBLK nor DFHCOMMAREA is generated as
PROCEDURE DIVISION USING parameter.

The EXCI precompiler option is set by inserting a COBOL comment line containing from the
seventh column:

*KIX--OPTION EXCI
before IDENTIFICATION DIVISION line.

The EXCI C precompiler option is set by "-B".

ART CICS supports the following EXCI EXEC CICS LINK commands: PROGRAM (name), APPLID
(name), and TRANSID (name). DATALENGTH (data-value) is recognized.

11.2.2 Precompiler Controls
• PROGRAM() and RETCODE() are required for the LINK command in EXCI.

• SYSID is not recognized in EXCI.

• COMMAREA must be present if LENTGH or DATALENGTH is present.

• EXCI CICS LINK is the only supported command in EXCI.

Chapter 11
EXCI in Oracle Tuxedo Application Runtime

11-2



11.2.3 Access Authorization
The Tuxedo configuration SECURITY level drives the access authorization.

The MT_EXCIAPPPROFILE environment variable provides the application profile file name
generated by the genappprofile ARTKIX tool. The default file name is $HOME/.tuxAppProfile.

In DPL program which is issued by EXCI client, the EXEC CICS ASSIGN USERID() command
returns:

The value of $USER environment variable when there is no security level set inside the Tuxedo
ubbconfig The value of USERID input in genappprofile tool when enabling security level inside
the Tuxedo ubbconfig, the value of USERID is got from .tuxAppProfile and passed by DPL
request.

See Oracle Tuxedo Application Runtime for Batch documentation for more details.

In DPL program which is issued by EXCI client, the EXEC CICS ASSIGN USERNAME() command
returns:

The value of $USERNAME environment variable no matter whether there is any security level set
inside the Tuxedo ubbconfig or not.

11.2.4 ART CICS Implementation
The programs linked via the EXCI interface are advertised by the ARTDPL server. They are
named as <program>_<sysid>, where <program> is the linked program name (option
PROGRAM(<program>) of EXCI EXEC interface), and <sysid> is the CICS system ID.

The EXCI interface uses the <applid> CICS application ID to address the appropriate CICS
region. The relationship between <applid> and <sysid> is made via a specific DPL server
service named <applid>_info.

The -a user parameter value of the DPL server command line (CLOPT) is used as <applid>
value for the _info service.

If the <applid> is omitted by the client (without APPLID(<applid>) EXCI EXEC interface option),
the default_info service is called. This service is advertised by the first DPL booted server.

The _info service returns the <sysid> associated to the server by the -s user parameter of the
server command line.

Since ART CICS 12c rolling patch 015, four services are advertised by the ARTDPL server:

• <applid>_CSMI, where <applid> is the CICS application ID to address the appropriate
CICS region. This service is called if <transid> is not specified but <applid> is specified in
EXCI interface by the client.

• CSMI. This service is called if both <applid> and <transid> are not specified in EXCI
interface by the client.

• <applid>_MIRROR_<transid>, where <applid> is the CICS application ID to address the
appropriate CICS region, and <transid> is the transaction ID. This service is called if both
<applid> and <transid> are specified in EXCI interface by the client.

• MIRROR_<transid>, where <transid> is the transaction ID. This service is called if
<applid> is not specified but <transid> is specified in EXCI interface by the client.

Chapter 11
EXCI in Oracle Tuxedo Application Runtime

11-3

https://docs.oracle.com/cd/E53645_01/artbatch/docs12cr2/index.html


• ART Restrictions

• SRRCMIT/SRRBACK Functions

• Configuration Files Declaration for EXCI EXEC CICS LINK

11.2.4.1 ART Restrictions
This section has the following topics:

• Common EXCI Interfaces ART Restrictions

• EXCI CALL Interface ART Restrictions

• EXCI EXEC Interface ART Restrictions

11.2.4.1.1 Common EXCI Interfaces ART Restrictions
• The TRANSID has no meaning. There is no control on it. It is only passed to the DPL service

in the EIBTRNID field in DFHEIBLK structure.

• The COMMAREA length is limited to 32763 bytes.

11.2.4.1.2 EXCI CALL Interface ART Restrictions
• Only VERSION-1 is supported.

• The initial user USER-NAME is only used to generate a user-token without any control.

• The DPL UOWID is kept for compatibility only, and is not set and tested.

• The PIPE-TYPE has no meaning. The recognized values for PIPE-TYPE are only X'00' and
(X'C3' or X'D8) (X'C3' and X'D8' are the possible ASCII values for X'80' EBCDIC
depending code-page). On other value the response code is set to 12 and the reason code
to 498.

• The recognized values for SYNC-TYPE are only X'00' and (X'C3' or X'D8') (X'C3' and
X'D8' are the possible ASCII values for X'80' EBCDIC depending code-page). On other
value the response code is set to 12 and the reason code to 499.

11.2.4.1.3 EXCI EXEC Interface ART Restrictions
The DFHXCRM replaceable-module is not treated.

11.2.4.2 SRRCMIT/SRRBACK Functions
The SRRCMIT and SRRBACK functions are available. ATRCMIT and ATRBACK functions are not
supported.

SRRCMI and SRRBACK fuctions must be coded as:

01 SRR-RETCODE PIC 9(8) COMP-5.
CALL "SRRCMIT" USING SRR-RETCODE
CALL "SRRBACK" USING SRR-RETCODE

Chapter 11
EXCI in Oracle Tuxedo Application Runtime

11-4



11.2.4.3 Configuration Files Declaration for EXCI EXEC CICS LINK
To use EXCI EXEC CICS Link command, the system.desc, transactions.desc, and
program.desc configuration files should be configured.

Following are configuration examples.

