
Siebel

Deploying Siebel CRM Containers
on Kubernetes using Siebel Cloud
Manager

February 2025

Siebel
Deploying Siebel CRM Containers on Kubernetes using Siebel Cloud Manager

February 2025

Part Number: F83038-16

Copyright © 1994, 2025, Oracle and/or its affiliates.

Authors: Siebel Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Contents

Preface .. i

1 What's New in This Release 1
What's New in This Release ... 1

2 Overview 15
About this Chapter ... 15

Overview of Deploying Siebel CRM Containers on Kubernetes ... 15

About Siebel Cloud Manager ... 16

About Siebel CRM Upgrade Factory ... 18

3 Deploying Siebel CRM on OCI using Siebel Cloud Manager 19
Deploying Siebel CRM on OCI using Siebel Cloud Manager ... 19

Overview of Deploying Siebel CRM on OCI ... 20

Requirements and Limitations .. 20

High Level Steps to Deploy Siebel Using SCM ... 21

Creating a Compartment .. 23

Git Repositories for Siebel CRM Deployment ... 23

Installing GitLab .. 24

Using Vault for Managing Secrets .. 25

Downloading and Installing Siebel Cloud Manager ... 26

About URLs for Siebel CRM Deployments on OCI ... 30

Uploading Files to the SCM Container Using File Sync Utility ... 30

Mirroring Siebel Base Container Images .. 34

Downloading and Running the Siebel Lift Utility .. 37

Reducing the Ingress Range for Siebel Cloud Manager .. 47

Using Advanced Network Configuration .. 47

Customizing Configurations Prior to Greenfield Deployment ... 49

Deploying Siebel CRM on OCI ... 53

Additional Administrative Tasks in Siebel Cloud Manager ... 104

Troubleshooting a Siebel Cloud Manager Instance or Requested Environment ... 113

Managing Custom Keystore .. 117

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Updating Siebel Cloud Manager with a New Container Image ... 118

Removing a Siebel CRM Deployment on OCI ... 119

Making Incremental Changes to Your Siebel CRM Deployment on OCI .. 120

Installing Siebel Monthly Update in a Siebel CRM on OKE Environment Deployed by SCM 147

Enabling TLS 1.3 Support in Environments Prior to 23.11 .. 152

Rotating Secrets .. 154

Assigning Pods to Nodes - Implementing Affinity and Anti-affinity on OKE using Siebel Cloud Manager 157

Cleaning up the Siebel File System ... 160

4 Deploying Siebel CRM on a Kubernetes Cluster using Siebel Installer 163
About this Chapter ... 163

Overview ... 163

Moving Existing Siebel CRM on VM to a Kubernetes Orchestrated Deployment .. 164

Moving Existing Siebel CRM on VM to an OC3 Kubernetes Cluster ... 164

High Level Steps for Deploying Siebel CRM on a Kubernetes Cluster ... 166

Prerequisites for Deploying Siebel CRM on a Kubernetes Cluster .. 166

Downloading and Running Siebel Installer for SCM .. 169

Installing SCM using Helm .. 171

Migrating (Lift-And-Shift) Existing Siebel CRM Deployments .. 177

Deploying Siebel CRM using SCM .. 178

Updating SCM Configuration using Helm .. 183

Reinstalling SCM using Helm ... 183

Upgrading SCM using Helm ... 183

Uninstalling SCM using Helm .. 184

Troubleshooting Siebel CRM Deployment .. 184

5 Monitoring Siebel CRM Deployments 187
Monitoring Siebel CRM Deployments .. 187

Metrics Information Categories .. 188

Siebel CRM Monitoring Architecture ... 190

Key Software Components for Monitoring ... 191

Visualization Components for Monitoring .. 191

Configuring the Siebel CRM Observability – Monitoring Solution ... 192

Dashboards for Siebel CRM Monitoring .. 201

6 Log Analytics in Siebel CRM Deployments 203
Log Analytics in Siebel CRM Deployments .. 203

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Log Analytics Tooling Options ... 204

Solution Architecture and Components ... 206

Log Collection and Aggregation .. 207

Sample Dashboards ... 207

Pre-requisites for Enabling OCI Logging Analytics .. 208

Enabling Log Analytics in Siebel CRM Observability ... 208

Disabling Log Analytics in Siebel CRM ... 209

Accessing Log Analytics URLs .. 210

Oracle OpenSearch Usage in Siebel CRM Observability – Log Analytics ... 210

OCI Logging Analytics Configurations of Importance ... 210

OCI Logging Analytics Usage in Siebel CRM Observability – Log Analytics ... 211

Extending Siebel CRM Observability – Log Analytics .. 211

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Preface

Preface
This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center at https://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides! You can send an email to:
oracle_fusion_applications_help_ww_grp@oracle.com.

i

https://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Preface

ii

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

1 What's New in This Release

What's New in This Release

What's New in February 2025, CM_25.2
The following table lists the changes in this revision of the documentation to support this release (CM_25.2) of the
software.

Topic Description

Deploying Siebel CRM on a Kubernetes
Cluster using Siebel Installer

Updated topic. Added support for deploying Siebel CRM on Oracle Compute Cloud @Customer (OC3)
using SCM.

Git Repositories for Siebel CRM
Deployment

Added topic. Added support for Bring Your Own (BYO) Git, in addition to GitLab, in the Siebel CRM
deployment payload. Describes how Git repositories are used and managed in Siebel CRM deployment.

Example Payload to Deploy Siebel CRM Modified topic. Added the "Example Git Section for BYO-Git" section, to demonstrate how to configure
byo_git section in the Siebel CRM deployment payload.

Parameters in Payload Content Modified topic. Added the following parameters specific to BYO Git: git_type, git_user, git_
protocol_type, git_accesstoken, git_ssh_private_key, git_scm_repo_url, git_
scm_repo_branch, git_scm_flux_folder, git_helm_repo_url, git_helm_repo_
branch, git_url, git_selfsigned_cacert.

What's New in January 2025, CM_25.1
The following table lists the changes in this revision of the documentation to support this release (CM_25.1) of the
software.

Topic Description

Deploying Siebel CRM on a Kubernetes
Cluster using Siebel Installer

Added chapter. Describes the steps to deploy Siebel CRM containers on a Kubernetes cluster using
Siebel Installer for SCM.

What's New in December 2024, CM_24.12
The following table lists the changes in this revision of the documentation to support this release (CM_24.12) of the
software.

Topic Description

Rotating Secrets Added topic. Describes the procedure to rotate secrets.

1

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

What's New in November 2024, CM_24.11
The following table lists the changes in this revision of the documentation to support this release (CM_24.11) of the
software.

Topic Description

Overview Added chapter. Provides an overview of deploying Siebel CRM containers on Kubernetes using Siebel
Cloud Manager.

What's New in November 2024, CM_24.10.1
The following table lists the changes in this revision of the documentation to support this release (CM_24.10.1) of the
software.

Topic Description

Uploading Files to the SCM Container
Using File Sync Utility

Added topic. Describes the steps to lift a Siebel environment hosted on another machine that has a
Siebel CRM compliant operating system running on it.

Lifting a Siebel CRM Environment Running
on Siebel CRM Compliant Operating
System

Added topic. Describes how to upload files to the SCM container using File Sync Utility.

What's New in October 2024, CM_24.10
The following table lists the changes in this revision of the documentation to support this release (CM_24.10) of the
software.

Topic Description

Mirroring Siebel Base Container Images Added topic. Describes how to mirror Siebel base container images and manage user’s container
registry credentials.

Disabling OCI Monitoring for Siebel CRM Added topic. Describes how to prevent sending metrics to OCI monitoring.

Disabling Log Analytics in Siebel CRM Added topic. Describes how to stop streaming logs to OCI Logging Analytics.

Parameters in Payload Content Modified topic. Added the enable_oci_monitoring parameter.

Updated the description of the registry_prefix parameter.

What's New in September 2024, CM_24.8.1
The following table lists the changes in this revision of the documentation to support this release (CM_24.8.1) of the
software.

2

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

Downloading and Installing Siebel Cloud
Manager

Modified topic. Made updates to the installation procedure.

Parameters in Payload Content Modified topic. Added the load_balancer_tls_secret_name parameter.

Example Payload to Deploy Siebel CRM Modified topic. Updated the examples in Example Kubernetes Cluster Sections for BYO-Kubernetes.

What's New in August 2024, CM_24.8
The following table lists the changes in this revision of the documentation to support this release (CM_24.8) of the
software.

Topic Description

Best Practices for Key Management Added topic. Provides best practices for key management.

Key Points for Managing Secrets Using
Secret Management Products

Added topic. Provides tips for managing secrets using secret management products.

Downloading and Installing Siebel Cloud
Manager

Modified topic. Made updates to the installation procedure.

Notes on BYO-FSS (File System Service) Added topic. Provides details about the BYO file system, which allows users to use an existing file
system and mount target (exports for the file system) during the provisioning of Siebel environment.

Notes on BYO Kubernetes Added topic, which contains the following subtopics:
• Notes on OKE (Oracle Container Engine for Kubernetes)

• Notes on OCNE (Oracle Cloud Native Environment)

• Notes on Other Kubernetes Cluster

Parameters in Payload Content Modified topic.

Updated these registry parameters: registry_url, registry_user, and registry_password.

Added this registry parameter: registry_prefix.

Added these infrastructure parameters: kubernetes_type, oke_node_count, oke_node_
shap, memory_in_gbs, ocpus, oke_cluster_id, oke_endpoint, oke_kubeconfig_path,
 kubeconfig_path, ingress_service_type, and ingress_controller_service_
annotations.

Added these observability parameters: storage_class_name, local_storage, and kubernetes_
node_hostname.

Added this database parameter: whitelist_cidrs.

Added these additional parameters: mount_target_ip and export_path.

Example Payload to Deploy Siebel CRM Added the following sections:

• Example Payload when "Do not use Vault" Checkbox is Selected

• Example Kubernetes Cluster Sections for BYO-Kubernetes

3

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

Use Cases for Enabling Component Groups
or Components

Modified topic. Included sample data for sai_quantum.yaml and provided details on how to enable
component groups and components.

What's New in July 2024, CM_24.7
The following table lists the changes in this revision of the documentation to support this release (CM_24.7) of the
software.

Topic Description

Running the Siebel Lift Utility in Silent
Mode (for Container Mode)

Modified topic. Updated the command and provided flag descriptions.

Running the Siebel Lift Utility in Interactive
Mode (for Container Mode)

Modified topic. Updated the command and provided flag descriptions.

What's New in July 2024, CM_24.6.2
The following table lists the changes in this revision of the documentation to support this release (CM_24.6.2) of the
software.

Topic Description

Downloading and Installing Siebel Cloud
Manager

Modified topic. Introduces the option to use HTTPS protocol for Siebel Cloud Manager during the
installation.

Custom Siebel CRM Metrics Modified topic. Provides additional examples to use more than one server manager command at the
same time to collect metrics.

What's New in July 2024, CM_24.6.1
The following table lists the changes in this revision of the documentation to support this release (CM_24.6.1) of the
software.

Topic Description

Parameters in Payload Content Modified topic. Added these observability parameters: oci_log_analytics, smc_log_group_id,
 sai_log_group_id, ses_log_group_id, gateway_log_group_id, node_logs_log_group_id,
 and log_source_name.

Enabling Log Analytics in Siebel CRM
Observability

Modified topic. Provided sample code that Siebel CRM deployment payload for SCM should contain, if
OCI Log Analytics has to be enabled in a BYOR deployment.

What's New in June 2024, CM_24.6
The following table lists the changes in this revision of the documentation to support this release (CM_24.6) of the
software.

4

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

Monitoring Siebel CRM Deployments New chapter. Describes how to configure the Siebel CRM Observability – Monitoring solution.

Log Analytics in Siebel CRM Deployments New chapter. Describes how to configure the Siebel CRM Observability – Log Analytics solution.

Parameters in Payload Content Modified topic. Added these observability parameters: siebel_monitoring, send_alerts,
 siebel_logging, enable_oci_log_analytics, enable_oracle_opensearch, mount_
target_private_ip, export_path, oci_config_path, oci_private_api_key_path, oci_
config_profile_name, smtp_host, smtp_from_email, smtp_auth_username, smtp_auth_
password_vault_ocid, and to_email.

Troubleshooting Issues Related to Siebel
CRM Observability – Monitoring Solution

Added topic. Describes how to debug issues related to the Siebel CRM Observability – Monitoring
solution.

Troubleshooting Issues Related to Siebel
CRM Observability – Log Analytics Solution

Added topic. Describes how to debug issues related to the Siebel CRM Observability – Log Analytics
solution.

What's New in April 2024, CM_24.3.1
The following table lists the changes in this revision of the documentation to support this release (CM_24.3.1) of the
software.

Topic Description

Resubmitting the Environment Creation
Workflow

Modified topic. Introduced new functionality and parameters to allow any specific stage and all stages
from any specific stage including that stage.

Updating Parameters During Rerun of
Environment or Configuration APIs

Modified topic. Provided API example to update environment status as completed.

What's New in February 2024, CM_24.2
The following table lists the changes in this revision of the documentation to support this release (CM_24.2) of the
software.

Topic Description

Use Cases for Changing Log Level While
Running PostInstallDB Setup

New topic. Provides information about changes to make to support use cases for changing log levels
associated with the process of running PostInstallDBSetup.

What's New in January 2024, CM_24.1.1
The following table lists the changes in this revision of the documentation to support this release (CM_24.1.1) of the
software.

Topic Description

Installing Siebel Monthly Update in a Siebel
CRM on OKE Environment Deployed by
SCM

Modified topic. Added instructions for:

5

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

• Sourcing of virtual environment and k8sprofile

• Tagging git repositories before moving to the latest Siebel CRM version

What's New in January 2024, CM_24.1
The following table lists the changes in this revision of the documentation to support this release (CM_24.1) of the
software.

Topic Description

Cleaning up the Siebel File System New topic. Provides instructions for cleaning up orphan files in Siebel File System using APIs.

What's New in December 2023, CM_23.12
The following table lists the changes in this revision of the documentation to support this release (CM_23.12) of the
software.

Topic Description

Enabling TLS 1.3 Support in Environments
Prior to 23.11

New topic. Provides instructions to enable TLS 1.3 communication from client to server and server tier
to server tier.

What's New in November 2023, CM_23.10.1
The following table lists the changes in this revision of the documentation to support this release (CM_23.10.1) of the
software.

Topic Description

Auto-enablement of Siebel Migration
Application

New topic. Describes the details related to auto-deployed Siebel Migration application in Siebel CRM
environments deployed using Siebel Cloud Manager.

Troubleshooting Issues Related to Siebel
Migration Application in an SCM Deployed
Siebel CRM Environment

New topic. Provides troubleshooting tips for migration application usage in SCM deployed Siebel CRM
environments.

Parameters in Payload Content Modified topic. Added the migration_package_mt_export_path parameter.

What's New in September 2023, CM_23.8.1
The following table lists the changes in this revision of the documentation to support this release (CM_23.8.1) of the
software.

6

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

Terminating SSL/TLS at the Load Balancer
(FrontEnd SSL) using SCM

New topic. Describes mechanisms to enable frontend SSL (terminating SSL at the load balancer) with
OKE provisioned Load balancer.

Assigning Pods to Nodes - Implementing
Affinity and Anti-affinity on OKE using
Siebel Cloud Manager

New topic. Describes how to use SCM to restrict Kubernetes pods to desired nodes using affinity/anti-
affinity.

Parameters in Payload Content Modified topic. Added these parameters: load_balancer_ssl_cert_path, load_balancer_
private_key_path, and load_balancer_private_key_password.

What's New in August 2023, CM_23.8
The following table lists the changes in this revision of the documentation to support this release (CM_23.8) of the
software.

Topic Description

Using Security Adapters for Siebel CRM Modified topic.

What's New in July 2023, CM_23.7.1
The following table lists the changes in this revision of the documentation to support this release (CM_23.7.1) of the
software.

Topic Description

Using Security Adapters for Siebel CRM Modified topic. LDAP over SSL is now supported.

Parameters in Payload Content Modified topic. Added these parameters: enable_ssl, ldap_wallet_path, and ldap_wallet_
password.

Modified description for application_password.

What's New in July 2023, CM_23.7
The following table lists the changes in this revision of the documentation to support this release (CM_23.7) of the
software.

Topic Description

Using Security Adapters for Siebel CRM New topic. Describes how to configure security adapters (security profile) provided with Siebel
Business Applications.

Parameters in Payload Content Modified topic. Added these parameters:

security_adapter_type, ldap_host_name, ldap_port, application_user_dn,
 application_password, base_dn, credentials_attribute_type, password_attribute_
type, roles_attribute_type, shared_db_credentials_dn, shared_db_username, shared_

7

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

db_password, username_attribute_type, use_adapter_username, siebel_username_
attribute_type, siebel_admin_username, siebel_admin_password, anonymous_username,
 anonymous_user_password, propagate_change, hash_db_password, hash_user_password,
 salt_attribute_type, and salt_user_password.

What's New in July 2023, CM_23.6.2
The following table lists the changes in this revision of the documentation to support this release (CM_23.6.2) of the
software.

Topic Description

Downloading and Installing Siebel Cloud
Manager

Modified topic. Provided steps to use an existing VCN (Bring Your Own VCN).

Parameters in Payload Content Modified topic. Added the following parameters for BYO-VCN:
• siebel_lb_subnet_ocid

• siebel_private_subnet_ocid

• siebel_db_subnet_ocid

• siebel_cluster_subnet_ocid

• vcn_ocid_of_db_subnet

Example Payload to Deploy Siebel CRM Modified topic. Added an example payload for a scenario when "Use existing VCN" checkbox is
selected.

Notes on BYO-VCN (Virtual Cloud Network) New topic: Describes how to use your own VCN in OCI.

What's New in June 2023, CM_23.6
The following table lists the changes in this revision of the documentation to support this release (CM_23.6) of the
software.

Topic Description

About Siebel CRM Upgrade Factory New topic. Introduces Siebel CRM Upgrade Factory that delivers an automated development upgrade
including the quick setup of a development environment and the efficient transition from Siebel CRM
8.0 and above to the latest Siebel CRM Release Update.

Customizing the Configuration Modified topic. Provided steps to
• Customize Siebel CRM configuration that require changes in helm charts repository

• Customize Siebel CRM Kubernetes deployment parameters that require changes in the Cloud
Manager repository

Parameters in Payload Content Modified topic. Updated the descriptions for cpu and memory payload parameters.

Example Payload to Deploy Siebel CRM Modified topic. Updated payload examples with additional size parameters.

Updating Parameters During Rerun of
Environment or Configuration APIs

Modified topic. Updated payload examples with additional size parameters.

8

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

Use Cases for Adding Profiles,
Deployments, or Adding Resources to
Individual Siebel Servers

Modified topic. Updated the use case for adding resources to individual Siebel servers.

What's New in May 2023, CM_23.5.1
The following table lists the changes in this revision of the documentation to support this release (CM_23.5.1) of the
software.

Topic Description

Installing Siebel Monthly Update in a Siebel
CRM on OKE Environment Deployed by
SCM

New topic. Provides the steps required to install the latest monthly updates in a Siebel CRM on OKE
environment deployed by Siebel Cloud Manager.

Parameters in Payload Content • Added the gateway_cluster_replica_count parameter.

• Updated the description for the db_home_admin_password parameter.

Example Payload to Deploy Siebel CRM Updated the description for the db_home_admin_password parameter.

What's New in May 2023, CM_23.5
The following table lists the changes in this revision of the documentation to support this release (CM_23.5) of the
software.

Topic Description

Using Vault for Managing Secrets New topic. Introduces Vault integration for Siebel Deployment using Siebel Cloud Manager.

Downloading and Installing Siebel Cloud
Manager

Modified topic. Details regarding Vault usage have been added.

Executing the Payload to Deploy Siebel
CRM

Modified topic. Password location for basic authentication has been updated.

Parameters in Payload Content Modified topic. Payload Parameters and Descriptions have changed.
• New Additions: siebel_keystore_password, siebel_truststore_password, db_admin_username, db_

admin_password

• Renamed: siebel_admin_username(admin_user_name), siebel_admin_password(admin_user_
password)

• Updates: table_owner_user, table_owner_password, default_user_password, anonymous_user_
password, admin_password

About Siebel Cloud Manager (SCM) Modified topic. Expands the list of third-party products and operators with brief descriptions.

What's New in April 2023, CM_23.3.1
The following table lists the changes in this revision of the documentation to support this release (CM_23.3.1) of the
software.

9

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

Checklist for Creating a BYOR Deployment New topic. Before deploying a BYOR environment, you need to go through this checklist consisting of
various steps to ensure that you have a smooth deployment.

Downloading and Installing Siebel Cloud
Manager

Modified topic. Describes how to use Cloud Manager behind a proxy.

What's New in March 2023, CM_23.2.1
The following table lists the changes in this revision of the documentation to support this release (CM_23.2.1) of the
software.

Topic Description

Additional Administrative Tasks in Siebel
Cloud Manager

Modified topic. Option for Updating Parameters During Rerun of Environment or Configuration APIs.

Parameters in Payload Content Modified topic. New parameters included for VCN traffic routing.

What's New in February 2023, CM_23.2
No new feature introduced, contains only bug fixes and minor internal enhancements.

What's New in February 2023, CM_23.1.1
The following table lists the changes in this revision of the documentation to support this release (CM_23.1.1) of the
software.

Topic Description

Deploying Siebel CRM on OCI Modified topic. Introduces the ability to use existing database available with user while with all other
resources (such as OKE, File System, Mount Target etc.) are created by Siebel Cloud Manager during
Siebel Deployment.

What's New in January 2023, CM_23.1
The following table lists the changes in this revision of the documentation to support this release (CM_23.1) of the
software.

Topic Description

Notes on OKE (Oracle Container Engine for
Kubernetes)

Modified topic. Multiple Siebel environments can be provisioned in the same OKE cluster when the
"Use Existing Resource" option is selected while creating the CM instance.

10

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

What's New in December 2022, CM_22.12.1
The following table lists the changes in this revision of the documentation to support this release (CM_22.12.1) of the
software.

Topic Description

Managing Custom Keystore

New topic. Introduces the feature to use custom Keystore and Truststore.

Downloading and Installing Siebel Cloud
Manager

Modified topic. Introduces feature to use existing resources (like VCN, OKE, Database, Mount Target
etc) rather than have Cloud Manager must create these resources anew for Siebel Deployment.

Deploying Siebel CRM on OCI

Modified topic. Introduces feature to use existing resources (like VCN, OKE, Database, Mount Target
etc) rather than have Cloud Manager must create these resources anew for Siebel Deployment.

What's New in July 2022, CM_22.7.0
The following table lists the changes in this revision of the documentation to support this release (CM_22.7.0) of the
software.

Topic Description

Downloading and Installing Siebel Cloud
Manager

Modified topic.

• A new Permissions step allows you to specify the permissions type for the Siebel Cloud Manager
instance, either Instance Principal or User Principal.

• Shape configuration for a Siebel Cloud Manager instance has been renamed as CloudManager
Instance Configuration and includes specifying whether to use a private IP address (the default)
or a public IP address.

Troubleshooting a Siebel Cloud Manager
Instance or Requested Environment

Renamed topic (from “Reviewing and Troubleshooting a Requested Environment”) and added a new
subtopic Troubleshooting a Siebel Cloud Manager Instance.

Updating Siebel Cloud Manager with a New
Container Image

Modified topic. This procedure has changed due to the migration.sh script, which is new in this release.

Use Cases for Making Incremental
Changes

Modified topic. Added use cases for adding or updating web artifacts or other Siebel artifact files.

What's New in June 2022, CM_22.5.2
The following table lists the changes in this revision of the documentation to support this release (CM_22.5.2) of the
software.

11

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

Downloading and Installing Siebel Cloud
Manager

Modified topic. Configuring the Siebel Cloud Manager stack now supports specifying the node shape
for the Cloud Manager instance, the number of OCPU cores, and the memory in gigabytes.

Parameters in Payload Content

Example Payload to Deploy Siebel CRM

Modified topics. For the DBCS_VM database type, the cpu_count parameter is now provided. This
parameter is required where the shape is of flex type.

What's New in June 2022, CM_22.5.1
The following table lists the changes in this revision of the documentation to support this release (CM_22.5.1) of the
software.

Topic Description

Troubleshooting Siebel Lift Utility
Execution

Modified topic. Information is provided about error codes for Siebel Lift utility introspection.

Using Advanced Network Configuration

Updating Siebel Cloud Manager with a New
Container Image

Modified topics. Information is provided about configuring the Siebel Cloud Manager private subnet
and mount target. The mount target is no longer part of the subnet siebel_private_subnet_cidr and
must be migrated in a one-time step when you update Cloud Manager to a new container image.

The subnet siebel_atp_subnet_cidr has been renamed to siebel_db_subnet_cidr. This subnet applies to
all database choices.

Parameters in Payload Content

Example Payload to Deploy Siebel CRM

Multiple topics modified

Modified topics. Siebel CRM deployments on OCI now support the Database Service for Oracle
Database (DBCS_VM), also referred to as Oracle Database Cloud Service, as well as Oracle Autonomous
Database (ATP).

In the payload, use the db_type parameter to specify either ATP or DBCS_VM. Different database
parameters are used, depending on your selection. Parameters for ATP are now under the atp section
and have been renamed to remove the atp_ prefix.

What's New in May 2022, CM_22.4.1
The following table lists the changes in this revision of the documentation to support this release (CM_22.4.1) of the
software.

Topic Description

About URLs for Siebel CRM Deployments
on OCI

Multiple topics modified

New and modified topics. Some of the base URL elements have changed in this release of Siebel Cloud
Manager. Specifically, api/v1/environments has changed to scm/api/v1.0.

Customizing Configurations Prior to
Greenfield Deployment

Multiple topics modified

New and modified topics. For a greenfield deployment, you can optionally decouple the configuration
and provisioning stages, for the purpose of customizing the configuration before you provision the
environment.

12

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

Topic Description

13

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 1
What's New in This Release

14

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 2
Overview

2 Overview

About this Chapter
This chapter provides an overview of deploying Siebel CRM containers on Kubernetes using Siebel Cloud Manager
(SCM). It contains the following topics:

• Overview of Deploying Siebel CRM Containers on Kubernetes

• About Siebel Cloud Manager

• About Siebel CRM Upgrade Factory

Overview of Deploying Siebel CRM Containers on
Kubernetes
You can deploy Siebel CRM containers using SCM:

• On any Cloud Native Computing Foundation (CNCF) compliant Kubernetes clusters, such as Oracle Kubernetes
Engine (OKE) on Oracle Cloud, Oracle Cloud Native Environment (OCNE) on-premises or on the cloud, Red Hat
OpenShift, and so on. For more information on CNCF compliant Kubernetes, refer CNCF online documentation.

• In your data center on Oracle Compute Cloud@Customer (OC3). For more information on OC3, refer Oracle
Cloud Compute @Customer.

This document provides information about SCM and describes the steps required to do the following tasks:

• Set up SCM and, optionally, download the Siebel Lift utility.

• Deploy Siebel CRM.

You use SCM and other tools to deploy Siebel CRM. Customers can migrate existing Siebel CRM on-premises
environments to CNCF compliant Kubernetes clusters using the Siebel Lift utility or perform greenfield deployments. A
new greenfield deployment can use default configurations or you can customize the configuration before deployment.

Note: Read this entire document and related documents and familiarize yourself with the concepts, tools, and
methods for deploying Siebel CRM or other applications on CNCF compliant Kubernetes clusters mentioned above
or on OC3. Many of the cloud computing principles and capabilities described by the CNCF apply to deploying Siebel
CRM containers (referred as Siebel CRM in the document) using SCM. Apart from the Siebel-specific particulars, some
such information is beyond the scope of this document.

15

https://www.cncf.io/training/certification/software-conformance
https://www.oracle.com/in/cloud/compute/cloud-at-customer/
https://www.oracle.com/in/cloud/compute/cloud-at-customer/

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 2
Overview

About Siebel Cloud Manager
SCM is a REST-based continuous deployment tool that's used for:

• Automating the deployment of Siebel CRM on CNCF compliant Kubernetes clusters (such as OKE on Oracle
Cloud, OCNE on-premises or on cloud, Red Hat OpenShift, and so on) and in your data center on OC3 whether
you start from an existing on-premises deployment of Siebel CRM or create a new greenfield deployment of
Siebel CRM.

• Ongoing maintenance of the Siebel Enterprise.

• Deploying Siebel CRM Upgrade Factory that simplifies Siebel CRM application upgrade process by allowing
you to upload your customized, pre-IP2017 repository to run an upgrade and IRM process on Oracle Cloud
Infrastructure (OCI).

SCM also provides the Siebel Lift utility that:

• Creates deployment kits consisting of artifacts derived from an existing on-premises deployment of Siebel
CRM. The deployment kits are created in a staging location.

• Reads the stored artifacts you created and uploads them to an object storage to populate the migration pipeline
for your Siebel CRM deployment.

Greenfield deployments of Siebel CRM don't use the Siebel Lift utility.

For information about downloading and installing SCM, see Downloading and Installing Siebel Cloud Manager. For
information about downloading and running the Siebel Lift utility, see Downloading and Running the Siebel Lift Utility.

For deploying a Siebel Enterprise, the Siebel CRM functionality is provided in the following base containers:

• Siebel Gateway (CGW), sometimes called CloudGateway.

• Siebel Application Interface(SAI).

• Siebel Server (SES), sometimes called Siebel Enterprise Server.

The Siebel CRM database is migrated as an Autonomous Database for Transaction Processing in shared mode or
Database Service for Oracle Database in virtual machine mode.

After you create and upload Siebel CRM deployment kits, you specify deployment parameters in a payload file that you
prepare and then submit it to SCM using a REST request. SCM accesses the Siebel CRM artifacts in the object storage
and performs the tasks to deploy your applications.

The following pipelines are used in your environment:

• The migration pipeline, or continuous-integration pipeline, builds and stages software for making development
changes or preparing for deployment. This pipeline is managed by the Siebel Migration application. (For more
information about Siebel Migration, see Siebel Database Upgrade Guide.)

• The deployment pipeline, or continuous-deployment pipeline, stages software for application deployment. This
pipeline is managed by SCM, using the GitOps model of continuous delivery.

The overall flow of continuous integration and continuous delivery (CI/CD) is a multi-stage, cyclical process that's largely
automated but includes various user interaction points, depending on your use case. In all cases, the migration pipeline
is separated from the deployment pipeline.

16

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 2
Overview

SCM and the Siebel Lift utility include various third-party products and custom operators that play a role in pipeline
operations. These products include the following:

• Flux (Flux Operator): Flux (A CNCF Graduated project pioneered by Weaveworks) is a continuous deployment
tool that synchronizes the Git repository and Kubernetes clusters. SCM uses Flux to automate Siebel CRM
deployment in GitOps way. It ensures that Siebel CRM environment deployment in the cluster matches with the
configuration defined in Git repository. If any differences found in Git repository, Flux syncs up and updates the
deployment.

• Helm: Helm charts is used for deploying Siebel CRM and supporting deployments.

• kubectl: kubectl is used for administration tasks such as opening a session into a Kubernetes pod for running
commands.

• Config Operator: Config Operator does the Siebel CRM Configuration through Siebel Management Console
(SMC) REST APIs. This operator is initiated by a Kubernetes job managed by Helm. This job will get triggered
when:

◦ Successful Siebel CRM database connection is established.

◦ SMC is running.

The Helm Git repository contains the Siebel CRM configuration and deployment definition yamls. The
paramconfig directory in the Helm Git repository has the profile definition of the Siebel CRM infrastructure and
fed to the config operator to perform Siebel CRM Configuration.

For more information on Git repositories, see Git Repositories for Siebel CRM Deployment.

• Siebel Operator (An Incremental Operator): Siebel Operator is a metacontroller based custom controller that
performs the incremental changes in existing SCM created Siebel CRM deployment. Siebel Operator facilitates
GitOps to create a powerful, automated, and declarative approach to managing the Siebel CRM resources. For
each upgrade or Flux reconcile that's performed, configure job runs to validate the application configuration.
Siebel operator works based on monitoring the paramconfig config maps, detects the incremental changes,
deploys the runtime additions at each level (Enterprise, Siebel CRM Server and Component level) of Siebel CRM
deployment and restarts the Siebel CRM server when required. When there are incremental changes added in
paramconfig on the below categories, the Siebel operator detects the changes and syncs up the config maps:

◦ Enable a Component Group

◦ Enable / Disable a Component

◦ Enterprise parameter changes

◦ Server parameter changes

◦ Component parameter changes

◦ Adding new named subsystem

◦ Adding a new component definition

◦ Adding new components to the server

◦ Adding AI parameters

◦ Adding a new Siebel server or AI

◦ Changing log level

17

https://metacontroller.github.io/metacontroller/intro.html

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 2
Overview

About Siebel CRM Upgrade Factory
Siebel CRM Upgrade Factory delivers an automated development upgrade that includes the quick setup of a
development environment. The upgrade factory approach simplifies the application upgrade process, allowing
customers to upload their customized, pre-IP2017 repository to run an upgrade and IRM process on OCI. In addition, the
development upgrade process will result in a merged design repository that will enable customers to either continue to
use it as their new Siebel CRM development environment in the OCI tenancy, or export, and import to their on-premises
instance to continue development activities there.

Siebel CRM Upgrade Factory enables you to:

• Perform Siebel CRM upgrades in a cost-efficient, low-risk manner within a shorter time frame.

• Dramatically reduce lengthy provisioning cycles.

• Easily repeat development upgrades multiple times using the DevOps pipeline.

• Flexibly move your application with business customizations intact to OCI, if needed by the business.

• Monitor and evaluate upgrade issues rapidly.

For more information about Siebel CRM Upgrade Factory, see Database Upgrade Guide.

For detailed information about Siebel CRM that might be relevant to your deployment tasks, see also Siebel Update
Guide for your release and Siebel Bookshelf documents such as Siebel Installation Guide or Siebel Database Upgrade
Guide.

Also, you can refer documentation for the following products or modules, where applicable:

• Oracle products. OCI (which includes OKE, Oracle Resource Manager, and many other modules and features),
Oracle Enterprise Linux, Oracle Database, and other products.

• Third-party products. Products such as Ansible, Docker, Flux, GitLab, Helm, Kafka, Kubernetes, YUM, or other
applicable products.

Oracle doesn't certify third-party container management or cloud deployment tools for the uses described here. See
also information from the CNCF and other resources.

18

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

3 Deploying Siebel CRM on OCI using Siebel
Cloud Manager

Deploying Siebel CRM on OCI using Siebel Cloud
Manager
This chapter describes how to use Siebel Cloud Manager (SCM) to deploy Siebel CRM on Oracle Cloud Infrastructure
(OCI). It contains the following topics:

• Overview of Deploying Siebel CRM on OCI

• Requirements and Limitations

• High Level Steps to Deploy Siebel Using SCM

• Creating a Compartment

• Git Repositories for Siebel CRM Deployment

• Installing GitLab

• Using Vault for Managing Secrets

• Downloading and Installing Siebel Cloud Manager

• About URLs for Siebel CRM Deployments on OCI

• Uploading Files to the SCM Container Using File Sync Utility

• Mirroring Siebel Base Container Images

• Downloading and Running the Siebel Lift Utility

• Reducing the Ingress Range for Siebel Cloud Manager

• Using Advanced Network Configuration

• Customizing Configurations Prior to Greenfield Deployment

• Deploying Siebel CRM on OCI

• Additional Administrative Tasks in Siebel Cloud Manager

• Troubleshooting a Siebel Cloud Manager Instance or Requested Environment

• Managing Custom Keystore

• Updating Siebel Cloud Manager with a New Container Image

• Removing a Siebel CRM Deployment on OCI

• Making Incremental Changes to Your Siebel CRM Deployment on OCI

• Installing Siebel Monthly Update in a Siebel CRM on OKE Environment Deployed by SCM

• Enabling TLS 1.3 Support in Environments Prior to 23.11

• Assigning Pods to Nodes - Implementing Affinity and Anti-affinity on OKE using Siebel Cloud Manager

• Cleaning up the Siebel File System

Note: This document was first published in February 2022. Going forward, the information in this document is
expected to be updated and expanded, as needed.

19

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Overview of Deploying Siebel CRM on OCI
You can deploy Siebel CRM on OCI using SCM.

This chapter describes the steps required to do the following tasks:

• Set up SCM in an OCI tenancy and, optionally, download the Siebel Lift utility.

• Deploy Siebel CRM on OCI.

You use SCM and other tools to deploy Siebel CRM on OCI. For more information, see Overview chapter.

Requirements and Limitations
The following requirements and limitations currently apply for SCM. This information will be updated as needed for
subsequent updates.

General Requirements
The following are some of the general requirements for SCM and for deploying Siebel CRM:

• The minimum required version of Siebel CRM for migration to OCI is Siebel CRM 18.12 or later. The Siebel CRM
on-premises environment must be running when you run the Siebel Lift utility.

• All customers must have an OCI tenancy with Compute quota and manage privileges, Oracle Kubernetes
Engine (OKE), and File System Storage (FSS).

• Siebel CRM deployments on OCI use virtual machines running Oracle Enterprise Linux 7 or 8.

• Customers must have an instance of any standards compliant Git distribution such as Oracle DevOps Service,
GitHub, GitLab, Bitbucket, and so on installed and available to them. Only one instance is required for the main
compartment on OCI in which you're working with SCM. For more information, see Git Repositories for Siebel
CRM Deployment.

• Hierarchically, the compartment you create in your OCI tenancy must support at least two child compartment
levels. For more information, see Creating a Compartment.

• SCM instructions currently are in U.S. English (ENU).

• While "lift-and-shift" supports all languages that Siebel CRM supports, Greenfield deployments of Siebel CRM
using SCM currently support U.S. English (ENU) only.

Requirements for Siebel Lift Utility
The following are some of the requirements for the Siebel Lift utility for this release of SCM. See also Downloading and
Running the Siebel Lift Utility.

• You download and install the Siebel Lift utility in your Siebel CRM on-premises environment.

• The Siebel Lift utility is currently supported on Oracle Enterprise Linux and on Microsoft Windows.

• The Siebel Lift utility currently supports execution in silent mode or in interactive mode (using a menu-driven
command-line interface).

20

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

• Depending on how you install the Siebel Lift utility, you might be required to install Python. Supported versions
are: version 3.9.6 (on Windows), version 3.8.x (on Linux 7), or version 3.9.x (on Linux 8). See also Installing and
Configuring Python (for Non-Container Mode).

• The Siebel Lift utility requires software (such as 7-Zip) for extracting the utility from the ZIP file or TAR file you
download and for installing the utility.

• The operating system user running the Siebel Lift utility must have access to the files exported by the utility, or
the upload process will fail.

• The Siebel Lift utility currently supports U.S. English (ENU).

Oracle Database Requirements
The following are Oracle Database and Oracle Database client requirements for SCM:

• Siebel CRM deployments on OCI support Oracle Database 19c. The Siebel CRM database is migrated into OCI as
an Autonomous Database for Transaction Processing in shared mode or as an Oracle Database Cloud Service in
virtual machine mode.

• The staging location for database artifacts you create must be mounted on the computer where Oracle
Database is installed.

• The table owner user must have Create Directory and database owner privileges, and must have read privilege
for all dictionaries.

• If you will be creating database artifacts to migrate the Siebel CRM database, then note that the Siebel Lift
utility requires that Oracle Database client of a compatible version is installed where Siebel CRM is installed on
premises.

• The installed version of Oracle Database client must include the data pump utilities (expdp) in the bin directory.

• On the Oracle Database client computer, the following requirements apply:

◦ The installation type for Oracle Database client must be Administrator.

◦ The tnsnames.ora file must have the necessary TNS settings applicable to the installed Oracle Database.

◦ On Linux computers, the TNS_ADMIN environment variable must be set to point to the directory where
the SQL*Net configuration files (including sqlnet.ora and tnsnames.ora) are located.

◦ On Linux computers, the user who will run the Siebel Lift utility must be part of the Database
Administrator (DBA) group.

High Level Steps to Deploy Siebel Using SCM
The term "BYO" stands for "Bring Your Own" and is indicative of existing resources at the disposal of the user. For
example BYOD stands for "Bring Your Own Database".

Siebel CRM applications can be deployed using SCM in different ways based on the type of infrastructure information
provided in the Siebel CRM deployment payload after SCM has been set up:

1. User brings all resources (Fully BYOR): When you select "Use existing resource" while provisioning SCM, all the
resources such as existing mount target, file system, OKE, database must be provided by the user as part of
payload information that the SCM instance will use to create Siebel CRM deployment(s).

21

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

2. SCM creates resources:

◦ All infra resources are created by CM: If you don't select "Use existing resource" while provisioning SCM,
all the required infrastructure for a Siebel CRM deployment that is database, OKE, mount target, file
system, and so on will be created and configured by SCM.

◦ All infra resources except database created by SCM (BYOD only): When you don't select "Use existing
resource" while provisioning SCM, user can still provide information of an existing database in the
payload. All other infra resources (mount target, file system, OKE, etc.) will be created by the SCM for
Siebel CRM deployment. User must ensure that database can be connected from SCM and OKE.

The following are the high level steps to deploy Siebel CRM on OCI (these are described in detail later in this document):

1. Git repository setup:
a. You can bring your own existing Git repositories hosted on any standards-compliant Git distribution, such

as Oracle DevOps Service, GitHub, GitLab, Bitbucket, and so on, or
b. If you want SCM to create the repositories as part of Siebel CRM provisioning:

- Set up a GitLab instance.
- Generate a private key and an access token.

2. SCM setup:
a. Navigate to OCI and in marketplace applications, choose SCM and launch a stack in OCI resource

manager.
b. Copy the private key generated from GitLab instance in a secure location inside SCM instance.
c. Based on the type of deployment, whether BYOR (Bring Your Own Resource) or BYOD (Bring Your Own

Database only) or fully SCM provisioned, provide inputs.
d. If BYOR, click "Use existing resource" and provide details of the existing resource such as VCN, subnet to

launch instance, policies etc.
e. On successful job, copy the URL present in the outputs and navigate in browser to verify SCM setup.

3. Siebel CRM deployment:
a. If a fully SCM provisioned environment for Siebel CRM deployment is to be created, then provide

infrastructure details in the payload by referring the user guide.
b. If BYOD, provide the details of the existing database and infrastructure resource info to be created.
c. If BYOR, provide the details of all existing resources.
d. In case of BYOR or BYOD make sure connection exists between the relevant resources that is database to

OKE cluster, mount target to OKE cluster.
e. Use the /environment API to create a deployment using POST method.
f. The response of the API will either contain any validations if needed to be modified or with a successful

environment info.
g. The response will contain an environment entity which can be accessed to check the progress of the

deployment.
4. General info on provisioning, debugging and retrial:

a. The provisioning of Siebel CRM environment will involve a series of stages after which the Siebel
Management Console (SMC) and component URLs will be published.

b. In case of any failure in any stage, the stage will show status as failed.
c. Every stage will contain log links which can be viewed to find what went wrong.
d. Relevant actions based on the logs have to be performed and the workflow has to be re-run. To re-run

the workflow, use the environment's PUT method which will execute all the stages from beginning.
e. All these stages are idempotent, so the workflow can be run n number of times until the last stage/

deployment is successful.

22

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Creating a Compartment
Before you can install GitLab or SCM, you must create a suitable compartment for your deployment within your
OCI tenancy. The user creating the compartment must have the necessary access rights to be able to create the
compartment. Hierarchically, the compartment you create in your OCI tenancy must support at least two child
compartment levels. If necessary, the person who set up your tenancy can create the compartment for you.

After you have created the compartment, copy the OCID of the compartment for future reference. Now you can create
the stacks for GitLab and SCM within this compartment.

For more information, see relevant documentation for OCI. For example, see Overview of Oracle Cloud Infrastructure
Identity and Access Management for information about creating compartments, managing access rights to
compartments, and more. See also Requirements and Limitations.

Git Repositories for Siebel CRM Deployment
GitOps is a deployment model that uses Git to automate deployments, enhances security, and improves operational
efficiency by managing infrastructure and application code. Each Siebel CRM deployment requires the following two Git
repositories:

• SCM repository to store SCM templates and release YAMLs.

• Helm chart respository to store Helm charts. It also holds the details of the charts installed and upgrades.

SCM can either:

• Create repositories: If you want SCM to create Helm chart and SCM repositories as part of Siebel CRM
provisioning, you must install GitLab and configure the Siebel CRM deployment payload to use GitLab as the Git
repository, as follows:

a. Set the git_type parameter to gitlab.
b. Configure the gitlab section. For details of the parameters to include in the gitlab section, see

Parameters in Payload Content.

You must ensure that GitLab is accessible through HTTP/HTTPS for API access to create or delete
repositories.

For an example payload, see the payloads in the Example Payload to Deploy Siebel CRM topic.

23

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

• Use existing repositories: If you've existing Git repositories hosted on any standards-compliant Git distribution,
such as Oracle DevOps Service, GitHub, GitLab, Bitbucket, and so on, you can use it to provision Siebel CRM
through SCM. To use existing Git repositories, in the Siebel CRM deployment payload:

a. Set the git_type parameter to byo_git.
b. Configure the byo_git section. For details of the parameters to include in the byo_git section, see

Parameters in Payload Content.

In this case, SCM will override the data in the Git repositories; that is, it will delete existing data in the
repositories and then commit SCM data.

For an example payload, see the payloads in the "Example Git Section for BYO-Git" section of the
Example Payload to Deploy Siebel CRM topic.

Installing GitLab
Use this task to create and deploy the GitLab stack (that is, to install the GitLab instance in a virtual machine instance on
OCI).

SCM uses GitLab to store the configuration of each deployment that it performs. In the lift and shift use case, GitLab
stores the artifacts that were previously sourced from the source environment using the Siebel Lift utility, and then
accessing the configuration files from GitLab to do the actual deployment. GitLab also stores configuration artifacts for
the greenfield use case, including the one described in Customizing Configurations Prior to Greenfield Deployment.

Note: Only a single instance of GitLab is required for the OCI main compartment in which you are working. If GitLab is
already installed and available to you, then you can skip this task.

During stack creation, review all default values displayed. Confirm each value or enter a new value as appropriate for
your task.

To create and deploy the GitLab stack
1. Go to the following OCI document about deploying GitLab:

https://docs.oracle.com/en/solutions/deploy-gitlab-ci-cd-oci/index.html
2. In the Deploy section, click the Deploy to Oracle Cloud link.
3. Log in to your OCI tenancy.
4. Choose the region (where the working directory will be created).
5. Specify the working directory (from which the Terraform configuration scripts run) and specify the

compartment in which to create the GitLab stack (the compartment you created in Creating a Compartment).
Optionally, you can also specify the stack name and a product description or change them from defaults.

6. Under GitLab Server Configuration, specify the external URL for accessing GitLab.
7. In Compute Configuration, specify the compute compartment you specified in Step 5 of this procedure and

the rest of the settings (availability domain, instance name, DNS hostname label, Flex Shape Oracle Compute
Units (OCPUs), and compute image). For Flex Shape OCPUs, the maximum is 64 OCPUs.

8. Specify the public SSH key by pasting it or by specifying an SSH key file. You use this key to access the virtual
machine.

9. Specify the Virtual Cloud Network (VCN) settings: the network compartment (in which all network resources are
created) and network strategy (Create New VCN and Subnet or Use Existing VCN and Subnet).

24

https://docs.oracle.com/en/solutions/deploy-gitlab-ci-cd-oci/index.html

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

10. Verify your configuration variables and start creating the stack. To immediately provision the resources defined
in the Terraform configuration, check Run Apply. Then click Create.

A GitLab job will have run, with status Succeeded. You can also create and run jobs to perform tasks on the
stack (using the Terraform configuration). The Compute Service displays the available instances (such as gitlab-
server) in the compartment that you specified in Step 5 of this procedure.

11. Launch the public URL. When prompted, specify the new GitLab password to use.

Now you can log in to GitLab as an administrator or other user, specifying either the user ID or the email
address and specifying the new password. The initial user is root.

12. After installing GitLab, do the following:

◦ Manually configure HTTPS for GitLab (creating key file and self-signed certificates), for greater security.

◦ Upgrade GitLab, where necessary, such as for greater security. For more information, see:

https://docs.gitlab.com/ee/update/

Using Vault for Managing Secrets
OCI Vault is a key management service that stores and manages master encryption keys and secrets for secure access
to resources. There are several places where sensitive information is required to be provided while provisioning a Siebel
CRM environment using SCM. Instead of providing this information while creating environment, they can be added as
secrets in OCI vault and their identifiers (OCID) can be passed in the payload. Using OCIDs, SCM fetches the actual value
and then uses it as and when required.

For more information about OCI Vault services, refer Overview of Vault.

For usage with SCM, Vault can be provisioned in two ways:

• Bring your own OCI Vault: You can provide your existing Vault's OCID during SCM stack creation.

• Have SCM provision a new Vault: You do not provide any Vault information. SCM provisions a new Vault during
the stack creation. Option to create a Default or Virtual Private Vault is available.

If you are bringing your own Vault, make sure you allow for the right access to fetch the secrets by SCM. For more
information about required policies, refer Common Policies.

Once SCM stack creation is over, Vault is available to access. These are the steps to do before provisioning a new Siebel
CRM environment.

1. Create a Master Encryption Key (MEK) in the Vault.
2. Create secrets using the MEKs for the necessary fields in the payload section.
3. Copy the OCIDs of the secrets created in step 2 and provide them as input in the payload section.

Best Practices for Key Management
• No "big secret": Ensure that secrets in your system are not long-term, have a limited blast radius, and are not

of high value. Avoid shared secrets, such as using a single password for all administrative users.

• As is / To be: Maintain a clear overview of which users can view or modify the secrets. Often, maintainers of
a project can access or extract its secrets. Reduce the number of individuals who can perform administrative
tasks to limit exposure.

25

https://docs.gitlab.com/ee/update/
https://docs.oracle.com/en-us/iaas/Content/KeyManagement/Concepts/keyoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Concepts/commonpolicies.htm#sec-admins-manage-vaults-keys

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

• Log & Alert: Collect all logs related to secrets and implement rules to detect secret extraction or misuse,
whether accessed through a web interface or through methods like double base64 encoding or encryption with
OpenSSL.

• Rotation: Regularly rotate secrets.

• Forking should not leak: Ensure that a repository fork or copy of job definitions does not inadvertently expose
secrets.

• Document: Document the secrets you store and the reasons for their storage to facilitate easy migration when
necessary.

Key Points for Managing Secrets Using Secret Management
Products

• Rotation/Temporality: Ensure that the credentials used to authenticate with the secrets management system
are rotated frequently and expire after their intended use.

• Scope of Authorization: Limit the scope of credentials to only those secrets and services necessary for their
intended function.

• Attribution of the Caller: Maintain the ability to attribute actions to the individual or service that made
requests to the secrets management solution. If this isn’t supported by default, implement a correlation
mechanism to track requests.

• Compliance: Adhere to the best practices listed in Best Practices for Key Management, including logging,
alerting, and other essential measures.

• Backup: Store backups of critical secrets, such as encryption keys, in separate, secure storage solutions (e.g.,
cold storage).

Downloading and Installing Siebel Cloud Manager
Use this task to create and deploy the SCM stack (that is, to install the SCM instance in a virtual machine instance on
OCI).

Before you perform this task, if you want SCM to create the Git repository, install GitLab Enterprise Edition (if it isn't
already installed) into the same compartment where you install SCM. For more information, see Installing GitLab.

During stack creation, review all default values displayed. Confirm each value or enter a new value as appropriate for
your task. Steps for verifying SCM are also included.

To download and install SCM
1. Start the OCI console and log in.
2. Navigate to Marketplace, All applications.
3. Search for Siebel Cloud Manager.
4. Drill down on the Siebel Cloud Manager link.
5. Select the version and compartment (which you created in Creating a Compartment), check review terms and

conditions, and then Launch Stack.
6. Navigate to the Stack Variables page.
7. Under General, provide the following details:

26

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

◦ The OCID of the root compartment for your SCM instance (the compartment you created in Step 5)

◦ The SSH public key for accessing the SCM instance.

◦ The resource prefix (all the resources created through this stack have this prefix added).

◦ Specify whether you want to use existing resources (such as Compartment, VCN, mount target, database,
and OKE) for the SCM instance.

Selecting the "Use Existing Resources" option allows you to choose your existing resources (such as
Compartment, VCN, mount target, database and OKE) for SCM configuration and Siebel environment
provisioning. If you don't select this option, SCM creates all the above mentioned resources.

8. Under Permissions, specify one of the following permission type for the SCM instance:

◦ Instance Principal: When you use Instance Principal, specify whether you want to use any existing
dynamic group and policy. By default, the "Use Existing Dynamic Group and Policy" checkbox is not
selected, so a dynamic group is created and an OCI CLI policy is created and assigned to the SCM
instance. If you select the "Use Existing Dynamic Group and Policy" checkbox then, after the Apply stack
job is completed, you need to manually add a new matching rule "instance.id=<cm_instance_id>" in an
existing dynamic group - <dynamic_group_name> and you also need to add a new policy statement "Allow
dynamic-group <dynamic_group_name> to manage all-resources in compartment id <cm_compartment_ocid>"
in an existing policy. This policy allows you to access and perform various CRUD operations in SCM
compartment from SCM instance.

◦ User Principal: When you use User Principal, no dynamic group and policy are attached to the SCM
instance, and the OCI configuration is done manually. The necessary details, such as the user's private
key, OCI fingerprint, and OCI passphrase are received and a configuration is set up. The private key and
fingerprint are generated from the user's OCI Console, under Users > Resources > API Keys. All the
permissions that apply for this user are available to the SCM instance.

9. Under VCN, specify whether you want to use existing VCN resource. This option allows using your existing
network component resources and lets SCM to create and manage other resources such as mount target, file
system, database and OKE.

