Oracle® REST Data Services
Developer's Guide

Release 24.3
G12123-02
October 2024

ORACLE"

Oracle REST Data Services Developer's Guide, Release 24.3
G12123-02

Copyright © 2011, 2024, Oracle and/or its affiliates.

Primary Authors: Mamata Basapur, Chuck Murray, Tulika Das

Contributors: Kris Rice, Jeff D. Smith, Colm Divilly, Peter J. Obrien, Dermot O'Neill, Elizabeth Saunders, Ashley Chen,
Sharon Kennedy, Ganesh Pitchaiah, Jason Straub, Vladislav Uvarov

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xviii
Documentation Accessibility Xviii
Related Documents XViii
Conventions Xviii

Changes in Release 24.3 Oracle REST Data Services Developer's Guide

Changes in Oracle REST Data Services 24.3 XX
1 Introduction to Oracle REST Data Services

1.1 About Oracle REST Data Services 1-1

1.2 Features of Oracle REST Data Services 1-2

2 Developing Oracle REST Data Services Applications

2.1 Introduction to Relevant Software 2-2
2.1.1 Oracle APEX 2-2
2.1.2 REST APIs 2-2

2.2 Getting Started with RESTful Services 2-2
2.2.1 RESTful Services Terminology 2-3
2.2.2 ORDS RESTful Web Services Architecture Diagrams 2-3
2.2.3 About Request Path Syntax Requirements 2-5
2.2.4 "Getting Started" Documents Included in Installation 2-5
2.2.5 About cURL and Testing RESTful Services 2-6
2.2.6 ORDS RESTful Services and Relevant Specifications 2-6

2.3 Automatic Enabling of Schema Objects for REST Access (AutoREST) 2-7
2.3.1 Examples: Accessing Objects Using RESTful Services 2-8

2.3.1.1 Get Schema Metadata 2-9
2.3.1.2 Get Object Metadata 2-10
2.3.1.3 Get Object Data 2-11
2.3.1.4 Get Table Data Using Paging 2-12
2.3.1.5 Get Table Data Using Query 2-13

ORACLE" il

2.3.1.6 Get Table Row Using Primary Key
2.3.1.7 Insert Table Row

2.3.1.8 Update/Insert Table Row

2.3.1.9 Delete Using Filter

2.3.1.10 Post by Batch Load

2.3.2

Filtering in Queries

2.3.2.1 FilterObject Grammar
2.3.2.2 Examples: FilterObject Specifications

2.3.3

Auto PL/SQL

2.3.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects
2.3.3.2 Auto-Enabling the PL/SQL Objects

2.3.3.3 Generating the PL/SQL Endpoints

2.3.3.4 Resource Input Payload

2.3.3.5 Resource Payload Response
2.3.3.6 Function Return Value

234

Support for JSON-Relational Duality View

2.3.4.1 Table AutoREST Versus JSON-Relational Duality View AutoREST
2.3.4.2 Support for Enhanced ETag Matching
2.3.4.3 Enhanced JSON QBE (Query by Example) Filtering
2.3.4.4 Enhanced JSON Batch Loading
2.4 Manually Creating RESTful Services Using SQL and PL/SQL

24.1

About Oracle REST Data Services Mechanisms for Passing Parameters

2.4.1.1 Using JSON to Pass Parameters
2.4.1.2 Using Route Patterns to Pass Parameters

2.4.1.3 Using Query Strings for Optional Parameters

24.2

Using SQL/JSON Database Functions

2.4.2.1 Inserting Nested JSON Objects into Relational Tables
2.4.2.2 Generating Nested JSON Objects from Hierachical Relational Data
2.4.2.3 Testing the RESTful Services

2.5 Manually Creating RESTful Services Using Javascript

251
252
253
254
255

Allowed JavaScript Structures

Defining the REST Service and JavaScript Handler Using PL/SQL Function
About Executing SQL in Javascript

About Using the Fetch Function

Referencing MLE Environments

2.6 About Working with Dates Using Oracle REST Data Services

26.1
2.6.2
2.6.3

About Datetime Handling with Oracle REST Data Services
About Setting the Time Zone
Exploring the Sample RESTful Services in APEX (Tutorial)

2.7 Creating RESTful Web Services Using Database Actions
2.8 Configuring Secure Access to RESTful Services

2.8.1

ORACLE

Authentication

2-14
2-16
2-16
2-17
2-17
2-19
2-19
2-22
2-27
2-28
2-28
2-31
2-32
2-32
2-33
2-33
2-33
2-34
2-35
2-35
2-36
2-37
2-37
2-42
2-46
2-47
2-47
2-52
2-55
2-57
2-57
2-59
2-60
2-62
2-63
2-65
2-65
2-66
2-67
2-72
2-72
2-72

2.8.1.1 First Party Cookie-Based Authentication
2.8.1.2 Third Party OAuth 2.0-Based Authentication
2.8.2 About Privileges for Accessing Resources
2.8.3 About Users and Roles for Accessing Resources
2.8.4 About the File-Based User Repository
2.8.5 Tutorial: Protecting and Accessing Resources
2.8.5.1 OAuth Flows and When to Use Each
2.8.5.2 Assumptions for This Tutorial
2.8.5.3 Steps for This Tutorial
2.9 JWT Bearer Token Authentication and Authorization Using JWT Profile
2.9.1 About JSON Web Tokens (JWTs)
2.9.2 Prerequisites for JWT Authentication
2.9.3 Creating an ORDS JWT Profile
2.9.4 JWT Identity Provider Details
2.9.4.1 Parameters for Verifying JWT Signatures
2.9.4.2 JWT Scopes and ORDS Privileges
2.9.4.3 JWT Subject
2.9.5 Making Requests to ORDS Using a JWT Bearer Token
2.10 About Oracle REST Data Services User Roles

2.10.1 About Oracle APEX Users and Oracle REST Data Services Roles

2.10.1.1 Granting APEX Users Oracle REST Data Services Roles

2.10.1.2 Automatically Granting APEX Users Oracle REST Data Services Roles

2.10.2 Controlling RESTful Service Access with Roles
2.10.2.1 About Defining RESTful Service Roles
2.10.2.2 Associating Roles with RESTful Privileges
2.11 Authenticating Against WebLogic Server User Repositories
2.11.1 Authenticating Against WebLogic Server
2.11.1.1 Creating a WebLogic Server User
2.11.1.2 Verifying the WebLogic Server User
2.12 Integrating with Existing Group/Role Models
2.12.1 About role-mapping.xml
2.12.1.1 Parameterizing Mapping Rules
2.12.1.2 Dereferencing Parameters
2.12.1.3 Indirect Mappings
2.13 Integrating Oracle REST Data Services and WebLogic Server
2.13.1 Configuring ORDS to Integrate with WebLogic Server
2.14 Using the Oracle REST Data Services PL/SQL API
2.14.1 Creating a RESTful Service Using the PL/SQL API
2.14.2 Testing the RESTful Service
2.15 Oracle REST Data Services Database Authentication
2.15.1 Installing Sample Database Scripts
2.15.2 Enabling the Database Authentication

ORACLE

2-72
2-73
2-73
2-74
2-74
2-75
2-75
2-75
2-76
2-86
2-87
2-88
2-89
2-90
2-91
2-91
2-91
2-92
2-92
2-92
2-93
2-93
2-94
2-94
2-94
2-95
2-95
2-95
2-96
2-96
2-97
2-97
2-98
2-98
2-99
2-99
2-100
2-100
2-101
2-102
2-103
2-103

2.15.3 Configuring the Request Validation Function 2-104
2.15.4 Testing the Database Authenticated User 2-105
2.15.5 Uninstalling the Sample Database Schema 2-105
2.16 Overview of Pre-hook Functions 2-105
2.16.1 Configuring the Pre-hook Function 2-106
2.16.2 Using a Pre-hook Function 2-106
2.16.3 Processing of a Request 2-107
2.16.4 Identity Assertion of a User 2-107
2.16.5 Aborting Processing of a Request 2-107
2.16.6 Ensuring Pre-hook is Executable 2-108
2.16.7 Exceptions Handling by Pre-hook Function 2-108
2.16.8 Pre-hook Function Efficiency 2-108
2.16.9 Using Pre-hook Function with Protected Resources 2-108
2.16.10 Pre-Hook Examples 2-108
2.16.10.1 Installing the Examples 2-109
2.16.10.2 Uninstalling the Examples 2-112

2.17 Generating Hyperlinks 2-112
2.17.1 Primary Key Hyperlinks 2-113
2.17.1.1 Composite Primary Keys 2-114

2.17.2 Arbitrary Hyperlinks 2-115
2.17.2.1 About the related Link Relation 2-116
2.17.2.2 URL Resolution 2-116

2.18 About HTTP Error Responses 2-119
2.18.1 About error.responseFormat 2-120
2.18.1.1 HTML Mode 2-120
2.18.1.2 json Mode 2-120
2.18.1.3 auto Mode 2-120

3 Implicit Parameters

3.1 List of Implicit Parameters 3-1
3.1.1 About the :body parameter 3-4
3.1.2 About the :body_text Parameter 3-5
3.1.3 About the :content_type Parameter 3-6
3.1.4 About the :current_user Parameter 3-6
3.1.5 About the :status_code Parameter 3-6
3.1.6 About the :forward_location Parameter 3-6
3.1.7 About the Pagination Implicit Parameters 3-8
3.1.7.1 About the :page_offset Parameter 3-9

3.1.7.2 About the :page_size Parameter 3-9

3.1.7.3 About the :row_offset Parameter 3-9

3.1.7.4 About the :row_count Parameter 3-9

ORACLE

Vi

3.1.7.5 About the :fetch_offset Parameter 3-10

3.1.7.6 About the :fetch_size Parameter 3-10

3.1.7.7 About Automatic Pagination 3-10

3.1.7.8 About Manual Pagination 3-10

4 ORDS PL/SQL Package Reference

4.1 ORDS.CREATE_ROLE 4-1
4.2 ORDS.CREATE_SERVICE 4-1
4.3 ORDS.DEFINE_HANDLER 4-4
4.4 ORDS.DEFINE_MODULE 4-6
45 ORDS.DEFINE_PARAMETER 4-7
4.6 ORDS.DEFINE_PRIVILEGE 4-9
4.7 ORDS.DEFINE_SERVICE 4-11
4.8 ORDS.DEFINE_TEMPLATE 4-14
4.9 ORDS.DELETE_MODULE 4-15
4,10 ORDS.DELETE_PRIVILEGE 4-16
4.11 ORDS.DELETE_ROLE 4-16
4.12 ORDS.DROP_REST_FOR_SCHEMA 4-17
4.13 ORDS.ENABLE_OBJECT 4-17
4.14 ORDS.DROP_REST_FOR_OBJECT 4-19
4.15 ORDS.ENABLE_SCHEMA 4-19
4.16 ORDS.PUBLISH_MODULE 4-20
4.17 ORDS.RENAME_MODULE 4-21
4.18 ORDS.RENAME_PRIVILEGE 4-21
4.19 ORDS.RENAME_ROLE 4-22
420 ORDS.SET_MODULE_ORIGINS_ALLOWED 4-23
4.21 ORDS.SET_URL_MAPPING 4-23
4,22 ORDS.SET_SESSION_DEFAULTS 4-24
423 ORDS.RESET_SESSION_DEFAULTS 4-25
4.24 ORDS.SET_PROPERTY 4-25
4.25 ORDS.UNSET_PROPERTY 4-26

5 Oracle REST Data Services Administration PL/SQL Package Reference

51
5.2
5.3
54
5.5
5.6
5.7

ORACLE

ORDS_ADMIN.CREATE_ROLE
ORDS_ADMIN.DEFINE_HANDLER
ORDS_ADMIN.DEFINE_MODULE
ORDS_ADMIN.DEFINE_PARAMETER
ORDS_ADMIN.DEFINE_PRIVILEGE
ORDS_ADMIN.DEFINE_SERVICE
ORDS_ADMIN.DEFINE_TEMPLATE

5-1
5-2
5-4
55
5-7
5-10
5-13

Vii

5.8 ORDS_ADMIN.DELETE_MODULE 5-14
5.9 ORDS_ADMIN.DELETE_PRIVILEGE 5-15
5.10 ORDS_ADMIN.DELETE_ROLE 5-15
511 ORDS_ADMIN.DROP_REST_FOR_SCHEMA 5-16
5.12 ORDS_ADMIN.ENABLE_OBJECT 5-16
5.13 ORDS_ADMIN.DROP_REST_FOR_OBJECT 5-18
5.14 ORDS_ADMIN.ENABLE_SCHEMA 5-18
5.15 ORDS_ADMIN.PUBLISH_MODULE 5-19
5.16 ORDS_ADMIN.RENAME_MODULE 5-20
5.17 ORDS_ADMIN.RENAME_PRIVILEGE 5-21
5.18 ORDS_ADMIN.RENAME_ROLE 5-21
5.19 ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED 5-22
5.20 ORDS_ADMIN.SET_URL_MAPPING 5-23
5.21 ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB 5-24
5.22 ORDS_ADMIN.DROP_HOUSEKEEPING_JOB 5-24
5.23 ORDS_ADMIN.PERFORM_HOUSEKEEPING 5-25
5.24 ORDS_ADMIN.SET_SESSION_DEFAULTS 5-25
5.25 ORDS_ADMIN.RESET_SESSION_DEFAULTS 5-26
5.26 ORDS_ADMIN.PROVISION_ADMIN_ROLE 5-26
5.27 ORDS_ADMIN.PROVISION_RUNTIME_ROLE 5-27
5.28 ORDS_ADMIN.UNPROVISION_ ROLES 5-27
5.29 ORDS_ADMIN.CONFIG_PLSQL_GATEWAY 5-28
5.30 ORDS_ADMIN.SET_PROPERTY 5-29
5.31 ORDS_ADMIN.SET_PROPERTY 5-30
5.32 ORDS_ADMIN.UNSET_PROPERTY 5-31
OAUTH PL/SQL Package Reference

6.1 OAUTH.CREATE_CLIENT 6-1
6.2 OAUTH.DELETE_CLIENT 6-3
6.3 OAUTH.GRANT_CLIENT_ROLE 6-3
6.4 OAUTH.RENAME_CLIENT 6-4
6.5 OAUTH.REVOKE_CLIENT_ROLE 6-5
6.6 OAUTH.UPDATE_CLIENT 6-5
6.7 OAUTH.ROTATE_CLIENT_SECRET 6-7
6.8 OAUTH.UPDATE_CLIENT_SECRET 6-8
6.9 OAUTH.IMPORT_CLIENT 6-9
6.10 OAUTH.CREATE_JWT_PROFILE 6-11
6.11 OAUTH.DELETE_JWT_PROFILE 6-12

ORACLE

viii

V4 OAUTH_ADMIN PL/SQL Package Reference

7.1 OAUTH_ADMIN.CREATE_JWT_PROFILE 7-1
7.2 OAUTH_ADMIN.DELETE_JWT_PROFILE 7-3

8 Enabling ORDS Database API

8.1 Basic Setup to Enable ORDS Database API 8-1
8.2 Advanced Setup to Enable the ORDS Database API 8-2

8.2.1 Pluggable Database Lifecycle Management 8-3

8.2.2 Disabling PDB Lifecycle Management 8-3
8.3 Creating a Default Administrator 8-4
8.4 Configuration of Database API Environment Services 8-4
8.5 Configuration of Database API with Open Service Broker API Compatible Platforms 8-5

o REST-Enabled SQL Service

9.1 REST-Enabled SQL Service Terminology 9-1
9.2 Configuring the REST-Enabled SQL Service 9-2
9.3 Using cURL with REST-Enabled SQL Service 9-2
9.4 Getting Started with the REST-Enabled SQL Service 9-3
9.4.1 REST-Enabling the Oracle Database Schema 9-4
9.4.2 REST-Enabled SQL Authentication 9-4
9.4.3 REST-Enabled SQL Endpoint 9-4

9.5 REST-Enabled SQL Service Examples 9-5
9.5.1 POST Requests Using application/sql Content-Type 9-5
9.5.1.1 Using a Single SQL Statement 9-6

9.5.1.2 Using a File with cURL 9-7

9.5.1.3 Using Multiple SQL Statements 9-8

9.5.2 POST Requests Using application/json Content-Type 9-11
9.5.2.1 Using a File with cURL 9-11

9.5.2.2 Specifying the Limit Value in a POST Request for Pagination 9-13

9.5.2.3 Specifying the Offset Value in a POST Request for Pagination 9-14

9.5.2.4 Defining Binds in a POST Request 9-16

9.5.2.5 Specifying Batch Statements in a POST Request 9-20

9.5.3 Example POST Request with DATE and TIMESTAMP Format 9-23
9.5.4 Data Types and Formats Supported 9-24

9.6 REST-Enabled SQL Request and Response Specifications 9-29
9.6.1 Request Specification 9-29
9.6.2 Response Specification 9-31

9.7 Supported SQL, SQL*Plus, and SQLcl Statements 9-36
9.7.1 Supported SQL Statements 9-36

ORACLE

9.7.2 Supported PL/SQL Statements 9-37
9.7.3 Supported SQL*Plus Statements 9-37
9.7.3.1 Set System Variables 9-38

9.7.3.2 Show System Variables 9-39

9.7.4 Supported SQLcl Statements 9-40

9.8 REST-Enabled SQL Service and MySQL Database 9-40
9.8.1 Examples 9-40

10 GraphQL in Oracle REST Data Services

10.1 GraphQL Terminology 10-1
10.2 Enabling GraphQL in Oracle REST Data Services 10-1
10.3 Enabling Objects for GraphQL 10-2
10.3.1 Accessing Protected REST-Enabled Objects 10-2
10.4 Accessing Objects Using GraphQL queries 10-2
10.4.1 Getting GraphQL Schema 10-3
10.4.2 Simple Query 10-4
10.4.3 Join Query 10-5
10.4.3.1 Circular Relationships Between Objects 10-11

10.5 Examples of Filtering in Queries 10-13
10.5.1 Supported Data Types 10-13
10.5.2 Filtering by Primary Key 10-13
10.5.2.1 Filtering by Composite Primary Key 10-14

10.5.3 Where Filter 10-14
10.5.3.1 Example: EQUALS (eq) operator 10-16
10.5.3.2 Example: Greater than (>) Operator and Date Data Type 10-17
10.5.3.3 Example: LIKE (like) operator 10-17
10.5.3.4 Example: IN (in) operator 10-18
10.5.3.5 Example: NOT (not) Operator 10-18
10.5.3.6 Example: AND (and) operator 10-20
10.5.3.7 Example: OR (or) operator 10-22
10.5.3.8 Example: Where Filter in Children Types 10-22
10.5.3.9 Working with Dates/Timestamps Using Filters 10-24

10.6 Sorting the Data 10-27
10.6.1 Example: Sorting by Multiple Columns 10-28
10.7 Keyset Pagination 10-29
10.7.1 Example: Pagination with Other Filters 10-30
10.7.2 Example: Pagination in Nested Types 10-30
10.8 Using Dynamic Arguments in Queries: Variables 10-31
10.9 GraphiQL 10-32

ORACLE

11 Extending ORDS Functionality with Plugins

11.1 Plugin Demonstration Example 11-1
11.2 Embedding Graal JavaScript Component 11-1
11.3 Plugin Javascript 11-2

11.3.1 Example Services Purpose and Use 11-3

12 Migrating from mod_plsgl to ORDS

12.1 Oracle HTTP Server mod_plsqgl Authentication 12-1
12.2 Example Oracle HTTP Server DAD file 12-1
12.3 Mapping mod_plsql Settings to ORDS 12-3
12.4 Example ORDS Configuration Files 12-7
12.4.1 Example Configuration File for Basic Authentication 12-7
12.4.2 Example Configuration File for Basic Dynamic Authentication 12-7
12.4.3 Example Configuration file for Custom Authentication 12-8
12.5 Example ORDS URL Mapping 12-9
12.6 Example ORDS Default Configuration 12-9
12.7 Oracle REST Data Services Functionality 12-10
12.7.1 Basic Authentication 12-10
12.7.2 Basic Dynamic Authentication 12-10
12.7.3 Custom Authentication 12-10
12.8 ORDS Features 12-11
12.8.1 Request Validation Function 12-11
12.8.2 Pre Process Feature 12-12
12.8.3 Post Process Feature 12-12
12.8.4 File Upload Feature 12-12
12.8.5 Cross-Origin Resource Sharing Feature 12-13
12.8.6 Procedure Allow List 12-13
12.8.6.1 Configuring ORDS PL/SQL Gateway Allow List 12-13

12.8.7 Monitoring the Allowed Procedures 12-15
12.9 Modifying Synonyms 12-15

A Setting-up a PL/SQL Gateway User

B Oracle REST Data Services Database Type Mappings

B.1 Oracle Built-in Types B-1

B.2 Handling Structural Database Types B-3

B.3 Oracle Geospacial Encoding B-5
ORACLE

Xi

B.4 Enabling Database Mapping Support B-5
C Troubleshooting Oracle REST Data Services
C.1 Enabling Detailed Request Error Messages C-1
C.2 ORDS User Defined Service C-1
C.3 Configuring Oracle APEX Static Resources with Oracle REST Data Services C-12
D Third-Party License Information
D.1 ANTLR4 Java Runtime 4.13.2 D-1
D.2 Hack 3.003 D-1
D.3 Monaco Editor 0.44.0 D-3
D.4 babel-polyfill 7.20.15 D-3
D.5 gridstack.js 10.1.0 D-4
D.6 d3-flame-graph 4.1.3 D-5
D.7 Dexie4.0.4 D-14
D.8 react18.3.1 D-18
D.9 react-dom 18.3.1 D-20
D.10 requirejs 2.3.7 D-22
D.11 jaxb-runtime 4.0.5 D-23
D.12 Jetty 10.0.21 D-43
D.13 jackson-core 2.16.1 D-55
D.14 Jakarta Servlet 4.0.4 D-61
D.15 jakarta.inject-api 2.0.1 D-75
D.16 jQuery Ul 1.13.2 D-79
D.17 jackson-annotations 2.16.1 D-81
D.18 jackson-databind 2.16.1 D-85
D.19 jackson-dataformat-xml 2.16.1 D-93
D.20 graphgl-js 16.8.0 D-103
D.21 graphiqgl 3.0.4 D-103
D.22 avsc5.7.7 D-339
D.23 D37.8.4 D-339
D.24 long.js 5.2.0 D-355
D.25 SnappyJS 0.6.1 D-359
D.26 JavaScript Extension Toolkit (JET) 16.1.4 D-359
D.27 MongoDB bson 4.10.2 D-375
D.28 Commons FileUpload 1.5 D-381
D.29 opentelemetry-java 1.41.0 D-385
D.30 Google Guava 33.2.1 D-389
D.31 Eclipse Parsson 1.1.5 D-396
D.32 xml2js 0.6.2 D-409

ORACLE"

Xii

D.33 Jansi2.4.1

D.34 commons-io 2.15.1

D.35 Join Monster 4.0.0

D.36 SheetJS 0.20.1

D.37 graphgl-compose 9.0.11
D.38 hotkeys-js 3.13.7

D.39 swagger-ui 5.17.12

D.40 Commons Compress 1.26.0

Index

D-411
D-415
D-418
D-422
D-426
D-427
D-428
D-548

ORACLE"

Xiii

List of Examples

2-1 Enabling the PL/SQL Function

2-2 Enabling the PL/SQL Procedure

2-3 Generating an Endpoint for the Stored Procedure

2-4 Package Procedure and Function Endpoints

2-5 Nested JSON Purchase Order with Nested Lineltems

2-6 PL/SQL Handler Code Used for a POST Request

2-7 GET Handler Code using Oracle REST Data Services Query on Relational Tables for
Generating a Nested JSON object

2-8 PL/SQL API Call for Creating a New test/:id Template and GET Handler in the demo Module

2-9

2-10 ACL Rule in the Database

2-11 Setting the Duser.timezone Java Environment Variable in Standalone Mode

2-12 Setting the Duser.timezone Java Environment Variable in a Java Application Server

2-13 Setting Enabled for all Pools

3-1 Example

6-1 Example to Add Multiple Privileges

9-1 Example cURL Command

9-2 Binds in POST Request

9-3 Complex Bind in POST Request

9-4 Batch statements

9-5 Batch bind values

9-6 Oracle REST Data services Time Zone Set as Europe/London

9-7 PL/SQL Statement

9-8 Script

9-9 Query

9-10 Export

12-1 dads.conf file

12-2 ords_conf/databases/basic_auth/pool.xml

12-3 ords_conf/databases/basic_dynamic_auth/pool.xml

12-4 ords_conf/databases/custom_auth/pool.xml

12-5 ords_conf/databases/basic_auth/paths

12-6 ords_conf/databases/basic_dynamic_auth/paths

12-7 ords_conf/databases/custom_auth/paths

12-8 ords_conf/global/settings.xml

12-9 security.requestValidationFunction

12-10 procedure.preProcess

ORACLE

2-29
2-29
2-31
2-31
2-49
2-50

2-54
2-55
2-57
2-62
2-67
2-67
2-104

6-7
9-2
9-16
9-18
9-20
9-21
9-23
9-37
9-41
9-42
9-44
12-2
12-7
12-7
12-8
12-9
12-9
12-9
12-9
12-12
12-12

Xiv

12-11 procedure.postProcess
12-12 Table upload
12-13 Procedure upload

12-14 Curl command for file upload

ORACLE

12-12
12-12
12-13
12-13

XV

List of Figures

1-1 ORDS Landing Page

2-1 Relationship Between Components of the ORDS RESTful Web Services

2-2 Architecture Diagram for a GET Operation

2-3 Selecting the Enable REST Service Option

2-4 Auto Enabling the PL/SQL Package Object

2-5 Adding an Anonymous PL/SQL Block to the Handler for the PUT Method

2-6 Setting the Bind Parameter |_salarychange to Pass for the PUT Method

2-7 Obtaining the URL to Call from the Details Tab

2-8 Displaying the Results from a SQL Query to Confirm the Execution of the PUT Method

2-9 Creating a Template Definition to Include a Route Pattern for Some Parameters or Bind Variables

2-10 Adding a SQL Query to the Handler

2-11 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method with
Some Required Parameter Values

2-12 Using Browser to Show the Results of Using a Query String to Send a GET Method with
Some Parameter Name/Value Pairs

2-13 Complete Response Body in JSON Format

2-14 Generating Nested JSON Objects

ORACLE

1-2
2-4
2-4

2-30

2-30

2-39

2-40

2-40

2-41

2-43

2-44

2-45

2-46

2-53
2-57

XVI

List of Tables

2-1 Parameters for batchload

2-2 ORDS Request Object Properties

2-3 ORDS Response Object Functions

3-1 List of Implicit Parameters

3-2 Pagination Implicit Parameters

8-1 Open Service Broker Service Catalog

10-1 Supported Operators

12-1 Mappings of mod_plsql Directives to ORDS Settings
C-1 List of ORDS user defined service

ORACLE

2-18
2-58
2-59
3-1
3-8
8-5
10-15
12-3
C-2

XVii

Preface

Preface

Audience

Oracle REST Data Services Developer's Guide explains how to develop applications using
Oracle REST Data Services. (Oracle REST Data Services was called Oracle Application
Express Listener before Release 2.0.6.)

Topics:

e Audience

e Documentation Accessibility

* Related Documents

e Conventions

This document is intended for application developers who develop applications using Oracle
REST Data Services. This guide assumes you are familiar with web technologies, especially
REST (Representational State Transfer), and have a general understanding of Windows and
UNIX platforms.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information and resources relating to Oracle REST Data Services, see the following
the Oracle Technology Network (OTN) site:

http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Conventions

ORACLE

The following text conventions are used in this document:

XVviil

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/developer-tools/rest-data-services/

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that is displayed on the screen, or text that you enter.

ORACLE XiX

Changes in Release 24.3 Oracle REST Data Services Developer's Guide

Changes in Release 24.3 Oracle REST Data
Services Developer's Guide

Changes in Oracle REST Data Services 24.3

Other Changes

Updated the section Using Pre-hook Function with Protected Resources: ORDS enables
the protection of resources with roles and privileges.

Updated the section Third-Party License Information.

ORACLE wx

Introduction to Oracle REST Data Services

This chapter provides an overview of Oracle REST Data Services and its features.

Topics:
e About Oracle REST Data Services

» Features of Oracle REST Data Services

1.1 About Oracle REST Data Services

ORACLE

Oracle REST Data Services (ORDS) is the HTTPS Web Gateway for your Oracle Database,
which includes features such as Oracle Database Actions, Oracle APEX access, REST APIs
for your data and databases, Oracle Database API for MongoDB, and much more. Oracle
REST Data Services is a Java EE-based alternative for Oracle HTTP Server and mod plsql.
The Java EE implementation offers increased functionality including a command-line based
configuration, enhanced security, file caching, and RESTful web services. Oracle REST Data
Services also provides increased flexibility by supporting deployments using Oracle WebLogic
Server, Apache Tomcat, and a standalone mode.

The Oracle APEX architecture requires a web server to proxy requests between a web
browser and the Oracle APEX engine. Oracle REST Data Services Meets the requirement but
its use goes beyond that of Oracle APEX configurations. Oracle REST Data Services simplifies
the deployment process because there is no Oracle home required, as connectivity is provided
using an embedded JDBC driver.

Starting with release 23.2, ORDS provides a default landing page. The landing page displays
the main tools and also lets you know whether a particular tool is enabled or disabled. If a tool
is disabled, then you can click the help button (?) to navigate to the corresponding
documentation and get help to install or enable the tool.

1-1

Chapter 1
Features of Oracle REST Data Services

Figure 1-1 ORDS Landing Page

ORACLE REST Data Services

Oracle REST Data Services (ORDS) is the HTTPS Web Gateway for your Oracle
Database. Features include SQL Developer Web, Oracle APEX access, REST APls for
your data and databases, Oracle Database API for MongoDB, and much more.

e]X]6

SQL Developer Web Oracle APEX OAuth2 Administration

The features from your Fresmotidtsmast popular

favarita dackton toal far enterprise low-code Manage QRDS OAuth2
Oracle Databas?a U application platform for clients.
Ll scalable, secure enterprise
browserl
apps.
Schema

SChema1 GO @

Blogs Tutorials Videos Forums

1.2 Features of Oracle REST Data Services

ORACLE"

This section lists the features of Oracle REST Data Services (ORDS).

Database Actions

Database Actions, is a web-based interface that provides development, data tools,
administration, and monitoring features for Oracle Database. Additionally, ORDS is provided as
a managed feature of the Oracle Autonomous Database Cloud Services.

¢ See Also:

Database Actions Home Page
REST-Enabled SQL

REST-Enabled SQL is a REST API that allows for ad-hoc SQL and SQL Scripts to be
executed. You can POST one or more SQL statements to the service. The service then runs

1-2

https://docs.oracle.com/en/database/oracle/sql-developer-web/

ORACLE

Chapter 1
Features of Oracle REST Data Services

the SQL statements against Oracle Database and returns the results and output to the client in
a JSON format.

Note:
REST-Enabled SQL Service

Database REST APIs

ORDS includes a collection of more than 500 REST APIs for performing operations such as
monitoring and maintaining your Oracle Database, including PDB lifecycle management,
performance, security, data dictionary, data pump.

¢ See Also:
Enabling ORDS Database API

REST APIs

Provides the ability to define the REST APIs with SQL and PL/SQL. ORDS marshals SQL and
PL/SQL types to and from JSON, auto-paginates the results of your SQL queries, supports
GeoJSON for spatial, handles common database errors with appropriate HTTPS responses
and much more. Users can also choose to REST enable tables, views, and stored procedures
to take advantage of the AUtoREST feature.

¢ See Also:
ORDS REST APIs

PL/SQL Gateway

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server and
mod_plsgl. An Oracle HTTP Server mod_plsql application can be migrated to ORDS by
defining the new ORDS configuration files. The mod_plsqgl database resources such as before
procedures, after procedures, request validation functions, owa_custom packages, document
upload procedures and document tables require no change when you are migrating to ORDS.
PL/SQL gateway enables you to access your APEX applications from an application server
such as WebLogic or Tomcat.

¢ See Also:

About the Database Users Used by Oracle REST Data Services

1-3

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/21.4/orrst/index.html

Developing Oracle REST Data Services
Applications

ORACLE

This section explains how to develop applications that use Oracle REST Data Services
(ORDS).

¢ See Also:

If you want to get started quickly, you can try the tutorial in Oracle REST Data
Services Quick Start Guide.

Note:

e Ensure that you have installed and configured both Oracle APEX 4.2 or later, and
Oracle REST Data Services 3.0 or later, prior to attempting the examples
discussed in this chapter.

e Install the Oracle REST APIs prior to using the Oracle REST APIs for JSON Data
Persistence. See Oracle REST Data Services SODA for REST Developer's
Guide

e Refer to the Oracle APEX Documentation, if you are new to Oracle APEX.

Topics:

Introduction to Relevant Software

Getting Started with RESTful Services

Automatic Enabling of Schema Objects for REST Access (AutoREST)
Manually Creating RESTful Services Using SQL and PL/SQL
Manually Creating RESTful Services Using Javascript

About Working with Dates Using Oracle REST Data Services
Creating RESTful Web Services Using Database Actions

Configuring Secure Access to RESTful Services

JWT Bearer Token Authentication and Authorization Using JWT Profile
About Oracle REST Data Services User Roles

Authenticating Against WebLogic Server User Repositories
Integrating with Existing Group/Role Models

Integrating Oracle REST Data Services and WebLogic Server

Using the Oracle REST Data Services PL/SQL API

2-1

https://docs.oracle.com/en/database/oracle/application-express/

Chapter 2
Introduction to Relevant Software

e Oracle REST Data Services Database Authentication
e Overview of Pre-hook Functions

e Generating Hyperlinks

e About HTTP Error Responses

2.1 Introduction to Relevant Software

This section explains some key relevant software for developing applications that use Oracle
REST Data Services.

Topics:
* Oracle APEX
e REST APIs

Related Topics
e About Oracle REST Data Services

2.1.1 Oracle APEX

ORDS makes your APEX applications available to the various application servers like
WebLogic Server or Tomcat, through the PL/SQL Gateway feature. It is a fully-supported, no-
cost option available with all editions of Oracle Database. Using only a web browser, you can
develop and deploy professional applications that are both fast and secure.

2.1.2 REST APIs

Representational State Transfer (REST) is a style of software architecture for distributed
hypermedia systems such as the World Wide Web. An API is described as RESTful when it
conforms to the tenets of REST. Although a full discussion of REST is outside the scope of this
document, a REST API has the following characteristics:

» Data is modelled as a set of resources. Resources are identified by URIs.

* A small, uniform set of operations are used to manipulate resources (for example, PUT,
POST, GET, DELETE).

* Aresource can have multiple representations (for example, a blog might have an HTML
representation and an RSS representation).

* Services are stateless and since it is likely that the client will want to access related
resources, these should be identified in the representation returned, typically by providing
hypertext links.

ORDS provides a built-in web application, SQL Developer Web, which is used to build, test,
document, and secure your REST APIs.

2.2 Getting Started with RESTful Services

ORACLE

This section introduces RESTful Services, and provides guidelines and examples for
developing applications that use RESTful Services.

Topics:

e RESTful Services Terminology

2-2

Chapter 2
Getting Started with RESTful Services

About Request Path Syntax Requirements

"Getting Started" Documents Included in Installation

About cURL and Testing RESTful Services

Automatic Enabling of Schema Objects for REST Access (AutoREST)
Manually Creating RESTful Services Using SQL and PL/SQL

About Working with Dates Using Oracle REST Data Services

Related Topics

Developing Oracle REST Data Services Applications

2.2.1 RESTful Services Terminology

This section introduces some common terms that are used throughout this document:

RESTful service: An HTTP web service that conforms to the tenets of the RESTful
architectural style.

Resource module: An organizational unit that is used to group related resource
templates.

Resource template: An individual RESTful service that is able to service requests for
some set of URIs (Universal Resource Identifiers). The set of URIs is defined by the URI
Pattern of the Resource Template

URI pattern: A pattern for the resource template. Can be either a route pattern or a URI
template, although you are encouraged to use route patterns.

Route pattern: A pattern that focuses on decomposing the path portion of a URI into its
component parts. For example, a pattern of /:object/:1d? will match /emp/101 (matches
a request for the item in the emp resource with id of 101) and will also match /emp/
(matches a request for the emp resource, because the :id parameter is annotated with

the 2 modifier, which indicates that the id parameter is optional).

For a detailed explanation of route patterns, see docs\javadoc\plugin-api\route-
patterns.html, under <sqldeveloper-install>\ords and under the location (if any)
where you manually installed Oracle REST Data Services.

URI template: A simple grammar that defines the specific patterns of URIs that a given
resource template can handle. For example, the pattern employees/{id} will match any
URI whose path begins with employees/, such as employees/2560.

Resource handler: Provides the logic required to service a specific HTTP method for a
specific resource template. For example, the logic of the GET HTTP method for the
preceding resource template might be:

select empno, ename, dept from emp where empno = :id

HTTP operation: HTTP (HyperText Transport Protocol) defines standard methods that can
be performed on resources: GET (retrieve the resource contents), POST (store a new
resource), PUT (update an existing resource), and DELETE (remove a resource).

Related Topics

REST APIs

2.2.2 ORDS RESTful Web Services Architecture Diagrams

This section describes the ORDS RESTful web services architecture diagrams.

ORACLE

2-3

Chapter 2
Getting Started with RESTful Services

The following diagram illustrates the relationship between the different components of the
ORDS RESTful Web Services architecture:

Figure 2-1 Relationship Between Components of the ORDS RESTful Web Services

Key

° o o [Module
Database Schema ~-—------ ORDS Modules |-------— ORDS Templates ——————- ORDS Handlers
(1] (1) (1] [] Template

[] Handler

The Database Schema is the schema that you have REST-enabled. It can contain several
resource modules. Similarly, a resource module, which is the top-level container for the REST
Services offered by ORDS, can contain several resource templates. The resource templates
are represented by the trailing part of the URL. Every resource template can contain four
resource handlers, namely, GET, POST, PUT, and DELETE.

After you create a RESTful Web Service, you can test it by entering the following URL in your
browser:

https://<HOSTNAME: PORT>/<CONTEXT>/<DATABASE SCHEMA ALIAS>/<MODULE_ BASE URI>/
<TEMPLATE URI>/

Where:

° HOSTNAME:PORT/CONTEXT: Specifies the address at which ORDS is running. You can also
refer to it as the ORDS Base URI.

* DATABASE SCHEMA ALIAS: Specifies the name that you provided while REST-enabling your
database schema. By default, it is the name of the schema in lowercase.

* MODULE BASE URI: Specifies the URI of the module.

* TEMPLATE URI: Specifies the URI of the template. This value, along with the
MODULE BASE URI, comprises the ORDS Endpoint URL.

The following diagram illustrates how a GET operation is performed:

Figure 2-2 Architecture Diagram for a GET Operation

ORDS Base URI ORDS Endpoint URL

https://<HOSTNAME:PORT>/ <CONTEXT>/ || <DATABASE_SCHEMA _ALIAS>/ .|| <MODULE_BASE_URI>/ | | <TEMPLATE_URI>/

@z (https://<localhost:8080>/) (ords/) (hr)) @pi/) (employeas/)

In this case, you will enter the following URL in your browser to perform the GET operation:

https://localhost:8080/ords/hr/api/employees/

ORACLE 4

Chapter 2
Getting Started with RESTful Services

2.2.3 About Request Path Syntax Requirements

To prevent path-based attacks, Oracle REST Data Services performs a number of validation
checks on the syntax of the path element of each request URL.

Each path must conform to the following rules:

* Is not empty or whitespace-only

* Does not contain any of the following characters: ?, #, ;, %

* Does not contain the null character (\u0000)

* Does not contain characters in the range: \u0001-\u0031

* Does not end with white space or a period (.)

* Does not contain double forward slash (//) or double back slash(\\)

* Does not contain two or more periods in sequence (.., ..., and So on)
e Total length is {@value #MAX_PATH_LENGTH]} characters or less

* Does not match any of the following names (case insensitive), with or without file
extensions: CON, PRN, AUX, CLOCK$, NUL, COMO, COM1, COM2, COM3, COM4,
COM5, COM6, COM7, COM8, COM9, LPTO, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6,
LPT7, LPT8, LPT9

If you intend to auto-REST enable objects, then avoid object names that do not comply with
these requirements. For example, do not create a table named #EMPS. If you do want to auto-
REST enable objects that have non-compliant names, then you must use an alias that
complies with the requirements.

These requirements are applied to the URL decoded form of the URL, to prevent attempted
circumvention of percent encodings.

2.2.4 "Getting Started" Documents Included in Installation

ORACLE

When you install Oracle REST Data Services, an examples folder is created with subfolders
and files that you may find helpful. The installation folder hierarchy includes this:

ords
conf
docs
examples
soda
getting-started

In this hierarchy:

* examples\soda: Contains sample JSON documents used in some examples included in
Oracle REST Data Services SODA for REST Developer's Guide.

* examples\getting-started: Double-click index.html for a short document about how to
get started developing RESTful Services using Oracle REST Data Services. This
document focuses on using SQL Developer to get started. (SQL Developer is the primary
tool for managing Oracle REST Data Services. For example, the ability to auto-enable
REST support for schemas and tables is available only in SQL Developer.)

2-5

Chapter 2
Getting Started with RESTful Services

2.2.5 About cURL and Testing RESTful Services

Other sections show the testing of RESTful Services using a web browser. However, another
useful way to test RESTful Services is using the command line tool named cURL.

This powerful tool is available for most platforms, and enables you to see and control what
data is being sent to and received from a RESTful service.

curl -1 https://server:port/ords/workspace/hr/employees/7369

This example produces a response like the following:

HTTP/1.1 200 OK

Server: Oracle-REST-Data-Services/2.0.6.78.05.25
ETag: "..."

Content-Type: application/json
Transfer-Encoding: chunked

Date: Thu, 28 Mar 2014 16:49:34 GMT

{
"empno":7369,
"ename" :"SMITH",
"Job": "CLERK",
"mgr":7902,
"hiredate":"1980-12-17T08:00:00Z",
"sal":800,
"deptno":20
}

The -1 option tells cURL to display the HTTP headers returned by the server.

Related Topics
* Exploring the Sample RESTful Services in APEX (Tutorial)

See Also:

curl - command line tool and library
The example in this section uses cURL with the services mentioned in Exploring the
Sample RESTful Services in APEX (Tutorial)

2.2.6 ORDS RESTTful Services and Relevant Specifications

ORACLE

This section provides clarifications on expected behaviour of ORDS RESTful Services with
regard to certain specifications.

To avoid inaccuracies with Content-Length calculations, ORDS uses the Transfer-Encoding:
chunked header in the HTTP response. This allows the HTTP client and HTTP server to work
together and determine when the reading of the response body should end. For PL/SQL based
ORDS RESTful Services the Transfer-Encoding header is always returned, even if the PL/SQL
block sets a Content-Length header.

2-6

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

2.3 Automatic Enabling of Schema Objects for REST Access
(AutoREST)

Enabling REST access to a table, view or PL/SQL function, procedure, or package allows it to
be accessed through RESTful services.

AUtoREST is a quick and easy way to expose database tables as REST resources. You lose
some flexibility and customizability if you use the AutoREST feature, but it reduces your time
and effort to a significant extent. AutoRest lets you quickly expose data but (metaphorically)
keeps you on a set of guide rails. For example, you cannot customize the output formats or the
input formats, or do extra validation.

On the other hand, manually created resource modules require you to specify the SQL and
PL/SQL to support the REST resources. Using resource modules requires more effort, but
offers more flexibility; for example, you can customize what fields are included, do joins across
multiple tables, and validate the incoming data using PL/SQL.

So, as an application developer you must make a choice: use the "guide rails" of AutoREST, or
create a resource module to do exactly what you need. If you choose AutoREST, you can just
enable a table (or set of tables) within a schema.

Specify the p_auto rest auth parameter to protect the resources that are enabled for REST
Access. This is coarse grained protection that applies to all relevant HTTP methods for the
object. AUtoREST on a table or view permits GET, DELETE, POST, and PUT methods. A client with
the permission to access the resource can perform all these actions. For example, the data in
a table that is enabled for REST access can be modified using DELETE, POST, or PUT methods
and retrieved through the GET method. If you want to restrict the methods then do not enable
REST access for the table, provide the code with necessary logic in a module, template, or
handler.

Note that enabling a schema is not equivalent to enabling all tables and views in the schema. It
just means making Oracle REST Data Services aware that the schema exists and that it may
have zero or more resources to expose to HTTP. Those resources may be AutoREST
resources or resource module resources.

If you are using Database Actions or SQL Developer, you can AUTOREST enable the
database objects with convenient wizards. REST Data Services also provides an ORDS
PL/SQL package that can be used to enable objects for REST.

¢ Note:

This feature is only available for Oracle REST Data Services enabled schemas and
not for Oracle APEX workspaces.

See Also:
ORDS.ENABLE_OBJECT

To enable Oracle REST Data Services access to one or more specified tables, views, or
PL/SQL programs, you can do the following in SQL Developer:

1. Enable the schema (the one associated with the connection) for REST access.

ORACLE -

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AuUtoREST)

Schema level: To enable Oracle REST Data Services access to selected objects (that you
specify in the next step) in the schema associated with a connection, right-click its name in
the Connections navigator and select REST Services, then Enable REST Services. Once
the schema is enabled, you can use that schema or user to login to SQL Developer Web
and REST Enable objects in your schema using the web interface.

(To drop support for Oracle REST Data Services access to objects in the schema
associated with a connection, right-click its name in the Connections navigator and select
REST Services, then Drop REST Services.)

Individually enable REST access for the desired objects.

Table or view level: To enable Oracle REST Data Services access to a specified table or
view, right-click its name in the Connections navigator and select Enable REST Services.

Schema Alias: You can alias the schema in the URIs for your REST APIs. This prevents
your AP| consumers from knowing your database user accounts.

Authorization Required: This protects the API Catalog endpoints for your schema. If you
enable this option, then the requests to the metadata-catalog endpoint on your schema will
require authorization.

For detailed usage information, click the Help button in the wizard or dialog box in SQL
Developer.

2.3.1 Examples: Accessing Objects Using RESTful Services

This section provides examples of using Oracle REST Data Services queries and other
operations against tables and views after you have REST-enabled them.

ORACLE

You can automatically expose table and view objects as RESTful services using SQL
Developer. This topic provides examples of accessing these RESTful services.

Tip:

Although these examples illustrate the URL patterns used to access these resources,
clients should avoid hard coding knowledge of the structure of these URLSs; instead
clients should follow the hyperlinks in the resources to navigate between resources.
The structure of the URL patterns may evolve and change in future releases.

This topic provides examples of accessing objects using RESTful Services.

Get Schema Metadata

Get Object Metadata

Get Object Data

Get Table Data Using Paging

Get Table Data Using Query

Get Table Row Using Primary Key
Insert Table Row

Update/Insert Table Row

Delete Using Filter

Post by Batch Load

2-8

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

2.3.1.1 Get Schema Metadata

This example retrieves a list of resources available through the specified schema alias. It
shows RESTful services that are created by automatically enabling a table or view, along with
RESTful Services that are created by resource modules.

This example retrieves a list of resources available through the specified schema alias.
Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/

Result:
{
"items": [
{
"name": "EMP",
"links": [
{
"rel": "describes",

"href": "http://localhost:8080/ords/ordstest/emp/"

"rel": "canonical",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/",
"mediaType": "application/json"
}
]
}I
{
"name": "oracle.examples.hello",
"links": [
{
"rel": "describes",

"href": "http://localhost:8080/ords/ordstest/examples/hello/"
I
{

"rel": "canonical",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/hello/",
"mediaType": "application/json"

1y
"hasMore": false,

"limit": 25,
"offset": 0,
"count": 2,
"links": [
{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/"

"rel": "first",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/"

ORACLE 9

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

The list of resources includes:

» Resources representing tables or views that have been REST enabled.

« Resources defined by resource modules. Note that only resources having a concrete path
(that is, not containing any parameters) will be shown. For example, a resource with a path
of /module/some/path/ will be shown, but a resource with a path of /module/
some/ :parameter/ will not be shown.

Each available resource has two hyperlinks:
e The link with relation describes points to the actual resource.

* The link with relation canonical describes the resource.

2.3.1.2 Get Object Metadata

ORACLE

This example retrieves the metadata (which describes the object) of an individual object. The
location of the metadata is indicated by the canonical link relation.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/metadata-catalog/
<ObjectAlias>/

Example: GET http://localhost:8080/ords/ordstest/metadata-catalog/emp/
Result:

{
"name": "EMP",
"primarykey": [
"empno"
]I
"members": [
{
"name": "empno",
"type": "NUMBER"

"name": "ename",
"type": "VARCHAR2"

llnamell: ||job",
"type": "VARCHAR2"

llnamell : ||mgr",
"type": "NUMBER"

"name": "hiredate",
lltypell : ||DATE"

"name": "sal",
"type": "NUMBER"

"name": "comm",
"type": "NUMBER"

2-10

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"name": "deptno",
"type": "NUMBER"
}
]I

"links": [

{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/",
"mediaType": "application/json"

}l

{
"rel": "canonical",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

"rel": "describes",
"href": "http://localhost:8080/ords/ordstest/emp/"

2.3.1.3 Get Object Data

ORACLE

This example retrieves the data in the object. Each row in the object corresponds to a JSON
object embedded within the JSON array

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/
Example: GET http://localhost:8080/ords/ordstest/emp/

Result:

{

"items": [
{
"empno": 7499,
"ename": "ALLEN",
"job": "SALESMAN",

"mgr": 7698,
"hiredate": "1981-02-20T00:00:00z2",
"sal": 1600,
"comm": 300,
"deptno": 30,
"links": [
{
"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7499"

"empno": 7934,

"ename": "MILLER",

"Job": "CLERK",

"mgr": 7782,

"hiredate": "1982-01-23T00:00:00z",
"sal": 1300,

"comm": null,

"deptno": 10,

"links": [

{

2-11

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"

}
]
}
]I

"hasMore": false,

"limit":

"offset":

"count":
"links":
{

"rel":

"href":

b
{

"rel":

"href":

b
{

"rel":

"href":

b
{

"rel":

"href":

}
]
}

25,

OI
13,
(

"Self",

"http://localhost:8080/ords/ordstest/emp/"

"edit" ,
"http://localhost:8080/ords/ordstest/emp/"

"describedby",
"http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

"first",
"http://localhost:8080/ords/ordstest/emp/"

2.3.1.4 Get Table Data Using Paging

This example specifies the of fset and 1imit parameters to control paging of result data.

ORACLE

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
offset=<0ffset>&limit=<Limit>

Example: GET http://localhost:8080/ords/ordstest/emp/?0ffset=10&1limit=5

Result:

{
"items":

{

[

"empno": 7900,
"ename": "JAMES",

uj ob":
"mgr" :

"CLERK",
7698,

"hiredate": "1981-12-03T00:00:002",

"sal":

"comm" :

950,
null,

"deptno": 30,
"links": [

{

"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7900"

"empno": 7934,

2-12

"ename": "MILLER",

llj ob":
llmgrll .

"hiredate":

"sal":

"comm" :

"CLERK",
7782,

1300,
null,

"deptno": 10,
"links": [

{

"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"

}
]
}
]I

"hasMore": false,

"limit":

"offset":

"count":
"links":
{

"rel":

"href":

b
{

"rel":

"href":

b
{

"rel":

"href":

b
{

"rel":

"href":

b
{

"rel":

"href":

}
]
}

5!
10,

3!

(

"Self",

"http://localhost:

"edit" ,

"http://localhost:

"describedby",

"http://localhost:

"first",

"http://localhost:

"prev" ,

"http://localhost:

2.3.1.5 Get Table Data Using Query

This example specifies a filter clause to restrict objects returned.

ORACLE

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"1982-01-23T00:00:002",

8080/ords/ordstest/emp/"

8080/ords/ordstest/emp/"

8080/ords/ordstest/metadata-catalog/emp/"

8080/ords/ordstest/emp/?1limit=5"

8080/ords/ordstest/emp/?0ffset=5&1limit=5"

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
g=<FilterClause>

Example: GET http://localhost:8080/ords/ordstest/emp/?g={"deptno":{"$1lte":20}}

Result:

{
"items":

{

[

"empno": 7566,
"ename": "JONES",

"Job": "MANAGER",
"mgr": 7839,
"hiredate":

"1981-04-01T23:00:002",

2-13

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"sal": 2975,
"comm": null,
"deptno": 20,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7566"
}
1
}’

"empno": 7934,
"ename": "MILLER",
"job": "CLERK",

"mgr": 7782,
"hiredate": "1982-01-23T00:00:00zZ",
"sal": 1300,
"comm": null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7934"
}
1
}
]I
"hasMore": false,
"limit": 25,
"offset": 0,
"count": 7,
"links": [
{
"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/?
q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

}’

{

"rel": "edit",

"href": "http://localhost:8080/ords/ordstest/emp/?
q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

}’

{

"rel": "describedby",

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/"

}’

{

"rel": "first",

"href": "http://localhost:8080/ords/ordstest/emp/?
q=%7B%22deptno%22:%7B%22%241te%22:20%7D%7D"

}

]

}

2.3.1.6 Get Table Row Using Primary Key

This example retrieves an object by specifying its identifying key values.

ORACLE 514

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Note:
e If a table does not have a primary key, then ORDS uses the ROWID to uniquely
address the rows.

e The primary keys are not compatible with a REST interface if they meet any of
the following characteristics:

End with a period

— Contain // or \\

— Begin with /

— Contains two or more periods in sequence (For example: .., ...)

— Contains any of the following characters: “<”“>" " “" ¥|" “2?" “*" “4” * or ,“%”"
Requests that contain such primary keys returns HTTP 400 Bad Request as
a response. If the primary keys contain any of the preceding incompatible
characters, then it is recommended to have a secondary key that does not
conflict with the link generation rules.

Pattern: GET http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/<KeyValues>
Where <KeyValues> is a comma-separated list of key values (in key order).

Example: GET http://localhost:8080/ords/ordstest/emp/7839

Result:

{

"empno": 7839,
"ename": "KING",

"job": "PRESIDENT",
"mgr": null,
"hiredate": "1981-11-17T00:00:002",
"sal": 5000,
"comm": null,
"deptno": 10,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp/7839"
}l
{
"rel": "edit",
"href": "http://localhost:8080/ords/ordstest/emp/7839"
}l
{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}l
{

"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp/"
}

]

}

ORACLE .

2.3.1.7 Insert Table Row

This example inserts data into the object. The body data supplied with the request is a JSON
object containing the data to be inserted.

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

If the object has a primary key, then the POST request can include the primary key value in the
body. Or, if the table has an IDENTITY CLAUSE, sequence or trigger, then the primary key
column may be omitted. If the table does not have a primary key, then the ROWID of the row is

used as the item's identifier.

If the object lacks a trigger to assign primary key values, then the PUT operation described in
next section,Updatel/lnsert Table Row should be used instead.

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/

Example:

curl -1 -H "Content-Type: application/json" -X POST -d "{ \"empno\" :7,

\"ename\":

\"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/ords/ordstest/emp/

Content-Type: application/json

{ "empno" :7, "ename": "JBOND",
Result:
{
"empno": 7,
"ename": "JBOND",
"job": "SPY",
"mgr": null,
"hiredate": null,
"sal": null,
"comm": null,
"deptno": 11,
"links": [
{
"rel": "self",
"href":
} r
{
"rel": "edit",
"href":
} r
{
"rel": "describedby",
"href":
} 14
{
"rel": "collection",
"href":

}
]
}

2.3.1.8 Update/Insert Table Row

This example inserts or updates (sometimes called an "upsert") data in the object. The body
data supplied with the request is a JSON object containing the data to be inserted or updated.

ORACLE

"job":"SPY", "deptno" :11 }

"http://localhost:8080/ords/ordstest/emp/7"

"http://localhost:8080/ords/ordstest/emp/7"

"http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"

"http://localhost:8080/ords/ordstest/emp/"

Pattern: PUT http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/<KeyValues>

2-16

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)
Example:
curl -1 -H "Content-Type: application/json" -X PUT -d "{ \"empno\" :7, \"ename\":

\"JBOND\", \"job\":\"SPY\", \"deptno\" :11 }" "http://localhost:8080/ords/ordstest/emp/7
Content-Type: application/json

{ "empno" :7, "ename": "JBOND", "job":"SPY", "deptno" :11 }

Result:

{

"empno": 7,
"ename": "JBOND",
lljobll: IISPYH,

"mgr": null,
"hiredate": null,
"sal": null,
"comm": null,

"deptno": 11,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp/7"
}’
{
"rel": "edit",
"href": "http://localhost:8080/ords/ordstest/emp/7"
}’
{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp/item"
}’
{
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp/"
}
]
}

2.3.1.9 Delete Using Filter

This example deletes object data specified by a filter clause.