Listing 11‑1 system.desc

[SYSID]
APPLID={applid}

Listing 11‑2 transactions.desc

#TRANSNAME;GROUPNAME; DESCRIPTION; PROGRAM,hardcode with DFHMIRS
ECCI;SIMPDPL;pg for simpapp;DFHMIRS

Listingn 11‑3 program.desc

#PROGRAM;GROUP;DESCRIPTION;LANGUAGE;EXECKEY;STATUS
TOUPSVR;SIMPDPL;pg for simpapp;COBOL; ;ENABLED;KIXD

Chapter 11
EXCI in Oracle Tuxedo Application Runtime

11-5



12
COBOL Program Debugging and Error
Processing in CICS Runtime

This chapter contains the following topics:

• Debugging COBOL Programs in CICS Runtime

• Error Processing in CICS Runtime

12.1 Debugging COBOL Programs in CICS Runtime
ART for CICS enables you to debug COBOL application programs online without modifying the
program. The supported COBOL compilers are Micro Focus COBOL and COBOL-IT COBOL;
you can use Animator tool to debug Micro Focus COBOL programs while use Deet tool to
debug COBOL-IT COBOL programs. Whichever tool you use, the tool intercepts execution of
the application program at various points before displaying information about the program. Any
screens that the application program sends are displayed by the tool, so that you can converse
with the application program during testing, just as you would on the production system.

ART for CICS supports cross-session debugging with Micro Focus COBOL and COBOL-IT
COBOL. Cross-session debugging enables you to use the Animator tool or the Deet tool in a
different terminal window from that in which the program to be debugged is running.

• Debugging with Micro Focus COBOL

• Debugging with COBOL-IT COBOL

• Configuration

• Dynamically Load the Debug Configuration File

Note:

– ART for CICS 12.1.3 Rolling Patch 019 or later is required

– COBOl-IT COBOL version 3.7.43 or later is required.

• Debugging with Micro Focus COBOL

• Debugging with COBOL-IT COBOL

• Configuration

• Dynamically Load the Debug Configuration File

12.1.1 Debugging with Micro Focus COBOL
Follow these steps for debugging with Micro Focus COBOL.

• First, create config/resources/kix_cobol_dbg.cfg configuration file. For more
information, see Configuration.

12-1



• Second, use prepro-cics.pl utility to preprocess the COBOL program. For more
information, see Configuration.

• Next, restart your application by using tmshutdown/tmboot or following the instructions in 
Dynamically Load the Debug Configuration File.

• Last, start Animator in one session at first and the Animator remains in waiting state until it
attaches to a Micro Focus COBOL program that has been started in another session.

12.1.2 Debugging with COBOL-IT COBOL
Follow these steps for debugging with COBOL-IT COBOL. For more information about Deet
graphic UI, see COBOL-IT COBOL documentation.

• First, create config/resources/kix_cobol_dbg.cfg configuration file. For more
information, see Configuration.

• Second, use prepro-cics.pl utility to preprocess the COBOL program. For more
information, see Configuration.

• Next, restart your application by using tmshutdown/tmboot or following the instructions in 
Dynamically Load the Debug Configuration File.

• Next, start your transaction. It will hang before the COBOL program to run and wait you to
start debug session.

• Next, use vncserver to start a VNC environment.

In VNC xterm, start debug session with command deet -p myAnimSrvID1. It starts a Deet
graphic UI and attaches the COBOL program. Note that you should start your transaction
at first, and then start debug session with Deet tool.

• Last, you can debug the COBOL program step by step in Deet graphic UI

Note:

COBOL-IT COBOL Deet tool does not support LINK (local) inside one
transaction. To debug LINK (local) cases, see Use Case 4: One user wants to
debug two programs with LINK (remote).

12.1.3 Configuration
Do the following configurations before debugging your COBOL programs in CICS Runtime.

• Configure kix_cobol_dbg.cfg configuration file.
For more information, see Debug Configuration File.

• Use the prepro-cics.pl utility to preprocess the COBOL program.
prepro-cics.pl -type_output=orig < RSSBT000.cbl > RSSBT000.cob

Chapter 12
Debugging COBOL Programs in CICS Runtime

12-2

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/DebugConfigFile.html


Note:

– Whenever a CICS COBOL application program runs, ART for CICS
application server checks the above configurations to determine whether to
enable debugging; therefore, you must complete all above configurations
before debugging.

– We recommend you to delete all .gnt files under COBOL source code
directory.

– The Linux user account that starts up the ART for CICS server must be the
same as the Linux user account that runs the anim (for Micro Focus COBOL
programs) / deet (for COBOL-IT COBOL programs) command line. Only the
ANIMSRVID which the anim / deet utility specifies will be debugged.

12.1.4 Dynamically Load the Debug Configuration File
You can dynamically load the debug configuration resource file kix_cobol_dbg.cfg without
restarting the ART for CICS.

Do the following steps to dynamically load this configuration file.

1. Launch the artadmin utility.
For more information, see artadmin (1).

2. Input config_update (cu).
config_update (cu) propagates the configuration changes and requests the application
servers to take in the changes in the configuration.

3. Input perform (p).
perform (p) performs the commands submitted to the server and clears the commands
buffer.

If the buffer is not empty, the buffer container is displayed and a confirmation is required.

If the submission fails, the message "Perform cancelled" is displayed, and the error is
logged into the USERLOG.

4. Input quit (q).
Input quit (q) to quit this session.

See Also:

Implementing COBOL Program Debugging in CICS Runtime

12.2 Error Processing in CICS Runtime
CICS runtime can detect the exception of CICS verbs and then output the relevant error
message and ABEND code; besides that, ART for CICS installs the error procedure, which is
running when COBOL LE (language environment) error occurs. In this error procedure, ART
for CICS can report the detailed error line and the reason why COBOL program ends
abnormally, and then CICS runtime can abort the COBOL program with CICS ABEND code ASRA
to avoid the CICS runtime server from dying.

Chapter 12
Error Processing in CICS Runtime

12-3

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/syscomtrans.html#wp1116831
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsuser/Implementing.html#1112046


To avoid any exception making CICS runtime unstable, KIX_MAX_FATAL_NUM is introduced to
control maximum exception count that one server can tolerate. If exception count exceeds
KIX_MAX_FATAL_NUM, CICS runtime server sends SIGTERM to terminate itself. CICS runtime
server can be configured as RESTART=Y to restart automatically. For more information, see 
KIX_MAX_FATAL_NUM.