◦ Network component for SCM Instance: Locate the compartment where the desired VCN is present for
creating the SCM instance and in the following drop-down field select an existing VCN and a subnet.

Note:
- Allow TCP port 22 from your client network to establish SSH connection to the SCM

instance.
- Allow TCP port 16690 from your client network to access the SCM application.
- Ensure appropriate egress rules are created for two-way traffic.

◦ Network component for mount target: Locate the compartment where the desired VCN is present for
creating the mount target and in the following drop-down field select an existing VCN and a subnet.

Note: Allow TCP ports 111, 2048, 2049, 2050 and UDP ports 111, 2048 from the SCM instance subnet.

◦ "Use existing File system and Mount Target" option is provided to allow the user to bring existing
resources instead of SCM to create the mount target and file system service. When this option is chosen
user has to provide value for the IP address of the mount target.

Note: The existing file system export is to be provided in the subsequent section as below when "Use
existing File system and Mount Target" is chosen.

27

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

10. When the "Use Existing Resources" or "Use existing File system and Mount Target" option is not selected in
step 7, then under Storage, select the availability domain for storage in which the shared mount target and file
storage is created. The options are 1, 2, or 3.

When the "Use Existing Resources" or "Use existing File system and Mount Target" is chosen provide value of
Export path for the desired the file storage which will be used as persistence storage for SCM application.

11. Under SCM Instance Configuration, specify the shape of the SCM instance (the SCM Instance Type), the
number of OCPU cores required, the memory in gigabytes, and whether the SCM instance uses a private IP
address (the default) or a public IP address.

Note: Assigning a public IP for SCM configures the network for public access. Not assigning a public IP
configures the network for private access only. Switching between public and private access is not supported.

◦ HTTP PROXY: Provide your HTTP Proxy Server URL for HTTP requests.

For example - yourhttpproxyserver.com:80

◦ HTTPS PROXY: Provide your HTTPS Proxy Server URL for HTTPS requests.

For example - yourhttpsproxyserver.com:80

◦ URLs to bypass: Provide the list of URLs which needs to bypassed from the Proxy server(no_proxy).

For example - externalurl1.com,externalurl2.com

Consider all the URLs which might / might not have access through your Proxy server during the provisioning
of SCM and Siebel CRM environment. The provided HTTP_PROXY, HTTPS_PROXY, and NO_PROXY variables
are applied only to SCM container as environment variables, and not to the whole docker configuration.

12. Optionally provide information about the security protocol (HTTP or HTTPS) and corresponding port numbers
to use for interacting with SCM over APIs. When HTTPS mode is selected, choose whether to use SSL/TLS
certificates of your choice (CA-signed/self-signed/other options) in PEM format. Else, SCM will provision and
use a self-signed certificate. The certificates can be changed later.

If no choice is made regarding the security protocol, HTTPS will be the default protocol to interact with SCM,
and a self-signed certificate will be automatically provisioned for use.

13. Under Network Configuration:

◦ If "Use Existing Resources" is selected in step 7, then you will be prompted to provide existing VCN
details, such as the VCN Compartment OCID where VCN resides, and the VCN Name and Subnet where
the SCM instance should be created.

◦ If "Use Existing Resources" is not selected in step 7, then you need to specify whether you want to use
Advanced Network Configuration to manage the IP address ranges for the subnets for your SCM instance
and Siebel CRM deployments. Use this option only if you want to override the default settings of /16 VCN
and /24 Subnet Classless Inter-Domain Routing (CIDR) block ranges. If you specify Advanced Network
Configuration, then you can modify the default settings of 10.0.0.0/16 for the IP range for the VCN CIDR
block, 10.0.0.0/24 for the IP range for the SCM subnet CIDR block, and 10.0.255.0/24 for the IP range for
the SCM private subnet CIDR block.

For details, see Using Advanced Network Configuration.
14. Under "Key Management", the user can choose to opt for the creation of a new vault provisioned by SCM or use

an existing OCI Vault by passing Vault OCID or choose not to use any vault.

If "Use existing resources" is NOT selected, you can:

◦ Allow SCM to create a new Vault by selecting "Create a new Vault".

◦ Attach an existing OCI Vault by passing the Vault OCID by selecting "Enter OCID of your existing Vault".

28

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

◦ Choose to opt for no Vault by selecting "Do Not Use Vault".

If "Use existing resources" is selected, you can only:

◦ Attach an existing OCI Vault by passing the Vault OCID by selecting "Enter OCID of your existing Vault".

◦ Choose to opt for no Vault by selecting "Do Not Use Vault".

The creation of the new vault is only applicable when the "Use Existing Resources" is not selected.

Note: Oracle recommends using OCI Vaults to conform to best practices regarding managing secrets. For
more information about the best practices for secrets management, see Using Vault for Managing Secrets.

15. Choose Run Apply and then click Create to create the stack. Terraform scripts run which define the
configuration for the new stack.

16. Wait for the completion of the Apply job. If an error such as authorization failed or requested resource not
found appears, then choose Run Apply again.

17. Make a note of the following URLs provided at the end of the run log:

◦ CloudManagerApplication. The URL for running SCM, which uses the public or private IP address and
port number of the newly created instance. You will use this URL to run SCM, as described in Reducing
the Ingress Range for Siebel Cloud Manager. For example:
https://<CM_instance_IP>:<port_num>/

◦ CloudManagerLiftUtilityDownload. The URL for downloading the Siebel Lift utility ZIP file. These
links use the same IP address and port number. You will use this utility in your Siebel CRM on-premises
environment, as described in Downloading and Running the Siebel Lift Utility.

Use a link like this for the container version of the download file:

https://<CM_instance_IP>:<port_num>/scm/api/v1.0/download/siebelliftutility_container.zip

Use a link like this for the non-container version of the download file:

https://<CM_instance_IP>:<port_num>/scm/api/v1.0/download/siebelliftutility.zip

18. To verify the running status of the application, run ssh in the SCM VM instance and check the systemctl status
for siebel-cloud-manager, as follows:

ssh opc@[CM_instance_IP]

19. To verify the SCM application is running, run the following commands:

docker ps
docker logs -t cloudmanager -f

20. To check the response, launch the following URL:

https://<CM_instance_IP>:<port_num>/

If you are performing a greenfield deployment, then you are now ready to create an environment using SCM.
Otherwise, you must first download and run the Siebel Lift utility, as described in Downloading and Running the
Siebel Lift Utility, before you can create an environment using the lifted artifacts in the OCI Object Store.

29

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

About URLs for Siebel CRM Deployments on OCI
Note that the resource endpoints for all Siebel CRM deployments on OCI have the following base URL. The Siebel CRM
application deployments and configurations are located here:

https://<CM_instance_IP>:<port_num>/scm/api/v1.0/

In the example above:

• <CM_instance_IP> is the hostname IP address for this SCM instance.

• <port_num> is the port number on this hostname.

Note: Where security has been configured, https is used instead of http.

The following are two main uses of the base URL:

• Siebel CRM deployments are located at this URL:

https://<CM_instance_IP>:<port_num>/scm/api/v1.0/environment

Each Siebel CRM deployment is accessed by adding the environment ID at the end of the URL, as follows:

https://<CM_instance_IP>:<port_num>/scm/api/v1.0/environment/4QVRX5

• Siebel CRM configurations that you can create for one or more greenfield deployments are located at this URL:

https://<CM_instance_IP>:<port_num>/scm/api/v1.0/configuration

Each Siebel CRM configuration is accessed by adding the configuration ID at the end of the URL, as follows:

https://<CM_instance_IP>:<port_num>/scm/api/v1.0/configuration/MZM3RJ

Note: For Siebel CRM applications deployed in some earlier releases, the base URLs have this form, and are still
valid: https://<CM_instance_IP>:<port_num>/api/v1/environments/. For more information, see earlier versions of this
document.

Uploading Files to the SCM Container Using File Sync
Utility
You can upload files, related to Siebel CRM deployment, to the SCM container using File Sync Utility (FSU). File Sync
Utility is a collection of REST APIs that makes it convenient to upload files to the SCM container. When you run File Sync
Utility, it creates a folder, referred to as sync folder, and uploads files to it. You can create multiple sync folders using File
Sync Utility.

30

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

The following constraints apply when uploading files through File Sync Utility:

• You can only upload files with the following extensions:
.jks, .crt, .txt, .ini, .key, .sso, .p12, .properties, .pem, .ora.

• You can only upload files of size up to 1 MB.

This topic covers how you can use the File Sync Utility for:

• Creating a Sync Folder and Uploading Files

• Uploading Files to an Existing Sync Folder

• Retrieving Files and Directories in a Sync Folder

• Retrieving the List of Sync Folders

• Deleting a Sync Folder

Creating a Sync Folder and Uploading Files
You can create a sync folder and upload files to it using the syncutilities/upload API.

To create a sync folder and upload files to it using curl, call the syncutilities/upload API as follows:
curl -X POST \
 --user "<username>:<password>" \
 --header 'Content-Type: multipart/form-data' \
 --form "file[]=@/path/to/xxxxxxxxxx.jpg" \
 --form "file[]=@/path/to/xxxxxxxxx.crt" \
 --form "file[]=@/path/to/xxxxxxx.ini" \
 --url https:// <CM_instance_IP>:<port_num>/scm/api/v1.0/syncutilities/upload

In the example:

• user is the credentials (user name and password) for basic authentication.

• Content-Type is the type of request content. The value of Content-Type must be multipart/form-data.

• form is the file to upload to the sync folder through the "file[]" key.

• url is the POST endpoint to create a sync folder and upload files to it.

This command generates a new sync ID and creates the sync folder with the same name as the sync ID. It then uploads
the files in the command to this folder. It also creates a log file in the sync folder that records the activities (files added
and files overridden) performed on the sync folder.

Sample response:

{
 "data": {
 rejected_files": [],
 "sync_id": "SCM_FileSync_2024_07_04_07_18_20_2ZH7QY",
 "synced_files": [
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/xxxxxxx.jpg",
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/xxxxxxx.crt",
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/xxxxxxx.ini",
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/
SCM_FileSync_2024_07_04_07_18_20_2ZH7QY_synclogs.txt"
]
 },
 "message": "All files successfully synced.",
 "status": "success",
}

31

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Uploading Files to an Existing Sync Folder
You can upload new files to an existing sync folder or override existing files in the sync folder using the syncutilities/
upload API.

To upload new files or override existing files in an existing sync folder using curl, call the syncutilities/upload API as
follows:

curl -X PUT \
 --user "<username>:<password>" \
 --header 'Content-Type: multipart/form-data' \
 --form "file[]=@/path/to/xxxxxxxxx.crt" \
 --form "file[]=@/path/to/xxxxxxx.ini" \
 --url https:// <CM_instance_IP>:<port_num>/scm/api/v1.0/syncutilities/upload/<sync_id>

In the example:

• user is the credentials (user name and password) for basic authentication.

• Content-Type is the type of request content. The value of Content-Type must be multipart/form-data.

• form is the file to add or override in an existing sync folder through the "file[]" key.

• url is the PUT endpoint to upload new files or override existing files in an existing sync folder. Here, <sync_id> is
the name of the sync folder that you want to update.

Sample response:

{
 "data": {
 "sync_id": "SCM_FileSync_2024_07_04_07_18_20_2ZH7QY",
 "synced_files": [
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/xxxxxxx.crt",
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/xxxxxxx.ini",
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/
SCM_FileSync_2024_07_04_07_18_20_2ZH7QY_synclogs.txt"
]
 },
 "message": "Sync folder updated successfully",
 "status": "success",
}

Retrieving Files and Directories in a Sync Folder
You can retrieve the list of files and directories in a sync folder using the syncutilities API.

To retrieve the list of files and directories in a sync folder using curl, call the syncutilities API as follows:

curl –X GET \
--user "<username>:<password>" \
-–url https://<CM_instance_IP>:<port_num>/scm/api/v1.0/syncutilities/<sync_id>

In the example:

• user is the credentials (user name and password) for basic authentication.

• url is the GET endpoint to retrieve the list of file and directories in a sync folder. Here, <sync_id> is the name of
the sync folder of which you want to retrieve the list of files and directories.

Sample response:

{
 "data": {

32

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "rejected_files": [],
 "sync_id": "SCM_FileSync_2024_07_04_07_18_20_2ZH7QY",
 "synced_files": [
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/
SCM_FileSync_2024_07_04_07_18_20_2ZH7QY_synclogs.txt",
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/xxxxxxx.jpg",
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/xxxxxxx.crt",
 "/home/opc/syncUtility/SCM_FileSync_2024_07_04_07_18_20_2ZH7QY/xxxxxxx.ini"
]
 },
 "message": "Synced Files successfully fetched",
 "status": "success"
}

Retrieving the List of Sync Folders
You can retrieve the list of all the sync folders using the syncutilities API.

To retrieve the list of all sync folders using curl, call the syncutilities API as follows:

curl –X GET \
--user "<username>:<password>" \
-–url https://<CM_instance_IP>:<port_num>/scm/api/v1.0/syncutilities

Note: Don't add a forward slash (/) at the end, it will make the endpoint invalid.

In the example:

• user is the credentials (user name and password) for basic authentication.

• url is the GET endpoint to retrieve the list all sync folders.

Sample response:

{
 "data": {
 "sync_ids": [
 "SCM_FileSync_2024_07_04_07_18_20_2ZH7QY",
 "SCM_FileSync_2024_07_05_04_17_07_4CXU2Q",
 "SCM_FileSync_2024_07_08_11_39_57_2ZQE3A"
]
 },
 "message": "Sync Folders successfully fetched.",
 "status": "success"
}

Deleting a Sync Folder
You can delete a sync folder using the syncutilities API. Deleting a sync folder permanently deletes the sync folder and
all the files and directories in it.

To delete a sync folder with the files and directories in it, call the syncutilities API as follows:

curl –X DELETE \
--user "<username>:<password>" \
 -–url https://<CM_instance_IP>:<port_num>/scm/api/v1.0/syncutilities/<sync_id>

In the example:

• user is the credentials (user name and password) for basic authentication.

33

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

• url is the DELETE endpoint to delete a sync folder. Here, <sync_id> is the name of the sync folder that you want
to delete.

Sample response:

{
 "data": {},
 "message": "Sync folder deleted.",
 "status": "success"
}

Mirroring Siebel Base Container Images
This topic describes how to mirror Siebel CRM base container images using REST APIs. Base images are the default
Siebel CRM container images provided by Oracle and are also referred to as vanilla images. The APIs allow you to mirror
images and update the user container registry credentials.

This topic contains the following sections:

• Mirroring Siebel CRM Base Images

• Managing User Container Registry Credentials

Mirroring Siebel CRM Base Images
You can mirror the Siebel CRM base images that SCM uses to provision a Siebel CRM environment, to a user defined
destination registry through the base/images/mirror API. The API call pulls the container images and pushes them to the
user defined destination registry.

To mirror the base images, call the base/images/mirror API as follows:

POST endpoint:

https://<CM_Instance_IP>:<port_num>/scm/api/v1.0/base/images/mirror

Sample payload:

{
 "destination_registry": {
 "registry_url": "iad.ocir.io",
 "registry_user": "deploygroup/user.name@example.com",
 "registry_password": "aDgFFg123",
 "registry_prefix": "deploygroup"
 },
 "update_global_config": "true"
}

Note: Specify the value of payload parameters suitable for your circumstances by referring to the payload parameters
in the Parameters in Payload Content table.

For every image mirroring process job triggered via the POST API, a unique 6 character identifier "RUN_ID" is generated
through which you can check status of the job. To get the details of the current job, execute a GET method API call as
follows:

GET endpoint:

34

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

https://<CM_Instance_IP>:<port_num>/scm/api/v1.0/base/images/mirror/<RUN_ID>

Sample response:

{
 "data": {
 "image_mirror_details": {
 "end_time": null,
 "images": {
 "iad.ocir.io/deploygroup/busybox:latest": {
 "end_time": "Fri, 13 Sep 2024 09:57:49 +0000",
 "message": "Successfully uploaded to destination registry.",
 "start_time": "Fri, 13 Sep 2024 09:57:45 +0000",
 "status": "completed"
 },
 "iad.ocir.io/deploygroup/curlimages/curl:latest": {
 "end_time": "Fri, 13 Sep 2024 09:57:54 +0000",
 "message": "Successfully uploaded to destination registry.",
 "start_time": "Fri, 13 Sep 2024 09:57:49 +0000",
 "status": "completed"
 },
 "iad.ocir.io/deploygroup/dx4c/dev/dbutils:23.1": {
 "end_time": null,
 "message": "Currently being uploaded.",
 "start_time": "Fri, 13 Sep 2024 09:57:54 +0000",
 "status": "in-progress"
 }
 },
 "images_processed": 2,
 "run_id": "XXXXX",
 "start_time": "Fri, 13 Sep 2024 09:57:45 +0000",
 "status": "in-progress",
 "total_images": 31,
 "update_global_config": true
 }
 },
 "message": "Current status of the image mirroring process",
 "status": "success"
}

Parameters in Response Definition
The following table describes the parameters in the response:

Payload Parameter Section Definition

image_mirror_details Top level Provides the details of the image mirroring process.

start_time image_mirror_details The time when the image mirroring process started.

end_time image_mirror_details The time when the image mirroring process finished.

images image_mirror_details A dictionary containing individual images and their respective upload statuses.

start_time images The time when this specific image started uploading.

end_time images The time when this specific image finished uploading.

message images Status message for the specific image upload process.

images_processed image_mirror_details The number of images processed so far during the mirroring process.

35

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Definition

run_id image_mirror_details Unique identifier for tracking the current image mirroring process.

status image_mirror_details The overall status of the image mirroring process (in-progress, completed, failed).

total_images image_mirror_details The total number of images scheduled for mirroring in the process.

update_global_config image_mirror_details Indicates whether the destination registry details was saved to the global
configuration for future use.

message Top level A general message describing the current status of the image mirroring operation.

status Top level Indicates the success or failure of the API request (success, failed).

Note: If you're using Oracle Cloud Infrastructure Registry (OCIR) as the destination registry, ensure that registry_user
has permission to create the repository name (for example, project01/acme-web-app/component1) in the root
compartment, or you should create the repositories before pushing images. The /home/opc/siebel-cloud-manager/
scripts/cmapp/yaml/siebel_images.yaml file in the SCM container will contain a list of images, and the corresponding
repository paths need to be created in OCIR. For more information, see the Creating a Repository topic in the OCI
documentation.

Managing User Container Registry Credentials
You can update and retrieve the user container registry credentials through the registry API. This ensures that the
Siebel CRM base image can be pulled from the user registry for Siebel CRM environment creations in the future.

This topic contains the following sections:

• Updating User Container Registry Credentials

• Retrieving User Container Registry Credentials

Updating User Container Registry Credentials
To update the user container registry credentials, call the registry API as follows:

PUT endpoint:

https://<CM_Instance_IP>:<port_num>/scm/api/v1.0/registry

Sample payload:

{
 "registry_url": "iad.ocir.io",
 "registry_user": "deploygroup/user.name@example.com",
 "registry_password": "aDgFFg123",
 "registry_prefix": "deploygroup"
}

Specify payload parameters suitable for your circumstances by referring to the following payload parameters:

36

https://docs.oracle.com/en-us/iaas/Content/Registry/Tasks/registrycreatingarepository.htm#top

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Definition

registry_user Top Level (Required) Specifies the user ID to connect to the container registry. This user must
have access to push and pull images from container registry.

registry_url Top Level (Required) Specifies the URL of the Open Container Initiative compliant container
registry.

For example, for the OCI container registry in the Ashburn region, you might use
iad.ocir.io. For more information, see the Preparing for Container Registry topic
in the Oracle Cloud Infrastructure documentation.

registry_password Top Level (Required) Specifies the password or authentication token for registry_user.

registry_prefix Top Level (Optional) Specifies a prefix that's appended after registry_url.

For OCI container registry, this should be the tenancy namespace, if needed, you can
add a suffix to it. As it's an optional field, it can be left blank.

Retrieving User Container Registry Credentials
To retrieve the user container registry credentials, call the registry API as follows:

GET endpoint:

https://<CM_Instance_IP>:<port_num>/scm/api/v1.0/registry

Sample response:

{
 "data": {
 "registry_password": "********",
 "registry_prefix": "deploygroup",
 "registry_url": "iad.ocir.io",
 "registry_user": "deploygroup/user.name@example.com"
 },
 "message": "Registry details have been fetched successfully.",
 "status": "success"
}

Note: To ensure security, sensitive data such as the registry password is masked in the response.

Downloading and Running the Siebel Lift Utility
The Siebel Lift utility is a command-line utility, developed in Python, that is available from SCM. This main functions of
this utility are as follows:

• Creates deployment artifacts from an existing on-premises deployment of Siebel CRM. Deployment artifacts
are created in a staging location.

• Reads the stored artifacts you created and uploads them to OCI Object Storage to populate the migration
pipeline for your Siebel CRM deployment on OCI.

37

https://docs.oracle.com/en-us/iaas/Content/Registry/Concepts/registryprerequisites.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Note: The Siebel Lift utility is only for deployments that involve performing the "lift" operations of creating and
uploading deployment kits from an existing on-premises deployment of Siebel CRM. If you are performing a
greenfield deployment of Siebel CRM on OCI, then you do not need to download, install, or use the Siebel Lift utility.

After you download the Siebel Lift utility and perform preparatory steps, you run the utility to do the following:

1. Introspect, validate, and archive the required Siebel CRM artifacts from the Siebel CRM on-premises
environment. This step is also referred to as creating deployment kits.

These artifacts include application artifacts (the Siebel configuration, Web files, the Siebel File System, and
others) and Siebel database artifacts. The artifacts are archived in TAR files and placed in a staging location in
the on-premises environment. The archived artifact files are also referred to as deployment kits.

2. Upload the deployment kits into OCI Object Storage.

Note: You can perform one or both of these operations (create and upload) in a single execution of the Siebel Lift
utility, or perform creation of artifacts in one execution and upload of artifacts in another.

The staging location is where the deployment kits will be created in the required format at the time of executing the
Siebel Lift utility. When you execute the utility to create deployment kits, the staging location must be empty in order to
avoid any duplication. The staging location must only contain artifacts that need to be uploaded. The staging location
must be accessible from the computer where you execute the utility.

You can download, install, and run the Siebel Lift utility in container mode or in non-container mode.

In either container mode or non-container mode, you can run the Siebel Lift utility in silent mode or in interactive mode.
When you use silent mode, you specify a response file that you have prepared. Similarly, when you run the utility in
interactive mode, you can use input files to provide values for database settings or OCI settings.

For more information about requirements for the Siebel Lift utility, see Requirements and Limitations.

Note: If you use the tasks in Downloading and Running the Siebel Lift Utility (Container Mode) (Linux only), then do
not perform the tasks for non-container mode.

This topic contains the following information:

• Downloading and Running the Siebel Lift Utility (Container Mode)

• Downloading and Running the Siebel Lift Utility (Non-Container Mode)

• Troubleshooting Siebel Lift Utility Execution

Downloading and Running the Siebel Lift Utility (Container Mode)
You can use the procedures in this topic to download and run the Siebel Lift utility using container mode. This option is
recommended. It is the default option on Linux, though it can also be used on Windows, where you are running Linux
containers on Windows. This topic is part of Downloading and Running the Siebel Lift Utility.

Note: If you use the tasks in this topic (for container mode), then do not perform the tasks for non-container mode.

Note: Separate procedures are provided for running the Siebel Lift utility in silent mode or in interactive mode. It
is recommended to run the Siebel Lift utility in silent mode. For information about the settings equivalent to the
response file options, see Running the Siebel Lift Utility in Interactive Mode (for Non-Container Mode).

38

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Downloading the Siebel Lift Utility (for Container Mode)
Use the following procedure to download the Siebel Lift utility for container mode.

To download the Siebel Lift utility for container mode (Linux only)
1. Obtain the file siebelliftutility_container.zip from SCM, as described at the end of the procedure in

Downloading and Installing Siebel Cloud Manager.
2. Extract the contents of the ZIP file. This file contains the following contents:

◦ execute_lift_container.sh. A shell script used to run the Docker container.

◦ volumemounts.ini. Contains local paths for Docker container volume mounts.

◦ oci_config_template.ini. Contains OCI credentials details (for interactive mode only). To be populated
only if OCI object storage is used during "lift-and-shift".

◦ oracle_db_config_template.ini. Contains Oracle Database details (for interactive mode only).

◦ lift_utility_responsefile_template.resp. A response file template used for silent mode execution of the
utility.

◦ tnsnames.ora. A template of the tnsnames.ora file, containing database connection credentials details.

3. Install and configure Docker software for managing containers.
4. Update the volumemounts.ini file with the required values. In particular, note the following:

◦ While executing the Siebel Lift utility from the Docker container, provide the mounted volume path of
the Docker container at the location indicated by STAGING_LOCATION (as specified in volumemounts.ini),
such as /liftstage.

◦ If you will run the Siebel Lift utility in silent mode, then keep the response file template
(lift_utility_responsefile_template.resp) at the location indicated by TEMPLATES_FILE_LOCATION (as
specified in volumemounts.ini), such as /templates.

◦ If you will run the Siebel Lift utility in interactive mode, and you want to provide the OCI and
database related configuration details via files, then keep the oci_config_template.ini and
oracle_db_config_template.ini template files at the location indicated by TEMPLATES_FILE_LOCATION
(as specified in volumemounts.ini), such as /templates.

◦ If you need to access the log files outside the Docker container, then also update the local mounted path
value for the variable LIFT_TOOL_LOG_LOCATION (as specified in volumemounts.ini).

5. Update the tnsnames.ora file with the required values.
While executing the Siebel Lift utility from the Docker container to generate database artifacts, create a
directory named tns inside the local mounted path for /templates. Copy the provided tnsnames.ora file to this
tns folder and update it with the database connection details as needed.

Note: Alternatively, you can use actual database connect string details as input instead of the TNS profile
name while running the Siebel Lift utility. In this case, you do not need the provided tnsnames.ora file.

6. While executing the Siebel Lift utility from the Docker container to generate database artifacts (deployment
kits), provide the database client location, which is /usr/lib/oracle/12.2/client.

Running the Siebel Lift Utility in Silent Mode (for Container Mode)
Use the following procedure to run the Siebel Lift utility in silent mode.

To run the Siebel Lift utility in silent mode (for container mode)
• Run a command like the following in a shell:

39

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

sh execute_lift_container.sh -m silent -v volumemounts.ini -f lift_utility_responsefile_template.resp -s
 <smc_password> -d <database_password> -a <DNS1:IP1>,<DNS2:IP2>

In the sample command, the flag:

◦ -m is the mode of the execution (silent or interactive).

◦ -v is the volume mount file location.

◦ -f is the response file location required for silent mode execution.

◦ -s is the SMC Authenticated Password required for silent mode execution.

◦ -d is the table owner password required for silent mode execution.

◦ -a is the comma-separated list of DNS:IP hosts mappings. This is an optional parameter.

Note: It is recommended to run the Siebel Lift utility in silent mode. For information about the settings
equivalent to the response file options, see Running the Siebel Lift Utility in Interactive Mode (for Non-
Container Mode).

Running the Siebel Lift Utility in Interactive Mode (for Container Mode)

Use the following procedure to run the Siebel Lift utility in interactive mode.

To run the Siebel Lift utility in interactive mode (for container mode)

• Run a command like the following in a shell:

sh execute_lift_container.sh -m interactive -v volumemounts.ini -a <DNS1:IP1>,<DNS2:IP2>

In the sample command, the flag:

◦ -m is the mode of the execution (silent or interactive).

◦ -v is the volume mount file location.

◦ -f is the response file location required for silent mode execution.

◦ -s is the SMC Authenticated Password required for silent mode execution.

◦ -d is the table owner password required for silent mode execution.

◦ -a is the comma-separated list of DNS:IP hosts mappings. This is an optional parameter.

Note: For more information about interactive mode, see Running the Siebel Lift Utility in Interactive Mode
(for Non-Container Mode).

Note: When running the Lift utility in container mode, make sure that the user group 1000 has the necessary
access to all the volume mounts. Run the following commands to grant required access to user group 1000:

chown -R 1000:1000 <all_volume_mount_folders>
chmod -R g+rwx <all_volume_mount_folders>

40

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Downloading and Running the Siebel Lift Utility (Non-Container
Mode)
You can use the procedures in this topic to download and run the Siebel Lift utility in non-container mode. This topic is
part of Downloading and Running the Siebel Lift Utility.

Downloading the Siebel Lift Utility (for Non-Container Mode)
Use the following procedure to download the Siebel Lift utility for non-container mode.

Prerequisites for running Siebel Lift Utility (for Non-Container Mode):

You must have OpenSSL version 3.0.5 or higher for the encryption/decryption mechanism to work.

To download the Siebel Lift utility (for non-container mode)

1. Obtain the file siebelliftutility.zip from SCM, as described at the end of the procedure in Downloading and
Installing Siebel Cloud Manager.

2. Extract the contents of the ZIP file.

Installing and Configuring Python (for Non-Container Mode)
If you are using non-container mode for downloading and running the Siebel Lift utility, then you must use one of the
procedures below to install and configure Python. Do this before you run the Siebel Lift utility.

To install and configure Python on Windows (for non-container mode)

1. On Windows, you download Python from https://www.python.org/downloads.

Next, you will install various Python modules with the required settings by using the appropriate command and
the requirements.txt file for the Python installation. If you are installing a later version of Python, then make
sure to use the compatible versions of the dependent modules.

2. Configure proxy settings by entering a command like the following:

export/set https_proxy=https://proxy-name:port

For example: https_proxy=https://www-proxy-hqdc.us.oracle.com:80
3. Use a command like the following to install Python. The versions defined in the requirements.txt settings are

compatible with the version of Python you install (Python 3.9.6). Run this command from the folder in which
you have extracted the siebelliftutility.zip file.

pip install -f third-party-lib/ -r requirements.txt

To install and configure Python on Linux (for non-container mode)

1. On Linux, you use documented commands to install and configure Python 3.8.x or 3.9.x from Software
Collection Library(SCL). The versions defined in the requirements.txt settings are compatible with the version
of Python you install.

For Oracle Enterprise Linux 7, use commands like the following to install and configure Python 3.8.x from SCL.
In this case, the versions defined in the requirements.txt settings are compatible with Python 3.8.x.

41

https://www.python.org/downloads

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

◦ Add proxy to /etc/yum.conf for enabling proxy in yum installs, as follows:
sudo yum-config-manager --enable ol7_latest ol7_optional_latest
sudo yum install -y oracle-softwarecollection-release-el7
sudo yum -y install scl-utils rh-python38

◦ To enable and use Python 3.8.x from the SCL, run these commands. Run the pip install command from
the folder in which you have extracted the siebelliftutility.zip file.
scl enable rh-python38 bash
python --version
pip install -f third-party-lib/ -r requirements.txt

For Oracle Enterprise Linux 8, use commands like the following to install and configure Python 3.9.x from SCL.
In this case, the versions defined in the requirements.txt settings are compatible with Python 3.9.x. For more
information, see:
https://yum.oracle.com/oracle-linux-python.html

2. If you will be creating Siebel database artifacts (deployment kits), then validate that you have the necessary
version of the Oracle Database client. For more information, see Requirements and Limitations.

3. In the PATH environment variable, include Python, Python scripts, 7-Zip (or other extraction tool), and the
Oracle Database home.

4. Verify the setup by running commands like the following on the OCI terminal or command prompt:
python --version
7z
oci -v

Note: If any of these commands fail, then check the PATH variable definitions made in Step 3 of this
procedure and update them as needed. If you are behind a firewall, then you might also need to modify
the HTTP and HTTPS proxy settings for your environment. Set the environment variables http_proxy and
https_proxy to suitable proxy servers.

Running the Siebel Lift Utility in Silent Mode (for Non-Container Mode)
Use the following procedure to run the Siebel Lift utility in silent mode.

The response file lift_utility_responsefile_template.resp is available in the directory where you extracted the utility.
You can modify a copy of this file according to your requirements.

Note: It is recommended to run the Siebel Lift utility in silent mode. For information about the settings equivalent to
the response file options, see the procedure for running Siebel Lift utility in interactive mode, in Running the Siebel
Lift Utility in Interactive Mode (for Non-Container Mode).

To run the Siebel Lift utility in silent mode (for non-container mode)
1. Modify the response file as needed.

The response file you specify must contain settings corresponding to those described in the procedure for
running the Siebel Lift utility in interactive mode.

2. Enter the following command in a command window or shell:
python siebel_lift_utility.py -f <response_file> -sp <smc_password> -dp <table_owner_password>

42

https://yum.oracle.com/oracle-linux-python.html

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

In this command, use the arguments to specify a response file, the password for Siebel Management Console
(SMC), and the table owner password. The -sp and -dp flags are mandatory where SMC_CONFIGURATION and
DATABASE (in the section ARTIFACT_TYPE) are set to YES in the response file.

Running the Siebel Lift Utility in Interactive Mode (for Non-Container Mode)
Use the following procedure to run the Siebel Lift utility in interactive mode.

Note: It is recommended to run the Siebel Lift utility in silent mode. For more information, see Running the Siebel Lift
Utility in Silent Mode (for Non-Container Mode).

To run the Siebel Lift utility in interactive mode (for non-container mode)

1. Enter the following command in a command window or shell:

python siebel_lift_utility.py

Follow the instructions and provide the required inputs on each screen. The steps that follow describe the
available options.

2. In the welcome screen, select the task you want to perform. You can choose to create deployment kits, upload
deployment kits to OCI Object Storage, or both.

3. If you are creating deployment kits, then select the artifact type for creating deployment kits. You can select
application tier artifacts, database tier artifacts, or both.

4. If you selected application tier artifacts, then select one or more of the following options, which are mandatory
for deployment: SMC configuration profiles, Siebel File System, or custom Web files. You can also select
encryption key file or other artifacts (files not included in other options).

5. If you selected SMC configuration profiles as one of the application tier artifact selections, then specify the
details to allow introspection of the SMC configuration data.

Specify the SMC host name, the SMC HTTPS port, the application context root name, the authenticated user
name, and the authenticated user password. For more information about these options, see Siebel Installation
Guide.

6. If you included Siebel File System as one of the application tier artifact selections, then specify the Siebel File
System path locations in a single comma-separated value. (This value would correspond to the Siebel File
System parameter in the Siebel CRM on-premises environment.)

7. If you selected custom Web files as one of the application tier artifact selections, then specify the locations of
these files (custom files, custom images, and custom scripts) in the application container directory for your
existing deployment.

◦ For Siebel CRM 21.2 or later, specify SIEBEL_ROOT /applicationcontainer_external (on the Siebel Enterprise
installation location where you're running Siebel Application Interface) as the parent directory for the
three types of files.

◦ For Siebel CRM 21.1 and earlier, specify SIEBEL_ROOT /applicationcontainer (on the Siebel Application
Interface installation location) as the parent directory for the three types of files.

For more information about the Web artifact locations, see Siebel Installation Guide for your Siebel CRM
installed version.

8. If you selected database tier artifacts in Step 3 of this procedure, then select the database type. (In this release,
Oracle Database is the only selection.)

43

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

9. Specify the database configuration information by doing one of the following:

◦ Directly specify information such as the following:
- Oracle Home location. Specify the installation location of the Oracle Client.
- Table owner user. Specify the table owner user.
- Table owner user password. Specify the table owner user password.
- TNS profile name. Specify the TNS profile name from the tsnnames.ora file.
- Database directory creation flag. (Optional) Used to map the directory location in the database.

If a directory is already created or mapped by the Database Administrator, then specify N. If a
directory wasn't already created, then specify Y.

- Number of parallel transactions. (Optional) Used to increase the performance of this utility.
This parameter depends on the CPU configuration: if there are more than one CPU, then you can
specify a value greater than 1 (the default is 1). It is recommended to pass the value 16 to make the
utility run faster.

- Database directory name. Used to create the directory name to store the database dump files.
- Application user extraction flag. (Optional) Used to extract the Siebel users and their access.

Specify Y (the default) to extract all Siebel users. Specify N to extract only SADMIN and
GUESTUSER.

◦ Alternatively, you can prepare a database configuration file containing these settings, such as
db_config.ini, and specify the location of this file.

10. If you are uploading deployment kits to OCI Object Storage, then specify configuration information for OCI
access by doing one of the following:

◦ Directly specify information such as OCI region name, OCI tenancy ID, OCI compartment ID, OCI user ID,
OCI private key file location, OCI passphrase, OCI fingerprint, and OCI bucket name.

You can find most of these settings from the Profile menu after logging into OCI. If necessary, first create
API keys. Then you can download the OCI private key file to a location accessible to the Siebel Lift utility.

◦ Alternatively, you can prepare an OCI configuration file containing these settings, such as oci_config.ini,
and specify the location of this file. Structure the file like the following:

<KEY=VALUE> (Do not change the KEY name. Only update the VALUE.)
[OCI_CONFIGURATION_DETAILS]
[NOTE: An Oracle Cloud Infrastructure region. Example: us-example-1]
OCI_REGION_NAME=
[NOTE: OCID of the tenancy. Example: ocid1.tenancy.oc1..<unique_ID>]
OCI_TENANCY_ID=
[NOTE: OCID of the compartment. Example: ocid1.compartment.oc1..<unique_ID>]
OCI_COMPARTMENT_ID=
[NOTE: OCID of the user. Example: ocid1.user.oc1..<unique_ID>]
OCI_USER_ID=
[NOTE: Full path and filename of the private key. The key pair must be in PEM format. Example:
 oci_api_key.pem]
OCI_PRIVATE_KEY_FILE_LOCATION=
[NOTE: Passphrase used for the key, if it is encrypted.]
OCI_PASSPHRASE=
[NOTE: Fingerprint for the public key that was added to OCI user.]
OCI_FINGER_PRINT=
[NOTE: Name of the bucket to be created or already exist inside the compartment of the OCI
 object store. The deployment kit gets upload under this bucket.]
OCI_BUCKET_NAME=

44

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

11. Complete and exit your Siebel Lift utility session. The deployment kits will be created, uploaded to OCI Object
Storage, or both, according to your selections.

When you create deployment kits, an export.log file is created, which you can review. Creating Siebel database
artifacts creates a very large file named like EXPORT_01.DMP.

Note: Before you proceed with Siebel CRM deployment steps described in Deploying Siebel CRM on OCI, in
order to make sure deployment is successful, make sure that the deployment artifacts have been successfully
uploaded.

12. Review log files such as siebel_lift_utility.log, setup.log, or createdirectory.log to confirm successful
execution or to help you troubleshoot issues you might encounter.

Also review Requirements and Limitations and other information about the Siebel Lift utility. For issues in
creating database artifacts, review your specified number of parallel transactions or other settings.

Lifting a Siebel CRM Environment Running on Siebel CRM
Compliant Operating System
This topic describes the procedure to run the Siebel Lift utility against a Siebel CRM environment hosted on another
machine that has a Siebel CRM compatible operating system running on it; for example, appropriate flavors and
versions of Oracle Solaris, HP-UX, IBM AIX, Linux and Windows.

Note: For representational purposes, this section will refer only to Oracle Solaris but the same steps apply to all Siebel
CRM compatible operating systems mentioned above.

Prerequisites for lifting a Siebel environment running on Oracle Solaris:

Note: We recommend running the Siebel Lift utility in container mode on Oracle Enterprise Linux (OEL) machines to
lift a Siebel CRM environment running on another Oracle Solaris machine.

• Create a shared file path for the staging location. This shared file path must be accessible from both the Oracle
Solaris machine on which Siebel CRM is installed and the OEL machine from where the Siebel Lift utility will be
run, for example, /net/liftsharedpath/.

• Create the following sub folders under the shared file path to store the different artifacts:

◦ A folder to store the Siebel CRM file system.

◦ A templates folder to store template files such as lift_utility_responsefile_template.resp, and so on.

◦ A folder to store custom scripts, custom files, custom images, and so on.

◦ A folder to store the encryption key file.

◦ An additional folder to store other file types.

• Copy the Siebel CRM artifact from the Oracle Solaris machine (running Siebel CRM) to the respective sub
folders in the shared file path.

45

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Lifting a Siebel CRM Environment Running on Oracle Solaris
To lift a Siebel CRM environment running on Oracle Solaris:

1. Download the Siebel Lift utility on an OEL machine that has access to the shared file path. For more information
on downloading the Siebel Lift utility, see Downloading the Siebel Lift Utility (for Container Mode).

2. Run the Siebel Lift utility on the OEL machine in container mode. For more information on running the Siebel
Lift utility in container mode, see Running the Siebel Lift Utility in Silent Mode (for Container Mode).

Troubleshooting Siebel Lift Utility Execution
This topic includes troubleshooting information for Siebel Lift utility execution. This topic is part of Downloading and
Running the Siebel Lift Utility.

Create Directory Error
When executing siebel_lift_utility.py, you might encounter that the execution fails and error messages like the
following are seen in the siebel_lift_utility.log/setup.log/createdirectory.log file.

2021-10-16 19:56:44,971 - __main__ - INFO - Lift Execution Started.
2021-10-17 07:54:20,106 - __main__ - INFO - Successfully captured the required inputs.
2021-10-17 07:54:20,106 - __main__ - INFO - Response File creation started.
2021-10-17 07:54:24,105 - __main__ - INFO - Response file :<_io.TextIOWrapper name='response_files\
\responsefile_17102021_075420.resp' mode='a' encoding='cp1252'> successfully created.
2021-10-17 07:54:24,120 - __main__ - INFO - Starting export DB execution.
2021-10-17 07:54:24,120 - __main__ - INFO - Export DB process is in progress. Please wait.....
2021-10-17 07:54:24,120 - __main__ - INFO - ['ExportDB.exe', '-s', 'C:\\app\\client\\Administrator\\product
\\19.0.0\\client_1\\bin', '-t', 'SIEBEL', '-p', 'SIEBEL', '-d', 'ORCL', '-f', 'C:\\CM', '-m', '', '-n', '',
 '-l', WindowsPath('C:/CM/logs')]
2021-10-17 07:54:24,135 - __main__ - ERROR - Error in executing database export utility. (<class
 'FileNotFoundError'>, FileNotFoundError(2, 'The system cannot find the file specified', None, 2, None),
 <traceback object at 0x000001A1826BAD40>)
Setup.log:
Sun Oct 17,2021 [12:20:14] : Stage 2 of 3 : Creating Directory
Sun Oct 17,2021 [12:20:16] : Stage 2 of 3 : Error during directory creation
Createdirectory.log:
CREATE OR REPLACE DIRECTORY EXPORT_DIR AS 'C:\CM'
*
ERROR at line 1:
ORA-01031: insufficient privileges

Root Cause: In the above step, the create directory has failed because the Table Owner (TBLO) user does not have the
privilege to create the directory.

Solution: Make sure to have Create Directory privilege for the TBLO user (in this case, it is SIEBEL) before running the
utility. Otherwise, have the directory created by the DBA so that you can choose the Create Directory option as N and
proceed. If you have the permission to grant the required privilege, then run the following command after connecting to
the database:

grant create any directory to <TBLO user>;

Introspection Error Codes
When the Siebel Lift utility performs introspection on data about the topology and configuration of the Siebel CRM
environment, different codes are returned, indicating a successful run or an error encountered. The following table
describes the possible codes returned. If introspection failed, then rerun the introspection.

46

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Error Codes for Siebel Lift Utility Introspection

Status Error
Code

Message

Success

0

Introspection successfully completed.

Success

2

Introspection successfully completed with trivial errors &/or warnings.

Error

1

Introspection failed. Rerun the utility.

Reducing the Ingress Range for Siebel Cloud Manager
Before you run SCM to create an environment, you can optionally reduce the ingress range to tighten network security
for SCM. The procedure below uses siebel-cm as the example compartment name.

Related Topics
Downloading and Installing Siebel Cloud Manager

Using Advanced Network Configuration

To reduce the ingress range for SCM
1. Navigate to Instances.
2. Select the prefix -siebel-cm compartment in the left side of screen to list the newly created instances.
3. Drill down to the prefix -siebel-cm instance with public IP specified.
4. Drill down to the link prefix -siebel-cm-subnet given as subnet under Primary VNIC header.
5. Drill down on the link security-list-for-cm.
6. Click Edit Ingress Rules.
7. (Optional) Change the 0.0.0.0/0 for Source CIDR for Destination Port 16690 to the desired IP Addresses/Range.

Note: Ingress port 16690 is by default added to the security list with 0.0.0.0/0 to open for internet. It is
recommended to change this CIDR block to the required limited IP addresses or CIDR blocks.

Stack apply job logs have the URL endpoint for the REST application, or you can get the IP address info from
the Compute instance of SCM (prefix -siebel-cm) inside prefix -siebel-cm compartment, where prefix is the
input given during stack creation.

Using Advanced Network Configuration
SCM and the Siebel CRM environments you deploy on OCI use several subnets. Each subnet uses a range of IP host
addresses. When you install SCM, for complete network IP range customization, you can specify to use Advanced
Network Configuration.

47

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

If you choose this option, then you can specify the IP host address range for the SCM subnet and private subnet. Later,
when you deploy Siebel CRM, you specify the minimum IP range for each subnet in this deployment's environment. The
IP ranges are specified using CIDR notation.

• You configure the SCM subnet and private subnet one time only, during SCM stack creation. This subnet
applies in the compartment in which you installed SCM. See also Downloading and Installing Siebel Cloud
Manager.

• All other subnets apply per Siebel CRM environment, in the compartment for that environment. You specify
these additional subnet CIDR ranges as payload parameters for the Siebel CRM deployment, as described in
Parameters in Payload Content.
The default CIDR range values for the payload parameters below are those for VCN 10.0.0.0/16, SCM subnet
10.0.0.0/24, and private subnet 10.0.255.0/24 ranges. When using Advanced Network Configuration, specify
different values as appropriate.
"infrastructure": {
 "siebel_lb_subnet_cidr": "10.0.1.0/24",
 "siebel_private_subnet_cidr": "10.0.2.0/24",
 "siebel_db_subnet_cidr": "10.0.3.0/24",
 "siebel_cluster_subnet_cidr": "10.0.4.0/24"
}

When giving Siebel CRM subnet IP ranges using Advanced Network Configuration, review the following information:

• The minimum IP range required for one Siebel CRM environment is /26 for VCN, providing 64 IP host
addresses. The minimum IP range required for each subnet is either /29 or /30, as shown in the following
table. /29 provides eight host addresses and /30 provides four host addresses.

Note: In each subnet's CIDR range, the OCI Networking service reserves the first two addresses and the
last address for use by Oracle. So, if a subnet requires one host address, then the minimum IP range for that
subnet is /30. If a subnet requires two or more host addresses, then the minimum IP subnet range is /29. You
must use a valid CIDR for each subnet's IP range.

• Each subnet range must be inside the parent VCN IP range given.

• In case of multiple Siebel CRM environments in the same SCM instance, you must use nonoverlapping IP
ranges for each environment's subnets.

Subnets for SCM and Siebel CRM on OCI

Subnet Usage Minimum Subnet Range / Description

Cloud Manager subnet

SCM public endpoint

/30

SCM uses one host address in this subnet for its public end point.

Cloud Manager private subnet

SCM mount target

/29

SCM uses one host address in this subnet for a shared mount target
resource.

siebel_lb_subnet_cidr

Load Balancer subnet

/29

The OCI Load Balancers use two host addresses in the subnet, one
each for the primary and secondary load balancers.

48

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Subnet Usage Minimum Subnet Range / Description

siebel_private_subnet_cidr

Kubernetes worker nodes private
subnet

/29

By default, SCM configures three Kubernetes nodes. Each Siebel CRM
environment requires three host addresses in this private subnet for
Kubernetes nodes.

siebel_db_subnet_cidr

Database private subnet

/30

A minimum of one host address is needed for the database private
subnet for Autonomous Database (ATP) or Oracle Database Cloud
Service (DBCS).

siebel_cluster_subnet_cidr

OKE cluster subnet (Kubernetes
API server)

/30

A minimum of one host address is needed for the Kubernetes API
Server.

Related Topics
Downloading and Installing Siebel Cloud Manager

Reducing the Ingress Range for Siebel Cloud Manager

Parameters in Payload Content

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/overview.htm

Customizing Configurations Prior to Greenfield
Deployment
In a greenfield deployment scenario, when you deploy a Siebel CRM environment as described in Deploying Siebel CRM
on OCI, by default the environment is automatically configured and provisioned as a single step. This topic describes
how you can optionally decouple the configuration and provisioning stages, for the purpose of customizing the
configuration before you provision the environment.

Configurations are maintained in Git repositories for your subsequent customization and use. The configurations
present in Git repositories are the source for environment provisioning in this use case.

Once you've created a configuration, you can customize it according to your requirements. Configuration
customizations can include any of the types of changes described for deployed environments in Making Incremental
Changes to Your Siebel CRM Deployment on OCI. Examples include adding or deleting components on a server, adding
new profiles, or adding or deleting parameters for an enterprise, server, or component.

You can use your customized configuration as a base for provisioning multiple environments, such as for test or
production purposes. To do this, you must pass the configuration ID during the provisioning step.

49

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/overview.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Configuration options for a Siebel CRM greenfield deployment on OCI have the following use cases:

• Greenfield deployment use case 1 (default configuration). In this use case, you use SCM to deploy a new
Siebel CRM environment on OCI with a default configuration.

• Greenfield deployment use case 2 (customized configuration). In this use case, you use SCM to deploy a
new Siebel CRM environment on OCI with a customized configuration. The configuration is created first (for
which a configuration ID is generated), then you customize the configuration, and then you deploy it for one or
more environments. This is the use case described in this topic.

For an example payload and usage guidelines, see Example Payload to Deploy Siebel CRM.

Note: After deployment, any configuration changes must be made in the deployed environment, as described in
Making Incremental Changes to Your Siebel CRM Deployment on OCI. If you require the same changes in the original
customized configuration that you created using greenfield configuration use case 2, then you must make the same
changes in both locations.

This topic contains the following information:

• Creating the Configuration and Obtaining the Configuration ID

• Customizing the Configuration

Related Topics
Deploying Siebel CRM on OCI

Checking the Status of a Requested Configuration

Making Incremental Changes to Your Siebel CRM Deployment on OCI

Creating the Configuration and Obtaining the Configuration ID
This topic is part of Customizing Configurations Prior to Greenfield Deployment.

If you plan to customize the configuration prior to provisioning the environment for greenfield deployment use case 2,
then the first step is to create the configuration and to obtain the six-character ID for this configuration.

To create the configuration and obtain the configuration ID
• Do a POST API like the following:

POST https://<CM_Instance_IP>:16690/scm/api/v1.0/configuration

Note: Specify a payload appropriate for greenfield deployment use case 2. For an example payload and for
usage guidelines, see Example Payload to Deploy Siebel CRM.

The configuration is created and its configuration ID is returned, such as MZM3RJ.

As a result of the above POST API, if the git_type is set to gitlab, the following two Git repositories are created:

◦ config_<namespace>_<config_id>-helmcharts

(for example: config_stage_MZM3RJ-helmcharts)

50

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

◦ config_<namespace>_<config_id>-cloud-manager

(for example: config_stage_MZM3RJ-cloud-manager)

This configuration can be accessed at the following location inside the SCM container by SSH into the SCM
instance.

/home/opc/siebel/configuration/MZM3RJ

Enter commands like the following:

docker exec -it cloudmanager bash

You can use a selfLink like the following for monitoring purposes:
https://<CM_Instance_IP>:16690/scm/api/v1.0/configuration/MZM3RJ

Customizing the Configuration
This topic is part of Customizing Configurations Prior to Greenfield Deployment.

After creating a configuration and obtaining its configuration ID, you can customize this configuration prior to
provisioning the environment (greenfield deployment use case 2).

To customize Siebel CRM configuration that require changes in helm charts
repository
For example, for adding a custom component, changing parameter values in a component, enabling/disabling
components, named subsystem changes, component definition changes and so on.

1. SSH into the SCM instance.
2. Enter commands like the following:

docker exec -it cloudmanager bash
cd /home/opc/siebel/configuration/<config_id>/config_<namespace>_<config_id>-helmcharts/siebel-config/
paramconfig

The paramconfig folder has files supporting this Siebel CRM configuration. For more information about
customization use cases and the YAML or other configuration files that you can modify, see Making
Incremental Changes to Your Siebel CRM Deployment on OCI. (For existing deployments, the paramconfig folder
is in a different location.)

3. Make all changes necessary to customize the configuration files.
4. Enter commands like the following to commit your customization in the helm charts Git repository. Make sure

to add all modified files:

cd /home/opc/siebel/configuration/<config_id>/config_<namespace>_<config_id>-helmcharts/siebel-config
git add .
git commit -m "<customization note>"

51

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

git push

The above changes will be included in the initial environment provisioning, where you specify the configuration
ID.

5. Check the status of a requested configuration, as described in Checking the Status of a Requested
Configuration.

6. Deploy the environment with the customized configuration, as described in Deploying Siebel CRM on OCI. In
this step (for greenfield deployment use case 2), you specify only the configuration ID and the deployment
name.

To customize Siebel CRM Kubernetes deployment parameters that require changes in
the SCM repository
For example, for changing the number of replicas for SES or SAI, adding a new SiebServer Profile, setting resources like
CPU and memory specific to individual Siebel Server and so on.

1. SSH into the SCM instance.
2. Enter commands like the following:

docker exec -it cloudmanager bash

Edit the /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/apps/base/siebel/siebel.yaml
file to add "sesResources" for each Siebel server as:
siebelServer:
 - profile: siebel
 replicas: 1
 sesResources:
 limits:
 cpu: 4
 memory: 24Gi
 requests:
 cpu: 1
 memory: 8Gi
 siebsrvr_prefix: edge
 - profile: siebel
 replicas: 1
 sesResources:
 limits:
 cpu: 4
 memory: 24Gi
 requests:
 cpu: 1
 memory: 8Gi
 siebsrvr_prefix: tibus

Note: sesResources defined at the profile level for individual Siebel server takes higher precedence over the
generic sesResources overridden in payload.