Pattern: DELETE http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/?
g=<FilterClause>

Example: curl -i -X DELETE "http://localhost:8080/ords/ordstest/emp/?
g={"deptno":11}"

Result:

{
"itemsDeleted": 1

}

2.3.1.10 Post by Batch Load

This example inserts object data using the batch load feature. The body data supplied with the
request is a CSV file. The behavior of the batch operation can be controlled using the optional
query parameters, which are described in Table 2-1.

ORACLE 2-17

ORACLE

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AUtoREST)

Pattern: POST http://<HOST>:<PORT>/ords/<SchemaAlias>/<ObjectAlias>/batchload?

<Parameters>

Parameters:

Table 2-1 Parameters for batchload
]

Parameter

Description

batchesPerCommit

batchRows

dateFormat

delimiter
enclosures

errors

errorsMax

lineEnd

lineMax

locale

responseEncoding

responseFormat

timestampFormat

timestampTZFormat

Sets the frequency for commits. Optional commit points can be set after a
batch is sent to the database. The default is every 10 batches. 0 indicates
commit deferred to the end of the load. Type: Integer.

Sets the number of rows in each batch to send to the database. The default is
50 rows per batch. Type: Integer.

Sets the format mask for the date data type. This format is used when
converting input data to columns of type date. Type: String.

Sets the field delimiter for the fields in the file. The default is the comma (,).
embeddedRightDouble

Sets the user option used to limit the number of errors. If the number of errors
exceeds the value specified for errorsMax (the service option) or by errors
(the user option), then the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be allowed (up to
errorsMax value), specify UNLIMITED (-1) .

A service option used to limit the number of errors allowed by users. It
intended as an option for the service provider and not to be exposed as a user
option. If the number of errors exceeds the value specified for errorsMax (the
service option) or by errors (the user option), then the load is terminated.

To permit no errors at all, specify 0. To indicate that all errors be allowed,
specify UNLIMITED (-1).

Sets the line end (terminator). If the file contains standard line end characters
(\r. \r\n or \n), then 1ineEnd does not need to be specified.

Sets a maximum line length for identifying lines/rows in the data stream. A
lineMax value will prevent reading an entire stream as a single line when the
incorrect 1ineEnd character is being used. The default is unlimited.

Sets the locale.
Sets the encoding for the response stream.

Sets the format for response stream. This format determines how messages
and bad data will be formatted. Valid values: RAW, SQL.

Sets the format mask for the time stamp data type. This format is used when
converting input data to columns of type time stamp.

Sets the format mask for the time stamp time zone data type. This format is
used when converting input data to columns of type time stamp time zone.

truncate Indicates if and/or how table data rows should be deleted before the load.
False (the default) does not delete table data before the load; True causes
table data to be deleted with the DELETE SQL statement; Truncate causes
table data to be deleted with the TRUNCATE SQL statement.

Example:

POST http://localhost:8080/ords/ordstest/emp/batchload?batchRows=25
Content-Type: text/csv

empno, ename, job,mgr, hiredate, sal, comm,deptno
0,M,SPY MAST,,2005-05-01 11:00:01,4000,,11

2-18

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AuUtoREST)

7,J.BOND, SPY, 0,2005-05-01 11:00:01,2000,,11
9,R.Cooper, SOFITWARE, 0,2005-05-01 11:00:01,10000,,11
26,Max,DENTIST,0,2005-05-01 11:00:01,5000,,11

Result:

#INFO Number of rows processed: 4
#INFO Number of rows in error: 0
#INFO Elapsed time: 00:00:03.939 - (3,939 ms) 0 - SUCCESS: Load processed without errors

2.3.2 Filtering in Queries

This section describes and provides examples of filtering in queries against REST-enabled
tables and views.

Filtering is the process of limiting a collection resource by using a per-request dynamic filter
definition across multiple page resources, where each page contains a subset of items found in
the complete collection. Filtering enables efficient traversal of large collections.

To filter in a query, include the parameter g=FilterObject, where FilterObject is a JSON object
that represents the custom selection and sorting to be applied to the resource. For example,
assume the following resource:

https://example.com/ords/scott/emp/

The following query includes a filter that restricts the ENAME column to "JOHN";

https://example.com/ords/scott/emp/?q={"ENAME" : "JOHN" }

2.3.2.1 FilterObject Grammar

ORACLE

The FilterObject must be a JSON object that complies with the following syntax:

FilterObject { orderby , asof, wmembers }

The orderby, asof, and wmembers attributes are optional, and their definitions are as follows:

orderby
"Sorderby": {orderByMembers}
orderByMembers
orderByProperty
orderByProperty , orderByMembers

orderByProperty
columnName :
columnName :
columnName :

sortingValue
sortingNulls
sortingValues

sortingValues
[sortingValue]
[sortingNulls]
[sortingValue, sortingNulls]
[sortingNulls, sortingValue]

sortingNulls
"NULLS FIRST"
"NULLS LAST"

sortingValue
"ASCH

2-19

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"DESC"
n_qm
nin

-1

1

asof
"Sasof": date
"Sasof": "datechars"
"Sasof": scn
"Sasof": +int

wmembers
wpair
wpair , wmembers

wpair
columnProperty
complexOperatorProperty

columnProperty

columnName : string

columnName : number

columnName : date

columnName : simpleOperatorObject
columnName : complexOperatorObject

columnName : [complexValues]
columnName
"\p{Alpha} [[\p{Alpha}]] ([[\p{Alnum}]#S$])*$"

complexOperatorProperty
complexKey : [complexValues]
complexKey : simpleOperatorObject

complexKey
"$and"
"$O]f"

complexValues
complexValue , complexValues

complexValue
simpleOperatorObject
complexOperatorObject
columnObject

columnObject
{columnProperty}

simpleOperatorObject
{simpleOperatorProperty}

complexOperatorObject
{complexOperatorProperty}

simpleOperatorProperty

"Seq" : string | number | date
"Sne" : string | number | date
"S1t" : number | date
"Slte" : number | date

"S$Sgt" : number | date

ORACLE" 2.90

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"Sgte" : number | date
"Sinstr" : string
"Sninstr" : string
"$like" : string

"Snull" : null

"Snotnull" : null
"Sbetween" : betweenValue

betweenValue
[null , betweenNotNull]
[betweenNotNull , null]
[betweenRegular , betweenRegular]

betweenNotNull
number
date

betweenRegular
string
number
date

Data type definitions include the following:

string
JSONString
number
JSONNumber
date
{"Sdate":"datechars"}
scn
{"Sscn": +int}

Where:

datechars is an RFC3339 date format in UTC (Z)

JSONString
" chars "
chars
char
char chars
char
any-Unicode-character except-"-or-\-or-control-character
\ll
\\
\/
\b
\f
\n
\r
\t
\u four-hex-digits
JSONNumber
int
int frac
int exp

int frac exp
int

ORACLE 291

Chapter 2

Automatic Enabling of Schema Objects for REST Access (AutoREST)

digit
digitl-9 digits
- digit
- digitl-9 digits
frac
. digits
exp
e digits
digits
digit
digit digits

The FilterObject must be encoded according to Section 2.1 of RFC3986.

2.3.2.2 Examples: FilterObject Specifications

ORACLE

The following are examples of operators in FilterObject specifications.
ORDER BY property ($orderby)
Order by with literals
{
"$Sorderby": {"SALARY": "ASC","ENAME":"DESC"}
}
Order by with numbers
{
"Sorderby": {"SALARY": -1,"ENAME": 1}
}
Order by with nulls first
{
"Sorderby": {"SALARY": ["ASC", "NULLS FIRST"]}
}
Order by with nulls last
{
"Sorderby": {"SALARY": ["ASC", "NULLS LAST"]}
}
ASOF property ($asof)
With SCN (Implicit)
{
"Sasof": 1273919
}

With SCN (Explicit)

{

2-22

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"Sasof": {"$scn": "1273919"}
}

With Date (Implicit)
"Sasof": "2014-06-30T00:00:00Z"
}

With Date (Explicit)

"Sasof": {"$date": "2014-06-30T00:00:00Z"}

EQUALS operator ($eq)
(Implicit and explicit equality supported.
Implicit (Support String and Dates too)

{
"SALARY": 1000
}
Explicit
{
"SALARY": {"Seq": 1000}
}
Strings
{
"ENAME": {"S$eq":"SMITH"}
}

Dates

"HIREDATE": {"$date": "1981-11-17T08:00:00Z"}

NOT EQUALS operator ($ne)
Number

{
"SALARY": {"$ne": 1000}
}

String
{
"ENAME": {"$ne":"SMITH"}

}

Dates

ORACLE 503

ORACLE

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"HIREDATE": {"$ne": {"S$date":"1981-11-17T08:00:00Z"}}

LESS THAN operator ($1t)
(Supports dates and numbers only)
Numbers

"SALARY": {"$1t": 10000}

Dates

"SALARY": {"$1t": {"$date":"1999-12-17T08:00:00Z"}}
}

LESS THAN OR EQUALS operator ($lte)
(Supports dates and numbers only)
Numbers
"SALARY": {"$lte": 10000}
Dates
"HIREDATE": {"S$lte": {"$date":"1999-12-17T08:00:00Z2"}}

}

GREATER THAN operator ($gt)
(Supports dates and numbers only)
Numbers

"SALARY": {"$gt": 10000}

Dates

"SALARY": {"$gt": {"$date":"1999-12-17T08:00:00Z"}}

GREATER THAN OR EQUALS operator ($gte)
(Supports dates and numbers only)
Numbers

"SALARY": {"$gte": 10000}

Dates

2-24

ORACLE

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"HIREDATE": {"S$gte": {"$date":"1999-12-17T08:00:00Z2"}}

In string operator ($instr)
(Supports strings only)

{
"ENAME": {"$instr":"MC"}

Not in string operator ($ninstr)
(Supports strings only)

{
"ENAME": {"$ninstr":"MC"}

LIKE operator ($like)
(Supports strings. Eescape character not supported to try to match expressions with _ or
% characters.)

"ENAME": {"$like":"AX%"}

BETWEEN operator ($between)
(Supports string, dates, and numbers)

Numbers

"SALARY": {"$between": [1000,2000]}

Dates

"SALARY": {"Sbetween": [{"$date":"1989-12-17T08:00:00z"},
{"$date":"1999-12-17T08:00:00Z"} 1}
}

Strings
{
"ENAME": {"$between": [IIAH’"CH] }

}

Null Ranges ($lte equivalent)
(Supported by numbers and dates only)

{
"SALARY": {"$between": [null,2000]}
}

Null Ranges ($gte equivalent)
(Supported by numbers and dates only)

{

2-25

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"SALARY": {"$between": [1000,null]}

NULL operator ($null)

{
"ENAME": {"$null": null}
}
NOT NULL operator ($notnull)

{
"ENAME": {"$notnull": null}

AND operator ($and)
(Supports all operators, including $and and S$or)

Column context delegation
(Operators inside $and will use the closest context defined in the JSON tree.)

{
"SALARY": {"$and": [{"Sgt": 1000}, {"$1t":4000}1}

Column context override
(Example: salary greater than 1000 and name like S%)
{

"SALARY": {"$and": [{"Sgt": 1000}, {"ENAME": {"$like":"S%"}} 1 }

Implicit and in columns

"SALARY": [{"$gt": 1000}, {"$1t":4000}]

High order AND

(A1l first columns and or high order operators -- $and and $Sors -- defined at the first
level of the JSON will be joined and an implicit AND)

(Example: Salary greater than 1000 and name starts with S or T)

{

"SALARY": {"$gt": 1000},

llENAME": {ll$or": [{"slikell:lls%ll}, {"slikell:"T%ll}]}
Invalid expression (operators $1t and $gt lack column context)
{

"S$and": [{"$1t": 5000}, {"$gt": 1000}]

Valid alternatives for the previous invalid expression

"S$and": [{"SALARY": {"$1t": 5000}}, {"SALARY": {"$gt": 1000}}]

ORACLE 506

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

"SALARY": [{"$1t": 5000}, {"$gt": 1000}

"SALARY": {"$and": [{"S$1t": 5000}, {"$gt": 1000}1}

OR operator ($or)
(Supports all operators including $and and $or)

Column context delegation
(Operators inside S$or will use the closest context defined in the JSON tree)

{
"ENAME" : {"$or": [{"$eq":"SMITH"}, {"$eq":"KING"}] }

}

Column context override
(Example: name starts with S or salary greater than 1000)

{
"SALARY": {"$or": [{"Sgt": 1000}, {"ENAME": {"$like":"S%"}} 1 }
}

2.3.3 Auto PL/SQL

ORACLE

This section explains how PL/SQL is made available through HTTP(S) for Remote Procedure
call (RPC).

The auto PL/SQL feature uses a standard to provide consistent encoding and data transfer in a
stateless web service environment. Using this feature, you can enable Oracle Database stored
PL/SQL functions and procedures at package level through Oracle REST Data Services,
similar to how you enable the views and tables.

Auto Enabling PL/SQL Subprograms

Oracle REST Data Services supports auto enabling of the following PL/SQL objects, based on
their catalog object identifier:

e PL/SQL Procedure
e PL/SQL Function
e PL/SQL Package

The functions, and procedures within the PL/SQL package cannot be individually enabled as
they are named objects within a PL/SQL package object. Therefore, the granularity level
enables the objects at the package level. This granularity level enables to expose all of its
public functions and procedures.

If you want to only enable a subset of functions and procedures, then you must create a
separate delegate package and enable it to expose only that subset of functions and
procedures.

2-27

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Note:

Overloaded package functions and procedures are not supported.

2.3.3.1 Method and Content Type Supported for Auto Enabling PL/SQL Objects

This section discusses the method and content-type supported by this feature.

The auto enabling of the PL/SQL Objects feature supports POST as the HTTP method. In
POST method, input parameters are encoded in the payload and output parameters are
decoded from the response.

Note:

The standard data CRUD to HTTP method mappings are not applicable as this
feature provides an RPC-style interaction.

The content-type supported is application/json.

2.3.3.2 Auto-Enabling the PL/SQL Objects

This section explains how to auto-enable the PL/SQL objects through Oracle REST Data
Services.

You can enable the PL/SQL objects in one of the following ways:
e Auto-Enabling Using the PL/SQL API
e Auto-Enabling the PL/SQL Objects Using SQL Developer

2.3.3.2.1 Auto-Enabling Using the PL/SQL API

ORACLE

You can enable a PL/SQL object using the Oracle REST Data Services PL/SQL API.

To enable the PL/SQL package, use the Oracle REST Data Services PL/SQL API as shown in
following sample code snippet:

BEGIN
ords.enable object (

p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY PKG',
p _object type => 'PACKAGE',
p object alias => 'my pkg',
p_auto rest auth => FALSE);
commit;

END;

/

2-28

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Example 2-1 Enabling the PL/SQL Function

To enable the PL/SQL function, use the Oracle REST Data Services PL/SQL API as shown in
following sample code snippet:

BEGIN

ords.enable object (
p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY FUNC',
p_object type => 'FUNCTION',
p object alias => 'my func',
p_auto rest auth => FALSE);

commit;
END;

Example 2-2 Enabling the PL/SQL Procedure

To enable the PL/SQL procedure, use the Oracle REST Data Services PL/SQL API as shown
in following sample code snippet:

BEGIN

ords.enable object (
p_enabled => TRUE,
p_schema => 'MY SCHEMA',
p_object => 'MY PROC',
p_object type => 'PROCEDURE',
p_object alias => 'my proc',
p_auto rest auth => FALSE);

commit;
END;
/

2.3.3.2.2 Auto-Enabling the PL/SQL Objects Using SQL Developer

This section describes how to enable the PL/SQL objects using SQL Developer 4.2 and above.

To enable the PL/SQL objects (for example, package) using SQL Developer, perform the
following steps:

Note:

You can now enable, packages, functions and procedures. However, the granularity
of enabling is either at the whole package level, standalone function level, or at the
standalone procedure level.

1. In SQL Developer, right-click on a package as shown in the following figure:

ORACLE 559

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Figure 2-3 Selecting the Enable REST Service Option

- [ifj Packages
=] i
re Edit.
{#5E Edit Body.
H GE E;purt.
e 4 U g Debug Cul+ShifF10
REST Develogpment | Sompile Siag
Compile for Debug Cal+Shif-Fa
[| W | "
&S = Run.. Cal-Fin
[REST Data Services
Compare With]
Qrder Members By ¥
Drop Package...
Grant...
Revake...
Un Test Save Package Spec and Body...
a Uit Tests Enable REST Service...
[Mot conneacted Use as Ternplate. ..
Synchronize Specficgtion and Body...
3 Code Qutline
Dueck DOL]

Select Enable RESTful Services to display the following wizard page:

Figure 2-4 Auto Enabling the PL/ISQL Package Object

Enable ohject

=

regstry_oky

Authorization required ||

hExt >

i

ORACLE"

2-30

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

« Enable object: Enable this option (that is, enable REST access for the package).
* Object alias: Accept registry pkg for the object alias.
e Authorization required: For simplicity, disable this option.

e Onthe RESTful Summary page of the wizard, click Finish.

2.3.3.3 Generating the PL/SQL Endpoints

ORACLE

HTTP endpoints are generated dynamically per request for the enabled database objects.
Oracle REST Data Services uses the connected database catalog to generate the endpoints
using a query.

The following rules apply for all the database objects for generating the HTTP endpoints:

« All names are converted to lowercase

* An endpoint is generated if it is not already allocated

Stored Procedure and Function Endpoints

The function or procedure name is generated into the URL in the same way as tables and
views in the same namesspace.

Example 2-3 Generating an Endpoint for the Stored Procedure

CREATE OR REPLACE PROCEDURE MY SCHEMA.MY PROC IS
BEGIN

NULL;
END;

Following endpoint is generated:

http://localhost:8080/ords/my schema/my proc/

Example 2-4 Package Procedure and Function Endpoints

The package, function, and procedure endpoints are generated with package name as a
parent. Endpoints for functions and procedures that are not overloaded or where the lowercase
name is not already in use are generated.

If you have a package, MY_PKG as defined in the following code snippet:

CREATE OR REPLACE PACKAGE MY SCHEMA.MY PKG AS
PROCEDURE MY PROC;
FUNCTION MY FUNC RETURN VARCHARZ;
PROCEDURE MY PROCZ;
PROCEDURE "my proc2";
PROCEDURE MY PROC3 (P1 IN VARCHAR);
PROCEDURE MY PROC3 (P2 IN NUMBER) ;
END MY PKG;

Then the following endpoints are generated:

http://localhost:8080/ords/my schema/my pkg/MY PROC
http://localhost:8080/ords/my schema/my pkg/MY FUNC

2-31

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Note:

Endpoints for the procedure my proc2 is not generated because its name is not
unique when the name is converted to lowercase, and endpoints for the procedure
my proc3 is not generated because it is overloaded.

2.3.3.4 Resource Input Payload

The input payload is a JSON document with values adhering to the REST standard.

The payload should contain a name/value pair for each IN or IN OUT parameter as shown in
the following code snippet:

{

"pl": "abc",
"p2": 123,
"p3": null

}
< Note:

Where there are no IN or IN OUT parameters, an empty JSON body is required as
shown in the following code snippet:

{

}

Oracle REST Data Services uses the database catalog metadata to unmarshal the JSON

payload into Oracle database types, which is ready to be passed to the database through
JDBC.

2.3.3.5 Resource Payload Response

When the PL/SQL object is executed successfully, it returns a JSON body.

The JSON body returned, contains all OUT and IN OUT output parameter values. Oracle
REST Data Services uses the database catalog metadata to marshal the execution of the
result back into JSON as shown in the following code snippet:

{
"p3" : "abcl23",
"p4" : 1

}

ORACLE 539

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Where there are no OUT or IN OUT parameters, an empty JSON body is returned as shown in
the following code snippet:

{

}

2.3.3.6 Function Return Value

The return value of functions do not have an associated name.

As the return value of functions do not have an associated name, the name "~ret" is used as
shown in the following code snippet:

{
"~ret" : "abcl23"

}

2.3.4 Support for JSON-Relational Duality View

ORDS supports AutoREST enabling of JSON-relational duality view functionality. This
functionality is supported only with Oracle Database 23c or later.

JSON-relational duality view is a revolutionary Oracle Database feature that combines the
benefits of relational databases and NoSQL JSON document stores. This feature allows the
storage of normalized data in relational tables while exposing it to applications in JSON.
Multiple JSON-relational duality views can be created on the same relational data to address
different use cases. In other words, the same relational data can have different JSON
representations.

Note:

For best performance, configure the Oracle REST Data Services (ORDS) metadata
cache.

See Also:

» Configuring ORDS Metadata Cache
* Understanding Configurable Settings
* JSON-Relational Duality Developer's Guide

2.3.4.1 Table AutoREST Versus JSON-Relational Duality View AutoREST

ORACLE

A JSON-relational duality view is classified as a VIEW in Oracle Database, so it can be
AutoRest enabled like any relational view. This section provides a comparison between the
AutoREST functionality of JSON-relational duality views with relational tables:

Similarities:

2-33

https://docs.oracle.com/en/database/oracle/oracle-database/23/jsnvu/overview-json-relational-duality-views.html

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

* Exposes the same set of endpoints and methods (GET, PUT, POST, DELETE, and HEAD)

» Uses the same comma-separated primary key identifier format as that of the associated
root table

e Supports the same Read, Create, Upsert, Of Delete semantics

e Generates the same HTTP If-None-Match header ETag digest, where multiple items are
processed.

e Injects the links hyperlinks field into the response payload
Differences:
e Supported only with Oracle Database 23c or later

* Passes the JSON payload directly between the request or response and the JISON-
relational duality view DATA column.

* Uses the JSON-relational duality view ETag value for HTTP If-Match and If-None-Match
header conditional matching, where a single item is processed (GET, PUT, and DELETE
methods).

* Uses the SODA extended Query by Example (QBE) syntax for rich filtering and ordering
* Uses a JSON-friendly batchload format

2.3.4.2 Support for Enhanced ETag Matching

ORACLE

Oracle REST Data Services (ORDS) integrates with the JSON-relational duality view ETag
feature to support optimistic locking and client caching.

HTTP ETag Matching

ORDS uses the JSON-relational duality view generated ETag instead of its own digest value
when evaluating matching headers for single item operations such a GET (If-None-Match) and
PUT/DELETE (If-Match).

Match Header HTTP False Response Header Example

If-None-Match 304 - "Not Modified" If-None-Match:
"536001F31A8718819AEEF28EC
20D8677"

If-Match 412 - "Precondition If-Match:

Failed" "536001F31A8718819AEEF28EC
20D8677"
Note:

The double-quotes around the ETag value are mandatory.

Database ETag Matching

The Oracle Database also performs ETag matching for UPDATE operations where an ETag is
available in the metadata object of the request payload, otherwise this field is ignored in all
other cases.

2-34

Chapter 2
Automatic Enabling of Schema Objects for REST Access (AutoREST)

Content Example HTTP 'False' Response

412 - "Precondition Failed"

" metadata": {
"etag":
"536001F31A8718819AEEF28EC20D8677",
"asof": "00000000002BECD5"

b

2.3.4.3 Enhanced JSON QBE (Query by Example) Filtering

Oracle REST Data Services (ORDS) exposes the same QBE filtering syntax that Simple
Oracle Document Access (SODA) uses, providing the user with a roburst set of JSON
operators and functionality that are more appropriate for processing JSON.

Although, the syntax currently only applies to JSON-relational duality views, it is specified in
the g URL parameter, similar to the relational tables and views.

The following example filters the content of the race dv JSON-relational duality view, where
the points field is greater than 40:

curl http://localhost:8080/ords/janus/race dv/?q={"points":{"$gt":40}}

The following example adds ordering on the points field to the preceding example:

curl http://localhost:8080/ords/janus/race dv/?g={"$query":{"points":
{"Sgt":40}},"Sorderby": [{"path":"points", "datatype":"number"}]}

¢ See Also:

Simple Oracle Document Access (SODA)

2.3.4.4 Enhanced JSON Batch Loading

As the JSON-relational duality view DATA column is mapped directly to the request payload, the
same approach should be applied to batch loading. Therefore, ORDS provides an optimized
batchload endpoint that accepts one of the following JSON content types:

ORACLE 535

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Header Content-Type Description

application/json Freely formatted JSON array of JSON documents
payload. For example

[
WM. 1’

"y":]-

"X":Z,
"yv|:2

application/json; boundary=LF Linefeed delimited list of JSON documents.
Payload example:

n V':l,"y":l}

{"x
{"X":2["y":2}

Each JSON document is passed to the ORDS batch load service as a row and can be fine-
tuned with the query parameters in the same way as in any table.

For example, batchesPerCommit, batchRows, and truncate can be used to optimize the batch
loading process.

The following example shows the batch loading of the points_dv JSON-relational duality view
in batches of 25 rows of JSON document:

curl -i -X POST --data-binary @points.json -H "Content-Type: application/json"
http://localhost:8080/ords/ordstest/points dv/batchload?batchRows=25

The familiar batch process result is returned in the response as shown in the following code
shippet:

HTTP/1.1 200 OK

#INFO Number of rows processed: 2
#INFO Number of rows in error: 0
#INFO Last row processed in final committed batch: 2
SUCCESS: Processed without errors

2.4 Manually Creating RESTful Services Using SQL and PL/SQL

This section describes how to manually create RESTful Services using SQL and PL/SQL and
shows how to use a JSON document to pass parameters to a stored procedure in the body of
a REST request.

This section includes the following topics:

ORACLE 536

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

e About Oracle REST Data Services Mechanisms for Passing Parameters
« Using SQL/JSON Database Functions

2.4.1 About Oracle REST Data Services Mechanisms for Passing
Parameters

This section describes the main mechanisms that Oracle REST Data Services supports for
passing parameters using REST HTTP to handlers that are written by the developer:

e Using JSON to Pass Parameters

You can use JSON in the body of REST requests, such as the posST or PUT method, where
each parameter is a JSON name/value pair.

e Using Route Patterns to Pass Parameters

You can use route patterns for required parameters in the URI to specify parameters for
REST requests such as the GET method, which does not have a body, and in other special
cases.

e Using Query Strings for Optional Parameters

You can use query strings for optional parameters in the URI to specify parameters for
REST requests, such as the GET method, which does not have a body, and in other special
cases.

Prerequisite Setup Tasks To Be Completed Before Performing Tasks for Passing
Parameters

This prerequisite setup information assumes you have completed steps 1 and 2 in Getting
Started with RESTful Services section, where you have REST-enabled the ordstest schema
and emp database table (Step 1) and created and tested the RESTful service from a SQL query
(Step 2). You must complete these two steps before performing the tasks about passing
parameters described in the subsections that follow.

Related Topics
e Getting Started with RESTful Services

2.4.1.1 Using JSON to Pass Parameters

This section shows how to use a JSON document to pass parameters to a stored procedure in
the body of a REST request, such as POST or PUT method, where each parameter is a name/
value pair. This operation performs an update on a record, which in turn returns the change to
the record as an OUT parameter.

Perform the following steps:

ORACLE 2-37

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

1. | # Note:

The following stored procedure performs an update on an existing record in the
emp table to promote an employee by changing any or all of the following: job,
salary, commission, department number, and manager. The stored procedure
returns the salary change as an oUT parameter.

create or replace procedure promote (1 empno IN number, 1 job IN
varchar?,
1 mgr IN number, 1 sal IN number, 1 comm IN number,
1 deptno IN number,
1 salarychange OUT number)
is
oldsalary number;
begin
select nvl(e.sal, 0)into oldsalary FROM emp e
where e.empno = 1 empno;
update emp e set
e.job = nvl(l job, e.job),
.mgr = nvl(l mgr, e.mgr),
.sal nvl(l sal, e.sal),
.comm = nvl(l comm, e.comm),
.deptno = nvl (1l deptno, e.deptno)
where e.empno = 1 empno;
1 salarychange := nvl(l sal, oldsalary) - oldsalary;
end;

€
€
€
€

As a privileged ordstest user, connect to the ordstest schema and create the promote
stored procedure.

2. Perform the following steps to setup a handler for a PUT request on the emp resource to
pass parameters in the body of the PUT method in a JSON document to the promote stored
procedure.

a. Using Oracle SQL Developer, in the REST Development section, right click on the emp
template and select Add Handler for the PUT method.

b. Inthe Create Resource Handler dialog, click the green plus symbol to add the MIME
type application/json and then click Apply to send it a JSON document in the body
of the PUT method.

c. Using the SQL Worksheet, add the following anonymous PL/SQL block: begin
promote
(:1 empno, :1 job, :1 mgr, :1 sal, :1 comm, :1 deptno, :1 salarychange);
end; as shown in the following figure.

ORACLE 538

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Figure 2-5 Adding an Anonymous PL/SQL Block to the Handler for the PUT
Method

Parameters | Details

FrE9-090 BB @&@oEus a8 -
Worksheet |Que(yBui\der

‘begin (m}

promote (:1 empno, :1_job, :legr, 1 _sal, :1 comm, :1_deptno, :1_salarychange):
‘end;

Reports. w | =
All Reports

(= Analytic View Reparts
Iﬂﬁ Data Dictionary Reparts
[} Data Modeler Reports

[+ [OLAP Reparts

[&}-(E- TimesTen Reports
[-[E User Defined Reports

REST Development w | =
B« @
= emp) —

£ GET

: kal PuT

=] Errv!aobJ‘:dmt"D
£.E] Ger

M S— IAv'

d. Click the Parameters tab to set the Bind Parameter as 1 _salarychange , the Access
Method as an oUT parameter, the Source Type as RESPONSE, and Data Type as
INTEGER as shown in the following figure. This is the promote procedure’s output which
is an integer value equal to the change in salary in a JSON name/value format.

ORACLE 539

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

e.

Figure 2-6 Setting the Bind Parameter |_salarychange to Pass for the PUT
Method

Connections

+-AT®
[ordstest

E\E Tables (Filtered)
] o |

SQL Worksheet

3R

9

salarychange

Reports x|
all Reports

(= Analytic View Reparts
Eﬁ Data Dictionary Repar’
- [Data Modeler Reports
42 OLAP Reparts

(- [Z TimesTen Reports

[[E User Defined Reports

s

REST Development x|

H B« @

Name Bind Parameter
|_salarychange ouTt

Click the Details tab to get the URL to call as shown in the Examples section of the
following figure. Copy this URL to your clipboard.

Figure 2-7 Obtaining the URL to Call from the Details Tab

Connections
Ei - m A 4 % SQL Worksheet |Parameters | Details
- ordstest “I
Method Handler
- m
‘.(- - b L4 Source Type: PL/SQL
Reports. x| =
All Reports 4 x
E}ﬁﬂndykvrwquﬂs MIME Types.
E»'_}ﬁv Data Dictionary Reparts lapplication/json
[Data Modeler Reports
B1-[E OLAP Reports
[} (2 TimesTen Reports
[(2 User Defined Reports
REST Development | Examples
| K" URI Module: test
i URI Pattern: femp/

ttp: /flocalhost:8008 ords ordstest/test/emp/

ORACLE"

2-40

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

f. Right click on the test module to upload the module. Do not forget this step.

3. To test the RESTful service, execute the following cURL command in the command

prompticurl -i -H "Content-Type: application/json" -X PUT -d "{ \"1 empno\"
7499, \"1 sal\" : 9999, \"1 job\" : \"Director\", \"1 comm\" : 300}

¢ Note:

You can also use any REST client available to test the RESTful service.

The cURL command returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json Transfer-Encoding: chunked
{"salarychange":8399}

In SQL Developer SQL Worksheet, perform the following SELECT statement on the emp
table: SELECT * from emp to see that the PUT method was executed, then select the Data
tab to display the records for the EMP table.

Figure 2-8 Displaying the Results from a SQL Query to Confirm the Execution of
the PUT Method

Connections | -
l* - m T % Columns 'EI Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details |P
o[ordstest RELER 4 X SIS |+ actions... =
g Tables (Fitered) ® fiemeno | EnamE [30B [MeR |{} HIREDATE |} sAL | comm |{; DEPTNO |

E‘N%--gmpwo 1 7369 SMITH CLERE 7902 17-DEC-80 800 (null) 20
[e 2 7499 ALLEN Director 7698 20-FEB-81 9999 300 30

- J0B * 3 7521 WARD SALESMBN 7698 22-FEB-81 1250 500 30
1€] » 4 7564 JONES ~ MRNAGER 7839 02-APR-81 2975 (null) 20

Reports [= 5 7654 MARTIN SALESMBN 7698 28-3EP-381 1250 1400 30
All Reports & 7698 BLAKE MENAGER 7839 01-MEY-81 2850 (null) 30
EﬁMdvhc\ﬁewRepcﬂs 7 7782 CLARK MANAGER 7839 09-JUN-81 2450 (null) 10
- (2 Data Dictionary Reports 8 7788 SCOTT ~ ANALYST 7566 19-APR-87 3000 (null) 20
gg g?;?:ﬁfgemm 9 7839KING FRESIDENT (null) 17-NOV-21 5000 {null} 10
(2 TmesTen Reports 10 7844 TURNER SALESMEN 7698 08-SEB-81 1500 0 30
[(2 User Defined Reports 11 7876 ADEMS CLERK 7788 23-MEY-87 1100 (null) 20

12 7900 JEMES CLERK 7698 03-DEC-81 950 (null) 30

REST Development = 13 7902 FORD ANALYST 7566 03-DEC-81 3000 (null) 20
I @@ 14 7934 MILLER CLERK 7782 23-JEN-82 1300 (null) 10
: EH-L_| Jempf |-

=1 empmobf:deptr]

: L] GET
E@ Privileges - -
e i [»

ORACLE"

2-41

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Note:

« All parameters are optional. If you leave out a name/value pair for a parameter in
your JSON document, the parameter is set to NULL.

e The namel/value pairs can be arranged in any order in the JSON
document. JSON allows much flexibility in this regard in the JSON document.

e Only one level of JSON is supported. You can not have nested JSON objects or
arrays.

2.4.1.2 Using Route Patterns to Pass Parameters

ORACLE

This section describes how to use route patterns in the URI to specify parameters for REST
requests, such as with the GET method, which does not have a body.

First create a GET method handler for a query on the emp table that has many bind variables.
These steps use a route pattern to specify the parameter values that are required.

Perform the following steps to use a route pattern to send a GET method with some required
parameter values:

1.

In SQL Developer, right click on the test module and select Add Template to create a new
template that calls emp; however, in this case the template definition includes a route
pattern for the parameters or bind variables that is included in the URI rather than in the
body of the method. To define the required parameters, use a route pattern by specifying
a /: before the job and deptno parameters. For example, for the URI pattern, enter:
emp/:job/ :deptno as shown in the following figure.

2-42

ORACLE

Chapter 2

Manually Creating RESTful Services Using SQL and PL/SQL

Figure 2-9 Creating a Template Definition to Include a Route Pattern for Some

Parameters or Bind Variables

B Edit Resource Template

Universal Resource Identifier

LIRI Pattern: |Empf:jnbf:dep1ﬂu

Example: http: ffmyhost:8080 fords /myschema/test/femp/:job/:deptno

Priority: (73}

LOW MEDILIM
HTTP Entity Tag
ETag: |Secure Hash

Generate the version id using secure hashing which uniguely identifies the
resource Version.

HIGH

Help Apply Cancel

LS

-

Click Next to go to REST Data Services — Step 2 of 3, and click Next to go to REST

Data Services — Step 3 of 3, then click Finish to complete the template.

Right click on the emp/:job/:deptno template and select Add Handler for the GET method.

Right click on the GET method to open the handler.

Add the following query to the SQL Worksheet: select * from emp e where e.job

= :job and e.deptno = :deptno and e.mgr = NVL (:mgr, e.mgr)

(:sal, e.sal); as also shown in the following figure.

and e.sal

= NVL

2-43

Chapter 2

Manually Creating RESTful Services Using SQL and PL/SQL

Figure 2-10 Adding a SQL Query to the Handler

Farameters | Details

bEOD-BR BR S&¢dsL B

Workshest Query Buider

Eiselect * from emp e where L]
' e.job = :job and

e.deptno = :deptno and

e.mgJr = HVL (:mJr, e.mgr) and

e.3al = NVL (:s3al, e.3al);

Click the Details tab to get the URL to call. Copy this URL to your clipboard.

Right click on the test module to upload the module. Do not forget this step.

Test the REST endpoint. In a web browser enter the URL:http://localhost:8080/ords/

ordstest/test/emp/SALESMAN/30 as shown in the following figure.

ORACLE"

2-44

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Figure 2-11 Using Browser to Show the Results of Using a Route Pattern to Send a GET Method
with Some Required Parameter Values

6. i) | localhost:B080/ords/ ordstest/test/emp/SALESMAMN,/30
| 1 Oracle |£h Most Visited

{
T item=: [
1
empno: 7521,
ename: "WLED",
job: "SALESMAN",
mgr: Te%E,
hiredate: "1981-02-Z21TI1E:
sal: 1250,
comm: 500,
deptno: 30

L
=]
=]
=]
1

empno: 1654,

enames: "MRETIN",

job: "SALESMAN",

mgr: Te9E,

hiredate: "19B1-09-27TI1E:
sal: 1250,

comm: 1400,

deptno: 30

[R5
Lad
=
=
]
[

empno: 7544,

enams: "TUENER",

job: "SRLESMRN",

mgr: 7698,

hiredate: "1981-09-07T1E:
sal: 1500,

comm: O,

deptno: 30

[R=]
7%
)
=
=
[

1.

hasMore: false,
limit: 25,
offset: 0,
count: 3,

The query returns 3 records for the salesmen named Ward, Martin, and Turner.

ORACLE 245

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

See Also:

To learn more about Route Patterns see this document in the Oracle REST Data
Services distribution at docs/javadoc/plugin-api/route-patterns.html and this
document Oracle REST Data Services Route Patterns

2.4.1.3 Using Query Strings for Optional Parameters

ORACLE

This section describes how to use query strings in the URI to specify parameters for REST
requests like the GET method, which does not have a body. You can use query strings for any
of the other optional bind variables in the query as you choose.

The syntax for using query strings is: ?parml=valuelsparm2=value? .. &parmN=valueNl.

For example, to further filter the query: http://localhost:8080/ords/ordstest/test/emp/
SALESMAN/30, to use a query string to send a GET method with some parameter name/value
pairs, select employees whose mgr (manager) is 7698 and whose sal (salary) is 1500 by
appending the query string mgr=7698&sa1=1500 to the URL as follows: http://
localhost:8080/ords/ordstest/test/emp/SALESMAN/30?mgr=7698&sal=1500.

To test the endpoint, in a web browser enter the following URL: http://localhost:8080/ords/
ordstest/test/emp/SALESMAN/30?mgr=7698&sal=1500 as shown in the following figure:

Figure 2-12 Using Browser to Show the Results of Using a Query String to Send a GET
Method with Some Parameter Name/Value Pairs

(S localhost:8080/ ords/ordstest/test/emp/SALESMAN/30?mgr=T698 Bsal=1500 C
Oracle| |2) Most Visited

{
* items: [
M
empno: 7844,
ename: "TURNER",
job: "SRLESMEN",
mgr: 7698,
hiredate: "1981-09-07T18:30:002",
sal: 1500,
comm: O,
deptno: 30
}
1.
hasMore: false,
limit: 25,
offset: 0,
comnt: 1,
v links: [
v{
rel: "self",
href: http://localhost:B0B0/ords/ordstest,/test/ enp/ SALESHAN/ 30 ?2ngr=T698&=5a1=1500

Yo
v{
rel: "descrikedby",
href: http://localhost:B0B0/ords/ordstest/metadata-catalog/test/enp/SALESMAN/ item
Yo
i
rel: "first",

href: http://localhost:B0B0/ords/ordstest/test/emp/SALESMAN/ 30 2ngr=7698&5a1=1500

2-46

https://blog.cdivilly.com/2015/03/10/route-patterns/

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

The query returns one record for the salesman named Turner in department 30 who has a
salary of 1500 and whose manager is 7698.

Note the following points:

e Itis a good idea to URL encode your parameter values. This may not always be required;
however, it is the safe thing to do. This prevents the Internet from transforming something,
for example, such as a special character in to some other character that may cause a
failure. Your REST client may provide this capability or you can search the Internet for the
phrase url encoder to find tools that can do this for you.

* Never put a backslash at the end of your parameter list in the URI; otherwise, you may get
a 404 Not Found error.
See Also:

* Lab 4 of the ORDS Oracle By Example (OBE)

- Database Application Development Virtual Image

2.4.2 Using SQL/JSON Database Functions

This section describes how to use the SQL/JSON database functions available in Oracle
Database 19c Release or later to map the nested JSON objects to and from the hierarchical
relational tables.

This section includes the following topics:

e Inserting Nested JSON Obijects into Relational Tables

e Generating Nested JSON Objects from Hierachical Relational Data

2.4.2.1 Inserting Nested JSON Objects into Relational Tables

ORACLE

This section explains how to insert JSON objects with nested arrays into multiple, hierarchical
relational tables.

The two key technologies used to implement this functionality are as follows:

e The :body bind variable that Oracle REST Data Services provides to deliver JSON and
other content in the body of POST and other REST calls into PL/SQL REST handlers

e JSON_TABLE and other SQL/JSON operators provided in Oracle Database 21c

Some of the advantages of using these technologies for inserting data into relational tables are
as follows:

* Requirements for implementing this functionality are very minimal. For example,
installation of JSON parser software is not required

e You can use simple, declarative code that is easy to write and understand when the JSON
to relational mapping is simple

e Powerful and sophisticated capabilities to handle more complex mappings. This includes:

— Mechanisms for mapping NULLS and boolean values

2-47

https://apexapps.oracle.com/pls/apex/f?p=44785:24:113172122269057:ADD_BOOKMARK:::P24_CONTENT_ID:13282
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

— Sophisticated mechanisms for handling JSON. JSON evolves over time. Hence, the
mapping code must be able to handle both the older and newer versions of the JISON
documents.

For example, simple scalar values may evolve to become JSON objects containing
multiple scalars or nested arrays of scalar values or objects. SQL/JSON operators that
return the scalar value can continue to work even when the simple scalar is embedded
within these more elaborate structures. A special mechanism, called the Ordinality
Column, can be used to determine the structure from where the value was derived.

¢ See Also:

e JSON in the Oracle Database Technology

e Ordinality Column

2.4.2.1.1 Usage of the :body Bind Variable

This section provides some useful tips for using the :body bind variable.

Some of the useful tips for using the :body bind variable are as follows:

The :body bind variable can be accessed, or de-referenced, only once. Subsequent
accesses return a NULL value. So, you must first assign the :body bind variable to the
local PO variable before using it in the two JSON_Table operations.

The :body bind variable is a BLOB datatype and you can assign it only to a BLOB variable.

< Note:

Since L_PO is a BLOB variable, you must use the FORMAT JSON phrase after the
expression in the JSON_TABLE function. section for more information.

The :body bind variable can be used with other types of data such as image data.

The :body text bind variable is a CLOB datatype and you can assign it only to a CLOB
variable.

If you use either :body or :body text, then you cannot reference individual JSON
attributes through the ORDS :bind variables.

See Also:

Database SQL Language Reference

2.4.2.1.2 Example of JSON Purchase Order with Nested Lineltems

This section shows an example that takes the JSON Purchase Order with Nested Lineltems
and inserts it into a row of the PurchaseOrder table and rows of the Lineltem table.

ORACLE

2-48

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Example 2-5 Nested JSON Purchase Order with Nested Lineltems

{"PONumber" : 1608,
"Requestor" : "Alexis Bull",
"CostCenter" . "A50",
"Address" : {"street" : "200 Sporting Green",
"city" : "South San Francisco",
"state" : "CA",
"zipCode" : 99236,
"country" : "United States of America"},
"LineItems" : [{"ItemNumber" : 1,
"Part" : {"Description” : "One Magic
Christmas",
"UnitPrice" : 19.95,
"UPCCode" : 1313109289},
"Quantity" : 9.0},
{"ItemNumber" : 2,
"Part" : {"Description" : "Lethal Weapon",
"UnitPrice" : 19.95,
"UPCCode" : 8539162892},
"Quantity" : 5.0}

2.4.2.1.3 Table Definitions for PurchaseOrder and Lineltems Tables

This section provides definitions for the PurchaseOrder and Lineltem tables.

The definitions for the PurchaseOrder and the Lineltems tables are as follows:

CREATE TABLE PurchaseOrder (
PONo NUMBER (5),
Requestor VARCHAR2 (50),
CostCenter VARCHAR2 (5),
AddressStreet VARCHAR2 (50),
AddressCity VARCHAR2 (50),
AddressState VARCHAR2 (2),
AddressZip VARCHAR2 (10),
AddressCountry VARCHAR2 (50),
PRIMARY KEY (PONo));

CREATE TABLE LineItem (
PONo NUMBER (5),
ItemNumber NUMBER (10),
PartDescription VARCHAR2 (50),
PartUnitPrice NUMBER (10),
PartUPCCODE NUMBER (10),
Quantity NUMBER (10),
PRIMARY KEY (PONo, ItemNumber));

2.4.2.1.4 PL/SQL Handler Code for a POST Request

This section gives an example PL/SQL handler code for a POST request. The handler code is
used to insert a purchase order into a row of the PurchaseOrder table and rows of the Lineltem
table.

ORACLE 549

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Example 2-6 PL/SQL Handler Code Used for a POST Request

Declare

L PO BLOB;
Begin

L PO := :body;

INSERT INTO PurchaseOrder
SELECT * FROM json table(L PO FORMAT JSON, 'S$'

COLUMNS (
PONo Number PATH 'S.PONumber',
Requestor VARCHAR2 PATH 'S$.Requestor',
CostCenter VARCHAR2 PATH '$.CostCenter',
AddressStreet VARCHAR2 PATH '$.Address.street',
AddressCity VARCHAR2 PATH '$.Address.city',
AddressState VARCHAR2 PATH '$.Address.state',
AddressZip VARCHAR2 PATH 'S$.Address.zipCode',

AddressCountry VARCHAR2 PATH 'S$.Address.country'));

INSERT INTO Lineltem
SELECT * FROM json_table(L PO FORMAT JSON, 'S'

COLUMNS (
PONo Number PATH '$.PONumber',
NESTED PATH 'S.Lineltems[*]'
COLUMNS (
ItemNumber Number PATH 'S$.ItemNumber',
PartDescription VARCHAR2 PATH '$.Part.Description',
PartUnitPrice Number PATH 'S.Part.UnitPrice’',
PartUPCCode Number PATH '$.Part.UPCCode',
Quantity Number PATH '$.Quantity')));
commit;
end;

2.4.2.1.5 Creating the REST API Service to Invoke the Handler

ORACLE

This section explains how to create the REST API service to invoke the handler, using the
Oracle REST Data Services.

To setup the REST API service, a URI is defined to identify the resource the REST calls will be
operating on. The URI is also used by Oracle REST Data Services to route the REST HTTP
calls to specific handlers. The general format for the URI is as follows:

<server>:<port>/ords/<schema>/<module>/<template>/<parameters>

Here, <server>:<port> is where the Oracle REST Data Service is installed. For testing
purposes, you can use demo and test in place of module and template respectively in the
URI. Modules are used to group together related templates that define the resources the
REST API will be operating upon.

To create the REST API service, use one of the following methods:

e Use the Oracle REST Data Services PL/SQL API to define the REST service and a
handler for the POST insert. Then connect to the jsontable schema on the database
server that contains the PurchaseOrder and Lineltem tables.

2-50

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Note:

JSON_TABLE and other SQL/JSON operators use single quote so these must be
escaped. For example, every single quote (') must be replaced with double
quotes ().

* Use the Oracle REST Data Services, REST Development pane in SQL Developer to
define the REST service.

2.4.2.1.6 Defining the REST Service and Handler using PL/SQL API

This section shows how to define the REST Service and Handler for the POST insert using the
Oracle REST Data Services PL/SQL API.

You can alternatively use the Oracle REST Data Services REST development pane in SQL
Developer to create the modules, templates and handlers.

ORACLE

BEGIN
ORDS.ENABLE SCHEMA (
p_enabled => TRUE,
p_schema => 'ORDSTEST',

p_url mapping type

=> 'BASE PATH',

p_url mapping pattern => 'ordstest',

p_auto _rest auth => FALSE);
ORDS.DEFINE MODULE (
p_module name => 'demo',
p _base path => '/demo/"',
p_items per page => 25,
p_status => 'PUBLISHED',
p_comments => NULL) ;
ORDS.DEFINE TEMPLATE (
p_module name => 'demo',
p_pattern => 'test',
p_priority = 0,
p_etag type => 'HASH',
p_etag query => NULL,
p_comments => NULL) ;
ORDS.DEFINE HANDLER (
p_module name => 'demo',
p_pattern => 'test',
p_method => 'POST',
p_source_ type => 'plsqgl/block"',
p_items per page => 0,
p mimes allowed => '',
p_comments => NULL,
p_source = !
declare
L PO BLOB := :body;
begin

INSERT INTO PurchaseOrder

SELECT * FROM json_table(L_PO FORMAT JSON, ''S'"!'
COLUMNS (
PONo Number PATH ''$.PONumber'',

2-51

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Requestor VARCHAR2 PATH ''$.Requestor'',
CostCenter VARCHAR?Z2 PATH ''$.CostCenter'’,
AddressStreet VARCHAR2 PATH ''$.Address.street'',
AddressCity VARCHAR2 PATH ''$.Address.city'',
AddressState VARCHAR2 PATH ''$.Address.state'',
AddressZip VARCHAR2 PATH ''$.Address.zipCode'',

AddressCountry VARCHAR2 PATH ''$.Address.country''));

INSERT INTO LineItem
SELECT * FROM json table(L PO FORMAT JSON, ''S''

COLUMNS (
PONo Number PATH ''$.PONumber'',
NESTED PATH ''S.Lineltems[*]"'
COLUMNS (
ItemNumber Number PATH ''$.ItemNumber'',
PartDescription VARCHAR2 PATH ''$.Part.Description'',
PartUnitPrice Number PATH ''$.Part.UnitPrice'’,
PartUPCCode Number PATH ''$.Part.UPCCode'',
Quantity Number PATH ''$.Quantity'')));
commit;
end; '
)
COMMIT,;
END;

Related Topics

* Using the Oracle REST Data Services PL/SQL API

e About Oracle REST Data Services Mechanisms for Passing Parameters
 ORDS PL/SQL Package Reference

2.4.2.2 Generating Nested JSON Objects from Hierachical Relational Data

ORACLE

This section explains how to query the relational tables in hierarchical (parent/child)
relationships and return the data in a nested JSON format using the Oracle REST Data
Services.

The two key technologies used to implement this functionality are as follows:

* SQL/JSON functions are available with Oracle Database. You can use json objects for
generating JSON objects from the relational tables, and json_arrayagg, for generating
nested JSON arrays from nested (child) relational tables.

* The Oracle REST Data Services media source type used for enabling the REST service
handler to execute a SQL query that in turn returns the following types of data:

— The HTTP Content-Type of the data, which in this case is application/json
— The JSON data returned by the json object

Some of the advantages of using this approach are as follows:

e Requirements for implementing this functionality is very minimal. For example, installation
of JSON parser software is not required.

2-52

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

* Simple, declarative coding which is easy to write and understand which makes the JSON
objects to relational tables mapping simple.

« Powerful and sophisticated capabilities to handle more complex mappings. This includes
mechanisms for mapping NULLS and boolean values.

For example, a NULL in the Oracle Database can be converted to either the absence of
the JSON element or to a JSON NULL value. The Oracle Database does not store
Boolean types but the SQL/JSON functions allow string or numeric values in the database
to be mapped to Boolean TRUE or FALSE values.

2.4.2.2.1 Bypassing JSON Generation for Relational Data

This section describes and provides solutions for handling responses that are already in a
JSON format.

ORDS auto-formats your SQL or PL/SQL results and response to a JSON format before
returning to your application. However, in some cases, the complete response body or part of it
is already in a JSON format. Following are two such use cases:

Use Case 1: When the response is already in a JSON format

Following figure shows an example where the complete response is already in a JSON format:

Figure 2-13 Complete Response Body in JSON Format

Columns Data Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details | Partitions | Indexes |SQL

P REXS B sort. [Fiter|

D i DATE_LOADED JSON_DOC - "
1 111-SEP-17 01.24.32.000000000 PM AMERICA/NEW_YORK| | E@ Edit Value ’x —iis]
Line Terminator: ip\gqf?fm Default | change...

Value:
{
“statementld™ 1,
“statementType™ “query”,
"statementPos™: {
“startline™ 1,
"endLine”; 2

“statementText"™: “select * from hr.departments”,
“response™: [],
“result™ 0,
“resultSet™ {
"metadata”; [

Columns |Data |Model | Constraints | Grants | Statistics | Triggers | Flashback | Dependendes | Details

“columnName": "DEPARTMENT _ID",
“jsonColumnName": “department_id",
“columnTypeName™: "NUMBER",
“predsion™: 4,

ORACLE

2-53

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

You must adjust your GET query text to include "application/json" before including the JSON
itself as shown in the following example GET query:

Select 'application/json',
upper (json_doc)
from json play

The Media resource in this case is application/json and the browser handles it similar to a
BLOB or a PDF.

Use Case 2: One or more columns of the response is already in a JSON format.

If one or more columns are in a JSON format, then such columns in the source query need to
be aliased to indicate that the attribute must not be converted to a JSON format.

For example:

Select id,
jsons "{}jsons"
from table with json

The alias text is used to name the nested JSON document attribute.

2.4.2.2.2 Example to Generate Nested JSON Objects from the Hierachical Relational Tables

This section describes how to query or GET the data we inserted into the PurchaseOrder and
Lineltem relational tables in the form of nested JSON purchase order.

Example 2-7 GET Handler Code using Oracle REST Data Services Query on Relational
Tables for Generating a Nested JSON object

SELECT 'application/json', json object ('PONumber' VALUE po.PONo,
'Requestor' VALUE po.Requestor,
'CostCenter' VALUE po.CostCenter,
'Address' VALUE
json_object ('street' VALUE po.AddressStreet,
'city' VALUE po.AddressCity,
'state' VALUE po.AddressState,
'zipCode' VALUE po.AddressZip,
'country' VALUE po.AddressCountry),
'Lineltems' VALUE (select json_arrayagg (
json_object ('ItemNumber' VALUE 1li.ItemNumber,
'Part' VALUE
json object('Description' VALUE li.PartDescription,
'UnitPrice' VALUE li.PartUnitPrice,
'UPCCode' VALUE 1i.PartUPCCODE),
"Quantity' VALUE 1i.Quantity))
FROM Lineltem 1i WHERE po.PONo = 1i.PONo))
FROM PurchaseOrder po
WHERE po.PONo = :id

2.4.2.2.3 PL/ISQL API Calls for Defining Template and GET Handler

This section provides an example of Oracle REST Data Services PL/SQL API call for creating
a new template in the module created.

ORACLE -~

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL

Example 2-8 PLI/SQL API Call for Creating a New test/:id Template and GET Handler
in the demo Module

Begin

ords.define template (

p _module name => 'demo',
p_pattern => 'test/:id');

ords.define handler(

p _module name => 'demo',

p_pattern => 'test/:id',

p method => 'GET',

p_source type => ords.source type media,
p_source => '

SELECT ''application/json'', json object(''PONumber'' VALUE po.PONo,
''Requestor'' VALUE po.Requestor,
''CostCenter'' VALUE po.CostCenter,
''Address'' VALUE
json object(''street'' VALUE po.AddressStreet,
'city'' VALUE po.AddressCity,
''state'' VALUE po.AddressState,
'zipCode'' VALUE po.AddressZip,
'country'' VALUE po.AddressCountry),
'Lineltems'' VALUE (select json_arrayagg (
json_object (''ItemNumber'' VALUE 1li.ItemNumber,
''"Part'' VALUE
json_object (''Description'' VALUE li.PartDescription,
''"UnitPrice'' VALUE li.PartUnitPrice,
''UPCCode'' VALUE 1li.PartUPCCODE),
''Quantity'' VALUE li.Quantity))
FROM LinelItem l1i WHERE po.PONo = 1i.PONo))
FROM PurchaseOrder po
WHERE po.PONo = :id '

)

Commit;
End;

2.4.2.3 Testing the RESTful Services

This section shows how to test the POST and GET RESTful Services to access the Oracle
database and get the results in a JSON format.