• Prerequisite

• Memory Dump

12.2.1 Prerequisite
No matter which COBOL complier you use (Micro Focus COBOL or COBOL-IT), CICS runtime
installs error procedure by default.

ART for CICS provides environment variable KIX_CBL_TRAP_ERROR to enable or disable
COBOL LE (language environment) error procedure. Its default value is Y, meaning the error
procedure is enabled. If KIX_CBL_TRAP_ERROR=N is specified, the COBOL LE (language
environment) error procedure will be disabled and CICS runtime will take over the control when
an exception is detected to avoid the CICS runtime server from dying. CICS runtime also
generates relative information for the detected exception, which environment variable
KIX_DUMP_TYPE controls.

Specially, if CICS runtime is running with COBOL-IT, you should also compile COBOL program
with -debug compiler flag to enable the error procedure function.

For more information, see KIX_CBL_TRAP_ERROR and KIX_DUMP_TYPE.

12.2.2 Memory Dump
If CICS runtime is running with COBOL-IT, ART for CICS will not only provide error procedure
function but also dump final memory information of the program when COBOL LE error occurs.

You can enable this memory dump function by specifying the environment variable
KIX_DUMP_FILE as a valid local file name. When COBOL LE error occurs, ART for CICS
activates the error procedure at first, and then dumps the final memory information of program
into the dump file which KIX_DUMP_FILE specifies.

The memory dump function also works when CICS verbs error occurs.

For more information, see KIX_SO_SUBSYS_WRAPPER..

Chapter 12
Error Processing in CICS Runtime

12-4

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/EnvironmentVariables.html#1122649
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/EnvironmentVariables.html#wp1121375
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/EnvironmentVariables.html#1122611
https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsref/EnvironmentVariables.html#wp1121712


13
Integrating Client Applications Using CPI-C

This chapter contains the following topics:

• Overview

• Supported CPI-C Scenarios

• Server Side Configuration

• Client Side Configuration

• Oracle Tuxedo Timeout Controls

13.1 Overview
The Common Programming Interface for Communications (CPI-C) provides a common
application programming interface (API) for implementing APPC. CPI-C provides a consistent
set of functions for program-to-program communication across different platforms.

Customer applications running on open systems (Windows, Linux, Unix) can use the CPI-C
interfaces for APPC communication with mainframe applications running under IBM CICS and
IMS TM. After rehosting such mainframe applications to Tuxedo ART, the open systems
applications want to preserve the CPI-C/APPC interfaces for communicating with the rehosted
mainframe applications in order to avoid or minimize any change. Using Tuxedo ART CICS
support for CPI-C interfaces, customer applications can continue to interface with the rehosted
mainframe applications without changing any application code.

ART CICS CPI-C support covers the following:

Table 13-1    ART CICS CPI-C Support Coverage

CPI-C APPLICATIONS (CLIENT) CPI-C APPLICATIONS (SERVER)

Windows VS Client WebLogic JAM Client CICS Applications

Over Tuxedo
Workstation Client
(WSC)

Over WTC ARTCTRN/1
WSL/WSH for WSC

Domain Gateway for WTC

MS Visual Studio C/C+
+, 32-bits

JDK 1.6 or higher, 64-
bits

COBOL/C, 64-bits

Tuxedo ART CICS CPI-C support includes the following components:

• For Windows, a library kixcpicws.dll, which provides CPI-C interfaces as a replacement
for Windows CPI-C/SNA library, using Tuxedo WSC for communications instead of
Windows SNA support.

• For WebLogic, a set of Java classes that implement CPI-C interfaces, replacing JAM
beans and using WTC for Tuxedo Domains communications support.

• For Tuxedo ART CICS runtime, a CPI-C library that works in ARTCTRN servers to support
COBOL/C programs using CPI-C.
For more information, see Supported CPI-C Scenarios.

13-1

https://docs.oracle.com/cd/E72452_01/artrt/docs1222/cicsuser/IntegrationCPIC.html#1093420


In addition, ART CICS CPI-C integration provides the support for Windows VS C/C++
applications over Tuxedo WSC and Java applications over WTC, the applications acts as client
and use APPC protocol to interoperate with rehosted Mainframe CPI-C applications running
under ART CICS server.

• Client Applications Impact

13.1.1 Client Applications Impact
The section contains the following topics:

• Windows Visual Studio C/C++ Environment

• WebLogic Java Environment

• ASCII-EBCDIC Data Conversion

13.1.1.1 Windows Visual Studio C/C++ Environment
Windows applications need to be rebuilt/re-linked using the ART CICS CPI-C library provided
for this support. The new library supports the same APIs so no code changes are involved
once it's linked in with the application.

This library uses Tuxedo Workstation Client (WSC) on Windows as its communications
channel with Tuxedo. This Tuxedo component has to be installed and configured on Windows.

See Also:

Client Side Configuration

13.1.1.2 WebLogic Java Environment
WebLogic users need to regenerate the EJB package with new version of callService() class
that provides main access point to CPI-C interfaces and java class files which provide the ART
CICS implementations of CPI-C interfaces.

These classes use WebLogic-Tuxedo Connector (WTC) as its communications channel with
Tuxedo. This WebLogic component has to be installed and configured on WebLogic Server.

See Also:

Client Side Configuration

13.1.1.3 ASCII-EBCDIC Data Conversion
Mainframe applications use EBCDIC data encoding and require Windows and WebLogic
applications to specify ASCII-EBCDIC conversion in their calls. When rehosted to ART CICS,
these mainframe applications run using ASCII data encoding, so no conversion is required. If
Windows or WebLogic applications specify ASCII-EBCDIC data conversion, it should be
disabled when working with Tuxedo ART CICS applications.