3. Make all changes necessary to customize the configuration files.
4. Commit your customization in the SCM Git repository. Make sure to add all modified files. The above changes

will be included in the initial environment provisioning, where you specify the configuration ID.
5. Check the status of a requested configuration. For more information, see Checking the Status of a Requested

Configuration.
6. Deploy the environment with the customized configuration, as described in Deploying Siebel CRM on OCI using

Siebel Cloud Manager. In this step (for greenfield deployment use case 2), you specify only the configuration ID
and the deployment name.

52

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Deploying Siebel CRM on OCI
After you have performed all the prerequisite tasks, you can use SCM to deploy Siebel CRM on OCI. To do this, you
prepare a suitable payload and then you execute this payload on SCM.

This topic contains the following information:

• Overview of Siebel CRM Deployment Steps using Siebel Cloud Manager

• Notes on Authorization Information

• Notes on BYO-VCN (Virtual Cloud Network)

• Notes on BYO-FSS (File System Service)

• Notes on BYO Kubernetes

• Notes on BYOD (Bring Your Own Database)

• Checklist for Creating a BYOR Deployment

• Connectivity Information

• Using Security Adapters for Siebel CRM

• Terminating SSL/TLS at the Load Balancer (FrontEnd SSL) using SCM

• Auto-enablement of Siebel Migration Application

• Parameters in Payload Content

• Executing the Payload to Deploy Siebel CRM

• Example Payload to Deploy Siebel CRM

Related Topics
Customizing Configurations Prior to Greenfield Deployment

Making Incremental Changes to Your Siebel CRM Deployment on OCI

Overview of Siebel CRM Deployment Steps using Siebel Cloud
Manager

Payload execution (details under Parameters in Payload Content) results in the execution of various stages necessary
for Siebel CRM deployment by SCM. Primary divergence point in the execution flow path is a result of whether or not the
"Use existing resources" option was selected during Siebel Cloud Manager stack creation.

The term "BYO" stands for "Bring Your Own" and is indicative of existing resources at the disposal of the user. For
example BYOD stands for "Bring Your Own Database".

Siebel applications can be deployed using SCM in different ways based on the type of infrastructure information
provided in the payload:

1. User brings all resources (Fully BYOR): When "Use existing resource" is chosen while provisioning SCM, all the
resources such as existing mount target, file system, OKE, database will have to be provided by the user as part
of payload information that the SCM instance will use to create Siebel CRM deployment(s).

2. SCM creates resources:

53

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

a. All infra resources created by SCM: When "Use existing resource" is not chosen while provisioning SCM,
all the required infrastructure for a Siebel CRM deployment that is database, OKE, mount target, file
system etc. will be created by SCM and configured.

b. All infra resources except database created by SCM: When "Use existing resource" is not chosen while
provisioning SCM, user can still provide information of an existing database in the payload. All other infra
resources (mount target, file system, OKE etc.) will be created by the SCM for Siebel CRM deployment.
User must make sure that database can be connected from the SCM and the OKE.

After SCM installation is completed, user can invoke a payload with the necessary information to start the deployment
process of Siebel CRM. After that, the user can monitor the deployment stages completed using the necessary REST API
calls as mentioned in Checking the Status of a Requested Environment.

Notes on Authorization Information
The auth_info section provided in the payload is mandatory in case of "Use existing resources" as the SCM doesn't
modify anything in the database when BYOD option is chosen (which means "Use existing resource" option is chosen
during SCM stack creation).

For SCM provisioned environment (which means "Use existing resources" option was not chosen during SCM stack
creation), auth_info is not mandatory and will be defaulted with certain values if not provided.

The required details in auth_info are:

• admin_user_name and admin_user_password:

The Siebel administrator username and password is required for configuring Siebel CRM topology.

• default_user_password:

The default user password which is used for logging in the rest of the users, when user info is exported, and
made available in the lifted artifacts.

• table_owner_user and table_owner_password:

The schema name and password which is the owner for all Siebel CRM tables, the password is required to
execute postinstalldb process during update deployments.

• anonymous_user_password:

The password used for connecting the anonymous user to the database and provided in Siebel CRM
configuration.

Notes on BYO-VCN (Virtual Cloud Network)
BYO-VCN feature allows you use your own VCN in OCI. This provides significant flexibility in setting up networking
components like VCN, subnet, Internet Gateway, Service Gateway, NAT gateway and so on to launch the SCM instance
and subsequently the Siebel CRM environment. This helps you ensure compliance with your specific network topology
and security requirements.

Existing VCN can be used for SCM provisioning and/or during Siebel CRM environment provisioning.

54

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

During SCM provisioning:

• When "Use existing VCN" option is chosen, SCM will not create a VCN. This option allows:

◦ Selection of subnets for the SCM instance, mount target, resources (OKE, file system, database) for Siebel
CRM environment provisioning.

◦ Optionally, using an existing database (see Notes on BYOD section) which can be in the same or different
user specified VCN where other resources like OKE, file system are created.

• When the "Use existing VCN" option is not selected:

◦ SCM will create a VCN. SCM instance, mount target, other resources (OKE, file system, database) for
Siebel CRM deployment will be created in that VCN (that is, in this case, SCM stack and Siebel CRM will be
in the same VCN).

◦ Optionally, an existing VCN can still be used only for Siebel CRM environment provisioning (which means,
the SCM instance and Mount Target can be in different VCNs where Siebel environment will be created
in).

◦ One can still use an existing database (see Notes on BYOD section) which can be in the same or different
user specified VCNs where other resources like OKE, file system for Siebel CRM deployment are created
in.

Effectively, regardless of "Use existing VCN" option chosen, there is flexibility regarding using existing VCNs for Siebel
CRM deployment resources (OKE, file system) and database.

You must ensure that the following permissions/access OCI policy requirements are met:

• ATP Database: Allow dynamic group {namespace}-instance-principal-group to manage autonomous-database
in compartment id {siebel-compartment-id}.

For more information, refer Policy Details for Autonomous Database on Serverless.

• DBCS Database: Allow dynamic group {namespace}-instance-principal-group to manage database-family in
compartment id {siebel-compartment-id}.

For more information, refer Policy Details for Base Database Service.

• OKE: Allow dynamic group {namespace}-instance-principal-group to manage cluster-family in compartment id
{siebel-compartment-id}.

For more information, refer Policy Configuration for Cluster Creation and Deployment.

• File system: Allow dynamic group {namespace}-instance-principal-group to manage file-family in
compartment id {siebel-compartment-id}.

For more information, refer Create, manage, and delete file systems.

Notes on BYO-FSS (File System Service)
BYO file system allows users to use an existing file system and mount target (exports for the file system) during the
provisioning of Siebel CRM environment. This will enable users to use existing Siebel file systems in NFS shares to work
with Siebel CRM deployed in Kubernetes through SCM without any shifting of the file system content or use an existing
NFS share for shifting the lifted Siebel CRM file system (when the user does not depend on OCI file system service).

55

https://docs.oracle.com/en-us/iaas/Content/Identity/Reference/adbpolicyreference.htm
https://docs.oracle.com/en-us/iaas/dbcs/doc/policy-details-base-database-service.html
https://docs.oracle.com/en-us/iaas/Content/ContEng/Concepts/contengpolicyconfig.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Concepts/commonpolicies.htm#general-file-system-management

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Scenarios of shifting the file system:

1. When the shift_siebel_fs key is set to false, a valid Siebel CRM file system is expected in the NFS share
provided in the payload. The below directories will be expected to be present in each Siebel CRM file system
and no other validation is done other than verifying the directory structure, user should ensure the right NFS
shares are used.

◦ att

◦ atttmp

◦ cms

◦ eim

◦ Marketing

◦ red

◦ ssp

2. If no value is set for the key shift_siebel_fs, then the value defaults to true and shifting of the file systems are
carried out (for lift and shift use case, the lift bucket should contain the file system artifacts).
The provided file system will be expected to have a directory structure such as:
MOUNT_TARGET_IP:/EXPORT_PATH e.g. 10.0.0.1:/siebfs0

In the siebfs0 path it is expected to contain a valid Siebel CRM file system as per the directory structure given
above.
Users can even provide multiple mount targets for different file systems. The parameters involved are:
mounttarget_exports, siebfs_mt_export_paths, and zookeeper_mt_export_path. For more information, see
Parameters in Payload Content.

Notes on BYO Kubernetes
Bring your own Kubernetes refers to the concept of using your own Kubernetes clusters for Siebel CRM Provisioning
rather than SCM creating managed OKE cluster.

Choosing your own Kubernetes can provide significant benefits in terms of customization, cost management, security,
performance, avoiding vendor lock-in, innovation and skill development. However, it also requires higher levels of
expertise and operational overhead compared to utilizing SCM creating managed OKE cluster. Organizations should
weigh these factors carefully based on specific needs and capabilities before deciding to go with bring your own
Kubernetes.

• Customization and Control: With Bring your own kuebrnetes, you have full control over your Kubernetes
cluster, including control planes and worker nodes. This allows for more granular customization as well as
optimization tailored to specific requirements.

• Cost Management: BYOK can be more cost-effective in certain scenarios, especially if you have an existing
infrastructure setup with all network configurations or need to run a large number of clusters. Managed OKE
often come up with additional costs for convenience and support they provide.
You can optimise resource allocation and scaling policies to match workload needs, potentially reducing
unnecessary expenses.

• Security and Compliance: For organizations with strict data sovereignty requirements, managing own
Kubernetes clusters ensures that data remains within your control and complies with company's regulations.

56

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

You can implement custom security measures to your cluster, such as network policies, access controls,
encryption standards that meet organization's specific compliance and security needs.

• Performance and Reliability: You can design and implement your own high availability and disaster recovery
strategies tailored to your infrastructure and business requirements.

• Avoiding vendor lock-in: BYO Kubernetes allows you to avoid vendor lock-in by maintaining the flexibility
to move your workloads across different cloud providers or on-premises environments without being tied to
specific vendor's managed Kubernetes service.

If the "Use existing resources" option is selected at SCM deployment (meaning that SCM will not create a cluster, but
use the one provided by the user) or the user wants to provide own cluster during Siebel CRM environment provisioning
through REST API POST invocation, one of the following Kubernetes cluster options can be used:

• BYO OKE - Bring your own Oracle Kubernetes Engine (OKE) option allows you to use an existing OKE Cluster for
Siebel CRM deployment.

• BYO OCNE - Bring your own Oracle Cloud Native Environment (OCNE) option lets you to leverage your own
OCNE cluster for Siebel CRM deployment.

• BYO Other - Bring your own Other option enables the use of any other Kubernetes cluster which adheres to
CNCF standards for Siebel CRM deployment.

These rules must be satisfied for user provided Kubernetes cluster or else execution workflow fails during resource state
validation stage:

• The user provided Kubernetes cluster should not contain namespaces such as <env_name> before deployment,
as these namespaces will be used during Siebel CRM environment provisioning.

• At least one node should be in Active state.

• The Kubernetes cluster should be accessible from the SCM instance with required polices and VCN peering, if
necessary, should configured before deployment.

Notes on OKE (Oracle Container Engine for Kubernetes)
To use your own OKE cluster, user wants to provide their own OKE cluster during Siebel CRM environment provisioning
through REST API POST invocation, payload parameter kubernetes_type should be BYO_OKE and oke_cluster_id and
oke_endpoint together or oke_kubeconfig_path alone is required as input under the kubernetes > byo_oke section.

For more information, see Parameters in Payload Content.

You can provision multiple Siebel CRM environments in the same OKE cluster when the "Use Existing Resource" option
is selected.

Note: From CM_23.1.0, users can deploy multiple Siebel CRM environments using the same OKE cluster by
provisioning each environment in their own namespace. It is advised to use OKE without any existing flux setup when
the "Use Existing Resource" option is selected. If there is any existing flux setup, you can:

• Either uninstall using the command:
flux uninstall all --namespace=<namespace>

• Or upgrade existing flux setup with flag --watch-all-namespaces=false to restrict the scope to watch the
namespace where the toolkit is installed.

57

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Notes on OCNE (Oracle Cloud Native Environment)
OCNE is an integrated suite of open-source software tools and platform designed to facilitate the development,
deployment and management of cloud-native applications.

OCNE is build around Kubernetes, the leading orchestration platform and includes additional tools and components
to enhance Kubernetes capabilities making it easier for organizations to adopt cloud-native technologies in a secure,
scalable and reliable manner.

To use OCNE cluster, user wants to provide their own OCNE cluster during Siebel CRM environment provisioning
through REST API POST invocation, payload parameter kubernetes_type should be BYO_OCNE and kubeconfig_path alone
is required as input under the kubernetes > byo_ocne section. For more information, see Parameters in Payload Content.

Notes on Other Kubernetes Cluster

To use any other Kubernetes cluster, user wants to provide their own cluster during Siebel CRM environment
provisioning through REST API POST invocation, payload parameter kubernetes_type should be BYO_OTHER and
kubeconfig_path alone is required as input under the kubernetes > byo_other section.

For more information, see Parameters in Payload Content.

Note: We support deployment of Siebel environment in Kubernetes clusters that adhere to Cloud Native Computing
Foundation (CNCF) standards.

Notes on BYOD (Bring Your Own Database)
SCM can deploy Siebel CRM with Oracle Database only.

Selection of "Use existing resources" option during SCM stack creation (refer to Downloading and Installing Siebel Cloud
Manager) allows use of an existing Oracle database (apart from the ability to use existing VCN, OKE, mount target
etc. among others) for a Siebel CRM application deployment in OCI. Note that selecting the "Use existing resources"
parameter results in all resources (for example VCN, OKE, mount target, database) to be provided by the user and will
not be created by SCM. Similarly, if an SCM instance is provisioned without enabling/choosing "Use existing resources",
BYOD will be still supported. In that scenario, you can use your own database and rest of the resources that is OKE,
mount target etc. will be provisioned by SCM. Various parameters that are required for using existing database for an
OCI Siebel SCM deployment using SCM are described in Parameters in Payload Content. Before using for deployment,
you must make sure to establish connectivity between the existing Siebel CRM database and a) the SCM instance b) the
pods in Kubernetes cluster deploying Siebel CRM in OCI. Connecting to an empty (without any data) existing database is
not supported.

Connectivity Information
Certain connectivity information such as wallet details and connection identifier need to be provided.

The required details in the "BYOD" are:

• wallet_path: The absolute path of the Oracle net services configuration files or Oracle client credentials (wallet)
is required for connecting to the database. The wallet files have to be copied inside the SCM container. The
wallet should contain atleast the tnsnames.ora for a valid folder. During environment provisioning the wallet will
be validated if it contains the tnsnames.ora. TLS enabled wallets are also supported. The provided wallet path
will be copied inside the environment directory for usage.

58

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

• tns_connection_name: The connection identifier provided in the field will be validated whether it is present in the
tnsnames.ora file or not. If it is not available, a client side validation (400) will be raised.

The provided connection string will be used by the Siebel applications to connect with the database.

When your existing database is present in OCI (either within the same region or different region as that of SCM VCN),
you can use private routing to avoid connections through the internet. To use that, you need to establish a connection
from your existing SCM VCN to the VCN where the database resides. The different scenarios where the database can
reside and how to establish connection are:

• Present in the same region:

If the database is present in the same VCN as the SCM VCN, then you need to establish local peering to both
the VCN.

For more information, refer to Local VCN Peering using Local Peering Gateways.

• Present in different region:

If your database is present in different region than your SCM VCN, then you need to establish Remote peering
connection to establish connectivity between both the VCN.

For more information, refer to Remote VCN Peering using a Legacy DRG.

In the above cases, you will be required to add a route in the route table to allow traffic to the database or vice versa.

Every Siebel CRM deployment will be required to have connection from 2 subnets:

• SCM subnet:

This will be required to run administrative tasks such as verifying if the database is in right shape, are the
provided credentials valid etc. This is done prior to creating a Siebel CRM deployment.

• OKE Nodes subnet:

This will be required by all Siebel CRM applications to establish connection to the database starting from user
authentication to querying tables. For SCM subnet mentioned above, it can be done prior to the deployment,
but in case of OKE nodes subnet, they are not yet created at the stage. So users can provide the OCID of the
Dynamic Routing Gateway (DRG) (using the field drg_ocid) which needs to be attached to the OKE Nodes
subnet and the destination CIDR block of the DB's subnet or VCN (using the field destination_db_cidr_block)
where the traffic has routed through the DRG.

Provided the above are done, the traffic which is controlled by security list also should allow traffic through these
ranges. The traffic going outside of SCM instance subnet and OKE nodes subnet are already taken care by the
deployment. It will allow traffic to go out. From the database subnet's security rules, similar rules have to be written
to allow traffic to come in. In case, the traffic is only controlled through security List, ATP will still require a Network
Security Group (NSG) to allow the traffic through it.

For more information, refer to Private Endpoints Configuration Examples on Autonomous Database.

Connectivity Tests
Before the provisioning of the environment, the database needs to be accessible from 2 different places:

• From SCM instance:

◦ Admin User/Password based access

59

https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/localVCNpeering.htm
https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/remoteVCNpeering.htm
https://docs.oracle.com/en-us/iaas/autonomous-database-shared/doc/network-private-endpoint-examples.html

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

◦ Table Owner User/Password based access

◦ Guest User access

• From Kubernetes nodes in which the Siebel CRM application lives.

Issues with theses connectivity requirements will be reported in stage "validate-connectivity" and the provisioning
activities in OCI for Siebel CRM deployment will be stopped here. The deployment can be re-run after fixing issues
related to connectivity.

Workflow Continuation
There will be no database import done in case of the BYOD flow. So the "import-db-stage" will be marked as "Passed".

Debugging Methods
The individual stage logs will log all the connection tests logs and provide the details. The logs for connectivity related
tests can be found in the stage "validate-connectivity". When the tests are passing they leave trail of the events, such as:

• """

• admin user validation in progress

• admin user validation completed

• tblo user validation in progress

• tblo user validation completed

• """

The validations can be done manually using SQL Plus to check, and then after the issue has been fixed, the workflow
can be re-run by submitting the payload as before. Common reasons for which the connections might fail are:

• Host provided in the tnsnames.ora is not reachable.

Proper connection has to be established to validate this. Incase of OCI, the VCN in which the database resides
should have proper security rules to the SCM instance.

In case of any other externally hosted Oracle database, the guidelines for those providers needs to be followed
and whitelisted to provide access to the SCM instance.

• Invalid info in wallet.

The data provided in the wallet has to be valid to establish the connection.

• Invalid authorization information.

The data provided in the auth_info section has to be valid in order to establish the connection.

Other scenarios which cause failure of connectivity are caught and the details are provided in the stage logs.

60

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Checklist for Creating a BYOR Deployment
Before deploying a BYOR environment, you need to go through a checklist consisting of various steps to ensure that
you have a smooth deployment. If the steps or resources are used directly by your environment, without any validation,
the application may fail. Here is a resource-wise list of the different steps which need to be performed/validated.

• OKE

• Mount Target

• Database

• Git Repository

• Debugging Common URL Connectivity Issues

OKE
When using an existing OKE, verify the following:

• Check if the API server URL is accessible from the SCM instance. If the kube config path is provided, then make
sure that the API server is accessible. It can be validated by running basic kubectl commands. If the URL is not
accessible, see Debugging Common URL Connectivity Issues to debug.

• If the Cluster ID is provided while creating a deployment, ensure if the SCM instance's principal (User or
Instance principal) has the required access to download kube config. This can be validated by running the
following OCI command:
oci ce cluster create-kubeconfig --cluster-id <SOME_CLUSTER_ID> --file $HOME/.kube/config --region us-
phoenix-1 --token-version 2.0.0 --kube-endpoint PRIVATE_ENDPOINT

• If the SCM instance uses Instance Principal, verify if the following policy exists:
'Allow <subject> to manage cluster-family in compartment id <oke_compartment_ocid>'.

Here <subject> can be group/dynamic_group etc.

For more information, refer to Policy Syntax documentation.

Once you have saved the configuration, you need to set the variables for KUBECONFIG and OCI_CLI_AUTH.

set the required env variables
Possible values are - api_key or instance_principal based on your OCI principal configuration.
export OCI_CLI_AUTH=api_key
Path to your OKE kube config
export KUBECONFIG=/path/to/your/oke/config
fetch the cluster info
kubectl cluster-info --request-timeout 5s
Get the nodes info
kubectl get nodes

• If it is not accessible, then the instance might not have access to read/use the resource. Either contact your
tenancy administrator for proper permissions or check for your policies.

• If you are behind a proxy, make sure that either the API server is accessible through the Proxy server or if it can
be bypassed. Provide it in no_proxy (Contact your administrator for appropriate choice).

• Login to any one of the nodes and validate if the Git server is accessible by either making a request or cloning a
repository etc.

61

https://docs.oracle.com/en-us/iaas/Content/Identity/Concepts/policysyntax.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Mount Target
Mount targets' access endpoints are always private endpoints. So inter-network/VCN validations must be done.

• These are accessed internally. If you are running behind a proxy, chances are your proxy settings might route it
to the proxy server. So if it requires to be bypassed, pass it in the no_proxy settings.

• NFS uses port 2049 by default. One can configure a different port as well. Ensure that your Security List/NSG's
have rules to allow the traffic. If the URL is not accessible, see Debugging Common URL Connectivity Issues to
debug.

• NFS client exports are also controlled in mount target and are configured to read or read/write. Ensure that you
have read/write permissions on it.

• Use NFS mount commands to mount a local directory to verify if the SCM instance can communicate. You can
unmount the directory after verifying. If you are unable to mount, it is likely that the mount target URL is not
reachable. In this case, see Debugging Common URL Connectivity Issues to debug.
nfs mount <args>
nfs umount <args>

• Ensure that your mount targets' endpoints are accessible from your OKE nodes. You can verify it by logging
in to the OKE's node and checking if the endpoint is accessible. This is a mandatory requirement as the
applications need to access the file systems.

Database
You need to validate database endpoints, SID, Listener, and Credentials before creating an environment.

• Ensure that the endpoints are accessible from both SCM container and the OKE node.

• To check if the database endpoints are accessible from SCM, connect to the database endpoint using tools such
as telnet from the SCM container. You also need to verify if the listener is valid.

• To check if the DB's endpoints are accessible from OKE, connect to any one of the OKE nodes and use
commands such as telnet to check if they can be reached from there.

• If the DB endpoints are private endpoints (DB endpoints), then there is a chance that your OKE node might not
be able to resolve the Host name URL. In such case, verify it with the IP address of the host. If nodes can be
setup with an option to resolve the DB hostnames then IP address will not be required.

• Verify all the credentials such as: Siebel Admin, Table Owner, anonymous user credentials etc. You can use
sqlplus available in the SCM instance to login and validate the credentials.

• To connect to a database using sqlplus, set the following variables.
export ORACLE_HOME=/usr/lib/oracle/21/client64
export PATH=$PATH:$ORACLE_HOME/bin
export TNS_ADMIN=/home/opc/siebel/IIG8L6/wallet

• After setting the variables, connect to sqlplus CLI.
sqlplus username/password@connection_identifier
username - db user whom you would like to authenticate
password - password of that db user.
connection string which you would like to establish connection and verify with. Can be found in
 tnsnames.ora

62

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Git Repository
The Git instance, where the helmcharts and SCM have to be created, should be accessible from both the SCM instance
and the OKE nodes. SCM access is required to ensure any changes in release yamls and terraform configuration is
tracked.

To verify Git access from the SCM container, log in to the SCM container and run the following commands. If required, to
verify from OKE, list down all the OKE Nodes and ssh into any one of the node and run the following steps to verify it:

Check if you are able to ping to the gitlab IP/URL and access it.
ping gitlaburl.com

OR
Hit any of the existing gitlab API with the token to verify
curl https://gitlaburl.com/api/v4/users --header 'Authorization: Basic token'
even a 40x response also makes it clear that the URL is accessible

Try to clone an existing repo to verify if SSH access is available
git clone git@gitlaburl.com/repo-name.git # using SSH

Note: The Git instance or repositories should be accessible from both the SCM instance and the OKE nodes.

Debugging Common URL Connectivity Issues
If any URL is not reachable or not able to communicate, you can debug the issue using the following steps.

You can use utilities such as telnet, traceroute, ping, curl etc. Install these utilities using yum/dnf. If you are behind a
proxy server and not able to reach the repo, then you need to configure proxy details in /etc/yum.conf

sudo yum install ping curl traceroute telnet

1. To verify if an URL is accessible or not, verify the security rules/NSG rules of the corresponding resource and
the host from which you are connecting.

For more information, refer to the Network Security Groups documentation.
2. There is a possibility that there is a secondary barrier also added from resource side, that is ACL for DB's, NFS

client export options for mount targets etc. Check if they are whitelisted.

For more information, refer to the Configure Access Control Lists for an Existing Autonomous Database Instance
documentation.

3. If you are connecting from your on-prem through a Fast connect coupled with a DRG, make sure you have
matching rules for your DRG. This is applicable if two or more VCN's are also connected (even with Local
Peering Gateway (LPG)).

For more information, refer to the FastConnect with Multiple DRGs and VCNs documentation.
4. Check if you are behind a proxy server and your proxy server allows connection to the URL. You can verify this

by disabling proxy or adding in no_proxy to test it.
verify the list of values set currently
printenv | grep 'PROXY\|proxy'
update the required var - HTTP_PROXY, HTTPS_PROXY, NO_PROXY
export HTTP_PROXY=myproxyserver.com

5. Use telnet to see if you are able to reach a URL on a particular URL. Some tools such as sqlplus get hung when
a connection does not happen.
telnet someurl.com 22
Connected to someurl.com
Port - 22 on someurl.com is reachable from the current host.

63

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/networksecuritygroups.htm
https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/network-access-control-list-configure.html
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/fastconnectmultipledrgs.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

telnet notreachableurl.com 1522
...
1522 on notreachableurl.com is not reachable

6. Use traceroute to see where exactly the hopping stopped. that is it might go out of an instance but may not go
out to the public internet because an IG/NAT was not connected. In this case, the last hop would have been only
the VCN.
traceroute someurl.com
1 hop1.com (10.0.35.153) 292.885 ms 289.622 ms 376.783 ms
2 hop2.com (10.0.32.130) 250.955 ms 250.505 ms 289.326 ms
3 hop3.com (10.0.29.42) 250.155 ms 250.227 ms 290.869 ms
4 hop4.com (10.76.13.210) 271.508 ms 268.169 ms 309.374 ms
5 hop5.com (10.76.13.209) 276.570 ms 273.716 ms 277.106 ms
6 hop6.com (10.76.27.10) 272.482 ms 272.206 ms 269.685 ms
7 hop7.com (10.76.27.68) 269.659 ms 269.013 ms 268.582 ms
8 hop8.com (10.196.6.42) 272.557 ms 273.320 ms 279.004 ms
9 * * *
10 final.destination.com (100.10.14.9) 272.173 ms !Z 271.058 ms !Z 318.078 ms !Z

if it gets hung at ***, then possibly the packet is not able to proceed further from there to the next
 hop/router.

7. Ping the URL to verify if the server is up or not. Internet Control Message Protocol (ICMP) has to be enabled).
ping google.com
PING google.com (172.217.14.78): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
^C
--- google.com ping statistics ---
4 packets transmitted, 0 packets received, 100.0% packet loss
Not able to connect/ping and there is a 100% loss.

ping someworkingurl.com
PING someworkingurl.com (100.10.14.1): 56 data bytes
64 bytes from 100.10.14.1: icmp_seq=0 ttl=46 time=284.899 ms
64 bytes from 100.10.14.9: icmp_seq=1 ttl=46 time=271.194 ms
^C
--- someworkingurl.com ping statistics ---
3 packets transmitted, 2 packets received, 33.3% packet loss
round-trip min/avg/max/stddev = 271.194/278.047/284.899/6.852 ms
packets are transmitted, so it can be reached and also provides additional diagnostics info.

8. cURL a URL to verify if the URL is accessible. Check the response headers for the response code to see what has
gone missing. Based on the response headers, validate what could have gone wrong. Here are some sample
responses: 400 - Bad request(client side validation), 401 - Bad authorization, 302 - Redirect found.
curl -I https://oracle.com:443
HTTP/1.0 200 Connection established

HTTP/1.1 301 Moved Permanently
Date: Tue, 04 Apr 2023 15:07:52 GMT
Content-Type: text/html
Content-Length: 175
Connection: keep-alive
Location: https://www.oracle.com/

Connection established to oracle.com which means the URL is accessible.

64

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Connectivity Information
Certain connectivity information such as wallet details and connection identifier need to be provided.

The required details in the "BYOD" are:

• wallet_path: The absolute path of the Oracle net services configuration files or Oracle client credentials (wallet)
is required for connecting to the database. The wallet files must be copied inside the SCM container. The wallet
should contain atleast the tnsnames.ora for a valid folder. During environment provisioning the wallet will be
validated if it contains the tnsnames.ora. TLS enabled wallets are also supported. The provided wallet path will
be copied inside the environment directory for usage. You can also copy the wallet file to SCM using File Sync
Utility, for more information see Uploading Files to the SCM Container Using File Sync Utility.

• tns_connection_name: The connection identifier provided in the field will be validated whether it's present in the
tnsnames.ora file or not. If it isn't available, a client side validation (400) will be raised.

The provided connection string will be used by the Siebel CRM applications to connect with the database.

Connectivity Tests
Before the provisioning of the environment, the database needs to be accessible from 2 different places:

• From the SCM instance:

◦ Admin User/Password based access

◦ Table Owner User/Password based access

◦ Guest User access

• From Kubernetes nodes in which the Siebel CRM application lives.

Issues with theses connectivity requirements will be reported in stage "validate-connectivity" and the provisioning
activities in OCI for Siebel deployment will be stopped here. The deployment can be rerun after fixing issues related to
connectivity.

Workflow Continuation
There will be no database import done in case of the BYOD flow. So the "import-db-stage" will be marked as "Passed".

Debugging Methods
The individual stage logs will log all the connection tests logs and provide the details. The logs for connectivity related
tests can be found in the stage "validate-connectivity". When the tests are passing they leave trail of the events, such as:

• """

• admin user validation in progress

• admin user validation completed

• tblo user validation in progress

• tblo user validation completed

• """

65

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

The validations can be done manually using SQL Plus to check, and then after the issue has been fixed, the workflow
can be rerun by submitting the payload as before. Common reasons for which the connections might fail are:

• Host provided in the tnsnames.ora isn't reachable.

Proper connection must be established to validate this. Incase of OCI, the VCN in which the database resides
should have proper security rules to the Cloud Manager instance.

In case of any other externally hosted Oracle database, the guidelines for those providers needs to be followed
and whitelisted to provide access to the Cloud Manager instance.

• Invalid info in wallet

The data provided in the wallet must be valid to establish the connection.

• Invalid authorization information

The data provided in the auth_info section must be valid to establish the connection.

Other scenarios which cause failure of connectivity are caught and the details are provided in the stage logs.

Using Security Adapters for Siebel CRM
This topic is part of Deploying Siebel CRM on OCI.

This section describes how to configure security adapters (security profile) provided with Siebel Business Applications.

SCM supports configuration of security adapter types DB and LDAP.

The SCMapplication sets authentication-related configuration parameters for Siebel Business Applications and Siebel
Gateway authentication, but does not make changes to the LDAP directory. Make sure the configuration information
you enter is compatible with your directory server.

When you specify LDAP as the security adapter type in the payload during environment provisioning, the setting you
specify provides the value for the Enterprise Security Authentication Profile (Security Adapter Mode) parameter.

The Security Adapter Mode and Security Adapter Name (named subsystem) parameters can be set for:

• Siebel Gateway

• Siebel Enterprise Server

• All interactive Application Object Manager components

For more information, see the "Security Adapter Authentication" chapter in the Siebel Security Guide.

Use payload parameter security_adapter_type to specifiy the security adapter type. For more information, see
Parameters in Payload Content.

• If you pass ‘DB’ as the security_adapter_type, then the database details from the database payload section will
be considered for configuring security adapter during environment provisioning.

• If you pass ‘LDAP’ as the security_adapter_type, then one needs to pass details under subsection ldap under
siebel section.

66

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Note:
• For greenfield environment or any lift bucket lifted from SCM version prior to CM_23.7.0, parameters under

siebel>ldap sub-section of Payload Elements of SCM under Parameters in Payload Content will be applicable.

• For lift bucket lifted using SCM version CM_23.7.0 or above and source environment is of security adapter type
LDAP, then during shifting (using REST API for deployment), only below user credential parameters will be
mandatory (since these information cannot be ‘lifted’) and rest are optional and it will be taken from lifted data
if not passed in payload.

◦ application_password

◦ siebel_admin_username

◦ siebel_admin_password

◦ anonymous_username

◦ anonymous_user_password

For greenfield environment, the value of siebel_admin_username must be SADMIN and value of anonymous_username must
be GUESTCST since database will be having only greenfield data.

Example payload section specific to the case when security_adapter_type is LDAP. For complete sample payload
structure, see Parameters in Payload Content.

{
 "name": "test173",
 "siebel": {

 "security_adapter_type": "ldap",
 "ldap":
 {
 "ldap_host_name": <ldap_FQDN>,
 "ldap_port": "389",
 "application_user_dn": "cn=Directory Manager",
 "application_password": "ocid1.vaultsecret.oc1.uk-london-1.iaheyoqdfpc33khmp42wec",
 "base_dn": "ou=people,o=siebel.com",
 "shared_db_credentials_dn": "uid=sadmin,ou=people,o=siebel.com",
 "shared_db_username": "sadmn",
 "shared_db_password": "ocid1.vaultsecret.oc1.uk-london-1.tkyyppq733brnkhmp42wec",
 "password_attribute_type": "userPassword",
 "siebel_admin_username": "sadmin",
 "username_attribute_type": "uid",
 "credentials_attribute_type": "mail",
 "siebel_admin_password": "ocid1.vaultsecret.oc1.uk-london-1.amaaaaaa4n2rr5ia2wcc",
 "anonymous_username": "GUESTCST",
 "anonymous_user_password": "ocid1.vaultsecret.oc1.uk-london-1.amaaaaaa4n2rnkhmp42was",
 "use_adapter_username": "true",
 "siebel_username_attribute_type" : "uid",
 "propagate_change": "true",
 "hash_db_password": "true",
 "hash_user_password": "true",
 "salt_user_password": "true",
 "salt_attribute_type": "title"
 }
 }
 "infrastructure": {

67

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Example payload section specific to the case when security_adapter_type is LDAP and enable_ssl is set to true (that is,
for LDAPs). Note the change in ldap_port value. For complete sample payload structure, see Parameters in Payload
Content.

{
 "name": "test173",
 "siebel": {

 "security_adapter_type": "ldap",
 "ldap":
 {
 "ldap_host_name": <ldap_FQDN>,
 "ldap_port": "636",
 "application_user_dn": "cn=Directory Manager",
 "application_password": "ocid1.vaultsecret.oc1.uk-london-1.iaheyoqdfpc33khmp42wec",
 "base_dn": "ou=people,o=siebel.com",
 "shared_db_credentials_dn": "uid=sadmin,ou=people,o=siebel.com",
 "shared_db_username": "sadmn",
 "shared_db_password": "ocid1.vaultsecret.oc1.uk-london-1.tkyyppq733brnkhmp42wec",
 "password_attribute_type": "userPassword",
 "siebel_admin_username": "sadmin",
 "username_attribute_type": "uid",
 "credentials_attribute_type": "mail",
 "siebel_admin_password": "ocid1.vaultsecret.oc1.uk-london-1.amaaaaaa4n2rr5ia2wcc",
 "anonymous_username": "GUESTCST",
 "anonymous_user_password": "ocid1.vaultsecret.oc1.uk-london-1.amaaaaaa4n2rnkhmp42was",
 "use_adapter_username": "true",
 "siebel_username_attribute_type" : "uid",
 "propagate_change": "true",
 "hash_db_password": "true",
 "hash_user_password": "true",
 "salt_user_password": "true",
 "salt_attribute_type": "title"
 "enable_ssl": "true",
 "ldap_wallet_path": "/home/opc/siebel/ewallet.p12",
 "ldap_wallet_password": "ocid1.vaultsecret.oc1.uk-london-1.aaa4noqkyyppq7lf4oamvb7f2cxx"
 }
 }
 "infrastructure": {

Terminating SSL/TLS at the Load Balancer (FrontEnd SSL) using
SCM

Note: This section is valid only for Siebel CRM environments provisioned with SCM version CM_23.8.1 or higher.

When Container Engine for Kubernetes provisions a load balancer for a Kubernetes service of type LoadBalancer,
you can specify that you want to terminate SSL at the load balancer. This configuration is known as frontend SSL. To
implement frontend SSL, we have to define a listener at a port such as 443, and associate an SSL certificate with the
listener.

68

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Load balancers commonly use single domain certificates. However, load balancers with listeners that include request
routing configuration might require a subject alternative name (SAN) certificate (also called multi-domain certificate) or
a wildcard certificate. The Load Balancing service supports each of these certificate types.

Oracle Cloud Infrastructure (OCI) accepts x.509 type certificates in PEM format only. The following is an example PEM
encoded certificate:

-----BEGIN CERTIFICATE-----
<Base64_encoded_certificate>
-----END CERTIFICATE-----

To terminate SSL certificate at the load balancer with custom ssl certificate, you must supply a certificate during
environment provisioning using the following payload parameters:

• load_balancer_ssl_cert_path

• load_balancer_private_key_path

• load_balancer_private_key_password

For more information, see the "Payload Elements for Siebel Cloud Manager" table in Parameters in Payload Content.
If the above optional parameters are not provided during environment provisioning, SCM will generate a self signed
certificate and associate the same with the load balancer listener through Nginx service.

Updating SSL/TLS Certificates for an Existing Load Balancer Post Deployment
Solution 1 - Updating certificates to existing Load Balancer from OCI Console

1. Go to the OCI console and navigate to Load Balancer service.
2. Go to the Load Balancer of the current environment.
3. Click on Certificates on left menu and select Load Balancer Managed certificate in the Certificate resource

dropdown.
4. Click on Add certificate and upload SSL certificate and private key in respective fields.
5. Go to the listeners from left menu and edit the listener with name 'TCP-443'.
6. Select Load Balancer Managed certificate in the 'ertificate resource dropdown.
7. Select the new load balancer certificate in the 'certificate name' dropdown.

Solution 2 - Updating certificates and creating new Load Balancer using GitOps setup.

• If private key is encrypted, first decrypt it using the command:
openssl rsa -in <load_balancer_private_key_path> -out <decrypted_load_balancer_private_key_path>

• Create a Kubernetes tls secret for load balancer ssl certificate using the command:
kubectl create secret tls lb-ssl-certificate --key <decrypted_load_balancer_private_key_path> --cert
 <load_balancer_ssl_cert_path> -n <namespace>

Note: If lb-ssl-certificate is already present, you need to delete it first using command:
'kubectl delete secret lb-ssl-certificate -n <namespace>'

• Update the ssl certificate in Ingress definition:
a. SSH into the SCM instance.
b. docker exec -it cloudmanager bash.
c. cd /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/infrastructure/nginx/.
d. Edit the siebel-ingress-app.yaml file.
e. Update 'secretName' under 'tls' to 'lb-ssl-certificate'' if not present.
f. Update the 'hosts' under 'tls' with your domain hostname.

69

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

g. Follow the same steps for siebel-ingress-smc.yaml file.
h. Push your changes to remote git repository:

git add .
git commit -m "<message>"
git push

• The certificate will not be updated to an existing Load Balancer automatically. We have to delete the existing
Load Balancer so that a new Load Balancer will get created with updated certificates.

a. First delete ingress-nginx-controller service. To delete existing load balancer:
kubectl delete svc <namespace>-ingress-nginx-controller -n <namespace>

b. Update ingress-nginx chart version in Helm charts Git repository to inititiate new load balancer creation.
i. SSH into the SCM instance.

ii. docker exec -it cloudmanager bash.
iii. cd /home/opc/siebel/<env_id>/<helmchartsRepoName>/ingress-nginx.
iv. Edit Chart.yaml and increment the Chart version.
v. Push the changes to remote git repository:

git add .
git commit -m "<message>"
git push

The flux reconcilation and new load balanacer creation might take up to 10 minutes.
c. To get the new Load Balanacer External IP address, use the command - 'kubectl get svc <namespace>-

ingress-nginx-controller -n <namespace> .
d. The IP address of the new Load Balancer should be used in Siebel Application URLs.

Auto-enablement of Siebel Migration Application

This topic is part of Deploying Siebel CRM on OCI.

The Siebel Migration application is a Web-based tool for migrating Siebel Repositories and seed data and performing
related tasks, which is provided with the Siebel Application Interface (SAI) installation.

An environment deployed through "lift-and-shift" mechanisms using the lift tool and SCM has the Siebel
Migration application auto-enabled in the deployed Siebel CRM environment. Once the deployment is done, Siebel
Migration Application endpoint will be included in the URL list with a form ending with /siebel/migration. Use the
migration_package_mt_export_path parameter described in Parameters in Payload Content.

Note: Follow SCM Incremental changes model for migrating web artifacts like image files, javascript files, and so
on. For more information about the activities that you can perform in the Siebel Management Console (SMC) post-
deployment, refer Siebel Bookshelf. For more information about troubleshooting, see Troubleshooting a Siebel Cloud
Manager Instance or Requested Environment.

Parameters in Payload Content
This topic is part of Deploying Siebel CRM on OCI.

70

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

The following table provides information about each of the payload parameters. For an example payload and for usage
guidelines, see Example Payload to Deploy Siebel CRM .

Note the following usage considerations for some of the payload parameters:

• The config_id parameter is required for and used only when provisioning a greenfield environment with a
configuration that you previously customized. For more information, see Customizing Configurations Prior to
Greenfield Deployment.

• The database_type and industry parameters are required for and used only for greenfield deployments.

• Under database, the db_type parameter (not the same as database_type) is used to specify either ATP (for
Oracle Autonomous Database) or DBCS_VM (for Oracle Database Cloud Service) or BYOD. Different database
parameters are expected for each selection.

• The bucket_url parameter is used only for the deployment scenario that uses the Siebel Lift utility. This
parameter is not used for greenfield deployments.

The users are advised to get familiarized with various Notes before proceeding to the section on payload parameters.

Payload Elements for Siebel Cloud Manager

Payload Parameter Section Description

name

(top level)

(Required) A short name for identification of the environment. This
name is used as a prefix in all the resources. The namespace in the
Kubernetes cluster is created with this name. Choose something
meaningful and short (no more than 10 to 15 alphanumeric characters),
 such as DevExample (perhaps using the name of your company or
organization).

config_id

(top level)

(Required for customization workflow) The configuration ID that is
obtained as described in Customizing Configurations Prior to Greenfield
Deployment. You specify this configuration ID in the payload only when
you provision a greenfield environment with a configuration that you
previously customized.

database_type

siebel

(Required for greenfield deployments) Specifies the database type to use
for a greenfield deployment. The available options are:

• Sample

• Vanilla

Note: This parameter is used only for greenfield deployments and is
not used for the deployment scenario that uses the Siebel Lift utility.

industry

siebel

(Required for greenfield deployments) Specifies the industry-specific
functionality to enable in a greenfield deployment. The available options
are:

• Automotive

• Financial Services

• Life Sciences

• Sales

• Service

71

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

• Partner Relationship Management

• Public Sector

• Telecommunications

• Loyalty

• Consumer Goods

• Hospitality

Note: This parameter is used only for greenfield deployments and is
not used for the deployment scenario that uses the Siebel Lift utility.

registry_url

siebel

(Required) Specifies the URL of the Open Container Initiative (OCI)
compliant container registry.

For example, for the Oracle Cloud Infrastructure container registry in
the Ashburn region, you might use iad.ocir.io. For more information,
 see the registry concepts information in the Oracle Cloud Infrastructure
documentation (https://docs.oracle.com/en-us/iaas/Content/Registry/
Concepts/registryprerequisites.htm).

registry_user

siebel

(Required) Specifies the user ID to connect to the container registry. This
user must have container registry access to push and pull images.

registry_password

siebel

(Required) Specifies the password or authentication token for this user.

registry_prefix

siebel

(Optional) Specifies a prefix that's appended after the registry_url.

For OCI container registry, this should be the tenancy namespace, if
needed, you can add a suffix to it. As it's an optional field, it can be left
blank.

bucket_url

siebel

(Required for lift and shift deployments) Specifies the bucket created
when you ran the Siebel Lift utility, which you are using to upload
deployment artifacts. Create a pre-authenticated request URL for the
bucket. The access type must permit object reads and the bucket must
enable object listing.

Note: This parameter is used only for the deployment scenario that
uses the Siebel Lift utility and is not used for greenfield deployments.

To create a pre-authenticated request URL:

1. Launch the OCI console and navigate to Storage/Buckets. Open the
bucket that is created during the lift process.

2. Click the Pre-Authenticated Requests link in the Resources section.
3. Click Create Pre-Authenticated Request.
4. Provide a name, select the target as Bucket, and specify the access

type as reads.
5. Select Enable Object Listing (check box).

keystore

siebel

(Optional) This parameter allows for Custom Keystore Management

72

http://iad.ocir.io/
https://docs.oracle.com/en-us/iaas/Content/Registry/Concepts/registryprerequisites.htm
https://docs.oracle.com/en-us/iaas/Content/Registry/Concepts/registryprerequisites.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

gateway_cluster_replica_count

siebel

(Optional) This parameter installs and configures a gateway cluster
based on the number given in gateway_cluster_replica_count. This is
applicable for both Greenfield and Lift & Shift.

Siebel Gateway (CGW) Cluster requires a minimum of 3 replicas and it is
recommended to be an odd number.

A 3 node gateway cluster will be created by default, if this parameter
is not overridden. Otherwise the gateway cluster is created with the
overridden value in the payload.

security_adapter_type

siebel

(Optional) Specify the security adapter type. Supported values are 'DB'
and 'LDAP'. Default value: DB.

siebel_keystore_path

siebel > keystore

(Required for Siebel keystore : when "keystore" parameter is used)

This parameter specifies the path to a custom keystore file in jks format.
For more information, see Managing Custom Keystore.

siebel_truststore_path

siebel > keystore

(Required for Siebel keystore : when "keystore" parameter is used)

This parameter specifies the path to a custom keystore file in jks format.
For more information, see Managing Custom Keystore.

siebel_keystore_password

siebel > keystore

(Required for Siebel keystore : when "keystore" parameter is used)
Password used for the keystore.

siebel_truststore_password

siebel > keystore

(Required for Siebel keystore : when "keystore" parameter is used)
Password used for the truststore.

ldap_host_name

siebel > ldap

(Required) Host name of the ldap server for ldap authentication.

Note that you may have to include the IP address if the server is
configured to listen only with the IP address:

You must specify the FQDN (fully qualified domain name) of the
LDAP server, not just the domain name. For example, specify
ldapserver.example.com, not example.com.

ldap_port

siebel > ldap

(Required) Specify the port number for the ldap for ldap authentication.
For example, 389.

application_user_dn

siebel > ldap

(Required) Specify the user name of a record in the directory with
sufficient permissions to read any user's information and do any
necessary administration.

This user provides the initial binding of the LDAP directory with the
Application Object Manager when a user requests the login page, or else
anonymous browsing of the directory is required.

You enter this parameter as a full distinguished name (DN), for example
"uid=appuser, ou=people, o=example.com" (including quotes) for LDAP.
The security adapter uses this name to bind.

You must implement an application user.

73

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

application_password

siebel > ldap

(Required) OCID of the secret containing the password for the user
defined by the Application User Distinguished Name parameter. The
secret must be stored encrypted in the vault. In an LDAP directory,
 the password is stored in an attribute and clear text passwords are not
supported for the LDAPSecAdpt named subsystem.

base_dn

siebel > ldap

(Required) Specify the base distinguished name, which is the root of
the tree under which users of this Siebel application are stored in the
directory. Users can be added directly or indirectly after this directory.

For example, a typical entry for an LDAP server might be:

BaseDN = "ou=people, o=domain_name"

where:

• o denotes organization

• ou denotes organization unit and is the subdirectory in which users
are stored

credentials_attribute_type

siebel > ldap

(Required) Specify the attribute type that stores a database account. For
example, if Credentials Attribute is set to dbaccount, then when a user
with user name HKIM is authenticated, the security adapter retrieves the
database account from the dbaccount attribute for HKIM.

This attribute value must be of the form username=U password=P,
where U and P are credentials for a database account. There can be any
amount of space between the two key-value pairs but no space within
each pair. The keywords username and password must be lowercase.

In LDAP security adapter authentication to manage the users in the
directory through the Siebel client, the value of the database account
attribute for a new user is inherited from the user who creates the new
user. The inheritance is independent of whether you implement a shared
database account, but does not override the use of the shared database
account.

password_attribute_type

siebel > ldap

(Required) Specify the attribute type under which the user’s login
password is stored in the directory.

roles_attribute_type

siebel > ldap

(Optional) Specify the attribute type for roles stored in the directory.

For example, if Roles Attribute is set to roles, then when a user with user
name HKIM is authenticated, the security adapter retrieves the user’s
Siebel responsibilities from the roles attribute for HKIM.

shared_db_credentials_dn

siebel > ldap

(Optional) Specify the absolute path (not relative to the Base
Distinguished Name) of an object in the directory that has the shared
database account for the application.

If not set, then the database account is looked up in the user’s DN as
usual.

If set, then the database account for all users is looked up in the shared
credentials DN instead. The attribute type is determined by the value of
the Credentials Attribute parameter.

74

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

For example, if the Shared Database Account Distinguished Name
parameter is set to "uid=HKIM, ou=people, o=example.com" when a user
is authenticated, the security adapter retrieves the database account
from the appropriate attribute in the HKIM record. This parameter’s
default value is an empty string.

shared_db_username

siebel > ldap

(Optional) Specify the user name to connect to the Siebel database. You
must specify a valid Siebel user name and password for the Shared DB
User Name and Shared DB Password parameters.

Specify a value for this parameter if you store the shared database
account user name as a parameter rather than as an attribute of the
directory entry for the shared database account. To use this parameter,
 you can use an LDAP directory.

shared_db_password

siebel > ldap

(Optional) OCID of the secret containing the password associated with
the Shared DB User Name parameter.

username_attribute_type

siebel > ldap

(Required) Specifies the attribute type under which the user’s login name
is stored in the directory.

For example, if User Name Attribute Type is set to uid, then when a user
attempts to log in with user name HKIM, the security adapter searches
for a record in which the uid attribute has the value HKIM. This attribute
is the Siebel user ID, unless the Security Adapter Mapped User Name
check box is selected.

use_adapter_username

siebel > ldap

(Optional) If this boolean parameter is set to true, then when the user key
name passed to the security adapter is not the Siebel User ID, then the
security adapter retrieves the Siebel User ID for authenticated users from
an attribute defined by the Siebel Username Attribute parameter.

siebel_username_attribute_type

siebel > ldap

This is mandatory parameter when 'use_adapter_username' is set to
'true'

If set, then this parameter is the attribute from which the security
adapter retrieves an authenticated user’s Siebel User ID. If not set, then
the user name passed in is assumed to be the Siebel User ID.

siebel_admin_username

siebel > ldap

(Required) The username of the Siebel CRM administrative user.

siebel_admin_password

siebel > ldap

(Required) OCID of the secret containing the Siebel CRM Administration
User password.

anonymous_username

siebel > ldap

(Required) The username of the web anonymous user.

anonymous_user_password

siebel > ldap

(Required) OCID of the secret containing the anonymous user password
which will be updated.

propagate_change

siebel > ldap

(Optional)

This is a boolean flag.

75

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

Set this parameter to True to allow administration of the directory
through Siebel Business Applications UI. When an administrator then
adds a user or changes a password from within the Siebel application, or
a user changes a password or self-registers, the change is propagated to
the directory.

A non-Siebel security adapter must support the SetUserInfo and
ChangePassword methods to allow dynamic directory administration.

hash_db_password

siebel > ldap

(Optional)

This is a boolean flag.

Set this parameter to True to specify password hashing for database
credentials passwords.

Hash Algorithm will be set to "SHA1", which is the default value, is read-
only for the Siebel Gateway (SGW) security profile.

hash_user_password

siebel > ldap

(Optional)

This is a boolean flag.

Set this parameter to True to specify password hashing for user
passwords.

Hash Algorithm will be set to "SHA1", which is the default value, is read-
only for the SGW security profile

salt_attribute_type

siebel > ldap

(Optional)

This is a boolean flag.

Specifies the attribute that stores the salt value if you have chosen to add
salt values to user passwords. The default attribute is title.

salt_user_password

siebel > ldap

(Optional)

This is a boolean flag.

Set this parameter to True to specify that salt values are to be added to
user passwords before they are hashed. This parameter is ignored if the
Hash User Password parameter is set to False.

enable_ssl

siebel > ldap

(Optional) Specifies whether to enable SSL for connections to the LDAP
server (that is, LDAP over SSL or, in short, LDAPs).

ldap_wallet_path

siebel > ldap

(Required only when enable_ssl is set to 'True')

This parameter specifies the path to the wallet file required for LDAP
over SSL connection.

The wallet file (Example: ewallet.p12) wont be lifted during lift process
and one needs to manually copy it to OCI SCM container location and
pass the path in this payload parameter. You can also copy the wallet file

76

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

to the SCM container using File Sync Utility, for more information see
Uploading Files to the SCM Container Using File Sync Utility.

Here, the wallet should be created from Oracle Wallet Manager and the
Oracle wallet must contain CA server certificate that has been issued by
Certificate Authorities to LDAP directory server.

ldap_wallet_password

siebel > ldap

(Required when enable_ssl is set to 'True')

OCID of the secret containing the password to open the LDAP wallet
that contains a certificate for the certificate authority used by the LDAP
directory server.

git_type infrastructure > git (Required) Used to specify the SCM Git provisioning type.