This section includes the following topics:

¢ Insertion of JSON Object into the Database
e Generating JSON Object from the Database

2.4.2.3.1 Insertion of JSON Object into the Database
This section shows how to test insertion of JSON purchase order into the database.
URI Pattern: http://<HOST>:<PORT>/ords/<SchemaAlias>/<module>/<template>

Example:

ORACLE 5 e

Chapter 2
Manually Creating RESTful Services Using SQL and PL/SQL
Method: POST
URI Pattern: http://localhost:8080/ords/ordstest/demo/test/

To test the RESTful service, create a file such as pol.json with the following data for
PONumber 1608 :

{"PONumber" : 1608,
"Requestor" : "Alexis Bull",
"CostCenter" . "A50",
"Address" : {"street" : "200 Sporting Green",
"city" : "South San Francisco",
"state" : "CA",
"zipCode" : 99236,
"country" : "United States of America"},
"LineItems" : [{"ItemNumber" : 1,
"Part" : {"Description" : "One Magic Christmas",
"UnitPrice" : 19.95,
"UPCCode" : 1313109289},
"Quantity" : 9.0},
{"ItemNumber" : 2,
"Part" : {"Description"
"Lethal Weapon",
"UnitPrice"
19.95,
"UPCCode"
8539162892},
"Quantity" : 5.0}

Then, execute the following cURL command in the command prompt:

curl -1 -H "Content-Type: application/json" -X POST -d @pol.json "http://localhost:8080/
ords/ordstest/demo/test/"

The cURL command returns the following response:

HTTP/1.1 200 OK
Transfer-Encoding: chunked

2.4.2.3.2 Generating JSON Object from the Database
This section shows the results of a GET method to fetch the JSON object from the database..
Method: GET

URI Pattern: http://<HOST>:<PORT>/ords/<SchemaAlias>/<module>/<template>/
<parameters>

Example:

To test the RESTful service, in a web browser, enter the URL http://localhost:8080 /ords/
ordstest/demo/test/1608 as shown in the following figure:

ORACLE 56

Chapter 2
Manually Creating RESTful Services Using Javascript

Figure 2-14 Generating Nested JSON Objects

| @ hitp://localhost8080/ords/... % ""-\h+

6 i | localhost:8080/ ords/ ordstest/demo/test/1608 [y

| | Oracle |2 Most Visited

PONumber: 1c0E,
Requestor: "Zlexis Bull",
CostCenter: "L50",
v Address: |
street: "200 Sporting Green",
eity: "Scuth San Francisco",
state: "CL",
zipCode: "99236",
country: "United States of Emerica”
I
* Lineltems: [
v {
ItemNumber: 1,
Part: |
Description: "One Magic Christmas",
UnitPrice: 20,
UPCCode: 1313109289

Te
Quantity: 2

ItemMumber: Z,

Part: |
Description: "Lethal Weapon",
UnitPrice: 20,
UPCCode: 85391628092

T
Quantity: 5

ItemMumber: 1,

Part: |
Description: "Cne Magic Christmas",
UnitPrice: 20,
UPCCode: 1313109289

e
Quantity: 2

2.5 Manually Creating RESTful Services Using Javascript

This section describes how to manually create the RESTful Services using JavaScript that runs
in Oracle Database Release 23ai or later.

2.5.1 Allowed JavaScript Structures

The defined JavaScript code must be inside an anonymous function that receives the following
two parameters:

* ORDS request object
* ORDS response object

Example 2-9

(req, resp) => {}

ORACLE 2-57

Chapter 2

Manually Creating RESTful Services Using Javascript

ORDS provides utility properties and functions in those parameters that allow reading and
manipulating the request and response.

Table 2-2 ORDS Request Object Properties
]

Property name

Description

Handler Code Example

uri Specifies the path of the current
handler. (req, resp) => {
const x = req.uri;
}
body Specifies the payload of the

HTTP request. If the payload is a
JSON structure, then the
corresponding JavaScript object
is created. Otherwise this is a
string.

(req, resp) => {
const x = req.body;

content type

Specifies the content-type of the
request.

(req, resp) => {
const x =
req.content type;

}

query parameters

Specifies a JavaScript object with
the query parameter key/value
pairs.

(req, resp) => {

const x =
req.query parameters.myp
aram;

}

uril parameters

Specifies a JavaScript object with
the uri parameter key/value
pairs if available.

(req, resp) => {

const x =
req.uri parameters.myuri
param;

}

current user

Specifies the ORDS
authenticated user who is doing
the call.

(req, resp) => {
const x =
req.current user;

}

ORACLE

2-58

Chapter 2
Manually Creating RESTful Services Using Javascript

Table 2-3 ORDS Response Object Functions

Function Description Example
append This function appends a string
into the body HTTP response (req, resp) => {
body. resp.append ('Test"');
}
end Stops further processing of the
manipulation of the HTTP (req, resp) => {
response. resp.end();

Any other function called after
end () function, does not alter the
state of the the HTTP response.

send Overrides anything appended
before and writes the string (req, resp) => {
provided into the HTTP response resp.send ('Test');
body and commits the response. }

json Overrides anything appended
before and writes the JSON (req, resp) => {
representation of the provided resp.json({test key:
JavasScript object into the HTTP oo 1) ; -
response body and commits the }
response.

content type Sets the content-type of the
HTTP response. (req, resp) => {
Regardless of what is set, the resp.content type ('text/
content-type of the response also plain'); -
includes the charset=UTF-8.)

status Sets the HTTP status code with
the provided integer value. (req, resp) => {

resp.status (200) ;
}

If the response is not manipulated, then the default content-type of the request is
application/json; charset=utf=8 and the default status code is 200.

2.5.2 Defining the REST Service and JavaScript Handler Using PL/SQL
Function

This section shows how to define the REST Service with a JavaScript handler for a GET call
using the Oracle REST Data Services PL/SQL function.

BEGIN
ORDS.ENABLE SCHEMA (
p_enabled => TRUE,

ORACLE 59

p_schema
p_url mapping type

p_url mapping pattern =>

p_auto rest auth

ORDS.DEFINE MODULE (

p_module name =>
p_base path =>
p_items per page =>
p_status =>
p_comments =>
ORDS.DEFINE TEMPLATE (
p_module name =>
p_pattern =>
p_priority =>
p_etag type =>
p_etag query =>
p_comments =>
ORDS.DEFINE HANDLER (
p_module name =>
p_pattern =>
p_method =>
p_source type =>

p_items per page =>

=>
=>

'"ORDSTEST',
'BASE_PATH',
'ordstest',

=> FALSE) ;

'demojs"',
'/demoijs/"',
25,
'"PUBLISHED',
NULL) ;

'demojs"',
"test/',
OI
"HASH',
NULL,
NULL) ;

'demojs"',

"test/',

'GET',

'mle/javascript',
Ol

(]
4

NULL,
NULL,

p mimes allowed =>
p_comments =>
p_mle env name =>
p_source =>
q'~
(req, resp) => {
resp.content type('text/plain');
resp.status (200);
resp.send('success');
}
o
)i
COMMIT;
END;
/

Chapter 2
Manually Creating RESTful Services Using Javascript

The preceding handler can be invoked using the following cURL command:

curl -i -X GET \'https://example.com/ords/ordstest/demojs/test/"'

2.5.3 About Executing SQL in Javascript

This section describes how to execute SQL in JavaScript.

JavaScript handlers depend on Oracle Database Multilingual Engine (MLE), this gives the
ability to interact with the Oracle Database.

ORACLE

2-60

Chapter 2
Manually Creating RESTful Services Using Javascript

The following example returns a fixed salary hike for the requested employee based on the
original salary:

BEGIN
ORDS.ENABLE_SCHEMA(
p_enabled => TRUE,
p_schema => 'ORDSTEST',
p_url mapping type => 'BASE PATH',
p_url mapping pattern => 'ordstest',
p_auto rest auth => FALSE);
ORDS.DEFINE_MODULE(
p_module name => 'demojssql',
p _base path => '/demojssql/"',
p_items per page => 25,
p_status => 'PUBLISHED',
p_comments => NULL) ;
ORDS.DEFINE_TEMPLATE(
p_module name => 'demojssql',
p_pattern => 'test/:emp id',
p_priority => 0,
p_etag type => 'HASH',
p_etag query => NULL,
p_comments => NULL) ;
ORDS.DEFINE_HANDLER(
p_module name => 'demojssql',
p_pattern => 'test/:emp id',
p_method => 'GET',
p_source type => 'mle/javascript’',
p_items per page => 0,
p mimes allowed => '',
p_comments => NULL,
p_mle env_name => NULL,
p_source =>
q'~
(req, resp) => {
const query = 'select employee id, first name, salary from employees
where employee id = :1';

const options = { fetchInfo:
oracledb.ORACLE NUMBER } } };
const res = session.execute (query,

{ SALARY: { type:

[req.uri parameters.emp id], options);

const 1 raise calc = res.rows[0].SALARY.mul (new OracleNumber (0.15));
resp.content type('application/json');
resp.json({raise: 1 raise calc.toNumber()});

)i
COMMIT;
END;
/

ORACLE 561

Chapter 2
Manually Creating RESTful Services Using Javascript

The preceding handler can be invoked using the following cURL command, assuming that
there is an entry for employee 151:

curl -i -X GET \
'"https://example.com/ords/ordstest/demojssql/test/151"

2.5.4 About Using the Fetch Function

This section describes how to use Oracle Database Multilingual Engine (MLE) fetch function.

JavaScript handlers also have the ability to do HTTP requests through the built in MLE fetch
function. For this, Access Control List (ACL) rules must be defined in Oracle Database.

¢ See Also:
MLE Fetch API polyfill

Example 2-10 ACL Rule in the Database

BEGIN
DBMS NETWORK ACL ADMIN.APPEND HOST ACE(
host => 'mydomain.com',
ace => xsSace_ type(
privilege list => xs$name list('http'),
principal name => 'ORDSTEST',
principal type => xs acl.ptype db

END;

You can create the following handler that gets information from the external service if the
preceding rule is defined in the database :

BEGIN
ORDS.ENABLE SCHEMA (
p_enabled => TRUE,
p_schema => 'ORDSTEST',
p_url mapping type => 'BASE PATH',
p_url mapping pattern => 'ordstest',
p_auto rest auth => FALSE) ;

ORDS.DEFINE MODULE (

p_module name => 'demojsfetch',

p _base path => '/demojsfetch/"',

p_items per page => 25,

p_status => 'PUBLISHED',

p_comments => NULL) ;
ORDS.DEFINE TEMPLATE (

p_module name => 'demojsfetch',

p_pattern => 'test/',

p_priority => 0,

ORACLE 5o

https://oracle-samples.github.io/mle-modules/docs/mle-js-fetch/23c

Chapter 2

Manually Creating RESTful Services Using Javascript

p_etag type => 'HASH',

p_etag query => NULL,

p_comments => NULL) ;
ORDS.DEFINE HANDLER (

p_module name => 'demojsfetch',

p_pattern => 'test/',

p_method => 'GET',

p_source type => 'mle/javascript’',

p_items per page => 0,
p mimes allowed => '',

p_comments => NULL,
p_mle env name => NULL,
p_source =>

q'~
(req, resp) => {

const fetch response = await fetch(
'http://mydomain.com/sample service.json',
{
credentials: "include"
}

)i

if (! fetch response.ok) {

throw Error (*An error occurred: ${fetch response.status}’);

}

const data = await fetch response.json();

resp.json(data);

);
COMMIT;
END;
/

The preceding handler can be invoked using the following cURL command:

curl -i -X GET \ 'https://example.com/ords/ordstest/demojsfetch/test/"’

2.5.5 Referencing MLE Environments

ORACLE

JavaScript handlers can take advantage of the MLE environment objects defined in the
database.

< Note:
Following are the restrictions when you are adding the MLE environments:
e The MLE environment must have simple unquoted names.

e The MLE environment must belong to the enabled schema.

2-63

4

CREATE MLE MODULE IF NOT EXISTS po module LANGUAGE JAVASCRIPT AS

See Also:

CREATE MLE ENV

export function addTwo (item) {
return item+2;

CREATE OR REPLACE MLE ENV

po_env
IMPORTS (
'po_module' MODULE PO MODULE

)
/

BEGIN

ORDS.ENABLE SCHEMA (

p_enabled
p_schema
p_url mapping type

=> TRUE,
=> 'ORDSTEST',
=> 'BASE PATH',

p_url mapping pattern => 'ordstest',

p_auto rest auth

ORDS.DEFINE MODULE (

p_module name =>
p_base path =>
p_items per page =>
p_status =>
p_comments =>
ORDS.DEFINE TEMPLATE (
p_module name =>
p_pattern =>
p_priority =>
p_etag type =>
p_etag query =>
p_comments =>
ORDS.DEFINE HANDLER (
p_module name =>
p_pattern =>
p_method =>
p_source_ type =>

q'~

(req,

p_items per page =>
p mimes_allowed =>

p_comments =>

p_mle env name =>

p_source =>
resp) => {

=> FALSE) ;

'demojsenv’',
'/demojsenv/',
25,
'PUBLISHED',
NULL) ;

'demojsenv’',
'test/',

0,

"HASH',
NULL,

NULL) ;

'demojsenv’',

'test/',

'GET',

'mle/javascript',
0,

T
4

NULL,
"PO_ENV',

const po = await import ('po module');
resp.content type ('text/plain');

resp.

ORACLE

status (200) ;

Chapter 2

Manually Creating RESTful Services Using Javascript

2-64

https://docs.oracle.com/en/database/oracle/oracle-database/23/sqlrf/create-mle-env.html

Chapter 2
About Working with Dates Using Oracle REST Data Services

resp.send (po.addTwo (6) .toString());

);
COMMIT;

END;
/

The preceding handler can be invoked using the following cURL command:

curl -i -X GET \'https://example.com/ords/ordstest/demojsenv/test/"

2.6 About Working with Dates Using Oracle REST Data Services

Oracle REST Data Services enables developers to create REST interfaces to Oracle
Database, Oracle Database 12c JSON Document Store as quickly and easily as possible.
When working with Oracle Database, developers can use the AutoREST feature for tables or
write custom modules using SQL and PL/SQL routines for more complex operations.

Oracle REST Data Services uses the RFC3339 standard for encoding dates in strings.
Typically, the date format used is dd-mmm-yyyy, for example, 15-Jan-2017. Oracle REST Data
Services automatically converts JSON strings in the specified format to Oracle date data types
when performing operations such as inserting or updating values in Oracle Database. When
converting back to JSON strings, Oracle REST Data Services automatically converts Oracle
date data types to the string format.

Note:

Oracle Database supports a date data type while JSON does not support a date data
type.

This section includes the following topics:

* About Datetime Handling with Oracle REST Data Services
e About Setting the Time Zone

2.6.1 About Datetime Handling with Oracle REST Data Services

ORACLE

As data arrives from a REST request, Oracle REST Data Services may parse 1SO 8601 strings
and convert them to the TIMESTAMP data type in Oracle Database. This occurs with AutoREST
(posT and puT) as well as with bind variables in custom modules. Remember that TIMESTAMP
does not support time zone related components, so the DATETIME value is set to the time zone
Oracle REST Data Services uses during the conversion process.

When constructing responses to REST requests, Oracle REST Data Services converts
DATETIME values in Oracle Database to ISO 8601 strings in Zulu. This occurs with AUtoOREST
(GET) and in custom modules that are mapped to SQL queries (GET). In the case of DATE and
TIMESTAMP data types, which do not have time zone related components, the time zone is
assumed to be that in which Oracle REST Data Services is running and the conversion to Zulu
is made from there.

2-65

Chapter 2
About Working with Dates Using Oracle REST Data Services

Here are some general recommendations when working with Oracle REST Data Services for
REST (that is, not APEX):

* Ensure that Oracle REST Data Services uses the appropriate time zone as per the data in
the database (for example, the time zone you want dates going into the database).

* Do not alter NLS settings (that is, the time_zone) mid-stream.

Note that while ISO 8601 strings are mentioned, Oracle REST Data Services actually supports
strings. RFC3339 strings are a conformant subset of ISO 8601 strings. The default format
returned by JSON.stringify(date) is supported.

WARNING:

It is important to keep the time zone that Oracle REST Data Services uses in sync
with the session time zone to prevent issues with implicit data conversion to
TIMESTAMP WITH TIME ZONE Or TIMESTAMP WITH LOCAL TIME ZONE. Oracle REST
Data Services does this automatically by default but developers can change the
session time zone with an ALTER SESSION statement.

See Aslo:

Internet Date/Time Format

2.6.2 About Setting the Time Zone

When Oracle REST Data Services is started, the JVM it runs in obtains and caches the time
zone Oracle REST Data Services uses for various time zone conversions. By default, the time
zone is set to UTC when running ORDS in standalone. This can be overridden by setting the
environment variable JvM_TIMEZONE before running the ords serve command. Of course, the
instructions for changing the time zone vary by the operating system.

If for any reason you do not want to use the same time zone as the OS, it is possible to
override the default using the Java environment variable Duser. timezone. Exactly how that
variable is set depends on whether you are running in standalone mode or in a Java
application server. The following topics show some examples.

Note:

e On Linux platform, if you want to change the timezone in ORDS (from the default
UTC timezone), then you need to set the JvM TIMEZONE environment variable to
the desired timezone and then restart ORDS.

* On Windows platform, if you want to change the timezone in ORDS (from the
default UTC timezone), then you need to set the JAVA OPTIONS variable to the
desired timezone and then restart ORDS.

ORACLE 566

https://www.rfc-editor.org/rfc/rfc3339#section-5.6

Chapter 2
About Working with Dates Using Oracle REST Data Services

Standalone Mode

When running Oracle REST Data Services in standalone mode, it is possible to set Java
environment variables by specifying them as command line options before the -jar option.

Example 2-11 Setting the Duser.timezone Java Environment Variable in Standalone
Mode

The following code example shows how to set the timezone in standalone mode on the
command line.

$ java -Duser.timezone=America/New York -jar ords.war standalone

Java Application Server — Tomcat 8

In a Java application server, Tomcat 8, and possibly earlier and later versions too, it is possible
to set the time zone using the environment variable CATALINA OPTS. The recommended way to
do this is not to modify the CATALINA BASE/bin/catalina.sh directly, but instead to set
environment variables by creating a script named setenv.sh in CATALINA BASE/bin.

Example 2-12 Setting the Duser.timezone Java Environment Variable in a Java
Application Server

The following code example shows the contents of the setenv. sh script for setting the
timezone in a Java Application server — Tomcat 8.

CATALINA TIMEZONE="-Duser.timezone=America/New York"
CATALINA_OPTS=" $CATZ—\LINA_OPTS $CATALINA_TIME ZONE

2.6.3 Exploring the Sample RESTful Services in APEX (Tutorial)

ORACLE

Oracle highly recommends to develop Oracle REST Data Services application using SQL
Developer Web because it supports the most recent Oracle REST Data Services releases, that
is, 3.0.X. APEX provides a tutorial that is useful for learning some basic concepts of REST and
Oracle REST Data Services. However, the tutorial uses the earlier Oracle REST Data Services
releases, that is, 2.0.X. Following are some of the useful tips discussed on how to use the
tutorial:

If your APEX instance is configured to automatically add the sample application and sample
database objects to workspaces, then a sample resource module named: oracle.example.hr
will be visible in the list of Resource Modules. If that resource module is not listed, then you
can click the Reset Sample Data task on the right side of the RESTful Services Page to create
the sample resource module.

1. Click on oracle.example.hr to view the Resource Templates and Resource Handlers
defined within the module. Note how the module has a URI prefix with the value: hr/. This
means that all URIs serviced by this module starts with the characters hr/.

2. Click on the resource template named employees/{id}. Note how the template has a URI
Template with the value: employees/{id}. This means that all URIs starting with hr/
employees/ are serviced by this Resource Template.

The HTTP methods supported by a resource template are listed under the resource
template. In this case, the only supported method is the GET method.

3. Click on the GET Resource Handler for hr/employees/{id} to view its configuration.

2-67

Chapter 2
About Working with Dates Using Oracle REST Data Services

The Source Type for this handler is Query One Row. This means that the resource is
expected to be mapped to a single row in the query result set. The Source for this handler
is:

select * from emp

where empno = :id

Assuming that the empno column is unique, the query should only produce a single result
(or no result at all if no match is found for :id). To try it out, press the Test button. The
following error message should be displayed:

400 - Bad Request - Request path contains unbound parameters: id
If you look at the URI displayed in the browser, it will look something like this:

https://server:port/ords/workspace/hr/employees/{id}

where:

e server is the DNS name of the server where Oracle APEX is deployed

* port is the port the server is listening on

* workspace is the name of the Oracle APEX workspace you are logged into

Note the final part of the URI: hr/employees/{id}. The error message says that this is not
a valid URI, the problem is that you did not substitute in a concrete value for the parameter
named {id}. To fix that, press the browser Back button, then click Set Bind Variables.

4. For the bind variable named :id, enter the value 7369, and press Test.

A new browser window appears displaying the following JSON (JavaScript Object
Notation):

{
"empno":7369,
"ename":"SMITH",
"job":"CLERK",
"mgr":7902,
"hiredate":"1980-12-17T08:00:00Z",
"sal":800,
"deptno":20
}

Note also the URI displayed in the browser for this resource:
https://server:port/ords/workspace/hr/employees/7369
The {id} URI Template parameter is bound to the SQL :id bind variable, and in this case

it has been given the concrete value of 7369, so the query executed by the RESTful
Service becomes:

select * from emp
where empno = 7369

The results of this query are then rendered as JSON as shown above.

ORACLE 568

Chapter 2
About Working with Dates Using Oracle REST Data Services

Tip:

Reading JSON can be difficult. To make it easier to read, install a browser
extension that pretty prints the JSON. For example, Mozilla Firefox and Google
Chrome both have extensions:

« JSONView
¢ JSON Formatter

Now see what happens when you enter the URI of a resource that does not exist.

5. Onthe Set Bind Variables page, change the value of :id from 7369 to 1111, and press
Test.

As before, a new window pops up, but instead of displaying a JSON resource, it displays
an error message reading:

404 - Not Found

This is the expected behavior of this handler: when a value is bound to :id that does not
exist in the emp table, the query produces no results and consequently the standard HTTP
Status Code of 404 - Not Found is returned.

So, you have a service that will provide information about individual employees, if you
know the ID of an employee, but how do you discover the set of valid employee ids?

6. Press Cancel to return to the previous page displaying the contents of the Resource
Module.

7. Click on the template named employees/.

The following steps look at the resource it generates, and later text will help you
understand its logic.

8. Click on the GET handler beneath employees/, and click Test.

A resource similar to the following is displayed (If you haven't already done so, now would
be a good time to install a JSON viewer extension in your browser to make it easier to view
the output):

{"next":
{"Sref":
"https://server:port/ords/workspace/hr/employees/?page=1"},
"items": [
{
"uri":
{"Sref":
"https://server:port/ords/workspace/hr/employees/7369"},
"empno": 7369,
"ename": "SMITH"
}I
{
"uri":
{"Sref":
"https://server:port/ords/workspace/hr/employees/7499"},
"empno": 7499,
"ename": "ALLEN"
}I

ORACLE 569

ORACLE

Chapter 2
About Working with Dates Using Oracle REST Data Services

{

"uri":
{"Sref":
"https://server:port/ords/workspace/hr/employees/7782"},

"empno": 7782,
"ename": "CLARK"

}

]
}

This JSON document contains a number of things worth noting:

e The first element in the document is named next and is a URI pointing to the next
page of results. (An explanation of how paginated results are supported appears in
later steps)

e The second element is named items and contains a number of child elements. Each
child element corresponds to a row in the result set generated by the query.

e The first element of each child element is named uri and contains a URI pointing to
the service that provides details of each employee. Note how the latter part of the URI
matches the URI Template: employees/{id}. In other words, if a client accesses any of
these URIs, the request will be serviced by the employees/{id} RESTful service
previously discussed.

So, this service addresses the problem of identifying valid employee IDs by generating a
resource that lists all valid employee resources. The key thing to realize here is that it does
not do this by just listing the ID value by itself and expecting the client to be able to take
the ID and combine it with prior knowledge of the employees/{id} service to produce an
employee URI; instead, it lists the URIs of each employee.

Because the list of valid employees may be large, the service also breaks the list into
smaller pages, and again uses a URI to tell the client where to find the next page in the
results.

To see at how this service is implemented, continue with the next steps.
Press the Back button in your browser to return to the GET handler definition.

Note the Source Type is Query, this is the default Source Type, and indicates that the
resource can contain zero or more results. The Pagination Size is 7, which means that
there will be seven items on each page of the results. Finally, the Source for the handler
looks like this:

select empno "$uri", empno, ename from (
select emp.*,
row number () over (order by empno) rn
from emp
) tmp
where
rn between :row offset and :row count

In this query:

e The first line states that you want to return three columns. The first column is the
employee id: empno, but aliased to a column name of Suri (to be explained later), the
second column is again the employee ID, and the third column is the employee name,
ename.

e Columns in result sets whose first character is $ (dollar sign) are given special
treatment. They are assumed to denote columns that must be transformed into URIs,

2-70

ORACLE

10.

11.

Chapter 2
About Working with Dates Using Oracle REST Data Services

and these are called Hyperlink Columns. Thus, naming columns with a leading s is a
way to generate hyperlinks in resources.

When a Hyperlink Column is encountered, its value is prepended with the URI of the
resource in which the column is being rendered, to produce a new URI. For example,
recall that the URI of this service is https://server:port/ords/workspace/hr/
employees/. If the value of empno in the first row produced by the this service's query is
7369, then the value of suri becomes: https://server:port/ords/workspace/hr/
employees/7369.

* JSON does not have a URI data type, so a convention is needed to make it clear to
clients that a particular value represents a URI. Oracle REST Data Services uses the
JSON Reference proposal, which states that any JSON object containing a member
named $ref, and whose value is a string, is a URI. Thus, the column: $uri and its
value: https://server:port/ords/workspace/hr/employees/7369 is transformed to
the following JSON object:

{"uri":
{"Sref":
"https://server:port/ords/workspace/hr/employees/7369"

}
}

* The inner query uses the row number () analytical function to count the number of rows
in the result set, and the outer WHERE clause constrains the result set to only return
rows falling within the desired page of results. Oracle REST Data Services defines two
implicit bind parameters, :row offset and :row count, that always contain the
indicies of the first and last rows that should be returned in a given page's results.

For example, if the current page is the first page and the pagination size is 7, then the
value of :row offset will be 1 and the value of :row count will be 7.

To see a simpler way to do both hyperlinks and paged results, continue with the following
steps.

Click on the GET handler of the employeesfeed/ resource template.

Note that the Source Type of this handler is Feed and Pagination Size is 25.
Change the pagination size to 7, and click Apply Changes.

The Source of the handler is just the following:

select empno, ename from emp
order by deptno, ename

As you can see, the query is much simpler than the previous example; however, if you click
Test, you will see a result that is very similar to the result produced by the previous
example.

e The Feed Source Type is an enhanced version of the Query Source Type that
automatically assumes the first column in a result set should be turned into a hyperlink,
eliminating the need to alias columns with a name starting with $. In this example, the
empno column is automatically transformed into a hyperlink by the Feed Source Type.

e This example demonstrates the ability of Oracle REST Data Services to automatically
paginate result sets if a Pagination Size of greater than zero is defined, and the query
does not explicitly dereference the :row offset or :row count bind parameters.
Because both these conditions hold true for this example, Oracle REST Data Services
enhances the query, wrapping it in clauses to count and constrain the number and
offset of rows returned. Note that this ability to automatically paginate results also
applies to the Query Source Type.

2-71

Chapter 2
Creating RESTful Web Services Using Database Actions

See Also:

JSON Reference

2.7 Creating RESTful Web Services Using Database Actions

You can create RESTful web services using the Modules, Templates and Handlers pages
available in Database Actions.

¢ See Also:
Creating RESTful Web Services

2.8 Configuring Secure Access to RESTful Services

This section describes how to configure secure access to RESTful Services

RESTful APIs consist of resources, each resource having a unique URI. A set of resources can
be protected by a privilege. A privilege defines the set of roles, at least one of which an
authenticated user must possess to access a resource protected by a privilege or can be
provided as a scope in a valid JWT bearer token.

Configuring a resource to be protected by a particular privilege requires creating a privilege
mapping. A privilege mapping defines a set of patterns that identifies the resources that a
privilege protects.

Topics:

* Authentication

* About Privileges for Accessing Resources

* About Users and Roles for Accessing Resources
* About the File-Based User Repository

e Tutorial: Protecting and Accessing Resources

2.8.1 Authentication

Users can be authenticated through first party cookie-based authentication or third party OAuth
2.0-based authentication

Topics:
* First Party Cookie-Based Authentication
e Third Party OAuth 2.0-Based Authentication

2.8.1.1 First Party Cookie-Based Authentication

A first party is the author of a RESTful API. A first party application is a web application
deployed on the same web origin as the RESTful API. A first party application is able to

ORACLE 2-72

https://docs.oracle.com/en/database/oracle/sql-developer-web/21.4/sdweb/creating-restful-services.html

Chapter 2
Configuring Secure Access to RESTful Services

authenticate and authorize itself to the RESTful API using the same cookie session that the
web application is using. The first party application has full access to the RESTful API.

2.8.1.2 Third Party OAuth 2.0-Based Authentication

A third party is any party other than the author of a RESTful API. A third party application
cannot be trusted in the same way as a first party application; therefore, there must be a
mediated means to selectively grant the third party application limited access to the RESTful
API.

The OAuth 2.0 protocol defines flows to provide conditional and limited access to a RESTful
API. In short, the third party application must first be registered with the first party, and then the
first party (or an end user of the first party RESTful service) approves the third party application
for limited access to the RESTful API, by issuing the third party application a short-lived access
token.

" See Also:

The OAuth 2.0 Authorization Framework

2.8.1.2.1 Two-Legged and Three-Legged OAuth Flows

Some flows in OAuth are defined as two-legged and others as three-legged.

Two-legged OAuth flows involve two parties: the party calling the RESTful API (the third party
application), and the party providing the RESTful API. Two-legged flows are used in server to
server interactions where an end user does not need to approve access to the RESTful API. In
OAuth 2.0 this flow is called the client credentials flow. It is most typically used in business to
business scenarios.

Three-legged OAuth flows involve three parties: the party calling the RESTful API, the party
providing the RESTful API, and an end user party that owns or manages the data to which the
RESTful API provides access. Three-legged flows are used in client to server interactions
where an end user must approve access to the RESTful API. In OAuth 2.0, the authorization
code flow and the implicit flow are three-legged flows. These flows are typically used in
business to consumer scenarios.

For resources protected by three-legged flows, when an OAuth client is registering with a
RESTful API, it can safely indicate the protected resources that it requires access to, and the
end user has the final approval decision about whether to grant the client access. However, for
resources protected by two-legged flows, the owner of the RESTful APl must approve of which
resources each client is authorized to access.

Additionally, ORDS supports integration with ldentity Providers that can issue JWT access
tokens to the party calling the RESTful API for the purposes of accessing the RESTful API. A
JWT Profile can be created for a REST-Enabled Schema to define how to validate JWT bearer
tokens.

2.8.2 About Privileges for Accessing Resources

A privilege for accessing resources consists of the following data:

* Name: The unique identifier for the Privilege. This value is required.

ORACLE 573

Chapter 2
Configuring Secure Access to RESTful Services

* Label: The name of the privilege presented to an end user when the user is being asked to
approve access to a privilege when using OAuth. This value is required if the privilege is
used with a three-legged OAuth flow.

» Description: A description of the purpose of the privilege. It is also presented to the end
user when the user is being asked to approve access to a privilege. This value is required
if the privilege is used with a three-legged OAuth flow.

* Roles: A set of role names associated with the privilege. An authenticated party must have
at least one of the specified roles in order to be authorised to access resources protected
by the privilege. A value is required, although it may be an empty set, which indicates that
a user must be authenticated but that no specific role is required to access the privilege.

For two-legged OAuth flows, the third party application (called a client in OAuth terminology)
must possess at least one of the required roles.

For three-legged OAuth flows, the end user that approves the access request from the third
party application must possess at least one of the required roles.

Related Topics
e Two-Legged and Three-Legged OAuth Flows

2.8.3 About Users and Roles for Accessing Resources

A privilege enumerates a set of roles, and users can possess roles. Oracle REST Data
Services delegates the task of user management to the application server on which Oracle
REST Data Services is deployed.

Oracle REST Data Services is able to authenticate users defined and managed by the
application server and to identify the roles and groups to which the authenticated user belongs.
The user responsible for deploying Oracle REST Data Services on an application server must
also configure the user repository on the application server.

Because an application server can be configured in many ways to define a user repository or
integrate with an existing user repository, this document cannot describe how to configure a
user repository in an application server. See the application server documentation for detailed
information.

2.8.4 About the File-Based User Repository

ORACLE

Oracle REST Data Services provides a a simple file-based user repository mechanism.
However, this user repaository is only intended for the purposes of demonstration and testing,
and is not supported for production use.

See the command-line help for the user command for more information on how to create a
user in this repository:

ords config user --help

Format:

ords config user add <name> <roles>

Example:

ords config user add ords dev "SQL Developer"
Arguments:

e <user> is the user ID of the user.

2-74

Chapter 2
Configuring Secure Access to RESTful Services

* <roles> is the list of roles that the user has. Use a comma to separate multiple roles in the
list.

Related Topics

e Tutorial: Protecting and Accessing Resources

2.8.5 Tutorial: Protecting and Accessing Resources

This tutorial demonstrates creating a privilege to protect a set of resources, and accessing the
protected resource with the following OAuth features:

e Client credentials
* Authorization code
* Implicit flow

It also demonstrates access the resource using first-party cookie-based authentication.

Topics:
e OAuth Flows and When to Use Each
e Assumptions for This Tutorial

e Steps for This Tutorial

2.8.5.1 OAuth Flows and When to Use Each

This topic explains when to use various OAuth flow features.

Use first party cookie-based authentication when accessing a RESTful API from a web
application hosted on the same origin as the RESTful API.

Use the authorization code flow when you need to permit third party web applications to
access a RESTful API and the third party application has its own web server where it can keep
its client credentials secure. This is the typical situation for most web applications, and it
provides the most security and best user experience, because the third party application can
use refresh tokens to extend the life of a user session without having to prompt the user to
reauthorize the application.

Use the implicit flow when the third party application does not have a web server where it can
keep its credentials secure. This flow is useful for third party single-page-based applications.
Because refresh tokens cannot be issued in the Implicit flow, the user will be prompted more
frequently to authorize the application.

Native mobile or desktop applications should use the authorization code or implicit flows. They
will need to display the sign in and authorization prompts in a web browser view, and capture
the access token from the web browser view at the end of the authorization process.

Use the client credentials flow when you need to give a third party application direct access to
a RESTful API without requiring a user to approve access to the data managed by the RESTful
API. The third party application must be a server-based application that can keep its
credentials secret. The client credentials flow must not be used with a native application,
because the client credentials can always be discovered in the native executable.

2.8.5.2 Assumptions for This Tutorial

This tutorial assumes the following:

ORACLE 5 7e

Chapter 2
Configuring Secure Access to RESTful Services

Oracle REST Data Services is deployed at the following URL: https://example.com/
ords/

A database schema named ORDSTEST has been enabled for use with Oracle REST Data
Services, and its RESTful APIs are exposed under: https://example.com/ords/
ordstest/

The ORDSTEST schema contains a database table named EMP, which was created as
follows:

create table emp (

empno number (4,0),

ename varchar2 (10 byte),
job varchar2 (9 byte),
mgr number (4,0),
hiredate date,

sal number (7,2),

comm number (7,2),

deptno number (2, 0),
constraint pk emp primary key (empno)

)i

The resources to be protected are located under: https://example.com/ords/ordstest/
examples/employees/

2.8.5.3 Steps for This Tutorial

Follow these steps to protect and access a set of resources.

ORACLE

1.

Enable the schema. Connect to the ORDSTEST schema and execute the following
PL/SQL statements;

begin
ords.enable schema;
commit;

end;

Create a resource. Connect to the ORDSTEST schema and execute the following
PL/SQL statements:

begin
ords.create service (
p module name => 'examples.employees' ,
p _base path => '/examples/employees/',
p pattern => '.',
p_items per page => 7,
p_source => 'select * from emp order by empno desc');
commit;
end;

The preceding code creates the /examples/employees/ resource, which you will protect
with a privilege in a later step.
You can verify the resource by executing following cURL command:

curl -1 https://example.com/ords/ordstest/examples/employees/

The result should be similar to the following (edited for readability):

Content-Type: application/json
Transfer-Encoding: chunked

{

"items":

2-76

ORACLE

Chapter 2
Configuring Secure Access to RESTful Services

{"empno":7934, "ename" : "MILLER", "job" : "CLERK", "mgr": 7782, "hiredate":"1982-01-23T00:00:
00z","sal":1300, "comm":null, "deptno":10},

] r
"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":
[
{"rel":"self", "href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"describedby", "href":"https://example.com/ords/ordstest/metadata-catalog/
examples/employees/"},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"next", "href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
1
}

Create a privilege. While connected to the ORDSTEST schema, execute the following
PL/SQL statements:

begin
ords.create role('HR Administrator');

ords.create privilege (
p_name => 'example.employees',
p_role name => 'HR Administrator',
p_label => 'Employee Data',
p_description => 'Provide access to employee HR data');
commit;
end;

The preceding code creates a role and a privilege, which belong to the ORDSTEST
schema.
e The role name must be unique and must contain printable characters only.

e The privilege name must be unique and must conform to the syntax specified by the
OAuth 2.0 specification, section 3.3 for scope names.

* Because you will want to use this privilege with the three-legged authorization code
and implicit flows, you must provide a label and a description for the privilege. The
label and description are presented to the end user during the approval phase of three-
legged flows.

e The values should be plain text identifying the name and purpose of the privilege.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGES view.

select id,name from user ords privileges where name = 'example.employees';

The result should be similar to the following:

ID
NAME

10260 example.employees

2-77

ORACLE

Chapter 2
Configuring Secure Access to RESTful Services

The ID value will vary from database to database, but the NAME value should be as
shown.

Associate the privilege with resources. While connected to the ORDSTEST schema,
execute the following PL/SQL statements:

begin
ords.create privilege mapping (
p privilege name => 'example.employees',
p_pattern => '/examples/employees/*');
commit;
end;

The preceding code associates the example.employees privilege with the resource
pattern /examples/employees/.

You can verify that the privilege was created correctly by querying the
USER_ORDS_PRIVILEGE_MAPPINGS view.

select privilege id, name, pattern from user ords privilege mappings;

The result should be similar to the following:

PRIVILEGE ID NAME PATTERN

10260 example.employees /examples/employees/*

The PRIVILEGE_ID value will vary from database to database, but the NAME and
PATTERN values should be as shown.

You can confirm that the /examples/employees/ resource is now protected by the
example.employees privilege by executing the following cURL command:

curl -1 https://example.com/ords/ordstest/examples/employees/

The result should be similar to the following (reformatted for readability):

HTTP/1.1 401 Unauthorized
Content-Type: text/html
Transfer-Encoding: chunked

<!DOCTYPE html>
<html>

</html>
You can confirm that the protected resource can be accessed through first party
authentication, as follows.

a. Create an end user. Create a test user with the HR Administrator role, required to
access the examples.employees privilege using the file-based user repository. Execute
the following command at a command prompt

ords config user add hr admin "HR Administrator"

When prompted for the password, enter and confirm it.
b. Sign in as the end user. Enter the following URL in a web browser:

https://example.com/ords/ordstest/examples/employees/

On the page indicating that access is denied, click the link to sign in.

Enter the credentials registered for the HR_ADMIN user, and click Sign In.

2-78

ORACLE

Chapter 2
Configuring Secure Access to RESTful Services

Confirm that the page redirects to https://example.com/ords/ordstest/examples/
employees/ and that the JSON document is displayed.

Register the OAuth client. While connected to the ORDSTEST schema, execute the
following PL/SQL statements:
begin
oauth.create client(
p _name => 'Client Credentials Example',
p_grant type => 'client credentials',
p _privilege names => 'example.employees',
p_support email => 'support@example.com');
commit;
end;

The preceding code registers a client named Client Credentials Example, to access the
examples.employees privilege using the client credentials OAuth flow.

You can verify that the client was registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select client id,client secret from user ords clients where name = 'Client
Credentials Example';

The result should be similar to the following:

CLIENT ID CLIENT SECRET

0 _CZBVKEMN23tTB-IddQsQ.. 4BJXceufbmTki-vruYNLIg. .

The CLIENT_ID and CLIENT_SECRET values represent the secret credentials for the
OAuth client. These values must be noted and kept secure. You can think of them as the
userid and password for the client application.

Grant the OAuth client a required role. While connected to the ORDSTEST schema,
execute the following PL/SQL statements:
begin
oauth.grant client role(
'Client Credentials Example',
'"HR Administrator');
commit;
end;

The preceding code registers a client named Client Credentials Example, to access the
examples.employees privilege using the client credentials OAuth flow.

You can verify that the client was granted the role by executing the following SQL
statement:

select * from user ords client roles where client name = 'Client Credentials
Example';
The result should be similar to the following:

CLIENT ID CLIENT NAME ROLE_ID ROLE_NAME

10286 Client Credentials Example 10222 HR Administrator
Obtain an OAuth access token using client credentials.

The OAuth protocol specifies the HTTP request that must be used to create an access
token using the client credentials flow[rfc6749-4.4.].

2-79

Chapter 2
Configuring Secure Access to RESTful Services

The request must be made to a well known URL, called the token endpoint. For Oracle
REST Data Services the path of the token endpoint is always oauth/token, relative to the
root path of the schema being accessed. The token endpoint for this example is:

https://example.com/ords/ordstest/oauth/token

Execute the following cURL command:

curl -i --user clientId:clientSecret --data "grant type=client credentials" https://
example.com/ords/ordstest/oauth/token

In the preceding command, replace clientId with the CLIENT_ID value in
USER_ORDS_CLIENTS for Client Credentials Example, and replace clientSecret
with the CLIENT_SECRET value shown in USER_ORDS_CLIENTS for Client
Credentials Example. The output should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{

"access token": "2YotnFZFEjrlzCsicMWpAA",
"token type": "bearer",

"expires in":3600

}

In the preceding output, the access token is of type bearer, and the value is specified by
the access_token field. This value will be different for every request. The expires in value
indicates the number of seconds until the access token expires; in this case the token will
expire in one hour (3600 seconds).

8. Access a protected resource using the access token. Execute the following cURL
command:

curl -i -H"Authorization: Bearer accessToken" https://example.com/ords/ordstest/
examples/employees/

In the preceding command, replace accessToken with the value of the access_token field
shown in the preceding step. The output should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

{"empno":7934, "ename" : "MILLER", "job" : "CLERK", "mgr":7782, "hiredate":"1982-01-23T00:00:
00z","sal":1300, "comm":null, "deptno":10},

] r
"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":
[
{"rel":"self", "href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"describedby", "href":"https://example.com/ords/ordstest/metadata-catalog/
examples/employees/"},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"next", "href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}

ORACLE 580

ORACLE

10.

Chapter 2
Configuring Secure Access to RESTful Services

}

Register the client for authorization code. While connected to the ORDSTEST schema,
execute the following PL/SQL statements:

begin
oauth.create client(
p_name => 'Authorization Code Example',
p_grant type => 'authorization code',
p_owner => 'Example Inc.',
p_description => 'Sample for demonstrating Authorization Code Flow',
p_redirect uri => 'http://example.org/auth/code/example/",
p_support email => 'support@example.org',
p_support uri => 'http://example.org/support’,
p_privilege names => 'example.employees'
)i
commit;
end;

The preceding code registers a client named Authorization Code Example, to access the
examples.employees privilege using the authorization code OAuth flow. For an actual
application, a URI must be provided to redirect back to with the authorization code, and a
valid support email address must be supplied; however, this example uses fictitious data
and the sample example.org web service.

You can verify that the client is now registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select id, client id, client secret from user ords clients where name =
'Authorization Code Example';

The result should be similar to the following:

ID CLIENT ID CLIENT SECRET

10060 IGHs04BRgrBC3Jwg0Vx YQ.. GefAsWv8FJAMSB30Eg61Kw. .

To grant access to the privilege, an end user must approve access. The CLIENT_ID and
CLIENT_SECRET values represent the secret credentials for the OAuth client. These
values must be noted and kept secure. You can think of them as the userid and password
for the client application.

Obtain an OAuth access token using an authorization code. This major step involves
several substeps. (You must have already created the HR_ADMIN end user in a previous
step.)

a. Obtain an OAuth authorization code.

The end user must be prompted (via a web page) to sign in and approve access to the
third party application. The third party application initiates this process by directing the
user to the OAuth Authorization Endpoint. For Oracle REST Data Services, the path of
the authorization endpoint is always oauth/auth, relative to the root path of the
schema being accessed. The token endpoint for this example is:

https://example.com/ords/ordstest/oauth/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must include
certain parameters in the query string:

The response_type parameter must have a value of code.

2-81

ORACLE

Chapter 2
Configuring Secure Access to RESTful Services

The client id parameter must contain the value of the applications client identifier.
This is the client id value determined in a previous step.

The state parameter must contain a unique unguessable value. This value serves two
purposes: it provides a way for the client application to uniquely identify each
authorization request (and therefore associate any application specific state with the
value; think of the value as the application's own session identifier); and it provides a
means for the client application to protect against Cross Site Request Forgery (CSRF)
attacks. The state value will be returned in the redirect URI at the end of the
authorization process. The client must confirm that the value belongs to an
authorization request initiated by the application. If the client cannot validate the state
value, then it should assume that the authorization request was initiated by an attacker
and ignore the redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://example.com/ords/ordstest/oauth/auth?
response type=code&client id=cliendIdé&state=uniqueRandomValue

In the preceding URI, replace clientId with the value of the CLIENT_ID column that
was noted previously, and replace uniqueRandromValue with a unique unguessable
value. The client application must remember this value and verify it against the state
parameter returned as part of the redirect at the end of the authorization flow.

If the client id is recognized, then a sign in prompt is displayed. Enter the credentials
of the HR_ADMIN end user, and click Sign In; and on the next page click Approve to
cause a redirect to redirect URI specified when the client was registered. The redirect
URI will include the authorization code in the query string portion of the URI. It will also
include the same state parameter value that the client provided at the start of the flow.
The redirect URI will look like the following:

http://example.org/auth/code/example/?
code=D5doeTSIDgbxWiWkP19UpA. . &state=uniqueRandomValue

The client application must verify the value of the state parameter and then note the
value of the code parameter, which will be used in to obtain an access token.

Obtain an OAuth access token.

After the third party application has an authorization code, it must exchange it for an
access token. The third party application's server must make a HTTPS request to the
Token Endpoint. You can mimic the server making this request by using a cURL
command as in the following example:

curl --user clientId:clientSecret --data
"grant type=authorization code&code=authorizationCode" https://example.com/ords/
ordstest/oauth/token

In the preceding command, replace clientId with the value of the CLIENT_ID shown
in USER_ORDS_CLIENTS for Authorization Code Example, replace clientSecret
with the value of the CLIENT_SECRET shown in USER_ORDS_CLIENTS for
Authorization Code Example, and replace authorizationCode with the value of the
authorization code noted in a previous step (the value of the code parameter).

The result should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{
"access _token": "psIGSSEXSBQyibOhozNEdw..",

2-82

ORACLE

Chapter 2
Configuring Secure Access to RESTful Services

"token type": "bearer",

"expires in":3600,

"refresh token": "aRMg7AdWPuDvnieHucfV3g.."
}

In the preceding result, the access token is specified by the access_token field, and a
refresh token is specified by the refresh token field. This refresh token value can be
used to extend the user session without requiring the user to reauthorize the third party
application.

Access a protected resource using the access token.

After the third party application has obtained an OAuth access token, it can use that
access token to access the protected /examples/employees/ resource:

curl -1 -H"Authorization: Bearer accessToken" https://example.com/ords/ordstest/
examples/employees/

In the preceding command, accessToken with the value of the access_token field
shown in a previous step.

The result should be similar to the following:

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

{"empno":7934, "ename" : "MILLER", "job" : "CLERK", "mgr":7782, "hiredate":"1982-01-23T00
:00:002","sal":1300, "comm" :null, "deptno":10},

]7
"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":
[
{"rel":"self","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"describedby", "href":"https://example.com/ords/ordstest/metadata-
catalog/examples/employees/"},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/
employees/"},
{"rel":"next", "href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
1
}

Extend the session using a refresh token.

At any time, the third party application can use the refresh token value to generate a
new access token with a new lifetime. This enables the third party application to
extend the user session at will. To do this, the third party application's server must
make an HTTPS request to the Token Endpoint. You can mimic the server making this
request by using a cURL command as in the following example:

curl --user clientId:clientSecret --data
“grant_type=refresh tokens&refresh token=refreshToken" https://example.com/ords/
ordstest/oauth/token

2-83

ORACLE

Chapter 2
Configuring Secure Access to RESTful Services

In the preceding command, replace clientId with the value of the CLIENT_ID shown
in USER_ORDS_CLIENTS for Client Credentials Client, replace clientSecret
with the value of the CLIENT_SECRET shown in USER_ORDS_CLIENTS for Client
Credentials Client, and replace refreshToken with the value of refresh token
obtained in a previous step.

The result should be similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json

{

"access token": "psIGSSEXSBQyibOhozNEdw..",
"token type": "bearer",

"refresh token": "aRMg7AdWPuDvnieHucfV3g..",
"expires in": 3600

}

In the preceding result, the access token is specified by the access token field, a new
refresh token is specified by the refresh_token field. This refresh token value can be
used to extend the user session without requiring the user to reauthorize the third party
application. (Note that the previous access token and refresh token are now invalid,;
the new values must be used instead.)

11. Register the client for implicit flow. While connected to the ORDSTEST schema,

execute the following PL/SQL statements:

begin
oauth.create client(
p name => 'Implicit Example',
p_grant type => 'implicit',
p _owner => 'Example Inc.',
p description => 'Sample for demonstrating Implicit Flow',
p_redirect uri => 'http://example.org/implicit/example/',
p_support email => 'support@example.org',
p_support uri => 'http://example.org/support',
p _privilege names => 'example.employees'
)i
commit;
end;

The preceding code registers a client named Implicit Example to access the
examples.employees privilege using the implicit OAuth flow. For an actual application, a
URI must be provided to redirect back to with the authorization code, and a valid support
email address must be supplied; however, this example uses fictitious data and the sample
example.org web service.

You can verify that the client is now registered and has requested access to the
examples.employees privilege by executing the following SQL statement:

select id, client id, client secret from user ords clients where name = 'Implicit
Example';

The result should be similar to the following:

ID CLIENT ID CLIENT SECRET

10062 7Qz--bNJpFpv8gsfNQpSI1A. .

To grant access to the privilege, an end user must approve access.

2-84

ORACLE

12.

13.

Chapter 2
Configuring Secure Access to RESTful Services

Obtain an OAuth access token using implicit flow. (You must have already created the
HR_ADMIN end user in a previous step.)

The end user must be prompted (via a web page) to sign in and approve access to the
third party application. The third party application initiates this process by directing the user
to the OAuth Authorization Endpoint. For Oracle REST Data Services, the path of the
authorization endpoint is always oauth/auth, relative to the root path of the schema being
accessed. The token endpoint for this example is:

https://example.com/ords/ordstest/oauth/auth

The OAuth 2.0 protocol specifies that the Authorization request URI must include certain
parameters in the query string:

The response_type parameter must have a value of token.

The client id parameter must contain the value of the applications client identifier. This is
the client id value determined in a previous step.

The state parameter must contain a unique unguessable value. This value serves two
purposes: it provides a way for the client application to uniquely identify each authorization
request (and therefore associate any application specific state with the value; think of the
value as the application's own session identifier); and it provides a means for the client
application to protect against Cross Site Request Forgery (CSRF) attacks. The state
value will be returned in the redirect URI at the end of the authorization process. The client
must confirm that the value belongs to an authorization request initiated by the application.
If the client cannot validate the state value, then it should assume that the authorization
request was initiated by an attacker and ignore the redirect.

To initiate the Authorization request enter the following URL in a web browser:

https://example.com/ords/ordstest/oauth/auth?
response_type=token&client id=cliendIdé&state=uniqueRandomValue

In the preceding URI, replace clientId with the value of the CLIENT_ID column that was
noted previously, and replace uniqueRandromValue with a unique unguessable value. The
client application must remember this value and verify it against the state parameter
returned as part of the redirect at the end of the authorization flow.

If the client id is recognized, then a sign in prompt is displayed. Enter the credentials of
the HR_ADMIN end user, and click Sign In; and on the next page click Approve to cause a
redirect to redirect URI specified when the client was registered. The redirect URI will
include the access token in the query string portion of the URI. It will also include the same
state parameter value that the client provided at the start of the flow. The redirect URI will
look like the following:

http://example.org/auth/code/example/
#access_token=D5doeTSIDgbxWiWkP19UpA. . &type=bearer&expires in=3600&state=uniqueRandom
Value

The client application must verify the value of the state parameter and then note the value
of the access token.

Access a protected resource using an access token. Execute the following cURL
command:

curl -1 -H "Authorization: Bearer accessToken" https://example.com/ords/ordstest/
examples/employees/

In the preceding command, replace accessToken with the value of the access_token field
shown in the preceding step. The output should be similar to the following:

2-85

Chapter 2
JWT Bearer Token Authentication and Authorization Using JWT Profile

Content-Type: application/json
Transfer-Encoding: chunked

{
"items":

[

{"empno":7934, "ename" : "MILLER", "job" : "CLERK", "mgr": 7782, "hiredate":"1982-01-23T00:00:
00z","sal":1300, "comm":null, "deptno":10},

] r
"hasMore":true,
"limit":7,
"offset":0,
"count":7,
"links":
[
{"rel":"self", "href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"describedby", "href":"https://example.com/ords/ordstest/metadata-catalog/
examples/employees/"},
{"rel":"first","href":"https://example.com/ords/ordstest/examples/employees/"},
{"rel":"next", "href":"https://example.com/ords/ordstest/examples/employees/?
offset=7"}
]
}

Related Topics
e Using the Oracle REST Data Services PL/SQL API

¢ See Also:

Managing OAuth Clients

2.9 JWT Bearer Token Authentication and Authorization Using
JWT Profile

ORACLE

ORDS release 23.3 introduces support for JISON Web Token (JWT). JWT bearer tokens
enable the ORDS developers to delegate authentication and authorization to any OAuth2-
compliant Identity Provider to issue a JWT access token that ORDS can validate to provide
access to ORDS protected resources.

ORDS acts as a resource server in a typical OpenlID connect or OAuth2 flow, making it
convenient for the developers to access the ORDS APIs from their web applications.

You can create a JWT Profile for any REST-Enabled schema to provide ORDS with a
mechanism to validate JWT bearer tokens. If a JWT bearer token is validated, then ORDS
accepts the following:

e The JWT subject claim as the authenticated user making the request

e The JWT scope claims as the REST-Enabled schemas ORDS privileges that the user has
consented to the application using the privileges on their behalf

Topics:
e About JSON Web Tokens (JWTs)

2-86

ORACLE

Chapter 2
JWT Bearer Token Authentication and Authorization Using JWT Profile

* Prerequisites for JWT Authentication

e Creating an ORDS JWT Profile

e JWT Identity Provider Details

e Making Requests to ORDS Using a JWT Bearer Token

2.9.1 About JSON Web Tokens (JWTs)

This section introduces you to the JSON Web Tokens.

A JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be
transferred between two parties. The claims in a JWT are encoded as a JSON object. ORDS
supports the use of any OAuth2-compliant identity providers such as, OCI IAM with Identity
Domains, Oracle Identity Cloud Service (IDCS), AuthO, and Okta. If a JWT is required to
access a resource, ORDS validates the JWT using a corresponding public verification key
provided by the authorization server.

A JWT comprises of the following:

* A header, that identifies the type of token and the cryptographic algorithm used to generate
the signature.

— The header is required to contain the following reserved claims.

*

*

Note:

A claim is a key value pair, where the key is the name of the claim.

alg (algorithm)
kid (key id)

— The header can optionally contain the following reserved claims that ORDS takes into
account

*

*

x5t (x.509 certificate thumbprint)

typ (type)

— The header can also contain custom claims with user-defined names.

* A payload containing claims about the identity of the end user, and the properties of the

JWT.

— A payload is required to contain the following reserved names of the claims:

*

*

*

*

*

sub (subject)
aud (audience)
iss (issuer)
iat (issued at)

exp (expiration time)

— The payload can optionally contain the following reserved claims that ORDS takes into
account

*

*

scope Of scp

nbf (not before)

2-87

Chapter 2
JWT Bearer Token Authentication and Authorization Using JWT Profile

A payload can also contain custom claims with user-defined names

« A signature, to validate the authenticity of the JWT (derived by base64 encoding the
header and the payload).
When using JWTs to control access to the target schema APIs or resources, the JWT
Profile in the REST-Enabled schema specifies that the reserved claims in the payload of
the JWT must have particular values before ORDS considers the JWT to be valid.

ORDS only accepts the following:

alg (algorithm) values of RS256, RS384 and RS512

kid (key id) value that can be matched to a corresponding public verification key
x5t (x.509 certificate thumbprint) if present to a corresponding public verification key
typ (type) if present, requires the value to be JuT

aud (audience) that matches the target schemas JWT Profile audience

iss (issuer) that matches the target schema JWT Profile issuer

iat (issued at) identifies the time when the JWT was issued and is not be accepted
before this time. This claim is used to determine the age of the JWT and enforce the
JWT Profile allowed age if it is set.

exp (expiration time) identifies the expiration time when or after which the JWT is not
accepted for processing.

nbf (not before) if present, identifies the time before which the JWT is not accepted for
processing.