Chapter 13
Overview

13-2



13.2 Supported CPI-C Scenarios
This section contains the following topics:

• Windows Application Calling Rehosted CICS Transactions

• WebLogic Application Calling Rehosted CICS Transactions

13.2.1 Windows Application Calling Rehosted CICS Transactions
The client application on Windows server communicates with CICS server application on
Tuxedo using the CPI-C APIs in both client and server side code. Windows application with
ART CICS CPI-C library uses Tuxedo workstation client, and CPI-C APIs are handled by
internal Tuxedo ATMI calls by the ART CICS CPI-C libraries. ARTCTRN server also provides
CPI-C interfaces in ART CICS runtime. The rehosted CICS application can directly use CPI-C
interfaces without any code changes.

Figure 13-1    CPI-C Client Application on Windows Server

The diagram above shows CPI-C client application on Windows server which communicates
with a CPI-C server CICS program in KIXS region in Tuxedo Domain through Tuxedo
Workstation Protocol conversation. CPI-C client library establishes a connection with a
tpconnect() call to a CICS transaction running in one or more ARTCTRN servers (ART CICS
application server for conversational transactions/programs) and uses Tuxedo conversational

Chapter 13
Supported CPI-C Scenarios

13-3



tpsend()/tprecv() API calls to mimic CMSEND/CMRCV. Application code on both sides
represented by blue shaded areas remains unchanged, with Tuxedo ART infrastructure
components providing all the necessary API and communications support.

13.2.2 WebLogic Application Calling Rehosted CICS Transactions
The Java client application in WebLogic communicates with CICS application in server side
over iWay JAM. The client side uses RMI callService() provided by JAM, and the server side
uses CPI-C interfaces and CICS APPC interfaces. ART CICS overloads the callService()
method in client side, callService() is composed of a series of CPI-C calls to exchange the
application data with CICS application. ART CICS provides the source codes of an overloaded
callService() method, and provides a series of Java class files to provide the
implementations of CPI-C interfaces.

Figure 13-2    CPI-C Client Application on Windows Server

As shown in the diagram above, EJB application runs as CPI-C client on WebLogic server and
communicates to CPI-C server CICS program in KIXS region through WTC connection to
Tuxedo Domain Gateway using conversational protocol. CPI-C client library establishes a
connection through tpconnect() call for a CICS transaction published by ARTCTRN (ART CICS
application server for Conversational transactions/programs) and uses Tuxedo conversational
tpsend()/tprecv() API calls to mimic CMSEND/CMRCV. Application code on both sides

Chapter 13
Supported CPI-C Scenarios

13-4



represented by blue shaded areas remains unchanged, with Tuxedo ART infrastructure
components providing all the necessary API and communications support.

13.3 Server Side Configuration
To configure the server , you need to perform the following tasks:

• ART CICS Resources Configuration

• Oracle Tuxedo Configuration

13.3.1 ART CICS Resources Configuration
This section contains the following topics:

• CICS Region Definitions in systems.desc

• CICS APPC Connection Definitions in connections.desc

• CICS Transaction Definitions in transactions.desc

13.3.1.1 CICS Region Definitions in systems.desc
Configure SYSID for client and server. In the following example, in KIXA, for Windows client,
sysid is KIXA and APPLID is ARTKIXA. In KIXB, for CPI-C server, sysid is KIXB and APPLID is
ARTKIXB.

[KIXA]
APPLID=ARTKIXA

[KIXB]
APPLID=ARTKIXB

13.3.1.2 CICS APPC Connection Definitions in connections.desc
Configure protocol in connections.desc. In the following example, KIXA connects to KIXB,
and protocol is APPC. Resource group DTPAPBK is later used in transaction definition.

[KIXA]
group=DTPAPBK
protocol=APPC
netname=ARTKIXA
maximum=5,2
 
[KIXB]
group=DTPAPBK
protocol=APPC
netname=ARTKIXB
maximum=5,3

13.3.1.3 CICS Transaction Definitions in transactions.desc
Configure CPI-C transaction in server side. The following example configures BC32 as a CPI-C
transaction in server side.

Chapter 13
Server Side Configuration

13-5



BC32;DTPAPBK;APPC server; xxxxxxxx

13.3.2 Oracle Tuxedo Configuration
This section has the following topics:

• UBBCONFIG Configuration

• DMCONFIG Configuration

13.3.2.1 UBBCONFIG Configuration
• Configure ARTCTRN server in SERVERS section. The following example specifies KIXB region

in CLOPTs with -s and CICS resource group with -l. The MIN/MAX values can be adjusted
to match the number of concurrent conversations that the application must support. Since
APPC/CPI-C is a conversational mode protocol, the ARTCTRN server will block on CMSEND
until the client does CMRCV, and will block on CMRCV until the client performs CMSEND.
ARTCTRN
SRVGRP=GRP02
SRVID=30
CONV=Y
MIN=1 MAX=1 RQADDR=QKIX030 REPLYQ=Y
CLOPT="-o /stdout_ctrn -e /stderr_ctrn -r -- -s KIXB -l DTPSUB:DTPAPBK"

• Configure workstation listener (WSL) server in SERVERS section. In the following example,
two WSHs are started initially, up to maximum of five WSHs can be started, up to 5 /WS
clients per WSH WSL SRVGRP=G1 SRVID=10 CLOPT="-A -- -n //gumby:9977 -m 2 -M 5 -
x5"

• Configure MACHINES section.

– MAXWSCLIENTS: maximum numbers of WSCs for each machine is specified.

– MAXACCESSERS: MAXWSCLIENTS + number of Tuxedo servers connected to the bulletin
board (including all servers listed in UBBCONFIG, plus maximum allowed WSL/WSH
servers).

• Configure domain servers in SERVERS section for connecting WebLogic server. For
example,
DMADM SRVID=1030 SRVGRP=DMGRP
GWADM SRVID=1040 SRVGRP=GWGRP
GWTDOMAIN SRVID=1050 SRVGRP=GWGRP

Note:

Make sure you compile UBBCONFIG with tmloadcf.