Allowed values are 'gitlab' or 'byo_git'.

If the value is set to 'gitlab'’, SCM will create and manage the Git
repositories.

If the value is set to 'byo_git', SCM will read the SCM repository and Helm
repository details from the payload and use the same during Siebel CRM
provisioning.

git_user infrastructure > git > byo_git (Required when git_type is set to 'byo_git')

Used to specify the user who has access to manage Git projects in the
specified Git repositories.

git_protocol_type infrastructure > git > byo_git (Required when git_type is set to 'byo_git')

Used to specify the protocol type to transfer data.

Allowed values are 'ssh' and 'http'.

git_accesstoken infrastructure > git > byo_git (Required when git_protocol_type is set to 'http')

Used to specify the access token with API scope for the Git user. You can
create the access token in user settings.

git_ssh_private_key infrastructure > git > byo_git (Required when git_protocol_type is set to 'ssh')

Used to specify the path of the ssh private key file required to access the
Git repositories.

Note: An encrypted private key protected with a passphrase
isn'tsupported. You must ensure that the key is decrypted before you use
it in the deployment payload.

The current user must have read and write access to the private key, but
other users should not have access to it. Hence, you must assign the
private key permissions as follows:

chmod 600 <git_ssh_private_key>

git_scm_repo_url infrastructure > git > byo_git (Required when git_type is set to 'byo_git')

77

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

Used to specify the Git repository URL to use as the SCM repository. You
can provide both http and https URLs in this parameter.

git_scm_repo_branch infrastructure > git > byo_git (Required when git_type is set to 'byo_git')

Used to specify the branch of the Git repository to use for the SCM
repository.

git_scm_flux_folder infrastructure > git > byo_git (Required when git_type is set to ‘byo_git’)

Used to specify the folder to use for Flux bootstrap setup in the SCM
repository.

SCM will have full control over this folder. Hence, it's recommended to
use a dedicated folder for the Flux folder in the SCM repository.

Note:

• If folder exists, SCM will clean up the existing content and continue
with deployment.

• If this folder doesn’t exist, SCM will create the folder and continue
with deployment.

git_helm_repo_url infrastructure > git > byo_git (Required Used to specify the Git repository URL to use as the Helm
repository.

Note: SCM will have full control over the Helm repository. So use a
dedicated repository for the Helm repository.

git_helm_repo_branch infrastructure > git > byo_git (Required) Used to specify the Git repository branch to use for the Helm
repository.

git_url Infrastructure > git > gitlab (Required) Used to specify the URL for the GitLab instance.

git_user infrastructure > git > gitlab (Required) Used to specify the user with access to create GitLab projects
in the specified GitLab instance.

git_accesstoken infrastructure > git > gitlab (Required) Used to specify the access token, with the API scope, for the
GitLab user. You can create the access token in user settings.

git_selfsigned_cacert infrastructure > git > gitlab (Required) Used to specify the path to a self-signed certificate.

For example, if you copy the Git certificate from the Git instance to the
SCM instance in the "/home/opc/cmapp/<CM_RESOURCE_PREFIX>/
certs" directory, which is volume mounted to the "/home/opc/certs"
directory in the SCM container, you can assign "/home/opc/certs/
rootCA.crt" as the value for this parameter.

You can also copy the certificates to SCM using File Sync Utility, for more
information see Uploading Files to the SCM Container Using File Sync
Utility.

siebel_lb_subnet_cidr

infrastructure

(Required for advanced network configuration) CIDR range for Load
Balancer subnet. For more information about CIDR ranges for subnets,
 see Using Advanced Network Configuration.

78

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

siebel_private_subnet_cidr

infrastructure

(Required for advanced network configuration) CIDR range for
Kubernetes worker nodes private subnet.

siebel_db_subnet_cidr

infrastructure

(Required for advanced network configuration) CIDR range for the
database private subnet.

siebel_cluster_subnet_cidr

infrastructure

(Required for advanced network configuration) CIDR range for OKE
cluster subnet (Kubernetes API server).

siebel_lb_subnet_ocid

infrastructure

(Required for using existing VCN resource) OCID of the regional subnet
where the Load Balancer will be attached. Allow TCP port 443 from your
client network where the users will access Siebel application.

siebel_private_subnet_ocid

infrastructure

(Required for using existing VCN resource) OCID of the subnet where the
OKE worker nodes will be attached. The following needs to be ensured:

• Allow all TCP port traffic in the same subnet, enables pods on one
worker node to communicate with pods on other worker nodes.

• Allow all TCP port traffic from cluster subnet, enables Kubernetes
control plane to communicate with worker nodes.

• Allow TCP port 22 ingress from SCM instance subnet/VCN, for SCM
to SSH to worker nodes.

• Allow egress rule for "All <region> Services in Oracle Services
Network", enables accessing OCI container registry and other OCI
services from worker nodes.

• Allow egress for TCP port 6443, 12250 to cluster subnet, enables
Kubernetes worker to Kubernetes API endpoint communication and
Kubernetes worker to control plane communication.

• Allow ICMP Port 3 and 4 for instances to receive Path MTU
Discovery fragmentation messages.

siebel_db_subnet_ocid

infrastructure

(Required for using existing VCN resource) OCID of the subnet where the
Database will be created. The following needs to be ensured:

• Allow TCP port 22 ingress from SCM instance subnet/VCN, for SCM
to SSH to DBCS node.

• Allow TCP port 1521, 1522 from SCM instance subnet for database
import and worker nodes for Siebel CRM to connect to the
database.

siebel_cluster_subnet_ocid

infrastructure

(Required for using existing VCN resource) OCID of the subnet where the
Kuberenetes API end point will be made available. The following needs to
be ensured:

• Allow all TCP port traffic from worker nodes private subnet, enables
Kubernetes control plane to communicate with worker nodes.

• Allow ingress for TCP port 6443 to the cloud manager instance
subnet for accessing the Kubernetes cluster.

• Allow ingress for TCP port 6443 and 12250 to the worker nodes for
connecting with the API server.

79

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

• Allow ICMP port 3 and 4 for instances to receive Path MTU
Discovery fragmentation messages.

• Allow egress rule for "All <region> Services in Oracle Services
Network", enables accessing OCI container registry and other OCI
services from worker nodes.

vcn_ocid_of_db_subnet

infrastructure

(Required for using existing VCN resource) OCID of the VCN which will be
attached to the access control list of autonomous database (ATP). This is
needed for establishing connection when the database is launched in a
different VCN than the worker node subnet.

load_balancer_type

infrastructure

(Optional) Option to make load balancer as private/public

Customer can restrict visibility of the Siebel application using this
payload parameter.

Supported values are one of: Private, Public.

Choosing the "Public" option will assign a loadbalancer with public IP for
public access.

Choosing the "Private" option will create a loadbalancer with only private
IP which can be accessed within the network only.

If it is not specified, a public IP will be assigned.

load_balancer_ssl_cert_path infrastructure (Optional) Specifies the path of the ssl certificate file which contains
public certificate or collection of public certificates that you can provide
as an aggregated group for load balancer.

The ssl certificate should be in PEM format only.

If your ssl certificate submission returns an error, the most common
reasons are:

• Your ssl public certificate is malformed.

• The system does not recognize the encryption method used for
your certificate.

load_balancer_private_key_path infrastructure (Optional) Speficies the path of the private key file for the Load Balancer
TLS/SSL certificate.

The private key should be in PEM format only.

If your private key submission returns an error, the most common
reasons are:

• You provided an incorrect password.

• Your private key is malformed.

• The system does not recognize the encryption method used for
your key.

load_balancer_private_key_
password

infrastructure (Optional) The OCID of the secret containing the password of the Load
Balancer private key.

This will be used to decrpyt the private key provided in the 'load_
balancer_private_key_path' parameter.

80

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

load_balancer_tls_secret_name infrastructure Specifies the name of the Load Balancer tls secret name to be given
during environment provisioning.

Note: If you provide ingress annotations, the value of tls-secret
annotation should be same as the value of this parameter.

The default value for load_balancer_tls_secret_name is "lb-tls-
certificate". You can provide "lb-tls-certificate" for the value of tls-
secret annotation under the ingress controller annotation section if this
parameter is not configured in the payload.

shift_siebel_fs infrastructure (Optional) This parameter specifies whether shifting of the file
system is to be executed or skipped while BYO-FS(infrastructure >
mounttarget_exports) is used. Default value is set to True.

mounttarget_exports infrastructure (Required if the "Use existing resources" option is chosen during SCM
stack creation)

The mount_target_private_ip and export_path information to be used for
Siebel file system.

kubernetes_type infrastructure > kubernetes Specifies type of kubernetes supported by SCM.

Allowed values are OKE or BYO_OKE or BYO_OCNE or BYO_OTHER

If OKE, then SCM will create an OKE during environment provisioning

If BYO_OKE, user needs to provide OKE cluster details.

If BYO_OCNE, user needs to provide OCNE cluster details.

If BYO_OTHER, user can provide any other type of cluster which adheres
to CNCF standards.

This field will become mandatory if the "Use existing resources" option is
chosen during SCM stack creation).

oke_node_count infrastructure > kubernetes > oke (Optional) Specifies the number of nodes to be created in the cluster. On
a region with multiple availability domains, node pools are distributed
across all availability domains. The default is 3 availability domains. For
more information about node counts, see OCI documentation.

oke_node_shape infrastructure > kubernetes > oke (Optional for Flex shape type) Specifies the compute shape for the
cluster node. Example shape options include:

• VM.Standard.Flex

• VM.Standard.E4.Flex

• VM.Standard2.4 (default shape, which might be appropriate for a
minimal sized Siebel CRM environment)

Note: For Flex (flexible) node shape options only, the parameters
under node_shape_config specify values for the memory and ocpus
parameters. (For non-flexible node shape options, these parameters are
not editable.)

For more information about compute shapes, see OCI documentation.

81

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

memory_in_gbs infrastructure > kubernetes > oke >
oke_node_shape_config

(Optional for Flex shape type) Specifies the amount of memory available
to each node in the node pool, in gigabytes. This setting is editable only
for flexible node shape options.

ocpus infrastructure > kubernetes > oke >
oke_node_shape_config

(Optional for Flex shape type) Specifies the number of Oracle CPUs
(OCPUs) available to each node in the node pool. This setting is editable
only for flexible node shape options.

oke_cluster_id

Note: You can either pass oke_
cluster_id and oke_endpoint or you
can pass only oke_kubeconfig_
path in payload

infrastructure > kubernetes > byo_
oke

(Required when 'kubernetes_type' is BYO_OKE)

The OCID of the OCI Kubernetes Cluster.

Note:

• The SCM instance should have access to the OKE cluster to perform
any operation on cluster-related resources. The following policy
statement enables <subject> to access and perform operations
on cluster-family in compartment id <oke_compartment_ocid>
- Allow <subject> to manage cluster-family in compartment id
<oke_compartment_ocid>

• VCN peering is required if OKE and SCM instance reside in different
VCNs. For more information, refer to Access to Other VCNs: Peering.

For more information, see Using Vault for Managing Secrets.

oke_endpoint

Note: You can either pass oke_
cluster_id and oke_endpoint or you
can pass only oke_kubeconfig_
path in payload

infrastructure > kubernetes > byo_
oke

(Required when 'kubernetes_type' is BYO_OKE)

Specifies the endpoint used to generate kubeconfig and access cluster.

The available options are

• PRIVATE

• PUBLIC

Depending on the input, either private or public endpoint will be used to
access cluster.

oke_kubeconfig_path infrastructure > kubernetes > byo_
oke

(Required when 'kubernetes_type' is BYO_OKE)

Specifies the path of kubeconfig file of an existing OKE to access and
configure cluster.

Copy the kubeconfig file and to the SCM instance at this location: '/
home/opc/siebel' and provide the path for the file, such as '/home/opc/
siebel/kubeconfig'

Note:

• You can provide OKE information either by passing parameters
(oke_cluster_id and oke_endpoint) or directly passing kubeconfig
path using parameter oke_kubeconfig_path

• SCM instance should be having access to OKE to perform any
operation on cluster-related resources. The following policy
statement enables <subject> to access and perform operation
on cluster-family in comartment id <oke_compartment_ocid>

82

https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/VCNpeering.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

- Allow <subject> to manage clusterfamily in compartment id
<oke_compartment_ocid>

• VCN peering is required if OKE and SCM instance reside in different
VCNs. For more information, refer to Access to Other VCNs: Peering.

For more information, see Using Vault for Managing Secrets.

kubeconfig_path infrastructure > kubernetes > byo_
ocne
infrastructure > kubernetes > byo_
other

(Required when 'kubernetes_type' is BYO_OCNE or BYO_OTHER)

Specifies the path of kubeconfig file of an existing Kubernetes cluster
(other than OKE, for example, an OCNE cluster) to access and configure
cluster.

Copy the kubeconfig file and to the SCM instance at this location: '/
home/opc/siebel' and provide the path for the file, such as '/home/opc/
siebel/kubeconfig'

Note: SCM instance should have access to Kubernetes cluster to perform
any operation on cluster-related resources.

ingress_service_type infrastructure > ingress_controller Specifies ingress service type to be provisioned during Siebel CRM
deployment.

Allowed values are LoadBalancer or NodePort.

ingress_controller_service_
annotations

infrastructure > ingress_controller (Optional) Specifies annotations that needs to be added to ingress
service

Note: When ingress_service_type is LoadBalancer and for 'BYO
OKE' or 'BYO OCNE' use case 'service.beta.kubernetes.io/oci-
load-balancer-subnet1' annotation is required under sub-section
'ingress_controller_service_annotations'

siebfs_mt_export_paths

infrastructure > mounttarget_
exports

(Required if the "Use existing resources" option is chosen during SCM
stack creation)

The list of mount_target_private_ip and export_path information to be
used for Siebel file system matching the number of siebel_file_system_
count in source environment.

The payload structure would be:

"infrastructure": { "mounttarget_exports":{ "siebfs_mt_export_paths":
[{"mount_target_private_ip" : ****,"export_path": "/exttest2-siebfs0"},
{"mount_target_private_ip" : **** ,"export_path": "/exttest2-siebfs1"},
{"mount_target_private_ip" : ****, "export_path": "/exttest2-siebfs1"}] },
(other infrastructure payload parameters) }

migration_package_mt_export_
path

infrastructure > mounttarget_
 exports

(Required if the "Use existing resources" option is chosen during SCM
stack creation)

The mount_target_private_ip and export_path information to be used for
Migration storage.

The payload structure would be:

 { "mounttarget_exports":
 { "migration_package_mt_export_path":

83

https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/VCNpeering.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

 {"mount_target_private_ip" : "****", "export_path": "/
test-migration"}
 }
 }

Note: If this parameter is not provided for SCM created Siebel
Deployment, SCM will create a dedicated export path for migration
storage with path /<env_namespace-migration. This can be mounted in
target environments.

db_type

database

Specifies one of the following:

• ATP (for Oracle Autonomous Database)

• DBCS_VM (for Oracle Database Cloud Service)

• BYOD (stands for Bring Your Own Database – for the case when the
"Use existing resources" option is chosen during Cloud Manager
stack creation)

For ATP, also include options under database > atp.

For DBCS_VM, also include options under database > dbcs_vm.

For BYOD, also include options under database > byod. For more
information, see Notes on BYOD (Bring Your Own Database).

siebel_admin_username

database > auth_info

(Mandatory) The username of the Siebel administrative user.

siebel_admin_password

database > auth_info

(Mandatory) OCID of the secret containing the Siebel Administration
User password. Password should have atleast 2 Upper characters, 2
Lower characters, 2 Digits and 2 special characters from _,#,- of length 9
to 30 characters. Password should not contain the username as a part of
it.

For more information, see Using Vault for Managing Secrets.

table_owner_user

database > auth_info

(Mandatory) The Table owner in which the Siebel schema will be
imported.

table_owner_password

database > auth_info

(Mandatory) OCID of the secret containing he login password used for
the Siebel table owner. Password should have at least 2 Upper characters,
2 Lower characters, 2 Digits and 2 special characters from _,#,- of length
9 to 30 characters. Password should not contain the username as a part
of it.

For more information, see Using Vault for Managing Secrets.

default_user_password

database > auth_info

(Mandatory) OCID of the secret containing the default user password
updated for all the users. Password should have at least 2 Upper
characters, 2 Lower characters, 2 Digits and 2 special characters from
_,#,- of length 9 to 30 characters.

For more information, see Using Vault for Managing Secrets.

anonymous_user_password

database > auth_info

(Mandatory) OCID of the secret containing the anonymous user
password which will be updated. Password should have atleast 2 Upper

84

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

characters, 2 Lower characters, 2 Digits and 2 special characters from
_,#,- of length 9 to 30 characters.

For more information, see Using Vault for Managing Secrets.

admin_password

database > atp

OCID of the secret for the password of the ATP database administrator
user. Password should be have at least 12 to 30 characters, 1 upper
character, 1 lower character and one number. Password cannot contain
"" or the word "admin" in it. Review the password policy for shared ATP
infrastructure in OCI and provide a valid password. For more information
about the Oracle Autonomous Database, see https://docs.oracle.com/
en/cloud/paas/atp-cloud/index.html on Oracle Help Center.

For more information, see Using Vault for Managing Secrets.

wallet_password

database > atp

(OCID)(Required) OCID of the secret containing the password for ATP
wallet download. Password can contain alphanumeric characters and of
length 8 to 60.

For more information, see Using Vault for Managing Secrets.

cpu_cores

database > atp

(Required) Specifies the ATP database's allocated OCPUs. The minimum
value is 1.

whitelist_cidrs database > atp Specifies the cidrs to be added to the ATP DB ACL list when
cloudmanager creates database

Cloudmanager creates Autonomous Database with the Secure access
from allowed IPs and VCNs only option, you can restrict network access
by defining Access Control Lists (ACLs).

When using bring your own flow like BYO OCNE and if you want to
include cidrs of bring your own components in ACL list of ATP DB to
establish connection between them, you can utilize this parameter.

Example:

"whitelist_cidrs": "[129.0.0.0/8]"

storage_in_tbs

database > atp

(Required) Specifies the ATP database's disk storage, in terabytes. The
minimum value is 1.

wallet_path

database > byod

(Required for user provided database if the "Use existing resources"
option is chosen during SCM stack creation)

The absolute path of the Oracle net services configuration files or Oracle
client credentials (wallet) is required for connecting to the database. The
wallet files have to be copied inside the SCM container. The wallet should
contain atleast the tnsnames.ora for a valid folder. During environment
provisioning the wallet will be validated if it contains the tnsnames.ora.
TLS enabled wallets are also supported. The provided wallet path will be
copied inside the environment directory for usage. For more information,
 see Notes on BYOD (Bring Your Own Database).

tns_connection_name

database > byod

(Required for user provided database if the "Use existing resources"
option is chosen during SCM stack creation)

85

https://docs.oracle.com/en/cloud/paas/atp-cloud/index.html
https://docs.oracle.com/en/cloud/paas/atp-cloud/index.html

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

This is the connection identifier which will be used by the Siebel CRM
application to establish connection to the database. The provided
connection identifier will be validated if it’s present in the tnsnames.ora.
For more information, see Notes on BYOD (Bring Your Own Database).

drg_ocid database > byod (Optional) OCID of the DRG to be attached with the OKE nodes subnet
to allow traffic from the VCN (where Database resides) provided that the
both the DB VCN and CM VCN is peered.
For more information, see Using Vault for Managing Secrets.

destination_db_cidr_block database > byod (Optional) Destination CIDR block where traffic has to be routed from
OKE nodes subnet to the VCN (where Database resides) provided that
the both the DB VCN and CM VCN is peered.

availability_domain

database > dbcs_vm

(Optional) The availability domain in which the database is to be used.
Possible availability domains are 1, 2, and 3, depending on the region.
Defaults to 1.

cpu_count

database > dbcs_vm

(Optional) The OCPU count for the DBCS database node. Possible values
are from 4 to 64. Required memory is calculated on the formula of 16
GB times the number of OCPU cores. The current supported flex type
relevant to this setting is VM.Standard.E4.Flex.

data_storage_size_in_gbs

database > dbcs_vm

(Required) The storage size of the database instance, in gigabytes. The
different storage sizes are: 256, 512, 1024, 2048, 4096, 6144, 8192, 10240,
 12288, 14336, 16384, 18432, 20480, 22528, 24576, 26624, 28672, 30720,
 32768, 34816, 36864, 38912, or 40960.

database_edition

database > dbcs_vm

(Optional) The edition of Oracle Database to be used. Currently
supported versions are:

• DATABASE_EDITION_ENTERPRISE_EDITION (default)

• DATABASE_EDITION_ENTERPRISE_EDITION_HIGH_
PERFORMANCE

db_admin_username

database > dbcs_vm

(Required) Username for the Oracle schema user to be created with DBA
privileges for administration activities. Username should have atleast 6
to 15 characters and only alphabets.

db_admin_password

database > dbcs_vm

(OCID)(Required) OCID of the secret for the password of the Oracle
schema user. Password should have atleast 2 Upper characters, 2 Lower
characters, 2 Digits and 2 special characters from _,#,- of length 9 to
30 characters. Password should not contain the username as a part of
it.Password should not contain the username as a part of it.
For more information, see Using Vault for Managing Secrets.

mount_target_ip database>dbcs_vm (Required when infrastructure > mounttarget_exports is provided) IP
address of the mount target used for creating the database directory in
the DB node.

export_path database>dbcs_vm (Required when infrastructure > mounttarget_exports is provided)
Export path in the mount target used for creating the database directory
in the DB node.

86

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

Note: This export path will be used for copying the database dumps and
database directory for the import in database shifting stage.

db_version

database > dbcs_vm

(Optional) The version of Oracle Database to be used. Currently
supported versions are 19.x.0.0 and 21.x.0.0. Defaults to 19.x.0.0.

shape

database > dbcs_vm

(Required) The shape of the node for the Oracle Database instance. The
different shapes in which the database can be provisioned can be found
in the Limits, Quotas, and Usage section in the OCI console.

cpu

size > ses_resource_limits

(Optional) Specifies CPU resource limits of SES containers.

This parameter specifies the max number of CPU units that can be
allocated to the container. It can be given as a whole number like "1" or as
a decimal number like "0.5" or in milliCPU units like "500m". The default
is "2". Precision finer than "1m" is not allowed. For more information,
 refer to Kubernetes documentation.

If not specified in payload, default value is used.

ses_resource_limits must be greater than or equal to the value of ses_
resource_requests parameter.

memory

size > ses_resource_limits

(Optional) Specifies memory resource limits of SES containers.

This parameter specifies the max amount of memory that can be
allocated to the container. It can be given in Ki,Mi,Gi and Ti units. The
default is "4Gi". Specify in multiples of 2, such as 4, 8, 16, and so on. For
more information, refer to Kubernetes documentation.

If not specified in payload, default value is used.

ses_resource_limits must be greater than or equal to the value of ses_
resource_requests parameter.

cpu

size > ses_resource_requests

(Optional) Specifies the minimum guaranteed amount of CPU resources
that is to be reserved for SES containers.

It can be given as a whole number or with a decimal point like "0.5" or in
milliCPU units like "500m". The default is "1". A request with a decimal
point, such as "0.1", is converted to "100m" (100 milliCPU) by the API.
Precision finer than "1m" is not allowed. For more information, refer to
Kubernetes documentation.

If not specified in payload, default value is used.

ses_resource_limits must be greater than or equal to the value of ses_
resource_requests parameter.

memory

size > ses_resource_requests

(Optional) Specifies the minimum guaranteed amount of memory
resources that is to be reserved for SES containers.

It can be given in Ki,Mi,Gi and Ti units. The default is "4Gi". Specify in
multiples of 2, such as 4, 8, 16, and so on. For more information, refer to
Kubernetes documentation.

If not specified in payload, default value is used.

87

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

ses_resource_limits must be greater than or equal to the value of ses_
resource_requests parameter.

cpu

size > cgw_resource_limits

(Optional) Specifies CPU resource limits of Siebel Cloud Gateway
containers.

Default value is "2". If not specified in payload, default value is used.

cgw_resource_limits must be greater than or equal to the value of cgw_
resource_requests parameter.

memory

size > cgw_resource_limits

(Optional) Specifies memory resource limits of Siebel Cloud Gateway
containers.

Default value is "4Gi". If not specified in payload, default value is used.

cgw_resource_limits must be greater than or equal to the value of cgw_
resource_requests parameter.

cpu

size > cgw_resource_requests

(Optional) Specifies the minimum guaranteed amount of CPU resources
that is to be reserved for Siebel Cloud Gateway containers.

Default value is "1". If not specified in payload, default value is used.

cgw_resource_limits must be greater than or equal to the value of cgw_
resource_requests parameter.

memory

size > cgw_resource_requests

(Optional) Specifies the minimum guaranteed amount of memory
resources that is to be reserved for Siebel Cloud Gateway containers

Default value is "4Gi". If not specified in payload, default value is used.

cgw_resource_limits must be greater than or equal to the value of cgw_
resource_requests parameter.

cpu

size > sai_resource_limits

(Optional) Specifies CPU resource limits reserved for Siebel Application
Interface containers (SAI).

Default value is "2". If not specified in payload, default value is used.

sai_resource_limits must be greater than or equal to the value of sai_
resource_requests parameter.

memory

size > sai_resource_limits

(Optional) Specifies memory resource limits of Siebel Application
Interface containers (SAI).

Default value is "4Gi". If not specified in payload, default value is used.

sai_resource_limits must be greater than or equal to the value of sai_
resource_requests parameter.

cpu

size > sai_resource_requests

(Optional) Specifies the minimum guaranteed amount of CPU resources
that is to be reserved for Siebel Application Interface containers (SAI).

Default value is "1". If not specified in payload, default value is used.

88

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

sai_resource_limits must be greater than or equal to the value of sai_
resource_requests parameter.

memory

size > sai_resource_requests

(Optional) Specifies the minimum guaranteed amount of memory
resources that is to be reserved for Siebel Application Interface
containers (SAI).

Default value is "4Gi". If not specified in payload, default value is used.

sai_resource_limits must be greater than or equal to the value of sai_
resource_requests parameter.

siebel_monitoring

observability

(Optional) Set this value to true if you want to enable Siebel CRM
Observability – Monitoring feature.

Set this value to false to disable all of monitoring feature.

enable_oci_monitoring

observability

(Optional) Set this value to true to send metrics from Prometheus to
the OCI monitoring service and create an OCI Application Performance
Monitoring (APM) dashboard in OCI.

Set this value to false to restrict sending the metrics from Prometheus
to the OCI monitoring service and to restrict creating the OCI APM
dashboard.

Notes:

The OCI infrastructure metrics for OCI resources will be available in OCI
irrespective of the value of this parameter.

siebel_monitoring should be 'true' and the oci_config parameter must be
configured when enable_oci_monitoring is set to 'true'.

send_alerts

observability

(Optional) Set this value to true if you want to enable alerting feature in
Siebel CRM Observability – Monitoring

Set this value to false to disable alerting feature in Siebel CRM
Observability – Monitoring.

Note: siebel_monioring should be 'true' when send_alerts is set to 'true'
in payload.

siebel_logging

observability

(Optional) Set this value to true if you want to enable Siebel CRM
Observability – Log Analytics feature.

Set this value to false to disable Siebel CRM Observability – Log Analytics
feature.

enable_oci_log_analytics

observability

Set this value to true if you want to enable log streaming to OCI Logging
Analytics.

Set this value to false to disable log streaming to OCI Logging Analytics.

Note: siebel_logging should be 'true' when enable_oci_log_analytics is
set to 'true' in payload.

89

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

enable_oracle_opensearch

observability

Set this value to true if you want to create Oracle OpenSearch
infrastructure and enable log streaming to Oracle OpenSearch.

Set this value to false to disable log streaming to Oracle OpenSearch.

Note: siebel_logging should be 'true' when enable_oracle_opensearch is
set to 'true' in payload.

oci_log_analytics

observability

Required only for enabling OCI Logging Analytics for BYOR scenario, else
optional. This section provides identifiers for various input parameters
needed for enabling OCI Logging Analytics when BYOR ("Use existing
resource") option is chosen during SCM installation.

smc_log_group_id

observability > oci_log_analytics

OCID of the log group in OCI Logging Analytics to send all SMC logs.

This is required only when enable_oci_log_analytics is set to 'true' in
"Siebel CRM Observability – Monitoring and Log Analytics" solution and
"Use existing resources" option is selected.

sai_log_group_id

observability > oci_log_analytics

OCID of the log group in OCI Log Analytics to push all SAI related logs.

This is required only when enable_oci_log_analytics is set to 'true' in
"Siebel CRM Observability – Monitoring and Log Analytics" solution and
"Use existing resources" option is selected.

ses_log_group_id

observability > oci_log_analytics

OCID of the log group in OCI Log Analytics to push all SES related logs.

This is required only when enable_oci_log_analytics is set to 'true' in
"Siebel CRM Observability – Monitoring and Log Analytics" solution and
"Use existing resources" option is selected.

gateway_log_group_id

observability > oci_log_analytics

OCID of the log group in OCI Log Analytics to push all Gateway related
logs.

This is required only when enable_oci_log_analytics is set to 'true' in
"Siebel CRM Observability – Monitoring and Log Analytics" solution and
"Use existing resources" option is selected.

node_logs_log_group_id

observability > oci_log_analytics

OCID of the log group in OCI Log Analytics to push all Pod logs.

This is required only when enable_oci_log_analytics is set to 'true' in
"Siebel CRM Observability – Monitoring and Log Analytics" solution and
"Use existing resources" option is selected.

log_source_name

observability > oci_log_analytics

Name of the log source in OCI Log Analytics for identifying the origin of
logs.

This is required only when enable_oci_log_analytics is set to 'true' in
"Siebel CRM Observability – Monitoring and Log Analytics" solution and
"Use existing resources" option is selected.

mount_target_private_ip

observability-
>monitoring_mt_export_path

Mount target private IP details required for monitoring component.

90

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

export_path

observability-
>monitoring_mt_export_path

Mount target export path details required for monitoring component.

storage_class_name observability > prometheus

observability > oracle_opensearch

(Optional In SCM Observability feature, Prometheus and Oracle
OpenSearch use block volume.

Block Volumes can be provisioned in one of the two following ways.

• Dynamic provisioning involves automatic creation of storage
volumes as needed by applications running in Kubernetes Cluster.
Example: oci-bv

• Static provisioning involves manual creation of storage volumes
and making them available to applications by predefining them in
Kubernetes cluster. For example: local-storage

If your Kubernetes cluster doesn't have support for dynamic provisioning
of block volumes, and you want to use local storage of a node for
Prometheus or Oracle OpenSearch., you can provide local-storage as the
storage_class_name.

You can also provide your own custom integration storage type by
passing the name of the storage class in this parameter.

Default value for this field is 'oci-bv'.

local_storage observability > prometheus > local_
storage_info

observability > oracle_opensearch >
local_storage_info

If storage_class_name is local-storage, then this parameter specifies the
local storage path.

kubernetes_node_hostname observability > prometheus > local_
storage_info

observability > oracle_opensearch >
local_storage_info

If storage_class_name is local-storage, then this parameter specifies the
hostname in which the local storage path is present.

oci_config_path

observability->oci_config

Specifies the path to the oci config file.

This is required only when either siebel_monitoring or enable_oci_log_
analytics is enabled.

Note: The region defined in the oci configuration file provided as
oci_config_path parameter should be same as region where SCM is
deployed.

oci_private_api_key_path

observability->oci_config

Specifies the path to the oci private key file.

This is required only when either siebel_monitoring or enable_oci_log_
analytics is enabled for Siebel CRM Observability – Monitoring and Log
Analytics solution.

oci_config_profile_name

observability->oci_config

Specifies the profile name to be used in the oci config file.

91

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Description

This is required only when either siebel_monitoring or enable_oci_log_
analytics is enabled for Siebel CRM Observability – Monitoring and Log
Analytics solution.

smtp_host

observability-
>alertmanager_email_config

Specifies the SMTP host name required for SMTP configuration.

This is required only when send_alerts is set to 'true' in Siebel CRM
Observability – Monitoring and Log Analytics solution.

smtp_from_email

observability-
>alertmanager_email_config

Specifies the SMTP from email address using which emaill will be sent
required for SMTP configuration.

This is required only when send_alerts is set to 'true' in Siebel CRM
Observability – Monitoring and Log Analytics solution.

smtp_auth_username

observability-
>alertmanager_email_config

Specifies the SMTP auth username required for SMTP configuration.

This is required only when send_alerts is set to 'true' in Siebel CRM
Observability – Monitoring and Log Analytics solution.

smtp_auth_password_vault_ocid

observability-
>alertmanager_email_config

Specifies the ocid having SMTP auth password required for SMTP
configuration.

This is required only when send_alerts is set to 'true' in Siebel CRM
Observability – Monitoring and Log Analytics solution.

to_email

alertmanager_email_config

Specifies the email to which alerts should be sent.

This is required only when send_alerts is set to 'true' in Siebel CRM
Observability – Monitoring and Log Analytics solution.

Executing the Payload to Deploy Siebel CRM

This topic describes how to execute the payload to deploy Siebel CRM. This topic is part of Deploying Siebel CRM on OCI.

To execute the payload to deploy Siebel CRM
1. Create an application/json body with the payload information. For an example, see Example Payload to Deploy

Siebel CRM.
2. Do a POST API like the following:

POST https://<CM_Instance_IP>:16690/scm/api/v1.0/environment

Note: Specify a payload appropriate for your use case. For an example payload and for usage guidelines, see
Example Payload to Deploy Siebel CRM.

92

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

3. Use Basic Auth and provide credentials like the following:
User: "admin"

Password: "<Password available in the file /home/opc/cm_app/{CM_RESOURCE_PREFIX}/config/api_creds.ini>"

Environment information is displayed. Copy the selfLink value for monitoring purposes. For example:
"selfLink": "https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/4ZZYX5"

Example Payload to Deploy Siebel CRM

In order to deploy Siebel CRM on OCI, you can prepare a payload like the following to be executed by SCM. Note the
following usage guidelines:

• To deploy Siebel CRM with the default configuration (greenfield deployment use case 1), omit the config_id
parameter.

• To create a Siebel CRM configuration to customize (greenfield deployment use case 2), use the POST API
command in Creating the Configuration and Obtaining the Configuration ID. Include all the same payload
parameters you would use in greenfield deployment use case 1.

• To deploy Siebel CRM with a customized configuration (greenfield deployment use case 2), use the POST API
command in Executing the Payload to Deploy Siebel CRM. Include in the payload only the config_id parameter
(set to the configuration ID you obtained when you created the configuration) and name parameter. Omit all
other parameters.

• For usage guidance on additional parameters required for the lift and shift use case or for greenfield
deployments, see Parameters in Payload Content.

This section contains the following topics:

• Example Payload when "Do not use Vault" Checkbox is Selected

• Example Payload when "Use existing resources" Checkbox is Not Selected

• Example Payload when "Use existing VCN" Checkbox is Selected

• Example Payload when "Use existing resources" Checkbox is Selected

• Example Database Sections for DBCS_VM Database Type for a BYOD Case

• Example Kubernetes Cluster Sections for BYO-Kubernetes

• Example Git Section for BYO-Git

Example Payload when "Do not use Vault" Checkbox is Selected
{
 "config_id": "<config_id of custom configuration>",
 "name": "DevExample",
 "siebel": {
 "registry_url": "iad.ocir.io",
 "siebel_architecture": "CRM",
 "registry_user": "deploygroup/user.name@example.com",
 "registry_password": "<xxxxxx>",
 "bucket_url": "https://objectstorage.us-example-1.oraclecloud.com/p/s0EgeDE9-
 NMc2lTazIY3LuXO1IbGx5ASAilKxJexLHNjirdl4AKJh8RBxou1J4S1/n/deploygroup/b/bucket_example/o/",
 "keystore" : {
 "siebel_keystore_path": "/home/opc/test/ca/siebelcerts/keystore.jks",
 "siebel_keystore_password": "<xxxxxx>",

93

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "siebel_truststore_path": "/home/opc/test/ca/siebelcerts/truststore.jks",
 "siebel_truststore_password": "<xxxxxx>"
 }
 },
 "infrastructure": {
 "git": {
 "git_type": "gitlab",
 "gitlab": {
 "git_url": "https://<IP address>",
 "git_accesstoken": "<yyyyy>",
 "git_user": "<username>",
 "git_selfsigned_cacert": "/home/opc/certs/rootCA.crt"
 }
 },
 "siebel_cluster_subnet_ocid": "<cluster_subnet_ocid>",
 "siebel_lb_subnet_ocid": "<lb_subnet_ocid>",
 "siebel_private_subnet_ocid": "<private_subnet_ocid>",
 "siebel_db_subnet_ocid": "<db_subnet_ocid>",
 "vcn_ocid_of_db_subnet": "<VCN_ocid_of_worker_node>",
 "load_balancer_type": "public",
 "kubernetes": {
 "kubernetes_type": "OKE",
 "oke": {
 "oke_node_count": 3,
 "oke_node_shape": "VM.Standard.E4.Flex",
 "oke_node_shape_config": {
 "memory_in_gbs": 60,
 "ocpus": 4
 }
 }
 }
 },
 "database": {
 "db_type": "ATP",
 "atp": {
 "admin_password": "<Plain-text of your admin password>",
 "storage_in_tbs": 1,
 "cpu_cores": 3,
 "wallet_password": "<Plain-text of your wallet password's secret>"
 },
 "auth_info": {
 "siebel_admin_username": "<provide your own values>",
 "siebel_admin_password": "<Your Siebel admin password's secret in plain-text>",
 "default_user_password": "<Your default user password's secret in plain-text>",
 "table_owner_password": "<Your table owner password's secret in plain-text>",
 "table_owner_user": "<provide your own values>",
 "anonymous_user_password": "<Your anonymous user password's secret in plain-text>"
 }
 },
 "size": {
 "ses_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "ses_resource_requests": {
 "cpu": "1.0",
 "memory": "4Gi"
 },
 "cgw_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "cgw_resource_requests": {
 "cpu": "1000m",
 "memory": "4Gi"
 },

94

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "sai_resource_limits": {
 "cpu": "1",
 "memory": "4Gi"
 },
 "sai_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 }
 }
}

Example Payload when "Use existing resources" Checkbox is Not Selected
{
 "config_id": "<config_id of custom configuration>",
 "name": "DevExample",
 "siebel": {
 "registry_url": "iad.ocir.io",
 "siebel_architecture": "CRM",
 "registry_user": "deploygroup/user.name@example.com",
 "registry_password": "<xxxxxx>",
 "bucket_url": "https://objectstorage.us-example-1.oraclecloud.com/p/s0EgeDE9-
NMc2lTazIY3LuXO1IbGx5ASAilKxJexLHNjirdl4AKJh8RBxou1J4S1/n/deploygroup/b/bucket_example/o/",
 "keystore" : {
 "siebel_keystore_path" : "/home/opc/test/ca/siebelcerts/keystore.jks",
 "siebel_keystore_password": "<xxxxxx>",
 "siebel_truststore_path": "/home/opc/test/ca/siebelcerts/truststore.jks",
 "siebel_truststore_password": "<xxxxxx>"
 }
 },
 "infrastructure": {
 "git": {
 "git_type": "gitlab",
 "gitlab": {
 "git_url": "https://<IP address>",
 "git_accesstoken": "<yyyyy>",
 "git_user": "<user.name>",
 "git_selfsigned_cacert": "/home/opc/certs/rootCA.crt"
 }
 },
 "siebel_lb_subnet_cidr" : "10.0.1.0/24",
 "siebel_private_subnet_cidr" : "10.0.2.0/24",
 "siebel_db_subnet_cidr" : "10.0.3.0/24",
 "siebel_cluster_subnet_cidr" : "10.0.4.0/24",
 "load_balancer_type": "public",
 "kubernetes": {
 "kubernetes_type": "OKE",
 "oke": {
 "oke_node_count": 3,
 "oke_node_shape": "VM.Standard.E3.Flex",
 "oke_node_shape_config": {
 "memory_in_gbs": "60",
 "ocpus": "4"
 }
 }
 }
 },
 "database": {
 "db_type": "ATP",
 "atp": {
 "admin_password": "<OCID of your admin password>",
 "storage_in_tbs": 1,
 "cpu_cores": 3,
 "wallet_password": "<OCID of your wallet password's secret>"
 },

95

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "auth_info": {
 "siebel_admin_username": "<provide your own values>",
 "siebel_admin_password": "<OCID of your Siebel admin password's secret>",
 "default_user_password": "<OCID of your default user password's secret>",
 "table_owner_password": "<OCID of your table owner password's secret>",
 "table_owner_user": "<provide your own values>",
 "anonymous_user_password": "<OCID of your anonymous user password's secret>"
 }
 },
 "size": {
 "ses_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "ses_resource_requests": {
 "cpu": "1.0",
 "memory": "4Gi"
 },
 "cgw_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "cgw_resource_requests": {
 "cpu": "1000m",
 "memory": "4Gi"
 },
 "sai_resource_limits": {
 "cpu": "1",
 "memory": "4Gi"
 },
 "sai_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 }
 }
}

Example Payload when "Use existing VCN" Checkbox is Selected
{
 "config_id": "<config_id of custom configuration>",
 "name": "DevExample",
 "siebel": {
 "registry_url": "iad.ocir.io",
 "siebel_architecture": "CRM",
 "registry_user": "deploygroup/user.name@example.com",
 "registry_password": "<xxxxxx>",
 "bucket_url": "https://objectstorage.us-example-1.oraclecloud.com/p/s0EgeDE9-
 NMc2lTazIY3LuXO1IbGx5ASAilKxJexLHNjirdl4AKJh8RBxou1J4S1/n/deploygroup/b/bucket_example/o/",
 "keystore" :
 {
 "siebel_keystore_path" : "/home/opc/test/ca/siebelcerts/keystore.jks",
 "siebel_keystore_password": "<xxxxxx>",
 "siebel_truststore_path": "/home/opc/test/ca/siebelcerts/truststore.jks",
 "siebel_truststore_password": "<xxxxxx>"
 }
 },
 "infrastructure": {
 "git": {
 "git_type": "gitlab",
 "gitlab": {
 "git_url": "https://<IP address>",
 "git_accesstoken": "<yyyyy>",
 "git_user": "<username>",
 "git_selfsigned_cacert": "/home/opc/certs/rootCA.crt"

96

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 }
 },
 "siebel_cluster_subnet_ocid": "<cluster_subnet_ocid>",
 "siebel_lb_subnet_ocid": "<lb_subnet_ocid>",
 "siebel_private_subnet_ocid": "<private_subnet_ocid>",
 "siebel_db_subnet_ocid": "<db_subnet_ocid>",
 "vcn_ocid_of_db_subnet": "<VCN_ocid_of_worker_node>",
 "load_balancer_type": "public",
 "kubernetes": {
 "kubernetes_type": "OKE",
 "oke": {
 "oke_node_count": 3,
 "oke_node_shape": "VM.Standard.E3.Flex",
 "oke_node_shape_config": {
 "memory_in_gbs": "60",
 ocpus": "4"
 }
 }
 }
 },
 "database": {
 "db_type": "ATP",
 "atp": {
 "admin_password": "<OCID of your admin password>",
 "storage_in_tbs": 1,
 "cpu_cores": 3,
 "wallet_password": "<OCID of your wallet password's secret>"
 },
 "auth_info": {
 "siebel_admin_username": "<provide your own values>",
 "siebel_admin_password": "<OCID of your Siebel admin password's secret>",
 "default_user_password": "<OCID of your default user password's secret>",
 "table_owner_password": "<OCID of your table owner password's secret>",
 "table_owner_user": "<provide your own values>",
 "anonymous_user_password": "<OCID of your anonymous user password's secret>"
 }
 },
 "ses_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "ses_resource_requests": {
 "cpu": "1.0",
 "memory": "4Gi"
 },
 "cgw_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "cgw_resource_requests": {
 "cpu": "1000m",
 "memory": "4Gi"
 },
 "sai_resource_limits": {
 "cpu": "1",
 "memory": "4Gi"
 },
 "sai_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 }
 }
}

97

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Example Payload when "Use existing resources" Checkbox is Selected
The following is an example payload sent to SCM to deploy Siebel CRM using user provided inputs regarding existing
infrastructure for Siebel CRM deployment. Specific section, for example for OKE, for mount target etc. are further given
as separate examples in the subsequent sections.

{
 "name": "test1",
 "siebel": {
 "siebel_architecture": "CRM",
 "registry_url": "iad.ocir.io",
 "registry_user": "<registry_user>",
 "registry_password": "<registry_password>",
 "database_type": "Vanilla",
 "industry": "Telecommunications",
 "keystore" :
 {
 "siebel_keystore_path" : "/home/opc/test/ca/siebelcerts/keystore.jks",
 "siebel_keystore_password": "<xxxxxx>",
 "siebel_truststore_path": "/home/opc/test/ca/siebelcerts/truststore.jks",
 "siebel_truststore_password": "<xxxxxx>"
 }
 },
 "infrastructure": {
 "git": {
 "git_type": "gitlab",
 "gitlab": {
 "git_url": "https://<IP address>",
 "git_accesstoken": "<gitlab token>",
 "git_user": "root",
 "git_selfsigned_cacert": "/home/opc/certs/rootCA.crt"
 }
 },
 "load_balancer_type": "public",
 "siebel_lb_subnet_cidr" : "10.0.1.0/24",
 "siebel_private_subnet_cidr" : "10.0.2.0/24",
 "siebel_db_subnet_cidr" : "10.0.3.0/24",
 "siebel_cluster_subnet_cidr" : "10.0.4.0/24",
 "kubernetes": {
 "kubernetes_type": "BYO_OKE",
 "byo_oke": {
 "oke_cluster_id": "<cluster-ocid>",
 "oke_endpoint": "PRIVATE",
 "oke_kubeconfig_path": "<path-to-kubeconfig-file>"
 }
 },
 "mounttarget_exports": {
 "siebfs_mt_export_paths": [
 {"mount_target_private_ip" : "10.0.255.171","export_path": "/siebfs0"}
]
 }
 },
 "database": {
 "db_type": "BYOD",
 "byod": {
 "wallet_path": "/home/opc/certs/wallet",
 "tns_connection_name": "<provide tns connection name value>"
 },
 "auth_info": {
 "siebel_admin_username": "<provide your own values>",
 "siebel_admin_password": "<OCID of your Siebel admin password's secret>",
 "default_user_password": "<OCID of your default user password's secret>",
 "table_owner_password": "<OCID of your table owner password's secret>",
 "table_owner_user": "<provide your own values>",

98

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "anonymous_user_password": "<OCID of your anonymous user password's secret>"
 }
 },
 "size": {
 "ses_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "ses_resource_requests": {
 "cpu": "1.0",
 "memory": "4Gi"
 },
 "cgw_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "cgw_resource_requests": {
 "cpu": "1000m",
 "memory": "4Gi"
 },
 "sai_resource_limits": {
 "cpu": "1",
 "memory": "4Gi"
 },
 "sai_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 }
 }
}

Example Database Sections for DBCS_VM Database Type for a BYOD Case
The following is an example database section of the payload for the DBCS_VM database type, using a VM standard
shape type:

"database": {
 "db_type": "DBCS_VM",
 "dbcs_vm": {
 "db_version": "21.0.0.0",
 "database_edition": "ENTERPRISE_EDITION_HIGH_PERFORMANCE",
 "availability_domain": "1",
 "db_home_admin_password": "<OCID of your db home admin password's secret>",
 "shape": "VM.Standard1.1",
 "data_storage_size_in_gbs": "512",
 "db_admin_username": "<provide your own values>",
 "db_admin_password": "OCID of your db admin password’s secret"
 }
 "auth_info": {
 "siebel_admin_username": "<provide your own values>",
 "siebel_admin_password": "<OCID of your Siebel admin password's secret>",
 "default_user_password": "<OCID of your default user password's secret>",
 "table_owner_password": "<OCID of your table owner password's secret>",
 "table_owner_user": "<provide your own values>",
 "anonymous_user_password": "<OCID of your anonymous user password's secret>"
 }
 },

The following is an example database section of the payload for the DBCS_VM database type, using a VM flex shape
type:

"database": {
 "db_type": "DBCS_VM",
 "dbcs_vm": {
 "db_version": "21.0.0.0",

99

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "database_edition": "ENTERPRISE_EDITION_HIGH_PERFORMANCE",
 "availability_domain": "1",
 "db_home_admin_password": "<OCID of your db home admin password's secret>",
 "shape": "VM.Standard.E4.Flex",
 "cpu_count": "2",
 "data_storage_size_in_gbs": "512",
 "db_admin_username": "<provide your own values>",
 "db_admin_password": "OCID of your db admin password’s secret"
 }
 "auth_info": {
 "siebel_admin_username": "<provide your own values>",
 "siebel_admin_password": "<OCID of your Siebel admin password's secret>",
 "default_user_password": "<OCID of your default user password's secret>",
 "table_owner_password": "<OCID of your table owner password's secret>",
 "table_owner_user": "<provide your own values>",
 "anonymous_user_password": "<OCID of your anonymous user password's secret>"
 }
 },

The following is an example database section of the payload for the DBCS_VM database type, using BYO-FS with
payload parameter dbcs_vm > mount_target_ip and export_path included:

"database": {
 "db_type": "DBCS_VM",
 "dbcs_vm": {
 "db_version": "21.0.0.0",
 "database_edition": "ENTERPRISE_EDITION_HIGH_PERFORMANCE",
 "availability_domain": "1",
 "db_home_admin_password": "<OCID of your db home admin password's secret>",
 "shape": "VM.Standard.E4.Flex",
 "cpu_count": "2",
 "data_storage_size_in_gbs": "512",
 "db_admin_username": "<provide your own values>",
 "db_admin_password": "<OCID of your db admin password’s secret>",
 "mount_target_private_ip": "<IP address of your mount target>",
 "export_path": "<Export path in the mount target for using in DATA DIR>"
 },
 "auth_info": {
 "siebel_admin_username": "<provide your own values>",
 "siebel_admin_password": "<OCID of your Siebel admin password's secret>",
 "default_user_password": "<OCID of your default user password's secret>",
 "table_owner_password": "<OCID of your table owner password's secret>",
 "table_owner_user": "<provide your own values>",
 "anonymous_user_password": "<OCID of your anonymous user password's secret>"
 }
},

Example Kubernetes Cluster Sections for BYO-Kubernetes
Payloads for all Kubernetes Cluster options.

Example payload when user chooses to go with SCM creating OKE during environment provisioning:

{
 "infrastructure": {
 "kubernetes": {
 "kubernetes_type": "OKE",
 "oke": {
 "oke_node_count": 3,
 "oke_node_shape": "VM.Standard.E3.Flex",
 "oke_node_shape_config": {
 "memory_in_gbs": "60",
 "ocpus": "4"
 }
 }

100

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 }
 }
}

Example payload when user chooses to use their cluster for environment provisioning and kubernetes type is BYO_OKE:

{
 "infrastructure": {
 "kubernetes": {
 "kubernetes_type": "BYO_OKE",
 "byo_oke": {
 "oke_cluster_id": "ocid1.****",
 "oke_endpoint": "PRIVATE",
 "oke_kubeconfig_path": "/home/opc/siebel/kubeconfig.yaml"
 },
 "ingress_controller": {
 "ingress_service_type": "LoadBalancer",
 "ingress_controller_service_annotations": {
 "oci.oraclecloud.com/load-balancer-type": "lb",
 "service.beta.kubernetes.io/oci-load-balancer-internal": "false",
 "service.beta.kubernetes.io/oci-load-balancer-shape": "flexible",
 "service.beta.kubernetes.io/oci-load-balancer-shape-flex-min": "10",
 "service.beta.kubernetes.io/oci-load-balancer-shape-flex-max": "100",
 "service.beta.kubernetes.io/oci-load-balancer-ssl-ports": "443",
 "service.beta.kubernetes.io/oci-load-balancer-tls-secret": "lb-tls-certificate",
 "service.beta.kubernetes.io/oci-load-balancer-subnet1":
 "ocid1.subnet.oc1.iad.aaaaaaaayt53nlge54fhrhvrnvyvvgqvtenngwz4tqljvpn2chn7ws4chm6q"
 }
 }
 }
}
}

Example payload when user chooses to use their cluster for environment provisioning and kubernetes type is
BYO_OCNE:

{
 "infrastructure": {
 "kubernetes": {
 "kubernetes_type": "BYO_OCNE",
 "byo_ocne": {
 "kubeconfig_path": "/home/opc/siebel/kubeconfig.yaml"
 }
 },
 "ingress_controller": {
 "ingress_service_type": "LoadBalancer",
 "ingress_controller_service_annotations": {
 "oci.oraclecloud.com/load-balancer-type": "lb",
 "service.beta.kubernetes.io/oci-load-balancer-internal": "false",
 "service.beta.kubernetes.io/oci-load-balancer-shape": "flexible",
 "service.beta.kubernetes.io/oci-load-balancer-shape-flex-min": "10",
 "service.beta.kubernetes.io/oci-load-balancer-shape-flex-max": "100",
 "service.beta.kubernetes.io/oci-load-balancer-ssl-ports": "443",
 "service.beta.kubernetes.io/oci-load-balancer-tls-secret": "lb-tls-certificate",
 "service.beta.kubernetes.io/oci-load-balancer-subnet1":
 "ocid1.subnet.oc1.iad.aaaaaaaayt53nlge54fhrhvrnvyvvgqvtenngwz4tqljvpn2chn7ws4chm6q"
 }
 }
 }
}

Example payload when user chooses to use their cluster for environment provisioning and kubernetes type is OCNE,
observability is enabled and local-storage is used for Prometheus and oracle-opensearch:

{

101

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "infrastructure": {
 "kubernetes": {
 "kubernetes_type": "BYO_OCNE",
 "byo_ocne": {
 "kubeconfig_path": "/home/opc/siebel/kubeconfig.yaml"
 }
 },
 "ingress_controller": {
 "ingress_service_type": "LoadBalancer",
 "ingress_controller_service_annotations": {
 "oci.oraclecloud.com/load-balancer-type": "lb",
 "service.beta.kubernetes.io/oci-load-balancer-internal": "false",
 "service.beta.kubernetes.io/oci-load-balancer-shape": "flexible",
 "service.beta.kubernetes.io/oci-load-balancer-shape-flex-min": "10",
 "service.beta.kubernetes.io/oci-load-balancer-shape-flex-max": "100",
 "service.beta.kubernetes.io/oci-load-balancer-ssl-ports": "443",
 "service.beta.kubernetes.io/oci-load-balancer-tls-secret": "lb-tls-certificate",
 "service.beta.kubernetes.io/oci-load-balancer-subnet1":
 "ocid1.subnet.oc1.iad.aaaaaaaayt53nlge54fhrhvrnvyvvgqvtenngwz4tqljvpn2chn7ws4chm6q"
 }
 }
 }
},
"observability": {
 "siebel_monitoring": true,
 "oci_config": {
 "oci_config_path": "/home/opc/config/config1",
 "oci_private_api_key_path": "/home/opc/config/oci_api_key.pem",
 "oci_config_profile_name": "DEFAULT"
 },
 "prometheus": {
 "storage_class_name": "local-storage",
 "local_storage_info": {
 "local_storage": "/mnt/test",
 "kubernetes_node_hostname": "olcne-worknode-1"
 }
 },
 "oracle_opensearch": {
 "storage_class_name": "local-storage",
 "local_storage_info": [
 {
 "local_storage": "/mnt/test1",
 "kubernetes_node_hostname": "olcne-worknode-2"
 },
 {
 "local_storage": "/mnt/test2",
 "kubernetes_node_hostname": "olcne-worknode-2"
 },
 {
 "local_storage": "/mnt/test3",
 "kubernetes_node_hostname": "olcne-worknode-2"
 }
]
 },
 "monitoring_mt_export_path": {
 "mount_target_private_ip": "10.0.1.168",
 "export_path": "/olcne-migration"
 }
}
}

102

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Example Git Section for BYO-Git
If you want to BYO Git, you must configure the byo_git section in Siebel CRM deployment payload. For more information
on Git repositories, see Git Repositories for Siebel CRM Deployment.