When a JWT is validated and the payload of JWT contains the scope claim, the ORDS
privilege name protecting the resource is verified as being provided in the scope claim before
processing.

2.9.2 Prerequisites for JWT Authentication

This section lists the prerequisites for JIWT authentication.

Before ORDS can accept authentication and authorization using JWTs:

e An OAuth2-compliant identity provider (for example, OCI IAM with Identity Domains,
Oracle Identity Cloud Service (IDCS), AuthO) must have already been set up to issue JWTs
for users who are allowed to access the ORDS resources.

e If you want to use custom claims in authorization policies, the identity provider must be set
up to add the custom claims to the JWTs that it issues.

¢ See Also:

Managing Applications
Oracle Identity Cloud Service

AuthO, an identity platform to manage access to your applications.

To validate a JWT using a corresponding public verification key provided by the issuing identity
provider:

ORACLE

2-88

https://docs.oracle.com/en-us/iaas/Content/Identity/applications/overview.htm#overview
https://docs.oracle.com/en/cloud/paas/identity-cloud/index.html
https://auth0.com/docs/get-started

Chapter 2
JWT Bearer Token Authentication and Authorization Using JWT Profile

» the signing algorithm used to generate the signature of JWT must be one of R5256, RS384,
or RS512

e the public verification key must have a minimum length of 2048 bits and must not exceed
4096 bits

< the public verification key must be specified using the JISON Web Key (JWK) format and
ORDS can access it without authentication

The JWK URI

e The URI must be routable from the subnet containing ORDS

e Certain key parameters must be present in the JWKS to verify the signature of the JWT.
See Parameters for Verifying JWT Signatures.

e By default, the JWKS can be up to 10000 bytes in size

2.9.3 Creating an ORDS JWT Profile

ORACLE

This section explains how to create an ORDS JWT Profile.

A JWT Profile can be created within a REST-Enabled schema using the
OAUTH.CREATE JWT PROFILE procedure. Alternatively, OAUTH ADMIN.CREATE JWT PROFILE can
be used to create a JWT Profile in other REST-Enabled schemas as long as the user has the
ORDS_ADMINISTRATOR role.

Note:

Only one JWT Profile can be defined per schema. To update an existing JWT Profile,
the existing JWT Profile must be deleted before creating a new one.

Example:

BEGIN
OAUTH.CREATE JWT PROFILE (
p_issuer => 'https://identity.oraclecloud.com/"',
p_audience => 'ords/myapplication/api' ,
p_jwk url =>'https://
ides-10al0al0alOalOallallalla.identity.oraclecloud.com/admin/v1/SigningCert/
Jwk'
)
COMMIT;
END;
/

This JWT Profile specifies the issuer, audience, and the JWK URL.

Additionally, an allowed skew and age can be specified. The p_issuer must be a non null
value and must match the iss claim in the JWT bearer token. The p_audience must be a non
null value and must match with the aud claim in the JWT bearer token.

The p_jwk url must be a non null value starting with https:// and identify the public
verification key provided by the authorization server in a JSON Web Key (JWK) format.

2-89

Chapter 2

JWT Bearer Token Authentication and Authorization Using JWT Profile

Once the JWT Profile has been created, requests made to the schema protected resources
can be accessed by providing a valid JWT bearer token with the scope to access the protected

resource.

Note:

sensitive.

" See Also:

OAUTH PL/SQL Package Reference

2.9.4 JWT ldentity Provider Details

The identity provider that issued the JWT, determines the values that are allowed to specify for
the issuer (iss), and the audience (aud) claims in the JWT. The identity provider that issued the
JWT also determines the URI from where to retrieve the JSON Web Key Set (JWKS) to verify

the signature of the JWT.

A JWT scope claim is a JSON string containing a space-separated list of scopes. A
protected ORDS resource is protected with a named ORDS privilege. To access the
protected ORDS resource, the JWT scope claim must contain a scope with the same
name as the protecting ORDS privilege. The scope of an ORDS privilege are case

Identity Provider

Issuer (iss) claim

Audience (aud) Claim

Format of URI from
which to Retrieve the
JWKS

Okta https://<your-okta- Customer-specific. https://<your-okta-
tenant-name>.com The audience configured tenant-name>. com/
for the Authorization oauth2/<auth-
Server in the Okta server-id> /vl/keys
Developer Console.
IDCS https:// Customer-specific. https://<tenant-

identity.oracleclou
d.com/

Refer to "Validating

Access Tokens" section
in Oracle Identity Cloud
Service documentation.

base-url>/admin/v1/
SigningCert/jwk

To obtain the JWKS
without logging in to
Oracle Identity Cloud
Service, refer to
"Change Default
Settings" in Oracle
Identity Cloud Service
documentation.

OCI IAM with Identity https:// Customer-specific. https://<tenant-
Domains identity.oracleclou See "Managing base-url>/admin/vl/
d.com Applications" section in ~ SigningCert/jwk
OCI IAM with Identity
Domains documentation.
AuthO https://<your- Customer-specific. https://<your-

account-
name>.auth0.com/

account-
name>.auth0.com/.we
11-known/jwks.Jjson

ORACLE

2-90

Chapter 2
JWT Bearer Token Authentication and Authorization Using JWT Profile

See Also:

» Validating Access Tokens in Oracle Identity Cloud Service documentation.
* Change Default Settings in Oracle Identity Cloud Service documentation.

* Managing Applications in OCI IAM with Identity Domains documentation.

2.9.4.1 Parameters for Verifying JWT Signatures

This section lists the key parameters required to verify the JWT signatures.

To verify the signature on a JWT, ORDS requires that the key parameters are present in the
JWKS returned from an URI.

Key Parameter Notes

kid The identifier of the key used to sign the JWT. The
value must match the kid claim in the JWT header.
For example, master key.

kty The type of the key used to sign the JWT. Note that
RSA is currently the only supported key type.

n The public key modulus.

e The public key exponent.

alg The signing algorithm (if present) must be set to

one of RS256, RS384 or RS512.

2.9.4.2 JWT Scopes and ORDS Privileges

You must configure the identity provider that issued the JWT, so as to provide the scope that
matches the desired ORDS privilege. If a resource is protected in ORDS using an ORDS
privilege, then that privilege name must be defined as a scope. The scope is then available for
the application to request on behalf of the user. The issued JWT must then provide that as a
scope claim.

Typically, identity providers allow APIs, resources, or scopes to be defined for a particular
audience. For example: ORDS REST-Enabled schema defined API. These APIs, resources, or
scopes can then be made available to specific applications or clients. The application can then
request access tokens on behalf of an authenticated user for that audience and scope.

More than one scope can be requested and provided in the JWT. The protected ORDS
resource is accessible as long as one of the scopes matches the ORDS privilege protecting
the resource.

2.9.4.3 JWT Subject

ORACLE

ORDS accepts the subject (sub) claim in a valid JWT bearer token as the unique identifier for
the user who consented for the application to access their data.

The value of the subject claim in a valid JWT bearer token is bound to the :current_user implicit
parameter and the REMOTE IDENT OWA CGI environment variable.

2-91

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/TokenValidation.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/change-default-settings.html
https://docs.oracle.com/en-us/iaas/Content/Identity/applications/overview.htm#overview

Chapter 2
About Oracle REST Data Services User Roles

2.9.5 Making Requests to ORDS Using a JWT Bearer Token

Once a JWT Profile has been created for a REST-Enabled schema, the protected ORDS
resources in that schema can be accessed by providing a valid JWT bearer token with the
request.

Request to an ORDS protected resource is made from a third party application on behalf of a
user. The third party application has configured its authentication using an Identity Provider.
The same Identity Provider can be configured to issue JWT access tokens for ORDS. After the
third party application has acquired a JWT access token from the Identity Provider, it can
include the JWT as a bearer token in requests to ORDS. Third party application can request
suitable JWT access tokens with the required scope to access the ORDS resource.

curl -X GET http://localhost:8080/ords/myapplication/api/sales / --header
"Authorization: Bearer
SIJWT"

2.10 About Oracle REST Data Services User Roles

Oracle REST Data Services defines a small number of predefined user roles:

e RESTful Services - This is the default role associated with a protected RESTful service.

e OAuth2 Client Developer - Users who want to register OAuth 2.0 applications must have
this role.

e oracle.dbtools.autorest.any.schema - Users who want to access all AUtoREST
services.

° SQL Developer - Users who want to use Oracle SQL Developer to develop RESTful
services must have this role.

° SODA Developer - This is the default role that is required to access the SODA REST API.
For more information about this role, see Oracle REST Data Services SODA for REST
Developer's Guide.

° SQL Administrator - This role is for the Database API and is required for the pdb lifecycle
management operations.

Topics:

* About Oracle APEX Users and Oracle REST Data Services Roles

e Controlling RESTful Service Access with Roles

2.10.1 About Oracle APEX Users and Oracle REST Data Services Roles

By default, Oracle APEX users do not have any of the Oracle REST Data Services predefined
user roles. This means that, by default, APEX users cannot:

* Invoke protected RESTful Services
* Register OAuth 2.0 applications

* Use Oracle SQL Developer to develop RESTful services.

ORACLE 599

Chapter 2
About Oracle REST Data Services User Roles

This applies to all APEX users, including APEX developers and administrators. It is therefore
important to remember to follow the steps below to add APEX users to the appropriate user
groups, so that they can successfully perform the above actions.

Topics:
e Granting APEX Users Oracle REST Data Services Roles
* Automatically Granting APEX Users Oracle REST Data Services Roles

2.10.1.1 Granting APEX Users Oracle REST Data Services Roles

To give an APEX User any of the roles above, the user must be added to the equivalent APEX
user group. For example, to give the RESTEASY ADMIN user the RESTful Services role, follow
these steps:

Note:

The mapping of Oracle REST Data Services roles to APEX user groups can only be
used for authentication of RESTful Services defined in the First Schema Provisioned
for each APEX workspace. For secondary schemas, try application server managed
users or file-based user repository.

1. Log into the RESTEASY workspace as a RESTEASY ADMIN.
2. Navigate to Administration and then Manage Users and Groups.
3. Click the Edit icon to the left of the RESTEASY ADMIN user.
4. For User Groups, select RESTful Services.
5

Click Apply Changes.

2.10.1.2 Automatically Granting APEX Users Oracle REST Data Services Roles

ORACLE

Adding APEX users to the appropriate user groups can be an easily overlooked step, or can
become a repetitive task if there are many users to be managed.

To address these issues, you can configure Oracle REST Data Services to automatically grant
APEX users a predefined set of RESTful Service roles by modifying the defaults.xml
configuration file.

In that file, Oracle REST Data Services defines three property settings to configure roles:

° apex.security.user.roles - A comma separated list of roles to grant ordinary users, that
is, users who are not developers or administrators.

* apex.security.developer.roles - A comma separated list of roles to grant users who
have the Developer account privilege. Developers also inherit any roles defined by the
apex.security.user.roles setting.

e apex.security.administrator.roles - A comma separated list of roles to grant users
who have the Administrator account privilege. Administrators also inherit any roles
defined by the apex.security.user.roles and apex.security.developer.roles settings.

For example, to automatically give all users the RESTful Services privilege and all developers
and administrators the 0OAuth2 Client Developer and SQL Developer roles, add the following
to the defaults.xml configuration file:

2-93

Chapter 2
About Oracle REST Data Services User Roles

<!-- Grant all Application Express Users the ability
to invoke protected RESTful Services -->

<entry key="apex.security.user.roles">RESTful Services</entry>

<!-- Grant Application Express Developers and Administrators the ability
to register OAuth 2.0 applications and use Oracle SQL Developer
to define RESTful Services -->

<entry key="apex.security.developer.roles">

OAuth2 Client Developer, SQL Developer</entry>

Oracle REST Data Services must be restarted after you make any changes to the
defaults.xml configuration file.

2.10.2 Controlling RESTful Service Access with Roles

The built-in RESTful Service role is a useful default for identifying users permitted to access
protected RESTful services.

However, it will often also be necessary to define finer-grained roles to limit the set of users
who may access a specific RESTful service.

Topics:
e About Defining RESTful Service Roles
* Associating Roles with RESTful Privileges

2.10.2.1 About Defining RESTful Service Roles

A RESTful Service role is an APEX user group. To create a user group to control access to the
Gallery RESTful Service, follow these steps. (

1. Log into the RESTEASY workspace as a workspace administrator.
Navigate to Administration and then Manage Users and Groups.
Click the Groups tab.

Click Create User Group.

For Name, enter Gallery Users.

@ g & w NN

Click Create Group.

2.10.2.2 Associating Roles with RESTful Privileges

ORACLE

After a user group has been created, it can be associated with a RESTful privilege. To
associate the Gallery Users role with the example.gallery privilege, follow these steps.

Navigate to SQL Workshop and then RESTful Services.

In the Tasks section, click RESTful Service Privileges.

1

2

3. Click Gallery Access.

4. For Assignhed Groups, select Gallery Users.
5

Click Apply Changes.

With these changes, users must have the Gallery Users role to be able to access the Gallery
RESTful service.

2-94

Chapter 2
Authenticating Against WebLogic Server User Repositories

2.11 Authenticating Against WebLogic Server User Repositories

Oracle REST Data Services can use APIs provided by WebLogic Server to verify credentials
(username and password) and to retrieve the set of groups and roles that the user is a member
of.

This section walks through creating a user in the built-in user repositories provided by
WebLogic Server, and verifying the ability to authenticate against that user.

This document does not describe how to integrate WebLogic Server with the many popular
user repository systems such as LDAP repositories, but Oracle REST Data Services can
authenticate against such repositories after WebLogic Server has been correctly configured.
See your application server documentation for more information on what user repositories are
supported by the application server and how to configure access to these repositories.

Topics:

* Authenticating Against WebLogic Server

2.11.1 Authenticating Against WebLogic Server

Authenticating a user against WebLogic Server involves the following major steps:

1. Creating a WebLogic Server User

2. Verifying the WebLogic Server User

2.11.1.1 Creating a WebLogic Server User

ORACLE

To create a sample WebLogic Server user, follow these steps:

1. Start WebLogic Server if it is not already running

2. Access the WebLogic Server Administration Console (typically http://server:7001/
console), enter your credentials.

3. Inthe navigation tree on the left, click the Security Realms node

4. If a security realm already exists, go to the next step. If a security realm does not exist,
create one as follows:

a. Click New.
b. For Name, enter Test-Realm, then click OK.
c. Click Test-Realm.
d. Click the Providers tab.
e. Click New, and enter the following information:
Name: test-authenticator
Type: DefaultAuthenticator
f. Restart WebLogic Server if you are warned that a restart is necessary.
g. Click Test-Realm.
5. Click the Users and Groups tab.

6. Click New, and enter the following information:

2-95

Chapter 2
Integrating with Existing Group/Role Models

* Name: 3rdparty dev?

» Password: Enter and confirm the desired password for this user.
7. Click OK.
8. Click the Groups tab.
9. Click New., and enter the following information:

* Name: OAuth2 Client Developer (case sensitive)
10. Click OK.
11. Click the Users tab.
12. Click the 3rdparty_dev2 user.
13. Click the Groups tab.
14. In the Chosen list, add OAuth2 Client Developer .
15. Click Save.

You have created a user named 3rdparty dev2 and made it a member of a group named
OAuth2 Client Developer. This means the user will acquire the OAuth2 Client Developer
role, and therefore will be authorized to register OAuth 2.0 applications.

Now verify that the user can be successfully authenticated.

2.11.1.2 Verifying the WebLogic Server User

To verify that the WebLogic Server user created can be successfully authenticated, follow
these steps:

1. Inyour browser, go to a URI in the following format:
https://server:port/ords/resteasy/ui/oauth2/clients/
2. Enter the credentials of the 3rdparty dev2 user, and click Sign In.

The OAuth 2.0 Client Registration page should be displayed, with no applications listed. If this
page is displayed, you have verified that authentication against the WebLogic Server user
repository is working.

However, if the sign-on prompt is displayed again with the message User is not authorized
to access resource, then you made mistake (probably misspelling the Group List value).

2.12 Integrating with Existing Group/Role Models

ORACLE

The examples in other sections demonstrate configuring the built-in user repositories of
WebLogic Server. In these situations you have full control over how user groups are named. If
a user is a member of a group with the exact same (case sensitive) name as a role, then the
user is considered to have that role.

However, when integrating with existing user repositories, RESTful service developers will
often not have any control over the naming and organization of user groups in the user
repository. In these situations a mechanism is needed to map from existing "physical" user
groups defined in the user repository to the "logical” roles defined by Oracle REST Data
Services and/or RESTful Services.

In Oracle REST Data Services, this group to role mapping is performed by configuring a
configuration file named role-mapping.xml.

2-96

Chapter 2
Integrating with Existing Group/Role Models

Topics:

e About role-mapping.xml

2. 12 1 AbOUt role-mapping.xml

role-mapping.xml is a Java XML Properties file where each property key defines a pattern
that matches against a set of user groups, and each property value identifies the roles that the
matched user group should be mapped to. It must be located in the same folder as the
defaults.xml configuration file. The file must be manually created and edited.

Consider this example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="webdevs">RESTful Services</entry>

</properties>

This role mapping is straightforward, stating that any user who is a member of a group named:
webdevs is given the role RESTful Services, meaning that all members of the webdevs group
can invoke RESTful Services.

A mapping can apply more than one role to a group. For example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="webdevs">RESTful Services, SQL Developer</entry>
</properties>

This rule gives members of the webdevs group both the RESTful Services and SQL Developer
roles.

Topics:
e Parameterizing Mapping Rules
« Dereferencing Parameters

e Indirect Mappings

2.12.1.1 Parameterizing Mapping Rules

ORACLE

Having to explicitly map from each group to each role may not be scalable if the number of
groups or roles is large. To address this concern, you can parameterize rules. Consider this
example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="{prefix}.webdevs">RESTful Services</entry>

</properties>

This example says that any group name that ends with .webdevs will be mapped to the
RESTful Services role. For example, a group named: HQ.webdevs would match this rule, as
would a group named: EAST . webdevs.

2-97

Chapter 2
Integrating with Existing Group/Role Models

The syntax for specifying parameters in rules is the same as that used for URI Templates; the
parameter name is delimited by curly braces ({}).

2.12.1.2 Dereferencing Parameters

Any parameter defined in the group rule can also be dereferenced in the role rule. Consider
this example:

<?xml version="1.0" encoding="UTF-8"?2>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="cn={userid}, ou={group},dc=MyDomain, dc=com">{group}</entry>
</properties>

This example maps the organizational unit component of an LDAP distinguished name to a
role. It says that the organizational unit name maps directly to a role with same name. Note
that it refers to a {userid} parameter but never actually uses it; in effect, it uses {userid} as a
wildcard flag.

For example, the distinguished name cn=jsmith, ou=Developers, dc=MyDomain, dc=com Will be
mapped to the logical role named Developers.

2.12.1.3 Indirect Mappings

ORACLE

To accomplish the desired role mapping, it may sometimes be necessary to apply multiple
intermediate rules. Consider this example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="cn={userid}, ou={group}, dc=example, dc=com">{group}</entry>
<entry key="{prefix},ou={group},dc=acquired,dc=com">{group}</entry>
<entry key="Developers">RESTful Services, SQL Developer</entry>
</properties>

This example maps the organizational unit component of an LDAP distinguished name to
some roles. Complicating matters is the fact that users can come from two different
organizations, resulting in differing distinguishing name patterns.

e Users from example.com always have a single common name (CN) identifying their user id,
followed by the organizational unit (OU) and the domain name (DC). For example:
cn=jsmith, ou=Developers, dc=example, dc=com.

e Users from acquired.com have varying numbers of common name (CN) prefixes, but the
organizational unit is the field you are interested in. For example:
cn=ProductDev, cn=abell, ou=Engineering, dc=acquired, dc=com.

* Both organizations identify software engineers with ou=Developers.

You want to map engineers in both organizations to the RESTful Services and SQL Developer
roles.

e The first rule maps engineers in the example.com organization to the intermediate
Developers role.

e The second rule maps engineers in the acquired. com organization to the intermediate
Developers role.

e The final rule maps from the intermediate Developers role to the RESTful Services and
SQL Developer roles.

2-98

Chapter 2
Integrating Oracle REST Data Services and WebLogic Server

2.13 Integrating Oracle REST Data Services and WebLogic

Server

Oracle REST Data Services (ORDS) recommends that for complex or enterprise user identity
integrations, customers can leverage the capabilities of WebLogic server. WebLogic server has
a rich and diverse set of capabilities to integrate with existing enterprise identity solutions.
When Oracle REST Data Services is deployed on the WebLogic server, it can leverage the
capabilities of WebLogic server to get secure access to ORDS based RESTful Services.

Once ORDS is configured to work with WebLogic server, the WebLogic server can provide the
authenticated user identity and roles. Based on the memberships of the user role, ORDS
authorizes access to the protected RESTful Services.

2.13.1 Configuring ORDS to Integrate with WebLogic Server

ORACLE

This section explains how to configure ORDS to work with WebLogic server for authentication.

To configure ORDS to work with WebLogic server authentication, use the --weblogic-auth
option as shown in the following command when you are generating the deployable ords.war
file:

ords war --weblogic-auth <path for new war file>.
Specify the --help option to get help on the ords war command:
ords war --help.

Using the --weblogic-auth option with the ords war command, the --weblogic-auth option
re-configures the web.xml deployment descriptor in the generated web application file that
helps the WebLogic server to pass any established user identity to ORDS.

After executing the preceding command, the generated web application file must be re-
deployed to the WebLogic server.

Determining the Identity and Roles of the User

ORDS uses APIs provided by WebLogic server to retrieve the WLSUser and WLSGroup for
the established user identity.

ORDS treats the WLSGroup to be equivalent to the role that the user possesses. For example,
if a user or users belongs to a WLSGroup named "Sales Assistant”, then ORDS considers
such user to have a role named "Sales Assistant".

Retrieving the Authenticated User Information

The user visits the single sign-on login form and obtains a cookie or an access token that
asserts the identity and roles. The cookie or the token is then passed to the WebLogic server.
The WebLogic server is configured to validate the cookie or token and then map it to a specific
user to determine what roles the user possesses. The WebLogic Server performs this
operation before passing the request to ORDS. Once ORDS receives the request, it calls the
APIs provided by WebLogic server to retrieve the WLSUser and WLSGroup to retrieve the
information of the user identity and roles from the WebLogic server.

Related Topics
e Oracle WebLogic APIs
e APl to retrieve the WLSUser

2-99

unilink:Oracle_WebLogic_APIs
unilink:retrieve_WLSUser_API

Chapter 2
Using the Oracle REST Data Services PL/SQL API

e APl to retrieve the WLSGroup

2.14 Using the Oracle REST Data Services PL/SQL API

Oracle REST Data Services has a PL/SQL API (application programming interface) that you
can use as an alternative to the SQL Developer graphical interface for all the operations. The
available subprograms are included in the following PL/SQL packages:

 ORDS, documented in ORDS PL/SQL Package Reference
e« OAUTH, documented in OAUTH PL/SQL Package Reference
To use the Oracle REST Data Services PL/SQL API:

< Note:

You must be logged in as the user to the schema that you want to enable or to the
ORDS services to be published when using the ORDS package. ORDS is granted
EXECUTE privileges for public, which means any user can REST enable their schema
and publish REST APIs. You may revoke this public grant if that is undesirable for
your environments. If you want to work on another schema, then use the
ORDS_ADMIN package, which requires the ORDS Administrator database role.

e Install Oracle REST Data Services in the database that you will use to develop RESTful
services.

* Enable one or more database schemas for REST access.

Topics:
e Creating a RESTful Service Using the PL/SQL API
e Testing the RESTful Service

Related Topics
e Automatic Enabling of Schema Objects for REST Access (AutoREST)

2.14.1 Creating a RESTful Service Using the PL/SQL AP

ORACLE

You can create a RESTful service by connecting to a REST-enabled schema and using the
ORDS.CREATE_SERVICE procedure.

The following example creates a simple "Hello-World"-type service:
begin

ords.create service(
p module name => 'examples.routes' ,

p base path => '/examples/routes/',
p_pattern => 'greeting/:name',
p_source => 'select ''Hello '' || :name || '' from '' ||
nvl (:whom, sys context (''USERENV'', ''CURRENT USER'')) "greeting" from dual');
commit;

end;

/

The preceding example does the following:

2-100

unilink:retrieve_WLSGroup_API

Chapter 2
Using the Oracle REST Data Services PL/SQL API

e Creates a resource module named examples.routes.

* Sets the base path (also known as the URI prefix) of the module to /examples/routes/.
e Creates a resource template in the module, with the route pattern greeting/ :name.

e Creates a GET handler and sets its source as a SQL query that forms a short greeting:

— GET is the default value for the p_method parameter, and it is used here because that
parameter was omitted in this example.

— COLLECTION FEED is the default value for the p method parameter, and it is used here
because that parameter was omitted in this example

* An optional parameter named whom is specified.
Related Topics
e ORDS.CREATE_SERVICE

2.14.2 Testing the RESTful Service

ORACLE

To test the RESTful service that you created, start Oracle REST Data Services if it is not
already started:

ords -c \path\to\ords\config serve

Enter the URI of the service in a browser. The following example displays a "Hello" greeting to
Joe, by default from the current user because no whom parameter is specified.:

http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe

In this example:

e Oracle REST Data Services is running on localhost and listening on port 8080.
e Oracle REST Data Services is deployed at the context-path /ords.

e The RESTful service was created by a database schema named ordstest.

* Because the URL does not include the optional whom parameter, the :whom bind
parameter is bound to the null value, which causes the query to use the value of the
current database user (sys_context (' '"USERENV'', ' 'CURRENT USER'')) instead.

If you have a JSON viewing extension installed in your browser, you will see a result like the
following:

{

"items": [
{
"greeting": "Hello Joe from ORDSTEST"
}

]I

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 1,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/"
I
{

"rel": "describedby",

2-101

Chapter 2
Oracle REST Data Services Database Authentication

"href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/routes/
greeting/"
}I
{
"rel": "first",
"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe"
}
]
}

The next example is like the preceding one, except the optional parameter whom is specified to
indicate that the greeting is from Jane.

http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe?whom=Jane

This time, the result will look like the following:

{

"items": [
{
"greeting": "Hello Joe from Jane"
}

] ’

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 1,
"links": [

{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/"
}I
{
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/examples/routes/
greeting/"
}I
{
"rel": "first",
"href": "http://localhost:8080/ords/ordstest/examples/routes/greeting/Joe"
}
]
}

Notice that in this result, what follows "from" is Jane and not ORDSTEST, because the :whom bind
parameter was bound to the Jane value.

2.15 Oracle REST Data Services Database Authentication

This section describes how to use the database authentication feature to provide basic
authentication for PL/SQL gateway calls.

Database authentication feature is similar to dynamic basic authentication provided by mod-
plsql where the user is prompted for the database credentials to authenticate and authorize
access to PL/SQL stored procedures.

ORACLE 102

Chapter 2
Oracle REST Data Services Database Authentication

2.15.1 Installing Sample Database Scripts

This section describes how to install the sample database scripts.

The unzipped Oracle REST Data Services installation kit contains the sample database scripts
that create a basic demo scenario for the database authentication.

The following code snippet shows how to install the sample database schema:

examples\db auth $ cd sql/
sql $ sgl system/<password>

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) *kkkkk

Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production

SQL> @install <chosen-password>

< Note:

* You need to adjust the SQLcl connect string and the user credentials to suit your
environment. For this demo scenario, SQLcl connects to the database with
service name orcl

* <chosen-password> is the password you assigned to EXAMPLE USER1 and
EXAMPLE USER2 database users. Make a note of this password value for later
reference.

The sample database schema creates the following database users:

« SAMPLE_PLSQL_APP: A database schema where the protected SAMPLE PROC will be
installed.

- EXAMPLE_USERL1: A database user granted with execute privilege on
SAMPLE PLSQL APP.SAMPLE PROC procedure.

- EXAMPLE_USER2: A second database user granted with execute privilege on
SAMPLE PLSQL APP.SAMPLE PROC procedure.

2.15.2 Enabling the Database Authentication

This section describes how to enable the database authentication feature.
To enable the database authentication feature, do one of the following:

* For fresh installation of Oracle REST Data Services, update the /u01/ords/params/
ords_params properties file with the following entry:

ORACLE 5103

Chapter 2
Oracle REST Data Services Database Authentication

jdbc.auth.enabled=true

* For existing Oracle REST Data Services installation, run the following commands
assuming ords/bin is in $PATH, run the following command:

ords -c c:\ords\config config --db-pool default set jdbc.auth.enabled true

Output:
ORDS: Production Release 22.1 on Mon Mar 07 17:01:52 2022
Copyright (c) 2010, 2022, Oracle. All rights reserved.

Configuration:
/C:/ords/config/

The setting named: jdbc.auth.enabled was set to: true in configuration:
default

This setting is applicable to PL/SQL gateway pools (for example, apex.xml), it does not apply
to other pool types such as the ORDS_PUBLIC USER pool (for example, apex pu.xml).

Note:

The jdbc.auth.enabled setting can be configured per database pool. Alternatively, it
can be configured in defaults.xnl file so that it is enabled for all pools.

Example 2-13 Setting Enabled for all Pools
This example code snippet shows how jdbc.auth.enabled setting is enabled for all pools.
ords $ java -jar ords.war set-property jdbc.auth.enabled true

Mar 23, 2018 2:23:49 PM oracle.dbtools.rt.config.setup.SetProperty execute
INFO: Modified: /tmp/cd/ords/defaults.xml, setting: jdbc.auth.enabled = true

After you update the configuration settings, restart the Oracle REST Data Services for the
changes to take effect.

2.15.3 Configuring the Request Validation Function

ORACLE

This section describes how to temporarily disable the request validation function.

If you want to invoke only a whitelisted set of stored procedures in the database through the
PL/SQL gateway, then you must configure Oracle REST Data Services to use a request
validation function (especially when you are using Oracle APEX).

The demo sample procedure used for testing the database authentication feature is not
whitelisted, so you must temporarily disable the request validation function.

To disable the request validation function, perform the following steps:
1. Navigate to the <Current Configuration directory>/global directory.

2. Open the settings.xml file, which stores the Oracle REST Data Services configuration
information.

2-104

Chapter 2
Overview of Pre-hook Functions

3. Look for security.requestvValidationFunction entry and remove it from the file.
4. Save the file.

5. Restart Oracle REST Data Services, if it is already running.

Note:

In production environment, you must use a custom request validation function that
whitelists the stored procedures you want to access for your application

2.15.4 Testing the Database Authenticated User

This section describes how to test if the database user is authenticated.

Assuming that Oracle REST Data Service is running in a standalone mode on local host and
on port 8080, access the following URL in your web browser:

http://localhost:8080/ords/sample plsgl app.sample proc

The browser prompts you to enter credentials. Enter example userl for user name and enter
the password value you noted while installing the sample schema.

The browser displays 'Hello EXAMPLE_USER1!" to demonstrate that the database user was
authenticated and the identity of the user was propagated to the database through the OWA
CGl variable named REMOTE USER..

2.15.5 Uninstalling the Sample Database Schema

To uninstall the database schema, run the commands as shown in the following code snippet:

db auth $ cd sql/
sql $ sgl system/<password>

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (*****‘k****?) * Kk k ok ok ok

Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production
SQL> @uninstall

2.16 Overview of Pre-hook Functions

ORACLE

This section explains how to use PL/SQL based pre-hook functions that are invoked prior to an
Oracle REST Data Services (ORDS) based REST call.

A pre-hook function is typically used to implement application logic that needs to be applied
across all REST endpoints of an application. For example a pre-hook enables the following
functionality:

* Configure application specific database session state: Configure the session to
support a VPD policy.

2-105

Chapter 2
Overview of Pre-hook Functions

* Custom authentication and authorization: As the pre-hook is invoked prior to
dispatching the REST service, it is used to inspect the request headers and determine the
user who is making the request, and also find if that user is authorized to make the
request.

* Auditing or metrics gathering: To track information regarding the REST APIs invoked.
Topics:

* Configuring the Pre-hook Function

e Using a Pre-hook Function

e Processing of a Request

e ldentity Assertion of a User

e Aborting Processing of a Request

e Ensuring Pre-hook is Executable

* Exceptions Handling by Pre-hook Function

e Pre-hook Function Efficiency

e Using Pre-hook Function with Protected Resources

* Pre-Hook Examples

2.16.1 Configuring the Pre-hook Function

This section describes how to configure a pre-hook function.

The pre-hook function is configured using procedure.rest.preHook setting. The value of this
setting must be the name of a stored PL/SQL function.

2.16.2 Using a Pre-hook Function

ORACLE

This section explains how the pre-hook function is used.

A pre-hook must be a PL/SQL function with no arguments and must return a BOOLEAN value.
The function must be executable by the database user to whom the request is mapped. For
example, if the request is mapped to an ORDS enabled schema, then that schema must be
granted the execute privilege on the pre-hook function (or to PUBLIC).

Note:

If Oracle APEX 24.1 or higher is used, then the APEX functional user,
APEX PUBLIC ROUTER, must be granted execute privilege for its friendly URLSs (/r) to
be accessible.

If the function returns true, then it indicates that the normal processing of the request must
continue. If the function returns false, then it indicates that further processing of the request
must be aborted.

ORDS invokes a pre-hook function in an OWA (Oracle Web Agent) that is a PL/SQL Gateway
Toolkit environment. This means that the function can introspect the request headers and the
OWA CGI environment variables, and use that information to drive its logic. The function can
also use the OWA PL/SQL APIs to generate a response for the request (for example, in a case

2-106

Chapter 2
Overview of Pre-hook Functions

where the pre-hook function needs to abort further processing of the request, and provide its
own response).

2.16.3 Processing of a Request

The pre-hook function must return true if it determines that the processing of a request must
continue. In such cases, any OWA response produced by the pre-hook function is ignored
(except for cases as detailed in the section Identity Assertion of a User), and the REST service
is invoked as usual.

2.16.4 Identity Assertion of a User

This section describes how pre-hook function can make assertions about the identity of the
user.

When continuing processing, a pre-hook can make assertions about the identity and the roles
assigned to the user who is making the request. This information is used in the processing of
the REST service. A pre-hook function can determine this by setting one or both of the
following OWA response headers.

° X-ORDS-HOOK-USER: ldentifies the user making the request, the value is bound to
the :current user implicit parameter and the REMOTE IDENT OWA CGI environment
variable.

° X-ORDS-HOOK-ROLES: Identifies the roles assigned to the user. This information is used to
determine the authorization of the user to access the REST service. If this header is
present then X-ORDS-HOOK-USER must also be present.

¢ Note:

X-ORDS-HOOK-USER and X-ORDS-HOOK-ROLES headers are not included in the response
of the REST service. These headers are only used internally by ORDS to propagate
the user identity and roles.

Using these response headers, a pre-hook can integrate with the role based access
control model of ORDS. This enables the application developer to build rich
integrations with third party authentication and access control systems.

2.16.5 Aborting Processing of a Request

ORACLE

This section explains how the pre-hook function aborts the processing of a request.

If a pre-hook determines that the processing of the REST service should not continue, then the
function must return false value. This value indicates to ORDS that further processing of the
request must not be attempted.

If the pre-hook does not produce any OWA output, then ORDS generates a 403 Forbidden
error response page. If the pre-hook produces any OWA response, then ORDS returns the
OWA output as the response. This enables the pre-hook function to customize the response
that client receives when processing of the REST service is aborted.

2-107

Chapter 2
Overview of Pre-hook Functions

2.16.6 Ensuring Pre-hook is Executable

If a schema cannot invoke a pre-hook function, then ORDS generates a 503 Service
Unavailable response for any request against that schema. Since a pre-hook has been
configured, it would not be safe for ORDS to continue processing the request without invoking
the pre-hook function. It is very important that the pre-hook function is executable by all ORDS
enabled schemas. If the pre-hook function is not executable, then the REST services defined
in those schemas will not be available.

2.16.7 Exceptions Handling by Pre-hook Function

When a pre-hook raises an error condition, for example, when a run-time error occurs, a NO
DATA FOUND exception is raised. In such cases, ORDS cannot proceed with processing of the
REST service as it would not be secure. ORDS inteprets any exception raised by the pre-hook
function as a signal that the request is forbidden and generates a 403 Forbidden response,
and does not proceed with invoking the REST service. Therefore, if the pre-hook raises an
unexpected exception, it forbids access to that REST service. It is highly recommended that all
pre-hook functions must have a robust exception handling block so that any unexpected error
conditions are handled appropriately and do not make REST Services unavailable.

2.16.8 Pre-hook Function Efficiency

A pre-hook function is invoked for every REST service call. Therefore, the pre-hook function
must be designed to be efficient. If a pre-hook function is inefficient, then it has a negative
effect on the performance of the REST service call. Invoking the pre-hook involves at least one
additional database round trip. It is critical that the ORDS instance and the database are
located close together so that the round-trip latency overhead is minimized.

2.16.9 Using Pre-hook Function with Protected Resources

ORDS enables the protection of resources with roles and privileges. In cases where:
e A privilege protects a particular resource

e A pre-hook function already exists
ORDS invokes pre-hook functions once the initial request to the target resource has been
authorized. If an incoming request fails authorization, ORDS does not invoke a related pre-
hook function. Instead, ORDS responds with a 401 Unauthorized Response status code.

¢ See Also:

Configuring Secure Access to RESTful Services

2.16.10 Pre-Hook Examples

ORACLE

This section provides some sample PL/SQL functions that demonstrate different ways in which
the pre-hook functionality can be leveraged.

Source code for the examples provided in the following sections is included in the unzipped
Oracle REST Data Services distribution archive examples/pre hook/sql sub-folder.

2-108

Chapter 2
Overview of Pre-hook Functions

2.16.10.1 Installing the Examples

This section describes how to install the pre-hook examples.

To install the pre-hook examples, execute examples/pre hook/sql/install.sql script. The
following code snippet shows how to install the examples using Oracle SQLcl command line
interface:

pre hook $ cd examples/pre hook/sql/
sql $ sgl system/<password>

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) *kkkkk

Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production

SQL> @install <chosen-password>

* You need to adjust the SQLcl connect string and the user credentials to suit your
environment. For these demo scenarios, SQLcl connects to the database with service
name orcl.

* <chosen-password> is the password you assigned to the PRE_HOOK TEST database user.
Make a note of this password value for later reference.

* The examples/pre hook/sql/install.sql command creates the following two databases
schemas:

— The PRE HOOK DEFNS schema where the pre-hook function is defined along with a
database table named custom auth users, where user identities are stored. This table
is populated with a single user joe.bloggs@example.com, whose password is the value
assigned for <chosen-password>.

— The PRE_HOOK TESTS schema where ORDS based REST services that are used to
demonstrate the pre-hooks are defined.

2.16.10.1.1 Example: Denying all Access

ORACLE

The simplest pre-hook is one that unilaterally denies access to any REST Service.

To deny access to any REST service, the function must always return false as shown in the
following code snippet:

create or replace function deny all hook return boolean as
begin

return false;
end;

/

grant execute on deny all hook to public;

Where:

2-109

Chapter 2
Overview of Pre-hook Functions

* The deny all hook pre-hook function always returns false value.

» Execute privilege is granted to all users. So, any ORDS enabled schema can invoke this
function

Configuring ORDS

To enable deny all hook pre-hook function, perform the following steps:
1. Locate the folder where the Oracle REST Data Services configuration file is stored.

2. Open the settings.xml file and add:
<entry key="procedure.rest.preHook">pre hook defns.deny all hook</entry>

3. Save the file.
4, Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service which can be
accessed at the following URL (assuming ORDS is deployed on localhost and listening on
port 8080) :

http://localhost:8080/ords/pre hook tests/prehooks/user

Access the URL in a browser. You should get a response similar to the following:

403 Forbidden

This demonstrates that the deny all hook pre-hook function was invoked and it prevented the
access to the REST service by returning a false value.

2.16.10.1.2 Example: Allowing All Access

Modify the source code of the deny all hook pre-hook function to allow access to all REST
service requests as shown in the following code snippet:

create or replace function deny all hook return boolean as
begin

return true;
end;

/

Try it out

Access the following test URL in a browser:

http://localhost:8080/ords/pre hook tests/prehooks/user

ORACLE 5110

Chapter 2
Overview of Pre-hook Functions

The response should include JSON similar to the following code shippet:

{

"authenticated user": "no user authenticated"

}

Note:

The REST service executes because the pre-hook function authorized it.

Related Topics

* Identity Assertion of a User
This section describes how pre-hook function can make assertions about the identity of the
user.

2.16.10.1.3 Example: Asserting User Identity

ORACLE

The following code snippet demonstrates how the pre-hook function makes assertions about
the user identity and the roles they possess:

create or replace function identity hook return boolean as
begin
if custom auth api.authenticate owa then
custom auth api.assert identity;
return true;
end if;
custom_auth api.prompt for basic credentials('Test Custom Realm');
return false;
end;

The pre-hook delegates the task of authenticating the user to the

custom auth api.authenticate owa function. If the function indicates that the user is
authenticated, then it invokes the custom auth api.assert identity procedure to propagate
the user identity and roles to ORDS.

Configuring ORDS

To enable pre-hook function, perform the following steps:
1. Locate the folder where the Oracle REST Data Services configuration file is stored.

2. Open the settings.xml file and add:

<entry key="procedure.rest.preHook">pre hook defns.identity hook</entry></
entry>

3. Save the file.

4. Restart Oracle REST Data Services.

Try it out

The install script creates an ORDS enabled schema and a REST service that can be accessed
at the following URL (assuming ORDS is deployed on localhost and listening on port 8080):

2-111

Chapter 2
Generating Hyperlinks
http://localhost:8080/ords/pre hook tests/prehooks/user

In a web browser access the preceding URL.

Note:

The first time you access the URL, the browser will prompt you to enter your
credentials. Enter the user name as joe.bloggs@example.com and for the password,
use the value you assigned for <chosen-password> when you executed the install
script. Click the link to sign in.

In response a JSON document is displayed with the JSON object in it.

{"authenticated user":"joe.bloggs€example.com"}

2.16.10.2 Uninstalling the Examples

This section explains how to uninstall the examples.

The following code snippet shows how to uninstall the examples:

pre hook $ cd sql/
sql $ sgl system/<password>

SQLcl: Release Release 18.1.1 Production on Fri Mar 23 14:03:18 2018

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Password? (**********?) *kkkkk

Connected to:
Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production

SQL> Quninstall

2.17 Generating Hyperlinks

ORACLE

Oracle REST Data Services (ORDS) provides a mechanism to transform relational result sets
into JSON representations, and provides hyperlinks that automatically paginates the result set
to allow navigation between the pages of the result set.

For many use cases, it is required to treat certain columns in the result set as hyperlinks.
ORDS provides the following simple yet powerful mechanisms for adding hyperlinks to REST
resources:

* Primary Key Hyperlinks: A column with the reserved alias $. id identifies the primary key
column of a single row in the result set. Such column values are used to form a hyperlink
that points to a child resource of the current resource that provides specific details about
that particular row in the result set.

* Arbitrary Hyperlinks: A column whose alias starts with the reserved character $ is treated
as a hyperlink. The subsequent characters in the column alias indicates the link relation
type.

2-112

Chapter 2
Generating Hyperlinks

2.17.1 Primary Key Hyperlinks

This section describes how to add primary key hyperlinks.

Typically, when you are modelling a REST API, you need to model the Resource Collection
Pattern that enumerates the hyperlinks to the other resources.

In a simple use case, a query is against a single table that contains a single column with
primary key that is used to identify each row. The collection resource provides summary
information of each row, and provides a self link for each row. The self link points to the
resource that provides more detailed information about the row. For example, if we use the EMP
table, we can define a service as shown in the following code snippet:

begin
ords.define service(
p_module name => 'links.example',
p_base path => 'emp-collection/',
p_pattern => '.',
p_source => 'select empno "$.id", empno id, ename employee name from
emp order by empno ename';
commit;
end;

Where:

* The reserved value '." is used for the p_pattern value. This indicates the path of the
resource template in the base path of the resource module, emp-collection/ in this
example.

e The EMPNO column is aliased as $.1id, to produce a hyperlink.

Following code snippet shows the output produced after invoking the preceding service:

"items": [{
"id": 7369,
"employee name": "SMITH",
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7369"

"hasMore": false,

"limit": 25,
"offset": 0,
"count": 14,
"links": [{

"rel": "self",

"href": "http://localhost:8080/ords/ordstest/emp-collection/"
b A
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/"

boo o

ORACLE 5113

Chapter 2
Generating Hyperlinks

"rel": "first",
"href": "http://localhost:8080/ords/ordstest/emp-collection/"
}]

Observe that the value of EMPNO column is concatenated with the URL of the service to produce
a new hyperlink with relation se1f. The value is not simply concatenated, it is resolved using
the algorithm specified in RFC3986. Therefore, Oracle REST Data Services (ORDS) can take
the value of the column, and apply the resolution algorithm to produce a new absolute URL.

¢ See Also:
Section 5 of rfc3986

If you attempt to navigate to this URL, it results in a 404 HTTP status because a resource
handler for that endpoint has not yet been defined. The following code snippet shows a sample
resource handler:

begin
ords.define template (
p_module name => 'links.example',
p_pattern => ':id");
ords.define handler (
p_module name => 'links.example',
p_pattern => ':id',
p_source_type => ords.source type collection item,
p_source => 'select emp.empno "$.id", emp.* from emp where
empno = :id');
commit;
end;

2.17.1.1 Composite Primary Keys

ORACLE

This section describes the support for composite primary keys.

If multiple columns in a query form the primary key of a row, then each of those columns must
be aliased by $.1d.N, where N is the position of the column in the key. ORDS combines such
values to form the relative path of the item URL.

Example:

SELECT
ID1 "$.id.1",
ID2 "$.id.2",
ID3 "$.id.3",

Related Topics

* Route Patterns Specification

2-114

unilink:ORDS_Java_API_Ref

Chapter 2
Generating Hyperlinks

2.17.2 Arbitrary Hyperlinks

This section describes how to create hyperlinks to point to a resource one level up in the
heirarchy.

Rich hypermedia documents have many different hyperlinks. ORDS provides a mechanism to
turn any column value into a hyperlink. Any column whose alias starts with the $ character is
treated as a hyperlink. The following example code snippet shows how an employee resource
can provide a hyperlink to their manager:

begin
ords.define handler (
p_module name => 'links.example',
p_pattern => ':id',
p_source_ type => ords.source type collection item,
p_source => 'select emp.empno "$.id", emp.*, emp.mgr "Srelated"
from emp where empno = :id');commit;end;

ORDS treats the column named S$related to a hyperlink and the column value is treated as a
path relative to the containing base URI of the resource. Similar to how $.1id column value is
transformed into an absolute URI by applying the algorithm specified in RFC 3986.

¢ See Also:
Section 5.2 of rfc3986.

The following example code snippet shows the updated employee resource:

"empno": 7369,
"ename": "SMITH",
"job": "CLERK",
"mgr": 7902,
"hiredate": "1980-12-17T00:00:00Z",
"sal": 800,
"comm": null,
"deptno": 20,
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7369"
b A
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/item"
b A
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp-collection/"
b A
"rel": "related",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7902"

ORACLE 5115

Chapter 2
Generating Hyperlinks

Note that the new related link points to the manager resource of the employee. The manager
resource in turn has a related link that points to their manager, and so on up the management
chain until you reach employee number 7839 who is the president of the company and whose
mgr column is null. If the column value is null, then ORDS will not create a hyperlink.

"empno": 7839,
"ename": "KING",
"job": "PRESIDENT",
"mgr": null,
"hiredate": "1981-11-17T00:00:002",
"sal": 5000,
"comm": null,
"deptno": 10,
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7839"
b Ao
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/item"
b Ao
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp-collection/"
}H

2.17.2.1 About the related Link Relation

This section explains the use of existing registered link relation types instead of extension link
relation types.

As per RFC 8288 Section 2.1.2, any extension link relation must be an URI and not a simple
value. This means that a link relation such as manager is not a legal link relation according to
the specification. A custom link relation type will reduce interoperability. If your application uses
a non-registered link relation type, then only a few clients will be able to understand the custom
link relation type. Conversely, if you use registered link relation types, then more clients can
navigate to your link relations. Oracle recommends using existing registered link relation types
instead of extension link relation types.

Related Topics
* rfc8288

2.17.2.2 URL Resolution

This section describes how ORDS resolves column values using URI resolution algorithm.

Related Topics
e rfc3986

ORACLE 116

unilink:rfc8288
unilink:rfc3986

Chapter 2
Generating Hyperlinks

2.17.2.2.1 Child Paths

This section describes how to use the relative paths to refer to the child resources.

Following code snippet shows the use of relative paths to refer to child resources:

select'child/resource'"$related" from dual

Assuming that the base URL of the containing resource is https://example.com/ords/
some_schema_alias/some/resource, then the link is as shown in the following code snippet:

{

"rel": "related",
"href": "https://example.com/ords/some schema alias/some/child/resource"
}

2.17.2.2.2 Ancestor Paths

This section provides examples to show how ORDS lets you use ../ and ./ syntax to refer to
parent paths of the current resource.

Following is an example code snippet:

select'../""Sup", './'"$self" from dual

Assuming the base URL of the containing resource is https://example.com/ords/
some_schema alias/some/collection/, then the links will be as shown in the following code

snippet:

{

"rel": "up",

"href": "https://example.com/ords/some schema alias/some/"

}I

{

"rel": "self",

"href": "https://example.com/ords/some schema alias/some/collection/"
}

2.17.2.2.3 Absolute URLs

This section provides examples for the absolute paths.

A hyperlink value can be an absolute path or a fully qualified URL as shown in the following
code snippet:

select'/cool/stuff'"Srelated", 'https://oracle.com/rest'"$related" from dual

ORACLE 2-117

Chapter 2
Generating Hyperlinks

Assuming the base URL of the containing resource is, https://example.com/ords/
some schema_alias/some/collection/ the links will be as shown in the following code
shippet:

{

"rel": "related",

"href": "https://example.com/cool/stuff"
}I

{

"rel": "related",

"href": "https://oracle.com/rest"

}

You can have multiple links for the same link relation.

2.17.2.2.4 Context Root Relative Paths

This section provides example for the context root relative path.
The context root relative path is the URL of the root resource of an ORDS enabled schema.

The following code snippet shows the context root path for the example discussed in the
preceding sections:

https://example.com/ords/some_schema alias/

ORDS provides the following syntax to express the resource paths relative to the URL:

select'”/another/collection/""Srelated"from dual

Assuming the base URL of the containing resource is https://example.com/ords/
some schema_alias/some/collection/, the link is as shown in the following code snippet:

{

"rel": "related",
"href": "https://example.com/ords/some schema alias/another/collection”

}

Any path starting with ~/1 is resolved relative to the context root path.

2.17.2.2.5 Dynamic Paths

ORACLE

This section describes how you can have dynamic values for the hyperlinks.

Examples provided in the preceding sections use literal values for the hyperlinks. The hyperlink
value can be completely dynamic, formed from any value that is a string (or can be
automatically converted to a string). For example, instead of pointing directly to the employee
resource, for managers only, you can point to a more specialized resource that can show
additional information such as the total number of reports. The GET handler can be redefined
for the emp-collection or :id resource as shown in the following code snippet:

begin
ords.define handler (
p_module name => 'links.example',
p_pattern => ':id',

2-118

Chapter 2
About HTTP Error Responses

p_source type => ords.source type collection item,
p_source => 'select emp.empno "$.id", emp.*, decode (emp.mgr,
null, null, '“/managers/' || emp.mgr) "S$related" from emp where empno = :id');
commit;
end;
Where:

e The value of the Srelated column is formed from */managers/: emp.mgr unless the value
of emp.mgr is null. In such a case, a null value is substituted that causes ORDS not to
generate the hyperlink.

The following code snippet shows the updated employee resource:

"empno": 7566,
"ename": "JONES",
"job": "MANAGER",
"mgr": 7839,
"hiredate": "1981-04-01T23:00:002",
"sal": 2975,
"comm": null,
"deptno": 20,
"links": [{
"rel": "self",
"href": "http://localhost:8080/ords/ordstest/emp-collection/7566"
oo A
"rel": "describedby",
"href": "http://localhost:8080/ords/ordstest/metadata-catalog/emp-
collection/item"
oo A
"rel": "collection",
"href": "http://localhost:8080/ords/ordstest/emp-collection/"
oo A
"rel": "related",
"href": "http://localhost:8080/ords/ordstest/managers/7839"
]

Note:

The related link now points to the dynamically generated path, that is, to the
managers/:id resource.

2.18 About HTTP Error Responses

ORACLE

ORDS can now generate HTTP error responses in JSON or HTML format. Prior to ORDS
release 20.4, only HTML responses were supported. To preserve the backward compatibility,
by default, ORDS attempts to automatically determines the best format to render the error
responses.

You can configure error.responseFormat setting and force ORDS to always render the error
responses in either HTML or JSON format.

2-119

Chapter 2
About HTTP Error Responses

2.18.1 About error.responseFormat

The error.responseFormat setting is a global setting that supports the following values:

e html - Force all error responses to be in HTML format.
e json - Force all error responses to be in JSON format.

e auto (default value) - Automatically determine most appropriate format for a request.

2.18.1.1 HTML Mode

When error.responseFormat value is set to html, all the error responses are rendered in
HTML format. This setting can be used to match the behaviour of ORDS 20.3.1 and prior
releases. The HTML format displays properly in web-browsers. However, for non-human
clients, HTML format is verbose and challenging to parse.

2.18.1.2 json Mode

When error.responseFormat value is set to json, all the error responses are rendered in
JSON format. The JSON format complies with the Problem Details for HTTP APIs standard.
The JSON format is terse, and straightforward for non-human clients to parse. However, it
does not display properly in browsers and is not user friendly for non-technical users.

2.18.1.3 auto Mode

The default value for error.responseFormat is auto. When this value is configured, ORDS
applies the following rules and automatically chooses the most appropriate format to use:

e If the client supplies an Accept request header, where application/json of application/
problem+json is the most preferred media type, then the response must be in JSON
format.

e If the client supplies an Accept request header where text/html is the most preferred
media type, then the response must be in HTML format.

» If the client supplies a X-Requested-With header, then the response must be in JSON
format. Presence of this header indicates that the request is initiated from the JavaScript
code and so JSON would be the appropriate response format.

* If the client supplies an 0rigin header, then the response must be in JSON format.
Presence of this header indicates that the request is initiated from the JavaScript code and
so JSON would be the appropriate response format.

— There is one exception to this rule, if the request method is POST and the Content-Type
of the request is application/x-www-form-urlencoded, then the response will be in
HTML format.

e If the client supplies a User-Agent header whose value starts with curl/, then the
response must be in JSON format. cURL is a popular command line tool for making the
HTTP requests. The terser JSON format is more readable in a command line environment.
If none of the preceding rules apply, then the response will be in HTML format.

¢ See Also:
cURL

ORACLE 5190

https://tools.ietf.org/html/rfc7807
http://curl.haxx.se/

Implicit Parameters

This chapter describes the implicit parameters used in REST service handlers that are not
explicitly declared. Oracle REST Data Services (ORDS) adds these parameters automatically
to the resource handlers.

3.1 List of Implicit Parameters

The following table lists the implicit parameters:

Note:

Parameter names are case sensitive. For example, :CURRENT_USER is not a valid
implicit parameter.

Table 3-1 List of Implicit Parameters

Name Type Access HTTP Descrip Introdu
Mode Header tion ced

:body BLOB IN N/A Specifies 2.0
the body
of the
request
asa
temporar
y BLOB.

:body t CLOB IN N/A Specifies 18.3
ext the body

of the

request

asa

temporar

y CLOB.

:conten VARCH IN Content Specifies 2.0

t type AR -Type the
MIME
type of
the
request
body, as
indicated
by the
Content-
Type
request
header.

ORACLE -

Chapter 3
List of Implicit Parameters

Table 3-1 (Cont.) List of Implicit Parameters

Name Type Access HTTP Descrip Introdu
Mode Header tion ced

:curren VARCH IN N/A Specifies 2.0

t user AR the

- authentic
ated
user for
the
request.
If no
user is
authentic
ated,
then the
value is
set to
null.

:forwar VARCH OUT X-ORDS- Specifies 18.3
d locat AR FORWARD the
ion - location
LOCATTO Where
N Oracle
REST
Data
Services
must
forward
a GET
request
to
produce
the
respons
e for this
request.

:fetch NUMBE IN N/A Specifies 18.3
offset R the zero-
based
offset of
the first
row to
be
displaye
dona
page.

:fetch_ NUMBE IN N/A Specifies 18.3
size R the

maximu

m

number

of rows

to be

retrieved

ona

page.