13.3.2.2 DMCONFIG Configuration
Configure DMCONFIG for WTC Tuxedo domain configuration. See an example as follows.

*DM_LOCAL_DOMAINS

Chapter 13
Server Side Configuration

13-6



DOM GWGRP="GWGRP"
TYPE=TDOMAIN
DOMAINID=KIXD
*DM_REMOTE_DOMAINS
wldom1 TYPE=TDOMAIN DOMAINID=TDOM2 ACL_POLICY=GLOBAL
*DM_TDOMAIN
wldom1 NWADDR="//10.0.0.1:5669"
DOM NWADDR="//10.0.0.2:5022"
*DM_LOCAL_SERVICES
KIXR_CPIS LDOM=DOM

Note:

Make sure you compile DMCONFIG with dmloadcf.

13.4 Client Side Configuration
The section contains the following topics:

• Configuration for Windows Client

• Configuration for WebLogic Client

13.4.1 Configuration for Windows Client
Windows client uses sym_dest_name set by cminit() to connect the target ART CICS server.
sym_dest_name should be set as the sysid of target ART CICS server.

• To use Tuxedo/WS client, two environment variables should be set on Windows:

– TUXDIR=c:/tuxedo
This is the Tuxedo install location.

– WSNADDR=//gumby:9977
This is the hostname and port of Tuxedo server WSL connection from -n parameter in
WSL's CLOPTs.

• KIX_CPI-C_WSSYSID is introduced to specify CPI-C /WS client sysid. It is needed to
establish the connection between CPI-C /WS client and CPI-C CICS server. It should be
set to client sysid listed in connections.desc (KIXA in this example).

• To track CPI-C client runtime log, a new environment variable is introduced to show the log
file path. If ARTKIX_CLIENT_LOGPATH is not set, the log will be printed to local directory.
ARTKIX_CLIENT_LOGPATH=c:/tmp/ARTKIX_client.log

13.4.2 Configuration for WebLogic Client
No specific configuration is required for using CPI-C java classes other than a basic WTC
access point configuration for connecting to Tuxedo Domain as documented in Administering

Chapter 13
Client Side Configuration

13-7

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/


WTC manual. WTC supports on_startup and on_demand connection policies and can support
failover and failback between primary and alternate access points to multiple Tuxedo domains
or a single domain deployed across multiple machines (MP mode domain).

13.5 Oracle Tuxedo Timeout Controls
Tuxedo enforces multiple types of timeouts through configuration. The timeout control for a
blocked operation depends on SCANUNIT and BLOCKTIME settings in UBBCONFIG. Both of these
can be set globally in RESOURCES section, and BLOCKTIME can additionally be set per service in
SERVICES section of UBBCONFIG. See Settings in UBBCONFIG for more information.

This is an example of global timeout management in UBBCONFIG. In this example, the
BLOCKTIME x SCANUNIT is 40 seconds. The client will be blocking on CMRCV until it really gets
the response. If it does not complete in 40 seconds, it then returns TPETIME to report timeout
and CMRCV return error CM_RESOURCE_FAILURE_RETRY.

*RESOURCES
BLOCKTIME 8
SCANUNIT 5
This is an example of granular timeout management for transactions in UBBCONFIG. In this
example, it specifies that global timeout setting is 60 seconds (12 x 5), but Tuxedo service
KIXB_B32 (which maps to CICS transaction B32 in region/SYSID KIXB) has a timeout of 40
seconds (8x5).

Note:

Transactions that have no explicit BLOCKTIME specified in *SERVICES section are
controlled by the global timeout setting.

*RESOURCES
SCANUNIT 5
BLOCKTIME 12
…
*SERVICES
KIXB_B32 BLOCKTIME 8

• Settings in UBBCONFIG

• Security

• Scaling

• Diagnostics

• Packaging/Installation

13.5.1 Settings in UBBCONFIG
SCANUNIT numeric_value
The interval of time (in seconds) between which periodic scans are done by the BBL to find old
transactions and timed-out blocking calls within service requests. This value is used as the

Chapter 13
Oracle Tuxedo Timeout Controls

13-8

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/


basic unit of scanning by the BBL. It affects the granularity with which transaction timeout
values can be specified on tpbegin() and the blocking timeout value specified with the
BLOCKTIME parameter. The SANITYSCAN, BBLQUERY, DBBLWAIT, and BLOCKTIME parameters are of
this unit for other timed operations within the system. SCANUNIT must be a multiple of 5 greater
than 0 and less than or equal to 60 seconds. The default is 10 seconds.

BLOCKTIME numeric_value
Sets a multiplier of the basic SCANUNIT after which a blocking call (for example, receiving a
reply) times out. The value of BLOCKTIME must be greater than 0. If this parameter is not
specified, the default is set so that (SCANUNIT * BLOCKTIME) is approximately 60 seconds.

13.5.2 Security
ART CICS CPI-C checks user/password passed from CPI-C security interface (cmscsu/
cmscsp), and then it does local Tuxedo security check inside. The user/password should be
added based on security levels set in Tuxedo security framework.

13.5.3 Scaling
To scale the configuration to support larger number of concurrent connections, you can:

• Configure multiple WSLs and increase WSH min/max limits in Tuxedo domain for handling
more concurrent Windows connections.

• Configure multiple Tuxedo domain gateways to handle multiple WTC access points for
more concurrent WebLogic connections.

• Configure multiple ARTCTRN servers to run more instances of the CICS transactions in
parallel. Since CPI-C is a conversational protocol, each server will block waiting for user
response. The number of servers you configure should roughly correspond to the number
of concurrent users of the CICS transactions.

13.5.4 Diagnostics
Runtime log will be printed for debugging. You can set KIX_TRACE_LEVEL environment variable
to control log level from 1 to 9.

13.5.5 Packaging/Installation
ART CICS runtime provides a dynamic library for ART CICS CPI-C support. The Windows
version of the library is named kixcpicws.dll and Linux version is named libkixcpicws.so.
To use ART CICS CPI-C library, you only need to build/link with this library instead of
Microsoft/IBM CPI-C library in your build project.