The following is an example of the git section of the Siebel CRM deployment payload when the git_type parameter is
set to byo_git:

Example payload when the Git protocol type is set to http:

{
 "infrastructure": {
 "git": {
 "git_type": "byo_git",
 "byo_git": {
 "git_protocol_type": "http",
 "git_scm_repo_url":"https://xxxx.xxxxx.com/xxx/test1/repositories/test1-cm",
 "git_scm_repo_branch": "main2",
 "git_scm_flux_folder": "Siebel-crm4",
 "git_helm_repo_url": "https://xxxx.xxxxx.com/xxx/test1/repositories/test1-cmhc",
 "git_helm_repo_branch": "main1",
 "git_accesstoken": "***********",
 "git_user": "xxxx.xx@xx.com"
 }
 }
 }
}

Example payload when the Git protocol type is set to ssh:

{
 "infrastructure": {
 "git": {
 "git_type": "byo_git",
 "byo_git": {
 "git_protocol_type": "ssh",
 "git_scm_repo_url":"https://xxxx.xxxxx.com/xxx/test1/repositories/test1-cm",
 "git_scm_repo_branch": "main2",
 "git_scm_flux_folder": "Siebel-crm4",
 "git_helm_repo_url": "https://xxxx.xxxxx.com/xxx/test1/repositories/test1-hc",
 "git_helm_repo_branch": "main1",
 "git_ssh_private_key": "/home/opc/siebel/oci_api_key.pem",
 "git_user": " xxxx.xx@xx.com"
 }
 }
 }
}

Example payload when using existing configuration with byo_git:

"name": "demo1",
"config_id": "OOOAA",
"infrastructure": {
 "git": {
 "git_type": "byo_git",
 "byo_git": {
 "git_protocol_type": "ssh",
 "git_scm_repo_url": "ssh://xxxx.xxxxx.com/xxx/test1/repositories/test1-cm",
 "git_scm_repo_branch": "main2",
 "git_scm_flux_folder": "siebel-crm4",
 "git_helm_repo_url": "https:// xxxx.xxxxx.com/xxx/test1/repositories/test1-hc ",
 "git_helm_repo_branch": "main1",
 "git_ssh_private_key": "/home/opc/siebel/oci_api_key.pem",
 "git_user": "xxxx.xx@xx.com"

103

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 }
 },
}

Note: You must use the same Git type for environment provisioning and configuration. For example, if you have
set the git_type parameter to byo_git in the configuration payload, then you must set the git_type parameter to
byo_git in the provisioning payload also. If the git_type specified in the configuration payload is different from the
environment provisioning payload, an error is thrown during the provisioning payload validation.

Additional Administrative Tasks in Siebel Cloud Manager

This topic provides several additional API-based administrative tasks that you might need to perform as part of using
SCM to deploy and administer Siebel CRM on OCI. This topic includes the following information:

• Resetting the Administrative Password

• Changing the Log Level

• Checking the Status of a Requested Environment

• Checking the Status of a Requested Configuration

• Resubmitting the Environment Creation Workflow

• Resubmitting the Environment Creation Workflow

• Updating Parameters During Rerun of Environment or Configuration APIs

Resetting the Administrative Password
You can change the administrative password for SCM through the API, by using a reset token in a PUT request like the
following. This topic is part of Additional Administrative Tasks in Siebel Cloud Manager.

PUT https://<CM_Instance_IP>:16690/scm/api/v1.0/credentials
Content-Type: application/json
{
"admin_token":"RESET_KEY",
"admin_username": "admin",
"admin_password": "<your_password>"
}
Response : 200 - admin credentials are set

Changing the Log Level
You can set the log level for SCM application and the Ansible workflow through the API, by using a PUT request. The valid
log levels are as follows. This topic is part of Additional Administrative Tasks in Siebel Cloud Manager.

CRITICAL
ERROR
WARNING
INFO
DEBUG

104

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use a PUT request like the following:

PUT https://<CM_Instance_IP>:16690/scm/api/v1.0/configure
Auth: Basic auth
Content-Type: application/json
{"log_level": "INFO"
}
Response : 200 - INFO

Checking the Status of a Requested Environment
To find the latest status of a requested environment, run GET API using the selfLink. The selfLink is displayed when you
execute the payload, as shown in Executing the Payload to Deploy Siebel CRM . The output JSON will have a status
section with the stages, such as those shown below. This topic is part of Additional Administrative Tasks in Siebel Cloud
Manager.

GET https://<IP Address>:<Port>/scm/api/v1.0/environment/4QVRX5

Siebel CRM Application URLs
At the end of the Ansible workflow publish stage, URLs for the Siebel CRM applications are populated, similar to the
following:

"urls": [
 "https://<IP Address>/siebel/app/callcenter/enu",
 "https://<IP Address>/siebel/app/eservice/enu",
 "https://<IP Address>/siebel/app/sservice/enu",
 "https://<IP Address>/siebel/smc"
]

Siebel CRM URLs can be viewed using the environment query (GET).

If the URLs are not populated, they can be formed by finding the IP address of the Loadbalancer (Kubernetes service or
Load Balancer instance in OCI). For example:

https://<IP Address from LB>/siebel/app/callcenter/enu

To connect using kubectl, check the log files mentioned below.

105

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Viewing Logs
Different kinds of logs are useful for capturing the flow and debugging. For any failures, you can review logs and correct
issues. For example, you can correct policy issues in OCI and rerun the workflow.

• SCM application logs (retrieve using GET API). For example:

Retrieve consolidated logs using a URL like this:

GET https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/<env_id>/logs

Retrieve logs for specific stages using a URL like this:

GET https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/<env_id>/logs/<stage_name>

You can obtain the <stage_name> from GET info stages section. For example, a URL like the following provides the
log of the import database stage:

GET https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/<env_id>/logs/import-siebel-db

You can also view logs by connecting to the SCM instance using SSH and the following command:

docker exec -it cloudmanager bash

• Ansible logs (retrieve using GET API). For example:

GET https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/<env_id>/logs/ansible

You can also find Ansible logs inside the working directory of a given environment, as follows:

◦ SSH to the SCM application instance using opc user.

◦ Exec into the container using the command:

- docker exec -it cloudmanager bash

◦ Change directory to /home/opc/siebel/<env_id>/ (for example, /home/opc/siebel/4QVRX5 is the working
directory for an environment with environment ID 4QVRX5).

◦ You can find Ansible logs inside the artifacts directory, such as /home/opc/siebel/4QVRX5/artifacts.
Multiple folders might be found, such as if the workflows ran multiple times.

◦ Review the stdout file and the rc file under the given run folder to see failure and debug information.

Checking the Status of a Requested Configuration
To find the latest status of a requested configuration, run GET API using the configuration selfLink. The output JSON will
have a status section with the stages, such as those shown below. This topic is part of Additional Administrative Tasks in
Siebel Cloud Manager.

GET https://<CM_Instance_IP>:<Port>/scm/api/v1.0/configuration/<config_id>

106

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Related Topics
Customizing Configurations Prior to Greenfield Deployment

Resubmitting the Environment Creation Workflow
You can use a PUT API like the following to resubmit the environment request. This topic is part of Additional
Administrative Tasks in Siebel Cloud Manager.

PUT https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/<env_id>

The environment ID is a unique number and can be fetched from the selfLink of the output from the environment
creation.

In order to run a specific stage due to a failure, the stage name can be passed in the URL using the run-only-this-stage
query parameter.

PUT https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/<env_id>?run-only-this-stage=import_siebel_db

This will execute only the stage where provided stage i.e. import_siebel_db.

In order to run a specific stage and all the subsequent stages, the stage name to begin should be passed in the run-
this-stage-and-all-following-stages parameter.

PUT https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/<env_id>?run-this-stage-and-all-following-
stages=import_siebel_db

This will execute the provided stage that is import_siebel_db, and the stages after that.

The values for the parameters: run-only-this-stage and run-this-stage-and-all-following-stages can be fetched from
the GET method API of environment/configuration.

Updating Parameters During Rerun of Environment or
Configuration APIs
This section covers broadly these use case categories:

• How users can update some of the parameters during rerun of environment/configuration APIs to correct the
invalid/incorrect values and resume the workflows.

• When an environment provisioning is triggered using an existing configuration, that is config_id is passed in
payload and still one wants to use different infrastructure setup for environment keeping other configuration
customizations.

• Update the environment status as completed if the environment has failed in the App URL validation stage.

You can update parameters by passing them in payload for these API methods:

• PUT /environment - rerun of existing environment

• PUT /configuration - rerun of existing configuration

• POST /environment method which uses existing configuration, that is config_id is passed in payload.

107

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

SCM allows to override only predefined set of parameters which are detailed in the following use case scenarios. For
other parameters if overridden, validation error will be thrown. The reason for this is they are considered as immutable
fields to keep the environment intact.

This section covers the following use cases:

• Use Case 1 - Non BYO Case - When "Use existing resources" Checkbox is Not Selected

• Use Case 2 - BYO Case - When "Use existing resources" Checkbox is Selected

• Use Case 3 - BYOD Case - When "Use existing resources" Checkbox is Not Selected and Only Existing Database
is Used

• Use Case 4 - When running a CI activity needs env_status to be changed

Note:
• For all the following use cases, the parameters related to 'siebel' section cannot be overridden during API

execution.

• Any other parameter, which is not mentioned in the respective use case, is not allowed to be overridden during
API execution.

• For non-BYO use case, 'database' values cannot be overridden.

Use Case 1 - Non BYO Case - When "Use existing resources" Checkbox is Not Selected
For Non BYO Case, one can pass below parameters in payload during PUT or POST (when config_id is passed in
payload) API execution.

• CIDR parameters (only applicable when you chose Advanced Network Configuration during SCM stack creation)

◦ infrastructure > siebel_lb_subnet_cidr

◦ infrastructure > siebel_private_subnet_cidr

◦ infrastructure > siebel_db_subnet_cidr

◦ infrastructure > siebel_cluster_subnet_cidr

• Size parameters

◦ size > ses_resource_limits

◦ size > sai_resource_limits

◦ size > cgw_resource_limits

◦ size > ses_resource_requests

◦ size > sai_resource_requests

◦ size > cgw_resource_requests

Here, it is not mandatory to pass all parameters. One can pass only required parameter during API execution.

Example Payload for PUT/POST method when "Use existing resources" Checkbox is Not Selected:

{

108

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "infrastructure": {
 "siebel_lb_subnet_cidr" : "10.0.1.0/24",
 "siebel_private_subnet_cidr" : "10.0.2.0/24",
 "siebel_db_subnet_cidr" : "10.0.3.0/24",
 "siebel_cluster_subnet_cidr" : "10.0.4.0/24"
 },
 "ses_resource_limits": {
 "cpu": "4",
 "memory": "24Gi"
 },
 "ses_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 },
 "sai_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "sai_resource_requests: {
 "cpu": "1",
 "memory": "4Gi"
 },
 "cgw_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "cgw_resource_requests”: {
 "cpu": "1",
 "memory": "4Gi"
 }
 }
}

Use Case 2 - BYO Case - When "Use existing resources" Checkbox is Selected
For BYO Case, one can pass the following parameters in payload during PUT or POST (when config_id is passed in
payload) API execution.

• OKE parameters

◦ infrastructure > kubernetes > byo_oke > oke_cluster_id

◦ infrastructure > kubernetes > byo_oke > oke_endpoint

◦ infrastructure > kubernetes > byo_oke > oke_kubeconfig_path

◦ infrastructure > mounttarget_exports

• Database parameters - If you pass database section in payload, it is mandatory to pass all of the below fields.

◦ database > db_type

◦ database > byod

◦ database > auth_info

109

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

• Size parameters

◦ size > ses_resource_limits

◦ size > sai_resource_limits

◦ size > cgw_resource_limits

◦ size > ses_resource_requests

◦ size > sai_resource_requests

◦ size > cgw_resource_requests

Example Payload for PUT/POST method when "Use existing resources" Checkbox is Selected

 {
 "infrastructure": {

 "kubernetes": {
 "kubernetes_type": "BYO_OKE",
 "byo_oke": {
 "oke_cluster_id": "<cluster-ocid>",
 "oke_endpoint": "PRIVATE",
 "oke_kubeconfig_path": "<path-to-kubeconfig-file>"
 }
 }

 "mounttarget_exports": {
 "siebfs_mt_export_paths": [
 {
 "mount_target_private_ip" : "10.0.0.82","export_path": "/siebfs0"
 }
]
 }
 },
 "database": {
 "db_type": "BYOD",
 "byod": {
 "wallet_path": "/home/opc/siebel/wallet",
 "tns_connection_name": "test_tp"
 },
 "auth_info": {

 "admin_user_name": "*****",
 "admin_user_password": "********",
 "anonymous_user_password": "********",
 "default_user_password": "*******",
 "table_owner_password": "*******",
 "table_owner_user": "******"
 }
 },
 "size": {
 "ses_resource_limits": {
 "cpu": "4",
 "memory": "24Gi"
 },
 "ses_resource_requests”: {
 "cpu": "1",
 "memory": "4Gi"
 },
 "sai_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "sai_resource_requests": { "

110

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 cpu": "1",
 "memory": "4Gi"
 },
 "cgw_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "cgw_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 }
 }
}

Use Case 3 - BYOD Case - When "Use existing resources" Checkbox is Not Selected
and Only Existing Database is Used
For BYO Case, one can pass the following parameters in payload during PUT or POST (when config_id is passed in
payload) API execution.

• CIDR parameters (only applicable when you chose Advanced Network Configuration during SCM stack creation)

◦ infrastructure > siebel_lb_subnet_cidr

◦ infrastructure > siebel_private_subnet_cidr

◦ infrastructure > siebel_db_subnet_cidr

◦ infrastructure > siebel_cluster_subnet_cidr

• Database parameters - If you pass database section in payload, it is mandatory to pass all the following fields.

◦ database > db_type

◦ database > byod

◦ database > auth_info

• Size parameters

◦ size > ses_resource_limits

◦ size > sai_resource_limits

◦ size > cgw_resource_limits

◦ size > ses_resource_requests

◦ size > sai_resource_requests

◦ size > cgw_resource_requests

Example Payload for PUT/POST method when "Use existing resources" Checkbox is not Selected and only
existing Database is used:

 {
 "infrastructure": {
 "siebel_lb_subnet_cidr" : "10.0.1.0/24",
 "siebel_private_subnet_cidr" : "10.0.2.0/24",
 "siebel_db_subnet_cidr" : "10.0.3.0/24",
 "siebel_cluster_subnet_cidr" : "10.0.4.0/24"

 }
 },
 "database": {

111

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 "db_type": "BYOD",
 "byod": {
 "wallet_path": "/home/opc/siebel/wallet",
 "tns_connection_name": "test_tp"
 },
 "auth_info": {

 "admin_user_name": "*****",
 "admin_user_password": "********",
 "anonymous_user_password": "********",
 "default_user_password": "*******",
 "table_owner_password": "*******",
 "table_owner_user": "******"
 }
 },
 "ses_resource_limits": {
 "cpu": "4",
 "memory": "24Gi"
 },
 "ses_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 },
 "sai_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "sai_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 },
 "cgw_resource_limits": {
 "cpu": "2",
 "memory": "4Gi"
 },
 "cgw_resource_requests": {
 "cpu": "1",
 "memory": "4Gi"
 }
 }
}

Use Case 4 - When running a CI activity needs env_status to be changed
To run the CI activities of the Siebel CRM deployment such as SFS cleanup etc, the environment has to be in a
completed stage. The env_status parameter will define if the environment is completed or not. If the environment has
failed in the app validation stage (because of some app urls not coming up), then this API can be used to update the
environment as completed.

Example:

PUT https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/<env_id>

{
 "env_status": "completed"
}

112

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Troubleshooting a Siebel Cloud Manager Instance or
Requested Environment
This topic provides several additional tasks for reviewing and troubleshooting a SCM instance or an environment that
you requested. This topic includes the following information:

• Troubleshooting a Siebel Cloud Manager Instance

• Examining Your Deployment

• Reviewing the PostInstallDBSetup Execution Status

• Troubleshooting Oracle Resource Manager Stack Apply Job Failure

• Troubleshooting Handshake Failed Server State in Siebel Management Console

• Troubleshooting Issues Related to Siebel Migration Application in an SCM Deployed Siebel CRM Environment

• Troubleshooting Issues Related to Siebel CRM Observability – Monitoring Solution

• Troubleshooting Issues Related to Siebel CRM Observability – Log Analytics Solution

Troubleshooting a Siebel Cloud Manager Instance
When the OCI configuration is not set up properly, the SCM instance is blocked and a response like this is received:

 {
 "data": {},
 "message": "Configuration File not Found. Please refer this link to check how you can configure OCI
 configuration in your instance. https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm Check
 Cloud Manager Logs for more information about the error.",
 "status": "failed"
 }

The message contains information about the reason for the failure. In this case, the message says Configuration File not
Found. Check if the OCI configuration file is set up properly.

Any kind of exception raised by OCI might be caught and you can troubleshoot accordingly. All of these logs are
captured in the SCM application. View the log file to see detailed info about the error that occurred. After making the
necessary changes in the configuration file, restart the application to check whether the error is still present.

Examining Your Deployment
You can examine the Kubernetes deployment with kubectl, such as in the following commands run on the virtual
machine for SCM. This topic is part of Troubleshooting a Siebel Cloud Manager Instance or Requested Environment.

docker exec -it cloudmanager bash

source /home/opc/siebel/<env_id>/k8sprofile

kubectl -n <deployment name supplied in deployment POST request> get all

The last command shown above displays information about all the Kubernetes objects that were created for a given
Siebel CRM environment when it was deployed on OCI (which might have been subsequently modified through making
incremental changes). These objects or pods correspond to instances (and replicas) of Siebel Server, Siebel Gateway

113

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

(CGW), Siebel Application Interface (SAI), and Siebel Management Console (SMC). Also present are an ingress controller
to control ingress to proxy servers, and a metacontroller and a Siebel controller for executing incremental changes.

You can compare the information displayed by this kubectl command to the representation of the deployment and its
primary elements in SMC.

Reviewing the PostInstallDBSetup Execution Status

A PostInstallDBSetup job is run as part of the deployment pipeline. It is run as a Kubernetes job. The failure of this job
does not stop the deployment and the application execution. However, you are advised to check the logs to confirm
that PostInstallDBSetup ran successfully. In case of failure, take appropriate corrective action, as described in Siebel
Database Upgrade Guide on Siebel Bookshelf. This topic is part of Troubleshooting a Siebel Cloud Manager Instance or
Requested Environment.

Before checking the PostInstallDBSetup execution, first set up the kubectl CLI. Connect to the SCM container and set
the profile for your environment, as follows:

docker exec -it cloudmanager bash

source /home/opc/siebel/<env_id>/k8sprofile

Next, run kubectl commands to find the PostInstallDBSetup job pod for which you will run the logs command. First run
a command like this:

kubectl -n <env_name> get pods | grep postinstall

Example output:

postinstalldb-q2wnv 0/1 Completed 0 92m

And then run a command like this:
kubectl -n demo3 logs po/postinstalldb-q2wnv

Example output:

+ /siebel/mde/siebsrvr/bin/PostInstallDBSetup -i /config/PostInstallDBSetup.ini -p
 S1e8eladm1n123 -z SiebelAdmin123 'PostInstallDBSetup' database final configuration is not required on this
 instance as it has already been executed in a prior install.

real 0m21.438s

user 0m2.504s

sys 0m0.952s

Exit Status : 8

Detailed logs for PostInstallDBSetup can be verified from the persistent folder stored in the file storage service (OCI
service). To access this location from the SCM instance, use a command like the following in the same shell in which you
connected to the SCM container:

cd /home/opc/siebel/<env_id>/siebfs0/<ENV_NAME_IN_CAPS>/SES/POSTINSTALLDB/siebsrvr/log

114

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Troubleshooting Oracle Resource Manager Stack Apply Job Failure

Sometimes OCI resource creation fails with errors. These errors can be found in the apply job logs, which you can
access using the OCI console. During such failures, you can trigger the Ansible workflow again by using a PUT rerun
command that resubmits the environment creation workflow. The errors might resemble the following. This topic is part
of Troubleshooting a Siebel Cloud Manager Instance or Requested Environment.

Error: 400-InvalidParameter

Provider version: 4.20.0, released on 2021-03-31. This provider is 36 updates behind to current.

Service: FileStorageFileSystem

Error Message: Ocid 'ocid1.compartment.oc1..aaaaaaaabwvdshyuwbyfpx72m4lq6yni673m2ewf7qrou7ha5dvaxrjeogfa'
 not found in Compartment Tree!

OPC request ID:
 a42cd5b1927359f403a56e8eabb378b8/47793109B015FB5F54CE70BC905ACF70/968A739323FC3A76967AD9E94862A1E2

Suggestion: Please update the parameter(s) in the Terraform config as per error message Ocid
 'ocid1.compartment.oc1..aaaaaaaabwvdshyuwbyfpx72m4lq6yni673m2ewf7qrou7ha5dvaxrjeogfa' not found in
 Compartment Tree!

on modules/storage/main.tf line 1, in resource "oci_file_storage_file_system" "siebelCM_Fss"

1: resource "oci_file_storage_file_system" "siebelCM_Fss" {

For example, use a command like this to resubmit the environment creation workflow:

https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/4QVRX5

Troubleshooting Handshake Failed Server State in Siebel
Management Console
If you see a Handshake failed server state in the Management screen in Siebel Management Console (SMC), then you
cannot perform management runtime activities from SMC. This topic is part of Troubleshooting a Siebel Cloud Manager
Instance or Requested Environment.

After all lift and shift activities are completed for a Siebel CRM deployment on OCI, and you navigate to the Servers
view in the Management screen in SMC, you might see a State value of Handshake failed for one or more servers. This
happens when the Siebel Gateway (CGW) instantiates the Server Manager sessions before all servers are in the running
state.

To correct this state and restore the SMC management functionality, you must restart all of the siebelcgw pods. To do
this, first connect to the SCM container and set the profile for your OCI environment, as follows:

docker exec -it cloudmanager bash

source /home/opc/siebel/<env_id>/k8sprofile

Next, restart all of the CGW pods using the following command:

kubectl rollout restart sts siebelcgw -n <env_name>

115

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Now you can log in to SMC again and verify the server states from the Management screen.

Troubleshooting Issues Related to Siebel Migration Application in
an SCM Deployed Siebel CRM Environment

A few points to watch out for:

• Invalid "Object Manager" value under REST Inbound Defaults in Application Interface Profile. In such case, you
can edit AI profile and update the REST Inbound Defaults Object Manager to valid Object Manager.

• Migration application requires components such as EAIObjMgr, WfProcMgr, WfProcBatchMgr to be online.
If any of them are not enabled, you might face issue in the workings of migration app. This is also informed
in "warning" section of the environment self link response. Make sure to include these components before
using the migration application. You can also add these components incrementally using the steps given in this
document.

• Missing Database privileges required for migration application.

Troubleshooting Issues Related to Siebel CRM Observability –
Monitoring Solution

• To view and query various metrics, use Prometheus UI (https://<IP>/prometheus)

Reference: https://prometheus.io/docs/prometheus/latest/querying/basics/

• When you define custom alert rules:

◦ Verify if alerts are registered using Prometheus UI

◦ If alert is not appearing in Prometheus, then check the Alertmanager pod logs to debug and identify the
issues using command:
kubectl logs siebel-alertmanager-<id> -n <namespace>

• When you customize Prometheus configuration and if it is not working, you may debug using this command:
prometheus logs - kubectl logs prometheus-deployment-<id> -n <namespace>

• When you use Custom Siebel Metrics feature, if the metric did not propagate to Prometheus, you may view the
logs of siebel-metric-exporter pod to identify the issue using this command:
kubectl exec -it siebel-metric-exporter-<id> bash –n <namespace> Log Location - /src/
siebel_metric_exporter.log

Troubleshooting Issues Related to Siebel CRM Observability – Log
Analytics Solution
For troubleshooting cases where logs are not getting collected or streamed appropriately, a closer look at the log
collector and log aggregator behavior will be helpful.

116

https://prometheus.io/docs/prometheus/latest/querying/basics/

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Log Collector:

• Check the status of the application (Siebel Server, for example).

• Check that the log collector, which is a sidecar implementation on Fluentd, is available.

• Check the logs of the log collector pods to identify application log files getting streamed.

Log Aggregator:

• Ingestion can be verified in the log aggregator streams.

• The logs of the log aggregator are available in the pod logs and vary based on the enabled output modules.

• The log traces generated by OCI plugin are distinctly different from those generated for OpenSearch.

• When both OCI Logging Analytics and OpenSearch are enabled, their logs will be mixed in log trace.

Managing Custom Keystore
It's possible to use custom keystore and truststore jks files during initial deployment and also during incremental
changes.

For initial deployment (using payload for REST call to Cloud Manager API), an optional subsection keystore can be used
under the siebel section. If it's not specified, a self-signed certificate is created by SCM which is propagated to all SES/
SAI/CGW containers during environment provisioning.

Usage:

Copy the necessary certificates to the SCM instance at any path and provide the path of the file in the respective
payload parameters. You can also copy the certificates to SCM using File Sync Utility, for more information see
Uploading Files to the SCM Container Using File Sync Utility.

Here's a sample of the section in the initial deployment payload:

"keystore" :
 {
 "siebel_keystore_path" : "/home/opc/test/ca/siebelcerts/keystore.jks",
 "siebel_truststore_path": "/home/opc/test/ca/siebelcerts/truststore.jks"
 }

During environment provisioning, the JKS certificates are pushed to the Helm charts Git repository in the siebel-
config/keystore directory, which will be used in Siebel applications.

You need to follow these rules while creating custom keystore and truststore files:

• The file extensions for keystore and truststore should be .jks, and the storeType should be JKS.

• Configure the he keystore certificate with the DNS as "*.*.svc.cluster.local" along with other DNS entries.

• Create the certificates with a password. The password value must be "siebel".

• The keystore file should contain ca, intermediate if any, and csr certificate information.

• The truststore file should contain ca certificate information.

For more information about updating Keystore file as part of incremental changes, see Use Cases for Updating Keystore
File as Part of Incremental Changes.

117

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Updating Siebel Cloud Manager with a New Container
Image
You can update SCM with a new container image whenever one becomes available, such as when an updated version of
SCM has become available.

To update SCM with a new container image
1. SSH into the SCM virtual machine instance.
2. Run the following command to find the current SCM container version which is active and note the image tag,

that is, the current SCM version.

docker ps

3. Get the latest SCM application version from Oracle Marketplace (for example, CM_23.1.0).
4. Run the shell script for starting the SCM server with the latest application version as the input, as in these

examples:

cd /home/opc

bash start_cmserver.sh CM_23.1.0

5. Verify the startup of the SCM application using the following command:
docker ps

6. Check the version of the running container in the image tag. It should match the input provided during the start
shell.

7. After updating SCM with the new version, run the following command to get the new SCM features:

docker exec -it cloudmanager bash

cd /home/opc

bash siebel-cloud-manager/scripts/cmapp/migration.sh

Choose one of the options presented by the migration.sh script. Run the script multiple times, as necessary, for
all of the options you require.

Note: You might see GitLab merge conflict errors during migration. In such cases, fix the conflicts manually
and try again.

8. File systems are also mounted in the SCM instance. Once the container is restarted, the existing mounts will be
disconnected. In order to mount again, execute the following command:

sudo mount -t nfs {FILESYSTEM_HOST}:/{env-namespace}-siebfs{filesystem-index} /home/opc/siebel/{env_id}/
{env-namespace}-siebfs{filesystem-index} -o nolock

All the information needed for the above command is available in the environment yaml file or the GET
response of the corresponding environment.

9. After executing these commands, exit from the Docker container.
10. Run the following commands to restart the container:

118

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

cd /home/opc/cm_app/{CM_RESOURCE_PREFIX}/bash start_cmserver.sh <SCM_VERSION>

11. Confirm that the latest SCM version is up and running
docker ps

Removing a Siebel CRM Deployment on OCI
Where you need to remove (destroy) an existing deployment and its dependent components, including its associated
registry and Git repository, you can do so by using the DELETE API method and specifying the unique environment ID
of this deployment. Details for this API follow.

Method: DELETE

URL: <CM_Instance_IP>/scm/api/v1.0/environment/<env_id>

Response
Client Validation Failed(400):
{
 "description": "Invalid Environment"
 }
Success(200):
{
 "delete_job_id": ocid | null,
 "is_cm_project_removed": bool | null,
 "is_delete_request_made": bool | null,
 "is_dir_archived": bool | null,
 "is_helm_project_removed": bool | null,
 "is_ingress_removed": bool | null,
 "is_registry_removed": bool | null,
 "is_bucket_deleted": bool | null
 }

Keys in Response Definition
The following keys are part of the response definition:

• delete_job_id: The OCI resource manager delete job OCID, which can used to track the status of the deletion
job.

• is_cm_project_removed: Indicates whether the SCM project in the Git instance was removed.

• is_delete_request_made: Indicates whether the DELETE request was made to OCI.

• is_dir_archived: Indicates whether the environment was moved to the archive directory.

• is_helm_project_removed: Indicates whether the Helm Charts project in the Git instance was removed.

• is_ingress_removed: Indicates whether the Load Balancer was removed.

• is_registry_removed: Indicates whether the Registry was removed.

• is_bucket_deleted: Indicates whether the object storage bucket was removed.

119

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Note: A Siebel CRM environment on OCI is created in over a dozen stages. If there were issues in any of these stages,
then the environment provision can fail. (See also Troubleshooting a Siebel Cloud Manager Instance or Requested
Environment.) For example, resource creation might fail if service limits were undefined in the user account. In the
response from using the DELETE method to clean up such a failed environment, keys that have null values instead
of Boolean values represent stages that did apply in this case: where the stage was not applicable due to an issue
in a prior stage of creation. In the above example, the environment failed in the resource creation, and so no Load
Balancer ingress would have been configured. So, in this case, the response contains the null value for the key
is_ingress_removed.

Making Incremental Changes to Your Siebel CRM
Deployment on OCI
This topic describes how to make incremental changes to your existing Siebel CRM deployment on OCI. This topic
includes the following information:

• Making Incremental Changes

• How Incremental Changes Are Processed

• Templates for Different Runtime Entities

• Use Cases for Making Incremental Changes

Note: If you are using greenfield deployment use case 2, described in Customizing Configurations Prior to Greenfield
Deployment, your configuration customizations prior to deployment can include any of the types of changes
described in this topic. Examples include adding or deleting components on a server, adding new profiles, or adding
or deleting parameters for an enterprise, server, or component. After deployment, any configuration changes must
be made in the deployed environment, as described in this topic. If you require the same changes in the original
customized configuration that you created in greenfield configuration use case 2, then you must make the same
changes in both locations.

• SSH into the SCM instance

• Exec into the SCM container using the following command
docker exec -it cloudmanager bash

• For deployed environments, configuration and runtime data are located here:
/home/opc/siebel/<env_id>/<Helm charts repository name>/siebel-config/paramconfig

Note: If you're using GitLab as your Git repository, then the name of the Helm charts repository is of the
following format: <namespace>-helmcharts.

• For a customized configuration that you can deploy in one or more environments, the configuration files are
located here:

/home/opc/siebel/configuration/<config_id>/config_<namespace>_<config_id>-helmcharts/siebel-config/
paramconfig

120

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Related Topics
Customizing Configurations Prior to Greenfield Deployment

Making Incremental Changes
Use the procedure below to make incremental changes to your Siebel CRM deployment. This topic is part of Making
Incremental Changes to Your Siebel CRM Deployment on OCI.

Note: Before making any updates, review all of the topics in this section.

To make incremental changes
1. SSH into the SCM virtual machine instance.
2. Execute the following commands:

docker ps

docker exec -it cloudmanager bash

3. Execute the following command:
source /home/opc/siebel/<env_id>/k8sprofile

4. Execute the following command:

cd /home/opc/siebel/<env_id>/<Helm charts repository name>/siebel-config/paramconfig

Note: All configuration and runtime data for a deployed environment is located in /home/opc/siebel/
<env_id>/<Helm charts repository name>/siebel-config/paramconfig.

5. Edit the required YAML file with the incremental changes you require (for example, run vi enterprise.yaml).

For details, see How Incremental Changes Are Processed and all the remaining topics in this section.

Note: Back up all YAML files before you modify them, to help you back out your changes if you experience
errors.

6. Edit the file /home/opc/siebel/<env_id>/<Helm charts repository name>/siebel-config/Chart.yaml. Increment
the value of version (for example, increment 0.1.0 to 0.1.1).

7. Execute commands like the following to specify the files that are part of the update you are making and to push
these changes to the deployment:

cd /home/opc/siebel/<env_id>/<Helm charts repository name>/siebel-config

git status

git add <modifiedfile1> <modifiedfile2>

git commit -m "<message or comment>"

git push

Flux automatically upgrades the siebel-config helmchart. The automatic flux reconcile might take a few
minutes.

8. If needed, load flux reconcile manually using the following commands:

121

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

flux reconcile source git siebel-repo -n <namespace>

flux reconcile kustomization apps -n <namespace>

9. Verify the new version of siebel-config using the following command:

flux get all -n <namespace>

Incremental changes, including modified files, are pushed to configmaps, and siebel-controller will
automatically pick up changes and execute the required actions.

10. To verify the incremental changes after performing the previous steps, wait at least 5 minutes. Then you can
verify your changes from the Siebel Management Console (SMC) or by using server manager.

If the changes are not reflected even after about 10 minutes, to review and analyze logs, first get the name of
the siebel-controller pod using the following command:

kubectl get pods -n <namespace>

In this command, <namespace> is the relevant namespace for your deployment. Then, to see the logs, enter a
command like the following:

kubectl logs -n <namespace> siebel-controller-<pod_id> -f

In this command, <pod_id> is the pod ID for which you want to view logs. To view only the latest logs, you can
optionally use --tail=0 at the end of this command.

How Incremental Changes Are Processed
Note the following considerations relevant to how incremental changes are processed. This topic is part of Making
Incremental Changes to Your Siebel CRM Deployment on OCI.

• For each upgrade or flux reconcile that you perform, configure job runs, which validate the application
configuration. These runs typically take about 2 minutes.

• The Siebel Controller picks up the runtime incremental changes as soon as the above configure job is
completed.

• A continuous synchronization operation identifies the changes in configmaps and does the required actions. It
might take up to 10 minutes for synchronization to identify the changes.

• In some cases, server restart is required, which is handled by the controller. Whenever a server restart happens,
wait at least 5 minutes before you run the next incremental changes, so that the server state will be good.

• YAML files function as configuration files, which are both case-sensitive and indentation-sensitive. YAML uses
spaces () to define document structure. YAML does not allow tabs (\t).

• As illustrated in Step 10 of the procedure in Making Incremental Changes, replace <namespace> with your
namespace. Also replace <env_id> with your environment ID.

Note: Do not replace <enterprise_name> and <server_name> in the URLs, because these are substituted
programmatically.

• To reduce errors in the code flow, use the YAML validator before adding a block to these files representing
incremental configuration changes.

122

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

• The configuration files server_edge.yaml and sai_quantum.yaml are Siebel Server (sieb_server) and Siebel
Application Interface (SAI) profile configuration (ai_profile) files, respectively. The names edge and quantum are
assigned automatically.

◦ Any file with the prefix server_ refers to a Siebel Server (sieb_server). For example, in the filename
server_edge.yaml, edge is a sieb_server name. Any changes you make in this file apply to all replicas of
the server edge.

Note: You can create other YAML configuration files to configure other Siebel Server instances that are
not replicas of edge, as described in Use Cases for Adding Profiles, Deployments, or Adding Resources
to Individual Siebel Servers.

◦ Any file with the prefix sai_ refers to a SAI profile configuration (ai_profile). For example, in the filename
sai_quantum.yaml, quantum is an ai_profile name. Any changes you make in this file apply to all replicas of
the ai_profile quantum.

Note: You can create other YAML configuration files to configure any other SAI instances that are not
replicas of quantum, as described in Use Cases for Adding Profiles, Deployments, or Adding Resources
to Individual Siebel Servers.

Note: In this section, the files siebel_edge.yaml and sai_quantum.yaml are used as example configuration files
for Siebel Server and SAI. In your Siebel CRM deployment environment, other files might apply instead of or
in addition to these files.

• Other YAML files in which you can make configuration changes include enterprise.yaml, comp_definitions.yaml,
named_subsystem.yaml, siebel-ingress-app.yaml, and siebel.yaml.

Templates for Different Runtime Entities
The following table identifies several YAML files used for different types of configuration for Siebel CRM runtime
entities, and provides sample data formats. This topic is part of Making Incremental Changes to Your Siebel CRM
Deployment on OCI.

Note: As noted, YAML follows proper indentation. Make sure to keep the same format as shown below when you
copy and edit the content.

Templates for Different Runtime Entities

Name/Description Sample Data Format

Enterprise parameters

File:

enterprise.yaml

Add under parameters header.

In enterprise.yaml

- basic_params:
 - PA_ALIAS: NumRetries
 PA_VALUE: 10001
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/parameters
- hidden_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/parameters?hidden=true
- advanced_params:

123

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Name/Description Sample Data Format

 - PA_ALIAS: FileSystem
 PA_VALUE: /sfs
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprises/enterprise_name/parameters?advanced=true

Server parameters

File:

server_edge.yaml

Add under parameters header in
applicable section.

In server_edge.yaml:

 - basic_params:
 - PA_ALIAS: CFGEnableOLEAutomation
 PA_VALUE: 'False'
 - PA_ALIAS: MaxThreads
 PA_VALUE: '12'
 - PA_ALIAS: NotifyHandler
 PA_VALUE: AdminEmailAlert
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/parameters
 - hidden_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/parameters?
hidden=true
 - advanced_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/parameters?
advanced=true

Component parameters

File:

server_edge.yaml

Add under parameters header in
applicable section.

In server_edge.yaml:

- basic_params:
 - PA_ALIAS: MaxTasks
 PA_VALUE: '200'
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
<component_name>/parameters
- hidden_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
<component_name>/parameters?hidden=true
- advanced_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
<component_name>/parameters?advanced=true

Component definitions

File:

comp_definitions.yaml

Add under component_definitions header.

In comp_definitions.yaml:

CustomADMBatchProc
 definition:
 CC_ALIAS: CustomADMBatchProc
 CC_DESC_TEXT: Exports data items in batch
 CC_DISP_ENABLE_ST: Active
 CC_ENABLE_STATE: Enabled
 CC_INCARN_NO: '0'
 CC_NAME: Application Deployment Manager Batch Processor
 CC_RUNMODE: Batch
 CG_ALIAS: ADM
 CG_NAME: Application Deployment Manager
 CT_ALIAS: UDA Service
 CT_NAME: Custom Business Service Manager
 parameters:
 - basic_params:
 - PA_ALIAS: Method

124

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Name/Description Sample Data Format

 PA_VALUE: BatchExport
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/compdefs/CustomADMBatchProc/
parameters
 - advanced_params:
 - PA_ALIAS: CFGRepositoryFile
 PA_VALUE: siebel_sia.srf
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/compdefs/CustomADMBatchProc/
parameters?advanced=true
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/compdefs/CustomADMBatchProc

Component group definitions

File:

comp_definitions.yaml

Add under component_groups header.

In comp_definitions.yaml:

CustomLoyaltyEngine:
 definition:
 CG_ALIAS: CustomLoyaltyEngine
 CG_DESC_TEXT: Siebel Loyalty Engine Components
 CG_DISP_ENABLE_ST: Enabled
 CG_ENABLE_STATE: Enabled
 CG_ENT_ENABLED: Y
 CG_NAME: Siebel Loyalty Engine
 CG_NUM_COMPONENTS: '3'
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/compgroups/CustomLoyaltyEngine

Named subsystem definitions

File:

named_subsystem.yaml

Add under named_subsystem header.

In named_subsystem.yaml:

CustomADSISecAdpt:
 definition:
 NSS_ALIAS: CustomADSISecAdpt
 NSS_DESC: Custom ADSI Security Adapter used for authentication by customer
 facing applicationss
 NSS_NAME: ADSI Security Adapter
 SS_ALIAS: InfraSecAdpt_LDAP
 parameters:
 - basic_params:
 - PA_ALIAS: CredentialsAttributeType
 PA_VALUE: physicalDeliveryOfficeName
 - PA_ALIAS: SecAdptDllName
 PA_VALUE: sscfadsi
 - PA_ALIAS: ServerName
 PA_VALUE: CHANGE_ME
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/namedsubsystems/CustomADSISecAdpt/
parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/namedsubsystems/CustomADSISecAdpt

Enable component group on a server

File:

server_edge.yaml

Add under component_groups header in
applicable section.

In server_edge.yaml:

 SiebelWebTools:
 components:
 SWToolsObjMgr_enu:
 definition:
 CC_ALIAS: SWToolsObjMgr_enu
 CC_RUNMODE: Interactive
 CG_ALIAS: SiebelWebTools
 CT_ALIAS: AppObjMgr

125

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Name/Description Sample Data Format

 parameters:
 - basic_params:
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu/parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/compgroups/SiebelWebTools

Enable components on a server

File:

server_edge.yaml

Add under component_groups header in
applicable section.

In server_edge.yaml:

 SWToolsObjMgr_enu:
 definition:
 CC_ALIAS: SWToolsObjMgr_enu
 CC_RUNMODE: Interactive
 CG_ALIAS: SiebelWebTools
 CT_ALIAS: AppObjMgr
 parameters:
 - basic_params:
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu/parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu

Use Cases for Making Incremental Changes
This topic describes some of the tasks you perform to support use cases for making incremental changes to your Siebel
CRM deployment on OCI. This topic is part of Making Incremental Changes to Your Siebel CRM Deployment on OCI.

Note: Back up all YAML files before you modify them, to help you back out your changes if you experience errors.
For information applicable to the tasks that are part of these use cases, see Making Incremental Changes and How
Incremental Changes Are Processed.

This topic contains the following information:

• Use Cases for Setting Parameters

• Use Cases for Creating or Removing Custom Entities

• Use Cases for Enabling Component Groups or Components

• Use Cases for Changing Log Level While Running PostInstallDB Setup

• Use Cases for Adding Profiles, Deployments, or Adding Resources to Individual Siebel Servers

• Use Cases for Adding Web Artifacts and Other Siebel Artifact Files

• Use Cases for Updating Certificates for SISNAPI with TLS

• Use Cases for Updating Keystore File as Part of Incremental Changes

126

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Cases for Setting Parameters
This topic provides detailed information about changes to make to support use cases for setting parameters. This topic
is part of Use Cases for Making Incremental Changes.

Use Cases for Setting Parameters

Use Case/Notes Sample Data Format

1a. Enterprise parameter, adding

File:

enterprise.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = N

PA_EFF_CMP_RSTRT = N

Restart:

• No restart.

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

- basic_params:
 - PA_ALIAS: NumRetries
 PA_VALUE: '10001'

1b. Enterprise parameter, adding

File:

enterprise.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = Y

PA_EFF_CMP_RSTRT = N

Restart:

• Full restart. Log in to pod and run
siebps. Check timestamp of restart
(UTC time).

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

- basic_params:
 - PA_ALIAS: EnableWorkspace
 PA_VALUE: 'True'

2. Enterprise parameter, modifying

File:

enterprise.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = N

- basic_params:
 - PA_ALIAS: NumRetries
 PA_VALUE: '10002'

127

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

PA_EFF_CMP_RSTRT = N

Restart:

• No restart.

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

3. Enterprise parameter, removing
configured value

File:

enterprise.yaml

Restart:

• No restart.

Verification:

• Default parameter value can be seen
in SMC configuration screen.

Delete PA_ALIAS and PA_VALUE pair for a single parameter.

4a. Server parameter, adding

File:

server_edge.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = N

PA_EFF_CMP_RSTRT = N

Restart:

• No restart .

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

- basic_params:
 - PA_ALIAS: NumRetries
 PA_VALUE: '10005'

4b. Server parameter, adding

File:

server_edge.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = Y

PA_EFF_CMP_RSTRT = Y

Restart:

- basic_params:
 - PA_ALIAS: ConfigLdapAuthTimeout
 PA_VALUE: '20'
 - PA_ALIAS: EnableVirtualHosts
 PA_VALUE: 'True'

128

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

• Server restart. All replicas of edge
server are restarted (inside pod, stop_
server_all and start_server_all are
executed). Log in to pod and run
siebps. Check timestamp of restart
(UTC time).

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

5. Server parameter, modifying

File:

server_edge.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = Y

PA_EFF_CMP_RSTRT = N

Restart:

• Server restart. All replicas of edge
server are restarted (inside pod, stop_
server_all and start_server_all are
executed).

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

- basic_params:
 - PA_ALIAS: EnableVirtualHosts
 PA_VALUE: 'False'

6. Server parameter, removing configured
value

File:

server_edge.yaml

Restart:

• No restart.

Verification:

• Default parameter value can be seen
in SMC configuration screen.

Delete PA_ALIAS and PA_VALUE pair for a single parameter.

7a. Component parameter, adding

File:

server_edge.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = Y

- basic_params:
 - PA_ALIAS: MaxTasks
 PA_VALUE: '50'

129

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

PA_EFF_CMP_RSTRT = N

Restart:

• Server restart. All replicas of edge
server are restarted (inside pod, stop_
server_all and start_server_all are
executed). Log in to pod and run
siebps. Check timestamp of restart
(UTC time).

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

7b. Component parameter, adding

File:

server_edge.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = N

PA_EFF_CMP_RSTRT = Y

Restart:

• Component restart.

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

- basic_params:
 - PA_ALIAS: ConfigLdapAuthTimeout
 PA_VALUE: '15'

8. Component parameter, modifying

File:

server_edge.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = N

PA_EFF_CMP_RSTRT = N

Restart:

• No restart.

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

- basic_params:
 - PA_ALIAS: ConfigLdapAuthTimeout
 PA_VALUE: '20'

9. Component parameter, removing
configured value

File:

Delete PA_ALIAS and PA_VALUE pair for a single parameter.

130

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

server_edge.yaml

Flag settings:

PA_EFF_SRVR_RSTRT = N

PA_EFF_CMP_RSTRT = N

Restart:

• No restart.

Verification:

• Default parameter value can be seen
in SMC configuration screen.

10. Named subsystem parameter, adding
(no restart)

File:

named_subsystem.yaml

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

Specific to named subsystem.

11. Named subsystem parameter,
 modifying (no restart)

File:

named_subsystem.yaml

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

Specific to named subsystem.

12. Named subsystem parameter,
removing (no restart)

File:

named_subsystem.yaml

Verification:

• SMC configuration screen is updated.

Specific to named subsystem.

13. Component definition parameter,
 adding (no restart)

File:

comp_definitions.yaml

Verification:

Specific to named subsystem.

131

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

• Updated parameter value can be
seen in SMC configuration screen.

14. Component definition parameter,
 modifying (no restart)

File:

comp_definitions.yaml

Verification:

• Updated parameter value can be
seen in SMC configuration screen.

Specific to named subsystem.

15. Component definition parameter,
removing (no restart)

File:

comp_definitions.yaml

Verification:

• SMC configuration screen is updated.

Specific to named subsystem.

Use Cases for Creating or Removing Custom Entities
This topic provides detailed information about changes to make to support use cases for creating or removing custom
entities. No restarts apply in these use cases. This topic is part of Use Cases for Making Incremental Changes. You can
create or remove the following custom entities:

• Component definitions

• Named subsystem definitions

• Component group definitions

Use Cases for Creating or Removing Custom Component Definitions, Named Subsystem Definitions, and
Component Group Definitions

Use Case/Notes Sample Data Format

1. Component definition, creating

File:

comp_definitions.yaml

Notes:

• Replace all occurrences of the
CustomADMBatchProc definition
shown here, and its settings and
parameters, with those for your
custom component definition.

Verification:

CustomADMBatchProc:
 definition:
 CC_ALIAS: CustomADMBatchProc
 CC_DESC_TEXT: Exports data items in batch
 CC_DISP_ENABLE_ST: Active
 CC_ENABLE_STATE: Enabled
 CC_INCARN_NO: '0'
 CC_NAME: Application Deployment Manager Batch Processor
 CC_RUNMODE: Batch
 CG_ALIAS: ADM
 CG_NAME: Application Deployment Manager
 CT_ALIAS: UDA Service
 CT_NAME: Custom Business Service Manager
 parameters:
 - basic_params:

132

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

• New component definition can be

seen in SMC configuration screen.

 - PA_ALIAS: Method
 PA_VALUE: BatchExport
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/compdefs/CustomADMBatchProc/
parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/compdefs/CustomADMBatchProc/
parameters
 - advanced_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/compdefs/CustomADMBatchProc/
parameters?advanced=true
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/compdefs/CustomADMBatchProc

2. Component definition, removing
configuration

File:

comp_definitions.yaml

Notes:

• Delete the relevant block under the
component_definitions header.

Verification:

• Component definition removal can
be seen in SMC configuration screen.

Remove the entire block representing the custom component definition (for example, the
configuration block in the previous row).

3. Named subsystem, creating

File:

named_subsystem.yaml

Notes:

• Add the relevant block under the
named_subsystem header.

• Replace all occurrences of the
CustomADSISecAdpt definition
shown here, and its settings and
parameters, with those for your
custom named subsystem definition.

Verification:

• New named subsystem can be seen
in SMC configuration screen.

CustomADSISecAdpt:
 definition:
 NSS_ALIAS: CustomADSISecAdpt
 NSS_DESC: Custom ADSI Security Adapter used for authentication by customer
 facing applicationss
 NSS_NAME: ADSI Security Adapter
 SS_ALIAS: InfraSecAdpt_LDAP
 parameters:
 - basic_params:
 - PA_ALIAS: CredentialsAttributeType
 PA_VALUE: physicalDeliveryOfficeName
 - PA_ALIAS: SecAdptDllName
 PA_VALUE: sscfadsi
 - PA_ALIAS: ServerName
 PA_VALUE: CHANGE_ME
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/namedsubsystems/CustomADSISecAdpt/
parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/namedsubsystems/CustomADSISecAdpt

4. Named subsystem, removing
configuration

File:

named_subsystem.yaml

Notes:

Remove the entire block representing the custom named subsystem definition (for example, the
configuration block in the previous row).

133

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

• Delete the relevant block under the

named_subsystem header.

Verification:

• Named subsystem definition removal
can be seen in SMC configuration
screen.

5. Component group, creating

File:

comp_definitions.yaml

Notes:

• Add the relevant block under the
component_groups header.

• Replace all occurrences of the
CustomLoyaltyEngine definition
shown here, and its settings and
parameters, with those for your
custom component group definition.

Verification:

• New component group can be seen
in SMC configuration screen.

CustomLoyaltyEngine:
 definition:
 CG_ALIAS: CustomLoyaltyEngine
 CG_DESC_TEXT: Siebel Loyalty Engine Components
 CG_DISP_ENABLE_ST: Enabled
 CG_ENABLE_STATE: Enabled
 CG_ENT_ENABLED: Y
 CG_NAME: Siebel Loyalty Engine
 CG_NUM_COMPONENTS: '3'
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/compgroups/CustomLoyaltyEngine

6. Component group, removing
configuration

File:

comp_definitions.yaml

Notes:

• Delete the relevant block under the
component_group header.

Verification:

• Component group definition removal
can be seen in SMC configuration
screen.