ORACLE -

Chapter 3
List of Implicit Parameters

Table 3-1 (Cont.) List of Implicit Parameters

Name Type Access HTTP Descrip Introdu
Mode Header tion ced

:page_o NUMBE IN N/A Specifies 2.0
ffset R the zero

based

page

offset in

a

paginate

d

request.

Note:
The :pa
ge offs
et
paramet
eris
deprecat
ed.

Use :ro
w_offse
t
paramet
er
instead.

:page_s NUMBE IN N/A Specifies 2.0

ize R the
maximu
m
number
of rows
to be
retrieved
ona
page.
The :pa
ge size
paramet
eris
deprecat
ed.
Use : fe
tch siz
e
paramet
er
instead.

ORACLE 23

Chapter 3
List of Implicit Parameters

Table 3-1 (Cont.) List of Implicit Parameters

Name Type Access HTTP Descrip Introdu
Mode Header tion ced

:row_of NUMBE IN N/A Specifies 3.0

fset R the one-
based
index of
the first
row to
be
displaye
dina
paginate
d
request.

:row_co NUMBE IN N/A Specifies 3.0

unt R the one-
based
index of
the last
row to
be
displaye
dina
paginate
d
request.

:status NUMBE OUT X-ORDS- Specifies 18.3
code R STATUS- the
B CODE HTTP

status

code for

the

request.

3.1.1 About the :body parameter

The :body implicit parameter is used in the resource handlers to receive the contents of the
request body as a temporary BLOB.

Note:

Only POST or PUT requests can have a request body. The HTTP specification does
not permit request bodies on GET or DELETE requests.

ORACLE 34

Chapter 3
List of Implicit Parameters

Example 3-1 Example

The following example illustrates a PL/SQL block that stores the request body in a database
table:

begin
insert into tab (content) values (:body);
end;

Note:

The :body implicit parameter must be dereferenced exactly once in a PL/SQL block.
If it is dereferenced more than once, then the second and subsequent dereferences
will appear to be empty. This is because the client sends the request body only once.
If you need this value more than once, then assign it to a local variable, and
dereference the local variable instead.

You can use either one of the implicit parameters :body or :body text. Otherwise,
the PL/SQL block displays an error message "Duplicate steam parameter".

If you use either :body or :body text, then you cannot use :bind notation to read
attributes of the JSON payload of the request.

The following example will not work as intended because it dereferences the :body parameter
twice:

begin
insert into tabl (content) values (:body); -- request body will be inserted
insert into tab2 (content) values (:body); -- an empty blob will be inserted
end;

To avoid this limitation, the :body parameter value must be assigned to a local PL/SQL variable
before it is used. This enables the local variable to be dereferenced more than once:

declare
1 content blob := :body;
begin
insert into tabl(content) values(l content);
insert into tab2(content) values(l content);
end;

3.1.2 About the :body_text Parameter

ORACLE

The :body text implicit parameter is used in the resource handlers to receive the contents of
the request body as a temporary CLOB. Typically, the content of the request body is textual (for
example JSON or HTML content) and so, receiving the request body as a CLOB saves the
resource handler author from the effort of converting the :body BLOB parameter to a CLOB
instance.

3-5

Chapter 3
List of Implicit Parameters

Note:

:body_text implicit parameter must only be dereferenced once inside the entire
PL/SQL block. If you need this value more than once, assign it to a local variable,
and dereference the local variable instead.

You can use either one of the implicit parameters :body or :body text. Otherwise, the PL/SQL
block displays an error message "Duplicate steam parameter".

It is recommended to use :body text (& character representation) rather than :body (a
binary representation) particularly where the PL/SQL block uses JSON functions to process
the request body efficiently.

3.1.3 About the :content_type Parameter

The :content type implicit parameter provides the value of the Content-Type request header
supplied with the request. If no Content-Type header is present in the request, then a null value
is returned.

3.1.4 About the :current_user Parameter

The :current user implicit parameter provides the identity of the user authenticated for the
request.

Note:

In a scenario, where the user is not authenticated, the value is set to null. For
example, if the request is for a public resource, then the value will be set to null.

3.1.5 About the :status_code Parameter

The :status_code implicit parameter enables a resource handler to indicate the HTTP status
code value to include in a response. The value must be one of the numeric values defined in
the HTTP Specification document.

3.1.6 About the :forward_location Parameter

The :forward location implicit parameter provides a mechanism for PL/SQL based resource
handlers to produce a response for a request.

Consider a POST request that results in the creation of a new resource. Typically, the response
of a POST request for REST APIs contains the location of the newly created resource (in the
Location response header) along with the representation of the new resource. The presence of
the Location header in the response indicates that there must be a GET resource handler that
can produce a response for the specified location.

ORACLE 26

https://tools.ietf.org/html/rfc7231#section-6

ORACLE

Chapter 3
List of Implicit Parameters

Instead of applying logic to the POST resource handler to render the representation of the new
resource in the response, the resource handler can delegate that task to the existing GET
Resource Handler.

The following resource handler defines a POST handler that delegates the generation of the
response to a GET resource handler:

ords.define handler(

p pattern => '.',
p method => 'POST',

p mimes allowed => 'application/json’,
p_source type => ords.source type plsql,
p_source => '

p_module name => 'tickets.collection',

declare
1 owner varchar2(255);
1 payload clob;
1 id number;

begin
1 payload := :body text;
1 owner := :current user;
1 id := ticket api.create ticket(

p_Jjson _entity => 1 payload,
p_author => 1 owner

)

:forward location := ''./'' || 1 id;
:status_code := 201;
end;
);
Where:

The ords.define handler APl is used to add a POST handler to an existing resource
module named tickets.collection.

The p_pattern with value '." indicates that the POST handler should be bound to the root
resource of the resource module. If the base path of the tickets.collection'is /
tickets/, then the POST handler is bound to the /tickets/ URL path.

The p_mimes_allowed value indicates that the POST request must have a Content-Type
header value of application/json'".

The p source type value indicates that the source of the POST handler is a PL/SQL
block.

The p_source value contains the source of the PL/SQL block:

Where:

Note:

The :body text implicit parameter is assigned to a local variable, so that it can
be dereferenced more than once.

3-7

Chapter 3
List of Implicit Parameters

The identity of the user, making the POST request, is determined from
the :current user implicit parameter.

The PL/SQL block, delegates the task of storing the request payload to a PL/SQL
package level function. The PL/SQL block should only contain logic to bridge from the
HTTP request to the PL/SQL package invocation.

Note:

When all the data modification operations are wrapped in a PL/SQL API, the
PL/SQL block can be independently unit tested. Long and complicated
PL/SQL blocks are an anti-pattern indicative of code that is difficult to test
and maintain.

The PL/SQL package level function returns the ID of the newly created resource.

The :forward_location implicit parameter is assigned the value of './' || 1 id. For
example, if the value of 1_id is 4256, then the value of : forward locationis /
tickets/4256 .

When ORDS evaluates the preceding PL/SQL block and checks the value assigned to
the : forward location implicit parameter, it initiates a GET request against the
specified location (for example, /tickets/4256) and return the response generated by
the GET request as the response of the POST request. In addition, ORDS includes a
location response header with the fully resolved URL of the :forward location value.

The :status_code implicit parameter is assigned the HTTP response status code
value. The 201 (Created) status code indicates that a new resource is created. This
value will override the status code generated by the GET request.

3.1.7 About the Pagination Implicit Parameters

The following table lists the pagination implicit parameters:

4

Note:

Oracle REST Data Services reserves the use of the query parameters, page, offset,
and limit. It is not permitted to define REST services that use named bind
parameters with any of the preceding query parameter names. Alternatively, REST
services must use the appropriate pagination implicit parameters defined in the
following table:

Table 3-2 Pagination Implicit Parameters
]

Name Description Status
:page_offset Specifies the zero based page Deprecated
offset in a pagination request.
:page_size Specifies the maximum number Deprecated
of rows to be retrieved on a page.
:row_offset Specifies the index of the first row Not Recommended

to be displayed in a pagination
request.

ORACLE

3-8

Chapter 3
List of Implicit Parameters

Table 3-2 (Cont.) Pagination Implicit Parameters

Name Description Status
:row_count Specifies the index of the last row Not Recommended
to displayed in a pagination
request.
:fetch offset Specifies the zero based index of Recommended
the first row to be displayed on a
page.
:fetch size Specifies the maximum number ~ Recommended

of rows to be retrieved on a page.

3.1.7.1 About the :page_offset Parameter

The :page offset implicit parameter is provided for backward compatibility, so it is used only
with source type query source type resource handlers.

¢ Note:
* The source type query source type is deprecated, instead use the
source type collection feed parameter.

* The :page offset implicit parameter is deprecated, instead use the :row offset
implicit parameter.

3.1.7.2 About the :page_size Parameter

The :page size implicit parameter is used to indicate the maximum number of rows to be
retrieved on a page. :page_size parameter is provided for backward compatibility. This
parameter is deprecated, instead use : fetch size implicit parameter.

3.1.7.3 About the :row_offset Parameter

The :row offset implicit parameter indicates the number of the first row to be displayed on a
page. The :row offset implicit parameter is used when you are using both a wrapper
pagination query and row number () (used in Oracle 11g and earlier releases). Starting Oracle
12c or later releases, Oracle recommends using the : fetch offset implicit parameter and a
row limiting clause instead of the :row offset parameter.

3.1.7.4 About the :row_count Parameter

The :row_count implicit parameter is used to indicate the number of rows to be displayed on a
page. The :row count value is the value of the sum of :row offset and the pagination size.
The :row count implicit parameter is useful when implementing pagination using a wrapper
pagination query and row_number () method that was used in Oracle database 11g and earlier

ORACLE 29

Chapter 3
List of Implicit Parameters

releases. Starting Oracle Database release 12c or later, Oracle recommends that you
use :fetch size parameter and a row limiting clause instead.

3.1.7.5 About the :fetch_offset Parameter

The :fetch offset implicit parameter is used to indicate the zero based offset of the first row
to display in a given page. The :fetch offset implicit parameter is used when you implement

pagination using a row limiting clause, which is recommended for use with Oracle 12¢ and later
releases.

3.1.7.6 About the :fetch_size Parameter

The :fetch size implicit parameter is used to indicate the maximum number of rows to
retrieve on a page. ORDS always sets the value of : fetch size to the pagination size plus

one. The presence or absence of the extra row helps ORDS in determining if there is a
subsequent page in the results or not.

¢ Note:

The extra row that is queried is never displayed on the page.

3.1.7.7 About Automatic Pagination

This section describes the automatic pagination process.

If a GET resource handler source type, source type collection feed Or source type query
has a non zero pagination size (p_items per page) and the source of the GET resource
handler does not dereference any of the implicit pagination parameters discussed in the
preceding sections, then ORDS automatically wraps the query in a pagination clause to
constrain the query results to include only the values from the requested page. With automatic
pagination, the resource handler author needs to specify only the pagination size, and ORDS
automatically handles the remaining effort in paginating the resource.

Note:

All resource modules have a default pagination size (p_items per page) of 25. So,
by default automatic pagination is enabled.

3.1.7.8 About Manual Pagination

ORACLE

This section describes the manual pagination process.

In some scenarios, a GET resource handler needs to perform pagination on its own rather than
delegating the pagination process to ORDS. In such cases, the source of the GET resource

handler will dereference one or more implicit pagination parameters discussed in the preceding
sections.

3-10

ORACLE

Chapter 3
List of Implicit Parameters

Note:

The GET resource handler must specify the desired pagination size so that ORDS
can correctly calculate the required values for the implicit pagination parameters.

Examples

Manual pagination example using row limiting clause

The following example defines a REST service that uses a row limiting clause to paginate the
query result set. This is the recommended way to implement manual pagination:

begin
ords.define service(
p module name => 'example.paging',
p_base path => '/example/',
p_pattern => '/paged’,
p_items per page => 7,
p source => 'select * from emp e order by empno desc offset :fetch offset
rows fetch next :fetch size rows only'
)
commit;
end;

Manual pagination example using row_number() method

The following example defines a REST service that uses a wrapper query and row number ()
method. This approach is not recommended.

begin
ords.define service(
p module name => 'example.paging',
p_base path => '/example/',
p_pattern => '/paged',
p_items per page => 7,
p_source => 'select * from (select g_.* , row number() over (order by 1)
rn__ from (select * from emp e order by empno desc) g)where rn
between :row offset and :row_count'
)
commit;
end;

3-11

ORDS PL/SQL Package Reference

The ORDS PL/SQL package contains subprograms (procedures and functions) for developing
RESTful services using Oracle REST Data Services.

Related Topics
e Using the Oracle REST Data Services PL/SQL API

4.1 ORDS.CREATE_ROLE

Format

ORDS.CREATE ROLE (
p_role name IN sec roles.name%type);

Description
CREATE_ROLE creates an Oracle REST Data Services role with the specified name.
Parameters

p_role_name
Name of the role.

Usage Notes

After the role is created, it can be associated with any Oracle REST Data Services privilege.

Examples

The following example creates a role.

EXECUTE ORDS.CREATE ROLE (p_role name=>'Tickets User');

4.2 ORDS.CREATE_SERVICE

ORACLE

Note:
ORDS.CREATE_SERVICE is deprecated. Use ORDS.DEFINE_SERVICE instead.

Format

ORDS.CREATE SERVICE (

p_module name IN ords_modules.name3type,

p_base path IN ords modules.uri prefix%type,

p_pattern IN ords_templates.uri template%type,
p_method IN ords_handlers.method%type DEFAULT 'GET',
p_source type IN ords_handlers.source type%type

DEFAULT ords.source type collection feed,

4-1

Chapter 4
ORDS.CREATE_SERVICE

p_source IN ords_handlers.sourcestype,

p_items per page IN ords modules.items per page%type DEFAULT 25,
p_status IN ords modules.status%type DEFAULT 'PUBLISHED',
p_etag type IN ords templates.etag type%type DEFAULT 'HASH',
p_etag query IN ords templates.etag querystype DEFAULT NULL,
p_mimes allowed IN ords _handlers.mimes allowed%type DEFAULT NULL,

p_module comments IN ords modules.comments%type DEFAULT NULL,
p_template comments IN ords modules.comments$type DEFAULT NULL,
p_handler comments IN ords modules.comments%type DEFAULT NULL);

Description

Creates a new RESTful service.

Parameters

p_module_name
The name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means that all
URIs starting with hr/ will be serviced by this resource module.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (Matches a request for the item in the
emp resource with id of 101) and will also match /objects/emp/ (matches a request for the
emp resource, because the :id parameter is annotated with the 2 or question mark modifier,
which indicates that the id parameter is optional).

p_method

The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), pUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

* source type collection feed. Executes a SQL query and transforms the result set into
an Oracle REST Data Services Standard JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source type collection item. Executes a SQL query returning one row of data into a
Oracle REST Data Services Standard JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source type media. Executes a SQL query conforming to a specific format and turns the
result set into a binary representation with an accompanying HTTP Content-Type header
identifying the Internet media type of the representation. Result Format: Binary

* source type plsql. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method is
DELETE, PUT, or POST. Result Format: JSON

* source type query || source type csv_query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object Notation
(JSON) or CSV representation, depending on the format selected. Available when the
HTTP method is GET. Result Format: JSON or CSV

ORACLE 4o

ORACLE

Chapter 4
ORDS.CREATE_SERVICE

* source type query one row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source type feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink to
a full representation of the resource. The first column in each row in the result set must be
a unique identifier for the row and is used to form a hyperlink of the form: path/to/feed/
{id}, with the value of the first column being used as the value for {id}. The other
columns in the row are assumed to summarize the resource and are included in the feed.
A separate resource template for the full representation of the resource should also be
defined. Result Format: JSON

* source type mle javascript. Minimum Database Oracle Release version 23ai or later is
required. Executes an anonymous javascript function that accepts a request and
response parameter.

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_status
The publication status. Valid values: 'PUBLISHED' (default) or 'NOT_PUBLISHED".

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header that
acts as a version identifier for a resource. Use entity tag headers to avoid retrieving previously
retrieved resources and to perform optimistic locking when updating resources. Valid values:
'HASH' or 'QUERY" or 'NONE".

* HASH - Known as Secure HASH: The contents of the returned resource representation
are hashed using a secure digest function to provide a unique fingerprint for a given
resource version.

* QUERY - Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

* NONE - Do not generate an entity tag.

p_etag_query
A query that is used to generate the entity tag.

p_mimes_allowed
A comma-separated list of MIME types that the handler will accept. Applies to PUT and POST
only.

p_module_comments
Comment text.

p_template_comments
Comment text.

p_handler_comments
Comment text.

4-3

Chapter 4
ORDS.DEFINE_HANDLER

Usage Notes
Creates a resource module, template, and handler in one call.

This procedure is deprecated. Use ORDS.DEFINE_SERVICE instead.

Examples

The following example creates a simple service.

BEGIN
ORDS.CREATE SERVICE (
p module name => 'my.tickets',
p_base path => '/my/tickets/',
p pattern => '.',
p_source => 'select t.id "$.id", t.id, t.title from tickets t' ||
' where t.owner = :current user order by t.updated on desc'
)i
END;

4.3 ORDS.DEFINE_HANDLER

ORACLE

Format

ORDS.DEFINE HANDLER (

p_module name IN ords modules.name%type,

p_pattern IN ords templates.uri template%type,
p_method IN ords_handlers.method%type DEFAULT 'GET',
p_source_ type IN ords_handlers.source typestype

DEFAULT ords.source type collection feed,

p_source IN ords_handlers.sourcestype,

p_items per page IN ords_handlers.items per page%type DEFAULT NULL,
p mimes allowed IN ords_handlers.mimes_allowed%type DEFAULT NULL,
p_comments IN ords_handlers.comments%type DEFAULT NULL) ;

Description

DEFINE_HANDLER defines a module handler. If the handler already exists, then the handler
and any existing handlers will be replaced by this definition; otherwise, a new handler is
created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

p_method

The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

4-4

ORACLE

Chapter 4
ORDS.DEFINE_HANDLER

p_source_type
The HTTP request method for this handler. Valid values:

* ORDS.source type collection feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available when
the HTTP method is GET. Result Format: JSON

* ORDS.source type collection item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available when the
HTTP method is GET. Result Format: JSON

* source type media. Executes a SQL query conforming to a specific format and turns the
result set into a binary representation with an accompanying HTTP Content-Type header
identifying the Internet media type of the representation. Result Format: Binary

* source type plsql. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method is
DELETE, PUT, or POST. Result Format: JSON

* source type query || source type csv query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object Notation
(JSON) or CSV representation, depending on the format selected. Available when the
HTTP method is GET. Result Format: JSON or CSV

* source type query one_ row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source type feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink to
a full representation of the resource. The first column in each row in the result set must be
a unique identifier for the row and is used to form a hyperlink of the form: path/to/feed/
{id}, with the value of the first column being used as the value for {id}. The other
columns in the row are assumed to summarize the resource and are included in the feed.
A separate resource template for the full representation of the resource should also be
defined. Result Format: JSON

* source type mle javascript. Minimum Database Oracle Release version 23ai or later is
required. Executes an anonymous javascript function that accepts a request and
response parameter.

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and POST
only.

p_comments
Comment text.

Usage Notes

Only one handler for each HTTP method (source type) is permitted.

4-5

Examples

Chapter 4
ORDS.DEFINE_MODULE

The following example defines a POST handler to the /my/tickets/ resource to accept new

tickets.

BEGIN
ORDS.DEFINE HANDLER (

p module name => 'my.tickets',

p_pattern => Ly,

p method => 'POST',

p_mimes allowed => 'application/json',
p_source type => ords.source type plsql,

p_source => '
declare

1 owner varchar2(255);

1 payload blob;
1 id number;

begin
1 payload := :body;
l_owner := :0wher;
if (1 owner is null) then
1 owner := :current user;
end if;

1 id := ticket api.create ticket(

p json entity => 1 payload,

p_author => 1 owner

);

:location := ''.

:status := 201;

end;
]

END;

/U1 id;

4.4 ORDS.DEFINE_MODULE

Format

ORDS.DEFINE MODULE (

p_module name IN
p_base path IN
p_items per page 1IN
p_status IN

p_comments IN

Description

ords modules.
ords modules.
ords modules.
ords modules.
ords modules.

namestype,

uri prefix%type,
items per page%type DEFAULT 25,
status%type DEFAULT 'PUBLISHED',
comments%type DEFAULT NULL);

DEFINE_MODULE defines a resource module. If the module already exists, then the module
and any existing templates will be replaced by this definition; otherwise, a new module is

created.

Parameters

p_module_name

Name of the owning RESTful service module. Case sensitive.

ORACLE

4-6

Chapter 4
ORDS.DEFINE_PARAMETER

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means that all
URIs starting with hr/ will be serviced by this resource module.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: 25.

p_status
Publication status. Valid values: PUBLISHED (default) or NOT PUBLISHED.

p_comments
Comment text.

Usage Notes

(None.)

Examples

The following example creates a simple module.

BEGIN
ORDS.DEFINE MODULE (
p_module name => 'my.tickets',
p_base path => '/my/tickets/'
)i
END;
/

4.5 ORDS.DEFINE_PARAMETER

Format

ORDS.DEFINE PARAMETER (

p_module name IN ords modules.name3type,

p_pattern IN ords templates.uri template%type,
p_method IN ords handlers.method%type,

p_name IN ords parameters.name3type ,

p bind variable name IN ords parameters.bind variable name%type
DEFAULT NULL,

p_source type IN ords parameters.source type%type DEFAULT 'HEADER',

p_param type IN ords parameters.param type%type DEFAULT 'STRING',

p_access method IN ords parameters.access method%type DEFAULT 'IN',

p_comments IN ords parameters.comments%type DEFAULT NULL);
Description

DEFINE_PARAMETER defines a module handler parameter. If the parameter already exists,
then the parameter will be replaced by this definition; otherwise, a new parameter is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

ORACLE 4.7

ORACLE

Chapter 4
ORDS.DEFINE_PARAMETER

p_pattern
Matching pattern for the owning resource template.

p_method

The owning handler HTTP Method. Valid values: GET (retrieves a representation of a
resource), POST (creates a new resource or adds a resource to a collection), PUT (updates an
existing resource), DELETE (deletes an existing resource).

p_name
The name of the parameter, as it is named in the URI Template or HTTP Header. Used to map
names that are not valid SQL parameter names.

p_bind_variable_name
The name of the parameter, as it will be referred to in the SQL. If NULL is specified, then the
parameter is unbound.

p_source_type
The type that is identified if the parameter originates in the URI Template or a HTTP Header.
Valid values: HEADER, RESPONSE, URI.

p_param_type
The native type of the parameter. Valid values: STRING, INT, DOUBLE, BOOLEAN, LONG,
TIMESTAMP, RESULTSET.

p_access_method
The parameter access method. Indicates if the parameter is an input value, output value, or
both. Valid values: IN, 0UT, INOUT.

p_comments
Comment text.

Usage Notes

All parameters must have unique names and variable names for the same handler.

Examples

The following example defines an outbound parameter on the POST handler to store the
location of the created ticket.

BEGIN
ORDS.DEFINE PARAMETER (

p module name => 'my.tickets',
p pattern => '.',
p_method => 'POST',
p_name => 'X-APEX-FORWARD',
p_bind variable name => 'location',
p_source type => 'HEADER',
p_access method => 'OUT'

END;
/

The following example defines an outbound parameter on the POST handler to store the HTTP
status of the operation.

BEGIN
ORDS.DEFINE PARAMETER (
p module name => 'my.tickets',
p_pattern => vy,

4-8

Chapter 4
ORDS.DEFINE_PRIVILEGE

p_method => 'POST',
p_name => 'X-APEX-STATUS-CODE',
p_bind variable name => 'status',

p_source type => 'HEADER',
p_access method => 'OUT'

END;

4.6 ORDS.DEFINE_PRIVILEGE

Format

ORDS.DEFINE PRIVILEGE (

p_privilege name IN sec privileges.name%type,

p_roles IN owa.vc arr,

p_patterns IN owa.vc arr,

p_modules IN owa.vc arr,

p_label IN sec privileges.label%type DEFAULT NULL,

p_description
p_comments

or

ORDS.DEFINE PRIVILEGE (

IN
IN

sec_privileges
sec_privileges

.description%type DEFAULT NULL,
.comments%type DEFAULT NULL);

p_privilege name IN sec privileges.name%type,

p_roles IN owa.vc arr,

p_patterns IN owa.vc arr,

p_label IN sec privileges.label%type DEFAULT NULL,

p_description
p_comments

or

ORDS.DEFINE PRIVILEGE (
p_privilege name
p_roles
p_label
p_description
p_comments

Description

IN
IN

IN
IN
IN
IN
IN

sec_privileges
sec_privileges

sec_privileges
owa.vc_arr,

sec_privileges
sec_privileges
sec_privileges

.description%type DEFAULT NULL,
.comments%type DEFAULT NULL);

.namestype,
.label%type DEFAULT NULL,

.description%type DEFAULT NULL,
.comments%type DEFAULT NULL);

DEFINE_PRIVILEGE defines an Oracle REST Data Services privilege. If the privilege already
exists, then the privilege and any existing patterns and any associations with modules and
roles will be replaced by this definition; otherwise, a new privilege is created.

Parameters

p_privilege_name

Name of the privilege. No spaces allowed.

p_roles

The names of the roles, at least one of which the privilege requires. May be empty, in which
case the user must be authenticated but does not require any specific role; however, must not
be null. Unauthenticated users will be denied access.

p_patterns
A list of patterns.

p_modules

A list of module names referencing modules created for the current schema.

ORACLE

4-9

ORACLE

Chapter 4
ORDS.DEFINE_PRIVILEGE

p_label
Name of this security constraint as displayed to an end user. May be null.

p_description
A brief description of the purpose of the resources protected by this constraint.

p_comments
Comment text.

Usage Notes

p_roles, p patterns, and p modules do not accept null values. If no value is to be passed,
then either choose the appropriate procedure specification or pass an empty owa.vc_arr
value.

Examples
The following example creates a privilege connected to roles, patterns, and modules:

DECLARE
1 priv roles owa.vc_arr;
1 priv patterns owa.vc_arr;
1 priv modules owa.vc_arr;
BEGIN

1 priv roles(1) 'Tickets User';

1 priv _patterns(l) := '"/my/*';

1 priv patterns(2) := '/comments/*"';

1 priv _patterns(3) := '/tickets feed/*';
1 priv_patterns(4) := '/tickets/*';

1 priv _patterns(5) := '/categories/*';

1 priv _patterns(6) := '/stats/*';

1 priv modules(l) := 'my.tickets';

ords.create_role('Tickets User');

ords.define privilege (

p_privilege name => 'tickets.privilege',

p_roles => 1 priv roles,

p_patterns => 1 priv patterns,

P _modules => 1 priv modules,

p_label => 'Task Ticketing Access',
p_description => 'Provides the ability to create, ' ||

'update and delete tickets ' ||
'and post comments on tickets'

END;

The following example creates a privilege connected to roles and patterns:

DECLARE

1 priv roles owa.vc_arr;

1 priv patterns owa.vc_arr;
BEGIN

1 priv _roles (1) 'Tickets User';

1 priv patterns(l) := '/my/*';

1 priv patterns(2) := '/comments/*';

1 priv patterns(3) := '/tickets feed/*';
1 priv patterns(4) := '/tickets/*';

1 priv patterns(5) := '/categories/*';

1 priv patterns(6) := '/stats/*';

4-10

ords.create_role('Tickets

ords.define privilege (

p_privilege name =>
p_roles =>
p_patterns =>
p_label =>
p_description =>

END;

Chapter 4
ORDS.DEFINE_SERVICE

User');

'tickets.privilege',

1 priv roles,

1 priv patterns,

'Task Ticketing Access',

'Provides the ability to create, ' ||
'update and delete tickets ' ||

'and post comments on tickets'

The following example creates a privilege connected to roles:

DECLARE

1 priv roles owa.vc arr;
BEGIN

1 priv roles(l) := 'Ticke

ords.create role('Tickets

ords.define privilege(

p_privilege name =>
p_roles =>
p_label =>
p description =>

END;

ts User';

User');

'tickets.privilege',

1 priv roles,

'Task Ticketing Access',

'Provides the ability to create, ' ||
'update and delete tickets ' ||

'and post comments on tickets'

4.7 ORDS.DEFINE_SERVICE

ORACLE

Format

ORDS.DEFINE SERVICE (

p_module name IN
p_base path IN
p_pattern IN
p_method IN
p_source type IN

p_source IN

p_items per page IN
p_status IN
p_etag type IN
p_etag query IN
p mimes allowed IN

p _module comments IN
p_template comments IN
p_handler comments IN

Description

ords modules.name%type,
ords modules.uri prefix%type,
ords templates.uri template%type,
ords_handlers.method%type DEFAULT 'GET',
ords_handlers.source type%type

DEFAULT ords.source type collection feed,
ords_handlers.source%type,
ords modules.items per page%type DEFAULT 25,
ords modules.status%type DEFAULT 'PUBLISHED',
ords templates.etag type%type DEFAULT 'HASH',
ords templates.etag query%type DEFAULT NULL,
ords_handlers.mimes allowed%type DEFAULT NULL,
ords modules.comments%type DEFAULT NULL,
ords modules.comments%type DEFAULT NULL,
ords_modules.comments%type DEFAULT NULL) ;

DEFINE_SERVICE defines a resource module, template, and handler in one call. If the module
already exists, then the module and any existing templates will be replaced by this definition;
otherwise, a new module is created.

4-11

ORACLE

Chapter 4
ORDS.DEFINE_SERVICE

Parameters

p_module_name
Name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means that all
URIs starting with hr/ will be serviced by this resource module.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (Matches a request for the item in the
emp resource with id of 101) and will also match /objects/emp/. (Matches a request for the
emp resource, because the :id parameter is annotated with the 2 modifier, which indicates that
the id parameter is optional.)

p_method

The HTTP Method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

* ORDS.source type collection feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available when
the HTTP method is GET. Result Format: JSON

* ORDS.source type collection item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available when the
HTTP method is GET. Result Format: JSON

* source type media. Executes a SQL query conforming to a specific format and turns the
result set into a binary representation with an accompanying HTTP Content-Type header
identifying the Internet media type of the representation. Result Format: Binary

* source type plsql. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method is
DELETE, PUT, or POST. Result Format: JSON

* source type query || source type csv_query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object Notation
(JSON) or CSV representation, depending on the format selected. Available when the
HTTP method is GET. Result Format: JSON or CSV

* source type query one row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source type feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink to
a full representation of the resource. The first column in each row in the result set must be
a unique identifier for the row and is used to form a hyperlink of the form: path/to/feed/
{id}, with the value of the first column being used as the value for {id}. The other
columns in the row are assumed to summarize the resource and are included in the feed.

4-12

ORACLE

Chapter 4
ORDS.DEFINE_SERVICE

A separate resource template for the full representation of the resource should also be
defined. Result Format: JSON

* source type mle javascript. Minimum Database Oracle Release version 23ai or later is
required. Executes an anonymous javascript function that accepts a request and
response parameter.

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_status
Publication status. Valid values: PUBLISHED (default) or NOT PUBLISHED.

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header that
acts as a version identifier for a resource. Use entity tag headers to avoid retrieving previously
retrieved resources and to perform optimistic locking when updating resources. Valid values
are HASH, QUERY, NONE:

e HAsH (known as Secure HASH): The contents of the returned resource representation are
hashed using a secure digest function to provide a unique fingerprint for a given resource
version.

e QUERY: Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

+ NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and POST
only.

p_module_comments
Comment text.

p_template_comments
Comment text.

p_handler_comments
Comment text.

Usage Notes
Creates a resource module, template, and handler in one call.

Use this procedure instead of the deprecated ORDS.CREATE_SERVICE procedure.

Examples

The following example defines a REST service that retrieves the current user's tickets.

4-13

Chapter 4
ORDS.DEFINE_TEMPLATE

BEGIN
ORDS.DEFINE SERVICE (
p_module name => 'my.tickets',
p_base path => '/my/tickets/',
p pattern => '.',
p_source => 'select t.id "$.id", t.id, t.title from tickets t' ||
' where t.owner = :current user order by t.updated on desc'
)i
END;

The following example defines a REST service that retrieves tickets filtered by category.

BEGIN
ORDS.DEFINE SERVICE (

p module name => 'by.category',

p_base path => '/by/category/',

p pattern => ':category id',

p_source => 'select ''../../my/tickets/'' []|

t.id "$.id", t.id, t.title' ||

' from tickets t, categories c, ticket categories tc' ||
' where c.id = :category id and c.id = tc.category id and' ||
' tc.ticket id = t.id order by t.updated on desc'

END;

4.8 ORDS.DEFINE_TEMPLATE

Format

ORDS.DEFINE TEMPLATE (
p_module name IN ords modules.name%type,
p_pattern IN ords_templates.uri template%type,
p_priority IN ords_templates.priority%type DEFAULT O,
p_etag type IN ords_templates.etag type%type DEFAULT 'HASH',
p_etag query IN ords_templates.etag query%type DEFAULT NULL,
p_comments IN ords_templates.comments%type DEFAULT NULL);

Description

DEFINE_TEMPLATE defines a resource template. If the template already exists, then the
template and any existing handlers will be replaced by this definition; otherwise, a new
template is created.

Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:id? will match /objects/emp/101 (matches a request for the item in the
emp resource with id of 101) and will also match /objects/emp/. (Matches a request for the
emp resource, because the :id parameter is annotated with the 2 modifier, which indicates that
the id parameter is optional.)

ORACLE Iy

Chapter 4
ORDS.DELETE_MODULE

p_priority
The priority for the order of how the resource template should be evaluated: O (low priority. the
default) through 9 (high priority).

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header that
acts as a version identifier for a resource. Use entity tag headers to avoid retrieving previously
retrieved resources and to perform optimistic locking when updating resources. Valid values
are HASH, QUERY, NONE:

* HasH (known as Secure HASH): The contents of the returned resource representation are
hashed using a secure digest function to provide a unique fingerprint for a given resource
version.

* QUERY: Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

« NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_comments
Comment text.

Usage Notes

he resource template pattern must be unique with a resource module.

Examples

The following example defines a resource for displaying ticket items.

BEGIN
ORDS.DEFINE TEMPLATE (
p module name => 'my.tickets',
p_pattern => '/:id'
)i
END;
/

4.9 ORDS.DELETE_MODULE

ORACLE

Format

ORDS.DELETE MODULE (
p_module name IN ords modules.name%type);

Description

DELETE_MODULE deletes a resource module.
Parameters

p_module_name
Name of the owning RESTful service module. Case sensitive.

4-15

Chapter 4
ORDS.DELETE_PRIVILEGE

Usage Notes

If the module does not already exist or is accessible to the current user, then no exception is
raised.

Examples

The following example deletes a resource module.

EXECUTE ORDS.DELETE MODULE (p_module name=>'my.tickets');

4.10 ORDS.DELETE_PRIVILEGE

Format

ORDS.DELETE PRIVILEGE (
p name IN sec privileges.name%type);

Description

DELETE_PRIVILEGE deletes a provilege.

Parameters

p_name
Name of the privilege.

Usage Notes

If the privilege does not already exist or is not accessible to the current user, then no exception
is raised.

Examples

The following example deletes a privilege.

EXECUTE ORDS.DELETE PRIVILEGE (p_name=>'tickets.privilege');

4.11 ORDS.DELETE_ROLE

Format

ORDS.DELETE_ROLE (
p_role name IN sec roles.name%type);

Description
DELETE_ROLE deletes the named role.
Parameters

p_name
Name of the role.

Usage Notes

This will also delete any association between the role and any privileges that reference the
role.

ORACLE 416

Chapter 4
ORDS.DROP_REST_FOR_SCHEMA

No exception is produced if the role does not already exist.

Examples

The following example deletes a role.

EXECUTE ORDS.DELETE ROLE (p_role name=>'Tickets User');

4.12 ORDS.DROP REST FOR SCHEMA

Format

ORDS.DROP_REST FOR_SCHEMA (
p_schema ords schemas.parsing schema%type DEFAULT NULL);

Description

DROP_REST_FOR_SCHEMA deletes all auto-REST Oracle REST Data Services metadata
for the associated schema. When a database user is dropped, the ORDS REST metadata of
that schema remains in place. Use this procedure to remove that metadata. Otherwise, if a
database account is created again with the same username it inherits all the existing metadata.

Parameters

p_schema
Name of the schema.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS.Enable Schema
procedure. The schema may have active sessions with the database, and so the request may
still be accepted for a period of time after the metadata of the schema has been updated. If you
want this change to take effect immediately, then a database administrator must disconnect the
associated sessions for that schema.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata for the
TICKETS schema.

EXECUTE ORDS.DROP REST FOR SCHEMA ('tickets');

Related Topics
¢ ORDS.ENABLE_SCHEMA

4.13 ORDS.ENABLE_OBJECT

ORACLE

Format

ORDS.ENABLE OBJECT (

p_enabled IN boolean DEFAULT TRUE,

p_schema IN ords_schemas.parsing schema%type DEFAULT NULL,
p_object IN ords_objects.parsing object%type,

p_object type IN ords_objects.type%type DEFAULT 'TABLE',

p object alias IN ords_objects.object alias%type DEFAULT NULL,
p_auto rest auth 1IN boolean DEFAULT NULL);

4-17

Chapter 4
ORDS.ENABLE_OBJECT

Description

ENABLE OBJECT enables Oracle REST Data Services access to a specified function,
materialized view, package, procedure, table, or view in a schema.

Parameters

p_enabled
TRUE to enable access; FALSE to disable access.

p_schema
Name of the schema for the table or view.

p_object
Name of the table or view.

p_object_type
Type of the object. Valid values: FUNCTION, MVIEW, PACKAGE, PROCEDURE, TABLE (default), or
VIEW.

p_object_alias
Alias of the object.

p_auto_rest_auth

Controls whether Oracle REST Data Services should require user authorization before
allowing access to the Oracle REST Data Services metadata for this object. If this value is
TRUE, then the service is protected by the following roles:

e oracle.dbtools.autorest.any.schema

. oracle.dbtools.role.autorest.<SCHEMANAME>.<OBJECTNAME>

Usage Notes

Database users with a DBA role can enable or access the objects that they own. If p_enabled
is set to FALSE for a schema that has been in use and the schema may have active sessions
with the database, and so the request may still be accepted for a period of time after the
metadata of the schema has been updated. If you want this change to take effect immediately,
then a database administrator must disconnect the associated sessions for that schema.

Examples

The following example enables a table named CATEGORIES.

EXECUTE ORDS.ENABLE OBJECT (p_object=>'CATEGORIES');

The following example enables a view named TICKETS_FEED.

BEGIN
ORDS.ENABLE OBJECT (
p object => 'TICKETS FEED',
p _object type => 'VIEW'
)i
END;
/

ORACLE 418

Chapter 4
ORDS.DROP_REST_FOR_OBJECT

4.14 ORDS.DROP_REST_FOR_OBJECT

Format

ORDS.DROP REST FOR OBJECT (
p_object ords objects.parsing objectstype);

Description

DROP_REST_FOR_OBJECT deletes all auto-REST Oracle REST Data Services metadata for
the associated schema object.

Parameters

p_object
Name of the table or view.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS.ENABLE OBJECT
procedure.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata for the
curent user CATEGORIES table.

BEGIN
ORDS.DROP_REST FOR OBJECT (
p_object=>'CATEGORIES'
)7
END;
/

4.15 ORDS.ENABLE_SCHEMA

ORACLE

Format

ORDS.ENABLE SCHEMA (
p_enabled IN boolean DEFAULT TRUE,
p_schema IN ords_schemas.parsing schema%type DEFAULT NULL,
p url mapping type IN ords_url mappings.type%type DEFAULT 'BASE PATH',
p url mapping pattern IN ords url mappings.pattern%type DEFAULT NULL,
p_auto rest auth IN boolean DEFAULT NULL);

Description
ENABLE_SCHEMA enables Oracle REST Data Services to access the named schema.
Parameters

p_enabled
TRUE to enable Oracle REST Data Services access; FALSE to disable Oracle REST Data
Services access.

4-19

Chapter 4
ORDS.PUBLISH_MODULE

p_schema
Name of the schema. If the p_schema parameter is omitted, then the current schema is
enabled.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

p_auto_rest_auth
For a schema, controls whether Oracle REST Data Services should require user authorization
before allowing access to the Oracle REST Data Services metadata catalog of this schema.

Usage Notes

Only database users with the DBA role can enable or disable a schema other than their own.

Examples

The following example enables the current schema.

EXECUTE ORDS.ENABLE SCHEMA;

4.16 ORDS.PUBLISH_MODULE

Format

ORDS.PUBLISH_MODULE(
p module name IN ords modules.name%type,
p_status IN ords modules.status%type DEFAULT 'PUBLISHED');

Description

PUBLISH_MODULE changes the publication status of an Oracle REST Data Services
resource module.

Parameters

p_module_name
Current name of the RESTful service module. Case sensitive.

p_status
Publication status. Valid values: PUBLISHED (default) or NOT PUBLISHED.

Usage Notes

(None.)

Examples
The following example publishes a previously defined module named my. tickets.

EXECUTE ORDS.PUBLISH MODULE (p_module name=>'my.tickets');

ORACLE 450

Chapter 4
ORDS.RENAME_MODULE

4.17 ORDS.RENAME_MODULE

Format

ORDS.RENAME MODULE (
p_module name IN ords modules.name3type,
p_new _name IN ords modules.name%type DEFAULT NULL,
p_new base path 1IN ords modules.uri prefix%type DEFAULT NULL);

Description

RENAME_MODULE lets you change the name or the base path, or both, of an Oracle REST
Data Services resource module.

Parameters

p_module_name
Current name of the RESTful service module. Case sensitive.

p_new_name
New name to be assigned to the RESTful service module. Case sensitive. If this parameter is
null, the name is not changed.

p_new_base_path

The base of the URI to be used to access this RESTful service. Example: hr/ means that all
URIs starting with hr/ will be serviced by this resource module. If this parameter is null, the
base path is not changed.

Usage Notes

Both the new resource module name and the base path must be unique within the enabled
schema.

Examples
The following example renames resource module my.tickets to old.tickets.

BEGIN
ORDS.RENAME MODULE (
p module name =>'my.tickets',
p_new name=>'old.tickets',
p_new base path=>'/old/tickets/');
END;
/

4.18 ORDS.RENAME_PRIVILEGE

ORACLE

Format

ORDS.RENAME PRIVILEGE (
p_name IN sec privileges.name%type,
p_new name IN sec privileges.name%type);

Description

RENAME_PRIVILEGE renames a privilege.

4-21

Chapter 4
ORDS.RENAME_ROLE

Parameters

p_name
Current name of the privilege.

p_new_name
New name to be assigned to the privilege.

Usage Notes

(None.)

Examples
The following example renames the privilege tickets.privilege t0 old.tickets.privilege.

BEGIN
ORDS.RENAME_PRIVILEGE(
p name =>'tickets.privilege',
p new name=>'old.tickets.privilege');
END;
/

4.19 ORDS.RENAME_ROLE

Format

ORDS.RENAME ROLE (
p role name 1IN sec roles.name%type,
p _new name IN sec roles.name%type);

Description

RENAME_ROLE renames a role.

Parameters

p_role_name
Current name of the role.

p_new_name
New name to be assigned to the role.

Usage Notes

p_role name must exist.

Examples

The following example renames an existing role.

BEGIN
ORDS.RENAME ROLE (
p_role name=>'Tickets User',
p_new name=>'Legacy Tickets User');
END;
/

ORACLE 455

Chapter 4
ORDS.SET_MODULE_ORIGINS_ALLOWED

4.20 ORDS.SET_MODULE_ORIGINS_ALLOWED

Format

ORDS.SET MODULE ORIGINS ALLOWED (
p_module name IN ords modules.name%type,
p origins allowed IN sec origins allowed modules.origins allowed%type);

Description

SET_MODULE_ORIGINS_ALLOWED configures the allowed origins for a resource module.
Any existing allowed origins will be replaced.

Parameters

p_module_name
Name of the resource module.

p_origins_allowed
A comma-separated list of URL prefixes. If the list is empty, any existing origins are removed.

Usage Notes

To indicate no allowed origins for a resource module (and remove any existing allowed origins),
specify an empty p_origins allowed value.

Examples
The following restricts the resource module my. tickets to two specified origins.

BEGIN
ORDS.SET_MODULE_ORIGINS_ALLOWED(
p module name => 'my.tickets',
p_origins allowed => 'http://example.com,https://example.com');
END;
/

4.21 ORDS.SET_URL_MAPPING

ORACLE

Format

ORDS.SET URL MAPPING (
p_schema IN ords_schemas.parsing schema%type DEFAULT NULL,
p url mapping type IN ords_url mappings.type%type,
p url mapping pattern IN ords url mappings.pattern%type);

Description

SET_URL_MAPPING configures how the specified schema is mapped to request URLSs.

Parameters

p_schema
Name of the schema to map. The default is the schema of the current user.

4-23

Chapter 4

ORDS.SET_SESSION_DEFAULTS

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

Usage Notes

Only DBA users can update the mapping of a schema other than their own.

Examples
The following example creates a BASE PATH mapping for the current user.

BEGIN
ORDS.SET URL_MAPPING (
p_url mapping type => 'BASE PATH',
p_url mapping pattern => 'https://example.com/ords/ticketing'
)i
END;
/

4.22 ORDS.SET_SESSION_DEFAULTS

Format

ORDS.SET SESSION DEFAULTS (
p_runtime user IN varchar2?);

Description
Set defaults that apply for the duration of the database session.
Parameters

p_schema
Name of the schema to map. The default is the schema of the current user.

p_runtime_user

Sets a runtime user as the target when you REST enable or disable the schemas. Otherwise

all runtime users are targeted.

Usage Notes

NULL values have no effect. Use RESET SESSION DEFAULTS to reset values and start again.

Examples

The following example sets the HR user as the only grantee target for the “connect through”

proxy privilege when a schema is REST enabled or disabled:

BEGIN
ORDS.SET SESSION DEFAULTS (
p_runtime user => 'HR');
END;
/

ORACLE

4-24

Chapter 4
ORDS.RESET_SESSION_DEFAULTS

4.23 ORDS.RESET_SESSION_DEFAULTS

Format

ORDS.RESET SESSION DEFAULTS;

Description

Reset session defaults back to the initial values.

Parameters

None.

Usage Notes

Use the SET _SESSION DEFAULTS function to set the default values that are reset using this
function.

Examples

The following example resets all the session default values:

BEGIN

ORDS.RESET SESSION DEFAULTS;
END;
/

4.24 ORDS.SET_PROPERTY

ORACLE

Format

ORDS.SET_PROPERTY (

p_key IN ords prop facts.key3type,
p_value IN ords prop values.valueltype);
Description

SET PROPERTY sets the value of the SCHEMA scoped property for the current enabled schema.
The value must not be NULL.

Parameters

p_key
The property key.

p_value
The new property value.

Examples

The following example sets a property value:

BEGIN
ORDS.SET_PROPERTY(
p_key => 'a.key',

4-25

Chapter 4
ORDS.UNSET_PROPERTY

p value => 'a value');
END;
/

4.25 ORDS.UNSET_PROPERTY

Format

ORDS.UNSET PROPERTY (
p _key 1IN ords prop facts.keystype);

Description

UNSET PROPERTY unsets the value of the SCHEMA scoped property for the current enabled
schema.

Parameters

p_key
The property key.

Examples

The following example unsets a property value:

BEGIN
ORDS.UNSET_PROPERTY(
p_key => 'a.key');
END;
/

ORACLE 4-26

Oracle REST Data Services Administration
PL/SQL Package Reference

The Oracle REST Data Services (ORDS) ADMIN PL/SQL package contains subprograms
(procedures and functions) for developing and administering the RESTful services using
Oracle REST Data Services for a privileged user.

Before a database user can invoke the ORDS ADMIN package, they must be granted the
ORDS_ADMINISTRATOR ROLE database role.

The following example grants the ORDS ADMINISTRATOR ROLE role to the ADMIN user:

GRANT ORDS ADMINSTRATOR ROLE TO ADMIN;

The ORDS_ADMIN package is identical to the ORDS package except for the AUTHID
CURRENT USER right, without the deprecated methods and a p_schema parameter for every
method where the target schema must be specified and some additional methods.

Related Topics
« ORDS PL/SQL Package Reference

5.1 ORDS_ADMIN.CREATE_ROLE

ORACLE

Format

ORDS ADMIN.CREATE ROLE (
p_schema IN ords schemas.parsing schema%type,
p role name IN sec roles.name3type);

Description
CREATE_ROLE creates an Oracle REST Data Services role with the specified name.
Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_role_name
Name of the role.

Usage Notes

After the role is created, it can be associated with any Oracle REST Data Services privilege.

5-1

Chapter 5
ORDS_ADMIN.DEFINE_HANDLER

Examples

The following example creates a role.
BEGIN
ORDS_ADMIN.CREATE ROLE (
p_schema => 'tickets',
p_role name => 'Tickets User');

END;
/

5.2 ORDS_ADMIN.DEFINE_HANDLER

Format

ORDS_ADMIN.DEFINE HANDLER (

p_schema IN ords_schemas.parsing schema%type,
p_module name IN ords modules.name%type,

p_pattern IN ords templates.uri template%type,
p_method IN ords_handlers.method%type DEFAULT 'GET',
p_source_ type IN ords_handlers.source typestype

DEFAULT ords_admin.source type collection feed,

p_source IN ords_handlers.sourcestype,

p_items per page IN ords_handlers.items per page%type DEFAULT NULL,
p mimes allowed IN ords_handlers.mimes_allowed%type DEFAULT NULL,
p_comments IN ords_handlers.comments%type DEFAULT NULL) ;

Description

DEFINE_HANDLER defines a module handler. If the handler already exists, then the handler
and any existing handlers will be replaced by this definition; otherwise, a new handler is
created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern
Matching pattern for the owning resource template.

p_method

The HTTP method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a hew resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

ORACLE -

Chapter 5
ORDS_ADMIN.DEFINE_HANDLER

* ORDS.source type collection feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available when
the HTTP method is GET. Result Format: JSON

* ORDS.source type collection item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available when the
HTTP method is GET. Result Format: JSON

* source type media. Executes a SQL query conforming to a specific format and turns the
result set into a binary representation with an accompanying HTTP Content-Type header
identifying the Internet media type of the representation. Result Format: Binary

* source type plsql. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method is
DELETE, PUT, or POST. Result Format: JSON

* source type query || source type csv query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object Notation
(JSON) or CSV representation, depending on the format selected. Available when the
HTTP method is GET. Result Format: JSON or CSV

* source type query one row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source type feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink to
a full representation of the resource. The first column in each row in the result set must be
a unique identifier for the row and is used to form a hyperlink of the form: path/to/feed/
{id}, with the value of the first column being used as the value for {id}. The other
columns in the row are assumed to summarize the resource and are included in the feed.
A separate resource template for the full representation of the resource should also be
defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and POST
only.

p_comments
Comment text.

Usage Notes

Only one handler for each HTTP method (source type) is permitted.

Examples

The following example defines a POST handler to the /my/tickets/ resource to accept new
tickets.

BEGIN
ORDS ADMIN.DEFINE HANDLER (

ORACLE -

Chapter 5
ORDS_ADMIN.DEFINE_MODULE

p_schema => 'tickets',
p_module name => 'my.tickets',
p pattern => '.',
p _method => 'POST',
p_mimes allowed => 'application/json',
p_source type => ords admin.source type plsql,
p_source => '
declare
1 owner varchar2(255);
1 payload blob;
1 id number;

begin
1 payload := :body;
1 owner := :owner;
if (1 owner is null) then
1 owner := :current user;
end if;

1 id := ticket api.create ticket(
p_json _entity => 1 payload,
p_author => 1 owner

)i

5.3 ORDS_ADMIN.DEFINE_MODULE

ORDS ADMIN.DEFINE MODULE (

p_schema IN ords_schemas.parsing schema%type,

p_module name IN ords modules.name%type,

p_base path IN ords modules.uri prefix%type,

p_items per page IN ords modules.items per page%type DEFAULT 25,

p_status IN ords modules.status%type DEFAULT 'PUBLISHED',

p_comments IN ords modules.comments$type DEFAULT NULL);
Description

DEFINE_MODULE defines a resource module. If the module already exists, then the module
and any existing templates will be replaced by this definition; otherwise, a new module is
created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means that all
URIs starting with hr/ will be serviced by this resource module.

ORACLE -

p_items_per_page

Chapter 5
ORDS_ADMIN.DEFINE_PARAMETER

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database

query. Default: 25.

p_status

Publication status. Valid values: PUBLISHED (default) or NOT PUBLISHED.

p_comments
Comment text.

Usage Notes

(None.)

Examples

The following example creates a simple module.

BEGIN

ORDS_ADMIN.DEFINE MODULE (

p_schema => 'tickets',

p_module name => 'my.tickets',
p_base path => '/my/tickets/'

)7
END;
/

5.4 ORDS_ADMIN.DEFINE_PARAMETER

ORACLE

Format

ORDS ADMIN.DEFINE PARAMETER (

p_schema IN
p_module name IN
p_pattern IN
p_method IN
p_name IN

p bind variable name IN

p_source_ type IN
p_param type IN
p_access method IN
p_comments IN

Description

ords schemas.parsing schema%type,
ords modules.name%type,
ords templates.uri template%type,
ords handlers.method%type,
ords parameters.name%type ,
ords parameters.bind variable name%type
DEFAULT NULL,
ords parameters.source typestype DEFAULT 'HEADER',
ords parameters.param type%type DEFAULT 'STRING',
ords parameters.access method%type DEFAULT 'IN',
ords parameters.commentsstype DEFAULT NULL);

DEFINE_PARAMETER defines a module handler parameter. If the parameter already exists,
then the parameter will be replaced by this definition; otherwise, a new parameter is created.

Parameters

p_schema

Name of the schema. This parameter is mandatory.

p_module_name

Name of the owning RESTful service module. Case sensitive.

5-5

ORACLE

Chapter 5
ORDS_ADMIN.DEFINE_PARAMETER

p_pattern
Matching pattern for the owning resource template.

p_method

The owning handler HTTP Method. Valid values: GET (retrieves a representation of a
resource), POST (creates a new resource or adds a resource to a collection), PUT (updates an
existing resource), DELETE (deletes an existing resource).

p_name
The name of the parameter, as it is named in the URI Template or HTTP Header. Used to map
names that are not valid SQL parameter names.

p_bind_variable_name
The name of the parameter, as it will be referred to in the SQL. If NULL is specified, then the
parameter is unbound.

p_source_type
The type that is identified if the parameter originates in the URI Template or a HTTP Header.
Valid values: HEADER, RESPONSE, URI.

p_param_type
The native type of the parameter. Valid values: STRING, INT, DOUBLE, BOOLEAN, LONG,
TIMESTAMP.

p_access_method
The parameter access method. Indicates if the parameter is an input value, output value, or
both. Valid values: IN, 0UT, INOUT.

p_comments
Comment text.

Usage Notes

All parameters must have unique names and variable names for the same handler.

Examples

The following example defines an outbound parameter on the POST handler to store the
location of the created ticket.

BEGIN

ORDS_ADMIN.DEFINE PARAMETER (
p_schema => 'tickets',
p module name => 'my.tickets',
p pattern => '.',
p_method => 'POST',
p_name => 'X-APEX-FORWARD',
p_bind variable name => 'location',
p_source type => 'HEADER',
p_access method => 'OUT'

END;
/

The following example defines an outbound parameter on the POST handler to store the HTTP
status of the operation.

BEGIN
ORDS ADMIN.DEFINE PARAMETER (
p _schema => 'tickets',

5-6

Chapter 5

ORDS_ADMIN.DEFINE_PRIVILEGE

p_module name => 'my.tickets',

p pattern => '.',
p_method => 'POST',

p_name => 'X-APEX-STATUS-CODE',

p_bind variable name =

> 'status',

p_source type => 'HEADER',
p_access method => 'OUT'

END;

5.5 ORDS_ADMIN.DEFINE_PRIVILEGE

ORACLE

Format

ORDS_ADMIN.DEFINE PRIVILEGE (

ords_schemas.parsing schema%type,
sec_privileges.name%type,

owa.vc_arr,

owa.vc_arr,

owa.vc_arr,

sec_privileges.label%type DEFAULT NULL,
sec_privileges.description%type DEFAULT NULL,
sec_privileges.comments%type DEFAULT NULL);

ords_schemas.parsing schema%stype,
sec_privileges.name%type,

owa.vc_arr,

owa.vc_arr,

sec_privileges.label%type DEFAULT NULL,
sec_privileges.description%type DEFAULT NULL,
sec_privileges.comments%type DEFAULT NULL);

ords schemas.parsing schema%type,
sec_privileges.name%type,

owa.vc_arr,

sec_privileges.label%type DEFAULT NULL,
sec_privileges.description%type DEFAULT NULL,
sec_privileges.comments%type DEFAULT NULL);

p_schema IN
p_privilege name IN
p_roles IN
p_patterns IN
p_modules IN
p_label IN
p_description IN
p_comments IN

or

ORDS_ADMIN.DEFINE PRIVILEGE (
p_schema IN
p_privilege name IN
p_roles IN
p_patterns IN
p_label IN
p_description IN
p_comments IN

or

ORDS_ ADMIN.DEFINE PRIVILEGE (
p_schema IN
p_privilege name IN
p_roles IN
p_label IN
p_description IN
p_comments IN

Description

DEFINE_PRIVILEGE defines an Oracle REST Data Services privilege. If the privilege already
exists, then the privilege and any existing patterns and any associations with modules and

roles will be replaced by this definition; otherwise, a new privilege is created.