• For Windows/Linux Using Tuxedo Workstation Client
The Windows library is provided in a separate Windows distribution package. Current
version of the library kixcpicws.dll is built on VC6 and certified with Tuxedo Workstation
Client from Microsoft Windows (32-bit) tuxedo81_win distribution for Windows server 2003.
To use the library, you need to link kixcpicws.dll with the application or dynamically open
the *.dll in the runtime.

• For WebLogic Server Using WTC
ART CICS provides source code of an overloaded callService() method, and provides a
series of Java class files to provide the implementations of CPI-C interfaces. You need to

Chapter 13
Oracle Tuxedo Timeout Controls

13-9



regenerate the EJB package with new version of callService() and java class files
provided by ART CICS.

Chapter 13
Oracle Tuxedo Timeout Controls

13-10


	Contents
	Preface
	Documentation Accessibility
	How This Book Is Organized

	List of Figures
	List of Tables
	1 Overview of the CICS Runtime
	1.1 General Architecture
	1.2 The CICS Runtime Library
	1.3 The CICS Runtime Tuxedo Servers
	1.3.1 Mandatory Servers
	1.3.2 Optional Servers
	1.3.3 Server Generation
	1.3.4 Server Configuration
	1.3.4.1 The CICS Runtime Resource Configuration Files
	1.3.4.1.1 Reminder about z/Os Resource Management
	1.3.4.1.2 CICS Runtime Resource Management




	2 Initial Configuration of the CICS Runtime
	2.1 CICS Runtime Configuration
	2.1.1 The UNIX ~/.profile File
	2.1.2 The Tuxedo System Files
	2.1.2.1 The Tuxedo Envfile File
	2.1.2.2 The Tuxedo ubbconfig File
	2.1.2.2.1 The Mandatory Servers
	2.1.2.2.2 The Optional Servers
	2.1.2.2.3 The Mandatory Server Groups
	2.1.2.2.4 The Optional Server Groups


	2.1.3 The CICS Runtime Resource Configuration Files
	2.1.3.1 The Mandatory Populated Files
	2.1.3.2 The Optional Initially Populated Files


	2.2 Verifying the Initial Setting Configuration
	2.2.1 Using the Tuxedo tmadmin psr Commands
	2.2.2 Using the Tuxedo tmadmin psc Commands
	2.2.3 Using the CSGM CICS Good Morning Transaction


	3 Security Configuration of the CICS Runtime
	3.1 Authentication Configuration
	3.2 Tuxedo Security Mechanisms
	3.3 Integration with the External Security Manager
	3.3.1 Accepting
	3.3.2 Returning
	3.3.3 Codification

	3.4 Security Profile Generator
	3.5 ART for CICS 3270 Terminal Default User

	4 Implementing CICS Applications
	4.1 Presentation of the z/OS Simple Application
	4.1.1 Introduction
	4.1.2 Description of the CICS Simple Application Components
	4.1.2.1 Mapsets
	4.1.2.2 Programs
	4.1.2.3 Transactions Codes
	4.1.2.4 VSAM File

	4.1.3 Configuring a Standard CICS Application With CICS Runtime
	4.1.3.1 CICS Simple File-to-Oracle Application UNIX Components
	4.1.3.1.1 COBOL Program Files
	4.1.3.1.2 The Mapset Files


	4.1.4 CICS Runtime Configuration
	4.1.4.1 Declaring CICS Resources to the CICS Runtime
	4.1.4.2 Declaring CICS Transactions Codes
	4.1.4.3 Declaring a CICS COBOL Program
	4.1.4.4 Declaring CICS Mapsets
	4.1.4.5 Declaring ISAM Files Resulting From a z/OS VSAM File Conversion
	4.1.4.5.1 To Declare the ISAM Migrated Files:

	4.1.4.6 Modifying the CICS Runtime Tuxedo Servers
	4.1.4.7 Modifying the CICS Runtime Tuxedo Servers Groups


	4.2 Verifying the CICS Application Installation
	4.2.1 Using the Tuxedo tmadmin psr Commands
	4.2.2 Using the Tuxedo tmadmin psc Commands
	4.2.3 Using the CICS Runtime Application

	4.3 Presentation of Simple Application on COBOL-IT / BDB
	4.3.1 Configuring ubbconfig File in CICS Runtime
	4.3.2 Building BDB TMS Server
	4.3.3 Exporting Variables Before Booting Up ART Servers

	4.4 Implementing Synchronous CICS Transactions With a Limited Number of Parallel Instances
	4.4.1 The Special Case of Transaction Classes With MAXACTIVE=1
	4.4.2 Modification of the ubbconfig File for Sequential Transactions
	4.4.2.1 Modifying the tranclasses.desc File
	4.4.2.2 Modifying the transactions.desc File

	4.4.3 Checking the ARTSTR1 Configuration
	4.4.3.1 Using the Tuxedo tmadmin psr Commands
	4.4.3.2 Using the Tuxedo tmadmin psc Commands


	4.5 Implementing Asynchronous CICS Non-Delayed Transactions
	4.5.1 Modifying the Tuxedo ubbconfig File to Manage Asynchronous Transactions
	4.5.2 Using Parallel Asynchronous Transactions
	4.5.3 Using Non-Parallel Asynchronous Transactions

	4.6 Implementing Asynchronous CICS Delayed Transactions
	4.6.1 Implementing Asynchronous Transactions With ARTSRM Server
	4.6.2 Implementing Asynchronous Transactions With /Q
	4.6.2.1 Creating the Tuxedo /Q
	4.6.2.2 Modifying the Tuxedo ubbconfig File to Manage the Tuxedo /Q Queue


	4.7 Implementing CICS Application Using Temporary Storage (TS) Queues
	4.7.1 Implementing Unrecoverable TS Queues
	4.7.2 Implementing Recoverable TS Queues
	4.7.2.1 To Use Recoverable TS Queues


	4.8 Managing TD Queue Intrapartititions
	4.8.1 Presentation of the Mechanism on Source Platform
	4.8.1.1 Transient Data Control
	4.8.1.2 Intra-partition Transient Data Queues