Remove the entire block representing the custom component group definition (for example, the
configuration block in the previous row).

Use Cases for Enabling Component Groups or Components
This topic provides detailed information about changes to make to support use cases for enabling component groups or
components on a server. This topic is part of Use Cases for Making Incremental Changes. No restarts apply in these use
cases.

134

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

1. Component group, enabling on a server

Files:

• server_edge.yaml

• sai_quantum.yaml

• siebel-ingress-app.yaml

Notes:

In server_edge.yaml:

• Add the relevant block under the
component_groups header.

• Replace all occurrences of the
SiebelWebTools component group
shown here, and its components,with
those for your custom component
definition.

• All components in that component
group must be mentioned.
Components that are not identified
are disabled.

In sai_quantum.yaml:

• Add entry for each Interactive
Component/Object Manager in the
component group in ConfigParam/
Applications

• Substitute the values required for
your object manager component.

• Perform git add, git commit, and git
push operations after updating sai_
quantum.yaml.

In siebel-ingress-app.yaml:

• Update the required ingress content
to provide access to components and
services.

• Substitute the values required
for your deployment, to confirm
the updates made in the other
configuration files.

• Perform git add, git commit, and
git push operations after updating
siebel-ingress-app.yaml.

In server_edge.yaml :
SiebelWebTools:
 components:
 SWToolsObjMgr_enu:
 definition:
 CC_ALIAS: SWToolsObjMgr_enu
 CC_RUNMODE: Interactive
 CG_ALIAS: SiebelWebTools
 CT_ALIAS: AppObjMgr
 parameters:
 - basic_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu/parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/compgroups/SiebelWebTools

In server_edge.yaml : Add the new Component group to be enabled in "profiles → ServerConfigParams
→ EnableCompGroupsSIA". This change is required to keep the server_edge.yaml Profile configuration
to be intact with the list of Component Groups enabled in the server.

profiles:
 Profile:
 LastUpdated: 2021/12/21 11:08:59
 ProfileName: siebel
 ServerConfigParams:
 EnableCompGroupsSIA: EAI,SiebelWebTools

In sai_quantum.yaml:

sai_quantum:
 profiles:
 - ConfigParam:
 Applications:
 - AnonUserPool: 0
 AppDisplayName: ''
 AppDisplayOrder: 0
 AppIcon: ''
 AuthenticationProperties:
 AnonPassword: *****
 AnonUserName: GUESTCST
 GuestSessionTimeout: 300
 MaxTabs: 1
 SessionTimeout: 900
 SessionTimeoutWLCommand: UpdatePrefMsg
 SessionTimeoutWLMethod: HeartBeat
 SessionTimeoutWarning: 60
 SessionTokenMaxAge: 2880
 SessionTokenTimeout: 900
 SingleSignOn: false
 TrustToken: ''
 UserSpec: ''
 AvailableInSiebelMobile: false
 EAISOAPMaxRetry: 0
 EAISOAPNoSessInPref: false
 EnableExtServiceOnly: false
 Language: enu
 Name: webtools
 ObjectManager: SWToolsObjMgr_enu
 StartCommand: ''

135

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

 UseAnonPool: false

In siebel-ingress-app.yaml (located in the Siebel Cloud Manager Container /home/opc/siebel/
<env_id>/<namespace>-cloudmanager/flux-crm/infrastructure/nginx):

- backend:
 service:
 name: quantum
 port:
 number: 4430
 path: /siebel/app/siebelwebtools/enu
 pathType: Prefix

2. Component group, removing
configuration

Files:

• server_edge.yaml

• sai_quantum.yaml

• siebel-ingress-app.yaml

Notes:

In server_edge.yaml:

• Delete the relevant block under the
component_groups header.

• Perform git add, git commit, and
git push operations after updating
server_edge.yaml.

• Verification:

Component group removal can be
seen in SMC configuration screen

In sai_quantum.yaml:

• Delete the entry for each Interactive
Component/Object Manager in the
component group in ConfigParam/
Applications

• Perform git add, git commit, and git
push operations after updating sai_
quantum.yaml.

• Verification:

Component group removal can be
seen in SMC configuration screen.

In siebel-ingress-app.yaml:

• Delete the object manager related
ingress content rule.

• Perform git add, git commit, and
git push operations after updating
siebel-ingress-app.yaml.

In server_edge.yaml:
Remove the entire block representing the component group configuration (for example, the below
configuration block for removing SiebelWebTools).

SiebelWebTools:
 components:
 SWToolsObjMgr_enu:
 definition:
 CC_ALIAS: SWToolsObjMgr_enu
 CC_RUNMODE: Interactive
 CG_ALIAS: SiebelWebTools
 CT_ALIAS: AppObjMgr
 parameters:
 - basic_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu/parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/compgroups/SiebelWebTools

In server_edge.yaml : Remove the Component group to be disabled from "
Profiles→ServerConfigParams → EnableCompGroupsSIA ". This change is required to keep the server_
edge.yaml Profile configuration to be intact with the list of Component Groups enabled in the server.

rofiles:
 Profile:
 LastUpdated: 2021/12/21 11:08:59
 ProfileName: siebel
 ServerConfigParams:
 EnableCompGroupsSIA: SiebelWebTools (To be removed)

In sai_quantum.yaml:

Remove the entire block representing the Interactive Object_manager configuration (for example, the
below configuration block for removing SWToolsObjMgr_enu).

sai_quantum:
 profiles:
 - ConfigParam:
 Applications:
 - AnonUserPool: 0
 AppDisplayName: ''
 AppDisplayOrder: 0
 AppIcon: ''
 AuthenticationProperties:
 AnonPassword: *****
 AnonUserName: GUESTCST

136

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

 GuestSessionTimeout: 300
 MaxTabs: 1
 SessionTimeout: 900
 SessionTimeoutWLCommand: UpdatePrefMsg
 SessionTimeoutWLMethod: HeartBeat
 SessionTimeoutWarning: 60
 SessionTokenMaxAge: 2880
 SessionTokenTimeout: 900
 SingleSignOn: false
 TrustToken: ''
 UserSpec: ''
 AvailableInSiebelMobile: false
 EAISOAPMaxRetry: 0
 EAISOAPNoSessInPref: false
 EnableExtServiceOnly: false
 Language: enu
 Name: webtools
 ObjectManager: SWToolsObjMgr_enu
 StartCommand: ''
 UseAnonPool: false

In siebel-ingress-app.yaml :

Remove the below configuration for removing the siebelwebtools endpoint. (located in the Siebel
Cloud Manager Container /home/opc/siebel/<env_id>/<namespace>-cloudmanager/flux-crm/
infrastructure/nginx):

- backend:
 service:
 name: quantum
 port:
 number: 4430
 path: /siebel/app/siebelwebtools/enu
 pathType: Prefix

3. Component, enabling on a server.

Files:

• server_edge.yaml

• sai_quantum.yaml

• siebel-ingress-app.yaml

Notes:

In server_edge.yaml:

• Provide the required values under the
components header.

• Replace the component shown here
with those for the components you
are enabling.

• Perform git add, git commit, and
git push operations after updating
server_edge.yaml

In sai_quantum.yaml:

In server_edge.yaml:

SWToolsObjMgr_enu:
 definition:
 CC_ALIAS: SWToolsObjMgr_enu
 CC_RUNMODE: Interactive
 CG_ALIAS: SiebelWebTools
 CT_ALIAS: AppObjMgr
 parameters:
 - basic_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu/parameters
url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SWToolsObjMgr_enu

In sai_quantum.yaml:

- AnonUserPool: 0
 AppDisplayName: ''
 AppDisplayOrder: 0
 AppIcon: ''
 AuthenticationProperties:
 AnonPassword: *****
 AnonUserName: GUESTCST
 GuestSessionTimeout: 300
 MaxTabs: 1

137

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

• Add entry for Interactive
Component/Object Manager in
ConfigParam/Applications

• Substitute the values required for
your object manager component.

• Perform git add, git commit, and git
push operations after updating sai_
quantum.yaml.

In siebel-ingress-app.yaml:

• Update the required ingress content
to provide access to components and
services.

• Substitute the values required
for your deployment, to confirm
the updates made in the other
configuration files.

• Perform git add, git commit, and
git push operations after updating
siebel-ingress-app.yaml.

 SessionTimeout: 900
 SessionTimeoutWLCommand: UpdatePrefMsg
 SessionTimeoutWLMethod: HeartBeat
 SessionTimeoutWarning: 60
 SessionTokenMaxAge: 2880
 SessionTokenTimeout: 900
 SingleSignOn: false
 TrustToken: ''
 UserSpec: ''
 AvailableInSiebelMobile: false
 EAISOAPMaxRetry: 0
 EAISOAPNoSessInPref: false
 EnableExtServiceOnly: false
 Language: enu
 Name: webtools
 ObjectManager: SWToolsObjMgr_enu
 StartCommand: ''
 UseAnonPool: false

In siebel-ingress-app.yaml (located in /home/opc/siebel/<env_id>/<namespace>-cloudmanager/
flux-crm/infrastructure/nginx):

- backend:
 service:
 name: quantum
 port:
 number: 4430
 path: /siebel/app/siebelwebtools/enu
 pathType: Prefix

4. Component, removing configuration.

Files:

• server_edge.yaml

• sai_quantum.yaml

• siebel-ingress-app.yaml

Notes:

In server_edge.yaml:

• Delete the relevant block under the
components header.

• Perform git add, git commit, and
git push operations after updating
server_edge.yaml.

• Verification:

Component group removal can be
seen in SMC configuration screen

In sai_quantum.yaml:

• Delete the entry for Interactive
Component/Object Manager in the
component group in ConfigParam/
Applications

In server_edge.yaml:

Remove the entire block representing the component configuration. (Refer Use case 2, Removing a
component group)

In sai_quantum.yaml:

Remove the entire block representing the Interactive Object_manager configuration.(Refer Use case 2,
 Removing a component group)

In siebel-ingress-app.yaml :

Remove the ingress content rule for removing the Object manager endpoint. (Refer Use case 2,
 Removing a component group)

138

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

• Perform git add, git commit, and git
push operations after updating sai_
quantum.yaml.

• Verification:

Component group removal can be
seen in SMC configuration screen.

In siebel-ingress-app.yaml:

• Delete the object manager related
ingress content rule.

• Perform git add, git commit, and
git push operations after updating
siebel-ingress-app.yaml.

Use Cases for Changing Log Level While Running PostInstallDB Setup
This topic provides detailed information about changes to make to support use cases for changing log levels associated
with the process of running PostInstallDBSetup. This topic is part of Use Cases for Making Incremental Changes.

Use Case/Notes Sample Data

Set/change log level for
PostInstallDBSetup

File:

siebel.yaml

Notes:

• Add the parameters for logs under
values in the file siebel.yaml located
in the Siebel Cloud Manager
container in:

 /home/opc/siebel/<ENV_ID>/<Cloud
 manager repository name>/flux-
crm/apps/base/siebel

• Perform git pull, add, git commit, and
git push operations

 values:
 logs:
 siebelLogEvents: 5
 dbUtilLogEvents: "SQLParseAndExecute=5,SQLDBUtilityLog=5"

Use Cases for Adding Profiles, Deployments, or Adding Resources to Individual Siebel
Servers
This topic provides detailed information about changes to make to support use cases for adding profiles, deployments,
or for adding resources to individual Siebel Servers. No restarts required in these use cases. This topic is part of Use
Cases for Making Incremental Changes.

139

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Cases for Adding Profiles or Deployments

Use Case/Notes Sample Data Format

1. Increase replicas (for ses, sai) or Change
resources for individual Siebel Servers (not
for sai servers)

Note: sesResources defined at the profile
level for individual Siebel server takes
higher precedence over the generic
sesResources overridden in payload.

File:

siebel.yaml

Notes:

• Edit siebel.yaml under:

/home/opc/siebel/<env_id>/
<Cloud manager repository
name>/flux-crm/apps/base/
siebel

• Increase replicas under siebelServer
for the respective pod, using these
commands:

git pull

git add .

git commit -m "<message>"

git push

For cgw replica number value change,
the siebel-gateway.yaml and siebel-
config.yaml should be changed.

siebelServer:
 - profile: siebel
 replicas: 3
 sesResources:
 limits:
 cpu: 4
 memory: 24Gi
 requests:
 cpu: 1
 memory: 8Gi
 siebsrvr_prefix: edge
 - profile: siebel
 replicas: 3
 sesResources:
 limits:
 cpu: 4
 memory: 24Gi
 requests:
 cpu: 1
 memory: 8Gi
 siebsrvr_prefix: tibus
saiServer:
- profile: sai_lily
 replicas: 2
 sai_prefix: quantum
- profile: slc15zny95121
 replicas: 2
 sai_prefix: alchemist

2. Add a new Siebel Server profile

File:

New YAML file

Notes:

• Create file name with prefix server_
 (for example, server_lily.yaml).

• Under the server name are:

◦ component_groups has all comp
group and comp details

◦ parameters has server level
parameters

◦ deployment is used during server
deployment

◦ Profile is used to create server profile

server_lily:
 component_groups:
 CallCenter:
 components:
 SCCObjMgr_enu:
 definition:
 CC_ALIAS: SCCObjMgr_enu
 CC_RUNMODE: Interactive
 CG_ALIAS: CallCenter
 CT_ALIAS: AppObjMgr
 parameters:
 - basic_params:
 - PA_ALIAS: MaxTasks
 PA_VALUE: '200'
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SCCObjMgr_enu/parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SCCObjMgr_enu
 SServiceObjMgr_enu:
 definition:

140

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

• Modify all occurrences of the
following, according to your
configuration:

◦ <namespace>

◦ <profile_name>

◦ <username>

◦ <password>

◦ <guest username>

◦ <guest password>

 CC_ALIAS: SServiceObjMgr_enu
 CC_RUNMODE: Interactive
 CG_ALIAS: CallCenter
 CT_ALIAS: AppObjMgr
 parameters: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
SServiceObjMgr_enu
 eServiceObjMgr_enu:
 definition:
 CC_ALIAS: eServiceObjMgr_enu
 CC_RUNMODE: Interactive
 CG_ALIAS: CallCenter
 CT_ALIAS: AppObjMgr
 parameters:
 - basic_params:
 - PA_ALIAS: MaxTasks
 PA_VALUE: '222'
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
eServiceObjMgr_enu/parameters
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/cloudgateway/enterprises/enterprise_name/servers/server_name/components/
eServiceObjMgr_enu
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/compgroups/CallCenter
 deployment:
 DeploymentInfo:
 ProfileName: <profile_name>
 ServerDeployParams:
 DeployedLanguage: enu
 PrimaryLanguage: ENU
 parameters:
 - basic_params:
 - PA_ALIAS: CFGEnableOLEAutomation
 PA_VALUE: 'False'
 - PA_ALIAS: MaxThreads
 PA_VALUE: '11'
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/parameters
 - hidden_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/parameters?
hidden=true
 - advanced_params: []
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/enterprises/enterprise_name/servers/server_name/parameters?
advanced=true
 profiles:
 Profile:
 LastUpdated:
 ProfileName: <profile_name>
 ServerConfigParams:
 AnonLoginPassword: <guest password>
 AnonLoginUserName: <guest username>
 CACertFileName: null
 CertFileNameServer: null
 ClusteringEnvironmentSetup: NotClustered
 Db2InstHome: ''
 EnableCompGroupsSIA: CallCenter
 Encrypt: null
 LocalSynchMgrPort: '40400'
 ModifyServerAuth: null

141

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

 ModifyServerEncrypt: null
 NameserverHostName: siebelcgw-0
 NamesrvrPort: '8888'
 Password: <password>
 SCBPort: '2321'
 SiebelClusterGateway: null
 SiebelEnterprise: siebel
 SqlServerPort: null
 UseOracleConnector: 'true'
 Username: <username>
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/profiles/servers

3. Add a new Siebel Application Interface
profile

File:

New YAML file

Notes:

• Create file name with prefix sai_ (for
example, sai_trust.yaml).

• Under profiles, modify all
occurrences of the following
according to your configuration:

◦ <namespace>

◦ <profile_name>

◦ <guest username>

◦ <guest password>

sai_trust:
 profiles:
 - ConfigParam:
 Applications:
 - AnonUserPool: 0
 AppDisplayName: ''
 AppDisplayOrder: 0
 AppIcon: ''
 AuthenticationProperties:
 AnonPassword: <guest password>
 AnonUserName: <guest username>
 GuestSessionTimeout: 300
 MaxTabs: 1
 SessionTimeout: 900
 SessionTimeoutWLCommand: HeartBeat
 SessionTimeoutWLMethod: UpdatePrefMsg
 SessionTimeoutWarning: 60
 SessionTokenMaxAge: 2880
 SessionTokenTimeout: 900
 SingleSignOn: false
 TrustToken: ''
 UserSpec: ''
AvailableInSiebelMobile: false
 EAISOAPMaxRetry: 0
 EAISOAPNoSessInPref: false
 EnableExtServiceOnly: false
 Language: enu
 Name: callcenter
 ObjectManager: sccobjmgr_enu
 StartCommand: ''
 UseAnonPool: false
 ConnMgmt:
 CACertFileName: ''
 CertFileName: ''
 KeyFileName: ''
 KeyFilePassword: ''
 PeerAuth: false
 PeerCertValidation: false
 DAV:
 LogProperties:
 LogLevel: ERROR
 EAI:
 LogProperties:
 LogLevel: ERROR
GatewayIdentity:
 AuthToken: null
 GatewayHost: siebelcgw-0
 GatewayPort: '8888'
 RESTInBound:

142

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

 Baseuri: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/
v1.0/
 LogProperties:
 LogLevel: ERROR
 MaxConnections: 20
 ObjectManager: sccobjmgr_enu
 RESTAuthenticationProperties:
 AnonPassword: <guest password>
 AnonUserName: <guest username>
 AuthenticationType: Basic
 OAuthEndPoint: ''
 SessKeepAlive: 120
 TrustToken: ''
 UserSpec: ''
 ValidateCertificate: true
 RESTResourceParamList: []
 RESTInBoundResource: []
 RESTOutBound:
 LogProperties:
 LogLevel: ERROR
 SOAPOutBound:
 LogProperties:
 LogLevel: ERROR
 UI:
 LogProperties:
 LogLevel: ERROR
 defaults:
 AuthenticationProperties:
 AnonPassword: <guest password>
 AnonUserName: <guest username>
 GuestSessionTimeout: 300
 MaxTabs: 1
 SessionTimeout: 900
 SessionTimeoutWLCommand: HeartBeat
 SessionTimeoutWLMethod: UpdatePrefMsg
 SessionTimeoutWarning: 60
 SessionTokenMaxAge: 2880
 SessionTokenTimeout: 900
 SingleSignOn: false
 TrustToken: ''
 UserSpec: ''
 DoCompression: false
 EnableFQDN: false
 FQDN: ''
 swe:
 AllowStats: true
 Language: ENU
 MaxQueryStringLength: -1
 SeedFile: ''
 SessionMonitor: false
 Profile:
 AccessPermission: ReadWrite
 LastUpdated:
 ProfileName: <profile name>
 url: https://smc-0.smc.<namespace>.svc.cluster.local:4430/siebel/v1.0/
cloudgateway/profiles/swsm

4. Deploying a Siebel Server

File:

siebel.yaml

siebelServer:
- profile: <siebserver profile name>
 replicas: 1
 siebsrvr_prefix: <server prefix>
 sesResources:

143

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Case/Notes Sample Data Format

Notes:

• Edit siebel.yaml under:

/home/opc/siebel/<env_id>/
<Cloud manager repository
name>/flux-crm/apps/base/
siebel

• Add a new ses section under
siebelServer.

• If you do not see the deployment in
SMC, check pod logs to find progress
or error information.

• The <server prefix> must be unique
and be the same as the profile
filename suffix: for server_lily.yaml,
 <server prefix> would be lily.

 limits:
 cpu: 4
 memory: 24Gi
 requests:
 cpu: 1
 memory: 6Gi

5. Deploying a Siebel Application Interface

File:

siebel.yaml

Notes:

• Edit siebel.yaml under:

/home/opc/siebel/<env_id>/
<Cloud manager repository
name>/flux-crm/apps/base/
siebel

• Add a new sai section under
saiServer.

• If you do not see the deployment in
SMC, check pod logs to find progress
or error information.

• The <sai prefix> must be unique and
be the same as the profile filename
suffix: for sai_trust.yaml, <server
prefix> would be trust.

 saiServer:
 - profile:<sai profile name>
 replicas: 1
 sai_prefix: <sai prefix>

Use Cases for Adding Web Artifacts and Other Siebel Artifact Files
This topic provides detailed information about the steps to support use cases for adding or updating web artifacts or
other Siebel artifact files after deployment or as part of incremental changes. No restarts apply in these use cases. This
topic is part of Use Cases for Making Incremental Changes.

Now all the Siebel artifact files will be part to Helm charts Git repository and it is propagated to Siebel applications from
here.

One can view and edit Siebel artifacts file from the location <Helm charts repository name>/siebel-artifacts/build/mde.

144

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

To add a new siebel artifacts files after deployment:

1. Exec into the SCM container:
 docker exec -it cloudmanager bash

2. Execute the following command:

cd /home/opc/siebel/<ENV_ID>/<Helm charts repository name>/siebel-artifacts/build/mde

3. Add new Siebel artifact files in the required path locations. If the required path does not exist, then you can
create the folder path and include new files.

4. Upgrade the siebel-artifacts helmcharts version, as follows:

vi /home/opc/siebel/<ENV_ID>/<Helm charts repository name>/siebel-artifacts/Chart.yaml

Increment the version and save.
5. Push all changes to the remote Git repository, as follows:

git pull
git status
git add <file1> <file2>
git commit -m "<message>"
git push

You can also perform the above steps from the Git user interface.

Once the changes are pushed, flux controllers identify the change in the siebel-artifacts helmcharts version and
start an upgrade. As part of the upgrade, a preupgrade job, image-builder, is triggered. The image-builder job
builds a custom container image with a new tag having all the updated artifact files.

◦ If there is no difference, then the image-builder job exits with an appropriate message.

◦ If there are changes from the previous build, then the image-builder job builds a custom container image
with a new tag and pushes it to the container registry.

Later, the new container image tag is identified and updated in the required Git references by the flux
controllers. Then the siebserver, sai, and gateway pods are restarted and deployed with the new container
image having updated Siebel artifact files.

6. Once the pods are restarted, to realize the changes, access one of the containers using the following command
and verify if new files are present:

kubectl exec -it <pod_name> bash -n <namespace>

7. Verify the files in the files, images, and scripts directories from your browser:

https://<EXTERNAL_IP>/siebel/files/custom/<file>
https://<EXTERNAL_IP>/siebel/images/custom/<file>
https://<EXTERNAL_IP>/siebel/scripts/siebel/custom/<file>

Note: You will find an inline comment # {"$imagepolicy": <namespace>:cm-siebel-image-policy:tag"} next to
some image tags in the Git repository. This is a marker used for automation; do not modify this comment. To
enable custom web artifacts in applications, you must update manifest entries manually.

145

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Cases for Updating Certificates for SISNAPI with TLS
This topic provides detailed information about the steps to support use cases for adding or updating custom Transport
Layer Security (TLS) certificate post deployment.

During initial environment provisioning, the TLS files required for Sysnapi with TLS configuration will be extracted from
keystore and truststore files and pushed to GitLab in location:

<envdir>/<Helm charts repository name>/siebel-config/tls_certs

If one needs to update custom TLS certificate post deployment, the following steps need to be followed:

1. Go to Git repository location: <Helm charts repository name>/siebel-config/tls_certs
2. Update TLS files, commit, and push the changes.

Here the filename should be same and only "pem" format is supported.

The certificates should follow certain rules:

◦ ca.key.pem - Private key used for issuing new certificates.

◦ ca.cert.pem - This is CA certificate. This CA cert must be imported in keystore.jks and truststore.jks.

◦ server.pem - SSL certificate having valid DNS entries. This should be present in keystore.jks.

3. Increment the chart version in file <Helm charts repository name>/siebel-config/Chart.yaml and commit
changes. Wait for 10 minuntes, so that flux will automatically reconcile and uptake above changes. Alternatively,
you can manually reconcile using below commands:
flux reconcile source git siebel-repo -n <namespace>
flux reconcile kustomization apps -n <namespace>

The reconcile process might take upto 10 minutes. The new custom TLS files will be pulled and Kubernetes
secret - "keystore" will be updated with new values.

4. Execute these commands to upgrade ses/sai/cgw containers with new certificates.

Edit <Helm charts repository name>/siebel/Chart.yaml, increment chart version, and commit the same.

To enable TLS communication for a particular component, one needs to add the below parameter under
that component in server yaml file. For more information about parameter addition, see Making Incremental
Changes.

CommType: TLS

146

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Use Cases for Updating Keystore File as Part of Incremental Changes
1. Update keystore/truststore files in Git:

Using browser UI:

a. Access your Git instance from browser and go to the Helm charts repository.
b. Navigate to the siebel-config/keystore folder.
c. Upload and commit new custom keystore/truststore files having .jks extension.
d. Edit siebel-config/Chart.yaml and increment chart version and commit the same.

Using terminal:

a. SSH to SCM instance.
b. docker exec -it cloudmanager -bash
c. cd <env_dir>/<Helm charts repository name>/siebel-config/keystore
d. Copy custom keystore/truststore files having extension .jks to above path.
e. vi <env_dir>/<Helm charts repository name>/siebel-config/Chart.yaml
f. Increment chart version.

g. Commit the changes and push to remote repository:

git pull
git add <file1> <file2>
git commit -m <message>
git push

2. Wait for 10 minutes so that flux will automatically reconcile and uptake above changes. Or you can manually
reconcile using below commands:
flux reconcile source git siebel-repo
flux reconcile kustomization apps

The reconcile process might take upto 10 minutes. The new custom keystore/truststore files will be pulled and
Kubernetes Secret - "keystore" will be updated with new cert values.

3. Execute the following commands to upgrade Siebel Server/SAI/CGW containers with new certificates.
a. Edit <Helm charts repository name>/siebel/Chart.yaml, increment chart version, and commit the same.
b. Edit <Helm charts repository name>/siebel-gateway/Chart.yaml, increment chart version, and commit the

same.

Installing Siebel Monthly Update in a Siebel CRM on OKE
Environment Deployed by SCM
You can use these steps to install latest monthly updates in a Siebel CRM on OKE environment deployed by SCM. These
steps do not include repository upgrade steps, which are optional and identical to those relevant for on-premises Siebel
CRM deployments.

147

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Note: When moving Siebel environments from versions older than CM_23.8.1 to the latest, by following steps below,
the sourcing of python virtual environment is required in addition to sourcing of the k8sprofile to access the OKE
Cluster. Otherwise, for example, kubectl commands such as "kubectl get pods" may throw error. Sourcing of virtual
environment and k8sprofile can be done by running the following commands:

docker exec -it cloudmanager bash
bash-4.4$ source /home/opc/venv/bin/activate
source /home/opc/siebel/<env_id>/k8sprofile

1. Back up the database

The first step of the upgrade would be to back up the database. Preferably, it has to be a full backup.
2. Back up the SCM provided files for the Siebel environment

The files in the current environment should be backed up to make sure we have a working version of the
required set of files, in case of any issues with new upgrade or to rollback to the previous version.

Run the following steps in the given sequence to create a backup:

ssh -i <private_key> opc@<cm_instance>
mkdir /home/opc/cm_app/{CM_RESOURCE_PREFIX}/siebel/<env_id>/<backup_dir_name>
docker exec -it cloudmanager bash
cd /home/opc/siebel/<env_id>/<backup_dir_name>
cp -R /home/opc/siebel/<env_id>/<env_namespace>-siebfs0/<ENV_NAMESPACE>/CGW/ /home/opc/siebel/<env_id>/
<env_namespace>-siebfs0/<ENV_NAMESPACE>/SES/ /home/opc/siebel/<env_id>/<env_namespace>-siebfs0/
<ENV_NAMESPACE>/edge/ /home/opc/siebel/<env_id>/<env_namespace>-siebfs0/<ENV_NAMESPACE>/quantum/ /home/
opc/siebel/<env_id>/<backup_dir_name>
exit

Note: The following legend describes the meaning and provides the values to be used for the variables used
in the above commands:

◦ <private_key>: The key used in SCM stack creation.

◦ <cm_instance>: The SCM instance IP address.

◦ <backup_dir_name>: The name of the backup directory.

◦ <env_id>: The six characters long environment ID.

◦ <env_namespace>: The name of the environment given in the payload.

◦ <ENV_NAMESPACE>: The name of the environment given in the payload, in upper case.

◦ edge: The Siebel CRM server name.

◦ quantum: The ai server name.

3. Upgrade the SCM instance

SCM instance has to be upgraded for its version to match the target Siebel CRM version. For example, if the
target Siebel version has to be upgraded to 23.5, first upgrade the SCM instance to CM_23.5.0.

148

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Run the following commands to upgrade the SCM instance:

bash start_cmserver.sh <CM_IMAGE_VERSION>
Example:
bash start_cmserver.sh CM_23.5.0

4. Build and push the new Siebel Custom image for the target version

Run the following steps to pull the target version base image from Oracle Cloud Container registry, re-tag it,
and push it to the registry specific to the user's environment.

a. Pull the target Siebel CRM version base image from Oracle Cloud Container registry (for example: PHX):

export target_version=<target_siebel_version>
Example:
export target_version="23.5"
export source_base_image="phx.ocir.io/siebeldev/cm/siebel:$target_version-full"
docker pull $source_base_image

b. Re-tag the pulled image above to the user's environment registry:

export target_base_image="<registry_url>/<registry_namespace>/<env_namespace>/siebel:
$target_version-full"
Example:
export target_base_image="hyd.ocir.io/siebeldev/testenv/siebel:$target_version-full"
docker tag $source_base_image $target_base_image

c. Login to the docker registry to push the target_base_image to user's registry URL:

docker login <user_region>.ocir.io
Example:
docker login hyd.ocir.io
docker push $target_base_image

d. Exec into the SCM container and sync up the local helm charts git repository with the remote repository
for the custom artifacts changes:

docker exec -it cloudmanager bash
Go to artifact folder and reset git repository
cd /home/opc/siebel/<ENV_ID>/<Helm charts repository name>/
git clean -d -x -f
git pull
exit

e. Build a new custom image for the Siebel web artifacts and push it to the customer's registry:

cd /home/opc/siebel/2INE9M/<Helm charts repository name>/
cd siebel-artifacts/build/

build a new custom image and push to customer registry
export target_image=<registry_url>/<registry_namespace>/<env_namespace>/siebel:
$target_version.CUSTOM.1
Example:
export target_image="hyd.ocir.io/siebeldev/testenv/siebel:$target_version.CUSTOM.1"
docker build --build-arg BASE_IMAGE=${target_base_image} -t ${target_image} ./
docker push $target_image

149

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

5. Tagging git repositories before moving to the latest Siebel CRM version

a. Create a tag in the SCM Git repository:

docker exec -it cloudmanager bash
Go to helmcharts git repository
cd /home/opc/siebel/<ENV_ID>/<Cloud manager repository name>/
git pull
git tag <Tag_Name>
Example: git tag 23.8
git push origin --tags
exit

in the example, Tag_Name can be any marker to identify the source Siebel version changes.
b. Similarly, creat a tag in the Helm charts Git repository:

docker exec -it cloudmanager bash
Go to helmcharts git repository
cd /home/opc/siebel/<ENV_ID>/<Helm charts repository name>/
git pull
git tag <Tag_Name>
Example: git tag 23.8
git push origin --tags
exit

where Tag_Name can be any marker to identify the source Siebel version changes.
6. Update the SCM git repository files with the newly built target Siebel CRM image

a. Update the new base_image value in <git_url>/root/<Cloud manager repository name>/-/blob/master/
flux-crm/apps/base/siebel/siebel-artifacts.yaml file in SCM Git repository as:

- base_image: <region>.ocir.io/siebeldev/<env_namespace>/siebel:$target_version-full
- Example: lhr.ocir.io/siebeldev/testenv/siebel:23.5-full

b. Update the siebel-artifacts/Chart.yaml file in the in Helm charts Git repository as follows:

- Increment the version (Example: version: 0.1.1)
- Update the appVersion to the new Siebel CRM version. (Example: appVersion: "23.5")

7. Watch out for the successful completion of postinstalldb Kubernetes job

For more information, see Reviewing the PostInstallDBSetup Execution Status.

◦ The new image updates will trigger postinstalldb update through flux-crm sync up.

◦ Wait for the Kubernetes job completion.

◦ Manually verify the postinstalldb job reports and exit code from the logs.

◦ In case of errors, take corrective actions and rerun postinstalldb Kubernetes job by updating the version
in chart.yaml file as required for an incremental run.

For more information, see Making Incremental Changes.

docker exec -it cloudmanager bash
source /home/opc/siebel/<env_id>/k8sprofile
kubectl -n <env_namespace> get pods
NAME READY STATUS RESTARTS AGE
postinstalldb-***** 0/1 Completed 0 40h

8. Configuration instructions specific to a release

150

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

◦ For any configuration instructions specific to a release, refer to Siebel Upgrade Guide and Siebel Release
Notes.

◦ Migrate the persistent volume content. Refer to Deploying Siebel CRM Containers Guide.

9. Upgrading the repository

If any new features require repository upgrade, then upgrade the repository. Refer to Using Siebel Tools Guide.
10. Troubleshooting

◦ In any of the above steps during the Siebel new image rollout and flux sync-up, verify the Helm Release
deployment status.

◦ If HelmRelease is in failed state, rollback is required and increment the version in Chart.yaml for the helm
upgrade.

To verify the helm release status (READY column values should be "True" for all the helm releases):

bash-4.2$ kubectl get hr -n <env_namespace>
NAME AGE READY STATUS
kube-state-metrics 4h56m True Release reconciliation succeeded
metacontroller 4h57m True Release reconciliation succeeded
nginx 4h58m True Release reconciliation succeeded
node-exporter 4h56m True Release reconciliation succeeded
prometheus 4h56m True Release reconciliation succeeded
siebel 4h56m True Release reconciliation succeeded
siebel-artifacts 4h56m True Release reconciliation succeeded
siebel-config 4h56m True Release reconciliation succeeded
siebel-gateway 4h56m True Release reconciliation succeeded

To verify the deployment status of helm charts (STATUS column values should be "deployed" for all the
helm charts):

bash-4.2$ helm ls -n <env_namespace>
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
kube-state-metrics test133 1 2023-05-05 05:57:26.399381012 +0000 UTC deployed kube-state-
metrics-0.1.0 2.8.2
node-exporter test133 1 2023-05-05 05:57:26.486354004 +0000 UTC deployed node-exporter-0.1.0
 1.5.0
prometheus test133 1 2023-05-05 05:57:26.6308481 +0000 UTC deployed prometheus-0.1.0 2.43.0
siebel test133 1 2023-05-05 05:57:26.729612653 +0000 UTC deployed siebel-0.1.0 23.3
siebel-artifacts test133 1 2023-05-05 05:57:28.295972875 +0000 UTC deployed siebel-artifacts-0.1.0
 23.3
siebel-config test133 1 2023-05-05 05:57:29.249531247 +0000 UTC deployed siebel-config-0.1.0 23.3
siebel-gateway test133 1 2023-05-05 05:57:32.912426931 +0000 UTC deployed siebel-gateway-0.1.0
 23.3
test133-ingress-nginx test133 1 2023-05-05 05:55:27.333118701 +0000 UTC deployed ingress-
nginx-4.1.0 1.2.0
test133-metacontroller test133 1 2023-05-05 05:56:26.313921575 +0000 UTC deployed metacontroller-
v2.0.12 v2.0.12

Rollback steps for Helm Charts

In case of any failures noticed in the above two commands, find out the stable helmchart revision and do
a rollback of helm charts by running the following commands:

i. To find out the previous stable REVISION deployed:

bash-4.2$ helm history siebel -n test133
REVISION UPDATED STATUS CHART APP VERSION DESCRIPTION

151

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

1 Fri May 5 05:57:26 2023 deployed siebel-0.1.0 23.3 Install complete

ii. Rollback to the previous stable REVISION identified by the previous command, that is, helm history:

bash-4.2$ helm rollback siebel -n test133 1

W0505 10:56:23.450209 3296 warnings.go:70] would violate PodSecurity "restricted:latest":
 allowPrivilegeEscalation != false (containers "persist-folders", "sai" must set
 securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (containers
 "persist-folders", "sai" must set securityContext.capabilities.drop=["ALL"]),
 runAsNonRoot != true (pod or containers "persist-folders", "sai" must set
 securityContext.runAsNonRoot=true), seccompProfile (pod or containers "persist-folders",
 "sai" must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")
W0505 10:56:23.511704 3296 warnings.go:70] would violate PodSecurity "restricted:latest":
 allowPrivilegeEscalation != false (containers "persist-fix", "ses" must set
 securityContext.allowPrivilegeEscalation=false), unrestricted capabilities
 (containers "persist-fix", "ses" must set securityContext.capabilities.drop=["ALL"]),
 runAsNonRoot != true (pod or containers "persist-fix", "ses" must set
 securityContext.runAsNonRoot=true), seccompProfile (pod or containers "persist-fix", "ses"
 must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")
Rollback was a success! Happy Helming!

11. Verify the application URLs once the environment comes up.

Enabling TLS 1.3 Support in Environments Prior to 23.11
Siebel CRM 23.11 provides the capacity to enable TLS 1.3 communication from client to server and server tier to server
tier. Refer "Supported TLS Versions and RSA SHA" section in "Security Guide" of Siebel CRM bookshelf for more details.

In SCM deployed pre-23.11 environments, we need to take specific action to enable TLS 1.3 communication. At
this stage, the recommended action will be to rename the 'conf' folder in applicationcontainer_internal and
applicationcontainer_external to, say, conf_old. Make sure to bring down the Siebel CRM environment before renaming
the 'conf' folder and restart at the end.

Stop the Siebel CRM Environment
docker exec -it cloudmanager bash (Exec into the container)
source /home/opc/siebel/<ENV_ID>/k8sprofile

kubectl -n <namespace> get statefulset --> (Before bringing down the environment, note down the number of
 replicas of each statefulset)
kubectl -n <namespace> scale --replicas=0 statefulset/siebelcgw
kubectl -n <namespace> scale --replicas=0 statefulset/smc
kubectl -n <namespace> scale --replicas=0 statefulset/edge , where edge is the siebel server (bring down all
 other siebel servers if present)
kubectl -n <namespace> scale --replicas=0 statefulset/quantum, where quantum is the ai server (bring down
 all other ai servers if present)
exit

Enable TLS 1.3 Support in Pre-23.11 Environments
Rename the 'conf' folder to say 'conf_old' in below persistent paths:

• Exec into the SCM container
docker exec -it cloudmanager bash

152

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

• /home/opc/siebel/<ENV_ID>/<namespace>-siebfs*/<NAMESPACE>/CGW/siebelcgw-*/
applicationcontainer_internal/conf where,

◦ <namespace>-siebfs* denotes the siebel file system siebfs0,siebfs1, siebfs2 and so on.

◦ siebelcgw-* denotes the cgw replicas siebelcgw-0, siebelcgw-1, siebelcgw-2 and so on.

• /home/opc/siebel/<ENV_ID>/<namespace>-siebfs*/<NAMESPACE>/SAI/smc-0/
applicationcontainer_external/conf

• /home/opc/siebel/<ENV_ID>/<namespace>-siebfs*/<NAMESPACE>/edge/edge-0/
applicationcontainer_internal/conf where,

◦ edge,tibus and trust are the Siebel servers.

• /home/opc/siebel/<ENV_ID>/<namespace>-siebfs*/<NAMESPACE>/quantum/quantum-0/
applicationcontainer_external/conf where,

◦ quantum,alchemist and creative are the AI servers.

Bring up the Siebel CRM Environment
docker exec -it cloudmanager bash (Exec into the container)
source /home/opc/siebel/<ENV_ID>/k8sprofile

kubectl -n <namespace> scale --replicas=3 statefulset/siebelcgw
kubectl -n <namespace> scale --replicas=1 statefulset/smc
kubectl -n <namespace> scale --replicas=1 statefulset/edge , where edge is the siebel server (bring down all
 other siebel servers if present)
kubectl -n <namespace> scale --replicas=1 statefulset/quantum, where quantum is the ai server (bring down
 all other ai servers if present)
kubectl -n <namespace> get pods (Verify the pods running status)
exit

Once the environment is up and running, any customizations made to server.xml have to be redone.

TLS 1.3 Support Verification
OCI Load balancer supports TLS versions till 1.2, so when the smc/application is accessed from the client, we would still
see the request is served from TLS 1.2 connection protocol. For more information, refer SSL Tunneling.

But the Siebel AI requests from ingress are served by both TLS 1.2 & TLS 1.3 by default from 23.11. This can be verified
from AI Tomcat's server.xml configuration.

docker exec -it cloudmanager bash (Exec into the container)
cd /home/opc/siebel/<ENV_ID>/<env_namespace>-siebfs0/<NAMESPACE>/quantum/quantum-0/
applicationcontainer_external/conf/
cat server.xml

<Connector port="4430" protocol="org.apache.coyote.http11.Http11NioProtocol"
compressableMimeType="text/css,text/javascript,application/x-javascript,application/javascript"
 useSendfile="off" compression="on" compressionMinSize="128" connectionTimeout="20000"
 noCompressionUserAgents="gozilla, traviata"
 maxThreads="150" SSLEnabled="true" scheme="https" secure="true"
 SSLVerifyClient="require" SSLEngine="on" SSLVerifyDepth="2"
 keystoreFile="/siebel/mde/applicationcontainer_external/siebelcerts/keystore.jks" keystorePass="siebel"
 keystoreType="JKS"
 truststoreFile="/siebel/mde/applicationcontainer_external/siebelcerts/truststore.jks"
 truststorePass="siebel" truststoreType="JKS"

 sslEnabledProtocols="TLSv1.2+TLSv1.3"

 clientAuth="false"
 relaxedQueryChars=" "<>[\]^`{|}"

153

https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/Balance/Concepts/balanceoverview_topic-Load_Balancing_Concepts.htm#:~:text=Load%20Balancer%20supports%20the%20TLS,RSA%2DAES256%2DGCM%2DSHA384

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 relaxedPathChars=" "<>[\]^`{|}"
ciphers="TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, TLS_AES_128_GCM_SHA256, TLS_AES_256_GCM_SHA384,
 TLS_CHACHA20_POLY1305_SHA256, TLS_AES_128_CCM_SHA256, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
 TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
 TLS_ECDHE_ECDSA_WITH_AES_256_CCM, TLS_ECDHE_ECDSA_WITH_AES_128_CCM"

Note: Notice the following line of code in the example above:
 sslEnabledProtocols="TLSv1.2+TLSv1.3"

Rotating Secrets
This topic describes the procedure to rotate secrets (the registry access token, the Git token and the OCI configuration
in the OCI configuration file). Rotation is the process of replacing existing sensitive information such as access token
and encryption keys with new information. You must regularly rotate access tokens and encryption keys to prevent
unauthorized access.

This topic contains the following sections:

• Updating Registry Access Token

• Updating OCI Configuration in the OCI Configuration File

• Updating GitLab Access Token

Note: In the commands below, replace <env_id> with your environment ID and <namespace> with the environment
name that was passed in the payload for Siebel CRM environment provisioning.

Updating Registry Access Token
Registry access token is used to access the container registry. You must rotate the container registry access token,
configured through the registry_password parameter in the siebel-config.yaml file, regularly to prevent unauthorized
access to the images in the container registry.

To update the registry access token, perform the following tasks:

1. Update the registry_password parameter in the Git repository:
a. Go to the environment directory:

cd /home/opc/siebel/<env_id>

b. Open the siebel-config.yaml file:
vi <Cloud manager repository name>/flux-crm/apps/base/siebel/siebel-config.yaml

c. Update the registry_password parameter value with the new access token.
2. Recreate the custom secret definition for the registry credentials:

a. Delete the existing custom secret definition:
source /home/opc/siebel/<env_id>/k8sprofile
kubectl delete secret -n <namespace> customsecret

b. Go to the secrets directory:
cd /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/infrastructure/secrets

154

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

c. Create a new custom secret definition with the updated registry access token:
kubectl --dry-run=client -n <namespace> create secret docker-registry customsecret \
--docker-server=<registry_url> \
--docker-username=<registry_username>\
--docker-password=<registry_password> \
--docker-email=siebel@oracle.com \
-o yaml > customsecret.yaml

3. Commit the changes to the remote Git repository:
git add .
git commit -m "updated registry password and custom secrets"
git config pull.rebase false
git pull
git push

Note: Flux will reconcile and uptake the new changes in the Git repository and recreate a new custom secret.

4. Update registry_password in environment YAML file:
a. Open the environment YAML file:

vi /home/opc/siebel/environments/<env_id>_environment.yaml

b. Update the registry_password parameter value with the new access token.

Updating OCI Configuration in the OCI Configuration File
The OCI configuration file (~/.oci/config) includes user credentials information such as user, fingerprint, key_file
and so on that's used to authenticate users when they access OCI resources. You must update the OCI configuration
information in the configuration file regularly to ensure only authorized users can access the OCI resources.

To update the OCI configuration in the configuration file, perform the following tasks:

1. Update the OCI configuration in the SCM container:
a. Update the private key file path, fingerprint and so on, in the OCI configuration file (~/.oci/config).
b. Update the new private key in the ~/.oci/user.pem file.

2. If you've enabled observability (that's, if you've set the value of the parameters siebel_monitoring and
enable_oci_monitoring to true), update the OCI configuration in Helm chart repository:

Update the Prometheus Helm chart:

a. Go to the prometheus Helm chart directory:
cd /home/opc/siebel/<Helm charts repository name>/prometheus

b. Update the fingerprint and so on, in the oci_config/config file.
c. Update the new private key in the oci_api_key.pem file.
d. Increment the chart version in the Chart.yaml file.
e. Commit the changes in the Git repository:

git add .
git commit -m "Updated OCI Configuration"
git push

155

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

3. If you've enabled logging (that's, if you've set the value of the parameters siebel_logging and
enable_oci_log_analytics to true), update the OCI configuration in Helm chart repository:

Update the Siebel logging Helm chart:

a. Go to the siebel-logging directory:
cd /home/opc/siebel/<Helm charts repository name>/siebel-logging

b. Update the fingerprint and so on, in the oci_config/config file.
c. Update the new private key in the oci_api_key.pem file.
d. Increment chart version in the Chart.yaml file.
e. Commit the changes in the Git repository:

git add .
git commit -m "Updated OCI Configuration"
git push

4. Perform the flux reconcile manually:
source /home/opc/siebel/<env_id>/k8sprofile
flux reconcile source git siebel-repo -n <namespace>
flux reconcile kustomization apps -n <namespace>

5. Restart the pods:
kubectl rollout restart deploy prometheus-adapter-deployment -n <namespace>
kubectl rollout restart deploy log-aggregator -n <namespace>

6. Verify the Prometheus adapter deployment pod logs and log aggregator pod logs to ensure that you aren't
receiving the "401 Not Authenticated" error.

Updating GitLab Access Token
GitLab access token allows only authorized users to access the Git repository. You must update the Git access token
regularly to ensure only authorized users can access the Git repository.

1. Execute the flux bootstrap with the new token:
source /home/opc/siebel/<env_id>/k8sprofile
export GITLAB_TOKEN=<gitlab_accesstoken>
flux bootstrap gitlab --components-extra=image-reflector-controller,image-automation-controller --
hostname=https://<GITLAB_HOSTNAME> --token-auth --owner=<GITLAB_USER> --repository=<NAMESPACE>-cloud-
manager --ca-file=<GITLAB_SELFSIGNED_CACERT_PATH> --branch=master --path='flux-crm/clusters/staging' --
log-level debug --image-pull-secret ocirsecret --registry phx.ocir.io/siebeldev/fluxcd -n <NAMESPACE> --
watch-all-namespaces=false

Note: Here, if you are using SCM development build, the registry will be iad.ocir.io/siebeldev/fluxcd.

2. Update the GitLab access token in the SCM Git repository:
a. Go to the environment directory:

cd /home/opc/siebel/<env_id>

b. Open the siebel-config.yaml file:
vi <Cloud manager repository name>/flux-crm/apps/base/siebel/siebel-config.yaml

c. Update the value of the gitlab_accesstoken parameter.
3. Commit the changes to the remote Git repository:

a. Go to the SCM Git repository:
cd /home/opc/siebel/<ENV_ID>/<Cloud manager repository name>

156

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

b. Commit the changes to the Git repository:
git add .
git commit -m "updated gitlab access token and custom secrets"
git config pull.rebase false
git pull
git push

c. Perform flux reconcile manually:
flux reconcile source git <namespace> -n <namespace>
flux reconcile kustomization apps -n <namespace>

Assigning Pods to Nodes - Implementing Affinity and
Anti-affinity on OKE using Siebel Cloud Manager
Using SCM, you can constrain a pod so that it is restricted to run on particular node(s) or to prefer to run on particular
nodes. There are several ways to do this and the recommended approaches all use label selectors to facilitate the
selection. Affinity definitions are available in Kubernetes API reference. These can be added as a customization in
configuration.

This topic has the following sections:

• Customizing the Configuration with Affinity

• Use Cases for Making Incremental Changes

Customizing the Configuration with Affinity
Affinity changes will go as a customization that require changes in the SCM repository. Affinity can be defined for the
following Siebel pods:

• Siebel Server pods (edge, tibus and so on)

• Sai Server pods (quantum, alchemist and so on)

• cgw pod

• smc pod

To add affinity:

1. SSH into the SCM instance.
2. Enter commands like the following:

docker exec -it cloudmanager bash

3. Override the configuration in different Siebel CR pods:
a. Edit the /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/apps/base/siebel/

siebel.yaml file to add "affinity" for each Siebel server/SAI server as:
- sesServer:

 - profile: sieb_server_profile1
 replicas: 1
 siebsrvr_prefix: tibus
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:

157

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

 matchExpressions:
 - key: app.siebel.tier
 operator: In
 values:
 - edge
 topologyKey: kubernetes.io/hostname
 weight: 100

- saiServer:
 - profile: ai_automotive_greenfield
 replicas: 1
 sai_prefix: quantum
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - UK-LONDON-1-AD-1

b. Edit the /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/apps/base/siebel/siebel-
gateway.yaml file to add "affinity" for siebel-gateway (CGW) pods:
 cgw:
 replicas: 3
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app.siebel.tier
 operator: In
 values:
 - cgw
 topologyKey: "kubernetes.io/hostname"

c. Sameway, affinity can also be added to SMC pod by editing /home/opc/siebel/<env_id>/<namespace>-
cloud-manager/flux-crm/apps/base/siebel/siebel-gateway.yaml:
smc:
 affinity:{} // affinity definition for smc pod goes here

4. Commit your customization in the SCM Git repository. Make sure to add all modified files. The above changes
will be included in the initial environment provisioning, where you specify the configuration ID.

5. Check the status of a requested configuration. For more information, see Checking the Status of a Requested
Configuration.

6. Deploy the environment with the customized configuration. In this step you specify only the configuration
ID and the deployment name. For more information, see Deploying Siebel CRM on OCI using Siebel Cloud
Manager.

Use Cases for Making Incremental Changes
Here are some use cases for adding affinity definitions to individual Siebel pods.

Adding affinity for individual Siebel Server

1. Exec into the SCM container:
docker exec -it cloudmanager bash

158

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

2. Edit: siebel.yaml under /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/apps/base/
siebel

 sesServer:
 - profile: sieb_server_profile1
 replicas: 1
 siebsrvr_prefix: edge
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - UK-LONDON-1-AD-2
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: another-node-label-key
 operator: In
 values:
 - another-node-label-value

3. Run the following commands:
git pull
git add .
git commit -m "<message>"
git push

Adding affinity for individual Sai Server

1. Edit: siebel.yaml under /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/apps/base/
siebel

 saiServer:
 - profile: application_interface_profile1
 replicas: 1
 sai_prefix: quantum
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - UK-LONDON-1-AD-1

2. Run the following commands:
git pull
git add .
git commit -m "<message>"
git push

Adding affinity for CGW pods

1. Edit: siebel-gateway.yaml under /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/apps/
base/siebel

 cgw:
 replicas: 3
 affinity: {} // affinity definition for cgw pod goes here.

2. Run the following commands:

159

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

git pull
git add .
git commit -m "<message>"
git push

Adding affinity for SMC pod

1. Edit: siebel-gateway.yaml under /home/opc/siebel/<env_id>/<Cloud manager repository name>/flux-crm/apps/
base/siebel

 smc:
 affinity: {} // affinity definition for smc pod goes here.

2. Run the following commands:
git pull
git add .
git commit -m "<message>"
git push

Cleaning up the Siebel File System
This topic describes how to clean up the Siebel File System by removing orphan records using an API. Orphan records
are those that remain if a user deletes a parent record in the Siebel CRM application that has associated child records.
The child records are not deleted from the Siebel File System with the parent record and so you must remove them by
executing this API.

This API builds on the functionalities provided by sfscleanup service available with Siebel CRM installations and
described in details in Siebel CRM System Administration Guide in Siebel Bookshelf. Executing the API will process
records for every file in the file attachment directories (the att subdirectories) of the specified Siebel File System
directories and performs one of several available operations to each record and file, depending on the file type and
on the parameters that you set. For descriptions of the run-time parameters that you can set, refer to the payload
parameters. The API call will trigger the file system cleanup job and after the clean up is done, reports will be generated.