Parameters

p_schema

Name of the schema. This parameter is mandatory.

p_privilege_name

Name of the privilege. No spaces allowed.

5-7

ORACLE

Chapter 5
ORDS_ADMIN.DEFINE_PRIVILEGE

p_roles

The names of the roles, at least one of which the privilege requires. May be empty, in which
case the user must be authenticated but does not require any specific role; however, must not
be null. Unauthenticated users will be denied access.

p_patterns
A list of patterns.

p_modules
A list of module names referencing modules created for the current schema.

p_label
Name of this security constraint as displayed to an end user. May be null.

p_description
A brief description of the purpose of the resources protected by this constraint.

p_comments
Comment text.

Usage Notes

p_roles, p patterns, and p modules do not accept null values. If no value is to be passed,
then either choose the appropriate procedure specification or pass an empty owa.vc_arr
value.

Examples
The following example creates a privilege connected to roles, patterns, and modules:

DECLARE
1 priv roles owa.vc_arr;
1 priv patterns owa.vc_arr;
1 priv modules owa.vc_arr;
BEGIN

1 priv roles (1) 'Tickets User';

1 priv patterns(l) := "/my/*';

1 priv patterns(2) := '/comments/*"';

1 priv patterns(3) := '/tickets feed/*';
1 priv_patterns(4) := '/tickets/*';

1 priv _patterns(5) := '/categories/*';

1 priv _patterns(6) := '/stats/*';

1 priv modules(l) := 'my.tickets';

ords_admin.create role(
p_schema => 'tickets',
p_role name => 'Tickets User'
b

ords_admin.define privilege (

p_schema => 'tickets',

p_privilege name => 'tickets.privilege',

p_roles => 1 priv roles,

p_patterns => 1 priv patterns,

P _modules => 1 priv modules,

p_label => 'Task Ticketing Access',
p_description => 'Provides the ability to create, ' ||

'update and delete tickets ' ||
'and post comments on tickets'

5-8

ORACLE

END;

The following example creates a privilege connected to roles and patterns:

DECLARE

1 priv roles owa.vc arr;
1 priv patterns owa.vc arr;

BEGIN
1 priv roles(l) :=
1 priv patterns (1)
1 priv patterns(2)
1 priv patterns(3)
1 priv patterns(4)
1 priv patterns(5)
1 priv patterns(6)

'Tickets User';

= '/my/*"';

:= '/comments/*';

1= '/tickets feed/*';
1= '/tickets/*';

:= '/categories/*';
1= '/stats/*';

ords_admin.create role(
p_schema => 'tickets',
p _role name => 'Tickets User'

)i

ords_admin.define privilege (

p_schema

p _privilege name
p roles
p_patterns

p label

p _description

END;

The following example creates a privilege connected to roles:

DECLARE

=> 'tickets',

=> 'tickets.privilege',

=> 1 priv roles,
=> 1 priv patterns,

=> 'Task Ticketing Access',
=> 'Provides the ability to create,
'update and delete tickets '

'and post comments on tickets'

1 priv roles owa.vc arr;

BEGIN
1 priv roles(l) :=

'Tickets User';

ords_admin.create role(
p_schema => 'tickets',
p role name => 'Tickets User'

)

ords_admin.define privilege(

p_schema

p privilege name
p roles

p label

p description

END;

=> 'tickets',

=> 'tickets.privilege',

=> 1 priv roles,

=> 'Task Ticketing Access',
=> 'Provides the ability to create,
'update and delete tickets '

'and post comments on tickets'

Chapter 5
ORDS_ADMIN.DEFINE_PRIVILEGE

5-9

Chapter 5
ORDS_ADMIN.DEFINE_SERVICE

5.6 ORDS_ADMIN.DEFINE_SERVICE

ORACLE

Format

ORDS ADMIN.DEFINE SERVICE (

p_schema IN ords_schemas.parsing schema%type,
p_module name IN ords modules.name%type,
p_base path IN ords modules.uri prefix%type,
p_pattern IN ords_ templates.uri template%type,
p_method IN ords_handlers.method%type DEFAULT 'GET',
p_source type IN ords_handlers.source type%type

DEFAULT ords admin.source type collection feed,
p_source IN ords_handlers.source%type,
p_items per page IN ords modules.items per page%type DEFAULT 25,
p_status IN ords modules.status%type DEFAULT 'PUBLISHED',
p_etag type IN ords templates.etag type%type DEFAULT 'HASH',
p_etag query IN ords templates.etag query%type DEFAULT NULL,
p mimes allowed IN ords handlers.mimes allowed%type DEFAULT NULL,

p_module comments IN ords modules.comments%type DEFAULT NULL,
p_template comments IN ords modules.comments%type DEFAULT NULL,
p_handler comments IN ords modules.comments%type DEFAULT NULL);

Description

DEFINE_SERVICE defines a resource module, template, and handler in one call. If the module
already exists, then the module and any existing templates will be replaced by this definition;
otherwise, a new module is created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the RESTful service module. Case sensitive. Must be unique.

p_base_path
The base of the URI that is used to access this RESTful service. Example: hr/ means that all
URIs starting with hr/ will be serviced by this resource module.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:1d? will match /objects/emp/101 (matches a request for the item in the
emp resource with id of 101) and will also match /objects/emp/. (Matches a request for the
emp resource, because the :id parameter is annotated with the 2 modifier, which indicates that
the id parameter is optional.)

p_method

The HTTP Method to which this handler will respond. Valid values: GET (retrieves a
representation of a resource), POST (creates a new resource or adds a resource to a
collection), PUT (updates an existing resource), DELETE (deletes an existing resource).

p_source_type
The HTTP request method for this handler. Valid values:

5-10

ORACLE

Chapter 5
ORDS_ADMIN.DEFINE_SERVICE

* ORDS.source type collection feed. Executes a SQL query and transforms the result
set into an Oracle REST Data Services Standard JSON representation. Available when
the HTTP method is GET. Result Format: JSON

* ORDS.source type collection item. Executes a SQL query returning one row of data
into a Oracle REST Data Services Standard JSON representation. Available when the
HTTP method is GET. Result Format: JSON

* source type media. Executes a SQL query conforming to a specific format and turns the
result set into a binary representation with an accompanying HTTP Content-Type header
identifying the Internet media type of the representation. Result Format: Binary

* source type plsql. Executes an anonymous PL/SQL block and transforms any OUT or
IN/OUT parameters into a JSON representation. Available only when the HTTP method is
DELETE, PUT, or POST. Result Format: JSON

* source type query || source type csv query. Executes a SQL query and transforms
the result set into either an Oracle REST Data Services legacy JavaScript Object Notation
(JSON) or CSV representation, depending on the format selected. Available when the
HTTP method is GET. Result Format: JSON or CSV

* source type query one row. Executes a SQL query returning one row of data into an
Oracle REST Data Services legacy JSON representation. Available when the HTTP
method is GET. Result Format: JSON

* source type feed. Executes a SQL query and transforms the results into a JSON Feed
representation. Each item in the feed contains a summary of a resource and a hyperlink to
a full representation of the resource. The first column in each row in the result set must be
a unique identifier for the row and is used to form a hyperlink of the form: path/to/feed/
{id}, with the value of the first column being used as the value for {id}. The other
columns in the row are assumed to summarize the resource and are included in the feed.
A separate resource template for the full representation of the resource should also be
defined. Result Format: JSON

p_source
The source implementation for the selected HTTP method.

p_items_per_page

The default pagination for a resource handler HTTP operation GET method, that is, the
number of rows to return on each page of a JSON format result set based on a database
query. Default: NULL (defers to the resource module setting).

p_status
Publication status. Valid values: PUBLISHED (default) or NOT PUBLISHED.

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header that
acts as a version identifier for a resource. Use entity tag headers to avoid retrieving previously
retrieved resources and to perform optimistic locking when updating resources. Valid values
are HASH, QUERY, NONE:

e HAsH (known as Secure HASH): The contents of the returned resource representation are
hashed using a secure digest function to provide a unique fingerprint for a given resource
version.

* QUERY: Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

5-11

Chapter 5
ORDS_ADMIN.DEFINE_SERVICE

» NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

p_mimes_allowed
Comma-separated list of MIME types that the handler will accept. Applies to PUT and POST
only.

p_module_comments
Comment text.

p_template_comments
Comment text.

p_handler_comments
Comment text.

Usage Notes

Creates a resource module, template, and handler in one call.

Examples
The following example defines a REST service that retrieves the current user's tickets.

BEGIN
ORDS_ADMIN.DEFINE SERVICE (
p_schema => 'tickets',
p_module name => 'my.tickets',
p_base path => '/my/tickets/',
p pattern => '.',
p_source => 'select t.id "$.id", t.id, t.title from tickets t' ||
' where t.owner = :current user order by t.updated on desc'

END;

The following example defines a REST service that retrieves tickets filtered by category.

BEGIN
ORDS_ADMIN.DEFINE SERVICE (

p_schema => 'tickets',

p _module name => 'by.category',

p_base path => '/by/category/',

p pattern => ':category id',

p_source => 'select ''../../my/tickets/'" ||

t.id "$.id", t.id, t.title' ||

' from tickets t, categories c, ticket categories tc' ||
' where c.id = :category id and c.id = tc.category id and' ||
' tc.ticket id = t.id order by t.updated on desc'

END;

ORACLE c 10

Chapter 5
ORDS_ADMIN.DEFINE_TEMPLATE

5.7 ORDS_ADMIN.DEFINE_TEMPLATE

ORACLE

Format

ORDS ADMIN.DEFINE TEMPLATE (

p_schema IN ords_schemas.parsing schema%type,
p_module name IN ords modules.name%type,

p_pattern IN ords_templates.uri template%type,
p_priority IN ords_ templates.priority%type DEFAULT O,

p_etag type IN ords templates.etag type%type DEFAULT 'HASH',
p_etag query IN ords templates.etag query%type DEFAULT NULL,
p_comments IN ords_ templates.comments%type DEFAULT NULL);

Description

DEFINE_TEMPLATE defines a resource template. If the template already exists, then the
template and any existing handlers will be replaced by this definition; otherwise, a new
template is created.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

p_pattern

A matching pattern for the resource template. For example, a pattern of /
objects/:object/:1d? will match /objects/emp/101 (matches a request for the item in the
emp resource with id of 101) and will also match /objects/emp/. (Matches a request for the
emp resource, because the :id parameter is annotated with the 2 modifier, which indicates that
the id parameter is optional.)

p_priority
The priority for the order of how the resource template should be evaluated: O (low priority. the
default) through 9 (high priority).

p_etag_type

A type of entity tag to be used by the resource template. An entity tag is an HTTP Header that
acts as a version identifier for a resource. Use entity tag headers to avoid retrieving previously
retrieved resources and to perform optimistic locking when updating resources. Valid values
are HASH, QUERY, NONE:

e HasH (known as Secure HASH): The contents of the returned resource representation are
hashed using a secure digest function to provide a unique fingerprint for a given resource
version.

° QUERY: Manually define a query that uniquely identifies a resource version. A manually
defined query can often generate an entity tag more efficiently than hashing the entire
resource representation.

« NONE: Do not generate an entity tag.

p_etag_query
Query that is used to generate the entity tag.

5-13

Chapter 5

ORDS_ADMIN.DELETE_MODULE

p_comments
Comment text.

Usage Notes

he resource template pattern must be unique with a resource module.

Examples
The following example defines a resource for displaying ticket items.

BEGIN
ORDS_ADMIN.DEFINE TEMPLATE (
p_schema => 'tickets',
p module name => 'my.tickets',
p_pattern => '/:id'
)i
END;
/

5.8 ORDS_ADMIN.DELETE_MODULE

ORACLE

Format

ORDS ADMIN.DELETE MODULE (
p_schema IN ords_schemas.parsing schema%type,
p_module name IN ords modules.name%type);

Description
DELETE_MODULE deletes a resource module.
Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the owning RESTful service module. Case sensitive.

Usage Notes

If the module does not already exist or is accessible to the current user, then no exception is

raised.

Examples
The following example deletes a resource module.

BEGIN
ORDS ADMIN.DELETE MODULE (
p_schema => 'tickets',
p module name => 'my.tickets'
)i
END;
/

5-14

Chapter 5

ORDS_ADMIN.DELETE_PRIVILEGE

5.9 ORDS_ADMIN.DELETE_PRIVILEGE

Description

DELETE_PRIVILEGE deletes a privilege.
Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_name
Name of the privilege.

Usage Notes

If the privilege does not already exist, then no exception is raised.

Examples
The following example deletes a privilege.

BEGIN
ORDS_ADMIN.DELETE PRIVILEGE (
p_schema => 'tickets',
p_name => 'tickets.privilege'
)i
END;
/

5.10 ORDS_ADMIN.DELETE_ROLE

ORACLE

Format

ORDS_ADMIN.DELETE ROLE (
p_schema IN ords_schemas.parsing schema%type,
p_role name IN sec roles.name%type);

Description

DELETE_ROLE deletes the named role.

Parameters

p_name
Name of the role.

Usage Notes

This will also delete any association between the role and any privileges that reference the

role.

No exception is produced if the role does not already exist.

Examples

The following example deletes a role.

5-15

Chapter 5
ORDS_ADMIN.DROP_REST_FOR_SCHEMA

BEGIN
ORDS_ADMIN.DELETE_ROLE (
p_schema => 'tickets',
p_role name => 'Tickets User'
)i
END;
/

5.11 ORDS_ADMIN.DROP_REST FOR SCHEMA

Format

ORDS_ADMIN.DROP REST FOR SCHEMA (
p_schema ords schemas.parsing schema%type);

Description

DROP REST FOR SCHEMA deletes all auto-REST Oracle REST Data Services metadata for the
associated schema. When a database user is dropped, the ORDS REST metadata for that
schema remains in place. To remove that metadata, use this procedure . Otherwise, if a
database account is created again with the same username it inherits all the existing metadata.

Parameters

p_schema
Name of the schema.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS.Enable Schema
procedure.

The schema may have active sessions with the database, and so the request may still be
accepted for a period of time after the metadata of the schema has been updated. If you want
this change to take effect immediately, then a database administrator must disconnect the
associated sessions for that schema.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata for the
TICKETS schema.

BEGIN
ORDS_ADMIN.DROP REST FOR SCHEMA (
p_schema => 'tickets'
)i
END;
/

5.12 ORDS_ADMIN.ENABLE_OBJECT

ORACLE

Format

ORDS ADMIN.ENABLE OBJECT (

p_enabled IN boolean DEFAULT TRUE,

p_schema IN ords_schemas.parsing schema$,

p_object IN ords_objects.parsing object%type,
p_object type IN ords_objects.type%type DEFAULT 'TABLE',

5-16

ORACLE

Chapter 5
ORDS_ADMIN.ENABLE_OBJECT

p_object alias IN ords_objects.object alias%type DEFAULT NULL,
p_auto rest auth 1IN boolean DEFAULT NULL);

Description

ENABLE OBJECT enables Oracle REST Data Services access to a specified function,
materialized view, package, procedure, table, or view in a schema.

Parameters

p_enabled
TRUE to enable access; FALSE to disable access.

p_schema
Name of the schema for the table or view. This parameter is mandatory.

p_object
Name of the table or view.

p_object_type
Type of the object. Valid values: FUNCTION, MVIEW, PACKAGE, PROCEDURE, TABLE (default), or
VIEW.

p_object_alias
Alias of the object.

p_auto_rest_auth

Controls whether Oracle REST Data Services should require user authorization before
allowing access to the Oracle REST Data Services metadata for this object. If this value is
TRUE, then the service is protected by the following roles:

e oracle.dbtools.autorest.any.schema

. oracle.dbtools.role.autorest.<SCHEMANAME>.<OBJECTNAME>

Usage Notes

If p_enabled is set to FALSE for a schema that has been in use and the schema may have
active sessions with the database, and so the request may still be accepted for a period of time
after the metadata of the schema has been updated. If you want this change to take effect
immediately, then a database administrator must disconnect the associated sessions for that
schema.

Examples

The following example enables a table named CATEGORIES.

BEGIN
ORDS_ADMIN.ENABLE_OBJECT(
p _schema => 'tickets',
p_object=>'CATEGORIES'
)i
END;
/

The following example enables a view named TICKETS_FEED.

BEGIN
ORDS_ADMIN.ENABLE OBJECT (
p_schema => 'tickets',
p object => 'TICKETS FEED',

5-17

Chapter 5
ORDS_ADMIN.DROP_REST_FOR_OBJECT

p_object type => 'VIEW'
)i
END;
/

5.13 ORDS_ADMIN.DROP REST FOR OBJECT

Format

ORDS ADMIN.DROP REST FOR OBJECT (

p_schema IN ords_schemas.parsing schema%,
p_object IN ords objects.parsing object%type);
Description

DROP_REST_FOR_OBJECT deletes all auto-REST Oracle REST Data Services metadata for
the associated schema object.

Parameters

p_schema
Name of the schema.

p_object
Name of the table or view.

Usage Notes

This procedure effectively "undoes" the actions performed by the ORDS_ADMIN.ENABLE OBJECT
procedure.

Examples

The following example deletes all auto-REST Oracle REST Data Services metadata for the
TICKETS schema CATEGORIES table.

BEGIN
ORDS_ADMIN.DROP_REST_FOR_OBJECT(
p_schema => 'tickets',
p_object=>'CATEGORIES'
)i
END;
/

5.14 ORDS_ADMIN.ENABLE_SCHEMA

Format

ORDS ADMIN.ENABLE SCHEMA (
p_enabled IN boolean DEFAULT TRUE,
p_schema IN ords_schemas.parsing schema%type,
p_url mapping type IN ords_url mappings.type%type DEFAULT 'BASE PATH',
p url mapping pattern IN ords url mappings.pattern%type DEFAULT NULL,
p_auto rest auth IN boolean DEFAULT NULL);

Description

ENABLE_SCHEMA enables Oracle REST Data Services to access the named schema.

ORACLE c 18

Chapter 5
ORDS_ADMIN.PUBLISH_MODULE

Parameters

p_enabled
TRUE to enable Oracle REST Data Services access; FALSE to disable Oracle REST Data
Services access.

p_schema
Name of the schema. This parameter is mandatory.

p_url_mapping_type
URL Mapping type: BASE_PATH or BASE_URL.

p_url_mapping_pattern
URL mapping pattern.

p_auto_rest_auth
For a schema, controls whether Oracle REST Data Services should require user authorization
before allowing access to the Oracle REST Data Services metadata catalog of this schema.

Usage Notes

None.

Examples

The following example enables the current schema.

BEGIN
ORDS ADMIN.ENABLE SCHEMA (
p_schema => 'tickets'
)i
END;
/

5.15 ORDS_ADMIN.PUBLISH_MODULE

ORACLE

Format

ORDS ADMIN.PUBLISH MODULE (

p_schema IN ords_ schemas.parsing schema%type,

p module name IN ords modules.name%type,

p status IN ords modules.status%type DEFAULT 'PUBLISHED');
Description

PUBLISH_MODULE changes the publication status of an Oracle REST Data Services
resource module.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Current name of the RESTful service module. Case sensitive.

5-19

Chapter 5
ORDS_ADMIN.RENAME_MODULE

p_status
Publication status. Valid values: PUBLISHED (default) or NOT PUBLISHED.

Usage Notes

(None.)

Examples
The following example publishes a previously defined module named my. tickets.

BEGIN
ORDS ADMIN.PUBLISH MODULE (
p_schema => 'tickets',
p module name => 'my.tickets'
)i
END;
/

5.16 ORDS_ADMIN.RENAME_MODULE

ORACLE

Format

ORDS ADMIN.RENAME MODULE (

p_schema IN ords_schemas.parsing schema%type,
p_module name IN ords modules.name%type,
p_new _name IN ords modules.name%type DEFAULT NULL,

p new base path IN ords modules.uri prefix%type DEFAULT NULL);

Description

RENAME_MODULE lets you change the name or the base path, or both, of an Oracle REST
Data Services resource module.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Current name of the RESTful service module. Case sensitive.

p_new_name
New name to be assigned to the RESTful service module. Case sensitive. If this parameter is
null, the name is not changed.

p_new_base_path

The base of the URI to be used to access this RESTful service. Example: hr/ means that all
URIs starting with hr/ will be serviced by this resource module. If this parameter is null, the
base path is not changed.

Usage Notes

Both the new resource module name and the base path must be unique within the enabled
schema.

Examples

The following example renames resource module my.tickets to old.tickets.

5-20

Chapter 5
ORDS_ADMIN.RENAME_PRIVILEGE

BEGIN
ORDS_ADMIN.RENAME MODULE (
p_schema => 'tickets',
p_module name =>'my.tickets',
p_new name=>'old.tickets',
p_new base path=>'/old/tickets/');
END;
/

5.17 ORDS_ADMIN.RENAME_PRIVILEGE

Format

ORDS ADMIN.RENAME PRIVILEGE (
p_schema IN ords_schemas.parsing schema%type,
p_name IN sec privileges.name%type,
p _new name IN sec privileges.namestype);

Description

RENAME_PRIVILEGE renames a privilege.
Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_name
Current name of the privilege.

p_new_name
New name to be assigned to the privilege.

Usage Notes

(None.)

Examples
The following example renames the privilege tickets.privilege t0o old.tickets.privilege.

BEGIN
ORDS_ADMIN.RENAME PRIVILEGE (
p_schema => 'tickets',
p name =>'tickets.privilege',
p_new name=>'old.tickets.privilege');
END;
/

5.18 ORDS_ADMIN.RENAME_ROLE

Format

ORDS_ADMIN.RENAME ROLE (
p_schema IN ords_schemas.parsing schema%type,
p_role name 1IN sec roles.name%type,
p new name IN sec roles.namestype);

ORACLE 5.91

Chapter 5
ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED

Description

RENAME_ROLE renames a role.
Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_role_name
Current name of the role.

p_new_name
New name to be assigned to the role.

Usage Notes

p_role name must exist.

Examples
The following example renames an existing role.

BEGIN
ORDS_ADMIN.RENAME ROLE (
p_schema=>'tickets',
p_role name=>'Tickets User',
p_new name=>'Legacy Tickets User');
END;
/

5.19 ORDS_ADMIN.SET_MODULE_ORIGINS_ALLOWED

Format

ORDS_ADMIN.SET MODULE ORIGINS ALLOWED (
p_schema IN ords_schemas.parsing schema%type,
p_module name IN ords_modules.name%type,
p_origins _allowed IN sec origins allowed modules.origins allowed%type);

Description

SET_MODULE_ORIGINS_ALLOWED configures the allowed origins for a resource module.
Any existing allowed origins will be replaced.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_module_name
Name of the resource module.

p_origins_allowed
A comma-separated list of URL prefixes. If the list is empty, any existing origins are removed.

ORACLE 5 oo

Chapter 5
ORDS_ADMIN.SET_URL_MAPPING

Usage Notes

To indicate no allowed origins for a resource module (and remove any existing allowed origins),
specify an empty p_origins allowed value.

Examples
The following restricts the resource module my. tickets to two specified origins.

BEGIN
ORDS ADMIN.SET MODULE ORIGINS ALLOWED (
p_schema => 'tickets',
p module name => 'my.tickets',
p_origins allowed => 'http://example.com,https://example.com');
END;
/

5.20 ORDS_ADMIN.SET_URL_MAPPING

ORACLE

Format

ORDS_ADMIN.SET_URL_MAPPING(
p_schema IN ords_schemas.parsing schema%,
p url mapping type IN ords url mappings.type%type,
p url mapping pattern IN ords url mappings.pattern%type);

Description
SET_URL_MAPPING configures how the specified schema is mapped to request URLS.
Parameters

p_schema
Name of the schema to map. This parameter is mandatory.

p_url_mapping_type
URL Mapping type: BASE PATH Or BASE URL.

p_url_mapping_pattern
URL mapping pattern.

Usage Notes

(None.)

Examples

The following example creates a BASE PATH mapping for the tickets user.

BEGIN
ORDS_ADMIN.SET URL MAPPING (
p_schema => 'tickets',
p_url mapping type => 'BASE PATH',

p_url mapping pattern => 'https://example.com/ords/ticketing’
)i
END;
/

5-23

Chapter 5
ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB

5.21 ORDS_ADMIN.ENABLE_HOUSEKEEPING_JOB

Format

ORDS ADMIN.ENABLE HOUSEKEEPING JOB(p enabled IN boolean DEFAULT TRUE);

Description

ENABLE HOUSEKEEPING JOB creates and enables or disables the ORDS DBMS SCHEDULER
housekeeping job. The job name is ORDS_HOUSEKEEPING JOB which replaces the deprecated
job, CLEAN OLD ORDS SESSIONS.

Parameters

p_enabled
TRUE to enable ORDS HOUSEKEEPING_JOB; FALSE to disable it. A NULL value will create

and enable the job if it does not already exist otherwise its enablement state will remain
changed.

Usage Notes

The job runs every hour and performs housekeeping actions on the ORDS metadata
repository. No commit is required.

Examples
The following example enables the housekeeping job:

EXECUTE ORDS ADMIN.ENABLE HOUSEKEEPING JOB;

5.22 ORDS_ADMIN.DROP_HOUSEKEEPING_JOB

ORACLE

Format

ORDS_ADMIN.DROP HOUSEKEEPING JOB;

Description

DROP_HOUSEKEEPING JOB drops the ORDS DBMS SCHEDULER housekeeping job. The job name is
ORDS HOUSEKEEPING JOB.

Parameters

None.

Usage Notes

No commit is required.

Examples

The following example drops the housekeeping job:

EXECUTE ORDS ADMIN.DROP HOUSEKEEPING JOB;

5-24

Chapter 5
ORDS_ADMIN.PERFORM_HOUSEKEEPING

5.23 ORDS_ADMIN.PERFORM_HOUSEKEEPING

Format

ORDS_ADMIN.PERFORM HOUSEKEEPING;

Description

PERFORM HOUSEKEEPING performs ORDS housekeeping actions immediately. The following
action is performed:

« Removes expired sessions that are older than one day.

Parameters

None.

Usage Notes

No commit is required.

Examples

The following example performs the housekeeping actions immediately against the ORDS
metadata repository:

EXECUTE ORDS ADMIN.PERFORM HOUSEKEEPING;

5.24 ORDS_ADMIN.SET_SESSION_DEFAULTS

ORACLE

Format

ORDS_ADMIN.SET_SESSION_DEFAULTS(
p_runtime_user IN varchar2);

Description

Sets the default values that apply for the duration of the database session.

Parameters

p_runtime_user
Sets a runtime user as the target while REST enabling or disabling the schemas. Otherwise all
runtime users are targeted.

Usage Notes

NULL values have no effect. Use RESET SESSION DEFAULTS function to reset the values and
start again.

Examples

The following example sets the HR user as the only grantee target for the “connect through”
proxy privilege when a schema is REST enabled or disabled:

BEGIN
ORDS_ADMIN.SET_SESSION_DEFAULTS(
p_runtime user => 'HR');

5-25

Chapter 5
ORDS_ADMIN.RESET_SESSION_DEFAULTS

END;

5.25 ORDS_ADMIN.RESET_SESSION_DEFAULTS

Format

ORDS_ADMIN.RESET SESSION DEFAULTS

Description

Resets the session defaults back to the initial values.

Parameters

None.

Usage Notes

Use SET SESSION DEFAULTS function to set the default values that were reset using this
function.

Examples

The following example resets all the session default values:

BEGIN
ORDS_ADMIN.RESET SESSION DEFAULTS;

END;

/

5.26 ORDS_ADMIN.PROVISION_ADMIN_ROLE

ORACLE

Format

ORDS_ADMIN.PROVISION ADMIN ROLE (
p_ user IN varchar2);

Description
Provision a database user with the ORDS Administrator role so that it can administer ORDS.
Parameters

p_user
The name of the user to be provisioned.

Usage Notes

User ORDS_PUBLIC_USER cannot be configured using this interface.
Examples

The following example provisions the ORDS administrator role to the HR user:

BEGIN
ORDS_ADMIN.PROVISION ADMIN ROLE (
p user => 'HR'

5-26

Chapter 5
ORDS_ADMIN.PROVISION_RUNTIME_ROLE

END;

5.27 ORDS_ADMIN.PROVISION_RUNTIME_ROLE

Format

ORDS ADMIN.PROVISION RUNTIME ROLE (
p_user IN varchar2,
p_proxy enabled schemas IN boolean DEFAULT TRUE);

Description

Provision a database user so that it can act as an ORDS runtime user.
Parameters

p_user
The name of the user to be provisioned.

p_proxy_enabled_schemas
When the value is set to TRUE, “connect through” proxy grants are added for any enabled
schemas.

Usage Notes

ORDS_PUBLIC_USER is an example of a runtime user. Additional changes to the ORDS
configuration are required to use a user other than the ORDS_PUBLIC USER.

Examples

The following example provisions the ORDS runtime role to the HR user and grants it the
“connect through” proxy privilege for all the enabled schemas:

BEGIN
ORDS_ADMIN.PROVISION RUNTIME ROLE (
p_user => 'HR',
p_proxy enabled schemas => TRUE
)i
END;
/

5.28 ORDS_ADMIN.UNPROVISION_ ROLES

ORACLE

Format

ORDS ADMIN.UNPROVISION ROLES (

p_user IN varchar2,

p_administrator role IN boolean DEFAULT NULL,

p_runtime role IN boolean DEFAULT NULL) ;
Description

Unprovision the ORDS database roles.

5-27

Chapter 5
ORDS_ADMIN.CONFIG_PLSQL_GATEWAY

Parameters

p_user
The name of the user to be unprovisioned.

p_administrator_role
Unprovision as an admin user.

p_runtime_role
Unprovision as a runtime usetr.

Usage Notes

NULL boolean values are evaluated to TRUE unless any value is set to TRUE. In such case, NULL
values are evaluated to FALSE. So, by default all the roles are unprovisioned unless an explicit
choice is made.

Examples
The following example unprovisions the ORDS administrator role from the HR user:

BEGIN
ORDS_ADMIN.UNPROVISION_ROLES (
p user => 'HR',
p_administrator role => TRUE);
END;
/

5.29 ORDS_ADMIN.CONFIG_PLSQL_GATEWAY

ORACLE

Format

ORDS_ADMIN.CONFIG PLSQL GATEWAY (

p_runtime user IN varchar2 DEFAULT NULL,

p_plsgl gateway user IN varcharz,

p_comments IN varchar2 DEFAULT NULL);
Description

Configures the database proxy user that must be used for PL/SQL Gateway calls serviced by
the specified runtime user.

Parameters

p_runtime_user
Name of the runtime user to be configured.

p_plsql_gateway_user
Name of the proxy user.

p_comments
Comment text.

Usage Notes

When p_runtime user is NULL, then the value provided through
ORDS_ADMIN.SET SESSION DEFAULTS is used. Otherwise, ORDS PUBLIC USER is used. When

5-28

Chapter 5
ORDS_ADMIN.SET_PROPERTY

p_plsql gateway user is NULL, then the PL/SQL Gateway for the runtime user is
unconfigured.

Examples

The following example configures the PL/SQL Gateway for ORDS PUBLIC USER runtime user:

BEGIN
ords_admin.config plsgl gateway (
p_runtime user => 'ORDS_PUBLIC USER',

p plsgl gateway user => 'GATEWAY USER'
) ;
END;
/

The following example unconfigures the PL/SQL Gateway for ORDS PUBLIC USER runtime user:

BEGIN
ords_admin.config plsql gateway(
p_runtime user => 'ORDS PUBLIC USER',

p_plsql gateway user => NULL
)i
END;
/

5.30 ORDS_ADMIN.SET_PROPERTY

ORACLE

Format

ORDS_ADMIN.SET PROPERTY (

p_schema IN ords_schemas.parsing schema%type,

p_key IN ords prop facts.key3type,

p_value IN ords prop values.valueltype);
Description

SET PROPERTY sets the value of the SCHEMA scoped property for the specified enabled
schema. The value must not be NULL.

Parameters

p_schema
The name of the owning enabled schema. This parameter is mandatory.

p_key
The property key.

p_value
The new property value.

Usage Notes

(None.)

5-29

5.31 ORDS_ADMIN.SET_PROPERTY

ORACLE

Examples

The following example sets a property value:

BEGIN
ORDS_ADMIN.SET PROPERTY (
p_schema => 'tickets',
p_key => 'a.key',
p_value => 'a value'
)i
END;
/

Format

ORDS_ADMIN.SET PROPERTY (

p_key IN ords prop facts.key%type,
p_value IN ords prop values.valueStype);
Description

Chapter 5
ORDS_ADMIN.SET_PROPERTY

SET PROPERTY sets the value of the non-SCHEMA scoped property. The value must not be

NULL.
Parameters

p_key
The property key.

p_value
The new property value.

Usage Notes

(None.)

Examples

The following example sets a property value:

BEGIN
ORDS_ADMIN.SET PROPERTY (
p_key => 'a.key',
p_value => 'a value'
)i
END;
/

5-30

Chapter 5
ORDS_ADMIN.UNSET_PROPERTY

5.32 ORDS_ADMIN.UNSET_PROPERTY

ORACLE

Format

ORDS_ADMIN.UNSET PROPERTY (

p_schema IN ords schemas.parsing schema%type,
p_key IN ords prop facts.key%type);
Description

UNSET PROPERTY unsets the value of the SCHEMA scoped property for the specified enabled
schema.

Parameters

p_schema
The name of the owning enabled schema. This parameter is mandatory.

p_key
The property key.

Usage Notes

(None.)

Examples

The following example unsets a property value:

BEGIN
ORDS_ADMIN.UNSET PROPERTY (
p_schema => 'tickets',
p key => 'a.key'
)i
END;
/

5-31

OAUTH PL/SQL Package Reference

The OAUTH PL/SQL package contains procedures for implementing OAuth authentication
using Oracle REST Data Services.

Related Topics
e Using the Oracle REST Data Services PL/SQL API

6.1 OAUTH.CREATE_CLIENT

ORACLE

Format

OAUTH.CREATE CLIENT (

p_name IN VARCHARZ,
p_grant type IN VARCHARZ,
p_owner IN VARCHAR? DEFAULT NULL,
p_description IN VARCHAR? DEFAULT NULL,

p origins_allowed IN VARCHARZ2 DEFAULT NULL,
p_redirect uri IN VARCHAR? DEFAULT NULL,
p_support email IN VARCHAR? DEFAULT NULL,
p_support uri IN VARCHAR2 DEFAULT NULL,
p _privilege names IN VARCHAR2
p_token duration IN NUMBER,
p refresh duration IN NUMBER,
p_code duration IN NUMBER)

Description

Creates an OAuth client registration.

Parameters

p_name
Name for the client, displayed to the end user during the approval phase of three-legged
OAuth. Must be unique.

p_grant_type
Must be one of authorization code, implicit, Oor client credentials.

p_owner
Name of the party that owns the client application.

p_description

Description of the purpose of the client, displayed to the end user during the approval phase of
three-legged OAuth. May be null if p_grant type is client credentials; otherwise, must not
be null.

p_origins_allowed

A comma-separated list of URL prefixes. If the list is empty, then any existing origins are
removed.

6-1

ORACLE

Chapter 6
OAUTH.CREATE_CLIENT

p_redirect_uri
Client-controlled URI to which redirect containing an OAuth access token or error will be sent.
May be null if p_grant type is client credentials; otherwise, must not be null.

p_support_email
The email where end users can contact the client for support.

p_support_uri
The URI where end users can contact the client for support. Example: http://
www.myclientdomain.com/support/

p_privilege_names
List of comma-separated privileges that the client wants to access.

p_token_duration
Duration of the access token in seconds. NULL duration fallsback to the value in the ORDS
instance. By default, it can be set through a property or set to 3600 seconds.

p_refresh_duration
Duration of refresh token in seconds. NULL duration fallsback to the value in the ORDS
instance. By default, it can be set through a property or set to 86400 seconds.

p_code_duration

Duration of the code token in seconds applicable only when grant type value is
authorization code. If the value is set to NULL or the grant_type value is not
authorization code, then the lifetime is the one defined in the ORDS instance. By default,
the value is 300.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this procedure.

Examples

The following example creates an OAuth client registration.

BEGIN
OAUTH.create client(

'CLIENT TEST',
'authorization code',
'test user',
'This is a test description.',
T
"https://example.org/my redirect/#/',
'test@example.org',
'https://example.org/help/#/",
'MyPrivilege',

NULL,
NULL,
NULL
)i
COMMIT;
END;
/

6-2

Chapter 6
OAUTH.DELETE_CLIENT

6.2 OAUTH.DELETE_CLIENT

Format

OAUTH.DELETE CLIENT (
p_name IN VARCHARZ);

Description

Deletes an OAuth client registration.

Parameters

p_name
Name of the client registration to be deleted.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this procedure.

Examples

The following example deletes an OAuth client registration.

BEGIN
OAUTH.delete client(
'CLIENT_TEST'
);
COMMIT;
END;
/

6.3 OAUTH.GRANT_CLIENT_ROLE

Format

OAUTH.GRANT7CLIENT7ROLE(
p client name IN VARCHAR2,
p_role name IN VARCHAR2);

Description

Grant an OAuth client the specified role, enabling clients performing two-legged OAuth to
access privileges requiring the role.

Parameters

p_client_name
Name of the OAuth client.

p_role_name
Name of the role to be granted.

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this procedure.

ORACLE 6.3

Chapter 6
OAUTH.RENAME_CLIENT

Examples

The following example creates a role and grants that role to an OAuth client.

BEGIN
ORDS.create role(p role name => 'CLIENT TEST ROLE');

OAUTH.grant client role(
'CLIENT TEST',
"CLIENT TEST ROLE'
)i
COMMIT;
END;
/

6.4 OAUTH.RENAME_CLIENT

Format

OAUTH.RENAME CLIENT (
p_name IN VARCHARZ,
p_new name IN VARCHARZ);

Description

Renames a client.

Parameters

p_name
Current name for the client.

p_new_name
New name for the client.

Usage Notes
The client name is displayed to the end user during the approval phase of three-legged OAuth.

To have the operation take effect, use the COMMIT statement after calling this procedure.

Examples

The following example renames a client.

BEGIN
OAUTH.rename client (
'CLIENT TEST',
'CLIENT TEST RENAMED'
)
COMMIT;
END;
/

ORACLE 6.

Chapter 6
OAUTH.REVOKE_CLIENT_ROLE

6.5 OAUTH.REVOKE_CLIENT_ROLE

Format

OAUTH.REVOKE CLIENT ROLE (
p client name IN VARCHARZ,
p_role name IN VARCHARZ) ;

Description

Revokes the specified role from an OAuth client, preventing the client from accessing
privileges requiring the role through two-legged OAuth.

Parameters

p_client_name
Name of the OAuth client.

p_role_name
Name of the role to be revoked

Usage Notes

To have the operation take effect, use the COMMIT statement after calling this procedure.

Examples

The following example revokes a specified role from an OAuth client.

BEGIN
OAUTH.revoke client role(
'CLIENT TEST RENAMED',
"CLIENT TEST ROLE'
)i
COMMIT;
END;
/

6.6 OAUTH.UPDATE_CLIENT

ORACLE

Format

OAUTH.UPDATE CLIENT (

p_name IN VARCHARZ,
p_description IN VARCHARZ?,
p_origins allowed IN VARCHARZ,
p_redirect uri IN VARCHARZ,
p_support email IN VARCHARZ?,
p_suppor_uri IN VARCHARZ?,

p_privilege names 1IN t ords vchar tab DEFAULT NULL,
p_token duration IN NUMBER,
p_refresh duration IN NUMBER,
p_code duration IN NUMBER

6-5

ORACLE

Chapter 6
OAUTH.UPDATE_CLIENT

Description

Updates the client information (except name). Any null values will not alter the existing client
property.

Parameters

p_name
Name of the client that requires the owner, description, origins allowed, support e-mail,
support URI, and/or privilege modification.

p_description
Description of the purpose of the client, displayed to the end user during the approval phase of
three-legged OAuth.

p_origins_allowed
A comma-separated list of URL prefixes. If the list is empty, then any existing origins are
removed.

p_redirect_uri
Client-controlled URI to which a redirect containing the OAuth access token/error will be sent.
If this parameter is null, the existing p_redirect uri value (if any) is not changed.

p_support_email
The email address where end users can contact the client for support.

p_support_uri
The URI where end users can contact the client for support. Example: http://
www.myclientdomain.com/support/

p_privilege_names
List of names of the privileges that the client wishes to access.

p_token_duration
Duration of the access token in seconds. NULL duration fallsback to the value in the ORDS
instance. By default, it can be set through a property or set to 3600 seconds.

p_refresh_duration
Duration of refresh token in seconds. NULL duration fallsback to the value in the ORDS
instance. By default, it can be set through a property or set to 86400 seconds.

p_code_duration

Duration of the code token in seconds applicable only when grant type is authorization
code. If the value is set to NULL or the grant type is not authorization code, then the lifetime
is the one defined in the ORDS instance. By default, the value is 300.

Usage Notes
To have the operation take effect, use the COMMIT statement after calling this procedure.

If you want to rename the client, use the OAUTH.RENAME CLIENT procedure.

Example to Update the Description of the Specified Client

The following example updates the description of the client with the name matching the value
for p name.

6-6

BEGIN
ORDS_METADATA.OAUTH.update client (
p name => 'CLIENT TEST RENAMED',
p_description => 'The description was altered',
p_origins_allowed => null,
p_redirect uri => null,
p_support email => null,
p_support uri => null,
p_privilege names => null,
p_token duration => null,
p_refresh duration => null,
p_code duration => null);
COMMIT;
END;
/

Example 6-1 Example to Add Multiple Privileges

The following example adds a second privilege:

declare

my privs t ords vchar tab := t ords vchar tab ();
begin

my privs.EXTEND (3);

my privs(l):="tst.privilegel';

my privs(2):="tst.privilege2';

oauth.update client(
p_name => 'Test Client',
p description => 'Description altered.',
p origins allowed => NULL,
p_redirect uri => '/abc/efg/',
p privilege names => my privs,
p_token duration => NULL,
p refresh duration => NULL,
p_code duration => NULL) ;
commit;
end;

Related Topics
« OAUTH.RENAME_CLIENT

6.7/ OAUTH.ROTATE_CLIENT_SECRET

ORACLE

Format

OAUTH.ROTATE CLIENT SECRET (
p_client id IN NUMBER,
p_editing user IN VARCHARZ,

p_revoke sessions IN BOOLEAN DEFAULT TRUE);

Description

Chapter 6
OAUTH.ROTATE_CLIENT_SECRET

ROTATE CLIENT SECRET regenerates a new client secret and deletes all existing client sessions

by default.

6-7

Chapter 6
OAUTH.UPDATE_CLIENT_SECRET

Parameters

p_client_id
The ID of the client modified.

p_editing_user
The user requesting this change.

p_revoke_sessions
Controls if the approval for the existing client sessions must be revoked. Default value is TRUE.

Example

The following example rotates a client secret:

BEGIN
OAUTH.ROTATE CLIENT SECRET (
p_client id => 1234567890,
p_editing user => 'USERA',
p_revoke sessions => TRUE
)i

END;

/

6.8 OAUTH.UPDATE_CLIENT_SECRET

Format

OAUTH.UPDATE CLIENT SECRET (
p_client name IN VARCHARZ,
p editing user IN VARCHARZ,
p_client secret 1IN VARCHAR2);

Description

UPDATE CLIENT SECRET sets a new value for the secret of the client. By default, it deletes all the
existing client sessions.

Parameters

p_client_name
The name of the client in the current schema.

p_editing_user
The user requesting this change.

p_client_secret
The value of the new secret for the client.

Usage Notes
For the operation to take effect, use the cCOMMIT statement after calling this procedure.

ORACLE 68

Chapter 6
OAUTH.IMPORT_CLIENT

Example

The following example updates the secret of a particular client:

BEGIN
OAUTH.UPDATE CLIENT SECRET (
p client name => 'CLIENT TEST',
p_editing user => 'USERA ',
p_client secret => 'RaFhM690PA6CNIffpkNx3Q..");
END;

6.9 OAUTH.IMPORT_CLIENT

ORACLE

Format

OAUTH.IMPORT CLIENT (

p_name IN VARCHAR2,

p_client id IN VARCHAR2,

p_client secret IN VARCHAR2 DEFAULT NULL,
p_grant_type IN VARCHARZ,

p_owner IN VARCHAR2 DEFAULT NULL,
p_description IN VARCHAR? DEFAULT NULL,
p_origins_allowed IN VARCHAR2 DEFAULT NULL,
p_redirect uri IN VARCHAR2 DEFAULT NULL,
p_support email IN VARCHAR? DEFAULT NULL,
p_support uri IN VARCHAR2 DEFAULT NULL,
p_privilege names IN VARCHARZ,

p_token duration IN NUMBER DEFAULT NULL,
p_refresh duration IN NUMBER DEFAULT NULL,
p_code duration IN NUMBER DEFAULT NULL);

Description

Imports an existing client into this schema, preserving the identifier and optionally a secret. If
the secret is not provided, then a new one is generated.

Parameters

p_name
Name for the client displayed to the end user during the approval phase of three-legged
OAuth. The name must must be unique.

p_client_id
A unique client identifier.

p_client_secret
Optional parameter. If not provided, then a random secret is generated.

p_grant_type
The value must be one of authorization code, implicit, Or client credentials.

6-9

ORACLE

Chapter 6
OAUTH.IMPORT_CLIENT

p_owner
Name of the party that owns the client application.

p_description

Description of the purpose of the client. Displayed to the end user during the approval phase
of three-legged OAuth. Can be null if p grant type valueis client credentials.
Otherwise, it must not be null.

p_origins_allowed
A comma-separated list of URL prefixes.

p_redirect_uri
Client-controlled URI with a redirect containing an OAuth access token or error is sent. Can be
a null if the value of p_grant type is client credentials. Otherwise, it must not be null.

p_support_email
The email where the end users can contact the client for support.

p_support_uri
The URI where the end users can contact the client for support.
Example URL:http://www.myclientdomain.com/support/

p_privilege_names
List of comma-separated privileges that the client wants to access.

p_token_duration
Duration of the access token in seconds. NULL duration fallsback to the value in the ORDS
instance. By default, it can be set through a property or set to 3600 seconds.

p_refresh_duration
Duration of refresh token in seconds. NULL duration fallsback to the value in the ORDS
instance. By default, it can be set through a property or set to 86400 seconds.

p_code_duration

Duration of the code token in seconds is applicable only when grant type value is
authorization code. If the value is set to NULL or if the value of grant_type is not
authorization code, then the lifetime is the one defined in the ORDS instance. By default,
the value is 300.

Usage Notes

For this operation to take effect, use the COMMIT statement after calling this procedure.

Example

The following example, imports an OAuth client without custom durations or origins:

BEGIN
OAUTH.IMPORT CLIENT (

p_name => 'CLIENT TEST',
p_client id => 'awVMtPlqullIgPXhAwh4zA..',
p_grant type => 'authorization code',
p_owner => 'RESTEASY',
p_description => 'This is a test description.',
p_origins allowed => NULL,
p redirect uri => 'https://example.org/my redirect/',
p_support email => 'test@example.org',
p_support uri => 'https://example.org/help/"',

6-10

Chapter 6
OAUTH.CREATE_JWT_PROFILE

p_privilege names => 'MyPrivilege');

COMMIT;
END;
/

6.10 OAUTH.CREATE_JWT_PROFILE

ORACLE

Format

OAUTH.CREATE JWT PROFILE (

p_issuer IN VARCHARZ,
p_audience IN VARCHARZ,
p_Jjwk url IN VARCHARZ,

p description IN VARCHARZ DEFAULT NULL,
p_allowed skew IN NUMBER DEFAULT NULL,
p allowed age IN NUMBER DEFAULT NULL

Description

Creates a new JWT Profile for the schema if it does not already exist. If a JIWT Profile already
exists, then it must be deleted first.

Parameters

p_issuer
The issuer of acceptable JWT access tokens. This value must match the iss claim provided in
the JWT.

p_audience
The audience of acceptable JWT access tokens. This value must match the aud claim
provided in the JWT.

p_jwk_url
This is the url to the jwk(s) used to validate acceptable JWT access tokens. It must start with
"https://"

p_desciption
A description of the JWT Profile. This value can be null.

p_allowed_skew

The number of seconds allowed to skew time claims provided in the JWT. This can help
mediate issues with differences in the clock used by ORDS and the token issuer. The default
value of null, specifies that the ORDS global setting security.jwt.allowed.skew is taken. A
value less than or equal to 0 means, it is disabled. A max of 60 seconds can be specified.

p_allowed_age

The maximum allowed age of a JWT in seconds, regardless of expired claim. The age of the
JWT is taken from the JWT issued at claim. The default value of null means the ORDS global
setting of security.jwt.allowed.age is taken. A value less than or equals to 0 means, it is
disabled.

6-11

Chapter 6
OAUTH.DELETE_JWT_PROFILE

Usage Notes

For this operation to take effect, use the COMMIT statement after calling this procedure.

Example

The following example, deletes any existing JWT Profile for the schema and creates a new
JWT Profile for the schema. Any requests made to the resources in this schema can use a
JWT bearer token for authorization. The JWT token must be signed and its signature must be
verifiable using a public key provided by p_jwk_url. The JWTs issuer and audience claims
must also match the p_issuer and p_audience values. The JWT must provide a scope that
matches the ORDS Privilege protected by the resource.

BEGIN
OAUTH.DELETE JWT PROFILE();
OAUTH.CREATE JWT PROFILE (
p issuer => 'https://identity.oraclecloud.com/',
p audience => 'ords/myapplication/api' ,
p_jwk url =>'https://
idecs-10al0al0alOalOalOalOalla.identity.oraclecloud.com/admin/v1/SigningCert/
Jwk'
)i
COMMIT,;
END;
/

6.11 OAUTH.DELETE_JWT_PROFILE

ORACLE

Format

OAUTH.DELETE JWT PROFILE ()

Description

Deletes the JWT Profile for the schema if one exists.

Usage Notes

For this operation to take effect, use the COMMIT statement after calling this procedure.

Example

The following example, deletes any existing JWT Profile for the schema:
BEGIN

OAUTH.DELETE JWT PROFILE();

COMMIT;

END;
/

JWT bearer tokens are not be accepted when authorizing requests to the protected resources.

6-12

OAUTH_ADMIN PL/SQL Package Reference

The OAUTH ADMIN PL/SQL package contains subprograms (procedures and functions) for
implementing OAuth authentication using Oracle REST Data Services for a privileged user.

Before a database user can invoke the OAUTH ADMIN package, they must be granted the
ORDS ADMINISTRATOR ROLE database role.

The following example, grants the ORDS ADMINISTRATOR ROLE role to the ADMIN user:

GRANT ORDS ADMINSTRATOR ROLE TO ADMIN;

The OAUTH ADMIN package is defined with the AUTHID CURRENT USER right and each method
requires a p_schema parameter where the target schema must be specified.

¢ See also:

Using the Oracle REST Data Services PL/SQL API

7.1 OAUTH_ADMIN.CREATE_JWT_PROFILE

ORACLE

Format

OAUTH ADMIN.CREATE JWT PROFILE (

p_schema IN VARCHARZ,
p_issuer IN VARCHARZ,
p_audience IN VARCHARZ,
p_Jjwk url IN VARCHARZ,

p description IN VARCHARZ DEFAULT NULL,
p_allowed skew IN NUMBER DEFAULT NULL,
p allowed age IN NUMBER DEFAULT NULL

Description

Creates a new JWT Profile for the specified schema, if one does not already exist. If a IWT
Profile already exists, it must be deleted first.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

p_issuer

The issuer of acceptable JWT access tokens. This value must match the iss claim provided in

the JWT.

7-1

Chapter 7
OAUTH_ADMIN.CREATE_JWT_PROFILE

p_audience
The audience of acceptable JWT access tokens. This value must match the aud claim
provided in the JWT.

p_jwk_url
This is the url to the jwk(s) used to validate the acceptable JWT access tokens. the url must
start with "https://".

p_desciption
A description of the JWT Profile. This can be nul.

p_allowed_skew

The number of seconds allowed to skew time claims provided in the JWT. This can help
mediate issues with differences in the clock used by ORDS and the token issuer. The default
value of null, specifies that the ORDS global setting security.jwt.allowed.skew is taken. A
value less than or equal to 0 means it is disabled. A max of 60 seconds can be specified.

p_allowed_age

The maximum allowed age of a JWT in seconds, regardless of expired claim. The age of the
JWT is taken from the JWT issued at claim. The default value of null means that the ORDS
global setting of security.jwt.allowed.age is taken. A value less than or equals to 0 means
it is disabled.

Usage Notes

For this operation to take effect, use the COMMIT statement after calling this procedure.

Example

The following example, deletes any existing JWT Profile for the HR schema and creates a new
JWT Profile for the HR schema:

BEGIN
OAUTH_ADMIN.DELETE JWT PROFILE (p_schema=>'HR');
OAUTH_ADMIN.CREATE JWT PROFILE (
p_schema =>'HR',
p_issuer => 'https://identity.oraclecloud.com/',
p_audience => 'ords/myapplication/api' ,
p_jwk url =>'https://
idcs-10al0al0al0alO0alOalOalla.identity.oraclecloud.com/admin/vl/SigningCert/
Jwk'
)i
COMMIT;
END;
/

Any requests made to resources in the HR schema can use a JWT bearer token for
authorization. The JWT token must be signed and its signature must be verifiable using a
public key provided by p_jwk url. The issuer of JIWT and audience claims must match the
p_issuer and p_audience values. The JWT must provide a scope that matches the ORDS
Privilege protected by the resource.

ORACLE .

Chapter 7
OAUTH_ADMIN.DELETE_JWT_PROFILE

7.2 OAUTH_ADMIN.DELETE_JWT_PROFILE

ORACLE

Format

OAUTH ADMIN.DELETE JWT PROFILE (p_schema IN VARCHARZ2) ;

Description

Deletes the JWT Profile for the specified schema, if it exists.

Parameters

p_schema
Name of the schema. This parameter is mandatory.

Usage Notes

For this operation to take effect, use the COMMIT statement after calling this procedure.

Example

The following example, deletes any existing JWT Profile for the schema HR:

BEGIN
OAUTH ADMIN.DELETE JWT PROFILE (p_schema=>'HR');
COMMIT;

END;

/

JWT bearer tokens are not accepted while authorizing requests to the protected resources in
the HR schema.

7-3

Enabling ORDS Database API

This section describes how to enable the Oracle REST Data Services (ORDS) Database API.

ORDS database API is a database management and monitoring REST APl embedded into
Oracle REST Data Services. Depending on the database version and configuration, ORDS
database API provides services such as manage pluggable databases, export data and review
database performance. By default, the ORDS database API feature is disabled when you
install ORDS for the first time.

8.1 Basic Setup to Enable ORDS Database API

This section explains the basic setup to enable the ORDS database API.
To enable the ORDS database API, set the database.api.enabled property to true and then
restart ORDS:

ords config set database.api.enabled true

To access the ORDS database API, you can use one of the following available authentication
methods available:

- Database authentication using database username and password

e Through a mid-tier user with the SQL Administrator, or System Administrator role

Note:

There are certain endpoints that are accessible only by certain roles. The REST APIs
for Oracle Database documentation provides information on which roles can access
each endpoint.

To enable database authentication, you must set the restEnabledSql.active property to true
as shown in the following code snippet and then restart ORDS:

ords config set restEnabledSqgl.active true

For the database authentication, ensure that the administrator schema is ORDS enabled and
is granted with the DBA role in an 11gR2 environment or the PDB_DBA role for 12c and higher
versions of the database before the schema is used to execute the database API queries in the
database. This is done for each non-CDB or pluggable database in which you want to use the
database. For more information, refer to "REST-Enabling the Oracle Database Schema" and
"ORDS_ADMIN.ENABLE_SCHEMA" sections.

ORACLE -

Chapter 8
Advanced Setup to Enable the ORDS Database API

Note:

In the following example, sqglplus command-line utility is used to connect to the
SALESPDB database as the system user to configure the PDBADMIN user in that
database. The mechanism to connect to the database and performing the steps will
differ depending on your environment settings.

For example, to use PDBADMIN schema, in the SALESPDB database for ORDS Database
API services, use the following commands in the database.

sglplus system@SALESPDB

GRANT PDB _DBA TO PDBADMIN;

BEGIN

ORDS_ADMIN.ENABLE SCHEMA (p schema => 'PDBADMIN');
END;

/

The PDBADMIN user is now ready to use the ORDS database API services.