	4.8.2 Automatic Transaction Initiation (ATI)
	4.8.3 Presentation of the Mechanism on Target Platform
	4.8.3.1 Tuxedo /Q
	4.8.3.2 Architecture Design
	4.8.3.3 Triggering

	4.8.4 Runtime CICS Configuration of TD Queue Intrapartition
	4.8.4.1 CICS RuntimeResource Declaration
	4.8.4.2 /Q Configuration for TD Queue Intrapartition in CICS Runtime
	4.8.4.3 qopen Parameters

	4.8.5 Activating the ARTTDQ in the Tuxedo ubbconfig File

	4.9 Implementing CICS Application Using Temporary Storage (TS) Queue POOL
	4.10 Implementing Distributed Program Link (DPL)
	4.10.1 To Detect That DPL Is Needed
	4.10.2 Modifying the Tuxedo ubbconfig File to Manage the DPL
	4.10.3 Declaring Remote Programs in CICS Runtime

	4.11 Implementing CICS Common Work Area (CWA)
	4.11.1 To Replicate CICS ADDRESS CWA Functionality in CICS Runtime

	4.12 Implementing a CICS Transaction Work Area (TWA)
	4.12.1 Supporting TWA in ARTDPL

	4.13 Implementing Integration with WebSphere MQ
	4.13.1 Using ART CICS Transaction Trigger Monitor (ARTCKTI)
	4.13.1.1 Work Flow
	4.13.1.2 Command Configuration
	4.13.1.3 Configuring WebSphere MQ Servers to Trigger ART for CICS Transactions

	4.13.2 Rebuilding ART for CICS Servers
	4.13.2.1 Prepare WebSphere MQ RM Definitions
	4.13.2.2 Rebuild TMS_MQM Server
	4.13.2.3 Rebuild ART for CICS Transaction Servers
	4.13.2.4 Rebuild ARTCKTI Server
	4.13.2.5 Update Oracle Tuxedo UBBCONFIG and OPENINFO

	4.13.3 Handling CICS Runtime Preprocessor of MQOPEN/MQCLOSE Calls
	4.13.4 Encoding Character Set
	4.13.5 Changing COMP-5 back to BINARY Data Type

	4.14 Implementing Using Multiple Session Management
	4.14.1 Writing User Plug-In for Application List
	4.14.2 Configuring CICS Runtime Configuration Files
	4.14.2.1 Transaction Configuration File
	4.14.2.2 System Configuration File

	4.14.3 Configuring UBBCONFIG
	4.14.4 Starting, Switching, and Ending Sessions
	4.14.4.1 Starting Sessions
	4.14.4.2 Switching Sessions
	4.14.4.3 Ending Sessions


	4.15 Implementing Using ART for CICS TCP/IP Socket Interface
	4.15.1 ART for CICS TCP/IP Socket API
	4.15.2 The Client-Listener-Server Application Set
	4.15.2.1 Client Call Sequence
	4.15.2.2 Listener Call Sequence
	4.15.2.3 User Transaction Running in ARTATRN/ARTATR1 Call Sequence

	4.15.3 ART for CICS TCP/IP Listener (ARTCSKL)
	4.15.3.1 Description
	4.15.3.2 ARTCSKL Input Format
	4.15.3.3 ARTCSKL Output Format

	4.15.4 Required Configurations

	4.16 Implementing Transferring CICS Regions
	4.16.1 Configuring ARTSRM Server
	4.16.2 Configuring Environment Variables
	4.16.3 CICS Runtime Configuration Files Declaration
	4.16.3.1 system.desc
	4.16.3.2 transactions.desc and programs.desc
	4.16.3.3 terminals.desc (Optional)
	4.16.3.4 UBB Declaration
	4.16.3.5 Environment Variable Declaration

	4.16.4 Logon ART CICS

	4.17 Implementing Intersystem Communication
	4.17.1 Implementing Distributed Transaction Processing (DTP)
	4.17.1.1 Configurations
	4.17.1.1.1 CICS Region Definitions in system.desc
	4.17.1.1.2 Connections Definitions in connections.desc
	4.17.1.1.3 Programs Definitions in programs.desc
	4.17.1.1.4 Transactions Definitions in transactions.desc
	4.17.1.1.5 UBBCONFIG Configuration
	4.17.1.1.6 DMCONFIG Configuration


	4.17.2 Implementing Asynchronous Processing
	4.17.2.1 Defining Regions in system.desc
	4.17.2.2 Configuring ARTSRM Server
	4.17.2.3 Modifying the UBBCONFIG File

	4.17.3 Implementing Synchronous Processing
	4.17.3.1 Configuring Environment Variables
	4.17.3.2 Defining Regions in system.desc
	4.17.3.3 Modifying the UBBCONFIG File


	4.18 Implementing Submitting JCL/KSH Online
	4.18.1 Submitting JCL/KSH Job Online
	4.18.1.1 Configuring the UBBCONFIG File
	4.18.1.2 Configuring tdqextra.desc

	4.18.2 Submitting JCL/KSH Job Online by SPOOL
	4.18.2.1 Configuring SPOOL Related Environment Variables


	4.19 Implementing ART for CICS Control Utility
	4.19.1 Use Case 1: Implementing ART for CICS Control Utility in End-to-End Mode (IPCP Commend Set)
	4.19.1.1 Using ART for Workbench to convert JCL to KSH
	4.19.1.2 Configuring UBBCONFIG in CICS Runtime Domain
	4.19.1.3 Configuring Resource Files
	4.19.1.4 Configuring DMCONFIG in ART for CICS Domain and ART for Batch Domain

	4.19.2 Use Case 2: Implementing ART for CICS Control Utility in Interactive Mode (Interactive Command Set)

	4.20 Implementing Printing CICS Runtime Applications Data
	4.20.1 General Configurations
	4.20.2 Implementing Printing with a START Command
	4.20.3 Implementing Printing with Transient Data