Execute the clean up by calling POST API as follows:

POST endpoint:

https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/{ENV_ID}/sfscleanup

Sample payload:

{
 "discarded_files_path": "/some/path",
 "remove_old_revisions": true,
 "generate_report_only": true,
 "append_att_directory_path": true,
 "remove_non_siebel_files": true,
 "query_by_attachment_file": true,
 "no_of_file_id_per_query": "10",
 "use_or_clause_for_file_id": true,
 "run_for_specified_minutes": "10",
 "file_system_name": "namespace-siebfs0"
}

Note: Specify payload parameters suitable for your circumstances by referring to the following Payload Parameters
for File System Cleanup table:

160

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

Payload Parameter Section Definition

generate_report_only Top Level (required) If set to false, the service cleans up the specified file system else only
generates a report without any cleanup actions.

remove_old_revisions Top Level Determines whether old versions of file attachments are to be removed. To remove
old versions, set this value to true.

move_discarded_files Top Level Set this value to the move the discarded files. Files can be found at the location
inside the Siebel Cloud Manager container - /home/opc/siebel/{ENV_ID}/
{namespace}-siebfs{index}/{namespace}/SFSUTILS/SFSCLEANUP/
discarded_files/{RUN_ID}

append_att_directory_path Top Level Set this value to true If you want the service to automatically append att to each
directory.

remove_non_siebel_files Top Level Set this value to remove garbage files or non-Siebel files.

query_by_attachment_file Top Level Set this value to perform query by attachment files records.

no_of_file_id_per_query Top Level Set this value to the number of file attachment records to query.

use_or_clause_for_file_id Top Level Set this value when the service needs to use an OR clause to constrain the query
row IDs, like this: (ROW_ID = 'Id1' OR ROW_ID = 'Id2' OR ...)

run_for_specified_minutes Top Level Set this value to the number of minutes to run the query.

file_system_name Top Level (required) Name of the file system in the format of {namespace}-siebfs{index}.
Mounted file systems can be found in the environment directory inside the SCM
container - /home/opc/siebel/{env_id}/.

Note that files in Siebel file system that are less than one hour old may not cleaned up.

For every cleanup job triggered via the POST API, a unique 6 character identifier "RUN_ID" will be generated through
which the status can be checked. To get the details of the current job, execute a GET method API call on the following
endpoint:

https://<CM_Instance_IP>:16690/scm/api/v1.0/environment/{ENV_ID}/sfscleanup/{RUN_ID}

After successful completion of the cleanup job, the reports of the run can be verified at the location inside the SCM
container:

/home/opc/siebel/{ENV_ID}/{namespace}-siebfs{fs-index}/{NAMESPACE}/SFSUTILS/SFSCLEANUP

The report name can be fetched from the GET method response in the key - report_name. The report name follows a
naming convention of - sfs_cleanup_{unix_timestamp}.txt.

An overall report containing historical statistics is also generated or updated at the location - /home/opc/siebel/
{ENV_ID}/sfscleanup/overall_stats.txt.

161

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 3
Deploying Siebel CRM on OCI using Siebel Cloud Manager

162

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer

4 Deploying Siebel CRM on a Kubernetes
Cluster using Siebel Installer

About this Chapter
This chapter describes how to deploy Siebel CRM on a Kubernetes cluster using Siebel Installer for Siebel Cloud
Manager (SCM) in:

• The cloud

• Your own data center:
◦ On premises or

◦ In Oracle Compute Cloud@Customer (OC3).
For more information on OC3, refer Oracle Cloud Compute @Customer.

It contains the following topics:

• Overview

• Moving Existing Siebel CRM on VM to a Kubernetes Orchestrated Deployment

• Moving Existing Siebel CRM on VM to an OC3 Kubernetes Cluster

• High Level Steps for Deploying Siebel CRM on a Kubernetes Cluster

• Prerequisites for Deploying Siebel CRM on a Kubernetes Cluster

• Downloading and Running Siebel Installer for SCM

• Installing SCM using Helm

• Migrating (Lift-And-Shift) Existing Siebel CRM Deployments

• Deploying Siebel CRM using SCM

• Updating SCM Configuration using Helm

• Reinstalling SCM using Helm

• Upgrading SCM using Helm

• Uninstalling SCM using Helm

• Troubleshooting Siebel CRM Deployment

Overview
You can deploy Siebel CRM on a Kubernetes cluster using Siebel Installer for SCM in the cloud or in your own data
center - on premises or in OC3. Optionally, you can also:

• Enable the observability stack, that's metrics monitoring and log analytics, on a Kubernetes cluster on premises
or in the cloud.

• Lift an existing Siebel CRM installation with all the customization and shift it to a Kubernetes orchestrated
deployment.

163

https://www.oracle.com/in/cloud/compute/cloud-at-customer/

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
• Perform new (greenfield) deployments on any of Cloud Native Computing Foundation (CNCF) certified

Kubernetes, for example, Oracle Cloud Native Environment (OCNE) cluster:

◦ On premises, or

◦ In the cloud

Note: When deploying Siebel CRM on a Kubernetes cluster on premises or in the cloud or in OC3 using Siebel
Installer, SCM doesn't manage the infrastructure resources. It supports this deployment only through the “Bring Your
Own Resources (BYOR)” option.

This chapter describes the steps required to do the following tasks:

• Download Siebel Installer for SCM.

• Set up SCM on a Kubernetes cluster.

• Deploy Siebel CRM on a Kubernetes cluster.

Moving Existing Siebel CRM on VM to a Kubernetes
Orchestrated Deployment
You can move your existing Siebel CRM on VM to Kubernetes orchestrated deployments such as an Oracle Cloud Native
Environment (OCNE) cluster using the Lift utility provided by SCM. This will retain all your customizations and offer the
following benefits:

• Observability stack for metrics monitoring and log analytics.

• Other benefits of moving to a cloud-native paradigm, such as:

◦ Dynamic auto-scaling.

◦ Siebel CRM microservice applications deployment.

◦ GitOps.

◦ Plug-and-play with other cloud native frameworks and applications, and more.

For more information, see Downloading and Running the Siebel Lift Utility.

Moving Existing Siebel CRM on VM to an OC3
Kubernetes Cluster
OC3 is a fully managed, rack-scale distributed on-premises cloud platform that offers the OCI compute capabilities
anywhere. OC3 is installed at a data center or location of your choice, offering a simple way to run your Siebel CRM
applications while maintaining control over your data, security, and compliance within your premises.

Your Siebel CRM deployment on a Kubernetes cluster set up in OC3 enables you to:

• Utilize OCI's compute, storage, and networking capabilities to run Siebel CRM.

• Meet your organization’s data residency requirements.

164

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
• Meet the requirements for real-time operations and low-latency connections to current data center assets.

• Use OCI services, APIs, and automation in the same way that the rest of Oracle's distributed cloud is.

• Use OCI Container Engine for Kubernetes (OKE) to achieve container automation, which simplifies enterprise-
grade Kubernetes operations at scale.

• Free your IT resources to focus on meeting crucial business needs as the infrastructure is fully managed and
supported by Oracle.

• Reduce costs through usage-based low consumption pricing and reasonably priced infrastructure subscriptions
that result in significant savings.

• Use flexible storage for workloads requiring a lot of data, with 150 TB of storage capacity that is incrementally
expandable to 3.65 PB. So, you just pay for the storage that is really used, not for the amount that is installed.

You can deploy Siebel CRM on a Kubernetes cluster set up in your OC3 instances using SCM with minimum efforts and
take advantage of the benefits of OC3 with SCM as follows:

• Convenience of a cloud native observability stack.

• Reduce costs and save time by using SCM to run and operate your Siebel CRM deployment in OC3.

• Full support from Oracle for Siebel CRM deployment with SCM and OC3 infrastructure.

To successfully deploy Siebel CRM on a Kubernetes cluster set up in OC3 using SCM, you must ensure that:

• You set up and configure the following resources:

◦ Open Container Initiative registry such as OCI Container Registry, Harbor and so on.

◦ Kubernetes cluster and namespace such as OKE cluster, OCNE cluster, and so on.

◦ Mount target and file system export path to store the SCM state and use as the Siebel CRM file system.

◦ Database to use as the Siebel CRM database.

◦ Git instance to use for Siebel CRM.

For more information, see Prerequisites for Deploying Siebel CRM on a Kubernetes Cluster.

• Have the prerequisites to deploy Siebel CRM in an OC3 instance available such as Python, OCI CLI and OCI
configuration files. For more information, see Prerequisites for Deploying Siebel CRM on a Kubernetes Cluster.

• Have the access details to update the different sections of the values.yaml file such as imagePullSecrets, sshKey,
userEncryptionKey, service and so on. For more information, see Installing SCM using Helm.

• Have the details to update the ociConfig and instanceMetaData sections in the values.yaml file with OC3 specific
configuration. For more information, see Installing SCM using Helm.

• Refer to the steps to run Siebel Installer for installing SCM and deploying Siebel CRM. For more information, see
Downloading and Running Siebel Installer for SCM.

Note: For more information, see Prerequisites for Deploying Siebel CRM on a Kubernetes Cluster. Pay close attention
to OC3 specific configurations required.

165

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer

High Level Steps for Deploying Siebel CRM on a
Kubernetes Cluster
The following are the high level steps to deploy Siebel CRM on a CNCF certified Kubernetes cluster (these steps are
described in detail later in this document):

1. Install the prerequisite tools and make the prerequisite resources available with necessary connectivity and
access provisions for deploying Siebel CRM on a Kubernetes cluster.

2. Download the Siebel Installer media zip file from My Oracle Support(MOS) and extract it.
3. Run the installer and complete the setup and configuration.
4. Verify that the SCM image and SCM Helm chart are available in your container registry.
5. Install SCM using Helm.
6. Move the following container images to your container registry using SCM mirroring APIs:

◦ Siebel CRM image

◦ SCM utilities images

7. Verify the dependencies and prerequisites for Siebel CRM deployment.
8. Deploy Siebel CRM on a Kubernetes cluster using SCM APIs.
9. Verify Siebel CRM on the Kubernetes cluster.

Prerequisites for Deploying Siebel CRM on a Kubernetes
Cluster
This topic lists the prerequisites to deploy Siebel CRM on a Kubernetes cluster on premises or in the cloud, or in your
data center on OC3, using Siebel Installer for SCM.

You'll need the following to successfully run Siebel Installer and install SCM:

• Linux VM version 8 or above with minimum 20 GB free disk space.

• Helm version 3.8 or later: A package that contains the resources needed to deploy an application on a
Kubernetes cluster. The SCM Helm package contains the artifacts required to deploy Siebel on a Kubernetes
cluster. It is also used to push the SCM package into the container registry and to deploy SCM and Siebel CRM
on a Kubernetes cluster. For more information, refer the online documentation for "Installing Helm".

• Podman: An open source tool for managing containers on Linux, Windows and so on. Here, Podman is used
to mange the SCM container registry. For more information, refer the online documentation for "Podman
Installation".

• Kubectl: A command line tool that helps users to manage their Kubernetes clusters. Here, Kubectl is used
to manage the cluster on which SCM and Siebel CRM are deployed. For more information, refer the online
documentation for kubectl.

• VNC session or Xterm to run Siebel Installer in the GUI mode.

• Siebel CRM: The minimum version of Siebel CRM for migration to OCNE is Siebel CRM 18.12 or later. The Siebel
CRM on-premises environment must be running when you run the Siebel Lift utility.

166

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
• Container registry with the appropriate credentials: You must have an open container initiative compliant

registry like Harbor with the following registry details:

◦ Registry URL: The container registry URL.

◦ Registry credentials: The user name and password to access the container registry.

◦ (Optional) Registry prefix: When the prefix is specified, the repository path is constructed using the
registry prefix. The registry user must have the privileges to create the repository or it must be created
before running the installer.

• Kubernetes cluster: A Kubernetes cluster to install SCM and Siebel CRM. You must configure access to the
cluster in the Linux host, that is copy the kubeconfig file of the Kubernetes cluster to a directory on Linux and
set the path of the environment variable KUBECONFIG as follows:
export KUBECONFIG = "/scratch/.kube/<kubeConfigFile>"

In this example, <kubeConfigFile> is the configuration file of the Kubernetes cluster on which you want to install
SCM and deploy Siebel CRM.

• NFS share: You must create an NFS share to store the SCM and Siebel CRM environment state information. This
directory should be accessible from the Kubernetes cluster worker nodes for mounting into the SCM pod and,
later, into the Siebel CRM pods for the Siebel file system. For example:
<nfsServerHost>:/<nfs-path>

Note: The NFS share should have the no_root_squash parameter set for exports.

• Kubernetes namespace: The logical division within the Kubernetes cluster in which you want to install SCM. You
can create the namespace for SCM installation as follows:
kubectl create namespace <namespace>

In this example, <namespace> is the name of the Kubernetes namespace to install SCM in.

Note: You can also use an existing namespace, but ensure the namespace is empty.

Note:
• SCM instructions currently are in U.S. English (ENU).

• While "lift-and-shift" supports all languages that Siebel CRM supports, Greenfield deployments of Siebel CRM
using SCM currently support U.S. English (ENU) only.

For OC3, additionally, you must ensure that the following are available to successfully install SCM and deploy Siebel
CRM:

• Python 3.6 or later: Python is required to run OCI Command Line Interface (CLI). Hence, you must set up an OCI
CLI compatible version of Python on the Linux host machine on which you will run Siebel Installer and install
SCM using Helm.

• OCI CLI: OCI CLI provides the same core functionality as the OCI Console. It is used to ensure that the OCI config
file is set up correctly. To set up OCI CLI on the Linux host, run the following commands:
pip3 install oci-cli --user
ls -l .local/bin/
export PATH=${PATH}:/home/<username>/.local/bin
oci -v

Note: When installing OCI CLI, if the compatible version of Python is not installed, OCI CLI will install Python.

167

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
• OCI configuration files: SCM installed on a Kubernetes cluster in OC3 uses OCI SDKs and CLI. Hence, you must

ensure that the OCI API-compatible services running in the OC3 control plane components are accessible from
the Linux host machine on which SCM is installed. To ensure accessibility, prepare the OCI SDK and OCI CLI
configuration files in the OC3 environment as follows.

Note: The default location of the OCI SDK and OCI CLI configuration files, config and oci_cli_rc, respectively, is the
~/.oci directory.

Note: All the paths mentioned here are only for example. You can select the paths of your choice when deploying in
your environment.

1. Prepare the RSA key pair in PEM format as follows:
a. Generate a 2048-bit private key in the PEM format, as follows:

mkdir /home/opc/.oci; cd ~/.oci
openssl genrsa -out /home/opc/.oci/oci_api_key.pem 2048
chmod 600 /home/opc/.oci/oci_api_key.pem

b. Generate a public key in the PEM format, as follows:
openssl rsa -pubout -in /home/opc/.oci/oci_api_key.pem –out $HOME/.oci/oci_api_key_public.pem

c. Open the public key PEM file and copy the key:
cat /home/opc/.oci/oci_api_key_public.pem

Note: You must ensure that you copy the lines BEGIN PUBLIC KEY and END PUBLIC KEY also along
with the key.

d. Add the public key to your user account in the OC3 console, as follows:
i. Sign in to the OC3 console.

ii. Navigate to the My profile section.
iii. In the left pane, click API keys.
iv. Click Add API key.
v. Select Paste a public key.

vi. Paste the public key (copied in step c).
vii. Click Add.

2. Download the Certificate Authority (CA) certificate bundle for the OC3 environment as follows:
curl -k https://<oc3_region>/cachain > /home/opc/.oci/ca.crt

In the example above, <oc3_region> is the customer region.
3. Update the OCI SDK configuration file with connectivity details such as the user credentials, tenancy OCID, and

so on, as follows:
vi /home/opc/.oci/config

[DEFAULT]
user=ocid1.user.xxxxxx...........oe2f249bo8ho4z2kp5di6gk20w.........kg1i705v.....
fingerprint=c4:11:86:05:d3:4........:64:91:ea:2d......
tenancy=ocid1.tenancy.xxxxxx...........ohtq81ez9p8etm2cry04u0m6..........
region=<oc3_region>
key_file=/home/opc/.oci/oci_api_key.pem

4. Create and update the OCI CLI configuration file with the CA certificate details as follows:
vi /home/opc/.oci/oci_cli_rc

[DEFAULT]

168

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
custom_cert_location=/home/opc/.oci/ca.crt
cert-bundle=/home/opc/.oci/ca.crt

5. Verify the OCI API connectivity in OC3, as follows:
oci os ns get

Response received:
{
 "data": "aveu8wbpqcen"
}

Downloading and Running Siebel Installer for SCM
This topic describes the steps to download Siebel Installer for SCM, run the installer to lay down the SCM image and
SCM Helm chart, and verify the SCM image and SCM Helm chart in the container registry.

This topic includes the following sections:

• Overview of Siebel Installer for SCM

• Downloading the Build and Running Siebel Installer

• Verifying the SCM Image and SCM Helm Chart in the Container Registry

Overview of Siebel Installer for SCM
Siebel Installer simplifies the task of downloading the SCM artifacts required to set up SCM on a Kubernetes cluster on
premises or in the cloud. Siebel Installer lays down the SCM image and the SCM Helm chart, required to install SCM, in
an assigned directory and then pushes them to the user specified container registry.

Downloading the Build and Running Siebel Installer
To download and run the installer:

1. Download the media file from My Oracle Support (MOS). For example, p37481729_251_Linux-x86-64.zip.

Note: Here, the file name is representational and will change with the build. The format of the media file
name is <patch_id >_<release_tag>_<platform>.zip, where:

◦ <patch_id> is the patch or the bug number. For example, 37481729.

◦ <release_tag> is the SCM release version. For example, 251 for the SCM release 25.1.

◦ <platform> is the platform you wish to install SCM on. For example, Linux-x86-64.

2. Extract the media zip file to the directory (which will be referred to as the "installation directory" in the steps
later) from which you want to run the installer, as follows:
cd <installation_directory>
unzip p37481729_251_Linux-x86-64.zip

The following files are extracted in the installation directory:
drwxrwxrwx 3 root root 3 Oct 22 10:40 ext
drwxrwxrwx 2 root root 4 Oct 22 10:41 resources

169

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
drwxrwxrwx 2 root root 2 Oct 22 10:41 logs
drwxrwxrwx 3 root root 3 Oct 22 11:13 archives
-rwxrwxrwx 3 root root 3 Oct 25 09:31 README.html
-rwxrwxrwx 1 root root 186 Oct 25 09:31 runInstaller.sh
drwxrwxrwx 3 root root 3 Oct 29 07:24 jre
-rwxrwxrwx 1 root root 53 Nov 22 06:46 installer.properties

Note: Make a note of this installation directory; later you'll run the SCM installation from this directory.

3. (Optional) Configure the non-root user to push the images to the container registry, as follows:

Note: You must perform this step only if you want to run the installer as a non-root user.

sudo /sbin/usermod --add-subuids <first-last> --add-subgids <first-last> <uid>
podman system migrate
/usr/bin/systemctl --user daemon-reload

The variables in the example have the following values:

◦ <uid> is the non-root user ID.

◦ <first-last> is the subordinate user/group IDs range that the non-root user is allowed to use. For
example, 20000-265536.

4. (Optional) Sign in to the container registry using Podman and Helm utilities.

Note: If you sign in to the container registry now, which is before running the installer, you need not provide
the registry credentials in the SCM configuration details when you run the installer. The credentials with
which you've logged in to the container registry are used to push the SCM image and SCM Helm chart to the
container registry.

5. Start the installer in GUI mode as follows:
sh runInstaller.sh

6. Complete the installation as follows:
a. In the Installation Location screen, click Browse to select the directory to store the SCM artifacts and

click Next.
b. In the Component Selection screen, the installation component "Siebel Cloud Manager" and

configuration task "Siebel Cloud Manager Configuration" are selected by default. Click Next to continue.

Note: Don't deselect "Siebel Cloud Manager" or "Siebel Cloud Manager Configuration". If you deselect
“Siebel Cloud Manager,” the installer will throw an error and you'll not be able to proceed with the
installation. If you deselect "Siebel Cloud Manager Configuration", the installer will not upload the SCM
image and SCM Helm chart to the container registry.

c. In the Configuration Details screen, enter the container registry details required to push the SCM image
and SCM Helm chart to the container registry:

- Container registry URL: The container registry URL to push the SCM image and the SCM Helm
chart to. For example, harbor-registry.corpxyz.mytenancy02phx.oraclevcn.com.

- (Optional) Container registry URL prefix: The prefix for the container registry. When specified, the
prefix is used to construct the repository path. For example, scmxyz.

- Container registry URL UserName: The user name to access the container registry. It is optional if
the installer is launched from the session in which the user has already logged in to the container
registry.

- Container registry Password: The password to access the container registry. It is optional if the
installer is launched from the session in which the user has already logged in to the container
registry.

170

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
d. In the Summary screen, review details and click Install.
e. Optionally, you can save the installation response messages to a response file. To create a response file:

i. Click Save Response File.
ii. Go to the required directory.

iii. Enter the response file name.
iv. Click Save.

f. In the Installation Progress screen, as the installation progresses, appropriate messages are displayed.
After you receive the message "Post Installation Configuration Complete", click Next.

g. In the Finish Installation screen, after the installation is complete, the "Installation is successful"
message is displayed along with the path and name of the log file. Click Close.

Verifying the SCM Image and SCM Helm Chart in the Container Registry
After the installer is run successfully, you must verify that the SCM image and SCM Helm chart are available in the
container registry for smooth SCM installation through one of the following ways:

• Open the log file and look for the following messages:
Uploaded image and helm chart to customer registry
Post install configuration step completed for Siebel Cloud Manager Configuration
Post Installation Configuration Completed.

• Sign in to the container registry and verify the image from the interface provided by the registry; for example,
the GUI.

Installing SCM using Helm
This topic describes the steps to install SCM on a Kubernetes cluster on premises or in the cloud or in your data center
on OC3 using Helm.

This topic includes the following sections:

• Before Installing SCM

• Installing SCM

Before Installing SCM
You must perform the following preinstallation tasks before installing SCM on a Kubernetes cluster:

1. Ensure you've access to the installation directory and container registry provided in Siebel Installer.

171

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
2. Create an image pull secret: A pod uses a secret to pull an image from the container registry. To use the SCM

image and SCM Helm chart from the container registry, create a secret using the kubectl command as follows:
kubectl -n <namespace> create secret docker-registry <secretName> --docker-server=<registryURL> --
docker-username=<userName> --docker-password=<password> --docker-email=<email>

The variables in the example have the following values:

◦ <namespace> is the name of the namespace you want to install SCM in.

◦ <secretName> is the name of the secret.

◦ <registryURL> is the container registry URL to which the SCM image and SCM Helm chart were pushed by
Siebel Installer.

◦ <userName> is the container registry user name.

◦ <password> is the container registry user password.

◦ <email> is the container registry user email.

3. Update the values.yaml file: The SCM Helm package includes a default values.yaml file which determines how
SCM will be configured. Before installing SCM, you must update the values.yaml file to configure SCM as per
your requirements. To update the values.yaml file:

a. Open the values.yaml file. You can use the values.yaml file in either:
- The installation directory on the Linux host machine that was used to run Siebel installer, or
- The SCM Helm chart in your container registry. To use the values.yaml in the container registry:

a. Sign in to the container registry as follows:
helm registry login <registry>

In this example, <registry> is the basename of the container registry.
b. Pull the SCM Helm chart from the container registry:

helm pull oci://<registry>/<repositoryPath> --version <releaseVersion>

The variables in the example have the following values:

• <registry> is the container registry basename.
• <repositoryPath> is the SCM Helm chart (cloudmanager) repository path.
• <releaseVersion> is the SCM release version.

b. Unzip the SCM Helm chart zip file as follows:
tar -zxf cloudmanager_CM_<releaseVersion>.tgz

In this example, <releaseVersion> is the SCM release build version that you downloaded.
c. Update the following sections in the values.yaml file:

- The image section with the container registry details (provided in the Siebel Installer configuration
tasks) from which the SCM image and SCM Helm chart will be used for deployment, as follows:
image:
 registry: "<registryURL>"
 repository: "<imageRepository>"
 tag: "<imageTag>"
 imagePullPolicy: IfNotPresent

The variables in the example have the following values:

◦ <registryURL> is the container registry URL that was provided in the installer configuration
tasks.

172

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer

◦ <imageRepository> is the container registry prefix that was provided in the installer
configuration tasks.

◦ <imageTag> is the SCM release version.

◦ <imagePullPolicy> determines when the SCM image is pulled from container registry. It can
take the following values: IfNotPresent, Always or Never.

- (Optional) The resources section with resource (CPU, memory, and ephemeral storage) allocation
for the SCM pod. The default limits and requests values already specified for the resources in the
values.yaml are sufficient for Siebel CRM deployment, but you can update these values as required
as per the size of your Siebel CRM deployment.

- The storage section with the network file system (NFS) path for SCM and Siebel CRM deployment
as follows:
storage:
 nfsServer: <nfsServer>
 nfsPath: <nfsPath>
 storageSize: 200Gi

The variables in the example have the following values:

◦ <nfsServer> is the IP address or fully qualified domain name of the NFS server.

◦ <nfsPath> is the export path in the NFS server to access the SCM file system.

- The imagePullSecrets section with the secret name required to pull the SCM image from the
container registry as follows:
imagePullSecrets:
 name: <secretName>

In this example, <secretName> is the name of the secret you created in the step 1 of this section.
- The sshKeysection with the public and private key file names required for establishing connection

between Git repository and Fluxcd operator as follows:
a. Create a SSH key pair as follows:

% ssh-keygen
Generating public/private ed25519 key pair.
Enter file in which to save the key (/Users/<uname>/.ssh/id_ed25519): /Users/<uname>/
sample
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/<uname>/sample
Your public key has been saved in /Users/<uname>/sample.pub

In this example, <uname> is the user name.
b. Copy the private and public key files to the ssh directory in the SCM Helm chart home

directory (cloudmanager).
c. Update the sshKey section with the private and public key file names:

sshKey:
 pvtKeyFilename: <privateKeyFilename>
 pubKeyFilename: <publicKeyFilename>

The variables in the example have the following values:

• <privateKeyFilename> is the private key file name.
• <publicKeyFilename> is the public key file name.

173

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
- The ociConfig section with the details of the files required for OCI API authentication to access OCI

infrastructure services in an OC3 environment as follows:

Note: You must configure the caCrtFilename and ociCliRcFilename parameters only when
deploying Siebel CRM in OC3.

ociConfig:
 ociPvtKeyFilename:<ociPrivateKeyFilename>
 caCrtFilename: <caCertificateFileName>
 ociCliRcFilename : <cliRCFileName>

The variables in the example have the following values:

◦ <ociPrivateKeyFilename> is the private key PEM file name. For example, oci_api_key.pem.

◦ <caCertificateFileName> is the CA certificate file name. For example, ca.crt.

◦ <cliRCFileName> is the OCI CLI RC configuration file name.For example, oci_cli_rc.

- The instanceMetaData section with the applicable region and compartment OCID values as follows:
instanceMetaData:
 vaultEnabled: "False"
 region: <region>
 compartmentOcid: <compartmentOCID>
 ociDeployment: <deploymentType>

The variables in the example have the following values:

◦ <region> is the canonical region name. For example, us-ashburn-1.

◦ <compartmentOCID> is the OCID of the compartment used for Oracle Cloud Infrastructure (OCI)
calls.

◦ <deploymentType> determines the environment on which you are deploying Siebel CRM. If you
are deploying Siebel CRM on:

• A CNCF certified Kubernetes cluster on premises or in the cloud, set the value of this
parameter to "false". This parameter is of string type, so ensure you enclose false in
quotes.

• OC3 in your data center, set the value of this parameter to "oc3".
• OCI, set the value of this parameter to "public".

- The userEncryptionKey section, enable this section and update it only when the vaultEnabled
parameter is set to false.
userEncryptionKey:
 uek: "<encryptionkey>"

In this example, <encryptionkey> is a key which matches the following expression: ^[a-zA-Z0-9]
{56,60}$

- The service section with the service type that will be used to expose SCM deployment as follows:
service:
 serviceType: <servicetype>

In this example, <servicetype> is one of the following: ClusterIP, NodePort or LoadBalancer. Based
on the service type selected, configure the other parameters applicable for the service type. For

174

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
example, for NodePort service type configure the NodePort section under the service section as
follows:

NodePort:
 name: "scm-node-port"
 customMetadata: {}
 customLabels: {}
 customAnnotations: {}
 secret:
 name: "scm-node-port-ssl-secret"
 sslCertificatePath: "/etc/ssl/certs/scm.crt"
 sslKeyPath: "/etc/ssl/private/scm.key"
 customMetadata: {}
 customLabels: {}
 customAnnotations: {}
 selfSignedCert:
 country: "US"
 state: "California"
 locality: "San Francisco"
 organization: "Oracle Corporations"
 commonName: "oracle.com"

175

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
 dnsName: "scm-cluster-ip-service"

Note: When deploying Siebel CRM on OC3 using LoadBalancer as the serviceType, you must
configure the customAnnotations and secret sections appropriately as per the instructions in the
values.yaml file. An example of the customAnnotations and secret sections when deploying Siebel
CRM in OC3 using LoadBalancer as the serviceType is as follows:

service:
 serviceType: LoadBalancer
customAnnotations:
 oci.oraclecloud.com/load-balancer-type: "lb"
 service.beta.kubernetes.io/oci-load-balancer-tls-secret: scm-lb-
cert-lb-secret
 service.beta.kubernetes.io/oci-load-balancer-internal: "false"
 service.beta.kubernetes.io/oci-load-balancer-shape: "flexible"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-min: "10"
 service.beta.kubernetes.io/oci-load-balancer-shape-flex-max: "100"
 service.beta.kubernetes.io/oci-load-balancer-subnet1:
 ocid1.xxxxx.xxx.xx.xxxxxxxxx................speygundxpjuhu23lorqq
 oci.oraclecloud.com/oci-load-balancer-listener-ssl-config:
 '{"CipherSuiteName":"oci-default-http2-tls-12-13-ssl-cipher-suite-v1",
 "Protocols":["TLSv1.2","TLSv1.3"]}'
 service.beta.kubernetes.io/oci-load-balancer-ssl-ports: "443"

secret:
 certFileSecretNameLbTlsTermination: scm-lb-cert-lb-secret

Note: If you updated the values.yaml that you pulled from the container registry, you can push
the updated SCM Helm chart in to the container registry after updating the values.yaml file as
follows:

tar -zcf cloudmanager_CM_updated_<releaseVersion>.tgz
helm push cloudmanager_CM_updated_<releaseVersion>.tgz oci://<registry>/
<repositoryPath>

The variables in the example have the following values:

◦ <registry> is the container registry basename.

◦ <repositoryPath> is the SCM Helm chart (cloudmanager) repository path.

◦ <releaseVersion> is the SCM release version.

Installing SCM
This section describes the steps to install SCM on a Kubernetes cluster on premises or in the cloud or in your data
center on OC3 using Helm.

To install SCM using Helm:

1. Go to the SCM Helm chart directory and run the Helm install command as follows:
cd cloudmanager
helm install <releaseName> . -n <namespace>

The variables in the example have the following values:

◦ <releaseName> is the SCM Helm chart instance identifier.

◦ <namespace> is the name of the namespace to install SCM in.

176

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
2. Verify that the SCM pod is running and fetch the endpoint URL for SCM using the following command:

kubectl get pods -n <namespace>

3. Build the SCM application URL (when the service type is NodePort) as follows:
a. Get a node IP address:

kubectl get nodes –wide

Note: The SCM application port is mapped to all active nodes, hence any node IP can be used to
build the SCM application URL. You can copy the external IP (if available) or the internal IP as per your
Kubernetes configuration.

b. Get the assigned node port number from the service (Port Range 30000 – 32767):
kubectl get svc/scm-app-service -n <namespace>

c. Build the SCM application URL using the node IP address and node port as follows:
https://<nodeIPAddress>:<nodePortNumber>

The variables in the example have the following values:
- <nodeIPaddress> is any active node IP address.
- <nodePortNumber> is the assigned node port number.

Note: When the serviceType is set to LoadBalancer, build the SCM application URL as follows:
a. Get the external IP and port:

kubectl get svc -n <namespace>

b. Build the SCM application URL using the external IP and port number as follows:
https://<externalIP>:<PortNumber>

4. Access the SCM application URL and verify that the swagger page is loading correctly.

Migrating (Lift-And-Shift) Existing Siebel CRM
Deployments
The Siebel Lift utility is a command-line utility, developed in Python, that's available from SCM. The main functions of
this utility are as follows:

• Creates deployment artifacts from an existing deployment, on premises or in the cloud, of Siebel CRM.
Deployment artifacts are created in a staging location.

• Reads the deployment artifacts and progresses the migration pipeline for your Siebel CRM deployment.

You can use a shared network file storage or an OCI object storage with the Lift utility. For more information, see the
"Using a Shared Network File System During Lift-And-Shift" section of Deploying Siebel CRM using SCM.

Greenfield deployments of Siebel CRM don't use the Siebel Lift utility.

For details about this Lift utility, see Downloading and Running the Siebel Lift Utility. References to OCI Object Storage in
the "Downloading and Running Lift Utility" section are applicable primarily when deploying Siebel CRM on OCI or OC3.
A shared NFS can be used whenever applicable, see the "Using a Shared Network File System During Lift-And-Shift"
section of Deploying Siebel CRM using SCM.

177

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer

Deploying Siebel CRM using SCM
This topic describes the steps to deploy Siebel CRM on a Kubernetes cluster on premises or in the cloud or in your data
center on OC3, using BYOR through SCM.

This section includes the following information:

• Before Deploying Siebel CRM on a Kubernetes Cluster

• Deploying Siebel CRM using SCM on a Kubernetes Cluster

• Using a Shared Network File System During Lift-And-Shift

Before Deploying Siebel CRM on a Kubernetes Cluster
Before you deploy Siebel CRM on a Kubernetes cluster, you must complete the following tasks:

1. Push the SCM utilities and Siebel CRM image from the Oracle registry to your container registry using the
mirror API as follows:

a. Fetch the administrator user credentials, that will be used to access the SCM APIs, from the api_creds.ini
file in:

- The /home/opc/config directory or
- The NFS share <nfsServer>:/<nfsPath>/<namespace>/config directory.

The variables in the example have the following values:
- <nfsServer> is the is the IP address or name of the NFS share server.
- <nfsPath> is the NFS share path.
- <namespace> is namespace to deploy Siebel CRM in.

Note: All APIs in SCM are basic authentication enabled, hence administrator user credentials are used
for authentication.

b. Use the mirror API to push the SCM utilities and Siebel CRM image to the container registry. For more
information on how to use the mirror API, see Mirroring Siebel Base Container Images.

2. Ensure the following resources that are required for Siebel CRM deployment are available for smooth
deployment of Siebel CRM:

a. Siebel CRM file system: For the Siebel CRM file system, you can create a NFS share or use the NFS share
that you created as part of the prerequisites.

b. Database: Make a note of the wallet path referenced inside the SCM pod and the TNS connect string alias
value. These details will be used in the payload for deploying Siebel CRM on a Kubernetes cluster. In case
of TNS without TLS:

i. Create a tnsnames.ora file with the database details in a directory named wallet.
ii. Copy the wallet directory to the SCM NFS share config directory. For example,

<nfsServer>:/<nfsPath>/<namespace>/config/wallet

c. Container registry: Make a note of the following container registry details to which the SCM utilities and
Siebel CRM image were mirrored:

- The registry URL
- The registry user name and password
- The registry prefix.

178

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
d. Kubernetes cluster: You can use the same cluster you used to deploy SCM, to deploy Siebel CRM. Copy

the Kubeconfig file of the cluster to the pod or make it accessible to the pod. Make a note of this path, it
will be used in the payload for Siebel CRM deployment. For example,
<nfsServer>:/<nfsPath>/<namespace>/config/kubeconfig

e. Git instance: Make a note of the Git instance details (IP address or hostname, username, access token
and root certificate). Copy the certificate to the pod or make it accessible to the pod, this path will be used
in the payload for Siebel CRM deployment. For example,
<nfsServer>:/<nfsPath>/<namespace>/config/rootCA.crt

Deploying Siebel CRM using SCM on a Kubernetes Cluster
After you have performed all the prerequisite tasks for Siebel CRM deployment and ensured that all resources are
available, you can use SCM to deploy Siebel CRM on a Kubernetes cluster. You must prepare a suitable payload and then
execute this payload on SCM.

To deploy Siebel CRM on a Kubernetes cluster:

1. Prepare the payload for deployment as follows:

◦ Sample payload for creating a Greenfield Siebel CRM deployment on an OCNE cluster with observability:

Note: You must update the parameters according to your local configuration and prepare the payload.

{
 "name":"demo",
 "siebel": {
 "registry_url": "<container_registry_url>",
 "registry_user": "<container_userName>",
 "registry_password": "<container_registry_userPassword>",
 "registry_prefix": "<container_registry_prefix>",
 "database_type": "Vanilla",
 "industry": "Telecommunications"
 },
 "infrastructure": {
 "git": {
 "git_type": "gitlab",
 "gitlab": {
 "git_url": "https://<IP address>",
 "git_accesstoken": "<gitlab_token>",
 "git_user": "root",
 "git_selfsigned_cacert": "/home/opc/certs/rootCA.crt"
 }
 },
 "kubernetes": {
 "kubernetes_type": "BYO_OCNE",
 "byo_ocne": {
 "kubeconfig_path": "/home/opc/config/kubeconfig"
 }
 },
 "ingress_controller": {
 "ingress_service_type": "NodePort"
 },
 "mounttarget_exports":{
 "siebfs_mt_export_paths": [
 {
 "mount_target_private_ip": "<nfsServer>",
 "export_path": "<nfsPath>"
 }
],
 "migration_package_mt_export_path": {
 "mount_target_private_ip": "<nfsServer>",

179

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
 "export_path": "<nfsPath>"
 }
 }
 },
 "database": {
 "db_type": "BYOD",
 "byod": {
 "wallet_path": "/home/opc/config/wallet",
 "tns_connection_name": "<TNS_connect_string>"
 },
 "auth_info": {
 "table_owner_password": "<tableOwnerUserPassword>",
 "table_owner_user": "<tableOwnerUser>",
 "default_user_password": "<plainTextPWD>",
 "anonymous_user_password": "<plainTextPWD>",
 "siebel_admin_password": "<plainTextPWD>",
 "siebel_admin_username": "<adminUser>"
 }
 },
 "observability": {
 "siebel_monitoring": true,
 "siebel_logging": true,
 "enable_oracle_opensearch": true,
 "prometheus": {
 "storage_class_name": "local-storage",
 "local_storage_info": {
 "local_storage": "/mnt/test",
 "kubernetes_node_hostname": "<hostname>"
 }
 },
 "oracle_opensearch": {
 "storage_class_name": "local-storage",
 "local_storage_info": [
 {
 "local_storage": "/mnt/test1",
 "kubernetes_node_hostname": "<hostName>"
 },
 {
 "local_storage": "/mnt/test2",
 "kubernetes_node_hostname": "<hostName>"
 },
 {
 "local_storage": "/mnt/test3",
 "kubernetes_node_hostname": "<hostName>"
 }
]
 },
 "monitoring_mt_export_path": {
 "mount_target_private_ip": "<mountTargetIPAddress>",
 "export_path": "/olcne-migration"
 }
 }
}

Note: You can create a similar payload for deploying Siebel CRM on any other CNCF certified
Kubernetes cluster by setting the parameter kubernetes_type to BYO_OTHER and updating the parameter
values accordingly.

◦ Sample payload for creating a Greenfield Siebel CRM deployment on a Kubernetes cluster set up in OC3
with observability:

Note: You must update the parameters according to your local configuration and prepare the payload.

{

180

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
 "name": "demo",
 "siebel": {
 "registry_url": "<container_registry_url>",
 "registry_user": "<container_userName>",
 "registry_password": "<container_registry_userPassword>",
 "registry_prefix":"<container_registry_prefix>",
 "database_type": "Vanilla",
 "industry": "Telecommunications"
 },
 "infrastructure": {
 "git": {
 "git_type": "gitlab",
 "gitlab": {
 "git_url": "https://<IP address>",
 "git_accesstoken": "<gitlab_token>",
 "git_user": "root",
 "git_selfsigned_cacert": "/home/opc/config/rootCA.crt"
 }
 },
 "kubernetes": {
 "kubernetes_type": "BYO_OKE",
 "byo_oke": {
 "oke_cluster_id": "ocid1.xxx",
 "oke_endpoint": "PUBLIC"
 }
 },
 "ingress_controller": {
 "ingress_service_type": "loadbalancer",
 "ingress_controller_service_annotations": {
 "oci.oraclecloud.com/load-balancer-type": "lb",
 "service.beta.kubernetes.io/oci-load-balancer-internal": "false",
 "service.beta.kubernetes.io/oci-load-balancer-shape": "flexible",
 "service.beta.kubernetes.io/oci-load-balancer-shape-flex-min": "11",
 "service.beta.kubernetes.io/oci-load-balancer-shape-flex-max": "105",
 "service.beta.kubernetes.io/oci-load-balancer-subnet1":
 "ocid1.subnet.oc1.amaaaaaa2x5pucianjvte3dymz2",
 "service.beta.kubernetes.io/oci-load-balancer-tls-secret": "lb-tls-
certificate",
 "service.beta.kubernetes.io/oci-load-balancer-ssl-ports": 443,
 "oci.oraclecloud.com/oci-load-balancer-listener-ssl-config": "{
 \"CipherSuiteName\":\"oci-default-http2-tls-12-13-ssl-cipher-suite-v1\",
 \"Protocols\":[\"TLSv1.2\",\"TLSv1.3\"]}"
 }
 },
 "mounttarget_exports": {
 "siebfs_mt_export_paths": [
 {
 "mount_target_private_ip": "<NFS server name/IP>",
 "export_path": "<nfs-path>"
 }
],
 "migration_package_mt_export_path": {
 "mount_target_private_ip": "<NFS server name/IP>",
 "export_path": "<nfs-path>"
 }
 }
 },
 "database": {
 "db_type": "BYOD",
 "byod": {
 "wallet_path": "/home/opc/config/wallet",
 "tns_connection_name": "<TNS connect string>"
 },
 "auth_info": {
 "table_owner_password": "<Plain Text PWD>",
 "table_owner_user": "<e.g. siebel>",

181

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer
 "default_user_password": "<Plain Text PWD>",
 "anonymous_user_password": "<Plain Text PWD>",
 "siebel_admin_password": "<Plain Text PWD>",
 "siebel_admin_username": "<e.g. SADMIN>"
 }
 }
}

Note: For more information on the parameters in the deployment payload, see Parameters in Payload
Content.

2. Submit the payload using the environment API through a POST request as follows:
POST https://<IPAddress>:<PortNumber>/scm/api/v1.0/environment

The variables in the example have the following values:

◦ <IPaddress> is any active IP address.

◦ <PortNumber> is the assigned port number.

3. Check the status of the workflow using the GET API, self-link for the same will be available in the POST request
response. You must ensure that the:

◦ Environment status of the Siebel CRM deployment using SCM is "completed".

◦ Status of all stages is "passed".

◦ Siebel CRM URLs are available in the GET API response once the workflow is complete.

For information on troubleshooting, see Troubleshooting Siebel CRM Deployment.

Using a Shared Network File System During Lift-And-Shift
When lifting an existing Siebel CRM environment and deploying it on premises, you can now specify the NFS server
endpoint that holds all the Siebel CRM artifacts using the nfs section within the siebel block. This section allows the
users to specify the NFS server details such as the NFS server endpoint, the NFS share directory path and the Persistent
Volume Claim (PVC) size.
To use the nfs section in the payload:

1. Place all Siebel CRM artifacts lifted by the Lift utility in a NFS share directory that's accessible to the cluster.
2. Include the nfs section in the siebel block, in the Siebel CRM deployment payload as follows:

"siebel": {
 "registry_url": "<Container_registry_URL>",
 "registry_user": "<Container_user_name>",
 "registry_password": "<Container_registry_password>",
 "registry_prefix": "<Container_registry_prefix>",
 "nfs": {
 "server": "<nfsServer>",
 "path": "<nfsServerPath>",
 "storage": "<storage>"
 }
}

The variables in the example have the following values:

◦ <nfsServer> is the NFS server endpoint.

◦ <nfsServerPath> is the NFS server directory path that holds the lifted Siebel CRM artifacts.

182

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer

◦ <storage> is the optional parameter that's used to specify the PVC size of the intermediate artifactory
server. Default size is 100 GB.

For more information, see Downloading and Running the Siebel Lift Utility.

Updating SCM Configuration using Helm
This topic describes the steps to update the SCM configuration using Helm.

To update the SCM configuration:

1. Go to the SCM Helm chart directory.
2. Update the values.yaml file as required. For more information on updating the values.yaml file, see Installing

SCM using Helm.
3. Run the Helm upgrade command as follows:

cd cloudmanager
helm upgrade <releaseName> . -n <namespace>

The variables in the example have the following values:

◦ <releaseName> is the SCM Helm chart instance identifier

◦ <namespace> is the SCM namespace.

4. Verify that the SCM pod is running after updating the configuration as follows:
kubectl get pods -n <namespace>

In the example, <namespace> is the SCM namespace.

Reinstalling SCM using Helm
This topic describes how to reinstall the same version of SCM on a Kubernetes cluster using Helm.

To reinstall SCM using Helm:

1. Backup the SCM NFS directory specified in the nfsPath parameter of the Storage section of the values.yaml file.
2. Uninstall SCM. For more information, see Uninstalling SCM using Helm.
3. Install SCM using Helm. For more information, see Installing SCM using Helm.

Upgrading SCM using Helm
This topic describes how to upgrade SCM on a Kubernetes cluster using Helm.

To upgrade to a new version of SCM using Siebel installer:

1. Download and run the required version of Siebel Installer for SCM. For more information on downloading and
running the Siebel Installer build, see Downloading and Running Siebel Installer for SCM.

183

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer

Note: If you choose the same installation directory, then Siebel Installer will rename the existing installation
directory as <installationDirectoryName>_pre_<timestamp> and then creates a new installation directory with
the same name.

2. Go to the SCM Helm chart directory and make the following configuration changes in the values.yaml file:

◦ In the image section, update the tag parameter with the new SCM build version.

◦ Update all other sections with the values from the previous SCM version's values.yaml file. For more
information, see Installing SCM using Helm.

Note: You'll find the previous SCM version's values.yaml file in the:
- Renamed installation directory, if you've given the same installation directory that

was used for the previous version of SCM when running Siebel Installer.
- Previous SCM version’s chart directory, if you've provided a new installation

directory when running Siebel Installer for the upgrade.

3. Run the Helm upgrade command as follows:
cd cloudmanager
helm upgrade <releaseName> . -n <namespace>

The variables in the example have the following values:

◦ <releaseName> is the SCM Helm chart instance identifier.

◦ <namespace> is the SCM namespace.

4. Verify that the SCM pod is running after upgrading to the new version.

Uninstalling SCM using Helm
This topic describes the steps to uninstall SCM on a Kubernetes cluster using Helm.

To uninstall SCM using Helm:

1. List the installed charts as follows:
helm list -n <namespace>

2. Uninstall all the charts as follows:
helm uninstall <releaseName> -n <namespace>

The variables in the example have the following values:

◦ <releaseName> is the SCM Helm chart instance identifier.

◦ <namespace> is the SCM namespace.

Troubleshooting Siebel CRM Deployment
This section provides additional details for troubleshooting Siebel CRM deployment issues.

184

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer

This topic includes the following sections:

• Troubleshooting Image Pull Issues

• Troubleshooting Helm Chart Uninstallation Issues

Troubleshooting Image Pull Issues
When you're unable to pull the image and secret creation job fails with the ImagePullBackoff error. The following are the
likely causes and corrective actions:

Causes Corrective Actions

The secret used as image pull secret isn't
created in the namespace or has wrong
credentials.

Create the image pull secret in the namespace with correct credentials.

The secret name isn't updated in the
imagePullSecrets section of the
values.yaml file.

Update the secret name in the imagePullSecrets section of the values.yaml file and run Helm
install again.

Image isn't pushed to the registry
mentioned in the image section of
values.yaml file.

Push the image into the registry or update the registry image tag in the image section of
values.yaml file.

Troubleshooting Helm Chart Uninstallation Issues
You're unable to uninstall Helm chart. This could be because the clean-up job got stuck as it's unable to pull the image.
In this case, delete the namespace to remove all the resources inside the namespace including the Helm references for
the releases and try uninstall again.

185

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 4
Deploying Siebel CRM on a Kubernetes Cluster using Siebel

Installer

186

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

5 Monitoring Siebel CRM Deployments

Monitoring Siebel CRM Deployments
The backend of the Siebel CRM deployment done using Siebel Cloud Manager (SCM) can be monitored using the
module "Siebel CRM Observability – Monitoring and Log Analytics". This module will help align the Siebel CRM
architecture more closely with cloud native deployment best practices.

The Observability stack uses best of breed tools, including Prometheus, Grafana, Oracle OpenSearch, Fluentd, OCI
Services, and others.

"Siebel CRM Observability – Monitoring and Log Analytics" module comprises of two components:

• Siebel CRM Observability – Monitoring

• Siebel CRM Observability – Log Analytics

This is an optional feature enabled and managed by SCM.

This chapter contains the following topics:

• Metrics Information Categories

• Siebel CRM Monitoring Architecture

• Key Software Components for Monitoring

• Visualization Components for Monitoring

• Configuring the Siebel CRM Observability – Monitoring Solution

◦ Enabling the Solution

◦ Few Parameters for Prometheus Configuration for Siebel CRM Monitoring

◦ Alert Notifications

◦ Prometheus Alertmanager Configurations

◦ Custom Siebel CRM Metrics

◦ Additional Node Exporter Metrics

• Dashboards for Siebel CRM Monitoring

Benefits of the Observability Solution
Some of the benefits a modern observability solution like this can provide are:

• Reduction of administrative overhead and skills dependency for production support:

◦ A near real-time, at-a-glance view of system health of your Siebel CRM backend is available.

◦ Can automatically detect anomalous behavior and generate notifications.

• Helps in improving user experience:

◦ Makes metrics available to configure automatic dynamic scaling of Siebel Servers.

◦ Provides information to monitor system under heavy load.

187

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

◦ Helps track the impact of configuration changes on system behavior.

◦ Makes available data to predict system failures before they occur.

• Enables planning investments based on data:

◦ Infrastructure investment planning is aided by having accurate information on the demand on resources.

◦ Make available stored data to analyze past performance of systems.

Metrics Information Categories
This observability solution will capture end to end metrics for all the infrastructure deployed as part of a Siebel CRM
deployment done by SCM.

Here are the categories of metric information that are captured and displayed on sample dashboards delivered as part
of this solution:

• Node Metrics

• Container Metrics

• Kubernetes Metrics

• Ingress-Nginx Controller Metrics

• OCI Infrastructure Service Metrics

• Metrics for Java-based Services in Siebel CRM

• Siebel Server Metrics

Node Metrics
Capture and propagate hardware-level metrics from each node in the cluster. For example, CPU usage, memory
consumption, disk I/O, network statistics, and so on. Node Exporters are used to collect these metrics.

• For more information on node exporters, refer https://github.com/prometheus/node_exporter.

• For a detailed list of all available metrics, refer to the "Prometheus Server Node Metrics" section in Monitoring &
Alerting Capabilities in an Oracle Private Cloud Appliance X9-2 (PDF).

Container Metrics
The Siebel Observability solution captures and propagates container-level metrics like CPU and memory usage, file
system statistics, network activities, and so on. cAdvisor is used to collect metrics.

• For more information on cAdvisor, refer https://github.com/google/cadvisor/tree/master.

• More details about cAdvidor and all available metrics, refer https://github.com/google/cadvisor/blob/master/
docs/storage/prometheus.md.

Kubernetes Metrics
Information about the state and health of various Kubernetes objects like pods, deployments, services, and so on are
captured. For example, Kubernetes objects CPU, memory consumption, disk I/O, network statistics among others.

188

https://github.com/prometheus/node_exporter
https://www.oracle.com/a/otn/docs/oraclepcax9-2_monitoring_and_alerting.pdf
https://www.oracle.com/a/otn/docs/oraclepcax9-2_monitoring_and_alerting.pdf
https://github.com/google/cadvisor/tree/master
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

"kube-state-metrics", which is a service that listens to the Kubernetes API server and generates metrics about the state
of the objects, are used.

• For more information on kube-state-metrics, refer https://github.com/kubernetes/kube-state-metrics/tree/
main.

• For a detailed list of all available metrics, refer https://github.com/kubernetes/kube-state-metrics/blob/main/
docs/metrics/workload/pod-metrics.md.

Ingress-Nginx Controller Metrics
Metrics are also collected about Ingress-Nginx Controllers. These help in the monitoring and management of ingress
traffic by measuring, for example, total number of client requests, sum of response duration per ingress, request
processing time, upstream service latency per ingress, and so on. This observability solution uses ingress-nginx
exporters for collecting metrics for Prometheus to scrape.

• For more information on ingress-nginx exporters, refer https://github.com/kubernetes/ingress-nginx/blob/
main/docs/user-guide/monitoring.md.

• For a detailed list of all available metrics, refer https://github.com/kubernetes/ingress-nginx/blob/main/docs/
user-guide/monitoring.md#exposed-metrics.

OCI Infrastructure Service Metrics
In this category, the observability – monitoring solution relays data about the health, capacity, and performance of cloud
resources on OCI. A wide array of metrics for OCI services in use, like database, network, vault, and so on, are available.
Metrics and Alarms features of OCI Monitoring Service are used to collect these.

For more information, refer https://docs.oracle.com/en-us/iaas/Content/Monitoring/Concepts/
monitoringoverview.htm.

Metrics for Java-based Services in Siebel CRM
For metrics categories belong to Java services used in Siebel CRM, Java Management Extension (JMX) exporters are
used. JMX in Gateway, Siebel Server, AI and SMC pods help in collecting necessary metrics.

For more information on JMX exporters, refer https://github.com/prometheus/jmx_exporter.