To list the tables in the database, send a GET request to https://<server>/ords/salespdb/
pdbadmin/ /db-api/stable/database/objects/tables/

On request, you must provide the username and password. If you are using a browser, ORDS
provides a link to login and authenticate the request. Once you are authenticated, your browser
will have an access cookie, and you do not have to specify the user credentials until that
cookie expires.

The same service can be accessed through command line utilities such as curl:

curl --user pdbadmin:password https://<server>/ords/salespdb/pdbadmin/ /db-api/
stable/database/objects/tables/

An OpenAPI V3 document that describes the available ORDS database API services can be
accessed at https://<server>/ords/<my database>/<my admin schema>/ /db-api/stable/
metadata-catalog/openapi.json. With the exception of https://<server>/ords/<my
database>/<my admin schema>/ /db-api/stable/databases/pdbs/, all other ORDS
database API services are made available.

Related Topics
e REST-Enabling the Oracle Database Schema
e ORDS_ADMIN.ENABLE_SCHEMA

8.2 Advanced Setup to Enable the ORDS Database API

This section describes the configuration options for using ORDS database API with various
database topologies.

ORACLE -

Chapter 8
Advanced Setup to Enable the ORDS Database API

Note:

Disabling management services: When the value of
database.api.management.services.disabled property is set to true, the following
ORDS Database API services are disabled:

 DBCA Jobs: DELETE, GET and POST

- DBCA Templates: GET

* Oracle Home Environment: GET

- PDB Lifecycle: DELETE, GET, POST

e Open Service Broker- DELETE, GET and PUT

8.2.1 Pluggable Database Lifecycle Management

This section describes how to enable the Pluggable Database (PDB) lifecycle management
operations. Pluggable Database management is performed in the Container Database (CDB)
and includes create, clone, plug, unplug and delete operations.

You cannot have an ORDS enabled schema in the container database. To perform the PDB
lifecycle management operations, the default CDB administrator credentials,
db.cdb.adminUser and db.cdb.adminUser.password must be defined in the connection pool.
In this case, specifying an user schema in the URI is not required.

To define the default CDB administrator credentials, perform the following steps:

1. Create the CDB administrator user and grant the SYSDBA privilege. In this example, the
user is called C##DBAPI CDB ADMIN. However, any suitable common user name can be
used.

CREATE USER C##DBAPI CDB ADMIN IDENTIFIED BY <PASSWORD>;
GRANT SYSDBA TO C##DBAPI CDB ADMIN CONTAINER = ALL;

2. Setthe db.cdb.adminUser and db.cdb.adminUser.password properties for the connection
pool.

ords config set db.cdb.adminUser "C##DBAPI CDB ADMIN as SYSDBA"
ords config secret db.cdb.adminUser.password

The ORDS role, SQL Administrator must be used to access the https://<server>/
ords/ /db-api/stable/database/pdbs/ services.

8.2.2 Disabling PDB Lifecycle Management

ORACLE

This section describes how to disable the PDB lifecycle management services.

You can enable ORDS database API and disable the PDB related services at https://
<server>/ords/ /db-api/stable/databases/pdbs/.

When the optional CDB administrator credentials are not set, a HTTP 503 Service
Unavailable response is produced if a user attempts to access https://<server>/
ords/ /db-api/stable/databases/pdbs/.

8-3

Chapter 8
Creating a Default Administrator

To clearly indicate that the PDB operations are disabled for the ORDS installation, set the
database.api.management.services.disabled property to true as shown in the following
code snippet and then restart ORDS:

ords config set database.api.management.services.disabled true

This produces a response, HTTP 503 Service Unavailable with an explanatory reason.

8.3 Creating a Default Administrator

This section describes how to create and use the default administrator user for the non-CDB or
PDB connections.

The ORDS database API service operations are not schema specific. By configuring the
default administrator credentials, db.adminUser and db.adminUser.password in the connection
pool, you can execute the corresponding SQL statements as the default administrator user.
The ORDS database API endpoints can be executed using a specified ORDS enabled schema
if the schema has the DBA role. However, it is not necessary to do so when the default
administrator credentials are configured.

Note:

The user credentials must be the same across all the pluggable databases and
therefore it is recommended to create the common user in the CDB.

To create the default administrator and grant the DBA role, perform the following steps:

1. Create the default administrator user and grant the DBA role. In this example, the user is
called c## DBAPI DEFAULT ADMIN. However, any suitable common user name can be used
as shown in the following code snippet:

CREATE USER C## DBAPI DEFAULT ADMIN IDENTIFIED BY <PASSWORD> CONTAINER = ALL;

GRANT DBA TO C## DBAPI DEFAULT ADMIN CONTAINER = ALL;

2. Setthe db.adminUser and db.adminUser.password properties for the connection pool as
shown in the following code snipet:

ords config set db.adminUser C## DBAPI DEFAULT ADMIN
ords config secret db.adminUser.password

A schema is not required to be provided in the URI request.

For example, https://<server>/ords/salespdb/ /db-api/stable/database/datapump/
jobs/ lists all the data pump jobs in the salespdb, and queries in that database are executed
as the db.adminUser user.

The ORDS role sQL Administrator, is required to use the database API services.

8.4 Configuration of Database API Environment Services

This section describes how to configure ORDS Database API environment services.

Starting with ORDS 19.2 release, on a system with ORDS installed, you can perform the set of
environment services operations.

ORACLE -

Chapter 8
Configuration of Database API with Open Service Broker APl Compatible Platforms

For example, the following endpoint lists all the databases discovered in the Oracle Home:
https://<server>/ords/ /db-api/stable/environment/databases/

You must have the ORDS System Administrator role to use the ORDS database API
environment services. The environment services provide information about the database
Oracle Home on the host machine and a RESTful interface to the Oracle Database
Configuration Assistant to create or delete the databases.

Similar to pluggable database lifecycle management, the environment services can be
disabled.

To disable the environment services, set the database.api.management.services.disabled
property to true as follows and then restart ORDS:

ords config set database.api.management.services.disabled true

8.5 Configuration of Database API with Open Service Broker API
Compatible Platforms

This section describes how to configure and use the ORDS database API with Open Service
Broker APl compatible platforms.

The ORDS database API provides a service broker for each registered connection pool.
Service brokers compliant with the Open Service Broker API specification, allow platforms to
provision a new instance of a service. With ORDS as an Open Service Broker to an Oracle
database, customers can provision pluggable databases and database users. The nature of
the database dictates the service offering that the ORDS database API provides.

Table 8-1 Open Service Broker Service Catalog
]

Database Type Service Plans Prerequisites
Container Database create-pluggable- clone-database Pluggable database
database. Create a new pluggable lifecycle management
Create a new pluggable gatabase in the must be configured.
database in the Oracle container database by
multitenant container cloning another local
database. pluggable database. Any

ORDS REST enabled
schemas in the source
database is REST
enabled in the new
database.

create-database

Create a new pluggable
database from
PDBSSEED. The
pluggable database
administrator account is
automatically rest
enabled.

ORACLE oe

ORACLE

Chapter 8

Configuration of Database API with Open Service Broker APl Compatible Platforms

Table 8-1 (Cont.) Open Service Broker Service Catalog

Database Type Service

Plans Prerequisites

create-oracle-
database-user

Non-Container or
Pluggable Database

Create and configure an
Oracle database user
with an account through
which the user can log in
to the database.

create-standard- None
database-user

Create an Oracle
database user with the
specified roles and
privileges. The objects of
the user are stored in the
default database
tablespace. The
temporary segments of
the user are stored in the
default temporary
database tablespace.

create-ords-
enabled-database-
user

Create an Oracle
database user with an
ORDS enabled schema.
The objects of the user
are stored in the default
database tablespace.
The temporary
segments of the user are
stored in the default
temporary database
tablespace.

To register the service broker URL with your Open Service Broker compliant platform, it
depends on how the pool is registered with ORDS and the database type. Oracle recommends
that you use HTTPS with Open Service Broker endpoints. The process of registering a service

broker differs depending on the platform.

The Service Broker URL for ORDS follows the following pattern:

* create-oracle-database-user

To register the non-CDB or PDB service catalog, you must use the service broker URL for
the non-CDB or PDB pool. The format is as follows:

https://<server>/ords/<my database>/<my admin schema>/ /db-api/stable/

openservicebroker/

Using the SALESPDB example with PDBADMIN as an ORDS enabled schema, the URL is

as follows:

https://<server>/ords/salespdb/pdbadmin/ /db-api/stable/openservicebroker/

< Note:

<my database> can be the default database connection.

8-6

ORACLE

Chapter 8
Configuration of Database API with Open Service Broker APl Compatible Platforms

This configuration is common when customers are using ORDS directly with a single
database. With this configuration, the example URL is https://<server>/ords/
pdbadmin /db-api/stable/openservicebroker/.

Supported Open Service Broker Operations
ORDS database API supports the synchronous provisioning operation. Other Open
Service Broker operations such as deprovisioning and service binding are not supported.

Disabling the Service Broker for a Specific Pool
To disable the Open Service Broker services available for a specific pool, set the feature.
openservicebroker.exclude property to true by specifying the pool name as follows:

ords config --db-pool <pool-name> set feature.openservicebroker.exclude true
And then restart ORDS.

When you use ORDS directly with a container database and pluggable database mapping
at runtime, disabling the Open Service Broker for the container disables the broker for all
pluggable databases in the container. In such case, the configuration is defined in the
container database pool configuration file.

8-7

REST-Enabled SQL Service

The REST-Enabled SQL service is a HTTPS web service that provides access to the Oracle
Database SQL engine. You can POST SQL statements to the service. The service then runs
the SQL statements against Oracle Database and returns the result to the client in a JSON
format.

Statically defined RESTful services use predefined SQL statements that are useful when you
need a fixed and repeatable service. The REST- Enabled SQL service enables you to define
SQL statements dynamically and run them against the database without predefined SQL
statements. This makes your data more accessible over REST.

Typical Use Case: Your Oracle Database is in the cloud and you want to make it available
through a REST API over HTTPS.

Predefined REST APIs provide common operations such as returning the results of reports
and providing an API for updating common tables in your database. There is a need for client
developers to run their own queries or queries that can only be written at run time. In these
cases, a REST- Enabled SQL service is useful.

Note:

If you have Oracle REST Data Services installed and if you do not have SQL*Net
(JDBC, OCI) to establish an network connection to Oracle Database, then a REST-
Enabled SQL service provides an easy mechanism to query and run SQL, SQL*Plus,
and SQLcl statements against the REST-enabled Oracle Database schema.

Topics:

e REST-Enabled SQL Service Terminology

e Configuring the REST-Enabled SQL Service

e Using cURL with REST-Enabled SQL Service

e Getting Started with the REST-Enabled SQL Service

e REST-Enabled SQL Service Examples

e« REST-Enabled SQL Request and Response Specifications
e« REST-Enabled SQL Request and Response Specifications
e REST-Enabled SQL Service and MySQL Database

9.1 REST-Enabled SQL Service Terminology

ORACLE

This section introduces some common terms that are used throughout this document.

 REST- Enabled SQL service: A HTTPS web service that provides SQL access to the
database. SQL statements can be posted to the service, and the results are returned in a
JSON format to the client.

9-1

Chapter 9
Configuring the REST-Enabled SQL Service

e HTTPS: Hyper Text Transfer Protocol Secure (HTTPS) is the secure version of HTTP, the
protocol over which data is sent between your browser and the website to which you are
connected. The ‘S’ stands for secure. It means that all communications between your
browser and Oracle REST Data Services are encrypted.

* cURL: cURL is a command-line tool used to transfer data. It is free and open
source software that can be downloaded from the following location: curl_haxx.

* SQL*Net (or Net8): SQL*Net is the networking software of Oracle that enables remote
data access between programs and Oracle Database.

9.2 Configuring the REST-Enabled SQL Service

9.3 Using

ORACLE

By default, the REST- Enabled SQL service is turned off. To configure the REST- Enabled SQL
service settings, see Configuring REST Enabled SQL Service Settings.

cURL with REST-Enabled SQL Service

This section explains how to use cURL commands to access the REST-Enabled SQL service.

You can use the HTTPS POST method to access the REST-Enabled SQL service. To access
the REST-Enabled SQL service, you can use the command-line tool named cURL. This
powerful tool is available for most platforms, and enables you to connect and control the data
that you send to and receive from a REST-Enabled SQL service.

Example 9-1 Example cURL Command

Request: curl -i -X POST --user ORDSTEST:ordstest --data-binary "select sysdate
from dual" -H "Content-Type: application/sql" -k https://localhost:8088/ords/
ordstest/ /sql

Where:

* The-1i option displays the HTTP headers returned by the server.

e The -k option enables cURL to proceed and operate even for server connections that are
otherwise considered to be insecure.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env": {
"defaultTimeZone": "Europe/London"
}I
"items": [
{
"statementId":1,
"statementType":"query",
"statementPos": {
"startLine":1,
"endLine":2
}I
"statementText":"select sysdate from dual",
"response": [

9-2

https://curl.haxx.se/

Chapter 9
Getting Started with the REST-Enabled SQL Service

I

"result":0,
"resultSet":{
"metadata": [
{
"columnName" :"SYSDATE",
"jsonColumnName":"sysdate",
"columnTypeName" : "DATE",
"precision":0,
"scale":0,
"isNullable":1
}
]I
"items": [

{
"sysdate":"2017-07-21T08:06:447Z"
}
1,

"hasMore":false,

"limit":1500,
"offset":0,
"count":1

9.4 Getting Started with the REST-Enabled SQL Service

The REST- Enabled SQL service is provided only through HTTPS POST method.

Note:

In ORDS, a RESTful service is stateless. In a stateless environment, each HTTPS
request from a client maps to a new database session. Therefore, a session begins
and ends with every SQL statement or script execution, that is, the worksheet is auto-
committed.

As the session state is not maintained, session attributes do not persist and
commands such as ROLLBACK and COMMIT do not apply. If a SQL statement or
script executes successfully, an implicit commit is performed. If it executes with an
error, an implicit rollback is performed. Therefore, when you need, include the
ROLLBACK and COMMIT commands or session attributes in the PL/SQL code block
that is sent to the database for a session.

Topics:

e REST-Enabling the Oracle Database Schema
 REST-Enabled SQL Authentication

« REST-Enabled SQL Endpoint

ORACLE 0.3

Chapter 9
Getting Started with the REST-Enabled SQL Service

9.4.1 REST-Enabling the Oracle Database Schema

You must REST-enable the Oracle database schema on which you want to use the REST-
Enabled SQL service. To REST-enable the Oracle Database schema, you can use SQL
Developer or the PL/SQL API.

The following code snippet shows how to REST-enable the Oracle Database schema
ORDSTEST:

SQL> CONNECT ORDSTEST/*****;
Connected

SQL> exec ords.enable schema;
anonymous block completed
SQL> commit;

Commit complete.

SQL>

Related Topics
e Auto-Enabling Using the PL/SQL API

9.4.2 REST-Enabled SQL Authentication

This section explains how to authenticate the schema on which you want to use the REST-
Enabled SQL service.

Before using the REST-Enabled SQL service, you must authenticate using the SQL Developer
role.

The Following are the different types of authentications available:

« First Party Authentication (Basic Authentication): For this authentication, create a user
in Oracle REST Data Services with the SQL Developer role. This Oracle REST Data
Services user will be able to run SQL for any Oracle database schema that is REST-
enabled.

* Schema Authentication: For this authentication, use the Oracle Database schema name
in uppercase and the Oracle database schema password (for example, R and
HRPassword). This type of user will be able to run SQL for the specified schema. It will be
given the SQL Developer role by Oracle REST Data Services.

* OAuth 2 Client Credentials: For this authentication, perform the following steps to grant
the SQL Developer role to the client in Oracle REST Data Services:

1. Create a client using ORUTH.create client.

2. Grant the SQL Developer role to the client.

3. Acquire the access token using the client id and client secret of the client.
4

Specify the access token in subsequent REST-Enabled SQL requests.

9.4.3 REST-Enabled SQL Endpoint

This section shows the format or pattern used to access the REST- Enabled SQL service.

If Oracle REST Data Services is running in a Java EE Application Server, then the REST-
Enabled SQL service is only accessible through HTTPS. If Oracle REST Data Services is

ORACLE 0.

Chapter 9
REST-Enabled SQL Service Examples

running in standalone mode, then Oracle REST Data Services can be configured to use
HTTPS. The examples in this document use this configuration.

The following example URL locates the REST-Enabled SQL service for the specified schema
alias:

Pattern: https://<HOST>/ords/<SchemaRlias>/ /sql
Example: https://host/ords/ordstest/ /sql

Where: The default port is 443

Content Type and Payload Data Type Supported
The HTTPS POST request consists of the following:
* Header Content-Type
— application/sql: for SQL statements
— application/json: for JSON documents
* Payload data type
— SQL: SQL, PL/SQL, SQL*Plus, SQLcl statements

— JSON document: A JSON document with SQL statements and other options such as
bind variables

9.5 REST-Enabled SQL Service Examples

This section provides different HTTPS POST request examples that use Oracle REST Data
Services standalone setup with secure HTTPS access.

The payload data of the HTTPS POST request message can be in one of the following
formats:

* POST Requests Using application/sqgl Content-Type
 POST Requests Using application/json Content-Type

9.5.1 POST Requests Using application/sgl Content-Type

For POST requests with Content-Type as application/sql , the payload is specified using
SQL, SQL*Plus, and SQLcl statements. The payload can be a single line statement, multiple
line statements, or a file that consists of multiline statements as shown in the following
examples:

e Using a Single SQL Statement
e Using Multiple SQL Statements
e Using a File with cURL

ORACLE o5

Chapter 9
REST-Enabled SQL Service Examples

Note:

While evaluating your SQL/PLSQL statements, if you see an error message 555
with the following message, then ensure that you have correctly formed your
SQL/PLSQL statement:

" 555 User Defined Resource Error

The request could not be processed because an error occurred whilst attempting
to evaluate the SQL statement associated with this resource.Please check the
SQL statement is correctly formed and executes without error"

9.5.1.1 Using a Single SQL Statement

The following example uses Schema Authentication to run a single SQL statement against the
demo Oracle Database schema:

ORACLE

Request:

curl -i -X POST --user DEMO:demo --data-binary "select sysdate from dual" -H
"Content-Type: application/sql"™ -k https://localhost:8088/ords/demo/ /sql

Response:

HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

"env":

"defaultTimeZone": "Europe/London"

b

"items": [

{

"statementId":1,
"statementType":"query",
"statementPos": {
"startLine":1,
"endLine":2
}I
"statementText":"select sysdate from dual",
"response": [

]I

"result":0,

"resultSet":{

"metadata": [
{

"columnName" :"SYSDATE",
"jsonColumnName":"sysdate",
"columnTypeName":"DATE",
"precision":0,
"scale":0,
"isNullable":1

9-6

Chapter 9

REST-Enabled SQL Service Examples

"items": [
{
"sysdate":"2017-07-21T08:06:447Z"

]I
"hasMore":false,
"limit":1500,
"offset":0,
"count":1

Where:

DEMO is the Oracle Database schema name.

demo is the Oracle Database schema password.

select sysdate from dual is the SQL statement that will run in the DEMO Oracle Database

schema.

Content-Type: application/sql is the content type. Only application/sql and

application/json are supported.

https://localhost:8088/ords/demo/ /sql is the location of the REST- Enabled SQL

service for the demo Oracle Database schema.

9.5.1.2 Using a File with cURL

ORACLE

For multiline SQL statements, using a file as payload data in requests is useful.

File: simple query.sql

SELECT 10
FROM dual;

Request:

curl -i -X POST --user DEMO:demo --data-binary "@simple query.sql" -H "Content-

Type: application/sql" -k https://localhost:8088/ords/demo/ /sql

Response:

HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

"env":{

"defaultTimeZone": "Europe/London"
}I
"items": [

{
"statementId":1,

9-7

Chapter 9
REST-Enabled SQL Service Examples

"statementType":"query",
"statementPos": {

"startLine":1,

"endLine":1
}I
"statementText":"SELECT 10 FROM dual",
"response": [

]I

"result":0,

"resultSet":{

"metadata": [
{

"columnName":"10",
"jsonColumnName":"10",
"columnTypeName" : "NUMBER",
"precision":0,
"scale":-127,
"isNullable":1

1,
"items": [
{
"10":10

]I
"hasMore":false,
"limit":1500,
"offset":0,
"count":1

9.5.1.3 Using Multiple SQL Statements

ORACLE

You can run one or more statements in each POST request. Statements are separated similar
to Oracle Database SQL*Plus script syntax, such as, end of line for SQL*Plus statements, a
semi colon for SQL statements, and forward slash for PL/SQL statements.

File: script.sql:

CREATE TABLE T1 (coll INT);
DESC T1

INSERT INTO T1 VALUES(1);
SELECT * FROM T1;

BEGIN

INSERT INTO T1 VALUES (2);
END;

/

SELECT * FROM T1;

Request.curl -i -X POST --user DEMO:demo --data-binary "@script.sql" -H "Content-
Type: application/sql" -k https://localhost:8088/ords/demo/ /sql

9-8

Chapter 9
REST-Enabled SQL Service Examples

Response:

HTTP/1.1 200 OK

Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

"env": {
"defaultTimeZone": "Europe/London"
}I
"items": [
{
"statementId":1,
"statementType":"ddl",
"statementPos": {
"startLine":1,
"endLine":1
}I
"statementText":"CREATE TABLE T_EXAMPLEI (coll INT)",
"response": [
"\nTable T EXAMPLEl created.\n\n"
]I

"result":0

"statementId":2,
"statementType":"sglplus",
"statementPos": {

"startLine":2,

"endLine":2
}I
"statementText":"DESC T EXAMPLEI",
"response": [

"Name Null\n Type \n---- -—————= —————————- \nCOL1 NUMBER (38)

\n"

]I

"result":0

"statementId":3,
"statementType":"dml",
"statementPos": {
"startLine":3,
"endLine":3
}I
"statementText":"INSERT INTO T_EXAMPLEI VALUES (1) ",
"response": [
"\nl row inserted.\n\n"
]I

"result":1

"statementId":4,
"statementType":"query",
"statementPos": {

ORACLE 0.9

ORACLE

Chapter 9

REST-Enabled SQL Service Examples

"startLine":4,

"endLine":4
}I
"statementText":"SELECT * FROM T EXAMPLE1",
"response": [

]I

"result":1,

"resultSet":{

"metadata": [
{

"columnName":"COL1",
"jsonColumnName":"coll",
"columnTypeName" : "NUMBER",
"precision":38,
"scale":0,
"isNullable":1

1,
"items": [
{
"coll":1

]I
"hasMore":false,
"limit":1500,
"offset":0,

" count":1

"statementId":5,

"statementType":"plsql",

"statementPos": {
"startLine":5,
"endLine":8

}I

"statementText":"BEGIN\n INSERT INTO T EXAMPLEl VALUES (2);\nEND;",

"response": [
"\nPL\/SQL procedure successfully completed.\n\n"
1y

"result":1

"statementId":6,
"statementType":"query",
"statementPos": {
"startLine":9,
"endLine":9
}I
"statementText":"SELECT * FROM T EXAMPLE1",
"response": [

1,
"result":1,
"resultSet":{

9-10

Chapter 9
REST-Enabled SQL Service Examples

"metadata": [
{
"columnName":"COL1",
"jsonColumnName":"coll",
"columnTypeName" : "NUMBER",
"precision":38,
"scale":0,
"isNullable":1
}
]l
"items": [

{
"coll":1

{
"coll":2

}
]l
"hasMore":false,
"limit":1500,
"offset":0,
"count":2

"statementId":7,

"statementType":"ddl",

"statementPos": {
"startLine":10,
"endLine":10

b
"statementText":"DROP TABLE T EXAMPLEL",

"response": [
"\nTable T EXAMPLEl dropped.\n\n"
1y

"result":1

9.5.2 POST Requests Using application/json Content-Type

Using a JSON document as the payload enables you to define more complex requests as
shown in the following sections:

e Using a File with cURL

e Specifying the Limit Value in a POST Request for Pagination
* Specifying the Offset Value in a POST Request for Pagination
* Defining Binds in a POST Request

9.5.2.1 Using a File with cURL

The following example posts a JSON document (within the simple query.json file) to the
REST-Enabled SQL service.

ORACLE 011

ORACLE

Chapter 9
REST-Enabled SQL Service Examples

File: simple query.json
{ "statementText":"SELECT TO DATE('01-01-1976¢', 'dd-mm-yyyy') FROM dual;"}

Request: curl -i -X POST --user DEMO:demo --data-binary "@simple query.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/ /sql

Where:
e The statementText holds the SQL statement or statements.

e The Content-Type iS application/json.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env":{
"defaultTimeZone":"Europe/London"

b

"items": [
{
"statementId":1,
"statementType":"query",
"statementPos": {
"startLine":1,
"endLine":1
}I
"statementText":"SELECT TO DATE('01-01-1976', 'dd-mm-yyyy') FROM
dual",
"response": [
}I
"result":0,
"resultSet":{
"metadata": [
{
"columnName":"TO_DATE('01—01—1976','DD—MM—YYYY')",
"jsonColumnName":"to date('01-01-1976"', 'dd-mm-yyyy')",
"columnTypeName":"DATE",
"precision":0,
"scale":0,
"isNullable":1
}
]I
"items": [
{
"to date('01-01-1976"', 'dd-mm-
yyyy')":"1976-01-01T00:00:00Z"

}
]I
"hasMore":false,
"limit":1500,
"offset":0,
"count":1

9-12

Chapter 9
REST-Enabled SQL Service Examples

9.5.2.2 Specifying the Limit Value in a POST Request for Pagination

You can specify the 1imit value in a POST JSON request for the pagination of a large result
set returned from a query.

File: 1imit.json

{

"statementText": "

WITH data(r) AS (

SELECT 1 r FROM dual

UNION ALL

SELECT r+1 FROM data WHERE r < 100
)

SELECT r FROM data;",

"limit": 5

Request: curl -i -X POST --user DEMO:demo --data-binary "@limit.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/ /sql

Where: The 1limit is the maximum number of rows returned from a query.

Note:

The maximum number of rows returned from a query is based on the
misc.pagination.maxRows value setin defaults.xml file.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env":{
"defaultTimeZone":"Europe/London"
}I
"items": [
{
"statementId":1,
"statementType":"query",
"statementPos": {
"startLine":1,
"endLine":1
}I
"statementText":" WITH data(r) AS (SELECT 1 r FROM dual UNION
ALL SELECT r+l1l FROM data WHERE r < 100) SELECT r FROM data",
"response": [

ORACLE 013

I

"result":0,

"resultSet":{
"metadata": [

I

"items":

I

{

{

"columnName":"R",

"jsonColumnName":"r",

"columnTypeName" : "NUMBER",

"precision":0,

"scale":-127,

"isNullable":1

"r":l

"r":Z

"r":3

"r":4

"r":5

"hasMore":true,

"limit":5,
"offset":0,
"count":5

Chapter 9
REST-Enabled SQL Service Examples

9.5.2.3 Specifying the Offset Value in a POST Request for Pagination

You can specify the offset value in a POST JSON request. This value specifies the first row
that must be returned and is used for pagination of the result set returned from a query.

ORACLE

File: offset limit.json

{

"statementText":
WITH data(r)
SELECT 1 r FROM dual

UNION ALL

AS

(

n

SELECT r+l FROM data WHERE r < 100

)

SELECT r FROM data;",

"offset":

25,

9-14

Chapter 9
REST-Enabled SQL Service Examples

"limit": 5
}

Request: curl -i -X POST --user DEMO:demo --data-binary "@offset limit.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/ /sql

Where: offset is the first row to be returned in the result set. Typically, this is used to provide
the pagination for a large result set that returns the next page of rows in the result set.

< Note:

Each request made to the REST-Enabled SQL service is performed in its own
transaction, which means that you cannot ensure that the rows returned will match
the previous request. To avoid these risks, queries that need pagination should use
the ORDER BY clause on a primary key.

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env": {
"defaultTimeZone": "Europe/London"
}I
"items": [
{
"statementId":1,
"statementType":"query",
"statementPos": {
"startLine":1,
"endLine":1
}I
"statementText":" WITH data(r) AS (SELECT 1 r FROM dual UNION
ALL SELECT r+l FROM data WHERE r < 100) SELECT r FROM data",
"response": [
]I
"result":0,
"resultSet":{
"metadata": [
{
"columnName":"R",
"jsonColumnName":"r",
"columnTypeName" : "NUMBER",
"precision":0,
"scale":-127,
"isNullable":1

]I
"items": [
{
"r":26
}I

ORACLE 015

Chapter 9

REST-Enabled SQL Service Examples

"y 27
}I
{

"r":28
}I
{

"r":29
}
{

"r":30

I

"hasMore":true,

"limit":5,
"offset":25,
"count":5

9.5.2.4 Defining Binds in a POST Request

You can define binds in JSON format. This functionality is useful when calling procedures and

ORACLE

functions that use binds as the parameters.
Example 9-2 Binds in POST Request

File: binds.json

{
"statementText": "CREATE PROCEDURE TEST OUT PARAMETER (V_PARAM IN INT IN,
V_PARAM OUT INT OUT) AS BEGIN V_PARAM OUT := V_PARAM IN + 10; END;
/
EXEC TEST OUT PARAMETER(:varl, :var2)",
"binds": [
{"name":"varl","data type":"NUMBER","value":10},
{"name":"var2","data type":"NUMBER", "mode":"out"}
]
}

Request: curl -i -X POST --user DEMO:demo --data-binary "@binds.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/ /sql

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env":{
"defaultTimeZone":"Europe/London"

b

9-16

Chapter 9
REST-Enabled SQL Service Examples

"items": [
{
"statementId":1,
"statementType":"plsql",
"statementPos": {
"startLine":1,
"endLine":2
}I
"statementText":"CREATE PROCEDURE TEST OUT PARAMETER (V_PARAM IN
IN INT, V_PARAM OUT OUT INT) AS BEGIN V_PARAM OUT := V_PARAM IN + 10; END;",
"response": [
"\nProcedure TEST OUT PARAMETER compiled\n\n"
] 14
"result":0,
"binds": [
{
"name":"varl",
"data type":"NUMBER",
"value":10

"name":"var2",
"data type":"NUMBER",
"mode":"out",
"result":null

"statementId":2,
"statementType":"sqglplus",
"statementPos": {
"startLine":3,
"endLine":3
}I
"statementText":"EXEC TEST OUT PARAMETER(:varl, :var2)",
"response": [
"\nPL\/SQL procedure successfully completed.\n\n"
]I
"result":0,
"binds": [
{
"name":"varl",
"data type":"NUMBER",
"value":10

"name":"var2",

"data type":"NUMBER",
"mode":"out",
"result":20

ORACLE 9-17

Chapter 9
REST-Enabled SQL Service Examples

Example 9-3 Complex Bind in POST Request

Filecomplex bind example.json

"statementText":"
declare
type t is table of number index by binary integer;
lin t 1= :IN;
1 out t;
begin
for 1 in 1..1 in.count loop
1 out(i) :=1 in(i) * 2;
end loop;
:L OUT := 1 out;
end;
"binds": [

{
"name":"IN",
"data type":"PL/SQL TABLE",
"type name":"",
"type subname":"",
"type components": [
{
"data type":"NUMBER"

I

"value": [

"name":"L OUT",
"data type":"PL/SQL TABLE",
"type name":"",
"type subname":"",
"type components": [
{
"data type":"NUMBER"

I

"mode" : "out"

Request: curl -i -X POST --user DEMO:demo --data-binary
"@complex bind example.json" -H "Content-Type: application/json" -k https://
localhost:8088/ords/demo/ /sql

ORACLE 018

Chapter 9
REST-Enabled SQL Service Examples

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env": {
"defaultTimeZone": "Europe/London"
}I
"items": [
{
"statementId":1,
"statementType":"plsqgl",
"statementPos": {
"startLine":2,
"endLine":12
}I
"statementText":"declare \n type t is table of number index by
binary integer; \n 1 in t := :IN; \n 1 out t; \n begin \n for i
in 1..1 in.count loop \n 1 out(i) :=1 in(i) * 2; \n end loop;
\n :L OUT := 1 out; \n end;",
"response": [
]I
"result":1,
"binds": [
{
"name":"IN",
"data type":"PL/SQL TABLE",
"type components": [
{
"data_ type":"NUMBER"

]I
"type name":"",
"type subname":"",
"value": [

2,

4,

7

"name":"L OUT",
"data type":"PL/SQL TABLE",
"mode":"out",
"type components": [
{
"data_ type":"NUMBER"

]I
"type name":"",
"type subname":"",
"result": [

4,

8,

ORACLE 919

Chapter 9
REST-Enabled SQL Service Examples

14

9.5.2.5 Specifying Batch Statements in a POST Request

ORACLE

This section shows the examples with batch statements and batch bind values in a POST
request.

Example 9-4 Batch statements

File: batch_example.json

"statementText": [
"insert into adhoc_table simple values(1l)",
"insert into adhoc_table simple values(2)",
"delete from adhoc_ table simple"

Request :curl -i -X POST --user DEMO:demo --data-binary "@batch example.json" -H
"Content-Type: application/json" -k https://localhost:8088/ords/demo/ /sql

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
{
"env": {
"defaultTimeZone": "Europe/London"
}I
"items": [
{
"statementId":1,
"statementType":"dml",
"statementPos": {
"startLine":0,
"endLine":0
}I
"statementText": [
"insert into adhoc table simple values(1l)",
"insert into adhoc table simple values(2)",
"delete from adhoc table simple"
]I
"response": [
"\nl row inserted.\n\n",

9-20

Chapter 9
REST-Enabled SQL Service Examples

"\nl row inserted.\n\n",
"\n2 rows inserted.\n\n"
]’
"result": [
ll
ll
2

Example 9-5 Batch bind values

File: batch_bind_example.json

"statementText":"INSERT INTO ADHOC TABLE DATE VALUES(?,?)"

"binds": [
{
"index":1,
"data type":"NUMBER",
"batch":true,
"value": [

"index":2,

"data type":"DATE",

"batch":true,

"value": [
"2017-02-21T06:12:202",
"2017-02-21T06:12:202",
"2017-02-21T06:12:202",
"2017-02-21T06:12:202",
"2017-02-21T06:12:202"

Request: curl -i -X POST --user DEMO:demo --data-binary
"@batch bind example.json" -H "Content-Type: application/json" -k https://
localhost:8088/ords/demo/_/sql

ORACLE 091

ORACLE

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked

{

n env n

|

"defaultTimeZone": "Europe/London"

b

"items": [

{

"statementId":1,

"statementType":"dml",

"statementPos": {
"startLine":1,
"endLine":2

b

Chapter 9
REST-Enabled SQL Service Examples

"statementText":"INSERT INTO ADHOC TABLE DATE VALUES(?,?)",

r

r

r

r

"response": [
"\nl row inserted.\n\n"
"\nl row inserted.\n\n"
"\nl row inserted.\n\n"
"\nl row inserted.\n\n"
"\nl row inserted.\n\n"
]I
"result": [
1,
1,
1,
1,
1
]I
"binds": [
{
"index":1,
"data type":"NUMBER",
"batch":true,
"value": [
3,
6,
9,
13,
17
]
I
{
"index":2,
"data type":"DATE",
"batch":true,
"value": [

"2017-02-21T06:
"2017-02-21T06:
"2017-02-21T06:
"2017-02-21T06:
"2017-02-21T06:

12:
12:
12:
12:
12:

202",
202",
202",
202",
202"

9-22

Chapter 9
REST-Enabled SQL Service Examples

9.5.3 Example POST Request with DATE and TIMESTAMP Format

Example 9-6 Oracle REST Data services Time Zone Set as Europe/London

Oracle Database DATE and TIMESTAMP data types do not have a time zone associated with
them. The DATE and TIMESTAMP values are associated with the time zone of the application.
Oracle REST Data Services and the REST- Enabled SQL service return values in a JSON
format. The standard for JSON is to return date and timestamp values using the UTC Zulu
format. Oracle REST Data Services and the REST- Enabled SQL service return Oracle
Database DATE and TIMESTAMP values in the Zulu format using the time zone in which
Oracle REST Data Services is running.

Oracle recommends running Oracle REST Data Services using the UTC time zone to make
this process easier.

File: date.json

{

"statementText":"SELECT TO DATE('2016-01-01 10:00:03','yyyy-mm-dd
hh24:mi:ss') winter, TO DATE('2016-07-01 10:00:03',"'yyyy-mm-dd hh24:mi:ss')
summer FROM dual;"

}

Request: curl -i -X POST --user DEMO:demo --data-binary "@date.json" -H "Content-
Type: application/json" -k https://localhost:8088/ords/demo/ /sql

Response:

Note:

In this example, both DATE values are specified as 10 a.m. The "summer" value is
returned as 9 a.m. Zulu time. This is due to British Summer Time.

HTTP/1.1 200 OK
Date: Wed, 26 Jul 2017 14:59:27 GMT
Content-Type: application/json
X-Frame-Options: SAMEORIGIN
Transfer-Encoding: chunked
Server: Jetty(9.2.21.v20170120)
{
"env": {
"defaultTimeZone":"Europe/London"
}I

"items": [

ORACLE 993

hh24:mi:ss'

Chapter 9
REST-Enabled SQL Service Examples

"statementId":1,
"statementType":"query",
"statementPos": {
"startLine":1,
"endLine":1
}I
"statementText":"SELECT TO DATE('2016-01-01 10:00:03','yyyy-mm-dd
) winter, TO DATE('2016-07-01 10:00:03','yyyy-mm-dd hh24:mi:ss')

summer FROM dual",

"response": [
} 14
"result":0,
"resultSet":{
"metadata": [
{

"columnName" : "WINTER",
"jsonColumnName":"winter",
"columnTypeName" : "DATE",
"precision":0,
"scale":0,
"isNullable":1

"columnName" : "SUMMER",
"jsonColumnName" : "summer",
"columnTypeName" : "DATE",
"precision":0,

"scale":0,

"isNullable":1

]I
"items": [
{
"winter":"2016-01-01T10:00:032",
"summer":"2016-07-01T09:00:03z2"

]l
"hasMore":false,
"limit":1500,
"offset":0,
"count":1

9.5.4 Data Types and Formats Supported

The following code snippet shows the different data types and the formats supported:

n m.n

statementText":"SELECT 2,
"

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 FROM dual",

ORACLE

9-24

ORACLE

"binds": [

{

b

"index":1,

"data type":
"value":1233

"index":2,

"data type":

"value":123

"index":3,

"data type":

"value":123

"index":4,

"data type":

"value":123

"index":5,

"data type":

"value":123

"index":6,

"data type":

"value":123

"index":7,

"data type":

"value":123

"index":8,

"data type":

"value":123

"index":9,

"data type":

"value":123

"index":10,

"data type":

"value":123

"index":11,

"data type":

"value":123

"NUMBER",

"NUMERIC",

"DECIMAL",

] DEC" ,

"NUMBER",

"INTEGER",

"INT" ,

"SMALLINT",

"FLOAT",

"DOUBLE PRECISION",

"REAL" ,

Chapter 9
REST-Enabled SQL Service Examples

9-25

ORACLE

"index":12,
"data type":"BINARY FLOAT",
"value":123

"index":13,
"data type":"BINARY DOUBLE",
"value":123

"index":14,
"data type":"CHAR",
"value":"abc"

"index":15,
"data type":"CHARACTER",
"value":"abc"

"index":16,
"data type":"VARCHAR",
"value":"abc"

"index":17,
"data type":"VARCHAR2",
"value":"abc"

"index":18,
"data type":"CHAR VARYING",
"value":"abc"

"index":19,
"data type":"CHARACTER VARYING",
"value":"abc"

"index":20,
"data type":"NCHAR",
"value":"abc"

"index":21,
"data type":"NATIONAL CHAR",
"value":"abc"

"index":22,

"data type":"NATIONAL CHARACTER",

"value":"abc"

Chapter 9
REST-Enabled SQL Service Examples

9-26

Chapter 9
REST-Enabled SQL Service Examples

"index":23,
"data type":"NVARCHAR",
"value":"abc"

"index":24,
"data type":"NVARCHAR2",
"value":"abc"

"index":25,
"data type":"NCHAR VARYING",
"value":"abc"

"index":26,
"data_type":"NATIONAL CHAR VARYING",
"value":"abc"

"index":27,
"data_type":"NATIONAL CHARACTER VARYING",
"value":"abc"

"index":28,
"data type":"DATE",
"value":"01-Jan-2016"

"index":29,
"data type":"TIMESTAMP",
"value":"1976-02-01T00:00:002Z"

"index":30,
"data type":"TIMESTAMP",
"value":"1976-02-01T00:00:002Z"

"index":31,
"data_type":"TIMESTAMP WITH LOCAL TIME ZONE",
"value":"1976-02-01T00:00:002Z"

"index":32,
"data_type":"TIMESTAMP WITH TIME ZONE",
"value":"1976-02-01T00:00:002Z"

"index":33,
"data type":"INTERVALYM",
"value":"P10Y10M"

"index":34,

ORACLE 9-27

ORACLE

Chapter 9
REST-Enabled SQL Service Examples

"data_type":"INTERVAL YEAR TO MONTH",
"value":"P10Y10M"

"index":35,
"data_type":"INTERVAL YEAR (2) TO MONTH",
"value":"P10Y10M"

"index":36,
"data type":"INTERVALDS",
"value":"P11DT10H10M10S"

"index":37,
"data_type":"INTERVAL DAY TO SECOND",
"value":"P11DT10H10M10S"

"index":38,
"data_type":"INTERVAL DAY (2) TO SECOND(6)",
"value":"P11DT10H10M10S"

"index":39,
"data type":"ROWID",
"value":1

"index":40,
"data type":"RAW",
"value":"AB"

"index":41,
"data type":"LONG RAW",
"value":"AB"

"index":42,
"data type":"CLOB",
"value":"clobvalue"

"index":43,
"data type":"NCLOB",
"value":"clobvalue"

"index":45,
"data type":"LONG",
"value n : "A"

9-28

Chapter 9
REST-Enabled SQL Request and Response Specifications

9.6 REST-Enabled SQL Request and Response Specifications

The following sections provide REST-Enabled SQL request and response specifications:
e Request Specification

e Response Specification

9.6.1 Request Specification

Request Specification for application/sql

The body of the request is in plain UTF8 text. Statements can be separated by their usual
SQL*Plus terminator.

Specification for applicationl/json

JSONPath Type Description Example Default Possible Values
Value

$.statementText String Specifies the SQL "select 1 Not Not applicable
statements to from dual" applicable
execute.

$.statementText Array Specifies batch DML ["insert Not Not applicable
statements using an into testl applicable
array. One DML values (1)","
statement is update testl
specified per string oo+
in an array. coll=2"]

$.offset Num Specifies the 25 0 Between 0 to

ber number of rows to misc.pagination.m

offset the query axRows.

result. This is used
for pagination of the
result set returned
from a query.

$.1limit Num Specifies the 500 misc.pagi Between O to
ber maximum number of nation.ma misc.pagination.m
rows returned from a XROWS axRows.
query.

Values greater than
the value of the
misc.pagination.
maxRows property,
specified in the
defaults.xml,is
ignored.

ORACLE 9.99

ORACLE

Chapter 9

REST-Enabled SQL Request and Response Specifications

JSONPath Type Description Example Default Possible Values
Value
$.binds Array Specifies an array of "binds": Not Not applicable
objects specifying [{ "name":" applicable
the bind information. mybindl",
"data type":
"NUMBER",
"mode" :"out"
}I
{ "name":"my
bind2",
"data type":
"NUMBER",
"value":7 }
]
$.binds[*].name String Specifies the name "mybind" Not Not applicable
of the bind, when applicable
you are using
named notation.
$.binds[*].index Num Specifies the index 1 Not Between 1 to n
ber of bind, when you applicable
are using positional
notation.
$.binds[*].data String Specifies Oracle "NUMBER" Not For more information,
type B data type of the applicable refer to Oracle Built-in
bind. Types
$.binds[*].value Any Specifies the value "value to null Can be one of the
value of the bind. insert" following data-types:
* Number
e String
e Array
For more information,
refer to Oracle Built-in
Types
$.binds[*].mode String Specifies the mode "out" "in" ["in" , "inout",
in which the bind is "out"]
used.
$.binds[*].batch Boole Specifies whether or true false [true, false]
an not you want to

perform a batch
bind. If you want to
perform a batch
bind, then set the
value to true.

If the value is set to
true,

then $Sbinds[*]
must consist of an
array of values.

9-30

Chapter 9

REST-Enabled SQL Request and Response Specifications

JSONPath

Type Description

Example

Default
Value

Possible Values

$.binds[*].type String Required whenyou ""

name

$.binds[*].type

subname

$.binds[*].type

components

$.binds[*].type

components|[*].da
ta type

are

using $binds[*].d

ata type =

"PL/SQL TABLE"
Currently, only an
empty string is
accepted as the

value.

String
are

Required whenyou ""

using $binds[*].d

ata type =

"PL/SQL TABLE"
Currently, only an
empty string is
accepted as the

value.

Array

Specifies an array of
data types in the

PL/SQL TABLE
Required when you

are

using $binds[*].d

ata type =

"PL/SQL TABLE"

String
data type of a
column in the

Specifies Oracle

"NUMBER"

PL/SQL TABLE.
Required when you

are
using Sbinds
ata type =

(*].d

"PL/SQL TABLE"

[{"data type
" "NUMBER"}]

Not
applicable

Not
applicable

Not
applicable

Not
applicable

Not applicable

Not applicable

Not applicable

For more information,
refer to Oracle Built-in
Types

9.6.2 Response Specification

ORACLE

JSONPath

Data
type

Description

Example
Values

Possible values

S.env

S.env.defaultTimeZone

Object

String

Specifies the
information about the
Oracle REST Data
Services
environment.

Specifies the
timezone in which
Oracle REST Data
Services server is
running on.

Not
applicable

"Europe/
London"

Not applicable

Not applicable

9-31

Chapter 9

REST-Enabled SQL Request and Response Specifications

ORACLE

JSONPath Data Description Example Possible values
type Values
$.items Array Specifies that there is Not
one item for each applicable Not applicable
statement executed.
S.items[*].statementId Number Specifies the 1
sequence number of Not applicable
the statement.
S.items[*].statementType String Specifies the type of "query" ["query", "dml",
statement. "ddlI", "plsqgl",
"sqlplus" , "ignore",
"transaction-control",
"session-control”,
"system-control”,
"jdbc", "other"]
S.items[*].statementPos Object Specifies information Not
about the position of applicable Not applicable
a specified
statement.
$.items[*].statementPos. Number Specifies startline of Not
startLine the statement. applicable Not applicable
$.items[*].statementPos. Number Specifies end line of Not
endLine the statement. applicable Not applicable
Sitems[*].statementText String Specifies the SQL "select 1
statement to be from dual™ Not applicable
executed.
Sitems[*].statementText Array Specifies batch DML ["insert
statements can be into testl Notapplicable
specified using an values (1)"
array. , "update
One DML statement testl set
specified per string in col1=2"]
an array.
$.items[*].response Array Specifies array of ["\nl row
Strings. The inserted.\ Not applicable
response generated p\n"]
when running the
statement.
S.items[*].result Number Specifies the result 5
generated when Not applicable
running the
statement.
For DML statements,
this will be the
number of rows
affected.
$.items[*].result Array Specifies the result [1, 1,
generated when 2] Not applicable

running each of the
batch statements.

For DML statements,
this will be the
number of rows
affected.

9-32

ORACLE

Chapter 9
REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
S.items[*].resultSet Object Specifies information
about the result set Not Not applicable
generated from a applicable
query.
S.items[*].resultSet.met Array Specifies each object
adata in the array provides Not Not applicable
information about the applicable
metadata of a
column.
S.items[*].resultSet.met String Specifies the name
adata[*].columnName of the column used in Not Not applicable
the Oracle Database. applicable
S.items[*].resultSet.met String Specifies the name
adata[*].jsonColumnName of the column used in Not Not applicable
$.items[*].resul applicable
tSet.items[*].<c
olumnname>
$.items[*].resultSet.met String Specifies the Oracle
adata[*].columnTypeName Database data type Not Not applicable
of the column. applicable
$.items[*].resultSet.met Number Specifies the
adata[*].precision precision of the Not Not applicable
column. applicable
$.items[*].resultSet.met Number Specifies the scale of
adata[*].scale the column. Not Not applicable
applicable
$.items[*].resultSet.met Number Specifies whether the
adata[*].isNullable column is nullable or Not Not applicable
not. applicable
0, if the column is not
nullable.
1, if the column is
nullable.
S.items[*].resultSet.ite Array Specifies the list of
ms all rows returned in ~ Not Not applicable
the result set. applicable
S.items[*].resultSet.ite Anytype Specifies the value of
ms[*].<columnname> a particular column Not Not applicable
and row in the result applicable

set.

9-33

ORACLE

Chapter 9

REST-Enabled SQL Request and Response Specifications

JSONPath Data

type

Description

Example
Values

Possible values

S.items[*].resultSet.has Boolean
More

S.items[*].resultSet.cou Number
nt

S.items[*].resultSet.off Number
set

S.items[*].resultSet.lim Number
it

S.items[*].binds Array

Specifies whether
result set has more
rows. Value is set to
true if the result set
has more rows,
otherwise set to

false.

The rows in the result

set depend on

misc.pagination.
maxRows value

configured in

defaults.xml file or
as specified in the

request.

Specifies the number
of rows returned.

Specifies the number
of rows to offset the
query result. This is
used for pagination of

the result set

returned from a

query.
Specifies the

maximum number of
rows returned from a

query.

Values greater than
misc.pagination.
maxRows value

specified in

defaults.xml file

are ignored.

Specifies an array of
objects specifying the
bind information.

false

Not
applicable

25

500

"binds":

{ { llnamell
:"mybindl"
r

"data type
": "NUMBER"
r
"mode" : "ou
tll },

{ "name":"
mybind2",
"data type
": "NUMBER"
r
"value":7

bl

[true , false]

Not applicable

Between 0 to

axRows

Between 0 to

axRows

Not applicable

misc.pagination.m

misc.pagination.m

9-34

Chapter 9

REST-Enabled SQL Request and Response Specifications

JSONPath Data Description Example Possible values
type Values
$.items[*].binds[*].name String Specifies the name "mybind"
of the bind, when you Not applicable
are using named
notation.
S.items[*].binds[*].inde Number specifies ilndex of 1 1 -n
b'e bind, when you are
using positional
notation.
$.items[*].binds[*].data String Specifies the Oracle "NUMBER" For more information,
type data type of the bind. refer to Oracle Built-in
N Types
S.items[*].binds[*].valu Anytype Specifies the value of "value to Can be one of the
e the bind. insert" following data types:
* Number
e String
* Array
For more information,
refer to Oracle Built-in
Types
S.items[*].binds[*].resu Anytype Specifies the result of Not applicable
1t an OUT bind. Not
applicable
S$.items[*].binds[*].mode String Specifies the mode in "out" ["in" , "inout",
which the bind is "out"]
used.
$.items[*].binds[*].batc Boolean Specifies whether or true [true, false]
h not you want to
perform a batch bind.
If you want to
perform a batch bind,
then set the value to
true.
If a batch bind is to
be performed, then
the value is set to
true.
If the value is set to
true,
then Sbinds[*]
value must be an
array of values.
S.items[*].binds[*].type String Required when " Not applicable
_name using $binds[*].da

ORACLE

ta type =
"PL/SQL TABLE".

Currently, only an
empty string is
accepted as the
value.

9-35

Chapter 9

Supported SQL, SQL*Plus, and SQLcl Statements

JSONPath

Data
type

Description Example
Values

Possible values

$.items[*].binds[*].type
_subname

$.items[*].binds[*].type
_components

$.items[*].binds[*].type
components[*].data type

String

Array

String

Required when "
using $binds[*].da

ta type =

"PL/SQL TABLE".

Currently, only an
empty string is
accepted as the
value.

Array of data typesin [{"data ty
the PL/SQL TABLE pe":"NUMBE

Required when R"}]
using $binds[*].da

ta type =

"PL/SQL TABLE"

The Oracle data type "NUMBER"
of a column in the

PL/SQL TABLE.

Required when

using $binds[*].da

ta type

= "PL/SQL TABLE"

Not applicable

Not applicable

For more information,
refer to Oracle Built-in
Types

9.7 Supported SQL, SQL*Plus, and SQLcl Statements

This section lists all the supported SQL, SQL*Plus and SQLcl statements for REST-Enabled

ORACLE

SQL service.

Topics

e Supported SQL Statements
e Supported PL/SQL Statements

e Supported SQL*Plus Statements

e Supported SQLcl Statements

9.7.1 Supported SQL Statements

This section describes the SQL statements that the REST- Enabled SQL service supports.

REST- Enabled SQL service supports all SQL commands. If the specified Oracle Database
schema has the appropriate privileges, then you can run them. Oracle REST Data Services
makes all queries into in-line views before execution to provide pagination support. Queries are
made in-line irrespective of the format in which you provide the query. All the other nonquery
SQL statements are executed as they are.

In-line views have the following limitations:

e All column names in a query must be unique because the views and in-line views cannot

have ambiguous column names.

e Cursor expressions are not displayed in view or in-line views.

* WITH FUNCTION clause is not supported in in-line views.

9-36

Chapter 9
Supported SQL, SQL*Plus, and SQLcl Statements

Related Topics

* SQL_statements_ref

9.7.2 Supported PL/SQL Statements

The REST- Enabled SQL service supports PL/SQL statements and blocks.
Example 9-7 PL/SQL Statement

DECLARE v_message VARCHARZ (100) := 'Hello World';
BEGIN
FOR i IN 1..3 LOOP
DBMS OUTPUT.PUT LINE (v_message);
END LOOP;
END;
/

Related Topics
e plsql_block

9.7.3 Supported SQL*Plus Statements

ORACLE

This section lists all the SQL*Plus statements that the REST- Enabled SQL service supports.

REST- Enabled SQL service supports most of the SQL*Plus statements except those
statements that are related to formatting. The specific Oracle Database schema must have the
appropriate privileges to run the SQL*Plus statemments.

The following is a list of supported SQL*Plus statements:

° SET system variable value

¢ Note:
system variable and value represent one of the clauses described in Set
System Variables section.
* / (slash)
o DEF[INE] [variable] | [variable = text]
o DESC[RIBE] {[schema.]object[@connect identifier]}
e EXEC[UTE] statement
e HELP | ? [topic]
e PRINT [variable ...]
° PRO[MPT] [text]
° REM[ARK]
o SHO[W] [option]
° TIMI[NG] [START text | SHOW | STOP]

e UNDEF[INE] variable ...

9-37

http://docs.oracle.com/database/122/SQLQR/SQL-Statements.htm#SQLQR109
http://docs.oracle.com/database/122/LNPLS/block.htm#LNPLS01303

Chapter 9
Supported SQL, SQL*Plus, and SQLcl Statements

VAR[IABLE] [variable [type][=value]]

Related Topics

sqlplus_commands

9.7.3.1 Set System Variables

The following is a list of possible values for system variable and value:

Note:

The command SET CMDS[EP] {; | ¢ | ON | OFF} is obsolete.

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

SET

APPI[NFO] {ON | OFF | text}

AUTOP[RINT] {ON | OFF}

AUTOT [RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]]
BLO [CKTERMINATOR] {. | ¢ | ON | OFF}

CMDS[EP] {; | ¢ | ON | OFF}

COLINVI[SIBLE] [ON | OFF]

CON[CAT] {. | ¢ | ON | OFF}

COPYC[OMMIT] {0 | n}

DEF[INE] {& | ¢ | ON | OFF}

DESCRIBE [DEPTH {1 | n | ALL}] [LINENUM {ON | OFF}] [INDENT {ON | OFF}]
ECHO {ON | OFF}

ERRORL[OGGING] {ON | OFF} [TABLE [schema.]tablename] [TRUNCATE]

[IDENTIFIER identifier]

SET

SET

SET

ESC[APE] {\ | ¢ | ON | OFF}
FEED[BACK] {6 | n | ON | OFF | ONLY}]

SERVEROUT [PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}] [FOR[MAT] {WRA[PPED] |

WOR([D WRAPPED] | TRU[NCATED]}]

SET

SET

SET

SET

SET

SET

SHOW[MODE] {ON | OFF}
SQLBL[ANKLINES] {ON | OFF}
SQLP[ROMPT] {SQL> | text}
TI[ME] {ON | OFF}

TIMI[NG] {ON | OFF}

VER[IFY] {ON | OFF}

Related Topics

ORACLE

set-system_var_summary

9-38

https://docs.oracle.com/database/122/SQPUG/SQL-Plus-command-summary.htm#SQPUG02345
https://docs.oracle.com/database/122/SQPUG/SET-system-variable-summary.htm#SQPUG060

Chapter 9
Supported SQL, SQL*Plus, and SQLcl Statements

9.7.3.2 Show System Variables

ORACLE

This section lists the possible values for option which is either a term or a clause used in the
SHO[W] option command.