	4.21 Implementing Invoking Web Services from CICS Applications
	4.21.1 Converting WSDL File into MIF and Generating COPYBOOK
	4.21.2 Generating RECORD Definition from COPYBOOK
	4.21.3 Configuring SALT and Metadata Repositories
	4.21.4 Configuring webservice.desc
	4.21.5 Modifying UBBCONFIG

	4.22 Implementing CICS as HTTP Client
	4.22.1 Defining REST Outbound Service in SALT
	4.22.2 Configuring URIMAP Configuration File urimaps.desc
	4.22.3 Modifying UBBCONFIG

	4.23 Implementing CICS as HTTP Server
	4.23.1 Defining REST Inbound Service in SALT
	4.23.2 Modifying UBBCONFIG

	4.24 Implementing ART for CICS Application Server Customized Callback Support
	4.24.1 Create Shared Library libkixcallback.so
	4.24.1.1 int ARTKIX__svrinit_callback(ARTKIX_SRVINIT_PARA*) (at Server Initiation)
	4.24.1.2 void ARTKIX__svrdone_callback() (at Server Shutdown)

	4.24.2 Include Customized C Library for Dynamically Loading
	4.24.3 Use Case 1: Create Shared Memory at Server Initiation
	4.24.4 Use Case 2: Open Database Table at Server Initiation

	4.25 Implementing Resource-Based Authorization
	4.26 Implementing COBOL Program Debugging in CICS Runtime
	4.26.1 Use Case 1: Two users want to debug two COBOL programs respectively.
	4.26.2 Use Case 2: One user wants to debug two COBOL programs in one transaction.
	4.26.3 Use Case 3: One user wants to debug two programs with START TRANSID.
	4.26.4 Use Case 4: One user wants to debug two programs with LINK (remote).

	4.27 CICS Runtime Logs
	4.27.1 Tuxedo System Log

	4.28 The CICS Runtime Server Logs
	4.29 Disabling and Enabling Programs
	4.29.1 Disabling Programs
	4.29.2 Enabling Programs
	4.29.3 Checking the Change in Program Status
	4.29.4 Removing and Adding Applications for CICS Runtime

	4.30 CICS Runtime C Program Support
	4.30.1 Running C Program in CICS Runtime
	4.30.2 C Programming Restrictions and Requirements
	4.30.3 Accessing EIB from C
	4.30.4 Accessing COMMAREA from C
	4.30.5 CICS Command Translator
	4.30.6 C Program Compilation


	5 Reference
	5.1 Cross Reference of .desc Configuration Files Used by CICS Runtime Servers

	6 Oracle Tuxedo Application Runtime for CICS CSD Converter
	6.1 Overview
	6.2 Resource Definition Online (RDO) Mapping

	7 ECI Client Support
	7.1 Overview
	7.2 Introduction
	7.3 Platform
	7.4 Installation and Setup
	7.4.1 Installation
	7.4.2 ECI Connection to ART CICS
	7.4.3 Configuration on ART CICS

	7.5 Encoding and Decoding
	7.6 Security
	7.7 Failover
	7.8 Diagnostic
	7.9 Limitation and Compatibility
	7.9.1 Limitation
	7.9.2 Compatibility


	8 IMS DB Access Support
	8.1 Overview
	8.2 Configurations
	8.2.1 Configure ART for CICS for Accessing IMS DB
	8.2.2 Configuring ART for CICS Servers
	8.2.3 Configuring Environment Variables
	8.2.4 Configuring IMS

	8.3 Supported Platforms

	9 UDB Linking
	9.1 Installation Time UDB Linking
	9.1.1 Rebuilding Servers for UDB


	10 Rebuilding ART Servers for CICS
	10.1 Rebuilding the ART CICS Servers

	11 External CICS Interface (EXCI)
	11.1 Overview
	11.2 EXCI in Oracle Tuxedo Application Runtime
	11.2.1 Supported EXCI Interface
	11.2.2 Precompiler Controls
	11.2.3 Access Authorization
	11.2.4 ART CICS Implementation
	11.2.4.1 ART Restrictions
	11.2.4.1.1 Common EXCI Interfaces ART Restrictions
	11.2.4.1.2 EXCI CALL Interface ART Restrictions
	11.2.4.1.3 EXCI EXEC Interface ART Restrictions

	11.2.4.2 SRRCMIT/SRRBACK Functions
	11.2.4.3 Configuration Files Declaration for EXCI EXEC CICS LINK



	12 COBOL Program Debugging and Error Processing in CICS Runtime
	12.1 Debugging COBOL Programs in CICS Runtime
	12.1.1 Debugging with Micro Focus COBOL
	12.1.2 Debugging with COBOL-IT COBOL
	12.1.3 Configuration
	12.1.4 Dynamically Load the Debug Configuration File

	12.2 Error Processing in CICS Runtime
	12.2.1 Prerequisite
	12.2.2 Memory Dump


	13 Integrating Client Applications Using CPI-C
	13.1 Overview
	13.1.1 Client Applications Impact
	13.1.1.1 Windows Visual Studio C/C++ Environment
	13.1.1.2 WebLogic Java Environment
	13.1.1.3 ASCII-EBCDIC Data Conversion


	13.2 Supported CPI-C Scenarios
	13.2.1 Windows Application Calling Rehosted CICS Transactions
	13.2.2 WebLogic Application Calling Rehosted CICS Transactions

	13.3 Server Side Configuration
	13.3.1 ART CICS Resources Configuration
	13.3.1.1 CICS Region Definitions in systems.desc
	13.3.1.2 CICS APPC Connection Definitions in connections.desc
	13.3.1.3 CICS Transaction Definitions in transactions.desc

	13.3.2 Oracle Tuxedo Configuration
	13.3.2.1 UBBCONFIG Configuration
	13.3.2.2 DMCONFIG Configuration


	13.4 Client Side Configuration
	13.4.1 Configuration for Windows Client
	13.4.2 Configuration for WebLogic Client

	13.5 Oracle Tuxedo Timeout Controls
	13.5.1 Settings in UBBCONFIG
	13.5.2 Security
	13.5.3 Scaling
	13.5.4 Diagnostics
	13.5.5 Packaging/Installation



