Uses of Class
oracle.pgx.api.MatrixFactorizationModel
-
Packages that use MatrixFactorizationModel Package Description oracle.pgx.api This package contains the main Java APIs. -
-
Uses of MatrixFactorizationModel in oracle.pgx.api
Methods in oracle.pgx.api that return MatrixFactorizationModel Modifier and Type Method Description <ID> MatrixFactorizationModel<ID>
Analyst. matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs<ID> MatrixFactorizationModel<ID>
Analyst. matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs<ID> MatrixFactorizationModel<ID>
Analyst. matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs<ID> MatrixFactorizationModel<ID>
Analyst. matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphsMethods in oracle.pgx.api that return types with arguments of type MatrixFactorizationModel Modifier and Type Method Description <ID> PgxFuture<MatrixFactorizationModel<ID>>
Analyst. matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs<ID> PgxFuture<MatrixFactorizationModel<ID>>
Analyst. matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs<ID> PgxFuture<MatrixFactorizationModel<ID>>
Analyst. matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs<ID> PgxFuture<MatrixFactorizationModel<ID>>
Analyst. matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
-