The following is a list of possible values for the option variable:

Note:

The commands SHOW CMDSEP and SHOW DESCR[IBE] are obsolete.

° SHOW system variable
° SHOW EDITION

. SHOW ERR[ORS] [{ ANALYTIC VIEW | ATTRIBUTE DIMENSION | HIERARCHY | FUNCTION |
PROCEDURE | PACKAGE | PACKAGE BODY | TRIGGER | VIEW | TYPE | TYPE BODY |
DIMENSION | JAVA CLASS } [schema.]name]

e SHOW PDBS
e SHOW SGA

e SHOW SQLCODE

e SHOW COLINVI[SIBLE]
e SHOW APPIN[FO]

e SHOW AUTOT [RACE]

e SHOW BINDS

e SHOW BLO[CK TERMINATOR]
e SHOW CMDSEP

e SHOW COPYTYPECHECK
e SHOW COPYCOMMIT

e SHOW DEFINE

e SHOW DEFINES

e SHOW DESCR[IBE]

e SHOW ECHO

e SHOW EDITION

e SHOW ERRORL[OGGING]
e SHOW ESC[APE]

e SHOW FEEDBACK

e SHOW CONCAT

¢ SHOW SHOW[MODE]

e SHOW RECYC[LEBIN]

e SHOW RELEASE

9-39

Chapter 9
REST-Enabled SQL Service and MySQL Database

° SHOW SQLBL[ANKLINES]
* SHOW SCAN

* SHOW SERVEROUT [PUT]
° SHOW SPACE

° SHOW TABLES

° SHOW TIMI[NG]

e SHOW USER

° SHOW VER[IFY]

* SHOW XQUERY

Related Topics

e show_command

9.7.4 Supported SQLcl Statements

This section lists the SQLcl statements that the REST- Enabled SQL service supports.

REST- Enabled SQL service supports some of the SQLcl statements. The specific Oracle
Database schema must have the appropriate privileges to run the SQLcl statements.

The following is a list of supported SQLcl statements:

e CTAS
e DDL
e SET DDL

9.8 REST-Enabled SQL Service and MySQL Database

This section describes an ORDS feature that is supported only with MySQL databases running
on Oracle Cloud Infrastructure.

You can use the REST-Enabled SQL Service with MySQL database 8.0 or later, hosted in
Oracle Cloud infrastructure. For MySQL database, you do not need to install any ORDS-
specific software, but must specify the configuration details about how to connect to the
database over JDBC through a connection pool. The ORDS distribution includes the MySQL
connector/J JDBC driver.

The endpoints for REST-Enabled SQL Service and the corresponding export service end
with / /sql and / /sql/export respectively.

ORDS returns data in a well-formed JSON structure. The MySQL data types JSON and
GEOMETRY are returned as a JSON object in the response. Any binary data, such as BLOB
data types, is returned as a BASE64 encoded string. The supported export format types are
CSV, HTML, JSON, and XML.

9.8.1 Examples

This section describes how to configure a sample MySQL database and perform a few
common operations.

ORACLE 9.40

https://docs.oracle.com/database/122/SQPUG/SHOW.htm#SQPUG124

Chapter 9
REST-Enabled SQL Service and MySQL Database

The examples described in this section refers to the MySQL sakila sample database. The
connection pool called mysql is configured to connect to the MySQL database instance with
db.credentials. The source is set to REQUEST and MySQL database user in this example is
francis and the password is set as frank.

Example 9-8 Script
This example shows how to list the schemas in the database instance.

Request

curl --user francis:frank --request POST 'http://localhost:8080/ords/mysql/ /
sql' \

--header 'Content-Type: application/sgl' \

--data 'show databases'

Response

"env" : {
"defaultTimeZone" : "UTC"
}I
"items" : [
{
"response" : [
"Database

n\nn,

n\nn,

"information schema

n\nn,

"mysql

n\nn,

"performance schema

n\nn,

"sakila

n\nn,

"SYS

"\nll
]I
"result" : 0,
"statementId" : 1,
"statementPos" : {
"endLine" : 1,
"startLine" : 1
}I
"statementText" : "show databases",
"statementType" : "sglplus"

ORACLE 041

ORACLE

Chapter 9
REST-Enabled SQL Service and MySQL Database

Example 9-9 Query

This example shows how to query the film table in the sakila schema, using bind variables
and limit in the query.

< Note:

All bind variables are VARCHAR data type and are mapped to the appropriate data type
for the referenced column.

Request

curl --user francis:frank --request POST 'http://localhost:8080/ords/mysql/ /
sqgl' \

--header 'Content-Type: application/json' \

--data-raw '{

"statementText": "select film.title, film.release year from sakila.film
film where film.rating = :varl and film.release year between :lowDate
and :highDate order by release year",

"offset": O,

"limit": 5,

"binds": [

{
"name": "varl",
"data type": "VARCHAR",
"value": "G"
} 4
{
"name": "highDate",

"data type": "VARCHAR",
"value": "2006-01-01T00:00:002"

"name": "lowDate",
"data type": "VARCHAR",
"value": "2005-01-01T00:00:00Z"

} 1

Response

"env" : {
"defaultTimeZone" : "Europe/Dublin"
}I
"items" : [
{
"binds" : [
{

9-42

ORACLE

Chapter 9
REST-Enabled SQL Service and MySQL Database

"data type" "VARCHAR",
"name" : "varl",
"value" : "G"
}I
{
"data type" "VARCHAR",
"name" : "highDate",
"value" : "2006-01-01T00:00:00Z"
}I
{
"data type" "VARCHAR",
"name" : "lowDate",
"value" : "2005-01-01T00:00:00Z"
}
]I
"response" : [],
"result" : 0,
"resultSet" : {
"count" : 5,
"hasMore" : true,
"items" : [

{

"release year"

"2006-01-01T00:00:002",

"title" : "ACE GOLDFINGER"

"release year"

"2006-01-01T00:00:002",

"title" : "AFFAIR PREJUDICE"

"release year"

"2006-01-01T00:00:002",

"title" : "AFRICAN EGG"

"release year"

"2006-01-01T00:00:002",

"title" : "ALAMO VIDEOTAPE"

"release year"

"2006-01-01T00:00:002",

"title" : "AMISTAD MIDSUMMER"

]I

"limit" : 5,

"metadata" : [

{

"columnClassName"
"columnName"
"columnTypeName"
"isNullable" : 0,
"jsonColumnName"

"precision" : 128,
"scale" : 0

}I

{
"columnClassName"
"columnName"

"java.lang.String",

"title",

"VARCHAR",

"title",

"java.sgl.Date",

"release year",

9-43

ORACLE

Chapter 9
REST-Enabled SQL Service and MySQL Database

"columnTypeName" : "YEAR",
"isNullable" : 1,
"jsonColumnName" : "release year",
"precision" : 4,
"scale" : 0
}
]I
"offset" : 0

b
"statementId" : 1,

"statementPos" : {
"endLine" : 2,
"startLine" : 1
}I
"statementText" : "select film.title, film.release year from
sakila.film film where film.rating = :varl and film.release year
between :lowDate and :highDate order by release year",
"statementType" : "query"

}

Example 9-10 Export

This example shows how to export the rows from the £ilm table in CSV format to a file
film.csv.

Request

curl --user francis:frank --location --output film.csv --request
POST 'http://localhost:8080/ords/mysql/ /sql/export' \--header
'"Content-Type: application/x-www-form-urlencoded' \--data-urlencode
'data={"statementText":"select * from sakila.film",
"formatDetails":{"format":"CSV", "header": true, "lineTerminator":

ll\n"} } '

9-44

GraphQL in Oracle REST Data Services

This section introduces GraphQL functionality in Oracle REST Data Services.

The GraphQL feature in Oracle REST Data Services enables you to fetch the data from an
Oracle REST Data Services enabled schema using GraphQL queries.

Topics:

GraphQL Terminology

Enabling GraphQL in Oracle REST Data Services
Enabling Objects for GraphQL

Accessing Objects Using GraphQL queries
Examples of Filtering in Queries

Sorting the Data

Keyset Pagination

Using Dynamic Arguments in Queries: Variables
GraphiQL

10.1 GraphQL Terminology

This section describes the common terms used in this section.

Following are the common terms used in this section:

GraphQL Schema Definition Language (SDL): Sometimes it is simply referred to as
GraphQL schema language. It is a language with a simple syntax that allows to define a
schema.

Schema: A schema in the GraphQL context refers to a collection of GraphQL types.

Type: Represents a kind of object that you can fetch from your service. Each REST-
Enabled table or view object in Oracle REST Data Services represents a GraphQL type.

Field: A GraphQL type contains a set of fields that you can fetch in a query. Every column
of a table or view object in Oracle REST Data Services represents a field.

10.2 Enabling GraphQL in Oracle REST Data Services

This section describes how to enable GraphQL.

ORACLE

To enable GraphQL, Oracle REST Data Services is required to run in a GraalVM runtime
environment with the Java Script component enabled.

¢ See Also:

System Requirements

10-1

Chapter 10
Enabling Objects for GraphQL

10.3 Enabling Objects for GraphQL

This section explains how to enable the objects for GraphQL.

Any REST-Enabled table or view of an Oracle REST Data Services enabled schema can be
accessed through GraphQL queries. For a REST-Enabled object to be mapped into a
GraphQL type, it is necessary that it has one or multiple primary keys associated to the object.
If this condition is not satisfied, then the ROWID pseudo column is used to guarantee that the
objects obtained in a query are unique and are not a duplicate derived from a join.

Note:

The use of ROWID as an identifier has some limitations.

GraphQL endpoint syntax:

http://<HOST>:<PORT>/ords/<Schema>/ /graphql

< Note:

This feature is available only for Oracle REST Data Services enabled schemas.

10.3.1 Accessing Protected REST-Enabled Objects

Any privilege or role defined by the user can protect the REST-Enabled objects that require
authorization. For example, if a REST-enabled object is protected by the autoREST default
privilege or role it requires the following roles and privileges to access such object::

e oracle.dbtools.autorest.any.schema
e oracle.dbtools.role.autorest.<SCHEMANAME>.<OBJECTNAME>
e oracle.dbtools.autorest.privilege.<SCHEMANAME>.<OBJECTNAME>

This means that, GraphQL request must have proper authorization in order to have access to
the protected objects.This protection is not limited to the auto REST privileges and roles listed
above since the GraphQL feature honors URI pattern protection.

¢ See Also:

About Oracle REST Data Services User Roles

10.4 Accessing Objects Using GraphQL queries

This section provides examples for using GraphQL queries against tables and views after
REST-enabling the tables and views.

Following examples are discueed in this section:

ORACLE 100

Chapter 10
Accessing Objects Using GraphQL queries

e Getting GraphQL Schema
e Simple Query
e Join Query

10.4.1 Getting GraphQL Schema

ORACLE

The GraphQL schema is auto generated and it contains the REST-enabled objects (tables and
views) of the rest enabled user database schema.

The generated schema includes the following:

« Each REST-enabled object represented as a GraphQL type with its columns represented
as fields and the relationships between the objects.

e The resolvers for all the REST-enabled objects

e Supported data types
To get the GraphQL schema, run the following query:
Syntax:

GET 'http://<HOST>:<PORT>/ords/<Schema>/ /graphqgl'

Example query:

GET 'http://localhost:8080/ords/hr/ /graphqgl'

Response:

{"schemaName":"HR", "description":"the SDL representation of the 'HR' GraphQL
Schema", "SDL":"type Query { \"\"\"Generic resolver for EMPLOYEES
type. \"\"\"\n

employees (primaryKey: JSON, where: JSON, sort: JSON, limit: Int,
offset: Int):

[EMPLOYEES]\n\n \"\"\"Generic resolver for COUNTRIES type.\"\"\"\n

countries (primaryKey: JSON, where: JSON, sort: JSON, limit: Int,
offset: Int):

[COUNTRIES]I\n}\n\n\"\"\"\nThe 'Date' scalar type represents date values
as specified by the

ISO 8601 format in UTC time zone (YYYY-MM-DDThh:mm:ssZz).\n\"\"\"\nscalar

Date\n\n\"\"\"\nThe ‘Float' scalar type represents signed double-
precision fractional

values as specified by [IEEE 754] (https://en.wikipedia.org/wiki/
IEEE_floating_point).\n\"\"\"\nscalar

Float\n\n\"\"\"\nThe "Int' scalar type represents non-fractional signed
whole numeric

values. Int can represent values between -(2731) and 2731 -
L.An\"\"\"\nscalar

Int\n\n\"\"\"\nThe 'JSON' scalar type represents JSON values as
specified by [ECMA-404] (http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-404.pdf).\n\"\"\"\nscalar

JSON\n\n\"\"\"\nThe "String’ scalar type represents textual data,
represented as UTF-8

character sequences. The String type is most often used by GraphQL to

10-3

https://en.wikipedia.org/wiki/IEEE_floating_point).
https://en.wikipedia.org/wiki/IEEE_floating_point).
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf).
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf).

Chapter 10
Accessing Objects Using GraphQL queries

represent free-form

human-readable text.\n\"\"\"\nscalar String\n\ntype COUNTRIES {\n
country id: String!\n

country name: String\n region id: Int\n}\n\ntype EMPLOYEES {\n
employee id: Int!\n

manager id: Int\n phone number: String\n commission pct: Float\n
department id: Int\n

salary: Float\n first name: String\n email: String!\n Jjob id: String!
\n hire date:

Date!\n last name: String!\n\n \"\"\"\n The relationship between the
EMPLOYEES type

and the EMPLOYEES type on EMPLOYEES.MANAGER ID =
EMPLOYEES.EMPLOYEE ID\n \"\"\"\n

manager id employees (primaryKey: JSON, where: JSON, sort: JSON, limit:
Int, offset: Int):

[EMPLOYEES]\n\n \"\"\"\n The relationship between the EMPLOYEES type
and the EMPLOYEES

type on EMPLOYEES.EMPLOYEE ID = EMPLOYEES.MANAGER ID\n \"\"\"\n

employees manager id(primaryKey: JSON, where: JSON, sort: JSON, limit:
Int, offset: Int):

[EMPLOYEES]\n}"}

10.4.2 Simple Query

A simple query retrieves the data in a type present in the GraphQL Schema.

This example query fetches the employee id, first name, last name, job id, and salary in
the employees type from the HR schema.

query Employees {
employees {
employee id
first name
last name
job_id
salary

Example cURL command:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \
--data '{
"query": "{employees { employee id first name last name job id salary }}"

} 1

Response:

"data": {
"employees": [
{
"employee id": 100,

ORACLE 104

Chapter 10
Accessing Objects Using GraphQL queries

"first name": "Steven",
"last name": "King",
"job id": "AD PRES",
"salary": 24000

"employee id": 101,
"first name": "Neena",
"last name": "Kochhar",
"job_id": "AD vp",
"salary": 17000

"employee id": 103,

"first name": "Alexander",
"last name": "Hunold",
"job_id": "IT PROG",
"salary": 9000

"employee id": 104,
"first name": "Bruce",
"last name": "Ernst",
"job_id": "IT PROG",
"salary": 6000

"employee id": 105,
"first name": "David",
"last name": "Austin",
"job_id": "IT PROG",
"salary": 4800

10.4.3 Join Query

A join query retrieves the data from one or more relationships between existing types present
in the GraphQL Schema.

Example 1:

The following query fetches all the cities associated with a location as well as the departments
in each city and the employees who work in each one of the departments.

query Locations{
locations{
city
departments location id{
department name
employees department id{
first name
last name
salary

ORACLE 05

ORACLE

Chapter 10
Accessing Objects Using GraphQL queries

Example cURL Command:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \
--data '{
"query": "query Locations{ locations{ city
departments location id{ department name employees department id{first name
last name salary} } } }"

} 1

Response:

"data": {
"locations": |
{
"city": "Seattle",
"departments location id": [
{
"department name": "Executive",
"employees department id": [
{
"first name": "Steven",
"last name": "King",
"salary": 24000

"first name": "Neena",
"last name": "Kochhar",
"salary": 17000

"first name": "Lex",
"last name": "De Haan",
"salary": 17000

]
}I
{
"department name": "Finance",
"employees department id": [
{
"first name": "Nancy",
"last name": "Greenberg",
"salary": 12000

"first name": "Daniel",
"last name": "Faviet",
"salary": 9000

10-6

ORACLE

]
b
{

"first name": "John",
"last name": "Chen",
"salary": 8200

"first name": "Ismael",
"last name": "Sciarra",
"salary": 7700

"first name": "Jose Manuel",
"last name": "Urman",
"salary": 7800

"first name": "Luis",
"last name": "Popp",
"salary": 6900

"department name": "Purchasing",
"employees department id": [

{

"first name": "Den",
"last name": "Raphaely",
"salary": 11000

"first name": "Alexander",
"last name": "Khoo",
"salary": 3100

"first name": "Shelli",
"last name": "Baida",
"salary": 2900

"first name": "Sigal",
"last name": "Tobias",
"salary": 2800

"first name": "Guy",
"last name": "Himuro",
"salary": 2600

"first name": "Karen",
"last name": "Colmenares",
"salary": 2500

Chapter 10
Accessing Objects Using GraphQL queries

10-7

ORACLE

"department name": "Administration",

"employees department id": [
{
"first name": "Jennifer",
"last name": "Whalen",
"salary": 4400

]
}I
{
"department name": "Accounting",
"employees department id": [
{
"first name": "Shelley",
"last name": "Higgins",
"salary": 12000

"first name": "William",
"last name": "Gietz",
"salary": 8300

]

}I

{
"department name": "IT Support",
"employees department id": []

}I

{
"department name": "Operations",
"employees department id": []

}I

{
"department name": "Payroll",
"employees department id": []

}I

{

"department name": "Construction",

"employees department id": []
o
{

"department name": "Government Sales",

"employees department id": []
o
{

"department name": "Retail Sales",

"employees department id": []
o
{

"department name": "Contracting",

"employees department id": []
o
{

"department name": "Recruiting",

Chapter 10
Accessing Objects Using GraphQL queries

10-8

ORACLE

Chapter 10
Accessing Objects Using GraphQL queries

"employees department id": []

"department name": "Control And Credit",
"employees department id": []

"department name": "NOC",
"employees department id": []

"department name": "Treasury",
"employees department id": []

"department name": "Manufacturing",
"employees department id": []

"department name": "Corporate Tax",
"employees department id": []

"department name": "IT Helpdesk",
"employees department id": []

"department name": "Shareholder Services",
"employees department id": []

"department name": "Benefits",
"employees department id": []

Example 2:

The following example query fetches all the employees from the HR schema and the
department in which they work:

query Employees {
employees {

employee id

first name

last name

departments_department id {
department id
department name

10-9

ORACLE

Example cURL command:

Chapter 10
Accessing Objects Using GraphQL queries

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \

--data '{

"query": "{employees { employee id first name last name
departments department id{ department id department name } }}"

} 1

Response:

"data": {

"employees": [

{

"employee id": 200,
"first name": "Jennifer",
"last name": "Whalen",
"departments department id":
{
"department id": 10,

"department name": "Administration"

"employee id": 201,
"first name": "Michael",
"last name": "Hartstein",
"departments department id":
{
"department id": 20,

"department name": "Marketing"

"employee id": 202,
"first name": "Pat",
"last name": "Fay",
"departments department id":
{
"department id": 20,

"department name": "Marketing"

10-10

Chapter 10
Accessing Objects Using GraphQL queries

Note:

GraphQL nesting depth is limited to a maximum of five levels. Any query with more
than five nested joins returns an error.

¢ See Also:

Understanding Configurable Settings

10.4.3.1 Circular Relationships Between Objects

This section explains with an example a circular relationship.

A table or view can have a circular relationship and GraphQL can be used to query the data.
Following is an example showing a circular relationship in the HR schema.

The employees table has a constraint defined between manager id and employee id columns.

The following example query fetches all the employees from the HR schema along with their
respective managers:

query Employees {
employees {

employee id

first name

last name

manager id

manager id employees {
first name
last name
employee id

Example cURL Command:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \
--data '{
"query": "{ employees { employee id first name last name manager id
employees manager id{ first name last name employee id } } }"

} 1

Response:

"data": {
"employees": [

{

ORACLE 1011

ORACLE

"employee id": 101,
"first name": "Neena",
"last name": "Kochhar",
"manager id": 100,
"employees manager id": [
{
"first name": "Steven",
"last name": "King",
"employee id": 100
}

"employee id": 114,
"first name": "Den",
"last name": "Raphaely",
"manager id": 100,
"employees manager id": [
{
"first name": "Steven",
"last name": "King",
"employee id": 100

"first name": "Eleni",
"last name": "Zlotkey",
"employee id": 149

"employee id": 120,
"first name": "Matthew",
"last name": "Weiss",
"manager id": 100,
"employees manager id": [
{
"first name": "Steven",
"last name": "King",
"employee id": 100

"first name": "John",
"last name": "Russell",
"employee id": 145

"first name": "Karen",

"last name": "Partners",

"employee id": 146

Chapter 10
Accessing Objects Using GraphQL queries

10-12

Chapter 10
Examples of Filtering in Queries

10.5 Examples of Filtering in Queries

This section provides examples of filtering in queries against REST-enabled tables and views.

To filter in a query, include the parameter <filterName>: GraphQLJSON, where GraphQLJSON is
a JSON like object that represents the custom selection to be applied to the resource. Each
filter has its own predefined GraphQLJSON syntax.

10.5.1 Supported Data Types

This section lists the supported data types for filters.

Data Type Description

String The string scalar type represents a textual data,
represented as UTF-8 character sequences. The
string type is most often used by GraphQL to
represent free-form human-readable text.

Int The int scalar type represents non-fractional
signed whole numeric values. Int can represent
values between -(2"31) and 2”31 - 1.

Float The float scalar type represents signed double-
precision fractional values as specified by IEEE
754.

Date The date scalar type represents date values as

specified by the ISO 8601 format in UTC time zone
(YYYY-MM-DDThh:mm: ssZ).

Timestamp The timestamp scalar type represents timestamp
values as specified by the ISO 8601 format in UTC
time zone (YYYY-MM-DDThh:mm: Ss.sssZ).

Boolean The boolean scalar type represents true or
false.

10.5.2 Filtering by Primary Key

ORACLE

Filtering by primary key enables you to retrieve the data by specifying its identifying key value
or key values.

Primary Key Syntax:

value = String | Int | Float | Date | Timestamp
primaryKeyPair = <fieldName> : <value>
primaryKeyExp = { primaryKeyPairl, ... , primaryKeyPairN }

The following query includes a filter that restricts the employee id field to 100:

query {
employees (primaryKey: {employee id: 100}) {
employee id
first name
last name
job_id
salary

10-13

Chapter 10
Examples of Filtering in Queries

Example cURL command:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \
--data '{
"query": "{ employees (primaryKey : {employee id :100}) { first name
last name department id job id } } "

} 1

Response:

"data": {
"employees": [
{
"first name": "Steven",
"last name": "King",
"department id": 90,
"job_id": "AD PRES"

10.5.2.1 Filtering by Composite Primary Key

Filtering by primary key enables you to retrieve the data from the tables that have a composite
primary key by adding a list of primary keys to the filter.

query {
compositeTable (primaryKey: { <fieldName> : <value>, <fieldName> : <value>}) {
data

10.5.3 Where Filter

Filtering using a where condition enables you to query the data and specify a valid condition or
conditions that the fields present in the requested types should satisfy.

Where Filter Syntax:

fieldName = stringvalue = String | Int | Float | Date | Timestamp operator =
eq | neq | gt | 1t | gte | lte | like | nlike | in | nin | btwn | nbtwn
| nullbooleanOperator = and | orvalidFilter = { <fieldName> :
{ <operator> : <value> } }booleanExp = { <booleanOperator> : [<ValidFilterl
| BoleanExpl>, ..., <ValidFilterN |
BoleanExpN>] }whereExp = { where : <validFilter | booleanExp> }

ORACLE 1014

ORACLE

Table 10-1 Supported Operators

Chapter 10

Examples of Filtering in Queries

Operator GraphQLJSON Syntax Description Supported Data Types

= { column : { eq : Equality String | Int | Float | Date |
value } } Timestamp

=, <> { column : { neq : Inequality String | Int | Float | Date |
value } } Timestamp

> { column : { gt : Greater than String | Int | Float | Date |
value } } Timestamp

< { column : { 1t : Less than String | Int | Float | Date |
value } } Timestamp

>= { column : { gte : Greaterthan or equalto String | Int| Float | Date |
value } } Timestamp

<= { column : { lte : Lessthan or equalto String | Int | Float | Date |
value } } Timestamp

LIKE { column : { like : Operator used for String
pattern } } pattern matching

NOT LIKE { column : Operator used for String
{ nlike : pattern matching
pattern } }

IN { column : { in : Equal to any value ina String | Int | Float | Date |
[valuel , ..., list of values Timestamp
value n] } }

NOT IN { column : { nin : Notequaltoany value in String | Int| Float | Date |
[value 1, ,valu alistof values Timestamp
en] }}

BETWEEN { column : { btwn : Equivalentto >=nand String | Int| Float | Date |
[value 1, <=y Timestamp

value 2] } }

NOT BETWEEN { column : Equivalent to NOT >=n String | Int | Float | Date |
{ nbtwn : [value 1, and<=y Timestamp
value 2] } }

IS NULL { column : { null: NULL test Boolean
[Boolean] } }

OR Logical operator, returns Not Applicable
{ or : [true if any expression is
{ GraphQL true.
expression 1 }

{ GraphQL
expression n }
1
NOT { NOT : { GraphQL Logical operator, Not Applicable

expression}}

negates the logical value

of the expression on
which it operates.

10-15

Chapter 10
Examples of Filtering in Queries

Table 10-1 (Cont.) Supported Operators
]

Operator GraphQLJSON Syntax Description Supported Data Types
AND Logical operator, returns Not Applicable

{ and : [true if both expressions

{ GraphQL are true.

expression 1 },
.

{ GraphQL
expression n }

13

10.5.3.1 Example: EQUALS (eq) operator

ORACLE

The following query includes a filter that restricts the the job id field to IT PROG.

query {
employees (where : {job id: {eq : "IT PROG"}}) {
employee id
first name
last name
job_id
salary

Example cURL command:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \
--data '{
"query": "{ employees (where : {job id : {eq :\"IT PROG\"}}) { employee id
first name last name job id salary } } "

} 1

Response:

"data": {
"employees": [
{

"employee id": 103,
"first name": "Alexander",
"last name": "Hunold",
"job id": "IT PROG",
"salary": 9000

"employee id": 104,
"first name": "Bruce",
"last name": "Ernst",

10-16

Chapter 10
Examples of Filtering in Queries

"job_id": "IT PROG",
"salary": 6000

"employee id": 105,
"first name": "David",
"last name": "Austin",
"job_id": "IT PROG",
"salary": 4800

"employee id": 106,
"first name": "Valli",
"last name": "Pataballa",
"job_id": "IT PROG",
"salary": 4800

"employee id": 107,
"first name": "Diana",
"last name": "Lorentz",
"job _id": "IT PROG",
"salary": 4200

10.5.3.2 Example: Greater than (>) Operator and Date Data Type

The following query includes a filter that restricts the hire date field to be greater than 01 Jan
2006.

query {
employees (where : { hire date : { gt : "2006-01-01T00:00:002" } }){
employee id
first name
last name
hire date

}

10.5.3.3 Example: LIKE (like) operator

ORACLE

The following query includes a filter that restrics the first name field to match the pattern s%:

query {
employees (where : { first name : { like : "S%" } }){
employee id
first name
last name

}

10-17

Chapter 10
Examples of Filtering in Queries

10.5.3.4 Example: IN (in) operator

The following query includes a filter that restricts the the job _id fieldto IT PROG Or
FI_ACCOUNT using the in operator:

query {
employees (where : { job id : { in : ["IT PROG", "FI ACCOUNT"] } }){
employee id
first name
last name
job_id
salary

10.5.3.5 Example: NOT (not) Operator

ORACLE

The following query includes a filter that negates the result of restricting the salary field to be
between 2000 and 10000.

query Employees {
employees (where : {not : {salary : {btwn : [2000, 10000]1}}}){
employee id
first name
last name
job_id
salary

Request:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \
--data '{
"query": "{employees(where : {not : {salary : {btwn : [2000, 10000]}}}){
employee id first name last name job id salary } } "

} 1

Response:

"data": {
"employees": [
{

"employee id": 100,
"first name": "Steven",
"last name": "King",
"job id": "AD PRES",
"salary": 24000

10-18

Chapter 10
Examples of Filtering in Queries

"employee id": 101,
"first name": "Neena",
"last name": "Kochhar",
"job_id": "AD vp",
"salary": 17000

"employee id": 102,
"first name": "Lex",
"last name": "De Haan",
"job_id": "AD vp",
"salary": 17000

"employee id": 108,
"first name": "Nancy",
"last name": "Greenberg",
"job id": "FI_MGR",
"salary": 12008

"employee id": 114,
"first name": "Den",
"last name": "Raphaely",
"job id": "PU MAN",
"salary": 11000

"employee id": 145,
"first name": "John",
"last name": "Russell",
"job id": "SA MAN",
"salary": 14000

"employee id": 146,
"first name": "Karen",
"last name": "Partners",
"job id": "SA MAN",
"salary": 13500

"employee id": 147,
"first name": "Alberto",
"last name": "Errazuriz",
"job id": "SA MAN",
"salary": 12000

"employee id": 148,
"first name": "Gerald",
"last name": "Cambrault",
"job id": "SA MAN",
"salary": 11000

ORACLE 1019

Chapter 10
Examples of Filtering in Queries

"employee id": 149,
"first name": "Eleni",
"last name": "Zlotkey",
"job id": "SA MAN",
"salary": 10500

"employee id": 162,
"first name": "Clara",
"last name": "Vishney",
"job id": "SA REP",
"salary": 10500

"employee id": 168,
"first name": "Lisa",
"last name": "Ozer",
"job id": "SA REP",
"salary": 11500

"employee id": 174,
"first name": "Ellen",
"last name": "Abel",
"job id": "SA REP",
"salary": 11000

"employee id": 201,
"first name": "Michael",
"last name": "Hartstein",
"job_id": "MK MAN",
"salary": 13000

"employee id": 205,
"first name": "Shelley",
"last name": "Higgins",
"job_id": "AC MGR",
"salary": 12008

10.5.3.6 Example: AND (and) operator

The following query includes a filter that restricts the the job_id field to IT PROG and the
salary field to be between 4000 and 6000:

query Employees {
employees (where : { and : [
{job id : { eqg : "IT PROG" }},
{salary : { btwn : [4000, 6000] }}
TH A

ORACLE 10.20

Chapter 10
Examples of Filtering in Queries

employee id
first name
last name
job_id
salary

Request:

query Employees {
employees (where : { and : [
{job _id : { eq : "IT PROG" }},
{salary : { btwn : [4000, 6000] }}
IRDR
employee id
first name
last namecurl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \
--data '{
"query": "{employees(where : { and : [{job id : { eq : \"IT PROG\" }},
{salary : { btwn : [4000, 6000] }} 1 }){
employee id first name last name job id salary } } "

} 1

job_id

salary

}
}
Response:
{

"data": {
"employees": [

{
"employee id": 104,
"first name": "Bruce",
"last name": "Ernst",
"job _id": "IT PROG",
"salary": 6000

"employee id": 105,
"first name": "David",
"last name": "Austin",
"job_id": "IT PROG",
"salary": 4800

"employee id": 106,
"first name": "Valli",
"last name": "Pataballa",
"job _id": "IT PROG",
"salary": 4800

ORACLE 1091

"employee id": 107,
"first name": "Diana",
"last name": "Lorentz",
"job id": "IT PROG",
"salary": 4200

10.5.3.7 Example: OR (or) operator

query Employees {
employees (where : { or : [

{job id : { eg : "IT PROG" }},
{job id : { eg : "FI ACCOUNT" }}
I

employee id

first name

last name

job id

salary

10.5.3.8 Example: Where Filter in Children Types

ORACLE

query({
employees {

employee id
first name
last name
job_id
salary

employees manager id(where : {job_ id :

employee id
first name
last name
job_id
salary

}

{eq :

Chapter 10

Examples of Filtering in Queries

"IT_PROG"}}) {

The following query includes a filter that restricts the the job id field to IT PROG or FI_ACCOUNT
using or operator:

All the filters described in the preceding sections can be applied to nested types in a query,
that enables you to widen the range of fields that can be filtered in a single query.

The following query retrieves all employees that are managers of employees whose job idis
equal to IT_PROG:

10-22

ORACLE

Chapter 10
Examples of Filtering in Queries

Request:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \
--data '{

"query": "query{ employees{ employee id first name last name job id
salary employees manager id(where : { job id :

{ eq : \"IT PROG\" } }){employee id first name last name job id
salary} } }"
} 1

Response:

"data": {
"employees": [
{
"employee id": 102,
"first name": "Lex",
"last name": "De Haan",
"job_id": "AD VP",
"salary": 17000,
"employees manager id": [
{
"employee id": 103,
"first name": "Alexander",
"last name": "Hunold",
"job_id": "IT PROG",
"salary": 9000

"employee id": 103,
"first name": "Alexander",
"last name": "Hunold",
"job_id": "IT PROG",
"salary": 9000,
"employees manager id": [
{
"employee id": 104,
"first name": "Bruce",
"last name": "Ernst",
"job_id": "IT PROG",
"salary": 6000

"employee id": 105,
"first name": "David",
"last name": "Austin",
"job id": "IT PROG",
"salary": 4800

"employee id": 106,

10-23

Chapter 10
Examples of Filtering in Queries

"first name": "Valli",
"last name": "Pataballa",
"job _id": "IT PROG",
"salary": 4800

"employee id": 107,
"first name": "Diana",
"last name": "Lorentz",
"job id": "IT PROG",
"salary": 4200

10.5.3.9 Working with Dates/Timestamps Using Filters

Most of the filters described in the previous sections, can be applied on fields whose type is
Date or Timestamp. To apply these filters on fields whose type is Date, you must use the
format: YYYY-MM-DDThh:mm: ssZ. For the date fields, YyYy-MM-DD format can also be used. To
apply these filters on fields whose type is Timestamp, you must use the format: YYYY-MM-
DDThh:mm:ss.sssZ. The following query includes a filter that restricts the hire date field to be
inbetween the range 01 Jan 2006 and 01 Jun 2006:

query({
employees (where : {hire date : {btwn : ["2006-01-01", "2006-06-01"1}1}) {

employee id

first name

last name

job_id

salary

hire date

Request:

curl --location 'http://localhost:8080/ords/hr/_/graphgl’ \--header 'Content-Type:
application/json' \--data '{ "query": "query{ employees (where :
{hire date : {btwn : [\"2006-01-01\",
\"2006-06-01\"1}}) {employee id first name last name job id salary
hire date}
P

Response:

"data": {
"employees": |

{

ORACLE 10.94

http://localhost:8080/ords/hr/_/graphql')

ORACLE

"employee id": 103,

"first name": "Alexander",
"last name": "Hunold",
"job _id": "IT PROG",
"salary": 9000,

"hire date": "2006-01-03T00:00:

"employee id": 106,
"first name": "Valli",
"last name": "Pataballa",
"job id": "IT PROG",
"salary": 4800,

"hire date": "2006-02-05T00:00:

"employee id": 112,

"first name": "Jose Manuel",
"last name": "Urman",
"job_id": "FI_ACCOUNT",
"salary": 7800,

"hire date": "2006-03-07T00:00:

"employee id": 139,
"first name": "John",
"last name": "Seo",
"job_id": "ST CLERK",
"salary": 2700,

"hire date": "2006-02-12T00:00:

"employee id": 140,
"first name": "Joshua",
"last name": "Patel",
"job_id": "ST CLERK",
"salary": 2500,

"hire date": "2006-04-06T00:00:

"employee id": 143,
"first name": "Randall",
"last name": "Matos",
"job_id": "ST CLERK",
"salary": 2600,

"hire date": "2006-03-15T00:00:

"employee id": 153,

"first name": "Christopher",
"last name": "Olsen",

"job id": "SA REP",
"salary": 8000,

"hire date": "2006-03-30T00:00:

ooz"

ooz"

ooz"

ooz"

ooz"

ooz"

ooz"

Chapter 10
Examples of Filtering in Queries

10-25

ORACLE

"employee id": 169,
"first name": "Harrison",
"last name": "Bloom",
"job id": "SA REP",
"salary": 10000,

"hire date": "2006-03-23T00:

"employee id": 170,
"first name": "Tayler",
"last name": "Fox",
"job id": "SA REP",
"salary": 9600,

"hire date": "2006-01-24T00:

"employee id": 176,
"first name": "Jonathon",
"last name": "Taylor",
"job id": "SA REP",
"salary": 8600,

"hire date": "2006-03-24T00:

"employee id": 177,

"first name": "Jack",
"last name": "Livingston",
"job id": "SA REP",
"salary": 8400,

"hire date": "2006-04-23T00:

"employee id": 180,
"first name": "Winston",
"last name": "Taylor",
"job id": "SH CLERK",
"salary": 3200,

"hire date": "2006-01-24T00:

"employee id": 181,
"first name": "Jean",
"last name": "Fleaur",
"job_id": "SH CLERK",
"salary": 3100,

"hire date": "2006-02-23T00:

"employee id": 196,
"first name": "Alana",
"last name": "Walsh",
"job_id": "SH CLERK",
"salary": 3100,

"hire date": "2006-04-24T00:

00:

00:

00:

00:

00:

00:

00:

ooz"

ooz"

ooz"

ooz"

ooz"

ooz"

ooz"

Chapter 10
Examples of Filtering in Queries

10-26

Chapter 10
Sorting the Data

"employee id": 197,

"first name": "Kevin",

"last name": "Feeney",

"job_id": "SH CLERK",

"salary": 3000,

"hire date": "2006-05-23T00:00:002"

10.6 Sorting the Data

ORACLE

Sorting enables you to sort the data in a ascending or descending order by one or more fields.

Sort Query Syntax:

sortValue = "asc" | "desc" | "ASC" | "DESC"
sortExp = [{<fieldNamel> : sortValue}, ... ,{<fieldNameN> : sortValue}]
sort : <sortExp>

The following query specifies sort filter to order the employee id field in a descending order:

query {
employees (sort : [{ employee id : "desc" }]){
employee id
first name
last name
salary

Request:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \

--data '{
"query": "query { employees(sort : [{ employee id : \"desc\" }])
{ employee id first name last name salary } }"

} 1

Response:

{

"data": {

"employees": [

{
"employee id": 206,
"first name": "William",
"last name": "Gietz",
"salary": 8300

10-27

Chapter 10
Sorting the Data

"employee id": 205,
"first name": "Shelley",
"last name": "Higgins",
"salary": 12008

"employee id": 204,
"first name": "Hermann",
"last name": "Baer",
"salary": 10000

"employee id": 203,
"first name": "Susan",
"last name": "Mavris",
"salary": 6500

"employee id": 202,
"first name": "Pat",
"last name": "Fay",
"salary": 6000

"employee id": 201,
"first name": "Michael",
"last name": "Hartstein",
"salary": 13000

"employee id": 200,
"first name": "Jennifer",
"last name": "Whalen",
"salary": 4400

10.6.1 Example: Sorting by Multiple Columns

The following query includes a sort filter that orders the data in a descending order by
department id field and in an ascending order by salary field:

query {
employees (sort : [{ department id : "desc" } , { salary : "asc" }]){
employee id
first name
last name
salary
department id

ORACLE 1098

Chapter 10
Keyset Pagination

10.7 Keyset Pagination

ORACLE

Keyset pagination enables you to specify a 1imit and offset to paginate the data received
from any given query. If sorting expression is not specified, then ROWID is used by default as a
sort argument to uniquely address the rows.

The following query specifies the offset and 1imit parameters:

query Employees {
employees (limit: 3, offset: 5) {
employee id
first name
last name
email

Request:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \

--data '{

"query": "query { employees(limit: 3, offset: 5){ employee id
first name last name email } }"
} 1
Response:
{

"data": {

"employees": [

{
"employee id": 105,
"first name": "David",
"last name": "Austin",
"email": "DAUSTIN"

"employee id": 106,
"first name": "Valli",
"last name": "Pataballa",
"email": "VPATABAL"

"employee id": 107,
"first name": "Diana",
"last name": "Lorentz",
"email"™: "DLORENTZ"

10-29

Chapter 10
Keyset Pagination

10.7.1 Example: Pagination with Other Filters

The following query specifies the offset and 1imit parameters and orders the results in a
descending order by employee id field:

query {
employees (sort : [{ employee id : "DESC" }], limit: 3, offset: 2){
employee id
first name
last name
salary
department id

10.7.2 Example: Pagination in Nested Types

The following query specifies the 1imit parameter both in employees and in the nested type
employees manager id and limits the number of employees returned in the nested object to
two:

query({
employees (limit : 1) {

employee id

first name

last name

job_id

salary

employees manager id(limit : 2){
employee id
first name

}

Request:

curl --location 'http://localhost:8080/ords/hr/ /graphql' \
--header 'Content-Type: application/json' \
--data '{
"query": "query {employees(limit : 1){employee id first name last name
job _id salary employees manager id(limit : 2){employee id first name}}}"

} 1

Response:

"data": {
"employees": |
{
"employee id": 100,
"first name": "Steven",

ORACLE 10.30

Chapter 10
Using Dynamic Arguments in Queries: Variables

"last name": "King",
"job id": "AD PRES",
"salary": 24000,
"employees manager id": [
{
"employee id": 101,
"first name": "Neena"
} 14
{
"employee id": 102,
"first name": "Lex"

10.8 Using Dynamic Arguments in Queries: Variables

To replace variables with static values in GraphQL queries, perform the following steps:
1. Replace the static value with $variableName

2. Declare $variableName as one of the variables accepted by the query and then specify the
data type

3. Pass variables dictionary separately

The following query uses variables to use dynamic values in the filters:

query Employees($job _id : String, S$min salary : Int, Smax salary : Int){
employees (where : { and : [
{job id : { eq : $job _id }},
{salary : { btwn : [$min salary, S$max salary] }} 1}){
employee id
manager_ id
phone number
commission pct
department id
salary
first name
email
job_id
hire date
last name

Variables Dictionary:

"job id" : "IT PROG",
"min salary" : 4000,

ORACLE 10.31

Chapter 10
GraphiQL

"max salary" : 6000

Request:

curl --location 'http://localhost:8080/ords/hr/ /graphgl' \
--header 'Content-Type: application/json' \

--data '{
"query": "query Employees($job_id : String, $min salary :
Int, $max _salary : Int){ employees (where : { and : [\n {job_id :

{ eq : $job id }}, {salary : { btwn : [Smin salary, Smax salary] }} 1})
{ employee id manager id phone number commission pct department id salary
first name email job_id hire date last name }}",
"operationName": "Employees",
"variables": {
"job id": "IT PROG",
"min salary": 4000,
"max salary": 6000

} 1

10.9 GraphiQL

Oracle REST Data Services includes GraphiQL, an in-browser IDE for exploring GraphQL. Use
the following endpoint and login with the Rest-enabled user database schema credentials:

http://<HOST>:<PORT>/ords/<SCHEMANAME>/ /graphiql

ORACLE 10.32

Extending ORDS Functionality with Plugins

This chapter explains and provides examples on using ORDS plugin framework.

ORDS has a plugin framework that allows you to add your own custom functionality into the
ORDS web application. Plugins can be added to the ORDS runtime by placing the jar files in
the 1ib/ext directory. The ORDS distribution contains the source for example plugins. The
plugin examples can be built using Apache ant, a software tool used for automating the build
processes.

11.1 Plugin Demonstration Example

This section shows how you can locate and build a plugin demonstration example..

The plugin-demonstraion example is at examples/plugins/plugin-demo location and contains
the source for a HttpServlet that gets a database connection injected at runtime. The servlet

uses that JDBC database connection to run a query in the database and return a response at

runtime.

Perform the following steps to build and use the demonstration example:
1. Change the directory to examples/plugins/plugin-demo
2. Run ant to build the examples/plugins/plugin-demo/built/plugin-demo.jar file

3. Copy the plugin-demo.jar to the ORDS distribution 1ib/ext directory and start an ORDS
instance.

4. Invoke the servlet using the following URL pattern; http://server/ords/schema/demos/
plugin?who=somebody

a. For example: http://localhost:8080/0ords/hr/demos/plugin?who=scott where
ORDS is configured with a default pool and HR is an alias for a REST Enabled Schema
in that database.

The details of developing and deploying Java based plugins is available in the Oracle REST
Data Services Java API Reference book.

¢ See Also:

e Getting Started Guide
e Developer Guide

* Route Patterns Specification

11.2 Embedding Graal JavaScript Component

ORACLE

The JavaScript component must be embedded as a plugin to be able to run JavaScript as a
guest language in ORDS that is running in GraalVM for JDK version 21.

11-1

https://docs.oracle.com/en/database/oracle/oracle-database/23/ordjv/doc-files/getting-started.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/ordjv/doc-files/developer-guide.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/ordjv/doc-files/route-patterns.html

Chapter 11
Plugin Javascript

The following are the artifacts required to embed JavaScript:
* GraalVM Polyglot API

e JavaScript language

The following is a sample code snippet that demonstrates Maven dependency setup that can
help you get the required dependencies:

<dependency>
<groupld>org.graalvm.polyglot</groupId>
<artifactId>polyglot</artifactId>
<version>${graalvm.version}</version>

</dependency>

<dependency>
<groupld>org.graalvm.polyglot</groupId>
<!-- Language: js -->

<artifactId>js</artifactId>
<version>${graalvm.version}</version>
<type>pom</type>

</dependency>

Refer to section, Embedding Languages in the GraalVM reference manual for more
information about dependency setup to embed languages. Once the required artifacts have be
dowloaded, place them in 1ib/ext/ directory to be included in the classpath at runtime.

See Also:

Embedding Languages

11.3 Plugin Javascript

ORACLE

ORDS provides a JavaScript as a service framework for customers to define a JavaScript that
can be executed in the ORDS instance on request. This is similar to the conventional RESTful
services concept used to develop the applications. The framework is based on the module,
template, and handler architecture. See Developing Oracle REST Data Services Applications.
Rather than defining the modules, templates, and handlers in the database, they are specified
in an XML representation that is read from 1ib/ext/ directory as a plugin.

The ORDS examples directory contains a plugin-javascript example and the source can be
found in the examples/plugins/plugin-javascript directory. This section describes the key
elements of the plugin.

Note:

GraalVM with JS component is required for JavaScript plugin ORDS feature to work.

GraalVM with JS component is required for this ORDS feature to work. See GraalVM
Configuration for more information.

The example contains a number of inline and external definitions for JavaScript source.
References to external JavaScript source are to the files that are found in the classpath.

11-2

https://www.graalvm.org/jdk21/reference-manual/embed-languages/

Chapter 11
Plugin Javascript

File Description
build.xml The ant build project.
src/js/example.js An example external JavaScript file. External here

means, not defined in, but referred to from, the
XML Resource Module file.

src/META-INF/manifest.json A plugin configuration metadata file that ORDS
reads at startup to register XML Resource
Modules.

src/META-ING/modules/javascript.xml An XML Resource Module file that defines an
example module with a number of templates and
handlers.

Perform the following steps to build and use the example:
1. Change the directory to examples/plugins/plugin-javascript.

2. Run ant to build examples/plugins/plugin-javascript/built/plugin-javascript.jar
file.

3. Copy the plugin-javascript.jar file to the ORDS distribution 1ib/ext directory and start
the ORDS instance using a supported GraalVM with JS component.

4. Invoke the defined handlers using the URL pattern: http://server/ords/javascript-
examples/{template pattern}.

a. For example: http://localhost:8080/ords/javascript-examples/now where the
current time is returned.

Note:

Unlike the ORDS REST Services, the JavaScript as a service
implementation does not require or use a database connection.

11.3.1 Example Services Purpose and Use

This section provides the information on the purpose and use of the example services.

Purpose Request Action Response
An example of inline /ords/javascript- GET { "now":"2023-08-31
Javascript that returns examples/now T16:08:55.4712" }

the current UTC time as
application/json.

An example of inline /ords/javascript- GET { "now":"2023-08-31

Javascript that accepts a examples/future? T16:08:55.471z2",

parameter. days=7 "future":"2023-09-0
7T16:08:55.471z2",
"days":7 }

ORACLE 113

ORACLE

Chapter 11
Plugin Javascript

Purpose Request Action Response
An example of inline GET

Javascript that accepts /ords/javascript- Hello Ted
various parameters from examples/hello? Hello Test
different sources. name=Ted

curl --location
'ords/javascript-
examples/hello' \
--header 'Agent:

Test'
An example of external /ords/javascript- GET {fib: 12586269025}
Javascript file that examples/fibonacci?
accepts a parameter. length=50
An example of inline POST
t]ava}s_cript that uses curl --location ("text": "How
implicit parameters '/ords/hr/ many words are
content_typeanq javascript- here?", "count":
body text for getting examples/ 5)
the request values as countwords' \
well as using

--header
ords_response to 'Content-T .
invoke setStatus and oilen) yse'
setContentType on épp ication

json' \

HttpServletResponse

--data '{"text":
"How many words
are here?"}'!

11-4

Migrating from mod_plsqgl to ORDS

This chapter demonstrates how a mod_plsql application is migrated to Oracle REST Data
Services (ORDS).

Oracle REST Data Services is a Java EE-based alternative for Oracle HTTP Server and
mod_plsgl. An Oracle HTTP Server mod_plsqgl application can be migrated to ORDS by
defining new ORDS configuration files. The mod_plsql database resources such as before
procedures, after procedures, request validation functions, owa_custom packages, doc upload
procedures and doc tables require no change when you are migrating to ORDS.

Topics:

e Oracle HTTP Server mod_plsgl Authentication

e Example Oracle HTTP Server DAD file

e Mapping mod_plsql Settings to ORDS

e Example ORDS Configuration Files

e Example ORDS URL Mapping

« Example ORDS Default Configuration

e Oracle REST Data Services Functionality

e ORDS Features

e Modifying Synonyms

12.1 Oracle HTTP Server mod_plsqgl Authentication

Oracle HTTP Server mod_plsql applications are configured in a database access descriptor
(DAD) file.

The following example mod_plsgl application provides the methods to authenticate the
requests against the Oracle Database:

« Basic authentication: The username and password are stored in the DAD file and so the
end user is not required to log in. This method is useful for web pages that provide public
information.

* Basic dynamic authentication: The users provide credentials in a browser HTTP basic
authentication dialog box. The only way to log out is to close all the instances of the
browser.

e Custom authentication: Enables applications to invoke a user-written authentication
function to authenticate the users within the application and not at the database level.

12.2 Example Oracle HTTP Server DAD file

ORACLE

This section provides an example Oracle HTTP Server DAD file.

The following dads. conf file includes three locations demonstrating the basic, basic dynamic
and custom authentications and the following directives:

12-1

e PlsqglBeforeProcedure

e PlsqlAfterProcedure

e PlsqglRequestValidationFunction
e PlsglDocumentTablename

e PlsqglDocumentProcedure

Example 12-1 dads.conf file

#

Chapter 12
Example Oracle HTTP Server DAD file

mod plsqgl DAD
#

Configuration File

<Location /pls/basic_auth>
SetHandler pls handler
Order deny,allow
Allow from all
AllowOverride
PlsglDatabaseUsername
PlsglDatabasePassword
PlsglDatabaseConnectString
PlsglAuthenticationMode
PlsglBeforeProcedure
PlsglAfterProcedure
PlsglRequestValidationFunction
PlsglDocumentTablename
PlsglDocumentProcedure
</Location>
<Location /pls/basic_dynamic auth>
SetHandler pls handler
Order deny,allow
Allow from all
AllowOverride
PlsglDatabaseConnectString
PlsglAuthenticationMode
PlsglBeforeProcedure
PlsglAfterProcedure
PlsglRequestValidationFunction
</location>
<Location /pls/custom auth>
SetHandler pls handler
Order deny,allow
Allow from all
AllowOverride
PlsglDatabaseUsername
PlsglDatabasePassword
PlsglDatabaseConnectString
PlsglAuthenticationMode
PlsglBeforeProcedure
PlsglAfterProcedure
PlsglRequestValidationFunction
</location>

ORACLE

None

PRIVILEGED USER

passwordFORSORDSExample
oracle-ee:1521:0RCLPDBl ServiceNameFormat
Basic

sample plsql app metadata.beforeProc
sample plsql app metadata.afterProc
sample plsql app metadata.validationFunc
privileged user.doc_table

privileged user.upload

None

oracle-ee:1521:0RCLPDBl ServiceNameFormat
Basic

sample plsql app metadata.beforeProc
sample plsql app metadata.afterProc
sample plsql app metadata.validationFunc

None

PRIVILEGED USER

passwordFORSORDSExample
oracle-ee:1521:0RCLPDBl ServiceNameFormat
CustomOwa

sample plsql app metadata.beforeProc
sample plsql app metadata.afterProc
sample plsql app metadata.validationFunc

12-2

12.3 Mapping mod_plsgl Settings to ORDS

This section shows the mappings of mod_plsgl settings to ORDS.

ORACLE

Chapter 12
Mapping mod_plsql Settings to ORDS

ORDS allows you to specify configuration files that are similar to a location defined in an
Oracle HTTP Server mod_plsgl DAD file. Each configuration file is defined in ords_conf/ords/
conf directory and the configuration file is then mapped to a particular URL using the
ords_conf/ords/url-mapping.xml file. ORDS provides the following configurable parameters
that can be used when migrating mod_plsql directives:

Table 12-1 Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting

ORDS Setting

Description

PlsglDatabaseUserName

db.username

Specifies the username to use to
log in to the database.

ORDS and mod_plsql are
equivalent.

PlsglDatabasePassword

db.password

Specifies the password to use to
log in to the database.

ORDS and mod_plsql are
equivalent.

PlsglDatabaseConnectString Multiple Settings such as:

. db.hostname

e db.port
. db.servicename
e db.sid

Specifies the connection to an
Oracle database.

ORDS and mod_plsql are
equivalent.

PlsglAuthenticationMode

security.requestAuthentica
tionFunction

Specifies the authentication mode
to use to allow access.

When
security.requestAuthentica
tionFunction is not specified,
ORDS behavior is same as
Basic mode of mod_plsql.

When
security.requestAuthentica
tionFunction is specified,
ORDS can perform the same
action as example dad directive
PlsglAuthenticationMode
CustomOwaof mod_plsql.

Example ORDS equivalent
configuration parameter:

<entry
key="security.requestAuthe
nticationFunction">privile
ged user.owa custom.author
ize</entry>

ORDS and mod_plsql are
equivalent.

12-3

Chapter 12
Mapping mod_plsql Settings to ORDS

Table 12-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

mod_plsql Setting

ORDS Setting

Description

PlsglBeforeProcedure

procedure.preProcess

Specifies the procedure to be
invoked before calling the
requested procedure.

ORDS and mod_plsql are
equivalent.

PlsglAfterProcedure

procedure.postProcess

Specifies the procedure to be
invoked after calling the
requested procedure.

ORDS and mod_plsql are
equivalent.

PlsglRequestValidationFunc
tion

security.requestValidation
Function

Specifies an application-defined
PL/SQL function that can allow or
disallow further processing of the
requested procedure.

ORDS and mod_plsql are
equivalent.

PlsglDocumentTablename

owa.docTable

Specifies the table in the
database to which all documents
are uploaded.

ORDS and mod_plsql are
equivalent.

PlsglDocumentProcedure

N/A

Specifies the procedure to call
when a document download is
initiated.

In ORDS the document
procedure is the requested
resource. It is not defined in the
configuration file.

ORDS and mod_plsql are
equivalent.

PlsglDocumentPath

N/A

ORDS has no equivalent.

PlsglDefaultPage

misc.defaultPage

Specifies the default procedure to
call if none is specified in the
URL.

ORDS and mod_plsql are
equivalent.

PlsglErrorStyle

debug.printDebugToScreen

Specifies the error reporting
mode for mod_plsql errors.
debug.printDebugToScreen is
equivalent to P1sqlErrorStyle
DebugStyle, otherwise there is
no equivalent.

ORDS and mod_plsql are
equivalent.

ORACLE

12-4

Chapter 12
Mapping mod_plsql Settings to ORDS

Table 12-1 (Cont.) Mappings of mod_plsql Directives to ORDS Settings

. ___|
mod_plsql Setting ORDS Setting Description

PlsglExclusionList security.exclusionlist Specifies a pattern for
procedures, packages, or schema
names which are forbidden to be
directly run from a browser.

ORDS and mod_plsql are

equivalent.

See Understanding Configurable

Parameters.
PlsglIdleSessionCleanupInt jdbc.InactivityTimeout Specifies the time (in minutes) in
erval which the idle database sessions

should be closed and cleaned.

Value can be 0 to N seconds.
Where, 0 (default) means that the
idle connections are not removed
from pool.