Siebel Server Metrics
This category of metrics help in monitoring important aspects of the Siebel application servers. Siebel Server related
metrics are collected through custom monitoring agents. The following out-of-the-box metrics are collected:

Max_Tasks, Total_Tasks, Active_Tasks, Total_Siebel_Servers, Active_Siebel_Servers, Active_Processes,
Max_Mts_Process, Active_Mts_Process, Active_Sessions, Siebel_Server_State, SIEBEL_COMPONENT_INFO,
SIEBEL_COMPGRP_INFO, SIEBEL_TASK_INFO, SIEBEL_PROCESS_INFO, SIEBEL_SESSION_INFO, and so on.

The framework allows collection and propagation of more Siebel information to be collected as metrics by processing
server manager commands.

189

https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/tree/main
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/workload/pod-metrics.md
https://github.com/kubernetes/kube-state-metrics/blob/main/docs/metrics/workload/pod-metrics.md
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/monitoring.md
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/monitoring.md
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/monitoring.md#exposed-metrics
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/monitoring.md#exposed-metrics
https://docs.oracle.com/en-us/iaas/Content/Monitoring/Concepts/monitoringoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Monitoring/Concepts/monitoringoverview.htm
https://github.com/prometheus/jmx_exporter

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

Siebel CRM Monitoring Architecture
The following solution architecture diagram shows all the software components that capture, transform, propagate,
store and display metrics data of all necessary elements of a Siebel Server deployment on OKE by SCM.

A large array of metrics related to networks, disks, nodes, pods, containers, database, Kubernetes and Siebel
deployment components are collected and transmitted for viewing and analysis. cAdvisor is the metrics exporter for
running containers. Other categories of metrics exporters include node exporters, kube-state -metrics exporters, Siebel
metrics exporter, JMX exporters and NginX ingress controller metrics exporter.

These metrics are scraped/collected and stored in time series database in Prometheus, which, along with OCI
infrastructure service metrics, feeds into Prometheus Web UI, Grafana and OCI monitoring console for viewing the
collected metric. Information from these flows are also used by Prometheus Alert Manager plugin, which, in addition to
OCI alerting services, can be configured to notify users of incidents that match defined criteria.

190

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

Key Software Components for Monitoring
The following key software components are used for monitoring:

• Prometheus

• OCI Monitoring

• Exporters

Prometheus
Prometheus is one of the most important components of the Siebel CRM Observability - Monitoring solution. It is one of
the most widely used open-source monitoring software in the world today and is built in the Go language. Prometheus
joined the Cloud Native Computing Foundation in 2016 as the second hosted project, after Kubernetes.

Metrics collected from various infrastructure components like nodes, pods, containers, load balancer, Siebel application,
OKE, mount targets, and so on are sent to Prometheus for storage in time series database (that is metrics information
is stored with the timestamp at which it was recorded, alongside optional key-value pairs called labels). Alert rules
configurations are also done in Prometheus. A Prometheus component called Alertmanager evaluates alert rules and
sends notifications to target channels like email, mobile, and so on.

Prometheus also provides a web-based UI, metrics and query endpoints and a query language PromQL for analysis.

It offers extensive integration capabilities - due to its popularity, a plethora of exporters are available open-source to
collect metrics from many different software. This can be another very important consideration for using Prometheus in
any organization.

For more information, refer https://prometheus.io/.

OCI Monitoring
The Siebel CRM Observability - Monitoring solution also offers extensive capabilities through OCI Monitoring solution.
For all the OCI and Siebel CRM services, insights are available at your fingertips. The solution implements Prometheus-
OCI adapter to send data in Prometheus to OCI Monitoring for use with other various OCI monitoring and dashboarding
solutions.

For more information, refer https://docs.oracle.com/en-us/iaas/Content/Monitoring/home.htm.

Exporters
Exporters are the components in play for collecting and exposing the metrics for ingestion into Prometheus. They work
on all targets being monitored like nodes, load balancer, and so on and convert the information to suitable formats for
Prometheus to ingest.

Visualization Components for Monitoring
The Siebel CRM Observability - Monitoring solution includes usage of various dashboard visualization tools.

191

https://cncf.io/
http://kubernetes.io/
https://prometheus.io/
https://docs.oracle.com/en-us/iaas/Content/Monitoring/home.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

This solution offers the following options for metrics data visualization and dashboarding:

• Grafana

• Oracle APM Dashboard (OCI Application Performance Monitoring)

• Prometheus UI

Grafana
Grafana is a popular Open Source visualization and dashboarding tool that connects to Prometheus to retrieve metrics
data. It enables you query, visualize, alert on, and explore your metrics easily. Grafana also provides users tools to turn
time-series database (TSDB) data into insightful graphs and visualizations.

Note that Grafana server/service is not distributed by Oracle. JSONs of various sample dashboards are provided by
Oracle, to be imported into Grafana that is managed by the user. Features described in this document were tested with
Grafana version 9.4.3.

For more information, refer https://grafana.com/grafana/.

Oracle APM Dashboard
OCI Application Performance Monitoring (APM) Dashboard is a web-based interface to configure and manage
Oracle OCI Monitoring that helps in creating dashboards, setting up alarms, and exporting metrics data. Few sample
dashboards are provided from Oracle Siebel.

For more information, refer https://docs.oracle.com/en-us/iaas/management-dashboard/home.htm.

Prometheus UI
Prometheus UI is an expressions browser visual interface directly on Prometheus – the most important component in
the offering. It's invaluable in the technical exploration of metrics and configuration checks and hence an essential tool
for troubleshooting and ad-hoc analysis. Prometheus UI enables exploring and alerting based on metrics, executing
queries and gain insights into the monitored systems' performance. It supports PromQL for advanced selection and
aggregation of time series data and display in real time.

For more information, refer https://prometheus.io/docs/visualization/browser/.

Configuring the Siebel CRM Observability – Monitoring
Solution
This section contains the following topics:

• Enabling the Solution

• Disabling OCI Monitoring for Siebel CRM

• Few Parameters for Prometheus Configuration for Siebel CRM Monitoring

• Alert Notifications

• Custom Siebel CRM Metrics

• Additional Node Exporter Metrics

192

https://grafana.com/grafana/
https://docs.oracle.com/en-us/iaas/management-dashboard/home.htm
https://prometheus.io/docs/visualization/browser/

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

Enabling the Solution
The Observability Monitoring feature can be enabled to monitor Siebel CRM environments deployed by SCM on Oracle
Kubernetes Engine on OCI. This feature exposes APIs for easy enabling/disabling. Various aspects of the Observability
feature like Monitoring, Logging Analytics, Alerts, OCI Logging Analytics, Oracle OpenSearch, and so on can be
individually turned on/off.

To enable only Monitoring during a Siebel CRM deployment, section like this to be appended in Siebel CRM deployment
payload. For example:

API: POST on /scm/api/v1.0/environment

{
 <Siebel deployment payload>
 "observability": {
 "siebel_monitoring": true,
 "oci_config": {
 "oci_config_path": "/home/opc/siebel/oci-config/config1",
 "oci_private_api_key_path": "/home/opc/siebel/oci-config/mykey.pem",
 "oci_config_profile_name": "DEFAULT"
 },
 "monitoring_mt_export_path": {
 "mount_target_private_ip": "10.0.255.YY",
 "export_path": "/devXX-monitoring"
 }
 }
}

For more details on the payload elements, see the "observability" parameters in Parameters in Payload Content.

When monitoring is enabled during Siebel deployment, the monitoring_mt_export_path parameter needs to be provided
only when BYOR choice (Use existing resources) was selected during SCM installation.

To enable monitoring for a pre-existing Siebel CRM deployment done by SCM, the following sample can be used:

API: POST on /scm/api/v1.0/environment/<ENV_ID>/observability

{
 "observability": {
 "siebel_monitoring": true,
 "oci_config": {
 "oci_config_path": "/home/opc/siebel/oci-config/config1",
 "oci_private_api_key_path": "/home/opc/siebel/oci-config/mykey.pem",
 "oci_config_profile_name": "DEFAULT"
 },
 "monitoring_mt_export_path": {
 "mount_target_private_ip": "10.0.255.YY",
 "export_path": "/devXX-monitoring"
 }
 }
}

The monitoring_mt_export_path parameter is required when monitoring is enabled for a pre-existing Siebel CRM
deployment done by SCM.

It returns a RUN_ID upon success.

For more details on the payload elements, see the "observability" parameters in Parameters in Payload Content.

The status of the enabled features can be checked with GET for specific RUN_IDs, or you can get a broader response with
an upper level URI ending in the term "observability".

193

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

/scm/api/v1.0/environment/<ENV_ID>/observability/<RUN_ID>

/scm/api/v1.0/environment/<ENV_ID>/observability/

Re-runs can be done with PUT API with RUN_ID at the end. Note that reruns are idempotent.

/scm/api/v1.0/environment/<ENV_ID>/observability/<RUN_ID>

To use the Siebel CRM Observability – Monitoring solution, Siebel Cloud Manager version needs to be updated to
CM_24.6.0 or later using commands like following. Refer to the appropriate section for details on update process.
Though SCM needs to be updated, Siebel CRM version need not be updated always for using this feature, as limited
backward compatibility for Siebel CRM versions below 24.6 is supported.

ssh opc@<CM_IP>
bash start_cmserver.sh CM_24.6.0

To enable Alerting along with Monitoring, deployment payload to contain section like the following in addition to the
section for enabling monitoring:

{
 "observability": {

 "send_alerts": "true",
 "alertmanager_email_config": {
 "smtp_host": "smtp.us-ashburn-1.oraclecloud.com",
 "smtp_port": "587",
 "smtp_from_email": "no-reply@oraclesiebel.com",
 "smtp_auth_username": "ocid1.user.oc1.......",
 "smtp_auth_password_vault_ocid": "ocid1.vaultsecret.oc1.uk-london-1.....",
 "to_email": "test1@oracle.com,test2@oracle.com "
 }
 }
}

For more details on the payload elements, see the "observability" parameters in Parameters in Payload Content.

Therefore, to enable monitoring functionality along with alerting in Siebel CRM Observability, a payload like the
following can be used (for a non-BYO use case) along with Siebel CRM deployment payload:

{
 <other Siebel CRM deployment payload elements>
 "observability": {
 "siebel_monitoring": true,
 "oci_config": {
 "oci_config_path": "/home/opc/siebel/oci-config/config1",
 "oci_private_api_key_path": "/home/opc/siebel/oci-config/mykey.pem",
 "oci_config_profile_name": "DEFAULT"
 }
 "send_alerts": "true",
 "alertmanager_email_config": {
 "smtp_host": "smtp.us-ashburn-1.oraclecloud.com",
 "smtp_port": "587",
 "smtp_from_email": "no-reply@oraclesiebel.com",
 "smtp_auth_username": "ocid1.vaultsecret.oc1.uk-london-1.....",
 "smtp_auth_password_vault_ocid": "ocid1.vaultsecret.oc1.uk-london-1.....",
 "to_email": "test1@oracle.com,test2@oracle.com"
 }
 }
}

194

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

Disabling OCI Monitoring for Siebel CRM
You can disable OCI monitoring that was enabled earlier through the enable_oci_monitoring parameter. Setting the value
of enable_oci_monitoring to false prevents Prometheus from sending metrics to the OCI monitoring service.

To disable OCI monitoring for Siebel, include the enable_oci_monitoring parameter in the Siebel CRM deployment
payload as follows:

{
 "observability": {
 "enable_oci_monitoring": false
 }
}

For more details on the payload elements, see the "observability" parameters in Parameters in Payload Content.

Note: Disabling OCI monitoring will not delete the OCI Application Performance Management (APM) dashboard that
was created when OCI monitoring was enabled.

Few Parameters for Prometheus Configuration for Siebel CRM
Monitoring
Prometheus has a vast number of configuration options which can be used depending on specific business
requirements. Of those, we want to highlight a few that need careful balance between processing and storage needs vs
latency of how soon metrics information is available in Prometheus from the exporters:

• Scraping Interval: Defines how often Prometheus collects metrics.

• Retention Policy: Dictates how long to store metrics in the time series database of Prometheus.

• Evaluation Interval: Defines how often Prometheus evaluates rules.

These parameters are available in the SCM Git Repository in the file /flux-crm/apps/base/siebel_observability/
prometheus.yaml.

In the sample section below, inside prometheus.yaml file, these define config variables global in scope that is, parameters
that are valid in all other configuration contexts. They also serve as defaults for other configuration sections. Individual
target specific configurations are also possible to be configured. Refer to Prometheus documentation for more details.

values:
 server:
 global:
 scrape_interval: 1m
 scrape_timeout: 10s
 evaluation_interval: 1m
 retention: "15d"

A scrape_config section specifies a set of targets and parameters describing how to scrape them. In the general case,
one scrape configuration specifies a single job. In advanced configurations, this may change.

195

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

Targets may be statically configured via the static_configs parameter. Includes parameters like target IP address, scrape
interval and more. Defined in

• Git repository: <namespce>-helmcharts

• File: <namespce>-helmcharts/prometheus/templates/configMap.yaml under prometheus.yml section

Here is a sample section containing these parameters:

prometheus.yml: |-
 scrape_configs:
 - job_name: jmx-exporter
 scrape_interval: 5s
 kubernetes_sd_configs:
 - role: endpoints
 namespaces:
 names:
 - {{ .Release.Namespace }}
 relabel_configs:
 - action: keep
 source_labels:
 - __meta_kubernetes_endpoint_port_name
 regex: jmx-metrics

Targets can be dynamically discovered using one of the supported service-discovery mechanisms. For example,
Kubernetes service discovery, DNS-based service discovery and so on.

Note: Once you update any file in any helmchart, you have to increment "version" in the respective Chart.yaml for the
deployed state to get reconciled to your declared state in the yaml files.

For the latest Prometheus configuration options, refer Prometheus product documentation.

Alert Notifications
The Siebel CRM Observability – Monitoring solution offers ability to generate alert notifications based on predefined
conditions incorporating various metrics collected.

Alerting can be handled with Prometheus for all involved resources as it’s where the collected metrics reside. It is also
possible to configure alerting with OCI Notifications service. For details on using OCI Notification services, refer official
documentation available at https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/Notification/
home.htm.

Broadly, this is how alert notification is functionally handled with Prometheus based configurations:

• Alerting rules defined in Prometheus servers get evaluated and when necessary conditions are fulfilled, alerts
get send to Alertmanager configured.

• The Alertmanager can be configured to manage alerts using, among others, actions like:

◦ Grouping alerts of similar nature into a single notification.

◦ Inhibition or suppressing certain alerts if certain other alerts are already firing.

◦ Silencing or muting alerting for specific time periods, and so on.

• The Alertmanager can send notifications to:

◦ Email systems

◦ On-call notification systems

196

https:%5Cprometheus.io%5Cdocs%5Cprometheus%5Clatest%5Cconfiguration%5Cconfiguration
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/Notification/home.htm
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/Notification/home.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

◦ Chat platforms

Alert notifications using Prometheus in the Siebel CRM Observability - Monitoring solution involve:

• Creating alerting rules in Prometheus.

• Configuring Prometheus to connect to and notify the Alertmanagers.

• Setup and configuration of the Alertmanager, which ultimately sends notification to target channels.

Alerting Rules in Prometheus
Rules for alert trigger conditions are defined in the prometheus/templates/configMap.yaml file under prometheus.rules key
in the Helm charts Git repository.

Specific metrics and thresholds can be configured by following the Prometheus documentation.

The rules are written in PromQL (Prometheus Query Language).

Here is a sample of the alert rule block to be used in Prometheus that will get evaluated to true when container CPU
usage is above 60% - the evaluation checks the value over period blocks of 15 minutes.

prometheus.rules: |-
 groups:
 - name: siebel alerts
 rules:
 - alert: ContainerHighCpuUtilization
 expr: (sum(rate(container_cpu_usage_seconds_total{name!=""}[15m]))
 BY (instance, name) * 100) > 60
 for: 2m
 labels:
 severity: critical
 annotations:
 summary: |
 Container High CPU utilization (instance {{ "{{" }}
 $labels.instance }})
 description: |
 " Container CPU utilization is above 60%\n
 VALUE = {{ "{{" }} $value }}\n LABELS = {{ "{{" }} $labels }}"

A few of the notations used as example above are briefly explained below. For more details, refer Prometheus
documentation available at https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/.

• Groups: Alerting rules exist in a rule group. Rules within a group are run sequentially at a regular interval, with
the same evaluation time.

• alert: The name of the alert. It must be a valid label value. It's a string type.

• expr: It is string type PromQL expression to evaluate. In every evaluation cycle this is evaluated at the current
time, and all resultant time series become pending/firing alerts.

• for: The optional for clause causes Prometheus to wait for a certain duration between first encountering a new
expression output vector element and counting an alert as firing for this element. In this case, Prometheus will
check that the alert continues to be active during each evaluation for 2 minutes before firing the alert.

• labels: The labels clause allows specifying a set of additional labels to be attached to the alert. Any existing
conflicting labels will be overwritten. The label values can be templated.

• annotations: The annotations clause specifies a set of informational labels that can be used to store longer,
additional information such as alert descriptions or runbook links. The annotation values can be templated.

Label and annotation values can be templated using console templates. The $labels variable holds the label key/value
pairs of an alert instance. The $value variable holds the evaluated value of an alert instance.

197

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

Refer Prometheus documentation on to how to use PromQL and all other options available to set up rules in
Prometheus server that meet your business requirements.

Target Alertmanager endpoints are also defined in the same file <Helm charts repository name>/prometheus/templates/
configMap.yaml but under prometheus.yml. Among various options available (refer Prometheus official documentation for
all options), Alertmanager's URL and any routing or grouping configurations are noteworthy.

A sample configuration is provided below.

prometheus.yml: |-
 global:
 {{ .Values.server.global | toYaml | trimSuffix "\n" | indent 6 }}
 {{- if .Values.alerting }}
 rule_files:
 - /etc/prometheus/prometheus.rules
 alerting:
 alertmanagers:
 - scheme: http
 static_configs:
 - targets:
 - "prometheus-alertmanager.{{ .Release.Namespace }}.svc:9093"
 {{- end }}

Above is a configuration for Prometheus to inform Alertmanager when the rule previously defined in Prometheus
(under prometheus.rules key) evaluates to True.

The rule files can be reloaded at runtime by sending SIGHUP to the Prometheus process. The changes are only applied
if all rule files are well-formatted.

In the above sample:

• alerting section to define the alerting target Alertmanager.

• Scheme may contain values http or https. Because the alertmanager pods are within the same cluster, Siebel
CRM Observability - Monitoring solution uses http which is the default scheme.

• .Values contains values defined in values.yaml.

• .Release.Namespace is a variable containing the namespace of the current Helm release in "Helm Templating
Language".

Note: Once you update any file in any helmchart, you have to increment the "version" in the respective Chart.yaml for
the deployed state to get reconciled to your declared state in the yaml files.

Prometheus Alertmanager Configurations
Details of Prometheus Alertmanager configurations are available at https://prometheus.io/docs/alerting/latest/
configuration/. In this document, we will touch upon a very small set of considerations to keep in mind.

Alertmanager configurations are defined in the prometheus-alert-manager/templates/AlertManagerConfigmap.yaml file
under config.yml key in the Helm charts Git repository.

198

https://prometheus.io/docs/alerting/latest/configuration/
https://prometheus.io/docs/alerting/latest/configuration/

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

The Alertmanager is configured using a YAML-based configuration file. Essential configuration components and
parameters include:

• Global Configurations

◦ resolve_timeout: This global setting defines the default duration after which an alert will be considered
resolved if no more firing alerts are received for it.

Example snippet:

global:
 resolve_timeout: 5m
 smtp_smarthost: {{ .Values.email_config.smtp_host }}:{{ .Values.email_config.smtp_port }}
 smtp_from: {{ .Values.email_config.smtp_from }}
 smtp_auth_username: {{ .Values.email_config.smtp_auth_username }}
 smtp_auth_password: {{ .Values.email_config.smtp_auth_password }}

• Route Configurations

◦ receiver: Specifies the default receiver for alerts.

◦ group_by: Groups alerts by specific labels. In this example, alerts are grouped by alertname and severity.

◦ group_wait: Specifies how long to wait before grouping alerts. New alerts within this window will be
grouped together.

◦ group_interval: Defines the interval at which groups of alerts are evaluated for sending.

◦ repeat_interval: Specifies how often to repeat notifications for the same alert group.

◦ routes: Defines routing rules. In this example, alerts with a severity label set to "critical" are sent to the
'urgent-email' receiver, while others are sent to the 'normal-email' receiver.

Example snippet:

route:
 receiver: alert-emailer
 group_by: ['alertname', 'priority']
 group_wait: 10s
 group_interval: 5m
 repeat_interval: 30m
 routes:
 - receiver: alert-emailer
 matchers:
 - severity="critical"

• Receiver Configurations

◦ receivers: specify different receivers for alerts. Each receiver can have various configurations based on
the notification channel, such as email, Slack, or other integrations.

Example snippet:

receivers:
- name: alert-emailer
 email_configs:
 - to: "team@example.com"

Note: Once you update any file in any helmchart, you have to increment "version" in the respective Chart.yaml for the
deployed state to get reconciled to your declared state in the yaml files.

199

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

It is recommended to point Prometheus to a list of all Alertmanagers instead of load-balancing.

Custom Siebel CRM Metrics
In addition to the metrics already being collected and streamed to dashboards, additional Siebel metrics collection
options are supported that can be obtained by processing server manager commands. For example, metrics for
Process, sessions, statistics and any other metric by processing server manager commands.

This topic contains the following sections:

• Enable Metrics for Processes, Sessions, and Statistics

• Add Custom Siebel Metrics

Enable Metrics for Processes, Sessions, and Statistics
Configuration needs to be changed in the SCM Git repositiory in the file flux-crm/apps/base/siebel_observability/
prometheus.yaml under "metrics→additional_siebel_metrics" key as follows:

additional_siebel_metrics:
 process: true
 session: true
 statistics:
 server: false
 component:
 component_list: ["EAIObjMgr_enu", "FINSObjMgr_enu"]

Add Custom Siebel Metrics
One can add Custom Siebel Metrics using server manager (srvrmgr) command output.

“metrics→custom_metrics→extension1" key is available out-of-the-box for this purpose as a sample.

An example is shown below to send the value of "PA_Value" from srvrmgr command output to Prometheus as metric
"custom_MaxTasks". This will process server manager command "list param maxtasks for comp SWToolsObjMgr_enu"
and send the PA_VALUE as value of metric named "custom_MaxTasks".

extension1:
- name: MaxTasks
 cmd: "list param maxtasks for comp SWToolsObjMgr_enu"
 value_column: "PA_VALUE"
 description: "Max Task of Siebel Webtools" prometheus_type: "Gauge"
 value_column: "PA_VALUE"
 type: "Gauge"
- name: MaxThreads
 cmd: "list param MaxThreads for comp EnergyObjMgr_enu"
 value_column: "PA_VALUE"
 description: "My Description 1"
 type: "Gauge"
- name: NumRetries
 cmd: "list param NumRetries for comp EnergyObjMgr_enu"
 value_column: "PA_VALUE"
 description: "My description 2"
 type: "Gauge"

Any other metrics obtained by processing srvrmgr commands can be included, to be collected and streamed to
dashboard. Before including these commands in the prometheus.yaml file, it is suggested that you verify the accuracy of
the commands used as well as the results returned.

200

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

For display in the dashboard, make necessary new dashboards or edit existing ones.

Additional Node Exporter Metrics
It is important to know that many collectors of Prometheus Node Exporter are disabled by default as a matter of
practice. For more information, refer https://github.com/prometheus/node_exporter#disabled-by-default.

In Siebel CRM Observability - Monitoring solution, these can be enabled by providing a --collector.<name> flag under
"args" section of node-exporters-daemonset.yaml and after that one must increment the "version" in the file <namespace>-
helmcharts/node-exporters/Chart.yaml. This will deploy the necessary collector on OKE as part of GitOps.

Dashboards for Siebel CRM Monitoring
The Siebel Observability Monitoring solution offers two choices for viewing metrics on dashboards – Grafana, which is
the Open Source option, and OCI Console which is an OCI-native solution.

Several sample dashboards are provided with both options. These are in English.

These leading dashboard solutions offer easy customizability. While intuitive, for most impactful use, refer to their
official documentation for details.

This topic covers:

• Using Grafana Dashboards

• Using OCI Dashboards

Using Grafana Dashboards
For more details about Grafana Dashboards, see Key Software Components for Monitoring. Note that Grafana server/
service is not shipped by Oracle and must be hosted and managed by the users. Features described in this document
were tested with Grafana version 9.4.3.

The Grafana sample dashboards are provided as JSONs which can be downloaded after enabling the
monitoring feature and available via GET API: /scm/api/v1.0/environment/<ENV_ID>/observability/download/
sample_grafana_dashboards.zip.

Here's a list of sample Grafana dashboards from Oracle for complete backend monitoring:

• Node Exporter Dashboard

• Kube-State-Metrics Dashboard

• Cadvisor Dashboard

• Jmx Dashboard

• Nginx Ingress Controller Dashboard

• Siebel Server Dashboard

• Siebel Components Dashboard

• Siebel Block Volume and File System Storage Dashboard

201

https://github.com/prometheus/node_exporter#disabled-by-default

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 5
Monitoring Siebel CRM Deployments

The downloaded JSONs can be imported into Grafana for use with two steps:

1. Add SCM provisioned Prometheus endpoint as a Data Source in Grafana as follows:
a. Log in to Grafana
b. Add DataSource
c. Select Prometheus
d. Add Prometheus URL from SCM
e. Choose GET as Https method
f. Save

2. Select the same data source as Prometheus DataSource during import of JSONs.

Visualizing OCI Infrastructure Metrics in Grafana
Follow these steps below to visualize OCI Infrastructure Metrics in Grafana.

For more information, refer:

• https://grafana.com/grafana/plugins/oci-metrics-datasource/

• https://github.com/oracle/oci-grafana-metrics/blob/master/docs/using.md

1. In Grafana, go to Configurations > Plugins and install the Oracle Cloud Infrastructure Metrics plugin.
2. Click Create an Oracle Cloud Infrastructure Metrics Data Source and provide appropriate "Connection

Details" and save the "Datasource".
3. You can now use OCI Infrastructure metrics to build custom Dashboards in Grafana. You can verify the metrics

from the metrics Explore tab in Grafana.

Using OCI Dashboards
OCI APM (Application Performance Monitoring) Dashboards are part of Oracle Cloud's observability and monitoring
functionalities.

These can be accessed under APM Dashboard services in OCI Console. Sample dashboards from Siebel CRM
Observability – Monitoring solution is available under SCM compartment and named "Siebel CRM - <namespace>".

Access steps:

1. Log in to OCI.
2. Navigate to Application Performance Monitoring Dashboards Service.
3. Change compartment to SCM compartment.
4. Sample dashboard is named "Siebel CRM - <namespace>".

These and other dashboards can be customized for your specific business requirements. Broad customization steps for
OCI dashboard include:

• Identify different metrics from Metric Explorer service that meet your requirements.

• Utilize Monitoring Query Language from OCI to generate right output. For more information, refer https://
docs.oracle.com/en-us/iaas/Content/Monitoring/Reference/mql.htm).

• Build new Dashboards based on the output from previous step.

202

https://grafana.com/grafana/plugins/oci-metrics-datasource/
https://github.com/oracle/oci-grafana-metrics/blob/master/docs/using.md
https://docs.oracle.com/en-us/iaas/Content/Monitoring/Reference/mql.htm
https://docs.oracle.com/en-us/iaas/Content/Monitoring/Reference/mql.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

6 Log Analytics in Siebel CRM Deployments

Log Analytics in Siebel CRM Deployments
The backend of the Siebel CRM deployment done using Siebel Cloud Manager (SCM) can be monitored using the "Siebel
CRM Observability – Monitoring and Log Analytics" module. This module will help align the Siebel CRM architecture
more closely with cloud native deployment best practices.

The Observability stack uses best of breed tools, including Prometheus, Grafana, Oracle OpenSearch, Fluentd, OCI
Services, and others.

"Siebel CRM Observability – Monitoring and Log Analytics" module comprises of two components:

• Siebel CRM Observability – Monitoring

• Siebel CRM Observability – Log Analytics

The "Siebel CRM Observability – Log Analytics" feature helps you to ingest, search, analyse, visualize and generate
actionable insight from the logs of all important components of your Siebel CRM deployment done by SCM.

This is an optional feature enabled and managed by SCM.

This feature offers integration with two major log analytics solutions with distinctive benefits:

• Oracle OpenSearch – which is the Open Source option

• OCI Logging Analytics – which is a powerful OCI Native solution

This chapter contains the following topics:

• Log Analytics in Siebel CRM Deployments

• Log Analytics Tooling Options

• Solution Architecture and Components

• Log Collection and Aggregation

• Sample Dashboards

• Pre-requisites for Enabling OCI Logging Analytics

• Enabling Log Analytics in Siebel CRM Observability

• Accessing Log Analytics URLs

• Oracle OpenSearch Usage in Siebel CRM Observability – Log Analytics

• OCI Logging Analytics Configurations of Importance

• OCI Logging Analytics Usage in Siebel CRM Observability – Log Analytics

• Extending Siebel CRM Observability – Log Analytics

Features and Benefits
Here are some of the features of this modern solution offering log analytics integration for Siebel CRM deployments on
OCI OKE done by SCM:

• Visualization and analysis of Siebel CRM logs directly from the browser.

203

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

• Powerful and effective search capabilities – see all occurrences at once across all files.

• Leading text analysis tools, both Open Source and OCI-native, at disposal.

• Ability to publish to dashboards easily – values and trends.

• Alerting capabilities based on logs.

• GitOps-based operation and management.

• Easy customization of dashboards.

• Extensible by integration of additional third-party tooling.

Some of the benefits that may accrue to the users by utilizing the above set of functionalities:

• Analyzing logs without needing access to server host machines:
◦ Have at-a-glance, near real-time view of system-health of your Siebel CRM backend.

◦ Search across all log files without guesswork.

◦ Engage tech resources from any geography for debugging business-critical issues.

• Reducing system downtimes and performance degradations – improving user experience:
◦ Use organization-specific criteria, set up alerts and perform preventive maintenance.

◦ Track error occurrences based on parameter changes.

◦ Store and analyze past occurrences of log patterns.

◦ Predict future occurrences of errors and plan self-healing – get ready to move into AIOps.

• Generating business insights and measuring effectiveness of investments:
◦ Analyze logs, generate reports on offering-effectiveness and on user experience.

◦ Gain insight on user behavior.

◦ Detect suspicious activities near real-time and prevent fraud.

Log Analytics Tooling Options
You can use the following log analytics options:

• Oracle OpenSearch

• OCI Logging Analytics

Oracle OpenSearch
The Oracle OpenSearch includes:

• OpenSearch engine (which is derived from Elasticsearch 7.10.2 and enhanced thereafter).

• OpenSearch Dashboards (which is derived from Kibana 7.10.2 and enhanced thereafter, Kibana being the
visualization component of the Elastic Open Source Stack).

Oracle OpenSearch supports various search options and techniques including search by field, searching multiple
indices, boosting, score based ranking, and various sorting and aggregation options. Also supports ANN based search
engines like NMSLIB, FAISS, and LUCENE. Leveraging all capabilities can help users make best strides in logs and other
data analysis for their Siebel CRM deployments.

204

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

OpenSearch Dashboards is visualization tool for data in OpenSearch. Oracle OpenSearch stack also allows using plugins
to enhance search, analysis, perform anomaly detection, and so on.

Oracle OpenSearch is under active development by Oracle Corporation.

OCI Logging Analytics
OCI Logging Analytics is an OCI-native cloud solution.

OCI Logging Analytics is a powerful SaaS analytics offering that enables users index, enrich, aggregate, explore, search,
analyze, correlate, visualize, and monitor all log data. These analysis capabilities are further augmented by the included
wide array of powerful management dashboards.

It also offers and supports wide array of developer tools and offers most detailed logging analytics for various OCI
services that might be in use in your enterprise including, but not limited to, the ones for your Siebel CRM deployment
done using SCM.

For details about the OCI Logging Analytics solution, refer https://docs.oracle.com/en-us/iaas/logging-analytics/
home.htm.

205

https://docs.oracle.com/en-us/iaas/logging-analytics/home.htm
https://docs.oracle.com/en-us/iaas/logging-analytics/home.htm

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

Solution Architecture and Components

In the "Siebel CRM Observability – Log Analytics" solution, the primary log collection and aggregation tasks are done by
the agents of application Fluentd.

206

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

Fluentd is a Cloud Native Computing Foundation (CNCF) graduated open source log data handler. Fluentd helps unify
all facets of processing log data: collecting, filtering, buffering, and streaming across multiple sources and destinations.
It has a flexible plugin system that allows the users to extend its functionality with minimal development efforts. Fluentd
does not need significant physical resources to function and can be easily setup for high availability. It is one of the
leading log collection and aggregation engines in the cloud native ecosystem.

For collecting logs from pods running Siebel Server deployment components like AI, Server, Gateway and so on, Fluentd
log-collector agents are deployed as sidecars.

In addition, all nodes contain a Fluentd log collector running as a Kubernetes DaemonSet to collect logs that are not
specifically covered by the sidecar Fluentd agents.

Logs collected by collector agents are passed onto the log aggregation agents of Fluentd. These, in turn, pass on the
necessary data to the Logging Analytics components like Oracle OpenSearch and OCI Log Analytics – which have
Dashboards and other UI components available to view, query, and analyze logging and other data available in the
logging analytics layer.

Log Collection and Aggregation
The primary log collection from Siebel Servers, SMC, AI and Gateway are done by Fluentd log collector agents. They
run as sidecars to all the pods of these applications, collect necessary logs per configurations and forward them to the
Fluentd Log Aggregator agents.

Log aggregators are another Fluentd agent type running as a standalone (not sidecar, that is) deployment which
receives the logs which are forwarded by the log collectors previously mentioned, and transform them to be pushed to
the enabled modules such as OCI Logging Analytics and/or Oracle OpenSearch.

DaemonSet pod log collectors: The logs which are generated by pods are present in the /var/log/containers/ location.
These logs are collected by a daemon running in all the nodes and streamed to OCI Logging Analytics and/or Oracle
OpenSearch.

Sample Dashboards
The "Siebel Observability – Log Analytics" solution provides several out-of-the-box sample dashboards.

• Overall Dashboard: Provides details about the number of logs streamed, pod wise logs streamed, and so on.

• SES Dashboard: Provides details about the number of logs streamed in the edge servers hosting Siebel servers,
pod wise logs streamed etc.

• SAI Dashboard: Provides details about the number of logs streamed in the quantum servers hosting Siebel AIs,
pod wise logs streamed, among others.

• OM Dashboard: Provides details about the event occurrences, Object manager occurrences, log count, pod
wise log count, word cloud of the error codes, SBL error occurrences and such logs.

• Gateway Dashboard: Provides details about the number of logs streamed in the gateway servers, pod wise logs
streamed, and so on.

207

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

Pre-requisites for Enabling OCI Logging Analytics
The pre-requisites for enabling OCI Logging Analytics are two folds from a functional standpoint:

• Enable Log Analytics at Region Level

• Add Policies for Creating Logging Resources

Enable Log Analytics at Region Level
To enable log analytics at region level:

1. Log in into your OCI console.
2. Choose the appropriate region.
3. Navigate inside the hamburger menu to Observability & Management > Logging Analytics > Home.
4. Click Start Using Logging Analytics to enable log analytics for the current region.

Add Policies for Creating Logging Resources
You need to add policies for creating logging resources in OCI.

Different logging analytics resources such as parsers, log groups, fields, and so on need to be created.

The policy required for creating all the resources and streaming, one may need to create the necessary instance
principals or user principals. The command below will allow the dynamic-group named {cm_namespace}-instance-
principal-group to create and use OCI Logging Analytics.

Allow dynamic-group
 {cm_namespace}-instance-principal-group to MANAGE loganalytics-features-family in
 tenancy

For complete details on such setups, refer OCI documentation: https://docs.oracle.com/en-us/iaas/logging-analytics/
doc/iam-policies-catalog-logging-analytics.html.

Enabling Log Analytics in Siebel CRM Observability
To enable only Log Analytics module, Siebel CRM deployment payload for SCM to contain:

{
 ...
 "observability": {
 "siebel_logging": true,
 "enable_oracle_opensearch": true,
 "enable_oci_log_analytics": true,
 "oci_config": {
 "oci_config_path": "/home/opc/siebel/oci-config/config1",
 "oci_private_api_key_path": "/home/opc/siebel/oci-config/mykey.pem",
 "oci_config_profile_name": "DEFAULT"
 }
 }
}

208

https://docs.oracle.com/en-us/iaas/logging-analytics/doc/iam-policies-catalog-logging-analytics.html
https://docs.oracle.com/en-us/iaas/logging-analytics/doc/iam-policies-catalog-logging-analytics.html

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

For more information about the parameters, see Parameters in Payload Content.

• To enable log analytics, the parameter "siebel_logging" is to be set to true. Only if siebel_logging is enabled, OCI
Log Analytics or Oracle OpenSearch can be enabled.

• To enable both the logging modules, both the enable_oci_log_analytics and enable_oracle_opensearch
parameters have to be set to true, and the oci_config parameter has to be passed with relevant parameters.

• To enable only Oracle OpenSearch, the enable_oracle_opensearch parameter has to be set to true. The
oci_config parameters are not needed.

If OCI Log Analytics has to be enabled in a BYOR Deployment, Siebel CRM deployment payload for SCM should contain:

{
 ...
 "observability": {
 "siebel_logging": true,
 "enable_oracle_opensearch": true,
 "enable_oci_log_analytics": true,
 "oci_config": {
 "oci_config_path": "/home/opc/siebel/oci-config/config1",
 "oci_private_api_key_path": "/home/opc/siebel/oci-config/mykey.pem",
 "oci_config_profile_name": "DEFAULT"
 },
 "oci_log_analytics": {
 "smc_log_group_id": "ocid1.loganalyticsloggroup.oc1.uk-.......",
 "sai_log_group_id": "ocid1.loganalyticsloggroup.oc1.uk-......",
 "ses_log_group_id": "ocid1.loganalyticsloggroup.oc1.uk-......",
 "gateway_log_group_id": "ocid1.loganalyticsloggroup.oc1.uk-....",
 "node_logs_log_group_id": "ocid1.loganalyticsloggroup.oc1.uk-london-.....",
 "log_source_name": "scm-log-source"
 }
 }
}

For more information about the parameters, see Parameters in Payload Content.

To enable OCI Log Analytics when BYOR (Use existing resources) was chosen during SCM installation,
enable_oci_log_analytics has to be set to true and all values under oci_log_analytics have to be provided.

Disabling Log Analytics in Siebel CRM
You can disable OCI logging that was enabled earlier through the enable_oci_log_analytics parameter. Setting the value
of enable_oci_log_analytics to false stops the streaming of logs to OCI Logging Analytics.

To disable OCI logging, include the enable_oci_log_analytics parameter in the Siebel CRM deployment payload as
follows:

{
 "observability": {
 "enable_oci_log_analytics": false
 }
}

For more details on the payload elements, see the "observability" parameters in Parameters in Payload Content.

209

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

Accessing Log Analytics URLs
• Oracle OpenSearch: Oracle OpenSearch and Oracle OpenSearch Dashboards helm charts are installed in the

OKE cluster where the siebel applications are installed. The dashboard URL's are exposed via a load balancer
URL. The URL is available as a part of the deployment API response as well as in the response to GET of
environment API. The URL is contained in the section "urls" in the deployment API response. An URL ending in
/opensearch/app/home is published where the dashboards can be accessed.

• OCI Logging Analytics: Logging Analytics is a managed service provided by OCI. To access the oracle
dashboard, navigate to hamburger menu in the OCI console, click on Observability & Management, then choose
Log Analytics followed by Dashboards. Choose the compartment where the siebel environment is deployed,
which will be named like {namespace}_compartment.

Oracle OpenSearch Usage in Siebel CRM Observability –
Log Analytics
Oracle OpenSearch offers an intuitive interface for querying which can reached via clicking hamburger menu - Oracle
OpenSeach > Discover. Then choose the desired index pattern, which is logical representation of a set of log files, on
the left and enter search string.

For example, to search a string across all files, choose all_logs index pattern.

Dashboards Query Language (DQL) provides additional controls for more complex query and analysis. Fields under
index patterns can be incorporated for DQL based search and timeframes can be chosen to narrow down search results.

OCI Logging Analytics Configurations of Importance
These configuration elements form the building blocks of Siebel CRM Observability - OCI Logging Analytics
configurations:

• Log Sources

• Parsers and Fields

• Log Groups

Log Sources
Log Sources indicate the location of logs. In OCI Logging Analytics configuration, each Siebel Deployment is defined as
{namespace}_source. Configuration for Log sources are located at Hamburger menu > Observability & Management
 > Logging Analytics > Administration.

Parsers and Fields are required for ingestion of logs from every log sources.

210

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

Parsers and Fields
Ingesting logs from log sources may use parsers to parse incoming data streams into defined fields and these fields
can be used in query and in analytics functions like aggregation, grouping, statistical functions, among others. Oracle
solution provides multiple parsers for Siebel logs. It is also easy to create one’s own parsers – remember to use Creation
Type as "User - created".

Log Groups
Log groups are effectively logical containers for logs to help in, for example, data security. This observability solution
groups the log streams based on the application type – the following Log Groups are provided as samples:

• SAI log group

• SES log group

• SMC log group

• Gateway log group

• Node log group

OCI Logging Analytics Usage in Siebel CRM Observability
– Log Analytics
Log Explorer is the dashboard for querying and visualizing log streams in OCI Logging Analytics. It is available under
option Log explorer of Logging Analytics. Choosing the right compartment for corresponding Siebel CRM deployment is
required.

Log Explorer utilizes a powerful query language that helps in forming advanced queries according to business
requirements. Results of Query can be visualized in catchy graphics, saved, and used in dashboards.

In order to query on fields which are already present, a query can be written on top of that field name. For example - In
order to fetch all the different types of error codes which got generated in the Object Manager, a query like this can be
executed in the log explorer:

* | distinct SIEBEL_om_error_code

In order to look for a keyword "GenericError" in all the SAI logs, a query like this may be used:

GenericError and 'Log Group' in ('tsts48t683b-SAI-logGroup') | fields 'Original Log Content' | timestats
 count as logrecords by 'Log Group'

Extending Siebel CRM Observability – Log Analytics
To extend the Siebel CRM Observability – Log Analytics solution to integrate with other log analytics software than
OCI Logging Analytics and Oracle OpenSearch, the configurations can be updated to stream the logs to those target
services.

In the SCM deployed Siebel CRM environment, the component which pushes the log streams to any of these modules
is the log aggregator. Log aggregator is a Fluentd agent which takes a Fluentd config and defines where the next stage

211

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

of streaming is. The following describe the changes required to stream to new Log Analytics targets prevalent in your
organization:

• Updating the Fluend Aggregator Image

• Updating the Fluend Aggregator Configurations

• Rolling Out the Changes

• Verifying in the Target Logging Module

Updating the Fluend Aggregator Image
Based on the type of logging module (for example, Splunk), do one of the following:

• Update the Fluentd aggregator container image.

• Build a new Fluentd aggregator container image to include the plugin gems for the corresponding module.

This will allow fluentd configuration to forward requests to the newly added logging software. All the gems needed for
the module have to be available in the image.

FluentD aggregator image supplied with SCM already contains gems for modules such as Oracle OpenSearch, OCI
Logging Analytics, and so on. When a new Logging module has to be added (for example, for Splunk), then the
corresponding gem has to be installed into the container image using commands like the following (always check
detailed documentation for the plugin for detailed instructions):

fluent-gem install fluent-plugin-splunk-enterprise

For more information, refer https://github.com/fluent/fluent-plugin-splunk.

Updating the Fluend Aggregator Configurations
The Fluentd log aggregator configuration can be found in the Helm charts Git repository in the file siebel-logging/
templates/log-aggregator-cm.yaml.

The match block configurations for the log aggregator are contained in the files:

• opensearch.conf (if only Oracle OpenSearch is enabled)

• logan.conf (if only OCI Logging Analytics is enabled)

• all.conf (if both Oracle OpenSearch and OCI Logging Analytics are enabled)

A new match block must be added for forwarding to the required logging module. Note that in the match block, if the
log data has to be pushed to more than one output/logging module, then Fluentd "store" tag has to be used within the
same match block.

Example:

Fluentd supports Splunk as an output module. For more information, refer https://docs.fluentd.org/v/0.12/output/
splunk.

A sample configuration of Fluentd aggregator to push logs to a Splunk endpoint can be the following:

<match splunk.**>
 @type splunk_tcp
 host example.com
 port 8089

 # format parameter

212

https://github.com/fluent/fluent-plugin-splunk
https://docs.fluentd.org/v/0.12/output/splunk
https://docs.fluentd.org/v/0.12/output/splunk

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

 format raw
 event_key log

 # ssl parameter
 use_ssl true
 ca_file /path/to/ca.pem

 # buffered output parameter
 flush_interval 10s
</match>

For more information on Splunk configuration docs for Fluentd, refer https://github.com/fluent/fluent-plugin-splunk/
blob/master/README.tcp.md.

Note that network access between the Fluentd log aggregator and the logging module's host must be available on the
specified port. In the example above, the log aggregator must be able to connect to example.com on port 8089.

Rolling Out the Changes
After all the changes outlined above are done, commands like the following can be executed to roll out the changes.

• Delete the existing log aggregator-cm:

kubectl delete cm/log-aggregator-cm -n <namespace>

• Reconcile the changes:

flux reconcile source git siebel-repo -n <namespace> && flux reconcile kustomization apps -n <namespace>

• Review that the match block is available now:

kubectl get -o yaml cm/log-aggregator-cm -n <namespace>

• Rollout/restart the log aggregator deployment:

kubectl rollout restart deploy/log-aggregator -n <namespace>

• The logs of the log collector should show log ingestion:

kubectl logs deploy/log-aggregator -n <namespace>

Verifying in the Target Logging Module
Verify that the logs are appearing in the respective logging module, for example Splunk.

213

https://github.com/fluent/fluent-plugin-splunk/blob/master/README.tcp.md
https://github.com/fluent/fluent-plugin-splunk/blob/master/README.tcp.md

Siebel
Deploying Siebel CRM Containers on Kubernetes using
Siebel Cloud Manager

Chapter 6
Log Analytics in Siebel CRM Deployments

214

	 Deploying Siebel CRM Containers on Kubernetes using Siebel Cloud Manager
	Preface
	Using Oracle Applications
	Documentation Accessibility
	Contacting Oracle

	What's New in This Release
	What's New in This Release

	Overview
	About this Chapter
	Overview of Deploying Siebel CRM Containers on Kubernetes
	About Siebel Cloud Manager
	About Siebel CRM Upgrade Factory

	Deploying Siebel CRM on OCI using Siebel Cloud Manager
	Deploying Siebel CRM on OCI using Siebel Cloud Manager
	Overview of Deploying Siebel CRM on OCI
	Requirements and Limitations
	High Level Steps to Deploy Siebel Using SCM
	Creating a Compartment
	Git Repositories for Siebel CRM Deployment
	Installing GitLab
	Using Vault for Managing Secrets
	Best Practices for Key Management
	Key Points for Managing Secrets Using Secret Management Products

	Downloading and Installing Siebel Cloud Manager
	About URLs for Siebel CRM Deployments on OCI
	Uploading Files to the SCM Container Using File Sync Utility
	Mirroring Siebel Base Container Images
	Mirroring Siebel CRM Base Images
	Managing User Container Registry Credentials

	Downloading and Running the Siebel Lift Utility
	Downloading and Running the Siebel Lift Utility (Container Mode)
	Downloading the Siebel Lift Utility (for Container Mode)
	Running the Siebel Lift Utility in Silent Mode (for Container Mode)
	Running the Siebel Lift Utility in Interactive Mode (for Container Mode)

	Downloading and Running the Siebel Lift Utility (Non-Container Mode)
	Downloading the Siebel Lift Utility (for Non-Container Mode)
	Installing and Configuring Python (for Non-Container Mode)
	Running the Siebel Lift Utility in Silent Mode (for Non-Container Mode)
	Running the Siebel Lift Utility in Interactive Mode (for Non-Container Mode)

	Lifting a Siebel CRM Environment Running on Siebel CRM Compliant Operating System
	Troubleshooting Siebel Lift Utility Execution

	Reducing the Ingress Range for Siebel Cloud Manager
	Using Advanced Network Configuration
	Customizing Configurations Prior to Greenfield Deployment
	Creating the Configuration and Obtaining the Configuration ID
	Customizing the Configuration

	Deploying Siebel CRM on OCI
	Overview of Siebel CRM Deployment Steps using Siebel Cloud Manager
	Notes on Authorization Information
	Notes on BYO-VCN (Virtual Cloud Network)
	Notes on BYO-FSS (File System Service)
	Notes on BYO Kubernetes
	Notes on OKE (Oracle Container Engine for Kubernetes)
	Notes on OCNE (Oracle Cloud Native Environment)
	Notes on Other Kubernetes Cluster

	Notes on BYOD (Bring Your Own Database)
	Checklist for Creating a BYOR Deployment
	Connectivity Information
	Using Security Adapters for Siebel CRM
	Terminating SSL/TLS at the Load Balancer (FrontEnd SSL) using SCM
	Auto-enablement of Siebel Migration Application
	Parameters in Payload Content
	Executing the Payload to Deploy Siebel CRM
	Example Payload to Deploy Siebel CRM

	Additional Administrative Tasks in Siebel Cloud Manager
	Resetting the Administrative Password
	Changing the Log Level
	Checking the Status of a Requested Environment
	Checking the Status of a Requested Configuration
	Resubmitting the Environment Creation Workflow
	Updating Parameters During Rerun of Environment or Configuration APIs

	Troubleshooting a Siebel Cloud Manager Instance or Requested Environment
	Troubleshooting a Siebel Cloud Manager Instance
	Examining Your Deployment
	Reviewing the PostInstallDBSetup Execution Status
	Troubleshooting Oracle Resource Manager Stack Apply Job Failure
	Troubleshooting Handshake Failed Server State in Siebel Management Console
	Troubleshooting Issues Related to Siebel Migration Application in an SCM Deployed Siebel CRM Environment
	Troubleshooting Issues Related to Siebel CRM Observability – Monitoring Solution
	Troubleshooting Issues Related to Siebel CRM Observability – Log Analytics Solution

	Managing Custom Keystore
	Updating Siebel Cloud Manager with a New Container Image
	Removing a Siebel CRM Deployment on OCI
	Making Incremental Changes to Your Siebel CRM Deployment on OCI
	Making Incremental Changes
	How Incremental Changes Are Processed
	Templates for Different Runtime Entities
	Use Cases for Making Incremental Changes
	Use Cases for Setting Parameters
	Use Cases for Creating or Removing Custom Entities
	Use Cases for Enabling Component Groups or Components
	Use Cases for Changing Log Level While Running PostInstallDB Setup
	Use Cases for Adding Profiles, Deployments, or Adding Resources to Individual Siebel Servers
	Use Cases for Adding Web Artifacts and Other Siebel Artifact Files
	Use Cases for Updating Certificates for SISNAPI with TLS
	Use Cases for Updating Keystore File as Part of Incremental Changes

	Installing Siebel Monthly Update in a Siebel CRM on OKE Environment Deployed by SCM
	Enabling TLS 1.3 Support in Environments Prior to 23.11
	Rotating Secrets
	Updating Registry Access Token
	Updating OCI Configuration in the OCI Configuration File
	Updating GitLab Access Token

	Assigning Pods to Nodes - Implementing Affinity and Anti-affinity on OKE using Siebel Cloud Manager
	Cleaning up the Siebel File System

	Deploying Siebel CRM on a Kubernetes Cluster using Siebel Installer
	About this Chapter
	Overview
	Moving Existing Siebel CRM on VM to a Kubernetes Orchestrated Deployment
	Moving Existing Siebel CRM on VM to an OC3 Kubernetes Cluster
	High Level Steps for Deploying Siebel CRM on a Kubernetes Cluster
	Prerequisites for Deploying Siebel CRM on a Kubernetes Cluster
	Downloading and Running Siebel Installer for SCM
	Installing SCM using Helm
	Migrating (Lift-And-Shift) Existing Siebel CRM Deployments
	Deploying Siebel CRM using SCM
	Updating SCM Configuration using Helm
	Reinstalling SCM using Helm
	Upgrading SCM using Helm
	Uninstalling SCM using Helm
	Troubleshooting Siebel CRM Deployment

	Monitoring Siebel CRM Deployments
	Monitoring Siebel CRM Deployments
	Metrics Information Categories
	Siebel CRM Monitoring Architecture
	Key Software Components for Monitoring
	Visualization Components for Monitoring
	Configuring the Siebel CRM Observability – Monitoring Solution
	Enabling the Solution
	Disabling OCI Monitoring for Siebel CRM
	Few Parameters for Prometheus Configuration for Siebel CRM Monitoring
	Alert Notifications
	Custom Siebel CRM Metrics
	Additional Node Exporter Metrics

	Dashboards for Siebel CRM Monitoring

	Log Analytics in Siebel CRM Deployments
	Log Analytics in Siebel CRM Deployments
	Log Analytics Tooling Options
	Solution Architecture and Components
	Log Collection and Aggregation
	Sample Dashboards
	Pre-requisites for Enabling OCI Logging Analytics
	Enabling Log Analytics in Siebel CRM Observability
	Disabling Log Analytics in Siebel CRM
	Accessing Log Analytics URLs
	Oracle OpenSearch Usage in Siebel CRM Observability – Log Analytics
	OCI Logging Analytics Configurations of Importance
	OCI Logging Analytics Usage in Siebel CRM Observability – Log Analytics
	Extending Siebel CRM Observability – Log Analytics

